

3D Game
Programming

All in One

Second Edition

Kenneth C. Finney

� 2007 Thomson Course Technology, a division of Thomson Learning

Inc. All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or

retrieval system without written permission from Thomson Course

Technology PTR, except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are

trademarks of Thomson Course Technology, a division of Thomson

Learning Inc., and may not be used without written permission.

MilkShape was created by chUmbaLum sOft. Torque ShowTool Pro,

Constructor, Orbz, ThinkTanks, Marble Blast, Chain Reaction, and Tube

Twist were developed by GarageGames. The Gimp 2 and Audacity are

part of the GNU Project (see Appendix E for license info). UVMapper

was created by Stephen L. Cox. UltraEdit-32 is a registered trademark

of IDM Computer Solutions.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software

support. Please contact the appropriate software manufacturer’s

technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted

throughout this book to distinguish proprietary trademarks from

descriptive terms by following the capitalization style used by the

manufacturer.

Information contained in this book has been obtained by Thomson

Course Technology PTR from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our sources,

Thomson Course Technology PTR, or others, the Publisher does not

guarantee the accuracy, adequacy, or completeness of any information

and is not responsible for any errors or omissions or the results

obtained from use of such information. Readers should be particularly

aware of the fact that the Internet is an ever-changing entity. Some facts

may have changed since this book went to press.

Educational facilities, companies, and organizations interested in

multiple copies or licensing of this book should contact the Publisher

for quantity discount information. Training manuals, CD-ROMs, and

portions of this book are also available individually or can be tailored

for specific needs.

ISBN-10: 1-59863-266-3

ISBN-13: 978-1-59863-266-8

Library of Congress Catalog Card Number: 2006927129

Printed in the United States of America

07 08 09 10 11 TW 10 9 8 7 6 5 4 3 2 1

Publisher and General Manager,

Thomson Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah O’Donnell

Manager of Editorial Services:

Heather Talbot

Marketing Manager:

Heather Hurley

Acquisitions Editor:

Mitzi Koontz

Marketing Coordinator:

Adena Flitt

Project Editor:

Jenny Davidson

Technical Reviewer:

Jacqueline Finney

PTR Editorial Services Coordinator:

Erin Johnson

Copy Editor:

Laura Gabler

Interior Layout Tech:

Interactive Composition Corporation

Cover Designer:

Mike Tanamachi

CD-ROM Producer:

Brandon Penticuff

Indexer:

Sharon Shock

Thomson Course Technology PTR,

a division of Thomson Learning Inc.

25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

eISBN-10: 1-59863-267-1

For all we have and are,

For all our children’s fate,

Stand up and take the war.

The Hun is at the gate!

Our world has passed away,

In wantonness o’erthrown.

There is nothing left to-day

But steel and fire and stone!

—Rudyard Kipling

‘‘For All We Have And Are’’, 1914

This book is dedicated to my students, past, present and future.

—Ken Finney,

Bowmanville, Ontario

I’m absolutely humbled by how well received this book has been by the inde-

pendent computer game development folks: certainly in the GarageGames

development community, but more significantly, by the larger reader base in

countries all over the world. And I am grateful to each and every one of those who

have allowed me into their dens, basements, living rooms, garages, and yes, even

classrooms.

I want to thank my editors Laura, Jenny, and Mitzi, without whom this book

wouldn’t be possible. I want to extend special thanks to my wife, Jacquie, who

spent hours and hours immersed in both Torque’s C++ engine source code and

TorqueScript double-checking things. To be edited by one’s spouse is an edu-

cational experience in and of itself.

As usual, my boys, Indy and Luc, were veritable fonts o’ gamer wisdom and ideas.

And they kept me on my toes with their late-night ninja Airsoft sneak attacks on

me in the gazebo during the summer when I was working on this book. They only

got me once. However, the many, many paintball bruises and welts I had on my

body all summer are indications that they’re no slouches, tactically speaking.

It almost seems that it should go without saying (because I keep saying it over

and over), but a great deal of thanks, gratitude, and respect go to those guys in the

greasepit at GarageGames, and the greater GG community. It would be a great

disservice to them to not express my gratitude publicly yet again, no matter how

repetitive I risk sounding.

Acknowledgments

iv

Special thanks go to Josh Williams (The Kid) who, along with Jay Moore, helped

me out of a serious bind that I inadvertently constructed for myself about a half a

year ago. Mark Frohnmayer had no small part to play also, and to him go my

thanks as well.

Tip o’ the hat to DaveWyand, Matt Fairfax, Tom Brampton, John Kabus, and the

rest of the Constructor development team. You guys are kickin’ and takin’.

I want to thank the crew at AiTO for their thoughtfulness and support, and for

continuing to help make my job there the most enjoyable and rewarding one I’ve

ever had. Special thanks go to Jan Czechowicz, the Gnome of Bay Street. Also,

shout outs and props go to David Smith, Predrag Peshikan, and Lisa Delorme for

their guidance, the latitude they grant me, and for paying me to come to the

school and have fun, day in and day out. Paul Armstrong keeps everything held

together with duct tape or something, and doesn’t kick me out of his office

whenever I come whining to him about some problem.

Last but certainly not least, I want to acknowledge these great people, GAD

students all:

Ali Rafati, Calvin Lee, Colin Dyer, Corrie Ramsey, Cory Phillips, Craig Twigg,

David Dick, Feras Jaber, James Thuss, Jason Cabral, Jim Wray, John Montegro,

Jonathan Gidney, Joseph Pendon, Josh Edgar, Juan Pinzon, Juan Rodriguez, Karl

Nevill, Kyle Kokocinski, Laura Genova, Marlon Tyson, Nathan Tillotson,

Patricia Rossi, Paul Da Silva, Peter Bruce, Randy Abbot, and Shawn Corney.

Future big names in computer games. You just watch and see!

Regards,

Ken

Acknowledgments v

Kenneth C. Finney is the lead faculty member for the Game Art & Design

program at the Art Institute of Toronto. He began programming in 1974 and his

career as a software engineer included work on high-speed trading systems

technology, armored fighting vehicle systems design, nuclear reactor safety and

testing technology, robotic pharmaceutical systems, and 3D game engine tech-

nology. In 1997 Ken was a recipient of the prestigious Conference Board of

Canada ITX (Innovation in Technology Excellence) Award for his work on

InScan—a high-speed document scanning system.

At the turn of the millennium, Ken decided to pursue his passion for computer

games, and began gradually moving out of the world of commercial and

industrial technology and into the game development arena. Ken is the creator of

the popular Tubettiworld online game and the ‘QuicknDirty’ game management

tools for Novalogic’s Delta Force 2 game series.

Ken is currently working on the new and unique Return to Tubettiworld action/

adventure game (www.tubettiworld.com) using the Torque Game Engine. The

Return to Tubettiworld design includes integrated episodic single-player, poly-

player, and Internet multi-player combat with distributed player-hosted servers

in a persistent game world.

About the Author

vi

Introduction . xix

Chapter 1 Introduction to 3D Game Development. 1

The Computer Game Industry . 2

3D Game Genres and Styles. 2

Game Platforms . 12

Game Developer Roles . 15

Publishing Your Game . 20

Elements of a 3D Game . 21

Game Engine . 21

Scripts . 22

Graphical User Interface . 24

Models. 25

Textures . 25

Sound . 27

Music . 27

Support Infrastructure . 28

The Torque Game Engine . 29

Descriptions . 29

Using Torque in This Book . 36

Installing Torque . 36

Moving Right Along . 38

vii

Contents

viii Contents

Chapter 2 Introduction to Programming . 39

UltraEdit-32. 39

Program Setup and Configuration. 40

Setting Up Projects and Files . 41

Search and Replace. 45

Find In Files . 48

grep. 49

Bookmarks . 51

Macros . 54

UltraEdit Review. 56

Controlling Computers with Programs . 56

Programming Concepts . 59

How to Create and Run the Example Programs 60

Hello World . 61

Expressions. 65

Variables . 66

Operators. 74

Loops. 78

Functions . 80

Conditional Expressions . 86

Branching . 90

Debugging and Problem Solving . 98

Best Practices . 102

Moving Right Along . 103

Chapter 3 3D Programming Concepts . 105

3D Concepts . 105

Coordinate Systems. 106

3D Models . 109

3D Shapes . 112

Displaying 3D Models . 114

Transformation. 115

Rendering . 119

Scene Graphs . 127

3D Audio . 129

3D Programming . 129

Programmed Translation. 130

Programmed Rotation . 137

Contents ix

Programmed Scaling . 138

Programmed Animation . 139

3D Audio . 143

Moving Right Along . 146

Chapter 4 Game Programming . 149

TorqueScript . 149

Strings . 150

Objects . 151

Datablocks . 154

Game Structure . 156

Server Versus Client Design Issues. 160

Common Functionality. 160

Preparation . 161

Root Main. 161

Control Main. 167

Initialization . 169

Client . 171

Server . 177

Player . 179

Running Emaga4 . 181

Moving Right Along . 184

Chapter 5 Game Play . 185

The Changes . 185

Folders . 185

Modules. 186

Control Modules . 187

control/main.cs . 187

Client Control Modules . 188

control/client/client.cs . 188

control/client/interfaces/menuscreen.gui. 190

control/client/interfaces/playerinterface.gui 194

control/client/interfaces/splashscreen.gui 198

control/client/misc/screens.cs . 198

control/client/misc/presetkeys.cs . 201

Server Control Modules . 204

control/server/server.cs . 205

x Contents

control/server/players/player.cs. 210

control/server/weapons/weapon.cs . 217

control/server/weapons/crossbow.cs . 221

control/server/misc/item.cs . 228

Running EMAGA5 . 233

Moving Right Along . 234

Chapter 6 Network . 235

Direct Messaging. 236

CommandToServer . 236

CommandToClient . 237

Direct Messaging Wrap-up . 239

Triggers . 239

Area Triggers . 240

Animation Triggers . 240

Weapon State Triggers . 240

Player Event Control Triggers . 240

GameConnection Messages . 242

What GameConnection Messages Do. 243

Specifics . 243

Finding Servers . 248

Code Changes . 249

New Modules . 250

Dedicated Server . 262

Root Main Module . 262

Control—Main Module . 263

Control—Initialize Module . 264

Emaga6 Map Files. 265

Testing Emaga6. 265

Testing Direct Messaging . 266

Moving Right Along . 267

Chapter 7 Common Scripts . 269

Game Initialization . 269

Selected Common Server Modules . 274

The Server Module . 274

The Message Module . 275

The MissionLoad Module . 276

Contents xi

The MissionDownload Module . 281

The ClientConnection Module . 286

The Game Module . 292

Selected Common Code Client Modules . 295

The Canvas Module . 295

The Mission Module . 298

The MissionDownload Module . 299

The Messages Module. 303

A Final Word. 306

Moving Right Along . 310

Chapter 8 Introduction to Textures. 311

Using Textures. 311

The Gimp 2 . 317

Installing the Gimp 2 . 318

Getting Started . 319

Working with Files . 327

The Gimp Feature Highlights . 339

Layers . 340

The Toolbox . 343

Tool Options . 346

Fill Tools . 349

Other Tools . 350

Moving Right Along . 352

Chapter 9 Skins . 353

UV Unwrapping . 353

The Skin Creation Process . 354

Making a Soup Can Skin . 356

The Soup Can Skinning Procedure . 356

Adding Text . 367

Testing the Soup Can Skin . 368

Making a Vehicle Skin . 371

The Dune Buggy Diversion . 371

The Runabout Skinning Procedure . 372

Testing the Runabout Skin . 380

Making a Player Skin . 380

The Head and Neck . 382

xii Contents

Hair and Hands . 388

The Clothes . 392

Trying It on for Size . 397

Moving Right Along . 397

Chapter 10 Creating GUI Elements . 399

Controls . 401

GuiChunkedBitmapCtrl . 402

GuiControl . 404

GuiTextCtrl. 405

GuiButtonCtrl . 406

GuiCheckBoxCtrl . 407

GuiScrollCtrl . 408

GuiTextListCtrl . 410

GuiTextEditCtrl . 411

The Torque GUI Editor. 412

The Cook’s Tour of the Editor . 413

Creating an Interface. 417

Moving Right Along . 419

Chapter 11 Structural Material Textures . 421

Sources . 422

Photography . 422

Original Artwork . 431

Scaling Issues. 432

Tiling . 433

Texture Types . 436

Irregular. 436

Rough . 437

Pebbled . 437

Woodgrain. 438

Smooth . 438

Patterned . 438

Fabric. 439

Metallic . 439

Reflective . 440

Plastic . 440

Moving Right Along . 440

Chapter 12 Terrains . 443

Terrains Explained . 443

Terrain Characteristics . 443

Terrain Data. 444

Terrain Modeling . 446

Height Maps . 447

Terrain Cover . 448

Tiling . 449

Creating Terrains . 452

The Height-Map Method . 452

Applying Terrain Cover . 466

Moving Right Along . 472

Chapter 13 Introduction to Modeling with MilkShape 473

MilkShape 3D . 473

Installing MilkShape 3D . 474

The MilkShape 3D GUI . 474

Navigating in Views . 475

View Scale and Orientation. 476

The Soup Can Revisited. 478

Menus . 487

The Toolbox . 497

The Keyframer . 501

The Preferences Dialog Box. 503

Other Features . 506

UVMapper . 509

The File Menu . 510

The Edit Menu . 510

The Help Menu . 511

UV Mapping. 511

Moving Right Along . 517

Chapter 14 Making a Character Model . 521

Modeling Techniques . 521

Shape Primitives . 521

Box Method . 522

Incremental Polygon Construction . 522

Axial Extrusion . 523

Contents xiii

xiv Contents

Arbitrary Extrusion . 523

Topographical Shape Mapping . 524

Hybrids . 524

Modeling for Torque . 524

The Base Hero Model . 526

Preparation . 526

The Head . 527

The Torso. 539

Matching the Head to the Torso . 550

The Legs . 553

Integrating the Legs to the Torso . 555

The Arms . 556

Integrating the Arms to the Torso. 564

Testing the Tool Chain . 566

The Hero Skin . 570

Character Animation . 578

Animating Characters in Torque . 579

Building the Skeleton . 581

Rigging: Attaching the Skeleton . 586

Embedded Animations . 592

Testing the Model . 610

Animation Sequence Files . 614

MilkShape 3D’s DTS Exporters . 618

The Standard Torque Game Engine (DTS) Exporter. 618

The Enhanced Torque DTSPlus Exporter 622

Moving Right Along . 629

Chapter 15 Making a Vehicle Model. 631

The Vehicle Model . 632

The Sketch . 632

The Model . 633

The Wheels . 656

Testing Your Runabout . 656

Moving Right Along . 658

Chapter 16 Making Weapons and Items . 659

The Health Kit. 659

The Model . 659

Testing the Health Kit. 662

Contents xv

A Rock . 666

Testing the Rock. 669

Trees. 670

The Solid Tree . 671

Testing the Solid Tree. 677

The Billboard Tree . 677

The Tommy Gun . 680

Making the Model . 681

Skinning the Tommy Gun . 688

Testing the Tommy Gun . 691

The Tommy Gun Script . 691

Moving Right Along . 691

Chapter 17 Making Structures . 693

CSG Modeling . 694

Torque Constructor . 697

Installing Constructor . 697

The Cook’s Tour . 698

Quick Start . 704

Building Bridges . 713

Building a House . 719

Moving Right Along . 725

Chapter 18 Making the Game World Environment 727

Sky . 727

Skyboxes . 728

The Sky Mission Object . 739

Clouds . 742

Cloud Specifications . 742

Cloud Textures . 744

Water . 745

Fog . 746

Storms . 747

Water Blocks . 758

Terraforming. 760

Moving Right Along . 763

Chapter 19 Creating and Programming Sound. 765

Audacity . 766

Installing Audacity . 766

xvi Contents

Using Audacity . 767

Audacity Reference. 771

OpenAL . 781

Audio Profiles and Datablocks . 782

Audio Descriptions . 783

Trying It Out . 786

Koob . 787

Moving Right Along . 790

Chapter 20 Game Sound and Music . 791

Player Sounds . 791

Rustlers . 793

Footsteps . 796

Utterances . 798

Weapon Sounds . 802

Installing the Mission Editor . 802

Crossbow Sounds . 804

Tommy Gun Preparation . 805

Vehicle Sounds . 815

Environmental Sounds . 821

Interface Sounds . 823

Music . 826

Moving Right Along . 828

Chapter 21 Creating the Game Mission . 829

Game Design. 830

Requirements . 830

Constraints . 832

Koob . 833

Torque Mission Editor . 834

File Menu. 835

Edit Menu . 835

Camera Menu. 836

Other Menus . 836

World Editor . 836

Terrain Editor . 837

Terrain Terraform Editor . 839

Terrain Texture Editor. 840

Mission Area Editor . 841

Contents xvii

Building the World . 842

Particles . 842

The Terrain . 855

Items and Structures . 856

Moving Right Along . 860

Chapter 22 The Game Server . 861

The Player-Character . 861

Player Spawning. 861

Vehicle Mounting. 864

The Model . 864

Server Code . 866

Vehicle . 871

Oh Yeah, the Model . 871

Datablock. 872

Triggering Events . 874

Creating Triggers . 875

Scoring . 878

Moving Right Along . 886

Chapter 23 The Game Client . 887

Client Interfaces . 888

MenuScreen Interface . 888

SoloScreen Interface . 890

Host Interface. 892

FindServer Interface . 892

ChatBox Interface . 893

MessageBox Interface . 897

Client Code . 899

MenuScreen Interface Code . 899

SoloScreen Interface Code. 900

Host Interface Code . 905

FindServer Interface Code . 906

ChatBox Interface Code . 908

MessageBox Interface Code. 911

Game Cycling . 914

Final Change . 916

Moving Right Along . 916

xviii Contents

Chapter 24 The End Game . 917

Testing . 918

Basics . 918

Regression . 918

Play Testing . 919

Test Harnesses . 919

Hosted Servers. 920

Dedicated Servers . 920

FPS Game Ideas . 921

Other Genres . 922

Modifying and Extending Torque. 923

Go for It . 924

Appendix A The Torque Reference . 925

Appendix B Additional Resources . 1017

Appendix C Game Development Tool Reference 1023

Appendix D map2dif_plus_plus Reference 1029

Appendix E GNU General Public License . 1035

Index . 1045

Beginnings
‘‘Hi, I’m using your software and I was wondering—can you tell me how I can make

a computer game? I don’t have much money, but I have this terrific idea for a shooter

like XYZ game, except I’ll make it do . . .’’

During the years bracketing the millennium changeover, while working on the

Tubettiland ‘‘Online Campaign’’ software and more recently while working on

the Return to Tubettiworld game, I figure I’ve received more than a hundred

queries from people of all ages about how to get started making games. There

were queries from 40-year-olds and 13-year-olds and every age in between. Most

e-mails were from guys I would estimate to be in their late teens or early 20s.

After about the 30th response or so, I gave up trying to help these people out in

detail and started to just point them to Web sites where they could gather the

information they needed. Finally I stopped responding completely. But this

bugged me to no end (I still get several of these e-mails in a month), so every now

and then I will respond with the Web links or some pointers. However, whenever

I do answer, I often get drawn into long e-mail exchanges for which I just don’t

have the time. Eventually I have to beg out of the exchange, usually by being

nonresponsive at some point. Then I feel bad again.

This book started out as a sort of e-mail to everyone I hadn’t responded to. It had

been rattling around in my head for several years, and I finally managed to get it out!

Introduction

xix

This Second Edition is two things: an effort to bring the book up-to-date with the

latest version of Torque, from GarageGames, and an attempt to bring the very

best tools available to the Indie game maker. And of course, a number of errors

and omissions in the first edition are corrected, as well.

About This Book
If you want to, you will be able to take this book and a computer, go into a room

without Internet access, and emerge with a completed, ready-to-play first-person

shooter game within weeks. You will then be able to spend as much time as you

want to dream up your game play concepts, and you will have the ability to add

them to your game.

You might think this is a bold claim, but you can see for yourself. Go ahead and

turn to the Table of Contents, or take a quick flip-through skim of the chapters.

It’s all there. If you follow through and do the exercises and work, you will arrive

at the other end of the journey with experience, not just book learnin’.

But keep this in mind: you must start at the beginning and work your way

through to the end. As the book advances, it builds on your efforts in earlier

chapters. This is not the sort of book to leap around in, until you’ve been through

it at least once.

Believe in Yourself

Computer games are a $9 billion per year industry, and that number increases

every year. A growing part of this industry is people like you—part of an

expanding segment of the gamer population that doesn’t just want to play the

games but believes that you canmake them better than the game companies can.

Your problem may be that you lack the right combination of training, experi-

ence, and tools needed to turn dreams into reality. This book is for you.

Every year more and more colleges offer game development programs, and every

fewmonths a new online indie game developer site launches on theWeb. There is

no lack of training available for those with the money to pay, and there is no lack

of books for those of you who want to create your own engines or other spe-

cialized parts of a game.

The key element missing is a resource that takes the inspired and aspiring game

developer by the hand and walks him through all the steps and tools required to

make a fully featured game. This book is that resource. With the exception of

game music composition (which itself could be a complete book series), you, the

xx Introduction

Gentle Reader, will learn how to create every part of the game yourself by using a

well-defined toolkit of programs, knowledge, skills, and ideas. Sound, music, art,

and code libraries are included on the companion CD for you to use if you lack a

certain artistic or creative flair.

What You Bring to the Party

I assume that you have more than a passing familiarity with computer games,

especially the first-person shooter genre. Throw in some computer savvy, add a

reasonably capable computer system, sprinkle with desire, spice it with passion,

and you should be good to go!

Skills

You are probably fully able to deal with all aspects of Microsoft Windows-based

computing. You don’t need to be a programmer, but you do need to be aware that

some programming will be required in creating a computer game. The first few

chapters will introduce you to all the programming concepts that you will encounter

in the course of using the book. You will not be expected to learn advanced 3Dmath

in detail, but you will learn enough about 3D to accomplish your goals.

I’m going to show you how to create your own artwork, but you don’t need to be

an artist. The companion CD features a collection of art you can use in your

game, distributed throughout the game engine demo and RESOURCES folders.

System

All of the development tools, including the engine, are also included on the com-

panion CD. All of these tools are priced such that even though the shareware version

may be included on the CD, the actual registered versions are less than $100.

You will need a Windows-based computer to use this book. (See below for

minimum system requirements.) It is possible for Macintosh and Linux users to

use this book to create a game, because the game engine used—Torque—is also

available for those platforms. However, not all of the required development tools

are available on Mac and Linux, so the book’s focus will be onWindows on Intel.

System Requirements

Windows 98/SE/ME/2000/XP

Pentium III 500, 128 MB RAM

OpenGL or DirectX Compatible 3D Graphics Accelerator, DirectX compatible

sound card

Introduction xxi

Mac OS X

G4 +, 128 MB RAM

OpenGL Compatible 3D Graphics Accelerator

Linux

Pentium 500, 128 MB RAM

NVIDIA TNT2 or better 3D Graphics Accelerator, Linux-supported sound card

XFree86 4.0 or newer with NVIDIA OpenGL drivers

glibc 2.2 or newer (e.g.: Redhat 7.x+, Mandrake 8.x+, Debian 3.0+)

SDL version 1.2 or newer (1.2.3 or later is recommended)

OpenAL Runtime or SDK Installation

Mesa3D version 3.4 or newer (3.4.2 or later recommended)

What the Book Offers

In this book we are going to look at all aspects of game development, a journey

from first principles to the completed game.

Concepts

We are going to take a look at various aspects of the game industry to give you the

opportunity to see where you might fit in and what sort of opportunities there are.

We’ll also examine the elements of a 3D game, game design issues, and game genres.

Programming

Next, you’ll be introduced to the programming concepts that you will need to

understand in the course of using the book. You will see how to structure

program code, create loops, call functions, and use globally and locally scoped

variables. We’ll use a subset of an object-oriented programming language called

TorqueScript, which is built into the Torque Engine. Hands-on sample programs

are available on the companion CD. We’ll move on to examining the 3D con-

cepts that you will need to understand some of the more sophisticated activities

later in the book. This will provide a foundation for both the programming and

the modeling tasks that you will take on later.

Torque

Once you’ve been powered up with sufficient knowledge and understanding of

the main concepts in 3D game development, we’ll get into using the Torque

Engine in detail. You will learn how to handle client/server programming, how to

xxii Introduction

control the player-character, how to send messages between players, and much

more. Concepts will be presented with exercises and sample programs that are

available on the CD. Although we will cover some of the more intricate low-level

workings of the Torque Engine in order to understand it better, it’s important to

realize that as an independent game developer you’ll benefit more from mas-

tering the higher-level functions that utilize the engine for us, so you can worry

about other stuff—like game play. Without game play, you won’t have a game.

Textures

Next, the book will show you everything you need to know about game textures:

how to create them, how to modify and manipulate them, and how to use them

in the game. The coverage is comprehensive; all of the texture types and their uses

are discussed: skins, tiles, terrain, skyboxes, height maps, GUI widgets, and more.

You will be guided through exercises in creating each of the texture types. A

library of textures is available on the companion CD to fill in any gaps in your

texture needs.

Models

Then we get to the meat of a 3D game—the models. In these chapters we will be

delving into the world of low-poly modeling. We’ll talk about the general

principles involved in ways that can be applied to other tools, such as the

expensive 3D Max or Maya. But the practical focus will be geared toward using

MilkShape, UVMapper, and other low-cost tools that are included on the

companion CD.

I will show you the various model types, such as polysoup and CSG models. You

will create models for all aspects of the game in the exercises: player-characters,

vehicles, weapons, powerups, decorations or clutter, buildings, and structures.

You will walk through each step in the creation of the different model types so

that you can create your own unique game look, if you want. All of the models in

these chapters, plus manymore, are available on the companion CD to round out

your model library.

Sound and Music

After modeling, you will encounter the icing on the game cake: sound and music.

You will discover how to select, create, and modify sounds for use in your game.

You will also get some advice about selecting musical themes and how to inte-

grate music into your game.

Introduction xxiii

Integration

After picking up the required programming skills, and learning how to use the art

creation and modeling tools, you will learn how to knit all the parts together to

create a game, populate your game world, and then test and troubleshoot your

game. Finally, we look at where you can go with your shiny new 3D game

developer’s toolkit of ideas, knowledge, skills, and software tools.

The Companion CD

The companion CD contains quite a few resources.

Source Code

The book’s CD contains all of the TorqueScript source code in sample form and

final form. The samples will be aligned with the exercises in each chapter. The

scripts for the final completed game will be included in its own directory tree.

The game will be usable immediately upon installation from the CD so that you

can have an instant and extensive preview of what is to come.

Game Engine

The CD will contain the complete Torque Game Engine version 1.4 with its

executable, DLLs, and all required GUI and support files. It is a fully featured

game engine that includes advanced networking capabilities, blended anima-

tions, built-in server-side anticheat capabilities, a strong and complete object-

oriented C++-like scripting language, and many other advanced features.

Tools

The following shareware tools are included on the CD:

n Torque ShowTool Pro for reviewing 3D player and item models

n MilkShape 3D for 3D player and item modeling

n Constructor for 3D interior modeling

n The Gimp 2 for texture and image manipulation

n Audacity for sound editing and recording

xxiv Introduction

n UVMapper to perform UV unwrapping tasks

n UltraEdit-32 as the text or programming editor

Goodies

The CD also includes a few extras that aren’t mentioned in the book or that are

only briefly touched on:

n Retail games created with Torque: Orbz, ThinkTanks, Marble Blast, Chain

Reaction, Tube Twist

n Additional image and audio resources

n Open Source utility source code

Go Get ’em!
Themost important asset you have as an independent, and the key to any success,

is your enthusiasm. Remember to use this book, and other books and training

you acquire, as resources that will help you do what you want to do; they are not

vouchers that you can trade in for a nice big pot of success. You have to do the

work in the learning, and you have to do the work in the creating. And if you

believe you can, then I know you can! Go get ’em!

Introduction xxv

This page intentionally left blank

Introduction to 3D
Game Development

Before we get into the nitty-gritty details of creating a game, we need to cover

some background so that we can all work from the same page, so to speak. In the

first part of this chapter, we will establish some common ground regarding the

3D game industry in the areas that matter—the types of games that are made and

the different roles of the developers that make them. In the second part of the

chapter, we’ll establish what the essential elements of a 3D game are and how we

will address them.

Throughout the book you will encounter references to different genres, or types,

of games, usually mentioned as examples of where a particular feature is best

suited or where a certain idea may have originally appeared. In this chapter we

will discuss the most common of the 3D game genres. We will also discuss game

development roles; I will lay out ‘‘job descriptions’’ for the roles of producer,

designer, programmer, artist, and quality assurance specialist (or game tester).

There are various views regarding the lines that divide the responsibilities, so my

descriptions are fairly generic.

Finally, we will discuss the concept of the 3D game engine. If ever there is going to

be an area of dispute between a writer and his readers in a book like this, a

discussion of what constitutes a 3D game engine will be it. I do have a trump card,

though. In this book we will be using the Torque Game Engine as our model of

what constitutes a fully featured 3D game engine. We will use its architecture as

the framework for defining the internal divisions of labor of 3D game engines.

chapter 1

1

The Computer Game Industry
The computer game industry is somewhat different from other high-tech fields.

With properties, producers, artists, and distributors, as well as its own celebrities,

the computer game business operates more like Hollywood than the traditional

commercial or industrial software development company. It is quite a bit more

informal and relaxed than other high-tech fields in many ways but is quicker

paced with a higher burnout rate. There are independent game developers, or

indies, and big-name studios, but the computer game industry tends to be more

entrepreneurial in spirit.

Just as is true of indies in the motion picture industry, an indie game developer is

not beholden to other businesses in the industry that can direct their efforts.

Indies fund their own efforts, although they sometimes can get funding from

outside sources, like a venture capitalist (good luck finding one, however). The

key factor that makes them independent is that the funding does not come from

downstream industry sources that would receive the developer’s product, like a

major game development house, publisher, or distributor.

Indies sell their product to distributors and publishers after the product is

complete, or nearly so. If a developer creates a product under the direction of

another company, they are no longer independent.

A good measure of the ‘‘indie-ness’’ of a developer is found in the answer to the

following two questions:

n Can the developer make any game he wants, in whatever fashion he wants?

n Can the developer sell the game to whomever he wants?

If the answer is yes in both cases, then the developer is an indie.

Of course, another strong similarity with movies is that, as I pointed out earlier,

games are typically classified as belonging to different genres.

3D Game Genres and Styles

Game development is a creative enterprise. There are ways to categorize the game

genres, but I want you to keep in mind that while some games fit each genre like a

glove, many others do not. That’s the nature of creativity. Developers keep

coming up with new ideas; sometimes they are jockeying for an advantage over

the competition, and sometimes they are just scratching an itch. At other times,

2 Chapter 1 n Introduction to 3D Game Development

calculating marketing departments decide that mixing two popular genres is a

surefire path to a secure financial future.

The first rule of creative design is that there are no rules. If you are just scratching

an itch, then more power to you. If you are looking to make a difference in the

gaming world, you should at least understand the arena. Let’s take a look at the

most common 3D genres around today and a few that are interesting from an

historical perspective. When you are trying to decide what sort of game you want

to create, you should try understanding the genres and use them as guides to help

focus your ideas.

It’s important to note that all of the screen shots in this chapter are of games by

indie game developers. Some of the games are currently being shipped as retail

games, and some are still in development. Almost all of them use the same

Torque Game Engine we will use in this book to develop our own game.

By no means is this a definitive list; there are many genres that don’t exist in the

3D gaming realm, and the number of ways of combining elements of genres is

just too large to bother trying to enumerate. If you take pride in your creativity,

you might resist attempts to pigeonhole your game idea into one of these genres,

and I wouldn’t blame you. When trying to communicate your ideas to others,

however, you will find it useful to use the genres as shorthand for various col-

lections of features, style, and game play.

Action Games

Action games come in several forms. The most popular are the First-Person

Point-of-View (1st PPOV) games, where your player-character is armed, as are

your opponents. The game play is executed through the eyes of your character.

These sorts of games are usually called First-Person Shooter (FPS) games. Game

play variations include Death Match, Capture the Flag, Attack & Defend, and

King-of-the-Hill. Action games often have multiplayer online play, where your

opponents are enemies controlled by real people instead of by a computer.

Success in FPS games requires quick reflexes, good eye-hand coordination, and

an intimate knowledge of the capabilities of your in-game weapons. Online FPS

games are so popular that some games have no single-player game modes.

Some action games are strictly 3rd PPOV, where you view your player-character,

or avatar, while also viewing the rest of the virtual world your avatar inhabits

(see Figure 1.1).

The Computer Game Industry 3

Half-Life 2, F.E.A.R., and Doom 3 are popular examples of FPS-style action

games.

Adventure Games

Adventure games are basically about exploring, where player-characters go on a

quest, find things, and solve puzzles. The pioneering adventure games were text

based. You would type in movement commands, and as you entered each new

area or room, you would be given a brief description of where you were. Phrases

like ‘‘You are in a maze of twisty passages, all alike’’ are now gaming classics. The

best adventure games play like interactive books or stories, where you as the

player decide what happens next, to a certain degree.

Text adventures evolved into text-based games with static images giving the

player a better idea of his surroundings. Eventually these merged with 3D

modeling technology. The player was then presented with either a first- or third-

person point of view of the scene his character was experiencing.

Adventure games are heavily story based and typically very linear. You have to

find your way from onemajor accomplishment to the next. As the story develops,

you soon become more capable of predicting where the game is going. Your

success derives from your ability to anticipate and make the best choices.

4 Chapter 1 n Introduction to 3D Game Development

Figure 1.1
ThinkTanks----a 3rd PPOV action game made by BraveTree Productions using the Torque Game Engine.

Some well-known examples of adventure games are golden oldies like The King’s
Quest series and more recent fare like The Longest Journey and Syberia 2.

Online adventure games have not really come into their own yet, although some

games are emerging that might fit the genre. They tend to include elements of

FPS action games and Role-Playing Games (RPGs) to fill out the game play,

because the story aspect of the game is more difficult to accomplish in an online

environment. Players advance at different speeds, so a monolithic linear story

line would become pretty dreary to a more advanced player. An example of an

online action-adventure-FPS hybrid game is Tubettiworld (see Figure 1.2), being
developed by my all-volunteer team at Tubetti Enterprises.

Role-Playing Games

Role-playing games are very popular; that popularity can probably find its roots in

our early childhood. At younger than age six or seven, we often imagined and acted

out exciting adventures inspired by our action figures and other toys or children’s

books. As was also true for strategy games, the more mature forms of these games

first evolved as pen-and-paper games, such as Dungeons & Dragons.

The Computer Game Industry 5

Figure 1.2
Tubettiworld----an action-adventure-FPS hybrid game being developed by Tubetti Enterprises using the
Torque Game Engine.

These gamesmoved into the computer realmwith the computer taking onmore of

the data-manipulation tasks of the game masters. In role-playing games the player

is usually responsible for the development of his game character’s skills, physical

appearance, loyalties, and other characteristics. Eventually the game environment

moved from each player’s imaginations onto the computer, with rich 3D fantasy

worlds populated by visually satisfying representations of buildings, monsters, and

creatures (see Figure 1.3). RPGs are usually science fiction or fantasy based, with

some historically oriented games being popular in certain niches.

Maze and Puzzle Games

Maze and puzzle games are somewhat similar to each other. In a maze game you

need to find your way through a ‘‘physical’’ maze in which your routes are

defined by walls and other barriers. Early maze games were 2D, viewed from the

top; more recent ones play more like 3D adventure or FPS games.

Puzzle games are often like maze games but with problems that need to be solved,

instead of physical barriers, to find your way through.

Mazes also make their appearance in arcade pinball–style games, such as Marble
Blast (see Figure 1.4) by GarageGames. It is a maze-and-puzzle hybrid game

6 Chapter 1 n Introduction to 3D Game Development

Figure 1.3
Minions of Mirth----a Dungeons & Dragons--style RPG made with Torque and created and sold by Prairie
Games.

where you compete against the clock in an effort to navigate a marble around

physical barriers. The puzzle aspect lies in determining the fastest (though not

necessarily the most direct) route to the finish line.

Puzzle games sometimes use puzzles that are variations of the shell game or that

are more indirect problem-solving puzzles where you must cause a series of

things to happen in order to trigger some further action that lets you advance.

Many puzzle games utilize direct problem-solving modes where the puzzle is

presented visually. You then need to manipulate on-screen icons or controls in

the correct sequences to solve the problem. The best puzzles are those where the

solution can be deduced using logic. Puzzles that require pure trial-and-error

problem-solving techniques tend to become tedious rather quickly. An historic

example of a puzzle game is The Incredible Machine series by Dynamix.

The latest variation of this type is the new game Tube Twist by 21-6 Productions
(see Figure 1.5).

Simulator Games

The goal of a simulator (or sim) game is to reproduce a real-world situation as

accurately as possible. The measure of the simulation accuracy is usually called

The Computer Game Industry 7

Figure 1.4
Marble Blast----a maze-and-puzzle hybrid game by GarageGames using its Torque Game Engine.

its fidelity. Most simulators put a heavy emphasis on the fidelity of the visual

appearance, sounds, and physics of the game.

The point is total immersion in the game environment, so that you get the feeling

you are actually there. You may be flying a jet fighter or driving a thoroughbred

Grand Prix racing car. The gamemirrors the real-life experience to the maximum

the developers can manage.

Simulators usually require specialized input devices and controllers, such as

aircraft joysticks and rudder pedals. Many simulator enthusiasts build complete

physical cockpit mockups to enhance the immersion experience.

Silent Steel, NASCAR Sim Racing, and Air Ace (see Figure 1.6) are examples of

simulator games.

Sports Games

Sports games are a variation of the simulator class of games in which the

developer’s intent is to reproduce the broad experience of the game as accurately

as possible. You can participate in a sports game at various levels and watch the

action play out in a realistic 3D environment (see Figure 1.7).

8 Chapter 1 n Introduction to 3D Game Development

Figure 1.5
Tube Twist----a puzzle game made by 21-6 Productions using the Torque Game Engine.

The Computer Game Industry 9

Figure 1.7
Maximum Football----a football sports game by David A. Winter, an independent game developer, and
sold by MatrixGames.

Figure 1.6
Air Ace----a flight combat sim in development by Phil Carlisle, an independent game developer, using the
Torque Game Engine.

Unlike the action-oriented flight and driving simulators, sports games usually

have a manager or season angle. While playing the game you can also take on the

role of coach, owner, or teammanager. You can execute draft picks and trades or

groom new players like any major league ball organization would. In a modern

sports simulator you could be managing budgets, and you might play or race a

regular year’s schedule, playing in different stadiums or arenas or racing on

different tracks.

Strategy Games

Strategy games began as pen-and-paper games, like war games, and have been

around for centuries. As computer technology evolved, computer-based tables

and random-number generators replaced the decision-making aspects of strategy

games traditionally embodied by lookup charts and dice rolls.

Eventually the tabletop battlefields (or sandbox battlefields) with their cardboard

markers or die-cast military miniatures moved into the computers as well.

The early tabletop games were usually turn based: each player would in turn

consider his options and issue ‘‘orders’’ to his units. Then he would throw

the dice to determine the result of the orders. The players would then modify

the battlefield based upon the results. After this the players would observe the

new shape of the battlefield and plot their next moves. The cycle then repeated

itself.

The advent of computer-based strategy games brought the concept of real time
to the forefront. Now the computer determines the moves and results and then

structures the battlefield accordingly. It does this on a time scale that reflects the

action. This has given birth to the Real-Time Strategy (RTS) genre. Sometimes

the computer will compress the time scale, and other times the computer will

operate in real time, where one minute of time in the game action takes one

minute in the real world. The player issues orders to his unit as he deems them to

be necessary. Recently, strategy games have moved into the 3D realm, where

players can view the battlefield from different angles and perspectives as they plot

their next moves (see Figure 1.8).

There are strategy games that exist outside the world of warfare. Examples

include business strategy games and political strategy games. Some of these

games are evolving into strategic simulations, like the well-known SimCity series

of games.

10 Chapter 1 n Introduction to 3D Game Development

S ome P opu l a r R e t a i l 3 D G ame s a nd T h e i r G e n r e s

If you are still unclear about what a particular genre is, take a look at the following table. It is a list
of current ‘‘big-name’’ game titles (including one or two that are not yet released). Be aware that you
may find a Web site or magazine somewhere that classifies these games in a slightly different way.
That’s cool----don’t worry about it.

The Computer Game Industry 11

Game Publisher Genre

Age of Empires III Microsoft Strategy

Battlefield 2 Electronic Arts Action-FPS

Call of Duty 2 Activision Action-FPS

Civilization IV 2K Games Strategy

Command & Conquer (various) Electronic Arts RTS

Delta Force Xtreme Novalogic Action-FPS

Diablo III Blizzard RPG

Doom 3 Activision Action-FPS

Duke Nukem Forever Gathering of Developers Action-FPS

Dungeon Siege Microsoft Action-RPG

Enter the Matrix Infogrames Action-FPS

Everquest II Sony RPG

Far Cry Ubisoft Action-FPS

continued

Figure 1.8
Tribal Trouble----a 3D real-time strategy game created by indie-developer Oddlabs.

Game Platforms

This book is about computer games written for personal computers. There are

three dominant operating systems: Microsoft Windows, Linux, and Macintosh.

For some of these systems there are quite a few different flavors, but the dif-

ferences within each system are usually negligible, or at least manageable.

Another obvious game platform type is the home game console, such as the Sony

PlayStation or the Nintendo GameCube. These are indeed important, but

because of the closed nature of the development tools and the expensive licenses

required to create games for them, with one bright exception, they are beyond the

scope of this book.

That exception is the Xbox and its more recent state-of-the-art descendent, the

Xbox 360. It is now possible to create your Torque-based game with the Xbox as

the target system. If you think you are interested in doing this, you should contact

GarageGames directly (http://www.garagegames.com). Your approximate develop-

ment plan will involve two large phases: (1) make your game on the PC, and then

(2) convert your game to Xbox.

12 Chapter 1 n Introduction to 3D Game Development

continued

Game Publisher Genre

Ghost Recon: Advanced Warfighter Ubisoft Action-FPS

Grand Theft Auto: San Andreas Rockstar Games Action-Sim

Half-Life 2 Sierra Action-FPS

Homeworld 2 Vivendi Universal RTS

Medal of Honor: Allied Assault Electronic Arts Action-FPS

Myst III: Exile Ubisoft Adventure

PlanetSide Sony Action-FPS

Rainbow Six 3: Raven Shield Ubisoft Action-FPS

Return to Castle Wolfenstein Activision Action-FPS

Rome: Total War Activision RTS

SimCity 4 Electronic Arts Strategy-Sim

Star Wars: Knights of the Old Republic 2 LucasArts Action-RPG

Syberia 2 Microids Adventure

Tom Clancy’s Splinter Cell: Chaos Theory Ubisoft Action-FPS

Unreal II: The Awakening Infogrames Action-FPS

Unreal Tournament 2004 Infogrames Action-FPS

WarCraft III: Reign of Chaos Blizzard RTS

World War II Online: Battlefield Europe Playnet/Cornered Rat Software FPS-RPG-Sim-Strategy

Other game platforms include Personal Digital Assistants (PDAs), such as Palm-

based computers, and cell phones that support protocols that permit games to

be played on them. Again, these platforms are also beyond the scope of this

book.

Now that those little disclaimers are out of the way, let’s take a closer look at the

three game platforms of interest. It’s important to note that by using the Torque

Game Engine, you will be able to develop what amounts to a single code base for

a game that you can ship for all three platforms:Windows, Linux, andMacintosh!

Microsoft Windows

Windows has various historical versions, but the current flavors are Windows

2000, Windows XP, and the specialized Windows CE. In this book the expecta-

tion will be that you are developing on or for a Windows XP target system,

because that is the version that Microsoft is now selling to the home computer

market.

Within Windows XP we will be using OpenGL and Direct3D (a component of

DirectX) as our low-level graphics Application Programming Interfaces (APIs).

These APIs provide a means for our engine to access the features of the video

adapters in our computers. Both OpenGL and Direct3D provide basically the

same services, but each has its own strengths and weaknesses. With Torque you

will have the choice of letting your end users use either API.

OpenGL’s greatest strength lies in its availability with different computer sys-

tems. An obvious benefit is that the developer can create a game that will work on

most computers. OpenGL is an open-source product. In a nutshell this means

that if there is a particular capability you want that OpenGL lacks, you can get

access to the OpenGL source code and rebuild it the way you want. This assumes

you have the skills, time, and tools necessary to get the job done, but you can

do it.

DirectX is proprietary—it is the creation and intellectual property of Microsoft

Corporation. Its biggest advantage is that it tends to support more features than

OpenGL, and the 3D video adapter manufacturers tend to design their hardware

to work with DirectX as much as they can. With DirectX you get a much more

complete and the most advanced feature set. Unfortunately, you are limited to

Windows-based systems if you put all your eggs in the DirectX basket.

The Computer Game Industry 13

The Torque Game Engine uses both APIs and gives you a rather straightforward

set of techniques to set up your game with either API. This means that in a

Windows version of your game, you can offer your users the option of using the

API that best suits their video adapter.

Linux

For most people the single most important reason to use Linux is the price—it’s

free. You may have to pay to get a distribution of Linux on CD with manuals at a

store, but you are paying for the cost of burning the CD, writing and printing the

manuals, and distributing the end product. You don’t have to pay for the

operating system itself. In fact, you can download Linux from many different

locations on the Internet.

As a game developer, you will have a threefold interest in targeting Linux:

n Linux is a growing marketplace, and any market that is growing is a good

target. Although the market is growing, it is still smaller than the Windows

market. The place where Linux is growing is in universities, colleges, and

other postsecondary institutions—and this is probably where your best

computer gaming audience is.

n Few computer games are available for Linux desktops; most developers

focus on Windows because it is the biggest market. If you ship a game

for Linux, you will be a bigger fish in a smaller ocean. That gets you

exposure and a reputation that you can build on. And that’s nothing

to sneeze at.

n Linux offers a more configurable and secure environment for unattended

Internet game servers. Linux servers can be run in a console mode that

requires no fancy graphics, buttons, or mice. This allows you to utilize

slower computers with less memory for servers and still get the computing

power you need for your game server.

Unlike other operating systems, Linux comes in a variety of flavors known as

distributions. There are many ongoing arguments about the merits of one dis-

tribution or another. Some of the more popular distributions are Red Hat, SuSE,

Mandrake, Turbolinux, Debian, and Slackware. Although they may be organized

differently in some cases and each has its own unique graphical look and feel,

they are all based on the same kernel. It is the kernel that defines it as Linux.

14 Chapter 1 n Introduction to 3D Game Development

Macintosh

TheMacintosh is used a great deal in art-related fields and in the art departments

of many businesses. Although the price point might not be as good as Linux

(where the OS and most software is free), the Macintosh operating system is

typically more accessible to the less tech-savvy users among us.

As with Linux, there has also traditionally been a dearth of computer games

available for the Mac. So the big fish–small ocean factor applies here as well. Go

ahead and make a splash!

No t e

One minor disadvantage of working with cross-platform software like Torque is the issue of
naming conventions. In this book, wherever possible, I will head off the potential conflicts with a
note that will cast a particular naming approach in stone for the duration of the book.

An example that will probably become obvious pretty quickly is the concept of directories or
folders. The latter is shorter and easier to type, and the term will be used often. To save my editors
the hassle, I will use folders. If you are a directories person, please just play along, okay?

Game Developer Roles

In the context of the game we will develop during our journey together through

this book, you will wear all of the different game developer hats. The thing to

remember is that oftentimes the lines between the roles will blur, and it might be

hard to tell which hat you are wearing. So wear them all. Many indies wear

multiple hats throughout the life of a game project, so it’s just as well to get used

to it!

Producer

A game producer is essentially the game project’s leader. The producer will draw

up and track the schedule, manage the people who do the hands-on development

work, and oversee the budget and expenditures. The producer may not know

how to make any part of a game at all, but he is the one person on a game project

who knows everything that is happening and why.

It’s the producer who needs to poke the other developers in the ribs when they

seem to be lagging. The producer must be aware when different members of the

team are in need of some tool, knowledge, or resource and arrange to provide

the team members with what they need.

The Computer Game Industry 15

Sometimes producers just need to spray a liberal dose of Ego-in-a-Can to refresh

a despondent developer who keeps smashing into the same brick wall over and

over while the clock ticks down.

The producer will also be the team’s interface with the rest of the world, handling

media queries, negotiating contracts and licenses, and generally keeping the big

noisy bothersome world off the backs of the development team.

Designer

If you are reading this, I have no doubt that you want to be a game designer. And

why not? Game designers are like fun engineers—they create fun out of their

imaginations. As a game designer, you will decide the theme and rules of the

game, and you will guide the evolution of the overall feel of the game. And be

warned—it had better be fun!

There are several levels of designers: lead designer, level designer, designer-writer,

character designer, and so on. Large projects may have more than one person in

each design role. Smaller projects may have only one designer or even a designer

who also wears a programmer’s or artist’s hat! Or both!

Game designers need to be good communicators, and the best ones are great

collaborators and persuaders. They need to get the ideas and concepts out of their

heads and into the heads of the rest of the development team. Designers not only

create the concept and feel of the game as a whole but also create levels and maps

and help the programmers stitch together different aspects of the game.

The lead designer will put together a design document that lays out all the aspects

of the game. The rest of the team will work from this document as a guide for

their activities. A design document will include maps, sketches of game objects,

descriptions of plot devices, flow charts, and tables of characteristics. The

designer will usually write a narrative text that describes how all of these parts fit

together. A well-written and thorough game design completely describes the

game from the player’s perspective.

Unlike the producer, a designer needs to understand the technical aspects of the

game and how the artists and programmers do what they do.

16 Chapter 1 n Introduction to 3D Game Development

Programmer

Game programmers write program code that turns game ideas, artwork, sound,

and music into a fully functional game. Game programmers control the speed

and placement of the game artwork and sound. They control the cause-and-effect

relationships of events, translating user inputs through internal calculations into

visual and audio experiences.

There can be many different specializations in programming. In this book you

will be doing a large amount of programming of game rules, character control,

game event management, and scoring. You will be using TorqueScript to do all

of these things.

For online game programming, specialization may also be divided between client

code and server code. It is quite common to specify character and player behavior

as a particular programmer specialty. Other specialty areas might be vehicle

dynamics, environmental or weather control, and item management.

Other programmers on other projects might be creating parts of the 3D game

engine, the networking code, the audio code, or tools for use with the engine. In

our specific case these specializations aren’t needed because Torque looks after all

of these things for us. We are going to focus on making the game itself.

The Computer Game Industry 17

Visual Artist

During the design stages of development, game artists draw sketches and create

storyboards to illustrate and flesh out the designers’ concepts. Figure 1.9

demonstrates a conceptual design sketch created by a visual artist and used by the

development team as a reference for modeling and programming work. Artists

will later create all the models and texture artwork called for by the design

document, including characters, buildings, vehicles, and icons.

The three principal types of 3D art are models, animations, and textures—and

the artists who create these types of art are 3D modelers, animators, and texture

artists, respectively.

n 3D modelers design and build player-characters, creatures, vehicles, and

other mobile 3D constructs. In order to ensure that the game gets the best

performance possible, 3D modelers usually try to make the least complex

model that suits the job. A 3D modeler is very much a sculptor working with

digital clay.

n Animators make those models move. The same artist quite often does both

modeling and animation.

n Texture artists create images that are wrapped around the constructs

created by 3D modelers. Texture artists take photographs or paint pictures

of various surfaces for use in these texture images. The texture is then

Figure 1.9
A conceptual design sketch.

1
8

wrapped around the objects in question in a process called texture mapping.

Texture artists help the 3D modelers reduce the model complexity by using

highly detailed and cleverly designed textures. The intent is to fool the eye

into seeing more detail than is actually there. If a 3D modeler molds a

sculpture in digital clay, the texture artist paints that sculpture with digital

paint.

Audio Artist

Audio artists compose the music and sound in a game. Good designers work with

creative and inspired audio artists to create musical compositions that intensify

the game experience.

Audio artists work closely with the game designers to determine where the sound

effects are needed and what the character of the sounds should be. Audio artists

often spend quite a bit of time experimenting with sound-effect sources, looking

for different ways to generate the precise sound needed. Visit an audio artist at

work and you might catch him slapping rulers and dropping boxes in front of a

microphone. After capturing the basic sound, an audio artist will then massage

the sound with sound-editing tools to vary the pitch, to speed it up or slow it

down, to remove unwanted noise, and so on. It’s often a tightrope walk balancing

realistic sounds with the need to exaggerate certain characteristics in order to

make the right point in the game context.

Quality Assurance Specialist

Quality Assurance (QA) is a somewhat fancy name for testing. The general field of
QA is more extensive than that, of course, but in the game business game testers

take the brunt of the QA load. The purpose of testing is to ensure that a finished

game is really finished, with as few bugs or problems as humanly possible. QA

testing requires the quality assurance specialist, or game tester, to play each part

of a game, trying to flush out all glitches and bugs.

Most of the problems QA testing will find are visual or behavioral: text that

doesn’t properly wrap on an edge, characters that don’t jump correctly, or a level

that has buildings misplaced. Testing can find game play problems; these are

usually related more to the design than the programming. An example could be

that the running speed of a player might not be fast enough to escape a particular

enemy when it should be more than fast enough.

The Computer Game Industry 19

QA specialists need to be methodical in order to increase the chances of finding a

bug. This might mean replaying a certain part of a game many times to the point

of boredom. QA specialists need to be able to communicate well in order to write

useful and meaningful bug reports.

Publishing Your Game

You can self-publish, of course. Whip up a Web site, add a shopping cart system,

get your site added to various search engines, and sit back to wait for the dough to

roll in, right? Well, it might work.

If you really think you have the next killer game and want it to sell, however, you

need to hook up with someone who knows what they are doing. That would be a

publisher. If you are an independent game developer, you will probably have

difficulty attracting the attention of the big-name publishers. They usually know

what they are looking for, are normally only interested in developers with proven

track records, and probably already know whom they want to deal with anyway.

But all is not lost—there are options available for the indie. The one I recom-

mend is GarageGames (http://www.garagegames.com). Besides offering com-

petitive publishing terms for indie developers, GarageGames also created the

Torque Game Engine, which it has graciously agreed to allow me to include on

the CD for this book. Torque is the technology behind the popular and successful

Tribes series of games. I’m going to help you learn how to use Torque as an

enormous lever in creating your game.

But wait—there’s more! If you really need to, you can buy a license from

GarageGames for the Torque Game Engine that will give you (under the terms of

the license) all of the source code for the engine, so you can turn any game dream

into a reality—for only $100! That’s a hundred bucks for full access to the inner

workings of an award-winning AAA 3D game engine. As Neo would say,

‘‘Whoa!’’

I have no qualms about suggesting that you go to GarageGames. They are the

guys behind the Tribes franchise, which is now owned by Sierra. They know their

stuff, but they are not some big faceless corporate entity. They’re basically a

handful of guys who’ve made their splash in the corporate computer game

industry, and now they’re doing their level best to help the independent game

developers of the world make their own splashes.

And no, they aren’t paying for this book!

20 Chapter 1 n Introduction to 3D Game Development

Elements of a 3D Game
The architecture of a modern 3D game encompasses several discrete elements:

the engine, scripts, GUI, models, textures, audio, and support infrastructure.

We’re going to cover all of these elements in detail in this book. In this section

I’ll give you some brief sketches of each element so you’ll have a sense of where

we are going.

Game Engine

Game engines provide most of the significant features of a gaming environment:

3D scene rendering, networking, graphics, and scripting, to name a few. See

Figure 1.10 for a block diagram that depicts the major feature areas.

Game engines also allow for a sophisticated rendering of game environments.

Each game uses a different system to organize how the visual aspects of the game

will be modeled. This becomes increasingly important as games are becoming

more focused on 3D environments, rich textures and forms, and an overall

realistic feel to the game. Textured polygon rendering is one of the most common

forms of rendering in FPS games, which tend to be some of the more visually

immersive games on the market.

By creating consistent graphic environments and populating those environments

with objects that obey specific physical laws and requirements, gaming engines

allow games to progress significantly along the lines of producing more andmore

plausible narratives. Characters are constrained by rules that have realistic bases

that increase the gamer’s suspension of disbelief and draw him deeper into

the game.

Elements of a 3D Game 21

Figure 1.10
Elements of a game engine.

By including physics formulas, games are able to realistically account for moving

bodies, falling objects, and particle movement. This is how FPS games such as

Tribes 2, Quake 3, Half-Life 2, or Unreal II are able to allow characters to run,

jump, and fall in a virtual game world. Game engines encapsulate real-world

characteristics such as time, motion, the effects of gravity, and other natural

physical laws. They provide the developer with the ability to almost directly interact

with the gaming world created, leading to more immersive game environments.

As mentioned earlier, this book will employ the Torque Game Engine from

GarageGames (http://www.garagegames.com). The Torque Game Engine is

included on the CD with this book. Later on we will discuss Torque in more

detail—and you will understand why Torque was chosen.

Scripts

As you’ve just seen, the engine provides the code that does all the hard work,

graphics rendering, networking, and so on. We tie all these capabilities together

with scripts. Sophisticated and fully featured games can be difficult to create

without scripting capability.

Scripts are used to bring the different parts of the engine together, provide the

game play functions, and enable the game world rules. Some of the things we will

do with scripts in this book include scoring, managing players, defining player

and vehicle behaviors, and controlling GUI interfaces.

Following is an example of a TorqueScript code fragment:

// Beer::RechargeCompleteCB
// args: %this - the current Beer object instance
// %user - the player connection user by id
//
// description:
// Callback function invoked when the energy recharge
// the player gets from drinking beer is finished.
// Note: %this is not used.
function Beer:: RechargeCompleteCB (%this,%user)
{

// fetch this player’s regular recharge rate
// and use it to restore his current recharge rate
// back to normal
%user.setRechargeRate(%user.getDataBlock().rechargeRate);

}

22 Chapter 1 n Introduction to 3D Game Development

// Beer::OnUse
// args: %this - the current Beer object instance
// %user - the player connection user by id
//
// description:
// Callback function invoked when the energy recharge
// the player gets from drinking beer is finished.
//
function Beer::OnUse(%this,%user)
{

// if the player’s current energy level
// is zero, he can’t be recharged, because
// he is dying
if (%user.getEnergyLevel() != 0)
{

// figure out how much the player imbibed
// by tracking the portion of the beer used.
%this.portionUsed += %this.portion;
// check if we have used up all portions
if (%this.portionUsed >= %this.portionCount)
{
// if portions used up, then remove this Beer from the
// player’s inventory and reset the portion
%this.portionUsed = 0;
%user.decInventory(%this,1);

}
// get the user’s current recharge rate
// and use it to set the temporary recharge rate
%currentRate = %user.getRechargeRate();
%user.setRechargeRate(%currentRate +%this.portionCount);

// then schedule a callback to restore the recharge rate
// back to normal in 5 seconds. Save the index into the schedule
// list in the Beer object in case we need to cancel the
// callback later before it gets called
%this.staminaSchedule = %this.schedule(5000,"RechargeCompleteCB",%user);

// if the user player hasn’t just disconnected on us, and
// is not a ’bot.
if (%user.client)
{

// Play the 2D sound effect signifying relief ("ahhhhh")
%user.client.play2D(Relief);

Elements of a 3D Game 23

// send the appropriate message to the client system message
// window depending on whether the Beer has been finished,
// or not. Note that whenever we get here portionUsed will be

// non-zero as long as there is beer left in the tankard.
if (%this.portionUsed == 0)
messageClient(%user.client, ’MsgBeerUsed’, ’\c2Tankard polished off’);

else
messageClient(%user.client, ’MsgBeerUsed’, ’\c2Beer swigged’);

}
}

}

The example code establishes the rules for what happens when a player takes a

drink of beer. Basically, it tracks how much of the beer has been consumed and

gives the player a jolt of energy for five seconds after every mouthful. It sends

messages to the player’s client screen telling him what he’s done—had a sip or

polished off the whole thing. It also plays a sound effect of the player sighing in

relief and contentment with every drink.

Graphical User Interface

The Graphical User Interface (GUI) is typically a combination of the graphics and

the scripts that carries the visual appearance of the game and accepts the user’s

control inputs. The player’sHeads Up Display (HUD), where health and score are

displayed, is part of the GUI. So are the main start-up menus, the settings or

option menus, the dialog boxes, and the various in-game message systems.

Figure 1.11 shows an example main screen using the Tubettiworld game. In the

upper-left corner, the text that says ‘‘Client 1.62’’ is an example of a GUI text

control. Stacked along the left side from the middle down are four GUI button

controls. The popsicle-stick snapper logo in the lower right and the Tubettiworld
logo across the top of the image are GUI bitmap controls that are overlaid on top

of another GUI bitmap control (the background picture). Note that in the figure

the top button control (Connect) is currently highlighted, with the mouse cursor

over top of it. This capability is provided by the Torque Game Engine as part of

the definition of the button control.

In later chapters of this book we will spend a good deal of time contemplating,

designing, and implementing the GUI elements of our game.

24 Chapter 1 n Introduction to 3D Game Development

Models

3D models (see Figure 1.12) are the essential soul of 3D games. With one or two

exceptions, every visual item on a game screen that isn’t part of the GUI is a

model of some kind. Our player’s character is a model. The world he tromps on is

a special kind of model called terrain. All the buildings, trees, lampposts, and

vehicles in our game world are models.

In later chapters we will spend a great deal of time creating and texturing models,

animating them, and then inserting them into our game.

Textures

In a 3D game, textures are an important part of rendering the models in 3D

scenes. Textures (in certain cases called skins—see Figure 1.13) define the visually

rendered appearance of all those models that go into a 3D game. Proper and

imaginative uses of textures on 3D models not only will enhance the model’s

appearance but will also help reduce the complexity of the model. This allows us

to draw more models in a given period of time, enhancing performance.

Elements of a 3D Game 25

Figure 1.11
An example of a main menu GUI.

26 Chapter 1 n Introduction to 3D Game Development

Figure 1.12
A 3D wire-frame model and a textured model of an old-style helicopter.

Figure 1.13
The textures used as the skin of the old-style helicopter.

Sound

Sound provides the contextual flavoring in a 3D game, providing audio cues to

events and background sounds that imply environments and context, as well as

3D positioning cues for the player. Judicious use of appropriate sound effects is

necessary for making a good 3D game. Figure 1.14 shows a sound-effect wave-

form being manipulated in a waveform-editing program.

Music

Some games, especially multiplayer games, use little music. For other games, such

as single-player adventure games, music is an essential tool for establishing story

line moods and contextual cues for the player.

Composing music for games is beyond the scope of this book. During the later

chapters, however, I will point out places where music might be useful. It is

always helpful to pay attention to your game play and whatever mood you are

trying to achieve. Adding the right piece of music just might be what you need to

achieve the desired mood.

Elements of a 3D Game 27

Figure 1.14
A graphical view of a gunshot sound-effect waveform.

Support Infrastructure

This is more important for persistent multiplayer online games than single player

games. When we ponder game infrastructure issues, we are considering such

things as databases for player scores and capabilities, auto-update tools, Web

sites, support forums, and, finally, game administration and player management

tools.

The following infrastructure items are beyond the scope of this book, but I

present them here to make you aware that you should spend time considering

what you might need to do.

Web Sites

AWeb site is necessary to provide people with a place where they can learn news

about your game, find links to important or interesting information, and down-

load patches and fixes for your game.

AWeb site provides a focal point for your game, like a storefront. If you intend to

sell your game, a well-designed Web site is a necessity.

Auto-Update

An auto-update program accompanies your game onto the player’s system. The

updater is run at game start-up and connects via the Internet to a site that you

specify, looking for updated files, patches, or other data that may have changed

since the user last ran the program. It then downloads the appropriate files before

launching the game using the updated information.

Many games, like Delta Force: Blackhawk Down, World War II Online, and Ever-
quest, have an auto-update feature. Web-based distribution systems, like Steam

from Valve, also have such capability. When you log in to the game, the server

checks to see if you need to have any part of your installation upgraded, and if so

it automatically transfers the files to your client. Some auto-updaters will down-

load a local installer program and run it on your machine to ensure that you have

the latest files.

Support Forums

Community forums or bulletin boards are a valuable tool for the developer to

provide to customers. Forums are a vibrant community where players can discuss

your game, its features, and the matches or games they’ve played against each

other. You can also use forums as a feedback mechanism for customer support.

28 Chapter 1 n Introduction to 3D Game Development

Administrative Tools

If you are developing a persistent online game, it will be important to obtain

Web-based tools for creating and deleting player accounts, changing passwords,

andmanaging whatever other uses youmight encounter. You will need some sort

of hosted Web service with the ability to use CGI-, Perl-, or PHP-based inter-

active forms or pages. Although this is not strictly necessary, you really should

invest in a database to accompany the administrative tools.

Database

If you intend your game to offer any sort of persistence where players’ scores,

accomplishments, and settings are saved—and need to be protected from fiddling

by the players on their own computers—then you probably need a database back

end. Typically, the administrative tools just mentioned are used to create player

records in the database, and the game server communicates with the database to

authenticate users, fetch and store scores, and save and recall game settings and

configurations.

A common setup would include MySQL or PostgreSQL or something similar.

Again, you will probably need to subscribe to a hosted Web service that offers a

database.

The Torque Game Engine
I’ve mentioned the Torque Game Engine (TGE) several times already. I think

now would be a good time to take a little deeper look at the engine and how you

will be using it.

Appendix A provides a reference for the Torque Game Engine, so look there if

you really need more detail.

Descriptions

The following descriptions are by no means exhaustive, but a cup of coffee would

go well with this section. Go ahead and make some—I’ll wait. Black with two

sweeteners, please.

Moving right along, you should note that the main reason for including this

section is to give you, the gentle reader, the right sense of how much behind-the-

scenes work is done for you by the engine.

The Torque Game Engine 29

Basic Control Flow

The Torque Game Engine initializes libraries and game functions and then cycles

in the main game loop until the program is terminated. The main loop basically

calls platform library functions to produce platform events, which then drive the

main simulation.

Torque handles all of the basic event procession functions as follows:

n Dispatches Windows mouse movement events to the GUI

n Processes other input-related events

n Calculates elapsed time based on the time scale setting of the simulation

n Manages processing time for server objects

n Checks for server network packet transmission

n Advances simulation event time

n Processes time for client objects

n Checks for client network packet transmission

n Renders the current frame

n Checks for network timeouts

Platform Layer

The platform layer provides a cross-platform architecture interface to the engine.

The platform layer is responsible for handling file and network operations,

graphics initialization, user input, and events.

Console

The console library provides the foundation for Torque-based games. The

console has both a compiler and an interpreter. All GUIs, game objects, game

logic, and interfaces are handled through the console. The console language is

called TorqueScript and is similar to a typeless C++, with some additional

features that facilitate game development. You can load console scripts using a

command from the console window as well as automatically from files.

30 Chapter 1 n Introduction to 3D Game Development

Input Model

Input events are translated in the platform layer and then posted to the game. By

default the game checks the input event against a global action map that

supersedes all other action handlers. If there is no action specified for the event, it

is passed on to the GUI system. If the GUI does not handle the input event, it is

passed to the currently active (nonglobal) action map stack.

Platform-specific code translates Win32, X Windows, or Mac events into uniform

Torque input events. These events are posted into themain application event queue.

Action maps translate platform input events to console commands. Any plat-

form input event can be bound in a single generic way—so in theory, the game

doesn’t need to know if the event came from the keyboard, the mouse, the

joystick, or some other input device. This allows users of the game to map keys

and actions according to their own preferences.

Simulation

A stream of events drives the game from the platform library: InputEvent,

MouseMoveEvent, PacketReceiveEvent, TimeEvent, QuitEvent, ConsoleEvent,

ConnectedReceiveEvent, ConnectedAcceptEvent, and ConnectedNotifyEvent. By

journaling the stream of events from the platform layer, the game portion of the

simulation session can be deterministically replayed for debugging purposes.

The simulation of objects is handled almost entirely in the game portion of the

engine. Objects that need to be notified of the passage of time can be added to one

of the two process lists: the global server or global client process list, depending

on whether the object is a server object or a client ghost.

Server-side objects are only simulated at certain times, but client objects, in order

to present a smooth viewwhen the frame rate is high, are simulated after each time

event.

There is a simulator class that manages all of the objects and events in the

simulation. Objects are collected in a hierarchy of simulator classes and can be

searched for by name or by object ID.

Resource Manager

The Torque Game Engine uses many game resources. Terrain files, bitmaps,

shapes, material lists, fonts, and interiors are all examples of game resources.

The Torque Game Engine 31

Torque has a resource manager that it uses to manage large numbers of game

resources and to provide a common interface for loading and saving resources.

Under the auspices of Torque’s resource manager, only one instance of a resource

will ever be loaded at a time.

Graphics

The Torque Game Engine does not perform its own graphics rasterization;

instead, it uses the OpenGL graphics API. Torque includes a utility library that

extends OpenGL to support higher-level primitives and resources.

TGE has a collection of utility functions that add support for complex primitives

and resources like fonts and bitmaps and that add simple functions for more

easily managing textures and 2D rasterization.

There is also a texture manager that tracks the loading and unloading of all

textures in the game. Only one instance of a texture is ever loaded at a given time;

after loading it is handed off to OpenGL. When the game switches graphics

modes or video devices, the texture manager can transparently reload and

redownload all the game’s textures.

Torque supports several bitmap file types: PNG, JPEG, GIF, BMP, and the custom

BM8 format, an 8-bit color texture format used to minimize texture memory

overhead.

The GUI library manages the user interface of Torque games. It is designed

specifically for the needs of game user interface development. The Canvas object

is the root of the active GUI hierarchy. It dispatches mouse and keyboard events,

manages update regions and cursors, and calls the appropriate render methods

when it is time to draw the next frame. The Canvas keeps track of content

controls, which are separate hierarchies of controls that render from bottom to

top. The main content control is a screen in the shell that can be covered by any

number of floating windows or dialog boxes.

A Profile class maintains common instance data across a set of controls. Infor-

mation such as font face, colors, bitmaps, and sound data are all stored in instances

of the Profile class, so that they don’t need to be replicated on each control.

A Control class is the root class for all the GUI controls in the system. A control can

contain any number of child controls. Each controlmaintains a bounding rectangle

in the coordinate system of its parent control. The Control class processes input

events, rendering, and mouse focus and coordinates automatic sizing.

32 Chapter 1 n Introduction to 3D Game Development

3D Rendering

The Torque library has a modular, extensible 3D world rendering system. Game

subclasses first define the camera orientation and field of view and then draw the

3D scene using OpenGL drawing commands. A class manages the setting up of

the viewport as well as the model view and projection matrices. A function

returns the viewing camera of the current control object (the object in the

simulation that the player is currently controlling), and then the engine calls the

client scene graph object to render the world.

On the client, a scene graph library is responsible for traversing the world scene

and determining which objects in the world should be rendered given the

current camera position, while on the server, it determines what objects should

be sent to each client based on that client’s position in the world. The world is

divided into zones, which are volumes of space bounded by solid areas and

portals. The outside world is a single zone, and interior objects can have

multiple interior zones. The engine finds the zone of a given 3D point and

which object owns that zone. The engine then determines which zone or zones

contain an object instance. At render time the scene is traversed starting from

the zone that contains the camera, clipping each zone’s objects to the visible

portal set from the zones before it. The engine also performs the scoping of

network objects, deciding whether a given object needs to be dealt with by a

client.

Every world object in the scene that can be rendered is derived from a single base

class. As the world is traversed, visible objects are asked to prepare one or more

render images that are then inserted into the current scene. Render images

are sorted based on translucency and then rendered. This system permits an

interior object with multiple translucent windows to render the building first,

followed by other objects, and then followed by the building’s windows. Objects

can insert any number of images for rendering.

Terrain

The terrain library deals with objects that render a model of the outside world. It

contains a sky object that renders the outside skybox, animates and renders cloud

layers, and applies the visible distance and fog distance settings for when the

world as a whole is rendered. The sky object also generates the vertical fog layers

and sends them into the SceneGraph object for rendering. The TerrainBlock class

provides a single 256� 256 infinitely repeating block of heightfield terrain.

The Torque Game Engine 33

Heightfield data is stored and loaded by the resource manager so that a single

terrain data file can be shared between server and client.

The terrain is textured by blending base material textures with program code into

new material textures and then mapping those across multiple terrain squares

based on the distance from the square. The Blender class performs the blending

of terrain textures and includes a special assembly version to speed things up

when executing on x86 architectures.

Water is dynamically rendered based on distance, making nearby water more

tessellated and detailed. Water coverage of an area can be set to seed fill from a

point on the surface, allowing the water to fill a depression to form a lake without

leaking outside the corners.

Interiors

The interior library manages the rendering, collision, and disk-file services for

interior objects, such as buildings. An interior resource class manages the data

associated with a single definition of an interior, and multiple instances may exist

at any one time. Interiors manage zones for the scene graph and may have sub-

objects that render a mirrored view. A light manager class generates lightmaps for

all currently loaded interiors. Lightmaps are shared among instances whenever

possible. Interior resources are built and lit by an interior importer utility. The

source files are Quake-style .map files that are little more than lists of convex

physical constructive solid geometry ‘‘brushes’’ that define the solid areas of the

interior. Special brushes define zone portal boundaries and objects like lights.

Shapes and Animation

A library manages the display and animation of shape models in the world. This

library’s shape resource class can be shared between multiple shape instances. The

shape class manages all the static data for a shape: mesh data, animation key-

frames, material lists, decal information, triggers, and detail levels. An instance

class manages animation, rendering, and detail selection for an instance of a shape.

The instance class uses the thread class to manage one of the concurrently running

animations on an instance. Each thread can be individually advanced in time or

can be set on a time scale that is used when all threads are advanced. A thread can

also manage transitions between sequences.

Animation sequences can be composed of node/bone animation (for example,

joints in an explosion), material animation (a texture animation on an explosion),

34 Chapter 1 n Introduction to 3D Game Development

and mesh animation (a morphing blob; note that most mesh animations can be

accomplished with node scale and rotation animations). Animations can also

contain visibility tracks so that some meshes in the shape are not visible until an

animation is played.

Networking

Torque was designed from the foundation to offer robust client/server network

simulation support. The networking design of Torque was driven by the need for

superior network performance over the Internet. Torque addresses three fun-

damental problems of real-time network programming: limited bandwidth,

packet loss, and latency. For a more detailed, if somewhat outdated, description

of the Torque network architecture, see ‘‘The Tribes II Engine Networking

Model,’’ an article by Tim Gift and Mark Frohnmayer, at the GarageGames site

(http://www.garagegames.com). An instance of a Torque game can be set up as a

dedicated server, a client, or both client and server. If the game is both client and

server, it still behaves as a client connected to a server, but the netcode has a

short-circuit link to other netcode in the same game instance, and no data goes

out to the network.

Bandwidth is a problem because of the large, open terrain environments Torque

supports, as well as the large number of clients Torque can handle—up to 128 or

more per server, which means that there is a high probability that many different

objects can be moving and updating at the same time. Torque uses several

strategies to maximize available bandwidth.

n It sends updates to what is most important to a client at a greater frequency

than it updates data that is less important.

n It sends only the absolute minimum number of bits needed for a given piece

of data.

n It only sends the part of the object state that has changed.

n It caches common strings and data so that they need only be transmitted once.

Packet loss is a problem because the information in lost data packets must

somehow be retransmitted, yet in many cases the data in the dropped packet, if

sent again directly, will be stale by the time it gets to the client.

Latency is a problem in the simulation because the network delay in data

transmission makes the client’s view of the world perpetually out of sync with the

The Torque Game Engine 35

server. Twitch-style FPS games, for which Torque was initially designed, require

instant control response in order to feel anything but sluggish. Also, fast-moving

objects can be difficult for highly latent players to hit. In order to solve these

problems, Torque employs the following strategies:

n Interpolation is used to smoothly move an object from where the client

thinks it is to where the server says it is.

n Extrapolation is used to guess where the object is going based on its state and
rules of movement.

n Prediction is used to form an educated guess about where an object is going

based on rules of movement and client input.

The network architecture is layered. At the bottom is the OS/platform layer,

above that the notify protocol layer, which is followed by the NetConnection

object and event management layer.

Using Torque in This Book

As you’ve seen, the Torque Game Engine is powerful, feature rich, flexible, and

controllable. What we will do in this book is create all of the different elements of

the game that we’ll need and then write game control script code to tie it all

together.

Program code, artwork, and audio resources you will need are included on the

companion CD, along with the tools to manipulate them and create your own.

At first glance that may not seem to be too daunting a task. But remember, we will

be wearing all of the game developer hats. So we will be creating our own models

(players, buildings, decorations, and terrains), recording our own sound effects,

placing all of these things in a virtual world of our own fabrication, and then

devising game rules and their scripted implementations to make it all happen.

Daunted yet?

Hey, it’s not going to be that hard. We’ve got Torque!

Installing Torque
The companion CD contains all the materials you will need to follow the

chapters: the Torque executable, the Torque Game Engine demos and tutorial

36 Chapter 1 n Introduction to 3D Game Development

base, any required art and script resources, plus useful tools. Everything you need

will be in the folder called \3D2E.

Some of the tools, which will be located in the \3D2E\TOOLS folder, may require

installation before you use them. Not all of the supplied tools are required in

order for you to follow along in the book. Some are provided as a courtesy in case

you do not have another suitable tool for a particular task.

If the text absolutely requires you to use a specific tool to complete a procedure

outlined in the book, the text will tell you where to find and install it or otherwise

use it for that task.

To install Torque for use with the book, insert the companion CD into your CD

drive, and follow the on-screen instructions. When you have finished, the layout

of the hard drive will match the layout of the companion CD, so anywhere you

see the folder \3D2E or any of its subfolders described in the text, you will be able

to find it on your hard drive or on the companion CD. The \EXTRAS folder on

the CD is not needed in order to use the book, however.

F o r Ma c i n t o s h a n d L i n u x U s e r s

For readers using an operating system other than one of the Windows variants, the companion
CD’s installation procedure will likely not work for you. The Torque demo executable in \3D2E will
also not work for you. However, the scripts and artwork from the book’s examples will work on
Macintosh and Linux systems, provided you have the correct demo installation from the \EXTRAS
folder on the companion CD installed for your operating system.

When using the installers described in the following, please make sure that your destina-
tion directory or folder during the installation is /3D2E and not the default installer path.
This is to ensure that your installation paths match the paths described in the book. You
might need to create the /3D2E folder manually before running an installer.

To do this, first look in the /EXTRAS folder on the companion CD, and locate and install the demo
for your operating system:

For Macintosh, use /EXTRAS/Macintosh/TorqueGameEngineDemo_1_4.dmg.

For Linux, use /EXTRAS/Linux/TorqueGameEngineDemo-1.4.bin.

After installing the appropriate Torque demo variant on your system, you must then copy the
contents of the companion CD’s /3D2E folder into the new /3D2E directory you created where
you’ve just installed the Torque demo on your system.

After that you can then delete the files demo.exe, getdxver.exe, glu2d3d.dll, OpenAL32.dll, and
opengl2d3d.dll from your new /3D2E folder if you like----they are Windows files that you won’t be
able to use anyway.

Installing Torque 37

In the book you will sometimes see references to folders that use full path names

(like \3D2E\demo\client\init.cs, for example) and other times you will see partial

path names (like RESOURCES\ch2). The drive letter will never be included. This

means that the path to the folder will be appropriate nomatter which hard drive or

volume you install to. With the partial paths it will be obvious where the folders

are. RESOURCES is always a subfolder of \3D2E, for instance, as are the TOOLS,

EXTRAS, demo, common, creator, and show folders.

No t e

Throughout the book you will see references to the fps demo or the racing demo. These are the
Torque Game Engine demo programs, set to run the fps or racing missions.

Run the fps demo by double-clicking demo.exe in the \3D2E folder. After the splash screen
disappears, in the main menu click the Example: FPS Multiplayer button near the center. On the
next screen make sure the Create Server box is checked, then click the right-facing arrow button
in the lower-left part of the screen.

In addition to the fps first-person shoot-’em-up demo, there is a racing dune buggy demo for you
to distract yourself with. On the main menu in the demo, click the Example: Multiplayer Racing
button (the bottom button). When the screen changes check the Create Server box, and finally
click the right-facing arrow button at the bottom.

Moving Right Along
There you go. You now have the basic Torque Game Engine plus some sample

games installed. Enjoy!

Of course, if you are following along with the game development in this book,

you will need to return to the CD and install all the other components when they

are needed.

In this chapter we’ve looked at computer games frommany different angles—the

industry, the genres, and the different roles of developers. And we’ve explored the

kinds of things that make a game engine work and how they relate to each other.

In the next chapter we’ll get into the basics of programming. We’ll use the Torque

Engine itself to run our example programs as we work through the chapter. This

will develop skills you’ll need in later chapters when we start delving into real

game programming scripts.

38 Chapter 1 n Introduction to 3D Game Development

Introduction to
Programming

My intent with this chapter is to help you understand programming concepts

and techniques and leave you with a foundation upon which you can build more

advanced skills. By the end of this chapter, you will be proficient with a powerful

programming editor; understand how to create, compile, and run programs

you’ve written yourself; have a reasonable sense of programming problem-

solving methods; and be familiar with valuable debugging tips and techniques.

UltraEdit-32
To write our programs, we will need to use a text editor, or programming editor.

This kind of editor differs from a word processor, which is what most people use

for writing documents, books, memos, and church bulletins.

A good programming editor has several useful features:

n A project feature that allows you to organize your source files

n A fully featured grep (find, search and replace) capability

n Syntax highlighting

n A function finder or reference

n Macro capability

n Bookmarks

n Text balancing or matching

39

chapter 2

I use a shareware editor calledUltraEdit-32 (UltraEdit), written by Ian D. Meade,

included on the companion CD for this book. It also has several other useful

features that I’ll demonstrate later in this chapter.

g r e p ? Wha t K i n d o f N ame I s T h a t ?

The name grep comes from the UNIX world, where strange and wonderful names and
incantations for programs abound. The word grep is derived from the command string g/re/p,
which first appeared in old line-editor programs on early UNIX systems. The g meant ‘‘global,’’
the re meant ‘‘regular expression,’’ and the p meant ‘‘print,’’ as in print to the screen. If you
entered that command into the editor’s command line, you were telling the editor to globally
search, using regular expression syntax, and then to print the results----and the expression
would then follow those characters. Eventually that command string was migrated outside of
the editor program and incorporated into a command that was usable from the UNIX command
shell as a way of specifying how to look and what to look for when you were searching files
that contained a particular piece of text. Over time, the name grep has become synonymous
with searching files for embedded text and is a common term in the programming world,
even in non-UNIX environments. Now it is often used as a verb meaning ‘‘search for text in
files.’’

Program Setup and Configuration

If you haven’t already installed the companion CD per the instructions near

the end of Chapter 1, it might be a good idea to go back and review that

section. Briefly: after you insert the companion CD into your computer’s

CD drive, use Explorer to browse the CD and locate the folder called 3D2E.

Drag this folder from your CD to your hard drive, which will presumably be

C:, though you can use whatever hard drive you want. Make sure you have

about 500MB of disk space available, to hold both the CD contents you

copy and the installed versions of the software tools that you will be

installing as you work through this book. When you’ve finished copying,

you are free to remove the CD and store it in a safe place. For ins-

tance, setting it on a windowsill in the hot sun is not a safe place. I’m just

sayin’. . .

Now, browse your way into the new \3D2E folder on your hard drive and into the

folder called TOOLS. In there you will see a folder called ULTRAEDIT-32. Inside

that folder you will find uedit32.zip, which contains setup.exe; open the zip

and double-click on uesetup.exe, and follow the installation instructions that

appear. Finally, also in the TOOLS folder, locate the UESAMPLEPROJECT

folder, and drag and drop the folder into the \3D2E folder.

40 Chapter 2 n Introduction to Programming

Setting Up Projects and Files

Like any decent editor environment, UltraEdit-32 allows us to organize the files

we want to work with using a projects concept. You can create, in UltraEdit-32,

virtual folders and save links to your files in these folders. By doing this, you can

make a quick and convenient access channel to files that are stored anywhere,

even somewhere on the network! Setting up your projects takes a wee bit of

effort, however, depending on your needs. Let’s dive in and set up a project.

Configuring UltraEdit

To configure UltraEdit, follow these steps:

1. Launch UltraEdit by selecting Start, Program, UltraEdit, UltraEdit-32 Text

Editor.

2. Close any open files or windows you may have in UltraEdit by selecting

Window, Close All Files.

3. In UltraEdit, select View, Views/Lists, File Tree View. A new docked window

will appear on the left side (see Figure 2.1). This is the File Tree View, also

called the File View.

4. The File View has three tabs, which are used to select different ways of

viewing files. Normally we work with the project files, so click on the tab that

says Project, and this will bring the Project tab to the forefront in the File

View, as depicted in Figure 2.2.

UltraEdit-32 41

Figure 2.1
The File View.

5. If the File View is free-floating (not docked), click and hold (grab) the

colored bar at the top of the File View window where it says ‘‘File View’’ and

drag it to the left side of your UltraEdit window such that the colored bar

remains in the dark gray space, but the left side of the view window dis-

appears off the left side of the UltraEdit window. You should see the outline

of the view window change from a wide gray line to a thin black line. Let go

of the mouse button and the view will be docked on the left side.

6. Select themenu item Project, New Project/Workspace. A Specify Project File

dialog box will appear. Browse your way to \3D2E. Type in the project name

(myscripts), and make sure you have the Project Files type selected in the

drop-down list of the dialog box. Click Save, and the Project Settings dialog

box will appear. If you are given an alert that tells you the file already exists

and asks if you want to replace it, click Yes.

7. In the Folder Options section at the bottom, select the Include sub folders in

folder check box if it isn’t already set with a check mark.

8. Click Add Folder and select the Group check box.

9. Click the ellipsis button to the right of the empty text box.

10. Locate the folder that contains all the files you want to include in your

project—in our case, it’s the \3D2E folder on your hard drive. Locate and

select that folder, then click OK.

42 Chapter 2 n Introduction to Programming

Figure 2.2
The Project tab.

11. When you return to the New Folder dialog box, click OK again.

12. Down in the Folder Options section again, type the following into the Filter

text box: �.cs;�.gui;�.txt;�.log;�.mis;�.hfl;�.dml;�.ifl. Each of these is a

different file type, specified by extension. We are doing this in order to allow

only files of these types to appear in our project. Don’t worry about what

they mean right now; we’ll get into them in later chapters of the book. Your

Project dialog box should look like the one in Figure 2.3.

13. Click the Close button.

14. Take a look at your Project tab of the File View, and click the plus sign (the

expand symbol) to the left of the folder there (which should be \3D2E, if all

went according to plan).

UltraEdit-32 43

Figure 2.3
The Project dialog box with folder.

You should now have a Project tab that shows the contents of the \3D2E folder,

which contains several more folders: common, creator, demo, and show, to name

a few, as well as the file main.cs (you might also have the files console.log and a

README.txt as well, but if you don’t, that’s okay).

Your Project tab of the File View should look something like Figure 2.4. You can

click on the plus sign in front of the folder entries in order to expand the folders

to match the view in the figure.

As the saying goes, there is more than one way to skin a cat, and in this case there

are other ways to set up your project. You can do it all from within the Project

Settings dialog box using the Add File button. You can also use the þ Active File

button to add whatever file is currently the one being edited in UltraEdit. You

can experiment and find the method that works best for you. I tend to use a

combination of þAll Open Files and þActive File, depending on my needs at

the time.

Go ahead and open a few files and close them again, to get a feel for how the

Project tab of the File View works.

44 Chapter 2 n Introduction to Programming

Figure 2.4
The myscripts Project tab of the File View.

After setting up the project, exit UltraEdit. This ensures that the project settings

are properly saved. Then you can go ahead and reopen the project by double-

clicking the myscripts.prj icon in the \3D2E folder. If you don’t take this extra

step of quitting and then relaunching UltraEdit, you may find that the settings

haven’t properly taken, and some functions might not work. Searching through

project files for certain words is one capability that probably will not work

correctly until you close and reopen the project.

Search and Replace

The search capabilities of UltraEdit are quite extensive and thorough. I’m going

to focus on the few most important capabilities: finding specific text, finding

specific text and replacing it, jumping to a line number, and advanced

searching using wildcards and patterns. To practice the various features, open

the UESAMPLEPROJECT folder, and open the file called sample_file_1.txt. Do

this by browsing through the Project tab. The file called sample_file_1.txt

has some text extracted from an early revision of Chapter 1 that we can hack

away at.

Find

Select the Search, Find menu item, and you should get the Find dialog box (see

Figure 2.5). Make sure the option check boxes match the ones in Figure 2.5. Now,

type in the word you want to find, then click the Find Next button. The Find

dialog box will go away, your text insertion point will jump to the first found

instance of the word you want, and the word will be highlighted. Try this using

the word indie. See that?

UltraEdit-32 45

Figure 2.5
The Find dialog box set for a basic search.

Okay, now get your Find dialog box back and try doing this with the various

options. Notice that the Find operates on the currently active file in the editor.

Check out the various options, like searching ‘‘down’’ the file and then searching

back ‘‘up’’ the file. Change your search word to INDIE (all capital letters) and

then try your search again. Note that the Find still locates the word. Now try it

with the Match Case option checked. Notice that you get an error message:

Search String Not Found!

When searching, you will often havemore than onematch to your search criteria.

If you are not using the List Lines option, then you canmove through each match

in the text by using Search, Find Next to continue to find matching strings as you

move toward the end of the file (down). Using Search, Find Prev will do the same

thing, though moving toward the start of the file (up). However, you will

probably want to quickly get acquainted with using the keyboard shortcut F3 for

Find Next and CtrlþF3 for Find Prev.

T i p

A quick and convenient way to search for other occurrences of a word that is already written
and visible in the active window is to highlight the word (double-click it), press CtrlþF (the
shortcut for Find), and then press Enter. The insertion point will jump to the next occurrence of
the word. Then keep pressing F3 to move to the next, and the next, and the next, ad
infinitum. UltraEdit will keep starting over from the beginning of the file until you die of
boredom.

A feature of the Find dialog box that I think is particularly useful is the List Lines

Containing String option. With this checked, all instances of the word you are

looking for will be listed as complete lines in a separate window. Try it by

searching for the word action with case sensitivity turned off. This should give

you a window with a list of lines in it. Each line contains at least one instance of

the search term you specified. If you double-click a line, you will see the text and

insertion point in your edit window jump to where that line is located and the

line will become highlighted.

S p e c i a l F i n d C h a r a c t e r s

When using Find, there are some things you may want to search for that are not normal
alphanumeric characters or punctuation marks----the end of a line, for example.

These are handled by using special characters that are a combination of an escape character and a
symbol. The caret (‘‘^’’; you get this when you hold down the Shift key and type the number ‘‘6’’
on North American keyboards) is the escape character. It is paired with a symbol that is a normal
character. Whenever Find sees the combination of the caret in front of a character, the program
knows it is doing a special character search.

46 Chapter 2 n Introduction to Programming

Of course, the first special character is the caret itself; otherwise, we would never be able to do a
search for a caret in text. Look at the following table for a list of the most common special Find
characters.

These do not require you to turn on the Regular Expressions switch in the Find dialog box,
although they are the same as some of the regular expression entries.

Replace

Select the Search, Replace menu item, and you should get the Replace dialog box

(see Figure 2.6). This dialog box is similar to the Find dialog box, though the

Replace dialog box has more options and a field in which to enter the replace-

ment text.

UltraEdit-32 47

Special Characters Used in a Basic Find Function

Special Symbol What the Program Looks For

^^ caret character (‘‘^’’; sometimes called Up Arrow)

^s highlighted text (only while a macro is running)

^c contents of the Clipboard (only while a macro is running)

^b page break

^p newline (carriage return and line feed) (Windows/DOS files)

^r newline (carriage return only) (Macintosh files)

^n newline (line feed only) (UNIX files)

^t tab character

Figure 2.6
The Replace dialog box set for a basic search-and-replace operation.

Find In Files

The Find In Files feature is UltraEdit’s closest implementation of grep, which I

mentioned earlier in the chapter. The basic Find In Files capability allows you to

specify what word or phrase you are looking for and where to look for it in files

other than the one you are currently editing (the active file). Figure 2.7 shows the
Find In Files dialog box. You’ll notice that you can specify one of three different

sets of files to search.

First, you can search through the Files Listed. Thismeans you can specify a file name

search pattern with extension and a folder to look in. This is quite similar to the

built-inWindows Search or Find feature. You can use wildcards to fine-tune which

files will be checked. Searching with the In Files/Types box set to ‘‘new�.txt’’, for
example, will search inside files with the names newfile.txt, new_data.txt, and so on.

Setting the pattern to ‘‘�.�’’ will cause the program to search inside every file it finds

in the specified folder. If you have the Search Sub Directories box checked, then it

will also look inside every file inside every folder contained in the specified folder.

When the program finds a match in the file with the word you are looking for, it

will print a listing at the bottom of the UltraEdit window containing a reference

to the file where the word was found, plus the line in which it was found. If you

double-click the line in the bottom window, UltraEdit will open the file and

position the line in your window for viewing.

Next, you can search in the Open Files—that is, only within the files that are

currently open in the editor. If you click the Open Files radio button in the Search

48 Chapter 2 n Introduction to Programming

Figure 2.7
The Find In Files dialog box.

In: box, you see that now you only enter the word to search for; you don’t need to

specify file names or a folder.

Finally, the method I use the most is to search in Project Files. With this option

selected, the program will search through all of the files in the project you

currently have open—and only those files. It doesn’t matter whether the files

themselves are open or not.

grep

The grep capability in UltraEdit (also see the sidebar earlier in this chapter) is an

advanced way of finding text within files and replacing it with other text when

desired. You can use it in Search-related topics covered so far by putting a check

mark in the Regular Expressions box; then Find will operate using standard

UNIX-like grep or the older UltraEdit-specific form of grep.

You can configure UltraEdit to use its own grep syntax or the UNIX-style syntax

in the configuration menu. Select the Advanced, Configuration menu item, and

then select the Find tab. Change the check box labeled UNIX style Regular

Expressions to suit your taste.

UltraEdit-Style grep Syntax

Table 2.1 shows the available UltraEdit-style grep functions. Let’s do a few example

grep searches to get a feel for how it works. Use the file sample_file 1.txt from the

UESAMPLEPROJECTproject to do the searches. For this sectionmake sure youhave

the UltraEdit configuration setting for UNIX style Regular Expressions turned off.

Let us suppose that we want to find some reference to dungeons in games in the

sample file. We’ll grep (notice that I’m verbing the noun here!) for the term

game�dungeon.
Press CtrlþF to bring up the Find dialog box, and then make sure the Regular

Expressions box is checked. Type in the search term game�dungeon, and click

the Find Next button. The string it finds starts with ‘‘game’’ and ends with

‘‘dungeon’’. The words that appear in between were inconsequential to the

search, because the asterisk means that the search program will match any string

of characters of any length between the words game and dungeon, as long as it

doesn’t encounter a newline character or a carriage return. Try it again, but this

time type in the term computer�game and see what you find. Remember that

you can use F3 as a shortcut to find the next match.

UltraEdit-32 49

The operator that is the same as the asterisk, only different, is the question mark

(‘‘?’’). Instead of matching any number of any characters, it will match only one

instance of any character. For example, ‘‘s?n’’ matches ‘‘sun’’, ‘‘son’’, and ‘‘sin’’

but not ‘‘sign’’ or ‘‘soon’’.

Here are some more examples of how the matching criteria work:

beþ st will find ‘‘best’’, ‘‘beest’’, ‘‘beeeest’’, and so on but not ‘‘bst’’

[aeiou] will find every lowercase vowel

[,.?] will find a literal ‘‘,’’, ‘‘.’’, or ‘‘?’’

[0-9a-z] will find any digit or lowercase letter

[~0-9] will find any character except a numeral (the tilde [‘‘~’’]

means to not include whatever follows)

50 Chapter 2 n Introduction to Programming

Table 2.1 UltraEdit-Style grep Syntax

Symbol Purpose

% Matches the start of line. Indicates the search string must be at the beginning of a
line but does not include any line terminator characters in the resulting string
selected.

$ Matches the end of line. Indicates the search string must be at the end of a line but
does not include any line terminator characters in the resulting string selected.

? Matches any single character except newline.

* Matches any number of occurrences of any character except newline.

þ Matches one or more instances of the preceding character. At least one occurrence of
the character must be found. Does not match repeated newlines.

þ þ Matches the preceding character/expression zero or more times. Does not match
repeated newlines.

^b Matches a page break.

^p Matches a newline (CR/LF) (Windows/DOS files).

^r Matches a newline (CR only) (Mac files).

^n Matches a newline (LF only) (UNIX files).

^t Matches a tab character.

[] Matches any single character or range in the brackets.

^{A^}^{B^} Matches expression A or B.

^ Overrides the following regular expression character.

^(...^) Brackets or tags an expression to use in the Replace command. A regular expression
may have up to nine tagged expressions, numbered according to their order in the
regular expression. The corresponding replacement expression is ^x, for x in the
range 1--9. Example: If ^(h*o^) ^(f*s^) matches ‘‘hello folks’’, ^2 ^1 would replace
it with ‘‘folks hello’’.

UNIX-Style Syntax

The UNIX-style syntax is used in the same way as the UltraEdit style but is

different in many ways. The advantages of using the UNIX style are:

n It is somewhat of a standard, so you may be familiar with it from elsewhere.

n It has more capabilities than the UltraEdit syntax.

n At some point in the future it may be the only syntax for grep supported by

UltraEdit, when the program’s author decides to stop supporting the old

UltraEdit style.

You can see the differences by checking out Table 2.2. The first obvious difference

is that the escape character has changed from the caret to the backslash. Our

example searches would be a little different. The asterisk doesn’t match any

character anymore; now it matches any number of occurrences of the character

that appears just before it. Also, now we use the period (‘‘.’’) to match any single

character instead of the question mark.

Before proceeding, make sure you have your editor set to use the proper UNIX-

style syntax in the Advanced, Configuration menu under the Find tab.

Now, to go back to our dungeon games example, the way the search term in

UNIX-style grep syntax would look is ‘‘game.�dungeon’’.
Compare these examples with the ones for the UltraEdit style:

beþst matches ‘‘best’’, ‘‘beest’’, ‘‘beeeest’’, and so on but not ‘‘bst’’

be�st matches ‘‘best’’, ‘‘beest’’, ‘‘beeeest’’, and so on and ‘‘bst’’

[aeiou] matches every lowercase vowel

[,.?] matches a literal ‘‘,’’, ‘‘.’’, or ‘‘?’’

[0-9a-z] matches any digit or lowercase letter

[^0-9] matches any character except a digit (^ means not the

following)

Bookmarks

One feature I use quite frequently is the Bookmark capability. Its purpose is to

help you quickly find your way around large files. When you are working in an

area that you think you may need to come back to later, just set a bookmark, and

then when you are working in another place in your document, you can use the

Goto Bookmark command to jump through each bookmark you’ve set until you

UltraEdit-32 51

find the one you want. This sure beats scrolling through all your open files

looking for that one spot you worked on two hours ago!

To set a bookmark, click your mouse on a line of text, and then select the menu

item Search, Toggle Bookmark. The line where the bookmark is set will be

indicated by a lozenge-shaped cyan box around the line number on the left side

(see Figure 2.8)—this is also a user-configurable parameter. In the figure, lines 11

and 13 are the bookmarked lines.

52 Chapter 2 n Introduction to Programming

Table 2.2 UNIX-Style grep Syntax

Symbol Purpose

\ Indicates the next character has a special meaning. ‘‘n’’ on its own matches the
character ‘‘n’’. ‘‘\n’’ matches a linefeed or newline character. See examples
below (\d, \f, \n).

^ Matches or anchors the beginning of line.

$ Matches or anchors the end of line.

* Matches the preceding character zero or more times.

þ Matches the preceding character one or more times. Does not match repeated
newlines.

. Matches any single character except a newline character. Does not match
repeated newlines.

(expression) Tags an expression to use in the Replace command. A regular expression may
have up to nine tagged expressions, numbered according to their order in the
regular expression. The corresponding replacement expression is \x, for x in the
range 1--9. Example: If (h.*o) (f.*s) matches ‘‘hello folks’’, \2 \1 would replace
it with ‘‘folks hello’’.

[xyz] A character set. Matches any characters between brackets.

[^xyz] A negative character set. Matches any characters not between brackets.

\d Matches a number character. Same as [0-9].

\D Matches a nonnumeric character. Same as [^0-9].

\f Matches a form-feed character.

\n Matches a linefeed character.

\r Matches a carriage return character.

\s Matches any white space including space, tab, form-feed, and so on but not
newline.

\S Matches any non--white space character but not newline.

\t Matches a tab character.

\v Matches a vertical tab character.

\w Matches any word character, including underscore.

\W Matches any non-word character.

\p Matches CR/LF (same as \r\n) to match a DOS line terminator.

To remove a bookmark, click your mouse in the bookmarked line, and select

Search, Toggle Bookmark again. This will turn off the bookmark for that line.

To remove all bookmarks, select Search, Clear All Bookmarks, and all bookmarks

that you previously set will vanish.

T i p

If you are using the Project tab when you close your documents, all the bookmarks you’ve set will
be saved and restored the next time you open that document. This does not happen with
documents that are not associated with the Project tab.

To navigate between the bookmarks, choose Search, Next Bookmark, and your

insertion point will jump to the next bookmark in sequence. You can also choose

Search, Previous Bookmark to jump in the reverse direction from bookmark to

bookmark.

UltraEdit-32 53

Figure 2.8
Bookmarked text.

T i p

Most commands available in the menus have keyboard shortcuts available. Rather than listing
them here, I’ll just point you to the menu items. The keyboard shortcut for the command, if
available, is written next to the menu selection. Some menu items, like Clear All Bookmarks, have
no shortcut assigned, but don’t despair. You can assign keyboard shortcuts by using the Key
Mapping tab in the Advanced, Configuration menu and following the instructions. Note that the
command names in the list are written with their main menu entry as the first part of the
command. The Clear All Bookmarks command is written as SearchClearBookmarks. The com-
mands are listed in alphabetical order.

Macros

Macro commands are like shortcuts. You can string together a whole series of

tedious editing operations into a group, called a macro, that you can invoke at

any time later by a simple keystroke, menu item, or toolbar button.

UltraEdit has two forms of macros: the standard and the Quick Record macro.

Let’s take a look at both, starting with the Quick Record macro.

Quick Record Macro

The Quick Record macro is a bare-bones macro function.

1. Select the Macro, Quick Record menu item (or press ShiftþCtrlþR).

2. Start performing all the editing actions you want recorded. In this case just

type in the text blah blah blah somewhere.

3. Select Macro, Stop Quick Recording (or press ShiftþCtrlþR again).

Now replay your edit actions over again at any place in your text by simply

placing your text insertion point where appropriate and typing CtrlþM or

selecting the Macro, Play Again menu item.

You can only ever have one Quick Record macro—each time you record one, it

replaces the earlier recording.

Standard Macro

Standard macros are a bit more complex. The procedure for recording them is

somewhat similar, but you can assign them to key combinations of your choice,

54 Chapter 2 n Introduction to Programming

to menus, or even to toolbar buttons. This gives you much more flexibility than

the Quick Record macro, but at the cost of a bit of setup twiddling, of course.

Let’s make a couple of standard macros. One will insert the words ‘‘This is cool’’

and the other will jump to the beginning of whatever line the insertion point is

on, capitalize the first word, put a period at the end, and then insert the phrase

‘‘Capital Idea!’’ after the period.

1. Place your insertion point in a blank line somewhere.

2. Select the Macro, Record menu item.

3. In the Macro Name box, give it a name, something like ‘‘InsertCool’’.

4. Click the mouse in the HotKey edit box to the right of where it says ‘‘Press

New Key’’, and then press and hold AltþCtrlþI.

5. Click the OK button.

6. Type in the phrase This is cool.

7. Select Macro, Stop Recording.

8. Place your insertion point at the end of the line with the phrase ‘‘This is

cool’’ in it.

9. Select the Macro, Record menu item.

10. In the Macro Name box, give it a name, something like ‘‘MakeCapital’’.

11. Click the mouse in the HotKey edit box to the right of where it says ‘‘Press

New Key’’, and then press and hold ShiftþCtrlþM.

12. Click the OK button.

13. Type the following key sequence, one at a time (don’t type the text in

parentheses):

Home

ShiftþCtrlþRight Arrow

F5

End

. (that’s a period)

spacebar

UltraEdit-32 55

14. Now type the phrase Capital Idea!

15. Finally, select the Macro, Stop Recording menu item.

There, that’s done. So now let’s test it out.

First, find or create a blank line, place your insertion point on it, and then press

ShiftþCtrlþI. See the text that gets inserted? Okay, now leave your text insertion

point in that new text, anywhere, and then press ShiftþCtrlþM. You should end

with a line that says, ‘‘This is cool. Capital Idea!’’, with the same capitalization.

Macros are cool!

UltraEdit Review

So now you’ve seen how to use what are, in my opinion, the most important

editing features of UltraEdit—grep (find, search, and replace), macros, and

bookmarks—and you’ve seen how UltraEdit can be configured in a project

format to make it easy to use files in an organized fashion.

UltraEdit has a good Help feature that covers all aspects of the program, so I

encourage you to use it.

Remember that UltraEdit is an editor, not a word processor, so there aren’t a great

deal of formatting features in the program, which is just as well because we are

using it to write code and not to write documents or books. The focus is on the

steak, not the sizzle.

Speaking of steak, it is now time to get to the meat of this chapter, coming up

next!

Controlling Computers with Programs
When you create a computer program, you are creating a set of instructions that

tell the computer exactly and completely what to do. Now before you jump all

over me and hammer me with comments like, ‘‘Well, duh! Of course pro-

gramming a computer is like telling it what to do,’’ I want you to read the first

sentence again. It is not an analogy, and it is not some kind of vague and airy all-

encompassing cop-out.

Everything that a computer does, at any time, is decided by at least one pro-

grammer. In the vast majority of cases, the computer’s instructions—contained

56 Chapter 2 n Introduction to Programming

in programs—are the work-product of hundreds, if not thousands, of pro-

grammers. All of the programs that a computer uses are organized and classified

in many different ways. The organization helps us humans keep track of what

they do, why we need them, how to link one program with another, and other

useful things. The computer’s operating system is a huge collection of programs

designed to work in conjunction with other programs, or sometimes to work

alone, but in the context created by other programs.

We leverage the efforts of other programmers when we sit down to program a

computer for any purpose. One of the results of many that have gone before is the

creation of programming languages. Computers operate using a language that is

usually unique to each brand and model, called machine code. Machine code is

designed to directly control the computer’s electronics—the hardware. Machine

code is not very friendly to humans.

To give you an idea, we’ll look at an example of machine code that tells a

computer using an Intel 80386 chip to add together two numbers and save the

result somewhere. What we will do is add A and B together and leave the result

in C. To start, A will equal 4 and B will equal 6.

So our formula will be a simple math problem:

A = 4
B = 6
C = A + B

The computer machine code looks like this:

110001110000010100000000000000000000000000000000000000100000000000000000000
0000011000111000001010000000000000000000000000000000000000110000000000000000
0000000001010000100000000000000000000000000000000000000110000010100000000000
0000000000000000000001010001100000000000000000000000000000000

Now go ahead and look carefully at that and tell yourself honestly whether you

could work with a computer using machine code for longer than, oh, about 12

minutes! My personal best is somewhere around 30 seconds, but that’s just me.

The number system used here is the binary system.

Each one of those 1s and 0s is called a bit and has a precise meaning to the

computer. This is all the computer actually understands—the 1s, the 0s, their

location and organization, and when and how they are to be used. To make it

easier for humans to read machine code at those rare times when it is actually

necessary, we normally organize the machine code with a different number

Controlling Computers with Programs 57

system, called hexadecimal (or hex), which is a base-16 number system (rather

than base-10 like the decimal system we use in everyday work). Every 4 bits

becomes a hex numeral, using the symbols from 0 to 9 and the letters A to F.

We pair two hex numerals to carry the information contained in 8 bits from

the machine code. This compresses the information into an easier-to-read and

more manageable size. Here is the same calculation written in the hex form of

machine code:

C7 05 00 00 00 00 04 00 00 00 C7 05 00 00 00 00 06 00 00 00 A1 00 00 00 00 03
05 00 00 00 00 A3 00 00 00 00

Much better and easier on the eyes! There are many people who work close to the

computer hardware who work in hex quite often, but it still is pretty obscure.

Fortunately, there is a human-readable form of the machine code for every

microprocessor or computer, which in general is known as assembly language. In

this case we use words and symbols to represent meaningful things to us as

programmers. Tools called assemblers convert assembly language programs to

the machine code we looked at earlier. Here is the Intel 80386 Assembler version

of our little math problem:

mov DWORD PTR a, 4 ; (1)
mov DWORD PTR b, 6 ; (2)
mov eax, DWORD PTR a ; (3)
add eax, DWORD PTR b ; (4)
mov DWORD PTR c, eax ; (5)

Now we are getting somewhere! Let’s take a closer look. Lines 1 and 2 save the

numbers 4 and 6 in memory somewhere, referenced by the symbols a and b. The

third line gets the value for a (4) and stores it in some scratch memory. Line 4 gets

the value for b (6), adds it to the 4 in scratch memory, and leaves the result in the

same place. The last line moves the result into a place represented by the symbol c.

The semicolon tells the assembler tool to ignore what comes after it; we use the

area after the semicolon to write commentary and notes about the program. In this

case I’ve used the comment space to mark the line numbers for reference.

Now that, my friends, is a program! Small and simple, yes, but it is clear and

explicit and in complete control of the computer.

As useful as assembly language code is, you can see that it is still somewhat

awkward. It is important to note that some large and complex programs have

been written in assembly language, but it is not done often these days. Assembly

language is as close to the computer hardware as one would ever willingly want to

58 Chapter 2 n Introduction to Programming

approach. You are better served by using a high-level language. The next version

of our calculation is in a powerful high-level language called C. No, really! That’s

the name of the language. Here is our calculation written in C:

a = 4; // (1)
b = 6; // (2)
c = a + b; // (3)

Now, if you’re thinking what I think you’re thinking, then you’re thinking, ‘‘Hey!

That code looks an awful lot like the original formula!’’ And you knowwhat? I think

you are right. And that’s part of the point behind this rather long-winded intro-

duction. When we program, we want to use a programming language that best

represents the elements of the problemwe want to solve. Another point is that quite

a few things are done for the programmer behind the scenes—there is a great deal

of complexity. Also, you should realize that there are even more layers of com-

plexity ‘‘below’’ the machine code, and that is the electronics. We’re not even going

to go there. The complexity exists simply because it is the nature of the computer

software beast. But be aware that the same hidden complexity can sometimes lead

to problems that will need to be resolved. But it’s not magic—it’s software.

The C language you’ve just seen is what is known as a procedural language. It is

designed to allow programmers to solve problems by describing the procedure to

use and defining the elements that are used during the procedure. Over time,

programmers started looking for more powerful methods of describing problems,

and one suchmethod that surfacedwas calledObject-Oriented Programming (OOP).

The simplest point behind OOP is that programmers have a means to describe the

relationships between collections of code and variables that are known as objects.

The C language eventually spawned a very popular variant called C++. C++

includes the ability to use the original C procedural programming techniques, as

well as the new object-oriented methods. So we commonly refer to C/C++,

acknowledging the existence of both procedural and object-oriented capabilities.

Fromhere on, in the book, I will refer toC/C++as the general nameof the language,

unless I need to specifically refer to one or the other for some detailed reason.

Programming Concepts
For the rest of this chapter, we are going to explore basic programming tech-

niques. We will be using TorqueScript for all of our code examples and running

our little programs in the Torque Engine to see what they do.

Programming Concepts 59

Now, we just covered the simple math problem in the previous section. I showed

you what the program looked liked in binary machine language, hex machine

language, assembly language, and finally C/C++. Well, here is one more

version—TorqueScript:

%a = 4; // (1)
%b = 6; // (2)
%c = %a + %b; // (3)

Notice the similarity to C/C++? Even the comments are done the same way!

As demonstrated, TorqueScript is much like C/C++. There are a few exceptions,

the most notable being that TorqueScript is typeless and does not require forward

declarations of variables. Also, as you can see for yourself in the preceding code,

TorqueScript requires scope prefixes (the percent signs) on its variable names.

T y p e l e s s ? F o rwa r d D e c l a r a t i o n s ? Huh ?

In many languages, variables have a characteristic called type. In its simplest form, a type merely
specifies how much memory is used to store the variable. TorqueScript doesn’t require you to
specify what type your variable has. In fact, there is no way to do it!

Forward declarations are a construct whereby the programmer must first indicate, usually at the
beginning of a file or a subroutine block, what variables will be used and what their types are.
TorqueScript also doesn’t require this and again provides no mechanism for using forward
declarations.

So now that you know what types and forward declarations are, you can forget about them!

The goal for you to achieve by the end of this chapter is the ability to put together

simple programs to solve problems and have enough understanding of program

techniques to make sensible decisions about the approaches to take.

How to Create and Run the Example Programs

There is an ancient and well-understood programming cycle called the Edit-

Compile-Link-Run cycle. The same cycle applies with Torque, with the exception

being that there is no link step. So for us, it can be thought of as the Edit-Compile-

Run cycle. A further wrinkle to toss in is the fact that Torque will automatically

compile a source file (that is, a program file that ends with .cs) into the binary

byte code file (ends with .cs.dso), if there is no binary version of the file, or if the

source file has changed since the last binary was created.

So I guess my point is, for us the cycle can now be regarded as the Edit-Run cycle.

60 Chapter 2 n Introduction to Programming

n Put all user programs in the folder \3D2E\demo as filename.cs where

‘‘filename’’ is a name you’ve either made up yourself or one that I’ve sug-

gested here in the book. So, for example, the first simple program in the next

pages will be saved as \3D2E\demo\HelloWorld.cs.

n Run the demo by double-clicking \3D2E\demo.exe.

Hello World

Our first program is somewhat of a tradition. Called theHello World program, it

is used as an early confidence builder and test program to make sure that the

gentle reader (that would be you, if you are reading this book!) has everything in

place on his computer to successfully edit, compile, and run a program.

So, assuming that you have correctly copied the 3D2E folder from your CD to

your hard drive, and you’ve installed UltraEdit-32, you can use your newly

learned UltraEdit skills to create a new file with the name HelloWorld.cs and save

it in the folder \3D2E\demo. Type into the file these lines of code:

// ==
// HelloWorld.cs
//
// This module is a program that prints a simple greeting on the screen.
//
// ==

function runHelloWorld()
// ——
// Entry point for the program.
// ——
{

echo("Hello World");
}

Save your work. Now, use the following procedure to run your program:

1. Browse to, and open, your \3D2E folder on your hard drive using Explorer

(not UltraEdit-32!).

2. Locate the Torque Game Engine executable, demo.exe. If you can’t find the

file demo.exe, see the important note following this procedure.

3. Double-click demo.exe to launch the Torque default demo.

Programming Concepts 61

4. After the splash screen clears, you will see the main menu of the demo. Don’t

click any buttons; just press the Tilde (‘‘~’’) key. This is the key that is

normally to the left of the ‘‘1’’ (or shifted ‘‘!’’) key and above the Tab key.

The Tilde key shares the keyspace with the Grave (‘‘`’’) key. Get to know this

key intimately—it is the console key.

5. The console will appear on your screen, looking something like

Figure 2.9.

6. In the console window, type the following:

exec("demo/helloworld.cs");

You will see the following displayed in the console (the output):

Compiling demo/helloworld.cs...
Loading compiled script demo/helloworld.cs.

62 Chapter 2 n Introduction to Programming

Figure 2.9
Output of the Hello World program.

7. Now type the following:

runhelloworld();

You will see the following output:

Hello World!

T i p

If you don’t get the expected result on your screen, then look in the console. If there were any
errors in your program, diagnostic information will be deposited there. It might be something as
simple as a typo in the file name. Most error messages appear in red.

The contents of the console are also written to the file console.log, which you can view after
you’ve quit Torque.

Also, if you see any errors regarding ‘‘onNeedRelight’’, or something from the future, missing
PageGui, missing ‘‘inspect’’ object, a missing ‘‘license_other’’, or something called ‘‘SM_missionList’’
or an ammo bounding box, or a failed preload (whew!), then ignore them. They aren’t yours, they’re
minor, and don’t matter here.

IM PORTAN T !

If you are using the Windows XP default desktop setup with the default folder settings, you may
have trouble locating some files. This is because the default settings for Windows XP have the
folder property that allows you to see file extensions turned off. You really, really should have this
ability enabled (not only to use this book, but in all of your uses of Windows XP). Enable the
ability to see file extensions by opening a window view to your computer (double-clicking the My
Computer icon on your desktop is the quickest way), choosing the Tools menu for the window,
and then choosing Folder Options.

When the Folder Options dialog box opens, choose the View tab. In the Advanced settings area,
locate the Hide extensions for known files types check box, and remove the check mark. Do the
same for the Hide protected operating system files check box. Now close the Folder Options dialog
box, and get on with it!

Let’s have a closer look at the code. The first thing you will notice is this stuff:

// ==
// HelloWorld.cs
//
// This module is a program that prints a simple greeting on the screen.
//
// ==

This is the module header block. It is not executable code—it’s what we call a

comment. The double-slash operator (‘‘//’’) tells the Torque Engine to ignore

everything from the slashes to the end of the line.

Programming Concepts 63

So if the engine ignores the module header block, why do we use it? Well, it’s

included in order to document what the module does so that later, when we’ve

completely forgotten the details, we can easily refresh our memory. It also is

included to help other programmers who may come along and need to under-

stand the module so they can add new features or fix bugs.

T i p

Whenever I tell you to open the console, you should immediately leap into action and press the
Tilde (‘‘~’’) key. Just making doubly sure you know, you know . . . now back to the action.

There are no real rules regarding the format of these headers, but most pro-

grammers or development shops have some sort of template that they want

followed. At a minimum, the header should include the module file name,

copyright notices, and a general description of what the code in the module is for.

Sometimes we might include other details that are necessary for another person

to understand how the module is used.

Then there is this part:

function runHelloWorld()

That is executable code. It is the declaration of the function block called

runHelloWorld. This is the function we call from within the console. Following

that, there is this:

// ——
// Entry point for the program.
// ——

This is the function header comment. The function header comment is included

in order to describe the specifics of a function—what it does, how it does it,

and so on. In this case it is fairly simple, but function header comments can

get to be quite descriptive, as you’ll see later. Again, this is not executable

code (note the double slash) and is not required to make your program

work. The dashes could just as well be stars, equal signs, or nothing at all. It

is good practice to always use function header comments to describe your

functions.

Finally comes this:

{
echo("Hello World");

}

64 Chapter 2 n Introduction to Programming

That would be the function body—the guts of the function where the work is

done. The function body is also sometimes called a function block and more

generically (when used in other contexts that you’ll see later) called a code block.

It is important to note the way a function block is made. It always begins with the

keyword function followed by one ormore spaces and whatever name you want it to

have. After the name comes the argument list (or parameter list). In this case there are

no parameters. Then comes the opening, or left, brace (or curly bracket). After the

opening brace comes the body of the function, followedby the closing, or right, brace.

All functions have this same structure. Some functions can be several pages long,

so the structure may not be immediately obvious, but it’s there.

The actual code that does anything interesting is a single line. As you know by now,

the line simply prints the text ‘‘Hello World’’ in the Torque console window.

Expressions

Whenwewrite program code,most of the lines, or statements, that we create can be

evaluated. A statement can be a single TorqueScript line of any kind terminated by

a semicolon, or it can be a compound statement, which is a sequence of statements

enclosed in left and right braces that acts as a single statement. A semicolon does

not follow the closing right brace. Here is an example of a statement:

echo("Hi there!");

Here is another example:

if (%tooBig == true) echo("It’s TOO BIG!");

And here is one final example of a valid statement:

{
echo("Nah! It’s only a little motorcycle.");

}

Statements that can be evaluated are called expressions. An expression can be a

complete line of code or a fragment of a line, but the important fact is that it has a

value. In Torque the value may be either a number or text (a string)—the dif-

ference is in how the value is used. Variables are explained in the next section, but

I’ll sneak a few in here without detailed coverage in order to illustrate expressions.

Here is an expression:

5 + 1

Programming Concepts 65

This expression evaluates to 6, the value you get when 5 and 1 are added.

Here is another expression:

%a = 67;

This is an assignment statement, but more importantly right now, it is an

expression that evaluates to 67.

Another:

%isOpen = true;

This expression evaluates to 1. Why? Because true evaluates to the value 1 in

Torque. Okay, so I hadn’t told you that yet—sorry about that. Also, false

evaluates to 0. We can say the statements evaluate to true or false, instead of 1

and 0. It really depends on whatever makes sense in the usage context. You’ll

notice that the evaluation of the statement is determined by whatever expression

is to the right of the equal sign. This is a pretty hard-and-fast rule.

Consider this code fragment:

%a = 5;
if (%a > 1)

What do you figure that the (%a > 1) evaluates to, if %a has been set to 5? That’s

right—it evaluates to true. We would read the line as ‘‘if %a is greater than 1.’’

If it was written as (%a > 10), it would have been false, because 5 is not greater

than 10.

Another way we could write the second line is like this:

if ((%a > 1) == true)

It would be read as ‘‘if the statement that %a is greater than 1 is true.’’ However,

the Department of Redundancy Department could have written that example.

The first way I showed you is more appropriate.

Just for your information, in the preceding examples, %a and %isOpen are variables,

and that’s what is coming up next.

Variables

Variables are chunks of memory where values are stored. A program that reads a

series of numbers and totals them up will use a variable to represent each number

when it’s entered and another variable to represent the total. We assign names to

66 Chapter 2 n Introduction to Programming

these chunks of memory so that we can save and retrieve the data stored there.

This is just like high school algebra, where we were taught to write something like

‘‘Let v stand for the velocity of the marble’’ and so on. In that case v is the

identifier (or name) of the variable. TorqueScript identifier rules state that an

identifier have the following characteristics:

n It must not be a TorqueScript keyword.

n It must start with an alphabetical character.

n It must consist only of alphanumeric characters or an underscore symbol

(‘‘_’’).

A keyword is an otherwise valid identifier that has special significance to Torque.

Table 2.3 gives a keyword list. For the purposes of Torque identifiers, the

underscore symbol is considered to be an alphanumeric character. The following

are valid variable identifiers:

isOpen Today X the_result item_234 NOW

These are not legal identifiers:

5input miles-per-hour function true + level

Programming Concepts 67

Table 2.3 TorqueScript Keywords

Keyword Description

break Breaks execution out of a loop.

case Indicates a choice in a switch block.

continue Causes execution to continue at the top of a loop.

default Indicates the choice to make in a switch block when no cases match.

do Indicates the start of a do-while type loop block.

else Indicates alternative execution path in an if statement.

false Evaluates to 0, the opposite of true.

for Indicates the start of a for loop.

function Indicates that the following code block is a callable function.

if Indicates the start of a conditional (comparison) statement.

new Creates a new object datablock.

return Indicates return from a function.

switch Indicates the start of a switch selection block.

true Evaluates to 1, the opposite of false.

while Indicates the start of a while loop.

It’s up to you as the programmer to choose the identifiers you want to use. You

should always try to use meaningful identifiers—choose them to be significant to

your program and what it is doing. Note that Torque is not case-sensitive.

Lowercase letters are not treated as distinct from uppercase letters.

You assign values to variables with an assignment statement:

$bananaCost = 1.15;
$appleCost = 0.55;
$numApples = 3;
$numBananas = 1;

Notice that each variable has a dollar sign (‘‘$’’) preceding it. This is a scope
prefix. This means that the variable has global scope—it can be accessed from

anywhere in your program, inside any function, or even outside functions and in

different program files.

There is another scope prefix—the percent sign (‘‘%’’). The scope of variables

with this prefix is local. This means that the values represented by these variables

are valid only within a function, and only within the specific functions where they

are used. We will delve into scoping in more detail later.

Using our fruit example, we can calculate the number of fruit as follows:

$numFruit = $numBananas + $numApples;

And we can calculate the total cost of all the fruit like this:

$numPrice = ($numBananas * $bananaCost) + ($numApples * $appleCost);

Here is a complete small program you can use to try it out yourself:

// ==
// Fruit.cs
//
// This program adds up the costs and quantities of selected fruit types
// and outputs the results to the display
// ==

function runFruit()
// ——
// Entry point for the program.
// ——
{
$bananaCost=1.15;// initialize the value of our variables
$appleCost=0.55; // (we don’t need to repeat the above

68 Chapter 2 n Introduction to Programming

$numApples=3; // comment for each initialization, just
$numBananas=1; // group the init statements together.)

$numFruit=0; // always a good idea to initialize *all* variables!
$total=0; // (even if we know we are going to change them later)

echo("Cost of Bananas(ea.):$"@$bananaCost);
// the value of $bananaCost gets concatenated to the end
// of the "Cost of Bananas:" string. Then the
// full string gets echoed. same goes for the next 3 lines

echo("Cost of Apples(ea.):$"@$appleCost);
echo("Number of Bananas:"@$numBananas);
echo("Number of Apples:"@$numApples);

$numFruit=$numBananasþ$numApples; // add up the total number of fruits
$total = ($numBananas * $bananaCost) +

($numApples * $appleCost); // calculate the total cost
//(notice that statements can extend beyond a single line)

echo("Total amount of Fruit:"@$numFruit); // output the results
echo("Total Price of Fruit:$"@$total@"0");// add a zero to the end

// to make it look better on the screen
}

Save the program in the same way you did the Hello World program. Use a name

like Fruit.cs and run it to see the results. Note that the asterisk (‘‘�’’) is used as the
multiplication symbol and the plus sign (‘‘þ ’’) is used for addition. These

operators—as well as the parentheses used for evaluation precedence—are

discussed later in this chapter.

Arrays

When your Fruit program runs, a variable is accessed in expressions using the

identifier associated with that variable. At times you will need to use long lists of

values; there is a special kind of variable called an array that you can use for lists of

related values. The idea is to just use a single identifier for the whole list, with a

special mechanism to identify which specific value—or element—of the list you

want to access. Each value has numerical position within the array, and we call the

number used to specify the position the index of the array element in question.

Let us say you have a list of values and you want to get a total, like in the previous

example. If you are only using a few values (no more than two or three), then a

Programming Concepts 69

different identifier could be used for each variable, as we did in the Fruit

program.

However, if you have a large list—more than two or three values—your code will

start to get awkwardly large and hard to maintain. What we can do is use a loop

and iterate through the list of values, using the indices. We’ll get into loops in

detail later in this chapter. Following is a new version of the Fruit program that

deals with more types of fruit. There are some significant changes in how we

perform what is essentially the same operation. At first glance, it may seem to be

more unwieldy than the original Fruit program, but look again, especially in the

computation section.

// ==
// FruitLoopy.cs
//
// This program adds up the costs and quantities of selected fruit types
// and outputs the results to the display. This module is a variation
// of the Fruit.cs module
// ==

function runFruitLoopy()
// ——
// Entry point for the program.
// ——
{
//
// ——————————————— Initialization ———————————————————
//

%numFruitTypes = 5; // so we know how many types are in our arrays

%bananaIdx=0; // initialize the values of our index variables
%appleIdx=1;
%orangeIdx=2;
%mangoIdx=3;
%pearIdx=4;

%names[%bananaIdx] = "bananas"; // initialize the fruit name values
%names[%appleIdx] = "apples";
%names[%orangeIdx] = "oranges";
%names[%mangoIdx] = "mangos";
%names[%pearIdx] = "pears";

70 Chapter 2 n Introduction to Programming

%cost[%bananaIdx] = 1.15; // initialize the price values
%cost[%appleIdx] = 0.55;
%cost[%orangeIdx] = 0.55;
%cost[%mangoIdx] = 1.90;
%cost[%pearIdx] = 0.68;

%quantity[%bananaIdx] = 1; // initialize the quantity values
%quantity[%appleIdx] = 3;
%quantity[%orangeIdx] = 4;
%quantity[%mangoIdx] = 1;
%quantity[%pearIdx] = 2;

%numFruit=0; // always a good idea to initialize *all* variables!
%totalCost=0; // (even if we know we are going to change them later)

//
// ——————————————— Computation ———————————————————
//

// Display the known statistics of the fruit collection
for (%index = 0; %index < %numFruitTypes; %index++)
{
echo("Cost of " @ %names[%index] @ ":$" @ %cost[%index]);
echo("Number of " @ %names[%index] @ ":" @ %quantity[%index]);

}

// count up all the pieces of fruit, and display that result
for (%index = 0; %index <= %numFruitTypes; %index++)
{

%numFruit = %numFruit + %quantity[%index];
}
echo("Total pieces of Fruit:" @ %numFruit);

// now calculate the total cost
for (%index = 0; %index <= %numFruitTypes; %index++)
{
%totalCost = %totalCost + (%quantity[%index]*%cost[%index]);

}
echo("Total Price of Fruit:$" @ %totalCost);

}

Type this program in, save it as \3D2E\demo\FruitLoopy.cs, and then run it.

Programming Concepts 71

Of course, you will notice right away that I’ve used comments to organize the

code into two sections, initialization and computation. This was purely arbitrary.
But it is a good idea to label sections of code in this manner, to provide signposts,

as it were. You should also notice that all the variables in the program are local,

rather than global, in scope. This is more reasonable for a program of this nature,

where having everything contained in one function puts all variables in the same

scope.

Next you will see that I’ve actually created three arrays: name, cost, and quantity.

Each array has the same number of elements, by design. Also, I have assigned

appropriately named variables to carry the index values of each of the fruit types.

This way I don’t need to remember which fruit has which index when it comes

time to initialize them with their names, prices, and counts.

Then it is just a simple matter of looping through the list to perform the

operation I want.

Elegant, huh? But it could be better. See if you can find a way to reduce the

number of lines of code in the computation section even more, and write your

own version and try it out for yourself. I’ve written my own smaller version; you

can find it in the \3D2E\RESOURCES\CH2 folder, named ParedFruit.cs.

T i p

If you haven’t noticed, it’s time you did: when we deal with paths in Windows, we use the
backslash (‘‘\’’), as seen with C:\3D2E\demo. However, in TorqueScript (as in Linux and the
Macintosh OS), we use the forward slash (‘‘/’’) for the paths, as seen with demo/client/scripts.
You’ll run into a lot more of this later. Just keep this in mind if you are having path troubles.

For a further illuminating exercise, try this: rewrite FruitLoopy.cs to perform

exactly the same operations, but without using arrays at all. Go ahead—take

some time and give it a try. You can compare it with my version in the

\3D2E\RESOURCES\CH2 folder, named FermentedFruit.cs.

Now, the final exercise is purely up to you and your mind’s eye. Imagine that

you have 33 types of fruit instead of 5. Which program would you rather

modify—ParedFruit.cs or FermentedFruit.cs? Can you see the advantage of

arrays now?

Another thing to point out is that the initialization section of the code would

probably read in the values from a database or an external file with value tables in

it. It would use a loop to store all the initial values—the names, costs, and

quantities. Then the code would really be a lot smaller!

72 Chapter 2 n Introduction to Programming

To review, an array is a data structure that allows a collective name to be given to

a group of elements of the same type. An individual element of an array is

identified by its own unique index (or subscript).

An array can be thought of as a collection of numbered boxes, each containing

one data item. The number associated with the box is the index of the item. To

access a particular item, the index of the box associated with the item is used to

access the appropriate box. The index must be an integer and indicates the

position of the element in the array.

Strings

We’ve already encountered strings in our earlier example programs. In some

languages strings are a special type of array, like an array of single characters, and

can be treated as such. In Torque, strings are in essence the only form of variable.

Numbers and text are stored as strings. They are handled as either text or

numbers depending on which operators are being used on the variables.

As we’ve seen, two basic string operations are assignment and concatenation, as

illustrated here:

%myFirstName = "Ken";
%myFullName = %myFirstName @ " Finney";

In the first line, the string "Ken" is assigned to %myFirstName, then the string

"Finney" is concatenated (or appended) to %myFirstName, and the result is

assigned to %myFullName. Familiar stuff by now, right? Well, try this one on for

size:

%myAge = 30; // (actually it isn’t you know !)
%myAge = %myAge + 12; // getting warmer !

At this point, the value in %myAge is 42, the sum of 30 and 12. Now watch this trick:

%aboutMe = "My name is " @ %myFullName @ " and I am " @ %myAge @ " years old.";

I’m sure you can figure out what the value of the variable %aboutMe is. That’s

right, it’s one long string—‘‘My name is Ken Finney and I am 42 years old.’’—

with the number values embedded as text, not numbers. Of course, that isn’t my

age, but who’s counting?

What happened is that the Torque Engine figured out by the context what

operation you wanted to perform, and it converted the number to a string value

before it added it to the larger string.

Programming Concepts 73

Another form of string variable is called the tagged string. This is a special string

format used by Torque to reduce bandwidth utilization between the client and

the server. We’ll cover tagged strings in more detail in a later chapter.

Operators

Table 2.4 is a list of operators. You will find it handy to refer back to this table

from time to time.

74 Chapter 2 n Introduction to Programming

Table 2.4 TorqueScript Operators

Symbol Meaning

þ Add.

� Subtract.

* Multiply.

/ Divide.

% Modulus.

þþ Increment by 1.

-- Decrement by 1.

þ= Addition totalizer.

-= Subtraction totalizer.

*= Multiplication totalizer.

/= Division totalizer.

%= Modulus totalizer.

@ String append.

() Parentheses----operator precedence promotion.

[] Brackets----array index delimiters.

{ } Braces----indicate start and end of code blocks.

SPC Space append macro (same as @ ‘‘ ’’ @).

TAB Tab append macro (same as @ ‘‘\t’’ @).

NL Newline append (same as @ ‘‘\n’’ @).

~ (Bitwise NOT) Flips the bits of its operand.

| (Bitwise OR) Returns a 1 in a bit if either operand has a bit that is 1.

& (Bitwise AND) Returns a 1 in each bit position if bits of both operands are 1s.

^ (Bitwise XOR) Returns a 1 in a bit position if bits of one but not both operands are 1.

<< (Left-shift) Shifts its first operand in binary representation the number of bits to the
left specified in the second operand, shifting in 0s from the right.

>> (Sign-propagating right-shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding bits shifted
off.

Operators range from the familiar to the mighty weird. The familiar will be the

ones like add (‘‘þ ’’) and subtract (‘‘�’’). A little strange for those who are adept

with standard secondary school math but new to programming languages is the

multiplication symbol—an asterisk (‘‘�’’). The division symbol, though not the

regular handwritten one, is still a somewhat familiar slash (‘‘/’’). A mighty weird

operator would be the vertical pipe (‘‘|’’), which is used to perform an OR

operation on the bits of a variable.

Some of the operators are probably self-explanatory or understandable from the

table. Others may require some explanation, which you will find in the following

sections of this chapter.

You’ll recall that strings and numbers are treated the same; there is, however, one

exception, and that is when comparing strings to strings or numbers to numbers.

We use different operators for those comparisons. For number comparisons, we

use == (that’s not a typo—it’s two equal signs in a row; read it as ‘‘is identical

to’’), and for string comparisons, we use $= (read it as ‘‘string is identical to’’).

These operators will be discussed more in the sections called ‘‘Conditional

Expressions’’ and ‘‘Branching.’’

Programming Concepts 75

Symbol Meaning

|= Bitwise OR with result assigned to the first operand.

&= Bitwise AND with result assigned to the first operand.

^= Bitwise XOR with result assigned to the first operand.

<<= Left-shift with result assigned to the first operand.

>>= Sign-propagating right-shift with result assigned to the first operand.

! Evaluates the opposite of the value specified.

&& Requires both values to be true for the result to be true.

|| Requires only one value to be true for the result to be true.

== Left-hand value and right-hand value are equal.

!= Left-hand value and right-hand value are not equal.

< Left-hand value is less than right-hand value.

> Left-hand value is greater than right-hand value.

<= Left-hand value is less than or equal to right-hand value.

>= Left-hand value is greater than or equal to right-hand value.

$= Left-hand string is equal to right-hand string.

!$= Left-hand string is not equal to right-hand string.

// Comment operator----ignore all text from here to the end of the line.

; Statement terminator.

. Object/datablock method or property delimiter.

Operator Precedence

An issue with evaluating expressions is that of order of evaluation. Should %a + %b
� %c be evaluated by performing the multiplication first or by performing the

addition first? In other words, as %a + (%b � %c) or as (%a + %b) � %c?

Torque and other languages (such as C/C++) solve this problem by assigning

priorities to operators; operators with high priority are evaluated before

operators with low priority. Operators with equal priority are evaluated in left-

to-right order. The priorities of the operators seen so far are, in order of high to

low priority, as follows:

()
* / %
+ �
=

Therefore, %a + %b � %c is evaluated as if it had been written as %a + (%b � %c)

because multiplication (�) has a higher priority than addition (+). If the +

needed to be evaluated first, then parentheses would be used as follows: (%a +

%b) � %c.

If you have any doubt, then use extra parentheses to ensure the correct order of

evaluation. Note that two arithmetic operators cannot be written in succession.

Increment/Decrement Operators

There are some operations that occur so frequently in assignment statements that

Torque has shorthand methods for writing them. One common situation is that

of incrementing or decrementing an integer variable. For example,

%n = %n + 1; // increment by one
%n = %n - 1; // decrement by one

Torque has an increment operator (++) and a decrement operator (--). Thus

%n++;

can be used for the increment and

%n—;

can be used for the decrement.

The ++ and -- operators here have been written after the variable they affect; they

are called the postincrement and postdecrement operators, respectively. Torque

76 Chapter 2 n Introduction to Programming

does not have preincrement and predecrement operators (which are written

before the variable), as you would find in C/C++.

Totalizers

Totalizers are a variation on the increment and decrement theme. Instead of

bumping a value up or down by 1, a totalizer does it with any arbitrary value. For

example, a common situation that occurs is an assignment like this:

%total = %total + %more;

where a variable is increased by some amount and the result is assigned back to

the original variable. This type of assignment can be represented in Torque by the

following:

%total+= %more;

This notation can be used with the other arithmetic operators (+, -, �, /, and %),

as you can see in the following:

%prod = %prod * 10;

which can be written as this:

%prod *= 10;

You can use totalizers in compound assignment statements quite easily as well.

Here’s an example:

%x = %x/(%y + 1);

becomes

%x /= %y + 1;

and

%n = %n % 2;

becomes

%n %= 2;

Be careful on that last one! The percent sign in front of the number 2 is themodulus

operator, not a scope prefix. You can tell by the space that separates it from the 2—

or in the case of the totalizer example, you can tell by the fact that the percent sign is

adjacent to the equal sign on the right. They are certainly subtle differences, somake

sure you watch for them if you work in code that uses these constructs.

Programming Concepts 77

In all cases, you must be performing these operations on numbers and not

strings. That wouldn’t make any sense!

Loops

Loops are used for repetitive tasks. We saw an example of a loop being used in the

FruitLoopy sample program. This loop was used to step through the available

types of fruit. The loop was a bounded one that had a specified start and end, a

characteristic built into the loop construct we used, the for loop. The other kind

of loop we are going to look at is the while loop.

The while Loop

The following piece of TorqueScript demonstrates a while loop. It gets a

random number between 0 and 10 from the Torque Engine and then prints it

out.

// ==
// WhilingAway.cs
//
// This module is a program that demonstrates while loops. It prints
// random values on the screen as long as a condition is satisfied.
//
// ==

function runWhilingAway()
// ——
// Entry point for the program.
// ——
{

%value = 0; // initialize %value
while (%value < 7) // stop looping if %n exceeds 7
{
%value = GetRandom(10); // get a random number between 0 and 10
echo("value="@%value); // print the result

} // now back to the top of the loop
// ie. do it all again

}

Save this program as \3D2E\demo\WhilingAway.cs and run it. Note the output.

Now run it again. Note the output again—and the fact that this time it’s

different. That’s the randomness in action, right there. But the part that we are

78 Chapter 2 n Introduction to Programming

really interested in right now is the fact that as long as the number is less than 7,

the program continues to loop.

The general form of a while statement is this:

while (condition)
statement

While the condition is true the statement is executed over and over. Each time

the condition is satisfied and the statement executed is called an iteration. The
statement may be a single statement (terminated by a semicolon) or code block

(delimited by braces) when you want two or more statements to be executed.

Note the following points. It must be possible to evaluate the condition on the

first entry to the while statement or it will never be satisfied, and its code will

never be executed. This means that all variables used in the condition must have

been given values before the while statement is encountered. In the preceding

example the variable %value was started at 0 (it was initialized) and it was given a

random number between 0 and 10 during each iteration of the loop.

Now you have to make sure that at least one of the variables referenced in the

condition can be changed in the statement portion that makes up the body of the

loop. If you don’t, you could end up stuck in an infinite loop. In the preceding

example by making sure that the randomly chosen %value would always even-
tually cause the condition to fail (10 is greater than 7) we ensure that the loop

will stop at some point. In fact, the random number code will return 7, 8, 9, and

10 at some point or other—any one of which will cause the code to break out of

the loop.

Here is the important thing about while loops. The condition is evaluated before
the loop body statements are executed. If the condition evaluates to falsewhen it

is first encountered, then the body is never entered. In the preceding example if

we had initialized %valuewith 10, then no execution of the statements in the body

of the while loop would have happened.

And now here’s a little exercise for you. Write a program, saving it as

\3D2E\demo\LoopPrint.cs. Make the program print all the integers starting at 0

up to and including 250. That’s a lot of numbers! Use a while loop to do it.

The for Loop

When programming, we often need to execute a statement a specific number of

times. Consider the following use of a while statement to output the numbers

Programming Concepts 79

1 to 10. In this case the integer variable count is used to control the number of

times the loop is executed.

%count = 1;
while (%count <= 10)
{
echo("count="@%count);
%count++;

}

Three distinct operations take place:

n Initialization. Initializes the control variable %count to 1.

n Evaluation. Evaluates the value of an expression (%count <= 10).

n Update. Updates the value of the control variable before executing the loop

again (%count++).

The for statement is specially designed for these cases—where a loop is to be

executed starting from an initial value and iterates until a control condition is

satisfied, meanwhile updating the value of the control variable each time around

the loop. It has all three operations rolled up into its principal statement syntax.

It’s sort of the Swiss army knife of loop statements.

The general form of the for statement is

for (initialize; evaluate; update)
statement

which executes the initialize operation when the for statement is first entered.

The evaluate operation is then performed on the test expression; if it evaluates to

true, then the loop statement is executed for one iteration followed by the update

operation. The cycle of test, iterate, update continues until the test expression

evaluates to false; control then passes to the next statement in the program.

Functions

Functions save work. Once you’ve written code to solve a problem, you can roll

the code into a function and reuse it whenever you encounter that problem

again. You can create functions in a manner that allows you to use the code with

different starting parameters and either create some effect or return a value to the

code that uses the function.

80 Chapter 2 n Introduction to Programming

When solving large problems we often use a divide-and-conquer technique,

sometimes called problem decomposition. We break a big problem down into

smaller problems that are easier to solve. This is often called the top-down
approach. We keep doing this until problems become small enough that a single

person can solve them. This top-down approach is essential if the work has to be

shared among a team of programmers; each programmer ends up with a spe-

cification for a small part of the bigger system that is to be written as a function

(or a collection of functions). The programmer can concentrate on the solution

of only this one problem and is likely to make fewer errors. The function can then

be tested on its own for correctness compared to the design specification.

There are many specialized problem areas, and not every programmer can be

proficient in all of them. Many programmers working in scientific applications

will frequently use math function routines like sine and cosine but would have no

idea how to write the code to actually perform those operations. Likewise, a

programmer working in commercial applications might know little about how

an efficient sorting routine can be written. A specialist can create such routines

and place them in a public library of functions, however, and all programmers

can benefit from this expertise by being able to use these efficient and well-tested

functions.

In the ‘‘Arrays’’ section earlier in this chapter we calculated a total price and total

count of several types of fruit with the FruitLoopy program. Here is that program

modified somewhat (okay, modified a lot) to use functions. Take note of how

small the entry point function—called runTwotyFruity—has become now that

so much code is contained within the three new functions.

// ==
// TwotyFruity.cs
//
// This program adds up the costs and quantities of selected fruit types
// and outputs the results to the display. This module is a variation
// of the FruitLoopy.cs module designed to demonstrate how to use
// functions.
// ==

function InitializeFruit()
// ——
// Set the starting values for our fruit arrays, and the type
// indices
//

Programming Concepts 81

// RETURNS: number of different types of fruit
//
// ——
{

%numTypes = 5; // so we know how many types are in our arrays
$bananaIdx=0; // initialize the values of our index variables
$appleIdx=1;
$orangeIdx=2;
$mangoIdx=3;
$pearIdx=4;

$names[$bananaIdx] = "bananas"; // initialize the fruit name values
$names[$appleIdx] = "apples";
$names[$orangeIdx] = "oranges";
$names[$mangoIdx] = "mangos";
$names[$pearIdx] = "pears";

$cost[$bananaIdx] = 1.15; // initialize the price values
$cost[$appleIdx] = 0.55;
$cost[$orangeIdx] = 0.55;
$cost[$mangoIdx] = 1.90;
$cost[$pearIdx] = 0.68;

$quantity[$bananaIdx] = 1; // initialize the quantity values
$quantity[$appleIdx] = 3;
$quantity[$orangeIdx] = 4;
$quantity[$mangoIdx] = 1;
$quantity[$pearIdx] = 2;

return(%numTypes);
}

function addEmUp(%numFruitTypes)
// ——
// Add all prices of different fruit types to get a full total cost
//
//PARAMETERS: %numFruitTypes -the number of different fruit that are tracked
//
// RETURNS: total cost of all fruit
//
// ——
{
%total = 0;

82 Chapter 2 n Introduction to Programming

for (%index = 0; %index <= %numFruitTypes; %index++)
{

%total = %total + ($quantity[%index]*$cost[%index]);
}
return %total;

}

// ——
// countEm
//
// Add all quantities of different fruit types to get a full total
//
//PARAMETERS: %numFruitTypes –the number of different fruit that are tracked
//
// RETURNS: total of all fruit types
//
// ——
function countEm(%numFruitTypes)
{
%total = 0;
for (%index = 0; %index <= %numFruitTypes; %index++)
{

%total = %total + $quantity[%index];
}
return %total;

}

function runTwotyFruity()
// ——
// Entry point for program. This program adds up the costs
// and quantities of selected fruit types and outputs the results to
// the display. This program is a variation of the program FruitLoopy
//
// ——
{
//
// ——————————————— Initialization ———————————————————
//

%numFruitTypes=InitializeFruit(); // set up fruit arrays and variables
%numFruit=0; // always a good idea to initialize *all* variables!
%totalCost=0; // (even if we know we are going to change them later)

Programming Concepts 83

//
// ——————————————— Computation ———————————————————
//

// Display the known statistics of the fruit collection
for (%index = 0; %index < %numFruitTypes; %index++)
{
echo("Cost of " @ $names[%index] @ ":$" @ $cost[%index]);
echo("Number of " @ $names[%index] @ ":" @ $quantity[%index]);
}

// count up all the pieces of fruit, and display that result
%numFruit = countEm(%numFruitTypes);
echo("Total pieces of Fruit:" @ %numFruit);

// now calculate the total cost
%totalCost = addEmUp(%numFruitTypes);
echo("Total Price of Fruit:$" @ %totalCost);

}

Save this program as \3D2E\demo\TwotyFruity.cs and run it in the usual way.

Now go and run your FruitLoopy program, and compare the output. Hopefully,

they will be exactly the same.

In this version all the array initialization has been moved out of the runFruitLoopy

function and into the new InitializeFruit function. Now, youmight notice that I

have changed the arrays to be global variables. The reason for this is that Torque

does not handle passing arrays to functions in a graceful manner. Well, actually it

does, but we would need to use ScriptObjects, which are not covered until a later

chapter, so rather than obfuscate things too much right now, I’ve made the arrays

into global variables. This will serve as a useful lesson in contrast between global

and local variables anyway, so I thought, why not?

The global arrays can be accessed from within any function in the file. The local ones

(with the percent sign prefix), however, can only be accessedwithin a function. This is

more obvious when you look at the addEmUp and countEm functions. Notice that they

both use a variable called %total. But they are actually two different variables whose

scopedoesnotextendoutside the functionswhere theyareused.Sodon’tgetmixedup!

Speaking of addEmUp and countEm, these functions have another construct, called

a parameter. Sometimes we use the word argument instead, but because we are all

friends here, I’ll stick with parameter.

84 Chapter 2 n Introduction to Programming

Functions with No Parameters

The function main has no parameters, so you can see that parameters are not

always required. Because the arrays are global, they can be accessed from

within any function, so we don’t need to try to pass in the data for them

anyway.

Functions with Parameters and No Return Value

Parameters are used to pass information into a function, as witnessed with the

functions addEmUp and countEm. In both cases we pass a parameter that tells

the function how many types of fruit there are to deal with.

The function declaration looked like this:

function addEmUp(%numFruitTypes)

and when we actually used the function we did this:

%totalCost = addEmUp(%numFruitTypes);

where %numFruitTypes indicates how many types of fruit there are—in this case,

five. This is known as a call to the function addEmUp. We could have written it as

%totalCost = addEmUp(5);

but then we would have lost the flexibility of using the variable to hold the value

for the number of fruit types.

This activity is called parameter passing. When a parameter is passed during a

function call, the value passed into the function is assigned to the variable that is

specified in the function declaration. The effect is something like %numTypes =

%numFruitTypes; now this code doesn’t actually exist anywhere, but operations

are performed that have that effect. Thus, %numTypes (inside the function)

receives the value of %numFruitTypes (outside the function).

T i p

Parameters are also called arguments.

Functions That Return Values

The function InitializeFruit returns a number for the number of different fruit

types with this line:

return(%numTypes);

Programming Concepts 85

and the functions addEmUp and countEm both have this line:

return %total;

Notice that the first example has the variable sitting inside some parentheses, and

the second example does not. Either way is valid.

Now what happens is that when Torque encounters a return statement in a

program, it gathers up the value in the return statement and then exits the

function and resumes execution at the code where the function was called. There

isn’t always a return statement in a function, so don’t be annoyed if you see

functions without them. In the case of the InitializeFruit function, that would

have been the line near the start of runTwotyFruity that looks like this:

%numFruitTypes=InitializeFruit(); // set up fruit arrays and variables

If the function call was part of an assignment statement, as above, then whatever

value was gathered at the return statement inside the function call is now

assigned in the assignment statement. Another way of expressing this concept is

to say that the function evaluated to the value of the return statement inside the

function.

Return statements don’t need to evaluate to anything, however. They can be used to

simply stop execution of the function and return control to the calling program code

with a return value. Both numbers and strings can be returned from a function.

Conditional Expressions

A conditional or logical expression is an expression that can only evaluate to one

of two values: true or false. A simple form of logical expression is the condi-

tional expression, which uses relational operators to construct a statement about

a given condition. The following is an example of a conditional expression:

%x < %y

This reads as %x is less than %y, which evaluates to true if the value of the variable

%x is less than the value of the variable %y. The general form of a conditional

expression is

operandA relational_operator operandB

The operands can be either variables or expressions. If an operand is an

expression, then the expression is evaluated and its value is used as the operand.

The relational operators allowable in Torque are shown in Table 2.5.

86 Chapter 2 n Introduction to Programming

No t e

Another name for logic that involves only the values true or false is Boolean logic.

Note that equality is tested for using the operator == because = is already used for

assigning values to variables. The condition evaluates to true if the values of the

two operands satisfy the relational operator and false if they don’t.

Here are some examples:

%i < 10
%voltage >= 0.0
%total < 1000.0
%count != %n
%x * %x + %y * %y < %r * %r

Depending on the values of the variables involved, each of the preceding

expressions is true or false. If %x has the value 3, %y is 6, and %r is 10, the last

expression evaluates to true, but if %x was 7 and %y was 8, then it would evaluate

to false.

The value of a logical expression can be stored in a variable for later use. Any

numerical expression can be used for the value of a condition, with 0 being

interpreted as false and 1 as true.

This means that the value a logical expression evaluates to can be used in

arithmetical operations. This is often done by programmers, but it is a practice

not to be recommended. It can lead to code obscurity, creating a program that is

difficult to understand.

Programming Concepts 87

Table 2.5 Relational Operators

Symbol Meaning

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to

!= not equal to

$= string equal to

!$= string not equal to

Logical Expressions

We can create more complex conditions than those that can be written using

only the relational operators described in the preceding section. There are

explicit logical operators for combining the logical values true and false.

The simplest logical operator is NOT, which is represented in Torque by the

exclamation point (‘‘!’’). It operates on a single operand and returns false if its

operand is true and true if its operand is false.

The operator AND, represented by two ampersands (‘‘&&’’), takes two operands

and is true only if both of the operands are true. If either operand is false, the

resulting value is false.

The final logical operator is OR, which is represented by two vertical pipes (‘‘||’’).
It results in true if either operand is true. It returns false only if both its

operands are false.

The logical operators can be defined by truth tables as seen in Table 2.6. The ‘‘F’’

character is used for false and ‘‘T’’ is used for true in these tables.

88 Chapter 2 n Introduction to Programming

Table 2.6 Logical Operator Truth Tables

NOT (!)
A !A
F T

T F

OR (||)
A B A OR B
T T T

T F T

F T T

F F F

AND (&&)
A B A AND B
T T T

T F F

F T F

F F F

These tables show that NOT reverses the truth value of the operand A; that the

AND of two operands is only true if both operands are true; and that the OR of

two operands is true if either or both of its operands are true. Now we can write

pretty complex logical operations.

If %i has the value 15, and %j has the value 10, then the expression (i > 10) && (j > 0)

is evaluated by evaluating the relation i > 10 (which is true), then evaluating the

relation %j > 0 (which is also true), to give true. If %j has the value �1, then the

second relation would be false, so the overall expression would be false. If i has

the value 5, then the first relation would be false, and the expression will be false

irrespective of the value of the second relation. Torque does not even evaluate the

second relation in this situation. Similarly, if the first relation is true in an OR (||)

expression, then the second relation will not be evaluated. This short-circuit

evaluation enables many logical expressions to be efficiently evaluated.

Examples Using Logical Operators

Note that in the last of the examples that follow, an actual truth value (0 or false)

was used as one of the operands of &&. This means that whatever the value of %i,

this logical expression evaluates to false. In these examples parentheses have

been used to clarify the order of operator application.

(%i < 10) && (%j > 0)
((%x + %y) <= 15) || (%i == 5)
!((%i >= 10) || (%j <= 0))
(%i < 10) && 0

You’ve got to be careful not to confuse the assignment operator = with the logical

equality operator ==.

Using Table 2.6 with the following expression

x + y < 10 && x/y == 3 || z != 10

shows that the operators are evaluated in the order /, +, <, ==, !=, &&, and ||. This

is the same as using parentheses on the expression in this way: ((((x + y) < 10) &&

((x/y) == 3)) || (z!= 10)).

Similarly, the expressions given above could be written without parentheses as

follows:

i < 10 && j > 0
x + y <= 15 || i == 5

Programming Concepts 89

!(i >= 10 || j <= 0)
i < 10 && 0

Now that we’ve covered the logical expressions (or conditions) in Torque, let’s

move on and take a look at the conditional control mechanisms in Torque.

Branching

The term branching refers to the idea that code can follow different execution paths

depending on, well, something. What it depends on . . . ummm . . . depends. Well,

let me try that again. It depends on what your program is doing and what you want

it to do. Like this: say you are driving on a road, and you reach a T junction. The sign

points left and says ‘‘Toronto 50 km.’’ Another sign points right and says ‘‘Toronto

(Scenic Route) 150 km.’’Whichway are you going to go, left or right?Well, you see?

It depends. The fastest way to Torontomight be to go left, but what if you aren’t in a

hurry—maybe you’re interested in the scenic route? Just as we saw earlier with

looping, there are conditions that will dictate what path your code will take.

That act of taking one path over others available is branching. Branching starts

out with some sort of decision-making test. In addition to the two looping

statements we’ve already covered—which employ branching of sorts—there are

also two branch-specific statements: the if statement and the switch statement.

The if Statement

The simplest way to select the next thing to do in a program based upon con-

ditions is to use the if statement. Check this out:

if (%n > 0)
echo("n is a positive number");

This will print out the message ‘‘n is a positive number’’ only if %n is positive. The

general form of the if statement is this:

if (condition)
statement

where condition is any valid logical expression as described in the ‘‘Conditional

Expressions’’ section we saw earlier.

This if statement adds % something to the variable %sum if % something is positive:

if (%something > 0)
%sum += %something;

90 Chapter 2 n Introduction to Programming

If %something isn’t positive, then the program branches past the totalizer

statement, and so %sum doesn’t get incremented by %something.

This next piece of code similarly adds %something to %sum, but it also increments a

positive number counter called %counter:

if (%something > 0)
{
%sum += %something;
%counter++;

}

Note how in the second example a compound statement has been used to carry

out more than one operation if the condition is true. If it had been written like

this:

if (%something > 0)
%sum += %something;
%counter++;

then if %something was greater than 0, the next statement would be executed—

that is, %sum would be incremented by the amount of %something. But the

statement incrementing %counter is now going to be treated as the next statement

in the program and not as part of the if statement. The program execution is not

going to branch around it. The effect of this would be that %counter would be

incremented every time it is encountered, no matter whether %something is

positive or negative.

The statements within a compound statement can be any Torque statements. In

fact, another if statement could be included. For example, the following code

will print a message if a quantity is negative and a further message if no overdraft

has been arranged:

if (%balance < 0)
{
echo ("Your account is overdrawn. Balance is: " @ %balance);
if (%overdraft <= 0)

echo ("You have exceeded your overdraft limit");
}

Now we could have done the same thing using two sequential if statements and

more complex conditions:

if (%balance < 0)
echo ("Your account is overdrawn. Balance is: " @ %balance);

Programming Concepts 91

if (%balance < 0 && %overdraft <= 0)
echo ("You have exceeded your overdraft limit");

You should note that one of these versions will generally execute a little bit faster

than the second when dealing with accounts that are not overdrawn. Before I tell

you later in this chapter, see if you can figure out which one, and why.

The if-else Statement

A simple if statement only allows a single branch to a simple or compound

statement when a condition holds. Sometimes there are alternative paths,

some that need to be executed when the condition holds, and some to be

executed when the condition does not hold. The two forms can be written this

way:

if (%coffeeholic == true)
echo ("I like coffee.");

if (%coffeeholic == false)
echo ("I don’t like coffee.");

This technique will work while the statements that are executed as a result of

the first comparison do not alter the conditions under which the second if

statement are executed. Torque provides a direct means of expressing these

kinds of choices. The if-else statement specifies statements to be executed

for both possible logical values of the condition in an if statement. The

following example of an if-else statement writes out one message if the

variable %coffeeholic is positive and another message if %coffeeholic is

negative:

if (%coffeeholic == true)
echo ("I like coffee.");

else
echo ("I don’t like coffee.");

The general form of the if-else statement is this:

if (condition)
statementA

else
statementB

If the condition is true, then statementA is executed; otherwise, statementB is

executed. Both statementA and statementB may be either simple or compound

statements.

92 Chapter 2 n Introduction to Programming

The following if-else statement evaluates if a fruit is fresh or not, and if it is, the

statement increments a fresh fruit counter. If the fruit isn’t fresh, the statement

increments the rotten fruit counter. I’m going to program my refrigerator’s fruit

crisper to do this one day and send me reports over the Internet. Well, I can wish,

can’t I?

if (%fruitState $= "fresh")
{

%freshFruitCounter++;
}
else
{

%rottenFruitCounter++;
}

Time for another sample program! Type the following program in, and save it as

\3D2E\demo\Geometry.cs and then run it.

// ==
// Geometry.cs
//
// This program calculates the distance around the perimeter of
// a quadrilateral as well as the area of the quadrilateral and outputs the
// values.It computes whether the quadrilateral is a square or a rectangle and
// modifies its output accordingly. Program assumes that all angles in the
// quadrilateral are equal. Demonstrates the if-else statement.
// ==

function calcAndPrint(%theWidth, %theHeight)
// ——
// This function does the shape analysis and prints the result.
//
// PARAMETERS: %theWidth - horizontal dimension
// %theHeight - vertical dimension
//
// RETURNS: none
// ——
{
// calculate perimeter
%perimeter = 2 * (%theWidth+%theHeight);

// calculate area
%area = %theWidth * %theHeight;

Programming Concepts 93

// first, set up the dimension output string
%prompt = "For a " @ %theWidth @ " by " @

%theHeight @ " quadrilateral, area and perimeter of ";

// analyze the shape’s dimensions and select different
// descriptors based on the shape’s dimensions
if (%theWidth == %theHeight) // if true, then it’s a square
%prompt = %prompt @ "square: ";

else // otherwise it’s a rectangle
%prompt = %prompt @ "rectangle: ";

// always output the analysis
echo (%prompt @ %area @ " " @ %perimeter);

}

function runGeometry()
// ——
// Entry point for the program.
// ——
{

// calculate and output the results for three
// known dimension sets
calcAndPrint(22, 26); // rectangle
calcAndPrint(31, 31); // square
calcAndPrint(47, 98); // rectangle

}

What we’ve done here is analyze a shape. In addition to printing its

calculated measurements, we modify our output string based upon the

(simple) analysis that determines if it is a square or a rectangle. I realize

that a square is a rectangle, but let’s not get too picky, okay? Not yet, at

least.

Nesting if Statements

You saw earlier in ‘‘The if Statement’’ section how an if statement can contain

another if statement. These are called nested if statements. There is no real limit

to how deep you can nest the statements, but try to be reasonable and only do it if

it is absolutely necessary for functional reasons. It might be good to do it for

performance reasons, and that’s fine as well.

94 Chapter 2 n Introduction to Programming

By the way, I had asked if you could tell which of the two examples would execute

faster, remember that? The answer is that the nested version will execute faster

when there is no overdraft condition. This is because only one condition is tested,

resulting in less work for the computer to do. The sequential version will always

perform both tests, no matter what the bank balance is.

The if and if-else statements allow a choice to be made between two possible

alternatives. Well, sometimes we need to choose between more than two alter-

natives. For example, the following sign function returns �1 if the argument is

less than 0, returns þ1 if the argument is greater than 0, and returns 0 if the

argument is 0.

function sign (%value)
// determines the arithmetic sign of a value
//
// PARAMETERS: %value - the value to be analyzed
//
// RETURNS: -1 - if value is negative
// 0 - if value is zero
// 1 - if value is positive
{
if (%value < 0) // is it negative ?
{
return -1;

}
else // nope, not negative
{
if (%value == 0) // is it zero ?
{
return 0;

}
else // nope, then it must be positive
{
return 1;

}
}

}

So there you go. The function has an if-else statement in which the statement

following the else is also an if-else statement. If %value is less than 0, then sign

returns �1, but if it is not less than 0, the statement following the else is

executed. In that case if %value is equal to 0, then sign returns 0; otherwise, it

Programming Concepts 95

returns 1. I used the compound statement form in order to make the nesting

stand out more. The nesting could also be written like this:

if (%value < 0) // is it negative ?
return -1;

else // nope, not negative
if (%value == 0) // is it zero ?
return 0;

else // nope, then it must be positive
return 1;

This is nice and compact, but it can sometimes be hard to discern where the

nesting properly happens, and it is easier to make mistakes. Using the com-

pound form formalizes the nesting a bit more, and personally, I find it more

readable.

Newbie programmers sometimes use a sequence of if statements rather than

nested if-else statements when the latter should be used. They would write the

guts of the sign function like this:

if (%value < 0)
%result = -1;

if (%value == 0)
%result = 0;

if (%value > 0)
%result = 1;
return %result;

It would work and it’s fairly easy to read, but it’s inefficient because all three

conditions are always tested.

If nesting is carried out to too deep a level and indenting is not consistent,

then deeply nested if or if-else statements will be confusing to read and

interpret. You should note that an else always belongs to the closest if

without an else.

The switch Statement

We just explored how we can choose between more than two possibilities by

using nested if-else statements. There is a sleeker and more readable method

available for certain kinds of multiple-choice situations—the switch statement.

For example, the following switch statement will set a game’s weapon label based

upon a numeric weapon type variable:

96 Chapter 2 n Introduction to Programming

switch (%weaponType)
{

case 1: %weaponName = "knife";
case 2: %weaponName = "pistol";
case 3: %weaponName = "shotgun";
case 4: %weaponName = "bfg1000";
default: %weaponName = "fist";

}

Here is what that would look like using if-else:

if (%weaponType == 1)
%weaponName = "knife";

else if (%weaponType == 2)
%weaponName = "pistol";

else if (%weaponType == 3)
%weaponName = "shotgun";

else if (%weaponType == 4)
%weaponName = "bfg1000";

else
%weaponName = "fist";

It’s pretty obvious from that simple example why the switch statement is so

useful.

The general form of a switch statement is this:

switch (selection-variable)
{

case label1:
statement1;

case label2:
statement2;

...
case labeln:

statementn;
default:

statementd;
}

The selection-variable may be a number or a string or an expression that eval-

uates to a number or a string. The selection-variable is evaluated and compared

with each of the case labels. The case labels all have to be different. If a match

is found between the selection-variable and one of the case labels, then the

statements that follow the matched case until the next case statement will be

Programming Concepts 97

executed. If the value of the selection-variable can’t be matched with any of

the case labels, then the statements associated with default are executed. The

default is not required but should only be left out if it is certain that

the selection-variable will always take the value of one of the case labels.

Here is another example, which writes out the day of the week depending on the

value of the number variable %day.

switch (%day)
{

case 1 :
echo("Sunday");

case 2 :
echo("Monday");

case 3 :
echo("Tuesday");

case 4 :
echo("Wednesday");

case 5 :
echo("Thursday");

case 6 :
echo("Friday");

case 7 :
echo("Saturday");

default :
echo("Not a valid day number");

}

Debugging and Problem Solving

When you run your programs, the Torque Engine will automatically compile

them and output a new .cs.dso file if it needs to. Therefore, Geometry.cs (the

source code) will become Geometry.cs.dso (the compiled code). There is a

gotcha though. If the script compiler detects an error in your code, it will abort

the compilation but will not stop the program execution—rather, it will use

the existing compiled version if one exists. This is an important point to

remember. If you are changing your code, yet you don’t see any change in

behavior, then you should check the log file in console.log and look for any

compile errors.

The log output is pretty verbose and should guide you to the problem area pretty

quickly. It writes out a piece of code around the problem area and then inserts a

98 Chapter 2 n Introduction to Programming

pair of sharp characters (‘‘##’’) on either side of the exact spot where the compiler

thinks there is a problem.

Once you’ve fixed the first problem, don’t assume you are done. Quite often,

once one problem is fixed, the compiler marches on through the code and finds

another problem. The compiler always aborts as soon as it encounters the first

problem.

Of the large number of programming errors that the compiler catches and

identifies, here are a few specific ones that frequently crop up:

n Missing semicolon at the end of a statement

n Missing a slash in double-slash comment operator

n Missing % or $ (scope prefix) from variable names

n Using uninitialized variables

n Mixing global and local scope prefixes

n Unbalanced parentheses or braces

In a later chapter we will cover how to use the console mode in Torque. That will

give us access to three built-in Torque functions—echo, warn, and error—which

are quite useful for debugging.

Without using those three functions, the best tool for debugging programs you’ve

created is the echo statement. You should print out interim results through-

out your code that will tell you how your program is progressing.

Tell you what—here is a different version of the TwotyFruity program. Type it

in, and save it as \3D2E\demo\WormyFruit.cs. I’ve put five bugs in this ver-

sion. See if you can spot them (in addition to any you might introduce while

typing).

// ==
// WormyFruit.cs
//
// Buggy version of TwotyFruity. It has five known bugs in it.
// This program adds up the costs and quantities of selected fruit types
// and outputs the results to the display. This module is a variation
// of the FruitLoopy.cs module designed to demonstrate how to use
// functions.
// ==

Programming Concepts 99

function InitializeFruit()
// ——
// Set the starting values for our fruit arrays, and the type
// indices
//
// RETURNS: number of different types of fruit
//
// ——
{

numTypes = 5; // so we know how many types are in our arrays
$bananaIdx=0; // initialize the values of our index variables
$appleIdx=1;
$orangeIdx=2;
$mangoIdx=3;
$pearIdx=3;

$names[$bananaIdx] = "bananas"; // initialize the fruit name values
$names[$appleIdx] = "apples";
$names[$orangeIdx] = "oranges";
$names[$mangoIdx] = "mangos";
$names[$pearIdx] = "pears";

$cost[$bananaIdx] = 1.15; // initialize the price values
$cost[$appleIdx] = 0.55;
$cost[$orangeIdx] = 0.55;
$cost[$mangoIdx] = 1.90;
$cost[$pearIdx] = 0.68;

$quantity[$bananaIdx] = 1; // initialize the quantity values
$quantity[$appleIdx] = 3;
$quantity[$orangeIdx] = 4;
$quantity[$mangoIdx] = 1;
$quantity[$pearIdx] = 2;

return(%numTypes);
}

function addEmUp(%numFruitTypes)
// ——
// Add all prices of different fruit types to get a full total cost
//
//PARAMETERS: %numFruitTypes -the number of different fruit that are tracked
//

100 Chapter 2 n Introduction to Programming

// RETURNS: total cost of all fruit
//
// ——
{
%total = 0;
for (%index = 0; %index <= $numFruitTypes; %index++)
{
%total = %total + ($quantity[%index]*$cost[%index]);

}
return $total;

}

// ——
// countEm
//
// Add all quantities of different fruit types to get a full total
//
//PARAMETERS: %numFruitTypes -the number of different fruit that are tracked
//
// RETURNS: total of all fruit types
//
// ——
function countEm(%numFruitTypes)
{
%total = 0;
for (%index = 0; %index <= $numFruitTypes; %index++)
{
%total = %total + $quantity[%index];

}
}

function runWormyFruit()
// ——
// Entry point for program. This program adds up the costs
// and quantities of selected fruit types and outputs the results to
// the display. This program is a variation of the program FruitLoopy
//
// ——
{
//
// ——————————————— Initialization ———————————————————
//

Programming Concepts 101

%numFruitTypes=InitializeFruit(); // set up fruit arrays and variables
%numFruit=0 // always a good idea to initialize *all* variables!
%totalCost=0; // (even if we know we are going to change them later)

//
// ——————————————— Computation ———————————————————
//

// Display the known statistics of the fruit collection
for (%index = 0; %index < %numFruitTypes; %index++)
{
echo("Cost of " @ $names[%index] @ ":$" @ $cost[%index]);
echo("Number of " @ $names[%index] @ ":" @ $quantity[%index]);
}

// count up all the pieces of fruit, and display that result
%numFruits = countEm(%numFruitTypes));
echo("Total pieces of Fruit:" @ %numFruit);

// now calculate the total cost
%totalCost = addEmUp(%numFruitTypes);
echo("Total Price of Fruit:$" @ %totalCost);

}

Run the program, and use the original TwotyFruity output as a specification to

tell you whether or not this program is working correctly.

Best Practices

Programming is asmuch an art as it is anything else. There are often quite strenuous

discussions between programmers about the best way to do certain things. How-

ever, there is consensus on a few practices that are considered to be good.

So take the following list as a guideline, and develop a style that is comfortable

for you.

n Use module and function header comments to document your code.

n Sprinkle lots of commentary through your code, and make sure that it

actually explains what is happening.

n Don’t comment obvious things. Save the effort for the stuff that matters.

n Use white space (blank lines and spaces) to improve readability.

102 Chapter 2 n Introduction to Programming

n Indent your code with readability in mind.

n Decompose large problems into small ones, and assault the small problems

with functions.

n Organize your code into separate modules, and make sure the module file

name is appropriate for the content, and vice versa.

n Restrict the number of lines of code you put in a module. Pick a size that

suits you—about 1,000 lines should be near your upper limit.

n Use descriptive and meaningful variable names.

n While keeping your variable names descriptive, don’t let the names get too long.

n Never embed tabs in code—use spaces instead. When you view your code

later, youmay have different tab settings, and therefore find the code hard to

read. Using spaces guarantees that the visual appearance is consistent. Three

spaces for an indent is a good number.

n Be consistent in your programming style decisions.

n Be alert to what programming decisions you make that work well for you,

and try to consistently employ those techniques.

n Keep a change log of your work so you can keep track of the evolution of

your programs.

n Use revision control software to manage your program versions.

Moving Right Along
You’ve now bitten off a fairly big chunk o’ stuff. You’ve learned a new tool—in

fact, a new kind of tool—the programmer’s editor. After getting a handle on

UltraEdit-32, we looked at how software does its thing bringing people and

computer hardware together by using programming languages.

We then went off and started bullying the computer around using one of those

programming languages called TorqueScript.

Coming up next, we’ll delve into the world of 3D programming at a similar level

and discover the basics of 3D objects and then how we can manipulate them

with TorqueScript.

Moving Right Along 103

This page intentionally left blank

3D Programming
Concepts

In this chapter we will discuss how objects are described in their three dimensions

in different 3D coordinate systems, as well as how we convert them for use in the

2D coordinate system of a computer display. There is some math involved here,

but don’t worry—I’ll do the heavy lifting.

We’ll also cover the stages and some of the components of the rendering

pipeline—a conceptual way of thinking of the steps involved in converting an

abstract mathematical model of an object into a beautiful on-screen picture.

3D Concepts
In the real world around us, we perceive objects to have measurements in three

directions, or dimensions. Typically we say they have height, width, and depth.

When we want to represent an object on a computer screen, we need to account

for the fact that the person viewing the object is limited to perceiving only two

actual dimensions: height, from the top to the bottom of the screen, and width,

across the screen from left to right.

No t e

Remember that we will be using the Torque Game Engine to do most of the rendering work
involved in creating our game with this book. However, a good understanding of the technology
described in this section will help guide you in your decision making later on when you will be
designing and building your own models or writing code to manipulate those models in real time.

105

chapter 3

Therefore, it’s necessary to simulate the third dimension, depth ‘‘into’’ the

screen. This on-screen three-dimensional (3D) simulation of a real (or imagined)

object is called a 3D model. In order to make the model more visually realistic, we

add visual characteristics, such as shading, shadows, and textures. The entire

process of calculating the appearance of the 3Dmodel—converting it to an entity

that can be drawn on a two-dimensional (2D) screen and then actually displaying

the resulting image—is called rendering.

Coordinate Systems

When we refer to the dimensional measurement of an object, we use number

groups called coordinates to mark each vertex (corner) of the object. We com-

monly use the variable names X, Y, and Z to represent each of the three

dimensions in each coordinate group, or triplet. There are different ways to

organize the meaning of the coordinates, known as coordinate systems.

We have to decide which of our variables will represent which dimension—

height, width, or depth—and in what order we intend to reference them. Then

we need to decide where the zero point is for these dimensions and what it means

in relation to our object. Once we have done all that, we will have defined our

coordinate system.

When we think about 3D objects, each of the directions is represented by an axis,

the infinitely long line of a dimension that passes through the zero point. Width

or left-right is usually the X-axis, height or up-down is usually the Y-axis, and

depth or near-far is usually the Z-axis. Using these constructs, we have ourselves

a nice tidy little XYZ-axis system, as shown in Figure 3.1.

Now, when we consider a single object in isolation, the 3D space it occupies

is called object space. The point in object space where X, Y, and Z are all 0 is

normally the geometric center of an object. The geometric center of an object is

usually inside the object. If positive X values are to the right, positive Y values are

up, and positive Z values are away from you, then as you can see in Figure 3.2, the

coordinate system is called left-handed.

The Torque Game Engine uses a slightly different coordinate system, a right-

handed one. In this system, with Y and Z oriented the same as we saw in the left-

handed system, X is positive in the opposite direction. In what some people call

Computer Graphics Aerobics, we can use the thumb, index finger, and middle

finger of our hands to easily figure out the handedness of the system we are using

106 Chapter 3 n 3D Programming Concepts

(see Figure 3.3). Just remember that using this technique, the thumb is always the

Y-axis, the index finger is the Z-axis, and the middle finger is the X-axis.

With Torque, we also orient the system in a slightly different way: the Z-axis is

up-down, the X-axis is somewhat left-right, and the Y-axis is somewhat near-far

(see Figure 3.4). Actually, somewhatmeans that we specify left and right in terms

3D Concepts 107

Figure 3.1
XYZ-axis system.

Figure 3.2
Left-handed coordinate system with vertical Y-axis.

of looking down on a map from above, with north at the top of the map. Right

and left (positive and negative X) are east and west, respectively, and it follows

that positive Y refers to north and negative Y refers to south. Don’t forget that

positive Z would be up, and negative Z would be down. This is a right-handed

system that orients the axes to align with the way we would look at the world

using a map from above. By specifying that the zero point for all three axes is a

specific location on the map, and by using the coordinate system with the

orientation just described, we have defined our world space.

108 Chapter 3 n 3D Programming Concepts

Figure 3.3
Right-handed coordinate system with vertical Y-axis.

Figure 3.4
Right-handed coordinate system with vertical Z-axis depicting world space.

Now that we have a coordinate system, we can specify any location on an object

or in a world using a coordinate triplet, such as (5,�3,�2) (see Figure 3.5). By

convention, this would be interpreted as X=5, Y=�3, Z=�2. A 3D triplet is

always specified in XYZ format.

Take another peek at Figure 3.5. Notice anything? That’s right—the Y-axis is

vertical with the positive values above the 0, and the Z-axis positive side is toward

us. It is still a right-handed coordinate system. The right-handed system with Y-

up orientation is often used for modeling objects in isolation, and of course we

call it object space, as described earlier. We are going to be working with this

orientation and coordinate system for the next little while.

3D Models

I previously briefly touched on the idea that we can simulate, or model, any

object by defining its shape in terms of its significant vertices (plural for vertex).

Let’s take a closer look, by starting with a simple 3D shape, or primitive—the

cube—as depicted in Figure 3.6.

The cube’s dimensions are two units wide by two units deep by two units high, or

2� 2� 2. In this drawing, shown in object space, the geometric center is offset to

a position outside the cube. I’ve done this in order to make it clearer what is

happening in the drawing, despite my statement earlier that geometric centers

3D Concepts 109

Figure 3.5
A point specified using an XYZ coordinate triplet.

are usually located inside an object. There are times when exceptions are not only

possible but necessary—as in this case.

Examining the drawing, we can see the object’s shape and its dimensions quite

clearly. The lower-left-front corner of the cube is located at the position where

X=0, Y=1, and Z=�2. As an exercise, take some time to locate all of the other

vertices (corners) of the cube, and note their coordinates.

If you haven’t already noticed on your own, there is more information in the

drawing than actually needed. Can you see how we can plot the coordinates by

using the guidelines to find the positions on the axes of the vertices? But we can

also see the actual coordinates of the vertices drawn right in the chart. We don’t

need to do both. The axis lines with their index tick marks and values really

clutter up the drawing, so it has become somewhat accepted in computer gra-

phics to not bother with these indices. Instead we try to use the minimum

amount of information necessary to completely depict the object.

We only really need to state whether the object is in object space or world space

and indicate the raw coordinates of each vertex. We should also connect the

vertices with lines that indicate the edges.

If you take a look at Figure 3.7 you will see how easy it is to extract the sense of the

shape, compared to the drawing in Figure 3.6. We specify which space definition

we are using by the small XYZ-axis notation. The color code indicates the axis

110 Chapter 3 n 3D Programming Concepts

Figure 3.6
Simple cube shown in a standard XYZ-axis chart.

name, and the axis lines are drawn only for the positive directions. Different

modeling tools use different color codes, but in this book dark yellow (shown as

light gray) is the X-axis, dark cyan (medium gray) is the Y-axis, and dark

magenta (dark gray) is the Z-axis. It is also common practice to place the XYZ-

axis key at the geometric center of the model.

Figure 3.8 shows our cube with the geometric center placed where it reasonably

belongs when dealing with an object in object space.

Now take a look at Figure 3.9. It is obviously somewhat more complex than our

simple cube, but you are now armed with everything you need to know in order

to understand it. It is a screen shot of a four-view drawing from the popular

shareware modeling tool MilkShape 3D, in which a 3Dmodel of a soccer ball was

created.

3D Concepts 111

Figure 3.7
Simple cube with reduced XYZ-axis key.

Figure 3.8
Simple cube with axis key at geometric center.

In the figure, the vertices are marked with red dots (which show as black in the

picture), and the edges are marked with light gray lines. The axis keys are visible,

although barely so in some views because they are obscured by the edge lines.

Notice the grid lines that are used to help with aligning parts of the model. The

three views with the gray background and grid lines are 2D construction views,

while the fourth view, in the lower-right corner, is a 3D projection of the object.

The upper-left view looks down from above, with the Y-axis in the vertical

direction and the X-axis in the horizontal direction. The Z-axis in that view is not

visible. The upper-right view is looking at the object from the front, with the Y-axis

vertical and the Z-axis horizontal; there is no X-axis. The lower-left view shows the

Z-axis vertically and the X-axis horizontally with no Y-axis. In the lower-right

view, the axis key is quite evident, as its lines protrude from the model.

3D Shapes

We’ve already encountered some of the things that make up 3Dmodels. Now it’s

time to round out that knowledge.

As we’ve seen, vertices define the shape of a 3D model. We connect the vertices

with lines known as edges. If we connect three or more vertices with edges to

create a closed figure, we’ve created a polygon. The simplest polygon is a triangle.

112 Chapter 3 n 3D Programming Concepts

Figure 3.9
Screen shot of sphere model.

In modern 3D accelerated graphics adapters, the hardware is designed to

manipulate and display millions and millions of triangles in a second. Because of

this capability in the adapters, we normally construct our models out of the

simple triangle polygons instead of the more complex polygons, such as rec-

tangles or pentagons (see Figure 3.10).

By happy coincidence, triangles are more than up to the task of modeling

complex 3D shapes. Any complex polygon can be decomposed into a collection

of triangles, commonly called a mesh (see Figure 3.11).

The area of the model is known as the surface. The polygonal surfaces are called

facets—or at least that is the traditional name. These days, they are more com-

monly called faces. Sometimes a surface can only be viewed from one side, so

when you are looking at it from its ‘‘invisible’’ side, it’s called a hidden surface or

3D Concepts 113

Figure 3.11
Polygons decomposed into triangle meshes.

Figure 3.10
Polygons of varying complexity.

hidden face. A double-sided face can be viewed from either side. The edges of

hidden surfaces are called hidden lines. With most models, there are faces on the

backside of the model, facing away from us, called backfaces (see Figure 3.12). As

mentioned, most of the time when we talk about faces in game development, we

are talking about triangles, sometimes shortened to tris.

Displaying 3D Models
After we have defined a model of a 3D object of interest, we may want to display a

view of it. The models are created in object space, but to display them in the 3D

world, we need to convert them to world space coordinates. This requires three

conversion steps beyond the actual creation of the model in object space.

1. Convert to world space coordinates.

2. Convert to view coordinates.

3. Convert to screen coordinates.

Each of these conversions involves mathematical operations performed on the

object’s vertices.

The first step is accomplished by the process called transformation. Step 2 is what

we call 3D rendering. Step 3 describes what is known as 2D rendering. First we will

examine what the steps do for us, before getting into the gritty details.

114 Chapter 3 n 3D Programming Concepts

Figure 3.12
The parts of a 3D shape.

Transformation

This first conversion, to world space coordinates, is necessary because we have to

place our object somewhere! We call this conversion transformation. We will

indicate where by applying transformations to the object: a scale operation

(which controls the object’s size), a rotation (which sets orientation), and a transla-

tion (which sets location).

World space transformations assume that the object starts with a transformation

of (1.0,1.0,1.0) for scaling, (0,0,0) for rotation, and (0,0,0) for translation.

Every object in a 3D world can have its own 3D transformation values, often

simply called transforms, that will be applied when the world is being prepared

for rendering.

T i p

Other terms used for these kinds of XYZ coordinates in world space are Cartesian coordinates or
rectangular coordinates.

Scaling

We scale objects based upon a triplet of scale factors where 1.0 indicates a scale of

1:1.

The scale operation is written similarly to the XYZ coordinates that are used to

denote the transformation, except that the scale operation shows how the size of

the object has changed. Values greater than 1.0 indicate that the object will be

made larger, and values less than 1.0 (but greater than 0) indicate that the object

will shrink.

For example, 2.0 will double a given dimension, 0.5 will halve it, and a value of

1.0 means no change. Figure 3.13 shows a scale operation performed on a cube in

Displaying 3D Models 115

Figure 3.13
Scaling.

object space. The original scale values are (1.0,1.0,1.0). After scaling, the cube is

1.6 times larger in all three dimensions, and the values are (1.6,1.6,1.6).

Rotation

The rotation is written in the same way that XYZ coordinates are used to denote

the transformation, except that the rotation shows how much the object is

rotated around each of its three axes. In this book, rotations will be specified

using a triplet of degrees as the unit of measure. In other contexts, radians

might be the unit of measure used. Other methods of representing rotations are

used in more complex situations, but this is the way we’ll do it in this book.

Figure 3.14 depicts a cube being rotated by 30 degrees around the Y-axis in its

object space.

It is important to realize that the order of the rotations applied to the object

matters a great deal. The convention we will use is the roll-pitch-yaw method,

adopted from the aviation community. When we rotate the object, we roll it

around its longitudinal (Z) axis. Then we pitch it around the lateral (X) axis.

Finally, we yaw it around the vertical (Y) axis. Rotations on the object are applied

in object space.

If we apply the rotation in a different order, we can end up with a very different

orientation, despite having done the rotations using the same values.

Translation

Translation is the simplest of the transformations and the last that is applied to

the object when transforming from object space to world space. Figure 3.15

shows a translation operation performed on an object. Note that the vertical axis

is dark gray. As I said earlier, in this book, dark gray represents the Z-axis. Try to

116 Chapter 3 n 3D Programming Concepts

Figure 3.14
Rotation.

figure out what coordinate system we are using here. I’ll tell you later in the

chapter. To translate an object, we apply a vector to its position coordinates.

Vectors can be specified in different ways, but the notation we will use is the same

as the XYZ triplet, called a vector triplet. For Figure 3.15, the vector triplet is

(3,9,7). This indicates that the object will be moved three units in the positive

X direction, nine units in the positive Y direction, and seven units in the positive

Z direction. Remember that this translation is applied in world space, so the

X direction in this case would be eastward, and the Z direction would be down

(toward the ground, so to speak). Neither the orientation nor the size of the

object is changed.

Full Transformation

So now we roll all the operations together. We want to orient the cube a certain

way, with a certain size, at a certain location. The transformations applied are

scale (s)=1.6,1.6,1.6, followed by rotation (r)=0,30,0, and then finally translation

(t)=3,9,7. Figure 3.16 shows the process.

No t e

The order that we use to apply the transformations is important. In the great majority of cases, the
correct order is scaling, rotation, and then translation. The reason is that different things happen
depending on the order.

You will recall that objects are created in object space and then moved into world space. The
object’s origin is placed at the world origin. When we rotate the object, we rotate it around the
appropriate axes with the origin at (0,0,0) and then translate it to its new position.

If you translate the object first and then rotate it (which is still going to take place around (0,0,0)),
the object will end up in an entirely different position, as you can see in Figure 3.17.

Displaying 3D Models 117

Figure 3.15
Translation.

118 Chapter 3 n 3D Programming Concepts

Figure 3.16
Fully transforming the cube.

Figure 3.17
Changing the transformation order.

Rendering

Rendering is the process of converting the 3D mathematical model of an object

into an on-screen 2D image. When we render an object, our primary task is to

calculate the appearance of the different faces of the object, convert those faces

into a 2D form, and send the result to the video card, which will then take all the

steps needed to display the object on your monitor.

We will take a look at several different rendering techniques—those that are

often used in video game engines or 3D video cards. There are other techniques,

such as ray-casting, that aren’t in wide use in computer games (with the odd

exception, of course); we won’t be covering the less-common techniques here.

In the previous sections our simple cube model had colored faces. In case you

haven’t noticed (but I’m sure you did notice), we haven’t covered the issue of the

faces, except briefly in passing.

A face is essentially a set of one or more contiguous coplanar adjacent triangles;

that is, when taken as a whole, the triangles form a single flat surface. If you refer

back to Figure 3.12, you will see that each face of the cube is made with two

triangles. Of course, the faces are transparent in order to present the other parts

of the cube.

Flat Shading

Figure 3.18 provides an example of various face configurations on an irregularly

shaped object. Each face is presented with a different color (each visible as a

Displaying 3D Models 119

Figure 3.18
Faces on an irregularly shaped object.

different shade). All triangles with the label A are part of the same face; the same

applies to the D triangles. The triangles labeled B and C are each single-triangle

faces.

When we want to display 3D objects, we usually use some technique to apply

color to the faces. The simplest method is flat shading, as used in Figure 3.18. A

color or shade is applied to a face, and a different color or shade is applied to

adjacent faces so that the user can tell them apart. In this case, the shades were

selected with the sole criterion being the need to distinguish one face from the

other.

One particular variation of flat shading is called Z-flat shading. The basic idea is

that the farther a face is from the viewer, the darker or lighter the face.

Lambert Shading

Usually color and shading are applied in a manner that implies some sense of

depth and lighted space. One face or collection of faces will be lighter in shade,

implying that the direction they face has a light source. On the opposite side of

the object, faces are shaded to imply that no light, or at least less light, reaches

those faces. In between the light and dark faces, the faces are shaded with

intermediate values. The result is a shaded object where the face shading provides

information that imparts a sense of the object in a 3D world, enhancing the

illusion. This is a form of flat shading known as lambert shading (see Figure 3.19).

120 Chapter 3 n 3D Programming Concepts

Figure 3.19
Lambert-shaded object.

Gouraud Shading

A more useful way to color or shade an object is called gouraud shading. Take a

look at Figure 3.20. The sphere on the left (A) is flat shaded, while the sphere on

the right (B) is gouraud shaded. Gouraud shading smoothes the colors by

averaging the normals (the vectors that indicate which way surfaces are facing) of

the vertices of a surface. The normals are used to modify the color value of all the

pixels in a face. Each pixel’s color value is then modified to account for the pixel’s

position within the face. Gouraud shading creates a much more natural

appearance for the object, doesn’t it? Gouraud shading is commonly used in both

software and hardware rendering systems.

Phong Shading

Phong shading is a much more sophisticated—and computation-intensive—

technique for rendering a 3D object. Like gouraud shading, it calculates color or

shade values for each pixel. Unlike gouraud shading (which uses only the ver-

tices’ normals to calculate average pixel values), phong shading computes

additional normals for each pixel between vertices and then calculates the new

color values. Phong shading does a remarkably better job (see Figure 3.21), but at

a substantial cost.

Phong shading requires a great deal of processing for even a simple scene, which is

why you don’t see phong shading used much in real-time 3D games where frame

rate performance is important. However, there are games made where frame rate

is not as big an issue, in which case you will often find phong shading used.

Fake Phong Shading

There is a rendering technique that looks almost as good as phong shading but

can allow fast frame rates. It’s called fake phong shading, or sometimes fast phong

Displaying 3D Models 121

Figure 3.20
Flat-shaded (A) and gouraud-shaded (B) spheres.

shading, or sometimes even phong approximation rendering. Whatever name it

goes by, it is not phong rendering. It is useful, however, and does indeed give

good performance.

Fake phong shading basically employs a bitmap, which is variously known as a

phong map, a highlight map, a shade map, or a light map. I’m sure there are other

names for it as well. In any event, the bitmap is nothing more than a generic

template of how the faces should be illuminated (as shown in Figure 3.22).

As you can tell by the nomenclature, there is no real consensus about fake phong

shading. There are also several different algorithms used by different people. This

diversity is no doubt the result of several people independently arriving at the

122 Chapter 3 n 3D Programming Concepts

Figure 3.21
Phong-shaded sphere.

Figure 3.22
Example of a fake phong highlight map.

same general concept at roughly the same time—all in search of better perfor-

mance with high-quality shading.

Texture Mapping

Texture mapping is covered in more detail in Chapters 8 and 9. For the sake of

completeness, I’ll just say here that texture mapping an object is something like

wallpapering a room. A 2D bitmap is ‘‘draped’’ over the object, to impart detail

and texture upon the object, as shown in Figure 3.23.

Texture mapping is usually combined with one of the shading techniques cov-

ered in this chapter.

Shaders

When the word is used alone, shaders refers to shader programs that are sent to

the video hardware by the software graphics engine. These programs tell the

video card in great detail how to manipulate vertices or pixels depending on the

kind of shader used.

Traditionally, programmers have had limited control over what happens to

vertices and pixels in hardware, but the introduction of shaders allowed them to

take complete control.

Vertex shaders, being easier to implement, were first out of the starting blocks.

The shader program on the video card manipulates vertex data values on a 3D

plane via mathematical operations on an object’s vertices. The operations affect

color, texture coordinates, elevation-based fog density, point size, and spatial

orientation.

Displaying 3D Models 123

Figure 3.23
Texture-mapped and gouraud-shaded cube.

Pixel shaders are the conceptual siblings of vertex shaders, but they operate on

each discrete viewable pixel. Pixel shaders are small programs that tell the video

card how to manipulate pixel values. They rely on data from vertex shaders

(either the engine-specific custom shader or the default video card shader

function) to provide at least triangle, light, and view normals.

Shaders are used in addition to other rendering operations, such as texture and

normal mapping.

Bump Mapping

Bump mapping is similar to texture mapping. Where texture maps add detail to a

shape, bump maps enhance the shape detail. Each pixel of the bump map con-

tains information that describes aspects of the physical shape of the object at the

corresponding point, and we use a more expansive word to describe this—the

texel. The name texel derives from texture pixel.

Bump mapping gives the illusion of the presence of bumps, holes, carving, scales,

and other small surface irregularities. If you think of a brick wall, a texture map

will provide the shape, color, and approximate roughness of the bricks. The

bump map will supply a detailed sense of the roughness of the brick, the mortar,

and other details. Thus bump mapping enhances the close-in sense of the object,

while texture mapping enhances the sense of the object from farther away.

Bump mapping is used in conjunction with most of the other rendering tech-

niques.

Environment Mapping

Environment mapping is similar to texture mapping, except that it is used to

represent effects where environmental features are reflected in the surfaces of an

object. Things like chrome bumpers on cars, windows, and other shiny object

surfaces are prime candidates for environment mapping.

Mipmapping

Mipmapping is a way of reducing the amount of computation needed to accu-

rately texture-map an image onto a polygon. It’s a rendering technique that

tweaks the visual appearance of an object. It does this by using several different

textures for the texture-mapping operations on an object. At least two, but

usually four, textures of progressively lower resolution are assigned to any given

124 Chapter 3 n 3D Programming Concepts

surface, as shown in Figure 3.24. The video card or graphics engine extracts pixels

from each texture depending on the distance and orientation of the surface

compared to the view screen.

In the case of a flat surface that recedes away from the viewer into the distance,

for the nearer parts of the surface, pixels from the high-resolution texture are

used (see Figure 3.25). For the middle distances, pixels from the medium-

resolution textures are used. Finally, for the faraway parts of the surface, pixels

from the low-resolution texture are used.

Displaying 3D Models 125

Figure 3.24
Mipmap textures for a stone surface.

Figure 3.25
Mipmap textures in perspective view.

T i p

Anti-aliasing is a software technique used in graphics display systems to make curved and
diagonal lines appear to be continuous and smooth. On computer monitors the pixels themselves
aren’t curved, but collectively they combine together to represent curves. Using pixels within
polygon shapes to simulate curves causes the edges of objects to appear jagged. Anti-aliasing, the
technique for smoothing out these jaggies, or aliasing, usually takes the form of inserting
intermediate-colored pixels along the edges of the curve. The funny thing is, with textual displays
this has the paradoxical effect of making text blurrier yet more readable. Go figure!

Normal Mapping

Normal mapping is a further enhancement of bump mapping. With normal

mapping what we are doing, in essence, is transferring detail from a very high

poly model to a low poly model using a bitmap gradient. This allows us to

provide an astonishing sense of detail with very fast rendering speeds.

The basic procedure is to first create a very high polygon model of an object.

Now, when I say very high, I mean just that: four or five million polygons. Yeah,

5,000,000—that high. We then make a rendered lighting pass on that object in

our modeling tool and ‘‘bake’’ (preserve) the normals shading of the object in a

bitmap very similar to the UV mapped texture bitmap for the object. Because

what we are preserving is basically a graphical representation of the normals of all

of the polygons in the high poly model, the data we save is called the normal map.

We then create a low poly (in the 2,000-polygon range, give or take 500 or 1,000

polygons) model and apply the normal map to the new model. The pixel values

in the normal map are used to assign brightness values to the pixels of the texture

map, with almost photorealistic results at times.

Parallax Mapping

Upping the ante even further, parallax mapping is yet another evolutionary step

beyond bump mapping.

With parallax mapping, we can create the illusion of holes and protrusions in flat

surfaces, without adding polygons. A parallax map image is pretty well identical

to a bump map, but it is used in rendering in a much more dramatic way.

Try this experiment. Set a drinking glass or cup on a table, and stand above it.

Look straight down at the glass. You will obviously see the circular shape of the

glass—in fact, you will probably see a series of concentric rings: the inside and

outside of the opening rim, the inside and outside of the base, and so on. And in

the background is the surface of the table. Nowmove your head to one side, while

126 Chapter 3 n 3D Programming Concepts

keeping your eyes on the glass. The shapes all change, even though the glass

hasn’t moved. The background is still the table. Eventually, as you move your

head farther from the glass, the table stops being the background, starting at the

top of the glass. The edge of the table ‘‘moves’’ down the glass toward the base.

You can hasten this effect by moving your head toward the plane of the table.

Imagine now that those concentric rings that you started with were simply pixels

on a bitmap, but whose values indicate a distance from the plane of a polygon

(the table). Parallax-mapping software calculates where those pixels would be

rendered as you move your head sideways, re-creating the changing appear-

ance—in a 3D manner—of the glass. And yet there are no extra polygons

involved! This is a simulation of the parallax effect—the apparent change of

position of an object in space when viewed from a different location, even though

the object hasn’t moved. The apparent change becomes visible only when the

object is viewed against a static background. In the case of the little experiment I

told you to do (you did do it, right?), the table is the static background.

Now when you move your head closer to the table, off to one side, or you move

your head far enough away from the glass, eventually you will see that the glass

really does protrude up from the table. With parallax mapping and a rendered

glass, if you do the same thing, you will see the pixels of the rendered glass get

squashed together and never leave the bounds of the polygon on which they are

mapped. Because they can’t—they are part of the polygon! But this effect is really

only visible in extreme situations that usually aren’t noticeable when you are

engaged in mortal combat with a room full of electro-ninjas.

The effect is most satisfying when the parallax-mapped objects are crossing the

viewer’s field of view, like when your character is walking past a series of large

bullet holes or craters in a wall. Whole factories filled with pipes and machinery

and valves and stuff can be rendered this way, with very little or no actual polygon

budget penalties. In fact, large buckets of polygon budget can be recovered using

this technique! And those polygons that were once used to create a maze of pipes

and cables can now be better put to use in populating the scene with more nasty

electro-ninjas.

Scene Graphs

In addition to knowing how to construct and render 3D objects, 3D engines need

to know how the objects are laid out in the virtual world and how to keep track of

changes in the status of the models, their orientation, and other dynamic

Displaying 3D Models 127

information. This is done using a mechanism called a scene graph, a specialized

form of a directed graph. The scene graph maintains information about all

entities in the virtual world in structures called nodes. The 3D engine traverses

this graph, examining each node one at a time to determine how to render each

entity in the world. Figure 3.26 shows a simple seaside scene with its scene graph.

The nodes marked by ovals are group nodes, which contain information about

themselves and point to other nodes. The nodes that use rectangles are leaf nodes.

These nodes contain only information about themselves.

Note that in the seaside scene graph, not all of the nodes contain all of the

information that the other nodes have about themselves.

Many of the entities in a scene don’t even need to be rendered. In a scene graph, a

node can be anything. The most common entity types are 3D shapes, sounds,

128 Chapter 3 n 3D Programming Concepts

Figure 3.26
Simple scene graph.

lights (or lighting information), fog and other environmental effects, viewpoints,

and event triggers.

When it comes time to render the scene, the Torque Engine will ‘‘walk’’ through

the nodes in the tree of the scene graph, applying whatever functions to the node

that are specified. It then uses the node pointers to move on to the next node to

be rendered.

3D Audio

Audio and sound effects are used to heighten the sense of realism in a game.

There are times when the illusion is greatly enhanced by using position infor-

mation when generating the sound effects. A straightforward example would be

the sound generated by a nearby gunshot. By calculating the amplitude—based

on how far away the shot occurred—and the direction, the game software can

present the sound to a computer’s speakers in a way that gives the player a strong

sense of where the shot occurred. This effect is even better if the player is wearing

audio headphones. The player then has a good sense of the nature of any nearby

threat and can deal with it accordingly—usually by massive application of return

fire.

The source location of a game sound is tracked and managed in the same way as

any other 3D entity via the scene graph.

Once the game engine has decided that the sound has been triggered, it then

converts the location and distance information of the sound into a stereo

‘‘image’’ of the sound, with appropriate volume and balance for either the right

or left stereo channel. The methods used to perform these calculations are much

the same as those used for 3D object rendering.

Audio has an additional set of complications—things like fade and drop-off or

cutoff.

3D Programming
With the Torque Engine, most of the really grubby low-level programming is

done for you. Instead of writing program code to construct a 3D object, you use a

modeling tool (which we cover in later chapters) to create your object and a few

lines of script code to insert the object in a scene. You don’t even need to worry

about where in the scene graph the object should be inserted—Torque handles

3D Programming 129

that as well, through the use of information contained in the datablocks that you

define for objects.

Even functions like moving objects around in the world are handled for us by

Torque, simply by defining the object to be of a certain class and then inserting

the object appropriately.

The kinds of objects we will normally be using are called shapes. In general,

shapes in Torque are considered to be dynamic objects that can move or

otherwise be manipulated by the engine at run time.

There are many shape classes. Some are fairly specific, like vehicles, players,

weapons, and projectiles. Some are more general-purpose classes, like items and

static shapes. Many of the classes know how their objects should respond to game

stimuli and are able to respond in the game with motion or some other behavior

inherent to the object’s class definition.

Usually, you will let the game engine worry about the low-level mechanics of

moving your 3D objects around the game world. However, there will probably be

times while creating a game that you are going to want to cause objects to move

in some nonstandard way—some method not defined by the class definition of

the object. With Torque, this is easy to do!

Programmed Translation

When an object in 3D world space moves, it is translating its position in a

manner similar to that shown earlier in the discussion about transformations.

You don’t, however, absolutely need to use the built-in classes to manipulate shapes

in your game world. For example, you can write code to load in an Interior (a class

of objects used for structures like buildings) or an Item (a class of objects used for

smaller mobile and static items in a game world, like signs, boxes, and powerups).

You can then move that object around the world any way you like.

You can also write code to monitor the location of dynamic shapes that are

moving around in the world, detect when they reach a certain location, and then

arbitrarily move, or teleport, those objects to some other location.

Simple Direct Movement

What we are going to do is select an object in a 3D scene in Torque using the

Mission Editor and then move it from one location to another using some script

130 Chapter 3 n 3D Programming Concepts

instructions entered directly into the game console. The first step is to identify

the object.

1. Run the Torque demo by double-clicking the demo.exe file (the Torque

demo executable) as you did for the exercises in Chapter 2, and click the

mouse button once when the GarageGames splash screen appears.

2. When the main menu appears, press the Example: FPS Multiplayer button.

It’s the second one from the bottom.

3. On the next screen (Play Demo Game), make sure that the Create Server

check box has a check mark in it. You can also put a name for your player in

the Player Name box, but it isn’t absolutely necessary.

4. Press the button with the right arrow in it, located at lower left of the screen.

This will launch the demo. Note: the left arrow button will return you to the

main menu.

T i p

You should make sure you remember steps 1 to 4 in the ‘‘Simple Direct Movement’’ section. These
steps describe how to launch the Torque demo. At later points in the book when you see that I’ve
written ‘‘launch the Torque demo’’ somewhere in a procedure, it’s these four steps that I intend for
you to follow. Yeah, I know. I’m lazy.

5. After you’ve spawned into the game, run over to where you can see the Great

Hall structure (see Figure 3.27). Use Table 3.1 as a guide to the movement

keys in the demo.

3D Programming 131

Table 3.1 Torque Demo Movement and Action Keys

Key Description

w Run forward

s Run backward

a Run (strafe) left

d Run (strafe) right

spacebar Jump

F11 Open Mission Editor

Tilde Open console

6. Using the mouse, turn your player-character to the left or right a bit, if

necessary, until you have a good view of the Great Hall.

7. Press F11. Torque’s built-in World Editor will appear. As you move your

cursor over the Great Hall, you’ll notice it change to a hand icon.

8. Click the hand on the Great Hall to select it.

9. Move the cursor over to the right side, and click once on the plus sign to the

left of the words ‘‘MissionGroup—SimGroup’’. You will see the list expand,

and one of the folders that becomes visible will be called ‘‘Buildings—

SimGroup’’. Expand this folder and you should see that the first entry, of the

type InteriorInstance, will be highlighted with a padlock icon in green on the

left. Take note of the number to the right of the padlock; this is the object’s

instance ID. See Figure 3.28 for help, if necessary. From the figure I get the

object ID 1643, located just below and to the left of the key icon, and also in

the highlighted entry in the list; your result might be the same but could very

well be different.

10. After noting the Great Hall’s entry highlighted in the upper-right panel,

move your attention to the lower-right panel, where the properties of the

132 Chapter 3 n 3D Programming Concepts

Figure 3.27
The Great Hall.

Great Hall are located. Scroll this panel down until you come to a section

called ‘‘Dynamic Fields’’. In here you will find a property called ‘‘locked’’ set

to true. To the left of the property is a little trash can; click it, and the

locked property will vanish. The Great Hall is now in a state where we can

abuse it.

11. Press the Tilde (‘‘~’’) key, and the console will pop open. The console

interface allows us to directly type in program code and get immediate

results.

12. In the console window, type echo(1643.getTransform()); and then press

the Enter key. Don’t forget to include the semicolon at the end of the line

before you press the Enter key.

You should get a result like 175.38 �10.1902 182.883 0 0 �1 0.519998,

which is the transform of the Great Hall. The first three numbers are the

3D Programming 133

Figure 3.28
Finding the Great Hall object’s instance ID.

XYZ coordinates of the geometric center of the structure. The next three are

the axis normals, which in this case indicates that the Z-axis is pointing

straight up. The final value indicates how much rotation is applied around

the rotation axes. We’ll look at rotation in more detail a little later. Here, the

rotation amount (in radians) is applied to only the Z-axis.

T i p

You should note that when you read the rotation angle of an object in the World Editor Inspector,
the value for the rotation is given in degrees. However, when you run the getTransform
method for an object, the rotation value is returned in radians. To convert between the two,
1 radian equals 57.2957795 degrees, and 1 degree equals 0.017453293 radian.

13. In the console window, type 1643.setTransform(‘‘200 0 200 1 0 0 0’’); and

then press the Enter key.

14. Press the Tilde key to remove the console window, and take a look. You will

notice that the Great Hall has moved.

15. Take the next several minutes to experiment with different transforms. Try

rotating the structure around different axes or several axes at the same time.

16. When you are done, press the Tilde key to exit the console window, press

Escape to exit theWorld Editor, and then press Escape one more time to exit

the game.

T i p

In the little exercise in the ‘‘Simple Direct Movement’’ section, you saw a command that looked
like this: echo(1643.getTransform());. The number 1643 is an object ID, and the
getTransform() part is what is called a method of that object. A method is a function that
belongs to a specific object class. We’ll cover these topics in more detail in a later chapter.

Programmed Movement

Now we are going to explore how we can move things in the 3D world using

program code. We are going to use the StaticShape class to create an object based

on a model of a stylized heart, insert the object in the game world, and then start

it slowly moving across the terrain—all using TorqueScript.

Okay, now—so on to the program. Type the following code module into a file,

and save the file as \3D2E\demo\moveshape.cs.

134 Chapter 3 n 3D Programming Concepts

// ==
// moveshape.cs
//
// This module contains a function for moving a specified shape.
// ==

function MoveShape(%shape, %dist)
// ——
// moves the %shape by %dist amount
// ——
{
echo ("MoveShape: shape id: ", %shape);
echo ("MoveShape: distance: ", %dist);
%xfrm = %shape.getTransform();
%lx = getword(%xfrm,0); // get the current transform values
%ly = getword(%xfrm,1);
%lz = getword(%xfrm,2);
%lx += %dist; // adjust the x axis position
%shape.setTransform(%lx SPC %ly SPC %lz SPC "0 0 1 0");
echo ("MoveShape: done.");

}

In this module there is one function that does all of the work. The function

MoveShape accepts a shape handle (or instance ID number) and a distance

as arguments. It then uses these to move whatever shape the handle points to.

First, there are a couple of echo statements that print, out to the console, the

shape’s handle and then the distance it will be moved.

Second, the code gets the current position of the shape using the %shape.

getTransform method of the Item class.

Next, the program employs the getword function to extract the parts of the

transform string that are of interest and store them in local variables. We do this

because, for this particular program, we want to move the shape in the X-axis.

Therefore, we strip out all three axes and increment the X value by the distance

that the object should move. Then we prepend all three axis values to a dummy

rotation and set the item’s transform to be this new string value. This last bit is

done with the %shape.setTransform statement.

Finally, another echo statement hurls out to the console the basic bit of infor-

mation that the module is done.

3D Programming 135

This MoveShape function acts something like a wrapper folded around the other

statements. Obviously, it saves us having to type the same set of statements over

and over to move different shapes different amounts at different times.

To use the program, follow these steps:

1. Make sure you’ve saved the file as \3D2E\demo\moveshape.cs.

2. Run the Torque FPS demo.

3. Open the console and type in the following, making sure you press Enter

after the semicolon:
exec("demo/moveshape.cs");

You should get a response in the console window similar to this:
Compiling demo/moveshape.cs...
Loading compiled script demo/moveshape.cs.

This means that the Torque Engine has compiled your program and then

loaded it into memory. The function you defined is now in memory, waiting

with barely suppressed anticipation for your next instruction.

T i p

About those slashes . . . I just want to re-emphasize that when you see the file names and paths
written out, the backslash (‘‘\’’) is used, and when you type in those same paths in the console
window, the forward slash (‘‘/’’) is used. This is not a mistake. Torque is a cross-platform program
that is available for Macintosh and Linux as well as Windows. It’s only on Windows-based systems
that backslashes are used---everyone else uses forward slashes.

Therefore, the backslashes for Windows-based paths are the exception here. Just thought I’d point
that out again, if it’s not burned into your brain yet!

4. Next, make sure that the Great Hall object in the scene is unlocked. Whip on

back to the ‘‘Simple Direct Movement’’ section to refresh your memory

about locking and unlocking shapes, if necessary. You will also need to

obtain the Great Hall’s instance ID—again, the ‘‘Simple Direct Movement’’

section covers this.

You should be familiar with opening and closing the console window by

now, so I won’t bother explaining that part in the instruction sequences

anymore.

5. Type the following into the console window:
$gh=nnnn;

136 Chapter 3 n 3D Programming Concepts

where nnnn is the instance ID number of the Great Hall. This will save that

ID in the global variable $gh so that you don’t have to remember the

number. Note that the variable will be saved only as long as the engine is

running. Once you quit Torque, the value and the variable are lost.

6. Type the following into the console window:
MoveShape($gh,50);

7. Close the console window. You should see that the hall has moved away

from its original location toward the ‘‘east’’ (positive Y).

Go ahead and experiment with the program. Try moving the Great Hall through

several axes at once, or try changing the distance. Also attack some of the other

items in the scene with your new software weapon.

Programmed Rotation

As you’ve probably figured out already, we can rotate an object programmatically

(or directly, for that matter) using the same setTransform method that we used

to translate an object.

Type the following program, and save it as \3D2E\demo\turnshape.cs.

// ==
// turnshape.cs
//
// This module contains a function for turning a specified shape.
// ==

function TurnShape(%shape, %angle)
// ——
// turns the %shape by %angle amount.
// ——
{
echo (";TurnShape: shape id: ", %shape);
echo ("TurnShape: angle: ", %angle);
%xfrm = %shape.getTransform();
%lx = getword(%xfrm,0); // first, get the current transform values
%ly = getword(%xfrm,1);
%lz = getword(%xfrm,2);
%rx = getword(%xfrm,3);
%ry = getword(%xfrm,4);

3D Programming 137

%rz = getword(%xfrm,5);
%angle þ= 1.0; // increment the angle (ie. rotate it a bit)
%rd = %angle; // Set the rotation angle
%shape.setTransform(%lx SPC %ly SPC %lz SPC %rx SPC %ry SPC %rz SPC %rd);
echo ("TurnShape: done.");

}

The program is quite similar to the moveshape.cs program that you were just

working with. You can load and run the program in exactly the same way that

you did with the moveShape module, except that you want to use TurnShape

instead MoveShape.

Things of interest to explore are the variables %rx, %ry, %rz, and %rd in the

TurnShape function. Try making changes to each of these, and then observe the

effects your changes have on the item.

Programmed Scaling

We can also quite easily change the scale of an object using program code.

Type the following program, and save it as \3D2E\demo\sizeshape.cs.

// ==
// sizeshape.cs
//
// This module contains a function for scaling a specified shape.
// ==

function SizeShape(%shape, %scale)
// ——
// moves the %shape by %scale amount
// ——
{
echo ("SizeShape: shape id: ", %shape);
echo ("SizeShape: angle: ", %scale);
%shape.setScale(%scale SPC %scale SPC %scale);
echo ("SizeShape: done.");

}

Ha! You thought there would be a ton o’ typing in store, didn’t you? Well, the

program is obviously similar to the moveshape.cs and turnshape.cs programs,

sort of. Except for all of the missing bits, that is. You can load and run this

138 Chapter 3 n 3D Programming Concepts

program in exactly the same way, except that you want to use SizeShape instead

of MoveShape or TurnShape.

Why bother to write all this code to replace what is essentially a single line

statement anyway (if you ignore the echo statements)? For the practice, of

course!

You’ll note that we don’t call the object’s %shape.getScale function (there is

one), because in this case, we don’t need to. Also notice that the three arguments

to our call to %shape.setScale all use the same value. This is to make sure the

object scales equally in all dimensions. Try making changes to each of these, and

then observe the effects your changes have on the item.

Another exercise would be to modify the SizeShape function to accept a different

parameter for each dimension (X, Y, or Z) so that you can change all three to

different scales at the same time.

Programmed Animation

You can animate objects by stringing together a bunch of translation, rotation,

and scale operations in a continuous loop. Like the transformations, most of the

animation in Torque can be left up to an object’s class methods to perform.

However, you can create your own ad hoc animations quite easily by using the

schedule function.

Type the following program, and save it as \3D2E\demo\animshape.cs.

// ==
// animshape.cs
//
// This module contains functions for animating a shape using
// a recurring scheduled function call.
// ==

function AnimShape(%shape, %dist, %angle, %scale)
// ——
// moves the %shape by %dist amount, and then
// schedules itself to be called again in 1/5
// of a second.
// ——
{
echo("AnimShape: shape:", %shape, " dist:",

%dist, " angle:", %angle, " scale:", %scale);

3D Programming 139

if (%shape $= "" ||
%dist $= "" ||
%angle $= "" ||
%scale $= "")

{
error("AnimShape needs 4 parameters.syntax:");
error("AnimShape(id,moveDist,turnAng,scaleVal);");
return;
}
%xfrm = %shape.getTransform();
%lx = getword(%xfrm,0); // first, get the current
%ly = getword(%xfrm,1); // transform values
%lz = getword(%xfrm,2);
%rx = getword(%xfrm,3);
%ry = getword(%xfrm,4);
%rz = getword(%xfrm,5);
%lx += %dist; // set the new x position
%angle += 1.0;
%rd = %angle; // Set the rotation angle

if ($grow) // if the shape is growing larger
{
if (%scale < 5.0) // and hasn’t gotten too big
%scale += 0.3; // make it bigger

else
$grow = false; // if it’s too big, then

} // don’t let it grow more
else // if it’s shrinking
{
if (%scale > 3.0) // and isn’t too small
%scale -= 0.3; // then make it smaller

else
$grow = true; // if it’s too small,

} // don’t let it grow smaller

%shape.setScale(%scale SPC %scale SPC %scale);
%shape.setTransform(%lx SPC %ly SPC %lz SPC

%rx SPC %ry SPC %rz SPC %rd);
schedule(200,0,AnimShape, %shape, %dist, %angle, %scale);
}

140 Chapter 3 n 3D Programming Concepts

function DoAnimTest(%shape)
{
if (%shape $= "" && isObject(%shape))
{
error("DoAnimTest requires 1 parameter.");
error("DoAnimTest syntax: DoAnimTest(shapeID);");
return;

}
$grow = true;
AnimShape(%shape, 0.2, 1, 2);

}

This module contains code from all of the three earlier modules and ties them

together in a way that allows us to watch an absolutely nutso Great Hall gyrate

and gambol about the countryside.

The function AnimShape accepts a shape handle as %shape, a distance step as

%dist, an angle value as %angle, and a scaling value as %scale and uses these to

transform the shape indicated by the %shape handle.

Before getting under way though, the function checks to make sure that it has

values for all of the parameters.

First, it obtains the current position of the shape using the %shape.getTransform

method of the Item class.

As with the earlier MoveShape function, the AnimShape function fetches the

transform of the shape and updates one of the axis values.

Then it updates the rotation value stored as %rd.

Then it adjusts the scale value by determining if the shape is growing or

shrinking. Depending on which way the size is changing, the scale is incremented,

unless the scale exceeds the too large or too small limits. When a limit is exceeded,

the change direction is reversed.

Next, the scale of the shape is changed to the new values using the %shape.-

setScale method for the shape.

Finally, the function sets the item’s transform to be the new transform values

within the %shape.setTransform statement.

The DoAnimTest function accepts an object handle and verifies that it is valid,

emitting an error message and exiting via the return statement if there is no valid

object ID.

3D Programming 141

Then the global variable called $grow is set to true. This variable will determine

whether the shape will start out by scaling up in size or not. This function then

calls the AnimShape function, specifying which shape to animate by passing in the

handle to the shape as the first argument and also indicating the discrete

movement step distance, the discrete rotation angle, and the discrete size change

value with the second, third, and fourth arguments.

To use the program, follow these steps:

1. Make sure you’ve saved the file as \3D2E\demo\animshape.cs.

2. Run the Torque FPS demo.

3. After spawning in, make your way over to the docks, near the Great Hall.

4. Bring up the console window.

5. Type in the following, and press Enter after the semicolon:

exec("demo/animshape.cs");

You should get a response in the console window similar to this:

Compiling demo/animshape.cs...
Loading compiled script demo/animshape.cs.

This means that the Torque Engine has compiled your program and then

loaded it into memory. The datablock definition and the three functions are

in memory, waiting to be used.

6. Now, type the following into the console, and close the console quickly

afterward:

DoAnimTest($gh);

Remember that $gh is the variable that holds the instance handle of the Great

Hall. You will probably need to assign the right value into this variable—

check back in the ‘‘Programmed Movement’’ section for a quick refresher, if

necessary.

What you should see now is the Great Hall start spinning and moving

‘‘inland’’ while growing and then shrinking.

Go ahead and experiment with the program. Try moving the item through

several axes at once, or try changing the distance. I did not put any code in the

animtest module to stop the animation. Review Chapter 2 and the preceding

142 Chapter 3 n 3D Programming Concepts

section in this chapter and see if you can add statements that will stop the

animation when certain conditions are met.

3D Audio

Environmental sounds with a 3D component contribute greatly to the immersive

aspect of a game by providing positional cues that mimic the way sounds happen

in real life.

We can control 3D audio in the scene in much the same way we do 3D visual

objects.

Type the following program, and save it as \3D2E\demo\animaudio.cs.

// ==
// animaudio.cs
//
// This module contains the definition of an audio emitter, which uses
// a synthetic water drop sound. It also contains functions for placing
// the test emitter in the game world and moving the emitter.
// ==

datablock AudioProfile(TestSound)
// ——
// Definition of the audio profile
// ——
{
filename = "~/data/sound/testing.ogg"; // wave file to use for the sound
description = "AudioDefaultLooping3d"; // monophonic sound that repeats

preload = false; // Engine will only load sound if it encounters it
// in the mission

};

function InsertTestEmitter()
// ——
// Instantiates the test sound, then inserts it
// into the game world to the right and offset somewhat
// from the player’s default spawn location.
// ——
{
// An example function which creates a new TestSound object
%emtr = new AudioEmitter() {
position = "0 0 0";
rotation = "1 0 0 0";

3D Programming 143

scale = "1 1 1";
profile = "TestSound"; // Use the profile in the datablock above
useProfileDescription = "1";
type = "2";
volume = "1";
outsideAmbient = "1";
referenceDistance = "1";
maxDistance = "100";
isLooping = "1";
is3D = "1";
loopCount = "-1";
minLoopGap = "0";
maxLoopGap = "0";
coneInsideAngle = "360";
coneOutsideAngle = "360";
coneOutsideVolume = "1";
coneVector = "0 0 1";
minDistance = "20.0";

};
MissionCleanup.add(%emtr);

// Player setup-
%emtr.setTransform("200 -52 200 0 0 1 0"); // starting location
echo("Inserting Audio Emitter " @ %emtr);
return %emtr;

}

function AnimSound(%snd, %dist)
// ——
// moves the %snd by %dist amount each time
// ——
{
%xfrm = %snd.getTransform();
%lx = getword(%xfrm,0); // first, get the current transform values
%ly = getword(%xfrm,1);
%lz = getword(%xfrm,2);
%rx = getword(%xfrm,3);
%ry = getword(%xfrm,4);
%rz = getword(%xfrm,5);
%lx þ = %dist; // set the new x position
%snd.setTransform(%lx SPC %ly SPC %lz SPC %rx SPC %ry SPC %rz SPC %rd);
schedule(200,0,AnimSound, %snd, %dist);

144 Chapter 3 n 3D Programming Concepts

}

function DoAudioMoveTest()
// ——
// a function to tie together the instantiation
// and the movement in one easy to type function
// call.
// ——
{
%ms = InsertTestEmitter();
AnimSound(%ms,1);

}
DoAudioMoveTest(); // by putting this here, we cause the test to start

// as soon as this module has been loaded into memory

In this program, we also have a datablock that defines an audio profile. It

contains the name of the ogg (sound) file that contains the sound to be played,

a descriptor that tells Torque how to treat the sound, and a flag to indicate

whether the engine should automatically load the sound or wait until it

encounters a need for the sound. In this case, the engine will wait until it

knows it needs the file.

No t e

Torque supports both wave (.wav) and Ogg Vorbis (.ogg) audio file formats. If you do not include
the extension part of an audio file’s name when specifying one in a datablock or an audio object,
Torque will automatically tack the .wav extension onto the file name and then go look for the
audio file. If Torque cannot find the file using the .wav extension, it will then add the .ogg
extension instead and go look for the file again.

If you do include an extension (.wav or .ogg) as part of the file name, then Torque will look for the
specified file name with extension and give up if the file is not found.

The InsertTestEmitter function creates an audio object with a call to new

AudioEmitter, and there are quite a few properties to be set. These properties will

be explained in greater detail in Chapter 20.

A difference to note compared to the earlier modules you created is the last line,

which is a call to DoAudioMoveTest. This allows us to load and run the program in

one go, using the exec call. After the Torque Engine compiles the program, it

loads it into memory and runs through the code. In our earlier program, like the

AnimShape module, Torque would encounter only the datablock and function

definitions. Because they are definitions, they aren’t executed—they’re just

loaded into memory. The last line, however, is not a definition. It is a statement

3D Programming 145

that calls a function. So when Torque encounters it, Torque looks to see if it

has the function resident in memory, and if so, it executes the function according

to the syntax of the statement. Statements in script modules that are not part of

function definitions or datablock definitions are sometimes called naked state-

ments, or more commonly, inline statements. They are ‘‘inline’’ because they are

executed as soon as they are encountered (as if in a lineup), not saved elsewhere

in memory prior to being used.

To use the program, follow these steps:

1. Make sure you’ve saved the file as \3D2E\demo\ animaudio.cs.

2. Run the Torque FPS demo.

3. After you spawn in, run down to the docks and out onto a dock, then turn

around and face inland.

4. Press F11 to enter theMission Editor, and then bring up the console window.

5. Type in the following, and press Enter after the semicolon:
exec("demo/animaudio.cs");

You should get a response in the console window similar to this:
Compiling demo/animaudio.cs...
Loading compiled script demo/animaudio.cs.

You should also begin to hear the dripping ‘‘test’’ sound off to the center-left

side. If you wait without moving your player in any way, not even using the

mouse to turn his head, you will notice the sound slowly approach you from

the left, pass over to the right in front of you, and then go off into the distance

to the left. Pretty neat, huh?

You’ll also notice, while in the Mission Editor, a big black ball of ‘‘points’’ rolling

from left to right. That is the construct that displays the presence and properties

of an audio emitter.

Moving Right Along
So, we’ve now seen how 3D objects are constructed from vertices and faces, or

polygons. We explored how they fit into that virtual game world using trans-

formations and that the transformations are applied in a particular order—scaling,

146 Chapter 3 n 3D Programming Concepts

rotation, and then finally translation. We also saw how different rendering

techniques can be used to enhance the appearance of 3D models.

Then we learned practical ways to apply those concepts using program code

written using TorqueScript and tested with the Torque Game Engine.

In the next chapter, we will dive deeper into learning how to use TorqueScript.

Moving Right Along 147

This page intentionally left blank

Game Programming

In the preceding two chapters you were introduced to a few new concepts:

programming, 3D graphics, 3D object manipulation, and stuff like that. Most of

it was fairly broad, in order to give you a good grasp of what you can do to make

your game.

The next bunch of chapters get down and dirty, so to speak. We’re going to muck

around with our own hands examining things, creating things, and making

things happen.

In this chapter we’re going to hammer at the TorqueScript for a while, writing

actual code that will be used to develop our game. We’ll examine in detail how

the code works in order to gain a thorough understanding of how Torque works.

The game we are going to create has the rather unoriginal name of Emaga, which

is just agame spelled backward. The Chapter 4 version will be called Emaga4. Of

course, you may—and probably should—substitute whatever name you wish!

TorqueScript
As I’ve said before, TorqueScript is much like C/C++, but there are a few differ-

ences. TorqueScript is typeless—with a specific exception regarding the differ-

ence between numbers and strings—and you don’t need to preallocate storage

space with variable declarations.

149

chapter 4

You can control all aspects of a game—from game rules and nonplayer charac-

ter behavior to player scoring and vehicle simulation—through the use of

TorqueScript. A script comprises statements, function declarations, and package

declarations.

Most of the syntax in Torque Game Engine (TGE) Script language is similar to

C/C++ language, with a high correlation of keywords (see Table A.3 in

Appendix A) between the two, although, as is often the case in scripting lan-

guages, there is no type enforcement on the variables, and you don’t declare

variables before using them. If you read a variable before writing it, it will be an

empty string or zero, depending on whether you are using it in a string context

or a numeric context.

The engine has rules for how it converts between the script representation of

values and its own internal representation. Most of the time the correct script

format for a value is obvious; numbers are numbers (also called numerics), and

strings are strings. The tokens true and false can be used for ease of code reading

to represent 1 and 0, respectively. More complicated data types will be contained

within strings; the functions that use the strings need to be aware of how to

interpret the data in the strings.

Strings

String constants are enclosed in single quotes or double quotes. A single-quoted

string specifies a tagged string—a special kind of string used for any string

constant that needs to be transmitted across a connection. The full string is sent

once, the first time. And then whenever the string needs to be sent again, only the

short tag identifying that string is sent. This dramatically reduces bandwidth

consumption by the game.

A double-quoted (or standard) string is not tagged; therefore, whenever the string

is used, storage space for all of the characters contained in the string must be

allocated for whatever operation the string is being used for. In the case of sending

a standard string across connections, all of the characters in the string are trans-

mitted, every single time the string is sent. Chat messages are sent as standard

strings, and because they change each time they are sent, creating tag ID numbers

for chat messages would be pretty useless.

Strings can contain formatting codes, as described in Table 4.1.

150 Chapter 4 n Game Programming

Objects

Objects are instances of object classes, which are a collection of properties and

methods that together define a specific set of behaviors and characteristics. A

Torque object is an instantiation of an object class. After creation, a Torque object

has a unique numeric identifier called its handle. When two handle variables have

the same numeric value, they refer to the same object. An instance of an object

can be thought of as being somewhat like a copy of an object.

When an object exists in a multiplayer game with a server and multiple clients,

the server and each client allocate their own handle for the object’s storage in

memory. Note that datablocks (a special kind of object) are treated differently—

more about this a little later.

No t e

Methods are functions that are accessible through objects. Different object classes may have some
methods that are common between them, and they may have some methods that are unique to
themselves. In fact, methods may have the same name, but work differently, when you move from
one object class to another.

Properties are variables that belong to specific objects and, like methods, are accessed through
objects.

Creating an Object

When creating a new instance of an object, you can initialize the object’s fields in

the new statement code block, as shown here:

TorqueScript 151

Table 4.1 TorqueScript String Formatting Codes

Code Description

\r Embeds a carriage return character.

\n Embeds a newline character.

\t Embeds a tab character.

\xhh Embeds an ASCII character specified by the hex number (hh) that follows the x.

\c Embeds a color code for strings that will be displayed on-screen.

\cr Resets the display color to the default.

\cp Pushes the current display color onto a stack.

\co Pops the current display color off the stack.

\cn Uses n as an index into the color table defined by GUIControlProfile.fontColors.

%handle = new InteriorInstance()
{

position = "0 0 0";
rotation = "0 0 0";
interiorFile = %name;

};

The handle of the newly created InteriorInstance object is inserted into the

variable %handlewhen the object is created. Of course, you could use any valid and

unused variable you want, like %obj, %disTing, or whatever. Note in the preceding

example that %handle is a local variable, so it is only in scope—or valid—within the

functionwhere it is used. Once thememory is allocated for the new object instance,

the engine then initializes the object’s properties as directed by the program

statements embedded inside the new code block. Once you have the object’s unique

handle—as assigned to %handle in this case—you can use the object.

Using Objects

To use or control an object, you can use the object’s handle to access its prop-

erties and functions. If you have an object handle contained in the local variable

%handle, you can access a property of that object this way:

%handle.aproperty = 42;

Handles are not the only way to access objects. You can assign objects by name, if

you don’t have a handle at hand. Objects are named using strings, identifiers, or

variables containing strings or identifiers. For example, if the object in question is

named MyObject, all of the following code fragments (A, B, C, D) are the same.

A

MyObject.aproperty = 42;

B

"MyObject".aproperty = 42;

C

%objname = MyObject;
%objname.aproperty = 42;

D

%objname = "MyObject";
%objname.aproperty = 42;

152 Chapter 4 n Game Programming

These examples demonstrate accessing a property field of an object; you invoke

object methods (functions) in the same way. Note that the object name—

MyObject—is a string literal, not a variable. There is no % or $ prefixed to the

identifier. A string literal is a string embedded in the code, as you see in B and D

above with ‘‘MyObject’’.

Object Functions

You can call a function referenced through an object this way:

%handle.afunction(42, "arg1", "arg2");

Note that the function afunction can also be referred to as amethod of the object

contained in %handle. In the preceding example, the function named afunction

will be executed. There can be multiple instances of functions named afunction

in a script, but each must be part of different namespaces. The particular instance

of afunction to be executed will be selected according to the object’s namespace

and the namespace hierarchy. For more about namespaces, see the sidebar.

Name s p a c e s

Namespaces are means of defining a formal context for variables. Using namespaces allows us to
use different variables that have the same name without confusing the game engine or ourselves.

If you recall the discussion in Chapter 2 about variable scope, you will remember that there are
two scopes: global and local. Variables of global scope have a ‘‘$’’ prefix, and variables of local
scope have a ‘‘%’’ prefix. Using this notation, we can have two variables---say, $maxplayers
and %maxplayers---that can be used side by side, yet whose usage and meaning are completely
independent from each other. %maxplayer can only be used within a specific function, while
$maxplayer can be used anywhere in a program. This independence is like having two
namespaces.

In fact, %maxplayer can be used over and over in different functions, but the values it holds
only apply within any given specific function. In these cases, each function is its own de facto
namespace.

We can arbitrarily assign variables to a namespace by using special prefixes like this:

$Game::maxplayers

$Server::maxplayers

We can have other variables belonging to the namespace as well:

$Game::maxplayers

$Game::timelimit

$Game::maxscores

TorqueScript 153

The identifier between the ‘‘$’’ and the ‘‘::’’ can be completely arbitrary---in essence, it is a qualifier.
By qualifying the variable that follows, it sets a context in which the variable is meaningful.

Just as functions have a de facto namespace (the local scope), objects have their own name-
spaces. Methods and properties of objects are sometimes called member functions and member
variables. The ‘‘member’’ part refers to the fact that they are members of objects. This membership
defines the context, and therefore the namespace, of the methods and properties (member
functions and member variables).

So, you can have many different object classes that have properties of the same name, yet they
refer only to the objects that belong to that class. You can also have many different instances of
an object, and the methods and properties of each instance belong to the individual instance.

In these examples:

$myObject.maxSize

$explosion.maxSize

$beast.maxSize

the maxSize property could have three entirely different meanings. For $myObject, maxSize
might mean the number of items it can carry. For $explosion, it might mean how large the
blast radius is. For $beast, it might mean how tall the creature is.

154 Chapter 4 n Game Programming

When an object’s function is called, the first parameter is the handle of the object

containing the function. Therefore, the function definition of the afunction

method in the preceding example would actually have four parameters in its

parameter list, the first of which will be the %this parameter. Note that only the

last three parameters are used when you call the afunction method. The first

parameter that corresponds to the %this parameter in the definition is auto-

magically inserted by the engine when you call the function. You may be familiar

with the this token in C/C++; however, in Torque there is nothing special about

it. By prior convention, that variable name is often used when referring to an

object’s handle within one of its methods, but you could call that parameter

anything you want.

If you want to access a field of an object, you always have to use something that

evaluates to an object handle or a name followed by a dot followed by the field

name, as in the A, B, C, and D code fragments seen earlier. The only exception to

this rule is in the sequence of field initialization statements when creating an

object with the new statement.

Datablocks

A datablock is a special kindof object containing a set of characteristics that are used

to describe another object’s properties. Datablock objects exist simultaneously

on the server and all its connected clients. Every copy of a given datablock uses the

same handle whether it is on the server or a client.

By convention, datablock identifiers have the form NameData. VehicleData,

PlayerData, and ItemData are all examples of datablock identifiers. Although

datablocks are objects, we typically don’t explicitly call them objects when refer-

ring to them, in order to avoid semantic confusion with regular objects.

A VehicleData datablock contains many attributes describing the speed, mass,

and other properties that can be applied to a Vehicle object. When created, a

Vehicle object is initialized to reference some already-existing VehicleData

datablocks that will tell it how to behave. Most objects can come and go

throughout the course of the game, but datablocks are created once and are not

deleted. Datablocks have their own specific creation syntax:

datablock ClassIdentifier(NameIdentifier)
{

InitializationStatements
};

The value of this statement is the handle of the created datablock.

ClassIdentifier is an existing datablock class name, like PlayerData. Name-

Identifier is the datablock name you’ve chosen. In both cases you must use valid

identifiers. InitializationStatements is a sequence of assignment statements.

The assignment statements assign values to datablock field identifiers. It’s pos-

sible for the contents of these fields to be accessible by both the script code and

the engine code—and in fact that is often the case. In that situation you of course

need to assign a value to the field that makes sense for the type of information it’s

supposed to be holding.

You don’t have to restrict yourself to only initializing (and later using) fields that

are accessible by the engine code. An object can have other fields as well; the

engine code can’t read them, but the scripts can.

Finally, note that there’s a variation on the datablock creation syntax:

datablock ClassIdentifier(NameIdentifier : CopySourceIdentifier)
{

InitializationStatements
};

TorqueScript 155

CopySourceIdentifier specifies the name of some other datablock from which to

copy field values before executing InitializationStatements. This other datablock

must be of the same class as the datablock you are creating, or a superclass

of it. This is useful if you want to make a datablock that should be almost exactly

like a previously created datablock (with just a few changes) or if you want to

centralize the definitions of some characteristics in one datablock that can then

be copied by multiple other datablocks.

Game Structure
When you create your game, you can use pretty well any organizational structure

you like. Your game will comprise script program modules, graphics images, 3D

models, audio files, and various other data definition modules.

The only real limitation in how you structure your game folders is that the root

main modulemust reside in the same folder as the Torque Engine executable, and

this folder will be the game root folder.

The least you should do to sensibly organize your game folders is to have a

subtree that contains common code, code that would be essentially the same

between game types and variations, and another subtree that would contain the

control code and specific resources that pertain to a particular game, game type,

or game variation. GarageGames uses these two basic subtrees, common and

control, in its sample games, although the company uses different names (such as

fps, rw, racing, and show) for variations of the control subtree. See Figure 4.1 for a

simple breakdown diagram.

156 Chapter 4 n Game Programming

Figure 4.1
General game folder tree.

In the game we are creating, we will call the control subtree control.

Source files for TorqueScript have the .cs extension. After the source files are

compiled, they have an extension of .cs.dso. There is no way to convert a .cs.dso

file back into a .cs file, so you must make sure to hang on to your original source

files and back them up regularly.

When you launch TGE, it looks for themodule main.cs located in the same folder

(the game root folder, shown in the following—the general tree format used for

the Emaga set of tutorial sample games used in this book) as the TGE executable.

In this chapter we will be using a simplified version of this tree. In the distribution

of TGE you receive with the CD, the executable is called tge.exe. The particular

main.cs file located in the game root folder can be thought of as the root main

module. This expression is useful for distinguishing that particular main.cs

module from others with the same name that aren’t in the game root folder.

emaga (game root folder)
common

client
debugger
editor
help
lighting
server
ui

cache
control

client
misc
interfaces

data
maps
models

avatars
items
markers
weapons

particles
sound
structures

docks
hovels
towers

Game Structure 157

server
misc
players
vehicles
weapons

These other main.cs modules are the root modules for the packages in the game.

Although it isn’t explicitly designated as such, the root main module functions as

the root package of the game.

It’s important to realize that the folder structure just outlined is not cast in stone.

Note that although it is similar, it is still not exactly the same as the format used in

the Torque sample games. As long as the root main module is in the same folder

as the demo.exe executable, you can use whatever folder structure suits your

needs. Of course, you will have to ensure that all of the hard-coded paths in the

source modules reflect your customized folder structure.

P a c k a g e s , A d d - o n s , Mod s , a n d Modu l e s

If you find the terminology confusing, don’t fret---it is a little bit less than straightforward at first
blush.

The first thing to understand is that the term Mod is an abbreviated, or truncated, form of the
word modification. Mods are changes that people make to existing games, customizing the games
to look or play differently. The term is often used in the independent game development scene.
The word Mod is often capitalized.

What we are doing when we create the Emaga game is in many ways similar to creating a Mod---
much like a certain kind of Mod that is often called a Total Conversion. Torque, however, is not a
game; it is an engine. So we are in reality not modifying an existing game, but, rather, we are
creating our own.

Also, there is a bit of an extra wrinkle here. When we create our game, we are going to provide
some features that will allow other people to modify our game! To avoid total confusion, we are
going to call this capability an add-on capability rather than a Mod capability. And we’ll refer to
the new or extra modules created by other people for our game as add-ons.

A module is essentially the melding of a program source file in text form with its compiled version.
Although we usually refer to the source code version, both the source file version and the
compiled (object code, or in the case of Torque, byte code) version are just different forms of the
same module.

A package is a Torque construct that encapsulates functions that can be dynamically loaded and
unloaded during program execution. Scripts often use packages to load and unload the different
game types and related functions. Packages can be used to dynamically overload functions using
the parent::function script mechanism in the packaged function. This is useful for writing
scripts that can work with other scripts without any knowledge of those scripts.

158 Chapter 4 n Game Programming

To replace the graphical Help features in the Torque demo, for example, you could create one or
more source code modules that define the new Help features and that together could compose a
Mod to the graphical Help package and that could also be considered a Mod to the Torque demo
game as a whole.

Clear as mud?

Figure 4.2 shows the simplified folder tree we will be using for this chapter’s

sample game, Emaga4. The rectangles indicate folder names, the partial rec-

tangles with the wavy bottoms are source files, and the lozenge shapes indicate

binary files. Those items that are not in gray are the items we will be dealing with

in this chapter.

Game Structure 159

Figure 4.2
The Emaga4 folder tree.

Server Versus Client Design Issues
The Torque Engine provides built-in client/server capability. In fact, the engine is

designed and built around the client/server model to such a degree that even if

you are going to create a single-player game, you will still have both a server side

and a client side to your code.

A well-designed online multiplayer game puts as much of the decision-making

activity into the hands of the server as possible. This greatly reduces the chances

that dishonest players could modify their clients to enable cheating or otherwise

gain advantage over other, more honest players.

Conversely, a well-designed online multiplayer game only uses the client side to

manage the interface with the human player—accepting input, displaying or

generating output, and providing setup and game navigation tools.

This emphasis on server-side decisions has the potential to rapidly drain network

bandwidth. This can lead to lag, a situation where a player’s actions are not

reflected on the server in a timely fashion. Torque has a highly optimized net-

working system designed to mitigate against these kinds of problems. For

example, most strings of data are transmitted only once between clients and the

game server. Anytime a string that has already been transmitted needs to be sent

again, a tag is sent instead of the full string. The tag is nothing more than a

number that identifies the string to be used, so the full string need not be sent

again. Another approach is an update masking system that allows the engine to

only provide updates from the server to its clients of data that has actually

changed since the last update.

We will follow these guidelines when designing our sample game.

Common Functionality
The common subtree contains code and resources for the following capabilities:

n Common server functions and utilities, such as authentication

n Common client functions and utilities, such as messaging

n In-game world editor

n Online debugger

n Lighting management and lighting cache control code

160 Chapter 4 n Game Programming

n Help features and content files

n User interface definitions, widget definitions, profiles, and images

We will not be using all of these features in the code we’ll be looking at in this

chapter, but by the end of the book, we will be using all of it!

Preparation
In this chapter we will be concentrating on the control scripts found in the

control subtree, as outlined in Figure 4.2. To prepare for this, you need to set up

your development tree, as follows:

1. In your 3D2E\RESOURCES\CH4 folder, locate the EMAGA4 folder

(not the EMAGA4 BOOK CODE folder).

2. Copy the EMAGA4 folder to your root folder on your hard drive, so that

the path to the new folder is \EMAGA4 (you can use any hard drive you

want; I won’t be specifying the hard drives in the paths).

You probably won’t use more than an additional 15MB of disk space, but you

should have more available for backups and temporary files and so on.

You will note that there is no main.cs file in the same folder as tge.exe. This is by

design, because that is one of the files you will be creating. Also note that there are

no .cs files in the control folder either. Again, this is intentional—you will be

creating them from this chapter.

The code in Emaga4 is pretty close to the bare minimum in terms of the game

control code. In later chapters we will expand on this skeletal implementation as

we add more and more useful features and flesh out the game.

Root Main
Once it has found the root main module, Torque compiles it into a special binary

version containing byte code, a machine-readable format. The game engine then

begins executing the instructions in the module. The root package can be used to

do anything you like, but the convention established with the GarageGames code

is that the root package carries out the following functions:

n Performs generic initialization

n Performs the command line parameter parsing and dispatch

Root Main 161

n Defines the command line help package

n Invokes packages and add-ons (Mods)

Here is the root main.cs module. Type it in, and save it as Emaga4\main.cs. You

can skip the comments if you like, in order to minimize your typing.

//——
// ./main.cs
//
// root main module for 3D2E emaga4 tutorial game
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//——

// ==
// ========================= Initializations ===============================
// ==

$usageFlag = false; //help won’t be displayed unless the command line
//switch (-h) is used

$logModeEnabled = true; //track the logging state we set in the next line.
SetLogMode(2); // overwrites existing log file & closes log file at exit.

// ==
// ======================= Function Definitions ============================
// ==

function OnExit()
//——
// This is called from the common code modules. Any last gasp exit
// activities we might want to perform can be put in this function.
// We need to provide a stub to prevent warnings in the log file.
//——
{
}

function OnStart()
//——
// This is called from the common code modules.
// We need to provide a stub to prevent warnings in the log file.
//——
{

162 Chapter 4 n Game Programming

}

function ParseArgs()
//——
// handle the command line arguments
//
// this function is called from the common code
//
//——
{
for(%i = 1; %i < $Game::argc ; %i++) //loop thru all command line args
{
$currentarg = $Game::argv[%i]; // get current arg from the list
$nextArgument = $Game::argv[%i+1]; // get arg after the current one
$nextArgExists = $Game::argc-%i > 1;// if there *is* a next arg, note that
$logModeEnabled = false; // turn this off; let the args dictate

// if logging should be enabled.

switch$($currentarg)
{
case "-?": // the user wants command line help, so this causes the
$usageFlag = true; // Usage function to be run, instead of the game
$argumentFlag[%i] = true; // adjust the argument count

case "-h": // exactly the same as "-?"
$usageFlag = true;
$argumentFlag[%i] = true;

}
}

}

function Usage()
//——
// Display the command line usage help
//——
{
// NOTE: any logging entries are written to the file ’console.log’
Echo("\n\nemaga4 command line options:\n\n" @

"-h, -? display this message\n");
}

function LoadAddOns(%list)
//——
// Exec each of the startup scripts for add-ons.

Root Main 163

//——
{
if (%list $= "")

return;
%list = NextToken(%list, token, ";");
LoadAddOns(%list);
Exec(%token @ "/main.cs");

}

// ==
// ================ Module Body - Inline Statements ==========================
// ==
// Parse the command line arguments
ParseArgs();

// Either display the help message or start the program.
if ($usageFlag)
{
EnableWinConsole(true);// send logging output to a Windows console window
Usage();
EnableWinConsole(false);
Quit();

}
else
{

// scan argument list, and log an Error message for each unused argument
for ($i = 1; $i < $Game::argc; $i++)
{
if (!$argumentFlag[$i])
Error("Error: Unknown command line argument: " @ $Game::argv[$i]);

}

if (!$logModeEnabled)
{
SetLogMode(6); // Default to a new log file each session.

}
// Set the add-on path list to specify the folders that will be
// available to the scripts and engine. Note that *all* required
// folder trees are included: common and control as well as the
// user add-ons.
$pathList=$addonList!$="" ? $addonList@ ";control;common" : "control;common";
SetModPaths($pathList);

164 Chapter 4 n Game Programming

// Execute startup script for the common code modules
Exec("common/main.cs");

// Execute startup script for the control specific code modules
Exec("control/main.cs");

// Execute startup scripts for all user add-ons
Echo("——————— Loading Add-ons ———————");
LoadAddOns($addonList);
Echo("Engine initialization complete.");

OnStart();
}

This is a fairly robust root main module. Let’s take a closer look at it.

In the initializations section, the $usageFlag variable is used to trigger a simple

Help display for command line use of tge.exe. It is set to false here; if the user

specifies the -? or -h flags on the command line, then this flag will be set to true.

After the usage flag, we set the log mode and enable logging. Logging allows us to

track what is happening within the code. When we use the Echo, Warn, or Error

functions, their output is sent to the console.log file, in the root game folder.

The stub routines OnExit and OnStart are next. A stub routine is a function that is

defined but actually does nothing. The common code modules have a call to this

routine, but we have nothing for it to do. We could just leave it out, but a good

policy is to provide an empty stub to avoid warning messages from appearing in

our log file—when the Torque Engine tries to call a nonexistent function, it

generates a warning.

Then there is the ParseArgs function. Its job is to step through the list of com-

mand line arguments, or parameters, and performwhatever tasks you want based

upon what arguments the user provided. In this case we’ll just include code to

provide a bare-bones usage, or Help, display.

Next is the actual Usage function that displays the Help information.

This is followed by the LoadAddOns routine. Its purpose is to walk through the list

of add-ons specified by the user on the command line and to load the code for

each. In Emaga4 there is no way for the user to specify add-ons orMods, but (you

knew there was a but coming, didn’t you?) we still need this function, because

we treat our common and control modules as if they were add-ons. They are

Root Main 165

always added to the list in such a way that they get loaded first. So this function is

here to look after them.

After the function definitions we move into the in-line program statements.

These statements are executed at load time—when the module is loaded into

memory with the Exec statement. When Torque runs, after the engine gets itself

sorted out, it always loads the root main module (this module) with an Exec

statement. All of the other script modules are loaded as a result of what this

module does.

The first thing that happens is a call to the ParseArgs function, which we saw

earlier. It sets the $usageFlag variable for us, you will recall.

Next is the block of code that examines the $usageFlag and decides what to do:

either display the usage Help information or continue to run the game program.

If we are not displaying the usage information, we move into the code block after

the else.

The first thing we do in here is check to see if there are any unused arguments

from the command line. If there are, that means the program doesn’t understand

the arguments and there was some kind of error, which we indicate with the

Error function and a useful message.

After that we set the log mode, if logging has been enabled.

Next, we build the lists that help Torque find our add-ons. We notify Torque

about the required folder paths by passing the list to the SetModPaths function.

Then we call the main module for the common code. This will proceed to load all

the required common modules into memory, initialize the common functions,

and basically get the ball rolling over there. We will talk about the common code

modules in a later chapter.

After that we do the same thing for the control code modules, the details of which

we will cover later in this chapter.

Then we actually start loading the add-ons using the previously defined Load-

AddOns function.

Finally, wemake a call to OnStart. This will call all versions of OnStart that appear

in the add-on packages in order of their appearance in $addonList, with common

being first, control next, and finally this root main module. If there is an OnStart

defined in common, then it gets called. Next, the one in control, and so on.

166 Chapter 4 n Game Programming

When we get to the end of the module, the various threads initiated by the

OnStart calls are ticking over, doing their own things.

So now what? Well, our next point of interest is the control/main.cs module,

which we called with the Exec function just before we started loading the add-ons.

Control Main
The main.cs module for the control code is next on our tour. Its primary pur-

poses in Emaga4 are to define the control package and to call the control code

initialization functions. (In later chapters we will expand on the role of this

module.) Following is the control/main.cs module. Type it in, and save it as

Emaga4\control\main.cs.

//——
// control/main.cs
// main control module for 3D2E emaga4 tutorial game
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//——
//
//——
// Load up defaults console values.

// Defaults console values

//——
// Package overrides to initialize the mod.
package control {

function OnStart()
//——
// Called by root main when package is loaded
//——
{
Parent::OnStart();
Echo("\n——————— Initializing control module ———————");

// The following scripts contain the preparation code for
// both the client and server code. A client can also host
// games, so they need to be able to act as servers if the
// user wants to host a game. That means we always prepare

Control Main 167

// to be a server at anytime, unless we are launched as a
// dedicated server.
Exec("./initialize.cs");
InitializeServer(); // Prepare the server-specific aspects
InitializeClient(); // Prepare the client-specific aspects

}

function OnExit()
//——
// Called by root main when package is unloaded
//——
{

Parent::onExit();
}

}; // Client package
ActivatePackage(control); // Tell TGE to make the client package active

Not a whole lot happens in here at the moment, but it is a necessary module

because it defines our control package.

First, the parent OnStart function is called. This would be the version that resides

in root main, which we can see doesn’t have anything to do.

Then the initialize.cs module is loaded, after which the two initialization func-

tions are called.

Finally, there is the OnExit function, which does nothing more than pass the buck

to the OnExit function in the root main module.

All in all, control/main.cs is a fairly lazy, though important, little module.

Debugg i n g S c r i p t s U s i n g t h e t r a c e F u n c t i o n

The engine adds extra commentary to the log file. Extremely useful are the notations that tell you
when the engine execution has just begun executing in a particular function or is just about to
leave a particular function. The trace lines include the values of any arguments used when the
function is entered and the contents of the return value when leaving a function.

Here is a fragmentary example of what the trace output can look like:

Entering GameConnection::InitialControlSet(1207)
Setting Initial Control Object

Entering Editor::checkActiveLoadDone()
Leaving Editor::checkActiveLoadDone - return 0

168 Chapter 4 n Game Programming

Entering GuiCanvas::setContent(Canvas, PlayGui)
Entering PlayGui::onWake(1195)

Activating DirectInput . . .

keyboard0 input device acquired.
Leaving PlayGui::onWake - return
Entering GuiCanvas::checkCursor(Canvas)

Entering (null)::cursorOff()
Leaving (null)::cursorOff - return

Leaving GuiCanvas::checkCursor - return
Leaving GuiCanvas::setContent - return

Leaving GameConnection::InitialControlSet - return
Entering (null)::DoYaw(-9)
Leaving (null)::DoYaw - return -0.18
Entering (null)::DoPitch(7)
Leaving (null)::DoPitch - return 0.14
Entering (null)::DoYaw(-6)

To turn on the trace function, add the following statement to the first line of your root main.cs
file:

trace(true);

To turn off the trace function, insert this statement at the place in the code where you would
like to turn tracing off:

trace(false);

Initialization
The control/initialize.cs module will, in later chapters, become two different

modules—one for the server code and one for the client code. Right now, we

have a fairly limited amount of work to do, so we’ll just house the initialization

functions for the two ends in the same module. Here is the control/initialize.cs

module. Type it in, and save it as Emaga4\control\initialize.cs.

//==

// control/initialize.cs

//

// control initialization module for 3D2E emaga4 tutorial game
//

// Copyright (c) 2003, 2006 by Kenneth C. Finney.

//==

Initialization 169

function InitializeServer()
//——
// Prepare some global server information & load the game-specific module
//——
{

Echo("\n——————— Initializing module: emaga server ———————");

// Specify where the mission files are.
$Server::MissionFileSpec = "*/missions/*.mis";

InitBaseServer(); // basic server features defined in the common modules

// Load up game server support script
Exec("./server.cs");

createServer("SinglePlayer", "control/data/maps/book_ch4.mis");
}

function InitializeClient()
//——
// Prepare some global client information, fire up the graphics engine,
// and then connect to the server code that is already running in another
// thread.
//——
{

Echo("\n——————— Initializing module: emaga client ———————");

InitBaseClient(); // basic client features defined in the common modules

// these are necessary graphics settings
$pref::Video::allowOpenGL = true;
$pref::Video::displayDevice = "OpenGL";

// Make sure a canvas has been built before any gui scripts are
// executed because many of the controls depend on the canvas to
// already exist when they are loaded.

InitCanvas("Emaga4 - 3D2E Sample Game"); // Start the graphics system.

Exec("./client.cs");

%conn = new GameConnection(ServerConnection);
%conn.connectLocal();

}

170 Chapter 4 n Game Programming

First is the InitializeServer function. This is where we set up a global variable

that indicates to the game engine the folder tree where the map (also called

mission) files will be located.

Next, we prepare the server for operation by performing the common code

initialization using the InitBaseServer function. This allows us to get the server

code running full-bore, which we can do using the createServer call. We tell the

function that this will be a single-player game and that we are going to load up

the map control/data/maps/book_ch4.mis.

After that, we load the module that contains the game code, which is server-side

code.

Then we do the client-side initialization in the InitializeClient function. This

is a bit more involved. After performing the common code initialization with

InitBaseClient, we set up some global variables that the engine uses to prepare

the graphics system for start-up.

And that happens with the InitCanvas call. The parameter we pass in is a string

that specifies the name of the window that the game will be running in.

Then we load the control/client.cs module, which we’ll cover next in this chapter.

We’re getting warm now!

Next, we create a connection object using the GameConnection function. This

gives us an object that we will use from now on when referring to the connection.

Now we use that connection object to connect to the server using a local con-

nection. We don’t ever actually use the network or any network ports.

Client
The control/client.cs module is chock-full of good stuff. This is another module

that will need to have some of its code divested when it grows in later chapters.

The main activities taking place in here are as follows:

n Creation of a key map with key bindings

n Definition of a callback that gets called from Torque to generate a 3D

view

n Definition of an interface to hold the 3D view

Client 171

n Definition of a series of functions that hook key commands to avatar motion

n A series of stub routines

Here is the control/client.cs module. Type it in, and save it as Emaga4\control\

client.cs.

//==
// control/client.cs
//
// This module contains client specific code for handling
// the setup and operation of the player’s in-game interface.
//
// 3D2E emaga4 tutorial game
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//==

if (IsObject(playerKeymap)) // If we already have a player key map,
playerKeymap.delete(); // delete it so that we can make a new one

new ActionMap(playerKeymap);

$movementSpeed = 1; // m/s for use by movement functions

//——
// The player sees the game via this control
//——
new GameTSCtrl(PlayerInterface) {
profile = "GuiContentProfile";
noCursor = "1";

};

function PlayerInterface::onWake(%this)
//———
// When PlayerInterface is activated, this function is called.
//——
{

$enableDirectInput = "1";
activateDirectInput();

// restore the player’s key mappings
playerKeymap.push();

}

172 Chapter 4 n Game Programming

function GameConnection::InitialControlSet(%this)
//——
// This callback is called directly from inside the Torque Engine
// during server initialization.
//——
{
Echo ("Setting Initial Control Object");

// The first control object has been set by the server
// and we are now ready to go.

Canvas.SetContent(PlayerInterface);

}

//==
// Motion Functions
//==

function GoLeft(%val)
//——
// "strafing"
//———
{

$mvLeftAction = %val;

}

function GoRight(%val)
//———
// "strafing"
//——
{

$mvRightAction = %val;

}

function GoAhead(%val)
//——
// running forward
//——
{

$mvForwardAction = %val;

}

Client 173

function BackUp(%val)
//——
// running backwards
//——
{

$mvBackwardAction = %val;

}

function DoYaw(%val)
//——
// looking, spinning or aiming horizontally by mouse or joystick control
//——
{

$mvYaw += %val * ($cameraFov / 90) * 0.02;

}

function DoPitch(%val)
//——
// looking vertically by mouse or joystick control
//——
{

$mvPitch += %val * ($cameraFov / 90) * 0.02;

}

function DoJump(%val)
//——
// momentary upward movement, with character animation
//——
{
$mvTriggerCount2++;

}

//==
// View Functions
//==

function Toggle3rdPPOVLook(%val)
//——
// Enable the "free look" feature. As long as the mapped key is pressed,
// the player can view his avatar by moving the mouse around.
//——

174 Chapter 4 n Game Programming

{
if (%val)
$mvFreeLook = true;

else
$mvFreeLook = false;

}

function Toggle1stPPOV(%val)
//——
// switch between 1st and 3rd person point-of-views.
//——
{
if (%val)
{
$firstPerson = !$firstPerson;

}
}

//==
// keyboard control mappings
//==
// these are available when player is in game
playerKeymap.Bind(keyboard, w, GoAhead);
playerKeymap.Bind(keyboard, s, BackUp);
playerKeymap.Bind(keyboard, a, GoLeft);
playerKeymap.Bind(keyboard, d, GoRight);
playerKeymap.Bind(keyboard, space, DoJump);
playerKeymap.Bind(mouse, xaxis, DoYaw);
playerKeymap.Bind(mouse, yaxis, DoPitch);

// these ones are always available
GlobalActionMap.BindCmd(keyboard, escape, "", "quit();");
GlobalActionMap.Bind(keyboard, tilde, ToggleConsole);

//==
// The following functions are called from the client common code modules.
// These stubs are added here to prevent warning messages from cluttering
// up the log file.
//==
function onServerMessage()
{
}

Client 175

function onMissionDownloadPhase1()
{
}
function onPhase1Progress()
{
}
function onPhase1Complete()
{
}
function onMissionDownloadPhase2()
{
}
function onPhase2Progress()
{
}
function onPhase2Complete()
{
}
function onPhase3Complete()
{
}
function onMissionDownloadComplete()
{
}

176 Chapter 4 n Game Programming

Right off the bat, a new ActionMap called playerKeymap is created. This is a

structure that holds the mapping of key commands to functions that will be

performed—a mechanism often called key binding, or key mapping. We create

the new ActionMap with the intent to populate it later in the module.

Then we define the 3D control (TS, or ThreeSpace) we call PlayerInterface

(because that’s what it is), which will contain our view into the 3D world. It’s not

a complex definition. It basically uses a profile defined in the common code—

something we’ll explore in a later chapter. If we want to use our mouse to provide

view manipulation, we must set the noCursor property of the control to 1, or

true.

Then we define a method for the PlayerInterface control that describes what to

do when the control becomes active (‘‘wakes up’’). It’s not much, but what it

does is activate DirectInput in order to grab any user inputs at the keyboard or

mouse and then make the playerKeymap bindings active.

Next, we define a callback method for the GameConnection object (you know, the

one we created back there in control/main.cs). The engine invokes this method

internally when the server has established the connection and is ready to hand

control over to us. In this method we assign our player interface control to the

Canvas we created earlier in the InitializeClient function in the control/

initialize.cs module.

After that, we define a whole raft of motion functions to which we will later bind

keys. Notice that they employ global variables, such as $mvLeftAction. This

variable and others like it, each of which starts with $mv, are seen and used

internally by the engine.

Then there is a list of key bindings. Notice that there are several variations of the

Bind calls. First, there are binds to our playerKeymap, which makes sense. Then

there are binds to the GlobalActionMap; these bindings are available at all times

when the program is running, not just when an actual game simulation is under

way, which is the case with a normal action map.

Finally, there is a list of stub routines. All of these routines are called from within

the common code package. We don’t need them to do anything yet, but as

before, in order to minimize log file warnings, we create stub routines for the

functions.

Server 177

Server
The control/server.cs module is where game-specific server code is located. Most

of the functionality that is carried in this module is found in the form of methods

for the GameConnection class. Here is the control/server.cs module. Type it in,

and save it as Emaga4\control\server.cs.

//==
// control/server.cs
//
// server-side game specific module for 3D2E emaga4 tutorial game
// provides client connection management and player/avatar spawning
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//==
function OnServerCreated()
//——
// Once the engine has fired up the server, this function is called
//——
{

Exec("./player.cs"); // Load the player datablocks and methods
}

//==
// GameConnection Methods
// Extensions to the GameConnection class. Here we add some methods
// to handle player spawning and creation.
//==

function GameConnection::OnClientEnterGame(%this)
//——
// Called when the client has been accepted into the game by the server.
//——
{
// Create a player object.
%this.spawnPlayer();

}

function GameConnection::SpawnPlayer(%this)
//——
// This is where we place the player spawn decision code.
// It might also call a function that would figure out the spawn
// point transforms by looking up spawn markers.
// Once we know where the player will spawn, then we create the avatar.
//———
{

%this.createPlayer("0 0 220 1 0 0 0");
}
function GameConnection::CreatePlayer(%this, %spawnPoint)
//———
// Create the player’s avatar object, set it up, and give the player control
// of it.
//———
{

if (%this.player > 0)//The player should NOT already have an avatar object.
{ // If he does, that’s a Bad Thing.
Error("Attempting to create an angus ghost!");

}

// Create the player object
%player = new Player() {
dataBlock = MaleAvatar; // defined in player.cs
client = %this; // the avatar will have a pointer to its

}; // owner’s connection

178 Chapter 4 n Game Programming

// Player setup...
%player.setTransform(%spawnPoint); // where to put it

// Give the client control of the player
%this.player = %player;
%this.setControlObject(%player);

}

//==
// The following functions are called from the server common code modules.
// These stubs are added here to prevent warning messages from cluttering
// up the log file.
//==

function ClearCenterPrintAll()
{
}
function ClearBottomPrintAll()
{
}

The first function, OnServerCreated, manages what happens immediately after

the server is up and running. In our case we need the player-avatar datablocks

and methods to be loaded up so they can be transmitted to the client.

Then we define some GameConnection methods. The first one, OnClientEnter-

Game, simply calls the SpawnPlayer method, which then calls the CreatePlayer

method using the hard-coded transform provided.

CreatePlayer then creates a new player object using the player datablock defined

in control/player.cs (which we will review shortly). It then applies the transform

(which we created manually earlier) to the player’s avatar and then transfers

control to the player.

Finally, there are a couple more stub routines. That’s the end of them—for

now—I promise!

Player
The control/player.cs module defines the player datablock and methods for use

by this datablock for various things. The datablock will use the standard male

model, which in this case has been named player.dts. Figure 4.3 shows the

standard male avatar in the Emaga4 game world.

Player 179

Here is the control/player.cs module. Type it in, and save it as Emaga4\control\

player.cs.

//——
// control/player.cs
//
// player definition module for 3D2E emaga4 tutorial game
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//——
datablock PlayerData(MaleAvatar)
{

className = Avatar;
shapeFile = "~/player.dts";
emap = true;
renderFirstPerson = false;
cameraMaxDist = 4;
mass = 100;
density = 10;
drag = 0.1;
maxdrag = 0.5;
maxEnergy = 100;
maxDamage = 100;
maxForwardSpeed = 15;

180 Chapter 4 n Game Programming

Figure 4.3
Player avatar in Emaga4.

maxBackwardSpeed = 10;
maxSideSpeed = 12;
minJumpSpeed = 20;
maxJumpSpeed = 30;
runForce = 4000;
jumpForce = 1000;
runSurfaceAngle = 70;
jumpSurfaceAngle = 80;

};

//——
// Avatar Datablock methods
//——

//——

function Avatar::onAdd(%this,%obj)
{
}

function Avatar::onRemove(%this, %obj)
{

if (%obj.client.player == %obj)
%obj.client.player = 0;

}

The datablock used is the PlayerData class. It is piled to the gunwales with useful

stuff. Table 4.2 provides a summary description of each of the properties.

There aremanymore properties, which we aren’t using right now, available for the

avatar. We can also define our own properties for the datablock and access them,

through an instance object of this datablock, from anywhere in the scripts.

Last but not least, there are two methods defined for the datablock. The two

basically define what happens when we add a datablock and when we remove it.

We will encounter many others in later chapters.

Running Emaga4
Once you’ve typed in all the modules, you should be in a good position to test

Emaga4. Emaga4 is a fairly minimalist program. When you launch tge.exe, you

will be deposited directly into the game. Once you have been deposited in the

Running Emaga4 181

game, you have a small set of keyboard commands available to control your

avatar, as shown in Table 4.3.

After you have created all of the modules, you can run Emaga4 simply by double-

clicking Emaga4\tge.exe. You will ‘‘spawn’’ into the game world above the

ground and then drop down. When you hit the ground, your view will shake

from the impact. If you turn your player around, using the mouse, you will see

the view shown in Figure 4.4.

After spawning, you can run around the countryside, admire the countryside,

and jump.

182 Chapter 4 n Game Programming

Table 4.2 Emaga4 Avatar Properties

Property Description

className Defines an arbitrary class that the avatar can belong to.

shapeFile Specifies the file that contains the 3D model of the avatar.

emap Enables environment mapping on the avatar model.

renderFirstPerson When true, causes the avatar model to be visible when in first-person
point-of-view mode.

cameraMaxDist Maximum distance from the avatar to the camera in third-person point-
of-view mode.

mass The mass of the avatar in terms of the game world.

density Arbitrarily defined density.

drag Slows down the avatar through simulated friction.

maxdrag Maximum allowable drag.

maxEnergy Maximum energy allowed.

maxDamage Maximum damage points that can be sustained before the avatar is
killed.

maxForwardSpeed Maximum speed allowable when moving forward.

maxBackwardSpeed Maximum speed allowable when moving backward.

maxSideSpeed Maximum speed allowable when moving sideways (strafing).

minJumpSpeed Below this speed, you can’t make the avatar jump.

maxJumpSpeed Above this speed, you can’t make the avatar jump.

runForce The force, and therefore the acceleration, when starting to run.

jumpForce The force, and therefore the acceleration, when jumping.

runSurfaceAngle Maximum slope (in degrees) that the avatar can run on.

jumpSurfaceAngle Maximum slope (in degrees) that the avatar can jump on, usually
somewhat less than RunSurfaceAngle.

No t e

If you are examining the output in the console, or in console.log, you might find a line saying that
the file default.cs is missing---don’t worry, that file isn’t used in Emaga4 (or any of the other
example programs you will encounter). It is called from the common code base, which I will not be
modifying, because I want to keep it ‘‘pristine’’---exactly the same as it appears in the demo
provided by GarageGames.

You should feel free to dive into the common code base, find the offending line that is trying to
load the nonexistent file, and remove it, change it, or whatever. There are enough clues in the
console log to guide you. It’s good practice!

Running Emaga4 183

Table 4.3 Emaga4 Navigation Keys

Key Description

w Run forward.

s Run backward.

a Run (strafe) left.

d Run (strafe) right.

spacebar Jump.

Escape Quit game.

Tilde Open console.

Figure 4.4
Looking around the Emaga4 game world.

Moving Right Along
You should have a fairly simple game now. I’ll be the first to admit that there is

not much to do within the game, but then that wasn’t the point, really. By

stripping down to a bare-bones code set, we get a clearer picture of what takes

place in our script modules.

By typing in the code presented in this chapter, you should have added the

following files in your EMAGA4 folder:

\EMAGA4\main.cs

\EMAGA4\control\main.cs

\EMAGA4\control\client.cs

\EMAGA4\control\server.cs

\EMAGA4\control\initialize.cs

\EMAGA4\control\player.cs

The program you have will serve as a fine skeleton program upon which you can

build your game in the manner that you want.

By creating it, you’ve seen how the responsibilities of the client and server

portions of the game are divvied out.

You’ve also learned that your player’s avatar needs to have a programmatic

representation in the game that describes the characteristics of the avatar and

how it does things.

In the next chapter we will expand the game by adding game play code on both

the client and the server sides.

184 Chapter 4 n Game Programming

Game Play

In Chapter 4 we created a small game, Emaga4. Well, not really a game—more of

a really simple virtual reality simulation. We created a few important modules to

get the ball rolling.

In this chapter we’ll build on that humble beginning and grow toward something

with some game play challenge in it, called Emaga5. There will be some tasks to

perform (goals) and some things to make those tasks just that much harder

(dramatic tension).

To make this happen we’ll have to add a fair number of new control modules,

modify some of the existing ones, and reorganize the folder tree somewhat. We’ll

do that in reverse order, starting with the reorganization.

The Changes
You will recall that there are two key branches in the folder tree: common and

control. As before, we won’t worry about the common branch.

Folders

The control branch contained all of our code in the Chapter 4 version. For this

chapter we’ll use a more sophisticated structure. It’s important for you to

become familiar with the Emaga5 folder structure, so study Figure 5.1 for a few

minutes.

185

chapter 5

Modules

You will not need to type in the root main module again, because it won’t be any

different this time around. You can use the one you created for Emaga4.

In the control branch, the first major difference is that the initialize.cs module has

been split in two, with a client version and a server version. Each of the new

modules is now located in its respective branch: control/server/ and control/

client/. They still perform the same tasks as before, but splitting the initialize

functions and putting them in their permanent homes prepares us for all our

later organizational needs.

There were also the two modules: control/server.cs and control/client.cs. We will

now expand these and relocate them as control/server/server.cs and control/

client/client.cs, respectively.

186 Chapter 5 n Game Play

Figure 5.1
Emaga5 folder structure.

The final module from Chapter 4 is player.cs. We will be expanding it greatly and

relocating it to control/server/players/player.cs.

Furthermore, we will add several new modules to handle various functional

features of the game. We’ll address each file as we encounter it in the chapter.

Make sure you have copied the EMAGA5 folder from the RESOURCES\CH5

folder up to your hard drive’s root folder before proceeding, because that will

create our folder tree for us.

Control Modules

As before, the control modules are where we focus our game-specific energies. In

the root control folder is the control main module. The rest of the code modules

are divided between the client and server branches. The data branch is where our

art and other data definition resources reside.

control/main.cs

Type in the following code, and save it as the control main module at \EMAGA5\

control\main.cs. In order to save on space, there are fewer source code comments

than in the last chapter.

//——
// control/main.cs
// Copyright (c) 2003, 2006 Kenneth C. Finney
//——
Exec("./client/presets.cs");
Exec("./server/presets.cs");

package control {
function OnStart()
{

Parent::OnStart();
Echo("\n++++++++++++ Initializing control module ++++++++++++");
Exec("./client/initialize.cs");
Exec("./server/initialize.cs");
InitializeServer(); // Prepare the server-specific aspects
InitializeClient(); // Prepare the client-specific aspects

}
function OnExit()

Control Modules 187

{
Parent::onExit();

}
}; // Client package
ActivatePackage(control); // Tell TGE to make the client package active

Right off the bat, we can see some new additions. The two Exec statements at the

beginning load two files that contain presets. These are script variable assignment

statements.Wemake these assignments here to specify standard or default settings.

Some of the variables in those files pertain to graphics settings, others specify input

modes, and things like that.

Next we have the control package, which has a few minor changes in its OnStart

function. This is where we load the two new initialization modules and then call

the initialization functions for the server and then the client.

Client Control Modules
Modules that affect only the client side of the game are contained in the control/

client folder tree. The client-specific activities deal with functions like the

interface screens and displays, user input, and coordinating game start-up with

the server side of the game.

control/client/client.cs

Many features that were in client.cs in the last chapter are now found in other

modules. The key mapping and interface screen code that were located in this

module, client.cs, have been given homes of their own, as you’ll see later. Type in

the following code, and save it as \EMAGA5\control\client\client.cs.

//==
// control/client/client.cs
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//==
function LaunchGame()
{

createServer("SinglePlayer", "control/data/maps/book_ch5.mis");
%conn = new GameConnection(ServerConnection);
%conn.setConnectArgs("Reader");
%conn.connectLocal();

}

188 Chapter 5 n Game Play

function ShowMenuScreen()
{

// Start up the client with the menu...
Canvas.setContent(MenuScreen);
Canvas.setCursor("DefaultCursor");

}
function SplashScreenInputCtrl::onInputEvent(%this, %dev, %evt, %make)
{

if(%make)
{
ShowMenuScreen();

}
}
//==
// stubs
//==
function onServerMessage()
{
}
function onMissionDownloadPhase1()
{
}
function onPhase1Progress()
{
}
function onPhase1Complete()
{
}
function onMissionDownloadPhase2()
{
}
function onPhase2Progress()
{
}
function onPhase2Complete()
{
}
function onPhase3Complete()
{
}
function onMissionDownloadComplete()
{
}

Client Control Modules 189

We’ve added three new functions, the first of which is LaunchGame. The code

contained should be familiar from Emaga4. This function is executed when the

user clicks the Start Game button on the front menu screen of the game. (The

other options available on the front screen are Setup and Quit.)

Next is ShowMenuScreen, which is invoked when the user clicks the mouse or presses

a key when viewing the splash screen. The code it invokes is also familiar from

Emaga4.

The third function, SplashScreenInputCtrl::onInputEvent, is a callback method

used by a GuiInputControl (in this case the SplashScreenInputCtrl). Splash

ScreenInputCtrl::onInputEvent is attached to the splash screen for the narrow

purpose of simply waiting for user input; when that happens, it closes the splash

screen. We get the user input value in the %make parameter. Figure 5.2 shows what

the splash screen looks like.

The rest of the functions are the by-now-famous stub routines. These are mostly

client/server mission (map) loading and coordination functions. These will get

more attention in later chapters. You are free to leave out the stub routines, but if

you do, you will end up with a ton of warning messages in the log file.

control/client/interfaces/menuscreen.gui

All the user interface and display screens now have modules of their own, and

they reside in the interfaces branch of the client tree. Note that the extension of

190 Chapter 5 n Game Play

Figure 5.2
The Emaga5 splash screen.

these modules is .gui. Functionally, a .gui is the same as a .cs source module. They

both can contain any kind of valid script code, and both compile to the .dso

binary format. Type in the following code, and save it as \EMAGA5\control\

client\interfaces\menuscreen.gui.

new GuiChunkedBitmapCtrl(MenuScreen) {
profile = "GuiContentProfile";
horizSizing = "width";
vertSizing = "height";
position = "0 0";
extent = "640 480";
minExtent = "8 8";
visible = "1";
helpTag = "0";
bitmap = "./interfaces/emaga_background";
useVariable = "0";
tile = "0";
new GuiButtonCtrl() {

profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "29 300";
extent = "110 20";
minExtent = "8 8";
visible = "1";
command = "LaunchGame();";
helpTag = "0";
text = "Start Game";
groupNum = "-1";
buttonType = "PushButton";

};
new GuiButtonCtrl() {

profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "29 400";
extent = "110 20";
minExtent = "8 8";
visible = "1";
command = "Quit();";
helpTag = "0";
text = "Quit";

Client Control Modules 191

groupNum = "-1";
buttonType = "PushButton";

};
};

What we have here is a hierarchical definition of nested objects. The object that

contains the others is the MenuScreen itself, defined as a GuiChunkedBitmapCtrl.

Many video cards have texture size limits; for some nothing larger than 512 pixels

by 512 pixels can be used. The ChunkedBitmap splits large textures into sections to

avoid these limitations. This is usually used for large 640 by 480 or 800 by 600

background artwork.

MenuScreen has a profile property of GuiContentProfile, which is a standard

Torque profile for large controls that will contain other controls. Profiles are

collections of properties that can be applied in bulk to interface (or gui) objects.

Profiles are much like style sheets (which you will be familiar with if you do any

HTML programming), except that they use TorqueScript syntax.

The definition of GuiContentProfile is pretty simple:

if(!IsObject(GuiContentProfile)) new GuiControlProfile (GuiContentProfile)
{

opaque = true;
fillColor = "255 255 255";

};

Basically, the object is opaque (no transparency allowed, even if an alpha channel

exists in the object’s source bitmap image). If the object doesn’t fill the screen,

then the unused screen space is filled with black (RGB = 255 255 255).

After the profile, the sizing and position information properties are set. See the

sidebar titled ‘‘Profile Sizing Settings: horizSizing and vertSizing’’ for more

information.

The extent property defines the horizontal and vertical dimensions of MenuScreen.

The minExtent property specifies the smallest size that the object can have.

The visible property indicates whether the object can be seen on the screen.

Using a ‘‘1’’ will make the object visible; a ‘‘0’’ will make it invisible.

The last significant property is the bitmap property. This specifies what bitmap

image will be used for the background image of the object.

192 Chapter 5 n Game Play

There are two GuiButtonCtrl objects contained in the MenuScreen. Most of the

properties are the same as found in the GuiChunkedBitmapCtrl. But there are a few

that are different and important.

The first is the command property. When the user clicks this button control, the

function specified in the command property is executed.

The helpTag property is used to keep track of whether a user has encountered this

object previously or not. Set to zero, it means that no help has been displayed for

this object. If you decide to display help, then set the helpTag to a non-zero value

so you can choose not to display help.

Next, the text property is where you can enter the text label that will appear on

the button.

The groupNum property is used to indicate which group a button belongs to. Use

mostly with Radio button.

Finally, the buttonType property is how you specify the particular visual style of

the button.

Figure 5.3 shows the MenuScreen in all its glory.

Client Control Modules 193

Figure 5.3
The Emaga5 MenuScreen.

P r o f i l e S i z i n g S e t t i n g s : h o r i z S i z i n g a n d v e r t S i z i n g

These settings are used to define how to resize or reposition an object when the object’s container is
resized. The outermost container is the Canvas; it will have a starting size of 640 pixels by 480
pixels. The Canvas and all the objects within it will be resized or repositioned from this initial size.

When you resize a container, all of its child objects are resized and repositioned according to their
horizSizing and vertSizing properties. The resizing action will be applied in a cascading
manner to all subobjects in the object hierarchy.

The following property values are available:

control/client/interfaces/playerinterface.gui

The PlayerInterface control is the interface that is used during the game to

display information in real time. The Canvas is the container for PlayerInterface.

Type in the following code, and save it as \Emaga5\control\client\interfaces\

playerinterface.gui.

new GameTSCtrl(PlayerInterface) {
profile = "GuiContentProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "0 0";
extent = "640 480";
minExtent = "8 8";
visible = "1";
helpTag = "0";

noCursor = "1";

194 Chapter 5 n Game Play

Center The object is positioned in the center of its container.

Relative The object is resized and repositioned to maintain the same size and position relative to
its container. If the parent size doubles, the object’s size doubles as well.

Left When the container is resized or moved, the change is applied to the distance between
the object and the left edge of the screen.

Right When the container is resized or moved, the change is applied to the distance between
the object and the right edge of the screen.

Top When the container is resized or moved, the change is applied to the distance between
the object and the top edge of the screen.

Bottom When the container is resized or moved, the change is applied to the distance between
the object and the bottom edge of the screen.

Width When the container is resized or moved horizontally, the change is applied to the width
extents of the object.

Height When the container is resized or moved vertically, the change is applied to the height
extents of the object.

new GuiCrossHairHud() {
profile = "GuiDefaultProfile";
horizSizing = "center";
vertSizing = "center";
position = "304 224";
extent = "32 32";
minExtent = "8 8";
visible = "1";
helpTag = "0";
bitmap = "./interfaces/emaga_gunsight";
wrap = "0";
damageFillColor = "0.000000 1.000000 0.000000 1.000000";
damageFrameColor = "1.000000 0.600000 0.000000 1.000000";
damageRect = "50 4";
damageOffset = "0 10";

};
new GuiHealthBarHud() {

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "top";
position = "14 315";
extent = "26 138";
minExtent = "8 8";
visible = "1";
helpTag = "0";
showFill = "1";
displayEnergy = "0";
showFrame = "1";
fillColor = "0.000000 0.000000 0.000000 0.500000";
frameColor = "0.000000 1.000000 0.000000 0.000000";
damageFillColor = "0.800000 0.000000 0.000000 1.000000";
pulseRate = "1000";
pulseThreshold = "0.5";

value = "1";
};
new GuiBitmapCtrl() {

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "top";
position = "11 299";
extent = "32 172";
minExtent = "8 8";
visible = "1";

Client Control Modules 195

helpTag = "0";
bitmap = "./interfaces/emaga_healthwidget";
wrap = "0";

};
new GuiHealthBarHud() {

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "top";
position = "53 315";
extent = "26 138";
minExtent = "8 8";
visible = "1";
helpTag = "0";
showFill = "1";
displayEnergy = "1";
showFrame = "1";
fillColor = "0.000000 0.000000 0.000000 0.500000";
frameColor = "0.000000 1.000000 0.000000 0.000000";
damageFillColor = "0.000000 0.000000 0.800000 1.000000";
pulseRate = "1000";
pulseThreshold = "0.5";

value = "1";
};
new GuiBitmapCtrl() {

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "top";
position = "50 299";
extent = "32 172";
minExtent = "8 8";
visible = "1";
helpTag = "0";
bitmap = "./interfaces/emaga_healthwidget";
wrap = "0";

};
new GuiTextCtrl(scorelabel) {

profile = "ScoreTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "10 3";
extent = "50 20";
minExtent = "8 8";

196 Chapter 5 n Game Play

visible = "1";
helpTag = "0";
text = "Score";
maxLength = "255";

};
new GuiTextCtrl(Scorebox) {

profile = "ScoreTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "50 3";
extent = "100 20";
minExtent = "8 8";
visible = "1";
helpTag = "0";
text = "0";
maxLength = "255";

};
};

PlayerInterface is the main TSControl through which the game is viewed; it also

contains the HUD controls.

The object GuiCrossHairHud is the targeting crosshair. Use this to aim your

weapons.

There are two GuiHealthBarHud controls, one for health and one for energy. It is

essentially a vertical bar that indicates the state of health or energy of the player.

Each GuiHealthBarHud is paired with a GuiBitmapCtrl, which is a bitmap that can

be used to modify the appearance of the health and energy displays by overlaying

on the GuiHealthBarHud.

No t e

HUD is a TLA (Three-Letter Acronym) that means Heads Up Display. The expression is adopted
from the world of high-tech military aircraft. The HUD comprises information and graphics that are
projected onto the canopy or a small screen at eye level in front of the pilot. This allows the pilot
to continue to look outside for threats, while still having instant visual access to flight- or mission-
critical information. In game graphics the term HUD is used for visual displays that appear in-
game, in a fashion that mirrors the real-world application.

There are two GuiTextCtrl objects, one for holding the accumulated score (scorebox) and
one to provide a simple label for the scores box (scorelabel). We will be modifying the value
of the text property from within the control source code in another module.

Client Control Modules 197

control/client/interfaces/splashscreen.gui

The SplashScreen control displays an informational screen (you saw it in

Figure 5.2 when the game is started from Windows. A mouse click or key press

makes this screen go away. Type in the following code, and save it as

\Emaga5\control\client\interfaces\splashscreen.gui.

new GuiChunkedBitmapCtrl(SplashScreen) {
profile = "GuiDefaultProfile";
horizSizing = "width";
vertSizing = "height";
position = "0 0";
extent = "640 480";
minExtent = "8 8";
visible = "1";
helpTag = "0";
bitmap = "./interfaces/emaga_splash";
useVariable = "0";
tile = "0";
noCursor=1;
new GuiInputCtrl(SplashScreenInputCtrl) {

profile = "GuiInputCtrlProfile";
position = "0 0";
extent = "10 10";

};
};

The only thing special about this module is the new control, GuiInputCtrl.

This control is used to accept input from the user: mouse clicks, key

presses, and so on. With this control defined we can then define our own

handler methods for the control’s object and therefore act upon the inputs.

In our case here SplashScreenInputCtrl::onInputEvent is the handler

method we’ve defined; it’s contained in the client module we talked about

earlier.

control/client/misc/screens.cs

The screen.cs module is where our programmed control and management

activity is located. Type in the following code, and save it as \Emaga5\control\

client\misc\screens.cs.

198 Chapter 5 n Game Play

//==
// control/client/misc/screens.cs
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney
//==
function PlayerInterface::onWake(%this)
{

$enableDirectInput = "1";
activateDirectInput();
// just update the key map here
playerKeymap.push();

}
function PlayerInterface::onSleep(%this)
{

playerKeymap.pop();
}
function refreshBottomTextCtrl()
{

BottomPrintText.position = "0 0";
}
function refreshCenterTextCtrl()
{

CenterPrintText.position = "0 0";
}
function LoadScreen::onAdd(%this)
{

%this.qLineCount = 0;
}
function LoadScreen::onWake(%this)
{

CloseMessagePopup();
}
function LoadScreen::onSleep(%this)
{

// Clear the load info:
if (%this.qLineCount !$= "")
{

for (%line = 0; %line < %this.qLineCount; %line++)
%this.qLine[%line] = "";

}
%this.qLineCount = 0;
LOAD_MapName.setText("");

Client Control Modules 199

LOAD_MapDescription.setText("");
LoadingProgress.setValue(0);
LoadingProgressTxt.setValue("WAITING FOR SERVER");

}

Themethods in this module are representative of the sort of methods you can use

for interface controls. You will probably use OnWake and OnSleep quite a bit in

your interface scripts.

OnWake methods are called when an interface object is told to display itself, either

by the Canvas’s SetContent or PushDialog methods.

OnSleepmethods are called whenever an interface object is removed from display

via the PopDialogmethod or when the SetContent call specifies a different object.

When PushDialog is used the interface that is shown operates like a modal dialog

control—all input events are relayed through the dialog.

There is another pair of interface display methods for other objects, called just

Push and Pop. These will display the interface in a modeless manner, so that

other controls or objects on the screen will still receive input events they are

interested in.

PlayerInterface::onWake enables capturing mouse and keyboard inputs using

DirectInput. It then makes the PlayerKeymap key bindings active using the Push

method. When the PlayerInterface is removed from display, its OnSleep

method removes the PlayerKeymap key bindings from consideration. You will

need to ensure that you have defined global bindings for the user to employ; these

will take over when the PlayerKeymap isn’t in use anymore.

RefreshBottomTextCtrl and RefreshCenterTextCtrl just reposition these output

controls to their default locations on the screen, in case you have moved them

somewhere else during the festivities.

There is also a method called LoadScreen::OnAdd. OnAdd methods are called

when an object is added to a scene or another object. They are usually used to

initialize properties of the object that might differ from the default property

values.

LoadScreen::OnWake is called when we want to display the mission loading

progress. It closes the message interface, if it happens to be open. The LoadScreen

contents are modified elsewhere for us in the mission loading process, which is

covered in Chapter 6.

200 Chapter 5 n Game Play

When LoadScreen::OnSleep is called, it clears all of its text buffers and then

outputs a message to indicate that all we need now is for the server to chime in.

control/client/misc/presetkeys.cs

Key bindings are the mapping of keyboard keys and mouse buttons to specific

functions and commands. In a fully featured game we would provide the user

with the ability to modify the key bindings using a graphical interface. Right now

we will satisfy ourselves with creating a set of key bindings for the user, which we

can keep around to be used as the initial defaults as we later expand our program.

Type in the following code, and save it as \Emaga5\control\client\misc\pre-

setkeys.cs.

//==
// control/client/misc/presetkeys.cs
// Copyright (c) 2003, 2006 by Kenneth C. Finney
//==
if (IsObject(PlayerKeymap)) // If we already have a player key map,

PlayerKeymap.delete(); // delete it so that we can make a new one
new ActionMap(PlayerKeymap);

function DoExitGame()
{

MessageBoxYesNo("Quit Mission", "Exit from this Mission?", "Quit();", "");
}
//==
// Motion Functions
//==
function GoLeft(%val)
{

$mvLeftAction = %val;
}
function GoRight(%val)
{

$mvRightAction = %val;
}
function GoAhead(%val)
{

$mvForwardAction = %val;
}
function BackUp(%val)

Client Control Modules 201

{
$mvBackwardAction = %val;

}
function DoYaw(%val)
{

$mvYaw += %val * ($cameraFov / 90) * 0.02;
}
function DoPitch(%val)
{

$mvPitch += %val * ($cameraFov / 90) * 0.02;
}
function DoJump(%val)
{

$mvTriggerCount2++;
}
//==
// View Functions
//==
function Toggle3rdPPOVLook(%val)
{

if (%val) $mvFreeLook = true;
else $mvFreeLook = false;

}
function MouseAction(%val)
{

$mvTriggerCount0++;
}
$firstPerson = true;
function Toggle1stPPOV(%val)
//——
// switch between 1st and 3rd person point-of-view.
//——
{

if (%val)
{

$firstPerson = !$firstPerson;
ServerConnection.setFirstPerson($firstPerson);

}
}function dropCameraAtPlayer(%val)
{

if (%val)
commandToServer(’dropCameraAtPlayer’);

}

202 Chapter 5 n Game Play

function dropPlayerAtCamera(%val)
{

if (%val)
commandToServer(’DropPlayerAtCamera’);

}
function toggleCamera(%val)
{

if (%val)
commandToServer(’ToggleCamera’);

}
//==
// keyboard control mappings
//==
// available when player is in game
PlayerKeymap.Bind(mouse, button0, MouseAction); // left mouse button
PlayerKeymap.Bind(keyboard, w, GoAhead);
PlayerKeymap.Bind(keyboard, s, BackUp);
PlayerKeymap.Bind(keyboard, a, GoLeft);
PlayerKeymap.Bind(keyboard, d, GoRight);
PlayerKeymap.Bind(keyboard, space, DoJump);
PlayerKeymap.Bind(keyboard, z, Toggle3rdPPOVLook);
PlayerKeymap.Bind(keyboard, tab, Toggle1stPPOV);
PlayerKeymap.Bind(mouse, xaxis, DoYaw);
PlayerKeymap.Bind(mouse, yaxis, DoPitch);// always available
GlobalActionMap.Bind(keyboard, escape, DoExitGame);
GlobalActionMap.Bind(keyboard, tilde, ToggleConsole);

The first three statements in this module prepare the ActionMap object, which

we call PlayerKeymap. This is the set of key bindings that will prevail while we are

actually in the game. Because this module is used in the initial setup, we assume

that there should not already be a PlayerKeymapActionMap, so we check to see if

PlayerKeymap is an existing object, and if it is we delete it and create a new

version.

We define a function to be called when we exit the game. It throws a Message-

BoxYesNo dialog up on the screen, with the dialog box’s title set to the contents of

the first parameter string. The second parameter string sets the contents of the

dialog’s prompt. The third parameter specifies the function to execute when

the user clicks the Yes button. The fourth parameter indicates what action to

perform if the user clicks No—in this case nothing.

Client Control Modules 203

There are two other canned MessageDialog objects defined in the common code

base: MessageBoxOk, which has no fourth parameter, and MessageBoxOkCancel,

which accepts essentially the same parameter set as MessageBoxYesNo.

Next we have a series of motion function definitions. Table 5.1 provides a des-

cription of the basic motion functions. These functions employ player event control

triggers to do their dirty work. These triggers are described in detail in Chapter 6.

Of particular note in these functions is that they all have a single parameter,

usually called %val. When functions are bound to keys or mouse buttons via a

Bind method, the parameter is set to a nonzero value when the key or button is

pressed and to 0 when the button is released. This allows us to create toggling

functions, such as with Toggle1stPPOV, which will switch between first-person

perspective and third-person perspective each time the bound key is pressed.

After all the function definitions, we have the actual key bindings. With the Bind

method, the first parameter is the input type, the second is the key or button

identifier, and the third is the name of the function to be called.

After all the PlayerKeymap bindings, there are a few for GlobalActionMap, which is

a globally predefined action map that is always available but can be overridden by

other action maps. In this case we use GlobalActionMap for those bindings we

want to be universally available.

Server Control Modules
Any game play features you want to implement should probably be done as a

server control module, or part of one. If you are going to make a multiplayer online

game, that should probably back there in the last sentence will change to amust. The

204 Chapter 5 n Game Play

Table 5.1 Basic Movement Functions

Command Description

GoLeft and GoRight Strafing to the left or the right.

GoAhead and BackUp Running forward and backward.

DoYaw Spinning or aiming horizontally by mouse or joystick control.

DoPitch Looking vertically by mouse or joystick control.

DoJump Momentary upward movement, with character animation.

Toggle3rdPPOVLook Enables the ‘‘free look’’ feature. As long as the mapped key is pressed while
the player is in third-person point of view, the player can view his avatar by
moving the mouse around.

only way we can ensure a level playing field and game play code security is to run the

code on the server, and not on the client.

control/server/server.cs

On the server side, the server module is probably the single most influential

module. It carries the server control–oriented GameConnection methods for

handling players and other game objects, as well as straightforward server control

routines.

Type in the following code, and save it as \Emaga5\control\server\server.cs.

//==
// control/server/server.cs
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//==
function OnServerCreated()
//——
// Once the engine has fired up the server, this function is called
//——
{

Exec("./misc/camera.cs");
Exec("./misc/shapeBase.cs");
Exec("./misc/item.cs");
Exec("./players/player.cs");
Exec("./players/beast.cs");
Exec("./players/ai.cs");
Exec("./weapons/weapon.cs");
Exec("./weapons/crossbow.cs");

}
function StartGame()
{
if ($Game::Duration) // Start the game timer
$Game::Schedule = Schedule($Game::Duration * 1000, 0, "onGameDurationEnd");

$Game::Running = true;
schedule(2000, 0, "CreateBots");

}
function OnMissionLoaded()
{

StartGame();
}
function OnMissionEnded()

Server Control Modules 205

{
Cancel($Game::Schedule);
$Game::Running = false;

}
function GameConnection::OnClientEnterGame(%this)
{

// Create a new camera object.
%this.camera = new Camera() {

dataBlock = Observer;
};
MissionCleanup.Add(%this.camera);
%this.camera.ScopeToClient(%this);
%this.SpawnPlayer();

}
function GameConnection::SpawnPlayer(%this)
{

%this.CreatePlayer("0 0 201 1 0 0 0");
}
function GameConnection::CreatePlayer(%this, %spawnPoint)
{

if (%this.player > 0)//The player should NOT already have an avatar object.
{ // If he does, that’s a Bad Thing.

Error("Attempting to create an angus ghost!");
}
// Create the player object
%player = new Player() {

dataBlock = MaleAvatar; // defined in players/player.cs
client = %this; // the avatar will have a pointer to its

}; // owner’s GameConnection object
%player.SetTransform(%spawnPoint); // where to put it
// Update the camera to start with the player
%this.camera.SetTransform(%player.GetEyeTransform());
%player.SetEnergyLevel(100);
// Give the client control of the player
%this.player = %player;
%this.setControlObject(%player);

}
function GameConnection::OnDeath(%this, %sourceObject, %sourceClient,
%damageType, %damLoc)
{

// Switch the client over to the death cam and unhook the player object.
if (IsObject(%this.camera) && IsObject(%this.player))

206 Chapter 5 n Game Play

{
%this.camera.SetMode("Death",%this.player);
%this.setControlObject(%this.camera);

}
%this.player = 0;
if (%damageType $= "Suicide" || %sourceClient == %this)
{
}
else
{
// good hit

}
}
//==
// Server commands
//==
function ServerCmdToggleCamera(%client)
{

%co = %client.getControlObject();
if (%co == %client.player)
{

%co = %client.camera;
%co.mode = toggleCameraFly;

}
else
{

%co = %client.player;
%co.mode = observerFly;

}
%client.SetControlObject(%co);

}
function ServerCmdDropPlayerAtCamera(%client)
{

if ($Server::DevMode || IsObject(EditorGui))
{

%client.player.SetTransform(%client.camera.GetTransform());
%client.player.SetVelocity("0 0 0");
%client.SetControlObject(%client.player);

}
}
function ServerCmdDropCameraAtPlayer(%client)
{

%client.camera.SetTransform(%client.player.GetEyeTransform());

Server Control Modules 207

%client.camera.SetVelocity("0 0 0");
%client.SetControlObject(%client.camera);

}
function ServerCmdUse(%client,%data)
{

%client.GetControlObject().use(%data);
}
// stubs
function ClearCenterPrintAll()
{
}
function ClearBottomPrintAll()
{
}
function onNeedRelight()
{
}

The first function in this module, OnServerCreated, is pretty straightforward.

When called, it loads all the specific game play modules we need.

After that comes StartGame, which is where we put stuff that is needed every time

a new game starts. In this case if we have prescribed game duration, then we start

the game timer using the Schedule function.

Schedule is an extremely important function, so we’ll spend a little bit of time on

it here. The usage syntax is

%event = Schedule(time, reference, command, <param1...paramN>)

The function will schedule an event that will trigger in time milliseconds and

execute command with parameters. If reference is not 0, then you need to make

sure that reference is set to be a valid object handle. When the reference object is

deleted, the scheduled event is discarded if it hasn’t already fired. The Schedule

function returns an event ID number that can be used to track the scheduled

event or cancel it later before it takes place.

In the case of our game timer, there is no game duration defined, so the game is

open-ended, and the Schedule call will not take place. If, for example,

$Game::Duration had been set to 1,800 (for 30 minutes times 60 seconds per

minute), then the call to Schedule would have had the first parameter set to 1,800

times 1,000, or 1,800,000, which is the number of milliseconds in 30 minutes.

208 Chapter 5 n Game Play

OnMissionLoaded is called by LoadMission once the mission is finished loading. All

it really does is start up the game play, but this is an ideal location to insert code

that needs to adjust its capabilities based upon whatever mission was loaded.

The next function, OnMissionEnded, is called at the conclusion of the running of a

mission, usually in the DestroyServer function. Here it cancels the end-of-game

event that has been scheduled; if no game duration was scheduled—as is our case

at the moment—then nothing happens, quietly.

After that is the GameConnection::OnClientEnterGame method. This method is

called when the client has been accepted into the game by the server—the client

has not actually entered the game yet though. The server creates a new observer

mode camera and adds it to the MissionCleanup group. This group is used to

contain objects that will need to be removed from memory when a mission is

finished. Next, it scopes the camera to the client. This process is similar to key

binding, except that it ‘‘connects’’ a network object (in this case, through a

GameConnection object, via %this) to a game object. This way Torque knows

where to send network events and messages. Then we initiate the spawning of the

player’s avatar into the game world.

The GameConnection::SpawnPlayer is a ‘‘glue’’ method, which will have more

functionality in the future. Right now we use it to call the CreatePlayer method

with a fixed transform to tell it where to place the newly created player-avatar.

Normally this is where we would place the player spawn decision code. It might

also call a function that would figure out the spawn point transforms by looking

up spawn markers. Once we know where the player will spawn, then we would

create the avatar by calling CreatePlayer.

GameConnection::CreatePlayer is the method that creates the player’s avatar

object, sets it up, and then passes control of the avatar to the player. The first

thing to watch out for is that we must ensure that the GameConnection does not

already, or still, have an avatar assigned to it. If it does, then we risk creating what

the GarageGames guys call an Angus Ghost. This is a ghosted object, on all the

clients, that has no controlling client scoped to it. We don’t want that! Once that

is sorted out, we create the new avatar, give it some energy, and pass control to

the player, the same way we did previously in Chapter 4.

GameConnection::onDeath is called from a player’s Damage handler method if the

player’s damage exceeds a certain amount. What we do is switch the client over to

the death cam and unhook the player object. This allows the player to swivel his

Server Control Modules 209

view in orbit around the ‘‘corpse’’ of his avatar until he decides to respawn. There

is a code block containing the comment ‘‘good hit’’ where we would add code to

provide points scoring and other game play functionality if we want it. We can

also penalize a player for committing suicide, by either evaluating the damage

type or the ID of the owner of the weapon that killed the player.

There then is a series of ServerCmd message handlers that change whether the

player controls the camera or the avatar based on the message received.

ServerCmdToggleCamera alternates between attaching the player to the camera or

to his avatar as the control object. Each time the function is called, it checks to see

which object is the control object—camera or avatar—and then selects the other

one to be the new control object.

ServerCmdDropPlayerAtCamera will move the player’s avatar to wherever the

camera object is currently located and sets the player-avatar’s velocity to 0. The

control object is always set to be the player’s avatar when the function exits.

ServerCmdDropCameraAtPlayer does just the opposite. It sets the camera’s

transform tomatch the player-avatar’s and then sets the velocity to 0. The control

object is always set to be the camera when the function exits.

The next function, ServerCmdUse, is an important game play message handler.

We call this function whenever we want to activate or otherwise use an object

that the player controls, ‘‘has mounted,’’ or holds in inventory. When called,

this function figures out the handle of the client’s control object and then

passes the data it has received to that object’s use method. The data can be

anything but is often the activation mode or sometimes a quantity (like a

powerup or health value). You’ll see how the back end of this works later in the

item module.

Finally, there are a few stub routines. As you will recall, these functions are called

from within the common code script modules. We don’t need their functionality

for what we are doing here, so they are empty. They are included in order to

minimize error messages in the console.

control/server/players/player.cs

This is ‘‘the biggie.’’ You will probably spend more time working with, tweaking,

adjusting, and yes, possibly even cursing this module—or your own variations of

this module—than any other.

210 Chapter 5 n Game Play

Type in the following code, and save it as \EMAGA5\control\server\players\

player.cs.

//==
// control/server/players/player.cs
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//==
exec("~/data/models/avatars/orc/player.cs");

datablock PlayerData(MaleAvatar)
{

className = OrcClass;
shapeFile = "~/data/models/avatars/orc/player.dts";
emap = true;
renderFirstPerson = false;
cameraMaxDist = 3;
mass = 100;
density = 10;
drag = 0.1;
maxdrag = 0.5;
maxDamage = 100;
maxEnergy = 100;
maxForwardSpeed = 15;
maxBackwardSpeed = 10;
maxSideSpeed = 12;
minJumpSpeed = 20;
maxJumpSpeed = 30;
runForce = 1000;
jumpForce = 1000;
runSurfaceAngle = 40;
jumpSurfaceAngle = 30;
runEnergyDrain = 0.05;
minRunEnergy = 1;
jumpEnergyDrain = 20;
minJumpEnergy = 20;
recoverDelay = 30;
recoverRunForceScale = 1.2;
minImpactSpeed = 10;
speedDamageScale = 3.0;
repairRate = 0.03;
maxInv[Copper] = 9999;
maxInv[Silver] = 99;
maxInv[Gold] = 9;

Server Control Modules 211

maxInv[Crossbow] = 1;
maxInv[CrossbowAmmo] = 20;

};
//==
// Avatar Datablock methods
//==
function OrcClass::onAdd(%this,%obj)
{

%obj.mountVehicle = false;

// Default dynamic Avatar stats
%obj.setRechargeRate(0.01);
%obj.setRepairRate(%this.repairRate);

}
function OrcClass::onRemove(%this, %obj)
{

%client = %obj.client;
if (%client.player == %obj)
{

%client.player = 0;
}

}
function OrcClass::onCollision(%this,%obj,%col,%vec,%speed)
{

%obj_state = %obj.getState();
%col_className = %col.getClassName();
%col_dblock_className = %col.getDataBlock().className;
%colName = %col.getDataBlock().getName();
if (%obj_state $= "Dead")
return;

if (%col_className $= "Item" || %col_className $= "Weapon")
{
%obj.pickup(%col);

}
}
//==
// MaleAvatar (ShapeBase) class methods
//==
function MaleAvatar::onImpact(%this,%obj,%collidedObject,%vec,%vecLen)
{

%obj.Damage(0, VectorAdd(%obj.getPosition(),%vec),
%vecLen * %this.speedDamageScale, "Impact");

}

212 Chapter 5 n Game Play

function MaleAvatar::Damage(%this, %obj, %sourceObject, %position, %damage,
%damageType)
{

if (%obj.getState() $= "Dead")
return;

%obj.applyDamage(%damage);
%location = "Body";
%client = %obj.client;
%sourceClient = %sourceObject ? %sourceObject.client : 0;
if (%obj.getState() $= "Dead")
{

%client.onDeath(%sourceObject, %sourceClient, %damageType, %location);
}

}
function MaleAvatar::onDamage(%this, %obj, %delta)
{

if (%delta > 0 && %obj.getState() !$= "Dead")
{

// Increment the flash based on the amount.
%flash = %obj.getDamageFlash() + ((%delta / %this.maxDamage) * 2);
if (%flash > 0.75)

%flash = 0.75;

if (%flash > 0.001)
{

%obj.setDamageFlash(%flash);
}
%obj.setRechargeRate(0.01);
%obj.setRepairRate(0.01);

}
}
function MaleAvatar::onDisabled(%this,%obj,%state)
{

%obj.clearDamageDt();
%obj.setRechargeRate(0);
%obj.setRepairRate(0);
%obj.setImageTrigger(0,false);
%obj.schedule(5000, "startFade", 5000, 0, true);
%obj.schedule(10000, "delete");

}

Server Control Modules 213

The first line of code loads and executes a ‘‘glue module’’ called player.cs. This

module provides a mapping between animation sequence names and animation

sequence files. How this works is covered later in Chapter 14 when we actually get

around to creating an animated model for use with the Torque Engine. For now,

the important thing to understand is that if we use animation sequence files (of

the type .dsq), then we need to relate those files to the sequence names that

Torque uses to trigger the animations, and also that we describe that relationship

with an animation sequence glue module like the one being exec’d in this line.

Next is a datablock definition for a datablock called MaleAvatar of the PlayerData

datablock class. Table 5.2 provides a quick reference description of the items in

this datablock.

A brief word about the classname property. It’s a GameBase classname property

for this datablock, which in this case is MaleAvatar. We use this class name to

provide a place to hang various methods, which are defined later in the module.

In Chapter 3 we encountered environment mapping, which is a rendering tech-

nique that provides a method of taking the game world appearance and sur-

roundings into account when rendering an object. You can enable environment

mapping when rendering the avatar model by setting the emap property to true.

If we set the property renderFirstPerson to true, then when we are playing in

first-person point-of-view mode, we will be able to see our avatar, our ‘‘body,’’ as

we look around. With it set to false, then we won’t see it, no matter which way

we look.

To control your avatar’s energy depletion, you will want to adjust the following

properties: maxEnergy, runEnergyDrain, minRunEnergy, jumpEnergyDrain, and

minJumpEnergy. Generally, the minimum jump energy should be set higher than

the minimum run energy. Also, jump energy drain should be faster, thus a higher

number, than the run energy drain value.

Next is a series of methods that are used when dealing with the avatar as a

GameBase class.

The first, the MaleAvatar::onAdd, is the method called whenever a new instance

of an avatar is added to the game. In this case we initialize a few variables and

then transfer the value of the datablock’s repairRate property (remember that a

datablock is static and unchangeable once transferred to the client) to Player

object in order to have it available for later use. The %obj parameter refers to the

Player object handle.

214 Chapter 5 n Game Play

Server Control Modules 215

Table 5.2 Emaga5 Avatar Properties

Property Description

className Defines an arbitrary class that the avatar can belong to.

shapeFile Specifies the file that contains the 3D model of the avatar.

emap Enables environment mapping on the avatar model.

renderFirstPerson When true, causes the avatar model to be visible when in first-person
point-of-view mode.

cameraMaxDist Maximum distance from the avatar to the camera in third-person point-of-
view mode.

mass The mass of the avatar in terms of the game world.

density Arbitrarily defined density. Low-density players will float in water.

drag Slows down the avatar through simulated friction.

maxdrag Maximum allowable drag.

maxDamage Maximum damage points that can be sustained before avatar is killed.

maxEnergy Maximum energy allowed.

maxForwardSpeed Maximum speed allowable when moving forward.

maxBackwardSpeed Maximum speed allowable when moving backward.

maxSideSpeed Maximum speed allowable when moving sideways (strafing).

minJumpSpeed Below this speed, you can’t make the avatar jump.

maxJumpSpeed Above this speed, you can’t make the avatar jump.

runForce The force, and therefore the acceleration, when starting to run.

jumpForce The force, and therefore the acceleration, when jumping.

runSurfaceAngle Maximum slope (in degrees) that the avatar can run on.

jumpSurfaceAngle Maximum slope (in degrees) that the avatar can jump on, usually
somewhat less than runSurfaceAngle.

runEnergyDrain How quickly energy is lost when the player is running.

minRunEnergy Below this, the player will not move.

jumpEnergyDrain How quickly energy is lost when the player jumps.

minJumpEnergy Below this, the player can’t jump anymore.

recoverDelay How long it takes to recover after a landing from a fall or jump, measured
in ticks, where 1 tick = 32 milliseconds.

recoverRunForceScale How much to scale the run force by while in the postlanding recovery
state.

minImpactSpeed Above this speed, an impact will cause damage.

speedDamageScale Used to impart speed-scaled damage.

repairRate How quickly damage is repaired when first aid or health is applied.

maxInv[Copper] Maximum number of copper coins that the player can carry.

maxInv[Silver] Maximum number of silver coins that the player can carry.

maxInv[Gold] Maximum number of gold coins that the player can carry.

maxInv[Crossbow] Maximum number of crossbows that the player can carry.

maxInv[CrossbowAmmo] Maximum amount of crossbow ammunition that the player can carry.

Of course, we also need to know what to do when it’s time to remove the avatar,

which is what MaleAvatar::onRemove does. It’s nothing spectacular—it just sets

the handle properties to 0 and moves on.

One of the methods that gets the most exercise from a healthy and active avatar is

the MaleAvatar::onCollision method. This method is called by the engine

whenever it establishes that the avatar has collided with some other collision-

enabled object. Five parameters are provided. The first is the handle of this

datablock, the second is the handle of the player object, the third is the handle of

the object that hit us (or that we hit), the fourth is the relative velocity vector

between us and the object we hit, and the fifth is the scalar speed of the object we

hit. Using these inputs, we can do some pretty fancy collision calculations.

What we do, though, is just find out what the state of our avatar is (alive or dead)

and what kind of object we hit. If we are dead (our avatar’s body could be sliding

down a hill, for example), we bail out of this method; otherwise, we try to pick up

the item we hit, providing it is an item or a weapon.

The engine calls MaleAvatar::onImpact when our avatar hits something. Unlike

onCollision, this method detects any sort of impact, not just a collision with an

item in the world. Collisions occur between ShapeBase class things, like items,

player-avatars, vehicles, and weapons. Impacts occur with those things, as well as

terrain and interiors. So, onImpact provides essentially the same five parameters.

We use that data to calculate how much damage the player should incur, and we

apply that damage to the avatar’s object using its Damage method.

The MaleAvatar::Damage is where we try to ascertain what effect the damage will

have on the avatar. If we want to implement hit boxes, or damage calculations

based on object components, we would do that here. In this case if the player is

dead, we again bail. If not, we apply the damage (which increases the accumulated

damage value) and then obtain the object’s current state. If the object is now dead,

we call the OnDeath handler and exit the function.

Next is the MaleAvatar::onDamage method, which is activated by the engine

whenever the object’s damage value changes. This is the method we want to use

when applying some sort of special effect to the player when damage occurs—like

making the screen flash or using some audio. In this case we do flash the screen,

and we also start a slow energy drain caused by the damage. At the same time, we

start a slow damage repair, which means that after some period of time, we will

have regained some of our health (negative health equals positive damage).

216 Chapter 5 n Game Play

When the player’s damage exceeds the maxDamage value, the player object is set

to the disabled state. When that happens, the function MaleAvatar::onDisabled is

called. This is where we deal with the final stages of the death of a player’s avatar.

What we are doing is resetting all the various repair values, disabling any

mounted weapons, and then beginning the process of disposing of the corpse.

We keep it around for a few seconds before letting it slowly fade away.

control/server/weapons/weapon.cs

This Weapon module contains namespace helper methods for Weapon and

Ammo classes that define a set of methods that are part of dynamic namespaces

class. All ShapeBase class images are mounted into one of eight slots on a shape.

There are also hooks into the inventory system specifically for use with weapons

and ammo. Go ahead and type in the following module, and save it as \EMAGA5\

control\server\weapons\weapon.cs.

//==
// control/server/weapons/weapon.cs
// Copyright (c) 2003, 2006 Kenneth C. Finney 2003, 2006 by Kenneth
// Portions Copyright (c) 2001 GarageGames.com
// Portions Copyright (c) 2001 by Sierra Online, Inc.
//==
$WeaponSlot = 0;
function Weapon::OnUse(%data,%obj)
{

if (%obj.GetMountedImage($WeaponSlot) != %data.image.GetId())
{

%obj.mountImage(%data.image, $WeaponSlot);
if (%obj.client)

MessageClient(%obj.client, ’MsgWeaponUsed’, ’\c0Weapon selected’);
}

}
function Weapon::OnPickup(%this, %obj, %shape, %amount)
{

if (Parent::OnPickup(%this, %obj, %shape, %amount))
{

if ((%shape.GetClassName() $= "Player" ||
%shape.GetClassName() $= "AIPlayer") &&
%shape.GetMountedImage($WeaponSlot) == 0)

{
%shape.Use(%this);

Server Control Modules 217

}
}

}
function Weapon::OnInventory(%this,%obj,%amount)
{

if (!%amount && (%slot = %obj.GetMountSlot(%this.image)) != -1)
%obj.UnmountImage(%slot);

}
function WeaponImage::OnMount(%this,%obj,%slot)
{

if (%obj.GetInventory(%this.ammo))
%obj.SetImageAmmo(%slot,true);

}
function Ammo::OnPickup(%this, %obj, %shape, %amount)
{

if (Parent::OnPickup(%this, %obj, %shape, %amount))
{

}
}
function Ammo::OnInventory(%this,%obj,%amount)
{

for (%i = 0; %i < 8; %i++)
{

if ((%image = %obj.GetMountedImage(%i)) > 0)
if (IsObject(%image.ammo) && %image.ammo.GetId() == %this.GetId())
%obj.SetImageAmmo(%i,%amount != 0);

}
}
function RadiusDamage(%sourceObject, %position, %radius, %damage,
%damageType, %impulse)
{

InitContainerRadiusSearch(%position, %radius,
$TypeMasks::ShapeBaseObjectType);

%halfRadius = %radius / 2;
while ((%targetObject = ContainerSearchNext()) != 0) {

%coverage = CalcExplosionCoverage(%position, %targetObject,
$TypeMasks::InteriorObjectType | $TypeMasks::TerrainObjectType |
$TypeMasks::ForceFieldObjectType | $TypeMasks::VehicleObjectType);

if (%coverage == 0)
continue;

%dist = ContainerSearchCurrRadiusDist();

218 Chapter 5 n Game Play

%distScale = (%dist < %halfRadius)? 1.0:
1.0 - ((%dist - %halfRadius) / %halfRadius);

%targetObject.Damage(%sourceObject, %position,
%damage * %coverage * %distScale, %damageType);

if (%impulse) {
%impulseVec = VectorSub(%targetObject.GetWorldBoxCenter(), %position);
%impulseVec = VectorNormalize(%impulseVec);
%impulseVec = VectorScale(%impulseVec, %impulse * %distScale);
%targetObject.ApplyImpulse(%position, %impulseVec);

}
}

}

The weapon management system contained in this module assumes all primary

weapons are mounted into the slot specified by the $WeaponSlot variable.

The first method defined, Weapon::onUse, describes the default behavior for all

weapons when used. Mount it into the object’s $WeaponSlot weapon slot, which

is currently set to slot 0. A message is sent to the client indicating that the

mounting action was successful. Picture this: you are carrying a holstered pistol.

When the Use command is sent to the server after being initiated by some key

binding, the pistol is removed from the holster, figuratively speaking, and placed

in image slot 0, where it becomes visible in the player’s hand. That’s what takes

place when you ‘‘use’’ a weapon.

The next method, Weapon::onPickup, is the weapon’s version of what happens

when you collide with a weapon, and the onCollision method of the MaleAvatar

decides you need to pick this weapon up. First, the parent Itemmethod performs

the actual pickup, which involves the act of including the weapon in our

inventory. (The Item method is discussed later in this chapter.) After that has

been handled, we get control of the process here. What we do is automatically use

the weapon if the player does not already have one in hand.

When the Item inventory code detects a change in the inventory status, the

Weapon::onInventory method is called in order to check if we are holding an

instance of the weapon in a mount slot, in case there are none showing in

inventory. When the weapon inventory has changed, make sure there are no

weapons of this type mounted if there are none left in inventory.

The method WeaponImage::onMount is called when a weapon is mounted (used).

We use this method to set the state according to the current inventory.

Server Control Modules 219

If there are any special effects we want to invoke when we pick up a weapon, we

would put them in the Ammo::onPickup method. The parent Item method per-

forms the actual pickup, and then we take a crack at it. If we had booby-trapped

weapons, this would be a good place to put the code.

Generally, ammunition is treated as an item in its own right. The Ammo::onInventory

method is called when ammo inventory levels change. Then we can update

any mounted images using this ammo to reflect the new state. In the method we

cycle through all the mounted weapons to examine each mounted weapon’s ammo

status.

RadiusDamage is a pretty nifty function that we use to apply explosion effects to

objects within a certain distance from where the explosion occurred and to

impart an impulse force on each object to move it if called for.

The first statement in the function uses InitContainerRadiusSearch to prepare

the container system for use. It basically indicates that the engine is going to

search for all objects of the type $TypeMasks::ShapeBaseObjectType located

within %radius distance from the location specified by %position. See Table A.1

in Appendix A for a list of available type masks. Once the container radius search

has been set up, we then will make successive calls to ContainerSearchNext. Each

call will return the handle of the objects found that match the mask we supplied.

If the handle is returned as 0, then the search has finished.

So we enter a nicely sized while loop that will continue as long as Container

SearchNext returns a valid object handle (nonzero) in %targetObject. With each

object found, we calculate howmuch of the object is affected by the explosion but

only apply this calculation based on how much of the explosion is blocked by

certain types of objects. If an object of one of these types has completely blocked

the explosion, then the explosion coverage will be 0.

Then we use the ContainerSearchCurrRadiusDist to find the approximate radius

of the affected object and subtract that value from the center-of-explosion to

center-of-object distance to get the distance to the nearest surface of the object.

Next, damage is applied that is proportional to this distance. If the nearest surface

of the object is less than half the radius of the explosion away, then full damage is

applied.

Finally, a proportional impulse force vector, if appropriate, is applied using

modified distance scale. This has the effect of pushing the object away from the

center of the blast.

220 Chapter 5 n Game Play

control/server/weapons/crossbow.cs

For each weapon in our game, we need a definition module that contains the

specifics for that weapon—its datablocks, methods, particle definitions (if they

are going to be unique to the weapon), and other useful stuff.

There is a lot of material here, so if you want to exclude some stuff to cut back on

typing, then leave out all the particle and explosion datablocks. You won’t get any

cool-looking explosions or smoke trails, and you will get some error warnings in

your console log file, but the weapon will still work.

Thecrossbowis a somewhat stylizedand fantasy-basedcrossbow—rathermedieval in

flavor. Itfires aburningboltprojectile that explodes like agrenadeon impact. It’s cool.

Type in the following code, and save it as \EMAGA5\control\server\weapons\

crossbow.cs.

//==
// control/server/weapons/crossbow.cs
// Copyright (c) 2003, 2006 by Kenneth C. Finney
// Portions Copyright (c) 2001 GarageGames.com
// Portions Copyright (c) 2001 by Sierra Online, Inc.
//==
datablock ParticleData(CrossbowBoltParticle)
{

textureName = "~/data/particles/smoke";
dragCoefficient = 0.0;
gravityCoefficient = -0.2; // rises slowly
inheritedVelFactor = 0.00;
lifetimeMS = 500; // lasts 0.7 second
lifetimeVarianceMS = 150; // ...more or less
useInvAlpha = false;
spinRandomMin = -30.0;
spinRandomMax = 30.0;
colors[0] = "0.56 0.36 0.26 1.0";
colors[1] = "0.56 0.36 0.26 1.0";
colors[2] = "0 0 0 0";
sizes[0] = 0.25;
sizes[1] = 0.5;
sizes[2] = 1.0;
times[0] = 0.0;
times[1] = 0.3;
times[2] = 1.0;

};

Server Control Modules 221

datablock ParticleEmitterData(CrossbowBoltEmitter)
{

ejectionPeriodMS = 10;
periodVarianceMS = 5;
ejectionVelocity = 0.25;
velocityVariance = 0.10;
thetaMin = 0.0;
thetaMax = 90.0;
particles = CrossbowBoltParticle;

};
datablock ParticleData(CrossbowExplosionParticle)
{

textureName = "~/data/particles/smoke";
dragCoefficient = 2;
gravityCoefficient = 0.2;
inheritedVelFactor = 0.2;
constantAcceleration = 0.0;
lifetimeMS = 1000;
lifetimeVarianceMS = 150;
colors[0] = "0.56 0.36 0.26 1.0";
colors[1] = "0.56 0.36 0.26 0.0";
sizes[0] = 0.5;
sizes[1] = 1.0;

};
datablock ParticleEmitterData(CrossbowExplosionEmitter)
{

ejectionPeriodMS = 7;
periodVarianceMS = 0;
ejectionVelocity = 2;
velocityVariance = 1.0;
ejectionOffset = 0.0;
thetaMin = 0;
thetaMax = 60;
phiReferenceVel = 0;
phiVariance = 360;
particles = "CrossbowExplosionParticle";

};
datablock ParticleData(CrossbowExplosionSmoke)
{

textureName = "~/data/particles/smoke";
dragCoefficient = 100.0;
gravityCoefficient = 0;
inheritedVelFactor = 0.25;

222 Chapter 5 n Game Play

constantAcceleration = -0.80;
lifetimeMS = 1200;
lifetimeVarianceMS = 300;
useInvAlpha = true;
spinRandomMin = -80.0;
spinRandomMax = 80.0;

colors[0] = "0.56 0.36 0.26 1.0";
colors[1] = "0.2 0.2 0.2 1.0";
colors[2] = "0.0 0.0 0.0 0.0";

sizes[0] = 1.0;
sizes[1] = 1.5;
sizes[2] = 2.0;

times[0] = 0.0;
times[1] = 0.5;
times[2] = 1.0;

};
datablock ParticleEmitterData(CrossbowExplosionSmokeEmitter)
{

ejectionPeriodMS = 10;
periodVarianceMS = 0;
ejectionVelocity = 4;
velocityVariance = 0.5;
thetaMin = 0.0;
thetaMax = 180.0;
lifetimeMS = 250;
particles = "CrossbowExplosionSmoke";

};
datablock ParticleData(CrossbowExplosionSparks)
{

textureName = "~/data/particles/spark";
dragCoefficient = 1;
gravityCoefficient = 0.0;
inheritedVelFactor = 0.2;
constantAcceleration = 0.0;
lifetimeMS = 500;
lifetimeVarianceMS = 350;
colors[0] = "0.60 0.40 0.30 1.0";
colors[1] = "0.60 0.40 0.30 1.0";
colors[2] = "1.0 0.40 0.30 0.0";

Server Control Modules 223

sizes[0] = 0.5;
sizes[1] = 0.25;
sizes[2] = 0.25;

times[0] = 0.0;
times[1] = 0.5;
times[2] = 1.0;

};
datablock ParticleEmitterData(CrossbowExplosionSparkEmitter)
{

ejectionPeriodMS = 3;
periodVarianceMS = 0;
ejectionVelocity = 13;
velocityVariance = 6.75;
ejectionOffset = 0.0;
thetaMin = 0;
thetaMax = 180;
phiReferenceVel = 0;
phiVariance = 360;
overrideAdvances = false;
orientParticles = true;
lifetimeMS = 100;
particles = "CrossbowExplosionSparks";

};
datablock ExplosionData(CrossbowSubExplosion1)
{

offset = 1.0;
emitter[0] = CrossbowExplosionSmokeEmitter;
emitter[1] = CrossbowExplosionSparkEmitter;

};
datablock ExplosionData(CrossbowSubExplosion2)
{

offset = 1.0;
emitter[0] = CrossbowExplosionSmokeEmitter;
emitter[1] = CrossbowExplosionSparkEmitter;

};
datablock ExplosionData(CrossbowExplosion)
{

lifeTimeMS = 1200;
particleEmitter = CrossbowExplosionEmitter; // Volume particles
particleDensity = 80;
particleRadius = 1;
emitter[0] = CrossbowExplosionSmokeEmitter; // Point emission

224 Chapter 5 n Game Play

emitter[1] = CrossbowExplosionSparkEmitter;
subExplosion[0] = CrossbowSubExplosion1; // Sub explosion objects
subExplosion[1] = CrossbowSubExplosion2;
shakeCamera = true; // Camera Shaking
camShakeFreq = "10.0 11.0 10.0";
camShakeAmp = "1.0 1.0 1.0";
camShakeDuration = 0.5;
camShakeRadius = 10.0;
lightStartRadius = 6; // Dynamic light
lightEndRadius = 3;
lightStartColor = "0.5 0.5 0";
lightEndColor = "0 0 0";

};
datablock ProjectileData(CrossbowProjectile)
{

projectileShapeName = "~/data/models/weapons/bolt.dts";
directDamage = 20;
radiusDamage = 20;
damageRadius = 1.5;
explosion = CrossbowExplosion;
particleEmitter = CrossbowBoltEmitter;
muzzleVelocity = 100;
velInheritFactor = 0.3;
armingDelay = 0;
lifetime = 5000;
fadeDelay = 5000;
bounceElasticity = 0;
bounceFriction = 0;
isBallistic = true;
gravityMod = 0.80;
hasLight = true;
lightRadius = 4.0;
lightColor = "0.5 0.5 0";

};
function CrossbowProjectile::OnCollision(%this,%obj,%col,%fade,%pos,
%normal)

{
if (%col.getType() & $TypeMasks::ShapeBaseObjectType)

%col.damage(%obj,%pos,%this.directDamage,"CrossbowBolt");
RadiusDamage(%obj,%pos,%this.damageRadius,%this.radiusDamage,
"CrossbowBolt",0);

}
datablock ItemData(CrossbowAmmo)

Server Control Modules 225

{
category = "Ammo";
className = "Ammo";
shapeFile = "~/data/models/weapons/boltclip.dts";
mass = 1;
elasticity = 0.2;
friction = 0.6;

// Dynamic properties defined by the scripts
pickUpName = "crossbow bolts";

maxInventory = 20;
};
datablock ItemData(Crossbow)
{

category = "Weapon";
className = "Weapon";
shapeFile = "~/data/models/weapons/crossbow.dts";
mass = 1;
elasticity = 0.2;
friction = 0.6;
emap = true;
pickUpName = "a crossbow";
image = CrossbowImage;

};
datablock ShapeBaseImageData(CrossbowImage)
{

shapeFile = "~/data/models/weapons/crossbow.dts";
emap = true;
mountPoint = 0;
eyeOffset = "0.1 0.4 -0.6";
correctMuzzleVector = false;
className = "WeaponImage";
item = Crossbow;
ammo = CrossbowAmmo;
projectile = CrossbowProjectile;
projectileType = Projectile;

stateName[0] = "Preactivate";
stateTransitionOnLoaded[0] = "Activate";
stateTransitionOnNoAmmo[0] = "NoAmmo";
stateName[1] = "Activate";
stateTransitionOnTimeout[1] = "Ready";
stateTimeoutValue[1] = 0.6;

226 Chapter 5 n Game Play

stateSequence[1] = "Activate";
stateName[2] = "Ready";
stateTransitionOnNoAmmo[2] = "NoAmmo";
stateTransitionOnTriggerDown[2] = "Fire";
stateName[3] = "Fire";
stateTransitionOnTimeout[3] = "Reload";
stateTimeoutValue[3] = 0.2;
stateFire[3] = true;
stateRecoil[3] = LightRecoil;
stateAllowImageChange[3] = false;
stateSequence[3] = "Fire";
stateScript[3] = "onFire";
stateName[4] = "Reload";
stateTransitionOnNoAmmo[4] = "NoAmmo";
stateTransitionOnTimeout[4] = "Ready";
stateTimeoutValue[4] = 0.8;
stateAllowImageChange[4] = false;
stateSequence[4] = "Reload";
stateEjectShell[4] = true;
stateName[5] = "NoAmmo";
stateTransitionOnAmmo[5] = "Reload";
stateSequence[5] = "NoAmmo";
stateTransitionOnTriggerDown[5] = "DryFire";
stateName[6] = "DryFire";
stateTimeoutValue[6] = 1.0;
stateTransitionOnTimeout[6] = "NoAmmo";

};
function CrossbowImage::onFire(%this, %obj, %slot)
{

%projectile = %this.projectile;
%obj.decInventory(%this.ammo,1);
%muzzleVector = %obj.getMuzzleVector(%slot);
%objectVelocity = %obj.getVelocity();
%muzzleVelocity = VectorAdd(

VectorScale(%muzzleVector, %projectile.muzzleVelocity),
VectorScale(%objectVelocity, %projectile.velInheritFactor));

%p = new (%this.projectileType)() {
dataBlock = %projectile;
initialVelocity = %muzzleVelocity;
initialPosition = %obj.getMuzzlePoint(%slot);
sourceObject = %obj;
sourceSlot = %slot;
client = %obj.client;

Server Control Modules 227

};
MissionCleanup.add(%p);
return %p;

}

We will cover the contents of the particle, explosion, and weapon datablocks in

detail in later chapters when we start creating our own weapons. Therefore we

will skip discussion of these elements for now and focus on the datablock’s

methods.

The first method, and one of the most critical, is the CrossbowProjectile::

OnCollision method. When called, it looks first to see if the projectile has col-

lided with the right kind of object. If so, then the projectile’s damage value is

applied directly to the struck object. The method then calls the RadiusDamage

function to apply damage to surrounding objects, if applicable.

When shooting the crossbow, the CrossbowImage::onFire method is used to

handle the aspects of firing the weapon that cause the projectile to be created and

launched. First, the projectile is removed from inventory, and then a vector is

calculated based upon which way the muzzle is facing. This vector is scaled by the

specified muzzle velocity of the projectile and the velocity inherited from the

movement of the crossbow (which gets that velocity from the movement of

the player).

Finally, a new projectile object is spawned into the game world at the location

of the weapon’s muzzle—the projectile possesses all the velocity information

at the time of spawning, so when added, it immediately begins coursing toward

its target.

The projectile is added to the MissionCleanup group before the method exits.

control/server/misc/item.cs

This module contains the code needed to pick up and create items, as well as

definitions of specific items and their methods. Type in the following code, and

save it as \EMAGA5\control\server\misc\item.cs.

//==
// control/server/misc/item.cs
// Copyright (c) 2003, 2005 by Kenneth C. Finney.
//==

228 Chapter 5 n Game Play

$RespawnDelay = 20000;
$LoiterDelay = 10000;
function Item::Respawn(%this)
{
%this.StartFade(0, 0, true);
%this.setHidden(true);
// Schedule a resurrection
%this.Schedule($RespawnDelay, "Hide", false);
%this.Schedule($RespawnDelay + 10, "StartFade", 3000, 0, false);

}
function Item::SchedulePop(%this)
{
%this.Schedule($LoiterDelay - 1000, "StartFade", 3000, 0, true);
%this.Schedule($LoiterDelay, "Delete");

}
function ItemData::OnThrow(%this,%user,%amount)
{
// Remove the object from the inventory
if (%amount $= "")

%amount = 1;
if (%this.maxInventory !$= "")

if (%amount > %this.maxInventory)
%amount = %this.maxInventory;

if (!%amount)
return 0;

%user.DecInventory(%this,%amount);
%obj = new Item() {

datablock = %this;
rotation = "0 0 1 " @ (GetRandom() * 360);
count = %amount;

};
MissionGroup.Add(%obj);
%obj.SchedulePop();
return %obj;

}
function ItemData::OnPickup(%this,%obj,%user,%amount)
{
%count = %obj.count;
if (%count $= "")

if (%this.maxInventory !$= "") {
if (!(%count = %this.maxInventory))
return;

}

Server Control Modules 229

else
%count = 1;

%user.IncInventory(%this,%count);
if (%user.client)

MessageClient(%user.client, ’MsgItemPickup’, ’\c0You picked up %1’,
%this.pickupName);
if (%obj.IsStatic())

%obj.Respawn();
else

%obj.Delete();
return true;

}
function ItemData::Create(%data)
{

%obj = new Item() {
dataBlock = %data;
static = true;
rotate = true;

};
return %obj;

}
datablock ItemData(Copper)
{

category = "Coins";
// Basic Item properties
shapeFile = "~/data/models/items/kash1.dts";
mass = 0.7;
friction = 0.8;
elasticity = 0.3;
respawnTime = 30 * 60000;
salvageTime = 15 * 60000;
// Dynamic properties defined by the scripts
pickupName = "a copper coin";
value = 1;

};
datablock ItemData(Silver)
{

category = "Coins";
// Basic Item properties
shapeFile = "~/data/models/items/kash100.dts";
mass = 0.7;
friction = 0.8;
elasticity = 0.3;

230 Chapter 5 n Game Play

respawnTime = 30 * 60000;
salvageTime = 15 * 60000;
// Dynamic properties defined by the scripts
pickupName = "a silver coin";
value = 100;

};
datablock ItemData(Gold)
{

category = "Coins";

// Basic Item properties
shapeFile = "~/data/models/items/kash1000.dts";
mass = 0.7;
friction = 0.8;
elasticity = 0.3;
respawnTime = 30 * 60000;
salvageTime = 15 * 60000;
// Dynamic properties defined by the scripts
pickupName = "a gold coin";
value = 1000;

};
datablock ItemData(FirstAidKit)
{
category = "Health";
// Basic Item properties
shapeFile = "~/data/models/items/healthPatch.dts";
mass = 1;
friction = 1;
elasticity = 0.3;
respawnTime = 600000;
// Dynamic properties defined by the scripts
repairAmount = 200;
maxInventory = 0; // No pickup or throw

};
function FirstAidKit::onCollision(%this,%obj,%col)
{
if (%col.getDamageLevel() != 0 && %col.getState() !$= "Dead")
{
%col.applyRepair(%this.repairAmount);
%obj.respawn();
if (%col.client)
{
messageClient

Server Control Modules 231

(%col.client,’MSG_Treatment’,’\c2Medical treatment applied’);
}

}
}

$RespawnDelay and $LoiterDelay are variables used to manage how long it takes

to regenerate static items or how long they take to disappear when dropped.

After an item has been picked, if it is a static item, a new copy of that item will

eventually be added to the game world using the Item::Respawnmethod. The first

statement in this method fades the object away, smoothly and quickly. Then the

object is hidden, just to be sure. Finally, we schedule a time in the future to bring

the object back into existence—the first event removes the object from hiding,

and the second event fades the object in smoothly and slowly over a period of

three seconds.

If we drop an item, we may want to have it removed from the game world to

avoid object clutter (and concomitant bandwidth loss). We can use the

Item::SchedulePop method to make the dropped object remove itself from the

world after a brief period of loitering. The first event scheduled is the start of a

fade-out action, and after one second the object is deleted.

We can get rid of held items by throwing them using the ItemData::OnThrow

method. It removes the object from inventory, decrements the inventory count,

creates a new instance of the object for inclusion in the game world, and adds it. It

then calls the SchedulePop method just described to look after removing the

object from the game world.

The ItemData::OnPickup method is the one used by all items. It adds the item to

the inventory and then sends amessage to the client to indicate that the object has

been picked up. If the object picked was a static one, it then schedules an event to

add a replacement item into the world. If not, then the instance picked is deleted,

and we see it no more.

The ItemData::Create method is the catchall object-creation method for items.

It creates a new datablock based upon the passed parameter and sets the static

and rotate properties to true before returning.

Next comes a collection of datablocks defining our coin and first-aid items. We

will cover first-aid items in more detail later, in Chapter 16.

The last method of interest is FirstAidKit::onCollision. This method will

restore some health, by applying a repair value, to colliding objects if it needs

232 Chapter 5 n Game Play

it. Once the treatment has been applied, a message is sent to the client for

display.

Running EMAGA5
Once you’ve typed in all the modules, you should be in a good position to test

EMAGA5. Table 5.3 shows the game action bindings that apply to in-game

navigation.

Figure 5.4 shows your player-avatar shortly after spawning in Emaga5.

To test the game, travel around the world collecting gold, silver, and copper

coins, and watch the total increase. You will have to watch out, though. The AI

beasts will track you and then shoot you if they spot you. Like the saying goes,

you can run, but you’ll only die tired! You can grab a crossbow and shoot back. In

some of the huts you will find first-aid kits that will patch you up. One more

thing—don’t fall off cliffs. Not healthy.

As an exercise, investigate how you would enable a game timer to limit how

much time you have to gather up the coins. Also, display a message if your score

exceeds a certain value.

Have fun!

Running EMAGA5 233

Table 5.3 EMAGA5 Game Action Bindings

Key Description

w run forward

s run backward

a run (strafe) left

d run (strafe) right

spacebar jump and respawn

z free look (hold key and move mouse)

tab toggle player point of view

escape quit game

tilde open console

left mouse button fire weapon

Moving Right Along
So, in this chapter you were exposed to more game-structuring shenanigans—

though nothing too serious. It’s always a good idea to keep your software

organized in ways that make sense according to the current state of the project. It

just makes it that much easier to keep track of what goes where and why.

Then we looked at how we can add more features: splash screens, interfaces, and

so on. You should be able to extrapolate from the small amount of game play

stuff we added, like crossbows and pickable items, that the world really can be

your oyster. What your game will do is limited only by your imagination.

In the next chapter we’ll poke a little deeper under the hood at one of the

more hidden, yet very powerful capabilities that any decent game will need—

messaging.

We’ll also add more enhancements to our game to allow us to connect to a

master server.

234 Chapter 5 n Game Play

Figure 5.4
The Avatar in EMAGA5.

Network

Although little emphasis was given to the subject in recent chapters, a key feature

of working with Torque is the fact that it was built around a client/server net-

working architecture.

Torque creates a GameConnection object, which is the primary mechanism that

links the client (and the player) to the server. The GameConnection object is built

from a NetworkConnection object. When the server needs to update clients, or

when it receives updates from clients, the work is done through the good auspices

of the NetworkConnection, and it is normally quite transparent at the game level.

What this means in practical terms is that the engine automatically handles

things like movement and state changes or property changes of objects that

populate a game world. Game programmers (like you and me) can then poke

their grubby little fingers into this system to make it do their bidding without

needing to worry about all the rest of the stuff, which Torque will manage—

unless we decide to mess around with that too!

I know this seems a bit vague, so in this chapter we will attack the nitty-gritty so

that you can really see how to use Torque’s built-in networking to the best

advantage.

First, we will discuss the features, and look at examples of how they can be

implemented, and then later in the chapter, after you update your Emaga sample

program, you can try them out.

235

chapter 6

Direct Messaging
The quickest way to get down and dirty with the client/server networking in

Torque is to use the CommandToServer and CommandToClient direct messaging

functions. These extremely useful ‘‘ad hoc’’ messaging functions are used for a

wide variety of purposes in a Torque game, like in-game chat, system messages,

and client/server synchronization.

CommandToServer

The CommandToServer function is used to send a message from a client to a server.

Of course, the server needs to know that the message is coming and how to parse

it to extract the data. The syntax is as follows:

An example of how to use this function would be a simple global chat macro

capability where a player would press a key, and then a specific message would be

broadcast to all other players. Here is how that would work. First, we would bind

a key combination to a specific function—say, bind Ctrl+H to the function we’ll

call SendMacro(). In the key binding statement, we’ll make sure to pass the value 1

as a parameter to SendMacro().

SendMacro() could be defined on the client as this:

function SendMacro(%value)
{
switch$ (%value)
{
case 1:

%msg = "Hello World!";
case 2:

%msg = "Hello? Is this thing on?";
default:

%msg = "Nevermind!";
}
CommandToServer(’TellEveryone’, %msg);

}

236 Chapter 6 n Network

CommandToServer(function [,arg1,...argn])

Parameters: function Message handler function on the server to be executed.

arg1,...argn Arguments for the function.

Return: nothing

So now, when the player presses Ctrl+H, the SendMacro() function is called, with its

%value parameter set to 1. In SendMacro(), the %value parameter is examined by the

switch$ statement and sent to case 1:, where the variable %msg is stuffed with the

string "Hello World!". Then CommandToServer is called with the first parameter set

to the tagged string "TellEveryone" and the second parameter set to our message.

Now here is where some of the Torque client/server magic elbows its way onto

the stage. The client will already have a GameConnection to the server and so will

already know where to send the message. In order to act on our message, the

server side needs us to define the TellEveryone message handler, which is really

just a special purpose function, something like this:

function ServerCmdTellEveryone(%client,%msg)
{

TellAll(%client,%msg);
}

Notice the prefix ServerCmd. When the server receives a message from the client

via the CommandToServer() function, it will look in its message handle list, which

is a list of functions that have the ServerCmd prefix, and find the one that matches

ServerCmdTellEveryone. It then calls that function, setting the first parameter to

the GameConnection handle of the client that sent the message. It then sets the rest

of the parameters to be the parameters passed in the message from the client,

which in this case is %msg stuffed with the string "Hello World!".

Then we can do what we want with the incoming message. In this case we want to

send the message to all the other clients that are connected to the server, and we’ll

do that by calling the TellAll() function. Now we could put the code right here

in our ServerCmdTellEveryonemessage handler, but it is a better design approach

to break the code out into its own independent function. We’ll cover how to do

this in the next section.

CommandToClient

Okay, here we are—we’re the server, and we’ve received a message from a client.

We’ve figured out that the message is the TellEveryone message, we know which

client sent it, and we have a string that came along with the message. What we

need to do now is define the TellAll() function, so here is what it could look like:

function TellAll(%sender, %msg)
{
%count = ClientGroup.getCount();

Direct Messaging 237

for (%i = 0; %i < %count; %i++)
{
%client = ClientGroup.getObject(%i);
CommandToClient(%client,’TellMessage’, %sender, %msg);

}
}

Our intention here is to forward the message to all the clients. Whenever a

client connects to the server, its GameConnection handle is added to the

ClientGroup’s internal list. We can use the ClientGroup’s method getCount to

tell us how many clients are connected. ClientGroup also has other useful

methods, and one of them—the getObject method—will give us the

GameConnection handle of a client, if we tell it the index number we are

interested in.

If you want to test these example functions, I’ll show you how to do that

toward the end of the chapter. If you feel like giving it a go by yourself, here’s a

small hint: the commandToClient function is called from the server side, and the

commandToServer functions belong on the client side.

As you can see, commandToClient is basically the server-side analogue to

commandToServer. The syntax is as follows:

The primary difference is that although the client already knew how to contact

the server when using CommandToServer, the same is not true for the server when

using CommandToClient. It needs to know which client to send the message to each

time it sends the message. So the simple approach is to iterate through the

ClientGroup using the for loop, getting the handle for each client, and then

sending each client a message using the CommandToClient() function, by speci-

fying the client handle as the first parameter. The second parameter is the name

of the message handler on the client side this time. Yup—works the same going

that way as it did coming this way! Of course, the third parameter is the actual

message to be passed.

238 Chapter 6 n Network

CommandToClient(client, function [,arg1,...argn])

Parameters: client Handle of the target client.

function Message handler function on the server to be executed.

arg1,...argn Arguments for the function.

Return: nothing

So we need that message handler to be defined back over on the client. You can

do it like this:

function clientCmdTellMessage(%sender, %msgString)
{
// blah blah blah
}

Notice that when we called this function there were four parameters, but our

definition only has two in the parameter list. Well, the first parameter was the

client handle, and because we are on the client, Torque strips that out for us. The

second parameter was themessage handler identifier, whichwas stripped out after

Torque located the handler function and sent the program execution here. So the

next parameter is the sender, which is the client that started this whole snowball

rolling, way back when. The last parameter is, finally, the actual message.

I’ll leave it up to you to decide what to do with the message. The point here was to

show this powerful messaging system in operation. You can use it for almost

anything you want.

Direct Messaging Wrap-up

CommandToServer and CommandToClient are two sides of the same direct messaging

coin and give us, as game programmers, a tremendous ability to send messages

back and forth between the game client and the game server.

Direct messaging can also be an important tool in the fight against online

cheating in your game. You can, in theory and in practice, require all user inputs

to go to the server for approval before executing any code on the client. Even

things like changing setup options on the client—which are not normally the

sort of thing that servers would control—can be easily programmed to require

server control using the technique we just looked at.

The actual amount of server-side control you employ will be dictated by both

available bandwidth and server-side processing power. There is a lot that can be

done, but it is a never-ending series of tradeoffs to find the right balance.

Triggers
Right off the bat, there is potential for confusion when discussing the term trigger

in Torque, so let’s get that out of the way. There are four kinds of triggers that

Triggers 239

people talk about when programming with Torque:

n area triggers

n animation triggers

n weapon state triggers

n player event control triggers

I’ll introduce you to all four here, but we’ll talk about three of them—area triggers,

animation triggers, and weapon state triggers—in more detail in future chapters.

Area Triggers

Area triggers are special in-game constructs. An area in the 3D world of a game is

defined as a trigger object. When a player’s avatar enters the bounds of the trigger

area, an event message is posted on the server.We can write handlers to be activated

by these messages. We will be covering area triggers in more depth in Chapter 22.

Animation Triggers

Animation triggers are used to synchronize footstep sounds with walking ani-

mations in player models. Modeling tools that support animation triggers have

ways of tagging frames of animation sequences. The tags tell the game engine that

certain things should happen when this frame of an animation is being displayed.

We’ll discuss these later, in Chapter 14.

Weapon State Triggers

Torque uses weapon state triggers for managing and manipulating weapon states.

These triggers dictate what to do when a weapon is firing, reloading, recoiling,

and so on. We’ll look at this in more detail later, in Chapter 20 in the section

‘‘Weapon Sounds.’’

Player Event Control Triggers

Finally, there are player event control triggers, which are a form of indirect mes-

saging of interest to us in this chapter. These mechanisms are used to process

certain player inputs on the client in real time. You can have up to six of these

triggers, each held by a variable with the prefix $mvTriggerCountn (where n is an

index number from 0 to 5).

240 Chapter 6 n Network

Whenwe use a trigger move event, we increment the appropriate $mvTriggerCountn

variable on the client side. This change in value causes an update message to be sent

back to the server. The server will process these changes in the context of our control

object, which is usually our player’s avatar. After the server acts on the trigger, it

decrements its count. If the count is nonzero, it acts again when it gets the next

change in its internal scheduling algorithm. In this way we can initiate these trigger

events by incrementing the variable as much as we want (up to a maximum of 255

times), without having to wait and see if the server has acted on the events. They are

just automatically queued up for us via the $mvTriggerCountn variable mechanism.

Torque has default support for the first four control triggers built into its player

and vehicle classes (see Table 6.1).

In the server control code, we can put a trigger handler in our player’s avatar for

any of these triggers that override the default action. We define a trigger handler

like this:

function MyAvatarClass::onTrigger(%this, %obj, %triggerNum, %val)
{
// trigger activity here
$switch(%triggerNum)
{
case 0:
//replacement for the "fire" action.

case 1:
//replacement for the "alt fire" action.

Triggers 241

Table 6.1 Default Player Event Control Triggers

Trigger %triggerNum Default Action

$mvTriggerCount0 0 Shoots or activates the mounted weapon in image slot 0
of the player’s avatar. (The ‘‘fire’’ button, so to speak.)

$mvTriggerCount1 1 Shoots or activates the mounted weapon in image slot 1
of the player’s avatar. (The ‘‘alt fire.’’)

$mvTriggerCount2 2 Initiates the ‘‘jump’’ action and animation for the player’s
avatar.

$mvTriggerCount3 3 Initiates the ‘‘jetting’’ (extra boost) action and animation
for the vehicle on which a player’s avatar is mounted.

$mvTriggerCount4 4 Unassigned.

$mvTriggerCount5 5 Unassigned.

case 2:
//replacement for the "jump" action.

case 3:
//replacement for the "jetting" action.

case 4:
//whatever you like

case 5:
//whatever you like

}
}

The MyAvatarClass class is whatever you have defined in your player avatar’s

datablock using the following statement:

className = MyAvatarClass;

To use a trigger handler, you merely have to increment a player event control

trigger on the client, something like this:

function mouseFire(%val)

{
$mvTriggerCount0++;

}

or this:

function altFire(%val)
{
$mvTriggerCount1++;

}

GameConnection Messages
Most of the other kinds of messages used when making a game with Torque are

handled automatically. However, in addition to the direct messaging techniques

we just looked at, there are other more indirect messaging capabilities available to

the Torque game developer. These are messages related to the GameConnection

object.

I call these methods indirect because we, as programmers, don’t get to use them

in any old way of our choosing. But we can, nonetheless, use these methods, in

the form of message handlers, when the Torque Engine decides it needs to send

the messages.

242 Chapter 6 n Network

What GameConnection Messages Do

GameConnection messages are of great importance to us during the negotiation

process that takes place between the client and server when a client joins a game.

They are network messages with game-specific uses, as opposed to being

potentially more general-purpose network messages.

Torque calls a number of GameConnection message handlers at different times

during the process of establishing, maintaining, and dropping game-related

connections. In the Torque demo software, many of these handlers are defined in

the common code base, whereas others aren’t used at all. You are encouraged to

override the common code message handlers with your own GameConnection

message handlers or use the unused handlers, if you need to.

Specifics

During program execution, the client will at some point try to connect to the

server using a set of function calls like this:

%conn = new GameConnection(ServerConnection);
%conn.SetConnectArgs(%username);
%conn.Connect();

In this example the %conn variable holds the handle to the GameConnection. The

Connect() function call initiates a series of network transactions that culminate at

the server with a call to the GameConnection::OnConnect handler.

The following descriptions are listed roughly in the order that the functions are

used in the Emaga6 program.

This handler is used to check if the server-player capacity has been exceeded. If not

exceeded, then "" is returned, which allows the connection process to continue. If

the server is full, then CR_SERVERFULL is sent back. Returning any value other than ""

GameConnection Messages 243

onConnectionRequest()

Parameters: none

Return: @@ (null string) Indicates that the connection is accepted.

none Indicates rejection for some reason.

Description: Called when a client attempts a connection, before the connection
is accepted.

Usage: Common---Server

will cause an error condition to be propagated back through the engine and sent to

the client as a call to the handler GameConnection::onConnectRequestRejected. Any

arguments that were passed to GameConnection::Connect are also passed to this

handler by the engine.

This handler is a good place to make last-minute preparations for a connected

session.

In this case the second parameter (%name) is the value the client has used, while

establishing the connection, as the parameter to the %(GameConnection).

Set ConnectArgs(%username)call.

244 Chapter 6 n Network

onConnectionAccepted(handle)

Parameters: handle GameConnection handle.

Return: nothing

Description: Called when a Connect call succeeds.

Usage: Client

onConnect(client, name)

Parameters: client A client’s GameConnection handle.

name Name of a client’s account or username.

Return: nothing

Description: Called when a client has successfully connected.

Usage: Server

onConnectRequestTimedOut(handle)

Parameters: handle GameConnection handle.

Return: nothing

Description: Called when establishing a connection takes too long.

Usage: Client

When this gets called you probably want to display, or at least log, some message

indicating that the connection has been lost because of a timeout.

When this gets called you probably want to display, or at least log, some message

indicating that the connection has been lost because of a timeout.

When this gets called you probably want to display, or at least log, some message

indicating that the connection has been lost because of a timeout.

When this gets called you probably want to display, or at least log, some message

indicating that the connection has been lost.

GameConnection Messages 245

onConnectionTimedOut(handle)
Parameters: handle GameConnection handle.

Return: nothing

Description: Called when a connection ping (heartbeat) has not been received.

Usage: Server, Client

onConnectionDropped(handle, reason)
Parameters: handle GameConnection handle.

reason String indicating why the server dropped the connection.

Return: nothing

Description: Called when the server initiates the disconnection of a client.

Usage: Client

onConnectRequestRejected(handle, reason)
Parameters: handle GameConnection handle.

reason See Table 6.2 for a list of conventional reason codes defined by
GarageGames in script.

Return: nothing

Description: Called when a client’s connection request has been turned
down by the server.

Usage: Client

246 Chapter 6 n Network

Table 6.2 Connection Request Rejection Codes

Reason Code Meaning

CR_INVALID_PROTOCOL_VERSION The wrong version of the client was detected.

CR_INVALID_CONNECT_PACKET There is something wrong with the connection packet.

CR_YOUAREBANNED Your game username has been banned.

CR_SERVERFULL The server has reached the maximum number of players.

CHR_PASSWORD The password is incorrect.

CHR_PROTOCOL The game protocol version is not compatible.

CHR_CLASSCRC The game class version is not compatible.

CHR_INVALID_CHALLENGE_PACKET The client detected an invalid server response packet.

onConnectionError(handle, errorString)
Parameters: handle GameConnection handle.

errorString String indicating the error encountered.

Return: nothing

Description: General connection error, usually raised by ghosted object
initialization problems, such as missing files. The
errorString is the server’s connection error message.

Usage: Client

onDrop(handle, reason)
Parameters: handle GameConnection handle.

reason Reason for the connection being dropped, passed from the server.

Return: nothing

Description: Called when a connection to a server is arbitrarily dropped.

Usage: Client

initialControlSet(handle)
Parameters: handle GameConnection handle.

Return: nothing

Description: Called when the server has set up a control object for the
GameConnection. For example, this could be an avatar
model or a camera.

Usage: Client

Use this handler to manage the mission loading process and any other activity

that transfers datablocks.

GameConnection Messages 247

setLagIcon(handle, state)
Parameters: handle GameConnection handle.

state Boolean that indicates whether to display or hide the icon.

Return: nothing

Description: Called when the connection state has changed, based upon the lag
setting. state is set to true when the connection is considered
temporarily broken or set to false when there is no loss of connection.

Usage: Client

onDataBlocksDone(handle, sequence)
Parameters: handle GameConnection handle.

sequence Value that indicates which set of datablocks has been transmitted.

Return: nothing

Description: Called when the server has received confirmation that all datablocks
have been received.

Usage: Server

onDataBlockObjectReceived(index, total)
Parameters: index Index number of datablock objects.

total Count of datablock objects sent so far.

Return: nothing

Description: Called when the server is ready for datablocks to be sent.

Usage: Client

onFileChunkReceived(file, ofs, size)
Parameters: file The name of the file being sent.

ofs Offset of data received.

size File size.

Return: nothing

Description: Called when a chunk of file data from the server has arrived.

Usage: Client

Finding Servers
When you offer a game with networked client/server capabilities, there needs to

be some means for players to find servers to which to connect. On the Internet, a

fairly widely implemented technique is to employ a master server. The master

server’s job is generally straightforward and simple. It keeps a list of active game

servers and provides a client with the necessary information to connect to any

one of the servers if desired.

To see the utility of such a simple system, just take a look at NovaLogic, makers of

the successful Delta Force series of first-person shooters. NovaLogic still hosts

master servers for customers who bought the originalDelta Force games from the

late 1990s! The overhead of such a simple system is minimal, and the benefit in

customer goodwill is tremendous.

The Tribes series of games, upon which Torque is based, also offers such master

servers, as do many other games out there.

On a small- to medium-sized local area network, this is not too onerous a task.

An extremely simple method is to have the client merely examine a specified port

on all visible nodes to see if a server is present, and that’s what we’re going to be

doing in this chapter.

248 Chapter 6 n Network

onGhostAlwaysObjectReceived()
Parameters: none

Return: nothing

Description: Called when a ghosted object’s data has been sent across from
the server to the client.

Usage: Client

onGhostAlwaysStarted(count)
Parameters: count The number of ghosted objects dealt with so far.

Return: nothing

Description: Called when a ghosted object has been sent to the client.

Usage: Client

Code Changes

We are going to implement ‘‘find a server’’ support in our version of Emaga for

this chapter. We will create Emaga6 bymodifying Emaga5, the game from the last

chapter.

First, copy your entire \EMAGA5 folder to a new folder, called \EMAGA6. Then,

for the sake of clarity, rename the UltraEdit project file to chapter6.prj. Now open

your newChapter 6UltraEdit project. All changeswill bemade in the control code.

In addition to changes to the actual program code, youmight want to also change

any Chapter 5 comment references so they refer to Chapter 6—it’s your call.

Client—Initialize Module

We’ll make our first change in control/client/initialize.cs. Open that module and

locate the function InitializeClient. Add the following statements to the very

beginning of the function (after the opening brace):

$Client::GameTypeQuery = "3D2E";
$Client::MissionTypeQuery = "Any";

When one of our servers contacts the master server, it uses the variable

$Client::GameTypeQuery to filter out game types that we aren’t interested in. For

your game, you can set any game type you like. Here we are going to go with

3D2E because there will be at least one 3D2E server listed on the master server,

and for the purpose of illustration it is better to see one or two 3D2E servers listed

than nothing at all. You can change this later at your leisure.

The variable $Client::MissionTypeQuery is used to filter whatever specific game

play styles are available. By specifying any, we will see any types that are available.

This is also something we can define in whatever way we want for our game.

Farther down will be a call to InitCanvas. Although it is not really important to

make the master server stuff work, change that statement to this:

InitCanvas("Emaga6 - 3D2E Sample Game");

Doing so reflects the fact that we are now in Chapter 6 and not in Chapter 5

anymore.

Next, there are a series of calls to Exec. Find the one that loads playerinterface.gui,

and put the following line after that one:

Exec("./interfaces/serverscreen.gui");

Finding Servers 249

Then find the call to Exec that loads screens.cs, and add the following statement

after it:

Exec("./misc/serverscreen.cs");

Finally, toward the end of the function, find the Exec call that loads

connections.cs. After that statement, and before the call to Canvas.SetContent,

add the following statement:

SetNetPort(0);

This statement is critical. Although we will never use port 0, it is necessary tomake

this call to ensure that theTCP/IP code inTorqueworks correctly. Later on in other

modules the appropriate port will be set, depending on what we are doing.

Now we need to add a button to the main screen. Open \EMAGA6\control\

client\interfaces\menuscreen.gui and at the end of the file find the last line that

has a single brace/semi-colon pair }; and insert the following code just above it:

new GuiButtonCtrl() {
command = "Canvas.setContent(ServerScreen);";
text = "Connect To Server";

};

New Modules

More typing! But not as much as in previous chapters, so don’t fret. We have to add

a new interfacemodule and amodule to contain the code thatmanages its behavior.

Client—ServerScreen Interface Module

Now we have to add the ServerScreen interface module. This module defines

buttons, text labels, and a scroll control that will appear on the screen; we can use

it to query the master server and view the results. Type in the following code, and

save it as control\client\interfaces\serverscreen.gui.

//===
// control/client/interfaces/serverscreen.gui
//
// Server query interface module for 3D2E emaga6 sample game
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//===

new GuiChunkedBitmapCtrl(ServerScreen) {

250 Chapter 6 n Network

profile = "GuiContentProfile";

horizSizing = "width";
vertSizing = "height";
position = "0 0";
extent = "640 480";
minExtent = "8 8";
visible = "1";
bitmap = "./emaga_background";
useVariable = "0";
tile = "0";
helpTag = "0";

new GuiControl() {
profile = "GuiWindowProfile";
horizSizing = "center";
vertSizing = "center";
position = "20 90";
extent = "600 300";
minExtent = "8 8";
visible = "1";
helpTag = "0";

new GuiTextCtrl() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "183 5";
extent = "63 18";
minExtent = "8 8";
visible = "1";
text = "Player Name:";
maxLength = "255";
helpTag = "0";

};

new GuiTextEditCtrl() {
profile = "GuiTextEditProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "250 5";
extent = "134 18";
minExtent = "8 8";
visible = "1";
variable = "Pref::Player::Name";

Finding Servers 251

maxLength = "255";

historySize = "5";
password = "0";

tabComplete = "0";
sinkAllKeyEvents = "0";

helpTag = "0";
};

new GuiTextCtrl() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "13 30";
extent = "24 18";
minExtent = "8 8";
visible = "1";
text = "Private ?";
maxLength = "255";
helpTag = "0";

};
new GuiTextCtrl() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "76 30";
extent = "63 18";
minExtent = "8 8";
visible = "1";
text = "Server Name";
maxLength = "255";
helpTag = "0";

};
new GuiTextCtrl() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "216 30";
extent = "20 18";
minExtent = "8 8";
visible = "1";
text = "Ping";
maxLength = "255";
helpTag = "0";

};

252 Chapter 6 n Network

new GuiTextCtrl() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "251 30";
extent = "36 18";
minExtent = "8 8";
visible = "1";
text = "Players";
maxLength = "255";
helpTag = "0";

};
new GuiTextCtrl() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "295 30";
extent = "38 18";
minExtent = "8 8";
visible = "1";
text = "Version";
maxLength = "255";
helpTag = "0";

};
new GuiTextCtrl() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "433 30";
extent = "28 18";
minExtent = "8 8";
visible = "1";
text = "Game Description";
maxLength = "255";
helpTag = "0";

};

new GuiScrollCtrl() {
profile = "GuiScrollProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "14 55";
extent = "580 190";

Finding Servers 253

minExtent = "8 8";
visible = "1";
willFirstRespond = "1";
hScrollBar = "dynamic";
vScrollBar = "alwaysOn";
constantThumbHeight = "0";
childMargin = "0 0";
helpTag = "0";
defaultLineHeight = "15";

new GuiTextListCtrl(ServerList) {
profile = "GuiTextArrayProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "2 2";
extent = "558 48";
minExtent = "8 8";
visible = "1";
enumerate = "0";
resizeCell = "1";
columns = "0 30 200 240 280 400";
fitParentWidth = "1";
clipColumnText = "0";
noDuplicates = "false";
helpTag = "0";

};
};

new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "16 253";
extent = "127 23";
minExtent = "8 8";
visible = "1";
command = "Canvas.getContent().Close();";
text = "Close";
groupNum = "-1";
buttonType = "PushButton";
helpTag = "0";

};

254 Chapter 6 n Network

new GuiButtonCtrl(JoinServer) {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "455 253";
extent = "130 25";
minExtent = "8 8";
visible = "1";
command = "Canvas.getContent().Join();";
text = "Connect";
groupNum = "-1";
buttonType = "PushButton";
active = "0";
helpTag = "0";

};

new GuiControl(QueryStatus) {
profile = "GuiWindowProfile";
horizSizing = "center";
vertSizing = "center";
position = "149 100";
extent = "310 50";
minExtent = "8 8";
visible = "0";
helpTag = "0";

new GuiButtonCtrl(CancelQuery) {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "9 15";
extent = "64 20";
minExtent = "8 8";
visible = "1";
command = "Canvas.getContent().Cancel();";
text = "Cancel";
groupNum = "-1";
buttonType = "PushButton";
helpTag = "0";

};
new GuiProgressCtrl(StatusBar) {
profile = "GuiProgressProfile";
horizSizing = "right";

Finding Servers 255

vertSizing = "bottom";
position = "84 15";
extent = "207 20";
minExtent = "8 8";
visible = "1";
helpTag = "0";

};
new GuiTextCtrl(StatusText) {
profile = "GuiProgressTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "85 14";
extent = "205 20";
minExtent = "8 8";
visible = "1";
maxLength = "255";
helpTag = "0";

};
};

};
};

The first half of the module is an interface definition, defining a number of

buttons, text labels, and a scroll control that will appear on the screen. Most of

the properties and control types have been covered in previous chapters; how-

ever, some of them are of particular note here.

The first item of interest is the GuiScrollCtrl. This control provides a scrollable

vertical list of records; in this case it will be a list of servers that satisfy the filters

used in subsequent Query calls that we will look at a bit later.

Some of the GuiScrollCtrlproperties of interest are explained in Table 6.3.

The next significant control to examine is the GuiTextEditCtrl. It has an inter-

esting property, shown by this statement:

variable = "Pref::Player::Name";

What this does is display the contents of the variable Pref::Player::Name in the

control’s content. If we change that content by placing our edit cursor in the

control’s field while it is being displayed and typing in new text, then the contents

of the variable Pref::Player::Name are also changed.

256 Chapter 6 n Network

Also in this GuiTextEditCtrlcontrol is the following statement:

historySize = "0";

This control has the ability to store a history of previous values that were held in

the control’s edit box. We can scroll through the list’s previous values by pressing

the Up Arrow and Down Arrow keys. This property sets the maximum number

of values that can be saved in the control’s history. A setting of 0 means that no

history will be saved.

Now go take a look at the control of type GuiControl with the name QueryStatus.

This is the definition of a subscreen that will display the progress of the query. It

contains a couple of other controls that we’ve seen before, but I just want you to

note how they are nested within this control, which is nested within the larger

ServerScreen.

Client—ServerScreen Code Module

Next, we will add the ServerScreen code module. This module defines how the

ServerScreen interface module will behave. Type in the following code, and save

it as control\client\misc\serverscreen.cs.

Finding Servers 257

Table 6.3 Selected GuiScrollCtrl Properties

Property Description

willFirstRespond If set to true or 1, indicates that this control will respond to user inputs
first, before passing them on to other controls.

hScrollBar Indicates how to decide whether to display the horizontal scroll bar. The
choices are

alwaysOn: The scroll bar is always visible.

alwaysOff: The scroll bar is never visible.

dynamic The scroll bar is not visible until the number of records in the
list exceeds the number of lines available to display them. If this happens
the scroll bar is turned on and made visible.

vScrollBar The same as hScrollBar but applies to the vertical scroll bar.

constantThumbHeight Indicates whether the thumb, the small rectangular widget in the scroll bar
that moves as you scroll, will have a size that is proportional to the number
of entries in the list (the longer the list, the smaller the thumb) or will have a
constant size. Setting this property to 1 ensures a constant size; 0 ensures
proportional sizing.

//==
// control/client/misc/serverscreen.cs
//
// Server query code module for 3DGPAI1 Emaga6 sample game
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//==
function ServerScreen::onWake()
{
JoinServer.SetActive(ServerList.rowCount() > 0);
ServerScreen.queryLan();

}

function ServerScreen::QueryLan(%this)
{
QueryLANServers(

28000, // lanPort for local queries
0, // Query flags
$Client::GameTypeQuery, // gameTypes
$Client::MissionTypeQuery, // missionType
0, // minPlayers
100, // maxPlayers
0, // maxBots
2, // regionMask
0, // maxPing
100, // minCPU
0 // filterFlags
);

}

function ServerScreen::Cancel(%this)
{
CancelServerQuery();

}

function ServerScreen::Close(%this)
{
CancelServerQuery();
Canvas.SetContent(MenuScreen);

}

258 Chapter 6 n Network

function ServerScreen::Update(%this)
{
QueryStatus.SetVisible(false);
ServerList.Clear();
%sc = GetServerCount();
for (%i = 0; %i < %sc; %i++)
{
SetServerInfo(%i);
ServerList.AddRow(%i,
($ServerInfo::Password? "Yes": "No") TAB
$ServerInfo::Name TAB
$ServerInfo::Ping TAB
$ServerInfo::PlayerCount @ "/" @ $ServerInfo::MaxPlayers TAB
$ServerInfo::Version TAB
$ServerInfo::GameType TAB
%i);

}
ServerList.Sort(0);
ServerList.SetSelectedRow(0);
ServerList.ScrollVisible(0);
JoinServer.SetActive(ServerList.RowCount() > 0);

}

function ServerScreen::Join(%this)
{
CancelServerQuery();
%id = ServerList.GetSelectedId();
%index = GetField(ServerList.GetRowTextById(%id),6);
if (SetServerInfo(%index)) {
%conn = new GameConnection(ServerConnection);
%conn.SetConnectArgs($pref::Player::Name);
%conn.SetJoinPassword($Client::Password);
%conn.Connect($ServerInfo::Address);

}
}

function onServerQueryStatus(%status, %msg, %value)
{
if (!QueryStatus.IsVisible())
QueryStatus.SetVisible(true);

switch$ (%status) {
case "start":

Finding Servers 259

case "ping":
StatusText.SetText("Ping Servers");
StatusBar.SetValue(%value);

case "query":

case "done":
QueryStatus.SetVisible(false);
ServerScreen.Update();

}
}

This module is where we’ve put the code that controls how the Master Server

screen behaves.

The first function, ServerScreen::onWake, defines what to do when the screen

is displayed. In this case we first set the Join button to be active if there are

any servers in the server list at the moment we display the screen. Then

ServerScreen::QueryLAN is called. It executes a call to QueryLANServers, which

reaches out across the local area network and talks to each computer on port

28000 (you can use any available port). If it manages to contact a computer with

a game server running on that port, it establishes contact with the game server,

obtains some information from it, and adds that server to a list. There are quite a

few parameters to the call to QueryLANServers. The following syntax definition

shows them in more detail:

260 Chapter 6 n Network

QueryLANServers (port, flags, gtype, mtype, minplayers, maxplayers, maxbots,
region, ping, cpu, filters, buddycount, buddylist)
Parameters: port The TCP/IP port where game servers are expected to be found.

flags Query flags. Choices:

0� 00 = online query

0� 01 = offline query

0� 02 = no string compression

gtype Game type string.

mtype Mission type string.

minplayers Minimum number of players for a viable game.

maxplayers Maximum allowable players.

maxbots Maximum allowable connected AI bots.

region Numeric discriminating mask.

ping Maximum ping for connecting clients; 0 means no maximum.

The response to the QueryLANServers function is accessible from the ServerList

array.

The next function, ServerScreen::Cancel, is called when the Cancel button is

clicked while the query is under way.

After that is the ServerScreen::Close function, which is called when the user

clicks the Close button. It cancels any pending query and then returns to the

MenuScreen.

ServerScreen::Update is the function that inserts the obtained information in

the ServerList after it is obtained from the master server. The information is

found in the $ServerInfo array. To update the scrolling display, we find the

number of servers that pass the filters on the master by calling GetServerCount.

Then we iterate through our displayable list, extracting the fields from each

$ServerInfo record. Take note of the call to SetServerInfo. Passing an index

number to this function sets the $ServerInfo array to point to a specific record in

the MasterServerList. Then we access the individual fields in the $ServerInfo

array by referencing them with the colon operator: $ServerInfo::Name or

$ServerInfo::Name, to demonstrate with two examples.

The next function, ServerScreen::Join, defines how we go about joining a server

that has been selected from the list. First, we cancel any outstanding queries,

get the handle of the server record that is highlighted in the interface, and then

use that to obtain the index number of the server record.We use the SetServerInfo

to set the $ServerInfo array to point to the right server record, and then we

can access the values. After setting some network parameters, we finally use

$ServerInfo::Address to make the network connection.

The last function in the module is the message handler callback that makes the

whole shebang go: onServerQueryStatus. It gets called repeatedly as the server

Finding Servers 261

mincpu Minimum specified CPU capability.

filterflags Server filters. Choices:

0� 00 = dedicated

0� 01 = not password protected

0� 02 = Linux

0� 80 = current version

buddycount Number of buddy servers in the buddy list.

buddylist List of server names that are buddies to this server.

Return: nothing

query process unfolds. We use the %status variable to determine what response

we are receiving from the master server, and then we use either the %msg or %value

variable, set by the master server to update various fields in the displayed server

list. The start and query cases aren’t needed in our example.

Dedicated Server
Sometimes we will want to host a game as a server without having to bother with

a graphical user interface. One reason we might want to do this is because we

want to run the server on a computer that doesn’t have a 3D accelerated graphics

adapter. Another reason is because we might want to test our client/server

connectivity and master server query capabilities. This need arises because we

can’t run two instances of the Torque graphical client at the same time. However,

if we have the ability to run as a dedicated server, we can run multiple dedicated

servers, while running one instance of the graphical client, all on the same

computer. And if we have set up the dedicated servers appropriately, other

players out on the network can connect to our servers.

There are a few more modules you will have to change to implement the dedi-

cated server capabilities.

Root Main Module

In this module we’ll need to add some command line switches in case we want to

use the command line interface of Windows, or we’ll need to decide to embed

the switches in a Windows shortcut. Either of these methods is how we can tell

the game to run the server in dedicated mode. In the module main.cs located

in the root game folder (which is the folder where the tge.exe executable is located

for your Chapter 6 version of Emaga), locate the ParseArgs function, and scroll

down until you find the statement containing $switch($currentarg). Type the

following code in directly after the $switch statement (after the opening brace):

case "-dedicated":
$Server::Dedicated = true;
EnableWinConsole(true);
$argumentFlag[%i]++;

case "-map":
$argumentFlag[%i]++;
if (%nextArgExists)

262 Chapter 6 n Network

{
$mapArgument = %nextArgument;
$argumentFlag[%i+1]++;
%i++;

}
else

Error("Error: Missing argument. Usage: -map <filename>");

Both of these switches are needed to run a dedicated server. The -dedicated

switch puts us into the right mode, and then the -map switch tells us which

mission map to load when the server first starts running.

The result of these changes is that we can now invoke the dedicated server mode

by launching the game with the following syntax from the command line (don’t

try it yet): tge.exe -dedicated -map control/data/maps/book_ch6.mis.

The game will launch, and all you will see will be a console window. You will be

able to type in console script statements, just as you can when you use the Tilde

(‘‘~’’) key in the graphical client interface. However, don’t try this just yet,

because we still need to add the actual dedicated server code!

You can also create a shortcut to the tge.exe executable and modify the Target

box in the shortcut properties to match the command line syntax above. Then

you can launch the server merely by double-clicking on the shortcut icon.

Control—Main Module

Next, we have a quick modification to make to control/main.cs. In the OnStart

function, locate the line that contains InitializeClient. Replace that one line

with these four lines:

if ($Server::Dedicated)
InitializeDedicatedServer();

else
InitializeClient();

Now, when the program detects that the -dedicated switch was used, as

described in the previous section, it will fire up in dedicated mode, not in client

mode.

Dedicated Server 263

Control—Initialize Module

Okay, the meat of the dedicated server code is contained in this module. Open up

the module control/server/initialize.cs, and type in the following lines just before

the InitializeServer function.

$pref::Net::DisplayOnMaster = "Never";
$pref::Master0 = "2:master.garagegames.com:28002";

$Pref::Server::ConnectionError = "You do not have the correct version of 3D2E
client or the related art needed to play on this server. This is the server for
Chapter 6. Please check that chapter for directions.";

$Pref::Server::FloodProtectionEnabled = 1;
$Pref::Server::Info = "3D Game Programming All-In-One by Kenneth C. Finney.";
$Pref::Server::MaxPlayers = 64;
$Pref::Server::Name = "3D2E Book - Chapter 6 Server";
$Pref::Server::Password = "";
$Pref::Server::Port = 28000;
$Pref::Server::RegionMask = 2;
$Pref::Server::TimeLimit = 20;
$Pref::Net::LagThreshold = "400";
$pref::Net::PacketRateToClient = "10";
$pref::Net::PacketRateToServer = "32";
$pref::Net::PacketSize = "200";
$pref::Net::Port = 28000;

You can change the string values to be anything you like as long as it suits your

purposes. You should leave the RegionMask as is for now.

Next, locate the function InitializeServer again, and insert the following lines

at the very beginning of the function:

$Server::GameType = "3D2E";
$Server::MissionType = "Emaga6";
$Server::Status = "Unknown";

The value of $Server::Status will be updated when the server makes contact

with the master server.

Finally, you will need to add this entire function to the end of the module:

function InitializeDedicatedServer()
{
EnableWinConsole(true);
Echo("\n--------- Starting Dedicated Server ---------");

$Server::Dedicated = true;

264 Chapter 6 n Network

if ($mapArgument !$= "") {
CreateServer("MultiPlayer", $mapArgument);

}
else

Echo("No map specified (use -map <filename>)");
}

This function enables theWindows console, sets the dedicated flag, and then calls

CreateServer with the appropriate values. Now it may not do very much and

therefore seem to be not too necessary, but the significance with the Initi-

alizeDedicatedServer function is in what it doesn’t do compared with the

InitializeClient function, which would have otherwise been called. So that’s

the reason why it exists.

Emaga6 Map Files

There is a special map (mission) file with accompanying terrain file for use with

this chapter. Locate these files at RESOURCES\CH6\EMAGA6\control\data\

maps\book_ch6.mis and RESOURCES\CH6\EMAGA6\control\data\maps\

book_ ch6.ter, respectively, and copy them to \EMAGA6\control\data\maps\.

Testing Emaga6
With all the changes we’ve made here, we’re going to want to see Emaga6 run. It’s

really fairly easy. Open a command shell in Windows, and change to the folder

where you’ve built the code for this chapter’s program (\EMAGA6). Then run the

dedicated server by typing in this command: tge.exe -dedicated -map control/

data/maps/book_ch6.mis.

No t e

When you are testing, if you should happen to peek into the console while the game is running or
into the console log file afterward, you might notice a whole bunch of lines like this:

No such file ’control/data/models/avatars/orc/player.jpg’.

Don’t worry---that’s not even an error. When loading shapes, Torque has an automatic system that
looks for texture files associated with those shapes. Torque supports both JPG and PNG image file
types for use with shapes, and depending on how the textures are defined in the shape files
themselves, Torque may not find the specified file immediately. When that is the case, it goes
through its seek routine and spews out a message every time one of its attempts doesn’t succeed.
Once the correct file is located, Torque moves on to the next instruction without any further fuss
over that particular shape.

Testing Emaga6 265

After it displays lots of start-up information, it will eventually settle down and tell

you in the console window that it has successfully loaded a mission. When you

see these things, your dedicated server is running fine.

T i p

You may be wondering how to do this over the Internet. I’ve written a different version of this
chapter that is available on the Internet as a supplement on a page called ‘‘Internet Game
Hosting.’’ Browse your way to http://www.tubettiworld.com/book/ALT_CH6.php and click on the
ALTERNATE CHAPTER 6 PDF FORMAT link.

That supplement is provided on an as-is basis.

Next, double-click your tge.exe icon as you’ve done in the past to run the Emaga

client. When the Menus screen appears, click the Connect To Server button.

Look for the 3DGPAI1 server name (or whatever value you assigned to

$Pref:: Server::Name in the Control—Initialize module). Select that server

entry, and then click Join. Watch the progress bars, and eventually you will find

yourself deposited in the game. Send copies of this to your friends, and get them

to join in for some freewheeling havoc or reckless mayhem—whichever you prefer!

Testing Direct Messaging

If you will recall, back at the beginning of the chapter, in the ‘‘Direct Messaging’’

section, we discussed the functions CommandToServer and CommandToClient. You

might want to take this opportunity to test the code shown in that section.

Put the ServerCmdTellEveryone and TellAll functions to the end of your

\EMAGA6\control\server\server.cs module, and then add the SendMacro function

to the end of your \EMAGA6\control\client\misc\presetkeys.cs module. Also in

the presetkeys.cs module, add the following after the SendMacro function that you

just added:

function clientCmdTellMessage(%sender, %msgString)
{
MessagePopup("HELLO EVERYBODY", %msgString, 1000);

}
PlayerKeymap.bindCmd(keyboard, "1", "SendMacro(1);", "");
PlayerKeymap.bindCmd(keyboard, "2", "SendMacro(2);", "");
PlayerKeymap.bindCmd(keyboard, "3", "SendMacro(3);", "");

266 Chapter 6 n Network

You can go ahead and test it when you’ve completed those additions, if you like.

You can test it both in stand-alone (player-hosted) form or using a dedicated

server with a client on the same or different machine on a LAN.

Moving Right Along
Now you have some understanding of how to pass messages back and forth

between the client and the server. Keep in mind when you contemplate these

things that there can be many clients—hockey socks full of clients, even. There

will probably only be one server, but you are in no way restricted to only one

server. It’s all a matter of programming.

You’ve also seen how you can track specific clients on the server via their

GameConnections. As long as you know the handle of the client, you can access any

of that client’s data.

In the next chapter we’ll poke our noses into the common code that we have been

shying away from. We want to do this so that we can get a better big-picture

understanding of how our game can operate.

Moving Right Along 267

This page intentionally left blank

Common Scripts

For the last several chapters I have been keeping the contents of the common

code folder tree out of the limelight. I hope you haven’t started thinking that it is

some deep, dark keep-it-in-the-family-only secret, because it isn’t. The reason

for maintaining the obscurity is because we’ve been looking at the areas of

scripting that you will most likely want to change to suit your game development

needs, and that means stuff not in the common code.

Having said that, there may be areas in the common code that you will want to

customize or adjust in one way or another. To that end we are going to spend this

chapter patrolling the common code to get the lay of the land.

You can gain access to this code for yourself in the common folder tree of any of

the Emaga versions you installed in the previous chapters.

Game Initialization
As you may recall from earlier chapters, the common code base is treated as if it

were just another add-on or Mod. It is implemented as a package in the common/

main.cs module. For your game you will need to use this package or make your

own like it. This is in order to gain access to many of the more mundane features

of Torque, especially the ‘‘administrivia’’-like functions that help make your

game a finished product but that are not especially exciting in terms of game play

features.

269

chapter 7

Here are the contents of the common/main.cs module.

//——
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//——

//——
// Load up defaults console values.

exec("./defaults.cs");

//——

function initCommon()
{
// All mods need the random seed set
setRandomSeed();

// Very basic functions used by everyone
exec("./client/canvas.cs");
exec("./client/audio.cs");

}

function initBaseClient()
{
// Base client functionality
exec("./client/message.cs");
exec("./client/mission.cs");
exec("./client/missionDownload.cs");
exec("./client/actionMap.cs");

// There are also a number of support scripts loaded by the canvas
// when it’s first initialized. Check out client/canvas.cs

}

function initBaseServer()
{
// Base server functionality
exec("./server/audio.cs");
exec("./server/server.cs");
exec("./server/message.cs");
exec("./server/commands.cs");

270 Chapter 7 n Common Scripts

exec("./server/missionInfo.cs");
exec("./server/missionLoad.cs");
exec("./server/missionDownload.cs");
exec("./server/clientConnection.cs");
exec("./server/kickban.cs");
exec("./server/game.cs");

}

//——
package Common {

function displayHelp() {
Parent::displayHelp();
error(

"Common Mod options:\n"@
" -fullscreen Starts game in full screen mode\n"@
" -windowed Starts game in windowed mode\n"@
" -autoVideo Auto detect video, but prefers OpenGL\n"@
" -openGL Force OpenGL acceleration\n"@
" -directX Force DirectX acceleration\n"@
" -voodoo2 Force Voodoo2 acceleration\n"@
" -noSound Starts game without sound\n"@
" -prefs <configFile> Exec the config file\n"

);
}

function parseArgs()
{
Parent::parseArgs();

// Arguments override defaults...
for (%i = 1; %i < $Game::argc ; %iþ þ)
{
%arg = $Game::argv[%i];
%nextArg = $Game::argv[%iþ1];
%hasNextArg = $Game::argc - %i > 1;

switch$ (%arg)
{
//--------------------
case "-fullscreen":
$pref::Video::fullScreen = 1;
$argUsed[%i]þ þ;

Game Initialization 271

//--------------------
case "-windowed":
$pref::Video::fullScreen = 0;
$argUsed[%i]þ þ;

//--------------------
case "-noSound":
error("no support yet");
$argUsed[%i]þ þ;

//--------------------
case "-openGL":
$pref::Video::displayDevice = "OpenGL";
$argUsed[%i]þ þ;

//--------------------
case "-directX":
$pref::Video::displayDevice = "D3D";
$argUsed[%i]þ þ;

//--------------------
case "-voodoo2":
$pref::Video::displayDevice = "Voodoo2";
$argUsed[%i]þ þ;

//--------------------
case "-autoVideo":
$pref::Video::displayDevice = "";
$argUsed[%i]þ þ;

//--------------------
case "-prefs":
$argUsed[%i]þ þ;
if (%hasNextArg) {
exec(%nextArg, true, true);
$argUsed[%iþ 1]þ þ;
%iþ þ ;

}
else
error("Error: Missing Command Line argument. Usage: -prefs

<path/script.cs>");
}

}
}

272 Chapter 7 n Common Scripts

function onStart()
{
Parent::onStart();
echo("\n--------- Initializing MOD: Common ---------");
initCommon();

}

function onExit()
{
echo("Exporting client prefs");
export("$pref::*", "./client/prefs.cs", False);

echo("Exporting server prefs");
export("$Pref::Server::*", "./server/prefs.cs", False);
BanList::Export("./server/banlist.cs");

OpenALShutdown();
Parent::onExit();

}

}; // Common package
activatePackage(Common);

Two key things that happen during game initialization are calls to InitBaseClient

and InitBaseServer, both of which are defined in common/main.cs. These

are critical functions, and yet their actual activities are not that exciting to

behold.

function initBaseClient()
{
// Base client functionality
exec("./client/message.cs");
exec("./client/mission.cs");
exec("./client/missionDownload.cs");
exec("./client/actionMap.cs");

// There are also a number of support scripts loaded by the canvas
// when it’s first initialized. Check out client/canvas.cs

}
function initBaseServer()
{
exec("./server/audio.cs");
exec("./server/server.cs");

Game Initialization 273

exec("./server/message.cs");
exec("./server/commands.cs");
exec("./server/missionInfo.cs");
exec("./server/missionLoad.cs");
exec("./server/missionDownload.cs");
exec("./server/clientConnection.cs");
exec("./server/kickban.cs");
exec("./server/game.cs");

}

As you can see, both are nothing more than a set of script loading calls. All of the

scripts loaded are part of the common code base. We will look at selected key

modules from these calls in the rest of this section.

Selected Common Server Modules
Next, we will take a close look at some of the common code server modules.

The modules selected are the ones that will best help illuminate how Torque

operates.

The Server Module

InitBaseServer loads the common server module, server.cs. When we examine

this module we see the following functions:

PortInit

CreateServer

DestroyServer

ResetServerDefaults

AddToServerGuidList

RemoveFromServerGuidList

OnServerInfoQuery

It’s not hard to get the sense from that list that this is a pretty critical module!

PortInit tries to seize control of the assigned TCP/IP port, and if it can’t it starts

incrementing the port number until it finds an open one it can use.

274 Chapter 7 n Common Scripts

CreateServer does the obvious, but it also does some interesting things along the

way. First, it makes a call to DestroyServer! This is not as wacky as it might seem;

while DestroyServer does release and disable resources, it does so only after

making sure the resources exist. So there’s no danger of referencing something that

doesn’t exist, which would thus cause a crash. You need to specify the server type

(single- [default] or multiplayer) and the mission name. The PortInit function is

called from here, if the server will be a multiplayer server. The last, but certainly

not the least, thing that CreateServer does is call LoadMission. This call kicks off a

long and somewhat involved chain of events that we will cover in a later section.

DestroyServer releases and disables resources, as mentioned, and also game

mechanisms. It stops further connections from happening and deletes any

existing ones; turns off the heartbeat processing; deletes all the server objects in

MissionGroup, MissionCleanup, and ServerGroup; and finally, purges all data-

blocks from memory.

ResetServerDefaults is merely a convenient mechanism for reloading the files in

which the server default variable initializations are stored.

AddToServerGuidList and RemoveFromServerGuidList are two functions for

managing the list of clients that are connected to the server.

OnServerInfoQuery is a message handler for handling queries from a master

server. It merely returns the string ‘‘Doing OK’’. The master server, if there is one,

will see this and know that the server is alive. It could say anything—there could

even be just a single-space character in the string. The important point is that if

the server is not doing okay, then the function will not even be called, so the

master server would never see the message, would time out, and then would take

appropriate action (such as panicking or something useful like that).

The Message Module

InitBaseServer loads the common server-side message module, message.cs. Most

of this module is dedicated to providing in-game chat capabilities for players.

MessageClient

MessageTeam

MessageTeamExcept

MessageAll

Selected Common Server Modules 275

MessageAllExcept

SpamAlert

GameConnection::SpamMessageTimeout

GameConnection::SpamReset

The first five functions in the preceding list are for sending server-type messages

to individual clients, all clients on a team, and all clients in a game. There are

also exception messages, where everyone is sent the message except a specified

client.

Next are the three chat message functions. These are linked to the chat interfaces

that players will use to communicate with each other.

These functions all use the CommandToServer function (see Chapter 6) internally.

It is important to note that there will need to be message handlers for these

functions on the client side.

The three spam control functions are used in conjunction with the chat message

functions. SpamAlert is called just before each outgoing chat message is processed

for sending. Its purpose is to detect if a player is swamping the chat window with

messages, an action called spamming the chat window. If there are too many

messages in a short time frame as determined by the SpamMessageTimeout

method, then the offending message is suppressed, and an alert message is sent to

the client saying something like this: ‘‘Enough already! Take a break.’’ Well, you

could say it more diplomatically than that, but you get the idea. SpamResetmerely

sets the client’s spam state back to normal after an appropriately silent interval.

The MissionLoad Module

Torque has a concept of mission that corresponds to what many other games,

especially those of the first-person shooter genre, call maps. A mission is defined

in a mission file that has the extension of .mis. Mission files contain the infor-

mation that specifies objects in the game world, as well as their placement in the

world. Everything that appears in the game world is defined there: items, players,

spawn points, triggers, water definitions, sky definitions, and so on.

Missions are downloaded from the server to the client at mission start time or

when a client joins a mission already in progress. In this way the server has total

control over what the client sees and experiences in the mission.

276 Chapter 7 n Common Scripts

Here are the contents of the common/server/missionLoad.cs module.

//——
// Torque Game Engine
//
// Copyright (C) GarageGames.com, Inc.
//——

//——
// Server mission loading
//——

// On every mission load except the first, there is a pause after
// the initial mission info is downloaded to the client.
$MissionLoadPause = 5000;

function LoadMission(%missionName, %isFirstMission)
{
EndMission();
Echo("*** LOADING MISSION: " @ %missionName);
Echo("*** Stage 1 load");

// Reset all of these
ClearCenterPrintAll();
ClearBottomPrintAll();

// increment the mission sequence (used for ghost sequencing)
$missionSequenceþ þ;
$missionRunning = false;
$Server::MissionFile = %missionName;

// Extract mission info from the mission file,
// including the display name and stuff to send
// to the client.
BuildLoadInfo(%missionName);

// Download mission info to the clients
%count = ClientGroup.GetCount();
for(%cl = 0; %cl < %count; %clþ þ) {

%client = ClientGroup.GetObject(%cl);
if (!%client.IsAIControlled())
SendLoadInfoToClient(%client);

}

Selected Common Server Modules 277

// if this isn’t the first mission, allow some time for the server
// to transmit information to the clients:
if(%isFirstMission || $Server::ServerType $= "SinglePlayer")
LoadMissionStage2();

else
schedule($MissionLoadPause, ServerGroup, LoadMissionStage2);

}

function LoadMissionStage2()
{
// Create the mission group off the ServerGroup
Echo("*** Stage 2 load");
$instantGroup = ServerGroup;

// Make sure the mission exists
%file = $Server::MissionFile;

if(!IsFile(%file)) {
Error("Could not find mission " @ %file);
return;

}

// Calculate the mission CRC. The CRC is used by the clients
// to cache mission lighting.
$missionCRC = GetFileCRC(%file);

// Exec the mission, objects are added to the ServerGroup
Exec(%file);

// If there was a problem with the load, let’s try another mission
if(!IsObject(MissionGroup)) {
Error("No ’MissionGroup’ found in mission \"" @ $missionName @ "\".");
schedule(3000, ServerGroup, CycleMissions);
return;

}

// Mission cleanup group
new SimGroup(MissionCleanup);
$instantGroup = MissionCleanup;

// Construct MOD paths
PathOnMissionLoadDone();

// Mission loading done...
Echo("*** Mission loaded");

278 Chapter 7 n Common Scripts

// Start all the clients in the mission
$missionRunning = true;
for(%clientIndex = 0; %clientIndex < ClientGroup.GetCount();

%clientIndex++)
ClientGroup.GetObject(%clientIndex).LoadMission();

// Go ahead and launch the game
OnMissionLoaded();
PurgeResources();

}

function EndMission()
{
if (!IsObject(MissionGroup))
return;

Echo("*** ENDING MISSION");

// Inform the game code we’re done.
OnMissionEnded();

// Inform the clients
for(%clientIndex = 0; %clientIndex < ClientGroup.GetCount();

%clientIndex++) {
// clear ghosts and paths from all clients
%cl = ClientGroup.GetObject(%clientIndex);
%cl.EndMission();
%cl.ResetGhosting();
%cl.ClearPaths();

}

// Delete everything
MissionGroup.Delete();
MissionCleanup.Delete();

$ServerGroup.Delete();
$ServerGroup = new SimGroup(ServerGroup);

}

function ResetMission()
{
Echo("*** MISSION RESET");

Selected Common Server Modules 279

// Remove any temporary mission objects
MissionCleanup.Delete();
$instantGroup = ServerGroup;
new SimGroup(MissionCleanup);
$instantGroup = MissionCleanup;

//
OnMissionReset();

}

Here are the mission loading–oriented functions on the server contained in this

module:

LoadMission

LoadMissionStage2

EndMission

ResetMission

LoadMission, as we saw in an earlier section, is called in the CreateServer

function. It kicks off the process of loading a mission onto the server. Mission

information is assembled from the mission file and sent to all the clients for

display to their users.

After the mission file loads, LoadMissionStage2 is called. In this function the

server calculates the CRC value for the mission and saves it for later use.

Wha t ’ s a C R C V a l u e , a n d Why S hou l d I C a r e ?

We use a Cyclic Redundancy Check (CRC) when transmitting data over potentially error-prone
media. Networking protocols use CRCs at a low level to verify that the sent data is the same data
that was received.

A CRC is a mathematical computation performed on data that arrives at a number that represents
both the content of the data and how it’s arranged. The point is that the number, called a
checksum, uniquely identifies the set of data, like a fingerprint.

By comparing the checksum of a set of data to another data set’s checksum, you can decide if the
two data sets are identical.

Why should you care? Well, in addition to the simple goal of maintaining data integrity, CRCs are
another arrow in your anticheat quiver. You can use CRCs to ensure that files stored on the clients
are the same as the files on the server and, in this regard, that all the clients have the same files---
the result is that the playing field is level.

280 Chapter 7 n Common Scripts

Once the mission is successfully loaded onto the server, each client is sent the

mission via a call to its GameConnection object’s LoadMission method.

EndMission releases resources and disables other mission-related mechanisms,

clearing the server to load a new mission when tasked to do so.

ResetMission can be called from the EndGame function in the control/server/misc/

game.cs module to prepare the server for a new mission if you are using mission

cycling techniques.

The MissionDownload Module

Here are the contents of the common/server/missionDownload.cs module.

//——
// Torque Game Engine
//
// Copyright (C) GarageGames.com, Inc.
//——

//——
// Mission Loading
// The server portion of the client/server mission loading process
//——

function GameConnection::LoadMission(%this)
{
// Send over the information that will display the server info.
// when we learn it got there, we’ll send the datablocks.
%this.currentPhase = 0;
if (%this.IsAIControlled())
{
// Cut to the chase...
%this.OnClientEnterGame();

}
else
{
CommandToClient(%this, ’MissionStartPhase1’, $missionSequence,
$Server::MissionFile, MissionGroup.musicTrack);

Echo("*** Sending mission load to client: " @ $Server::MissionFile);
}

}

Selected Common Server Modules 281

function ServerCmdMissionStartPhase1Ack(%client, %seq)
{
// Make sure to ignore calls from a previous mission load
if (%seq != $missionSequence || !$MissionRunning)
return;

if (%client.currentPhase != 0)
return;

%client.currentPhase = 1;

// Start with the CRC
%client.SetMissionCRC($missionCRC);

// Send over the datablocks...
// OnDataBlocksDone will get called when have confirmation
// that they’ve all been received.
%client.TransmitDataBlocks($missionSequence);

}

function GameConnection::OnDataBlocksDone(%this, %missionSequence)
{
// Make sure to ignore calls from a previous mission load
if (%missionSequence != $missionSequence)
return;

if (%this.currentPhase != 1)
return;

%this.currentPhase = 1.5;

// On to the next phase
CommandToClient(%this, ’MissionStartPhase2’, $missionSequence,

$Server::MissionFile);
}

function ServerCmdMissionStartPhase2Ack(%client, %seq)
{
// Make sure to ignore calls from a previous mission load
if (%seq != $missionSequence || !$MissionRunning)
return;

if (%client.currentPhase != 1.5)
return;

%client.currentPhase = 2;

// Update mod paths, this needs to get there before the objects.
%client.TransmitPaths();

282 Chapter 7 n Common Scripts

// Start ghosting objects to the client
%client.ActivateGhosting();

}

function GameConnection::ClientWantsGhostAlwaysRetry(%client)
{
if($MissionRunning)
%client.ActivateGhosting();

}

function GameConnection::OnGhostAlwaysFailed(%client)
{

}

function GameConnection::OnGhostAlwaysObjectsReceived(%client)
{
// Ready for next phase.
CommandToClient(%client, ’MissionStartPhase3’, $missionSequence,

$Server::MissionFile);
}

function ServerCmdMissionStartPhase3Ack(%client, %seq)
{
// Make sure to ignore calls from a previous mission load
if(%seq != $missionSequence || !$MissionRunning)
return;

if(%client.currentPhase != 2)
return;

%client.currentPhase = 3;

// Server is ready to drop into the game
%client.StartMission();
%client.OnClientEnterGame();

}

The following functions and GameConnection methods are defined in the Mis-

sionDownload module:

GameConnection::LoadMission

GameConnection::OnDataBlocksDone

Selected Common Server Modules 283

GameConnection::ClientWantsGhostAlwaysRetry

GameConnection::OnGhostAlwaysFailed

GameConnection::OnGhostAlwaysObjectsReceived

ServerCmdMissionStartPhase1Ack

ServerCmdMissionStartPhase2Ack

ServerCmdMissionStartPhase3Ack

This module handles the server-side activities in the mission download process

(see Figure 7.1). There are three phases: Transmit Datablocks, Ghost Objects, and

Scene Lighting.

This module contains the mission download methods for each client’s Game-

Connection object.

The download process for the client object starts when its LoadMissionmethod in

this module is called at the end of the server’s LoadMissionStage2 function in the

server’s MissionLoad module described in the previous section. It then embarks

on a phased series of activities coordinated between the client and the server (see

Figure 7.2). The messaging system for this process is the CommandToServer and

CommandToClient pair of direct messaging functions.

284 Chapter 7 n Common Scripts

Figure 7.1
Mission download phases.

The server invokes the client MissionStartPhasen (where n is 1, 2, or 3) function

to request permission to start each phase. This is done using our old friend

CommandToServer. When a client is ready for a phase, it responds with a Mis-

sionStartPhasenAckmessage, for which there is a handler on the server contained

in this module.

Selected Common Server Modules 285

Figure 7.2
Mission download process.

The handler GameConnection::onDataBlocksDone is invoked when phase 1 has

finished. This handler then initiates phase 2 by sending the MissionStartPhase2

message to the client.

The GameConnection::onGhostAlwaysObjectsReceived handler is invoked when

phase 2 is completed. At the end of this phase, the client has all the data needed to

replicate the server’s version of any dynamic objects in the game that are ghosted

to the clients. This handler then sends the MissionStartPhase3 message to the

client.

When the server receives the MissionStartPhase3Ack message, it then starts the

mission for each client, inserting the client into the game.

The ClientConnection Module

The ClientConnection module is where most of the server-side code for dealing

with clients is located. Here are the contents of the common/server/

clientConnection.cs module.

//——
// Torque Game Engine
//
// Copyright (C) GarageGames.com, Inc.
//——

function GameConnection::OnConnectRequest(%client, %netAddress, %name)
{
Echo("Connect request from: " @ %netAddress);
if($Server::PlayerCount >= $pref::Server::MaxPlayers)
return "CR_SERVERFULL";

return "";
}

function GameConnection::OnConnect(%client, %name)
{
MessageClient(%client,’MsgConnectionError’,"",$Pref::Server::
ConnectionError);

SendLoadInfoToClient(%client);

if (%client.getAddress() $= "local") {
%client.isAdmin = true;
%client.isSuperAdmin = true;

286 Chapter 7 n Common Scripts

}
else {
%client.isAdmin = false;
%client.isSuperAdmin = false;

}
// Save client preferences on the Connection object for later use.
%client.gender = "Male";
%client.armor = "Light";
%client.race = "Human";
%client.skin = AddTaggedString("base");
%client.SetPlayerName(%name);
%client.score = 0;

$instantGroup = ServerGroup;
$instantGroup = MissionCleanup;
Echo("CADD: " @ %client @ " " @ %client.GetAddress());

// Inform the client of all the other clients
%count = ClientGroup.GetCount();
for (%cl = 0; %cl < %count; %clþ þ) {

%other = ClientGroup.GetObject(%cl);
if ((%other != %client)) {

MessageClient(%client, ’MsgClientJoin’, "",
%other.name,
%other,
%other.sendGuid,
%other.score,
%other.IsAIControlled(),
%other.isAdmin,
%other.isSuperAdmin);

}
}

// Inform the client we’ve joined up
MessageClient(%client,
’MsgClientJoin’, ’\c2Welcome to the Torque demo app %1.’,
%client.name,
%client,
%client.sendGuid,
%client.score,
%client.IsAiControlled(),
%client.isAdmin,
%client.isSuperAdmin);

Selected Common Server Modules 287

// Inform all the other clients of the new guy
MessageAllExcept(%client, -1, ’MsgClientJoin’, ’\c1%1 joined the game.’,
%client.name,
%client,
%client.sendGuid,
%client.score,
%client.IsAiControlled(),
%client.isAdmin,
%client.isSuperAdmin);

// If the mission is running, go ahead and download it to the client
if ($missionRunning)
%client.LoadMission();

$Server::PlayerCountþ þ;
}

function GameConnection::SetPlayerName(%client,%name)
{
%client.SendGuid = 0;

// Minimum length requirements
%name = StripTrailingSpaces(StrToPlayerName(%name));
if (Strlen(%name) < 3)
%name = "Poser";

// Make sure the alias is unique, we’ll hit something eventually
if (!IsNameUnique(%name))
{
%isUnique = false;
for (%suffix = 1; !%isUnique; %suffixþ þ) {
%nameTry = %name @ "." @ %suffix;
%isUnique = IsNameUnique(%nameTry);

}
%name = %nameTry;

}
// Tag the name with the "smurf" color:
%client.nameBase = %name;
%client.name = AddTaggedString("\cp\c8" @ %name @ "\co");

}

function IsNameUnique(%name)
{

288 Chapter 7 n Common Scripts

%count = ClientGroup.GetCount();
for (%i = 0; %i < %count; %iþ þ)
{
%test = ClientGroup.GetObject(%i);
%rawName = StripChars(detag(GetTaggedString(%test.name)),

"\cp\co\c6\c7\c8\c9");
if (Strcmp(%name, %rawName) == 0)

return false;
}
return true;

}

function GameConnection::OnDrop(%client, %reason)
{
%client.OnClientLeaveGame();

RemoveFromServerGuidList(%client.guid);
MessageAllExcept(%client, -1, ’MsgClientDrop’, ’\c1%1 has left the game.’,

%client.name, %client);

RemoveTaggedString(%client.name);
Echo("CDROP: " @ %client @ " " @ %client.GetAddress());
$Server::PlayerCount--;

if($Server::PlayerCount == 0 && $Server::Dedicated)
Schedule(0, 0, "ResetServerDefaults");

}

function GameConnection::StartMission(%this)
{
CommandToClient(%this, ’MissionStart’, $missionSequence);

}

function GameConnection::EndMission(%this)
{
CommandToClient(%this, ’MissionEnd’, $missionSequence);

}

function GameConnection::SyncClock(%client, %time)
{
CommandToClient(%client, ’syncClock’, %time);

}

Selected Common Server Modules 289

function GameConnection::IncScore(%this,%delta)
{
%this.score þ = %delta;
MessageAll(’MsgClientScoreChanged’, "", %this.score, %this);

}

The following functions and GameConnection methods are defined in the Client

Connection module:

GameConnection::OnConnectRequest

GameConnection::OnConnect

GameConnection::SetPlayerName

IsNameUnique

GameConnection::OnDrop

GameConnection::StartMission

GameConnection::EndMission

GameConnection::SyncClock

GameConnection::IncScore

The method GameConnection::OnConnectRequest is the server-side destination of

the client-side GameConnection::Connect method. We use this method to vet the

request—for example, to examine the IP address to compare to a ban list, to

make sure that the server is not full, and stuff like that. We have to make sure that

if we want to allow the request, we must return a null string (‘‘’’).

The next method, GameConnection::OnConnect, is called after the server has

approved the connection request. We get a client handle and a name string

passed in as parameters. The first thing we do is ship down to the client a tagged

string to indicate that a connection error has happened. We do not tell the client

to use this string. It’s just a form of preloading the client.

Then we send the load information to the client. This is the mission information

that the client can display to the user while the mission loading process takes

place. After that, if the client also happens to be the host (entirely possible), we set

the client to be a superAdmin.

290 Chapter 7 n Common Scripts

Then we add the client to the user ID list that the server maintains. After that

there are a slew of game play client settings we can initialize.

Next, we start a series of notifications. First, we tell all clients that the player has

joined the server. Then we tell the joining player that he is indeed welcome here,

despite possible rumors to the contrary. Finally, we tell all the client-players that

there is a new kid on the block, so go kill him. Or some such—whatever you feel

like!

After all the glad-handing is done, we start downloading the mission data to the

client starting the chain of events depicted back there in Figure 7.2.

GameConnection::SetPlayerName does some interesting name manipulation.

First, it tidies up any messy names that have leading or trailing spaces. We don’t

like names that are too short (trying to hide something?), so we don’t allow those

names. Then we make sure that the name is not already in use. If it is, then an

instance number is added to the end of the name. The name is converted to a

tagged string so that the full name only gets transmitted once to each client; then

the tag number is used after that, if necessary.

The function IsNameUnique searches through the server’s name list looking for a

match. If it finds the name, then it isn’t unique; otherwise, it is.

The method GameConnection::OnDrop is called when the decision is made to drop

a client. First, the method makes a call to the client so that it knows how to act

during the drop. Then it removes the client from its internal list. All clients

(except the one dropped) are sent a server text message notifying them of the

drop, which they can display. After the last player leaves the game, this method

restarts the server. For a persistent game, this statement should probably be

removed.

The next method, GameConnection::StartMission, simply notifies clients

whenever the server receives a command to start another server session in order

to give the clients time to prepare for the near-future availability of the server.

The $missionSequence is used to manage mission ordering, if needed.

Next, GameConnection::EndMission is used to notify clients that a mission is

ended, and hey! Stop playing already!

The method GameConnection::SyncClock is used to make sure that all clients’

timers are synchronized with the server. You can call this function for a client

anytime after the mission is loaded but before the client’s player has spawned.

Selected Common Server Modules 291

Finally, the method GameConnection::IncScore is called whenever you want to

reward a player for doing well. By default, this method is called when a player gets

a kill on another player. When the player’s score is incremented, all other players

are notified, via their clients, of the score.

The Game Module

The server-side Game module is the logical place to put server-specific game play

features. Here are the contents of the common/server/game.cs module.

//——
// Torque Game Engine

// Copyright (C) 2001 GarageGames.com, Inc.
//——
function OnServerCreated()
{
$Server::GameType = "Test App";
$Server::MissionType = "Deathmatch";
createGame();

}

function OnServerDestroyed()
{
DestroyGame();

}

function OnMissionLoaded()
{
StartGame();

}

function OnMissionEnded()
{
EndGame();

}

function OnMissionReset()
{
// stub

}

292 Chapter 7 n Common Scripts

function GameConnection::OnClientEnterGame(%this)
{
//stub
}

function GameConnection::OnClientLeaveGame(%this)
{
//stub
}

//——
// Functions that implement game-play
//——
function CreateGame()
{
//

}

function DestroyGame()
{
//

}
function StartGame()
{
//stub
}

function EndGame()
{
//stub
}

The following functions and GameConnection methods are defined in the Game

module:

OnServerCreated

OnServerDestroyed

OnMissionLoaded

OnMissionEnded

Selected Common Server Modules 293

OnMissionReset

CreateGame

Destroy Game

StartGame

EndGame

GameConnection::OnClientEnterGame

GameConnection::OnClientLeaveGame

The first function defined, OnServerCreated, is called from CreateServer when a

server is constructed. It is a useful place to load server-specific datablocks.

The variable $Server::GameType is sent to the master, if one is used. Its purpose is

to uniquely identify the game and distinguish it from other games handled by the

master server. The variable $Server::MissionType is also sent to the server—

clients can use its value to filter servers based on mission type.

The next function, OnServerDestroyed, is the antithesis of OnServerCreated—

anything you do there should be undone in this function.

The function OnMissionLoaded is called by LoadMission once a mission has fin-

ished loading. This is a great location to initialize mission-based game play

features, like perhaps calculating weather effects based on a rotating mission

scheme.

OnMissionEnded is called by EndMission just before it is destroyed; this is where

you should undo anything you did in OnMissionLoaded.

OnMissionReset is called by ResetMission, after all the temporary mission objects

have been deleted.

CreateGame, Destroy Game, StartGame, and EndGame are all stub routines. The

demo expects you to override these functions with your own code game’s control

scripts.

The function GameConnection::OnClientEnterGame is called for each client after it

has finished downloading the mission and is ready to start playing. This would be

a good place to load client-specific persistent data from a database back end, for

example.

294 Chapter 7 n Common Scripts

GameConnection::OnClientLeaveGame is called for each client that is dropped.

This would be a good place to do a final update of back-end database information

for the client.

Although we don’t use too many of the functions in this module, it is a great

location for a lot of game play features to reside.

Selected Common Code Client Modules
Next, we will take a close look at some of the common code client modules. The

modules selected are the ones that will best help illuminate how Torque operates.

Keep in mind that all of these modules are designed to affect things that concern

the local client, even though they might require contacting the server from time

to time.

This point is important: when you add features or capabilities, you must always

keep in mind whether you want the feature to affect only the local client (such

as some user preference change) or you want the feature to affect all clients. In

the latter case it would be best to use modules that are server-resident when they

run.

The Canvas Module

The Canvas module is another one of those simple, small, but critical modules.

One of the key features of this module is that the primary function contained in

here, InitCanvas, loads a number of general graphical user interface support

modules. This module is loaded from the InitCommon function rather than from

the InitBaseClient function, which is where the rest of the key common

modules get loaded. Here are the contents of the common/client/canvas.cs

module.

//——
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//——

//——
// Function to construct and initialize the default canvas window
// used by the games

Selected Common Code Client Modules 295

function InitCanvas(%windowName, %effectCanvas)
{
VideoSetGammaCorrection($pref::OpenGL::gammaCorrection);
if(%effectCanvas)
%CanvasCreate = CreateEffectCanvas (%windowName);

else
%CanvasCreate = CreateCanvas ($windowName):

if (!CreateCanvas(%windowName)) {
quitWithErrorMessage("Copy of Torque is already running; existing.");
return;

}

SetOpenGLTextureCompressionHint($pref::OpenGL::compressionHint);
SetOpenGLAnisotropy($pref::OpenGL::textureAnisotropy);
SetOpenGLMipReduction($pref::OpenGL::mipReduction);
SetOpenGLInteriorMipReduction($pref::OpenGL::interiorMipReduction);
SetOpenGLSkyMipReduction($pref::OpenGL::skyMipReduction);

// Declare default GUI Profiles.
Exec("~/ui/defaultProfiles.cs");

// Common GUI’s
Exec("~/ui/ConsoleDlg.gui");
Exec("~/ui/LoadFileDlg.gui");
Exec("~/ui/ColorPickerDlg.gui");
Exec("~/ui/SaveFileDlg.gui");
Exec("~/ui/MessageBoxOkDlg.gui");
Exec("~/ui/MessageBoxYesNoDlg.gui");
Exec("~/ui/MessageBoxOKCancelDlg.gui");
Exec("~/ui/MessagePopupDlg.gui");
Exec("~/ui/HelpDlg.gui");
Exec("~/ui/RecordingsDlg.gui");
Exec("~/ui/NetGraphGui.gui");
// Commonly used helper scripts
Exec("./metrics.cs");
Exec("./messageBox.cs");
Exec("./screenshot.cs");
Exec("./cursor.cs");
Exec("./help.cs");
Exec("./recordings.cs");

// Init the audio system
OpenALInit():

}

296 Chapter 7 n Common Scripts

function ResetCanvas()
{
if (IsObject(Canvas))
{
Canvas.Repaint();

}
}

InitCanvas is obviously the main function in this module. When it is called, it

first calls VideoSetGammaCorrection using a global preferences variable. If the

value passed is 0 or undefined, then there is no change in the gamma correction

(see Table 7.1).

Then we attempt to create the canvas, which is an abstracted call to the Windows

API to create a window. The %windowName variable is passed in as a string that sets

the window’s title. If we can’t create the window, we quit because there is no

point continuing without any means to display our game. CreateEffectCanvas is

a special version of CreateCanvas that gives us some extra methods and prop-

erties for doing special effects. CreateCanvas is mostly just an abstracted way to

create a window with a graphics context. It’s abstracted due to the need to

Selected Common Code Client Modules 297

Table 7.1 OpenGL Settings

Module Function

GammaCorrection Gamma correction modifies the overall brightness of an image. Images that are
not corrected can look either overbleached or too dark.

TextureCompressionHint The choice of how much texture compression (to reduce memory and graphics
transfer bandwidth) to employ is left up to the drivers and hardware, but we can
hint at how we would like the compression to work, if feasible. Valid hints are

GL_DONT_CARE

GL_FASTEST

GL_NICEST

Anisotropy Anisotropic filtering is used to address a specific kind of texture artifact that
occurs when a 3D surface is sloped relative to the view camera. The higher the
value set for this (between 0 and 1, exclusive), the more filtering is performed by
the hardware. Too high a setting might cause too much fuzziness in an image.

MipReduction See Chapter 3 for a discussion of mipmapping. This value can be from 0 to 5.
The higher the number, the more mipmapping levels supported. Image textures
must be created to support these levels in order to achieve the best effect.

InteriorMipReduction The same as MipReduction, but for use in interiors (.dif file format models).

SkyMipReduction The same as MipReduction, but for use in skybox images.

support similar capabilities on three very different platforms (Windows, Linux,

and Macintosh).

Following that, there is a series of OpenGL settings, again using global preference

variables. See Table 7.1 for an explanation of these settings.

Next, the function loads a bunch of support files that establish user interface

mechanisms, dialogs, and profiles for describing them.

Then there is a series of calls to load modules that provide access to some

common utility functions that can be used for measuring performance, taking

screen shots, displaying Help information, and so on.

The ResetCanvas function checks to see if a canvas object exists, and if so,

ResetCanvas then forces it to be repainted (re-rendered).

The Mission Module

The Mission module doesn’t really do much. Its existence is no doubt because

some forethought had been given to future expansion directions for the common

code scripts. Here are the contents of the common/client/mission.cs module.

//——
// Torque Game Engine
// Copyright () GarageGames.com, Inc.
//——

//———
// Mission start / end events sent from the server
//———

function ClientCmdMissionStart(%seq)
{
// The client receives a mission start right before
// being dropped into the game.

}

function ClientCmdMissionEnd(%seq)
{
// Received when the current mission is ended.
alxStopAll();
// Disable mission lighting if it’s going; this is here
// in case the mission ends while we are in the process

298 Chapter 7 n Common Scripts

// of loading it.
$lightingMission = false;
$sceneLighting::terminateLighting = true;

}

ClientCmdMissionStart is a stub routine. Not much to say here other than this

routine gets called immediately before the client-player finds himself in the game.

This is a handy place for last-minute client-side code; the mission is known and

loaded, and all objects (including any remote clients) are ghosted. This might be

a good place to build and display a map or to possibly fire up an Internet Relay

Chat session, if you have written one for yourself in TorqueScript (it is possible—

a member of the GarageGames community has done just that).

ClientCmdMissionEnd resets some lighting variables after calling alxStopAll,

which halts any audio tracks that might be playing. This would be the place to

undo anything you started in the ClientCmdMissionStart function.

The thing that makes this module, and therefore its functions, key is its existence.

You should consider utilizing these functions in your game and expanding their

functionality.

The MissionDownload Module

Just as the server side has a module called MissionDownload, so has the client

code. It certainly can be confusing, so you have to stay on your toes when dealing

with these modules, always being aware of whether you are dealing with the client

or the server version. The choice of names is understandable though, when you

realize that they are functionally complementary—the mission download

activity requires synchronized and coordinated actions from both the client and

the server. Two peas in a pod.

Here are the contents of the common/client/missiondownload.cs module.

//——
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//——

//———
// Phase 1
//———

Selected Common Code Client Modules 299

function ClientCmdMissionStartPhase1(%seq, %missionName, %musicTrack)
{
// These need to come after the cls.
Echo ("*** New Mission: " @ %missionName);
Echo ("*** Phase 1: Download Datablocks & Targets");
OnMissionDownloadPhase1(%missionName, %musicTrack);
CommandToServer(’MissionStartPhase1Ack’, %seq);

}

function OnDataBlockObjectReceived(%index, %total)
{
OnPhase1Progress(%index / %total);

}

//———
// Phase 2
//———

function ClientCmdMissionStartPhase2(%seq,%missionName)
{
onPhase1Complete();
Echo ("*** Phase 2: Download Ghost Objects");
purgeResources();
onMissionDownloadPhase2(%missionName);
commandToServer(’MissionStartPhase2Ack’, %seq);

}

function OnGhostAlwaysStarted(%ghostCount)
{
$ghostCount = %ghostCount;
$ghostsRecvd = 0;

}

function OnGhostAlwaysObjectReceived()
{
$ghostsRecvdþ þ;
OnPhase2Progress($ghostsRecvd / $ghostCount);

}

//———
// Phase 3
//———

300 Chapter 7 n Common Scripts

function ClientCmdMissionStartPhase3(%seq,%missionName)
{
OnPhase2Complete();
StartClientReplication();
StartFoliageReplication();
Echo ("*** Phase 3: Mission Lighting");
$MSeq = %seq;
$Client::MissionFile = %missionName;

// Need to light the mission before we are ready.
// The sceneLightingComplete function will complete the handshake
// once the scene lighting is done.
if (LightScene("SceneLightingComplete", ""))
{
Error("Lighting mission....");
schedule(1, 0, "UpdateLightingProgress");
OnMissionDownloadPhase3(%missionName);
$lightingMission = true;

}
}

function UpdateLightingProgress()
{
OnPhase3Progress($SceneLighting::lightingProgress);
if ($lightingMission)
$lightingProgressThread = schedule(1, 0, "UpdateLightingProgress");

}

function SceneLightingComplete()
{
Echo("Mission lighting done");
OnPhase3Complete();

// The is also the end of the mission load cycle.
OnMissionDownloadComplete();
CommandToServer(’MissionStartPhase3Ack’, $MSeq);

}
//———
// Helper functions
//———

function connect(%server)
{

Selected Common Code Client Modules 301

%conn = new GameConnection();
%conn.connect(%server);

}

When reviewing this module, you should refer back to the server-side Mis-

sionDownload module descriptions and Figures 7.1 and 7.2.

The first function for phase 1, ClientCmdMissionStartPhase1, calls the function

OnMissionDownloadPhase1, which is something you want to define in your control

code. Its basic purpose is to set up for a progress display as the datablocks are

loaded. As soon as this call returns, an acknowledgment is sent back to the server

using CommandToServer to send the MissionStartPhase1Ack message back. At this

time it also reflects the sequence number (%seq) back to the server, to ensure that

the client and server remain synchronized.

The next function, OnDataBlockObjectReceived, is an important one. This message

handler gets called every time the Torque Engine client-side code detects that it

has finished receiving a datablock. When invoked, it then calls onPhase1Progress,

which needs to be defined in our control client code.

The next function, ClientCmdMissionStartPhase2, is part of the phase 2 activities.

Its duties are much the same as for ClientCmdMissionStartPhase1, but this time

using OnMissionDownloadPhase2 and MissionStartPhase2Ack.

The next function, OnGhostAlwaysStarted, is called by the engine after it processes

the MissionStartPhase2Ack message. It is used to track ghosted object counts.

When an object has been successfully ghosted, onGhostAlwaysObjectReceived is

called from the engine. We use this to call onPhase2Progress in order to update

our progress display.

The ClientCmdMissionStartPhase3 function is the last in the series. When it is

called we update our progress display and then turn on two client-side replica-

tion functions. These functions provide special objects (such as grass and trees)

that will be computed and rendered only by the client. For example, the server

sends a seed for the location of a tuft of grass. The client-side replication code

calculates the locations of hundreds or even thousands of copies of this tuft of

grass and distributes them appropriately.

Because these objects are deemed not to be critical for game play, we can take the

risk of client-side computation without risking someone modifying the code to

302 Chapter 7 n Common Scripts

cheat. Someone could modify the code, but it wouldn’t gain him any online

advantage.

Next we call the function LightScene to perform the scene’s terrain and interior

lighting passes. We pass the completion callback function SceneLight-

ingComplete, which will be called when the lighting calculations are finished.

We also schedule a function (UpdateLightingProgress) to be repeatedly called

while the lighting is under way, as follows:

schedule(1, 0, "updateLightingProgress");

In this case the function is called after one millisecond.

UpdateLightingProgress is a short function. It makes a call to update the progress

display and then schedules itself to be called again in another millisecond if the

lighting is not finished. It can tell if the lighting is finished by checking the

variable $lightingMission. If it is true, then lighting is still under way.

SceneLightingComplete is the completion callback passed to LightScene. When

SceneLightingComplete is called, lighting has completed, so it sets the variable

$lightingMission to false, which will, within a millisecond or so, be detected by

UpdateLightingProgress. It then notifies the server that lighting is complete by

sending the MissionStartPhase3Ack message. And away we go!

The insignificant little connect function, marked as a ‘‘Helper’’ function by the

GG code comments, is nothing more than the most important function in the

client/server code! Heh. Take that somebody! You can see that it creates a new

GameConnection object, and then establishes the connection. Without that call,

there is no way for the client to talk to the server. Trouble is, small functions just

don’t get no respect!

The Messages Module

The Messages module provides front-end generic message handlers for two

defined message types, as well as a tool for installing handlers at run time. You

may or may not find this useful, but a look at how these functions work will help

when it comes to creating your own sophisticated messaging system. Here are the

contents of the common/client/message.cs module.

//——
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//——

Selected Common Code Client Modules 303

function ClientCmdChatMessage(%sender, %voice, %pitch, %msgString, %a1, %a2,
%a3, %a4, %a5, %a6, %a7, %a8, %a9, %a10)
{
OnChatMessage(detag(%msgString), %voice, %pitch);

}

function ClientCmdServerMessage(%msgType, %msgString, %a1, %a2, %a3, %a4, %a5,
%a6, %a7, %a8, %a9, %a10)
{
// Get the message type; terminates at any whitespace.
%tag = GetWord(%msgType, 0);

// First see if there is a callback installed that doesn’t have a type;
// if so, that callback is always executed when a message arrives.
for (%i = 0; (%func = $MSGCB["", %i]) !$= ""; %iþ þ) {
call(%func, %msgType, %msgString, %a1, %a2, %a3, %a4, %a5, %a6, %a7, %a8,

%a9, %a10);
}

// Next look for a callback for this particular type of ServerMessage.
if (%tag !$= "") {
for (%i = 0; (%func = $MSGCB[%tag, %i]) !$= ""; %iþ þ) {
call(%func, %msgType, %msgString, %a1, %a2, %a3, %a4, %a5, %a6, %a7,

%a8, %a9, %a10);
}

}
}

function AddMessageCallback(%msgType, %func)
{
for (%i = 0; (%afunc = $MSGCB[%msgType, %i]) !$= ""; %iþ þ) {

// If it already exists as a callback for this type,
// nothing to do.
if (%afunc $= %func) {
return;

}
}
// Set it up.
$MSGCB[%msgType, %i] = %func;

}

function DefaultMessageCallback(%msgType, %msgString, %a1, %a2, %a3, %a4, %a5,
%a6, %a7, %a8, %a9, %a10)

304 Chapter 7 n Common Scripts

{
OnServerMessage(detag(%msgString));

}

AddMessageCallback("", DefaultMessageCallback);

The first function, ClientCmdChatMessage, is for chat messages only and is

invoked on the client when the server uses the CommandToClient function with the

message type ChatMessage. Refer back to the server-side message module if you

need to. The first parameter (%sender) is the GameConnection object handle of the

player that sent the chat message. The second parameter (%voice) is an Audio

Voice identifier string. Parameter three (%pitch) is rarely used, but is offered as a

means for providing pitch control for an audio message. Finally, the fourth

parameter (%msgString) contains the actual chat message in a tagged string. The

rest of the parameters are not actually acted on so can be safely ignored for now.

The parameters are passed on to the pseudo-handler OnChatMessage. It’s called a

pseudo-handler because the function that calls OnChatMessage is not really calling

out from the engine. However, it is useful to treat this operation as if a callback

message and handler were involved for conceptual reasons.

The next function, ClientCmdServerMessage, is used to deal with game event

descriptions, which may or may not include text messages. These can be sent

using the message functions in the server-side Message module. Those functions

use CommandToClient with the type ServerMessage, which invokes the function

described next.

For ServerMessage messages, the client can install callbacks that will be run

according to the type of the message.

Obviously, ClientCmdServerMessage is more involved. After it uses the GetWord

function to extract the message type as first text word from the string %msgType, it

iterates through the message callback array ($MSGCB) looking for any untyped

callback functions and executes them all. It then goes through the array again,

looking for registered callback functions with the same message type as the

incoming message, executing any that it finds.

The next function, addMessageCallback, is used to register callback functions in

the $MSGCB message callback array. This is not complex; addMessageCallback

merely steps through the array looking for the function to be registered. If it isn’t

there, addMessageCallback stores a handle to the function in the next available

slot.

Selected Common Code Client Modules 305

The last function, DefaultMessageCallback, is supplied in order to provide an

untyped message to be registered. The registration takes place with the line after

the function definition.

A Final Word
The common code base includes a ton of functions and methods. We have only

touched on about half of them here. I aimed to show you the most important

modules and their contents, and I think that’s been accomplished nicely. For

your browsing pleasure, Table 7.2 contains a reference to find all the functions in

all common code modules.

306 Chapter 7 n Common Scripts

Table 7.2 Common Code Functions

Module Function

common/main.cs InitCommon

InitBaseClient

InitBaseServer

DisplayHelp

ParseArgs

OnStart

OnExit

common/client/actionMap.cs ActionMap::copyBind

ActionMap::blockBind

common/client/audio.cs OpenALInit

OpenALShutdown

common/client/canvas.cs InitCanvas

ResetCanvas

common/client/cursor.cs CursorOff

CursorOn

GuiCanvas::checkCursor

GuiCanvas::setContent

GuiCanvas::pushDialog

GuiCanvas::popDialog

GuiCanvas::popLayer

common/client/help.cs HelpDlg::onWake

HelpFileList::onSelect

GetHelp

ContextHelp

GuiControl::getHelpPage

GuiMLTextCtrl::onURL

A Final Word 307

common/client/message.cs ClientCmdChatMessage

ClientCmdServerMessage

AddMessageCallback

DefaultMessageCallback

common/client/messageBox.cs MessageCallback

MBSetText

MessageBoxOK

MessageBoxOKDlg::onSleep

MessageBoxOKCancel

MessageBoxOKCancelDlg::onSleep

MessageBoxYesNo

MessageBoxYesNoDlg::onSleep

MessagePopup

CloseMessagePopup

common/client/metrics.cs FpsMetricsCallback

TerrainMetricsCallback

VideoMetricsCallback

InteriorMetricsCallback

TextureMetricsCallback

WaterMetricsCallback

TimeMetricsCallback

VehicleMetricsCallback

AudioMetricsCallback

DebugMetricsCallback

Metrics

common/client/mission.cs ClientCmdMissionStart

ClientCmdMissionEnd

common/client/missionDownload.cs ClientCmdMissionStartPhase1

OnDataBlockObjectReceived

ClientCmdMissionStartPhase2

OnGhostAlwaysStarted

OnGhostAlwaysObjectReceived

ClientCmdMissionStartPhase3

UpdateLightingProgress

SceneLightingComplete

Connect

continued

Table 7.2 continued

Module Function

308 Chapter 7 n Common Scripts

common/client/recordings.cs RecordingsDlg::onWake

StartSelectedDemo

StartDemoRecord

StopDemoRecord

DemoPlaybackComplete

common/client/screenshot.cs FormatImageNumber

FormatSessionNumber

RecordMovie

MovieGrabScreen

StopMovie

DoScreenShot

common/server/audio.cs ServerPlay2D

ServerPlay3D

common/server/clientConnection.cs GameConnection::onConnectRequest

GameConnection::onConnect

GameConnection::setPlayerName

IsNameUnique

GameConnection::onDrop

GameConnection::startMission

GameConnection::endMission

GameConnection::syncClock

GameConnection::incScore

common/server/commands.cs ServerCmdSAD

ServerCmdSADSetPassword

ServerCmdTeamMessageSent

ServerCmdMessageSent

common/server/game.cs OnServerCreated

OnServerDestroyed

OnMissionLoaded

OnMissionEnded

OnMissionReset

GameConnection::onClientEnterGame

GameConnection::onClientLeaveGame

CreateGame

DestroyGame

StartGame

EndGame

common/server/kickban.cs Kick

Ban

Table 7.2 continued

Module Function

A Final Word 309

common/server/message.cs MessageClient

MessageTeam

MessageTeamExcept

MessageAll

MessageAllExcept

GameConnection::spamMessageTimeout

GameConnection::spamReset

SpamAlert

ChatMessageClient

ChatMessageTeam

ChatMessageAll

common/server/missionDownload.cs GameConnection::loadMission

ServerCmdMissionStartPhase1Ack

GameConnection::onDataBlocksDone

serverCmdMissionStartPhase2Ack

GameConnection::clientWantsGhostAlwaysRetry

GameConnection::onGhostAlwaysFailed

GameConnection::onGhostAlwaysObjectsReceived

ServerCmdMissionStartPhase3Ack

common/server/missionInfo.cs ClearLoadInfo

BuildLoadInfo

DumpLoadInfo

SendLoadInfoToClient

common/server/missionLoad.cs LoadMission

LoadMissionStage2

EndMission

ResetMission

common/server/server.cs PortInit

CreateServer

DestroyServer

ResetServerDefaults

AddToServerGuidList

RemoveFromServerGuidList

OnServerInfoQuery

common/ui/ConsoleDlg.gui ConsoleDlg::onWake

ConsoleDlg::onSleep

ConsoleEntry::eval

ToggleConsole

UpdateConsoleErrorWindow

Table 7.2 continued

Module Function

continued

One last thing to remember about the common code: as chock-full of useful and

important functionality as it is, you don’t need to use it to create a game with

Torque. You’d be nuts to throw it away, in my humble opinion. Nonetheless, you

could create your own script code base from the bottom up. One thing I hope this

chapter has shown you is that a huge pile of work has already been done for you.

You just need to build on it.

Moving Right Along
In this chapter we took a look at the capabilities available in the common code

base so that you will gain familiarity with how Torque scripts generally work. For

the most part it is probably best to leave the common code alone. There may be

times, however, when you will want to tweak or adjust something in the common

code or to add your own set of features, and that’s certainly reasonable. You will

find that the features you want to reuse are best added to the common code.

As you saw, much of the critical server-side common code is related to issues that

deal with loading mission files, datablocks, and other resources from the server to

each client as it connects.

In a complementary fashion, the client-side common code accepts the resources

being sent by the server and uses those resources to prepare to display the new

game environment to the user.

So, that’s enough programming and code for a while. In the next few chapters,

we’ll get more artistic, dealing with visual things. In the next chapter, we’ll take a

look at textures, how to make them and how to use them. We’ll also learn a new

tool we can use to create them.

310 Chapter 7 n Common Scripts

common/ui/LoadFileDlg.gui GetLoadFilename

DoOpenFileExCallback

LoadDirTreeEx::onSelectPath

LoadFileListEx::onDoubleClick

common/ui/SaveFileDlg.gui GetSaveFilename

DoSaveCallback

SaveDirTreeEx::onSelectPath

SaveFileListEx::onSelect

Table 7.2 concluded

Module Function

Introduction
to Textures

3D computer games are intensely visual. In this chapter we begin to explore the

creative process behind the textures that give 3D objects their pizzazz.

Using Textures
Textures are probably the unsung heroes of 3D gaming. It is difficult to overstate

the importance of textures. One of the most important uses of textures in a game

is in creating and sustaining the ambience, or the look and feel, of a game.

Textures also can be used to create apparent properties of objects, properties that

the object shape doesn’t have—it just looks like it does. For example, blocky

shapes with jutting corners can appear to be smoothed by the careful application

of an appropriate texture using a process called texture mapping.

Another way textures can be used is to create the illusion of substructure and

detail. Figure 8.1 shows a castle with towers and walls that appear to be made of

blocks of stone. The stone blocks are merely components of the textures applied

to the tower and wall objects. There are no stone blocks actually modeled in that

scene. The same goes for the appearance of the wooden boards in the steps and

other structures. The texture gives not only the appearance of wood but also the

structure of individually nailed planks and boards. This is a powerful tool, using

textures to define substructures and detail.

311

chapter 8

This ability to create the illusion of structure can be refined and used in other

ways. Figure 8.2 shows a mountainside scene with bare granite rock and icefalls.

Again, textures were created and applied with this appearance in mind. This

technique greatly reduces the need to create 3D models for the myriad of tiny

objects, nooks, and crannies you’re going to encounter on an isolated and barren

mountain crag.

312 Chapter 8 n Introduction to Textures

Figure 8.1
Structure definition through using textures.

Figure 8.2
Rock and icefalls appearance on a mountainside.

Textures appear in many guises in a game. In Figure 8.3 two different textures are

used to define the water near the shoreline. A foamy texture is used for the areas

that splash against rock and sand, and a more wavelike texture is used for the

deep water. In this application the water block is a dynamic object that has

moving waves. It ebbs and flows and splashes against the shore. The water

textures are distorted and twisted in real time to match the motion of the waves.

Another area where textures are used to enhance the ambience of a game is to

define the appearance of the sky. Figure 8.4 shows cloud textures being used in a

skybox. The skybox is basically the inside of a big six-sided box that surrounds

your scene. By applying specially distorted and treated textures to the skybox, we

can create the appearance of an all-enveloping 360-degree sky above the horizon.

We can use textures to enhance the appearance of other objects in a scene. For

example, in Figure 8.5 we see a number of coniferous trees on a hillside. By

designing the ground texture that occupies the terrain location of the trees

appropriately, we can achieve the forest look we want without needing to

completely cover every inch of ground with the tree objects. This is helpful

because the fewer objects we need to use for such a purpose—basically

decoration—the more objects that will be available for us to use in other ways.

One of the most amazing uses of textures is when defining technological items.

Take the tommy gun in Figure 8.6, for instance. There are only about a dozen

objects in that model, and most of them are cubes, with a couple of cylinders

Using Textures 313

Figure 8.3
Shoreline foam and deep-water textures.

tossed in, as well as two or three irregular shapes. Yet by using an appropriately

designed texture, we can convey much greater detail. The weapon is easily

identifiable as a Thompson Submachine Gun, circa 1944.

Following the theme of technological detail, Figure 8.7 is another example. This

model of a Bell 47 Helicopter (thinkM*A*S*H) shows two trick uses of textures

in one model. The engine detail and the instrument panel dials were created

314 Chapter 8 n Introduction to Textures

Figure 8.5
Terrain accents.

Figure 8.4
Clouds in a skybox using textures.

using textures we’ve already seen. Now take a look at the tail boom and the

cockpit canopy. The tail boom looks like it is made of several dozen intersecting

and overlapping metal bars; after all, you can see right through it to the buildings

and ground in the background. But it is actually a single elongated and pinched

box or cube with a single texture applied! The texture utilizes the alpha channel

to convey the transparency information to the Torque renderer. Cool, huh? Then

Using Textures 315

Figure 8.6
Weapon detail using textures.

Figure 8.7
Vehicle detail and structure.

there is the canopy. It is semitransparent or mildly translucent. You can

obviously see right through it, as you should when looking through Perspex, but

you can still make out the sense of a solid glasslike surface.

Of course, technological features are not the only things that can be enhanced

through textures. In Figure 8.8 the brawler about to enter the tavern is attired in

the latest stylish leather brawling jacket. He is obviously somewhere around 40

years of age, judging by his classic male-pattern baldness, and the bat is a

Tubettiville slugger. Okay, okay, the bat is a stretch, but if it were turned over 180

degrees, you would be able to see the Tubettiville logo, and then you could tell!

Also note the use of the texture specifying the tavern name, named in honor of a

famous Delta Force 2 player, Insomniac.

Look at the moon in Figure 8.9. Look again, closer. Does it look familiar? It

should, because the moon texture in that picture is an actual photograph of the

full moon, taken outside my house with a digital camera and then used to

generate the moon texture. The rest of the scene is generated using the Torque

Engine with appropriate nighttime lighting parameters set.

I think by now you have a pretty good idea why I say that textures are the unsung

heroes of 3D gaming. They really make a huge difference by conveying not only

the obvious visual information but also the subtle clues and feelings that can turn

a good game into a great experience.

316 Chapter 8 n Introduction to Textures

Figure 8.8
Player clothing, skin, and other details.

The Gimp 2
You are going to be creating your own textures as you travel through this book,

and to do that you’ll need a good tool for texture and image manipulation. Well,

I’ve included a great image processing tool, the Gimp 2, on the companion CD

for you to use. The Gimp is an unusual name, I’ll grant you that, especially with

the tacked on like that in the front and a version number dangling off the back. At

various times throughout this book youmight see me refer to it as ‘‘the Gimp’’ or

even just plain ‘‘Gimp.’’ Yeah, I’m lazy.

The Gimp is a fully featured image processing and image generation tool, created

by Spencer Kimball and Peter Mattis, with scanner support, special effects and

filters, image analysis statistics, and the whole nine yards.

The Gimp is free for you to use, with no limitations, other than those described in

the GNU General Public License (GPL), which is included in Appendix E for your

perusal. There’s nothing startling in the license. Just don’t take the source code

and create your own program and try to sell it. Oh, did I forget to mention that

the source code is included on the CD as well? Well, it is. In fact, that is one of the

requirements of the GPL license. Now if you are a crackerjack C/Cþþ pro-

grammer and have an idea about how to improve the Gimp, you can actually go

ahead and make the changes and submit them to the Gimp Project. Go to http://

developer.gimp.org for more information. At the time of this writing, at least

The Gimp 2 317

Figure 8.9
Distant objects.

162 people have provided patches, fixes, plug-ins, extensions, scripts, transla-

tions, documentation, and more.

Another nice thing about the Gimp is that it is available for Windows, Macintosh

OSX, and various flavors of UNIX and Linux! I don’t need to tell you how cool

that is, do I?

Okay, so what next?

Well, first, you’ll need to install the Gimp.

Installing the Gimp 2

To install the Gimp, we must first install the GTK graphics toolkit and then

install the Gimp itself. Follow this procedure:

1. Browse to your CD in the \3D2E\TOOLS\GIMP2 folder.

2. Locate the gtkþ -2.8.9-setup-1.exe file, and double-click it to open it.

3. Click the Next button until you get to the Select Components screen. Make

sure you have all three of the components—Base, MS-Windows Engine, and

Translations—selected. Click Next again, and then click Install. This will

install GTK to its default locations. After the installation is complete, click

Finish.

4. Locate the gimp-2.2.12-i586-setup.exe file, and double-click it to open it.

5. Click the Next buttons until you get to the Select Components screen. Make

sure you have all three of the components—Base, Translations, and Gimp

FreeType plug-in—selected.

6. Click Next again, and this time select all the graphics file types you want to

be able to double-click and have the Gimp open automatically. If you have

no other image processing tools, then select all the file types. Click Next.

7. Click Next two more times, and then click Install. This will install the Gimp

to its default locations.

8. After the installation is complete, make sure the Launch the Gimp check

box is checked, and then click Finish. The Gimp will open up in due

course.

318 Chapter 8 n Introduction to Textures

No t e

The version of the Gimp used in this edition is 2.2.12. You can check to see if there are more
recent versions available by browsing to http://www.gimp.org. You can also go there to look for
the Mac and Linux versions as well.

T i p

You can install a Help file that includes context help by opening the file gimp-help-2-0.9-setup.exe
in the \3D2E\TOOLS\GIMP2 folder and running its installer, after you’ve installed the Gimp. Just
take all the defaults---except don’t install all the languages offered. When you get to the Lan-
guage dialog box in the installation procedure, uncheck any of the languages that you won’t use,
keeping any you might need checked.

Getting Started

To get this party rolling, we’re going to just blast through and create a couple of

textures that you can use later for whatever grabs your fancy. We’ll cover just the

tools and steps we need to get the job done. In a later section we’ll cover the most

common tools in more detail.

Creating a Texture

So, let’s get down to brass tacks and create a texture from scratch. We’ll create a

wood texture using the built-in capabilities of the Gimp.

1. Launch the Gimp, and select File, New from the menu at the top of the main

Gimp window (the one titled ‘‘The Gimp’’).

2. A New Image dialog box opens up. Set the width and height dimensions to

128 pixels (see Figure 8.10), and click OK.

3. We now have a blank image to work with. Over in the main Gimp window,

locate the Fill tool, and select it, as shown in Figure 8.11.

T i p

The upper part of the Gimp’s main window is called the Toolbox. The lower part is called the
Tool Options area, sometimes called the Context Options, because the options change
according to which tool (the context) is selected.

4. After selecting the Fill tool’s bucket icon, look down in the context menu at

the bottom of the main window, find the Fill Type section, and select the

Pattern fill radio button. Ensure that the Pine pattern is selected in the text

The Gimp 2 319

320 Chapter 8 n Introduction to Textures

Figure 8.10
Creating a new blank image.

Figure 8.11
Selecting the Fill tool in the Gimp’s main window.

box below and to the right of the radio button and a color image of the Pine

texture is in the texture button to the left of the text box.

T i p

If Pine is not already selected for you in the Pattern fill radio button, then click the button
just below and to the right of the Pattern radio button. A pop-up menu of images
will appear. Scroll through until you find the Pine pattern. The patterns are ordered
alphabetically.

5. Move your cursor over into the new image you created earlier, and click the

mouse button. The image should fill with the Pine texture.

Now you should have a bona fide woodgrain texture, like the one shown in

Figure 8.12. You can use this texture for things like walls, planks, ladders, the

wooden stock on a weapon, barrels, and whatever else you can come up

with.

6. To make the image larger and easier to see, look down at the bottom of the

image window (which is probably called Untitled-1.0), where there will be

two downward-pointing triangular arrows. Click the rightmost one, and the

The Gimp 2 321

Figure 8.12
Pine texture.

selection menu containing zoom factors will appear. Select 200% (or

whatever twists your crank) with a single mouse click. Your image will

double in size (unless you didn’t start out at 100%—and you should have; if

yours is different, then it was sabotage, I tell you!).

You can use this texture to experiment with different image processing effects

and touchup tools in the Gimp. Go ahead and give it a try. Leave the Gimp open

when you are done.

Okay, that was so much fun, let’s do another. This time we are going to tweak an

image a bit searching for a specific look. The next texture will be a sort of rough-

wall look that you might find on a painted cement block, or maybe a freshly

poured sidewalk, or something like that. We’ll call it the sidewalk texture, for

convenience.

1. The Gimp should still be running.

2. Select File, New.

3. Set the width and height dimensions to 128 pixels, and click OK. (Take

another look at Figure 8.10 if you need to refresh your memory.)

4. Select the Fill bucket, and then go back to the Fill Type section in the context

pane (see Figure 8.11 for a refresher), but this time select 3D Green for the

pattern.

5. Fill your new image with the 3D Green pattern.

6. Choose Select, All from the image windows menu—check to make sure you

have the crawling ants around the perimeter of the image.

7. From the image window’s menu, choose Tools, Color Tools, Hue-

Saturation. The Hue-Saturation is one way to change the overall color values

of an image, all at once. Figure 8.13 shows the Hue-Saturation dialog box.

8. Move the three sliders back and forth, and watch the image appearance

change. You will need to make sure that the Preview check box at the lower

left is checked in order to view the changes in real time.

9. Use the sliders to set the following values: Hue, 24; Lightness, 80; Saturation,

�94. You can also directly type the values into the edit boxes for each

setting.

322 Chapter 8 n Introduction to Textures

10. Notice the change in the texture? It should look something like Figure 8.14.

11. Click OK to close the Hue-Saturation dialog box.

Now this texture is quite a bit darker than I want it to be. I’m looking for a

light gray with a hint of beige or tan color, so what we’ll do is touch it up a

bit using some different tools. I could probably narrow in on the desired

result quite a bit more using the Hue-Saturation dialog box, but that

wouldn’t be any fun, now would it?

T i p

Due to the vagaries of grayscale reproductions of color images, don’t expend too much
energy trying to match your work with the images here in the book. Follow the values I give
you in the procedures, and note the changes that occur with your work---they should at
least roughly mirror the changes in the book images in a very general sense, and not much
more than that.

First, we want to brighten the image and, at the same time, emphasize the

bumpiness a bit. To do this, we’ll use the Brightness-Contrast tool.

12. Still with the crawling ants, choose Tools, Color Tools, Brightness-Contrast.

Your screen will be graced with the presence of the Brightness-Contrast

dialog box, as shown in Figure 8.15.

The Gimp 2 323

Figure 8.13
Hue-Saturation dialog box.

13. Set Brightness to 69 and Contrast to 52. Then click OK.

As you can see with Figure 8.16, the texture details now stand out in relief

quite a bit more. This is goodness. However, the color still needs to be more

tanlike.

14. Choose Tools, Color Tools, Color Balance to get the Color Balance dialog

box, as shown in Figure 8.17.

324 Chapter 8 n Introduction to Textures

Figure 8.14
Initial sidewalk texture.

Figure 8.15
Brightness-Contrast dialog box.

The Gimp 2 325

Figure 8.16
Enhanced sidewalk texture.

Figure 8.17
Color Balance dialog box.

There are three radio buttons in the Select Range to Modify section: Sha-

dows, Midtones, and Highlights. Select any one of them for use in the next

step.

15. Move the sliders (or type the values in directly) to set them as shown in

Table 8.1.

16. Repeat setting those values for the remaining two radio button settings in

the Select Range to Modify section. You should end up with a sidewalk

texture that is a light gray-tan, as shown in Figure 8.18.

326 Chapter 8 n Introduction to Textures

Figure 8.18
Gray-tan sidewalk texture.

Table 8.1 Color Balance Settings

Slider Value

Cyan---Red 10

Magenta---Green 0

Yellow---Blue �20

Now that the color is where we want it, let’s roughen it up a bit. The texture

is a bit too smooth, sort of like taffy. A sidewalk usually looks grainier. To get

that kind of look, we’ll add noise.

17. Choose Filters, Noise, Pick. You’ll get the Random Pick dialog box, as

shown in Figure 8.19.

18. We’ll stick with the default values. Note that if you intend to repeatedly

use this tool when processing textures, you should probably check the

Randomize check box to ensure that you get a different random seed each

time. This will ensure that you won’t get the same pseudo-random changes

applied every time you use the tool.

The texture should now look something like the one shown in Figure 8.20.

Notice that some of the visible features in the texture have been scrambled

somewhat by adding the noise.

You should now have two images open in your Gimp window: the first one being

the woodgrain texture and the other being the sidewalk texture. In the next

section you’ll learn how to save those images for later use.

Working with Files

We want to get those images saved without any further ado, but first I want to

show you something. You’re going to launch the Torque demo and have a peek at

something.

Getting a Before View

1. Leave the Gimp running, and task switch (AltþTab) to the Windows

desktop.

The Gimp 2 327

Figure 8.19
Random Pick dialog box.

2. Launch the Torque FPS demo, and start a server up, just as you did back

in Chapter 3.

328 Chapter 8 n Introduction to Textures

Figure 8.20
Final sidewalk texture.

Figure 8.21
View of an Orc hovel.

3. After you spawn in, go run up to one of the hovels, as shown in

Figure 8.21.

4. Take note of the texture used for the stone steps in the front of the Orc’s

hovel. Also take note of the texture used for the doorframe.

5. Resist the natural impulse to run around and blow things up. (Well, try to

resist the natural impulse to run around and blow things up, anyway.)

Instead, exit the game.

Saving Texture Files

Okay, now that you have the ‘‘before’’ view recorded in your mind, we’ll finally

get to saving those images. Switch back to the Gimp now, and follow this pro-

cedure to save your files:

1. Browse your way to the folder \3D2E\demo\data\interiors, locate the files

oak2.jpg and WalNoGroove.jpg, and rename both of them by adding the

word original to the front of their names. This way you can restore those files

for use later, if needed.

2. Click the pine woodgrain image to bring it to the front (making it active).

3. Select File, Save As, and then click the Browse for other folders button just

below the Save in folder part. You will get the Save Image dialog box, as

shown in Figure 8.22.

The Gimp 2 329

Figure 8.22
Save Image dialog box.

4. In the Save Image dialog box, make the type be JPG by clicking Select File

Type, scrolling through the File Type list that appears, and selecting JPG

image–JIFF Compliant.

5. In the volume pane (on the left), select the volume or drive on which you

installed the Torque demo (probably C:), and then in the folder pane (in the

middle), browse your way to \3D2E\demo\data\interiors.

6. Name your file oak2.jpg—the name must be exact. Click Save.

7. You will get a dialog box asking you to set the quality. Just click OK (we will

always use the defaults in this particular dialog box).

Repeat steps 1 to 6 for the sidewalk image, using the name WalNoGroove.jpg.

Now, task switch back to the desktop, and run the Torque demo game again, just

as you did before. When you spawn in the game, you will now see the floor

rendered with your new texture and the overhead beams rendered with the

woodgrain texture you created (see Figure 8.23). If either the floor or the beams

look like they did in your ‘‘before’’ view, then you’ve probably made an error in

the file name or perhaps saved them in the wrong folder. Double-check your

work, and everything should turn out fine.

330 Chapter 8 n Introduction to Textures

Figure 8.23
The modified hovel.

Congratulations! You are now an artist.

T i p

You can restore the original textures in place of your own textures by going back to \3D2E\
demo\data\interiors with the Explorer and removing the word original that you placed at the front
of the file name. You will need to rename or delete your custom-made version of those files first,
though.

PNG Versus JPG

The Gimp supports many, many file types. If you select File, Save As, you’ll get

the Save Image dialog box. If you click Select File Type (By Extension), you’ll get

a whopping great hockey sock full of available file types. There are two of par-

ticular interest to us: JPEG (Joint Photographic Experts Group) and PNG (Portable

Network Graphics). In Windows, the JPEG format file extension is .jpg; this is

more commonly used than .jpeg, so JPG is the term I will use.

When you save files in the JPG format, the images are compressed. The type of

compression used is called a lossy compression. This means that the technique

used to squeeze the image information into less space throws away some of the

information. This is not necessarily a Bad Thing. The people who devised the JPG

format were pretty clever and were able to specify rules that guide the software in

what to keep, what to throw away, and how to modify the information. So

although there is loss of information, the effect on the image is fairly negligible in

most cases, but there is an effect.

On top of all that, if you repeatedly open and save JPG files, the distortion will get

worse each time you do it, as data is lost in the compression each time. You’ll see

it as a sort of smearing of colors around edges, especially in areas of high color

contrast. It’s similar to the messiness resulting from photocopying photocopies

of photocopies.

So, if JPG has these artifacts, why use it? Because with more complex images, like

photographs or similar artwork, JPG files are usually smaller than PNG files. Go

ahead and try for yourself. Maybe use the one in your texture example from

earlier, like the sidewalk texture. When I save the final texture as JPG, I get a file

size of 3,101 bytes. As PNG, I get 17,372 bytes!

The smaller the texture files are, the more of them we can fit in a given amount of

memory, and the more textures we can fit in memory, the richer the visual

experience for our game.

The Gimp 2 331

Okay, so now you are wondering, why bother with the PNG file type, right? Well,

there is a good reason for using PNG files, of course. The PNG format supports a

concept called alpha channels, and we will need to use alpha channels for some of

our game images. Not all of them, but a few. So the rule of thumb will be to use

JPG for all images except when we need to specify an alpha channel—then we use

PNG.

Finally, here is an important workflow tip. Save all of your original image

creations in the Gimp native format: XCF.When you create and save your images

in XCF format, it’s a lot like having the original source code for a program. You

can save all of your layers in XCF format, for example. Some other formats

support layers, like PNG with its single alpha layer, but most don’t. Anyway, you

can save your image files in the format suitable for your game needs, PNG or JPG,

when you need to.

Bitmap Versus Vector Images

Image graphics are presented in two different ways: bitmap graphics and vector

graphics formats. Sometimes both methods are used together.

Bitmap images, as supported by the Gimp, are also called raster images. Raster,

the older term, is the pattern of lines traced by rectilinear scanning in display

systems. Although it is not exactly the same as a bitmap image, it’s the term that

the Gimp uses to describe such images. In this book I will use the term bitmap for

such images, except when quoting tools or commands that use the word raster.

Just remember that they essentially mean the same thing in this context.

A bitmap image is composed of pixels laid out on a grid. Each pixel represents a

color value, one each for red, green, and blue. The weighting of each of these

values determines the color of each pixel. In most image processing tools, if you

increase the magnification of a bitmap image, you can see these pixels. They look

like squares on the screen. A bitmap object is a collection of these pixels. An

object is stored as a group of pixels with the color information about each pixel

color. Pixels can be blended to create soft edges and smooth transitions between

objects. Photographic images are always rendered as bitmap images because the

pixel format matches well to the way that photographs are made.

You should note that an image in bitmap format is resolution-dependent. You

specify the resolution and pixel dimensions when you create the image. If you

later decide to increase its size, you enlarge each pixel, which lowers the image

quality.

332 Chapter 8 n Introduction to Textures

A vector image is composed of procedural and mathematical instructions for

drawing the image. The Gimp doesn’t work with vector graphics. As you

encountered in Chapter 3, a vector is basically a line that has definite magnitude

and direction. Vector objects in graphics are defined in a similar fashion. Each

object in a vector image is stored as a separate item with information about its

relative position in the image, its starting and ending points, and width, color,

and curve information. This makes the vector format useful for things like logos,

text fonts, and line drawings.

An image in vector format does not depend on the resolution. It can be resized

without losing detail because it is stored as a set of instructions, not as a collection

of pixels. Each time you display an image, you re-create it.

We will be doing all of our work with bitmap images. Some of the tools we’ll use

actually operate as vector tools until the object is committed to an image

document, at which point they are converted to raster graphics.

Transparency and Translucency

Okay, so you are now able to perform the most important texture imaging

operations, creating one and saving it. The next most important operation is the

creation of alpha channel transparent sections of an image. Remember the

helicopter tail boom?

There are other uses for alpha transparency, of course. Bitmapped GUI buttons

are candidates. You may want a button that does not have straight sides and

square corners. You can create irregular button shapes using transparent sections

of your button image.

Another use for a bitmap with alpha transparency would be overlays on the GUI,

such as health bars, status displays, and weapons crosshairs.

Let’s take a look at an example of a bitmap with transparency. With Torque, there

are two ways to go about it. The simplest way is to simply save your image as a

PNG file, with the transparent portion assigned to the alpha channel. This keeps

things in a nice, tidy single-file package. Torque will automatically employ the

transparency information deployed in the alpha channel and render the image

accordingly.

The second way is to use an alpha mask JPG image, alongside an original JPG

image. For example, say you have a doughnut texture, and you want the area

inside the hole, as well as the area outside the doughnut proper, to be transparent.

The Gimp 2 333

The image with the actual doughnut texture is the base image—let’s call it

doughnut.jpg.

Using Alpha Masks We then create the alpha mask file by filling all those

portions of the base image that would be transparent with black and all those

portions that would be actual texture with white. We then name the alpha

mask file with the same first part and extension as the base image file, but with

alpha shoehorned in between a pair of periods, like this—doughnut.alpha.jpg.

The alpha tells Torque that this is an alpha mask image for the file called

doughnut.jpg.

Figure 8.24 shows the base image for the GarageGames logo.

Figure 8.25 shows the alpha mask for the GarageGames logo.

334 Chapter 8 n Introduction to Textures

Figure 8.24
The GarageGames logo base image.

Figure 8.25
The GarageGames logo alpha mask image.

Due to the way the alpha mask in Figure 8.25 is arranged, the dark area around

the circle in which the stylistic g in Figure 8.24 is encased will be completely

transparent when rendered. In the alpha mask, you can also present translucency

by using shades of gray rather than simple black or white. The lighter the shade of

gray, the more opaque the image will be in those areas.

Another way to think about the effect is to think in terms of background image

and foreground image. When you want to render an image in a scene, or in a

dialog box, there will normally be some sort of background texture present. The

image you want to render therefore becomes the foreground image. The white

areas of the alphamask allow the foreground image and suppress the background

image. The whiter the mask area, the more foreground is admitted. As the white

area gets darker, less and less foreground image is rendered and more and more

background image starts to come into view. At 50 percent gray (halfway between

white and black), both foreground and background images are blended together

in equal amounts. When the gray is more on the black side than the white, then

the background image starts to dominate the resulting blended image.

Let’s make our own example. Launch Torque, and stop at the main menu. Check

out the orc in the right corner. We’re going to replace that image with our own.

1. Using Explorer, browse your way to \3D2E\demo\client\ui, and locate the

files orc.jpg and orc.alpha.jpg. Rename them by adding Original to the

beginning of their file names. Don’t just make copies—we are going to

replace orc.jpg and orc.alpha.jpg with our own files.

2. Using the Gimp, create a new 256 by 256 pixel image.

3. Using the Fill Pattern tool (the paint bucket icon), select your own favorite

pattern and fill the entire blank image with it. I used the recessed pattern.

4. Save your work as \3D2E\demo\client\ui\orc.jpg.

5. Create another new 256 by 256 pixel image. This time, in the Create a New

Image dialog box, click the Advanced Options button, and in the Colorspace

combo box, select Grayscale.

T i p

If you forget to set the colorspace (RGB or Grayscale) of a new image when you create it,
you can convert any image to the needed setting by choosing Image, Mode and then
selecting which mode to convert to: RGB, Grayscale, or Indexed.

The Gimp 2 335

6. Set the background color to white by clicking the background color button

in the Color area (see Figure 8.26). You will get the Change Background

Color dialog box, in which you can pick the white color from the array at the

lower right, so that it shows in the Current box. Click OK.

7. Set the foreground color to black by clicking the foreground color button in

the Color area (again, see Figure 8.26). Go about it the same way you did for

white, or you can manually set the RGB (red, green, blue) parameters in the

edit boxes at the right. For black, set R, G, and B to 0; for white, set all three

to 255; for 50 percent gray, set all three to 127.

8. Select the Pencil tool, and in the Options area, select a Brush of Circle 11.

9. Draw some pattern in your blank image. Figure 8.27 shows the pattern I

made.

10. Save your work as \3D2E\demo\client\ui\orc.alpha.jpg.

11. Launch the Torque demo, and examine the main menu at the lower right for

evidence of your handiwork.

Figure 8.28 shows my results. Hopefully yours will be similar, or even better!

Using Alpha Channels As mentioned earlier, another, arguably simpler, way

to introduce transparency into bitmap images is to use alpha channels. If your

336 Chapter 8 n Introduction to Textures

Figure 8.26
The Color area.

imaging tool supports PNG format with alpha channels—and the Gimp

does—then you can combine your texture data and transparency data in one

file. This helps ease the assets management load when developing a game.

Having fewer files to track means less work.

Let’s get on our hands and knees and rummage around the Gimp’s capabilities a

bit. Don’t forget to do your warm-up stretches. You don’t want to sprain your

mousing hand.

1. Using Explorer, browse your way to \3D2E\demo\client\ui, and locate the

files orc.jpg and orc.alpha.jpg. These are the files you created in the previous

The Gimp 2 337

Figure 8.27
The custom alpha mask.

Figure 8.28
The alpha mask result.

exercise. If you want to keep them around, rename them by adding My to

the beginning of their file names. Otherwise, just delete both of them.

2. Using the Gimp, create a new 256 by 256 pixel image. In the Create a New

Image dialog box, click the Advanced Options button, and in the Fill with

combo box, select Transparency. Click OK. Notice that the blank image has

a checkerboard pattern, signifying no color.

3. Select the Pencil tool, with its brush set to Circle (11).

4. If your foreground color is set to white, you are good to go. If not, click the

swap arrows (see Figure 8.29) to move the white background to the fore-

ground.

5. With the pencil, draw something in your blank image. I did a slightly

different version of what I did in the last exercise.

6. Save your work as \3D2E\demo\client\ui\orc.png.

7. Launch the Torque demo, and once again examine the main menu at the

lower right for evidence of your handiwork.

Pretty easy, huh? Now, the reason why we deleted or renamed the orc.alpha.jpg

and orc.jpg files in step 1 is because when we specify image files to Torque in the

scripts, we usually do not specify the extension in the file name. Torque then

follows a plan whereby it first looks for a file with the indicated name and a .jpg

extension. If it finds one, it then looks for a file with the indicated name and the

extension .alpha.jpg. If it finds that, it uses it as the alpha mask and doesn’t look

for any more files.

If Torque doesn’t find a file with the indicated name and a .jpg extension, then it

looks for a file with the indicated name and a .png extension. Since we wanted the

PNG version to be used, we had to make sure that Torque didn’t find the earlier

338 Chapter 8 n Introduction to Textures

Figure 8.29
The swap arrows.

JPG versions. Torque then used the alpha channel data for the transparency info

and did its thing.

By the way, Figure 8.30 shows my results.

The Gimp Feature Highlights
I won’t cover all the features that the Gimp offers—and there are a ton of them.

What I’ll do is cover those that I use the most when creating textures for games

and present some of the most useful options and capabilities for those features.

The first thing that you can’t help but notice is that the Gimp does not constrain

your image documents to exist only inside the main window, like most programs

do. In fact, you can’t even have your documents’ windows inside the main

window!

It does take a little getting used to, having the floating main window reside

elsewhere on your desktop. Also note that each window (main window and every

document window) has its own menu bar. While all image document menus

have the same sets of menu commands and submenus, the main window’s menus

are different. The most significant difference is that there is no Save or Save As

menu command in the main window’s menus. Those features exist only on the

image document windows’ menu bars.

Figure 8.31 shows the Gimp’s main window, with the major sections marked.

The Gimp Feature Highlights 339

Figure 8.30
The alpha channel result.

Layers

A newly created Gimp image consists of one raster layer, always called the

background layer. This is like the canvas of a painting; every image must have at

least one layer. Additional layers float above the background like overlays.

To manipulate or manage our layers in the Gimp, we use the Layers dialog box

(see Figure 8.32), which you can invoke by choosing Dialogs, Layers from an

image document window or File, Dialogs, Layers from the main window or by

simply pressing Ctrlþ L.

When creating image resources, you should always strive to build your work up

in layers. You can hide layers and rearrange them on top of or below each other as

you work, helping to prevent your work from becoming visually cluttered before

it is finalized.

340 Chapter 8 n Introduction to Textures

Figure 8.31
The Gimp’s main window.

Creating Layers

To create a new layer, from the image window choose Layer, New Layer. You will

see that creating a layer is very much like creating a new image. You can set the

layer’s image size as well as choose what the layer fill type will be. Usually I use the

Transparency fill type, because I will be viewing several layers at once, and they

normally will be merged together (the image is ‘‘flattened’’) later. Layers that

aren’t the background layer don’t normally have a. . .um. . .background of their

own. Typically, we are interested in only a relatively small image on a portion of a

nonbackground layer.

The Layers Dialog Box

To manage your layers, you can use the arrangement tools in the Layers dialog

box to move the layers up or down in the layer list. The layer that is on the top of

the list is the topmost layer and will obscure any layers lower down in the list

(except for where the layer is transparent, of course).

In addition to transparent areas on a layer with transparency set to the fill type

(such as you would get if you erased part of the layer with the Eraser tool), you

can also set the overall transparency of the layer using the Opacity slider in the

Layers dialog box, as long as you have the appropriate layer selected.

You can adjust the way any selected layer interacts with other layers by opening

the Mode combo box and selecting one of the many blend options listed there.

See Table 8.2 for more details on the layer modes.

The Gimp Feature Highlights 341

Figure 8.32
The Layers dialog box.

342 Chapter 8 n Introduction to Textures

Table 8.2 Layer Modes

Mode Description

Normal The layer is viewed normally (default).

Dissolve Dissolves the current layer into the layer below it using pixel dispersion. This means that
a given pixel on the current layer is transferred to the layer below but is moved to an
offset location near its original location.

Multiply The pixel values of the current layer are arithmetically multiplied by the values of the
pixels beneath it, and we see the result---the product.

Divide Same as Multiply except using the arithmetic division operation and resulting in the
quotient.

Screen Used to enhance the brightness of an image. The values of the image pixels in the
current layer and the one beneath are inverted, the values are arithmetically multiplied
with each other, and then the product is inverted.

Overlay Using this mode, a screen blend is performed and then a multiply blend is performed,
after which the results of both operations are combined and displayed.

Dodge This is very similar to Screen, except that after the first inversion, the current layer pixel
values are divided by those of the layer beneath, and the second inversion operates on
the quotient. A brightening effect is seen on the upper (current) layer, but there is less
contrast preservation than with Screen.

Burn This is the opposite of Dodge. The pixel values of the layers are inverted and then
multiplied together, after which the product values are inverted. A darkening effect is
seen on the current layer.

Hard Light Screen and Multiplication modes combined. Color saturation is reduced as a side effect.

Soft Light Screen and Overlay modes combined to yield a softening effect on the sharper edges of
the image. Also lightens the colors as a side effect.

Grain Extract Used to extract the grain from a scanned photograph that exhibits film grain. The grain
is deposited in a new layer.

Grain Merge Use this to merge a grain layer such as one created from a scanned photograph using
the Grain Extract mode. Leaves a grainy version of the original layer.

Difference Calculates the difference between the layers by subtracting the lower pixel values from
the higher pixel values for corresponding pixels in each layer, irrespective of which layer
is above or below the other.

Addition Adds the pixel values for each pixel in both layers.

Subtract Subtracts the pixel values of the lower layer from those of the upper layer.

Darken Only Selects the darker pixel of the corresponding pixels in each layer, and deposits the
darker value in the current layer.

Lighten Only Selects the lighter pixel of the corresponding pixels in each layer, and deposits the
lighter value in the current layer.

Hue Averages the Hue values of the current and lower layers.

Saturation Averages the Saturation values of the current and lower layers.

Color Averages the Color values of the current and lower layer.

Value Displays the current layer’s brightness value only---has the effect of creating a grayscale
image.

Saving Layers

If you want to retain your layers, you need to save your image document in a file

in XCF format. If you need to save only one layer and the transparency infor-

mation in the alpha channel (which will be a separate layer), then you can save

your image in a file in PNG format. You will need to merge your layers using

Image, Merge Visible Layers so that you have only one layer left and the alpha

channel (transparency) data is preserved. Just make sure that all the layers you

want to be merged are actually visible; it’s a good idea to open the Layers dialog

box and check to ensure that all the layers you are merging have the eye icon to

the left of their entry in the list.

You could also choose Image, Flatten Image to do the same thing, except that the

alpha channel is not preserved. Instead, the current background color as indi-

cated in the Toolbox Color Area will be used to fill in the background of any

unpainted areas.

The Toolbox

The Gimp has quite a selection of image processing tools. Not all of them are

actually shown in the Toolbox in the main window. If you have an image

document open (create a new blank one if you like), you can choose Dialogs,

Tools and get the Tools dialog box. You can use this dialog box to make tools

available in the Toolbox by clicking to the left of each tool to make the visibility

icon appear (a little eye). Click on the eye to make it go away, which removes the

tool from the Toolbox.

Figure 8.33 shows the most useful tools to keep available in the Toolbox,

matching the icons to their functionality. After you develop some expertise, your

selections might be different.

Brush-like Tools

The Brush-like tools (see Figure 8.33) are a gaggle of tools that operate much like

their real-life analogs, and all have similar options. All the Brush tools operate by

pressing and dragging the left mouse button. Note that the right mouse button

will bring up a context-sensitive menu.

The Pencil tool and the Paintbrush tool are almost identical, except that the

Paintbrush tool gives a soft-edge mark, while the Pencil tool lays down a sharp,

hard edge with the line it creates.

The Gimp Feature Highlights 343

The Ink Pen tool, while it might seem to be very similar to the Pencil tool,

operates completely differently. The difference is very obvious when you examine

the options. Essentially, the Ink Pen has variable nib shapes like a nib-pen would

have. You can vary the pressure, ink flow, application angle, and so on.

The Air Brush tool simulates an airbrush, allowing you to adjust the pressure and

paint flow rate, yielding a soft, blended edge. Just like the real thing. But unlike

the real thing, you can use a fill gradient on the paint.

The Eraser tool obviously removes the paint from an image. You can adjust the

pressure and the size and twiddle with a few other variables, like setting a hard

edge to the Eraser.

344 Chapter 8 n Introduction to Textures

Figure 8.33
Tool icons and their functions.

The Blur or Sharpen (sometimes called Convolve) tool is used to adjust the

clearness of various portions of an image. It can be used to enhance lines in a

muddy image or to blend sharp edges together. When blurring, it functions very

much like a drop of water on a water-based ink would work.

The Smudge tool is another way to blend or blur an image, except that it operates

the same way a thumb or finger would do, as it is pushed across a page of ink,

pencil, or paint.

Selection Tools

In general, the Selection tools are used to specify which pixels in an image are to

be used for a given operation—deletion, movement (translation), cutting to the

Clipboard, or what have you. In most cases you can add to a selection collection

by holding down the Shift key and selecting more pixels, and you can remove

from a selection by holding down the Control key and selecting the pixels you

want to remove from an existing selection collection.

To use the Magic Wand, you just select that tool, and then click in the area of

interest. All adjoining pixels that match the original pixel (within tolerance) will

then be selected.

Fill Tools

The Fill tools operate by starting at a point in an image and spreading out from

there. You indicate where the fill start point is by clicking once in the image at the

spot you desire. From the Options pane you can select a pattern or a solid color

for use with the standard Bucket Fill tool (the bucket o’ paint tool) or select a

gradient for use with the Blend tool.

In a slight departure from the Bucket Fill tool, the Blend tool requires you to click

and drag the mouse in order to indicate the direction of the gradient as well as the

size of the area over which the gradient will be created.

Other Tools

The other tools in Figure 8.33 have a variety of operation modes.

The Zoom tool zooms you in closer to the image with each click of the mouse

button. To zoom out (farther away), you merely hold down the Control key

while clicking the mouse button.

The Gimp Feature Highlights 345

The Angle andMeasurement tool is really quite a handy tool. If you click the tool

down at the vertex of an angle to be measured, you can drag the cursor around in

an arc and see the angle displayed in the status bar (see Figure 8.34). You can also

draw a line between two points and see the measurement in the status bar as well.

The Move tool gives you the ability to ‘‘grab’’ a layer, path, or selection and drag

it around the image to reposition it.

Add Text lets you add text to an image. You can edit the text up until the text is

committed to the image, after which the text cannot be edited as text—you will

have to move the pixels around instead or redo the text.

Tool Options

Every drawing tool has different adjustable settings that can be accessed via the

main window’s Tool Options pane. The contents of this palette change according

to which tool is being used.

Check back to Figure 8.31 to see the location of the Tool Options in the main

window. Figure 8.35 shows the Paintbrush Options, with the Brush Selection

dialog box open. Unseen in the figure is the fact that the Paintbrush tool has been

selected in the Toolbox, so the Paintbrush Options are being shown.

346 Chapter 8 n Introduction to Textures

Figure 8.34
The status bar.

Brush-like Tools

The Tool Options palette for the various Brush-like tools will appear in the lower

panes when you select one of the Brush-like tools. Some of the options are the

same between all the tools; indeed, the Pencil tool and the Paintbrush tool have

exactly the same options. Other Brush-like tools have their own specific options.

Table 8.3 shows the most commonly used options.

Selection Tool

The principal options available for selection tools are Antialiasing, Feather Edges,

and Mode. Antialiasing applies anti-aliasing techniques to the edges of the

selection where they form corners. Certain corner pixels will be selected in a

semitransparent fashion so that the selection does not have ‘‘jaggie’’ edges. This

leads to a smoother-appearing selection.

Feather Edges is similar to Antialiasing, except that the smoothing is accom-

plished with a border that is added around the entire selection where the pixels

are selected in a semitransparent fashion.

The Gimp Feature Highlights 347

Figure 8.35
The Tool Options palette for the Paintbrush tool.

There are four selection modes, as shown in Table 8.4. Setting a mode in the

options creates a default selection mode that can be overridden by using the

Control or Shift keys.

T i p

To confine the brush painting to a specific area, use the Selection tool or the Freehand Selection
tool to make a selection before painting. Then the brushwork will only be applied within the
selected area. This is a handy technique to avoid ‘‘overspray’’ with the Air Brush.

348 Chapter 8 n Introduction to Textures

Table 8.3 Brush-like Tool Options

Option Description

Opacity Opacity controls how completely the color covers the image surface. Lowering
the opacity is like diluting paint. At 100 percent opacity, the color covers
everything; at 1 percent, the color is almost transparent.

Mode Sets the blend mode of the tool’s colors. See Table 8.2 for more details.

Brush Controls the size and shape of the brush. The square button contains a
representation of the size and shape of the tool. Clicking the button invokes a
pop-up dialog box of selectable sizes. At the bottom of the pop-up dialog box
is a collection of buttons that are used to adjust the pop-up dialog box’s visual
settings, like zooming in or out and viewing as a list or a grid. The button at
the far right (the one that looks like a paintbrush) is used to call up another
dialog box, in which you can select a brush shape.

Pressure Sensitivity Sets the relationship to a drawing palette’s pressure values.

Fadeout This check box controls whether a brush’s ink fades away as the tool is used.
Enabled when checked.

Incremental When checked, each pass of a brush over other brush pixels will add to the
image, up to a maximum of the opacity setting.

Use Color from Gradient Uses color as calculated in the currently selected color gradient.

Table 8.4 Selection Modes

Option Description

Replace New selection replaces current selection (default).

Add Adds each new selection to the selection collection.

Subtract Removes the selection from a selection collection.

Intersection The intersection of the new selection with the current selection becomes the
current selection.

Fill Tools

The Fill tools are used to create large area fill effects, using solid patterns, gra-

dients, or patterns.

Both the Bucket Fill tool and the Blend tool have the ubiquitous Opacity option,

which works with them the way it works with all the other tools. They also share

the Mode option (refer back to Table 8.2 for more detail).

Bucket Fill Tool

The Bucket Fill tool has the following custom options: Fill Type, Affected Area,

and Finding Similar Colors.

Fill Type There are three Fill Types: FG (foreground) color fill, BG (back-

ground) color fill, and Pattern fill. The effects of FG and BG color fill are pret-

ty obvious. Pattern fill requires you to select a pattern that will be painted into

the fill area. There are a number of prepackaged patterns, and you can also

create your own patterns.

T i p

To create a custom pattern, make your pattern and save it in one of the image file formats that the
Gimp supports. You need to save the pattern file somewhere inside the Gimp’s pattern search
path. To find the pattern search path, choose File, Preferences, Folders, Patterns. You need to
ensure that your pattern is tileable so that as the pattern repeats, there will not be any seams
between each repetition. A later chapter covers how to make tileable textures (basically the same
as patterns).

Affected Area There are two options for Affected Area: Fill similar colors

and Fill whole selection.

Fill similar colors will apply the fill pattern to adjacent, contiguous (connected to

the original) pixels that are sufficiently similar to the original pixel where the tool

was clicked.

Fill whole selection fills the entire selected area with the fill color or pattern.

Finding Similar Colors The options Fill transparent areas, Sample merged,

and Threshold are only available when the Fill similar colors option is used.

Fill transparent areas allows the fill operation to continue into transparent pixels.

Sample merged allows layers other than the upper layers to be included in the fill

merge.

The Gimp Feature Highlights 349

The Threshold setting is how the Gimp determines the degree of similarity that

will be considered when considering similar colors.

Blend Tool

The Blend tool has a different set of options, in addition to the standard mode

and opacity settings: Gradient, Offset, and Shape.

Gradient The Gradient option provides a dialog box that allows you to speci-

fy how a color gradient works. Basically, you indicate a starting color and end-

ing color, with possible in-between color values, As the gradient filling happens,

the color being applied gradually changes from one color to another according

to the specification. There are a large number of prepackaged gradients that you

can choose from, or you can create your own. A check box called Reverse is

available to cause the gradient to work in the opposite direction.

Offset Offset indicates the steepness of the gradient or how quickly the

change in color takes place.

Shape Shape indicates the overall topology that the gradient filling will fol-

low: Linear, Sawtooth Wave, and Triangular Wave. Figure 8.36 shows the rela-

tionship between a few sample shapes and their resulting gradients.

Other Tools

The Magnify tool has a few interesting options.

n Auto-resize window. If you select the Auto-resize window option, then the

window will grow to accommodate a zoomed-in view as long as the window

can fit on the screen.

n Tool Toggle. By default, clicking the Magnify tool in an image window will

zoom in (the default), and holding down the Control key while clicking will

zoom out. The Tool Toggle option allows you to change this behavior

around, so that the default behavior is to zoom out, and holding down the

Control key will zoom in.

n Threshold. You can also click and drag the Magnify tool so that you create a

zoom rectangle; the zoom function then zooms the image to fill that win-

dow. By setting the Threshold option to a high value, youmust create a fairly

large zoomwindow before the zoom function kicks in. If you use a threshold

that is too small for the current state of zoom, you will zoom in by one zoom

level.

350 Chapter 8 n Introduction to Textures

Measure has only one option:

n Use info window. This handy option puts the measurement information in

an external window as well as in the status bar.

The Move tool has two option sets:

n Affect. The first option set, Affect, lets you specify which of the movable

entities you want to be able to transform or move. These are layers, selec-

tions, and paths.

n Tool Toggle. The other option set, Tool Toggle, indicates how the Move

tool decides what to move. Pick a path allows that clicking the tool on the

screen in the image document will select a layer or a guide.Move the current

path will not attempt any layer or guide selection but will simply start

moving the current layer.

The Gimp Feature Highlights 351

Figure 8.36
The Gradient Shapes.

The Text tool lets you type in text to be added to an image. There are several

options:

n Font. The Font option lets you select a font from the pop-up list. You use

the Size option to set the font’s size, in one of several selectable metrics: px

(pixel), in (inches), mm (millimeters), pt (points), or pc (picas). There are

more size metrics available as well, via the size list’s More option.

n Hinting. Hinting tells the program to use the adjustment settings to fiddle

with the fonts in order to make them clearer with really small font sizes.

Force auto-hinter, when chosen, tells the program to always try to calculate

the settings needed to make suitable characters.

n Antialiasing.When enabled, Antialiasing will help to create smoother edges

for characters, giving a more readable result.

n Color. You can use the Color option to set the color of the characters the

next time text is committed to the image.

There are a few formatting options available, like Justify, which has four settings:

Left, Right, Centered, and Filled (the same as Full, as it is known by many people).

Indent allows you to set indentation values. Line spacing allows you to set the

distance between lines of text.

Create path from text lets you create a selection path using the selected text.

Moving Right Along
In this chapter we had our first peek at the world of textures. As the book unfolds,

we will examine the uses for textures in more detail.

Then we took a look at a powerful imaging tool, the Gimp, which we can use

to create and edit textures. As you have seen, the Gimp has a very complete

feature set.

In the next chapter we will expand our understanding of using textures in game

development by learning how to skin objects, such as player models and vehicles.

352 Chapter 8 n Introduction to Textures

Skins

Skins are special textures used in games. The quality that separates skins from

regular textures is that they typically wrap around the shape of a 3D model. It is

fairly obvious that 3D monsters and player-characters would have texture skins,

but the term can also apply to automobiles, wheelbarrows, mailboxes, rowboats,

weapons, and other objects that appear in a 3D game.

Typically, skins are created after a model has been unwrapped, so that the skin

artist knows how to lay the skins out in the UV template. We’re going to do the

process a bit backward, simply because we should stay on topic with the Gimp

and textures until we’ve covered the topic sufficiently.

In our case here, it isn’t a big issue anyway, because I’m providing you with UV

templates from previously UV unwrapped models to work with.

UV Unwrapping
UV unwrapping is a necessary function to be performed prior to skinning a

model. Consider it part of the modeling process in the context of this book.

However, in this chapter we’ll deal with the texture processing part of skinning a

model and use models I’ve provided on the CD. Later you’ll create and skin your

own models and do the unwrapping and other things. We’ll cover how the

unwrapping works in more detail then.

When we want to apply textures to 3D objects, we need a system that specifies

where each part of a texture will appear on which parts of a model. The system is

353

chapter 9

called U-V Coordinate Mapping. The U-coordinate and the V-coordinate are

analogous to the X- and Y-coordinates of a 2D coordinate system, though they’re

obviously not exactly the same.

Imagine (or you can actually try this at home yourself) taking a closed cardboard

box and slicing it open along the edges. Then lay the whole thing out flat on the

kitchen table, with no overlapping parts. There, you’ve unwrapped your box.

Now get out your crayons and draw some nifty pictures on it. Then glue it all

back together again to make a box. I think you get the idea.

With UV unwrapping we apply the technique to some complex and irregular

shapes, like monsters and ice cream cones.

The Skin Creation Process
When we begin the skinning process, we will have a bare, unadorned 3Dmodel of

some kind. For this little demonstration, we’ll use a simple soup can (see

Figure 9.1). It’s a 12-sided cylinder with a closed top and bottom (end caps).

Each side face is made up of two triangles, and the end caps are made of 12

triangles each, for a total of 48 triangles. Nothing too special here.

Using the UV Unwrapping tool, we have to basically spread all our faces out over

a nominally flat surface (see Figure 9.2).

We save the image of the UV template, plus we save the original model file,

because the UV Unwrapping tool will have modified the UV coordinates for the

354 Chapter 9 n Skins

Figure 9.1
The victim---a simple can of soup.

The Skin Creation Process 355

Figure 9.2
Laying it all out---the unwrapped can.

Figure 9.3
After applying textures.

objects in the model, and we can save those changes to the file so that the

modeling tool can read them back in again.

Then we import the unwrapped image with the lines indicating the face edges

into an image processing tool like the Gimp and apply whatever textures, colors,

or symbols we need, such as shown in Figure 9.3.

Notice that for textures I simply created markings and re-created a simple label.

For the top of the can I made some circular text, and for both end caps I made a

circular pattern that represents the ridges you often find in those places on tin

cans. The image file has now officially become a skin for the can!

The final step is to import the new skin into the modeling program (or the game)

and view the results, as in Figure 9.4.

The part of the process we will focus on in this chapter is the activity shown in

Figure 9.3, the actual creation of the textures on the UV template, so that it can be

later used as a skin for models.

Making a Soup Can Skin
So let’s dive right in and create a skin. We can use the bare model of the soup can

I showed you in the last section. The procedure has quite a few steps—more than

30—so we’d better roll up our sleeves and get to it.

The Soup Can Skinning Procedure

This is how you skin a soup can:

1. Open \3D2E\RESOURCES\CH9\can.bmp in the Gimp. This file contains

the UV mapping template.

356 Chapter 9 n Skins

Figure 9.4
Aha! Not such a simple can anymore. Nutritious, too!

T i p

Remember in the last chapter when I said that the only file types we would need to use are JPG
and PNG? Well, that was sort of a lie, though not quite---you see, the only file types we will be
using for game resources will be those two types. However, the UVMapper program outputs its
UV mapping templates as one of two types: BMP (Windows bitmap) or TGA (Targa) format. So
I’ve picked BMP to be our standard UV mapping template format. We won’t be creating any game
files in this format, however.

2. Choose Image, Mode, RGB. You need to do this to get access to the full

range of colors.

3. Save the file as \3D2E\RESOURCES\CH9\mycan.xcf. This way you can

reuse the layers over and over at later times if necessary. Make sure you save

your work often as you follow the steps, in case you royally mess up, like

I frequently do.

4. Choose Layer, New Layer, and you will get the New Layer dialog box

(see Figure 9.5).

Making a Soup Can Skin 357

Figure 9.5
New Layer dialog box.

5. Accept the default settings, and click OK.

6. Choose Dialogs, Layers, and then click the New Layer entry to highlight it

and make that layer active.

7. With the Rect Select tool, make a box of crawling ants that matches the

perimeter of the rectangle in the mycan image (see Figure 9.6).

8. Select the Bucket Fill tool, and then set its Affected Area option to be Fill

whole selection. Ensure that the opacity setting is 100.0, the mode setting is

Normal, and the fill type setting is FG color fill.

9. Change the foreground color in the color area to bright red (RGB=255,0,0), and

then click in the rectangular selection. The rectangle should fill with the bright

red color, obscuring the lines of the background image, as shown in Figure 9.7.

10. Next, using the same technique described in steps 7 to 9, make a long thin

rectangle in the middle of the image, as shown in Figure 9.8. Youmight need

to change either your foreground or background color to white. However, if

you already have white as your background color, great! Then you can

358 Chapter 9 n Skins

Figure 9.6
Rectangular selection.

Making a Soup Can Skin 359

Figure 9.7
Filled rectangle.

Figure 9.8
The white rectangle.

simply change the Fill Type for the Bucket Fill tool to BG color fill, and

you’re in business.

So now you have your basic red-and-white pattern on the sides of the can. If

you look at Figure 9.1 again, you’ll notice that the red area gradually blends

into the white area. There are several ways to do this. For example, you could

have used a gradient fill in the rectangles you created. But you’re going to

use another method, one that is more of a touch-up technique.

11. Use the Rect Select tool to make a selection that starts about halfway down

the upper red rectangle, all the way over on the left side of the red area; then

drag the selection tool down and to the right all the way to the right side and

about halfway down the lower red area. You need to ensure that the left and

right edges do not enclose the thin red line that you should have on both

ends of the white bar. You may need to try this a couple of times until you

get it right. Use Figure 9.9 as a guide.

12. Next, soften the transition between the red and the white. Choose Filters,

Blur, Gaussian Blur. You will get the Gaussian Blur dialog box, as shown in

Figure 9.10.

360 Chapter 9 n Skins

Figure 9.9
Selecting the mapped sides of the can.

13. There are two Blur Radius options: Horizontal and Vertical. To the right of

these options is a small icon of a chain. This links the two options together.

Click the chain to break the link.

14. Next, set the Horizontal setting for Blur Radius to 0 and the Vertical setting to

about 32.0. Fiddle with the values while watching the preview window until

you get a satisfactorily fuzzy edge between the red and white areas. The exact

amount will vary depending on the size of thewhite area and the relationship of

the selection rectangle to the white bar. When you are happy, click OK to close

the dialog box. You’ll see the edges between the red and the white go blurry.

15. You’ll want to add metal lips to the top and bottom of the can sides. Do this

by creating a thin light gray rectangle all the way across the top and another

at the bottom, as shown in Figure 9.11. The black arrows indicate the

location of the lip line. Use the same technique you’ve learned for making

the red and white rectangles.

16. Now you’ll want to create the surface texture for the ends, or lids, of the can.

This time, select the Ellipse Select tool.

Making a Soup Can Skin 361

Figure 9.10
Gaussian Blur dialog box.

362 Chapter 9 n Skins

Figure 9.11
Adding the metal lips.

Figure 9.12
Placing the Ellipse Select tool.

17. Place the tool’s cursor at the top left of the upper circle in the image, as

shown in Figure 9.12.

18. Drag the tool down and to the right until the selection circle is at least as big

as the circle that represents the top of the can. A smidgeon larger is okay, but

try to keep it close. Don’t worry about getting it exactly centered over the lid.

We’re going to fix that up in the next few steps.

19. Grab the Move tool from the Toolbox, and in its Affect setting in the

options, choose the Transform selection.

20. In the image document, click and drag the selection circle until it’s centered

over the upper lid, as shown in Figure 9.13.

Making a Soup Can Skin 363

Figure 9.13
Properly positioned selection circle.

Figure 9.14
Concentric crawling ants.

T i p

You can shrink or grow a selection that’s already been made by choosing Select, Shrink or Select,
Grow. In either case, you can set how many pixels more you want the selection to grow or shrink by.

21. Next, place the Ellipse Select tool over the very center of the lid. Hold down

the Control key, and drag down and to the right. You should see a circle

‘‘sprout’’ and grow out from the center. This is a subtraction selection. Grow

this inner selection circle until it is about 90 percent of the diameter of the

outer selection, as shown in Figure 9.14.

T i p

You see, the idea here is that first we select an elliptical area that’s pretty much a circle that
encompasses the lid, so everything inside the selection outline, is, well, selected. Next, we
deselect an area inside that, so we are left with what amounts to a skinny doughnut of selected
area.

22. If you haven’t done it recently, save your work as mycan.xcf at this

time. The selection circles will be saved along with layer data and

everything else.

23. Okay, now we’re going to do another gradient fill, but a slightly different one

than before. First, go to the color area and set the foreground color to be a

dark gray with RGB=73,73,73.

24. Next, choose the Blend tool, and make sure the Gradient is set to FG to BG

in the tool options. Set the Shape to be Conical(sym).

25. Click the Blend tool down at the center of the rim, and drag it down and to

the right until you get to the outer selection circle. Then release the mouse

button. You should end up with a gradient-filled ring like that shown in

Figure 9.15.

26. Next, choose Select, None from the image document window to discard the

old selection circles so you can make a new one.

364 Chapter 9 n Skins

Figure 9.15
Gradient-filled ring.

27. Choose the Ellipse Select tool, and create a selection circle that goes all the

way around the inner edge of the rim you just made. It’s okay if the selection

is just a wee bit on the large side. Remember that you can move the selection

circle using the Move tool, if the circle ends up offset from center—see steps

19 and 20 if you need a refresher.

28. Grab the Blend tool again. In its Tool Options, change the Shape setting to

Radial, and change the Repeat setting to Triangular wave.

29. Set the background color to a medium-light gray. Try with RGB =

(150,150,150).

30. Start at the center of the lid, and drag out to the edge with the Blend

tool. Figure 9.16 shows the sort of result you should see.

31. Now to make yet another selection circle. Choose the Ellipse Select tool, and

make another concentric selection circle about 80 percent out from the

center of the lid, as shown in Figure 9.17.

32. Set the foreground color to a medium-dark gray, somewhere around

RGB=100,100,100.

33. Next, choose Dialogs, Selection Editor. The Selection Editor dialog box will

appear. At the lower-right corner is a button called Stroke selection. Click

this button.

Making a Soup Can Skin 365

Figure 9.16
Radial gradient.

366 Chapter 9 n Skins

Figure 9.17
80 percent selection circle.

Figure 9.18
The lid after the last concentric ring.

34. When the Stroke Selection dialog box appears, click Stroke line to choose it.

Set the line width to 3.0. Make sure that Line style is set to Solid. Click the

Stroke button to commit the change.

35. Choose Select, Shrink. Set the shrink value to 8 pixels. Click OK.

36. Stroke this selection circle just like you did the last one in steps 33 and 34,

except this time set the line width to 1.0. Figure 9.18 shows what you should

now have for your lid. This is the last of the concentric rings.

37. Choose Select, None to get rid of the crawling ants, and then choose Image,

Flatten Image to squish all the layers into one layer.

38. Use your newly hard-earned selection skills to select the textured lid, and

make a copy that you then paste over the bottom lid.

39. Save your work, but leave the document open.

Making a Soup Can Skin 367

Adding Text

And now, for our final performance, we will add some text to the lid. The text will

curve to conform to the circular lid.

1. Choose the Text tool, and set the size setting in options to 10. Turn on

Anti-aliasing.

2. Click in your image document somewhere near the center of the top lid.

Type in some text, something like 16 fluid ounces.

3. Choose Filters, Distorts, Curve Bend. Click the Open button.

4. In the open dialog box, browse your way to \3D2E\RESOURCES\CH9, and

select the file curve_bend.points. Click Open. This is a bend file I made for

use with this exercise.

5. Make sure that Smoothing, Antialiasing, and Work on copy are all enabled

(checked).

6. Click OK.

7. Choose Dialogs, Layers.

8. Click the eye to the left of the 16 Fluid Ounces text layer, to hide this layer.

9. Click the empty location to the far left of the entry called curve_bend_

dummylayer_b. This layer will now be visible. Use the Move tool to adjust

the position of the text if needed. Figure 9.19 shows what you should have,

or something like it.

10. Voilà! You will have text that follows the curve of the ellipse around in an

arc.

11. Now add your main label text using the Text tool. You can type whatever

you want and position it wherever you want.

12. When you are finished, save your file one final time as \3D2E\

RESOURCES\CH9\mycan.xcf. This is your source file.

13. Now choose Image, Flatten Image.

14. Next, save your work as \3D2E\RESOURCES\CH9\mycan.jpg. Make

sure you’ve selected the JPEG type in the Save As dialog box when you

do this.

15. If the file already exists, go ahead and overwrite it.

Testing the Soup Can Skin

Congratulations! You’ve made your first skin! I suppose now you want to

see what it looks like all wrapped around a tin can and everything. Okay, so

do this:

1. Read the sidebar called ‘‘Torque Show Tool Pro (TSTP) Quick Start’’.

Run TSTP and create a Project Directory in TSTP that points to

\3D2E\RESOURCES.

2. Click on the Load DTS button at upper-left in the TSTP window, and then

locate mycan.dts in the CH9 folder.

368 Chapter 9 n Skins

Figure 9.19
The lid with curved text.

3. Presto! That’s your skin on that there soup can. Good job!

4. You can admire your creation in all its splendor by using the mouse to move

the can back and forth and rotate it about the various axes. See Table 9.1 for

the Show Tool mouse actions.

5. You can view my original soup can skin by loading the soupcan.dts

model.

T o r q u e S h ow Too l P r o (T S T P) Qu i c k S t a r t

Torque Show Tool Pro (TSTP) is an advanced version of the Show Tool that comes with the Torque
Demo. Dave Wyand, the gnome from Ajax, created TSTP in order to provide artists a more detailed
look at their models without the need to actually run their games (which can be a cumbersome
process at times). TSTP was created entirely using small engine changes and plenty of
TorqueScript code. TSTP is available for Windows and OSX, but only the Windows version will
be discussed here.

Installation

To install TSTP, browse your way to \3D2E\TOOLS\SHOWTOOLPRO and run the installer located
there, TorqueShowToolPro.exe. Once installed, you will have a 30-day fully functional trial license.
If you want to buy TSTP (and you should), you can find it on the GarageGames Web site in the
products area at http://www.garagegames.com/products/browse/development/.

Setup

TSTP allows you to set up multiple project directories and switch between them at any time. This
allows you to load in shapes from different games or to organize your shapes within the same
game in a logical manner.

For example, the standard Torque demo as used in this book has a file pathway of \3D2E\demo.
Using this for your project directory would provide access to all shapes for the demo game
directory and all of its sub-directories.

Making a Soup Can Skin 369

Table 9.1 Torque Show Tool Pro Mouse Actions

Action Description

Left-click-drag mouse Make camera orbit object horizontally and vertically.

Right-click-drag mouse Make camera slide horizontally and vertically.

Mouse Wheel Zoom in and out.

Ctrlþ Left-click-drag mouse Make camera orbit object horizontally and vertically (for one button mice).

Altþ Left-click-drag mouse Zoom in and out (for one button mice).

When TSTP is started for the first time, no project directories are defined. Before you can load any
files, you’ll need to create at least one project directory. To do this, click on the Project Directory
menu at the top left of the main window, and then click on [modify].

Choosing the [modify] option will open the MODIFY PROJECT DIRECTORIES window.

Click on the Add Directory button and a new project directory will be created. You can then either
type a directory path into the Path to Project Directory text box or you can click on the big black
arrow button. The arrow button will open a directory selection dialog from which you can select
the directory you want to use for your project.

You can type a name in the Name (Optional) text box that will be used in the Project Directory
pop-up menu instead of the file path.

Click on OK when you are done. The entry you just created will now appear in the Project
Directory menu, and all of the settings will be saved when you exit TSTP.

Loading a Model

Ensure that you have chosen a model using the Project Directory menu. Then click on the
Load DTS button. You will see a Load File window open up that lists all of the DTS models
contained in your project directory and its subdirectories. Double-click on a model entry to load
that model.

To load animation sequences, you first need to have a model loaded. Then you can click on the
Load DSQ button to locate an appropriate sequence file to load. Once a sequence has been
loaded, you need to select it from the Sequences pop-up located near the bottom of the window,
to the left of the animation timeline.

To make a sequence animate, click on the Play button (the right-pointing arrow) in the animation
control area to the bottom right of the window.

If you have predefined animation sequences linked to your model via a sequence linking file
(located in the same folder as your DTS model, and normally called player.cs, if your model is
player.dts, or bozo.cs if your model is called bozo.dts), then you can load both the model and
its sequence mapping file at the same time by clicking on Load DTS & CS. In this case,
providing everything went well, you should have all of the linked sequences listed in the
Sequences menu.

You can have multiple models (also known as shapes) loaded. The Currently Loaded Shape pop-up
in the upper-right corner lists all of the shapes you have loaded. You can choose which one you
are looking at by selecting it from this pop-up.

There is a manual in a file called TorqueShowToolProManual.pdf that you can use to learn TSTP in
greater detail.

In the \3D2E folder there are two shortcuts: Show Book Models and Show Demo Models. These
are shortcuts that fire up the original Torque Show Tool, which has been vastly superseded in all
ways and manners by Torque Show Tool Pro. You will never need to use them, but they are there,
just in case. Table 9.2 shows the original Show Tool key commands if you ever need to use the
Show Book Models or Show Demo Models shortcuts.

370 Chapter 9 n Skins

Making a Vehicle Skin
Okay, soup cans are cool and soup hits the spot, too. But now that lunch break is

over, let’s move on to something a bit more serious. Many people are going to

have vehicles in their games, and the Torque Engine does quite a nice job of

supporting vehicles. We’ll be making our own vehicles later, but because this

chapter is all about creating skins, let’s make a skin for some kind of vehicle.

For a bit of a tease, let’s take a look at a vehicle that is already included in the

Torque demo using Torque Show Tool Pro (TSTP).

1. Run TSTP and create a new Project Directory in TSTP that points to

\3D2E\demo\data.

2. Click on the Load DTS button at upper-left in the TSTP window, and then

locate buggy.dts in the demo\data\shapes\buggy folder.

3. Double-click on the buggy.dts entry.

4. Marvel at the sublime coolness of a dune buggy without wheels.

The Dune Buggy Diversion

Okay, okay. I knew you would want to do this, so I’ll show you how to test-drive

the dune buggy in-game, as long as you promise to come back here after you’ve

tired out your driving fingers. People tend not to learn quite as well when they

are pouting.

1. Browse to C:\3D2E, and click the tge.exe.

Making a Vehicle Skin 371

Table 9.2 Original Torque Show Tool Key Commands

Key Description

A rotate left

D rotate right

W bring closer

S move farther away

C rotate top backward

E rotate top forward

2. When the main menu appears, click the Example: Multiplayer Racing

button at the bottom of the menu screen.

3. In the Play Demo Game screen, make sure that the Create Server check box

is checked.

4. Click the right arrow at the bottom to launch the demo.

5. After the game loads, you should switch to Chase view by pressing the Tab

key—there’s more to see. See Table 9.3 for the keyboard controls.

The Runabout Skinning Procedure

Okay, now that the old adrenaline is pumping, let’s get back to making skins.

We’re going to create a skin for a less ambitious, but still pretty cool, vehicle—the

runabout. It’s a fictional creation of mine that’s a convergence of memories of

summers spent during childhood reading Doc Savage pulp stories and of a classic

1936 Auburn Boattail Speedster that I saw at a car show once as a teenager.

372 Chapter 9 n Skins

Table 9.3 Torque Racing Demo Controls

Key Description

mouse steer left or right

W accelerate

S brake

Tab toggle from first- to third-person viewpoint

Escape exit the game

1. Open \3D2E\RESOURCES\CH9\runabout.bmp in the Gimp. This file

contains the UV mapping template.

This time I’ve unwrapped the object differently. If you recall, the soup can

was completely unwrapped so that each individual face was lying flat. This

time I unwrapped the runabout by showing only the separate objects (except

the cab) from one particular view, the side or the top.

By doing this, I can treat each of these objects as symmetrical, with the

hidden side being simply a mirror image of the visible side. This is another

valid technique, but it does have some pitfalls, which we will encounter. The

advantage of using this approach is that it saves on image editing time,

because only half of the objects’ surfaces need to be given textures.

T i p

Don’t forget to periodically save your work as myauto.xcf, in case you screw up or something. I’m
just sayin’.

2. If you don’t have your Layers dialog box open, open it now by choosing

Dialogs, Layers.

3. Create a new layer by clicking the New layer button at the far left of the

bottom row of buttons in the Layers dialog box. You can name the new

layer if you like, but it’s not really necessary. Make sure that your new layer

is as big as the image (512 by 512) and that the Layer Fill Type is set to

Transparency. Click OK.

4. Make the new layer active by clicking it in the Layers dialog box and

highlighting it. Also, ensure that the layer is visible by checking for the eye

icon on the left side of the new layer’s entry in the list.

5. Select the Paths tool, as shown in Figure 9.20. Ensure that the Polygonal

setting is checked and that the Design radio button in the Edit Mode settings

is selected.

6. Using the object with the dashed lines in Figure 9.21 as a guide, trace a shape

around the triangles that cover the roof and the C-pillar of the cabin of the

car. You click at a starting location and then click again at each place around

the cabin where the object’s line will change direction. Each click defines an

Making a Vehicle Skin 373

Figure 9.20
The Paths tool.

anchor of the path object. In Figure 9.21 the anchors are the 13 dark blobs

visible at various points along the dashed lines. If you think that the shape

looks like Batman’s head, you wouldn’t be the only one . . .

7. When you’ve made the last anchor of your object, click the Create selection

from path button in the Paths tool options. A selection area is now created

that follows the shape of the path. The original path is still preserved in the

path list but is no longer immediately visible.

8. If for some reason later on you become severely discontented with the shape

you’ve made, and you want to change it, you can edit your original path. To

do this, start by choosing Dialogs, Paths.

9. Locate and select the path you want to edit in the Paths dialog box. You can

usually tell which is which by the shape of the path. You’ll need to change the

Edit Mode to Edit, and uncheck Polygonal, if it is still checked.

10. Grab the Paths tool, and move your cursor over a line where the path would

be. You will see the cursor change to a hand with a pointing finger. When

374 Chapter 9 n Skins

Figure 9.21
Tracing the cab roof.

you are given the finger, click the mouse, and the path will appear, with its

anchors (see Figure 9.22).

11. Edit the path as you see fit by moving the anchors around. When you are

again satisfied with your new path, click the Create selection from path

button in the Paths tool options. The previous selection will be replaced by

the new selection.

12. Once you’ve finished, set the foreground color to a color of your choice

(bright blue would be nice), select the Bucket Fill tool, andmake sure the Fill

Type is set to FG Color fill.

13. Set the Fill Bucket option Affected Area to Fill whole selection, and then fill

your boots . . . I mean, fill your selection!

14. After you’ve finished with the cabin roof, choose Select, None to deselect the

area you just painted.

15. Create another new layer the same way you did in steps 3 and 4.

16. Next, choose the Path tool, and draw an outline around the entire cabin

template, following the outside edges. This path will be drawn on the new

layer. When you’re finished, click the Create selection from path button in

Making a Vehicle Skin 375

Figure 9.22
Arrows indicate the editable anchors.

the Paths tool options. Note: you’ll need to restore your Edit Mode to

Design, and check Polygonal, if it is still unchecked.

T i p

When you’ve finished using a path, you might want to make it invisible so that it won’t clutter up
the image. Just click the eye icon on the left side of the path’s entry in the Paths dialog box.

17. Choose the Fill Bucket again, and set the foreground fill to a darker color

than the one you chose for the cabin roof (dark green-gray would be

helpful). The newly filled area should now obscure both the earlier roof area

plus the rest of the cabin template. You can verify that you’ve drawn the path

and selection on the proper layer by just making the top layer invisible

temporarily (click its eye). The filled area should disappear, and the roof fill

should appear. Click the top layer’s eye to bring it back again.

18. Now we want to rearrange the layers. In the Layer dialog box, make sure the

bottom layer is highlighted. Then locate the down-arrow button at

the bottom of the dialog box, and click it. The layer will be pushed below

the other layer. Now the roof is visible on top of the rest of the cabin

(see Figure 9.23).

19. Alrighty then! Create another new layer.

20. Now choose the Paintbrush tool, making sure that the Use color from

gradient Option setting is not checked.

376 Chapter 9 n Skins

Figure 9.23
Before using the down-arrow button and after using it.

21. Set your foreground color to be the same blue (or whatever) color you used

for the cabin roof.

22. Use the Paintbrush tool to cover over the outline of the car’s body, as shown

in Figure 9.24. You probably want a brush size of 19 or so. Remember to

make sure that the new layer you created is selected in the Layers dialog box;

otherwise, your painting will be applied to the wrong layer.

23. Next, select the Air Brush tool, setting the brush size to 11 and the opacity to

50 percent and checking the Fade-out check box.

24. Now change to a light blue foreground color.

25. Spray on the accent color, as shown in Figure 9.25. You can use the Smudge

tool to smear the brushstrokes more and to generally touch up and tweak

the accents.

26. Next, we’ll apply a fancy racing stripe. First, select the Ink tool, set its size to

4.0, and select the diamond shape for the Type setting. We aren’t going to

draw with the pen directly, but we need it to be set correctly for a later step.

Making a Vehicle Skin 377

Figure 9.24
Spray-painting the body base color.

Figure 9.25
Spray-painting the accent color.

27. Choose the Paths tool, and draw a path similar to the one I made in

Figure 9.26.

This can be a bit tricky. Instead of clicking each point of the line, click and

drag at each point. When you drag the cursor after clicking, you will see a

pair of handles sprout from the anchor where you clicked. These handles are

used to adjust the curviness of the line. When you drag, try moving the

cursor around the anchor, and notice how the line already has drawn

changes. When you want to make a hard left turn at a spot, click and drag

the cursor straight ahead from the anchor for just a bit, and then move the

drag leftward into the direction you want the line to go. It takes a bit of

practice to get the feel for this method, but it’s quite intuitive once you get

the hang of it. Note: if the Polygonal checkbox in the Edit Mode is checked,

you won’t be able to get the handles to appear, so make sure it is unchecked

when you start grabbing at handles.

28. When you have your racing stripe drawn, click the Stroke path button in the

Paths tool options. You will get the Stroke Path dialog box.

29. Click the Stroke with paint tool radio button.

30. Open the pop-up list by clicking the triangular button to the right of the

Paint tool field. Scroll through the list until you find the Ink tool, and then

select it.

378 Chapter 9 n Skins

Figure 9.26
Adding the racing stripe.

31. Click the Stroke button. You will end up with a line drawn along your path,

according to the Ink tool settings.

So, there you have it—the car’s body paint job is done. Notice that we used a

different approach than when we did with the cab. It just goes to show that

there’s more than one way to skin a cat. . .er, car! I meant car! Honest.

Well, I guess it’s time to get back to work. The last bits left are the four

wheel-well, fender thingies. We’ll do these in a fashion similar to the way we

did the cab.

32. Create another new layer. Use this layer for all four fender thingies.

T i p

You might notice that after creating and stroking a path, you will have to click another tool to
deselect the path. Otherwise, when you try creating a new path, the first point becomes
connected to the last point of the previous path. You won’t see this problem when you create a
new path in a new layer. You may also choose to Select, None but you will notice that after
stroking a path, Select, None is not available.

33. Using the Path tool (and Figure 9.27 as a reference), draw an outline of the

upper part of the upper-left fender thingy, and fill it with the favorite color

you’ve been using (or bright blue, nudge, nudge), employing the technique

you used for the cabin in steps 5 to 14. Make a different path for the lower

fender skirts, and paint them with the same color you used for the racing

stripe. Again, look at Figure 9.27 to see where the fender skirts would be.

Making a Vehicle Skin 379

Figure 9.27
The fender thingies.

34. Repeat step 25 for the other three fender thingies.

35. When you are finished, save your file one final time as \3D2E\

RESOURCES\CH9\myauto.xcf. This is your source file.

36. Now flatten the image, and then save your skin as \3D2E\

RESOURCES\CH9\myauto.jpg.

Once again, if you get an alert saying that the software will have to save the

file as a merged image and asking if you want to continue, choose Yes.

Testing the Runabout Skin

Now it’s time to take our little creation out for a spin around the block, so to

speak. We’ll use TSTP just like we did with the soup can.

1. Run TSTP and choose the Project Directory you created earlier in TSTP that

points to \3D2E\RESOURCES.

2. Click on the Load DTS button at upper-left in the TSTP window, and then

locate mycan.dts in the CH9 folder.

3. Use the mouse to move the car back and forth and to rotate it about the

various axes. Refer back to Table 9.1 for the Show Tool mouse actions.

4. You can view my original runabout skin by loading the runabout.dts model.

Unfortunately, we’ll have to wait until the later modeling chapters before we can

take the runabout out for a real test drive. That’s okay, though—we’ve got plenty

to do in the meantime!

Making a Player Skin
Now for the Big One—the player skin, or more accurately, the character skin,

because the following section could apply equally as well to computer-controlled

characters sometimes called AI (Artificial Intelligence) players or NPCs (Non-

player Characters).

The character we’ll use as the basis for this section is one affectionately called the

Standard Male Character. He was created to be the base model for derivatives

to be used in the Return to Tubettiworld (RTTW) game that is currently in

development at Tubetti Enterprises.

380 Chapter 9 n Skins

Figure 9.28 shows an early prototype of the Standard Male Character striking a

heroic pose in the wilderness, confronting his, um, well. . .some trial or tribu-

lation, I guess. This character began life as a concept sketch I did while nestled in

front of a roaring fire on vacation in the Laurentians. My wife told me what the

character should look like, and I sketched him about a hundred times until she

was happy with it (see Figure 9.29). My wife says he looks kinda like me, on a

good day—bald spot, blond mustache, and all!

Making a Player Skin 381

Figure 9.28
The RTTW Standard Male Character model rendered by the Torque Engine.

Figure 9.29
Concept artwork for the Standard Male Character.

I sent the concept artwork to a talented youngman who goes by the name Psionic

(http://www.psionic3d.co.uk) on the Internet, and he created the original model

prototypes for me. The model came out pretty well, but as I said, the character

in Figure 9.28 was an early prototype. The main issue was the skin color—it

was too pasty. But that was soon fixed. We have since used that model to

generate variations in gender, build, ethnicity, and animation sets, mostly by

modifying skins, but with some model changes as well—especially for the female

versions.

The point here is that for all of your serious artwork, models, skins, and so on, it’s

a good idea to create concepts beforehand—on paper or digitally, it doesn’t

matter. This way you have a tool to communicate the idea that you have in your

head. It may take weeks or months to get a model completed, and it can happen

that you stray unacceptably far from your original concept. It’s especially

important to have concept artwork if you want to sell a game idea to build a team

and recruit talent to help you. If they can go away with a few pictures in their

minds of what your dream is, it will help you a great deal.

The Head and Neck

Now on with the show. Take a look at Figure 9.30. This is the unwrapped UV

template for the Standard Male. I’ve labeled the various parts in the picture to

help identify what goes where. The file \3D2E\RESOURCES\CH9\player.bmp

has the proper template in it (though without the labels) for you to work with.

Let’s get started.

1. Open the template file (\3D2E\RESOURCES\CH9\player.bmp), save it

somewhere as an XCF file with a different name, and work with that.

2. Create a new layer, and name it ‘‘Skin’’. You are going to create a lot of layers

in this procedure—make sure you label each one as I indicate.

3. Using whichever technique you like best, cover the entire face and neck

part of the template with a flesh color, as in Figure 9.31. (I use the

RGB values shown in Table 9.4 for a basic flesh color. Of course, you are

free to twiddle the numbers to get something you like.) Make sure you

apply your color to the skin layer and not to the background layer that

holds your template.

382 Chapter 9 n Skins

T i p

In Figure 9.31 you can see the lines of the UV template through the skin layer’s flesh color. Do this
by reducing the opacity of the skin layer to about 95 percent or so, just enough for the lines to
barely show. In the Layers dialog box, slide the Opacity slider left until it gets to the value you
want. The lower you set the opacity, the more you can see of the layer beneath it---however, the
less your skin layer’s colors will look like their actual settings.

Making a Player Skin 383

Figure 9.30
UV template for the Standard Male.

Figure 9.31
Basic flesh tone applied to the skin layer.

4. Now comes a bit of magic. You need to get some basic skin shading done

next. There is a highlight and shadow image template that I like to use to get

the basic head shades in place. Figure 9.32 shows the template, and you have

a copy of it (\3D2E\RESOURCES\CH9\hilite.png) that you can use for your

own purposes. We’re going to open it and add it as a layer to our image

document in one swell foop. Choose File, Open as Layer. Browse your way

to \3D2E\RESOURCES\CH9\hilite.png, and click the Open button.

5. Lower the opacity of the new layer to about 80 percent.

384 Chapter 9 n Skins

Figure 9.32
Hilite template.

Table 9.4 Flesh-Tone RGB Settings

Color Component Value

basic red 251

green 178

blue 129

shadow red 183

green 133

blue 83

highlight red 247

green 187

blue 107

6. Make the skin layer invisible.

7. Drag the image around until you get the best fit over the UV template of the

head and neck.

You should get an image that looks like Figure 9.33.

Being the astute observer that I know you are, you’ve no doubt noticed that

although the hilite template fits fairly well, it’s not exactly right. For one

thing, the eyes are wrong—the hilite of the eye area needs to be slanted

to match the contours of the UV triangles. We’re going to fix that right

now.

8. Make sure that the new layer with the hilites on it is active by making sure

that its entry in the Layers dialog box is highlighted. Then choose the Lasso

Selection tool.

9. You should probably zoom in on the area in question to 200 percent or

better. Select an area around the right that encompasses the eye, the brow

above, and a small amount of the upper cheek below, but no part of the

bridge of the nose.

10. Choose Tools, Transform Tools, Rotate, and the Rotate dialog box will

appear. Click the cursor in the selection area, and nudge it in the direction

you want to rotate it to match the template.

Making a Player Skin 385

Figure 9.33
Hilite template applied over the head and neck UV template.

T i p

The hilite.png template was created by taking several full-face photos and drawings and then
stretching the contrast of each quite a bit in grayscale. The images were then all overlain and
averaged to give a resulting template. That result was then tested in a few models and manually
tweaked a few times. The originals were chosen to be all of roughly the same face shape and
type. Different templates for different ethnicities and face shapes can be made this way.

11. Choose Select, None.

T i p

If you have trouble choosing Select, None because it doesn’t appear in the menu, then try making
sure that the Rotate dialog box is visible. Then try choosing Select, None again.

12. Repeat this process for the other eye.

13. Lower the opacity for the hilite layer to about 20 percent, and raise the

opacity of the skin layer to 100 percent.

14. Save your document (just because).

Now you have something like Figure 9.34, with the rough shading and coloring

of flesh tones showing the major features of the face. At this point it becomes a

case of filling in the details. You can go ahead and do it however you like. Zoom

in close, and use the Air Brush and Paintbrush tools. Add lip color, eyebrows, eye

386 Chapter 9 n Skins

Figure 9.34
Hilite template applied over the skin layer.

details, and ears. You might find it hard to put actual iris eye color in, but give it

a try.

You can add eye detail by creating ellipse selections on a scratch layer, sizing and

rotating them correctly, and placing them over the eye areas. When you create

eyes, remember that the colored area in the center, the combined pupil and iris

regions, usually has a white or otherwise light spot offset a bit to one side and a bit

above center, as shown in Figure 9.35.

Also remember that certain areas of the face are usually lighter in tone than

others, like the upper part of the lower lip, the upper eyelid, the nostrils, and

so on.

You can make a good five-day stubble by using the Paintbrush with the Brush

setting at Galaxy (AP). You need to scroll pretty far down in the list of brushes

to find it. Dab the brush in the areas where it is needed. Make a moustache by

applying the stubble brush over and over to the upper lip. Encourage yourself to

experiment!

Eventually you will end up with something like Figure 9.36.

Making a Player Skin 387

Figure 9.35
An eye.

Figure 9.36
Finished face and neck.

Hair and Hands

Next we’ll tackle the hair and hands of the Standard Male. We’ll do these two

together because they both use skin (flesh) tones (the guy is going to have a bald

spot). Once these are done, we are finished with the skin part of the skin. Or

something like that.

Both of the next subsections will be using the skin layer in addition to other

layers.

Hair Textures

Hair has a pattern, though not a specific pattern. There is often quite a bit of

randomness, but nonetheless there is a grain, if you will, like the grain in a

wooden plank or the lay of a lawn. There’s a clue there!

Try this:

1. Create a new layer, and call it Hair1.

2. Locate the hair portion of the UV template in your working file, player.xcf.

3. Draw a pathed selection that tightly encompasses the hair, and set the fill to

match the color of the hair you used in the bits that show in the head area as

in Figure 9.37. Use the hair RGB color values listed in Table 9.5.

4. Create another layer, and call it Hair2.

5. Select the path that you used on the Hair1 layer, use it now to create a new

selection on the Hair2 layer, and then hide the Hair1 layer.

388 Chapter 9 n Skins

Figure 9.37
Filled hair template area.

6. Fill the new selection with a wood pattern (Wood#2 is good) using the

Bucket Fill tool.

7. Set the Hair2 Opacity slider to about 30 percent.

8. Choose the Brush Tool, and use the Galaxy (AP) brush setting.

9. Apply the brush to the Hair2 layer until you get something that resembles

Figure 9.38. You can also use the Smudge tool with the brush size set to 1 to

enhance the strand-like nature of hair.

10. Make the Hair1 layer visible again.

11. Now for the bald spot. If you look at how the triangles in the UV template

are arranged, you can see that the upper-left corner of the hair area and the

upper-right corner of the hair area meet when they are wrapped back onto

the model. The place where they meet is the crown of the head, which just so

happens to be one of the two places where classic male pattern baldness

begins!

Choose the Air Brush tool, and set its size to about 19 and the foreground

color to the highlight flesh tone found in Table 9.4.

Making a Player Skin 389

Table 9.5 Hair Color RGB Settings

Color Component Value

red 102

green 65

blue 13

Figure 9.38
Textured hair.

12. In each of the corners, spray on some bald skin, sparser toward the inner

areas and denser as you move toward the corners, until you have a sub-

stantial patch of bare skin and a surrounding area of varying thinness

(see Figure 9.39). Don’t worry about overspraying the edges, those areas

outside are not going to be rendered.

The Hands

The hands need to be skinned on three sides. You should use the basic flesh tone,

with some shadow color for areas between the fingers.

1. Once again using the Paths tool draw a path that surrounds the area that

constitutes the hand UV template (see Figure 9.40).

2. Set the fill color of the object you just made to the basic flesh tone.

3. Start a new layer.

4. Set the Ink tool to Adjustment Size setting of 2.0, and set the foreground

color to black.

5. With the Paths tool draw the lines that separate the fingers. Use Figure 9.41

as a guide.

6. Using the Paintbrush tool, make a fingernail. Make sure the line color is

black, and use a fairly bright pink for the actual nail color.

7. Place your lines and fingernails appropriately (as in Figure 9.41), and fiddle

with the shapes until you are happy.

390 Chapter 9 n Skins

Figure 9.39
The font of wisdom under construction---the bald spot.

8. Set the opacity of the layer to about 10 percent or so. That bright pink

fingernail color is not so bright anymore.

9. Merge the two layers you just created into the skin layer.

10. Using the Dodge/Burn tool, add shading and irregularity to the lines as in

Figure 9.42. Make sure to use a really small brush setting, like 1 or 2.

11. Weaken some of the darker lines. Add lighter highlights around the main

knuckles and darker wrinkles around the other knuckles.

12. Eventually you will arrive at something that works for you, similar to

Figure 9.43.

Making a Player Skin 391

Figure 9.40
Hand area.

The Clothes

We’ll spend most of our remaining time in this chapter working on the jacket.

You’ve already learned and applied almost all the new skills required to do the

clothing.

392 Chapter 9 n Skins

Figure 9.41
Finger lines and fingernails.

Figure 9.42
Adding hand details.

The Jacket

It’s a leather jacket. Quite a nice one, too. Wouldn’t mind one like that myself!

The color is a basic brown, with the usual darker shadows and lighter highlights,

just like with the flesh tones. Things to note are that the jacket ‘‘blouses’’ at the

waist and at the cuffs. This is a wrinkling effect that occurs as the material is

gathered in for the seam work in those areas.

1. Start off by drawing pathed selections around the back, the front, the waist,

the cuffs, the collar, and the sleeves in a fashion similar to what we’ve done

in the past (see Figure 9.44). Make sure you do this on a new layer named

‘‘Jacket’’.

2. Set the fill color to the basic brown, using the values shown in Table 9.6.

3. Use the Bucket Fill tool to fill the selection with the basic brown.

Making a Player Skin 393

Figure 9.43
The finished hands.

4. Choose the Paintbrush tool, and select animated Confetti for the Brush type.

5. Set a light brown color for the foreground.

6. Paint the leather areas of the jacket with short sharp strokes—just enough to

get the stippled look to appear. Do this for all the leather areas: back, front,

collar, and sleeves. Figure 9.45 gives an idea of what I’ve done: the back

(on the left) has the stippled look, while the visible part of the front (on the

right) does not.

7. Use the Dodge/Burn brush to highlight the contours of the gathers at the

bottom of the front of the jacket.

8. Use the Smudge tool and the other touch-up brushes to tweak the contours

to your liking (for example, as in Figure 9.46).

394 Chapter 9 n Skins

Figure 9.44
The jacket pieces.

Table 9.6 Jacket Color RGB Settings

Color Component Value

red 140

green 68

blue 62

9. You can create the zipper and the zipper flap by using the Ink tool to draw a

line from the neck to the bottom. Make one line with a width of about 1.0

and the rest at a size of 3.0.

10. Touch up the zipper area with stippling, and make other tweaks to get it to

coordinate with the other areas of the jacket.

11. You can do all the other areas of the jacket in the sameway as shown in steps 4

to 10.

The Trousers

The trousers can be done using exactly the same techniques as used for the jacket.

You just need to use different colors and perhaps a different texture, airbrush

density, or step value. By now, you should be pretty handy with the Toolbox in

Making a Player Skin 395

Figure 9.45
That leathery look.

Figure 9.46
Starting the gathers.

the Gimp, so I’ll leave you to do the trousers on your own. Don’t forget to make a

belt—it goes at the bottom of the trouser area in the UV template.

The Boots

The final area where you’ll want to apply texture is the boot area. Again, you’ve

practiced all the techniques required to make the boots as well. There is one thing

I want to show you, though, that will help, and that is the built-in textures in

some of the tools.

Select the Bucket Fill, and then click the Pattern fill radio button. In the Pattern

fill list there is a Leather pattern that would be suitable for the leather portions of

a boot; there are many other textures that would be suitable for different parts of

the boot.

When you have finished with the boots, make sure you save your work as

player.xcf.

Then flatten your image and save another version as \3D2E\RESOURCES\CH9\

player.jpg.

Figure 9.47 shows the complete skin for the Standard Male.

396 Chapter 9 n Skins

Figure 9.47
Standard Male skin.

Trying It on for Size

As you learned earlier in the chapter, you can use the Torque Show Tool Pro

program and load the player.dts model. You will be able to view the Standard

Male Character with your new skin on it. You’ll probably see areas that need

fixing up, so go ahead and do just that.

Moving Right Along
In this chapter you learned how UV unwrapping relates to the texture files

known as skins. And you learned how to apply that understanding to images for

game objects ranging from the simple (a soup can) to the complex (a human

character).

I hope you also take away from the chapter the idea that hand-drawn concept

artwork is a useful tool. Draw everything in sketch form before you start working

on your models. It’s a great help.

Finally, you can see that a fully featured image processing tool like the Gimp has

quite a few features to ease the effort of creating images for skins. We’ve only

scratched the surface of what the program can do. Don’t be shy about installing

and using the Gimp’s built-in Help utility; it’s included in the TOOLS folder on

your CD. It’s well done and chockablock-full of information.

You also learned how to use Torque Show Tool Pro to load and examine your

models without needing to run your game.

If you want to make great skins, you are going to need to practice, practice, and

practice some more. Here are some of the many ways to do this:

n Create your own models and make the skins.

n Make skins for other people’s models.

n Make skins for other people for popular games like Half-Life and Tribes.

n Make monster skins, policeman skins, airplane skins, and light pole skins.

n Make a set of stock skins.

n Make skin templates that you can use to make the skinning task easier.

n Make reusable, tileable patterns that you can install as custom patterns.

Moving Right Along 397

But most of all, get down and do it!

In the next chapter we will continue with the visual aspects of developing our

game, but this time we will be looking at how to create GUI elements by using

TorqueScript to insert images and controls.

398 Chapter 9 n Skins

Creating GUI
Elements

As you’ve seen by now, there is more to a 3D game than just the imaginary world

into which the player plunks his avatar. There is the real need to provide the

player with some method to make selections and otherwise control the game

activities. Generally, we provide a Graphical User Interface (GUI) to the player to

interact with the program. The menu we employed at the start-up of the

program, where the player clicks buttons to launch the game, change the setup,

or quit; the dialog box that shows the client’s loading progress; the dialog box

that asks if the player really wants to quit—these screens are all examples of GUIs.

If you take a look at Figure 10.1, you can see a sample of the variety of elements

found within these interface screens. This example shows the various controls of

the three tab panes of the Options dialog box in the Torque demo.

Some of the elements are things we can interact with:

n push buttons

n radio buttons

n edit boxes

n check boxes

n menus

n sliders

399

chapter 10

Some of the elements are things we can just look at:

n frames

n labels

n backgrounds

n text boxes

Also, during the course of discussions about graphical user interfaces, you may

find the terms GUI, window, interface, and screen used interchangeably. I’ll stick

to the words interface and screen as much as possible, although contextually it

might make more sense to use GUI or window from time to time. GUI is best

used to describe the entire game interface with the player as a whole.Window is

a term that most people tend to associate with the operating system of their

computer.

400 Chapter 10 n Creating GUI Elements

Figure 10.1
Common graphical user interface elements.

The names of GUI items that are available by default with Torque don’t differ-

entiate between whether they are interactive or noninteractive GUI elements.

If you are familiar with X-Windows or Motif, you will probably have encoun-

tered the term widgets. If so, your definition of widgets may be a fair bit broader

than the one I am about to use here. In our situation, widgets are simply visual

portions of a displayed GUI control. They convey information or provide an

aesthetic appearance and offer access to defined subcontrol elements.

For example, Figure 10.2 portrays a scroll bar. Within the scroll bar are the

thumb, arrow, and barwidgets. These aren’t controls in their own right but rather

are necessary, specialized components of the control to which they belong.

It is possible for a control to use another control as a widget. In fact, every control

in a screen can be considered a widget within the control that defines the screen.

This will become clearer later on. I will only use the term widget to refer to a

specialized component of a control that is not itself a control.

Worth noting is the fact that you can create your own GUI elements using

TorqueScript if the ones that are available by default don’t suit your needs.

Controls
The name says it all—controls are graphical items provided to the program user

to control what the program will do. In Torque interactive controls are used by

clicking them or click-dragging the mouse across them. Some controls, like edit

boxes, also require you to type in some text from the keyboard. Some of the

controls have built-in labels that identify their purpose, and some will require

you to create an accompanying noninteractive control to provide a label. Non-

interactive controls, as the name implies, are used only to display information and

not to capture user input.

Torque provides a number of default controls right out of the box; the most

commonly used ones are listed next. You will have encountered a few of these

controls in earlier chapters, and we will discuss several more of them in this

Controls 401

Figure 10.2
Scroll bar widgets.

chapter. You can use them as is, you can modify them by adjusting the control’s

profile, or you can use them as the basis for defining new controls.

Figure 10.3 shows a screen used to select missions to play. There is a list of

available missions on the client, some buttons to run the mission or go back to

the main menu, and a check box to indicate whether you want to host this

mission for other players. Note, too, that there is a background, which is the same

as the background used for our Emaga game program’s start-up menu.

What we’ll do next is examine each of the screen’s GUI elements in detail.

GuiChunkedBitmapCtrl

The GuiChunkedBitmapCtrl class is usually used for the large backgrounds of

interfaces, like menu screens. Figure 10.4 shows such a background. The name

derives from the concept of breaking up an image into a collection of smaller

ones (chunked bitmaps) in order to improve display performance.

Here is an example of a GuiChunkedBitmapCtrl definition:

new GuiChunkedBitmapCtrl(MenuScreen) {
profile = "GuiContentProfile";
horizSizing = "width";
vertSizing = "height";
position = "0 0";

402 Chapter 10 n Creating GUI Elements

GuiArrayCtrl GuiControl GuiPlayerView
GuiAviBitmapCtrl GuiControlListPopUp GuiPopUpBackgroundCtrl
GuiBackgroundCtrl GuiCrossHairHud GuiPopUpMenuCtrl
GuiBitmapBorderCtrl GuiEditCtrl GuiPopUpTextListCtrl
GuiBitmapButtonCtrl GuiFadeinBitmapCtrl GuiProgressCtrl
GuiBitmapButtonTextCtrl GuiFilterCtrl GuiRadioCtrl
GuiBitmapCtrl GuiFrameSetCtrl GuiScrollCtrl
GuiBorderButtonCtrl GuiHealthBarHud GuiShapeNameHud
GuiBubbleTextCtrl GuiInputCtrl GuiSliderCtrl
GuiButtonBaseCtrl GuiInspector GuiSpeedometerHud
GuiButtonCtrl GuiMenuBackgroundCtrl GuiTerrPreviewCtrl
GuiCanvas GuiMenuBar GuiTextCtrl
GuiCheckBoxCtrl GuiMenuTextListCtrl GuiTextEditCtrl
GuiChunkedBitmapCtrl GuiMessageVectorCtrl GuiTextEditSliderCtrl
GuiClockHud GuiMLTextCtrl GuiTextListCtrl
GuiConsole GuiMLTextEditCtrl GuiTreeViewCtrl
GuiConsoleEditCtrl GuiMouseEventCtrl GuiWindowCtrl
GuiConsoleTextCtrl GuiNoMouseCtrl

Controls 403

Figure 10.3
Start mission interface screen.

Figure 10.4
GuiChunkedBitmapCtrl background sample.

extent = "640 480";
minExtent = "8 8";
visible = "1";
bitmap = "./interfaces/emaga_background";
// insert other controls here

};

The first thing to note about this definition is the line // insert other controls

here. Typically, a GuiChunkedBitmapCtrl control would contain other controls,

functioning as a sort of supercontainer. All other controls in a given screen using

this control would be children, or subelements, of this control. This line is a

comment, so in and of itself, it has no effect on the control’s definition. I include

it here to indicate where you would start nesting other controls.

Note the extent property, which specifies a width of 640 and a height of 480.

These are ‘‘virtual pixels’’ in a way. Any subelements you insert in this control will

have a maximum area of 640� 480 to work with for positioning and sizing. These

virtual pixels are scaled in size according to the actual canvas size, which you can

change by setting the value of the global variable $pref::Video::windowedRes

and then calling CreateCanvas or, if you already have a canvas, by calling

Canvas.Repaint;—we used CreateCanvas in Chapter 7.

The minExtent property specifies the smallest size that you will allow this control

to be shrunk down to when using the Torque built-in GUI Editor. We will use

that editor later in this chapter.

GuiControl

The GuiControl class, as shown in Figure 10.5, is a sort of generic control

container. It’s often used as a tablike container, or as what other systems often

404 Chapter 10 n Creating GUI Elements

Figure 10.5
GuiControl sample.

call a frame. With it, you can gather together a collection of other controls and

then manipulate them as a group.

Here is an example of a GuiControl definition:

new GuiControl(InfoTab) {
profile = "GuiDefaultProfile";
horizSizing = "width";
vertSizing = "height";
position = "0 0";
extent = "640 480";
minExtent = "8 8";
visible = "1";

};

Probably the property you will be most interested in is the visible property. You

will probably want to programmatically make the control visible or invisible

based on the contents (the other controls) you place within the control. You can

do that by adding either of the following statements to your scripts in a place

suitable to your game design:

InfoTab.visible = true;
InfoTab.visible = false;

Note that true is the same as 1 or ‘‘1’’ and false is the same as 0 or ‘‘0’’.

GuiTextCtrl

The GuiTextCtrl, as shown in Figure 10.6, is a straightforward, commonly used

control. You can use it to display any text you want. You can put it on an

interface with no text and then fill in the text as the game progresses.

Here is an example of a GuiTextCtrl definition:

new GuiTextCtrl(PlayerNameLabel) {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";

Controls 405

Figure 10.6
GuiTextCtrl sample.

position = "183 5";
extent = "63 18";
minExtent = "8 8";
visible = "1";
text = "Player Name:";
maxLength = "255";

};

You would specify the text font and other characteristics with your choice of

profile. You can change the contents quite easily in this example by adding the

following to your script in an appropriate location, dictated by your design:

PlayerNameLabel.text = "Some Other Text";

T i p

The maxLength property allows you to limit the number of characters that will be stored with
the control. Specifying fewer characters saves memory.

GuiButtonCtrl

The GuiButtonCtrl, as shown in Figure 10.7, is another clickable control class.

Unlike GuiCheckBoxCtrl or GuiRadioCtrl, this class does not retain any state. Its

use is normally as a command interface control, where the user clicks it with the

expectation that some action will be immediately invoked.

Here is an example of a GuiButtonCtrl definition:

new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "16 253";
extent = "127 23";
minExtent = "8 8";
visible = "1";
command = "Canvas.getContent().Close();";
text = "Close";

406 Chapter 10 n Creating GUI Elements

Figure 10.7
GuiButtonCtrl sample.

groupNum = "-1";
buttonType = "PushButton";

};

The most significant property is the command property. It contains a script

statement to be executed when the button is pressed. This example will close the

interface screen being shown in the canvas.

Another feature is the buttonType property. This can be one of the following:

n PushButton

n ToggleButton

n RadioButton

The property groupNum is used when the buttonType is specified to be Radio-

Button. Radio buttons in an interface screen that have the same groupNum value

are used in an exclusive manner. Only the most recently pressed radio button will

be set to the checked value (true); all others in the group will be unchecked.

Otherwise, the radio button type works the same as the GuiCheckBoxCtrl class,

described in the next section.

This control is also used as a base for deriving the three button classes shown

previously. You would probably be better off to use the specialized classes

GuiCheckBoxCtrl and GuiRadioCtrl for types ToggleButton and RadioButton,

rather than this control, because they have additional properties.

So the upshot is, if you use this control, it will probably be as a PushButton.

GuiCheckBoxCtrl

The GuiCheckBoxCtrl, as shown in Figure 10.8, is a specialized derivation of the

GuiButtonCtrl that saves its current state value. It’s analogous to a light switch

or, more properly, a locking push button. If the box is empty when you click the

control, the box will then display a check box. If it is checked, it will clear the

check mark out of the box when you click the control.

Controls 407

Figure 10.8
GuiCheckBoxCtrl sample.

Here is an example of a GuiCheckBoxCtrl definition:

new GuiCheckBoxCtrl(IsMultiplayer) {
profile = "GuiCheckBoxProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "155 272";
extent = "147 23";
minExtent = "8 8";
visible = "1";
variable = "Pref::HostMultiPlayer";
text = "Host Mission";
maxLength = "255";

};

If you specify the variable property, then the value of the specified variable will

be set to whatever the current state of the control is after you’ve clicked it. When

the control is first displayed, it will set its state according to the value in the

specified variable. You need to make sure that the variable you use contains

appropriate data.

You can also specify the text label that will be displayed next to the check box

using the text property.

Note that the GuiRadioCtrl control functions much like this control, except that

it automatically enforces the principle that only one button in the same group

will be checked.

GuiScrollCtrl

The GuiScrollCtrl class, as shown in Figure 10.9, is used for those famous

scrolling lists that everyone likes. Okay, so not everyone may like them, but

everyone has used them.

408 Chapter 10 n Creating GUI Elements

Figure 10.9
GuiScrollCtrl sample.

Here is an example of a GuiScrollCtrl definition:

new GuiScrollCtrl() {
profile = "GuiScrollProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "14 55";
extent = "580 190";
minExtent = "8 8";
visible = "1";
willFirstRespond = "1";
hScrollBar = "dynamic";
vScrollBar = "alwaysOn";
constantThumbHeight = "0";
childMargin = "0 0";
defaultLineHeight = "15";
// insert listing control here

};

Normally, we would populate a scroll control with a list, usually defined by the

contents of a GuiTextListCtrl control. The GuiTextListCtrl control containing

the list would be added as a subelement of the GuiScrollCtrl control.

The willFirstRespond property is used to indicate whether we want this control

to respond to arrow keys when they are pressed (to control scrolling) or to let

other controls have access to arrow key inputs first.

Both the hScrollBar and vScrollBar properties—referring to the horizontal and

vertical bars, respectively—can be set to one of these modes:

n alwaysOn. The scroll bar is always visible.

n alwaysOff. The scroll bar is never visible.

n dynamic. The scroll bar is visible only when the list exceeds the display

space.

The property constantThumbHeight indicates whether the thumb, the small rec-

tangular widget in the scroll bar that moves as you scroll, will have a size that is

proportional to the number of entries in the list (the longer the list, the smaller

the thumb) or will have a constant size. Setting this property to 1 ensures a

constant size; 0 will ensure proportional sizing.

Controls 409

The property childMargin is used to constrain the viewable space inside the

parent control that would be occupied by whatever control contained the list to

be scrolled. In effect, it creates a margin inside the scroll control that restricts

placement of the scroll list. The first value is the horizontal margin (for both left

and right), and the second is the vertical margin (both top and bottom together).

Finally, defaultLineHeight defines in virtual pixels how high each line of the

control’s contents would be. This value is used to determine how much to scroll

when a vertical arrow is clicked, for example.

GuiTextListCtrl

The GuiTextListCtrl, as shown in Figure 10.10, is used to display 2D arrays of

text values.

Here is an example of a GuiTextListCtrl definition:

new GuiTextListCtrl(MasterServerList) {
profile = "GuiTextArrayProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "2 2";
extent = "558 48";
minExtent = "8 8";
visible = "1";
enumerate = "0";
resizeCell = "1";
columns = "0 30 200 240 280 400";
fitParentWidth = "1";
clipColumnText = "0";
noDuplicates = "false";

};

The enumerate property indicates which line of text is presented as highlighted.

You can allow the cells to be resized with the GUI Editor by setting the

resizeCell property to true.

410 Chapter 10 n Creating GUI Elements

Figure 10.10
GuiTextListCtrl sample.

Each record, or line, in the array has space-delimited fields. You can format the

display of these fields by using the columns property to indicate at which column

number each field will be displayed.

The fitParentWidth property indicates whether the control will be enlarged in

size to fill the available display space of any control that might contain this

control.

We can decide whether overlong text in each column is to be clipped or will be

left to overrun adjoining columns by setting the clipColumnText property.

We can automatically prevent the display of duplicate record entries by setting

the noDuplicates property to true.

GuiTextEditCtrl

The GuiTextEditCtrl, as shown in Figure 10.11, provides a tool for users to

manually enter text strings.

Here is an example of a GuiTextEditCtrl definition:

new GuiTextEditCtrl() {
profile = "GuiTextEditProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "250 5";
extent = "134 18";
minExtent = "8 8";
visible = "1";
variable = "Pref::Player::Name";
maxLength = "255";
historySize = "5";
password = "0";
sinkAllKeyEvents = "0";
helpTag = "0";

};

Controls 411

Figure 10.11
GuiTextEditCtrl sample.

With this control, the variable property is the key one. When the user types a

string of text into the control’s edit box, that string is entered into the variable

indicated. When the control is first displayed, the contents of the indicated

variable are stuffed into the edit box for display.

Text edit controls have a nifty history feature that can be quite handy. All the

previous entries—up to a maximum specified by historySize—are saved and

can be recalled using the Up Arrow key to go back in history or the Down Arrow

key to go forward.

If you are using this control to accept a password, then set the password property

to true. The control will substitute asterisks (‘‘*’’) in place of whatever is typed by

the user so that bystanders can’t see what is being typed.

The sinkAllKeyEvents property, when set to true, causes the control to throw

away any keystrokes that it receives but doesn’t understand how to handle.

When sinkAllKeyEvents is set to false, these keystrokes will be passed to the

parent.

The Torque GUI Editor
Torque has an editor built in for creating and tweaking interfaces. You can

invoke the GUI Editor by pressing the F10 key (this is defined in the common

code base scripts, but you can change it if you want). You are perfectly free to ship

your game with this editor code, or you can remove it in any shipping version to

ensure that people will not fiddle with the interfaces. Or you can modify it to suit

your heart’s desire!

No t e

If you want to edit GUIs from any of your projects (like Emaga4, 5, or 6 or, in later chapters, Koob),
you’ll need to do a little preparation. From your 3D2E folder locate the creator folder, and copy it
to your project’s folder. Next, open the root main.cs file (the one in the same folder as the tge.exe
executable and the DLL files), and locate the line near the end of the file that says this:

SetModPaths($pathList);

And add the next line immediately after it:

$addonList="control;creator";

Save your revised main.cs, and then run your program. If you do this, you will get the latest
Torque 1.4 editor code and interfaces. If you don’t, then you may not be able to access an editor,
and even if you did, it would be the older interface from version 1.2.

412 Chapter 10 n Creating GUI Elements

The Cook’s Tour of the Editor

When you launch the editor by pressing the F10 key, the editor will appear and

load whatever interface is current, making it ready for editing.

Visually, there are five components to the GUI Editor: the Content Editor, the

Control Tree, the Control Inspector, the Tool Bar, and the Menu Bar. There is

also a sixth component, in a sense: keyboard commands. Figure 10.12 shows the

GUI Editor open and working with one of the earlier main menu screens from

the Emaga sample game.

The Content Editor

The Content Editor is where you can place, move, and resize controls. In Figure

10.12 the Content Editor is the large rectangular area at the lower left in the GUI

Editor view.

Selection Normally, you select a control by clicking the mouse on it. Some

controls can be difficult to select because of their positions. Another way to

select controls is by using the Control Tree, which is covered in a later section.

The Torque GUI Editor 413

Figure 10.12
The Torque GUI Editor.

If you hold down the Shift key while clicking the mouse (shift-clicking) on

several controls, you can select more than one control at once. Each time

you shift-click you add that control to the selection. The sizing knobs turn

white and can no longer be used to size the control. You can still move the

controls. Only controls that share the same parent can be selected at the

same time.

Movement Move a control by clicking and dragging its content area after

selecting it. When you move controls, be aware of which controls they may be

contained by—when you drag the control to one side or another, you may be

dragging it outside the display area of its parent control, and you don’t want

that.

Resizing You resize a control after selection by clicking on and dragging one

of the eight black sizing knobs. As with movement, you need to stay aware of

how the control you are resizing is related to other controls. The sizing might

be restricted by a parent control’s display area. Figure 10.12 shows the sizing

knobs, attached to the Start Game button.

Adding The parent control of the currently selected control is outlined with

a yellow and blue band. This control is known as the Current Add Parent. Any

new control created from the Tool Bar or pasted from the Clipboard will be

added to this control. The Current Add Parent control can be set manually by

either clicking one of its children or right-clicking the control’s entry in the

Control Tree.

The Control Tree

The Control Tree shows the current content control hierarchy. It is in the upper-

right corner of the GUI Editor view.

Parent controls, also called containers—controls that contain other controls—

have a little box to the left of their entry in the tree. If the box is a plus

sign, clicking it will expand that control into the list, bringing the child

controls into view. If you click it when it looks like a minus sign, it will

contract the control’s list back to a single entry comprising solely the parent

control.

Clicking any control in the tree will cause it to be selected in the Content Editor

view and cause the control’s properties to be displayed in the Control Inspector

view. You can see this effect by looking back at Figure 10.12.

414 Chapter 10 n Creating GUI Elements

The Control Inspector

The Control Inspector is where any currently selected control’s attributes are

displayed. It is located in the lower-right corner of the GUI Editor, below the

Control Tree. All the properties of a control are displayed in the Control

Inspector and can be changed here. After changing a value, you must click the

Apply button to assert the changes.

When first displayed, all the properties are collapsed visually within categories,

such as Parent, Misc, and Dynamic Fields. Parent is the only category that is

present in all controls; other controls have different categories that are specific to

their characteristics. To access the properties within a category, simply click the

buttons in the Inspector view that have those category names, and the list

expands, giving you edit boxes and buttons with which you can manipulate the

properties.

The Tool Bar

The Tool Bar contains functions for creating new controls, opening existing

GUIs, and setting a virtual screen size (for testing). The Tool Bar has pop-up

menus for creating new controls and changing the currently edited GUI. The

functions of the buttons are described in Table 10.1.

The Menu Bar

The Menu Bar contains some standard menus, like File and Edit, which have

approximately the expected functionality. There are two additional specialized

menus: Layout and Move. See Table 10.2.

The Torque GUI Editor 415

Table 10.1 Tool Bar Button Functions

Button Description

New Control Displays a list of all controls from which the user can select one to add to the current
content control.

Show GUI Displays the name of the interface (GUI) currently being edited. Selecting this pop-up
allows the user to choose a screen to edit from all loaded interfaces.

Virtual Screen Size Displays the current virtual screen size of the interface (GUI) currently being edited.
Selecting this pop-up allows the user to choose from one of three virtual screen sizes:
640� 480, 800� 600, and 1024� 768.

416 Chapter 10 n Creating GUI Elements

Table 10.2 Menu Bar Functions

Option Description

File, New GUI Creates a new empty canvas on which to create a GUI.

File, Save GUI Initiates a file-saving dialog box for saving GUIs.

File, GUI Editor Help Opens a Help dialog box.

File, Toggle GUI Editor Closes the GUI Editor, and returns to the previous interface, whatever that might
happen to be.

Edit, Cut Copies the current selection to the Clipboard, and removes the selection from
the interface.

Edit, Copy Copies the current selection to the Clipboard, and leaves the selection in the
interface.

Edit, Paste Pastes the contents of the Clipboard into the interface.

Edit, Select All Selects all the controls in the interface at once.

Layout, Align Left Aligns the left edge of all selected controls to the leftmost point of all the
selected controls.

Layout, Align Right Aligns the right edge of all selected controls to the rightmost point of all the
selected controls.

Layout, Align Top Aligns the top edge of all selected controls to the topmost point of all the
selected controls.

Layout, Align Bottom Aligns the bottom edge of all selected controls to the bottommost point of all
the selected controls.

Layout, Center
Horizontally

Horizontally centers all selected controls in the rectangle that bounds all the
selected controls.

Layout, Space Vertically Vertically spaces all selected controls evenly.

Layout, Space
Horizontally

Horizontally spaces all selected controls evenly.

Layout, Bring Front Arranges the selected control in front of its sibling controls.

Layout, Send Back Arranges the selected control behind its sibling controls.

Layout, Lock Selection Locks the selected object, preventing it from being accidentally modified.

Layout, Unlock Selection Unlocks the selected object, allowing it to be modified.

Move, Nudge Left Moves the selected object a small amount to the left.

Move, Nudge Right Moves the selected object a small amount to the right.

Move, Nudge Up Moves the selected object a small amount upward.

Move, Nudge Down Moves the selected object a small amount downward.

Move, Big Nudge Left Moves the selected object a large amount to the left.

Move, Big Nudge Right Moves the selected object a large amount to the right.

Move, Big Nudge Up Moves the selected object a large amount upward.

Move, Big Nudge Down Moves the selected object a large amount downward.

Keyboard Commands

In addition to using mouse selection and GUI button clicks, the user has a

number of keyboard commands available. Table 10.3 shows these commands.

Creating an Interface
In this section you will see how easy it is to create and employ an interface using

the Torque GUI Editor.

You should note that the Torque GUI Editor assumes your screen resolution is

set to a minimum resolution of 800� 600. You may find it more useful to use a

higher resolution, to allow the different views more room to display their data.

1. Using Windows Explorer, browse into the \3D2E folder, and then run the

Torque demo.

2. When the GarageGames/Torque main menu screen appears, press the F10 key.

The various editor controls and panels will appear on the top and right side of

the screen.

Creating an Interface 417

Table 10.3 GUI Editor Keyboard Commands

Keys Name Description

Ctrl+A Select All Selects all the controls in the Current Add Parent.

Ctrl+C Copy Copies the currently selected control(s) to the Clipboard.

Ctrl+X Cut Cuts the currently selected control(s) to the Clipboard.

Ctrl+V Paste Pastes any control on the Clipboard into the Current Add Parent.

Arrow Keys Movement Moves the current control selection 1 pixel in the direction of
the arrow.

Shift+Arrow
Keys

Movement Moves the current control selection 10 pixels in the direction of
the arrow.

Delete/
Backspace

Delete Deletes the current control selection.

Ctrl+L Align Left Aligns the left edge of all selected controls to the leftmost point
of all the selected controls.

Ctrl+R Align Right Aligns the right edge of all selected controls to the rightmost
point of all the selected controls.

Ctrl+T Align Top Aligns the top edge of all selected controls to the topmost point
of all the selected controls.

Ctrl+B Align Bottom Aligns the bottom edge of all selected controls to the bottommost
point of all the selected controls.

3. Choose File, New GUI, and enter a name for the new interface—do not use

spaces in the name. Use ‘‘MyFirstInterface’’ for the GUI name.

4. Leave the class as GuiControl, and then click the Create button. You will

now have a nice, shiny new interface to work with.

5. In the Control Tree panel, select the control named ‘‘MyFirstInterface’’. Its

properties should appear in the Control Inspector panel.

6. Locate the profile property, and click the square button next to it on the

right-hand side to get the pop-up menu.

7. Scroll through the menu until you locate the GuiContentProfile, and select

that.

8. Click Apply.

Now you have a Content Control to which you can add other controls.

9. Click the New Control button, and choose GuiButtonCtrl from the pop-up

menu.

10. Select the button using one of the two techniques you’ve learned (via the

Content Editor or the Control Tree).

11. Look in the Control Inspector view, and locate the text property for this

new control. It’s near the bottom in the Misc group. You will have to

scroll down to find it. Put some text of your own in it.

12. Enter quit(); in the command property. This is the ninth property from the

top of the property list.

13. Click Apply.

14. Click the Save button. The Save feature will automatically use the top-level

control in your interface for the file name, so leave that as is.

15. At the top of the Save dialog box is a button that you can use to select the

folder in which to save the file. Choose the demo/client/ui folder. (If you are

using an Emaga program, or Koob, then use the control/client/interfaces

folder here and in step 2 of the next procedure.)

16. Ensure one final time that the file name to be saved is MyFirstInterface.gui,

and then click Save.

418 Chapter 10 n Creating GUI Elements

There, you’ve created an interface using the Torque GUI Editor!

Now let’s break it! No. . . I mean, let’s test it!

1. Open the console using the Tilde (‘‘~’’) key.

2. Type in the following, pressing the Enter key when you’re done:

exec("demo/client/ui/MyFirstInterface.gui");

3. Now type in the following, again pressing the Enter key when you’re done:

canvas.setContent("MyFirstInterface");

Your interface should pop up on the screen. Just go ahead—press that button!

Now you see that the whole program quits, because that’s what you programmed

it to do.

Of course, this is a simple interface. They can get as complex as you need. You can

see that there is a lot of power available in Torque to address your interface needs.

And if Torque doesn’t have it, you can create it yourself!

Moving Right Along
So now you should have a reasonable understanding of how controls are made

and added to an interface. You’ve seen the innards of some of the more common

controls that are available in Torque.

You’ve also learned how to use one of the valuable built-in tools that Torque

supplies, the GUI Editor. It’s worth your while to practice making a few

interfaces—even goofy ones that have no purpose, if you like—just to reinforce

the steps involved and to become comfortable using the GUI Editor.

Staying with the visual aspects of a game, we will examine structural material

textures in the next chapter.

Moving Right Along 419

This page intentionally left blank

Structural Material
Textures

In earlier chapters we encountered textures used to enhance the 3D game

environment in the resources included with the Emaga sample game. We only

caressed the topic with the most feathery of touches. As the book progresses we’ll

explore the topic in depth from many different angles. In this chapter we’ll look

at one aspect of 3D game textures—those used to define 3D structures, like

buildings, walls, sidewalks, and other virtual world artifacts.

You can judiciously and creatively use textures in several important ways. We’ll

use a prebuilt scene with a few basic and more complex structures to illustrate

some of these principles, including the following:

n Project information. One of the most basic uses of textures in a 3D game is

to define the object containing the textures. A simple box shape can become

an electrical transformer, a house, a crate of weapons, or an air conditioner,

merely by applying different textures to the shape.

n Convey mood. We can set a mood in a scene using different styles of

textures. The amount of subtlety is up to the designers; a somewhat un-

remarkable and neutral air vent high on a wall can become an ominous clue

to an unseen threat by adding a graphic of slime or other unmentionable

stuff oozing from its louvers.

n Establish space and place. A cramped machine room full of noise and

whirling parts might have shapes built with textures jammed with pipes,

421

chapter 11

wires, knobs, and other mechanical items. The machinery shapes would

probably be busy-looking affairs, even in static form. On the other hand

textures for the walls in a high-ceilinged, multistory hall might have only

vertically oriented lines and long, thin curves, with high-contrast shading.

During this chapter you will be directed to use the Gimp from time to time, so it’s

a good idea to have it open and ready for use.

Sources
There are many ways to create textures for use in structures. Techniques can

range from the obvious (photographing buildings and walls and other real-world

items or drawing them with pen and pencil) to the more imaginative (making

rubbings with paper and charcoal) to the more high-tech (using texture-creation

software).

In this section we’ll look at two of the most accessible texture-creation methods,

photography and original artwork.

Photography

To use photography as a source, you’ll need a camera, of course. Digital cameras

with decent resolutions available can be quite inexpensive. Most digital cameras

come with hardware that allows you to quickly upload the images to your

computer.

Digital Versus Film

If you buy a digital camera, you should get one that will provide pictures of at

least 800 pixels by 600 pixels with 32-bit color.

Your other options are to use a normal film camera and then either scan the

resulting photos or send the film to a shop that will digitize the photos for you

when they’re developed. These shops are quite common, and the extra step of

digitization of your developed film is often a no-cost ‘‘loss leader’’ that the shops

use to attract business.

Scanners are also low-cost items. The minimum specification for a scanner that

you need for use in game development would be a 600-dpi 32-bit color scanner.

Flatbed scanners are best for this kind of work.

422 Chapter 11 n Structural Material Textures

No t e

If you intend to use photography as a source for textures, be aware that there are some things to
watch out for. Don’t use pictures of items with trademarked images or copyrighted text or
graphics on them. You will probably end up in violation of trademark or copyright law if your
game ends up shipping with those images in it.

If your game absolutely must include a photo of a billboard ad for a popular soft drink, for
example, make sure you contact the soft drink company to obtain written permission before you
ship your game. In addition to staying legal, you also might just be able to obtain sponsorship or
some other support from the company for your game. Now I’ll admit that this is probably not
likely, but it is certainly possible.

When you have identified a candidate texture for use in your game, make sure

to take several different pictures of the item from different angles, at different

distances, and in different lighting, if possible. Take lots and lots of pictures,

and then review them when you get back to your home or office to find what

suits your needs. Keep all the originals. Sometimes, on later examination, you

will discover details that you didn’t notice when first taking the pictures. These

details may require choosing a different shot from a different angle to ensure that

they don’t show. It wouldn’t work to have the condensation trail of an airliner in

an image used for the sky in a game that takes place in a medieval era.

Figure 11.1 shows a picture of some interlocking bricks used for a walkway.

Figure 11.2 shows the same walkway with the picture taken under slightly dif-

ferent circumstances (for example, the area photographed for Figure 11.2 was a

few feet away from the area shown in Figure 11.1). One detail I picked up on

quickly when examining the photos on my computer that I didn’t notice at the

scene is that some of the bricks in Figure 11.2 are double bricks, lain side by side.

This despite the fact that I have trodden this particular walkway literally

thousands of times in the past 10 years or so!

So the lesson is this: when at the scene, don’t be a censor and don’t be judg-

mental. Just take oodles of photographs of the items in question. Then sort it all

out back at the shop.

Postprocessing

After getting back to the shop, you will probably have to do a certain amount of

postprocessing of the chosen photos. Even if you were creating a photorealistic

game, you would still need to ensure that the lighting and palettes of the textures

Sources 423

were close enough matches to each other. This would be especially true when

your texture photos were taken in different areas at different times.

It’s probably best to do all of your pixel-related processing first, before you crop

or extract your textures. This ensures that the changes you make are done in the

proper context—the areas that you aren’t interested in will change along with the

areas you are interested in—thus guiding your efforts more appropriately.

424 Chapter 11 n Structural Material Textures

Figure 11.1
Real-world candidate for sidewalk texture.

Figure 11.2
Alternate candidate for sidewalk texture.

All of the photo-processing capabilities of any tools you have are at your disposal.

Three specific operations are generally used more than the others: color

matching, lighting, and cropping.

Color Matching The first thing you will probably need to do is match the

colors of your texture to existing in-game textures and lighting conditions.

Usually you will match your colors by adjusting the balance of colors. This can

be done in the Gimp by choosing Tools, Color Tools, Color Balance. The dialog

box that appears does a good job of guiding you in your adjustments. Note that

when you reduce the red component of a color palette, you increase the cyan

influence, and when you reduce the blue component, you increase the yellow.

In general, cooler color temperatures are stronger in the blue/cyan influence,

while warmer temperatures cavort about with more red/yellow makeup.

Unfortunately, it is extremely difficult to illustrate the differences between

different temperature settings in grayscale images like the ones used in this book,

so Figure 11.3 may not adequately demonstrate the subtle variations. If you

installed the companion CD, you can find the full-color version of the image in

the file \3D2E\RESOURCES\CH11\11-03.jpg. Of course, you can go ahead and

try the various settings in the Gimp and see the differences for yourself.

In Figure 11.3, from left to right, the three settings chosen are Incandescent,

Fluorescent, and Bright Sun. Compare these variations with the original shown

in Figure 11.2 and found at \3D2E\RESOURCES\Ch11\11-02.jpg.

Sources 425

Figure 11.3
Reference image for three color temperatures.

The light of bright sunlight on a clear day contains all colors of the visible

spectrum pretty well in their natural proportions, with the sole modification

being some filtering by the atmosphere. This atmospheric filtering (pre-

dominantly by water molecules) scatters a certain proportion of light at the blue-

violet end of the spectrum, reducing the amount of light at those wavelengths

that makes it to the surface. Nonetheless, you can see that there is still a strong

blue component in the bright sunlight area.

The fluorescent light area shows a somewhat more balanced spectrum, with less

blue than with the bright light. The incandescent lightbulb area shows the

opposite end of the spectrum from sunlight and has a much warmer feel due to

the presence of more red and less blue.

So in Figure 11.3 the color temperature moves from warm on the left to cool on

the right.

The original image, as shown in Figure 11.2, has a coloring somewhere between

fluorescent and sunlight, leaning heavily toward the fluorescent. This is not really

a surprise—I took those photos outside on a sunny clear summer day, but in the

shade. The illumination is therefore provided by the light reflected from the

surroundings, which in this case had the effect of moving the spectrum toward

the middle.

Lighting Lighting is closely tied to color matching. Changes in the apparent

lighting of an image will tend to drag the color temperature in one direction

or the other. So keep this in mind when you apply lighting changes to images.

In the context of processing 2D images for use as textures, what we are trying to

achieve is imparting a sense of the light direction and light ‘‘play’’ upon the

surface of the texture being portrayed.

For example, one feature about surface textures that we may need to enhance is

the sense of depth. As shown in Figure 11.4, the texture may contain numerous

small stones that protrude from a flat surface.

One simple method we can use to increase the sense of depth is to increase the

contrast. The problem with adjusting the contrast is that it tends to drastically

alter the color temperature—the more contrast, the warmer the overall color

temperature.

The obvious way to handle this would be to boost the contrast and then tweak the

color balance. Sometimes this does not work so well, especially if a wide spectrum

426 Chapter 11 n Structural Material Textures

of colors is represented in the image. In those cases there are other ways to deal

with the issue, such as tweaking the saturation.

What you see in Figure 11.4 is the original texture on the left and the adjusted

texture on the right. In this case what I did was use the Gimp to enhance

the contrast by 40 percent (choose Tools, Color Tools, Brightness–Contrast)

and then reduce the saturation by 41 percent (choose Tools, Color Tools,

Hue–Saturation).

No t e

You can’t reduce the saturation on grayscale images. The Gimp won’t even let you try.

Cropping When using photographs as image sources, we rarely want to keep

the entire image. Artifacts such as lighting changes at the periphery, fisheye

distortion at the edges caused by extreme perspective, extraneous items in the

image, and other issues typically make the outer edges of photographs unsui-

table for use as textures.

The solution is to crop the image, leaving behind the portion that is useful to us.

Figure 11.5 shows a piece of wood that has a texture of interest. It stretches across

the entire frame from left to right but only covers somewhat less than half of the

vertical area. It’s also not parallel with the sides of the image. In this case we will

want to crop the wood out and ‘‘de-rotate’’ it as well.

Sources 427

Figure 11.4
Pebbled surface with lighting adjustment.

T i p

You can access the original of the photo I used here at \3D2E\RESOURCES\CH11\COLORPHOTOS\
woodencurb.jpg

You might be tempted to crop the wood out and then apply rotation to

straighten it out, but experience shows that these operations should be done the

other way around. Just as with the color and lighting operations, you should

apply the geometric changes first, and then crop the texture. This allows the

image processing software to make its geometry in the full context of the image

parts that surround the area of interest, which can have a subtle effect on the end

result.

Another reason for resolving the geometric appearance of the texture before

cropping is that cropping tools tend to use rectangular shapes for selection. It is

helpful to the overall process and productivity to crop images where the areas of

interest are appropriately oriented horizontally and vertically.

To use the Crop tool in the Gimp, click the Crop & Resize tool icon on the Tool

palette of the main window (see Figure 11.6). Click and drag the tool on the

image to select the rectangular area of interest. The resulting selection rectangle

will have small square handles on the sides, which you can click and drag to resize

the crop area. There is also a Crop & Resize dialog box that opens up, where you

428 Chapter 11 n Structural Material Textures

Figure 11.5
A photograph that needs to be cropped.

can manually specify crop dimensions and other parameters. When you are

satisfied with your selected area, click the Crop button in the dialog box to cause

the actual cropping operation to take place.

Figure 11.7 shows the result of merely cropping the image to include all portions

of the wood without first altering the orientation of the wood. It still needs to be

rotated. Of course, you may actually want the woodgrain to be slanted, but then

you may need to remove the nonwood slivers of area above and below the

woodgrain by erasing them to a fixed solid color or making those areas com-

pletely transparent.

In our case we really want the woodgrain to be parallel to the bottom and top

edges of the image, so we should rotate the woodgrain portion before cropping.

Use the Rectangular Selection tool (see Figure 11.8) to select the area to be rotated.

Sources 429

Figure 11.6
Crop tool icon.

Figure 11.7
Cropped portion of unaltered photo.

Figure 11.8
Rectangular Selection tool icon.

Then choose Tools, Transform Tools, Rotate to get the Rotate dialog box (see

Figure 11.9).

In the Tools options area in the main window, ensure that Interpolation has been

set to Cubic (Best) and that the Affect is set to Selection. Then, in the Rotate

dialog box, type ‘‘1.00’’ in the text box labeled Angle. Click Rotate. This will

rotate the selected area 1 full degree to the right (see Figure 11.10).

You should have your rotated area with the selection marquee still surrounding

it. Don’t touch anything yet—leave the selection as it is.

430 Chapter 11 n Structural Material Textures

Figure 11.9
The Rotate dialog box.

Figure 11.10
The rotated woodgrain.

Now after having earlier explained that the Crop & Resize tool is used one way,

I’ll show you another way to crop the image that is sometimes more convenient.

With the rotated area still selected, choose the Crop & Resize tool, and click in the

selected area. Click the From selection button, and then click the Crop button.

You will then end up with an image as shown in Figure 11.11, suitable for use as a

texture.

Now compare Figure 11.11 with Figure 11.7, and you will see the difference.

Original Artwork

The other approach to creating textures is to use original artwork. Some people

believe this is not a real option for them, because they think they can’t draw or

paint to save their lives. I tend to feel that everyone can learn the techniques

required. My intent here, however, is not to teach you how to draw, so if you

want to learn more, I encourage you to look into taking some lessons.

If you are satisfied with your artistic skills, then you have another rich avenue for

texture generation available. The techniques used to convert a photograph to a

texture can also be used to convert your handmade images to textures.

Another approach for creating original artwork is to create your images

directly in a tool like the Gimp. You can draw freehand using the mouse or a

pen tablet.

With tools like the Gimp you have a wide variety of means for creating

textures, including many that can be created via the various options in the

Filters and Script-Fu menus. Figure 11.12 shows examples of textures created

using the built-in features of the Gimp. I encourage you to explore this tool in

depth. It can really be a timesaver. And you can use it to create some knockout

textures.

Sources 431

Figure 11.11
The cropped woodgrain image.

Scaling Issues
When creating your textures, you will need to pay attention to the issue of scale.

The sizes of the things within an image that are used to make a texture have a

particular relationship to other real-world objects. We are subconsciously aware

of many of these relationships from our exposure to the world in general and will

notice when the textures are out of proportion to the items they adorn. If it’s bad

enough the effect can sometimes be similar to the sound of fingernails being

dragged across a chalkboard!

Figure 11.13 shows two stylized houses. The bricks in house A are far too large,

while the bricks in house B are more appropriately sized yet may still be a bit too

large. Yes, there are some uses for stone blocks having proportions such as those

in house A, but they are rarely used in bungalow-sized or two-story homes, as

depicted in the figure.

The scale issue can pop up anywhere, as you can see in Figure 11.14. The texture

image in the corrugated metal bridge surface is probably about 10 times larger

than is appropriate. Sometimes you might need to redo the texture to match;

other times you can adjust how the texture is applied to the polygons using the

432 Chapter 11 n Structural Material Textures

Figure 11.12
Example textures.

modeling tools. My rule of thumb is that if the texture image size is 64 pixels by

64 pixels or smaller and needs to be made larger, you should make a new texture

at the larger size. The same goes the other way. If the image size is larger than

64 pixels by 64 pixels and needs to be made smaller, then make a new texture at

the smaller size.

Tiling
Many structures have large surfaces with repeating patterns. The best way to

approachmaking textures for these surfaces is to create one smaller texture that is

replicated many times across the surface rather than simply making one large

texture.

The replication will usually take place in two dimensions. It is important to make

sure that the edges of the texture align properly when they meet. Figure 11.15

shows this to good effect. You can see the obvious horizontal as well as the more

Tiling 433

Figure 11.14
Scaling error.

Figure 11.13
Scaling bricks.

subtle artifacts in house A where the tiled brick textures don’t quite line up. In

house B, where care was taken to ensure that the texture edges matched up

correctly, those artifacts aren’t visible.

However, in house B in Figure 11.15 there is another obvious artifact of tiling,

this time caused by asymmetric lighting effects in the texture shading. You can

see each repeated texture tile—its position is marked by the presence of the

darker shaded bricks in a repeated pattern. This effect can be quite subtle and

difficult to detect in an image viewed in isolation.

Figure 11.16 shows the texture used in house B of Figure 11.15. Looking at it in

isolation, you would be hard pressed to notice the subtly darker shaded bricks.

The simplest way to fix up a texture for use as a tiled texture is to copy the left edge,

about 5 or 10 pixels wide, mirror the copy horizontally, and then paste the copy on

the right side of the image. Do the same for the bottom edge. Of course, you can go

from top to bottom or right to left as well. The important step is the mirroring.

After placing the mirrored edges, spend a little time blending their inner edges

with the interior portions of the image.

Figure 11.17 shows a stone block texture that is a candidate for use in a tiling

situation.

434 Chapter 11 n Structural Material Textures

Figure 11.15
Tiled brick texture.

Figure 11.16
The brick texture with asymmetric shading.

Figure 11.17
A stone texture.

Figure 11.18 shows the texture tiled in a set of four. Again, you can see the

artifacts caused by the mismatched edges.

Figure 11.19 shows the left edge being copied, mirrored, and placed on the right.

Figure 11.20 shows the same thing happening with the bottom edge.

Finally, Figure 11.21 shows the tiled result.

Tiling 435

Figure 11.18
Poorly tiled stone texture.

Figure 11.19
Replicating the left edge.

Figure 11.20
Replicating the bottom edge.

The Gimp has a helpful filter tool for use with tiling. Using a random texture of

your own selection, choose Filters, Map, Make Seamless. This tool does a great

job of speeding up the process of making tileable textures. Unfortunately, it

doesn’t give you any options to vary the effect.

Texture Types
There are far too many texture types and classes of material appearances for me

to enumerate them with any sort of thoroughness. Given that, there is a much

smaller set of texture types that are found over and over in nature and man-made

structures.

Most of the following textures are types that are used for buildings, bridges, and

other man-made items in a game world. Most of the texture types and patterns

can be generated using the Gimp, by choosing Filters, Render, Pattern and using

one of the many submenus that reside there.

Irregular

Irregular textures tend to have a general disorder and random appearance, like

that shown in Figure 11.22. Dirt and grass are examples of irregular textures.

Quite often irregular textures are combined with other, different irregular

textures in order to give a weathered or damaged appearance to an area or a

surface.

436 Chapter 11 n Structural Material Textures

Figure 11.21
Properly tiled stone texture.

Rough

Rough textures, as shown in Figure 11.23, sometimes have somewhat the same

sense about them as irregular textures. They are often used as tiles on a surface

like a sidewalk or rough concrete walls.

Pebbled

Pebbled textures are another example of textures often used for paved surfaces

and stone walls. Tarmacadam pavement is an example of a finely pebbled surface

when viewed from a distance of about 5 or 6 feet. Figure 11.24 shows a more

obvious pebbled texture that could be used for a wall or decorative planter.

Texture Types 437

Figure 11.22
An irregular texture.

Figure 11.23
A rough texture.

Figure 11.24
A pebbled texture.

Woodgrain

Figure 11.25 shows a woodgrain texture that has many highly variant bundles of

lines ranging from fine to coarse that run roughly parallel to each other, some-

times interrupted by swirls and knots. Some kinds of stone have similar

appearances.

Smooth

We all know when something is smooth—there are no discernable bumps or

irregularities to the touch. Depicting smoothness in textures can be a little

difficult. We usually create a rather bland surface look and then introduce a few

soft and mild irregularities in order to emphasize the smoothness. Figure 11.26

shows a smooth texture.

Patterned

Patterned textures are pretty straightforward. The intent is not necessarily to

convey the contour, bumpiness, or feel of a surface but rather to represent regular

shapes or patterns that appear on an item. Figure 11.27 depicts a pattern that

could be used to represent the louvers of an air duct in a wall.

438 Chapter 11 n Structural Material Textures

Figure 11.25
A woodgrain texture.

Figure 11.26
A smooth texture.

Fabric

Fabric textures emulate the appearance of things like canvas or carpet. Fabrics

may bewoven or not, but they all tend to exhibit fine repetitive shapes. Figure 11.28

shows a woven fabric texture that could be canvas. The Gimp has a great tool

available in its Script-Fu menu for simulating cloth. You can find it by choosing

Script-Fu, Alchemy, Clothify and fiddling with the settings.

Metallic

Metallic textures tend to have a dominant color, with a strong dark shadow that

follows the outer contours of the metallic object and a bright accent color that

runs along raised surfaces. Figure 11.29 shows a texture that could be used for a

metal tube.

Texture Types 439

Figure 11.27
A patterned texture.

Figure 11.28
A fabric texture.

Figure 11.29
A metallic texture.

Reflective

A reflective texture simulates the effect of a light source in the scene reflecting

strongly off the surface of the textured object. Figure 11.30 is such a texture that

might be depicting a bright overhead light reflecting off a window.

Plastic

Plastic textures are similar to metallic textures in their manner of shading and

highlighting. Plastic tends to have more of an oily appearance to it at times, so the

shading and highlights are often more sinuous. As shown in Figure 11.31, the

highlights tend to be less clearly defined than with metallic textures, while the

light source often appears as a distinct highlight.

Moving Right Along
In this chapter we examined how to collect images to use in applying textures to

objects that represent real-world structures. We saw some of the processing

techniques that we may need to use to prepare our images for use as textures, like

color matching and cropping.

440 Chapter 11 n Structural Material Textures

Figure 11.30
A reflective texture.

Figure 11.31
A plastic texture.

Some of the areas that can be more problematic when considering textures for

structures are scaling the images and preparing them to be tiled if the texture will

be used in a repeating fashion. A texture that can be tiled is one whose opposite

edges can be mated together without producing a noticeable seam.

Finally, we explored some of the more common texture patterns and char-

acteristics that are used in games.

In the next chapter we will look at terrains and skyboxes, two mechanisms that

are often used to provide that touch of realism in our game worlds. Some of the

ideas we’ve covered in this chapter will certainly be useful in the next chapter

as well.

Moving Right Along 441

This page intentionally left blank

Terrains

Many games take place exclusively inside buildings or structures, like tunnels.

And many other games involve exclusive outdoor game play. Then there are

some games that have a mix of each.

When your game has an outdoor component, you need to represent the terrain,

which in game terms is the combination of the topography (hilliness, for

example) and ground cover (grass, gravel, sand, and so on). The topography is

modeled using a 3D model, and the ground cover is represented by textures.

In addition to representing the ground, you also need to represent the sky, if you

want to have interesting outdoor game play. Typically, a construct called a skybox

is used to represent all of the sky, from horizon to horizon.

Terrains Explained
To understand terrains in a game development context, we need to look at the

characteristics of the terrain we want to model. These characteristics will drive

our need for the data that defines the terrain we want to make and therefore will

heavily influence how and where we obtain that data.

Terrain Characteristics

A basic unit of terrain is the tile. Essentially, a terrain tile is a collection of polygons

that form a 3D model that represents the terrain, as depicted in Figure 12.1.

443

chapter 12

When we model terrain in a game, we have to make a number of choices. We

need to decide the level of terrain fidelity we want to achieve. Another choice is to

figure out the spread of the terrain. Finally, we need to decide what sort of

freedom the terrain embodies. Table 12.1 lists these characteristics and the

ramifications of each choice.

There are practical considerations that direct our terrain design choices. Many

game engines simply aren’t capable of handling the distances involved in large-

scale terrains or the number of objects required to appropriately populate them.

Some game genres aren’t suited to open terrains—the player needs to be con-

fined in order to advance the game story as required.

Terrain Data

When you want to create a high-fidelity terrain model of a real place in the world,

you are going to need to get the data from somewhere. If the area in question is

small enough, you may be able to go out and gather the information yourself if

you’re handy with a theodolite (a surveyor’s tool). You might be able to glean the

necessary information from topographic maps. In either case there is a lot of

work involved in the data-gathering phase alone. You will need accurate distance

measurements and altitudes, as well as photos of the ground cover.

444 Chapter 12 n Terrains

Figure 12.1
An untextured terrain tile.

But don’t despair! There are sources for high-resolution terrain information

available on the Internet. If you go to http://edcwww.cr.usgs.gov, the Web portal

for the United States Geological Survey’s research center (USGS; part of the U.S.

government), you can find a wealth of terrain data.

Terrains Explained 445

Table 12.1 Terrain Characteristics

Characteristic Description

Fidelity Terrain fidelity measures how accurately the terrain reflects real topography found
somewhere in the world---how realistic it is. The realism can be reflected in both the
modeling and the textures. Modeling fidelity can be described as any of the following:

Realistic: Accurate at 1:1 scale in all dimensions with high-resolution
textures representing the terrain cover.

Semirealistic: Accurately scaled, usually to a smaller size. Often the vertical
scale is 1:1 while the horizontal scales are around 1:2. The game World War 2
Online by Cornered Rat Software has all ofWestern Europemodeled in this fashion.
The game uses medium-to-low resolution textures to represent ground cover.

Quasi-Realistic: Not accurately scaled in any dimension, but still attempts
to represent a real location in the world. Usually employs high-resolution
ground cover textures. The scales and textures are chosen to give a sense of
the locale that works well in the game environment. NovaLogic’s Delta Force
series takes this approach.

Unrealistic: Everything else! Unrealistic terrain is most commonly used to
specifically enhance game play or the backstory of the game.

Spread Terrain spread is the degree to which areas of the terrain are unique. Terrain is
created in units called tiles. The spread is related to these tiles in one of three ways:

Infinite: A square terrain region is repeated, or tiled, in all cardinal
directions, such that when the player leaves a region to the west, he enters a
new copy of the same terrain tile from the east. This continues for as long as
the player keeps moving in that one direction.

Finite: The terrain tiles are repeated in all directions, but at some point the
repetition stops.

Untiled: Terrain tiles are not repeated.

Freedom Terrain freedom is the measure of how much the player’s in-game movements are
restricted by the terrain. Terrain freedom is closely coupled with terrain spread. There
are really only two degrees of terrain freedom:

Closed: Closed terrain limits player movements in all cardinal directions at
some point. With closed terrain, at some point after a player has been moving
in a particular direction, he cannot continue that way, either because there is a
virtual physical barrier or because the program prevents further movement. In
any case, the terrain is usually modeled beyond the barrier only as far as the
player can see. After that---nothing.

Open: Open terrain allows player movement in any direction for as long as the
player wants. Some games will warp the player to the "other side" of the world,
where hewill keep crossing terrain tile copies until he returns to the place he started.

The data is available in several forms, but the standard form is the Digital

Elevation Model (DEM). DEM-formatted data files have the .dem file extension.

Another format in use is the Digital Terrain Model (DTM), which uses the .dtm

file extension. Finally, a powerful and complex format called Spatial Data

Transfer Standard (SDTS) also exists but is not in wide use outside of scientific

niches. SDTS files are denoted by the .ddf file extension.

In any event, the ground cover information is not included in these various

model formats, so you’ll need to gather that as well. Again, the USGS comes in

handy with its satellite imagery—some of it taken down to a resolution of less

than a meter per image pixel.

DEM files provide elevation information for specific coordinates of places on

Earth. DEM files can be converted to a format used by game engines called a

height map. We won’t go into detail about how to use DEM data for your game,

but you can use several of the resources listed in the appendixes to locate the data

and tools needed.

Terrain Modeling
There are basically two approaches that 3D game engines use to model terrain in

a 3D world. In both cases 3D polygon models represent terrains.

In the external method we include the terrain as just another object in the game

world. This method offers much freedom of manipulation. You can rotate the

terrain model, skew it, and otherwise subject it to all manner of indignities. All

3D engines support this approach. While flexible, it is usually an inefficient way

to render complex large terrains.

The second approach is the internal method, where terrain is rendered by

special code in the game engine often called a Terrain Manager. Using the

Terrain Manager approach allows game engine programmers to apply

specific memory and performance optimizations to the terrain object,

because they can discard unnecessary functions that would be available to

general-purpose objects. Because of this, Terrain Manager terrains can

sometimes be made larger and more complex than those created using other

approaches.

Most 3D engines, like Torque, that use a Terrain Manager also provide terrain

generation, manipulation, and editing tools that we can use to create our own

terrains. Usually importing height maps is available for terrain generation. Some

446 Chapter 12 n Terrains

engines, like Torque, have built-in Terrain Editors that allow the game developer

to directly manipulate terrain polygons, within constraints, to create the desired

hills, valleys, mountains, and canyons.

Height Maps

Figure 12.2 depicts a height map. As you can see, it’s a grayscale image. The 2D

coordinates of the height-map image map directly to surface coordinates in the

game world. The brightness of each of the pixels in the image represents the

altitude at that pixel’s location—the brighter the pixel, the higher the elevation.

Usually we use an 8-bit-per-pixel format, which means that 256 discrete elevations

can be represented.

The concept is an elegant one and not difficult to grasp. If you are familiar with

viewing topographic charts and maps, you’ll find that height maps have a

familiar flavor to them, even though the contour lines are missing. One of the

deficiencies of height maps is the resolution (as you can see in Figure 12.2). To

represent a geographic locale that is 1 kilometer square, a height map that

represents 1 square meter as a pixel needs 1,000 pixels per side, for a total of

1 million pixels—big, but not too large. If I want to increase the terrain area to

cover 16 square kilometers (4 kilometers per side), then I need to store 16 million

pixels. At 8 bits (or one byte) per pixel, that equals about 16MB of data. If we

want to model the terrain for an area that is 10 kilometers per side, we are looking

at almost 100MB of storage!

We can, of course, reduce the terrain resolution—let’s say, have a pixel equal 4

square meters in the game world. This would chop those 100MB back to 6.25MB.

However, that gain is offset by the fact that our terrain will now be blockier and

less realistic.

Figure 12.3 shows a terrain model generated from the height map shown in

Figure 12.2. In this case MilkShape 3D was used to import the height map and

create the terrain object.

Terrain Modeling 447

Figure 12.2
A terrain height map.

Terrain Cover

In the simplest sense, terrain cover refers to all the stuff that you find on the

ground, including

n grass

n flowers

n dirt

n pebbles

n rocks

n trash

n litter

n pavement

n concrete

n moss

n sand

n stone

448 Chapter 12 n Terrains

Figure 12.3
A terrain created from a height map.

Obviously this is not a comprehensive list, but it does demonstrate the point.

We represent the terrain cover with textures. Our options for creating these

textures are much like those we considered when we created textures for

structures in Chapter 11—and the factors that dictate which way to choose are

also similar. It boils down to the terrain characteristics in the game that matter

to you.

We can also mix terrain cover textures in adjacent areas to portray a particular

locale. It’s a good idea to develop your own library of generic terrain cover for use

in various situations.

Figure 12.4 illustrates some of the possible varieties of terrain cover. From left to

right in the top row you can see grass, sand, and an intermixed sand and grass

texture. In the bottom row from left to right is dirt, a muddy track, and eroded

wet sand.

Tiling

Unless you are going to create specific terrain cover textures for every square inch

of terrain, you will end up tiling your terrain cover at some point. All the issues

Terrain Modeling 449

Figure 12.4
Some example terrain textures.

brought up with tiling in other contexts apply here, such as matching texture

edges to get seamless transitions and ensuring lighting in the textures is both

appropriate and uniform. Additionally, you should ensure that there are no

patterns or marks in the texture that will stand out too much when the texture is

repeated.

In Figure 12.5 you can see a repeating light pattern that tends to overpower the

otherwise pleasing pastoral scene. (Okay, okay, it would be pastoral if a storm

wasn’t brewing beyond the, um . . .Mountains of Evil in the distance. But besides

that . . .)

The culprit in this case is the grass texture used, which is shown in Figure 12.6.

Notice the area of lighter grass, which is quite noticeably different from the

rest of the image. When repeated over and over across large swaths of terrain,

that feature detracts from the intended overall effect. We can enhance the

image to minimize the problem, perhaps with something like that shown in

Figure 12.7.

The result is dramatic and the difference is quite obvious, as you can see in

Figure 12.8. Now I confess that the texture could be better, but you have to

admit that it is light-years ahead of the first version, shown in Figures 12.5

and 12.6.

450 Chapter 12 n Terrains

Figure 12.5
A terrain with tiling artifacts.

Terrain Modeling 451

Figure 12.6
A texture with an undesirable feature.

Figure 12.7
A texture without the undesirable feature.

Creating Terrains
Okay, enough talk. Time for some action—let’s create some terrain. We’ll use the

Torque Engine and its internal Terrain Manager to create the terrain, and we’ll

employ the height-mapmethod using the in-game Terrain Editor. There is another

method, direct manipulation using the Terrain Editor, which we’ll use later

in Chapter 18.

The Height-Map Method

For this section, you will need to fire up the Gimp. You should be fairly familiar

with the basics by now, so I won’t hold your hand toomuch with respect to Gimp

operations.

No t e

The default size for a terrain in Torque (when the squareSize property in a MIS mission file is
set to 8) is 65,536 World Units (WU).

One WU in Torque is equal to one unit in most third-party map editors. A WU is equivalent to one
scaled inch (1 WU = 1 inch).

1. Start with a drawing of the contours to create the height-map image.

If you have a source for colored contour drawings for a section of land

drawn at full scale (1:1), such as shown in Figure 12.9, get one that suits your

needs. If not, you can use the images shown here, but in their colored

452 Chapter 12 n Terrains

Figure 12.8
The terrain with improved tiled texture.

format, which you will find at \3D2E\RESOURCES\CH12. Use the files

contour1.jpg and contour2.jpg as applicable.

2. Clip out the portion you want, and save it as a PNG image, as shown in

Figure 12.10.

3. Now you need to do a little noodling over scale and unit numbers.

In Torque each terrain square is made of two terrain triangles sized at

256 WU by 256 WU; as mentioned earlier, the default squareSize

property in a Torque mission file equals 8 by default. The terrain has

Creating Terrains 453

Figure 12.9
Contour map.

Figure 12.10
Cropped and resized contour map.

256 of these squares per side for a total of 65,536 world units (inches)

per side.

256 WU� 256 squares ¼ 65,536 WUðinchesÞ
If we convert the units, we get 5,461.3 feet, or 1,664.6 meters (1.034 miles,

or 1.6646 kilometers).

65, 536 inches=12 inches ¼ 5,461:33 feet

1 mile ¼ 5, 280 feet

5,461:33 feet=5,280 feet per mile ¼ 1:034 miles

1 mile ¼ 1,609 meters

1,664:6177 meters=1,609 meters per mile ¼ 1:035 miles

The value 8 (for squareSize) and the value 65,536 (for terrain size)

are not accidental; they are powers of 2. This works nicely with our

images as well as the software. The size for our height-map image

must be 256 pixels by 256 pixels. This means that when the image is

stretched to fit our terrain of 65,536 inches by 65,536 inches, each

texture pixel (texel) determines the horizontal distance of 256 inches

(or 6.5024 meters) of terrain. Because each terrain square is 256 WU,

each height-map texel is used to determine the height of one terrain

square.

256 pixels� 256 WU ðinchesÞ ¼ 65,536 WU ðinchesÞ
256 inches=39:37 inches per meter ¼ 6:5024 meters

6:5024 meters� 256 pixels ¼ 1,664:6144 meters ¼ 1:665 kilometers

¼ 1:035 miles

4. Based on the preceding calculations, we can get the equivalent area in the

image—crop the image just inside the lines of the box I created in the

Figure 12.10 drawing representing 1.035 square miles.

5. Resize the image to 256 pixels by 256 pixels.

6. Save the image as a PNG file to preserve the original colors for the contours.

In a moment you will paint over this contour image using gray color values

representing the heights of the contour lines. In this case the contours range

from an elevation of 410 feet to 485 feet. This information is available from

the source of the contour maps. The grayscale can be any sequence of gray

454 Chapter 12 n Terrains

RGB values within the 256 colors ranging from 0,0,0 (black) to 255,255,255

(white).

7. Establish your scale keeping in mind that it’s best to have some separation

between the indexed values so they can be easily seen as you paint the

contours. Examination reveals that there are 16 discrete elevations in the

contour range of 410 to 485. Divide the 256 colors for the grayscale range by

16, and you will get the values in Table 12.2, which starts at the color (0,0,0)

and works up.

Now that we have the values, we need to create what is commonly called an

indexed color palette. We need to make a different color entry for each index.

8. With your candidate contour image file open, make sure it is configured to

use an indexed color palette by choosing Image, Mode, Indexed. In the

dialog box that comes up, just make sure that the Generate optimum palette

radio button is checked, that the maximum number of colors is set to 256,

and that Color dithering is set to None.

9. Click OK to close the dialog box.

Creating Terrains 455

Table 12.2 Elevation RGB Values

Elevation RGB Index

485 240,240,240 1

480 224,224,224 2

475 208,208,208 3

470 192,192,192 4

465 176,176,176 5

460 160,160,160 6

455 144,144,144 7

450 128,128,128 8

445 112,112,112 9

440 96,96,96 10

435 80,80,80 11

430 64,64,64 12

425 48,48,48 13

420 32,32,32 14

415 16,16,16 15

410 0,0,0 16

10. Choose Dialogs, Palettes to get the Palettes dialog box up.

11. In the Palettes dialog box, click the New palette button, which is the second

button from the left at the bottom of the dialog box. This brings up the

Palette Editor.

12. Give your new palette a name by typing it in the edit box at the top of the

Palette Editor dialog box.

13. Click the Save button, the first button on the left at the bottom of the Palette

Editor. It’s a good idea to click this button after you create each new entry,

just in case.

Now, for the next little while we will be working in the Palette Editor. To start

out, we will create a new entry for our first index.

1. Open the Palette Editor Menu by clicking the menu button—that’s the

leftward-pointing arrow at the upper right-hand corner of the Palette

Editor, to the left of the Close button (the little x)—and then choosing

Palette Editor Menu.

2. From the Palette Editor Menu, choose New Color from FG. It doesn’t

matter what color is the FG (Foreground Color) at the moment, as long as it

contrasts with your background color. We just want to create a new entry.

After doing this, you will see a small box in the middle of the editor, at the

left end of a long thin rectangle. This is where our colors will be displayed for

each index. This smaller rectangle is your first index.

3. Click the first index, and drag and drop it immediately to the right of its

position. Another copy of the color will be deposited in the new spot. Keep

doing this until you have 16 copies. By happy coincidence, this is exactly

how many color entries will fit in that line. If you had made more than 16

copies, then a new line of entries would have been started. But you only need

16, so if you have too many entries, select one, and then click the trash can

icon at the bottom to delete it (or right-click it, and select Delete Color).

4. Click the first entry (far left), and click the Edit Color button (third from left

at bottom) or right-click the entry and choose Edit Color from the pop-up

menu. You will get the (by now) familiar Color dialog box, this time called

the Edit Palette Color dialog box.

456 Chapter 12 n Terrains

5. Enter the RGB (240,240,240) values from Table 12.2 for index 1 into the

appropriate edit boxes in the dialog box, and then click OK.

6. Repeat steps 1, 2, 3, and 4 for each of the other 15 indices in the table.

7. Now fill in your image following the contour lines as shown in Figure 12.11.

Use a combination of the Brush and Fill tools, at your discretion, to

complete the task.

Notice that in Figure 12.11 the grayscale value is the same at all the edges.

This is because we want the edges to match when the terrain repeats itself, if

it is tiled—and in this case that’s what we will be dealing with. The edges

could be different values; you would then just match them at the top and

bottom or left and right sides.

8. When you have finished the ‘‘paint-by-number’’ process, convert the image

to grayscale by choosing Image, Mode, Grayscale.

9. Save your image as a PNG file.

Creating Terrains 457

Figure 12.11
Contour map with grayscale values.

10. Flip the image around its X-axis—this flips the top with the bottom—by

choosing Image, Flip. You should get an image like that in Figure 12.12.

Make sure you save your work.

Notice the terrace effect in Figure 12.12. If you import this into Torque as is,

you will have a set of terraced, or stepped, surfaces. If this is what you want,

then you’re good to go. However, let’s go a bit further.

11. Make a copy of the image you just created and continue working now with

the copy.

12. Select the entire image.

13. Choose Filters, Blur, Gaussian Blur to smooth out the edges a bit. Use a

radius of about 7 for both horizontal and vertical, and then save your

changes to this new image as a PNG file. You should get an image much like

the one shown in Figure 12.13.

14. You don’t need to convert the image back to indexed mode after blurring,

because Torque will do the interpolation for you when you import the

image to create the terrain.

458 Chapter 12 n Terrains

Figure 12.12
Terraced height map.

T i p

It can be more difficult to locate your original contour features after smoothing with Gaussian
Blur. A quick work-around is to try reducing the radius or use the original image unblurred and
smooth the terrain in Torque using the Terrain Editor (covered later).

A more time-consuming technique (but much more accurate and rewarding) is to create the
terrain image at a much larger scale and reduce it to 256 by 256. For example, you might try
constructing the image at around 2,048 by 2,048 or 4,096 by 4,096; this means much more
painting time, but after reducing the image size again, the blending information is retained
(although somewhat smoothed) by the resize algorithms. The resulting terrain is much more
accurate than the Gaussian Blur process.

This last height-map image is the one you will work with to create the terrain.

Next, we will import these images into Torque.

15. Place the images in Torque’s \3D2E\creator\editor\heightscripts folder as a

PNG file. If the folder does not already exist, create it.

16. Run the Torque fps demo.

Creating Terrains 459

Figure 12.13
Blurred height map.

17. Press F11 to open the Mission Editor.

18. Choose File, New Mission.

19. Choose Window, Terrain Terraform Editor (as shown in Figure 12.14) to

open the Terrain Terraform Editor.

20. On the right side of the screen, in the General Settings area (see Figure 12.15),

set Min Terrain Height and Height Range in meters.

460 Chapter 12 n Terrains

Figure 12.14
World Editor Window menu with Terrain Terraform Editor checked.

Figure 12.15
Terrain Terraform Editor.

C au t i o n

The maximum elevation in the terrain we are modeling is to be used for Min Terrain Height. The
Min Terrain Height box is mislabeled in the Editor.

You will recall that the highest elevation is 485 feet; this translates to a Min

Terrain Height value of approximately 148 meters.

485 feet=3:281 feet per meter ¼ 147:8208 ð148Þ meters

Height Range represents the distance from our lowest to highest elevation. The

grayscale color values of our height-map image will be interpolated between

these values. We need to calculate the difference and multiply that by the ratio of

highest color number divided by total number of grayscale colors (256) and

convert to meters. Clear as mud?

485 feet� 410 feet ¼ 75 feet

240=256� 75 feet ¼ 70:3 feet ð240 is our highest color number in Table 12:2Þ
70:3 feet=3:281 feet per meter ¼ 21:4 ð21Þ meters

21. Now click the Operation box to roll out the Operation dialog box, as shown

in Figure 12.16.

22. Select Bitmap from this dialog box—this brings up a bitmap Open File

dialog box, as shown in Figure 12.17.

Creating Terrains 461

Figure 12.16
The Operation dialog box.

23. Highlight the image you want translated to a new terrain, and click the Load

button. You should find the height-map image you saved earlier in

\3D2E\creator\editor\heightscripts, from Gimp.

24. Click the Apply button in the panel at upper-right. You will see the terrain

change. To relight the scene, choose Edit, Relight Scene. There will be a

slight pause in input response while the relighting occurs. If it seems a little

drab with terrain cover textures, fret not! We will add some cover later in the

chapter.

25. In the lower-left of the screen the overhead map view of the terrain will

change to show the contours imported from the height-map image.

Notice that this image, as depicted in Figure 12.18, has the same orientation

as the original one before we flipped it around the X-axis in step 10 of this

list.

The white lines in the map show the terrain boundary, representing the

extents of your terrain before repeating. In the main 3D view, a green

translucent box illustrates this boundary, as you can see in Figure 12.19. The

terrain boundary is a fixed dimension—you can’t change it.

Figure 12.20 illustrates where to find the inner red box that represents the

mission area. You can change the extents of the mission area boundary by

using the Mission Editor.

462 Chapter 12 n Terrains

Figure 12.17
The Open File dialog box.

Creating Terrains 463

Figure 12.18
The overhead view.

Figure 12.19
The terrain boundary.

26. Choose File, Save As to save your mission with your own unique name. You

should save your new file in the directory \3D2E\fps\data\missions.

When you save your mission, the terrain data is also saved as a TER file in the

\3D2E\fps\data\missions directory. If you want, you can also import previously

saved TER files rather than re-creating height maps.

No t e

Reference to the newly created terrain file is stored in the mission file in a TerrainBlock that
needs to be named "Terrain":

new TerrainBlock(Terrain) {
rotation = "1 0 0 0";
scale = "1 1 1";
detailTexture = "~/data/terrains/details/detail1";
terrainFile = "./myterrain.ter";
squareSize = "8";
locked = "true";
position = "-1024 -1024 0";

};

464 Chapter 12 n Terrains

Figure 12.20
The mission area.

E s t a b l i s h i n g T e r r a i n S i z e s

The units displayed in the Mission Editor Map (x,y,w,h) represent the (x,y) distance of the upper-
left corner of the mission area (in red) from the image center and the (w,h) width and height of
the area in terrain texture units. Note that the position parameter in the mission file also uses the
terrain texture units to position one terrain repetition. There are 32 repetitions of the terrain
textures (don’t confuse these with the height-map images), with each terrain texture image being
256 pixels by 256 pixels.

32 reps� 256 pixels ¼ 2,048 texture units

65,536 WU=2,048 texture units ¼ 32 WU per texel

This information will be useful when you create terrain textures. Convert these values to inches by
multiplying by 32. (The total area represented ranges from �1,024 to +1,024 when the terrain
squareSize=8 for a total 2,048. And 2,048� 32 = 65,536.)

If your contour area needs to be other than 1.034 miles, you can change the terrain square-
Size. This will determine the area available before the terrain repeats. As you can see in Table 12.3,
you must adjust the squareSize parameter in powers of 2.

Changing the terrain squareSize in the mission file also affects the control in the

Terrain Editor and terrain material painter; you will have more control at smaller

sizes. Be sure to change the position values of the terrain to correspond to the

worldSize also. For example, if you want more control of the terrain editing, set

the squareSize to 4 and the position to �512 �512 0:

new TerrainBlock(Terrain) {
rotation = "1 0 0 0";
scale = "1 1 1";
detailTexture = "~/data/terrains/details/detail1";
terrainFile = "./myterrain.ter";
squareSize = "4";
locked = "true";
position = "-512 -512 0";

};

Creating Terrains 465

Table 12.3 Terrain Sizes

Terrain
Miles

squareSize
Meters Texels þ�,total Texels� 32 = WU Feet

32 þ�4,096 = 8192 8,192� 32 = 262,144 21,845.33 4.137 6,658.13

16 þ�2,048 = 4,096 4,096� 32 = 131,072 10,922.66 2.068 3,329.06

8 þ�1,024 = 2,048 2,048� 32 = 65,536 5,461.33 1.034 1,664.53

4 þ�512 = 1,024 1,024� 32 = 32,768 2,730.66 0.517 832.26

2 þ�256 = 512 512� 32 = 16,384 1,365.33 0.258 416.13

Applying Terrain Cover

Terrain textures must be PNG format images and must be 256 pixels by 256

pixels in size. These textures should be placed in a subdirectory under

\3D2E\fps\data\terrains; they will also work directly in the terrains folder.

Terrain textures are stretched to 2,048 WU if the terrain squareSize is 8. This

means there are 32 repetitions of a terrain texture across one terrain width or

depth (1 terrain rep). This also means there are 8 WU per texture pixel (texel).

If the terrain squareSize is set to 4 in the mission file, there will still be 32 terrain

texture repetitions, but each repetition will only cover 1,024 WU of the terrain.

And although not a requirement, terrain cover textures will look best when they are

created to be tiled, as discussed earlier; opposite edges should match so that when

they are tiled you won’t be able to see the edges. The images in Figures 12.21 and

12.22 are test textures that are 256 pixels by 256 pixels. The checkerboard pattern in

Figure 12.21 has each white or black section sized at 128 pixels by 128 pixels.

466 Chapter 12 n Terrains

Figure 12.21
Checkerboard texture.

65,536 WU=32 texture reps ¼ 2,048 WU per texture rep

2,048 WU=256 pixels ¼ 8 WU per texel

The grid texture in Figure 12.22 has white lines every 32 pixels and red lines at

128 pixels. You can use these images to calculate the total terrain size with respect

to the dimensions of objects created in a map editor as well as to calculate the

terrain square size with respect to terrain textures. In addition, you can use the

image in Figure 12.22 to create sight lines when manually adjusting terrain

heights.

To paint the terrain cover, follow these steps:

1. Place these images in a subdirectory under \3D2E\demo\data\terrains.

2. Use the Run fps Demo shortcut to launch Torque.

3. Select the mission you created in the previous section.

4. Press the F8 function key to switch to ‘‘fly’’ mode.

5. Fly up above the terrain a bit using the arrow keys to move and the mouse to

aim and look down. You can use F7 to switch out of fly mode when you

want.

Creating Terrains 467

Figure 12.22
Grid texture.

6. Press F11 to open the World and Terrain Editor.

7. Choose Window, Terrain Texture Painter, as shown in Figure 12.23.

You will now see the Material Selection dialog box (as shown in Figure 12.24)

to the right. You can highlight the material you want to paint with, or you can

change or add new textures here.

468 Chapter 12 n Terrains

Figure 12.23
World Editor Window menu with Terrain Texture Painter checked.

Figure 12.24
Material Selection dialog box.

8. To add a new material, click an Add or Change button, and you will get a

new texture image Open File dialog box, as shown in Figure 12.25.

9. Browse your way to \3D2E\demo\data\terrains\highplains and choose a

texture image file that appeals to you.

10. Highlight the file you want and click the Load button. The image in that file

is now in your selection set.

11. From the Action pull-down menu, make sure Paint Material is checked as

shown in Figure 12.26.

12. Now go up to the Brush pull-downmenu, and select your desired brush size,

as depicted in Figure 12.27.

Remember that we are using the default terrain squareSize set to 8. Table 12.4

lists the area of the terrain that is influenced based on brush size.

Figure 12.28 depicts a texture applied with the brush size set to 1, and Figure 12.29

is a depiction of the corresponding terrain grid geometry.

You can see the 32 by 32 texel influence area for one brush that corresponds to

256 WU for the terrain squares shown in the grid view.

So take your trusty Terrain Paint Brush and go nuts!

Creating Terrains 469

Figure 12.25
Image Open File dialog box.

470 Chapter 12 n Terrains

Figure 12.26
Paint Material in Action menu.

Figure 12.27
Brush options in Brush menu.

Table 12.4 Brush Sizes

Brush Size Texels World Units (texels� squareSize)

1 1� 32 = 32 32� 8 = 256

3 3� 32 = 96 96� 8 = 768

5 5� 32 = 160 160� 8 = 1,280

9 9� 32 = 288 288� 8 = 2,304

15 15� 32 = 480 480� 8 = 3,840

25 25� 32 = 800 800� 8 = 6,400

Creating Terrains 471

Figure 12.28
Painting terrain with a brush size set to 1.

Figure 12.29
Depiction of terrain grid with a brush size set to 1.

Moving Right Along
So, now we understand why terrains need to be modeled and what our options

are for obtaining real-world terrain data. If we aren’t modeling a real location,

we’ve seen how we can create our own imaginary terrain using the Gimp, so that

we can satisfy the needs of our game. We also looked at terrain cover and how to

create images for use as terrain cover.

Furthermore, we learned about some of the visual anomalies, like terrain tiling

seams, which might make our terrains less pleasing, and how we can go about

fixing those issues.

Earlier in the chapter Figure 12.8 showed an example of a finished terrain, with

some hills in the distance and terrain cover applied.

In the next chapter we’ll learn a pair of new tools, MilkShape and UVMapper.

472 Chapter 12 n Terrains

Introduction to
Modeling with
MilkShape

In this and the following chapters, we will be delving into the world of low-poly

modeling. We’ll talk about techniques and methods that can be applied to other

tools, such as the expensive 3D Max or Maya, but the practical focus will be

geared toward using MilkShape, UVMapper, and other low-cost tools that are

included on the accompanying CD.

MilkShape 3D
In Chapter 9 we created a skin for a simple soup can—remember that? Well, in

this chapter we’re going to create the model and skin it with the texture you

created earlier, only this time we will go beyond just the simple soup can. But

first, let’s start at the beginning and learn a bit about MilkShape.

MilkShape 3D is a great low-cost low-poly 3D modeling tool created by a fellow

named Mete Ciragan. Like most successful shareware applications it has evolved

over the years, as Mete added features requested by his user community. He also

added the capability for users to create their own plug-ins to provide additional

features and import-export filters.

MilkShape is not as complex as the more expensive tools, but that does not in any

way imply that it is not a capable program, especially in the low-poly world that

computer games inhabit. In fact, the stripped-down nature of MilkShape certainly

makes it easier to learn than most of the ‘‘big boys.’’

473

chapter 13

Installing MilkShape 3D

If you want to install only MilkShape 3D from the enclosed CD, do the following:

1. Browse to your CD in the \3D2E\TOOLS\MILKSHAPE 3D directory.

(By the way, MS3D is the abbreviated form for MilkShape 3D. You might

encounter it from time to time.)

2. Locate the ms3d179.zip file, and double-click it to unzip it. The setup

program should automatically run.

3. Click the Next button for the Welcome screen.

4. Follow the various screens, and take the default options for each one, unless

you know you have a specific reason to do otherwise.

The MilkShape 3D GUI

If you look at Figure 13.1, you can readily see that the MilkShape working

environment, or window, is divided into three areas: the menu, the views, and the

toolbox.

474 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.1
MilkShape 3D.

T i p

If you only have three views in your window when you first run MilkShape, choose Window,
Viewports, 4 Window, and you should get something close to what you see in Figure 13.1.

In Figure 13.1 there are four places where the model can be seen. Each of these is what
MilkShape calls a window. We will call them frames in this book, because as you probably already
know, MilkShape itself is in a window.

A view is the angle or direction at which you look at an object. For example, if you stand in front
of an object and look at it, you are seeing the Front view. From above, it is the Top view.

A viewport is the little frame inside the MilkShape window in which a view of a model is presented.

Thus in Figure 13.1 the 3D view is in the 3D viewport, located in the lower-right frame in the
MilkShape window.

You’ll notice in Figure 13.1 that I’ve labeled the different views. This is the way

you should use your views for models that you create for Torque. Other appli-

cations and games may require your models to be oriented differently.

Three of the views are wire-frame–only views; they enable you to look at your

model from directly above, directly in front, and the right-hand side. The fourth

view is a 3D view in which you can rotate your model various ways and view it as

a wire-frame, shaded, or fully textured model with lighting cues.

Figure 13.2 shows the tools available in the toolbox section. Although some tools

for different operations are only available in the menus, most of the time you will

be working with the tools in the toolbox.

Navigating in Views

In the wire-frame views, you can move the view around by holding down the Ctrl

key and clicking and dragging in the window.

If you hold down the Shift key and drag the mouse while in Move mode, you can

zoom in or out. Be careful though—if you are in Select mode (from the Model

tab), then drag-move won’t work. With practice you can master this drag-move

and it will become quite useful. In all other modes the shift-drag action will

always zoom the view in or out with no alternation.

If you have a wheel mouse, then the wheel can be used to zoom in or out. You will

have to click in the view to get focus into the view before the zoom will work.

The 3D view allows the viewmovement in the sameways as the other views, except

the wheel mouse zoom works backward.

MilkShape 3D 475

View Scale and Orientation

When you are viewing an object from the front inMilkShape, the Y-axis is positive

going up, the X-axis is positive going to the right, and the Z-axis is positive going

to the front. This makes it a right-handed coordinate system.

If you look at the Right Side view (the view at the upper right of the four), you

will see in the center the axis ‘‘bugs’’ for the Y- and Z-axes. Although it is not

visible in the black-and-white pictures in this book, the Y-axis line is cyan, and

the Z-axis line is magenta. The place where these two lines meet is the (0,0,0)

coordinate in object space. Hold your mouse cursor over the first grid line above

the (0,0,0) location, and look down to the lower-left corner of the MilkShape

window while keeping your cursor over that grid line. You should see the Y-axis

value at about 20.0 or so (see Figure 13.3. If you see something like 20.005 or

19.885, that’s good enough. If you don’t see 20.0 or so, zoom the view in or out

476 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.2
The toolbox contents.

until you do. Adjust your other two wire-frame views to the same scale. If you

position your cursor one grid line directly above the (0,0,0) point on the Front

view (upper left), you should see the 20.0 or so also for the Y value, but for the

Top view, the same relative positioning will be affected in the Z-axis.

Figure 13.4 contains various notations to help you understand the coordinate

display system. In this figure I’ve left in MilkShape’s viewport labels above each

viewport’s frame in order to illustrate the variation that emerges with the Torque

Right Side view being seen in MilkShape’s Left viewport.

The whole point of this little exercise is to expose you to the coordinate display

and to ensure that your layout matches the one we’ll be working with here. Of

course, at times when you zoom in and out this might change, but now you have

a method of recalibrating when necessary.

MilkShape 3D 477

Figure 13.3
Checking the zoom in the Right Side view.

The Soup Can Revisited

Now that you have a bit of a grasp of what you are looking at in the GUI and how

to move your views around to look at your model, we’ll move on to actually

creating a quickmodel to get your feet wet. There’s nothing like doing for learning!

Creating the Basic Shape

A closed can is a cylinder. A cylinder is what we call a primitive shape, like a

sphere or a cube. The primitives are added together in various ways to build up

more complex shapes.

1. Choose the Model tab in the toolbox.

2. Click Cylinder.

3. Position your cursor in the Right Side view about three grid lines above

(0,0,0) and one grid line to the left. Click and drag down and to the right

until your object looks like Figure 13.5.

4. Choose the Groups tab. You will see a single group named cylinder01

(it may be a higher number if you made other cylinders and deleted them—

MilkShape just adds 1 to the number at the end during its auto-naming).

478 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.4
Torque-oriented object in the MilkShape viewports.

T i p

You may recall encountering the term mesh way back in Chapter 3. In MilkShape the word group
is actually an analogue for the word mesh. They mean essentially the same thing.

5. Click the group name to highlight it, if it isn’t already, and then type can in

the box to the right of the Rename button where it says ‘‘Cylinder01’’.

6. Click Rename, and the group will now be called ‘‘can’’.

7. Choose the Materials tab.

8. Click New.

9. Type label into the Materials Rename box.

10. Click Rename.

11. In the Material frame of the Materials tab you will see two buttons labeled

‘‘<none>’’. These are the texture buttons. The top one assigns the standard

texture, and the bottom one enables you to assign a texture whose alpha

channel you want to use for this material.

MilkShape 3D 479

Figure 13.5
Making a cylinder.

12. Click the top texture button. You will get a file dialog box.

13. Browse your way to \3D2E\RESOURCES\CH9, and double-click the can.jpg

file.

14. Now choose the Groups tab again, and make sure your cylinder’s group is

selected in the list. If your can is not already highlighted in red, click Select.

You will see your can highlighted in red in the three wire-frame views.

15. While your can is still selected, switch back to the Materials tab, choose your

new material in the list, and click Assign.

T i p

If your screen resolution is set to 800� 600 or less, you will not be able to see the entire Assign
or Select By buttons. The top one-quarter or so of those buttons is just visible on the lower-right
corner. Assign is located below the Rename button, and Select By is located below the edit box
that is to the right of the Rename button.

16. Right-click in the 3D view, and choose Textured. Your can should appear

with the texture wrapped around it, like in Figure 13.6. You might have to

turn off Wireframe overlay mode by right-clicking on the 3D view and

choosing the Wireframe overlay item to toggle it off.

17. Save your work so far as mynewcan.ms3d somewhere, by choosing File,

Save As.

480 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.6
Assigned texture.

18. In preparation for UV unwrapping the can object, choose File, Export,

Wavefront Obj, and export the file to \3D2E\RESOURCES\CH9

\mynewcan.obj.

Okay, so we have the soup can made, and we’ve assigned the texture to it. The

reason the texture doesn’t fit right yet is because the texture coordinates haven’t

been mapped to the object yet. That’s our next step.

UV Unwrapping the Can

In Chapter 9 we encountered some of the theory and process behind UV

unwrapping and mapping. In a later section in this chapter we’ll go into more

theory, as well as more detail about the UVMapper tool. For our purposes at the

moment, we just want to get the texture skin mapped correctly onto the can.

Whether the skins are created before the object or the object is created first will

probably change from project to project or even from phase to phase within a

project. At this point in the book, we already have a skin—can.jpg—so we want

to make sure the can will unwrap to match the skin. This isn’t a problem in this

case. It may be a problem with other projects though, so be aware of that

possibility.

1. Using Windows Explorer, browse your way to \3D2E\\TOOLS\UVMAP-

PER, then locate and launch UVMapper.exe.

2. Maximize the window when it opens.

3. Find the file you exported, \3D2E\RESOURCES\CH9\mynewcan.obj, and

open it.

4. You will see an alert listing some statistics about the object. Click OK.

5. You will see a bunch of triangles fill your window. Ignore them for the

moment.

6. Choose Edit, New UV Map, Cylindrical Cap. You will get a Cylindrical Cap

Mapping dialog box.

7. Click OK. You will then get a layout of the can’s triangles (like that in

Figure 13.7), with a rectangular block of triangles across the middle and a

circle of triangles at both top and bottom.

8. Choose File, Save Model. The OBJ Export Options dialog box then appears.

MilkShape 3D 481

9. Set the options boxes as shown in Table 13.1, and click OK.

10. Replace the OBJ file \3D2E\RESOURCES\CH9\mynewcan.obj by saving

over it.

11. Choose File, Save Texture Map. The BMP Export Options dialog box

appears.

12. Set the options to the values shown in Table 13.2.

13. Save to the file name \3D2E\RESOURCES\CH9\mynewcan.bmp. This is the

texture map, or UV mapping template, for your can.

14. Switch back to MilkShape.

15. Ensure that the can group is selected by choosing the Groups tab, and

clicking on the can group in the list, then clicking the Select button.

16. Click the Delete button. You will replace this object with the one you

exported from UVMapper.

17. Choose File, Import, Wavefront Obj, and import the mynewcan.obj file you

saved from UVMapper.

482 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.7
Unwrapping the can in UVMapper.

18. On the Groups tab, click on your new object (mynewcan.obj), then click the

Select button. You can also rename it if you like.

19. With the new object selected, choose the Materials tab.

C au t i o n

After importing the .obj file from UVMapper into MilkShape, you might discover another copy of
the material in the Materials list. If so, delete the second entry. This appears to be a minor bug in
UVMapper. The second copy of the material doesn’t have any textures assigned to it. If you only
have one material, and it has the proper texture assigned to it, then leave it alone.

20. Choose the label material, and then click Assign.

21. Your texture should appear on the can in the 3D view, wrapped correctly.

MilkShape 3D 483

Table 13.2 UVMapper BMP Export Options Values

Value Option

512 Bitmap Size---Width

512 Bitmap Size---Height

clear Flip Texture Map Vertically

clear Flip Texture Map Horizontally

clear Exclude Hidden Facets

Table 13.1 UVMapper OBJ Export Options Values

Value Option

clear Export As Single Group

set Export Normals

set Export UV Coordinates

clear Flip Texture (UV) Coordinates Vertically

clear Flip Texture (UV) Coordinates Horizontally

clear Reverse Winding Order

clear Invert Normals

clear Swap Coordinates Y and Z

set Export Materials

set Export UVMapper Regions

clear Export Using Rotation Settings

clear Don’t Export Linefeeds (Mac compatible)

clear Don’t Compress Texture Coordinates

22. If no texture appears, click in the 3D window to force an update.

23. If there is still no texture, make sure that you have the 3D window still set to

Textured, by right-clicking in the 3D window and checking the menu. Save

your work now.

Enhancing the Soup Can Model

Have a seat and stew on that for a while. When you are done, we’ll carry on and

start hammering at the soup can and improve the model.

How about we open the can up? The can model has a top and a bottom. We want

to leave the bottom where it is and flip the top lid up.

First we need to separate the lid from the can.

1. Choose the Model tab, and click Select in the Tools area.

2. In the Select Options area, click Vertex, and select all the vertices at the

bottom of the can, as shown in Figure 13.8. Use either the Side view or

the Front view, and make sure that Ignore Backfaces is not checked.

484 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.8
Selecting the bottom vertices.

3. From the menu bar, choose Edit, Hide Selection. The dots of the vertices will

disappear. This means that none of the vertices for the bottom face are

selectable.

4. Now in the Model tab, in the Select Options area, click Face. Make sure that

By Vertex is checked.

5. In the Top view, select the vertex in the center of the can, as in Figure 13.9.

Because you had hidden the bottom vertices, only the single center vertex for

the top of the can has been selected. And because you are actually selecting

faces by vertex, then all the top lid faces—and only those faces—have been

selected.

6. In the Groups tab, click Regroup. This will create a new mesh with only the

faces from the top of the can. The mesh will be named ‘‘Regroup01’’.

Rename this mesh to ‘‘lid’’ in the same manner that you did earlier when

you renamed the cylinder mesh to ‘‘can’’.

7. Switch back to the Model tab. Your lid mesh should still be selected.

MilkShape 3D 485

Figure 13.9
Selecting the center vertex.

8. Click the Move button, and then click and drag in the Side view to move the

lid up and to one side from the rest of the can.

9. Click the Rotate button, and then click and drag in the Side view to rotate

the lid as if you were bending the lid back (see Figure 13.10).

10. If necessary, repeat step 8 to position the lid properly. You might have to

adjust it in one of the other views, depending on how you initially moved

the lid.

11. Choose the Groups tab, and click Regroup. The lid faces will now be part of

their own group.

12. Choose Edit, Duplicate Selection. Another copy of the lid will be made in

exactly the same location as the original.

13. From the menu bar, choose Face, Reverse Vertex Order. This will invert the

normals of the lid’s faces, making it viewable from the other direction. You

486 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.10
The can with lid opened.

will recall that the normal of a face is, in the simplest terms, the direction

that a face is facing.

14. On the Groups tab, add the original lid to your selection by clicking on the

first lid group and then clicking the Select button in the group area.

15. Select Vertex, Weld Together. The original lid is viewable from one side,

and the copy is viewable from the other. They now share the exact same

vertices.

If you rotate your can in the 3D view, you’ll see that your lid now has the lid

part of the skin on both sides. You’ll also notice that the inside of the can is

black. This is because no faces are normalized to the interior, just as the lid at

first did not have any faces normalized on the side.

T i p

You may be wondering why you didn’t have to assign a material to the new faces you created
with the Duplicate command. What happened is that when you grouped the original faces and the
new faces together, the material that was assigned to the original lid faces was automatically
assigned to the new group.

16. Repeat the preceding steps, but this time create, for the can body, a set of

faces that are normalized to the interior instead of the exterior, and then

group them together. You can use your UV mapping and the Gimp skills to

create a more realistic metallic interior to the can, instead of just repeating

the exterior skin on the inside.

17. Save your work—you never know when a nice can of soup may be needed

for dipping your towel in!

So, here we are. You’ve made a model of an object, using a couple of shape

primitives. And you’ve learned how to make double-sided textures, rotate and

move meshes (or groups), and assign skins. Feel free to explore your new cap-

abilities. Poke around and try out the other primitives.

Menus

MilkShape can perform many more features and operations than what we’ve

just gone over. In later chapters you’ll learn how to make more difficult and

MilkShape 3D 487

challenging shapes, like player-characters, vehicles, and weapons. In this chapter

we’ll take a look at the program itself in more detail.

Most but not all the menus have shortcuts assigned to the keys. Typically, the

ones that are used the most do have shortcuts. If you want to add your own

shortcut, you can use a plug-in to do that. We’ll cover that when we discuss the

Tools menu.

File

As in most Windows programs, operations in the File menu (see Figure 13.11)

relate either to the creation and saving of files or to making global alterations to

the current file’s properties or contents. See Table 13.3 for more detail.

Edit

The MilkShape Edit menu (see Figure 13.12) contains commands that assist the

user when modifying models. It does not have Cut, Copy, or Paste but does offer

commands in a similar vein for duplicating, hiding, and selecting objects. See

Table 13.4 for more detail.

Vertex

You can perform a number of operations on vertices in a model. They are

available through the Vertex menu (see Figure 13.13). In most cases you will need

488 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.11
The File menu.

MilkShape 3D 489

Figure 13.12
The Edit menu.

Table 13.3 MilkShape File Menu

Command Description

New Creates a new blank workspace. If the current workspace is not empty, then the user is
prompted to save changes or continue without saving. Only one workspace can be open
at a time.

Open Opens an existing MS3D-formatted file using the standard Open dialog box.

Save Saves the current workspace as an MS3D file, providing that the current workspace has
a name. If the workspace is unnamed, then the command will behave like Save As.

Save As Requires the user to specify a new file name under which to save the workspace
contents.

Merge Merges together two MS3D documents: the current workspace and another workspace
selected from a file.

Import Presents a submenu of file import plug-ins. This command works like the Open
command, once an import plug-in is selected, except that some plug-ins offer import
options in a user dialog box.

Export Presents a submenu of file export plug-ins. This command works like the Open
command, once an import plug-in is selected, except that some plug-ins offer additional
export-specific options in a user dialog box.

Preferences Presents the Preferences dialog box. This allows the user to set definable global
application attributes and behaviors.

Recent Files Presents a list of the four most recently used files. Choosing from this list allows the
user to quickly open recently used files without having to repeatedly browse around the
hard drive.

Exit Exits the MilkShape program. The user is prompted to save changes if there are any that
haven’t been saved.

490 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.4 MilkShape Edit Menu

Command Description

Undo Reverts the workspace back to the state it was in before the last user operation.

Redo Reverts the workspace back to the state it was in before the Undo operation.

Duplicate Selection Duplicates all selected objects in place. This command selects the new duplicates
and deselects the previously selected objects.

Delete Selection Deletes the currently selected objects.

Delete All Deletes all objects in the workspace regardless of their selection state.

Select All Selects al objects in the workspace.

Select None Deselects all objects in the workspace.

Select Invert Deselects all objects that were selected, and selects all unselected objects.

Hide Selection Hides the selected object from view. You can also do this to groups using the Group
tab in the toolbox.

Unhide All All objects in the workspace are shown.

Refresh Textures Reloads all textures used in materials from disk.

Figure 13.13
The Vertex menu.

to ensure that you’ve selected only vertices in a model or at least have the

selection mode set to Vertex. See Table 13.5 for more detail.

Face

The Face menu (see Figure 13.14) provides commands for manipulating triangles

and faces in the workspace. See Table 13.6 for more detail.

MilkShape 3D 491

Table 13.5 MilkShape Vertex Menu

Command Description

Snap Together Snaps all the selected vertices together. The middle point between all selected
vertices becomes the new location for the vertices.

Snap To Grid Moves all selected vertices to be in line with the smallest grid X, Y, and Z
position (to see the smallest grid positions, zoom all the way in). The grid size
can be changed using the File, Preferences menu.

Weld Together Creates one vertex at a precise point where several vertices exist. Only selected
vertices are welded together. This is the way you would join a seam of two or
more abutting faces.

Unweld Splits each selected vertex into multiple vertices. The number of vertices
created depends on the number of faces the original individual vertices were
bound to. For example, a vertex with three faces attached will be split into
three vertices.

Unweld Radial Is the same as Unweld but will also shift the unwelded vertices away from each
other in a circular pattern. The vertices will move from the origin at which they
were unwelded by half the distance from the origin to the nearest edge.

Divide Edge Divides a face between two selected vertices into two faces. The procedure will
only work with two vertices selected. This has no effect on vertices without any
faces in common.

Flatten Presents a submenu for the user to align all selected vertices to the same point
on the X, Y, or Z plane. This is similar to Snap Together, but it works on only one
axis instead of all three.

Mirror Front <--> Back Mirrors, or flips, the currently selected object along the Z-axis.

Mirror Left <--> Right Mirrors, or flips, the currently selected object along the X-axis.

Mirror Top <--> Bottom Mirrors, or flips, the currently selected object along the Y-axis.

Spherify Calculates a bounding sphere, and attempts to place the selected vertices on
the surface of the sphere. It can be constrained in all three dimensions, and the
bounds can be manually set.

Extrude Edges Allows the extrusion of polygon edges.

Manual Edit Allows the exact placement of one selected vertex with floating point accuracy
in the X, Y, and Z planes.

Snap to Plane Snaps all selected vertices (four or more, typically) to a common plane, which is
the calculated average plane of all planes of the selected vertices.

Animate

The Animate menu (see Figure 13.15) is used to manipulate animation frames in

the model via the Keyframer. See Table 13.7 for more detail.

492 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.14
The Face menu.

Table 13.6 MilkShape Face Menu

Command Description

Reverse Vertex Order Changes the order of the vertex winding, which changes (negates) the normal
of the face. This will turn a face inside or outside depending on its current
vertex order. Counterclockwise vertex winding creates an outward face on an
object.

Subdivide 3 Divides each selected face by three, creating three faces out of one.

Subdivide 4 Divides each selected face by four, creating four faces out of one.

Turn Edge Operates on two triangles with a common edge. The common edge is removed,
and a new edge is created between the two vertices (one from each triangle)
that weren’t previously joined by an edge.

Face To Front Is used on selected faces to change all vertex orders to counterclockwise,
outward-facing vertex ordering, or winding.

Create Face Simplifies automatic creation of a face using three vertices (different from the
Faces tool).

Smooth All Corrects the normals of all faces after creation of a model, so that the normal
angles change evenly from face to face.

Hide Faces Hides faces of perspective views using a dialog box.

Subdivide 2 Divides each selected face by two, creating two faces out of one.

Tools

The Tools menu (see Figure 13.16) provides access to both built-in tools and user

plug-in tools. The functions available are not the same as those available in the

toolbox. This is a potential source of confusion. See Table 13.8 for more detail

about the Tools menu.

MilkShape 3D 493

Figure 13.15
The Animate menu.

Table 13.7 MilkShape Animate Menu

Command Description

Operate On Selected
Joints Only

When this menu item is toggled on (checked), then only the joints that are
currently selected will have their pose data stored for the current keyframe.

Set Keyframe This stores the pose of the skeleton to the current keyframe (whichever
keyframe that’s in the keyframe number box).

Delete Keyframe This removes the stored skeleton pose from the current keyframe.

Copy Keyframes This copies the skeleton pose from the current keyframe. In order for the copy
action to perform correctly, the user must first select the skeleton in the
keyframe to be copied from.

Paste Keyframes This pastes the copied skeleton pose to the current keyframe. After the
keyframe has been pasted, you need to immediately set the keyframe in order
to preserve the skeleton pose.

Remove All Keyframes This removes all stored skeleton poses at all keyframes in the animation
timeline. This is effectively the same as deleting the animation.

Rotate All This rotates all stored skeleton poses at all keyframes in the animation timeline.

SMD Adjust Keys This adjusts the keys in SMD type of animations.

Mi l k S h a p e P l u g - I n s

There is quite a large list of MilkShape plug-ins that extend MilkShape’s capabilities. For infor-
mation about where to find them to download, tutorials about how to use them, and the names
of the individual creators, see Appendix C, ‘‘Shareware and Freeware Tools.’’ The plug-ins that
were known at the time of this writing are listed; some plug-ins are import or export filters for

494 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.16
The Tools menu.

different file formats and aren’t included here, except for the Torque DTSPlus Exporter, because we
use it in this book (the standard Torque Game Engine DTS Exporter, and the Wavefront OBJ
Importer and Exporter are built into MilkShape).

n ms2dtsExporterPlus. This plug-in exports models, animations, and materials to DTS model
format for use with the Torque Engine. This plug-in appears in the File, Export menu.

n ms2DTSExporterPlus. This is an advanced plug-in for exporting models, animations, and
materials to DTS model format for use with the Torque Engine. This plug-in appears in the
File, Export menu. It supports sequence file exporting, texture animations, trigger frames,
and more.

n msSelectionEditor. This plug-in edits the selection from a 3D view. There are a lot of
options, and you can read some detailed information about it here.

n msTimer. This plug-in lets you time how long you’ve been working on a certain model.

n msEdgeExtrude. This plug-in lets you extrude edges in addition to faces.

n msJointTool. This plug-in allows you to add joints in the middle of the hierarchy, unlink a
joint from a hierarchy, and assign vertices to the closest joint (some kind of ‘‘Assign Mesh to
Skeleton’’ tool).

n msSnap. This plug-in snaps not only to 1.0, but it also snaps joints.

MilkShape 3D 495

Table 13.8 MilkShape Tools Menu

Command Description

Half-Life This command contains several options used to create and save Half-Life
models.

Quake III Arena This command saves a Quake III control file to the directory you specify in
the Save As dialog box.

Unreal Tournament This command contains options for creating male and female skeletons
using the default Unreal Tournament skeleton configurations.

Decompile Genesis3D ACT This command allows you to decompile an ACT model used by the
Genesis3D engine.

Compile Quake1 MDL This command will compile a Quake 1 MDL file, used in the Quake 1 engine.

Show Model Statistics This command brings up a statistics window showing useful statistics, such
as the number of faces and vertices in the workspace.

(assorted plug-ins) The list of plug-in tools available is user-configurable using the Shortcut and
Plug-In Manager. Not all plug-ins are distributed with MilkShape. See the
MilkShape sidebar for descriptions of currently available plug-ins. To get the
most up-to-date information about plug-ins, visit chUmbaLum sOft’s Web
site: http://www.swissquake.ch/chumbalum-soft.

n msToolArray. This plug-in duplicates objects and then places the duplicates in 3D space
according to user specifications.

n msVertexPlane. This plug-in is similar to the Vertex, Flatten command, except that it snaps
selected vertices to a plane instead of a single point.

n msToolFatBoy. This plug-in will make your model fatter or thinner. This is useful for
tweaking player and monster characters.

n msOperationMirrorAll. This plug-in will mirror everything about your model over the
selected plane: bones, mesh, animation---everything.

n msToolReverseAnimation. This plug-in will reverse the order of the keyframes in what-
ever animation you have loaded.

n msToolScaleAll. This plug-in applies scale to all objects in the workspace at once.

n msSelPolyCount. This plug-in shows the selected polygon, vertex, and unique vertex
counts, as well as how many polygons there are per group.

n msBridge. This plug-in creates a mesh connecting to previously independent meshes or
groups.

n msTerGen. This plug-in can generate random terrains or import a bitmap file to use as a
height map.

n msTextGen. This plug-in generates 3D objects in the form of text.

n msModelInfo. This plug-in provides more detailed information about a model than the
Show Model Statistics command.

n msTIleTextureMapper. This plug-in generates texture coordinates to geometry for tile
textures (also known as seamless textures).

n msLathe. This plug-in takes flat geometry and turns it around the X-axis to build a 3D
model.

You can install plug-ins by simply copying them to the MilkShape directory and then launching
MilkShape. They will then appear under the Tools menu beneath Show Model Statistics.

Window

The Window menu (see Figure 13.17 provides commands that determine what

information is available in the MilkShape window and how it is displayed. See

Table 13.9 for more detail.

496 Chapter 13 n Introduction to Modeling with MilkShape

The Toolbox

Way back near the start of this chapter, in Figure 13.2, is a depiction of the

contents of the various tabs in the toolbox. In this section here we will dig deeper

into the capabilities in those tabs. Table 13.10 provides a brief summary of each

toolbox tab’s functions.

MilkShape 3D 497

Figure 13.17
The Window menu.

Table 13.9 MilkShape Window Menu

Command Description

Viewports This command presents a submenu that allows you to pick an alternative
viewport layout. The four-pane layout with three 2D views and one
Perspective view is the default.

Control Panel This command allows the user to set whether the toolbox frames appear
on the left or right side of the main window. The right side is the default.

Texture Coordinate Editor This is for adjusting where textures appear on the model. Although
useful, it is not as powerful or flexible as using a dedicated UV
Unwrapping or Mapping tool like UVMapper.

Show Message Window This option shows a script output window that holds the results of
compiling various types of models for specific games.

Show Viewport Caption This command shows details about the viewport it appears above. From
left to right, the details are the view, the field of view, the near clipping
plane, and the far clipping plane.

Show Keyframer The Keyframer is the animation box along the bottom of the main
window. It is used to create keyframe positions of bones and joints in a
skeleton for animation.

You should understand that, in general, when using the functions in the toolbox,

we will first have to select some object via one of the views and then operate on it

using one of the toolbox commands. This sort of noun-verb operation mode

requires us to make sure we have the appropriate objects selected before every

action we take.

The Model Tab

The Model tab (see Figure 13.18 contains the tools necessary to create and

modify the basic shape primitives: vertices, faces, cylinders, spheres, and cubes

(boxes, as MilkShape calls them). Table 13.11 shows the functions of the Model

tab’s buttons.

498 Chapter 13 n Introduction to Modeling with MilkShape

Figure 13.18
The Model tab.

Table 13.10 MilkShape Toolbox Summary

Tab Purpose

Model This is used for the placement of vertices and shape primitives, as well as for the
construction of polygons and skeletons.

Groups This contains commands used to group vertices and polygons. Groups can also be
created from existing polygons.

Materials This deals with the creation of materials, including textures from file, ready to be
assigned to groups.

Joints This contains tools for manipulating and managing skeleton joints.

MilkShape 3D 499

Table 13.11 Model Tab Functionality

Button Description

Select This tool puts the program into select mode so that the user can select any object
or collection of objects on one of the wire-frame views. Once you are in select
mode, you can specify one of four different selection target types: vertex, face,
group, or joint. You also have two optional settings: Ignore Backfaces and By
Vertex (which is only available in face selection mode).

Move This tool permits you to move any selected objects by clicking in the appropriate
wire-frame view and dragging the cursor. You can also specify discrete movement
by entering numbers in the Move Options boxes at the bottom.

Rotate This tool permits you to move and rotate any selected objects around a single axis
by clicking in the appropriate wire-frame view and dragging the cursor up or
down. You can also specify discrete rotations and multiple axes rotations by
entering numbers in the Rotate Options boxes at the bottom.

Scale With this tool you can change the size of any selected objects along one of two
available axes in each view by clicking in the appropriate wire-frame view and
dragging the cursor up, down, left, or right. You can also specify discrete scaling
and multiple axes scaling by entering numbers in the Scale Options boxes at the
bottom.

Vertex Use this tool to place individual vertices, one at a time, in a wire-frame view. In
each different view, the vertex will be placed at the zero axis position for
whichever axis is not presented in the view. This tool has no options.

Face With this tool you can connect individual vertices to create a face, one vertex at a
time, with three vertices defining a face. The Threshold option specifies how close
to a vertex you need to click to add it to the current face you are building. As you
build the face, select the vertices in a counterclockwise direction to create an
outward normalized face.

Sphere This tool is a shape primitive tool. To create a sphere, simply click and drag the
cursor in a wire-frame view. With the Sphere options you can specify the number
of slices (like the slices in a pie) or stacks (like a stack of pancakes) that make up
your sphere.

GeoSphere Use this tool to create more realistic spheres via a different program technique.
You use the tool the same way as the Sphere tool, but you can only specify the
complexity of the sphere with the Depth option.

Box Use this tool to create cubes. Just click in a wire-frame view and drag until it has
reached the size you want.

Cylinder Use this tool the same way as you use the Sphere tool, even including the
specification of stacks and slices. The Stacks option specifies how many layers, or
stacks, to make the cylinder with. If you imagine a layer cake to be a short, squat
cylinder, then each layer in the cake is the same as a stack. The Slices option is
handled the same way that slices of a pizza appear. Each slice is a wedge-like
shape when looking at the cylinder from the end, when the Close with extra
vertex option is chosen.

continues

The Groups Tab

You will often want, or need, to organize your model faces into groupings that

make either visual or logical sense. Whether you organize them as meshes that

make visual sense or simply as logical groups, you do this with the Groups tab,

shown in Figure 13.19. The Torque DTS Exporter uses special groups with the

name collision to define collision meshes. Table 13.12 presents the functions

available from the Groups tab.

The Materials Tab

With the Materials tab (see Figure 13.20), you can define the textures that will be

used to skin your model, as well as what characteristics they will have when

500 Chapter 13 n Introduction to Modeling with MilkShape

The Close options are in the pull-down menu below the other two options, and
specify if or how the cylinder will be capped at either end. If you choose Don’t
close, then the cylinder will appear as an open-ended pipe. The default Close
option is ‘‘Close with extra vertex’’. There are two other Close options, which
indicate alternative methods of capping the ends of the cylinder.

Plane Use this tool to add a flat surface to a scene. This surface is square and made of a
number of triangles defined by the horizontal divisions (HDivs) and the vertical
divisions (VDivs) defined in the Plane Options. You can also specify different
treatments of the edges of rows and columns with the Turn edge each row
and Turn edge each column checkboxes.

Extrude This tool operates only on the faces. If you have two faces aligned to create a flat
surface, like a piece of cardboard, you would use this tool to extend the surface in
a specific direction to create a box. Just click the mouse and drag to perform
the extrusion. Using the Extrude options you can specify which directions to do
the extruding in---normally you would use only one direction at a time. The
Smoothing option tells the program to smooth shade the polygons as it draws the
extruded shape.

Joint This tool places special joint objects. It works the same as the Vertex tool, except
that if an existing joint is already selected when you make the new joint, the new
joint will be attached to the previous one by a bone. If the Show Skeleton option is
turned on in the Joint tab, the bone will be visible in yellow.

Comment This tool allows a comment to be applied to the entire model.

Redraw All Viewports If you have this option turned on, then every time you perform one of the tool
operations, the views in all the viewports will be redrawn to reflect your changes.

Auto Tool If you have this option turned on, then the program will alternate between any
tool and the Select tool each time you finish an operation. This option is handy for
tweaking and repetitive adjustment techniques.

Table 13.11 continued

Button Description

displayed. Special materials are also used to define certain model characteristics

to the Torque DTS Exporter. Table 13.13 explains the functions of the Materials

tab.

The Joints Tab

With the Joints tab (see Figure 13.21), you can specify the joints for skeletons,

which are used in animations. Joints are also used as substitutes for the concepts

of special nodes that are used by the Torque DTS Exporter. Table 13.14 describes

the Joints tab functions.

The Keyframer

The Keyframer (see Figure 13.22) is a special tool used for defining animations

for your model. With it, you can save skeletal positions in a model. You then

produce animation by storing several keyframes to the Keyframer and playing

MilkShape 3D 501

Figure 13.19
The Groups tab.

502 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.12 Groups Tab Functionality

Button Description

Group Selection Box This is the white area at the top. It contains the names of the groups, one
group per line. You always need to choose a group from this box before
performing any group operations.

Select When you use this tool, the currently chosen group in the list will
become selected in the wire-frame views; that is, it will become drawn
in red. Each time you choose a different group and click the Select tool,
that group gets added to each view’s selection.

Hide With this tool you can make the chosen group’s faces and vertices
become invisible. This is useful for uncluttering a view or to ensure that
you don’t select the wrong parts for another operation.

Delete Use this tool to permanently remove a group from the model.

Regroup With this tool you create new groupings from whatever model elements
are selected (shown in red) in the views. Any elements that already
belong to other groups are removed from those groups and added to
the new group.

Rename Choose a group, type a new name in the Rename box (to the right of
the button), and then click the Rename tool. Bingo! The group now has
a new name.

Comment Apply a comment to the group selected in the Group Selection Box.

Up & Down Buttons These buttons move the highlighted group in the Group Selection Box
up and down so that the user can order the groups. This has no bearing
on the model information itself but instead is intended as a feature to
allow the user to order the groups per their own preferences so that a
particular group can be found easily.

Smoothing Groups Select Clicking this button and then one of the Smoothing Group numbers
selects the polygons assigned to that Smoothing Group. Smoothing
Groups can only be selected on the numbers that have been assigned.

Smoothing Groups Assign When you have a group of polygons selected, you can click this button
and then one of the Smoothing Group numbers to assign all selected
polygons to a Smoothing Group. Additional groups of polygons can be
added to the same group without overwriting the previous contents of
the Smoothing Group.

Smoothing Group Numbers These numbers act as a storage bank for groups of polygons. They can
have polygons assigned to them and selected from. If the Auto Smooth
check box is selected, assigning groups of polygons to a Smoothing
Group number will smooth shade them (Smooth Shaded shading has to
be enabled to view the effect of this---right-click the 3D Perspective
view and click Smooth Shaded from the pop-up menu).

Smoothing Group Clear All This button removes the assigned Smoothing Groups from the
Smoothing Group numbers. The polygons will remain smooth shaded,
but they will no longer be in the same Smoothing Group.

Smoothing Group Auto Smooth When assigning Smoothing Groups, ensure that this is checked if you
wish the selected polygons to be smooth shaded.

them back. There is a set of controls for managing the playback. Typically, only

frames where changes take place need to be set by the user—hence the term

keyframe. Keyframes are key to the animation. MilkShape 3D will fill in the pose

or position frames between the keyframes. Youmust click the Anim button at the

lower right in order to work with the Keyframer.

Table 13.15 describes the primary Keyframer functions.

The Preferences Dialog Box

The Preferences dialog box (see Figure 13.23), which you reach by choosing File,

Preferences, has two tabs. The Viewport tab is used to the set up the viewport’s

attributes, and the Misc tab offers miscellaneous settings. Table 13.16 provides

details about each setting in the two tabs.

MilkShape 3D 503

Figure 13.20
The Materials tab.

504 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.13 Materials Tab Functionality

Item Description

Material Selection Box This is the white area at the top. It contains the names of the
materials, one material per line. You always need to choose a material
from this box before performing any material operations.

Material Preview The currently chosen material is displayed, mapped onto a sphere. You
can click and drag the sphere with the mouse to view hidden parts of
the material map.

Ambient Use this tool to get a color picker window for setting the ambient light
of the environment the material is in. This attribute affects the color
and the intensity of the color that the material reflects.

Diffuse Use this tool to get a color picker window for setting the light that the
material will directly reflect. This attribute has the most influence over
the color of the material.

Specular Button & Specular Slider Use this tool to set the specular highlight of the material. Basically,
selecting a bright color will create a highlight on the material of the
color chosen. Moving the slider below it changes the focus of the
highlight. The highlight can range from appearing as a small spot to
appearing as if the object is immersed in incandescent light.

Emissive Use this tool to get a color picker window for setting the color and
intensity of the light that the material emits. This attribute will appear
as a glow around the material.

Transparency Slider This slider, located beneath the Emissive button, adjusts the amount of
transparency that an alphamap applies to a texture and the faces that
the texture is assigned to. You must click Assign or click in the
viewport to update the model to reflect your changes.

Texture Browse Button Contains the name of the texture, or <none> if there is no texture
selected. Use this tool to select a texture to apply to the material.
Clicking it will yield a Windows Explorer browse box from which
image files can be selected. The None button beside this button
removes the texture file from the material.

Alphamap Browse Button This button is located directly below the Texture Browse button. It
contains the name of the alphamap texture, or <none> if there is no
alphamap texture selected. In older versions of MilkShape 3D, prior to
1.7.0, this button allows the application of an alphamap to the
material. A black-and-white image can be used to remove areas of
texture where there may be holes. Black is fully occluded and white is
fully visible; it is possible to use variations of gray to achieve
semitransparency. The None button beside this button removes the
alphamap file from the material.

In versions of MilkShape 3D, from 1.7.0 onward, alphamaps have no
effect on the material at all. Transparent areas of textures (alpha
channels) are achieved by using a 32-bit texture that holds an alpha
component for each pixel of the texture, like the TGA and PNG file
formats.

MilkShape 3D 505

A texture containing an alpha channel can be handy for applying
details in texture where detail would normally be applied by adding
extra geometry to a model, so using transparent areas in a material
allows the user to decrease geometric complexity.

SphereMap Checking this box will turn the current material into a spheremap
material. This essentially turns the surface of the model into a
reflective surface with the material as the environment that is
reflected on the model surface, much like an environment map.

New The New button, when clicked, will create a new blank material with
default attributes, no texture or alphamap files, and a default name.

Delete To delete a material, choose it in the Material Selection box, and then
click the Delete button. This action literally removes the material from
the workspace, so use this wisely.

Rename To rename a material, choose it in the Material Selection box, type the
desired name in the box to the right of the Rename button, and then
click the Rename button.

Assign Use this tool to assign the chosen material in the Material Selection
box to the selected group.

Select By The tool selects all objects that have the currently selected material
assigned to them.

Comment This tool applies a comment to the material selected in the Material
Selection box.

Table 13.13 continued

Item Description

Figure 13.21
The Joints tab.

506 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.14 Joints Tab Functionality

Item Description

Joint Selection Box This is the white area at the top. It contains the names of the joints, one joint per line.
You always need to choose a joint from this box before performing any operations on
joints.

Rename This works the same as the Rename tool in the other tabs. Choose a joint, type a new
name in the box to the right of the Rename button, and then click the Rename button.

SelAssigned (Select Assigned) After you have chosen a joint, click this button to select all the
vertices assigned to that particular joint.

SelUnAssigned (Select Unassigned) Click this button to select all vertices not assigned to the chosen joint.

Assign Use this tool to assign vertices to a joint. To do this, choose the Select-(Vertex) tool
from the Model tab, highlight the joint in the Joint Selection box that you wish to
assign the vertices to, and then select the vertices and click Assign.

Clear Click this button to clear all the assigned vertices from belonging to the chosen joint
in the Joint Selection box.

Comment Applies a comment to the joint selected in the Joint Selection box.

Show Skeleton Toggle this to show or hide the skeleton.

Figure 13.22
The Keyframer.

Other Features

MilkShape has a few other features that we won’t cover in great depth, but two

that deserve at least an honorable mention are the Texture Coordinate Editor

and the Message Panel.

The Texture Coordinate Editor provides primitive texture-mapping capability. It

has some rather severe limitations that prevent it from being used in even

moderately complex models. The biggest limitation is that it doesn’t unwrap

meshes independently. For this reason we use external tools, like UVMapper.

UVMapper may be a bit more awkward to use, because it isn’t integrated, but it

does a better job, providing more flexibility and control.

MilkShape 3D 507

Table 13.15 Keyframer Functionality

Component Description

Keyframe Slider Use the slider to preview your animation before playing it. Using the
slider, you can move freely backward and forward between the frames
with mouse movement instead of clicking the Play Forward and Play
Backward buttons to see the animation. The slider is useful for selecting
animation frames in smaller animations; use the Current Frame Number
Box to select frames for larger animations with many (more than a dozen
or so) frames.

Playback Controls The playback controls allow you to view your animation in MilkShape 3D
in a manner similar to a VCR or DVD player. From the left, the buttons
are First Frame, Previous Keyframe, Previous Frame, Play Backward, Play
Forward, Next Frame, Next Keyframe, and Last Frame. All of these
commands update the model to the current frame, and the slider is also
moved to the appropriate frame.

Current Frame Number Box Use this box when you have a lot of frames in your animation and the
slider does not allow the accuracy you desire when selecting frames. You
can type in a value here that will set the number of frames in the
animation. The box will accept a whole number to indicate the frame to
which you wish to go; the slider and view will change to reflect the
selected frame.

Total Frames Box In this box, enter the number of frames you want in your animation.
Most modelers choose a relatively high number, depending on the
number of animations the model is to perform, and key in animations
between certain numbers of frames leaving a three- or four-frame gap
between animations. With a Run, Walk, Jump, and Shoot animation, you
would key in the Run animation first and then leave several frames, key
in the Walk animation and then leave several frames, and so on.

Animation Mode Button This button enables the Keyframer. It behaves like a toggle: when down,
the Keyframer is enabled; when up, the Keyframer is disabled.

Figure 13.23
The Preferences dialog box.

508 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.16 Preferences Choices

Component Description

Property Selection With MilkShape, the user can customize the colors of components used
when modeling. The drop-down list contains the component names; a
color for the selected component can then be chosen by clicking the
Choose button next to the drop-down box. Following is the complete list
of color customizable components:

Persp(ective) Background (the 3D view)

Ortho(graphic) Background (the 2D views)

Persp(ective) Grid

Ortho(graphic) Grid

X-Axis

Y-Axis

Z-Axis

Vertex

Selected Vertex

Face

Selected Face

Bone

Selected Bone

Selected Joint

Keyed Bone

Grid Size Use this control to set the spacing of the grid lines in the wire-frame
views. The default grid size is 1� 1; this gives the smallest line spacing.
The grid size you use usually depends on the scale of the models you are
building.

Point Size Use this control to specify the size of the vertex points displayed in the
wire-frame views. Larger point sizes are easier to see and to select
individually, but they may tend to obscure model details in crowded
areas at low view magnifications.

The Message Panel displays output from executing plug-ins and modeling

operations. It can be useful for providing insight into how MilkShape does its

work, but its downfall is the screen space it takes up.

UVMapper
Earlier in this chapter—and even earlier than that, in Chapter 9—we used the

UVMapper program created by Steve Cox to help us skin a model. As promised,

here is the section with the detailed information on UVMapper. We won’t cover

UVMapper 509

Save Viewport Config When MilkShape 3D is opened, the orientation and position of the
viewports in the world are set to default positions. Enabling this option
means that when you close MilkShape 3D the viewport positions are
saved so that when you next start up MilkShape 3D the viewports will
maintain their positions and orientation.

Filter Textures When set this turns on mipmapping texture filters. This will smooth the
texture so that the rasterized pixels are not as noticeable.

Can Line Stipple When moving, scaling, or extruding objects, MilkShape draws a
guideline that indicates the vector of the action, denoting its direction
and magnitude. This is usually a solid line, but with this option set, it is
rendered as a dashed or dotted line. This also stipples the box line used
for multiple selections.

Import Frame This allows the user to specify the animation frame to be imported from
MD2 or MD3 files using the Morph Target Animation mechanism.

Animation FPS This specifies the playback speed of animations in Frames Per Second
(FPS).

CS Hand Offset This is used to specify the offset for either side of a decompiled
CounterStrike model.

Joint Size This allows the user to set the display size of the joints that are used in
MilkShape. You should change the size to reflect the scale of the model
you work with.

Auto Save This option allows you to specify how often the program will
automatically save your work. The frequency is defined by how many
commands or operations you want to be able to perform before the save
happens. This option can be a lifesaver but can also be a nuisance if you
set the value too low---especially if you are doing a lot of experimenting
and undo your previous operations frequently. A setting of about 10
seems to work well.

Restore Defaults This will reset all of your preferences for MilkShape 3D, including all
properties accessed from the Properties window as well as the viewport
configurations. Hotkey assignments will not be affected.

Table 13.16 continued

Component Description

every detail. Instead, we will concentrate on those details that we can apply to our

own needs here in this book.

The first thing to know about UVMapper is that it only operates on models saved

in OBJ format, as created by the Alias Wavefront program. The UV unwrapping

principles involved are the same for all similar tools. The author of UVMapper

has also created UVMapper Pro, a newer release with many more features and

greater flexibility. The companion CD includes a demo of UVMapper Pro, a

restricted version (you can’t save output, which, of course, we need to do). If you

want to check out the enhanced features later, go ahead and poke around.

The File Menu

As is true in most programs, UVMapper’s File menu provides commands for

loading, saving, importing, and exporting files. See Table 13.17 for descriptions.

The Edit Menu

The Edit menu is where the real power of UVMapper resides. Table 13.18

provides more information.

510 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.17 UVMapper File Menu

Command Description

Load Model Load a Wavefront OBJ formatted model from file. After it is loaded, you will
see the texture map layout in the UVMapper window. If you don’t, then there
are no texture coordinates included in the model. You can fix this by choosing
Edit, New UV Map (see Table 13.18).

New Model This command gives you a method for adding or creating your own models
from shape primitives. The primitives are box, cone, cylinder, sphere, and torus.

Import UVs With this command you can import UV coordinate data that has been saved
separately from a model.

Save Model Use this command to save the UV mapping data you’ve created along with the
model you originally imported.

Save Texture Map You can save the texture map image using this command. You can then load
that image as a template into a program like the Gimp in order to apply that
‘‘artistic magic.’’

Export UVs With this command you can export only the UV texture coordinates you’ve
created using this program, without the rest of the model data.

The Help Menu

The Help menu provides the user some assistance when working with the pro-

gram. Table 13.19 provides more detail, and Table 13.20 provides a list of

UVMapper hot keys.

UV Mapping

When you choose Edit, New UV Map you will be presented with a choice of five

different unwrapping methods:

n Planar

n Box

UVMapper 511

Table 13.18 UVMapper Edit Menu

Command Description

Settings Here you can specify how many pixels on your screen correspond to a single measurement
unit. The value you use depends on the scale of the model you are working with.

Select By This command gives you the ability to select on-screen objects by facet (face) or by
vertices. Usually you leave this set to Facet.

Color This command will let you indicate how you want to discriminate the different parts of the
display. Your choices are Black and White (no discrimination), by Group, by Material, and
by Region. This capability is handy when dealing with a complex model.

Tools This command provides three different functions: Fix Seams, Split Vertices, and Weld
Vertices. MilkShape offers these same abilities, but it’s nice to know we have access to
them here as well.

Select With this command you can refine your object selection ability. There are five modes: All,
None, by Group, by Material, and by Region. The by Group, by Material, and by Region
options each provide a Selection dialog box if these entities actually exist in the model
data. Judicious naming of groups (meshes) when in MilkShape can be a great boon when
working here in UVMapper.

Assign Use this command to assign selected objects to an existing group, material, or region.
Again, you would normally do this in your modeling program, but it’s nice to have the
ability here if you realize you’ve forgotten to assign some faces to a particular group.

Rotate This command allows you to rotate a selection around any of the three axes---or all three
at once, if you want.

New UV Map This command provides several different unwrapping methods: Planar, Box, Cylindrical,
Cylindrical Cap, and Spherical. The options available here are quite extensive so they
warrant coverage in their own section, called ‘‘UV Mapping,’’ later in this chapter.

Tile This command is complementary to the Select command. Using Tile you can specify how
the program displays the different parts of the model; they can be visually organized (tiled)
according to group, material, or region.

Table 13.19 UVMapper Help Menu

Command Description

Statistics This command will report the current status of your model. This will tell you the total
vertices, textures, normals, facets, groups, and materials. Bear in mind that while you
are editing a model, UVMapper will temporarily increase the number of texture
coordinates allocated to the model, and so this is not a good representation of the
actual number of texture coordinates the model will have upon saving. A more accurate
way to obtain this information is from within the MilkShape modeling tool.

Dimensions This command will give you the overall geometric dimensions of the model. This will
report the minimum and maximum values along each of the three axes (X, Y, and Z).

Hot Keys This command will give you a list of the available hot keys. (Table 13.20 contains a list
of the UVMapper hot keys.)

About UVMapper This command gives you information about the version, how to contact the author, and
where you can obtain an updated version of the program.

Table 13.20 UVMapper Hot Keys

Key Description

Esc clears selection, undoes changes

Enter clears selection, saves changes

Shift+number key increases resize/movement amount

keypad * quadruples size of selection

keypad / quarters size of selection

keypad + increases size of selection

keypad � decreases size of selection

keypad # moves selection

= maximizes selection

. snaps selection to facets

[hides selected facets

] shows selected facets

\ toggles facets on and off

’ hides unselected facets

uU/vV resizes selection (fine)

x/X/y/Y resizes selection (coarse)

Ctrl+x inverts selection horizontally

Ctrl+y inverts selection vertically

Ctrl+b loads background

Ctrl+c clears background

Ctrl+u flips background horizontally

Ctrl+v flips background vertically

Tab toggles background display

t triangulates object

Insert checks for degenerate facets

512

n Cylindrical

n Cylindrical Cap

n Spherical

Each of these methods is described in more detail here. Sometimes, even when

you know exactly what the unwrapping method is supposed to do, you will be

surprised at the results, so don’t be afraid to experiment. Once you’ve loaded a

model, you can keep trying the different unwrapping methods with different

settings. Each time you do it, the program begins from scratch, so you don’t have

to worry about undoing your previous efforts.

Planar

When you use the Planar method, you will be presented with the dialog box

depicted in Figure 13.24. Table 13.21 provides details about using the Planar

method.

Box

When you use the Box method, you will be presented with the dialog box

depicted in Figure 13.25. You can get more information on using the Box

method in Table 13.22.

UVMapper 513

Figure 13.24
The Planar Mapping dialog box.

Cylindrical

When you use the Cylindrical method, you will be presented with the dialog box

depicted in Figure 13.26. Table 13.23 provides details about using the Cylindrical

method.

514 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.21 Planar Mapping Options

Option Description

Alignment This allows you to specify the axis along which the model will be mapped.

Orientation This allows you to alter the layout of the texture map template. It only has an effect when
you use the Split option (described later in this table). If you select Don’t Split, the
Orientation option has no effect. When splitting the model into front and back sections, you
can have the two halves side by side (Horizontal) or above and below each other (Vertical).
Which you want to use really depends on the geometry of the model. If you don’t like the
layout of the texture map after using planar mapping, try changing this option.

Map Size This will specify the maximum dimension of the texture map template. Depending on the
model it may be vertical or horizontal, but the texture map is guaranteed not to exceed
this value in either width or height. One side will equal this value, and the other will be
scaled accordingly.

Split This option allows you to divide the texture map into front and back sections. (To adjust
the placement of these sections, see the Orientation option earlier in this table.) You have
three choices:

Don’t Split: Gives you one map with the front and back facets on top of each other.

By Orientation: Calculates the facet normals, placing all facets that face toward the eye
on one side and all facets that face away on the other.

By Position with Offset of: Allows you to divide the model based on geometry rather
than facing. Using an offset of 0 will divide the model in half. You can adjust this offset to
change how many facets are on each side.

Gaps in Map This allows you to separate the sides of the box on the texture map. If the sides touch,
sometimes you will see one pixel of the side on the front, for example.

Scale Result Use this option to specify how much larger or smaller the resulting texture map should be.

Figure 13.25
The Box Mapping dialog box.

Cylindrical Cap

When you use the Cylindrical Cap method, you will be presented with the dialog

box depicted in Figure 13.27. Table 13.24 provides details about using the

Cylindrical Cap method. This method is similar to the Cylindrical method,

except that it assumes you are unwrapping a cylinder with end caps, as if there

were closed lids on both ends of a can. The caps are mapped separately from the

tubing of the cylinder.

UVMapper 515

Table 13.22 Box Mapping Options

Option Description

Map Size This will specify the maximum dimension of the texture map template. Depending on the
model it may be vertical or horizontal, but the texture map is guaranteed not to exceed
this value in either width or height. One side will equal this value, and the other will be
scaled accordingly.

Split front/back Setting this option will divide the model into six sections: front, back, top, bottom, left
side, and right side. Uncheck this option if you want to combine top and bottom, left and
right, front and back, giving you only three sections.

Gaps in Map This allows you to separate the sides of the box on the texture map. If the sides touch,
sometimes you will see one pixel of the side on the front, for example.

Scale Result Use this option to specify how much larger or smaller the resulting texture map should be.

Figure 13.26
The Cylindrical Mapping dialog box.

516 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.23 Cylindrical Mapping Options

Option Description

Alignment This allows you to specify the axis around which the model will be mapped.

Offset When mapping a model with one of these methods (Cylindrical, Cylindrical Cap,
or Spherical) the model is mapped around a center point. This center is calculated
using the maximum and minimum geometry values along each axis. This works
quite well for mapping a true sphere or cylinder, but if you have a model that is,
say, a sphere with a spike on the side of it, the calculated center may not be what
you want. To adjust the center of the model from what’s been calculated, use this
option.

Map Size This will specify the maximum dimension of the texture map template. Depending
on the model it may be vertical or horizontal, but the texture map is guaranteed
not to exceed this value in either width or height. One side will equal this value,
and the other will be scaled accordingly.

Rotation Use this to specify how much, if any, rotation will be applied to the resulting
texture map image template.

Gaps in Map This allows you to separate the sides of the cylinder on the texture map. If the
sides touch, sometimes you will see one pixel of the side on the front, for
example.

Scale Result Use this option to specify how much larger or smaller the resulting texture map
should be.

Spread facets at poles Oftentimes facets are squeezed together when the mapping occurs, especially at
places like the ‘‘poles’’ (the tops and bottoms of the map, just like on maps of the
Earth). With this option set, the resulting map will spread the facets at the poles
to alleviate the pinching effect.

Figure 13.27
The Cylindrical Cap Mapping dialog box.

Spherical

When you use the Spherical method, you will be presented with the dialog box

depicted in Figure 13.28. You can get more information on using the Spherical

method in Table 13.25.

Moving Right Along
Well, there you have two pretty comprehensive, low-cost modeling tools:

MilkShape 3D by Mete Ciragan and UVMapper by Steve Cox. These guys have

done an admirable job creating these programs in the shareware or freeware

spirit. Not only do they deserve a round of applause and a big thank-you, but you

could also perhaps send a few dollars their way by registering their shareware

programs. The cost is minuscule, and the benefits are great.

By using the common Wavefront file format, we can use each tool in com-

plementary ways to create models for our games. This is a pretty common theme;

Moving Right Along 517

Table 13.24 Cylindrical Cap Mapping Options

Option Description

Alignment This allows you to specify the axis around which the model will be mapped.

Offset When mapping a model with one of these methods (Cylindrical, Cylindrical Cap, or
Spherical) the model is mapped around a center point. This center is calculated
using the maximum and minimum geometry values along each axis. This works
quite well for mapping a true sphere or cylinder, but if you have a model that is,
say, a sphere with a spike on the side of it, the calculated center may not be what
you want. To adjust the center of the model from what’s been calculated, use this
option.

Map Size This will specify the maximum dimension of the texture map template. Depending
on the model it may be vertical or horizontal, but the texture map is guaranteed
not to exceed this value in either width or height. One side will equal this value,
and the other will be scaled accordingly.

Rotation Use this to specify how much, if any, rotation will be applied to the resulting
texture map image template.

Gaps in Map This allows you to separate the sides of the cylinder on the texture map. If the
sides touch, sometimes you will see one pixel of the side on the front, for
example.

Scale Result Use this option to specify how much larger or smaller the resulting texture map
should be.

Spread facets at poles Oftentimes facets are squeezed together when the mapping occurs, especially at
places like the ‘‘poles’’ (the tops and bottoms of the map, just like on maps of the
Earth). With this option set, the resulting map will spread the facets at the poles
to alleviate the pinching effect.

518 Chapter 13 n Introduction to Modeling with MilkShape

Table 13.25 Spherical Mapping Options

Option Description

Alignment This allows you to specify the axis around which the model will be mapped.

Offset When mapping a model with one of these methods (Cylindrical, Cylindrical
Cap, or Spherical) the model is mapped around a center point. This center is
calculated using the maximum and minimum geometry values along each axis.
This works quite well for mapping a true sphere or cylinder, but if you have a
model that is, say, a sphere with a spike on the side of it, the calculated center
may not be what you want. To adjust the center of the model from what’s
been calculated, use this option.

Map Size This will specify the maximum dimension of the texture map template.
Depending on the model it may be vertical or horizontal, but the texture map
is guaranteed not to exceed this value in either width or height. One side will
equal this value, and the other will be scaled accordingly.

Rotation Use this to specify how much, if any, rotation will be applied to the resulting
texture map image template.

Gaps in Map This allows you to separate the sides of the box on the texture map. If the
sides touch, sometimes you will see one pixel of the side on the front, for
example.

Scale Result Use this option to specify how much larger or smaller the resulting texture
map should be.

Spread facets at poles Oftentimes facets are squeezed together when the mapping occurs, especially
at places like the ‘‘poles’’ (the tops and bottoms of the map, just like on maps
of the Earth). With this option set, the resulting map will spread the facets at
the poles to alleviate the pinching effect.

Figure 13.28
The Spherical Mapping dialog box.

notice also that we’ve used the Gimp—another low-cost tool (in fact, free!)—in

the same way in conjunction with MilkShape. In the next few chapters we will

tackle the Big Jobs: animated characters, vehicles, and weapons. It would not be

wasted effort if you wanted to take some time out at this point to practice by

designing and building some models to your own specifications.

The more you use a tool, make mistakes, and figure out what you did wrong and

then make any necessary corrections on your own, the more proficient you will

become.

Moving Right Along 519

This page intentionally left blank

Making a
Character Model

In this chapter we are going to build a character model, step-by-step. We are

going to animate it and skin it. It’s going to be a long and sometimes hectic ride,

so hang on to your hat! For example, my wife took about 30 hours, spread over

almost a week, to work through this chapter.

Oh yes, and remember—the more time you spend on your modeling and art-

work, the better your final product will look.

Modeling Techniques
Modelers use many different approaches or techniques. The differences can be based

onwhat tools are available to do a given job orwhat data is available about the item to

bemodeled.Other techniques are availablebutnotdescribedhere—that’s becausewe

aremodeling for games, and low-polymodeling is the philosophy we need to follow.

Remember that the more polygons one model uses, the fewer polygons available for

other instances of that model, or for other models, in a given rendered frame of a

scene at a given frame rate. In games there is that polygon budget to consider.

Shape Primitives

In two dimensions, primitives are the simplest geometric constructions: dots or

points, lines, rectangles, ovals or circles, arcs and other curves. We can assemble

all other more complex shapes using these basic or ‘‘primitive’’ 2D shapes.

521

chapter 14

In three dimensions, the primitives are: planes or faces, boxes, cylinders,

spheres, pyramids or prisms or wedges, cones, and arches. When we talk about

shapes in three dimensions, we typically mean a fully enclosed collection of

faces that simulate some real-world solid object. So, while planes and faces are

certainly 3D primitives, they are not normally included in the list of 3D shape

primitives.

Creating models using shape primitives can be an extremely quick way to build a

low-poly model, depending on your expertise and eye for detail. The basic

technique involves selecting a primitive that best matches the part of the model

you are building. The primitive shape must contain enough polygons and ver-

tices for you to adjust the shape to closely match your target.

This is the technique we are going to use to build our character model in this

chapter.

Box Method

This is a variation of the Shape Primitives method, whereby we start out with a

box primitive and then subdivide the faces of the box into smaller faces based on

our needs for more detail in the model as the model takes shape. As we subdivide

each face, we yield more polygons that can be moved around and placed. More

detail means more faces, and more smoothness means more faces. When making

a head, we might start with a simple box with six faces and end up with a complex

shape with more than a hundred faces.

Incremental Polygon Construction

Incremental Polygon Construction is a method that fairly closely approximates

modeling with clay in the real world. Sculpting with clay generally involves

adding bits of clay together to create shapes that grow in size and detail. The clay

can be poked and prodded, smoothed and pinched, until it accurately depicts the

item being modeled.

With Incremental Polygon Construction, the process is similar. We apply

vertices in 3D space that represent high points and low points of the features to be

modeled, and then we build triangles or faces connecting these vertices. One

point of departure from clay modeling is that we typically don’t add faces on top

of (such that they completely obscure) other faces, because we have no need for a

solid to give us the required volume. But the principle of adding faces to the

522 Chapter 14 n Making a Character Model

existing topology of a model as the model grows is the same, as is the useful

concept that we add only what we need and no more.

The best way to get started with modeling in this way is to use photographs or

sketches of the target from several directions: from directly in front, directly

above, and one or both sides. From the pictures we can obtain the locations and

shapes of the features and their high and low points. We mark these points in our

3D views, and then we proceed to build faces from them.

This technique can be quite slow going. It is also prone to errors that are difficult

to correct, because you may have moved dozens of steps beyond where the error

actually occurred before the error becomes evident.

Axial Extrusion

In the simplest sense, you start with a primitive object (usually a box, but it could be a

simple facet or triangle), subdivide it, and then select specific polygons to extrude into

meshes to formgeneral shapes.Whenyou subdivideobjects, you increase thenumber

of polygons on each side of the shape. You then adjust and refine the extruded

polygons to form the details of themodel. This approach is similar tomakingmodels

of geographic terrain using a contour map as a guide, with cardboard or plywood

sheets to build up the terrain, and then smoothing the edges with some kind of filler.

With Axial Extrusion, you limit your extrusions to one of the three axes—

sometimes all three in various combinations—but individual extrusion only

occurs in one axis. This technique is usually restricted to inanimate objects, but

sometimes certain parts of character models are made this way.

One example of using axial intrusion in character modeling is when creating a

head. A series of flat-plane profiles (called cuts) are made of a head, after which

each profile is extruded once in each direction on the transverse axis (the axis that

runs from ear to ear). Then each extruded mesh is married to the extruded

meshes of the adjacent cuts by an averaging of the vertices. You’ll actually get to

do some of these extrusions later in this chapter and others.

Arbitrary Extrusion

Arbitrary Extrusion has much in common with Axial Extrusion, except that you

extrude your base primitive shapes in whatever directions are necessary. Like

Incremental Polygon Construction, this approach tomodeling can be seen as similar

to sculpting in clay. Machinery lends itself well to modeling with this technique.

Modeling Techniques 523

Topographical Shape Mapping

Topographical Shape Mapping is a method usually used to model terrain, like

Axial Extrusion often is, except that Topographical Shape Mapping is best suited

for automated operations rather than manual modeling.

In the geographic sense, topographic data can be obtained from various gov-

ernment and private sources. The data consists of, at a minimum, a coordinate

and an altitude for each mapped point on the real terrain’s surface. Various

algorithms and many programs that can read this data from a file and render a 3D

view of the terrain in question are available. The data files come in various formats

depending on the agency that produces them: DLG-O, DEM, SDTS, and DRG, to

name just a few from that acronymic world. Normally, this approach is used in

one of the many available Geographic Information Systems (GIS), and there are

tools that can convert this data into a format you can use for modeling in games.

Hybrids

Well, the Hybrid category is the catchall category. Often it is prudent to combine

techniques in a singlemodel—use the approach that works best for the component

being created. If you find yourself mixing techniques, most likely you will be doing

a little bit of Incremental Polygon Constructionmixed with many shape primitives

or using a few primitives mixed with a great deal of Arbitrary Extrusion.

The best point to be made here is that you should use what works best for you in

your current circumstances.

Modeling for Torque
When we create models that we want to export for use in Torque, there are a few

(but not many) rules that must be followed. The aspect of modeling for Torque

that has the most impact is supporting Torque’s animation scheme. At the

simplest level, Torque has built-in support for using certain animations at certain

times. You merely need to create the animation sequence in one of two ways

(which I’ll tell you about in a minute), name the sequence appropriately, export

the animation, place the model with (or without, depending on the method

used) its animation in the appropriate place in the Torque folder tree, and

proceed. This little process—from creating the model to using it in a game—

including the tools used to execute the steps in the process, is called themodeling

tool chain.

524 Chapter 14 n Making a Character Model

Torque supports animations in two ways that are covered in this book. The first

way is to use embedded animations, where the animations are included with the

model in the DTS file. The second method is the DSQ or Torque Blended

Animation Sequence system, which itself has two important features: it supports

blended animation, where two different animations are played for the same

model at the same time, and it supports the separation of animation sequences

from the model (DTS) using the sequence files (DSQ) format.

Using either method, you can create your own skeleton with your own bone-,

joint-, or node-naming system, or you can use the Torque Blended Animation

Sequence system. The caveats are (1) you need to use the Torque Blended Ani-

mation Sequence system if you want to play more than one animation sequence at

a time; (2) if you want to employ the animations provided by GarageGames with

the Torque demo that employ the Torque Blended Animation Sequence system,

you will need to use a bone-, joint-, or node-naming convention that matches

theirs; and finally, (3) you need to use DTSPlus Exporter (by Chris Robertson),

which exports sequence files (DSQ). And why not use GarageGames’s animation

sequences? There are about three dozen animations already done for you! You

would then only need to create animation sequences that fulfill your specific

needs and use the stock sequences for everything else.

Anyway, even if you do not use the Torque Blended Animation Sequence system

but want to use the embedded animation approach, you will still need to make

sure that you name your animations properly if you want Torque to auto-

matically invoke them for you.

Table 14.1 (found later in this chapter) has a pretty comprehensive list of ani-

mations that Torque will recognize by name, along with the contexts in which

they are used. Here is a list of the most common character animations:

Modeling for Torque 525

root The character is standing and fidgeting.

run The character is running forward.

walk The character is walking forward.

back The character is running backward.

side The character is running sideways.

look The character’s right arm points where he is looking horizontally.

head The character’s head points where he is looking vertically.

fall The character is falling off a cliff or building.

land The character lands on his feet.

jump The character jumps while running.

The Base Hero Model
But first, we need to create a character model. The technique we are going to use

is basically the Shape Primitives approach. We will hand-modify various shape

primitives to get the results we want.

The kind of model we are going tomake is primarily a segmented-meshmodel. An

alternative would be a continuous-mesh model. The difference is that in the

segmented-mesh model, there are different, distinct objects or meshes for dif-

ferent components in the model, whereas in the continuous-mesh model, the

entire model has one large, convoluted surface. Our primary segments will be as

follows:

n head

n torso

n right leg

n left leg

n right arm

n left arm

So that’s six segments in all. (A continuous-mesh model would have one seg-

ment.) All the leg and arm segments will each have two subsegments. Each

segment or subsegment can be thought of as an individual mesh, or submesh.

To get an idea of what the finished model will look like, flip ahead a bunch of

pages and take a peek at Figure 14.63, ‘‘The completed Hero model’’. I’d insert

that picture here too, but I don’t want you to have too many preconceived

notions about what it should look like. The point of this chapter is to learn

techniques and procedures, not be a human photocopier (not that there’s any-

thing wrong with that)!

Preparation

If you haven’t done it on your own already, you need to install the Torque

DTSPlus Exporter by Chris Robertson. MilkShape 3D has its own built-in

exporter for Torque, but it’s based on an older exporter from several years ago

that doesn’t support many of the ‘‘gotta-have’’ features of Torque’s DTS shape

format, like blended animations and footstep triggers. So we want DTSPlus.

526 Chapter 14 n Making a Character Model

You will find the plug-in in \3D2E\TOOLS\MILKSHAPE 3D in the file

ms2dtsExporterPlus.zip. Extract the contents to a location of your choice—you

only need one file: ms2dtsExporterPlus.dll. Copy that file to your MilkShape

folder (most likely at C:\Program Files\MilkShape 3D 1.7.9. If you installed a

different version, then your version number will be different, but the rest of the

name will be the same.

Next, you need to quit MilkShape if it is already running, and then start it up

again. Check to see if the plug-in is loading by looking in the menu for File,

Export, Torque DTS Plus. If it’s there, you are ready to rock and roll. If not, then

check to make sure you deposited the right file in the MilkShape folder, and also

make sure that it didn’t accidentally end up in a subfolder.

The Head

We’ll use the Shape Primitives approach to build the head. The keys to successful

use of this technique are (1) choosing the right primitive and (2) using a pri-

mitive with sufficient vertices to do the job.

For the head part of the model, we’re going to use a cylinder with 12 faces on the

tube, stacked 6 segments high. That translates to a 6-stack, 12-slice cylinder, in

MilkShape terms.

T i p

Make sure to set up your views to match mine. Right-click in each view, and from the Projection
submenu, choose the appropriate projection for each view:

the top-right view should be set to Projection, Left,

the top-left view to Projection, Front,

the bottom-right view to Projection, 3D and

the bottom-left view to Projection, Top.

1. OpenMilkShape, create a new document, and in the Preferences dialog box,

set Point Size to 3 and Grid to 1� 1 in the Preferences dialog box. Save the

new file as \3D2E\RESOURCES\CH14\myhead.ms3d.

2. Create a 6-stack, 12-slice cylinder, as depicted in Figure 14.1. Size the

cylinder such that the bounds of the cylinder extend from about �20 to

þ 20 on all three of the axes.

The Base Hero Model 527

3. Choose Select in Vertex mode, and from the side view (right pane), select the

bottom layer of vertices. Ensure that both the Redraw All Viewports and

Auto Tool boxes are checked.

4. Scale the selected bottom vertices to 95 percent of original (on the X and Z

axes, ensure that the Y axis scale value is 1), as depicted in Figure 14.2. Make

sure that the Scale Options has the Center of Mass radio button checked.

T i p

To turn off the grid display in any view, right-click in that view and choose Wireframe Overlay to
uncheck that menu item.

5. Now select the top five rows of vertices, ignoring the bottom two rows, and

scale them to 95 percent.

6. Next, scale the top four rows of vertices to 95 percent.

7. Repeat the scaling operation for the top three, then the top two, and finally

the top row by itself. You should now have a cylinder with a bit of a bevel at

the bottom that tapers gently toward the top, as shown in Figure 14.3.

8. Next, shift the top five layers of the cylinder toward the back, so that the

rearmost vertices (designated A, highlighted in black, in Figure 14.4) line up,

528 Chapter 14 n Making a Character Model

Figure 14.1
The initial cylinder.

at the back, with the layer of vertices that is second from the bottom (B in

Figure 14.4). They don’t have to be aligned precisely, but try to get them

pretty close, as shown in Figure 14.4. You can cycle between Select andMove

for each layer to move the layers one at a time.

The Base Hero Model 529

Figure 14.2
Selecting the bottom vertices.

Figure 14.3
Tapering the cylinder.

9. Next, working from the Right view (Top right viewport), select the bottom

six vertices visible in that view (at the right side of the view), and move them

down and to the right a bit. Figure 14.5 shows which vertices you want and

how far to move them. These vertices make up the jaw.

530 Chapter 14 n Making a Character Model

Figure 14.4
Shifting the layers.

Figure 14.5
Shaping the jaw.

10. Select all the vertices in the model, and scale to 75 percent in the Y-axis only.

Do this by typing the value 0.75 into the Y scale box when you have the Scale

tool selected and then clicking Scale. Set the X and Y scale values to 1. Don’t

forget to save!

T i p

The view in what MilkShape calls the Left viewport is for us actually the Right view (or Right Side
view), located in the upper-right frame, because Torque’s coordinate system is oriented differently.
It’s because of this that I normally use MilkShape with the Show Viewport Caption option under
the Window menu turned off, in order to avoid confusing myself.

11. Now, using the same technique of selecting and moving (without doing any

scaling) as explained in steps 4 to 9, shape the model as near as you can get

to Figure 14.6. This is the Right Side view (upper-right frame). You only

need to work in this view for now, and no other, and you only need to use

the Select and Move tools. Now you can see the head shape taking form in

profile, with the nose jutting out.

12. Okay, this next part gets a bit tricky. Using the Right Side view, select the 16

vertices in the lower-left corner (which is the lower back of the head/upper

rear neck area), as shown in Figure 14.7.

13. Scale this group of vertices to 80 percent by typing 0.8 in the X-axis scale

box, and then click Scale.

14. Now select just the nine vertices in the lower left, as shown in Figure 14.8,

and scale these to 80 percent again.

The Base Hero Model 531

Figure 14.6
Shaping the head.

What this does is make the jaw and cranium parts of the head stand out in an

exaggerated fashion. By doing the scaling incrementally on the vertices in

the region like that, we get a fairly smooth shape. Take a moment to swivel

the model around in the 3D view, and you can now see a definite cartoonlike

big-jawed, low-browed heroic figure taking shape. Okay, so not all heroes

look like that. But we’re making a game, right? So make it fun!

Now, as cute and lovable as that beetle-browed look is, it’s a bit too Cro-

Magnon and robotic looking, so we need to tone down the forehead and

eyebrow area somewhat.

532 Chapter 14 n Making a Character Model

Figure 14.7
Back of the head/upper neck.

Figure 14.8
The smaller back of the head area.

15. In the Right Side view, in the row of vertices that is second from the top (see

Figure 14.9), select the vertex that is the second from the right (in the temple

area) by dragging the Selection tool around it. This will have the effect of

selecting that vertex and any others that are obscured behind it. There

happens to be one more back there, so you will end up with two vertices

selected, which you can see by examining the model in other views.

16. Drag the vertices back (to the left) a few ticks.

17. Switching now to the Front view (upper-left frame), scale those two vertices

by 120 percent in the X-axis. This has the effect of widening the gap between

them. (See Figure 14.10.) These steps have the effect of softening the sharp

corners, just enough to make the head more organic looking.

18. Still with the Front view, select all the vertices in the top three rows, which is

mostly the cranium area, and then incrementally apply 90 percent X-axis

and Z-axis scaling to them—as you did earlier: top three, then top two, and

so on. Figure 14.11 shows the results we are looking for here.

19. If you haven’t saved your work recently, do it now. No particular reason,

other than it’s good practice to save periodically. We’re getting close to

being finished with the head.

20. Using Figure 14.12 as a guide, select the three ear vertices in the Right Side

view.

The Base Hero Model 533

Figure 14.9
The temple vertices.

534 Chapter 14 n Making a Character Model

Figure 14.10
Scaling the temple vertices.

Figure 14.11
Scaling the cranium.

Figure 14.12
The ear vertices.

21. Stretch the ear vertices apart by scaling them 117 percent in the X-axis, as

shown in Figure 14.13.

22. Now still in the Right Side view, guided by Figure 14.14, select the three

columns of vertices at the rear of the head.

23. Drag them forward so that the rightmost column of selected vertices is just

behind the unselected column (the fifth column), as shown in Figure 14.15.

24. Next, drag the two columns at the back of the head forward, so that you end

up with a configuration like the one depicted in Figure 14.16.

The Base Hero Model 535

Figure 14.13
The scaled ear vertices.

Figure 14.14
Selecting the three columns of vertices.

25. By now, you should be getting fairly adept at using the Select, Move, and

Scale tools in MilkShape, so I’ll give you a little assignment. Make the scalp

region at the top of the head look like the scalp shown in Figure 14.17, using

just these three tools and operating only on the top row of vertices. You will

have to work in both the Front and Side views while monitoring your

progress in the 3D view. Note that the 3D view in Figure 14.17 is smooth-

shaded, not flat-shaded like most of the other figures.

536 Chapter 14 n Making a Character Model

Figure 14.15
Dragging the vertices forward.

Figure 14.16
After dragging the vertices.

26. Next, use the same techniques to shape the nose and eyes. Figure 14.18

shows which vertices to use to shape the nose. Scale the vertices by

50 percent in the X-axis.

27. Shape the eye-socket vertices, as shown in Figure 14.19, by scaling to

30 percent in the X-axis.

28. Now this entire work should exist as one group. Rename that group as

‘‘head’’ in the Groups tab in the toolbox.

The Base Hero Model 537

Figure 14.17
Shaping the scalp.

Figure 14.18
The nose vertices before scaling.

29. Save your work as \3D2E\RESOURCES\CH14\myhead.ms3d. By saving the

head in its own file, you can keep it safely out of the way while you work on

the other parts.

30. Save your work one more time, but this time as \3D2E\RESOURCES\CH14\

myhero.ms3d. This is the hero model that we will build up as we go along.

And there you have it—as you can see in Figure 14.20, steely-eyed, big-jawed,

beetle-browed genuine dyed-in-the-wool hero material!

538 Chapter 14 n Making a Character Model

Figure 14.19
The eye-socket vertices after scaling.

Figure 14.20
The finished hero head.

The Torso

Like the head, the torso will be based on the cylinder shape, but this time we will

use two of them and weld them together.

1. If you have the head file still open, leave it open. If you don’t have it open,

then open it, or you can openmyhero.ms3d. Either one will do, because they

both contain only the head so far.

2. Save the file as \3D2E\RESOURCES\CH14\mytorso.ms3d. We want to have

the head around to use as a sizing guide when we start the torso model, and

then we will delete it.

3. Drag the head mesh up until it is three or four grid lines above the model

origin (the 0,0,0 coordinate), as suggested in Figure 14.21.

4. Use the Cylinder shape, and make one that has 6 segments, or stacks, and 12

slices, or faces. Give the name ‘‘chest’’ to the group it creates.

5. Rotate the cylinder by 90 degrees in both the X- and Y-axes.

6. Move and scale the cylinder until it has the same relationship to the head, as

shown in Figure 14.22.

7. If the Auto Tool option is on, then turn it off.

8. In the Front view, select all the vertices from one end of the cylinder, then

hold down the Shift key, and drag over the vertices at the other end of the

The Base Hero Model 539

Figure 14.21
Positioning the head mesh.

cylinder to select them as well. These vertices form the cylinder caps for

either end.

T i p

When trying to use the Shift key to add to a collection of selected objects, you might need to press
the Shift key a couple of times. That’s because when you are in certain modes, like Move mode,
holding the Shift key toggles between zooming the view using a mouse drag and adding to the
collection.

9. Scale the vertices to 50 percent in the Y- and Z-axes.

10. Drag the vertices up until the top ones are in line with the top of the

cylinder. Figure 14.23 shows what the result should look like, with the head

hidden. We’ll keep the head object hidden for the next little while.

T i p

To hide the head, just make sure that it is the only object selected, then choose Edit, Hide
Selection. You need to make sure that all the faces (triangles) in the head object are selected, not
just the vertices. The best way to ensure that you select the head the right way is to open the
Groups tab, highlight the head object in the list, and click the Hide button.

540 Chapter 14 n Making a Character Model

Figure 14.22
The relationship of the chest cylinder to the head.

11. If you like to use the Auto Tool option, turn it back on now.

12. In the Front view, select the right-hand end cap, and rotate it by�20 degrees

in the Z-axis.

13. Now rotate the left-hand end cap by þ20 degrees in the Z-axis.

14. Next we will delete the head and we will need to manage our files during the

process. So pay close attention here.

First, save your current work as myhero.ms3d. That should have saved the

torso and head together in the myhero.ms3d model. Then in the Groups tab

in the toolbox, choose the head group and delete it. Then save again, this

time saving as mytorso.ms3d. This gets the head out of the way so it won’t

clutter our model. We have the head already saved separately, so no worries

here. We’ve also saved our torso in its own file for possible future use as a

component in some other model. Now we can get back to working on

building up myhero.ms3d some more.

15. In the Top view, select the two vertices in the middle at the bottom, in the

area of the sternum, as shown in Figure 14.24, and move them toward the

inside of the chest a bit.

16. Now you’ll do the same for the back as for the front, but just slightly

differently, for a different effect. In the Front view, select all the vertices in

the top three rows, including the ones that are in the end caps.

17. Hide these vertices, using Edit, Hide Selection.

18. Now in the Top view, select the middle three vertices at the top of the view,

as shown in Figure 14.25. These are the middle back vertices.

The Base Hero Model 541

Figure 14.23
The cylinder caps after scaling and moving.

19. Move the middle back vertices toward the inside of the chest a bit, just as you

did with the sternum, but perhaps not quite as much.

20. Create another new cylinder (to be named ‘‘ab’’), and give it the same 90-degree

rotation in the X- and Y-axes.

542 Chapter 14 n Making a Character Model

Figure 14.24
The sternum vertices after moving.

Figure 14.25
The middle back vertices.

21. Move and scale the ab cylinder until it has the same relationship with the

chest, as shown in Figure 14.26.

Now we have our primitive abdomen inserted. We’re going to have to splice

that mesh onto the chest mesh in order to complete the torso. It’s actually

not terribly hard to do, and after you’ve done it once, it will seem intuitively

easy. But there are quite a few fiddly little steps involved to get there from

here. So please be patient.

22. Using the Groups tab, hide the ab mesh.

23. In the Right Side view, select the bottom vertices, as shown in Figure 14.27,

and then hide them using Edit, Hide Selections.

24. Back to the Groups tab, unhide the ab mesh by clicking the Hide button

(which toggles between hiding and unhiding each time you click it). Don’t

use the general Unhide All command, because we want the chest vertices

that we just hid to stay hidden.

25. In the Right Side view again, select the vertices shown in Figure 14.28, and

drag them up so they are directly over the location where the hidden vertices

for the chest are. Study Figure 14.28, which shows the vertices selected and

The Base Hero Model 543

Figure 14.26
The ab cylinder relative to the chest.

dragged into position. Compare it with Figure 14.27 to get a sense of the

right place to put the vertices. The intersection of lines shown by the white

arrow in Figure 14.28 does not get a vertex at this time—we will deal with

that shortly.

26. In the Front view, locate the end cap vertices, as shown in Figure 14.29, and

drag them out to the position indicated in that figure.

27. Next, do the same for the vertices to the left of the previous set. Drag them to

exactly the same place as the previous set, as shown in Figure 14.30.

544 Chapter 14 n Making a Character Model

Figure 14.27
Hiding the lower chest vertices.

Figure 14.28
The ab vertices dragged over on top of the chest vertices.

28. Repeat steps 26 and 27 for the other end of the ab mesh.

29. Drag the next set of vertices over to the chest positions, as shown in

Figure 14.31.

30. Repeat the drag operation for the other end. You should now have some-

thing that closely resembles the layout in Figure 14.32.

31. Zoom in on all the places that you dragged vertices to, and make sure that

they are exactly over the line intersections of the chest triangles.

The Base Hero Model 545

Figure 14.29
Dragging some end cap vertices over on top of chest vertices.

Figure 14.30
Dragging the end cap neighbor vertices over on top of the chest vertices.

32. In the Right Side view, select and hide all vertices on a line from the center of

the cylinder forward (with forward being toward the right of the view).

Figure 14.33 shows the vertices we’re interested in.

33. Back in the Front view, select the center vertex at the top of the ab cylinder,

as depicted in Figure 14.34. If you’ve done step 32 correctly, then as you scan

around the other views, you will see that only one vertex has been selected.

34. Switch to the Right Side view, and drag that lone vertex up to the spot that I

pointed out with the white arrow back in Figure 14.28.

546 Chapter 14 n Making a Character Model

Figure 14.31
Dragging the next set of vertices into position.

Figure 14.32
The final Front view layout.

You should now have a configuration that looks like the one shown in

Figure 14.35. Again, take the time to zoom in and ensure that all the dragged

vertices are exactly over the line intersections of the chest triangles.

35. Unhide all the hidden vertices using the Edit, Unhide All command.

36. Select all the vertices from both meshes located at the places where you

placed the dragged vertices. It’s probably best to do this with the Right Side

view, as I did in Figure 14.35. These are the vertices of each mesh, chest, and

ab, that share the same locations.

The Base Hero Model 547

Figure 14.33
Select and hide these vertices.

Figure 14.34
The top center cylinder vertex.

37. Choose Vertex, Snap To Grid. This should have the effect of forcing the

closely adjacent vertices of each mesh to exactly align on the grid locations.

However, if your vertices weren’t aligned closely enough earlier, then they

might diverge, as you can see happened to me in Figure 14.36. That’s be-

cause I didn’t take my own advice to zoom in and tweak each moved vertex

position to be exactly right.

It should be pretty obvious where the misaligned vertices have to go. If you

have any that wandered off like I did, go back to the Right Side view and the

548 Chapter 14 n Making a Character Model

Figure 14.35
Selecting the common chest and ab vertices.

Figure 14.36
After snapping to grid . . . oops!

Front view, and move the wayward vertices into position. Then repeat the

Snap To Grid operation.

38. Compare your results with the images in Figure 14.37, making sure you have

the same thing as shown there.

39. If they aren’t already selected, reselect the vertices shown back there in

Figure 14.35.

40. And now for the moment we’ve all been waiting for: choose Vertex, Weld

Vertices.

All vertices that share identical common coordinates will be ‘‘welded’’

together. This basically means that superfluous copies of vertices will be

deleted, and the polygons that we’re defining will be reattached to the

remaining single copy of each vertex.

41. In the Groups tab in the toolbox, choose both meshes, the chest and ab, so

that they are both selected and highlighted in the wire-frame views.

42. Click Regroup, and then rename the newly consolidated group as ‘‘torso’’.

You can now consider the torso to be finished. However, you can probably

see areas where you can make obvious tweaks and adjustments. I did a few,

just to make the integration of the back and the behind, as well as of the

chest and the front abdomen, a bit more natural looking. I also added a

wee bit of anatomical correctness, so to speak. Figure 14.38 shows the

results of my tweaks. It should be fairly painless for you to duplicate these

adjustments. The only operations I performed were Select (Vertex) and

Move.

The Base Hero Model 549

Figure 14.37
The well-aligned vertices.

43. Save your mytorso.ms3d file so you don’t lose all your work.

44. Open your myhero.ms3d file, and delete the older version of the torso group

that is in this model.

45. Then merge the mytorso.ms3d file that you saved in step 43 into this model

and save the whole shebang again as myhero.ms3d.

This updates myhero.ms3d with the latest and greatest version of your torso.

The myhero.ms3d file should now contain the finished head and the

finished torso.

As we create the remaining parts of the model, we’ll add them to the

myhero.ms3d model by merging as we go along.

Matching the Head to the Torso

Now we should make sure that the torso and the head match correctly.

1. If the head and torso are nicely aligned, close to what you see in Figure 14.39,

then you are done with this section, and you can skip to The Legs section,

which comes up next. Otherwise, continue on to step 2.

550 Chapter 14 n Making a Character Model

Figure 14.38
The final torso.

2. On the Groups tab in the toolbox, choose the head object (your torso mesh

will be called ‘‘torso’’, so the head mesh will be the other one). Rename it as

‘‘head’’ if it isn’t already called that.

3. Deselect the torso, and then click the Select button so that the head mesh is

highlighted (and the torso mesh isn’t), drag the head around in either the

Front or the Side view, and position it as shown in Figure 14.39.

I see two things I don’t like right away. The head is bigger than it should be,

and its shape seems to be a little too . . . ummm . . . blah. This isn’t hard to

fix, however.

4. Scale the head to 75 percent in the Y-axis only.

5. Move the head down until it just touches the top of the torso.

6. Rotate the head by 5 degrees around the X-axis so that the face is pointing a

little bit down, as shown in Figure 14.40.

There, that’s more like it! Now to fiddle with the torso some more. If you

liked the head better when it was bigger, simply choose Edit, Undo until you

get the larger head back.

The Base Hero Model 551

Figure 14.39
Positioning the head.

7. Select the vertices that form the shoulder sockets on both sides of the torso,

using Figure 14.41 as a guide.

8. Scale the vertices to 60 percent in the Y- and Z-axes.

9. Save your work as \3D2E\RESOURCES\CH14\myhero.ms3d.

10. If you changed the head, you need to delete the torso, then save the file as

myhead.ms3d to preserve your changes to the head. Then choose Edit,

Undo until you get the head back.

552 Chapter 14 n Making a Character Model

Figure 14.40
The reshaped head.

Figure 14.41
The shoulder socket vertices.

11. Delete the head, and then save the file as mytorso.ms3d.

Now the head, torso, and overall hero files have been created, aligned, and their

corresponding files are up-to-date.

The Legs

When we start the legs, we’ll want to keep the torso mesh around to use as a sizing

reference, at least for the first little while. However, we won’t need to have the

head mesh in there, cluttering things up, so we’ll get rid of that.

1. If you haven’t done it already, open your torso file, found at \3D2E\

RESOURCES\CH14\mytorso.ms3d.

2. Now save the same file as \3D2E\RESOURCES\CH14\mylegs.ms3d, and

continue working with this version.

3. Hide the head mesh using the Groups tab in the toolbox and the Hide

button found there.

4. Select the torsomesh, and drag it up about one torso’s length above the origin.

5. Create a cylinder with 3 stacks (segments) and 12 slices (faces), and position

and shape it as shown in Figure 14.42. This is the foot.

6. Create another cylinder, and rotate it 90 degrees in the Z-axis, making sure

that it is oriented so it runs left to right where the knee would be.

7. Using Figure 14.43 as a guide, move the vertices of the top of the foot up to

meet the knee cylinder.

The Base Hero Model 553

Figure 14.42
Shape and placement of the foot.

By now you’ve probably realized that almost everything from here on is

more a matter of style and taste and less of technique. So you should feel free

to go ahead and deviate from the specific construction details if you think of

something you might like better.

8. Reshape the knee cylinder as shown in Figure 14.44.

9. Select the foot cylinder, and rename it as ‘‘LeftFoot’’.

10. Create two more cylinders, and orient them as shown in Figure 14.44 to

make the upper leg and hip.

11. Select the two new cylinders, plus the knee cylinder, and use the Re-

group tool in the Groups tab of the toolbox. Name the resulting mesh

‘‘LeftThigh’’.

12. Shape the left thigh to match that shown in Figure 14.45—or to suit your

own evil purposes.

554 Chapter 14 n Making a Character Model

Figure 14.43
The knee.

Figure 14.44
The left thigh.

13. With the left foot mesh selected, choose Edit, Duplicate. A duplicate of the leg

is created in exactly the same location as the original, so you can’t see it yet.

14. Choose Vertex, Mirror Left<--> Right. The duplicate leg mesh now appears

on the other side, and in the right place, or pretty darn close.

15. Rename the new leg mesh as ‘‘RightFoot’’.

16. Now duplicate and mirror the left thigh in the same way, renaming the new

thigh mesh as ‘‘RightThigh’’. You should now have two legs, each made up

of a thigh mesh and a foot mesh and named appropriately.

17. Next, delete the torso and head meshes from the model.

18. Save your work! You should be saving this as \3D2E\

RESOURCES\CH14\mylegs.ms3d.

Integrating the Legs to the Torso

Just as we did with the head, we now have to integrate the legs with the rest of our

model.

1. Open the file \3D2E\RESOURCES\CH14\mytorso.ms3d.

The Base Hero Model 555

Figure 14.45
The finished left leg.

2. Select File, Merge, and choose the legs file you just created, which should be

called \3D2E\RESOURCES\CH14\mylegs.ms3d.

3. Choose the right foot, right thigh, left foot, and left thigh meshes, and move

them into position. You should now have a model pretty close to the one

shown in Figure 14.46.

The Arms

Finally, the last set of meshes in the model. We can create the arms in exactly the

same way we created the legs—building up from shape primitives, splicing them

together until we have the desired mesh topology.

With arms comes the perennial question, what to do about the fingers? In some

models we can make detailed meshes for each finger, with cylinders segmented at

the knuckles, and so on. However, we must keep in mind that our goal here is to

create a low-poly model, and that typically means fewer than about 1,500

polygons in the model. If we go over that count by a small amount, no big

whoop, but we must remain mindful of it.

So, let’s get to work! We’ll start with the left hand.

556 Chapter 14 n Making a Character Model

Figure 14.46
The Hero model with head, torso, and legs.

1. Open your saved mytorso.ms3d file, and resave it as myarms.ms3d in the

same location as your other work files.

2. Create a box offset to the left side (on the right in the Front view) of the

torso, situated low, near the bottom of the torso.

3. Duplicate this box, and move the copy to abut the bottom of the original

box.

4. Scale the second box to 80 percent.

5. Duplicate the second box, and move the new box below the second.

6. Scale the third box to 80 percent of the second box.

7. Align the boxes as shown in Figure 14.47.

8. Hide the torso mesh to keep it out of the way for the moment.

9. Using Vertex Selection, theMove tool, and the Snap To Grid andWeld tools

as you did with earlier parts of the Hero model, align the vertices of the three

boxes as shown in Figure 14.48, and weld the vertices together.

10. Rotate the two bottom rows of vertices by �30 degrees in the Z-axis, as

shown in Figure 14.49.

11. Move the two bottom rows in the Front view to align them as shown in

Figure 14.50.

12. Rotate and move the bottom row of vertices to match what is shown in

Figure 14.51.

The Base Hero Model 557

Figure 14.47
Alignment of the three boxes.

13. Now, setting the Select mode to Groups, select all the groups of boxes,

duplicate them, and move them forward to abut the front of the original

boxes, using Figure 14.52 as a guide.

14. Repeat the process in step 13, putting the new copies at the rear of the

originals, using Figure 14.53 as a guide.

558 Chapter 14 n Making a Character Model

Figure 14.48
Welding the hand vertices.

Figure 14.49
Rotating the two bottom rows.

Figure 14.50
Moving the two bottom rows.

15. Repeat the duplicating process one more time, but this time move the new

boxes to the left side of the Front view. This is the thumb.

16. Choose Vertex, Mirror Left <--> Right to reverse the orientation of

the thumb boxes (see Figure 14.54), and then scale the thumb to

50 percent.

The Base Hero Model 559

Figure 14.51
The bottom row of vertices.

Figure 14.52
Two sets of shaped boxes abutting each other.

Figure 14.53
Three sets of shaped boxes.

17. Now we’ll switch back to the hand part. In the Top view, select the vertices

that are adjacent in the two forward parts of the hand boxes, as shown

in Figure 14.55, panel A. Then choose Vertex, Flatten, Z, and the vertices

will be brought together onto a common plane, as shown in panel B of

Figure 14.55.

18. Double-check the other views, and if all vertices look to be coincident, then

choose Vertex, Weld Together to weld them.

19. Repeat step 18 for the rear part of the hand, welding the result. Compare

with Figure 14.56 to make sure it is correct.

20. Select the rearmost vertices, in the baby finger area, and scale them to 50

percent in the X- and Y-axes, as shown in Figure 14.57.

21. Move the scaled vertices forward until they are close to the middle hand

boxes, using the Top view in Figure 14.58 as a guide.

560 Chapter 14 n Making a Character Model

Figure 14.54
The start of the thumb.

Figure 14.55
Welding the hand vertices.

The Base Hero Model 561

Figure 14.56
After the hand welding.

Figure 14.57
The scaled baby finger area.

22. Repeat steps 20 and 21 for the front index finger area.

23. In the Front view, rotate and shape the thumb to approximate what’s shown

in Figure 14.59.

24. Unhide the torso, and compare the size and positioning of your hand with

the views shown in Figure 14.60. Rotate the hand to match, if required.

Now you might be thinking that the hand looks awfully blocky compared to

other parts of the model. You are right, but take heart. We can compensate

562 Chapter 14 n Making a Character Model

Figure 14.58
Placing the scaled baby finger vertices.

Figure 14.59
The thumb positioning.

for this with our skins. Remember, we want to keep our polygon count as

low as we can.

25. Using the Groups tab in the toolbox, select all the hand groups, regroup

them to form a new mesh, and rename it as ‘‘LeftHand’’.

26. In the Front view, use the Sphere tool set to four stacks and eight slices, and

create a sphere that completely fills the left shoulder socket of the torso.

Check all your views to make sure that you have it pretty close.

27. Make another sphere with the same settings that fills the top of the hand,

and place it there.

28. Make a one-stack, eight-slice cylinder that you can rotate, and move it into a

position that connects the two spheres. Use Figure 14.61 as a guide for

sphere and cylinder sizing and placement.

29. Select all the upper arm components, regroup them, and name the new

mesh ‘‘LeftArm’’.

30. Select the new left arm mesh, duplicate it, and then choose Vertex, Mirror

Right <--> Left.

The Base Hero Model 563

Figure 14.60
Comparison of torso with hand.

31. Adjust the new mesh if necessary, and rename it as ‘‘RightArm’’.

32. Repeat the duplicating and renaming operations for the left hand mesh,

calling the newly duplicated copy ‘‘RightHand’’.

33. Delete the torso mesh.

34. Save your work! You should now have a pair of hefty arms that closely

resemble those shown in Figure 14.62.

Integrating the Arms to the Torso

Once again, it’s integration time. If you are inclined towonder about doing themodel

this way rather than all at once in one file, I want to point out that now you have a

different sourcemodel file for eachmajor component of yourmodel. This allows you

tomake differentmix-and-matchmodels using the same components over and over.

Justmake three sets of arms, four sets of legs, five heads, two torsos, or something like

that. Mix ‘n’ match ’em, and you’ll have all sorts of different model configurations!

1. Open the file \3D2E\RESOURCES\CH14\myhero.ms3d.

2. Select File, Merge, and choose the arms file you just created, which should be

called \3D2E\RESOURCES\CH14\myarms.ms3d.

564 Chapter 14 n Making a Character Model

Figure 14.61
The left arm.

3. Choose both the right arm and the left arm meshes, and move them into

position. You should now have a model pretty closely resembling the one

shown in Figure 14.63.

Finally, we need to scale our mesh to the correct size. We want our guy to be

around 2 meters tall. We are going to export at a 1:1 scale, so we need to set the top

of the head to be close to 2.0 units high in the Y-axis as measured from the scene’s

origin (the 0,0,0 center of the scene, where the three colored lines of the axis bug

intersect). Use the Scale tool and one of two methods: (1) eyeball the height of the

character as he exists now (move your cursor to the top of his head in the Side or

Front views, and get the Y-axis value in the status bar of the window at the bottom

left), calculate the scale in your head (or with a calculator), and enter the appro-

priate scale value in all three scale fields of the Scale tool (the same value for all

three), or (2) click-drag themouse in each of the views until you shrink or grow the

model to where you want it. I personally prefer method 1—I get more consistent

results, and it only takes two or three scale adjustments at the most.

Select the entire model and move it so that the feet straddle the axis bug, while

resting squarely on the x-axis line in the front view. The x-axis line in the bug is

colored yellow.

The Base Hero Model 565

Figure 14.62
The completed arms.

Testing the Tool Chain
As you may have noticed by now, when we create art for games, we use an

assortment of third-party tools to generate our various kinds of artwork.

P a r t y On , G a r t h !

A third party is some entity that provides tools and resources used in a particular system context
but that is (1) not the user of the system and (2) not the creator of the system.

An example in the context of computer systems: when you are using a computer system made by
Dell, Dell does not make the operating system----Microsoft does. So in this context, you are the first
party, Dell is the second party, and Microsoft is the third party.

In the context of operating systems: when you are using Windows to create flyers for your
bowling league, you are the first party, Microsoft (who makes Microsoft Windows) is the
second party, and your drawing software is made by a third party----unless you use
Microsoft Paint, in which case there is no third party. I hope. Okay, let’s not get too deep
into this . . .

Anyway, in the context of game engines, Torque is the product of GarageGames, the second party.
MilkShape, the Gimp, UVMapper, and so on, are all third parties.

Oh yeah, and whatever happened to Garth, anyway?

566 Chapter 14 n Making a Character Model

Figure 14.63
The completed Hero model.

At the start of any project, or whenever any new tools are brought to bear on the

project workload, there is an activity that should be performed called testing the

tool chain, or sometimes proving the tool chain.

The idea is to create some art resource, at a minimal effort, perform all the steps

required to get that resource into the game engine, and then use the game engine

to actually view the art resource. Each time a new ‘‘layer’’ of resource complexity

is added, the first step should be to test the tool chain with a minimal example of

the new complexity. Thus, we build up our model in an incremental, step-wise

fashion.

If you are familiar with the ‘‘cyclone,’’ ‘‘tornado,’’ or ‘‘spiral’’ development

methodologies (essentially that’s just three names for the same thing), you will

find that the incremental approach is an ideal fit. If you aren’t familiar with

development methodologies, don’t sweat it. Just understand that building up

your model in a step-wise fashion is both intuitive and easy on the brain, not to

mention that it fits well with current project management and development

pipeline best practices. The primary advantage (and it’s a huge advantage) is that

most design or implementation errors are detected very early on and fixed right

away, so that they don’t fester and end up infecting an entire project.

Here, look at this:

Modeling Work Flow

1. Create character model.

2. Export model to game engine format.

3. Insert mesh into game environment.

4. Run game and view model in game environment.

5. Add UV-mapped skin texture.

6. Export model to game engine format.

7. Insert mesh into game environment.

8. Run game and view model in game environment.

9. Add rigged skeleton with no animations.

10. Export model to game engine format.

Testing the Tool Chain 567

11. Insert mesh into game environment.

12. Run game and view model in game environment.

13. Add one animation, usually idle or root.

14. Export model to game engine format.

15. Insert mesh into game environment.

16. Run game and view model in game environment.

17. Add another animation.

18. Export model to game engine format.

19. Insert mesh into game environment.

20. Run game and view model in game environment.

21. Rinse and repeat steps 17 to 20.

Notice how we add complexity to the model a little bit at a time, and each time

we add to it, we test the model in its final context. Traditionally, that first export

in step 2 is the ‘‘testing the tool chain’’ part. The rest is just sensible work flow.

Note that the UV-mapped skin texture series of steps don’t need to happen

before the rigging and animation steps, and therefore we don’t need to wait

until the guy doing our textures and UV mapping is done before we create and

test animations.

You should be aware that the previous section of this chapter, ‘‘The Base Hero

Model,’’ was the equivalent of step 1 in the modeling work flow procedure.

So let’s try it testing the tool chain right now.

Make sure you have MilkShape 3D running and you’ve got your freshly com-

pleted Hero model open and on full display.

1. In MilkShape, choose File, Export, Torque DTS Plus. You will see the

Torque DTSPlus Exporter dialog box appear.

C a u t i o n

Do not use the Torque Game Engine DTS Exporter. In fact, don’t use it at all in this chapter.

568 Chapter 14 n Making a Character Model

2. We’re going to take the defaults, but we should make sure they are correct.

You want to have the following check boxes enabled:

n Output dump file

n Copy Textures

You should probably always have Output dump file enabled. The file that is
created is called dump.dmp, and it will be in the same folder that you
exported your model to. You can look in it for errors if things don’t work
right. You should delete all dump files before shipping your game.

Copy Textures is a nifty and very handy feature that allows you to keep your
source model and its texture files in a location far removed from the game
folders. When you export to the appropriate location in the game folders,
any textures that your model uses will be copied to the same folder as the
exported DTS version of your model. Muy cool.

Make sure you have the Scale field in the Options pane set to 1.

Click Apply to save your settings, and then click Export DTS when you are
ready to close the dialog box and perform the export.

3. When prompted, save your DTS output file as \3D2E\RESOURCES\CH14\

myhero.dts for now.

That was pretty painless. That’s step 2 of the work flow done. We’ll dust off the

Torque Show Tool Pro (TSTP) program we used in Chapter 9 and check out the

model.

1. Launch TSTP.

2. Ensure that you have your RESOURCES folder selected in the Project

Directory pop-up.

3. Find RESOURCES/CH14/myhero.dts, and double-click on it.

4. The model should appear in the center of the screen.

5. Use the mouse actions (described in Chapter 9 in Table 9.1) to rotate the

model and bring it closer to you or move it farther away. Left-click and drag

will make the camera orbit the model, while right-click and drag will slide

the camera around. The mouse wheel will let you zoom in and out.

Testing the Tool Chain 569

6. If necessary, go back to your model in MilkShape and make adjustments to

your model, and then come back here to check them out.

TSTP actually uses Torque itself to display the model (in fact, TSTP actually

really is Torque, except that it is running without any mission, or networking, or

the player GUI, or any other stuff like that), so we know that if the model works

in the Show Tool context, then it will work in a game context in Torque.

The Hero Skin
Now it’s time to skin the model. In Chapter 9 you learned how to create the

textures for skins, and in Chapter 13 you learned how to do simple UV mapping

for skins. Next, we have to do the UV mapping for the player-character, which is

somewhat more complex. We are not going to go over the creation of the texture

for Hero character skin. The Resources folder includes a mapped Hero skin

texture for you to use, but I encourage you to make your own in the same fashion

as the one for the Standard Male.

1. If MilkShape is not already running, launch it and open your Hero model,

located at \3D2E\RESOURCES\CH14\myhero.ms3d.

2. Choose File, Export, Wavefront Obj, and export your Hero model as

\3D2E\RESOURCES\CH14\myhero.obj.

3. Launch UVMapper (found at \3D2E\ TOOLS\UVMAPPER), and maximize

the window.

4. Load the \3D2E\RESOURCES\CH14\myhero.obj. You will see a crazy quilt

of lines. This is the ‘‘default’’ mapping created by MilkShape. Let’s forget

about that, because we are going to create our own mapping.

5. Choose Edit, New UV Map, Planar, and then use the settings shown in

Figure 14.64. Click OK when finished adjusting these settings.

6. Choose Edit, Color by Group, and then click OK. Your screen should now

look like Figure 14.65. Of course, your version will be in color, and so the

light yellow will actually be more visible to you. In the figure, which has been

converted to grayscale, the yellow has become a very light gray.

7. First, choose Edit, Select, All, and press the forward slash (‘‘/’’) key on the

numeric keypad to shrink the selection to 25 percent, half-sized in the x

dimension and half-sized in the y dimension (the asterisk [‘‘�’’] on the

numeric keypad will do the opposite). Press Enter to save your adjustment.

570 Chapter 14 n Making a Character Model

If you don’t like the adjustments you just made, press Esc to undo your

changes since making your last selection or remapping.

8. Choose Edit, Select by Group, choose the group ‘‘head’’, and then click OK.

9. Choose Edit, New UV Map, Spherical. Use the settings shown in

Figure 14.66.

The Hero Skin 571

Figure 14.64
Planar mapping settings for Hero model.

Figure 14.65
The unwrapped Hero model.

10. Press the equal sign (‘‘=’’) to expand the head selection to fill the window,

and then press the forward slash on the numeric keypad a few times to

shrink the selection. Use your mouse to drag the head to the upper center of

the window, as shown in Figure 14.67.

Now you might notice that there appear to be two triangles out of place in

the head unwrapping. Look inside circle A in Figure 14.67 and see if you

can spot them. In your model this may not be the case, but the more

closely your model matches the one I’ve done here, the more likely this is

to happen. This little oddity is easily fixed. You should be able to do the

572 Chapter 14 n Making a Character Model

Figure 14.66
Settings for the spherical mapping of the head.

Figure 14.67
The unwrapped head.

mapping without that happening—it’s all a matter of which settings you

use. You can try to get the right settings by trial and error. However, the

simplest fix is to just move the miscreants to their lawful location. So that’s

what we’ll do.

11. Drag your cursor over the middle of the two wayward triangles. Don’t touch

any parts of any other triangles in any other part of the model. The triangles

will now appear surrounded by a selection box.

12. Click and drag them over to the right-hand side where there is that suspicious-

looking gap, and place them as well as you can. Location B in Figure 14.68

shows where the triangles end up.

13. Use the arrow keys to adjust the position of the triangles. There you go! Now

you need to do a bit of housekeeping-like fiddling.

14. Choose Edit, Select, All. You will get everything on the screen selected in a

selection box with the little black sizing handles at the corners and midway

along each side.

15. Grab the sizing handle on the right side. Your cursor should change to the

left-right sizing cursor (this is an arrow pointing left and right).

16. Drag the sizing handle toward the left until you get a blank space on the right

a little wider than the width of the head.

17. Choose Edit, Select, Group, and choose the head. Drag it over to the upper

right, in the blank space you just created. You should now have a layout like

Figure 14.69.

The Hero Skin 573

Figure 14.68
The adjusted triangles.

As you work you will probably reorganize your layout a few times—that’s

perfectly normal. You want to keep it clean and make sure your items are

easily selectable.

18. Now choose Edit, Select, By Group, and choose the LeftHand group.

19. Choose Edit, New UV Map, Box. You will get the Box Mapping dialog box,

as shown in Figure 14.70. Make sure you have Split front/back turned off,

and Gaps in Map turned on. Click OK.

The unwrapped left hand will appear in the window, surrounded by the

selection box.

574 Chapter 14 n Making a Character Model

Figure 14.69
The reorganized map.

Figure 14.70
The Box Mapping settings.

20. Move and size the hand mapping, just as we did with the head, placing it in

the center of the window in the blank area. Make sure it is small enough to

allow the mapped right hand in here as well (see Figure 14.71).

21. Perform the same UV-mapping operation and placement operation on the

RightHand group, putting them in the center space.

22. Next, map the left and right feet the same way. For each group as you

unwrap it, size the sole (oval shape) so that it is longer than it is wide. Place

the feet underneath the main model, as shown in Figure 14.72.

23. Next, map all the arms and legs. Use Planar mapping for these.

24. Shrink and move the mapped objects, ensuring that no mapped objects

overlap any others.

25. Once all the objects are mapped, overlap similar items (with the exception of

the torso front and back), and enlarge the torso, hand, and head objects as

much as possible. The larger the mapping, the more detail can be applied in

the texture.

26. Finally, move and arrange the objects to match the layout in Figure 14.73.

This is the final texture-mapping layout that we’ll use for the template.

The Hero Skin 575

Figure 14.71
The UV-mapped hands.

27. Choose File, Save Model, and save it as \3D2E\RESOURCES\CH14\

myhero.obj (thereby obliterating the one you created from MilkShape;

don’t worry though—you can always export another from MilkShape if

needed).

576 Chapter 14 n Making a Character Model

Figure 14.72
The UV-mapped feet.

Figure 14.73
The final UV-mapping layout.

In the Save Model dialog box, the following options should be checked:

Export Normals, Export UV Coordinates, Export Materials, and Export

UVMapper Regions. The rest of the options should be unchecked.

28. Choose File, Save Texture Map, and save the map as \3D2E\RESOURCES\

CH14\myhero.bmp. Make sure the texture size is set to 512 by 512.

29. Launch MilkShape, and create a new file.

30. Choose File, Import, Wavefront Obj, and import the \3D2E\RESOURCES\

CH14\myhero.obj file.

31. In the Materials tab of the toolbox, click New.

32. Click the top Texture button, and locate the \3D2E\RESOURCES\CH14\

myhero.bmp texture map template file you created in UVMapper.

33. Rename the material as ‘‘heroskin’’.

34. Using the Groups tab, select all the meshes, and then switch back to the

Materials tab and click Assign. You should now have a 3D view that

resembles Figure 14.74.

Of course, your version is in color. The lines of the triangles in the color

groupings assigned in UVMapper are clearly visible. You are now in a position to

go ahead and use the Gimp to create your skin for the Hero model. Refer back to

The Hero Skin 577

Figure 14.74
The 3D view showing the UV template texture.

Chapter 9 if you need a refresher. Make sure to save your skin as a JPG file type in

order to use it in Torque. This means that you will also have to go back into

MilkShape and redefine your material to point at the JPG version and not the

BMP version.

If you are wondering why the exercise in Chapter 9 didn’t make a skin for use on

this model . . . I mean, well come on! Do you want me to do everything for you?

Ya lazy bums! Make your own danged skins. They’re likely to be 10 times better

than mine anyway.

Now, if you are finished with your griping, you need to test your UV mapping.

Use the Torque Show Tool Pro to view your model the same way you did back in

the ‘‘Testing the Tool Chain’’ section.

If everything looks good with the UVmapping, we’ll continue into the animation

section using the UV template Hero skin that I’ve included in the \3D2E\

RESOURCES\CH14\hero.jpg file.

Character Animation
Well, a static model—no matter how cool looking when it’s standing there—is

not terribly interesting in a first-person shooter. We’re going to have to animate

that sucker!

If we were a big-name, big-money shop, we might go out and hire a motion

capture studio to make our animations. But we’re not—we’re indie developers!

So we will have to explore other options, and there are some.

On the Internet you can find some stop-motion photography sequences that

might help you develop your character animations. There are also freely

downloadable files with character animations in them; they will probably have a

different skeleton structure than the one we use here, but a certain amount of

tweaking can go a long way.

I know someone who manually creates animations using action figures that he

poses, changing the poses step-by-step as he works through the animation,

converting what his eye sees into the appropriate frame in his animation pro-

gram. This is certainly a good low-budget option.

In this book we are going to hand-build our animations, because the point is to

learn how to do it. They may not be the best animations in the world (or maybe

they will be!), but they will be your very own if you make them yourself. If you

578 Chapter 14 n Making a Character Model

need a model, ask a friend or family member to step slowly through whatever it is

you are trying to animate, if it’s humanly possible. You’d be surprised how

helpful that can be. Bribe them with their favorite dessert or something.

Animating Characters in Torque

The general method for making animated characters for use in Torque is to

construct a skeleton that corresponds to components of the model and then

attach that skeleton to the corresponding components in a process called rigging.

We then create a sequence of keyframes—essentially a series of skeleton poses.

When the Torque Engine wants to animate the model, it calculates the positions

of the meshes in the model by the position and rotation of the nodes (the joints

where the ‘‘bones’’ of the skeleton connect to each other) based on where the

keyframes appear in the animation timeline.

We are going to create six different basic animations:

n root (same as idle in some non-Torque systems)

n run

n look

n head

n headside

n death

Table 14.1 shows a complete list of Torque-supported animations. This is not the

list of Torque animation sequence files that come with the demo (although all the

animations that are supported are indeed included as animation sequences). It’s

just that many of the animation sequence files are not automatically invoked

by Torque from within the engine or from anywhere in the scripts. Anyway, the

ones in Table 14.1 are invoked by the engine or by the demo scripts, as described

in the table.

These animations correspond to character animation support built into Torque.

The names must match the names used by Torque; however, we can add our own

arbitrary animations and activate them from within the script programs if we

want. There are also other animations that Torque supports that we won’t cover

here.

Character Animation 579

In Figure 14.75 the spheres are joints, or nodes. The spike between two of the

spheres is a ‘‘bone.’’ The direction the spike is pointing indicates the relationship

between the nodes. The node at the big end is the parent, while the other end is

the child node. Notice that in Figure 14.75 the parent node in frame B is rotated

60 degrees in its orientation from frame A, and the child node follows the

580 Chapter 14 n Making a Character Model

Table 14.1 Torque-Supported Animation Sequences

Sequence Name Description

root This is the basic ‘‘not doing anything’’ animation----usually the character is
standing and fidgeting.

run This is the animation used when the character is running forward.

walk When the character’s speed is less than running speed, he walks, using this
animation.

back This is the animation used when the character is running backward.

side This is the animation used when the character is running sideways, sometimes
called strafing.

look This is a simple animation where the character’s right arm points where the
character is looking, such as when holding a weapon.

head The head looks up or down depending on where the character is looking.

fall This is the pose of a character, or his animations, when the character is falling
off a cliff or building.

land This is the sudden stop at the end of a fall!

jump This is a jump made while running.

death1 Like it says. This is one of 11 possibilities. You don’t need them all, but like the
old adage, ‘‘Variety is the spice of life, er, death, or something.’’

death2-death11 Ditto, ten more times.

looksn This is the same as ‘‘look,’’ but with weapon held close.

lookms This is the same as ‘‘look,’’ but with arms loose.

scoutroot This is the animation used when the character is astride something like a
motorbike.

headside This is the animation used when the character is turning his head from side to
side.

light_recoil This is the weapon recoil, used to show the character’s reaction to firing a
weapon.

sitting This is the animation used when the character is seated, like sitting in a car.

celsalute This is an animation (an in-game salute or taunt animation), activated by
Ctrl+S as default. You can use it for whatever you want.

celwave Activated by Ctrl+W as default, this is another in-game salute or taunt
animation.

standjump This is another jump animation, but this time the character jumps from a
standing pose, like root.

looknw This is another weapon ‘‘look’’ with a variation of the loose arms pose.

rotation. The unattached node doesn’t move. Note that the horizontal and

vertical lines inside the nodes are angled in the rotated nodes but not in the

unattached node.

Open your myhero.ms3d file, if it isn’t already open. Set Joint Size to .05 in the

File Preferences dialog box on theMisc tab. We need to use such a small joint size

because the scale of the Hero model is quite a bit smaller than the Standard Male

Character model from Chapter 9.

Building the Skeleton

Before we can create the animations, we need to construct the character’s ske-

leton. We build the skeleton from the bottom-up, so to speak, beginning with the

base node and working toward the outer extremities.

1. We will start with the unlink node (or joint), which we place at the origin:

(0,0,0). Make sure that you click the Joint tool (lower-right corner of the

Model panel, on the right side of the main window), before trying to place

the joints.

T i p

To select a joint, click the Joint button in the Select Options frame in the Model tab. You can only
do this when the Select tool is active (its button is pressed in the Tools frame).

2. Now make sure that the unlink node is still selected, and then place another

node up in front of the head, roughly off the end of the nose, and name

this one cam. Figure 14.76 shows the relative appearance of these two

nodes in the Side view. This arrangement is independent of the rest of

the skeleton. (See the sidebar discussion ‘‘Torque’s Biped Skeleton’’ for

an explanation of the unlink and cam nodes.)

Character Animation 581

Figure 14.75
Bone movement during joint rotation.

T i p

If the unlink node is not selected, you need to select it before creating the cam joint. Do this by
clicking the Select tool in the Model panel and then clicking the Joint button in the Select Options
frame at the bottom of the Model tab’s panel. Then just click the unlink joint, or click-drag a
box around it.

Whenever you create a child node (in this case, the cam joint), you need to have the parent node
selected before placing the child. This will make the bone connector appear, thus showing the
relationship between the nodes.

3. Now we’ll start on the skeleton itself. This time, make sure that you don’t

have any joints selected, while the Joint tool is selected.

4. Place a joint node directly above the unlink node, but up around where the

Y value is about 0.7 or so. Name this joint Bip01 Pelvis.

5. Next, while making sure that the Bip01 Pelvis node is still selected, place

another joint a little bit above and behind Bip01 Pelvis. Name this node Bip01

Spine. Figure 14.76 shows the relative appearance of these two nodes. Make

582 Chapter 14 n Making a Character Model

Figure 14.76
Location of Bip01 Pelvis and Bip01 Spine nodes.

sure that the big end of the bone that joins these two joints is at the end where

the Bip01 Pelvis node is. The big end of the bone is the parent end.

6. Add all the new nodes, and label them appropriately. Figure 14.77 provides a

guide to the node placement and their names.

T i p

The order in which nodes are added obviously matters. Here is the sequence for the hero’s
skeleton:

Read the sequence from the top of the left column to the bottom. Then resume at the top of the
right column, and work down to the bottom. Nodes that are tagged with (start) are parents only,
not children of any other nodes. Nodes that are tagged (end) are children only, and not the parent
of any other nodes. Nodes that are tagged (restart) are nodes that already exist, and are listed
again in order to show where a particular child attaches. You do not have to make another copy of
a (restart) tagged node, just select the one that is already there, and start adding a node to it.

7. Starting with the Bip01 Pelvis and moving on to the spine, hips, and

shoulders (in that order), adjust the joints of the skeleton to match the

skeleton pose in Figure 14.78.

Remember to rotate hip, knee, elbow, and shoulder joints to move the joints

at the extremities. You want the character slightly bent at the knee joints,

with his left arm bones slightly bent beside him and the right arm bent up at

90 degrees.

Character Animation 583

Unlink (start) Bip01 Spine (restart)

cam (end) Bip01 L Thigh

Bip01 Pelvis (start) Bip01 L Calf

Bip01 Spine Bip01 L Foot (end)

Bip01 Spine1 Bip01 Neck (restart)

Bip01 Spine2 Bip01 R Clavicle

Bip01 Neck Bip01 R UpperArm

Bip01 Head Bip01 R ForeArm

eye (end) Bip01 R Hand

Bip01 Head (restart) mount0 (end)

Mount1 (end) Bip01 Neck (restart)

Bip01 Spine (restart) Bip01 L Clavicle

Bip01 R Thigh Bip01 L UpperArm

Bip01 R Calf Bip01 L ForeArm

Bip01 R Foot (end) Bip01 L Hand (end)

584 Chapter 14 n Making a Character Model

Figure 14.77
The Hero skeleton with labeled nodes.

Figure 14.78
The pose-adjusted skeleton.

Pay particular attention to the placement of the Bip01 Spine and

Bip01_x_Thigh nodes. The Bip01 Pelvis should be well below the level of

the Bip01 Thigh nodes, and they should be just a tad higher than the

lower spine.

8. Adjust the mesh rotations, and fine-tune the mesh group placements to

match the pose of the skeleton. You might need to fiddle back and forth

between the mesh groups and the joint nodes until you are satisfied with the

result.

T o r q u e ’ s B i p e d S k e l e t o n

The node names and bones you see in Figure 14.77 are somewhat of a standard for Torque.
They don’t have to be used, though. There are standard skeletons for other games whose
nomenclature you could use instead. Torque uses a standard biped skeleton that is the same as
the one used for CounterStrike and other games. As mentioned earlier, if we don’t use the
Torque skeleton, with the node names that exactly match, then we can’t use the stock Torque
animations.

There are some details about the skeleton and its parts that are really important, and we need to
get them exactly right.

The first, and most important, is the node names. Most of the nodes----those that are joints in the
‘‘bone structure’’ of the skeleton----have names that start with Bip01. Any nodes that have this in
their names always have a space immediately after the Bip01 string in the name. Additionally,
some of the names have an R or L in them to specify right or left side, respectively. These names
always have a space after the R or L in addition to the space in front of the R or L. (The space in
front is the same space that always follows the Bip01 string.)

So, for example, with the name Bip01 L Clavicle, there is one space between Bip01 and the L
and one space between the L and the Clavicle. Got that? Good.

Now, notice in the Side view in Figure 14.77 the node called unlink. This node is not really a
required node for our purposes. It comes from a usage requirement when exporting from pro-
grams like 3D Studio Max. I’ve included it here anyway, because I wanted a place to attach the
cam node to and something that wasn’t part of the main skeleton. With the unlink node, we
just need to ensure that any animations that move the entire body forward or back also move the
unlink node as well. This will have the effect of seamlessly dragging the cam node along with
it. The cam node is a ‘‘child’’ node of the unlink node, but it has no child nodes itself. The
unlink node is not a child of any other node, and neither does it have any children other than
the cam node.

Now, you could attach the cam node to the head node, for example. The problem with this
approach is that the cam node will then move and swivel according to how the head moves in its
animations and not simply along with the body in general (the desired effect).

Finally, note that the naming convention used by Torque reflects the fact that the first tool used to
make Torque (and Tribes) models was 3D Studio Max. Hence, the node names for the skeleton are

Character Animation 585

names of bones. MilkShape 3D doesn’t model its skeletons with bones for the nodes; instead,
MilkShape 3D’s nodes are joints. This is why we have a node called Bip01 R Forearm when the
node itself is obviously the elbow (a joint) and not a forearm bone.

Here is a list of Torque’s special nodes and the purposes they serve:

Note that you are not obligated to use the nodes as described above. Different modelers have
taken great liberties with the mountn and skin nodes, though the eye and cam nodes tend to
be used for the same purposes by everyone. You can also create your own special nodes for your
own uses, like finger and thumb joints for detailed hand movement or jaw, cheek, and lip nodes
for facial animations.

Rigging: Attaching the Skeleton

So far we have built the skeleton, named the nodes, and aligned the bones into a

pose we like. Next we are going to attach our model to the skeleton. That way,

when the skeleton is manipulated, the mesh of the model will follow suit. It is

during this step that you might be inclined to thank me for insisting that you

retain mesh groups for the different model components like arms and feet and

so on!

Rigging the Head

We’ll begin with the head, just to get a feel for the rigging operation.

1. In the Joints tab in the toolbox, choose the joint (or node) named Bip01

Head. Make sure it appears highlighted in red in the wire-frame views.

2. Switch to the Groups tab, and choose the head mesh. It should appear

highlighted in red, as you already know.

586 Chapter 14 n Making a Character Model

cam This node establishes the third-person camera’s ‘‘orbit’’ center.

eye This node establishes the location of the first-person ‘‘eye view’’ camera.

unlink This node is used to align cam node with the main body of the model.

mount0 This node is commonly used for attaching a weapon to the right hand.

mount1 This node is commonly used for attaching a hat or other headgear. It is
sometimes located in the left hand for two-fisted weapon usage.

mount2 This node (not used in this skeleton) is commonly used for attaching a
backpack (as a child of Bip01 Spine1 or Bip01 Spine2).

ski0, ski1 These nodes (not used in this skeleton) are commonly used for a ski
effect in Torque or for dust emitters.

3. Switch back to the Joints tab, and click Assign. Now the head mesh is

assigned to the head node. To double-check, just click anywhere in a blank

space in a wire-frame view to make sure that no objects are selected,

choose the head joint to ensure it is selected, and then click the SelAssigned

(Select Assigned) button. The head mesh should appear highlighted. If

not, go back and repeat these three steps.

Aw shucks, there it is—the head is now rigged! Of course, that’s not the end of

the story. There is still the rest of the model.

There’s also the issue of what to do when a bone is rigged wrong. Sometimes it’s a

trivial fix, and other times you might have to rerig the whole model. Or you

might have to rig a model by attaching a node to just a few vertices rather than a

whole mesh or submesh. That can get very, um, fiddly—I guess that would be a

reasonable description.

Part of the simplicity in rigging this model comes from the technique we used;

building from primitives allows us to easily define meshes and submeshes. We’ll

use a ‘‘one node per mesh’’ rule of thumb. It can get trickier using other tech-

niques, such as assigning individual vertices to joints, but sometimes those

other techniques might be more appropriate for the model you want to build.

It’s a judgment call, as everything important tends to be. In fact, we are going

to employ a trickier technique—assigning a set of individual vertices to a

joint—as the one exception (as there always is) to the ‘‘one node per mesh’’

rule next.

Rigging the Torso

Okay, so the head was a cakewalk. It wasn’t even necessary to show any pictures for

you to be able to follow along. How about the torso then—duck soup again, no?

Well, yes . . . I mean no, actually. No duck soup for this one!

The entire head mesh is attached to the head node, and that is fine. Tilting or

rotating the head node will indeed move the head in the manner we want. There

really isn’t a whole lot to choose from. The neck is more a part of the spine than

the head. The cam and mount1 nodes aren’t even really related to the skeleton.

They are special nodes that will have a different role to play in Torque, which we’ll

cover later. So that leaves the head node to control the head mesh.

Character Animation 587

The torso, though, has at least five nodes that it might be attached to. But which

should it be? Let’s eliminate the neck node for now. That leaves the three spine

nodes and the Bip01 Pelvis node. Actually, we can use more than one node for a

mesh, giving different parts of the mesh to different nodes. When we built the

torso mesh, we actually combined two primitives together, remember that? One

was the chest cylinder, and the other was the abdomen cylinder. We could have

left them as two separate submeshes, but I wanted to show you how to join them

together. We can still use them as if they were two separate meshes, by assigning

their respective vertices to different nodes.

If you look at the nodes, you’ll see that the Bip01 Spine node is pretty well the

obvious candidate to control the abdomen part of the mesh. The Bip01 Spine2

node, although probably not as obvious, is likely the best candidate for the other

node, for our torso, even though it exists in circumstances dissimilar to the Bip01

Spine. (Bip01 Spine2 doesn’t have limbs attached.) But we’ll go with these two

anyway and see how that works out.

What this will mean in terms of animation is that we can have the vertices that are

attached to one node move in one way, while the vertices attached to the other

node move differently. Or not. It all depends on how you rig it.

None of this worrying about which node to use is strictly necessary. The ani-

mations we are going to create don’t actually require the torso mesh to be given

more than one node, but it’s a good thing to learn, so we’ll do it.

1. To get started with rigging the torso, let’s tidy up the ol’ drawing board a bit

by hiding all the meshes except the torso mesh. If you’ve forgotten how, just

go to the Groups tab of the toolbox, choose each mesh, and click Hide.

Unfortunately, we can’t selectively hide parts of the skeleton. It’s either all or

nothing when it comes to the bones.

T i p

It isn’t always necessary to hide all the meshes that you aren’t working with. You just need to ensure
that you can easily select the individual vertices that you want in the mesh of interest. In the case of
the torso mesh, in the top view, you can see pretty well every other mesh overlaps the torso.

2. Choose the Bip01 Spine node in the Joints tab.

3. Switch to the Model tab, and set the Select tool to Vertex mode. Then select

the vertices that are the abdomen. You can use either the Front view or the

Side view. Figure 14.79 shows the vertices to select.

588 Chapter 14 n Making a Character Model

4. Back in the Joints tab, click Assign. Now the vertices are attached to the

Bip01 Spine node.

5. Now choose the Bip01 Spine2 node, and then select the vertices for it, using

Figure 14.80 as a guide.

6. Click Assign in the Joints tab. That should do it.

7. Double-check to make sure you didn’t overlook any of the vertices by

choosing each node in turn, clicking the SelAssigned button, and looking to

see which vertices for that node might have been missed. If you did miss any,

you can simply select the node, select the vertices, and then click Assign to

add them to the nodes list.

Character Animation 589

Figure 14.79
The abdomen vertices.

Figure 14.80
The chest vertices.

There, that’s the torso. It might not have seemed so difficult a task to you, but to

me it was a nightmare! Well, maybe not that bad, but it shows you the kinds of

decisions you will have to make when rigging your models. What goes where and

how will it work best?

Now that we have a few nodes rigged, let’s take a look and see what they actually do.

1. If you don’t have an Anim button at the lower right, then choose Window,

Show Keyframer, and make sure there is a check mark there.

2. Click Anim to activate the Keyframer.

3. Using the Select tool in the Joint mode, select the pelvis joint (or you can use

the Joints tab to make the selection).

4. Use the Rotate tool in freeform mode in the Right Side view. You will recall

that freeform rotation is a simple matter of selecting the Rotate tool, clicking

in the wire-frame view, and dragging the cursor left and right.

Now what you should be seeing is the entire torso, plus the head, rotate around

the Bip01 Spine node. You should also see some strange things as well. The arm,

leg, foot, and hand meshes don’t move. That’s because they aren’t rigged yet.

But notice that the leg bones are rotating when you rotate Bip01 Spine. Aha! I don’t

know about you, but when I bend over, my legs don’t move back. Well, not unless

I’m floating in water, of course. So the pelvis node, while it seems to be an obvious

candidate for bending your character at the waist, looks to not be the right one.

So go back, right now, and change it. It’s simply the same procedure I showed

you for the pelvis, except you do it for the Bip01 Spine1 node instead. Make sure

to click the Anim button to take it out of the Keyframer first, or you won’t be able

to make the changes. I’ll wait.

Musical Interlude . . .

There you are. Now that that’s done, go back into the Keyframer as I showed you

before, and check the rotation of the Bip01 Spine1 node.

Another Musical Interlude . . .

Good! So everything should be working as expected now. The torso and the head

meshes bend over in unison, and all the bones attached above Bip01 Spine1 bend

in unison, as shown in Figure 14.81. As you’ve probably deduced, it is now a

590 Chapter 14 n Making a Character Model

reasonably minor matter to rig the rest of the nodes. Use Table 14.2 to guide you

in your rigging.

Feel free to improve on my rigging choices. Some of the joint nodes have no

vertices attached, so you can use them to get finer control of the shape’s

movements, if you like.

Character Animation 591

Figure 14.81
Bending at the lower spine.

Table 14.2 Hero Rigging

Node Mesh to Be Rigged

Bip01 Head Head

Bip01 Spine2 Torso----chest-area vertices

Bip01 Spine Torso----abdomen-area vertices

Bip01 L Upperarm LArm

Bip01 R Upperarm RArm

Bip01 L Forearm LHand

Bip01 R Forearm RHand

Bip01 L Thigh LThigh

Bip01 R Thigh RThigh

Bip01 L Calf LFoot

Bip01 R Calf RFoot

T i p

The hand meshes should attach to the forearm joints. And the foot meshes to the calf joints.
Carry on.

You just need to match a mesh to a node, attach it, and move on. I’m enjoying the

music here, so you go ahead and do the rest of the rigging, and I’ll sit back and relax.

Yet Another Musical Interlude . . .

Great! With that done, let’s move on.

Embedded Animations

Embedded animations are animations that are included with the model in the

DTS file. We often use embedded animations for one-off purposes like small

peculiar objects with few animations. At one time, the only kind of animation that

you could export from MilkShape was embedded ones. Some modelers prefer to

use them because they keep the resource’s management headaches to a minimum,

because there are no separate sequence files running around the hallways making

nuisances of themselves, banging the doors and getting lost in closets.

Idle Animation

The idle animation is the one used by games when the character is just standing

there, doing nothing in particular. In some games you will see some pretty

complex idle animation where the character scratches himself in rather incon-

venient locations, looks around, scuffs his feet, and so on. We’re just going to do

a basic breathing sequence so that you’ll know that the character is alive. The

name for the idle animation in Torque is root, so we’ll be naming our idle

animation that when we export the model.

Even with a basic animation, the watchword is subtlety. Don’t overdo it.

1. Make sure the Keyframer is enabled by clicking the Anim button in the

lower-right corner.

C a u t i o n

Make sure that you always leave animation mode by toggling the Anim button so that it is not
depressed, before saving or exporting any aspect of your model, even sequence files. The Anim
button should only be depressed when you are actually doing animation work. Leave animation
mode as soon as your animation work is finished.

592 Chapter 14 n Making a Character Model

2. Set the Total Frames in the Keyframer to 30. Do this in the right-hand edit

box in the lower-right corner of the Keyframer (see Figure 14.82).

3. Move the slider to the first frame.

4. Choose Animate, Set Keyframe. This indicates that this particular frame is a

keyframe.

5. Move the slider to the 15th frame.

6. Take note of the angle of the elbows and hands.

7. Select the Bip01 Spine1 node, and rotate it 5 degrees around the X-axis.

8. Rotate Bip01 R Upperarm and Bip01 L Upperarm in the opposite direction to

the Bip01 Spine1 node rotation by about 5 degrees to place them back where

they were before.

T i p

Whenever you change the position or rotation of a joint, you might notice that you only see the
update of the animation happen in the view in which you are working. To update the other views,
just click in each view once.

9. Choose Animate, Set Keyframe to set the keyframe attribute for this frame.

10. Move the slider back to the second frame.

11. Turn off the Operate On Selected Joints Only feature by choosing Animate,

Operate On Selected Joints Only if there is a check mark there in the menu.

Character Animation 593

Figure 14.82
The Keyframer control panel.

12. Choose Animate, Copy Keyframes.

13. Move the slider to the 30th frame.

14. Choose Animate, Paste Keyframes.

15. Turn on the Operate On Selected Joints Only feature by choosing Animate,

Operate On Selected Joints Only again.

T i p

From this point on, I’ll be referring to Operate On Selected Joints Only as Selected Joints, to save
my lazy fingers all that cutting and pasting and also to make following along go a little smoother
for you.

16. Choose Animate, Set Keyframe.

17. Save your model file!

No t e

Copying and pasting keyframes can seem like an activity fraught with peril, after you’ve done it a
few times and not received the results you expected.

The key is to remember to turn off the Selected Joints feature before copying the keyframe and
then turn it back on again after pasting the keyframe.

Figure 14.83 shows the subtle pose difference between the 1st and the 15th

frames. Use the unlink and cam nodes as your stable points of reference—they

will never be moved. Now you can test your animation by clicking the Play

button on the Keyframer controls. The Play button is the one that looks like a

single arrow pointing to the right.

As long as the Play button is down, the animation will loop by running to frame

30 and then back to frame 1 again. If you find it runs too fast, you can change the

FPS number in the Preferences dialog box to a lower value to slow the animation.

Notice that when the animation is actually running, that subtle pose change

becomes quite noticeable.

T i p

An excellent tool called characterFX is useful for creating animations, and it works well with
MilkShape. Unfortunately, for logistical reasons it could not be included with the tools on the
companion CD. However, it does a great job of streamlining the process and is quite flexible, so a
quick Google search for it on the Internet might be worth your while!

594 Chapter 14 n Making a Character Model

The idle animation is an example of a cyclic animation—one that repeats over

and over, barring something more interesting to do. To this end, we make sure

that the tail end of the animation blends nicely with the start by making the start

and end frames of the animation exactly the same. That’s why we copied the

keyframe from frame 1 and pasted it at frame 30.

Run Animation

The run animation is the staple of first-person shooters. Run and shoot, run and

shoot. Our Hero character has a somewhat awkward lower body, which will tend

to make any animation of him running look a bit goofy. Well, we’ll turn that into

a feature and capitalize on that goofiness. By the way, this is another cyclic

animation, so we need to make sure that the start and end frames are the same.

1. In the Keyframer, set the Total Frames to 96. Additional frames will be

added after the 30 you started with for the idle animation, so that we end up

with a total of 96 tick marks above the slider.

2. Move the slider to frame 31.

3. Make sure that Operate on Selected Joints Only mode in the Animate menu

is not enabled.

What we are going to do next is make the start and end frames into key-

frames first, before doing anything else. This ensures that they are ‘‘frozen’’

Character Animation 595

Figure 14.83
The difference in poses.

as they appear before any animation is done. That way MilkShape can’t

interpolate the positions behind our backs.

No t e

At this time, it’s a good idea to think ahead. There are a number of other later animation
sequences that will require keyframes set to be identical to frame 1. These keyframes will be used
as reference frames by Torque for those other animations. The reference frames need to be
identical to the base pose, which is frame 1. At the moment, there are no other poses and no
keyframes at frames higher than 30, so all the frames up to 96 should look like frame 30, which
you will recall is a copy of frame 1. And frame 1 is our base pose.

Given that, it behooves us to make those reference frames now, because it helps to ‘‘pin’’ the
MilkShape animations in place. So once you’ve finished step 5, where you set the keyframe for
frame 67, repeat that process for frames 68, 71, 74, and 77. This sets all the reference frames we
will need.

4. Choose Animate, Set Keyframe. You should have a pose in frame 31 much

like that shown in Figure 14.84.

5. Move the slider to frame 67. This will be the last frame in the run cycle. Now

make it a keyframe by choosing Animate, Set Keyframe. You should again

have the same pose as in Figure 14.84.

596 Chapter 14 n Making a Character Model

Figure 14.84
Frame 31.

T i p

A typical run cycle has four phases: push off from one leg, land on the second leg, push off from
the second leg, and then land on the first leg. Rinse, repeat.

Our run cycle has frames 31 to 67 inclusive reserved for it. That means a total of 36 frames, and it
just so happens that when we divide by the four phases of the run cycle, we get exactly 9 frames
for each phase! Coincidence? You be the judge.

6. Now make sure that Selected Joints mode is enabled again in the Animate

menu. Move the slider to frame 40.

7. In the Right Side view, select the Bip01 Pelvis joint (it acts as our base node),

and move it up about three-quarters of a grid square, as shown for frame 40

in Figure 14.85. The movement of this base node moves the entire model—

it’s a transformation operation.

No t e

The base node is the node to which all other nodes attach, either directly or indirectly. Some
people call it the ‘‘grandpa’’ node, the ‘‘grandparent’’ node, or the ‘‘master’’ node. I call it the base
node. In every model with a skeleton there will be a base node, and sometimes more than one. In
our model one base node happens to be named Bip01 Pelvis and the other is unlink. As the
chapter unfolds, I might use either the term base node or the name Bip01 Pelvis. I won’t call
unlink a base node, because it only has a single child and is therefore not much a base for
anything. Don’t forget this, so that you don’t get confused!

Character Animation 597

Figure 14.85
Frame 40.

8. Select the Bip01 R Thigh node, and then in the Side view rotate it so that the

leg moves forward.

9. Rotate the Bip01 R Calf node forward a wee bit as well, until the leg matches

the configuration in Figure 14.85.

10. Repeat the rotations for the left leg, and move its nodes backward. In order

to get things looking right, you might have to adjust the joint positions

slightly by moving them, but not by much. Really try hard not to do that

though. You get the best andmore natural looking animation results by only

rotating joints.

11. Rotate the left arm using the Bip01 L Upperarm node and the Bip01 L Forearm

node, swinging them forward until the hand is approximately opposite the

right leg, as shown in Figure 14.85.

12. Set frame 40 to be a keyframe.

13. Move the slider to frame 49. Use Figure 14.86 as the guide for this

frame.

598 Chapter 14 n Making a Character Model

Figure 14.86
Frame 49.

14. Move the Bip01 Pelvis node back down vertically to the height where it was

in frame 31.

15. Move all of your legs and joints back to approximately the same config-

uration as in frame 31. You want the feet to be planted properly at ground

level. You might need to fiddle with Bip01 Pelvis a little until you get the

foot positioning on the ground right.

16. Swing the left arm down to the side of the model.

17. Set this frame (49) to be a keyframe.

18. Move to frame 58. Use Figure 14.87 as the guide for this frame.

19. Pose frame 58 the same as frame 40, except swing the legs in the opposite

directions. Don’t forget to move the Bip01 Pelvis node again.

20. Swing the left arm back, and rotate the elbow so that the left hand comes up

parallel to the ground.

21. Set this frame to be a keyframe.

Character Animation 599

Figure 14.87
Frame 58.

22. Move to frame 67. Use Figure 14.88 as the guide for this frame.

23. Swing the arms and legs back to roughly the pose they had in frame 31.

24. Set this frame to be a keyframe. Use the Play Forward button to watch the

animation. If the animation seems to be too fast or too slow, change the FPS

setting in the Preferences dialog box until it seems right, and take note of the

value you use.

Now you have probably noticed that although we set the pose in only five frames,

the program automatically interpolated, or figured out, what the in-between

frames should look like. Torque does the same thing for us when we use the

model in game. This is goodness. That’s as much of the run animation as we’re

going to do here, but you should practice working with this for a while. The first

place you should start is to set the keyframe in the middle of the ones we’ve

already set—at frames 35, 45, 54, and 63—and adjust the leg positions to get a

better animation from the legs.

Don’t try too hard to make the animation look natural though. He’s a goofy

character and should have that sort of goofy, cartoonlike appearance when

running.

600 Chapter 14 n Making a Character Model

Figure 14.88
Frame 67.

Head Animation

This is the animation that Torque automatically invokes when it needs to know

how far to move your character’s head when it is looking up or down. So

basically this animation’s purpose is to define limits or a boundary and not so

much the movement. However, if your character’s facial or head shape would

change when looking up or down, then you would create a more complex head

animation.

That being said, it is really quite quickly dealt with. The animation will consist of

a reference frame, an ‘‘up’’ frame, and a ‘‘down’’ frame.

1. Frame 68 is the reference frame for this sequence, and you’ve already made it

so, according to the note I gave you back when we were starting out with the

run animation. I hope.

2. Move to frame 69.

3. In the Right Side view, rotate the Bip01 Head joint until the head is looking

up at the maximum angle you want to allow. Youmay also need to move the

head back a bit.

4. Make sure that Operate On Selected Joints Only mode is enabled, and make

this a keyframe.

5. Move to frame 70.

6. Rotate the Bip01 Head joint until the head is pointed down at the maximum

angle you want to allow. You may also need to move the head forward

a bit.

7. Make this a Selected Joints keyframe also.

8. Save your work! There, you are done. That’s the entire animation

sequence! Check your frames against Figure 14.89 to make sure you got it

all right.

Headside Animation

In the same way that the head animation defines the limits for the up and down

motion performed by Torque, the headside animation provides the limits for the

left and right motion. This is most visible from the third-person perspective

when in the game.

Character Animation 601

Do the same thing you did for the head animation, but use frame 71 as the

reference frame, frame 72 for the left turn, and frame 73 for the right turn. Make

each of these frames a keyframe, and save your work when you finish.

Look Animation

The look animation is basically another movement-limiting animation that

defines how the character’s arms will be posed when he is looking up or down.

Again, it is a simple two-frame animation that doesn’t require us to get into in

detail now. Frame 74 will be your reference frame. Use frame 75 for the down

‘‘look,’’ or aim. Make sure you have both arms positioned sensibly. Use frame 76

for the up aim. Set both as keyframes, and save your work again.

Death Animation

As you saw earlier, there are many possible ways to die. The Torque demo

supports 11 ‘‘standard’’ death animations, but you can easily add more by

writing a minor code change into the server script for each player.

We’ll cover only one death animation here. We’ll have the character collapse

backward and fall to the ground on his back, with his feet tossing into the air and

back down again.

1. Move to frame 77, and set the pose back to resemble the resting pose as

closely as you can, without spending too much time on it.

602 Chapter 14 n Making a Character Model

Figure 14.89
Head sequence frames.

2. Set this frame to be a keyframe.

3. Move to frame 82, and rotate the arms and hands to match. You can leave

the character’s head on but thrown back like I did or have it pop off

temporarily. It’s your model! Let Figure 14.90 guide you.

4. Set frame 82 to be a keyframe.

5. Move to frame 86.

6. In the Side view, drag the base node backward several grid squares.

7. Continue to rotate and move the arms and legs, and rotate the body around

the Bip01 Pelvis node to make the body tip past horizontal with the bottom

of the torso higher than the top, as shown in Figure 14.91.

8. If you haven’t guessed it by now, make this frame a keyframe!

9. Move to frame 91.

10. The body is hitting the ground, with some momentum still in the legs. Align

the bottom of the torso (which is actually the character’s back) even with the

ground. Rotate the legs and knees to fling the feet up over the body, and

Character Animation 603

Figure 14.90
Frame 82.

rotate the arms to fling them beyond the head and away from the body, as

shown in Figure 14.92. By now the Bip01 Pelvis node should be 10 or 11 grid

squares or so behind the origin along the Z-axis, as seen in the Side view.

11. Yup, this is another keyframe. Go ahead, make its day.

12. Now for the final resting position. Move to frame 96.

13. Lay the body out, flat against the ground. Also,move the base node one or two

more grid squares farther back, to cause the body to slide along the ground.

Lay the arms flat to the sides, the feet and legs down on the ground and spread

somewhat. Tilt the head back. As you can see in Figure 14.93, he’s dead, Jim.

14. Keyframe him, Dano! (Okay, that’s a mighty obscure reference, I’ll admit.

Indulge me!)

15. Save your work.

Well, that’s the lot of them. Enough animations to give you what you really need

to know to get moving on animating for Torque in MilkShape. There’s still more

to cover—we’re not quite out of the woods yet. Now we have to tell Torque

how to find the animations.

604 Chapter 14 n Making a Character Model

Figure 14.91
Frame 86.

Character Animation 605

Figure 14.93
Frame 96.

Figure 14.92
Frame 91.

Before proceeding, you need to know that we are going to go down two different

paths: once using the standard DTS Exporter and once using the enhanced

exporter. So, at this stage, you should save a copy of your model as myhero-

Standard.ms3d and another, identical (for the moment) copy as myhero-

Enhanced.ms3d. Whenever you work with the standard exporter, use

myheroStandard.ms3d and only myheroStandard.ms3d. Whenever you work

with the enhanced exporter (DTSPlus), use myheroEnhanced.ms3d.

Special Materials

MilkShape doesn’t have built-in support for some of the information about the

models that Torque’s DTS format demands. That means that there needs to be

some way for the artist to specify this information and save it with the source file

of the model. Animation sequence information and model scale settings are two

examples of this information.

The standard exporter for DTS models utilize the concept of special materials as a

means to specify and save this information. The information about the built-in

‘‘standard’’ Torque DTS Exporter is included here for completeness, but I highly

recommend you just read it for understanding and then move on and use the

Torque DTSPlus Exporter plug-in from Chris Robertson. If you do use the

standard exporter, you will need to delete the special materials you made before

using the DTSPlus Exporter so that you can start with a clean slate.

Full details about each exporter are included in the last section of this chapter.

Sequences with the ‘‘Standard’’ Torque DTS Exporter The Torque Engine

needs to know where the various animations can be found, how long they run,

what type they are, and how fast they should be run. We do this using a tech-

nique called the Animation Sequence Materials.

The general approach is that we create a special material, and embedded in the

name of that material are the Torque name for the animation sequence, its

desired playback frame rate, which frames belong to which sequences (inclusive

from start to end), and whether the sequence cycles (loops) or plays once per

invocation, as well as other characteristics.

Make sure you have myheroStandard.ms3d open, and then go to the Materials

tab of the toolbox and create three new materials—one for each non-blended

animation sequence. Table 14.3 lists the material names you need to use. The text

606 Chapter 14 n Making a Character Model

in the ‘‘Sequence Material Name’’ column must all be included in the name,

exactly as shown. These special materials tell the exporters what special operations

to perform on the model as it creates the DTS-formatted file for use in Torque.

Note that some of the Sequence Material Names don’t include some of the

option settings. If you leave them out, the defaults are used. A little later in this

chapter you’ll find more detail about each exporter.

C y c l i c A n ima t i o n s

There is something about two of the sequences that you should pay special attention to. When we
created the run sequence, we set it up to span from frame 31 to 67, with each end frame set to be
copies of the reference pose. And yet the sequence is defined in the special material to span from
frame 31 to 66. This is because the animation is cyclic----when the last frame is reached, the
animation jumps back to the first frame of the sequence.

Because frames 31 and 67 are both reference frames, they are identical. If the sequence ran to 67
and then jumped to 31, you would see a slight pause in the animation while the two identical
frames are displayed.

To prevent this little hiccup, we loop the sequence at frame 66 instead of 67.

So then, you ask, why bother with the reference frame at 67? Simple----it’s so that when we are
viewing the animations in MilkShape, with MilkShape’s interpolated frames (the ones that aren’t
keyframes), they will look right.

The same principle applies for the death animation, but in a slightly different way. We can’t really
know what the player will be doing when he gets killed, so we don’t want his death to begin with
him assuming the reference pose in frame 77 and then getting knocked onto his keister. So we
start the animation on the frame after the reference frame. This way Torque can itself interpolate
between whatever frame was last displayed (could have been running, walking, looking around,
jumping, or whatever) and the next keyframe in the death animation, which happens to be at
frame 82, so that 5 frames of the sequence can be interpolated by the engine before hitting a
keyframe and being forced into a particular pose.

The head, headside, and look sequences are not created, because embedded

animation sequences can’t be used to create blended animations. In fact, neither

can the standard exporter, so the point is doubly moot.

Character Animation 607

Table 14.3 Animation Sequence Material Names

Torque Sequence Name Sequence Material Name

root seq:root=1-30,fps=10,cyclic

run seq:run=31-66,fps=15,cyclic

die1 seq:die1=78-96

Finally, there is one more special material we need to make, in order to set the

global scale. We built this model on a large scale so we could use the Snap To Grid

function without seeing our vertices snapped way out of line. Now, when we

export the model, we will need to have it scaled down. Add a material, and name

it ‘‘opt:scale=1.0’’. This will shrink the model to one-twentieth its created size,

which is about right for our needs.

Sequences with the DTSPlus Exporter Before starting this section, make

sure you have myheroEnhanced.ms3d open in MilkShape 3D. One of the nifty

things about the Torque DTSPlus Exporter (golly gee willikers, did I just say

‘‘nifty’’?) is that you don’t have to create, type, or even remember the special

materials stuff. The DTSPlus Exporter’s interface does it for you (see Figure

14.94). You just need to press some buttons, check some check boxes, and fill

in some fields. The exporter takes care of the rest.

608 Chapter 14 n Making a Character Model

Figure 14.94
Torque DTSPlus Exporter dialog box.

Let’s add the root animation sequence using the DTSPlus Exporter.

1. After saving your work, choose File, Export, Torque DTSPlus Exporter. You

will see the Torque DTSPlus Exporter dialog box appear. Ensure that the

check box called Export Animations is checked.

2. Click the Add button in the Sequences frame. You will get the Edit Sequence

frame, as shown in Figure 14.95.

3. Fill in the fields, and set the check boxes with the values shown in Table 14.4.

4. Click the OK button.

Right, then—that was pretty slick, huh? You’ll note that despite my earlier

sidebar about leaving off the start or end frame of a cyclic animation when

the keyframes at both ends are reference frames, I didn’t follow my own advice

here.

Character Animation 609

Figure 14.95
Edit Sequence dialog box.

That is because with this animation, the motion is subtle enough and slow

enough that it doesn’t matter. You could leave the end keyframe in the sequence

or take it out. It makes no real difference.

You will also notice howmanymore settings there are for the sequences using the

DTSPlus Exporter than with the standard exporter, due to the much greater

capability of the DTSPlus Exporter.

Now, with that done, go ahead and create the sequences for the running and

death animations, using Tables 14.5 and 14.6 as guides.

When you are done adding all three of the sequences, click the Apply button to

commit these settings to the model, followed by Cancel to make the dialog box go

away. Then save your work.

Testing the Model

Whew! That’s a lot of grunt, right there. Let’s see . . .we’ve created a 3D model,

UV mapped a texture to it, created a skeleton and rigged the vertices of the

model’s mesh to the skeleton, then created a bunch of animations, and organized

them into sequences.

610 Chapter 14 n Making a Character Model

Table 14.4 Root Animation Settings

Option Value

Name root

FPS 10

First Frame 1

Override Duration �1

Last Frame 30

Priority 5

Cyclic set

Ignore Ground Transform clear

Blend clear

Enable Morph clear

Enable TVert clear

Enable Visibility clear

Enable Transform set

Enable IFL clear

Triggers none

Character Animation 611

Table 14.5 Run Animation Settings

Option Value

Name run

FPS 40

First Frame 31

Override Duration �1

Last Frame 66

Priority 5

Cyclic set

Ignore Ground Transform clear

Blend clear

Enable Morph clear

Enable TVert clear

Enable Visibility clear

Enable Transform set

Enable IFL clear

Trigger Frame State (Value)

Triggers 0 31 2

1 49 1

Table 14.6 Death Animation Settings

Option Value

Name death1

FPS 15

First Frame 78

Override Duration �1

Last Frame 96

Priority 5

Cyclic clear

Ignore Ground Transform clear

Blend clear

Enable Morph clear

Enable TVert clear

Enable Visibility clear

Enable Transform set

Enable IFL clear

Triggers none

Time for a short break maybe? Okay. Time’s up—back to work!

Let’s test these things out.

Using the ‘‘Standard’’ Torque DTS Exporter

A little later in this chapter, we will look in detail at the two DTS exporters for

MilkShape. But for now we’ll just use the standard exporter in a fundamental way

to get our model to work in Torque.

1. After making sure you have myheroStandard.ms3d open, choose File,

Export, Torque Game Engine DTS. You will see the Torque Game Engine

(DTS) Exporter dialog box appear.

2. We’re going to take the defaults, but we should make sure they are correct.

You want to have Export animation and Export material information

selected, and Collision Mesh should be set to None (Torque handles player

collision internally). Click OK when ready.

3. Save your DTS file as \3D2E\RESOURCES\CH14\myhero.dts.

That was pretty painless. Now let’s make sure the model works! We’ll fire up the

Torque Show Tool Pro (TSTP) we used earlier in this chapter and check out the

model.

1. Launch TSTP.

2. Ensure that you have your RESOURCES folder selected in the Project

Directory pop-up.

3. Find RESOURCES/CH14/myhero.dts, and double-click on it.

4. The model should appear in the center of the screen.

5. Use the mouse actions (described in Chapter 9 in Table 9.1) to rotate

the model and bring it closer to you or move it farther away. Left-click

and drag will make the camera orbit the model, while right-click and

drag will slide the camera around. The mouse wheel will let you zoom in

and out.

6. Choose an animation from the Sequences pop-up.

7. Click the Play button in the controls at the lower-right corner of the screen.

612 Chapter 14 n Making a Character Model

8. Check out the other sequences, but remember, the ones that don’t cycle are

going to run just once and will stay at the last frame.

9. If necessary, go back to your model in MilkShape 3D and make adjustments

to your animations, and then come back here to check them out.

10. TSTP is a great tool, but nothing beats the real McCoy. So now jump back

into MilkShape and export your model once again, changing nothing, but

this time direct the exporter to create the DTS file in \3D2E\demo\data\

shapes\player\player.dts, replacing the one player.dts file that is already

there. You can always restore the original later from the CD if necessary.

11. Using Windows Explorer, locate your skin texture file for the model in

RESOURCES\CH14 and copy it to \3D2E\demo\data\shapes\player.

12. Run the FPS demo.

13. Once you have spawned in, press the Tab key to switch to third-person view

so you can admire your character’s animations.

14. Hold down the z key, and move the mouse to swing the camera around the

model to view it from different angles.

After you’ve reviewed the root and run animations in game, you will want to see

the death animation in action. In order to do this, you need to make a teensy little

change to the FPS demo code. First, exit the Torque demo, right back out to the

desktop.

Using UltraEdit-32, open the file \3D2E\demo\server\scripts\fps.cs, and locate

the function called serverCmdSuicide. We don’t want to use any of the code

that is there, so you can delete everything between the braces (‘‘{’’ and ‘‘}’’)

that defines the function code block, or you can comment it out with double

slashes (‘‘//’’). But don’t do either of those. Instead, insert the following

code in the function after the opening brace and before the line that says if

(isObject(%client.player)).

if (isObject(%client.player))
%client.player.kill("Suicide");

return;

The return statement will make Torque leave the function early and not execute

the code that was already there. You might want to put a little comment there

Character Animation 613

indicating that this is a change youmade. Use your name or initials, plus the date,

in the comment.

Now run the Torque demo again, and this time press Ctrl+K. Ugggghh. Your guy

just up and dies. The view switches to an external camera, and you see the death

animation.

No t e

Make sure that you run around inside some of the buildings, on the hard floors. Notice something
missing? No footsteps. The standard exporter doesn’t support triggers.

Good job! The rule of thumb is, if it works in the Show Tool, it will work in the

game, because the Torque Engine is behind both.

Using the DTSPlus Exporter

Now, load up your myheroEnhanced.ms3d model, and open the Torque

DTSPlus Exporter. Click the Export DTS button, and put your DTS model in as

\3D2E\demo\data\shapes\player\player.dts, replacing the file that is already

there. Make sure that the Export Animations check box is checked.

Run the Torque FPS demo. Try out all three of the supported embedded ani-

mations. Watch them in action.

No t e

Make sure that you run around inside some of the buildings, on the hard floors. Notice something
that’s not missing? Heh . . . Thwap! Thwap! Thwap! Thwap! Gotta love them footsteps. The
enhanced exporter does support triggers. Thanks, Chris!

You now have an animated Hero character to use in your game. And it really isn’t

that difficult to get to this point. If you are even a halfway decent artist and have a

good eye, I’m sure your model and animations are much better than mine.

A later section provides some detail into the workings of the DTS Exporter for

the Torque Engine. With its help, you should take some time to fiddle with

settings and different animations and add your own animation sequences.

Animation Sequence Files

So far, we’ve only been able to see three of our animations in action. What about

those head movement thingies? Well, in order to see them working properly as

blended animations, we need to create our own sequence files.

614 Chapter 14 n Making a Character Model

Using Your Own Sequences

Only the enhanced exporter, Torque DTSPlus Exporter, knows how to handle

this, and it’s really quite easy. Make sure you have your myheroEnhanced.ms3d

file open.

Once you have your animations made and sequenced, deactivate the Anim

button.

Select all of your mesh groups using the Groups tab, and regroup them as one

mesh. Rename the mesh so that it ends with a zero so that the exporter won’t get

confused.

Now, run the DTSPlus Exporter andmake sure that both the Generate cs File and

Split DSQ Export check boxes are checked. Then click the Export DSQ button.

When the Save As dialog box appears, browse to \3D2E\demo\data\shapes\

player, and then type player into the text box. No extensions or anything, just

player. The exporter will append an underscore to this name and then export

each sequence as its own DSQ file, with the file name being made up of ‘‘player_’’

at the front, followed by the sequence’s name, which is then followed by ‘‘.dsq’’. It

will also create a CS script file that creates a mapping of the sequence name to the

newly created sequence file for the player.dts model.

After that you will then need to re-export your model using the Export DTS

button, but this time with the Export Animations check box cleared, so that

only the rigged model is exported. And of course you will export it to the

same place you put the sequence files, replacing the player.dts that is already

there.

Now you can pop into the FPS demo, and the blended head motions will be

there. You should be able to see the running, root, and death animations. A word

of caution, though. You might have difficulty spotting the actual movements,

because as you move the mouse in third-person mode to move the head or the

whatever, your view changes at the same time. But give it a go. Under normal

circumstances it would be the other players in a multiplayer game, and not

yourself, that would see the animations.

Using GarageGames’ Sequences

Finally, you can use the sequences that came with the Torque demo as the

animations for your own model. There are some caveats, however. Your skeleton

has to exactly match the GarageGames skeleton in all ways, shapes, and forms.

Character Animation 615

The nodes have to be correctly named, and the joints need to be rotated and

placed close enough to the GarageGames skeleton placements.

There is one other little wrinkle, and that is how MilkShape 3D normalizes its

joints every time you place a new one. This is bad for our purposes, because it

means that it is next to impossible to match the rotations of the GarageGames

joints.

But all is not lost! I just so happen to have the GarageGames skeleton used for the

Orc monster, and have included it in the RESOURCES folder for Chapter 14. All

you need to do is remove your own skeleton and replace it with the GarageGames

skeleton.

1. Open your myheroEnhanced.ms3d model, and save it as myHeroGG.ms3d.

From here on, work with myHeroGG.ms3d.

2. Go to the Joints tab, and delete all the joints, select Pelvis and press the

Delete key and then do the same thing with the unlink node.

3. Open the DTSPlus Exporter, and remove all the sequences.

4. Click Apply and then Cancel. Save your work.

5. Choose File, Merge, and then browse to RESOURCES\CH14 and locate and

select skeleton.ms3d. Click the Open button. The skeleton will be merged

with your model.

6. Next, you must modify your mesh to match the skeleton, and not the other

way around. Do not touch the skeleton; don’t move its joints or rotate them

or anything. Don’t add or delete anything. Just keep your hands off it!

However, you will have to move, rotate, and scale the body parts to fit them

to the new skeleton.

7. Now rig the mesh to the skeleton, just like you did earlier with your own

skeleton.

8. Collapse your mesh groups into one group, just like we did with the

embedded animations, andmake sure that the single mesh name ends with a

zero.

9. Save your work in a file with ‘‘onemesh’’ added to the file name, so that you

don’t overwrite your original ‘‘final’’ model.

616 Chapter 14 n Making a Character Model

10. Using Torque DTS Plus, export your model to \3D2E\demo\data\shapes\

player\player.dts. Make sure that Export Animations is not checked.

11. Restore the file \3D2E\demo\data\shapes\player\player.cs from your CD

if you have previously been testing your own sequence exporting in this

folder.

Either use the Show Book Models shortcut for the Show Tool or run the FPS

demo to view your model running using the GarageGames skeleton. In the demo,

try Ctrlþ S or CtrlþW to get the hero to salute or wave.

Here’s something: make sure your player is not standing at a spawn location or

very close to another object. If you step into camera mode with F8, fly a little bit

away from your character, and look back at it, you can see some cool things.

Open the Mission Editor with F11, find the ID number of your character and

record it. There will be a red dot located in the center of the player’s body—the

ID number 1751 will appear just above, below, or directly on the dot. Let’s

pretend the number was 0001. This is your character’s avatar object ID or handle.

Press F11 to leave the Mission Editor, keeping your camera pointed at your

character. Then open the console using the Tilde (‘‘~’’) key and type in the

following:

0001.setActionThread("dance");

Of course, you substitute the actual ID of your player object for the fictitious

0001 in my example. Don’t forget that semicolon at the end, and don’t forget to

press Enter after you type the semicolon.

Now quickly press the Tilde key again to make the console go away, and enjoy

watching your player doing the funky chicken (well, it certainly isn’t the

macarena!). Another sequence you can try is range, which shows the range of

motion of the animated character.

You can open the file \3D2E\demo\data\shapes\player\player.cs and see what the

names of the sequences are on the right-hand side. For example, the line

sequence1 = "./player_forward.dsq run";

tells us that the sequence name is run and the sequence file used is ./player_

forward.dsq.

Have fun!

Character Animation 617

MilkShape 3D’s DTS Exporters
As mentioned several times, there are two exporters available for getting models

into Torque from MilkShape 3D: the ‘‘standard’’ Torque Game Engine (DTS)

Exporter and the ‘‘enhanced’’ Torque DTSPlus Exporter. The standard version

comes built into MilkShape 3D these days, while the enhanced version—the

exporter of choice, by far—comes from a chap named Chris Robertson. If you

find the enhanced version too intimidating, you can use the standard version

until you feel ready to spread your wings!

The Standard Torque Game Engine (DTS) Exporter

The Torque Game Engine (DTS) Exporter dialog box (see Figure 14.96) has three

groups of options, none of which normally need to be set. Option settings are not

saved, so you rarely use this dialog box for more than just a means to double-

check your option values. The recommended approach is to set options using

special materials.

Collision Mesh

The exporter allows you to create as many collision meshes as you want. Each

collision mesh must be named ‘‘Collision’’; if you have three collision meshes, they

618 Chapter 14 n Making a Character Model

Figure 14.96
Torque Game Engine (DTS) Exporter dialog box.

will all be named ‘‘Collision’’. If you do not have a collision mesh defined, you may

have the exporter create one for you as either a box or a cylinder. You can also

manually select an existingmesh. Player-characters don’t need a collisionmesh at all.

Select the Create a visible copy of the collision mesh check box to make the mesh

visible as well as collidable.

Animation Settings

The Animation Settings group displays the global values for the animations.

n Frames per second. This field indicates at what speed the Torque Engine

should play the animations. This field can be set using an Export Options

material and applies globally to all animation sequences (Export Options is

explained in a later section). This does not affect the number of keyframes; it

simply sets the rate at which they will be played.

n Export animation. If the model contains embedded animations that you

want to export, then this box should be checked. No animations are ex-

ported if it is cleared.

Other Settings

The Other Settings group contains miscellaneous settings values.

n Global scale factor. The global scale factor is the amount by which the shape

is scaled when it is exported. The default scale factor is 0.1, but this field can

be changed to any value set using an Export Options material.

n Minimum visible size (pixels). If the projected screen size of the bounding

radius of the shape drops to the minimum visible size, the shape will no

longer render. This is normally used to switch between different detail levels,

and it’s recommended that you leave this at the default value: 0.

n Export material information. You may disable the exporting of material

information (not recommended) by clearing the Export Options material

information check box.

Export Options

Materials with special names can be used to set several export options. These

materials are ignored during export and are solely used to set options.

MilkShape 3D’s DTS Exporters 619

Option materials are named as follows:

opt: option, option,...

All other properties of the material are ignored. Table 14.7 lists the available

options.

There may be more than one option material. If the same options are set on

multiple materials, then the last one in the material list is the value used. Here are

a couple examples of valid material names:

opt: fps=10, cyclic
opt: scale=0.1

Material Option Flags

Material attributes that can be set by using the MilkShape Shininess and

Translucency sliders can also be set by embedding additional flags in the material

name.

Environment mapping can be controlled for the model by use of the Shininess

slider—it’s the one on the left-hand side. Setting the slider to any value but 0.0 will

enable environment mapping for the texture. Note that the texture you are using

must have an alpha channel, which will be used to control the per-pixel shininess of

the texture. Any value of the slider other than 1.0 or 0.0 will be ignored.

You can enable translucency by setting the MilkShape Translucency slider—this

is the slider on the right-hand side. Setting the slider to any value other than 1.0,

which is to the far right, will enable translucency for the texture. The texture you

are using must have an alpha channel, which will be used by the Torque Engine to

control the per-pixel translucency of the texture. Any value of the slider other

than 1.0 or 0.0 will be ignored.

620 Chapter 14 n Making a Character Model

Table 14.7 Export Options

Option Description

scale=n The global shape scale factor, where n is a floating point value. The default scale value is 0.1.

size=n The global minimum visible pixel size. The default is 0.

fps=n The global default frames per second value for animations. Each animation sequence may set
this value, but if it’s not defined by the sequence, the default value is used.

Cyclic The global default animation looping flag. Each animation sequence may set this value, but if
it’s not defined by the sequence, the default value is used.

Options that are embedded in the material name follow this format:

name: flag, flag, ...

where the : and flags are optional. Table 14.8 shows which flags are available.

A self-illuminating additive material could be called as follows:

Flare: Add, Illum

Mesh Option Flags

Meshes can have additional flags embedded in the mesh (or group) name. The

mesh name follows this format:

name: flag, flag,...

where the : and flags are optional. Table 14.9 shows which flags are available.

Here are some legal mesh or group names:

n leaf

n leaf: Billboard

n leaf: BillboardZ

By default, meshes do not have any flags set.

MilkShape 3D’s DTS Exporters 621

Table 14.8 Material Option Flags

Flag Description

Add Enables additive transparency.

Sub Enables subtractive transparency.

Illum Enables self-illumination (lighting doesn’t affect it).

NoMip Disables mipmapping.

MipZero Sets the ‘‘MipMapZeroBorder’’ flag.

Table 14.9 Mesh Option Flags

Flag Description

Billboard The mesh always faces the viewer.

BillboardZ The mesh faces the viewer but is only rotated around the mesh’s Z-axis.

ENormals This flag encodes vertex normals. It is deprecated and should not be used unless you know
what you’re doing.

Animation Sequences

MilkShape only provides a single animation timeline, but the Torque Engine

supports multiple animation sequences, each of which can be named and have

different properties. Multiple sequences in MilkShape are animated on the main

timeline and are split into separate sequences by the exporter. For this to happen

animation sequences must be declared, indicating where each sequence starts and

ends on the master timeline. This is done through materials with special names.

These materials are ignored during export and are solely used to declare ani-

mation sequences. The ‘‘Special Materials’’ section earlier in the chapter provides

more details.

Sequence materials are named as follows:

seq: option, option, ...

All other properties of the material are ignored. Table 14.10 describes the

sequence material options.

Here are some valid sequence declarations:

seq: fire=1-4
seq: rotate=5-8, cyclic, fps=2
seq: reload=9-12, fps=5

The Enhanced Torque DTSPlus Exporter

The DTSPlus Exporter does not use special materials to store its extra infor-

mation in. It used to, until MilkShape 3D introduced the feature of comments for

objects and other aspects of a model. Now the DTSPlus Exporter maintains its

settings in comment fields in the scene.

622 Chapter 14 n Making a Character Model

Table 14.10 Sequence Material Options

Option Description

name=start-end This declares the name of the sequence followed by the starting and ending
keyframes. This option must exist for the sequence declaration to be valid.

fps=n This is the number of frames per second. This value affects the duration and playback
speed of the sequence.

Cyclic Sequences are noncyclic by default. Cyclic animations automatically loop back to the
start and never end.

Notwithstanding that little tidbit of technical trivia, we never need to concern

ourselves with the contents of the comment fields. DTSPlus provides a GUI

interface in its dialog box that gives us all the access we need to the settings.

Main Dialog Box

Figure 14.94 a few pages back shows the main dialog box. Meshes and materials

are added to the scene via MilkShape, and their special properties can be edited

here by selecting them in their respective lists and clicking the Edit button

adjoining the list.

Sequences are created, edited, and deleted via the Sequences list in this main

dialog box. Again, select the sequence, and click the appropriate action button

adjoining the list.

Other general settings and actions are shown in Table 14.11.

MilkShape 3D’s DTS Exporters 623

Table 14.11 General Settings and Actions

Setting or Action Description

Scale A global scale factor that is applied to the model when it is exported.

Use .cfg File If set, the exporter will search for a config file with the same name as the
exported shape (e.g., shape.cfg for the exported shape.dts). If cleared, the default
configuration will be used.

Output dump file If set, a file called dump.dmp will be created in the same directory as the exported
shape.

Export Animations If set, animation information will be written to the DTS shape. This flag is ignored
when exporting DSQ files.

Copy Textures If set, all textures used in the exported shape will be copied to the export
directory. This flag is ignored when exporting DSQ files.

Generate .cs file If set, a TorqueScript .cs file will be created that can be used to load the shape
(with DSQ animations) in TGE. This flag is ignored when exporting DTS files.

Split DSQ Export If set, each animation will be stored in a separate DSQ file. The name of each file
is base_animname.dsq, where base is the name chosen in the Save As dialog box
and animname is the name of the animation. If this flag is cleared, all animations
will be stored in the same DSQ file. This flag is ignored when exporting DTS files.

Apply Applies changes to the MilkShape model. The exporter dialog box will remain
open.

Cancel Closes the exporter dialog box without applying any changes.

Help Displays the built-in Help file.

Create Bounds Mesh Creates the bounding box mesh and Root bone if they do not already exist. The
bounding box is a cube 1 MilkShape unit larger than the extents.

Con f i g u r a t i o n F i l e s

Configuration files can be used to control the export process. To use a configuration file, it must be
named the same as the exported model name, except with the extension as cfg instead of dts. It
must be in the same folder that the model file will be exported to.

Default Configuration

The exporter supports configuration files. If a configuration file is not found, the following default
configuration is used:

+Error::AllowUnusedMeshes
-Materials::NoMipMap
-Materials::NoMipMapTranslucent
+Materials::ZapBorder
+Param::SequenceExport
-Param::CollapseTransforms
=Params::AnimationDelta 0.0001
=Params::SkinWeightThreshhold 0.001
=Params::SameVertTOL 0.00005
=Params::SameTVertTOL 0.00005
=Params::weightsPerVertex 1
+Dump::NodeCollection
+Dump::ShapeConstruction
+Dump::NodeCulling
+Dump::NodeStates
+Dump::NodeStateDetails
+Dump::ObjectStates
+Dump::ObjectStateDetails
+Dump::ObjectOffsets
+Dump::SequenceDetails
+Dump::ShapeHierarchy
NeverExport
__mainTree
__meshes

A ‘‘+’’ sets the setting to true, ‘‘-’’ sets it to false, and ‘‘=’’ is used to set the value of a
setting.

Nodes in the NeverExport list are not written to the DTS file.

The NeverExport list is mostly used for DSQ Export to exclude non-animating nodes. Names in
the NeverExport list can include wildcards (*). For example, leg* will include both leg1 and
leg2.

624 Chapter 14 n Making a Character Model

Settings

Here are the available settings:

MilkShape 3D’s DTS Exporters 625

Error::AllowUnusedMeshes If true, unused meshes will not cause an exporter
error.

Materials::NoMipMap Disable mip-mapping on all textures.

Materials::NoMipMapTranslucent Disable mip-mapping on translucent textures only.

Materials::ZapBorder If set, translucent, non-tiling materials will
automatically have the MipMapZeroBorder
flag set. See Overview.

Param::SequenceExport Allow animation sequences to be exported.

Param::CollapseTransforms If set, nodes that do not contain any objects are
remoded.

Params::AnimationDelta Minimum change in position or scale required for
a node transform to be recognized as different to
the previous transform.

Params::SkinWeightThreshhold Minimum bone weighting for a vertex to be
affected by that bone. Note: Because MilkShape
only supports a single bone per vertex, bones
attached to a vertex have weight 1, and bones
not attached have weight 0.

Params::SameVertTOL Minimum distance between vertices for them to
be considered unique. Vertices closer together
than this distance will be welded.

Params::SameTVertTOL Minimum distance between texture coordinates
for them to be considered unique. Coordinates
closer together than this distance will be welded.

Params::weightsPerVertex Maximum number of bone weights per vertex.
Note that MilkShape only supports a single bone
per vertex.

Dump::NodeCollection Output details of the node collection process to
the dump file.

Dump::ShapeConstruction Output details of the shape construction process
to the dump file.

Dump::NodeCulling Output details of which nodes have been culled
to the dump file.

Dump::NodeStates Output node states to the dump file.

Dump::NodeStateDetails Output node state information to the dump file.

Dump::ObjectStates Output object states to the dump file.

Dump::ObjectStateDetails Output object state information to the dump file.

Dump::ObjectOffsets Output object offset information to the dump file.

Dump::SequenceDetails Output sequence details to the dump file.

Dump::ShapeHierarchy Output the shape hierarchy to the dump file.

Mesh Properties

There are many extra properties that can be assigned to meshes (or groups, in

MilkShape 3D parlance) that affect things like level of detail, billboard behavior,

and visibility. To view the Edit Mesh dialog box, click the Edit button adjoining

the Meshes list. Table 14.12 shows these properties and their purposes.

Collision Meshes

Any mesh whose name begins with the text string ‘‘Collision’’ will be used in

game as a collision mesh. Collision meshes are normally given a negative detail

level from �1 to �8 so that they are not drawn. You can view the collision mesh

in game if you need to for debugging purposes by giving it a positive detail level.

Collision meshes should use as few polygons as possible and must be convex. Try

to keep the polygon count below 50 for any given model, if at all possible, as a

rule of thumb.

LOS Collision Meshes

DTSPlus supports the use of special collisionmeshes used to do line-of-sight collision

calculations. These meshes are often used for optimized operations such as checking

if a bullet will hit the model. Any mesh whose name begins with the text string

‘‘LOSCol’’ will be used as a line-of-sight collision mesh. Normally these meshes are

given a negative detail level from �9 to �16 to ensure that they aren’t rendered.

Like regular collision meshes, LOS meshes should use as few polygons as possible

and must be convex.

626 Chapter 14 n Making a Character Model

Table 14.12 Mesh Properties

Property Description

Name Name of the mesh, not including the LOD number, which is automatically appended
to the end of the name.

LOD Detail level for this mesh. The detail level indicates to the exporter what mesh is to
be drawn at a given distance. The number corresponds to the pixel size in the game
engine at which the shape will draw with these meshes. Meshes with negative detail
levels will be exported but not drawn. If your mesh has only one detail level, use 0.

Billboard Set if this mesh is a billboard.

Z Billboard Set if this mesh is a Z billboard.

Sort Set if this mesh should be sorted.

Visibility Channel This list box defines keyframes for the meshes’ visibility channel.

Materials

Figure 14.97 shows DTSPlus’s Edit Material dialog box, and Table 14.13 lists its

features.

Animation Sequences

You’ve already seen a sterile view of the animation sequence editor elsewhere in

this chapter. Figure 14.98 shows a view of the run sequence through the eyes of

the Edit Sequence dialog box.

As you have seen in this chapter, MilkShape 3D provides only one animation

timeline. Yet the Torque Engine supports multiple animation sequences, each of

which can be named and have different properties. You can create multiple

sequences in MilkShape 3D on the main timeline, which are differentiated into

separate sequences by DTSPlus. For this to happen, animation sequences must be

declared indicating where each sequence starts and ends on the master timeline

using the DTSPlus Sequence Editor.

Table 14.14 shows the features of the Edit Sequence dialog box and their uses.

MilkShape 3D’s DTS Exporters 627

Figure 14.97
Edit Material dialog box.

628 Chapter 14 n Making a Character Model

Figure 14.98
Edit Sequence dialog box.

Table 14.13 Edit Material Features

Property Description

Material Name Name of the material. This is used internally by the DTS shape and does
not affect the actual texture used.

Detail Map Name of the MilkShape material to use as a detail map.

Bump Map Name of the MilkShape material to use as a bump map. Note that TGE
does not yet support bumpmapped DTS shapes.

Reflectance Map Name of the MilkShape material to use as a reflectance map. Not yet
implemented.

Detail Scale Scale of the detail map. See Detail Map.

Env Mapping Amount of environment mapping to apply. 0 for none. This value is a
scalar (range 0--1), which is applied to the alpha channel of the texture to
determine the level of environment mapping at each point.

Translucent Enables transparency.

Additive Enables additive transparency (only valid if translucent flag is set).

Subtractive Enables subtractive transparency (only valid if translucent flag is set).

Self Illuminating Enables self-illumination (lighting doesn’t affect it).

No Mip Mapping Disables mipmapping for this material.

Mip Map Zero Border Not implemented yet.

Moving Right Along
This was a pretty busy chapter, huh? We created a character model and a texture

skin for it, created a skeleton and rigged the model’s meshes to the skeleton, and

then proceeded to animate the skeleton. We then learned how to use two dif-

ferent exporters to get the animations into Torque. In fact, as you’ve seen, there

are many different combinations of ways to get animated characters into Torque,

using embedded animations and sequence file animations and even reusing

animation sequences created by other people.

Moving Right Along 629

Table 14.14 Sequence Editor Features

Property Description

Name Name of the sequence.

First Frame First frame (inclusive) in the sequence. This number should match the frame
number in the MilkShape animation timeline.

Last Frame Last frame (inclusive) in the sequence. This number should match the frame
number in the MilkShape animation timeline.

Cyclic If turned on, the sequence will loop (e.g., walk and run animations). If turned
off, the sequence will play once and then stop (e.g., death animations).

FPS Frames per second for this animation. This does not affect the number of
keyframes----only how fast they will be played back.

Override Duration If you override the sequence duration, it will change the duration of the
sequence when it plays in the game at time scale 1, but it won’t otherwise
change the animation data (same keyframes will be used, they’ll just play at
different times). This is useful for altering the speed of the ground transform of
an object without scaling the animation. Most of the time, this is not used and
should be set to �1.

Priority Controls what sequence will affect a node when two sequences want to
control the same node. The sequence with higher priority will control the node.

Ignore Ground Transform Don’t export a ground transform for this sequence. This should usually be false.

Blend Makes the sequence a blend animation.

Reference Frame The reference frame number for the blend animation. This is only valid if the
blend flag is set.

Triggers Set of trigger keyframes and states.

Enable Morph This will force the exporter to export all mesh animations as a series of mesh
snapshots. This is useful for certain types of animations (e.g., flags), but it will
produce large files and does not contain animated nodes.

Enable TVert Enables animated texture coordinates.

Enable Visibility Enables use of the visibility channel.

Enable Transform Enables transform (e.g., translation and rotation) animation. Normally this
setting is enabled.

Enable IFL Enables IFL animation.

If it isn’t obvious by now, there is very little need to use the built-in DTS Exporter

in MilkShape 3D if you have Chris Robertson’s DTSPlus Exporter. However, if

you are already familiar with the standard exporter and have no demanding

animation or special properties for your models requiring DTSPlus, then the

standard exporter, which is less intimidating, will fill the bill nicely.

It’s a lot of work, and that’s why even the smallest game development team

usually has at least one modeler on board to handle that workload.

So now that you can create your own player-character, it’s time to create some

sort of transportation so he can get around in the game world. That’s the subject

of the next chapter, ‘‘Making a Vehicle Model.’’

630 Chapter 14 n Making a Character Model

Making a Vehicle
Model

In Chapter 9 we looked at creating skins, and during that process we created a

skin for a cool runabout-type vehicle. In this chapter we’ll create the model itself.

Of course, there is a whole host of different vehicle types, such as those for the

open road or off road, aircraft, hovercraft, ships, and so on. In most cases the

methods used to create the vehicles can be used with any type of object. But

different vehicle types have different capabilities and therefore may require some

specialized accommodation for those capabilities in the models.

For example, if you want your vehicles to be drivable by a player-avatar that gets

into the vehicle when you want to drive, then your vehicle will needmount points,

which are special nodes or subobjects within the model that indicate where your

player-avatar gets attached to the vehicle. Different vehicle types, makes, and

models will have different needs in this area.

Then there are those special nodes that indicate where other game functions will

happen. Wheeled vehicles need to know where the wheels are located, as well as

information about how the springs and steering mechanisms are oriented.

Some vehicles might need nodes in their models to indicate to the engine where to

generate engine exhaust smoke using particles. Flying vehicles may require nodes

to help the engine generate contrails (condensation trails). The list goes on.

631

chapter 15

The Vehicle Model
In this chapter we are going to build a complete wheeled vehicle, the runabout,

which will wear the skin you created in Chapter 9. Then we will insert it into a

little test game so that we can carom about and drive our insurance rates through

the roof!

The Sketch

I find the best way to start a new model is with a sketch. Doodle out some ideas,

and keep working them up on paper until you get something that suits your

needs. Then choose a view (Left or Right, Top or Bottom, Front or Back) that

presents you with the highest number of intersections of lines to use as points.

Figure 15.1 shows a sketch of the runabout from the right-hand side. Notice that

it is really a sketch and not a drawing. As long as the general proportions and

coarse features are present, it’s satisfactory. Now if you were going to model a real

car, you might need to use a more detailed sketch or perhaps something that

would qualify more as a drawing than a sketch. Then again you may not—it all

depends on how much detail is necessary to suit your needs.

The Side view is the main sketch we will use to make our model. When modeling

most vehicles, you will usually use a Side view as your primary source for

extrusion modeling. The reason for this is pretty obvious. Most vehicles are

longer than they are tall or wide. The symmetries of vehicles (how one side

mirrors the other) tend to reflect around the longitudinal axis, the one that runs

from the rear to the front of the vehicle up the middle.

The Top view of the runabout is shown in Figure 15.2. The purpose for sketching

this view is to provide a guide for your modeling efforts as they proceed. You will

find yourself checking back against this drawing quite often.

One more useful thing is to make a copy of the Side view and, using the Gimp,

adjust the brightness of the image. This is because when we import the sketch

632 Chapter 15 n Making a Vehicle Model

Figure 15.1
Side view sketch of the runabout.

into MilkShape, we don’t want the image to overpower any of the on-screen

modeling marks we make. I find the best approach is to darken the whole image

by around 40 to 50 percent and reduce the contrast by about 50 to 60 percent or

so. Figure 15.3 shows the adjusted Side view. I keep the original sketches as they

were so that I can print them out for reference purposes (and also just to pin up

on the wall because it’s a cool artsy thing to do).

The Model

So pour some jet fuel in the ol’ computer, grab the propeller, give it a whirl, and

fire up MilkShape 3D again if it isn’t already running. If you need a quick

The Vehicle Model 633

Figure 15.3
Side view sketch adjusted for use in MilkShape.

Figure 15.2
Top view sketch of the runabout.

refresher, you can jump back to Chapters 13 and 14. Set your MilkShape 3D GUI

display to the four-view mode by choosing Window, Viewports, 4 Window.

Create a fresh new MilkShape document. It’s a good idea to save the empty file

right now, just to get the path set up and establish the file name.

Then youwant to import the side sketch as the background in the Side view (upper

right view). Right-click in the Side view, and choose Choose Background Image

from thepop-upmenu. Select your sketch, and clickOK.You canusemy sketches if

you want—they are located at C:\3D2E\RESOURCES\CH15\ref_sketch.bmp.

Do the same thing for the Top view (bottom left view), using your own sketch or

mine, found at \3D2E\RESOURCES\CH15\ref_top_sketch.bmp. Usually, only

two views are needed, but you could also sketch in the third view if you want to.

You should end up with something like Figure 15.4.

So now we start.

Building the Body

First, we’ll build the body:

1. From the Model tab, select the Vertex tool, making sure that the Auto Tool

check box is cleared.

634 Chapter 15 n Making a Vehicle Model

Figure 15.4
MilkShape windows with reference sketches.

T i p

Placing vertices may be the easiest and most fun job in the world. With the Vertex tool active, go
to the view that you are going to use as your guide, and find a spot on a contour or line in the
reference image that signifies a contour feature. This could be a turn, a point on a curve, a sharp
corner, or anything else that forms the character of the contour. Click on that spot. Blam! You’ve
stuck a vertex there. Now find another target. Blam! Keep on going. Blam! Blam! Blam! Don’t get
all blam-happy though---too many vertices will yield too many polygons in the long run, as well as
make it hard to create the polygons in the first place. It can be difficult to continue to see the
shapes when a swarm of pixels is obscuring them.

2. In the Side view, start placing vertices at all the major corners and points

around the edge of the car’s body—don’t do the fenders yet. Just click on the

appropriate location to place the vertex. See Figure 15.5 for reference.

No t e

There is also a string of vertices across the ‘‘waist’’ of the body---in Figure 15.5 they are high-
lighted as black squares (they show red in MilkShape). These extra vertices are added for two
reasons. First, they act as useful anchors for creating the faces that we’ll make later. And second,
they help add more malleability to the model for shaping the sides of the car.

After we have the vertices placed, we move on to creating the faces joined by the

vertices.

The Vehicle Model 635

Figure 15.5
Placing vertices over the reference sketch.

T i p

It’s important to remember that when we create faces using the Face tool that is found in the
Model tab, we click three vertices in sequence to create one face. The order we click the vertices is
important. To create a face or polygon that is oriented toward us, we need to select the vertices in
a counterclockwise order, as shown in Figure 15.6. For most cases this is not hard to do, but it’s
possible to get confused and lose track of the sequence. In this case you can use the Edit, Undo
menu item to back up until the sequence is clear. You can also abort any three-vertex sequence by
just clicking the Selection tool (or any other tool) and then clicking the Face tool again. Then you
can start with a fresh trio of vertices.

The direction that a polygon faces is indicated by a mathematical construct called the normal,
which is defined as being a line perpendicular to the plane of the face. The side of the face on
which the normal is positive is the side that is facing the viewer, and this side is created when its
vertices are used in a counterclockwise order.

There is another Face tool, available as a menu option in the Face menu. This tool differs from the
Model tab’s Face tool in one important way. The Face menu Face tool doesn’t care in which order
you select the vertices; instead, the manner in which the vertices were created dictates the vertex
ordering and, thus, which way the face’s normal points. You can use whichever Face tool suits
your needs. In this chapter we will only use the Model tab’s Face tool.

3. Starting at the right side (the front of the car), begin creating faces, moving

to the left along the top as you proceed, including the window area, as shown

in Figure 15.7.

When you reach the left side, you should have something resembling

Figure 15.8.

4. After completing the top row of faces, start making faces along the bottom,

from the left back over to the right (see Figure 15.9).

636 Chapter 15 n Making a Vehicle Model

Figure 15.6
Vertex order for creating faces.

5. Finish up the faces for the side of the body. You should end up with

something like Figure 15.10.

Okay, so now we have a plane of body faces. We want to make sure they

are all oriented correctly. The quickest way to do this is to look at the output

in the 3D Perspective view. Make sure the view (it should be the Bottom

The Vehicle Model 637

Figure 15.8
Finishing the top row of faces.

Figure 15.7
Creating faces starting from the right.

638 Chapter 15 n Making a Vehicle Model

Figure 15.10
Completed plane of body faces.

Figure 15.9
Working the bottom row of faces.

Right view) is set to either Flat Shaded or Smooth Shaded by right-clicking

the view and then choosing either Flat Shaded or Smooth Shaded in the

pop-up menu. What you should see is the outline of the body rendered in

white or light gray, just as in Figure 15.11.

T i p

This is a long one, so make sure you’ve got some popcorn handy!

Sometimes you end up with two overlapping faces: one oriented correctly and the other reversed.
These are hard to catch until they start showing strange results when rendering, as the model
grows more complex. There is another way to check for misoriented faces that is a little more
involved:

1. Pick the Selection tool, and set it to Face mode. Make sure that the Ignore Backfaces check
box is selected.

2. Now use the Selection tool to select all the faces by dragging the selection rectangle around
all of them. This will highlight all the faces.

3. Now choose Edit, Hide Selection. All the correctly oriented faces will vanish, leaving behind
only the ones facing the wrong way.

4. To fix the problem, unhide all the hidden faces, clear the Ignore Backfaces check box, and
select all the faces again. This will select all correct and incorrect faces.

5. Then choose Face, Reverse Vertex Order. This will make the good ones bad and the bad ones
good. Still with me?

The Vehicle Model 639

Figure 15.11
The 3D view of the initial body faces.

continues

6. Okay, now deselect everything by clicking the Select tool in an open area, and select the
Ignore Backfaces check box again.

7. Drag-select over all the faces one more time. Now only the faces that were originally incorrect
will be selected.

8. Choose Face, Reverse Vertex Order with those faces selected.

9. Then for one final time, clear the Ignore Backfaces check box, select all the faces, and choose
Reverse Vertex Order. This should flip all faces back to the correct orientation. If this reminds
you of manipulating a Rubik’s Cube, then you think a lot like I do!

So now we’ll move on to adding some width to the body.

6. Choose the Selection tool, and set it to Face mode.

7. Select all the faces.

8. Click the Extrude tool, and fill in the X entry of the XYZ boxes with the value

�10.0 (that’s minus ten point zero). Leave Y and Z at 0.0.

9. Click the Extrude button to the right of the XYZ boxes. You should get a

new set of polygons negatively offset in the X-axis by 10 units, as shown in

Figure 15.12.

Notice the way that the image in the 3D view looks. Now the body has some

depth to it. It’s not just a plane of faces anymore.

640 Chapter 15 n Making a Vehicle Model

Figure 15.12
First extrusion.

10. Repeat step 9 four more times, until you get five segments, as shown in

Figure 15.13. Warning: do not click on any other tool or in the edit

windows. After the fifth extrusion you want to end up with the body faces

still selected.

11. The body faces should still be selected if you got my warning in time. Choose

Edit, Duplicate Selection.

12. Click the Move tool, then go to the Top view at the lower left, and drag the

highlighted faces (these will now be the copies, not the originals) to the

right, clear of the extrusion segments, so that you get something like that

shown in Figure 15.14.

13. Choose Face, Reverse Vertex Order.

14. Using the Side views and Top views, align the vertices of the copy of the

body faces with their counterparts in the main body.

15. In the Top view drag the body face copy over to the right edge of the rest of

the body polygons. Align the vertices as best you can by eye.

The Vehicle Model 641

Figure 15.13
After extruding the body faces five times.

T i p

We want to make sure that the vertices in step 15 are perfectly aligned. To do this, we’ll scale our
entire model up. Making our model larger in relation to the grid allows us more precision with the
grid. This will help ensure good results when we snap our vertices to the grid, which is going to
happen shortly.

16. Select the entire set of polygons in all the faces, and then use the Scale tool to

make the entire model four times larger.

17. Select the entire model in Vertex Selection mode, and choose Vertex, Snap

To Grid.

18. Choose Vertex, Weld Vertices.

19. Scale the model by 0.25. This will restore the model back to its original size.

20. In the Top view make sure the entire model is selected, and then use the

Move tool to drag the model over the sketch so that it is aligned around the

longitudinal center of the car in the sketch. You should now have a model

that looks like that shown in Figure 15.15.

21. In the Top view select the bottom nine rows (or forwardmost nine rows) of

vertices. This means that you need to ensure that the Select tool is in Face

642 Chapter 15 n Making a Vehicle Model

Figure 15.14
After duplicating and moving the copies.

mode. If you haven’t placed your vertices exactly as I did, don’t sweat it. Just

make sure that you select all of the vertices from those at the front of the car,

back to the top of the windshield. Look ahead to Figure 15.16 to see what I

mean, if it still isn’t clear.

22. Use the Scale tool to scale the selection to 0.9 in the X-axis only; leave the

other values at 1.0. Figure 15.16 shows the result of this operation.

23. Change your selection to be the bottom eight rows, and scale to 0.9.

24. Repeat the decrementing and scaling of the selection, reducing your

selection vertices one row at a time until you run out of victims . . . ummm

. . . I mean vertices. You should now have something that resembles that

shown in Figure 15.17.

25. Repeat this iterative scaling process for the rows of vertices as seen in the

Top view at the other end of the car body, until it, too, tapers, as shown in

Figure 15.18. You may find it necessary to manually move a few vertices at

either end to achieve the appropriate amount of taper.

The Vehicle Model 643

Figure 15.15
Scaling the nose of the runabout.

644 Chapter 15 n Making a Vehicle Model

Figure 15.17
After scaling the nose.

Figure 15.16
After scaling the bottom nine rows.

26. Now perform the same sort of iterative scaling operations on the Front

view of the car, getting it to look something like the view shown in

Figure 15.19.

27. Next, use the Selection and Move tools to place the car so that it is centered

around the origin (0,0,0), as shown in Figure 15.20. The axis ‘‘bug’’ at the

origin has been enhanced as thick black lines to emphasize its location.

28. Finally, select all the polygons and use the Groups tools to regroup all

polygons into a single group—name it ‘‘body’’.

Building the Fenders

Next, we will tackle the wheel well and fender assemblies.

1. Hide the body group.

2. On the Model tab, select the Sphere tool, and create a sphere that matches

the forward curves of the forward fender, as shown in Figure 15.21.

3. Select the bottom two rows of faces, and delete them. Thenmove the bottom

row of vertices up a bit, to get something that looks like Figure 15.22.

The Vehicle Model 645

Figure 15.18
After scaling the tail.

4. Select the leftmost three rows of vertices, and move them farther left, as

shown in Figure 15.23.

646 Chapter 15 n Making a Vehicle Model

Figure 15.20
Centering the Front view.

Figure 15.19
Shaping the Front view.

5. Continue to reshape the fender to match the sketch as shown in Figure 15.24,

until you are happy.

The next bit is a little tricky, so move slowly. We want to drag certain of the

vertices from the fender over to the exact position of vertices on the body.

The vertex rows we want from the fender are the two bottom ones, and we

are interested in the vertices on the body side. By dragging them over to the

body, we create a fairing-cum-running board sort of affair.

The Vehicle Model 647

Figure 15.21
Fender sphere.

Figure 15.22
Lopping off the bottom of the fender sphere.

648 Chapter 15 n Making a Vehicle Model

Figure 15.23
Stretching the fender.

Figure 15.24
Shaping the fender.

6. Unhide the body.

7. Drag the fender away from the body so that it is in the clear in the Top and

Front views.

8. Select the vertices and drag them, one at a time, as shown in Figure 15.25.

The vertices are on the two bottom rows and are the ones that face the body.

Make sure to place the vertices exactly where they mate with a corre-

sponding vertex. A close-up view is shown in Figure 15.26.

9. After each vertex is placed with a mate, use Snap To Grid to make sure they

are exactly coincident, and useWeld Vertices to convert each pair of vertices

into one vertex. Once you have done this for all the appropriate vertices

along the fender bottom, you will get something like Figure 15.27.

10. Finally, move the fender back to a position that matches the sketched fender

in the Top view, as shown in Figure 15.28.

11. Repeat steps 2 through 10 for each of the other fenders. Remember to hide

the body and the other fenders when necessary to remove clutter from the

screen. You should end up with the finished car, as shown in Figure 15.29.

But we aren’t done yet!

The Vehicle Model 649

Figure 15.25
The fender vertices.

650 Chapter 15 n Making a Vehicle Model

Figure 15.26
Close-up of moved vertices.

Figure 15.27
All vertices moved.

The Vehicle Model 651

Figure 15.28
Finished fender.

Figure 15.29
All fenders and body completed.

We need to rescale the car. I like to size my models so that the exporter doesn’t

need to scale them. Select your entire model (all vertices, or all faces, or all

groups—it doesn’t really matter—and move it so that it is centered over the axis

bug, with the bottom sitting about 0.3 units above the X-Z plane (as seen from

the Side view). The X-Z plane serves as the ground for us at the moment.

Now scale the car in the Y-axis so that the roof of the car is about 2 units above

the ground, while the bottom is still about 0.3 units above the ground. After that,

scale the car in the X-axis so that the front bumper is about 3 units in front of the

axis bug, and the rear bumper is about 3 units behind the axis bug.

Save your work.

The Mount Nodes

In Chapter 14 you learned how to make a skeleton for an animated character in

MilkShape using joints. In this section we are going to use the same feature, the

joint, to create nodes that tell Torque where to mount certain things on models.

1. As shown in Figure 15.30, create four unconnected joints, or mounts, on the

four corners of the car where the wheel hubs would be. To ensure that the

joints are unconnected, you need to use the Select tool to deselect each node

after it’s been created.

652 Chapter 15 n Making a Vehicle Model

Figure 15.30
Mounts on all four corners.

2. Name each of the joints with the names shown in Figure 15.30, with hub0

being the left front joint.

3. Add two more unconnected joints to the locations shown in Figure 15.31.

Name the front one ‘‘eye’’ and the rear one ‘‘cam’’.

4. Finally, add two unconnected joints to the locations shown in Figure 15.32.

Name the one on the right (the left-hand seat position) ‘‘mount0’’ and the

other one ‘‘mount1’’.

Now, the last two pairs of mounts are used for different, and mutually exclusive,

purposes. The eye and cammounts are used for games where the car becomes the

player’s avatar. The sample racing game that comes with Torque works like that.

The eye node located at the point of the eye mount is the normal first-person

point-of-view location for the view’s eye. The cam node is for the third-person

point of view; the actual camera is offset from the location of this node and so is

usually actually behind and above the vehicle.

The mount0 andmount1 mounts are used for games where the player’s character

actually gets ‘‘in’’ the vehicle; they specify where the player’s avatar will be

mounted. The game continues to use the player’s avatar’s camera and eye nodes.

You saw those in use back in Chapter 14.

The Vehicle Model 653

Figure 15.31
Eye and camera mounts.

Skins

Chapter 9 covered the subject of skins and UVmapping, so I refer you back there

to map the textures for your new car. You can find a copy of the skin to use at

C:\3D2E\RESOURCES\CH15\runabout.jpg. Create a new folder called ‘‘run-

about’’ in the folder C:\3D2E\demo\data\shapes, and put the skin file you cre-

ated, or the premade one, in this new folder.

Collision Mesh

For all objects except player models, we need to create at least one collision mesh

if we want the game engine to detect when it collides with another object, so use

the Box tool in the Model tab to create a box that surrounds the vehicle, as shown

in Figure 15.33.

The new box will have a name like Box01 in the Groups tab, and will be selected by

default immediately after you create it. Name the collision mesh ‘‘Collision-1’’.

Collision meshes need to be named ‘‘Collision-n’’, where n is a non-zero integer.

You can have more than one collision mesh if you like, so number them as you

create them, starting at 1, and incrementing by one each time you add one.

You should also hide the collision mesh and then save the model before

exporting the model.

654 Chapter 15 n Making a Vehicle Model

Figure 15.32
Seat mounts.

Co l l i s i o n Me s h e s

Collision meshes need to be convex hulls if they are to work correctly in Torque. A hull in this
context is identical to a mesh. A convex hull is a mesh that has no ‘‘dent’’ in it---no areas where
the mesh surface seems to go inwards into the mesh,

The following illustration should help in understanding.

The Vehicle Model 655

Figure 15.33
Collision mesh.

In the illustration, there are two 2D shapes at the top. The one on the left is convex, and the one
on the right is concave.

Notice how a line drawn between A and B in the convex shape travels completely through the
interior of the shape? With a convex shape, any line drawn between any two vertices will always
pass entirely inside the shape. Always.

Now look at the concave 2D shape in the upper-right portion of the illustration. Line A-B in this case
travels outside the boundaries of the shape. In fact the line segments of the shape running from A
to the vertex between A and B and then on to B form a little indentation---something like a cave.

In fact, that is an easy way to remember which is which: Concave shapes have caves. Convex
shapes don’t.

The bottom two shapes are 3D versions of the top shapes. You will probably find it harder to spot
a concave 3D shape. But just remember the ‘‘cave’’ and you will do fine.

The bottom-left 3D shape would work fine as a collision mesh in all ways. The bottom-right one
would not. It might work in certain special cases, such as for collisions with player characters, but
projectiles would not detect the mesh, and hence not collide with it.

The Wheels
Of course, a cool car needs cool wheels. There’s not much to them, so I invite you

to model your own wheel for use on the car. You, of course, may decide tomake a

complex model, but there is really no need—a lot can be done with a decent skin.

A collision mesh is not needed, but do make sure that the wheel is oriented so

that in the front wheel, you see the roundness of the wheel, hubcap and all. In the

side view (upper right view) you should be looking at the tread of the tire on

the wheel, and the inside of the wheel (the hub) should be on the left. This is not

the same as they would be oriented if you modeled the wheels directly on to the

car. Also ensure that the axle of the wheel and the midline of the tire are aligned

with the origin bug, unless you include a hub assembly for the wheel. If you do

include a hub, align the hub with the axis bug instead of the wheel.

Make sure that the wheel is about 1.5 units in diameter, and about 0.4 units wide

(or thick).

Testing Your Runabout
In order to test the runabout, we first need to export it from MilkShape. We will

use the built-in exporter for this task, since it is more up to the job and has fewer

settings and stuff for us to get wrong.

1. After saving your work, export your model from MilkShape using the

DTSPlus Exporter. Choose File, Export, Torque DTS Plus.

656 Chapter 15 n Making a Vehicle Model

2. Use defaults, but make sure they are correct. You want to have Output

dump file and Copy textures checked, and Use .cfg File cleared. Set the Scale

to 1. The other settings don’t matter.

3. Click on Export DTS to export your runabout to DTS format at

C:\3D2E\demo\data\shapes\runabout\runabout.dts.

4. Open your wheel model, and export it as C:\3D2E\demo\data\shapes\

runabout\wheel.dts. Keep the same settings as for the car.

If you didn’t create a wheel of your own, you can copy the one at

RESOURCE\CH15 into C:\3D2E\demo\data\shapes\runabout. Make sure

you copy both the wheel model and its texture file.

Next, you need to edit the script that controls the vehicle so it will look for your

model and not the default one.

1. Locate the file \3D2E\demo\server\scripts\car.cs, and open it with UltraEdit.

2. Find the line that says this:

shapeFile = "~/data/shapes/buggy/buggy.dts";

Replace it with this line:

shapeFile = "~/data/shapes/runabout/runabout.dts";

3. Then find the line that says this:

shapeFile = "~/data/shapes/buggy/wheel.dts";

And replace it with this line:

shapeFile = "~/data/shapes/runabout/wheel.dts";

4. Save the file.

Okay, now it’s time to run the racing demo. The following may look familiar to

you, since we did this back in Chapter 9.

1. Browse to C:\3D2E, and click the tge.exe.

2. When the main menu appears, click the Example: Multiplayer Racing

button at the bottom of the menu screen.

Testing Your Runabout 657

3. In the Play Demo Game screen, make sure that the Create Server check box

is checked.

4. Click the right arrow at the bottom to launch the demo.

5. After the game loads, have at it! You probably should switch to Chase view

by pressing the Tab key—there’s more to see. See Table 15.1 for the key-

board controls.

Moving Right Along
Building the model is only half the battle—well, maybe three-quarters. There is

still the matter of defining the vehicle’s characteristics, like mass, drag, speeds,

particle generators, collision handlers, and so on. You take care of these things in

scripts that run on the server.

To do the testing you just did, you used the existing demo buggy script that

comes with the Torque Engine and simply substituted our model in place of the

dune buggy. It looks like a roadster but drives like a dune buggy! In fact, you will

recall that you had a test-drive of a dune buggy back in Chapter 9.

Later, in Chapter 22, we will create the script that will define the behavior of the

vehicle that we’ve modeled here and its response to user inputs and game

environment stimuli.

Coming up next, in Chapter 16, we’ll continue with MilkShape and make some

weapons and other items.

658 Chapter 15 n Making a Vehicle Model

Table 15.1 Torque Racing Demo Controls

Key Description

mouse steering left or right

W accelerate

S brake

Tab toggle from first- to third-person viewpoint

Escape exit the game

F8 camera fly mode

F7 move car to camera position

AltþC switch between camera fly mode and car

Making Weapons
and Items

In this chapter we’re going to make a bunch of things. Most of the techniques

used will basically be a review for you, so you can see this chapter as one big

exercise in applying what you’ve learned to different situations.

We’re going tomake a few weapons, and in order to maintain balance, we’ll make

something that can be used in game to counteract the effects of these weapons.

We’ll also make some items that one might call decorations for the game. The

purpose of these items—some trees and a rock—is to provide some clutter. This

is to help fill out otherwise sterile-looking game worlds, making them more

interesting to wander around in.

The Health Kit
We’ll start out with an easy one, the Health Kit. Like I said, this will be a basic

review, but it’s important to go over the process involved in creating an item for

use in the game so that the broad steps become obvious and second nature.

The Model

The Health Kit is little more than a fancy-looking box, as you can see from

Figure 16.1. So this won’t take long.

1. Create a new folder: \3D2E\demo\data\shapes\items.

2. Fire up MilkShape, and create an empty document.

659

chapter 16

3. Use the Box tool to create a box, as shown in Figure 16.2.

4. Align the box to be centered at the origin for all three axes, as you can see in

Figure 16.2.

5. On the Materials tab, create a new material, using \3D2E\RESOURCES\

CH16\healthkit.png as the bitmap.

6. Name the material ‘‘healthkit’’.

7. Select the box, and assign the healthkit material to it.

8. Make sure that the 3D view has been set to Texture mode. You should see a

nice, shiny new first-aid kit kind of item there, like that in Figure 16.3. This

one always has bandages in it!

9. Scale the box to where it is about 1 unit on each side.

10. Save your work.

11. Use the DTSPlus Exporter to export your model.

12. Make sure that Copy Textures and Create dump file are checked, and that

the Scale is set to 1.0.

660 Chapter 16 n Making Weapons and Items

Figure 16.1
The Health Kit in game.

The Health Kit 661

Figure 16.3
The Health Kit model.

Figure 16.2
The box.

13. Click on Export DTS to export the model to \3D2E\demo\data\shapes\

items\healthkits.dts.

Testing the Health Kit

To use the Health Kit in game, you merely have to run over it to pick it up. Then

you activate it by pressing the ‘‘h’’ key to restore your health whenever it gets too

low. You may remember using a kind of first-aid kit in one of your sample games

from an earlier chapter—Emaga5—where you got health back just by running

over the first-aid kit, or Health Kit. This one you have to pick up and activate;

we’ll test that functionality later when we get back into server scripts. Right now

we just want to see our fine creation in the game world.

Once you have spawned into the FPS demo, you are going to use the World

Editor to insert the Health Kit in the game world. We’ll be using this procedure

often, so pay attention! I’ll repeat the procedure once or twice in later chapters to

make sure you don’t have to flail around too much. But right now, go ahead and

launch the FPS demo, and then follow this procedure:

1. Press F8. This will set your player into camera fly mode.

2. Press F11. This will open up the World Editor, as shown in Figure 16.4.

662 Chapter 16 n Making Weapons and Items

Figure 16.4
World Editor.

3. Press F4. This will open up theWorld Editor Creator, as shown in Figure 16.5.

The Creator pane is circled at the lower-right corner of the window.

4. In the Creator pane, click the plus sign next to Static Shapes. This will

expand the listing. Now you need to drill down through the demo, data, and

shapes folders.

5. Inside the shapes folder locate the items folder, and click the plus sign to

open it as well. You should now have a Tree view similar to Figure 16.6.

6. Make sure that the center of the view is located in an open terrain area

about 10 virtual feet in front of you. To move the view in the World Editor,

hold down the right mouse button, and move the mouse.

The Health Kit 663

Figure 16.5
World Editor Creator.

664 Chapter 16 n Making Weapons and Items

Figure 16.6
The Creator Tree view.

Figure 16.7
Health Kit model.

7. Click healthkit in the Tree view. The Health Kit model will appear; it will

probably be somewhat embedded in the ground, as shown in Figure 16.7.

8. Move the cursor over on top of the vertical axis line (labeled Z) that sprouts

from the top of the Health Kit model. The Z-axis label will become high-

lighted, as shown in Figure 16.8.

9. Click the vertical Z-axis line, and drag it up just a few pixels, until the box is

completely out of the ground, as depicted in Figure 16.9.

The Health Kit 665

Figure 16.8
The Z-axis label.

Figure 16.9
Repositioned Health Kit.

Note that this is the reason why you needed to switch to camera fly mode

before entering the World Editor. If you had stayed in normal FPS view

mode, you would not have been able to grab the Z-axis line and move it

so easily.

10. Now press F11 to toggle out of the World Editor.

A Rock
Oh, big deal, a rock—what’s up with that, you ask? Well, it is going to be your

own handmade rock! That should be worth something.

The point here is that, even though the rock is not much more complex than

the Health Kit, it is somewhat more complex nonetheless as you can in see

Figure 16.10. It does less for us in the game, but it is one of those decoration-

type items I mentioned—and stuff like this, while unglamorous, can greatly

contribute to the ambience of your game.

1. Fire up MilkShape, and create an empty document.

2. Use the Sphere tool to create a sphere, as shown in Figure 16.11.

3. In the Side view, select the bottom three rows of vertices.

4. Choose Vertex, Flatten, Y. The bottom three rows should be squished

together in a horizontal flat plane, as shown in Figure 16.12. Already it’s

starting to look like a rock.

5. Still in the Side view, drag the vertices around on the left side until you get

something resembling Figure 16.13.

666 Chapter 16 n Making Weapons and Items

Figure 16.10
The rock in game.

A Rock 667

Figure 16.12
The truncated sphere.

Figure 16.11
The sphere.

6. Now in the Top view, drag some more vertices around until you get

something resembling Figure 16.14. It’s almost a rock now!

7. On the Materials tab, create a new material, using \3D2E\RESOURCES\

CH16\rock.png as the bitmap.

668 Chapter 16 n Making Weapons and Items

Figure 16.13
The stretched rock-sphere.

Figure 16.14
The almost rock.

8. Name the material ‘‘rock’’.

9. Select the entire rock model, and assign the rock material to it.

10. Make sure that the 3D view has been set to Texture mode. You should see a

nice lumpy and ancient-looking rock there, like that in Figure 16.15.

11. Save your work.

12. After saving your work, export your rock using the DTSPlus Exporter.

Use the same settings and procedure that you used for the Health Kit.

Testing the Rock

The rock has a bounding box set for collision because it is, after all, a rock—you

can’t go through it.

1. Run the FPS demo.

2. After the game loads, insert your rock in the same way you did with

the Health Kit. The rock should be in the items folder along with the

Health Kit.

3. Run over to the rock. Abuse it.

A Rock 669

Figure 16.15
The rock model.

4. If you get blood from the rock, pat yourself on the back, and apply for a job

at a collections agency. You’re a natural.

Trees
If Joyce Kilmer had been a game developer, he might have written, ‘‘I think that

I shall never see a model so annoying as a tree.’’ Or something like that. But he

didn’t, so that’s too bad. Really talented game developer–poets are rare.

Nonetheless, computer model trees really are annoying. There is this conundrum.

If you can interact reasonably well with a model tree, then it looks awful. If the tree

looks really good, then interacting with it is awful.

The problem is twofold. We see them everywhere, in most parts of the world, so

they provide a great deal of the background to our daily lives. This means that in

virtual worlds, if there are no trees in the background, we just know something’s

wrong even if we can’t quite put our finger on the problem. They are ubiquitous.

And that means we also have a highly developed subconscious sense of what they

should look like, when we aren’t . . . ummm . . . actually looking at them. With

me so far? Okay, that’s problem number one.

The other problem is that they are so dad-blamed complex! Even a sapling has

lots of little branches and twigs and leaves and buds and stuff. If you have a

polygon budget (and if you are making games, you have a polygon budget!), then

these suckers will dry up that account faster than a barking moonbat can change

its mind.

So, on the one hand, to have convincing trees that satiate the subconscious

gamer’s mind, we need to be attentive to details. And on the other hand, those

very details can drag our frame rates lower than a snake’s belly in a wheel rut.

To interact well with a tree means several things. When you approach it, circle it,

look up into its branches and leaves, you see things properly in three-dimensional

perspective. You can collide with the thicker parts like the trunk and the big lower

branches, but if you fell onto a tree from above, you would likely fall a long way

down through the airy upper structures before you stopped.

But unless you want to put 30,000 polygon trees into your game world, you’ll

have to compromise on all those fiddly details. There are ways to strip off a few

thousand polygons here and there, but long before you get anywhere reasonable,

670 Chapter 16 n Making Weapons and Items

your compromises start making the tree much less treelike. So then you have to

pass a few edicts like this:

From this point hence, this tree, and all other trees like this tree that grace

our fair land, may only be viewed from certain angles—all of the afore-

mentioned angles being from a level on the ground to a level not exceed-

ing the height that one man can jump.

But then you start to drain the flexibility out of your game world. What if you are

standing on the back of a truck? Or on a nearby hill? Or flying overhead in an

ornithopter? Well, you can’t do any of those things if you really want to save the

trees!

And don’t even talk to me about having forests of these things in a game, though

there are ways to make trees look absolutely stunning from a distance and only

take one or two polygons to accomplish the task! Using a technique called

billboarding we can create trees that look great from any angle as long as we are at

least moderately far from the tree—say, a couple dozen meters or more. But up

close they are nothing but flat planes that turn to always face you. You can’t look

up into them from below and search for robins’ nests. You can’t climb them. And

you certainly can’t fall into them from above! I mean, what fun is that?

So why all the blather, you ask?Well, I’ll tell you.We’re going to look at modeling

some game-friendly trees in this section, and I want you to enter into this

prepared, understanding why I’m going to show you two different ways to model

a tree. There are other ways, but these two ways represent the opposite extremes.

First, we’ll create a ‘‘normal’’ low-polygon solid tree with a collision mesh. One

that you could potentially climb using appropriate program code. One that you

could actually get beneath and peer up into. It won’t look all that great, but it will

look like a tree. After that, we’ll create a billboard tree, which can be used to make

vast forests of trees that will actually look like forests.

The Solid Tree

The solid tree is constructed of 3D object primitives, mostly cylinders that join

end to end and taper. The one we’ll make won’t have any leaves—it’s a generic

big backyard tree in the winter.

I should warn you now that we aren’t going to build a megapolygon old oak tree

or anything like that here. Instead, we’re going to do just enough so you’ll have a

Trees 671

good idea where you can go with the model and what’s involved with this

approach.

Having said all that, go ahead and create a new empty document in MilkShape,

and let’s get crackin’.

1. Select the Cylinder tool, and set it to 4 stacks and 12 slices in the parameter

boxes.

2. Click your cursor in the Side view, and drag down and to the right to create a

cylinder like the one shown in Figure 16.16.

3. Still in the Side view, select the vertices in the second row from the bottom,

and then use the Move tool to shift them to one side.

4. Switch to the Top view, and do the same thing, moving the vertices slightly

away from being aligned with the center of the cylinder.

5. Repeat steps 3 and 4 with the next two rows of vertices going up, one row at

a time, using Figure 16.17 as a guide.

6. Do an incremental scaling, working from the second row of vertices going

up, so that you get a tapered trunk, like that shown in Figure 16.18.

7. Use the Duplicate function to make a copy of the trunk.

672 Chapter 16 n Making Weapons and Items

Figure 16.16
Four-stack cylinder.

Trees 673

Figure 16.18
Crooked cylinder becomes a tree trunk.

Figure 16.17
Crooked cylinder.

T i p

If you’ve forgotten how to duplicate an object, I’ll go over it quickly here.

First, make sure that the object to be copied has been selected in Face mode. Then choose Edit,
Duplicate Selection. Make sure you only do that once, and don’t click your mouse in the window.

It will look like nothing happened, but a copy was made in place. Select the Move tool, and then
drag the selected object to a clear area. There you go---you will have the copy, and the original
object will have been left behind.

8. Move the copy to one side. Then scale it and rotate it so that you get

something that looks like Figure 16.19.

9. Drag the branch over to the trunk, and place it with the larger end inside the

bounds of the trunk.

10. Make more copies of the branch, scaling, rotating, and tweaking them as

desired, until you get something like the model shown in Figure 16.20.

11. On the Materials tab, create a new material, using \3D2E\RESOURCES\

CH16\bark.png as the bitmap.

12. Name the material ‘‘bark’’.

13. Select the trunk using the Groups tab, and assign the bark material to it.

674 Chapter 16 n Making Weapons and Items

Figure 16.19
Branching out.

14. Assign the bark material to each of the branches. Do not select them all at

once and assign the material; instead, do them one at a time.

15. Make sure that the 3D view has been set to Texture mode. You should see

the textured tree there, like that in Figure 16.21.

Okay, we’ll stop there. Of course, we could go on and on, making it more

detailed, and that’s certainly something I encourage you to do later. It’s just

pointlessly repetitive to do it right now. Let’s move along and add a collision

mesh.

16. Create a box, and position it as shown in Figure 16.22.

17. Rename the box, calling it ‘‘Collision’’.

18. Save your work.

19. After saving your work, choose File, Export, Torque Game Engine DTS.

20. You want to take all the defaults (Collision Mesh should set to Bounding

Box).

21. Export the box to \3D2E\demo\data\shapes\trees\solidtree.dts.

Trees 675

Figure 16.20
Adding more branches.

676 Chapter 16 n Making Weapons and Items

Figure 16.22
The tree collision mesh.

Figure 16.21
The textured tree.

Testing the Solid Tree

The solid tree has a collision mesh—you can’t go through it. You also can’t climb

it as is (you could if you wrote the appropriate script code). Anyway, to test out

our solid tree, do the following:

1. Run the FPS demo.

2. Using camera fly mode, whip on over to the little clear area in the village,

between the hovels.

3. Open the Mission Editor with F11, then call up the Creator with F4.

4. Drill down through Static Shapes, demo, data, shapes, and trees, locate the

solid tree object, and place it.

5. Exit the Mission Editor with F11, press F7 to spawn your character where

the camera is, and then run over to the tree and admire your handiwork.

6. Try to run through the tree. If you hurt your head, you know where the first-

aid kit is!

The Billboard Tree

The billboard tree is the Ferrari of game trees. It looks good and is so low on

polygons that if you remove one polygon, it vanishes! But it is specialized, and

you can’t do much with it on its own. And Torque has something to say about

this. Torque has a special object type called fxFoliageReplicator, designed to use

things like billboard trees (and grass, bushes, and so on) in a very useful way. You

see, with fxFoliageReplicator, all we need to do is create our tree textures (the

primary texture and the alphamap texture) add them to a Foliage Replicator, and

pow! Instant forest—just add water. Ahem.

I’m not going to make you create a texture for your tree, although you can

certainly do so if you like. You will need two textures. Let’s say your tree texture

was going to be named flattree.jpg. You’ll need to create your tree image in

that texture file. Then you need to create the alpha mask. This is a grayscale

(256 color) image of exactly the same size as your primary image. The alpha mask

image will have pure black everywhere that will be transparent (no tree parts).

And it will be pure white everywhere that there will be tree parts. You can use

varying shades of gray to indicate translucent areas. If your primary tree image

file is named flattree.jpg, then the alpha mask image file needs to be named

Trees 677

flattree.alpha.jpg. To get a better idea, take a look in the \3D2E\demo\data\

shapes\trees folder at the files named foliage.jpg, foliage2.jpg, and shrub.jpg,

as well as their alpha mask sidekicks: foliage.alpha.jpg, foliage2.alpha.jpg, and

shrub.alpha.jpg.

On with the show!

1. Run the FPS demo.

2. While pointing the center of your player’s view at an appropriate area

that looks like it could use a forest, open the Mission Editor in Creator

mode (see Figure 16.23), then choose Mission Objects, Environment,

fxFoliageReplicator. Give the new object a name in the dialog box

that appears. You will end up with an object-encompassing box

placed in the world, with the name you gave it as a label.

678 Chapter 16 n Making Weapons and Items

Figure 16.23
Insert the fxFoliageReplicator object.

3. Change to the Inspector (F3), and scroll to the bottom of the list, where you

will find an entry for the fxFoliageReplicator you just inserted. Select the

object.

T i p

Sometimes when you open the Mission Editor, and try to open up the Inspector, the function key
(F3) doesn’t work. I’m not sure why this is. It’s easy to deal with, though. Simply choose Word
Editor Inspector from the Window menu. An even more convenient way is to open the Creator first
(F4) and then open the Inspector (F3).

4. In the lower-right panel, scroll through until you locate the property for this

object, called FoliageFile (see Figure 16.24). On the right-hand side of the

edit box is a button with three dots (ellipsis). Click this button, and a file

dialog box will appear.

Trees 679

Figure 16.24
Locating the FoliageFile property.

5. Browse your way to demo/data/trees, and click the file foliage.jpg. Click the

Load button. The path and file name will be inserted in the edit box for you.

But there’s a teensy problem. The file name was entered with the .jpg

extension included. We don’t want that. So delete the extension part

of the name (including the dot).

6. Click the Apply button. Assuming you changed no other properties for the

fxFoliageReplicator object that you made, then 10 copies of the tree

image will appear scattered about the terrain.

7. Go romp around amongst the trees. Experiment with different settings.

When you are done, exit to the desktop.

As you can see, the billboard tree is kind to your video card and will keep your

frame rates right up there. In fact, you can build forests of these things using as

many polygons as found in just one of the solid trees! To adjust the numbers and

density of the trees, change the count to a higher number, or fiddle with the inner

and outer radius settings. The larger the outer radius, the larger the area that is

covered. To adjust visibility at a distance, play with the values in the culling

section. Make the trees sway and appear to shimmer using various animation

section settings. Go nuts.

Oh, and by the way. If you really, really want to have a forest of modeled tree

shapes (like the solid tree we created earlier, remember?), then look in the

Creator window, right above where you found fxFoliageReplicator. See that

entry called fxShapeReplicator? Guess what it does, hmmmm?

The Tommy Gun
The famous Thompson submachine gun is a somewhat obsolete weapon that

most people are familiar with visually, even if they don’t know what it’s called.

The technique we will use is the Extrusion method. When it comes to modeling

weapons, Extrusion is probably the method of choice for the simple reason that it

often works well when using photographs for source material. There are dozens

and dozens of books and many Internet resources available that have photo-

graphs and technical drawings of weapons, but remember that much of the

source material is copyrighted.

For our tommy gun, I’ll work from a sketch I made, shown in Figure 16.25.

680 Chapter 16 n Making Weapons and Items

T i p

To create your weapons, you can use a photograph or detailed diagram of your own if you like;
however, you are perfectly free to use my sketches and artwork in any way you want to. The
choice is yours.

The sketch is rough and not very detailed, but it will do just fine for our purposes.

This model will have as few polygons in it as I think we can get away with. I’ve

made two versions of it for you to use: one for the skin and one to act as the

extrusion reference image.

Making the Model

Get MilkShape running and warming up in the driveway, and we’ll get started in

a minute. We will use \3D2E\RESOURCES\CH16\tommygun.png as the texture

for the tommy gun’s skin. You can find the extrusion guide sketch at

\3D2E\RESOURCES\CH16\tommygun_ref.bmp. You need to set the latter as

the background image for the Side view window in MilkShape; we’ll use the

former later in this section.

1. Select the Vertex tool, making sure that the Auto Tool check box is cleared.

2. In the Side view, start placing vertices at all the major corners and points

around the components of the gun. See Figure 16.26 for reference.

3. Start making faces. No! I meant in the model, not at me! You will probably

have to zoom in some to get enough separation between the vertices.

The Tommy Gun 681

Figure 16.25
Tommy gun sketch.

Be careful as you move along, making sure you get all the faces. For tips and

other information on faces, check back to Chapter 15. Figure 16.27 shows

the finished polygon faces around the muzzle, which can be a bit fiddly.

Notice how far I zoomed in.

682 Chapter 16 n Making Weapons and Items

Figure 16.26
Tommy gun vertices.

Figure 16.27
Tommy gun muzzle faces.

Figure 16.28 shows the barrel and forestock faces. A warning about the

barrel is in order here, I think. In this model we will stick with a straight

extrusion exercise, but I highly recommend that after you complete this

section you rework the model and make the barrel a cylinder object. The

results will be nicer.

Figure 16.29 shows the faces completed for the grip, the receiver, the

magazine, and other metal parts of the main body of the gun. Note that I

haven’t modeled the trigger or the trigger guard hole—leaving these out

saves a ton of polygons. If you want you can add in the detail for the trigger,

but you will probably take a hit on frame rate in the game.

Figure 16.30 shows the faces of the wooden shoulder stock.

Now take a look at Figure 16.31. Notice the missing polygon down there in

the 3D view? It’s not evident by looking at the wire-frame view that the

polygon was missed, but its absence really shows in the 3D view. Don’t let

this happen to you! Heh.

If it does happen to you, fix up the wayward faces, and we’ll move on to the

extrusion.

4. Select all the faces.

The Tommy Gun 683

Figure 16.28
Tommy gun barrel and forestock faces.

684 Chapter 16 n Making Weapons and Items

Figure 16.29
Tommy gun metal body faces.

Figure 16.30
Tommy gun shoulder stock faces.

5. Use an X value of �2.0, and then click the Extrude button. Do not deselect

the highlighted faces after this operation. You should get something that

looks like Figure 16.32.

Next, we will have to cap off one end of the extrusion, like we did with the

car model. It’s a simple operation but sometimes a bit touchy.

6. Choose Edit, Duplicate Selection and then quickly reverse the normals by

choosing Face, Reverse Vertex order while the duplicate is still selected. This

is so that the faces on the duplicate will be oriented 180 degrees from the

original.

You might also have to reverse the normals on some of the faces on the top

or bottom of the gun. If the face shows black in the 3D view, then just select

the face and choose Face, Reverse Vertex Order.

7. Use the Move tool to drag the copy of the faces back over to the side of the

model, using the Front view window to monitor the activity.

The Tommy Gun 685

Figure 16.31
Tommy gun loses face---film at 11.

8. Zoom in on a few of the vertices in the Front view, and make sure that the

copy of the faces perfectly align with the edge vertices on this side of the

model.

9. Select all vertices in the model, and then choose Vertex, Snap To Grid. One

or two of the vertices might snap to an awkward location, so go ahead and

manually fix them.

10. Choose Vertex, Weld Together.

The model as built so far is fine, except that it was created at a scale four

times larger than we want for use in game. This was deliberate. A larger

scale allows us to use larger reference images for the background image,

which gives us access to more detail. Also, the larger the scale, the finer

the granularity available when we want to snap points to the grid. So

after all this work, we need to scale the model back to the correct

size.

11. Select all parts of the model.

12. Use the Scale tool to set the scale to 0.25 in all three axes.

686 Chapter 16 n Making Weapons and Items

Figure 16.32
Extruded tommy gun.

13. Click the Scale button to the right of the axis boxes. The gun will shrink and

should appear roughly as shown in Figure 16.33.

Next, we have three nodes to add: one to indicate where the gun is held, one

to indicate where the muzzle is, and one to indicate where expended shells

are ejected. These nodes inform the engine where these spots are; a script

that will be defined later dictates how they are used.

14. Create three unconnected joints, positioned and named as shown in

Figure 16.34. The three node names are mountPoint, ejectPoint, and

muzzlePoint.

We have one more thing to do. We need the gun to have the correct

posture when held by the player model.

15. In the Top view, select all faces.

16. Rotate the gun about 8 degrees to the left, as shown in Figure 16.35.

17. Move the nodes to align them with the gun, using Figure 16.35 as a guide.

Voilà! Insta-gun. Save your work.

The Tommy Gun 687

Figure 16.33
Shrunken gun.

Skinning the Tommy Gun

Way back in Chapter 13 you learned how to use UVMapper and the Gimp to

create a skin for objects. In this chapter we’ll look at using the built-in Texture

Coordinate Editor in MilkShape to accomplish the same thing. It can be awkward

688 Chapter 16 n Making Weapons and Items

Figure 16.34
The tommy gun nodes.

Figure 16.35
The rotated tommy gun.

to use but is suitable for our purpose here because we will already have a texture to

use for the skin—in this case we will use a version of my original sketch.

1. Create a new material, using the file tommygun.bmp as the bitmap for the

texture.

2. Assign the new material to the tommy gun object.

If you have more than one object, select all the faces in all the objects, then

regroup them. After that you can assign the newmaterial to the single object.

3. Use the Groups tab, and select the tommy gun object.

4. Choose Window, Texture Coordinate Editor. You will get the Texture

Coordinate Editor dialog box, as shown in Figure 16.36.

When the Texture Coordinate Editor first opens, you often see just some

confusing white lines over the top of the texture assigned to the object you

are skinning. Not to worry.

5. Select the appropriate view from the view selection combo box at the right

side of the dialog box. In the case of the tommy gun, this is the Left view.

The Tommy Gun 689

Figure 16.36
Texture Coordinate Editor dialog box.

6. Click the Remap button. You should get something like that shown in

Figure 16.37. The shape of the tommy gun may not line up with the texture,

so go ahead and use the Select and Move buttons inside this editor to move

the vertices until they are in place. Figure 16.37 is a good guide to what the

final result should look like.

7. Close the Texture Coordinate Editor dialog box, and take a look in your 3D

view (make sure that it is set to Texture mode). There it is—your tommy

gun! Compare your work with Figure 16.38. As you examine it closely, you

will see why it might be a good idea to redo the barrel as a cylinder.

690 Chapter 16 n Making Weapons and Items

Figure 16.38
Finished tommy gun.

Figure 16.37
Remapped view.

You might notice that the gun appears to be textured only on one side in the

3D view. This is because of the rotation. It actually is textured on both sides,

but the lighting effect in the 3D view casts one side in shadow.

Testing the Tommy Gun

In order to test the tommy gun, we first need to export it from MilkShape.

1. Create a new folder, \3D2E\demo\data\shapes\Tommygun, and save your

work there, too, if you like.

2. Use DTPlus to export your gun, using the same settings as used earlier in

this chapter for the other exports.

3. Click DTS Export to send the gun on its merry way to its new life as

\3D2E\demo\data\shapes\Tommygun\Tommygun.dts.

Okay, now it’s time to see the gun in the game. I can hear you now: ‘‘woohoo!

Mayhem and noise and stuff!’’

1. Run the FPS demo.

2. Follow the same procedure as you did with the Health Kit and the rock, but

this time insert the tommy gun into the game world instead.

3. Go over and have a look. The gun is, at the moment, a static shape—it

doesn’t know how to do that cool machine gun stuff yet. That will come in a

later chapter.

So much for the mayhem. Patience, grasshopper!

The Tommy Gun Script

Just as we encountered with the runabout in Chapter 15, making the model for a

weapon is not the whole job. We have yet to create the weapon script that defines

how the weapon works. That is something we will cover later, in Chapter 22, when

we look at the code that brings all of these models together in our sample game.

Moving Right Along
This chapter was a bit of a review of techniques covered in earlier chapters, but we

applied these techniques to a few different kinds of items with different features:

collision meshes, no collision meshes, billboard textures, and translucent textures.

Moving Right Along 691

This helps demonstrate the wide variety of characteristics that modeled items can

have in a game world.

We also looked at the MilkShape’s Texture Coordinate Editor a little bit, enough

to be able to use it to tweak texture maps if the situation warrants.

In the next chapter we’ll learn a new sort of 3D modeling tool and use it to make

structures.

692 Chapter 16 n Making Weapons and Items

Making Structures

There are quite a few different options available to the game developer when

creating objects for use in a game. We’ve already seen how to make things like

trees and weapons using MilkShape to create DTS-type objects. But what about

complex structures, like buildings and bridges?

Well, you can also use DTS objects for those, making sure to create multiple

collision meshes where needed. Buildings have a lot of surfaces that either you

can walk on or at the very least you can’t walk through. So you will spend a great

deal of effort creating collision meshes. Also, DTS objects don’t inherently

understand the concept of lighting and shadows, so if you make a building as a

DTS object, you will also have to light it yourself using another object—which is

possible, but you’ll have to do that for every building. This is a real issue for

structures that are interiors. Bridges and ramps are not such a big deal when it

comes to lighting, but you still have the collision mesh workload.

Fortunately, there is a solution to this problem. In Torque a different kind of

object is supported—a DIF-type object, also called an interior. Now, using the

word interior is a bit misleading, because you could (and probably will, at some

point) use the same kind of object for complex structures that don’t have interior

lighting but do have many collidable surfaces. Therefore, I prefer to use the word

structure to describe DIF objects.

There are several tools available to use for creating DIF objects. A very good open

source (published under the GNU General Public License, it doesn’t cost you

693

chapter 17

anything to use) is QuArK (Quake Army Knife). A version of QuArK is included

on the companion CD, along with an electronic copy of reference material from

the first edition of this book.

Along the way, the good folks at GarageGames decided that they really needed a

CSG tool that was more empathetic to the way the Torque Engine likes to do

things. One of the most important of these things was cross-platform compat-

ibility. Torque runs on PC (Windows), Macintosh, and Linux. So GarageGames,

spearheaded by Matt Fairfax, teamed up with some bright and industrious fel-

lows named Dave Wyand, Tom Brampton, John Kabus (aka Bob the C Builder),

and Ron Yacketta, and scoped out a tool called Torque Constructor. Constructor

is made with the Torque Engine, and that means—yup, you guessed it—

Constructor, when in full release, will be available for Windows, Macintosh, and

Linux!

CSG Modeling
In the 3D graphics world, tools like Constructor and others that I’ll mention here

in passing (including QuArK, Hammer, and 3D World Studio) are known as

CSG Modeling tools. CSG stands for Constructive Solid Geometry, where 3D

models are built out of things called brushes and models are built up using a

collection of 3D brushes.

A brush in this sense is like a building block. You select a particular brush (also

called a polyhedron) for a particular need and apply it to your model. There is a

small set of shape primitives that serve as the basic brushes (see Figure 17.1): the

cube (or box), the cylinder, the cone (or spike), and the ramp (or wedge). Some

programs also include the arch and the sphere, as shown in Figure 17.2. Each of

these primitives is a closed 3D solid.

694 Chapter 17 n Making Structures

Figure 17.1
Cube, cylinder, cone, and ramp solids.

No t e

Now, when looking at the third object from the left in Figure 17.1 you might be inclined to think,
‘‘Waitaminute! That’s not a cone, it’s a pyramid! What’s up with that?’’ Well, just imagine that
instead of four sides meeting at the point at the top, as shown in the picture, there were actually
64 sides meeting at the top. What do you think you would see: a pyramid or a cone? Well? Of
course, it would be a cone. And don’t even start on me with that ‘‘but a cube is just a cylinder
with four sides instead of 64 sides’’ business, or I’ll take away your mouse. Sometimes things just
are what they are. So let’s get on with the program.

The primary modeling operations that you apply to CSG brushes are known

as Boolean operations. You might remember Boolean logic from way back in

Chapter 2. In this case, the Boolean operations are borrowed from mathematical

set theory, a subvariation of logic theory, but in this case applied to representa-

tions of solid objects. That guy Boole sure had a lot of wacky ideas. Wacky ideas

that work! There are three CSG operations: intersection, subtraction, and union.

The simplest operation to grasp is the union. Simply place two brushes (solids) in

space such that part of one is ‘‘embedded’’ in the other, and treat them as one

resultant solid, and you have a union. With most CSG modeling programs, you

simply overlap the two brushes as appropriate and then group them together.

That’s the way it works with Constructor.

Difference results are the result of subtraction operations. What you get depends

on which brush is the Minuend (the brush on which the subtraction will be

performed, and also which will be left over afterward) and which brush is the

Subtrahend (the brush that is subtracted from theMinuend, dictating the nature of

the subtraction operation). Some people call the Subtrahend brush the Subtraction

brush.

CSG Modeling 695

Figure 17.2
Arch and sphere solids.

As performed by Constructor (and most other apps that perform Booleans), the

Subtrahend is the brush that must be selected when the subtraction operation is

performed.

Again, place two brushes in space such that one is ‘‘embedded’’ in the other.

Select the Subtrahend brush, and perform the subtraction operation. Then

remove the Subtrahend brush. You will see that the part of the minuend that was

coincident between the two brushes has been removed.

View A in Figure 17.3 shows two brushes before and after performing a Boolean

operation on them. View B shows the union of the two brushes; they haven’t been

actually joined but have been merely placed in coincident locations.

In Figure 17.4 we see on the left the result of a subtraction operation, where the

(now removed) cylinder was the subtrahend. We are left with the Cube brush

696 Chapter 17 n Making Structures

Figure 17.3
Two brushes.

Figure 17.4
Boolean operation results.

with a ‘‘bite’’ taken out of it, the shape of which matches the part of the cylinder

that was previously situated there.

On the right in Figure 17.4 is the result of the intersection operation. You’ll note

that all that remains is a brush in the shape of the cubic area that the cube and the

cylinder occupied together. With an intersection operation, all solids involved

must be selected when the operation is performed.

Now, with Constructor you aren’t limited to only performing CSG operations.

You can also shape and distort brushes in various ways by manipulating vertices

and faces in ways similar to the more familiar ‘‘polysoup’’ programs like Milk-

Shape and 3D Studio Max.

The key here, in using the CSG approach, is that there are limitations and

restrictions on the topologies available to us to creating brushes. This is a feature,

not a problem. These limitations allow the Torque Engine to employ extremely

efficient collision detection and rendering operations. The limitations also mean

that it is reasonably easy to create software to parse the model and generate the

collision hulls (or convex shapes) automatically, eliminating the need for the

modeling artist to manually create collision hulls.

Torque Constructor
The folks at GarageGames were kind enough to let me have access to a prerelease

beta version of Constructor in order to present it to you, the gentle reader, in this

second edition. There are likely going to be someminor differences between what

I show you here and what the released demo or full versions offer. That can’t be

helped. Knowing those grease monkeys at the garage, the differences are sure to

all be for the better.

Installing Constructor

To install Constructor, you will need to obtain it from the GarageGames Web

site. The demo can be downloaded from here: http://demos.garagegames.com/

ken_finney/Constructor_Demo.exe, or you can buy the full version when it

becomes available, here: http://www.garagegames.com/makegames.

No t e

Unfortunately, due to publishing lead times, neither a demo version nor the release version of
Constructor was available when it came time to submit the CD content.

Torque Constructor 697

In order to make sure that you have all the tools you need to build your game, I’ve included
QuArK, which appeared in the first edition of this book, on the CD in TOOLS\QUARK. You will also
find a PDF file in there that contains the original first edition Chapter 17 combined with the first
edition appendix that provided reference material for QuArK.

Constructor is a superior tool in every way, but QuArK is up to the job in its own right.

Note that there is no official Constructor installation procedure or installer at the

time of this writing. If you have the full version or the demo version, please make

sure you follow its installation instructions, and substitute the path where you

install Constructor for the path I use here. After you finish you will have Con-

structor installed into a directory structure that should look something like that

in Figure 17.5, notwithstanding variations between the beta and release versions.

The Cook’s Tour

Let’s have a very quick look at the Constructor interface—enough to be able to

talk intelligently about it. Then we’ll get into making something. After that we’ll

698 Chapter 17 n Making Structures

Figure 17.5
Constructor directory structure.

take another look at some of the other features of the program. Launch Con-

structor using the shortcut you created.

No t e

When you first run Constructor, you might be prompted for an ignition key. If you have purchased
Constructor, then an ignition key for it will appear in your list of purchases in your account
information on the GarageGames Web site. You will also probably get an automated e-mail
informing you what your ignition key is. In all GG products to date, you can simply copy and paste
your key into the ignition key field.

If you have a demo, then you most likely will be able to bypass the ignition key---except that your
license will expire in a given period of time. Purchasing an ignition key would permanently enable
your Constructor.

The Main Screen

When you fire up Constructor, you will be greeted by the pleasing view of the

Constructor main screen, as shown in Figure 17.6. Now that just looks like

muscle, right there.

Torque Constructor 699

Figure 17.6
The Constructor main screen.

Your view of the main screen may vary slightly, depending on your computer’s

screen resolution. Figure 17.6 was snapped at 1024 pixels by 768 pixels. If you

have higher resolution, you may see more things on your screen, especially in the

toolbars on the sides, because Constructor automatically adjusts its contents to

suit the available screen real estate.

Resizable Forms

Direct your eyes down into the upper-left corner of the screen, and you will see

an area in a box with the label Tools. Oddly enough, this is where you find the

tools! Okay, Dave will probably hit me upside the head with a fish for saying that,

but in my own defense, I have seen some programs use some fairly strange

words when what they really meant to say was ‘‘tools.’’ Anyway, if your screen

resolution is fairly low, youmight find that the contents of the Tools form are not

completely visible, which is the case in Figure 17.7, and as it was in Figure 17.6.

Note the two-way arrow cursor pointing left and right located over the right-side

bezel that surrounds the form. Leave that alone for a minute. On the same side of

the toolbar is a really teensy, tiny, skinny little twig of a scroll bar. Fortunately,

there is a ‘‘scroll bar’’ label there in the figure, with an arrow pointing up to the

actual scroll bar. There are two itsy-bitsy, teeny-weeny solid black arrows at each

end of the scroll bar. See that? Cute, eh?

Move your cursor over the Tools form, and move your mouse wheel forward

and backward. See the scroll bar move and the contents change? Okay, don’t

spend too long playing with the wheel. You can also click and drag the ‘‘thumb’’

(the darker part of the scroll bar—the part that slides) up and down instead of

using the mouse wheel, or you can click those little arrows.

700 Chapter 17 n Making Structures

Figure 17.7
The Tools form with horizontal resizing cursor.

Forms, Pa let tes , Toolbars , and Tabs . . . I t ’ s Torque Terminology T ime!

Different programs use different words to describe things like the little graphical containers that
hold tools, menus, or other visual devices, like the container for Preferences. There is no real
standardization in terminology. Some programs call them toolbars, or bars. Some call them
palettes. Some, like Paint Shop Pro, use both toolbar and palette and have some features available
in one and different features in the other. Some people use the word tab, although that has a
more precise, and different, meaning usually. Dave Wyand calls them forms. And if that’s what
Dave wants to call them, then that’s what I’m calling them!

Why so small? Real estate. The less screen space the tools take up, the more space

there is for your actual model in the view windows, which we will come to later.

Now back to that two-way arrow on the left in Figure 17.7. Just move your cursor

to the same location where the two-way arrow is in the figure, and you will see

your cursor change to the two-way arrow. Click and drag leftward until you can

see as much of the Preferences content as you need, in the horizontal aspect.

You can do the same thing by ‘‘grabbing’’ the bezel at the top of the toolbar to

resize the form in the vertical sense, as shown in Figure 17.8.

Torque Constructor 701

Figure 17.8
The Preferences form with vertical resizing cursor.

And yes, in case you are wondering, you can perform all of these same operations

on all the forms. That is why we went through this exercise, so that you can get

your forms in your Constructor screen to conform to your personal require-

ments based on your computer configuration. In the next section we’ll briefly go

wandering amongst these forms, and while doing that you can go ahead and

adjust the sizing of the various forms to suit your fancy.

The Forms

Take a look at Figure 17.9. Notice anything different compared to Figure 17.6?

Okay, you Macophiles can stop jumping up and down now! In Figure 17.9 is

Constructor shown using the OSX Graphite theme, as might appear on a

Macintosh, rather than the Windows-centricNeutral theme that Figure 17.6 uses.

I’ve inserted it here to make that point, but also to provide a handy reference for

this next part of the tour.

702 Chapter 17 n Making Structures

Figure 17.9
The Constructor screen with the OSX Graphite theme.

Starting at the top of the screen, you’ll find the familiar menu bar. It contains a

few of the standard menus, like File and Edit, and then a string of specialized

menus, culminating with a familiar Help menu. As you click each menu, you will

see the familiar drop-down menu. If you choose Layout, Themes, you will see

where you can switch between the Macintosh (OSX Graphite) and Windows

(Neutral) themes.

The menu bar is the only major visual feature of Constructor that does not have

its label out there dangling in the electronic breeze. And I might also point out

that it is most assuredly not a form but a menu bar, and I don’t care what Dave

says (*smiles and waves at Dave*)!

So, having gotten the menu bar out of the way, let’s proceed on our tour in an

orderly fashion. If you would, please step to the far right and upper corner of the

screen where you will find the Layers form. In the Layers form you can switch

between loaded maps, or between the brushes, entities, static meshes, and

reference shapes (yes, shapes!).

Immediately below the Layers form is the Materials form. In this form you can

select materials using a browser or a list, switch between texture albums, and

perform some materials and texture operations.

In the lower-right corner is the by-now-infamous Preferences form. You can adjust

global program settings like grid values and operations, scene lighting, and so on.

Moving to our left now, we find stretched across the bottom of the window the

SelectionModes form.We use this mode to establish what scene objects are chosen

when we perform a selection operation in one of the modeling view panes.

Moving farther to our left, arriving at the far-left and bottom of the Constructor

screen, we encounter the Values form in all its glory. For the moment, the only

values reported are the scene coordinates coinciding with the 2D position of the

cursor in any one of the view panes. In the 2D views (top, back, right, and so on)

only the relevant 2D coordinates are reported. If your cursor is in the Perspective

view pane, then the full 3D coordinates are reported in the Values form.

Moving up the left side, we find the Properties form. This is where we set the

parameters for the various modeling tools we can use. The contents change

according to which tool is currently active.

Finally, above the Properties form, and ending our little tour, is the Tools form.

Here we can select various kinds of tools, for creating, modifying, or displaying

Torque Constructor 703

objects or for using prefab objects, depending on which tab we select. The tabs

run down the right side of the Tools form. Within each tab, to varying degrees, is

a variety of tools and operations that can be selected, depending on the context.

In the center of the screen, where they refuse to be overlooked, are the four

default View forms. Within each of the View forms is a view pane, providing a

look into the scene from various angles. At the lower-left corner of each view

pane is an axis bug that shows you the orientation of the scene in the view. The

blue axis is the Z-axis: positive going up. The red axis is the X-axis: positive going

right. And the green axis is the Y-axis: positive going back, or away from the

‘‘front,’’ and deeper into the scene. The lower-right side of each view pane

contains a number, in units of meters, that indicates the distance that the view’s

camera is from the center of the scene. Along the top of the view pane is a series of

buttons that you can use to tweak the way the view works, what view angles are

used, and other options.

Now I know that was not a very detailed examination, but the goal was to drag

you around the Constructor screen and set the scene, so to speak.

Quick Start
What we’ll do is run Constructor and quickly create a structure that we can stick

in our sample Torque game and poke around with. It won’t be anything parti-

cularly useful, but the point is to establish mastery of the tool chain. The tool

chain is in essence the collection of programs and procedures you need to follow

from source creation of a piece of artwork to using a compiled version inside the

game engine.

No t e

More taxing terminology! In CSG development circles what you create are often called rooms. This
hearkens back to early editors for Quake, where everything was a room. There were no outdoor
areas as such---no external terrain. When we create the rooms and save them, we save them as
map files, because Valve used the word map to describe their version of what id Software (the
guys who made Quake) called a room. Clear as mud?

And of course, just to be persnickety, GarageGames calls these creations interiors (which fetches
back to the term rooms, in a way) in Torque, and that derives from Torque’s journeyman days as
the Tribes engine. I use the word structure, which I think is both pithy and generic at the same
time. My use of structure can encompass room, map, and interior as they are used in their
respective contexts while still also applying to things like bridges and guard towers.

Oh yeah, one more thing. In Constructor the entire collection of all the objects you’ve created in
one file is called a scene. A scene is a collection of 3D objects, and the word is used in the context

704 Chapter 17 n Making Structures

of game engines and most 3D shape tools. Constructor uses this terminology because it has the
ability to combine CSG objects created in Constructor or other CSG tools, like Hammer, with
‘‘polysoup’’ or mesh objects or shapes created with tools like MilkShape or 3D Studio Max all at
the same time! So another word was needed to encompass all of these things. Hence, scene.
When we save our scene, we save it as a map file (I tossed this in just in case you might be
thinking that you finally understand everything).

So scene = room = map = interior = structure. Sort of, sometimes. In any event, the source format
for the files we will be dealing with are MAP, a text file format, while the compiled version is
called DIF, a binary format.

We can also save our work as Constructor scenes in CSX format. This is what would be called the
native format for Constructor creations. See the sidebar, ‘‘CSX vs. MAP.’’

We save our work as .map and compile the work to .dif for use in Torque using a program called
map2dif_plus. More about this later.

C SX v s . MAP

Using CSX format files, we can save information about scenes that MAP format files don’t support
and wouldn’t understand, like the placement of reference shapes as static meshes and various
other features, as shown here:

So why use MAP format? Well, there are dozens of tools out there that support MAP format in
addition to Constructor---Valve Hammer, 3D World Studio, Quake 3’s tools and QuArK to name but
a few. It’s ubiquitous.

1. If Constructor is not running, launch it now.

2. Locate the Tools form in the upper-left corner and, within it, the Cube brush

in the Primitives section, as shown in Figure 17.10.

3. Click the Cube brush to select it. The brush icon and the cursor will change,

as shown in Figure 17.11.

Quick Start 705

Constructor Feature CSX MAP

Detail Levels Yes No

Game Types Yes No

Brushes Yes Yes

Entities Yes Yes

Static Meshes Yes No

Scene Shapes Yes No

Groups Yes No

Selection Sets Yes No

Named Workplanes Yes No

4. Move the cursor over to the Top view pane, positioning it four grid squares

left and four grid squares up from the center (where the heavy dark grid lines

meet).

5. Click the mouse button, drag down and to the right until you are positioned

four grid squares below and four squares to the right of the center (as shown

in Figure 17.12), and then release the mouse button.

Note the small red object handles on the left and right sides, and the small

green handles on the top and bottom sides (which, when in the Top view,

are actually the front and back sides of the object, as oriented in the scene).

You can grab these handles and resize the object in this view, or any of the

other 2D views, without having committed the brush to the scene. In other

words, we only have a ‘‘phantom’’ brush object at the moment.

6. Press the Enter key (the main one, not the keypad Enter key) to commit the

brush to the scene. Note the change in appearance of the cube.

The handles have now disappeared, and colored arrows sprout from the

center of the object. Collectively these three arrows are called the Axis

Gizmo. Each arrow points along an axis in the positive direction. The red

arrow is for the X-axis, green for the Y-axis, and blue for the Z-axis. You can

706 Chapter 17 n Making Structures

Figure 17.11
The selected Cube brush.

Figure 17.10
About to select the Cube brush.

also see the little axis labels at the end of each arrow. The gizmo not only

shows the axes and their orientation but also serves as the ‘‘grab handle’’ for

different transformation operations, as we’ll see shortly. Figure 17.13 shows

the new appearance of the cube object.

While we’re at it, we ought to do something about the awful texture we’re

stuck with, created for us by default.

7. Cast your eyes over to the right-hand side, into the Materials form. That

perfectly horrid texture is there, glaring at us in yellow and blue. Just below

the texture, locate the Browse button, as shown in Figure 17.14. Click it, and

watch the Texture Browser dialog box appear.

Quick Start 707

Figure 17.12
After click-dragging from upper left to lower right.

No t e

‘‘That perfectly horrid texture is there. What’s up with that? Is this the Texture Taste Police?’’

I actually heard you say that out loud, you know (*waggles index finger*).

Yeah, that one. All yellow and blue with ‘‘Error’’ written all over it and stuff. Well, note that it’s the
default texture. Unless you choose a different texture (the procedure for which is covered just a
little bit later in this section), then every time you create an object in the scene, it will have this
texture assigned to all faces. There is a good reason for this.

708 Chapter 17 n Making Structures

Figure 17.13
Cube after being committed to the scene.

The usual way most modelers create structures using CSG tools is to first create the structure and
then apply the textures when the structure is finished and the artist is happy with the result. In
other programs often the null texture is assigned as the default texture. The only problem is that
the null texture doesn’t show in the game engine. The face will be completely transparent, since
there is not actually a texture present (it was null, see?). If you forget to assign a proper texture to
a face, you might have a lot of difficulty detecting this visually. At various angles you might see a
background texture behind the face with the null texture and not realize that the texture is
missing. And yet from another angle that hole where the texture is missing might provide a view
into or out of an area that would interfere with game play in a serious way.

By using such a garish default texture, if you were to miss out on texturing a face and then went into
the game to visually verify your model, you would have a much better chance of detecting your error.

8. On the left side of the Texture Browser, select the entry (or album),

TGEDemo, by clicking it. Figure 17.15 shows what this looks like.

9. Click the first texture in the upper-left corner of the texture array (concrete)

in the Texture Browser. The contents of the browser change, focusing on the

texture you chose, as shown in Figure 17.16.

10. At the lower-right corner of the Texture Browser resides the Make Active

button. Click it, and then click the Close button directly below it. The

Texture Browser will close.

Quick Start 709

Figure 17.14
The Browse button.

710 Chapter 17 n Making Structures

Figure 17.16
Texture Browser with the concrete texture.

Figure 17.15
Texture Browser with TGEDemo selected.

11. Back over in the Materials form on the right, locate and click the Apply

button, just below the little picture of the texture you just selected. Take a

look in the Perspective view pane at the upper right. You will see the cube

with the new texture applied to it, on all faces.

Quick Start 711

T i p

If you find yourself stuck in some mode that you don’t want to be in, press the Escape key. This
will allow you to go and select things again, or change your modes, or whatever. There’s a reason
why it’s called ‘‘Escape’’!

This won’t work as well if you are in a dialog box, however. But then, it’s hard to get stuck into an
unknown mode while in a dialog box.

12. Now we have to export our scene. Go to the File menu, and choose Save As.

The Save As dialog box will open.

13. Save your work as test.map in the Constructor folder.

14. Choose File, Export, Torque (map2dif_plus). You will get a dialog title

Browse for Folder.

15. Do what the dialog title tells you, and browse your way to \3D2E\demo\data\

and then click on the Interiors folder to highlight it. Click on the OK button.

You will get the Execute Script dialog box, telling you the progress as the

MAP file is processed into a DIF file.

You will know you have successfully exported the structure when the last line

of output reads:

Writing Resource: persist..(C:/3D2E/demo/data/interiors/test.dif) Done.

16. Click on the Close button to make the dialog box go wherever it is these

things go when you have no further need for them. Maybe the neighbor-

hood bar? I dunno . . .

17. Anyway, now go launch your Torque demo, as you’ve done in the past. After

you’ve spawned in, switch to camera fly mode (F8), go up a little bit in

altitude, and aim your cursor to a point in the game world where you want

the test structure to be. A good place to go would be over next to the original

great hall—that big cathedral-like building—and park yourself on the side

where the water is. Then aim the center of your screen to the open area to the

side of the Great Hall.

18. Open the Mission Editor by pressing F11. If you get a dialog box welcoming

you to the Mission Editor, nod your head in thanks, read the helpful

information it presents, then make it go away by clicking the OK button. It

could probably use a drink anyway.

19. Open the World Editor Creator by pressing F4.

20. From the tree list on the lower right, open the Interiors group by clicking the

little plus sign to its left. Then drill down through demo, data, and interiors,

and you will see test.

21. Click once on the test entry in the Interiors group list. Your creation will

be plunked down at the spot where the center of your screen intersects the

terrain. A little dialog box will pop up at the bottom of your screen, telling

you that the scene needs to be relit. Before doing anything else, take a

gander into your scene. Notice that the cube has been placed, but it is

black, not textured.

22. Click the Relight Scene button on the little dialog box. After a not too

particularly long pause, you will see your cube changed to its proper

textured form. Then click the Hide button on the little dialog box.

T i p

You can also relight the scene at any time while in the Mission Editor by pressing Altþ L or by
choosing the Edit, Relight Scene menu. In fact, you can easily make your textures appear on your
structures just by grabbing them and dragging them a bit. But the scene will still need relighting,
because the shadows will need to be re-baked.

You should have ended up with something like what you see in Figure 17.17. Of

course, where the cube actually is depends upon where you decided to plunk it.

712 Chapter 17 n Making Structures

Figure 17.17
Cube test object in the demo game.

That took a while, but what we’ve done, in addition to learning the basic steps

involved in getting a structure exported in Torque, is to prove the tool chain. We

now know that we have all the required bits and pieces to get this kind of artwork

into the engine. The CSG tool (Constructor), the exporter (map2dif_plus), and,

of course, the in-game Torque Mission Editor. In fact, future versions of Con-

structor will likely have map2dif_plus built right in so that we can export directly

to the DIF format. This might seem trivial, but proving the tool chain is an

important first step in any project involving multiple programs and processing

steps.

Manag i n g You r T e x t u r e s

When you make a model with Constructor, no doubt you will be using textures on the faces. You
need to ensure that you copy the textures from whatever folder they are contained in to the folder
in the Torque path where they will be needed.

The textures we will be using in this chapter are in the \Constructor\textures\tgedemo folder. By
happy coincidence the textures in that folder are the same ones that you’ll find in \3D2E\demo\
data\interiors. So we don’t need to do anything special.

But even if the textures weren’t already in the Interiors folder where we deposited the DIF file,
Constructor automatically copies them for you. So you only need to keep the source of your
textures up-to-date. The destination is synchronized seamlessly.

Building Bridges
So, you’ve had a taste of how you can use Constructor. Now let’s dive in and

muck about with it a bit and actually create something. Because this is our first

real structure, we’ll start out with something not too complex—a stone bridge.

1. Launch Constructor.

2. Select the Cube brush.

3. In the top view, create an Oblong brush that is 4 units (grid squares) wide in

the Y-axis, and 20 units long in the X-axis.

4. In the front view use the little blue handle to move the bottom or the top

edge (doesn’t matter which) until the shape is only 1 unit high in the Z-axis.

Then, if needed, continue to use the red, green, or blue handles to resize the

brush where needed, and the little light-blue handle in the center of the

brush to move it until you have something resembling Figure 17.18. This is

the roadbed of the bridge.

Building Bridges 713

5. Press the Enter key to commit the brush when you are satisfied with your

handiwork.

T i p

If you want to check the dimensions of your brushes, just position your cursor over the boundary
lines at appropriate places, and look in the Values form at the lower left. Your cursor’s coordinates
in the window where the cursor is located will be shown. Remember that if the center of your
brush is at the same location as the center of the scene, then boundary values for your brush will
show as exactly half of the dimension being checked.

For example, if we want the Oblong brush to be 20 units long, then when you place your cursor
over one end of the brush in the Top view pane, the X value will be 10.000.

6. Create two more Cube brushes, and place them as shown in Figure 17.19.

These will be the bridge pylons.

714 Chapter 17 n Making Structures

Figure 17.18
Oblong brush.

T i p

You can create a copy of a brush simply by selecting a brush, holding down the Shift key, clicking
on one of the axis arrows for the brush, and then dragging in the direction of the axis arrow. A
copy of the selected brush will be dragged away from the original.

Next, we are going to add some texture to the bridge.

T i p

If you have the texture you want selected when you create a brush, then the brush will auto-
matically receive that texture on all of its faces when you commit the brush to the scene.

7. Ensure that the Brushes button is depressed in the Selection form at the

bottom of your window, and then move your cursor to the Perspective

view pane.

8. Click your cursor inside the Roadbed brush to select that brush.

Building Bridges 715

Figure 17.19
Bridge with pylons.

9. In the Materials form at the right, click Browse to invoke the Texture

Browser.

10. Click the texture album called TGEDemo to select it.

11. Locate and select the Floor_set_stone texture.

12. Click the Active & Close button, to make the texture active, and close the

dialog box all at once.

13. You will see that the texture has been applied to the brush already, because

we had the brush selected when we clicked the Active & Close button in the

dialog box. If the brush was not selected, we would have to select it. Back in

the Materials form, click the Apply button. Check the Perspective view pane

for evidence of success. You will see the cube with the new texture applied to

it, on all faces, as shown in Figure 17.20.

Notice that the texture seems really big and a bit blurry. Now we have to

adjust the scale of the texture. This is a bit of a fiddly operation. By eyeball, I

estimate that the texture is about four times too big. So we need to make the

texture about 25% (or 0.25) its current size.

14. In the Selection Mode form at the bottom, click the Faces button.

716 Chapter 17 n Making Structures

Figure 17.20
Roadbed with Floor_set_stone texture.

15. In thePerspectivewindow,clickoneof the facesof theRoadbedbrush. Itwillbe

highlighted as shown in Figure 17.21. It’s pretty hard to see the color effect in

that grayscale image—the highlighted face will have an aquamarine or green

hue to it. Also note that a small cubelike device appears that shows the orien-

tation of the applied texture. In Figure 17.21 the selected face is the top face.

16. Choose the Tools, Modify, Scale menu. On the left side, the Properties form

will have a section in it called Transform Scale.

17. In the Transform Scale part of the Properties form, locate the Scale fields. In

each field (X, Y, and Z) type in 0.25. Be sure to include the zero in front of

the decimal.

18. Click the Make button, located in the Properties form, near the top. You

should now have a brush face that looks like Figure 17.22.

T i p

One way to adjust the scale of a texture is by using arbitrary values in the Properties form, as
shown in the text. However, there is a quicker, but less precise, method.

When you have a face selected and have chosen the Tools, Modify, Scale menu, you can then
move your cursor over one of the axis gizmos in an appropriate 2D view. Click and drag along the
axis you want to scale, and watch the texture scale change accordingly. You can change the rate
at which the ‘‘drag-scale’’ method operates when you drag the mouse. Look in the Tools section of
the Preferences form at the lower right. Change the Scale Amt field to a lower number to slow the
scaling rate and to a higher number to speed it up.

Building Bridges 717

Figure 17.21
Selected brush face.

You can rotate and move (offset) a texture using the same technique. Choose Tools, Modify,
Translate or Tools, Modify, Rotate, and then click-drag on an axis. You can only adjust the rotation
rate in the Preferences form using Rotate Amt.

19. Now go ahead and apply textures and adjust them as you want, for all the

other faces.

20. Save your scene as bridge.map in the \Constructor folder, and then choose

File, Export, Torque (map2dif_plus) to export your bridge to Torque, just

like you did in the last section.r.

21. Now go launch your Torque demo, as you’ve done before. After spawning,

switch to camera fly mode (F8), go up a little bit in altitude, and aim your

cursor to a point in the game world where you want the bridge structure to

be.

22. Open the Mission Editor by pressing F11. If you get a dialog box welcoming

you to the Mission Editor, click the OK button.

23. Open the World Editor Creator by pressing F4.

24. From the tree list on the lower right, open the Interiors group by clicking the

little plus sign to its left. Then drill down through demo, data, and interiors,

and you will see bridge listed in blue.

718 Chapter 17 n Making Structures

Figure 17.22
Scaled face texture.

25. Click once on the bridge entry in the Interiors group list to insert the

bridge, click the Relight Scene button on the little dialog box, and then

click the Hide button on the little dialog box.

Building a House
The bridge was nice and certainly useful albeit fairly simple. If you actually need a

bridge you will probably make something more ornate. The point here is to learn

the tools. Artistry is up to you.

In this sectionwewill go a little bit further andmake something a bitmore complex:

a hut with a door opening and a window created using CSG Boolean operations.

1. Launch Constructor.

2. Select the Cube brush, and create a cube that measures eight units in length

(along the X-axis) by six units in width (along the Y-axis) by seven units in

height (along the Z-axis).

Remember that you can check the dimensions by hovering the cursor over

various points on the cube and looking in the lower-left corner of the Map

Editor window.

3. Position the Cube brush so that it is horizontally centered in the top

and back views and vertically offset upward in the back and right views

so that two units are below the centerline and five units are above it.

See Figure 17.23 for guidance.

The brush is offset vertically so that the centerline can be used to represent

ground level. Because this is going to be a building that might be placed in

somewhat rough terrain, we need to make sure to have a ‘‘foundation’’ or

‘‘basement’’ that extends fairly far below the ground level. Although I am

not doing so here, you might consider using a separate brush for the

basement, so that you could use a texture different from the aboveground

textures. A nice concrete texture would be suitable.

4. Don’t forget to press Enter to commit the brush to the scene.

T i p

Don’t forget that there are several selection modes: Brushes, Faces, Edges, and Vertices. The
buttons are at the bottom of the screen. Make sure you are in the selection mode you need for the
operation you want to perform.

Building a House 719

5. Next, go back and select the Cube brush tool again, and make another brush

inside the first one, except make this new oblong seven units in length by five

units in width by four units in height.

6. Position the new brush so that it is centered horizontally inside the first

brush and positioned vertically aboveground so that it is centered between

the top of the first brush and the ground level. Figure 17.24 shows what this

should look like.

7. Commit the brush to the scene. The new brush will remain selected, and

that’s what we want for the next step.

T i p

Just a quick reminder: if you find yourself stuck in some mode that you don’t want to be in, press
the Escape key.

720 Chapter 17 n Making Structures

Figure 17.23
Properly sized and positioned initial brush.

8. In the Tools form on the left there are tabs whose labels are displayed

sideways down the right-hand side of the Tools form. Click the Modify

tab.

9. In the CSG group of iconified buttons that now appear in the Tools form,

the one on the far left is the button for the Boolean Subtract operation. Click

that button. This will subtract the volume of the second brush from the first

brush. You will notice a subtle change in the 2D and Perspective views after

you’ve clicked the Boolean Subtract button. There will be some extra lines.

The second brush is still selected.

T i p

When you’ve performed a Boolean CSG operation on a brush, the brush will be transected into
multiple different brushes which together make the resultant brush. You can select each of these
sub-brushes and treat them like normal brushes, because in actuality, they are just normal
brushes.

Building a House 721

Figure 17.24
New brush inside the first brush.

10. Press Delete. The second brush will be removed. It might not be obvious,

but your first brush is now hollow, and it should look like what’s shown in

Figure 17.25.

11. Back in the Tools form, click the Create tab on the right-hand side of the

form (with the label written sideways).

12. Select the Cube brush yet again. (Are you getting the feeling that you will

become intimately familiar with the Cube brush in fairly short order?)

T i p

Don’t get too focused on working in only one view. Sometimes everything needs to be done in a
single view, but you should glance in the other views to monitor your progress and to ensure that
you aren’t doing something really dumb that isn’t visible in the view you are working with.

13. Make a brush for the door that is two units long, three units deep, and

three units high. Position it so that the bottom is level with the ‘‘floor’’ and

722 Chapter 17 n Making Structures

Figure 17.25
Hollow brush.

so that it protrudes from inside the hollow brush to the outside, as shown in

Figure 17.26. Commit the brush.

14. Now click the Modify tab again, in the Forms menu, and then click the

Boolean Subtract button (far left) once more. This will carve out the door.

15. This time, don’t delete the Subtraction brush. Instead, grab that sucker by its

X-axis gizmo in the Back view, drag it left, and then drag it up using the

Z-axis gizmo. We can reuse this brush (it’s the Earth Day thing to do!)

to make a nice little window. Drag it around in the Back view until it’s

positioned to the left of the door and suitably up from the floor.

16. In the Tools form, in the Transform section, click the far-right button—

that’s the Scale button. Doing this in the Tools form is exactly the same as

choosing the Tools, Modify, Scale menu.

Building a House 723

Figure 17.26
Protruding Door brush.

17. Move your cursor directly over the center of the Subtraction brush in the

Back view, then click and drag your cursor to resize the window to your

liking, using Figure 17.27 as a guide.

To quickly go back to the mode where you can move objects around by

clicking them and dragging (translating), just press the Escape key.

18. Once you are happy with the position of the Subtraction brush, click the

Boolean Subtract button again. This will carve out the window.

19. Press Delete to remove the Subtraction brush. Now you will have a handy

one-room house, as shown in Figure 17.28.

Note that I’ve used the Floor_set_stone texture for all of these brushes. You, of

course, have been empowered and are free to use whatever textures you want!

20. Save your file as \Constructor\house.map.

724 Chapter 17 n Making Structures

Figure 17.27
Making a window.

Okay, compile your house, using the technique I showed you earlier. As an extra

challenge, compile your house for use in the Emaga6 program. Go ahead, I dare

you! Remember, you will have to change some of the path information in the

build_dif.bat batch file, and you will need to ensure that you have copied the

textures you used to wherever you put your house.dif file in the Emaga6 folder

hierarchy. Good luck!

Moving Right Along
So, in this chapter you’ve learned yet another tool. Constructor is a pretty

feature-complete tool for creating structures for Torque. You’ve built the two

most common sorts of structures: an outdoor structure (the bridge) and a

building using CSG operations.

Your imagination is the only real limit here. Castles, complex underground

tunnel systems, factories, playgrounds, and just about anything else can be cre-

ated with Constructor.

Normally, I would include a reference section for Constructor in this chapter.

However, the program has so many features and options that the material is just

too hefty to present in the chapter. Instead, I’ve included the Constructor

reference in Appendix D.

In the next chapter we’ll take a look at how to make things for the game world

environment.

Moving Right Along 725

Figure 17.28
House with door and window.

This page intentionally left blank

Making the Game
World Environment

In many games having a full suite of character models, buildings, trees, and other

visual clutter is still not enough to accomplish the needed sense of immersion.

There are a number of other aspects to the game world that come from the world

around us that we often take for granted: the background sky, the appearance of

water, the appearance of clouds in motion, and the terrain. Figure 18.1 is a nice

serene picture of ocean-side forested hills just after sunset. No, it’s not a

photograph—it’s a screen shot from the game Return to Tubettiworld being

developed using the Torque Game Engine.

Now way back in Chapter 12 we covered terrains to a certain extent, so you

probably have a reasonable sense of what is involved with creating terrains using

a height map. In this chapter we will revisit terrains using the more labor-

intensive method of manually building up a terrain with the in-game editor.

We’ll get into that at the end of this chapter.

First, however, we will visit sky, clouds, and water—the environmental triad of

computer game ambience.

Sky
When you are tasked to create a 3D game that offers unrestricted movement

in unlimited vistas, you will need to come up with ways to provide that

open, outdoors perception. A technique that works well is to provide a static

727

chapter 18

background sky that contains elements of the sky that we often take for granted,

like clouds, and a color gradient that changes as you move farther away from the

horizon. We do this using a construct known as a skybox.

Skyboxes

A skybox is a cube that surrounds the game player. The player stands inside the

box, and nomatter which way he turns, he will see some part of the box as long as

it isn’t obscured by other in-game objects. The box never rotates, and the sides

are always the same distance away from the player no matter how far or how fast

he moves.

How Skyboxes Work

Because of the way the images on the faces of the skybox are created, the player

does not have the feeling that he is inside a big cube. The skybox images are on

the inside faces of this cube, as you can see in Figure 18.2. The back view has been

left out to help illustrate the point.

When using skyboxes, we treat them as if they are infinitely large. Only objects

that the player can never reach will look correct, like clouds in the sky or distant

mountains. If you limit a player’s movement to just viewing from a fixed loca-

tion, you could even use a skybox for nearby scenery.

728 Chapter 18 n Making the Game World Environment

Figure 18.1
A serene scene.

Figure 18.3 shows an exploded view of the skybox images and how they relate to

each other. Note that the image for the bottom is a black field. If you were

depicting an area with a usable view in that direction, you would of course

include an appropriate image.

Sky 729

Figure 18.2
A pictorial skybox.

Figure 18.3
An exploded skybox.

To create the illusion that the player is embedded in a large and seamless world,

there are two things that you must get right when creating a skybox: seamless,

matching adjacent edges and correct perspective.

The edge-matching issue is one we are already familiar with from previous

texture endeavors.

The perspective issue is a little less obvious when you first consider making

skyboxes—but take a look at Figure 18.4. Remember that the skybox is always the

same distance away from the player, and the orientation is fixed. The front face, if

it happens to be facing north, will always face north, no matter which way the

player is facing or looking. This causes a visual problem when viewing the images

on the skybox faces.

The image areas that are on the face closest to the player will appear larger than

the portions of the image nearest the corners, because the corners are farther

away. Figure 18.5 simulates what that would look like.

In order to remove the distortion when the image is viewed in game, we need to

distort its appearance outside the game environment in such a way that when the

perspective comes into play in game, the image looks natural. Figure 18.6 shows

such a predistorted image.

Each of the six square skybox images should be created with the same reso-

lution. The most common resolution to use is 256 by 256 pixels. The higher

the resolution, the better the skybox will look in most cases, but there is a limit

730 Chapter 18 n Making the Game World Environment

Figure 18.4
Skybox edge distances.

beyond which higher skybox image resolution doesn’t help the appearance.

Because we are always worried about memory used and processing time

consumed, we want to make sure we don’t go higher than the maximum. If

you are interested in using larger skybox images, there is a way to calculate the

maximum resolution to use as your upper limit, using this mathematical

formula:

maxSkyboxResX = maxScreenResX * 1/tan(FOV/2)
maxSkyboxResY = maxScreenResY * 1/tan(FOV/2)

The basic concept is that the smaller the Field of View (FOV), the higher the

resolution you will need for the skybox. This is because as the FOV gets smaller,

Sky 731

Figure 18.6
Predistorted image.

Figure 18.5
Distorted image.

you are looking farther and at a smaller portion of the skybox image. This smaller

portion fills the view, and therefore the pixels are larger. Typical first-person

point-of-view games use a 90-degree FOV and often have a 60-degree (or even

smaller) zoomed-in view for sniper scopes or binoculars.

For example, if our screen resolution is 800 by 600 pixels and our FOV is 90

degrees, then applying our formula yields this:

maxSkyboxResX = 800 * 1/tan(90/2)
maxSkyboxResX = 800 * 1/1
maxSkyboxResX = 800

It also follows that we don’t need to recompute the Y resolution because it will

scale proportionally. So for this 800 by 600 pixel display with a 90-degree FOV,

the highest resolution we should use for the skybox images is 800 by 600 pixels,

by happy coincidence!

However, if we want to know the deal for the 60-degree FOV that our player’s

binoculars provide, we need to recompute that value as follows:

maxSkyboxResX = 800 * 1/tan(60/2)
maxSkyboxResX = 800 * 1/ 0.57735
maxSkyboxResX = 800 * 1.732
maxSkyboxResX = 1386

For the Y resolution, the value is 1,039. So if you decide to create a high-

resolution skybox, you should probably go with nothing larger than 1,280 by

1,024 pixels. (Most games, including Torque, need the image resolution values to

be powers of two.)

Personally, I would go with 1,024 by 1,024 as a reasonable compromise for a

maximum resolution. These dimensions would apply to all of your skybox panels

in a given skybox. The size you eventually choose for your game will in the end be

a judgment call, but if you use the previous calculations, it will not be just a

hopeful stab in the dark.

Creating the Skybox Images

As with other texture-related issues, there is always the question of where to

obtain source material. Once again, you have the option of creating your own by

732 Chapter 18 n Making the Game World Environment

using a digital camera or a camera and scanner combination or by simply

drawing your own images.

In this section I will walk you through drawing some clouds on the horizon for

your skybox—this is a common sunny-day sort of scene. Low cumulus clouds in

the distance peek just above the horizon, all around you.

1. Open the Gimp, and create a new image by selecting File, New. Fill in the

dialog box with 256 for both the height and width of the blank image. Make

sure that the Advanced Options, Colorspace is set to RGB Color and the

resolutions are 72 dpi for both X and Y. The Fill with box should be set to

Transparency. A new canvas in its own window will appear.

2. Save this blank file as \Emaga6\control\data\maps\skyfront.png.

3. Over in the Gimp’s tool pane, select the Gradient Fill tool (see Figure 18.7).

Below the Gimp pane, another pane appears, called Blend.

4. In the Blend pane, locate the Gradient button, and click it. A pop-up list

portraying various gradient fill strategies will appear, as shown in Figure 18.8.

5. Select the third gradient, called FG to BG (RGB). This means that the fill

gradient will be created using the foreground (FG) color as the start value

and the background (BG) color as the end value. The gradient will be created

between those two colors.

6. Fetch back to Figure 18.7, and locate the Color tool. Click the leftmost color

box (the top one) to open the Change Foreground Color dialog box.

Sky 733

Figure 18.7
The Gimp pane with Gradient Fill tool and Color tool.

7. In the Change Foreground Color dialog box, enter the RGB values as 215 for

R, 215 for G, and finally 255 for B.

8. Click the OK button to commit the change and dismiss the dialog box, and

then use the rightmost color box (the bottom box) of the Color tool to set

the background color to 0 for R, 0 for G, and 192 for B, the same way you did

for the foreground.

9. Click OK to commit the change and dismiss the dialog box.

10. Now, with the Gradient tool still selected, click in the image window a little

bit below the vertical halfway point (between two-fifths of the way up from

the bottom and halfway up). Don’t release the mouse button.

11. Drag the cursor up until it is about one-quarter of the way down from the

top of the image window, and then release the mouse button. See Figure 18.9

for a guide to the click and release points.

After you release the mouse button, the gradient will be rendered, and you

should get an image very similar to Figure 18.10.

734 Chapter 18 n Making the Game World Environment

Figure 18.8
The Gradient Fill pop-up.

Sky 735

Figure 18.9
Preparing to make the gradient.

Figure 18.10
Image with gradient.

12. Go back to the Color tool, and set the foreground color to pure white

(RGB=255,255,255).

13. Next, select the Air Brush tool (the fourth tool over to the right of the

Gradient tool), select size 13 from the Brush drop-down list in the Airbrush

pane (click the button with the black circle in the middle), and set the Rate

and Pressure to 11 and the Opacity to 60.

14. Now draw some cloudlike shapes between about half and two-thirds of

the way from the bottom of the image so that you get something like

Figure 18.11. Save your work as skyfront.png.

15. Create three more versions of this image, naming the others ‘‘skyleft.png’’,

‘‘skyright.png’’, and ‘‘skyback.png’’ in the same place you saved sky-

front.png. Go ahead and make each one different in its own way, if you like.

16. Make a fifth image that is solid blue, with RGB values of 0,0,192. This color

matches the darkest blue in the gradient we made. Name this file

‘‘skytop.png’’.

17. Make the sixth and final image and fill it in with black. Name this one

‘‘skybottom.png’’.

Now it’s time to test out your images.

736 Chapter 18 n Making the Game World Environment

Figure 18.11
Some clouds.

18. Locate the file in your Emaga6 map folder called \Emaga6\control\data\

maps\sky_day.dml. Make a copy of this file in the same directory, and name

the copy ‘‘sky_book.dml’’.

19. Open the sky_book.dml file with UltraEdit. Change the first six lines to read

as follows:

skyfront
skyright
skyback
skyleft
skytop
skybottom

20. Save the file.

21. Open \Emaga6\control\data\maps\book_ch6.mis, and locate the line that

looks like this:

materialList = "./sky_day.dml";

and replace it with this:

materialList = "./sky_book.dml";

Save the file.
Almost there!

22. You need to check to ensure that the right mission file will be used when

you run your test. Open the script file Emaga6\control\client\client.cs in

UltraEdit and find the line that starts with:

createServer("SinglePlayer",

The entire line should read as:

createServer("SinglePlayer", "control/data/maps/book_ch6.mis");

If it says book_ch5 instead of book_ch6, change the 5 to 6, and then save
the script file.

23. Launch the Emaga6 sample program, and enter into the game. Take

a look around. Notice the corners? See how your clouds become

distorted?

You already know how to fix up the textures so that they join seamlessly, so I’ll

leave you to do that. Note that you probably don’t have to worry about the top

Sky 737

edges, because the top image and the top edges of the side images all have the

same RGB value—0,0,192.

Also, the bottom doesn’t need to be blended either, because it’s not going to be

visible beneath our terrain. So that just leaves the perspective distortion to fix.

Adjusting for Perspective

Although we are going to be adjusting for perspective distortion, we aren’t going

to use the built-in perspective tools in the Gimp. Instead, we will use the Warp

tool.

1. In the Gimp, open up one of your side images, like the front one, for

example.

2. Choose Dialogs, Layers to open up the Layers dialog box. Move the dialog

box to a place on your screen where it doesn’t obscure the image or the

Gimp’s main pane.

3. Choose Filters, Distorts, Curve Bend.

4. Ensure that the Automatic preview, Smoothing, Antialiasing, and (most

importantly)Work on copy check boxes are selected. Also, the radio buttons

Upper in the Curve for Border section and Smooth in the Curve Type

section need to be selected.

5. In the Modify Curves section on the right-hand side of the Curve Bend

dialog box, place your cursor in the center of the horizontal black line in the

grid, and drag it up one square. Your image will be distorted as shown in

Figure 18.12.

6. Take a look in your Layers dialog box, and you’ll see a new layer has been

added called curve_bend_dummylayer_b. This layer was created because we

had the Work on copy check box selected in the Curve Bend dialog box.

7. Click on the leftmost of the two boxes to the left of the curve_

bend_dummylayer_b layer image. An eye will appear, indicating that this

layer has been made visible. Look at your image, and you’ll see the

perspective corrected result.

8. Now we have to merge our layers. The simplest way is to choose Image,

Flatten Image.

738 Chapter 18 n Making the Game World Environment

9. Save your work.

10. Repeat the warping for all three of the other image files so that you’ve

corrected all the lateral view images, left, right, front, and back.

11. Run Emaga6 and check your work.

Now you might find that after you’ve done the distortion you now have seams

again in your skybox. If so, go back and fix the edges.

There you have it! Your very own do-it-yourself skybox!

The Sky Mission Object

You may have noticed when you were editing the Emaga6 MIS file that there was

an object defined in there called ‘‘Sky’’. There are lots of goodies in that object for

us sky worshippers.

Sky 739

Figure 18.12
Applying perspective-correcting warp.

Here it is:

new Sky(Sky) {
position = "�1088 �928 0";
rotation = "1 0 0 0";
scale = "1 1 1";
materialList = "./sky_book.dml";
cloudHeightPer[0] = "0.349971";
cloudHeightPer[1] = "0.25";
cloudHeightPer[2] = "0.199973";
cloudSpeed1 = "0.0002";
cloudSpeed2 = "0.0004";
cloudSpeed3 = "0.0006";
visibleDistance = "1100";
fogDistance = "1000";
fogColor = "0.820000 0.828000 0.844000 1.000000";
fogStorm1 = "0";
fogStorm2 = "0";
fogStorm3 = "0";
fogVolume1 = "500 0 100";
fogVolume2 = "0 0 0";
fogVolume3 = "0 0 0";
windVelocity = "0.1 0.1 0";
windEffectPrecipitation = "1";
SkySolidColor = "0.547000 0.641000 0.789000 0.000000";
useSkyTextures = "1";
renderBottomTexture = "0";
noRenderBans = "0";

locked = "true";
};

We have already encountered the MaterialList property and have seen that it is

used to point to a file that contains the names of the images that will be displayed

on the interior faces of our skybox.

Not all the properties in the skybox are particularly interesting; they owe their

presence to Torque’s beginnings as the code that drives the Tribes 2 game. The

position, scale, and rotation properties don’t accomplish much when you use

them; they are there because all objects have those properties whether or not they

are meaningful.

The cloudHeight properties are useful, and we will cover them in the next section.

The same applies to the properties for fog.

740 Chapter 18 n Making the Game World Environment

One of the most useful properties is visibleDistance. This property specifies the

distance, in world units, beyond which the terrain and all game objects will not be

rendered. This is a useful, though rather ham-handed, method for increasing

frame rates in game worlds that have many objects present. In conjunction with

the fogDistance property, this sort of simulates the concept that all landscape

artists are familiar with—that objects become hazier and harder to see at a

distance. This is because there is simply more atmosphere between you and

the objects you are viewing in the distance, and the greater the distance, the more

the air obscures your view. This effect is a well-known one called atmospheric

perspective. The great Leonardo da Vinci studied this effect quite a bit back in the

15th and 16th centuries; he called it aerial perspective.

By exaggerating this effect we have a useful mechanism to reduce the number

of objects that the video card needs to render, and this improves your frame

rate.

The fogDistance property specifies the distance from you that the haziness we

just talked about begins. The distant fogginess starts at this point and gets thicker

as the distance increases, until the visibleDistance is reached, after which

nothing is rendered. By using these two properties, you can prepare a game world

where there is a natural-appearing haziness that slowly obscures distant objects

until they disappear completely.

No t e

You should always make sure that visibleDistance is a bigger number than fogDistance;
otherwise, you risk crashing the game engine in clients in certain situations. In fact, for the sake
of safety, always make sure that visibleDistance is at least 50 units larger than
fogDistance. Less than that is not really useful anyway.

If you don’t want to use a skybox, there is the SkySolidColor property, which

you can set. Then you will get a uniformly colored sky all around with a band

of changing color near the horizon to simulate the lightening effect we see—

something like the gradient we made for our skybox. In this case, to disable

the skybox, set useSkyTextures to 0 or False. Set noRenderBans to 0 or False

to enable the simulated horizon coloring, and set it to True to disable the

coloring.

You can also just prevent the bottom image in the skybox from being rendered,

or considered for rendering, by setting renderBottomTexture to 0 or False. This

might eke out a frame or two of frame rate for you.

Sky 741

The windVelocity and windEffectPrecipitation precipitation properties have

no effect on their own. They are used in conjunction with the storm effects we

will cover later.

Clouds
Your game’s sky doesn’t start and end with the skybox. A beautiful background

sky is nice, and important in some settings, but it’s static. If you go outside on a

nice day and look around, you will often see a sky with clouds that presents itself

much like the one you can make with the skybox.

But more often, you will see that and you will have clouds moving across the sky

above you, blowing in the wind. In fact, you will probably notice layers of

clouds—often two layers and sometimes even three layers.

The lower layers of clouds can whip rapidly across the view above you, while the

upper layers move at a more sedate pace, sometimes even in a different direction.

There might even be in-between layers moving at various speeds, with a different

visual.

In Torque we can define up to three layers of moving clouds with the Sky mission

object in the MIS file that the server uses to define the game world.

Cloud Specifications

For each layer, we define its altitude as a percentage of a pseudo-altitude. Now

this is tricky and might be a bit difficult to understand. The first thing to get is

that your player can never go up—either in camera fly mode or in a flying

vehicle—high enough to reach the lowest cloud layer. In this sense, cloud layers

operate somewhat like a skybox. However, you can position the three layers

relative to each other. The reason for this is so that the motions of each cloud

layer can be calculated in correct proportion to each other. If you have a steady

wind that is the same at all altitudes, then the lowest cloud layer will seem to

move faster than the others, and the highest will seem to move slower than the

others. How much faster or slower depends on the distance between the cloud

layers and their distance from your player, as the observer.

And that’s what the cloudHeightPer properties do—they define the visual

appearance of the clouds but not their physical location in the game.

742 Chapter 18 n Making the Game World Environment

Now another consideration is that wind speeds are not the same at all altitudes in

real life. Usually, the speeds of winds aloft (winds at altitudes of at least 1,000 feet

above the ground) are higher the higher you go, up to about 30,000 or 40,000 feet

or so. Then it starts to get really weird.

You can plug in the movement speeds for the clouds at different altitudes using

the cloudSpeedn for each specified cloudHeightPer[n] and have the game engine

figure out the relative motion based on pseudo-altitude and the speed at that

altitude. Unfortunately, Torque doesn’t handle wind direction for clouds so

well—that would be the final link needed to provide really neat cloud motion.

Wind direction is specified by a single windVelocity property that applies to all

layers. In real life, wind directions back and veer according to altitude, but we

can’t do that here.

Using the windVelocity property requires a little thought. The value is expressed

as an XYZ coordinate. The third value, the Z, is irrelevant, but the X and Y values

are used to calculate the vector on the horizontal plane in two dimensions. The

vector then points to the world origin (or center). If we look up at the sky and

imagine the X- and Y-axes pasted up there, somewhat like in Figure 18.13, we can

figure out the direction.

The value ‘‘1 �1 0’’ would describe a wind from the southeast, as illustrated in

Figure 18.13, and ‘‘1 0 0’’ would be a wind from the east.

Clouds 743

Figure 18.13
Wind velocity conversion.

Cloud Textures

Now, you need to tell the engine what all those clouds you have zipping around

up there actually look like. You do this by specifying an image file in the same

material file that you used to specify the skybox image files.

After the first six lines in that file that indicate the skybox images, the next line

indicates the image that will provide the reflection map for your character if you

have environment mapping enabled in your player’s control script. If you look in

\Emaga6\control\server\players\player.cs and locate the MaleAvatar datablock,

you’ll find a line like this:

emap=true;

When set to true, then the environment mapping is turned on, and your

character’s model will have the reflection map added to its skin. This can be a

very subtle effect or very strong, depending on the interplay of the reflection map

image, your character’s skin, and the scene lighting. We often use a sky image for

the reflection map.

The last three lines indicate the cloud image files. One line equals one cloud layer,

with the first line after the reflection map line indicating layer 1, the next being

layer 2, and the last being layer 3, like this:

skyfront
skyright
skyback
skyleft
skytop
skybottom
day_0007
no_cloud
cloud1
cloud1

That is the contents of sky_book.dml. Notice the use of the name ‘‘no_cloud’’ for

the first cloud layer. In this example I didn’t want to have any clouds at that first

layer, so for this layer I created an image file that has no clouds in it.

So, you are asking, how do we make a cloud texture that does have clouds? Glad

you asked! Let’s make one.

1. Open the Gimp, and create a new image by selecting File, New. Fill in the

dialog box with 256 for both the height and width of the blank image. Make

744 Chapter 18 n Making the Game World Environment

sure that the Advanced Options are set to RGB Color with 72 dpi in both X

and Y resolutions. The Fill with box should be set to Transparency. A new

canvas in its own window will appear.

2. Save this empty image file as \Emaga6\control\data\maps\no_cloud.png.

3. Next, select the Air Brush tool, set it to spray white, and then spray a little bit

around your new image, avoiding the edges, like in Figure 18.14. Or spray

the edges, but make sure you adjust the edges so that the image is suitable for

tiling.

4. Save your image as \Emaga6\control\data\maps\mycloud.png.

5. Edit \Emaga6\control\data\maps\sky_book.dml so that the last three lines

look like this:

no_cloud
mycloud
no_cloud

Now run your game, and check out the clouds! Of course, you can add more

cloud images for the other layers, or you can use the same image for all three.

Water
Water, water, everywhere, and not a drop to drink. In addition to being com-

pletely necessary for life to flourish, water can be a complete nuisance as well. It’s

a nuisance that we willingly put up with, though.

In games, water is often used in several forms: as pools, rivers, lakes, and oceans

that act as barriers that need to be overcome; or as weather effects, like fog, mist,

rain, and snow that obscure visibility while adding ambience and moodiness to a

scene.

Water 745

Figure 18.14
A simple cloud texture.

Fog

Fog is, of course, another nifty weather feature. We’ve already encountered one

kind of fog that is used to obscure distant objects and terrains. There is another

kind of fog that operates in layers, just like the clouds—except that with fog,

these are real layers in the game world that you can actually get into with your

player, depending on where the layers are placed.

This layered fog is a limited form of volumetric fog. It is limited in the sense that

although you can specify the upper and lower bounds of the fog, it will appear at

those levels throughout the entire map.

You can use this layered fog to complement the moving cloud textures to create

clouds (except that the fog will never be at the same altitude as the cloud tex-

tures). You can also deposit fog in low-lying river valleys.

A good use for this fog is underwater, helping to reduce visibility there. This

reduced visibility results because of silt and other materials that often exist

underwater, cutting down your ability to see far.

This layered volume fog is specified in the Sky mission object that we looked at

earlier. An entry looks like this:

fogVolume1 = "500 0 100";

The three parameter numbers are, from left to right, distance, bottom, and top.

Their meanings are shown in Table 18.1.

You already know how to edit the mission file and change the properties of the

various mission objects, so go ahead and putz around with the fog values and see

how they work.

746 Chapter 18 n Making the Game World Environment

Table 18.1 Volume Fog Settings

Parameter Description

distance View distance when in the layer. This works like fogDistance, except that a value
of 0 here means there is no fog at all. If you want a really, really close view distance, use
1, not 0.

bottom Bottom of fog layer.

top Top of fog layer.

Storms

Torque has built-in capabilities to generate storms, using lightning, rain, and

thunder. It’s pretty cool how this is done. You can manually instigate a storm

using script code, and there are some functions provided that will automate

aspects of a storm for you.

No t e

The lightning storm features require the use of sound effects files, but we don’t cover those until
the next chapter. So you will have to add the appropriate code to make the sound effects work.
This will be done with minimal commentary here---just enough to get the thunder sounds working.
See Chapters 19 and 20 for a more detailed look at sounds.

Setting Up Sound

There’s some preparation we need to do at this point before proceeding with

the rest of the weather features. We need to get some sound files, images,

and supporting code files and put them in the right places for our game, as follows:

1. In the folder \3D2E\RESOURCES\CH18, locate the file settingsscreen.cs

and copy it to the directory \Emaga6\control\client\misc\. Then copy

settingsscreen.gui from RESOURCES\CH18 to

\Emaga6\control\client\interfaces\.

2. If you don’t have a folder called \Emaga6\control\data\sound, create it now.

Copy the following files from the \3D2E\RESOURCES\CH18 folder to the

\Emaga6\control\data\sound folder:

thunder1.wav
thunder2.wav
thunder3.wav
thunder4.wav
buttonOver.wav
rain.wav

3. Next—pay attention—copy the following files from RESOURCES\

CH18:

lightning.dml
lightning1frame1.png
lightning1frame2.png
lightning1frame3.png

Water 747

water_splash.jpg
rain.jpg
mist.jpg
water_splash.alpha.jpg
rain.alpha.jpg
mist.alpha.jpg

But, this time they go to the folder \Emaga6\control\data\maps\.

4. Next, edit the file \Emaga6\control\client\Initialize.cs, and locate the

following line:

Exec("./interfaces/serverscreen.gui");

and after it, add this line:

Exec("./interfaces/settingsscreen.gui");

5. Then locate this line:

Exec("./misc/serverscreen.cs");

and after it, add this line:

Exec("./misc/settingsscreen.cs");

6. Edit the file \Emaga6\control\client\default_profile.cs, and add the follow-

ing line near the top:

GuiButtonProfile.soundButtonOver = "AudioButtonOver";

7. Copy the file RESOURCES\CH18\OpenAL32.dll to the directory \Emaga6\.

8. Locate the file \Emaga6\control\client\initialize.cs, and add these lines to the top:

$pref::Audio::driver = "OpenAL";
$pref::Audio::forceMaxDistanceUpdate = 0;
$pref::Audio::environmentEnabled = 0;
$pref::Audio::masterVolume = 1.0;
$pref::Audio::channelVolume1 = 1.0;
$pref::Audio::channelVolume2 = 1.0;
$pref::Audio::channelVolume3 = 1.0;
$pref::Audio::channelVolume4 = 1.0;
$pref::Audio::channelVolume5 = 1.0;
$pref::Audio::channelVolume6 = 1.0;
$pref::Audio::channelVolume7 = 1.0;
$pref::Audio::channelVolume8 = 1.0;

748 Chapter 18 n Making the Game World Environment

$GuiAudioType = 1;
$SimAudioType = 2;
$MessageAudioType = 3;

new AudioDescription(AudioGui)
{

volume = 1.0;
isLooping= false;
is3D = false;
type = $GuiAudioType;

};

new AudioDescription(AudioMessage)
{

volume = 1.0;
isLooping= false;
is3D = false;
type = $MessageAudioType;

};

new AudioProfile(AudioButtonOver)
{

filename = "~/data/sound/buttonOver.wav";
description = "AudioGui";

preload = true;
};

Now that we’ve done that, we can move on to the storm-specific stuff.

9. Type the following into a new file, and save it as \Emaga6\control\server\

misc\weather.cs.

datablock AudioProfile(HeavyRainSound)
{

filename = "~/data/sound/rain.wav";
description = AudioLooping2d;

};
datablock AudioProfile(ThunderCrash1Sound)
{

filename = "~/data/sound/thunder1.wav";
description = Audio2d;

};
datablock AudioProfile(ThunderCrash2Sound)
{

filename = "~/data/sound/thunder2.wav";

Water 749

750 Chapter 18 n Making the Game World Environment

description = Audio2d;
};
datablock AudioProfile(ThunderCrash3Sound)
{

filename = "~/data/sound/thunder3.wav";
description = Audio2d;

};
datablock AudioProfile(ThunderCrash4Sound)
{

filename = "~/data/sound/thunder4.wav";
description = Audio2d;

};
datablock LightningData(LightningStorm)
{

strikeTextures[0] = "control/data/maps/lightning1frame1.jpg";
strikeTextures[1] = "control/data/maps/lightning1frame2.jpg";
strikeTextures[2] = "control/data/maps/lightning1frame3.jpg";
thunderSounds[0] = ThunderCrash1Sound;
thunderSounds[1] = ThunderCrash2Sound;
thunderSounds[2] = ThunderCrash3Sound;
thunderSounds[3] = ThunderCrash4Sound;

};
datablock PrecipitationData(HeavyRain)
{

dropTexture = "~/data/maps/mist";
splashTexture = "~/data/maps/water_splash";
soundProfile = "HeavyRainSound";
dropSize = 10;
splashSize = 0.25;
splashMS = 250;
useTrueBillboards = true;

};

datablock PrecipitationData(MediumRain)
{

dropTexture = "~/data/maps/rain";
splashTexture = "~/data/maps/mist";
soundProfile = "HeavyRainSound";
dropSize = 0.75;
splashSize = 0.25;
splashMS = 250;
useTrueBillboards = true;

};

10. Open the file \Emaga6\control\server\server.cs. In the function called

OnServerCreated, locate the following line:

Water 751

Exec("./misc/item.cs");

and add this line after it:

Exec("./misc/weather.cs");

11. Finally, add some objects to the mission file to cause our new storm features

to load when the game launches. Locate the mission file again, \Emaga6\

control\data\maps\book_ch6.mis, and find the last two lines of code, which

should look like this:

};
//--- OBJECT WRITE END ---

And add the following two objects before those last two lines:

new Precipitation(RainStorm) {

datablock = "HeavyRain";
minSpeed = 10;
maxSpeed = 15;
numDrops = 800;
boxWidth = 80;
boxHeight = 50;
minMass = 0.05;
maxMass = 5;
rotateWithCamVel = true;
doCollision = true;
useTurbulence = true;
maxTurbulence = 0.1;
turbulenceSpeed = 0.2;

};
new Lightning(ElectricalStorm) {

position = "200 100 300";
scale = "250 400 500";
datablock = "LightningStorm";
strikesPerMinute = "30";
strikeWidth = "2.5";
chanceToHitTarget = "100";
strikeRadius = "250";
boltStartRadius = "20";
color = "1.000000 1.000000 1.000000 1.000000";
fadeColor = "0.100000 0.100000 1.000000 1.000000";
useFog = "1";
locked = "true";

};

That should do it. Launch your game, and enjoy the storm!

Storm Materials

The visual appearance of precipitation is defined by a special image file that

contains the sprites, or bitmaps, that represent the raindrops or snowflakes or

what have you. These image files are referenced by a precipitation datablock that

also defines other properties of the precipitation.

Figure 18.15 shows what a rain image file looks like. It has 16 images of raindrops

in a 4 by 4 grid arrangement.

Now, the actual texture file has a difference—the areas shown in black in

Figure 18.15 are really transparent when viewed in the file.

To create your own such file, launch the Gimp, andmake a newfile set to 128 pixels

square. Make sure that the Advanced Options are set to RGB Color with 72 dpi in

both X and Y resolutions. The Fill with box should be set to Transparency.

Next up, we need to set up a grid to guide us. First, make sure that Show Grid is

enabled in the View menu. Next, choose Image, Configure Grid, and you will get

the Configure Grid dialog box. Set the foreground color to a yellow shade by

clicking the color bar to the right of the label Foreground colour. In the color

picker dialog box that opens, you can fiddle with the color sliders until you get

the perfect shade of yellow.

Then set the grid spacing width and height to 32 pixels using the Width and

Height fields in the Spacing section. Finally, set the Line Style to Dashed in the

Appearance section. Click OK.

A 4 by 4 grid made of dashed yellow lines will appear in your view of the new

blank image. Draw your own version of each of the different 16 raindrops in each

grid box on the image. Be aware that the grid is not actually part of the image.

752 Chapter 18 n Making the Game World Environment

Figure 18.15
Raindrop images.

Save the file and deposit it in the same place where you had put the rain.png

file, and give it a unique name, like myrain.png or something. Then edit the

PrecipitationData datablock in the Emaga6\control\server\misc\weather.cs file

to point to your new myrain version instead of the original.

A slightly different process applies to making the lightning images: a lightning

image doesn’t contain a grid like the rain image did. Each lightning image file

contains only one sprite of a lightning bolt. You’ve already copied three sprite

image files of lightning bolts to your Emaga6 project:

lightning1frame1.png
lightning1frame2.png
lightning1frame3.png

Figure 18.16 shows each of these images in order, from left to right.

When making the lightning frame files, you need to make them 128 pixels wide

by 256 pixels high. Draw your lightning bolts on a black background—all the

areas you leave black will be treated as transparent. That is, they really are black

and are not just rendered that way for purposes of the picture, as was the case

back with Figure 18.15.

Lightning

Now, let’s take a look at what makes lightning tick, as it were. There are two

significant declarations: one is the LightningData datablock in the server code,

and the other is the Lightning object definition that resides in the mission file.

The datablock is transmitted to the client when the mission is loaded with the

Lightning object definition getting transmitted to the client. The datablock

describes what resources are used to create the lightning visuals and sound

effects, as follows:

Water 753

Figure 18.16
Lightning strike images.

datablock LightningData(LightningStorm)
{

strikeTextures[0] = "control/data/maps/lightning1frame1.jpg";
strikeTextures[1] = "control/data/maps/lightning1frame2.jpg";
strikeTextures[2] = "control/data/maps/lightning1frame3.jpg";
thunderSounds[0] = ThunderCrash1Sound;
thunderSounds[1] = ThunderCrash2Sound;
thunderSounds[2] = ThunderCrash3Sound;
thunderSounds[3] = ThunderCrash4Sound;

};

Every time Torque triggers a lightning bolt, one of the three lightning sprites is

rendered. You can create even more and add them to the mix if you want to. In

the same fashion, every time Torque triggers the thunder, one of the listed

thunderSoundn properties is chosen randomly. How and when the bolts and

thunderclaps are triggered is defined by the properties of the Lightning object as

follows:

new Lightning(ElectricalStorm) {
position = "200 100 300";
rotation = "1 0 0 0";
scale = "250 400 500";
datablock = "LightningStorm";
strikesPerMinute = "30";
strikeWidth = "2.5";
chanceToHitTarget = "100";
strikeRadius = "250";
boltStartRadius = "20";
color = "1.000000 1.000000 1.000000 1.000000";
fadeColor = "0.100000 0.100000 1.000000 1.000000";
useFog = "1";
locked = "true";

};

Obviously, it’s important to indicate which datablock to use. This is done with

the datablock property. There are then a couple of self-evident properties:

strikesPerMinute and chanceToHitTarget. Then strikeWidth indicates the scale

factor applied to the image overlay of the lightning bolt that comes from the

image files.

When a bolt is generated, a random spot within a circular area is chosen to be the

place where the bolt begins, and then another random spot within a different

754 Chapter 18 n Making the Game World Environment

circular area is chosen to be the spot where the bolt hits. The size of the starting

area is defined by boltStartRadius, and the size of the strike area is defined by

strikeRadius.

The centers of the start and strike areas are defined by the position property. The

whole shebang can be made larger or smaller based on the scale property. The

rotation property has no effect.

The color property defines a coloring that is applied when the bolt first appears,

and the color values are changed over the life of the bolt until they reach the

settings in fadeColor.

The useFog property indicates whether the fog defined by the stormFogn property

in the Sky mission object will be used.

In Figure 18.17 you can see a lightning bolt coming out of the sky in the game

setting.

Rain

You can make it rain in much the same way as you make thunder and lightning,

though there are differences in the details.

Water 755

Figure 18.17
A lightning bolt.

For one thing, the Precipitation datablock is somewhat smaller.

datablock PrecipitationData(HeavyRain)
{

dropTexture = "~/data/maps/mist";
splashTexture = "~/data/maps/mist";
soundProfile = "HeavyRainSound";
dropSize = 10;
splashSize = 0.25;
splashMS = 250;
useTrueBillboards = true;

};

The dropTexture property specifies the sprite image file that will be used to

provide the raindrop sprites, while the splashTexture property specifies the file

that will provide the splash sprites.

The soundProfile property points to an audio profile that establishes things like

which sound file will be played.

The properties dropSize and splashSize, dictate the scaled size of the drops while

falling, and the splash effect when the drops hit the ground.

The splashMS property dictates how long a splash effect lingers. The use-

TrueBillboards property is set to true if you want the raindrop sprites to always

be facing you.

If you experiment with the datablock, realize that the rain is generated at the

client. Other players don’t see the exact same raindrops at the same instant that

you do—it would be lunacy to try to make the server track each drop! Therefore,

the rain is generated in a box that envelops the player and moves around as the

player moves. The drops are initiated at the top of the box and tracked and

rendered as they move down, pulled by gravity. That little bit of detail might help

you with your experimentation.

The Precipitation object declaration looks like this:

new Precipitation(RainStorm) {
datablock = "HeavyRain";
minSpeed = 10;
maxSpeed = 15;
numDrops = 800;
boxWidth = 80;
boxHeight = 50;

756 Chapter 18 n Making the Game World Environment

minMass = 0.05;
maxMass = 5;
rotateWithCamVel = true;
doCollision = true;
useTurbulence = true;
maxTurbulence = 0.1;
turbulenceSpeed = 0.2;

};

The datablock property points to a datablock like the one we looked at earlier.

The minSpeed and maxSpeed properties describe the lower and upper bounds

(respectively) of randomly chosen drop speeds. numDrops indicates how many

rain drops will populate the area of the precipitation at any given time.

boxWidth and boxHeight establish the boundaries of the precipitation area.

minMass and maxMass dictate the lower and upper bounds of the mass of the rain

drops for physics calculations related to splashing. rotateWithCamVel, when set to

true, makes the rain drops rotate the camera at the same speed that the camera is

turning, keeping the drops in view as they fall.

doCollision, when set to true, ensures that the drops collide with shape objects they

encounter, and generate a splash. useTurbulence, when set to true, introduces

a chaotic nature to the drops falling pattern, simulating wind turbulence. max-

Turbulence limits the amount of turbulence effect allowed, while turbulenceSpeed

dictates the speed that is imparted on the rain drops by the turbulence effect.

A Perfect Storm

Okay, so it may not be perfect, but it is neat. There are two useful object methods

that you can use to move a storm in and out gradually without the need to

manipulate the storm-related objects in detail.

The first is the stormCloud method that belongs to the Sky object. It looks like

this:

Sky.stormCloud (flag, fade)

Set the flag to 1 if you want to create storm clouds and 0 if you want them to go

away. To use the method, you would first call Sky.stormClouds(0, 0) as soon as

your game starts to ensure that the clouds are not visible—all you would see is

the skybox.

Water 757

Then, at the moment you decide to call up a storm with your wand, you would

call Sky.stormClouds(1, 60) somewhere in your script. This will cause the engine

to gradually fade in your clouds over a 60-second time frame. When the storm

clears, you make them go away gradually by calling Sky.stormClouds(0, 60). Of

course, you could use a different fade value, making it as long or short as you

desire.

The second method is a nice complement to the stormCloud method. It is called

stormModify and belongs to the Precipitation class. The precipitation object we

created is called RainStorm, so using stormModify would work like this:

RainStorm.stormModify(flag, fade)

It works the same way as stormCloud but obviously applies to the precipitation.

Use the two methods together, with appropriate fade values, to get a nice storm

effect. Try them out in your sample game by entering the commands manually in

the console.

Water Blocks

Water blocks are special objects that we can insert into our game world via a

mission file. Following is an example of a water block. The property settings may

be different from any particular water block you encounter.

new WaterBlock(Water) {
position = "�1024 �1024 0";
rotation = "1 0 0 0";
scale = "2048 2048 125";
UseDepthMask = "1";
surfaceTexture = "~/data/water/water_center";
ShoreTexture = "~/data/water/water_edge";
envMapOverTexture = "~/data/skies/storm_env";
specularMaskTex = "~/data/water/water_spec";
liquidType = "OceanWater";
density = "1";
viscosity = "15";
waveMagnitude = "3";
surfaceOpacity = "0.2";
envMapIntensity = "1";
TessSurface = "50";

758 Chapter 18 n Making the Game World Environment

Water 759

Table 18.2 Water Block Properties

Property Description

surfaceTexture Specifies the texture generally used for the surface.

ShoreTexture Specifies the texture used in shallow areas.

envMapOverTexture Defines the environment map texture used when looking over
the fluid surface.

envMapUnderTexture Defines the environment map texture used when looking
under the fluid surface.

surfaceOpacity Specifies the maximum opacity of the surface (0.0 �> 1.0).

envMapIntensity Specifies the intensity of the applied environment map
(0.0 �> 1.0). Setting the intensity to 0 results in the
environment map pass being skipped, which increases
performance slightly.

UseDepthMask Toggles the depth map feature on and off.

ShoreDepth Specifies the depth at which the shore texture will start being
applied. Larger values result in larger shore texture areas.

DepthGradient Specifies the gradient that the shore textures will interpolate
between MinAlpha and MaxAlpha. The value of 1 equates
to linear interpolation, whereas values 0 �> 1 equate to fast
fade-out/slow fade-in, and the values 1 �> inf equate to
slow fade-out/fast fade-in (from deep to shallow).

MinAlpha/MaxAlpha Specifies the alpha levels used from shore to deep fluid. The
MinAlpha can be used to prevent totally transparent areas.
You will always be able to see underneath the fluid surface,
so use the fog volumes from the Sky object to restrict
visibility underwater.

TessSurface/TessShore Specifies the number of times the textures are repeated over
the water block surface for surface/shore textures.

SurfaceParallax Renders the surface as two layers. When the surface is
distorting or flowing, then this controls the ratio of one
surface with respect to the other. If you set this to 0.5, then
one surface will move at half the speed of the other.

FlowAngle/FlowRate Specifies the way the fluid flows. The FlowRate controls
how fast the fluid flows, and the FlowAngle is a polar angle
controlling its direction. Using a FlowRate of 0 completely
stops the fluid from flowing.

DistortGridScale/
DistortMag/
DistortTime

Controls the distortion effect of the fluid surface. This allows
you to create many different surfaces. To control the speed,
use DistortTime. Use DistortMag to control the overall
magnitude of the distortion. DistortGridScale normally
does not need adjusting but can be used to adjust a setting
for a small water block that may not look correct on a large
one.

TessShore = "60";
SurfaceParallax = "1";
FlowAngle = "220";
FlowRate = "0.1";
DistortGridScale = "0.1";
DistortMag = "0.1";
DistortTime = "2";
ShoreDepth = "14";
DepthGradient = "1";
MinAlpha = "0.01";
MaxAlpha = "0.4";
tile = "1";
removeWetEdges = "0";
specularColor = "1 0.8 0.46 1";
specularPower = "10";
locked = "true";
params0 = "0.32 �0.67 0.066 0.5";
textureSize = "32 32";
Extent = "100 100 10";
params3 = "1.21 �0.61 0.13 �0.33";
params2 = "0.39 0.39 0.2 0.133";
floodFill = "1";
seedPoints = "0 0 1 0 1 1 0 1";
params1 = "0.63 �2.41 0.33 0.21"; };

Water blocks repeat in the same way that terrain blocks repeat, and because water

blocks are flat, the only positioning information of real interest is the height.

Table 18.2 describes the most significant properties, and there are many.

Not all properties need to be defined. If you leave any out, Torque will simply use

default values. There are also other properties that you don’t see in the example.

Water block textures, as described in various places in Table 18.2, can be created

in exactly the same way as cloud textures. In fact, you can even get away with

using cloud textures in a pinch!

Take a look at Figure 18.18 to see a water block in action.

Terraforming
You already saw in Chapter 12 how to create a terrain using height maps. Torque

also has a built-in Terrain Editor that you can use to manually modify the terrain

height map and square properties.

760 Chapter 18 n Making the Game World Environment

Terrain editing is done using a Terrain brush. The brush is a selection of terrain

points centered on the mouse cursor in either a circular or square configuration

of different selectable sizes, as you can see in Figure 18.19. Notice all the tiny

hollow squares drawn on the terrain; these define the areas that the brush affects.

The brush can also be either a hard brush that has a uniform effect across the

surface of the brush or a soft brush whose influence on terrain diminishes toward

the edges of the brush. You can adjust the soft brush falloff rate in the Terrain

Terraforming 761

Figure 18.18
Water in a game setting.

Figure 18.19
A Terrain brush.

Editor Settings dialog box, found under the menu Edit, Terrain Editor Settings.

The Terrain Editor is not enabled yet in our Emaga6 example game, although it

will be in a later chapter. So to get a feel for the Terrain Editor, we can use the

Torque demo.

1. Run the Torque demo, and after you have spawned into the game, press F8

to switch to fly mode.

2. Fly up a fair bit to get a good overview of the surrounding terrain.

3. Press F11 to switch to the Editor GUI.

4. Choose Window, Terrain Editor.

5. Wave your cursor over the terrain, and notice the Terrain brush marked on

the terrain.

6. Drag your mouse up and down after clicking over some area of terrain. You

will see your terrain change to conform.

7. Experiment with using different actions to see how the Terrain Editor works.

T i p

Every now and then while in the Terrain Editor, press Altþ L to redo the lighting. The cursor will
freeze for a few moments while the lighting is redone. This will cause the new terrain changes
you’ve made to properly generate shadows.

762 Chapter 18 n Making the Game World Environment

Table 18.3 Terrain Editor Functions

Function Description

Select Selects grid points that will be painted with the brush.

Adjust Selection Raises or lowers the currently selected grid points as a group.

Add Dirt Adds ‘‘dirt’’ to the center of the brush.

Excavate Removes ‘‘dirt’’ from the center of the brush.

Adjust Height Drags the brush selection to raise or lower it.

Flatten Sets the area bounded by the brush surface to be a flat plane.

Smooth Smoothes, within the bounds of the brush, rough areas of varying terrain height.

Set Height Sets the terrain within the brush to a constant height as specified in the Terrain
Editor settings.

Set Empty Converts the squares covered by the brush into holes in the terrain.

Clear Empty Makes the squares covered by the brush solid.

Paint Material Paints the current terrain texture material with the brush.

Moving Right Along 763

8. Every now and then remember to save your work. In the Mission Editor,

choose File, Save.

Table 18.3 describes the Terrain Editor functions that are available in the Action

menu.

Table 18.4 describes the functions of the Terrain Terraform Editor (see also

Figure 18.20), the one we used in Chapter 12 dealing with height maps. These

functions are available in the Operation pull-down menu in the Terrain Terra-

form Editor.

Moving Right Along
So, you’ve now seen how you can create and modify your game environment.

The three main environmental elements are sky, clouds, and water. We looked at

the different ways each of those three elements can be created using tools and

techniques available in Torque.

In most cases, you will probably use some form of all of those techniques when

you create your game. For example, you would judiciously mix overhead cloud

layers with skybox renderings of distant clouds on the horizon.

Table 18.4 Terrain Terraform Editor Functions

Function Description

fBm Fractal Creates bumpy hills.

Rigid Multifractal Creates ridges and sweeping valleys.

Canyon Fractal Creates vertical canyon ridges.

Sinus Creates overlapping sine wave patterns with different frequencies, useful for
making rolling hills.

Bitmap Imports an existing 256 by 256 bitmap as a heightfield.

Turbulence Perturbs another operation on the stack.

Smoothing Smoothes another operation on the stack.

Smooth Water Smoothes water.

Smooth Ridges/Valleys Smoothes an existing operation on edge boundaries.

Filter Filters an existing operation based on a curve.

Thermal Erosion Erodes an existing operation using a thermal erosion algorithm.

Hydraulic Erosion Erodes an existing operation using a hydraulic erosion algorithm.

Blend Blends two existing operations according to a scale factor and mathematical
operator.

Terrain File Loads an existing terrain file onto the stack.

We’ve also looked at the combined weather effects involved in storms and how

you can initiate an automated process to start and end storms over time using

TorqueScript.

In this chapter we were introduced to sounds in the form of thunder for the

lightning strikes. In the next chapter we will more thoroughly explore how to

incorporate sounds in our game.

764 Chapter 18 n Making the Game World Environment

Figure 18.20
Terrain Terraform Editor.

Creating and
Programming Sound

As I mentioned in Chapter 1, audio artists compose the music and sound in a

game. Good designers work with creative and inspired audio artists to create

musical compositions that intensify the game experience.

It also bears repeating that audio artists work closely with the game designers,

determining where the sound effects are needed and what the character of the

sounds should be. They often spend quite a bit of time experimenting with

sound-effect sources, looking for different ways to generate the precise sound

needed. Visit an audio artist at work and youmight catch him slapping rulers and

dropping boxes in front of a microphone. After capturing the basic sound, an

audio artist will then massage the sound with sound-editing tools, varying the

pitch, speeding up the sound or slowing it down, removing unwanted noise, and

so on. It’s often a tightrope walk balancing realistic sounds with the need

sometimes to exaggerate certain characteristics in order to make the right point

in the game context.

When creating your game, you have a choice between two basic approaches:

obtain a good source of sound effects and music (like an audio library) or create

your own sounds. Of course, you also have the option to combine the two

approaches. Audio libraries are available from a wide variety of sources; the

commercial ones are quite thorough and professionally made. Some audio

libraries are available free via the Internet, but the quality of these sources varies

widely in breadth, depth, and recording fidelity.

765

chapter 19

In this book we are going to take the do-it-yourself approach. The main

advantage of going this way is the price; a secondary advantage is that you have

total control over the contents of your sound files.

Audacity
There are several tools available to use for recording and editing sound effects

and music. A very good open source program—it doesn’t cost you anything to

use and is made available under the GNU General Public License—is Audacity.

This chapter will show you how to use Audacity (see Figure 19.1) to make sounds

for use in your game.

Installing Audacity

To install Audacity, do the following:

1. Browse to your CD in the \TOOLS\AUDACITY folder.

2. Locate the audacity-win-1.2.4b.exe file, and double-click it to run it.

3. Click the Next button on the Welcome screen.

4. Follow the various screens, and take the default options for each one, unless

you know you have a specific reason to do otherwise.

766 Chapter 19 n Creating and Programming Sound

Figure 19.1
Audacity main window.

No t e

You will also find a beta version of Audacity in the TOOLS\AUDACITY folder. This is the latest
release, but it has not been thoroughly tested and is almost guaranteed to be incomplete or have
buggy capabilities. However, it does have a bunch of new features to try out if you are feeling
adventurous. Use it at your own risk!

Using Audacity

You need to ensure that your microphone is set up properly—connected to the

MIC or microphone input jack on your sound card. Of course, you don’t need to

obtain your sounds directly from a microphone; you can record from a CD or

another audio source. In any event, you need to have that source connected to

the correct input and ensure that your audio mixer is set up to record from that

source. You should refer to your sound card documentation if you don’t know

how to do this.

The basic operation of Audacity is quite straightforward for recording, simple

editing, playback, and saving your data.

T i p

If, when you launch Audacity, you don’t see all the toolbars that are shown in Figure 19.1, you can
fix that up in a jiffy. Choose Edit, Preferences, and then click the Interface tab. If, for example, you
are missing the Mixer toolbar (shown as Output Displays in Figure 19.9), then make sure that the
Enable Mixer Toolbar check box is checked, and away you go.

Recording

Let’s record some sound:

1. Launch Audacity by choosing Start, Programs, Audacity. You will get the

main window, as you saw earlier, in Figure 19.1.

2. Click the Record button, as shown in Figure 19.2.

Audacity 767

Figure 19.2
The Record button.

The program is now recording from the microphone. You can see the

progress of the recording and the waveforms of the sounds in the window as

the recording proceeds, as shown in Figure 19.3.

3. Speak into the microphone, or if you don’t want to hear your own voice,

make a noise, like slapping a book down on the desk or something. You will

see the sound you made appear in the waveform. Figure 19.4 shows the

waveform created when I tapped a pen on the desk next to the microphone.

4. When you have your sound recorded, click the Stop button, as shown in

Figure 19.5.

5. Now you can play back your recording, by clicking the Play button, as

shown in Figure 19.6.

We’ll continue working with Audacity in a moment, but first I want to point out

that if you have a waveform but don’t hear any sound, make sure that you have

the volume turned up high enough on your speakers. Also be sure that it is turned

up high enough—and is not muted—in your Windows Volume Control applet

768 Chapter 19 n Creating and Programming Sound

Figure 19.3
Recording in progress.

Figure 19.4
Waveform in Audacity.

(in the Control Panel, and usually on the Windows System Tray on the right side

of the taskbar). Finally, check the microphone level in the Mixer Control in

Audacity, and ensure that it isn’t too low. How low is too low is hard to say,

because Windows also has recording level controls in its own mixer application.

Try to make sure everything is set roughly halfway between 0 and maximum, and

you should be fine.

Simple Editing

Now, if you’re like me you probably have a long period of dead air before the

sound effect youmade and another chunk afterward. That’s fine, because it’s easy

to fix. So, picking up where we left off in the previous section:

6. Place your cursor to one side of the portion of the waveform you want to

eliminate, and drag it across to the other side. This selects an area to be

worked on. See Figure 19.7.

7. Choose Edit, Delete. The selected portion will be excised from the wave-

form.

8. Repeat the preceding two steps for the unwanted portions of the waveform

on the other side of your sound effect. Eventually you will end up with

something like Figure 19.8.

Audacity 769

Figure 19.5
Stop recording.

Figure 19.6
Playback.

We’re not finished with our procedure yet; there’s still some exporting to do. But

before we cover that, I want to mention that above the waveform panel is a series

of numbers on a scale. This is the elapsed time scale. The example in Figure 19.8

shows that my final waveform is just a little more than three-quarters of a second

in duration.

Exporting

Now, once again picking up where we left off, you need to save the sound effect as

a file before you can use it:

9. Choose File, Export as WAV. Name your file, and save it somewhere con-

venient for the moment, such as on your desktop.

10. Browse to your desktop (or wherever you saved your file), and double-click

your newly created file. Whichever program is set up to play sounds in

Windows on your computer will be launched and play your sound.

There are other export options available, but we’ll stick with the WAV format for

its simplicity and wide availability on Windows platforms. For other platforms,

Ogg Vorbis is probably the format of choice on Linux, and AIFF for Macintosh.

770 Chapter 19 n Creating and Programming Sound

Figure 19.7
Selecting a portion of the waveform.

Figure 19.8
The final waveform of the sound effect.

Audacity Reference

This section contains some useful reference details to help you use Audacity.

The Main Screen

Figure 19.9 shows the Audacity main screen, with some of the major components

labeled. This section will provide some detail on these and other useful com-

ponents.

The toolbar is where you will find the tools that you will probably use more than

any other tools available with Audacity. Use Figure 19.9 to locate the tools in the

toolbar, and refer to Table 19.1 to review their functions. To get the output

displays to show, just widen the window a little bit—about ten pixels or so.

The Track Panel contains tools for managing specific tracks and groups of tracks.

See Table 19.2 for details.

Audacity supports four different track types that can be viewed simultaneously

when they exist in a single channel. These four track types let you view wave-

form (audio), time data, MIDI information, and label information for a given

audio file. Table 19.3 describes each of the four types.

Audacity 771

Figure 19.9
The Audacity main screen.

772 Chapter 19 n Creating and Programming Sound

Table 19.1 Toolbar Tools

Tool Description

Selection Selects a portion of the audio track. You can set the position of the track cursor simply
by clicking at the right place in the track. Select a range of audio by clicking and
dragging over the desired portion. Select multiple tracks by holding down Shift and
dragging across the tracks. Playback begins at the position of the track cursor and will
play to the end of the track. If you have selected a range of audio, only the selected
range will be played.

Time Shift Changes the positioning of tracks relative to one another in time. Select this tool, then
click in a track and drag it to the left or right.

Envelope Provides a handy audio processing tool. Its presence directly in the main window of the
program is an innovative move. You get detailed control over how tracks fade in and
out, right in the main track window with this tool. When you select the Envelope tool,
the amplitude envelope of each track is highlighted in a blue line; there are control
points at the beginning and end of each track. To move a control point, click it and drag
it to its new position. To add a new point, click anywhere in the track where a control
point doesn’t already exist. To remove a point, drag it outside of the track.

Zoom Zooms in or out of a specific part of the audio. Clicking anywhere in the audio will zoom
you in. Right-click or shift-click to zoom out. You can also zoom into a region by
dragging the mouse to highlight the region while you have the Zoom tool selected.

Play Enables you to listen to the audio file currently loaded or to a recording you have just
created. The spacebar can be used as a stop and start toggle. Playback always begins at
the current cursor position. If a region of audio is selected, only the selected region will
play. To play the entire project, choose Edit, Select All, and then click the Play button. All
tracks on a given channel will be mixed automatically for playback.

Stop Halts playback.

Record Records a new track from your microphone or another input device. You can configure
recording options by choosing Edit, Preferences. Recording always happens at the
project’s default sample rate, which is configurable on the Quality tab.

Master Gain Controls the volume of the audio output by Audacity to your hardware. Volume
increases as you move the slider from left to right.

Table 19.2 Track Panel Tools

Tool Description

Track Menu Allows the user to display a track in different formats. This drop-down menu also
provides the Name option, which allows the user to create a name for a given track.

Track Delete Immediately deletes a track, without the option to undo. Use this button carefully.

Track Solo Switches the current track to solo mode. You can change a track out of solo mode by
clicking it again. When a track is in solo mode, the button for that track turns red. Only
tracks that have the Solo button enabled will be played when in solo mode.

Track Mute Switches off a track without deleting it. You can unmute a track just by clicking the
Mute button again. When a track is muted, its Mute button will be blue.

No t e

Common values for audio sample rates are shown in Table 19.4.

Menus

The Audacity menus provide access to functions for managing files, editing,

adjusting views, managing Audacity projects, creating special effects, and other

features. There is also a standard Help menu.

The File Menu

Figure 19.10 shows the File menu, and Table 19.5 contains an itemized

description of the menu. Note that menu items that have names ending with

an ellipsis (three dots) will bring up a dialog box where you can fill in some

parameters.

Audacity 773

Table 19.3 Track Types

Tool Description

Audio Audio tracks contain digitally sampled sounds. Two stereo channels are represented by two
stereo tracks. Each audio track has a sample rate that is the same as the project sample rate.

Label Label tracks can be used to mark a document with annotations. Annotations can be saved to
a text file.

Time Time tracks can be used to mark a document with time stamps for synchronization purposes.

MIDI Note tracks display data loaded from a MIDI file. They cannot be changed or played, only
viewed.

Table 19.4 Common Sample Rates

Frequency Usage

8000 Hertz Typical telephone

11025 Hertz Minimum ‘‘voice quality’’

16000 Hertz Typical ‘‘voice quality’’

22050 Hertz Common digital interactive media

44100 Hertz CD audio, DAT (digital audiotape)

48000 Hertz Digital studio quality

96000 Hertz Digital studio quality (newer)

774 Chapter 19 n Creating and Programming Sound

Figure 19.10
File menu.

Table 19.5 File Menu

Menu Item Description

New Creates a new, empty project window.

Open Presents you with a dialog box to choose a file to open. If a project
window is open and empty, the new file will appear in that window;
otherwise, a new project window will open.

Close Closes the current project window.

Save Project Saves the current Audacity project file in AUP format. Audacity projects
are not usable by other programs. Audio data for an Audacity project is
not stored in the AUP file; instead, it is stored in a directory with the
same name as the project.

Save Project As Saves the current Audacity project file, with a different name or
directory path.

Recent Files Provides a submenu listing recently used files, for easy access.

Export As WAV Exports the current Audacity project as a standard audio file format,
such as WAV or AIFF. Change the format of the exported file in the
Preferences dialog box.

Export Selection As WAV The same as Export As WAV, but only exports the selected portion of
the project.

The Edit Menu

Figure 19.11 shows the Edit menu, and Table 19.6 contains an itemized

description of the menu. Parts of this menu contain the standard Cut, Copy,

and Paste functions; the rest are related functions that are specific to Auda-

city’s capabilities.

The View Menu

The View menu provides functions that you can use to control what you see

in the Audacity window and how you see it. Figure 19.12 shows the View

menu, and Table 19.7 contains an itemized description of the menu.

The Project Menu

Audacity uses the concept of projects that you’ve encountered elsewhere, such

as with UltraEdit earlier in this book. By using projects, you can organize data

files as well as configuration and operational parameters in one collection that

can be recalled at any time. This really helps when dealing with complex tasks.

Figure 19.13 shows the Project menu, and Table 19.8 contains an itemized

description of the menu.

The Effect Menu

Audacity includes many built-in effects and also lets you use plug-in effects.

To apply an effect, simply select part or all of the tracks you want to modify,

Audacity 775

Export As MP3 Exports the current Audacity project as an MP3 file. Exporting MP3 files
requires that you install a separate MP3 encoder, which is not included
with Audacity.

Export Selection As MP3 The same as Export As MP3, but only exports the selected portion of
the project.

Export As Ogg Vorbis Exports the current Audacity project as an Ogg Vorbis file.

Export Selection As Ogg Vorbis The same as Export As Ogg Vorbis, but only exports the selected
portion of the project.

Export Labels Exports label tracks to a text file.

Export Multiple Allows you to export multiple files in a project all at once. The files can
be split apart according to tracks or according to labels.

Page Setup Allows user to configure track waveforms in Audacity for printing and
to choose printer.

Print Prints the main window, including tracks and waveforms.

Exit Closes all project windows and exits Audacity. It will ask if you want to
save changes to your project.

Menu Item Description

776 Chapter 19 n Creating and Programming Sound

Table 19.6 Edit Menu

Menu Item Description

Undo Undoes the last edits performed. Allows you to undo every operation going
back to the last time the document was saved.

Redo Redoes edits that were just undone. The redo history remains available until
you do a fresh edit.

Cut Removes the selected audio data and moves it to the Clipboard.

Copy Copies the selected audio data to the Clipboard.

Paste Inserts the Clipboard contents at the position of the selection cursor in the
project, replacing any selected data.

Trim Removes everything except the selected waveform data.

Delete Removes selected data without copying it to the Clipboard.

Silence Replaces selected audio data with silence.

Split Moves the selected region into its own track or tracks, replacing the affected
portion of the original track with silence.

Duplicate Makes a copy of all or part of a track or set of tracks into new tracks.

Figure 19.11
Edit menu.

Audacity 777

Select Presents three selection modes in a submenu:

All Selects the entire track that contains the cursor.

Start to Cursor Selects from the beginning of the track to the cursor.

Cursor to End Selects from the cursor to the end of the track.

Find Zero Crossings Makes a slight modification to the selection so that the selection starts and
ends at a point where the signal crosses zero, thereby eliminating clicks and
pops.

Selection Save ‘‘Remembers’’ the current selection, so that it can be restored later.

Selection Restore Restores a saved selection.

Move Cursor Presents four cursor relocation modes in a submenu:

to Track Start Moves the cursor to the beginning of the current track.

to Track End Moves the cursor to the end of the current track.

to Selection Start Moves the cursor to the beginning of the current selection.

to Selection End Moves the cursor to the end of the current selection.

Snap-To Allows you to turn the selection snap feature on or off using the submenu. The
selection snap feature, when turned on, constrains selections to one-second
intervals.

Preferences Allows adjusting many of the values, parameters, and operation modes of the
program.

Figure 19.12
View menu.

Menu Item Description

778 Chapter 19 n Creating and Programming Sound

Table 19.7 View Menu

Menu Item Description

Zoom In Zooms in on a portion of the audio data. Doing this allows you to view more
data detail for a smaller time period.

Zoom Normal Changes the zoom factor to one inch of data for one second of time; this is
the default zoom factor.

Zoom Out Zooms out so you can see a larger time base, at the cost of less detail.

Fit in Window Adjusts the zoom factor so that the entire project fits exactly in the window.

Fit Vertically Like Fit in Window, except considers only the vertical dimension.

Zoom to Selection Similar to Fit in Window, except uses the current selection instead of the
window as the zoom fitting target.

Set Selection Format Provides a submenu with a myriad of selection time formats.

History Provides a list of previously executed commands. You can restore a project
to an earlier state by clicking on an earlier entry.

Float Control Toolbar Detaches the Control toolbar from the window, allowing you to place it
arbitrarily anywhere on the screen.

Float Edit Toolbar Detaches the Edit toolbar from the window, allowing you to place it
arbitrarily anywhere on the screen.

Float Mixer Toolbar Detaches the Mixer toolbar from the window, allowing you to place it
arbitrarily anywhere on the screen.

Float Meter Toolbar Detaches the Meter toolbar from the window, allowing you to place it
arbitrarily anywhere on the screen.

Figure 19.13
Project menu.

and select the effect from the menu. Figure 19.14 shows the Effect menu, and

Table 19.9 contains an itemized description of the menu.

Many menu items can be invoked by the use of the standard Windows accel-

erator key combinations, such as CtrlþW to close a window. Table 19.10 lists

the shortcut keys.

Audacity 779

Table 19.8 Project Menu

Menu Item Description

Import Audio Imports audio into your project. Use this function to add another track
to a project with at least one existing track. You can also mix the
imported track with an existing track.

Import Labels Imports a text file that contains time codes and labels, turning them
collectively into a label track.

Import MIDI Imports a MIDI file into a note track. MIDI files can be viewed but not
played, edited, or saved.

Import Raw Data Allows you to open a file in virtually any uncompressed format.
Audacity will examine the file contents to determine their format. You
will need to listen to the result in order to decide if the program made
the right format choice. You can use the dialog box the function
displays to direct the program in its attempts. Sometimes a successful
operation has a bit of noise at the beginning; this is caused by the
unrecognized header format. The rest of the data usually plays
correctly. You can then edit out the noise.

Edit ID3 Tags Opens a dialog box, allowing you to edit the ID3 tags associated with
a project. These are used for MP3 exporting.

Quick Mix Mixes selected tracks down to one or two tracks. Note that if you try
to mix two loud tracks together, you may get clipping that sounds like
pops, clicks, and noise. To avoid this, you should first adjust the gain
(amplification) of the tracks to a lower level.

New Audio Track Creates a new audio track with no data.

New Stereo Track Creates a new stereo track with no data.

New Label Track Creates a new label track with no data.

New Time Track Creates a new time track with no data.

Remove Tracks Removes the selected track or tracks from the project. You only need
to select a portion of a track for it to be removed.

Align Tracks Provides a large selection of track alignment options, which adjust the
time offset of selected multiple tracks to make them start at some
specified time in relation to each other.

Align and move cursor Same as Align Tracks, except moves the cursor along with the tracks.
This allows you to shift tracks without losing your relative position.

Add Label At Selection Creates a new label at the current selection.

Add Label At Playback Position Creates a new label at the spot where playback or recording is
currently located.

780 Chapter 19 n Creating and Programming Sound

Figure 19.14
Effect menu.

Table 19.9 Effect Menu

Menu Item Description

Repeat (last effect) Repeats the last effect command. The name of the last effect command
will appear after the word Repeat, once that effect command has been
used.

Amplify Increases or decreases the volume of a track or set of tracks. Audacity
computes for you the maximum amount you could amplify the selected
audio without being so loud that the signal is clipped.

Bass Boost Amplifies the lower frequencies, yet leaves most of the other frequencies
untouched. Recommended maximum boost is 12 dB.

Change Pitch Changes the audio pitch without changing the tempo.

OpenAL
Torque, along with many other game engines, uses OpenAL—an open-source

audio API (Application Programmer’s Interface). In this book we won’t be directly

addressing programming with OpenAL, but we do need to ensure that OpenAL

is installed with the correct version. The Torque installation procedure you

followed in an earlier chapter will have taken care of that for you. In your root

main directory, make sure that the file OpenAL32.dll is there. If it isn’t, you

OpenAL 781

Change Speed Changes the speed of the audio by resampling. Higher speed yields a
higher pitch and vice versa.

Change Tempo Changes the tempo (or speed) of the audio without changing the pitch.
The length of the selection changed will change.

Click Removal Removes clicking, popping, and other sharp transient noises.

Compressor Compresses the dynamic range of the selection so that the louder parts
are quieter while the quiet parts are unchanged.

Echo Repeats the audio you have selected again and again, softer each time.
There is a fixed time delay between each repeat.

Equalization Amplify or diminish specified frequencies using one of the built-in curves,
or a custom curve.

Fade In Fades in linearly to the selected audio data.

Fade Out Fades out linearly to the selected audio data.

FFT Filter Applies a Fast Fourier Transform according to specifications using a curve
on a linear scale.

Invert Flips the audio samples upside down.

Noise Removal Removes constant background noise, such as fans, tape noise, or hums.
This does not work well for removing background speech or music.

Normalize Corrects for a vertical offset (DC offset) of a track’s signal.

Nyquist Prompt Uses a programming language to massage an audio track.

Phaser Combines phase-shifted signals with the original signal.

Repeat Repeats a selection a given number of iterations.

Reverse Reverses the selected audio temporally (in time). After the effect has
been applied, the end of the audio will be heard first and the beginning
last. This is useful for trying to find satanic messages in songs---heh!

Wahwah Give us a little wah-wah, George! Uses a moving bandpass filter to
create the famous wah-wah sound. This function also adjusts the phase
of the left and right channels of a stereo recording to make the effect
travel between the speakers.

(others) Any effects available in the menu beyond this point are custom plug-in
effects provided by third parties; these are not really standard Audacity
features.

Menu Item Description

can copy it from your CD in the 3D2E folder. If you use the stock Options menu

in the Torque demo games, then make sure you enable the OpenAL interface

there.

Audio Profiles and Datablocks
Torque uses the concept of datablocks and profiles to help define and organize

resources for use in the game. We encountered this concept when building our

Emagan sample games in earlier chapters.

There are essentially two ways to make sounds occur in a Torque game. We can

directly activate a sound (or music, for that matter) with program code, or we can

782 Chapter 19 n Creating and Programming Sound

Table 19.10 Shortcut Keys

Menu Item Shortcut

File, New CtrlþN

File, Open CtrlþO

File, Close CtrlþW

File, Save Project Ctrlþ S

File, Preferences Ctrlþ P

Edit, Undo Ctrlþ Z

Edit, Redo Ctrlþ Y

Edit, Cut Ctrlþ X

Edit, Copy Ctrlþ C

Edit, Paste Ctrlþ V

Edit, Delete Ctrlþ K

Edit, Silence Ctrlþ L

Edit, Duplicate CtrlþD

Edit, Select All CtrlþA

Edit, Preferences Ctrlþ P

View, Zoom In Ctrlþ 1

View, Zoom Normal Ctrlþ 2

View, Zoom Out Ctrlþ 3

View, Fit in Window Ctrlþ F

View, Fit Vertically Ctrlþ Shiftþ F

Zoom to Selection Ctrlþ E

Project, Import Audio Ctrlþ I

Project, Add Label at Selection Ctrlþ B

attach sounds to in-game objects and let the Torque Engine activate and control

the sounds indirectly on our behalf.

Most of the time we will use the latter—indirect—approach because once the

relationship of sound-effects file to object has been defined in the right place, we

don’t need to worry about it anymore. However, the first approach—direct

activation—is more flexible. We’ll look at both approaches in the remainder of

this chapter.

Audio Descriptions

Audio datablocks are used no matter whether we directly or indirectly activate

sounds. Audio datablocks are defined using the keyword AudioDescriptionwhen

they are defined. Here is an example of an audio datablock:

new AudioDescription(AudioTest)
{

volume = 1.0;
isLooping= false;
is3D = false;
type = 0;

};

In this example AudioTest is the handle to this description.

The volume property indicates the default volume for this channel. This property

is itself not changeable, but when the audio channel is used, the volume can be

changed via script statements.

The property isLooping indicates whether to repeat the sound after it has fin-

ished playing.

The is3D property is used to tell Torque whether this channel needs to be

processed to produce positional information.

The type property is essentially the channel for this sound. All sounds on a given

channel can be controlled via script statements that are channel specific.

With this datablock we have defined the nature of the AudioTest sound, so

to speak—its characteristics. However, there’s obviously not enough here

to actually produce any sound. We need at least a sound file with a sample

Audio Profiles and Datablocks 783

waveform in it, and then we need to associate that file with the appropriate

AudioDescription. This is how we do it programmatically:

$Test = alxCreateSource("AudioTest",expandFilename("~/data/sound/test.wav"));

This statement creates an audio object. The first parameter is the datablock

we saw earlier. The second parameter first invokes a call to the expandFilename

function, which knows how to make sure it finds the correct full path of

the file. The return value is a handle to the actual audio object created by

Torque.

Now to activate the sound, we simply call the following:

alxPlay ($Test);

As you see, we just needed to tell alxPlay the name of the object, and away it goes.

We can adjust the volume for this playback, but we need to do it before we play

the sound. We do that this way:

alxListenerf(AL_GAIN_LINEAR, %volume);
$Test = alxCreateSource("AudioTest",expandFilename("~/data/sound/test.wav"));
alxPlay ($Test);

The alxListenerf function sets the volume for the listener (the player) and

does it using a linear (versus logarithmic) gain (amplification) adjustment.

With a linear gain, a volume of 0.5 is half as loud as a volume of 1.0. With the

nonlinear (logarithmic) gain, a volume of 0.5 is about two-thirds as loud as a

volume of 1.0.

Note that this volume adjustment is performed on the value of the volume in the

datablock, where the volume was set to 1.0.

So if we call alxListenerfwith a volume of 0.75, then the actual volume would be

0.75 multiplied by 1.0, or 0.75—and all loudness calculations would follow from

that. If we call alxListenerf with a volume of 0.75, and if the datablock’s volume

had been set to 0.5, then the actual volume would be 0.75 multiplied by 0.5,

or 0.375.

Now using alxPlay this way is useful for sounds that have no positional infor-

mation requirements, like GUI button beeps or the sound of a player’s throbbing

headache. But what if we want to place the sound in the game world?

784 Chapter 19 n Creating and Programming Sound

In this case, we need to first create a profile:

new AudioProfile(AudioTestProfile)
{

filename = "control/data/sound/test.wav";
description = "AudioTest";

};

Notice that now the file name is contained in the profile. The second property,

description, points to the datablock we defined earlier. We then activate the

sound as follows:

alxPlay(AudioTestProfile, 100, 100, 100);

Notice now that the function call refers to the profile, not the description

datablock. The three parameters that follow define a location in 3D coordinates

in the game world. The sound, when played, will seem to come from that

location. It’s important to understand that when activating sounds in this

manner, you must ensure that the sound file contains a monophonic sound and

not stereo. Also, the is3D property in the datablock must be set to false.

T i p

Take note of whether you are creating the AudioDescription or AudioProfile on the client
or the server.

On the client, you define it this way:

new AudioDescription(AudioTest)
{
};

and

new AudioProfile(AudioTestProfile)
{
}
If the code resides on the server, do it this way:

datablock AudioDescription(AudioTest)
{
};

and

Audio Profiles and Datablocks 785

datablock AudioProfile(AudioTestProfile)
{
}
In point of fact, this rule applies for all datablock types, because the server can only define true
datablocks.

Trying It Out

Let’s try it out, using your Emaga6 sample game. Open up your root main file

(main.cs), and add the following lines to the very top:

new AudioDescription(AudioTest)
{
volume = 1.0;
isLooping= false;
is3D = false;
type = 0;

};
new AudioProfile(AudioTestProfile)
{
filename = "control/data/sound/rain.wav";
description = "AudioTest";

preload = true;
};

function AudioTestA(%volume)
{
echo("AudioTest volume="@%volume);
alxListenerf(AL_GAIN_LINEAR, %volume);
$pref::Audio::masterVolume = %volume;

$AudioTestHandleA = alxCreateSource("AudioTest",
expandFilename("control/data/sound/rain.wav"));

echo("AudioTest object="@$AudioTestHandleA);
alxPlay($AudioTestHandleA);

}

function AudioTestB(%volume)
{

echo("AudioTest volume="@%volume);
alxListenerf(AL_GAIN_LINEAR, %volume);

786 Chapter 19 n Creating and Programming Sound

$pref::Audio::masterVolume = %volume;
alxPlay(AudioTestProfile, 100, 100, 100);

}

Now launch your game. After you’ve spawned in, open the console window

(using the Tilde key), and type in the following:

AudioTestA(1.0);

You should hear the sound of rain falling. Play with the volume setting, trying

different values less than 1.0.

Next, type this into the console window:

AudioTestB(1.0);

Here comes the rain again, but this time seeming to come from a specific

direction.

Again, play with the volume setting, trying different values less than 1.0. You

can also play with the 3D coordinate values in the call to alxPlay() in the

AudioTestB() function.

Koob
In the following chapter and in later chapters, we will be using audio features a

great deal more, so take the time in the balance of this chapter to add some more

files to your sample program.

First, copy your Emaga6 directory, and name the copy ‘‘KOOB’’ or any other

name—but I’ll be using KOOB as the folder name, and Koob as the game name.

Now record a sound, any sound, in a WAV file (you could also save in Ogg

Vorbis format as an OGG file—Torque and Audacity support both file formats).

Make sure that the file is not a stereo file. Copy your new sound file into

\KOOB\control\data\sound, and name it ‘‘test.wav’’.

Next, create a new script file: \KOOB\control\client\misc\sndprofiles.cs. Insert

the following lines of code:

// Channel assignments (channel 0 is unused in-game).
$GuiAudioType = 1;
$SimAudioType = 2;
$MessageAudioType = 3;

Koob 787

new AudioDescription(AudioGui)
{
volume = 1.0;
isLooping = false;
is3D = false;
type = $GuiAudioType;

};

new AudioDescription(AudioMessage)
{
volume = 1.0;
isLooping = false;
is3D = false;
type = $MessageAudioType;

};

new AudioProfile(AudioButtonOver)
{
filename = "~/data/sound/buttonOver.wav";
description = "AudioGui";
preload = true;

};

This sets up some datablocks and a profile for use on our client.

Next, create a new script file: \KOOB\control\server\misc\sndprofiles.cs. Note

that the file name is the same as the last one you just created, but this time, there

is a different path. Insert the following lines of code:

datablock AudioDescription(AudioDefault3d)
{

volume = 1.0;
isLooping= false;
is3D = true;
ReferenceDistance= 20.0;
MaxDistance= 100.0;
type = $SimAudioType;

};

datablock AudioDescription(AudioClose3d)
{

volume = 1.0;
isLooping= false;

788 Chapter 19 n Creating and Programming Sound

is3D = true;
ReferenceDistance= 10.0;
MaxDistance= 60.0;
type = $SimAudioType;

};

datablock AudioDescription(AudioClosest3d)
{

volume = 1.0;
isLooping= false;
is3D = true;
ReferenceDistance= 5.0;
MaxDistance= 30.0;
type = $SimAudioType;

};

// Looping sounds
datablock AudioDescription(AudioDefaultLooping3d)
{

volume = 1.0;
isLooping= true;
is3D = true;
ReferenceDistance= 20.0;
MaxDistance= 100.0;
type = $SimAudioType;

};

datablock AudioDescription(AudioCloseLooping3d)
{

volume = 1.0;
isLooping= true;
is3D = true;
ReferenceDistance= 10.0;
MaxDistance= 50.0;
type = $SimAudioType;

};

datablock AudioDescription(AudioClosestLooping3d)
{

volume = 1.0;
isLooping= true;
is3D = true;
ReferenceDistance= 5.0;

Koob 789

MaxDistance= 30.0;
type = $SimAudioType;

};

// Used for non-looping environmental sounds (like power on, power off)
datablock AudioDescription(Audio2D)
{

volume = 1.0;
isLooping = false;
is3D = false;
type = $SimAudioType;

};

datablock AudioDescription(AudioLooping2D)
{

volume = 1.0;
isLooping = true;
is3D = false;
type = $SimAudioType;

};

All of this sets up some datablocks for the server—we will use them in the next

chapter. I include them here for you to peruse within the context of what we’ve

covered in this chapter. For practice, you can try various calls to alxPlay and

create some profiles that use these descriptions.

Moving Right Along
In this chapter you’ve explored a new tool—this time for dealing with sound.

You’ve learned how to create and export a WAV file for use in a game and then

how to insert a sound into a Torque game. You’ve also seen how you can adjust a

sound using TorqueScript, as well as position a sound in the 3D game world.

In the next chapter we’ll look at sound effects in the game world in more detail.

790 Chapter 19 n Creating and Programming Sound

Game Sound
and Music

In the last chapter you saw how to create and edit sounds using Audacity. We’re

now going to move to the next level, using those sounds for effects initiated by

the player, by weapons and ammo, by vehicles, and by places and things in the

world at large.

Also, we’ll touch on the issue of in-game music and how you can use it. I’m not

going to even attempt to teach you how to compose music—that’s far out of

scope for this book. However, I will include some musical pieces on the CD that

you are free to experiment with as we look at the issue. You can find them in

RESOURCES\CH20\MUSIC. They are in Ogg Vorbis format (fully compatible

with Torque), and by three promising game music composers: The Thevenin,

Deffmute, and Black Blaze. You can find more of their work, and the work of

others for free at http://www.download.com by following the links to the

Music>Electronic & Dance>Electronic>Game Soundtracks section.

Player Sounds
In a first-person shooter-styled game, player sounds add to the sense of ‘‘being

there,’’ sometimes in a big way. There are two kinds of player sounds: world

sounds and client-only sounds.

World sounds are effects that are generated on the server that represent sound

effects emitted by your player-avatar in the game world. In this sense, they are

much the analogue of the way you emit sounds in real life: walking, talking, firing

791

chapter 20

weapons, banging on doors, and so on. The server places a sound effect ‘‘in the

world’’ at your location and then updates all the affected clients so that they will emit

the sound (if the client’s player-avatars are close enough to hear the sound) as it was

made, with appropriate modifications, such as attenuation because of distance or

Doppler effect due to the sound source moving toward or away from the listener.

These sorts of sounds are usually called 3D sounds. The actual sound effects have

no inherent 3D characteristics, but the game client handles them in a manner

that imparts 3D positional information to each client.

Client-only sounds are those sounds that a player’s avatar makes that really only

matter to the player. These can be personal noises, like the sounds of heavy

breathing to portray exertion, the sound of something being hit by a bullet, or the

rustle of clothing. Nothing is cut-and-dried though. You might want to use the

sounds in some of those examples as world sounds in order to perhaps betray the

location of a player who is sneaking around in the dark. It all depends on your

game play design.

Some sounds can be attached to the player, like the sounds of footsteps, triggered

by a frame in the animation. The MilkShape DTS Exporter supports this

capability, and we created footstep triggers with our model back in Chapter 14.

However, that being said, there is a way for us to handle attached sound effects

like footsteps using program code, and that’s what we’ll be doing in the next

section, except we will be making our clothes rustle instead.

Other sounds can be emitted in an ad hoc fashion, wherever and whenever we

want. Some examples of these sorts of sounds are utterances or taunts. You press

a key, and your player’s avatar utters a taunt of some sort, such as ‘‘Loser!’’ or

‘‘Ha ha, ya missed me!’’ You can also use ad hoc sounds to issue prerecorded

audible commands. The limits are your imagination. Heck, you could have your

player carry around a boom box and play annoying music!

When you use world sounds, you also have the choice of using them in 3Dmode,

where the sound is played on all the clients as if they were emanating from a

specific location in the game world, or in 2D mode, where the server still directs

the clients to play the sounds, but they have no positional quality to them.

Before we get started, there is a small change to make to your code to fully

incorporate the sound profiles we did back in Chapter 19. Open \KOOB\control\

server\server.cs, find the function OnServerCreated, and inside it, locate the line

792 Chapter 20 n Game Sound and Music

Exec("./misc/camera.cs");

And immediately above it, insert the following line:

Exec("./misc/sndprofiles.cs");

That little number makes sure that the sound profiles we created at the end of

Chapter 19 actually get loaded up when the server starts. If you feel the urge, save

your work, and then go run Koob now. You will finally hear the rain and

thunder.

Rustlers

In our first example we are going to use the serverPlay3D function to make

rustling clothing for our player. Each time the player takes a step, his pants swish

together and the arms of his jacket rustle against his sides. First, you should

record some rustling. Just a single recording will be enough, if you like, but if you

record a half dozen or so different versions that are all similar though slightly

different, you can offer a more natural sound effect by randomly choosing which

sound to play for a given footfall. Make sure to record the sound at 22050 Hz or

maybe even 11025 Hz to keep the file size fairly small. Save the sound as

\KOOB\control\data\sound\rustle1.wav.

After you have the sound effect made, you need to add the following code in

\KOOB\control\server\players\player.cs at the start of the file (after the line that

reads: exec("~/data/models/avatars/orc/player.cs");).

datablock AudioProfile(Rustle1)
{
fileName = "~/data/sound/rustle1.wav";
description = AudioClosest3d;
preload = true;

};

function serverCmdStartRustle(%client)
{
%client.player.schedule(200,playRustle);
%client.player.rustleon= true;

}
function serverCmdStopRustle(%client)
{
%client.player.rustleon = false;

}

Player Sounds 793

function Player::playRustle(%this)
{
if(%this.rustleon)
{
serverPlay3D(Rustle1,%this.getTransform());
%this.schedule(500,playRustle);

}
}

First, there is an AudioProfile datablock. This datablock tells the engine where the

sound effect is and which AudioDescription to use. The particular AudioDescription

in question already resides in \KOOB\control\server\misc\sndprofiles.cs and

looks like the following (do not type this in because we already created it back in

Chapter 19):

datablock AudioDescription(AudioClosest3d)
{
volume = 1.0;
isLooping= false;

is3D = true;
ReferenceDistance= 5.0;
MaxDistance= 60.0;
type = $SimAudioType;

};

The next thing in the new code we added was a message handler for receiving a

message from a client. We defined the message in this case to be StartRustle, and

our only parameter is the handle to the client that sends the message. That

handler makes a call to a method of the Player object called schedule. This

schedules a function execution event for processing sometime later. We also set

the flag %client.player.rustleon to true for future reference. The event delay is

set to 200 milliseconds, or a fifth of a second, in the future. You can change this

value to something else or even have it vary according to movement speed. At the

appointed time, that function, playRustle, is called, and provided that the

%this.rustleon property is set to true, it executes the serverPlay3D function.

Note that in this case, %this is set to be the handle of the object the method is

being called for. That object is the Player object, which happens to be exactly the

same object as %client.player, and it’s a good thing that it is, too!

The way serverPlay3D works is that it accepts an AudioProfile and 3D coordi-

nates in the world space. Conveniently we can get those coordinates from a

794 Chapter 20 n Game Sound and Music

simple call to getTransform. The serverPlay3D function then internally tells all

clients to play that sound effect at those world coordinates.

And hey, presto! You have a rustle.

Before exiting playRustle, the schedulemethod is called again to schedule another

rustle in half a second. It will keep doing this until told to stop. You tell it to stop by

using the stopRustle message, whose handler merely sets %client.player.

rustleon to false, so that the next time playRustle is called, the flag is found to be

false, the sound is played, and the event isn’t rescheduled.

So that’s the guts of getting the sounds to play, but we still need to deal with when

to play them.We want the steps to happen when the player is running and to stop

when he stops moving.

We can easily do this as part of the work-around by trapping the keyboard inputs

that tell the player to move and stop. The function that does this is a client-side

function located in \KOOB\control\client\misc\presetkeys.cs.

Open that file, and locate the function GoAhead, which looks like this:

function GoAhead(%val)
//——
// running forward
//——
{
$mvForwardAction = %val;

}

Change it to this:

function GoAhead(%val)
//——
// running forward
//——
{
$mvForwardAction = %val;
if (%val)
commandToServer(’startRustle’);

else
commandToServer(’stopRustle’);

}

In GoAhead the parameter %val is nonzero when the key that has been mapped to

this function is being pressed, and it is zero when the key is released. Therefore,

Player Sounds 795

the simple if-else code block will send the startRustle message to the server

when the GoAhead key is pressed and the stopRustlemessage when it is released.

The GoAhead key is defined later in the same file to be the w key.

If you like, you can pop into Koob and check out the rustling clothes. I’ll be here

when you get back.

Now if you have been browsing around \KOOB\control\server\sndProfiles.cs

looking at the datablocks in there, you might have come across another work-

around you’re tempted to try—the AudioClosestLooping3d datablock. You

might look at that and say to yourself, ‘‘Self, that has looping built in. No need to

fool with scheduling events on a repeating basis.’’ And you would be right in

making that deduction. However, there is a problem with that approach. Once

you trigger that sound effect at a particular location, it will continue looping, all

right—but at the same location. The rustling won’t follow your player.

Like I said earlier, the absolute best way to do these kinds of repetitive player

sounds is to attach them to the player’s movement animations via triggers in the

model. However, this approach, while inferior to triggered footsteps, is actually a

pretty convenient way to add repetitive sounds like clinking armor, clattering

ammo cans, jingling change, and what have you.

Footsteps

You’re probably tired of having your orc fella gliding along with what seems like

gossamer wings, when you know darn well that he’s tromping along just in that

way that orcs do. Well, let’s put some code in there to hear his tromping.

First, find the file footstep1.ogg in the RESOURCES\CH20 folder, and copy it to

\KOOB\control\data\sound.

Next, use UltraEdit to open \KOOB\control\server\players\player.cs. Locate the

datablock definition for the MaleAvatar that starts with this line:

datablock PlayerData(MaleAvatar)

Scroll down to the end of the datablock, and just after the line that says:

maxInv[CrossbowAmmo] = 20;

Type in the following code:

FootSoftSound = FootLightSoftSound;
FootHardSound = FootLightHardSound;

796 Chapter 20 n Game Sound and Music

FootMetalSound = FootLightMetalSound;
FootSnowSound = FootLightSnowSound;
FootShallowSound = FootLightShallowSplashSound;
FootWadingSound = FootLightWadingSound;
FootUnderwaterSound = FootLightUnderwaterSound;

These are properties of the PlayerData datablock, and we are pointing them to

various audioprofile datablocks for different flavors of footsteps. So now we need

to put those datablocks in as well.

So, in that same file, type the following, inserting it just above the code you typed

in for the rustling clothes:

datablock AudioProfile(FootLightSoftSound)
{
filename = "~/data/sound/footstep1.ogg";
description = AudioClosest3d;
preload = true;

};
datablock AudioProfile(FootLightHardSound)
{
filename = "~/data/sound/footstep1.ogg";
description = AudioClose3d;
preload = true;

};
datablock AudioProfile(FootLightMetalSound)
{
filename = "~/data/sound/footstep1.ogg";
description = AudioClose3d;
preload = true;

};
datablock AudioProfile(FootLightSnowSound)
{
filename = "~/data/sound/footstep1.ogg";
description = AudioClosest3d;
preload = true;

};
datablock AudioProfile(FootLightShallowSplashSound)
{
filename = "~/data/sound/footstep1.ogg";
description = AudioClose3d;
preload = true;

};

Player Sounds 797

datablock AudioProfile(FootLightWadingSound)
{
filename = "~/data/sound/footstep1.ogg";
description = AudioClose3d;
preload = true;

};
datablock AudioProfile(FootLightUnderwaterSound)
{
filename = "~/data/sound/footstep1.ogg";
description = AudioClosest3d;
preload = true;

};

Save your work, and go fire up Koob. You should be able to hear the running

footsteps and the rustling clothes. Notice that you will hear the footsteps no

matter which way you run, but you can only hear the rustling when you run

forward. The footsteps are handled by animation triggers in the sequence files for

the model. You, of course, are responsible for the rustling. It shouldn’t take you

too long to get the rustling happening for sideways and backwards movement as

well as the forward movement.

Utterances

Let’s make our avatar guy say something, something that other players can hear,

by pressing a key. The process is going to be similar in some ways to the rustling

clothes.

First, make another recording, at the sample rate of your choosing. Holler

something into the mike, like, ‘‘Your mother wears army boots!’’ or something

equally endearing. Save it as \KOOB\control\data\sound\insult1.wav.

Then add the following code in \KOOB\control\server\players\player.cs at the

end of the file.

datablock AudioProfile(Insult1)
{
fileName = "~/data/sound/insult1.wav";
description = AudioClose3d;
preload = true;

};

function serverCmdHurlInsult(%client)

798 Chapter 20 n Game Sound and Music

{
serverPlay3D(Insult1,%client.player.getTransform());

}

In this code, serverCmdHurlInsult is the message handler on the server that

receives a direct message sent from the client (which we will get to just a little

further on). There is noticeably less stuff than for the rustling clothes, because we

don’t need to loop the sound effect. We just hurl our insult and maybe run for

cover after that! Now, notice that the profile uses a different AudioDescription.

This time it’s AudioClose3d. (Don’t type this in—it’s already in \KOOB\control\

server\misc\sndProfiles.cs.)

datablock AudioDescription(AudioClose3d)
{
volume = 1.0;
isLooping= false;

is3D = true;
ReferenceDistance= 10.0;
MaxDistance= 60.0;
type = $SimAudioType;

};

The reason for using this datablock is because it defines a sound effect that can be

heard from farther away. The ReferenceDistance is 10 world units. This means

that the sound effect attenuates (the volume decreases) over a longer distance, so

it can be heard from farther away than the rustling clothes.

Next, we need to send the message from the client to the server so that the server

can then notify all the other clients. We’ll do that again with a client-side function

that we’ll call Yell.

Open \KOOB\control\client\misc\presetkeys.cs, and add the following to the end:

function Yell(%val)
{
if (%val)

commandToServer(’HurlInsult’);
}
PlayerKeymap.bind(keyboard, "y", Yell);

The function sends the HurlInsultmessage to the server, but only when the key is

pressed (%val is nonzero), not when it’s released. Then we need to bind a key to

Player Sounds 799

press to trigger the whole thing. We use PlayerKeymap.bind to do that, pointing it

to the Yell function.

There you go—you’re in business.

T i p

You might have trouble hearing your insults over the sound of the crashing lightning. If so,
you can simply rename the datablocks that the Precipitation (RainStorm) and
Lightning (ElectricalStorm) objects in your mission file point to. Just open \KOOB\
control\data\maps\book_ch6.mis and scroll down to the bottom where you inserted those two
storm objects (in the last chapter). In each object’s definition, look for a line that starts with
‘‘datablock =’’ and put a letter in front of the datablock name like this: ‘‘xLightningStorm’’.
Any letter will do. This will cause the engine to not find the datablock, and therefore not
create the storm objects. To restore your storm objects, just remove those letters you inserted.

Another way to stop the thunder from interfering is to open the console, and type (assuming you
did not change the datablock pointers as described in the last paragraph):

ElectricalStorm.strikesperminute=1;

This will change the thunderstorm so that only one strike happens roughly every minute. Do not
set the strikeperminute property to 0, however! This will cause an ‘‘inifinite’’ number of
thundercrashes to happen all at once.

One more variation you should try is recording several different insults and

saving them as insult1.wav, insult2.wav, insult3.wav, and so on. Let’s go ahead

and record five additional different insults.

Now make five more different AudioProfiles that have incremental names

starting with Insult2 and ending with Insult6. Each should uniquely point at

one of the six recordings you made. Then inside the message handler use a bit of

random number code to pick a number between 1 and 6.

%n=getRandom(5) + 1;

This will pick an integer between 0 and 5. Now increment it by 1 so that the result

will be between 1 and 6.

Then rewrite the call to serverPlay3D to look like this:

serverPlay3D("Insult" @ %n, %client.player.getTransform());

This will modify the name of the AudioProfile by putting the random number at

the end. Then every time you hurl the insult, a different epithet will be directed

with withering precision on your foe. Fun for the whole family!

800 Chapter 20 n Game Sound and Music

While we’re at it, you might want to hear what utterances a dying orc makes

(it’s gruesome), so add the following to the top of the file \KOOB\control\server\

players\player.cs, above all those AudioProfile datablocks you typed in earlier for

the rustling clothes and footsteps:

datablock AudioProfile(DeathCrySound)
{
fileName = "~/data/sound/orc_death.ogg";
description = AudioClose3d;
preload = true;

};

datablock AudioProfile(PainCrySound)
{
fileName = "~/data/sound/orc_pain.ogg";
description = AudioClose3d;
preload = true;

};

And add the following to the very end of that same file:

function Player::playDeathCry(%this)
{
%this.playAudio(0,DeathCrySound);

}

function Player::playPain(%this)
{
%this.playAudio(0,PainCrySound);

}

Don’t close the file just yet—one more change to go. While still in player.cs,

locate the function MaleAvatar::onDisabled and type these two lines in at the

start of the function, after the opening brace:

%obj.playDeathCry();
%obj.playDeathAnimation();

That’s a wrap. Save your work.

Death sounds and pain sounds. Oh joy. Well, if we want to actually hear those in

all their excruciating, um, excruciatingness, we’ll need some sound files too.

Copy orc_pain.ogg and orc_death.ogg from RESOURCES\CH20 to \KOOB\

control\data\sound. Then go and find an enemy orc to kill you, or shoot

Player Sounds 801

exploding bolts at the ground at your feet until you die. Naturally it’s a little

weird getting plonked by an orc, or blowing your feet up, without any sound for

the explosions. Well, that just happens to be covered next. . .

Weapon Sounds
Weapon sounds are an interesting study. Weapons have specific support in

Torque, through the use of a programming construct called a state machine. The

basic idea is that we break the operation of a weapon down into different stages,

called states, and we define a specific set of behaviors for each state. Within each

state, we are not aware of what the previous state was, only what needs to be done

in this state.

Using this system, we can quite readily define some rather complex behaviors.

Before continuing, there is some preparatory work that needs to be done first.

Installing the Mission Editor

As we’ve grown our sample game, starting back in Chapter 4, moving through

the various Emaga mutations, and on into Koob, one body of code that has been

deliberately ignored is the Mission Editor code. Now is the time for us to stop

ignoring it. The Mission Editor code body is quite extensive and complex. I’ll not

be diving into the code much, but we do need to get it running, so there are some

non-trivial edits to make to get it working.

If you will recall, back in Chapter 10, I included a note in the Torque GUI Editor

section that instructed you in setting up that editor for use with Emaga6 by

copying the creator folder from \3D2E to \Emaga6 and applying some edits. If

you applied those changes, then we’re ready to proceed with the rest of the

preparations for the Mission Editor. If you didn’t, please slog on back to Chapter

10, to ‘‘The Torque GUI Editor’’ section, and follow the instructions in the note

near the start of that section before advancing beyond this point.

Next, we have to make some changes to a few files in the creator code to integrate

the various creator-based editors with our sample game.

In the file \3D2E\creator\editor\editor.cs, locate the line (near the bottom of the file):

Editor.close("PlayGui");

And change it to:

802 Chapter 20 n Game Sound and Music

Editor.close("PlayerInterface");

Save the file.

Next, make the exact same change in a different file. This time make the change in

the file \3D2E\creator\editor\EditorGui.cs—the line is located roughly one-

quarter of the way into the file.

Then, keeping the EditorGui.cs file open, locate the line (about one-third of the

way into the file) in the EditorGui::onWake function:

MoveMap.push();

And change it to:

PlayerKeymap.push();

Right after that is the EditorGui::onSleep function, and we need to make the

same change. Find:

MoveMap.pop();

And change it to:

PlayerKeymap.pop();

After that, open the file \KOOB\control\client\Initialize.cs, and scroll down to

the function (near the top of the file) called InitializeClient. Inside this

function, locate the line that says:

Exec("./interfaces/serverscreen.gui");

And add these lines after it:

Exec("./interfaces/chatbox.gui");
Exec("./interfaces/messagebox.gui");

And our final change for this section: in the same function, scroll down a bit and

locate the line that says:

Exec("./client.cs");

And add these lines after it:

exec("./misc/chatbox.cs");
exec("./misc/messagebox.cs");

There, that’s that bit done.

Weapon Sounds 803

R emapp i n g K e y s

The Settings screen (accessed by clicking on the Setup button on the main menu) works like the Options
screen in the Torque Demo. All of the functionality is already there, as a result of the work you did in
Chapter 18. All of the functionality, except one bit, that is---remapping the key command bindings.

The key bindings are already pre-defined (hard coded) in the file \KOOB\control\client\misc\presetkeys.cs
(this module is functionally the same as \3D2E\demo\client\scripts\default.bind.cs in the Torque
Demo). This is how we can ensure that there will always be key bindings for the commands that
absolutely need them. But we also may want to allow our users to redefine the bindings, and that
is what the Controls tab in the Settings screen is for.

When the changes are made, the user’s key bindings are saved to \3D2E\control\client\config.cs.
When the game restarts, it should load config.cs module after it has loaded the presetkeys.cs file,
thus overriding the predefined key bindings with the user’s choices. To get the game to actually
do this, you need to open up \3D2E\control\client\initialize.cs and in the InitializeClient
function, immediately below the line about loading presetkeys.cs, insert this line:

Exec("./config.cs");

You are also going to need a button on your main menu screen in order to access the Settings
screen. Open \3D2E\control\client\interfaces\mainmenu.gui and locate the last line that consists of
a closing brace/semicolon pair }; and place the following code above that line:

new GuiButtonCtrl() {
command = "Canvas.pushDialog(SetupScreen);";
text = "Setup";

};

That is what I call a minimalist button control! Only the text of the button and the command it
needs to execute are specified. All the other properties receive default values from Torque. This
means that the button will appear at the upper-left corner of your screen, and it won’t be sized to
match the other buttons. Have no fear! You can use the GUI Editor (invoked by the F10 key) to
move and resize your button, and so on. Or you can peruse the other button controls in main-
menu.gui and let them guide you in making the changes manually in code.

Oh, and by the way---I’m leaving the actual implementation of the key remapping as an exercise
for the reader. But I’m not that evil. The Settings screen is already functional; there’s only the
actual key remapping that needs to be made to work. Here are some clues: you need to copy the
file remapdialog.gui from the Chapter 20 resources folder into one of the folders in \KOOB\control.
You will also need to add a line of code to ensure that the file is loaded and run during the
initialization of the game. Look elsewhere in this section, in this chapter, and maybe even back to
Chapter 18 for some guidance, if you need to.

Crossbow Sounds

We’re going to make your tommy gun from an earlier chapter generate its sound

effects, but before we do that, let’s get the sound humming along for the Orc’s

crossbow. From your RESOURCES\CH20 folder, copy the following files to your

\KOOB\control\data\sound folder:

804 Chapter 20 n Game Sound and Music

ammo_pickup.wav
crossbow_explosion.ogg
crossbow_firing.ogg
crossbow_firing_empty.ogg
crossbow_reload.ogg

Next, copy RESOURCES\CH20\crossbow.cs to the \KOOB\control\server\

weapons folder. You should get a message box asking you if you want to replace

the existing file. Click on Yes. Then run your KOOB game, go grab a crossbow

and some ammo, and go make lots of explosions.

The difference between the two crossbow.cs files is that the new one contains all

of the audio profile declarations that we need. Now go ahead and jump into the

game and make some big booms. You know you want to.

Tommy Gun Preparation

To set up for getting the tommy gun sounds going, go find the tommy gunmodel

you created back in Chapter 16, and copy the model (the DTS file) and the

artwork (the PNG file) that goes with the model to \KOOB\control\data\

models\weapons\. Then go to the folder \3D2E\RESOURCES\CH20\ and copy

the file tommygun.cs into \KOOB\control\server\weapons\.

Next, from the same resources directory, copy the following files to \KOOB\control\

data\models\weapons\:

ammo.jpg
bullethole.png
muzzleflash.png
tgammo.dts
tgprojectile.dts
tgshell.dts

Now for the sounds. I’m not going to make you record your own sounds. You

can copy them from the same resources directory.

ammo_pickup.wav
dryfire.wav
shortreload.wav
tommygun.wav
weapon_pickup.wav
weapon_switch.wav

Deposit these sound files into \KOOB\control\data\sound\.

Weapon Sounds 805

Now open the file \KOOB\control\server\server.cs, and find the function

OnServerCreated at the start of the file. Inside that function is a block of Exec()

statements. Insert the following at the bottom of that block of statements, after

the line about the crossbow:

Exec("./weapons/tommygun.cs");

This tells the engine to load our tommy gun definition file.

Next, open the file \KOOB\control\server\players\player.cs, and near the

beginning of the file, find the line that reads as follows:

datablock PlayerData(MaleAvatar)

At the end of the datablock that starts with that line, before the closing brace ("}")

that ends the datablock, insert the following lines:

maxInv[Tommygun] = 1;
maxInv[TommygunAmmo] = 20;

This indicates how many of the listed items the player can have in his possession,

or inventory, at any given time.

And finally, open the file you copied earlier, \KOOB\control\server\weapons\

tommygun.cs, and at the very top of the file add the following lines:

datablock AudioProfile(TommyGunMountSound)
{
filename = "~/data/sound/shortreload.wav";
description = AudioClose3d;
preload = true;

};

datablock AudioProfile(TommyGunReloadSound)
{
filename = "~/data/sound//Weapon_pickup.wav";
description = AudioClose3d;
preload = true;

};

datablock AudioProfile(TommyGunFireSound)
{
filename = "~/data/sound/tommygun.wav";
description = AudioClose3d;
preload = true;

};

806 Chapter 20 n Game Sound and Music

datablock AudioProfile(TommyGunDryFireSound)
{
filename = "~/data/sound/dryfire.wav";
description = AudioClose3d;
preload = true;

};

datablock AudioProfile(WeaponSwitchSound)
{
filename = "~/data/sound/Weapon_switch.wav";
description = AudioClose3d;
preload = true;

};

And now, add the following rather long datablock to the end of \\KOOB\control\

server\weapons\tommygun.cs

//——
// TommyGun image which does all the work. Images do not normally exist in
// the world, they can only be mounted on ShapeBase objects.

datablock ShapeBaseImageData(TommyGunImage)
{
shapeFile = "~/data/models/weapons/TommyGun.dts";
offset = "0 0 0";
mountPoint = 0;
emap = true;

className = "WeaponImage";

item = TommyGun;
ammo = TommyGunAmmo;
projectile = TommyGunProjectile;
projectileType = Projectile;
casing = TommyGunShell;
armThread = "look2";

// State Data
stateName[0] = "Preactivate";
stateTransitionOnLoaded[0] = "Activate";
stateTransitionOnNoAmmo[0] = "NoAmmo";
stateName[1] = "Activate";
stateTransitionOnTimeout[1] = "Ready";

Weapon Sounds 807

stateTimeoutValue[1] = 0.7;
stateSequence[1] = "Activated";
stateSound[1] = WeaponSwitchSound;

stateName[2] = "Ready";
stateTransitionOnNoAmmo[2] = "NoAmmo";
stateTransitionOnTriggerDown[2] = "Fire";
stateScript[2] = "onReady";
stateTransitionOnReload[2] = "Reload";

stateName[3] = "Fire";
stateTransitionOnTimeout[3] = "Ready";
stateTimeoutValue[3] = 0.096;
stateFire[3] = true;
stateRecoil[3] = LightRecoil;
stateAllowImageChange[3] = false;
stateSequence[3] = "Fire";
stateScript[3] = "onFire";
stateSound[3] = TommyGunFireSound;
stateEmitter[3] = TommyGunFireEmitter;
stateEmitterTime[3] = 1.0;
stateEmitterNode[3] = "muzzlePoint";

stateName[4] = "Reload";
stateTransitionOnNoAmmo[4] = "NoAmmo";
stateTransitionOnTimeout[4] = "FinishedReloading";
stateTimeoutValue[4] = 3.5; // 0.25 load, 0.25 spinup
stateAllowImageChange[4] = false;
stateSequence[4] = "Reload";
stateScript[4] = "onReload";
stateSound[4] = TommyGunReloadSound;

stateName[5] = "FinishedReloading";
stateTransitionOnTimeout[5] = "Activate";
stateTimeoutValue[5] = 0.04;
stateScript[5] = "onFinishedReloading";

stateName[6] = "NoAmmo";
stateTransitionOnAmmo[6] = "Reload";
stateSequence[6] = "NoAmmo";
stateScript[6] = "onNoAmmo";
stateTransitionOnTriggerDown[6] = "DryFire";

808 Chapter 20 n Game Sound and Music

stateName[7] = "DryFire";
stateSound[7] = TommyGunDryFireSound;
stateScript[7] = "onDryFire";
stateTimeoutValue[7] = 0.5;
stateTransitionOnTimeout[7] = "NoAmmo";

stateName[8] = "WaitTriggerRelease";
stateScript[8] = "onWaitTriggerRelease";
stateTransitionOnTimeout[8] = "WaitTriggerRelease";
stateTimeoutValue[8] = 0.01;
stateTransitionOnTriggerUp[8] = "Ready";

autoFire = true;
weaponDamage = 60;
minSpread = 0.01;
maxSpread = 0.045;
spreadRate = 0.019; // amount spread should increase per shot
spreadRecoverRate = 0.003;

};

The first thing this new code does is define a bunch of audio profiles, TommyGun

MountSound, TommyGunReloadSound, TommyGunFireSound, TommyGunDryFireSound,

and WeaponSwitchSound. These profiles are used in each of the different weapon

firing states. Those states are defined in the next part of the new code.

That next part is a datablock of the type ShapeBaseImageData. This is what defines

the gun itself and how it works.

First, there is a set of basic properties, like where to find the model that represents

the image and so on. For this example, I have used the samemodel as the one that

is used for the external view—the view of your player-model that everyone else

sees. You, though, only see the weapon image. This means that to do this right,

you will need to make another model of the weapon for use in this image. Later

on you will see why this matters.

Nowwe add the WeaponImage namespace as a parent. The WeaponImage namespace

provides some hooks into the inventory system that are necessary for picking up

the gun.

Next are a bunch of pointers that tell what various resources we will need in order

to use this gun.

Weapon Sounds 809

Finally, we encounter the code that defines the state machine. What happens is

that when you pick up the gun, the Torque Engine sets it to the first state:

Preactivate.

In the Preactivate state, we have only two variables, and they tell the state

machine what to do immediately next. If the gun is loaded, it should change to

the Activate state; if not, it should change to the NoAmmo state. If you scroll down

until you find the line that says stateName[6] = "NoAmmo"; you will find that

state’s definition.

In the NoAmmo state, there are several directives that the engine must follow while

in this state. If we suddenly receive some ammo, then we change to the Reload

state. If the gun’s trigger is pressed, we enter the DryFire state. Note that there is

also a pointer to a function (the onNoAmmo function) that we can execute when we

find ourselves in this state. This can also be called the state handler.

All the rest of the states operate in a similar way, and the directives are quite easy

to read and follow. The important ones for this chapter are the stateSound

directives, which tell the engine what audio profiles to use when we arrive in that

state.

The state machine definition in the TommyGunImage datablock you’ve just seen is

really quite easy to follow. You can modify it in all sorts of ways to accommodate

any variation you might imagine.

Now after getting \KOOB\control\server\weapons\tommygun.cs typed in and

double-checking it all, you’re going to want to test it out. Well in order to do that,

you will need to be able to place objects in the mission. And that means having

the freedom to go where you want, and that means you’ll need to be able to use

the camera fly mode, just like you do in the Torque demo. Well, the code for that

is in the scripts, but the key bindings aren’t. So that means we’ll have to add the

key bindings. This is a good opportunity to try out the new Setup button.

Launch Koob, and click on the Setup button in your main menu screen. Next,

click on the Controls button, then scroll down to the very bottom of the list of

controls.

Double-click on the ‘‘Toggle Camera’’ entry, then press the F6 key when the little

dialogbox sayingREMAP ‘‘ToggleCamera’’ pops up.Next, in the sameway, assign

F8 to ‘‘Drop Camera at Player’’. Finally, use F7 for ‘‘Drop Player at Camera’’.

By the way: ‘‘Drop Camera at Player’’ is the same as entering camera fly mode.

810 Chapter 20 n Game Sound and Music

Launch your Koob game. Once you have spawned in, you are going to use the

World Editor to insert a tommy gun and some ammo into the game world.

1. Press F8. This will set your player into camera fly mode.

2. Press F11. This will open up the World Editor, as shown in Figure 20.1.

3. Press F4. This will open up theWorld Editor Creator, as shown in Figure 20.2.

The Creator pane is circled at the lower-right corner of the window.

4. In the Creator pane, click the plus sign next to Shapes. This will expand the

listing.

5. Locate Weapon, and click the plus sign to open it as well. You should now

have a Tree view similar to Figure 20.3.

6. Make sure that the center of the view is located in an open area about 10

virtual feet in front of you. To move the view in the World Editor, hold

down the right mouse button, and move the mouse.

7. Click Tommygun in the Tree view. The tommy gun model will appear;

it will probably be somewhat embedded in the ground, as shown in

Figure 20.4, and it will be rotating.

Weapon Sounds 811

Figure 20.1
World Editor.

8. Move the cursor over on top of the vertical axis line (labeled Z) that sprouts

from the top of the gun model. The Z-axis label will become highlighted, as

shown in Figure 20.5.

9. Click the vertical Z-axis line, and drag it up just a few pixels, until the gun is

completely out of the ground, as depicted in Figure 20.6.

Note that this is the reason why you needed to switch to camera fly

mode before entering the World Editor. If you had stayed in normal

812 Chapter 20 n Game Sound and Music

Figure 20.2
World Editor Creator.

Figure 20.3
The Creator Tree view.

FPS view mode, you would not have been able to grab the Z-axis line and

move it.

10. Now turn your view slightly to the side, and repeat the same process by

placing an ammo box, as shown in Figure 20.7. The ammo box can be found

in the Tree view at Shapes, Ammo, TommygunAmmo.

Weapon Sounds 813

Figure 20.4
Tommy gun model.

Figure 20.5
The Z-axis label.

T i p

You should consider placing lots and lots of ammo boxes. Submachine guns like the tommy gun
go through ammo at a prodigious rate! If you do put lots of ammo boxes in, you might consider
modifying the player datablock so that the player can have more tommy gun ammo in his
inventory.

814 Chapter 20 n Game Sound and Music

Figure 20.6
Repositioned tommy gun.

Figure 20.7
Placing ammo box.

11. Now press F11 to toggle out of the World Editor. If you are in camera fly

mode, press F6 to toggle yourself back into your character.

Okay, now run on over and pick up the ammo and the tommy gun by just

passing right over on top of them. Take note, don’t pick up the crossbow first,

because you have no way of getting rid of it. Also, wait several seconds after you

have picked up both the gun and the ammo before actually trying to shoot. There

is a several seconds delay in the sequence to simulate the time it takes to mount

the magazine in the gun, pull back the charging handle, and so on.

Youwill immediately notice that the gun doesn’t carry properly. However, go ahead

and shoot it, and listen to the firing sequence and all the sounds we’ve been dealing

with. You can make another model to act as the mounted (carried) version of the

gun. Also, you will need to adjust your model animations to ensure the model will

carry the gun properly—the provided example character doesn’t do that.

You can go back to your ShapeBaseImageData in the tommygun.cs file and fiddle

with the state machine and other variables and see how they affect your gun’s

behavior.

Vehicle Sounds
Vehicles are obvious sound sources. An idling engine, squealing tires, whirring

propellers—the kind of vehicle dictates the needs. Torque has several defined

vehicle types, but we’ll just look at the wheeled vehicle and add some sound

effects to the runabout.

To start, you will need to record sound effects for the following:

n engine idle

n acceleration

n wheel impact

n wheel squeal

n soft crash

n hard crash

In lieu of creating your own, feel free to use the sounds that I have provided at

\3D2E\RESOURCES\CH20\. Deposit the files into \KOOB\control\data\sound\.

Vehicle Sounds 815

Next, copy the car definition module, \3D2E\RESOURCES\CH20\car.cs, to

\KOOB\control\server\vehicles. If the directory doesn’t exist, create it.

Then copy your runabout model (from Chapters 9 and 15) and all its artwork

into \KOOB\control\data\models\vehicles. Again, if the directory doesn’t exist,

create it. Make sure your runabout is named runabout.dts and the wheel model is

named wheel.dts. Your texture files would be runabout.jpg and wheel.jpg, unless

you used different names.

Now open the file \KOOB\control\server\server.cs, and find the function

OnServerCreated at the start of the file. Inside that function is a block of Exec()

statements. Insert the following at the bottom of that block of statements:

Exec("./vehicles/car.cs");

This tells the game engine to load your car definition file.

And finally, open that very same definition file, \KOOB\control\server\

vehicles\car.cs, and add the following lines to the beginning, just in front of the

TireParticleParticleData datablock:

datablock AudioProfile(CarSoftImpactSound)
{
filename = "~/data/sound/vcrunch.ogg";
description = AudioClose3d;
preload = true;

};

datablock AudioProfile(CarHardImpactSound)
{
filename = "~/data/sound/vcrash.ogg";
description = AudioClose3d;
preload = true;

};

datablock AudioProfile(CarWheelImpactSound)
{
filename = "~/data/sound/impact.ogg";
description = AudioClose3d;
preload = true;

};

816 Chapter 20 n Game Sound and Music

datablock AudioProfile(CarThrustSound)
{
filename = "~/data/sound/caraccel.ogg";
description = AudioDefaultLooping3d;
preload = true;

};

datablock AudioProfile(CarEngineSound)
{
filename = "~/data/sound/caridle.ogg";
description = AudioClose3d;
preload = true;

};

datablock AudioProfile(CarSquealSound)
{
filename = "~/data/sound/squeal.ogg";
description = AudioClose3d;
preload = true;

};

Be sure to replace the Ogg Vorbis file name that I used in those audioprofiles with

the ones you recorded yourself.

Now add this following block of code to the same file, car.cs, but this time put it

at the very end of the file:

datablock WheeledVehicleData(DefaultCar)
{
category = "Vehicles";
className = "Car";
shapeFile = "~/data/models/vehicles/runabout.dts";
emap = true;

maxDamage = 1.0;
destroyedLevel = 0.5;

maxSteeringAngle = 0.785; // Maximum steering angle
tireEmitter = TireEmitter; // All the tires use the same dust emitter

// 3rd person camera settings
cameraRoll = true; // Roll the camera with the vehicle
cameraMaxDist = 6; // Far distance from vehicle
cameraOffset = 1.5; // Vertical offset from camera mount point

Vehicle Sounds 817

cameraLag = 0.1; // Velocity lag of camera
cameraDecay = 0.75; // Decay per sec. rate of velocity lag

// Rigid Body
mass = 200;
massCenter = "0 -0.5 0"; // Center of mass for rigid body
massBox = "0 0 0"; // Size of box used for moment of inertia,

// if zero it defaults to object bounding box
drag = 0.6; // Drag coefficient
bodyFriction = 0.6;
bodyRestitution = 0.4;
minImpactSpeed = 5; // Impacts over this invoke the script callback
softImpactSpeed = 5; // Play SoftImpact Sound
hardImpactSpeed = 15; // Play HardImpact Sound
integration = 4; // Physics integration: TickSec/Rate
collisionTol = 0.1; // Collision distance tolerance
contactTol = 0.1; // Contact velocity tolerance

// Engine
engineTorque = 4000; // Engine power
engineBrake = 600; // Braking when throttle is 0
brakeTorque = 8000; // When brakes are applied
maxWheelSpeed = 30; // Engine scale by current speed / max speed

// Energy
maxEnergy = 100;
jetForce = 3000;
minJetEnergy = 30;
jetEnergyDrain = 2;

// Sounds
engineSound = CarEngineSound;
jetSound = CarThrustSound;
squealSound = CarSquealSound;
softImpactSound = CarSoftImpactSound;
hardImpactSound = CarHardImpactSound;
wheelImpactSound = CarWheelImpactSound;

};

As you’ve seen in earlier sections, we start out with a gaggle of AudioProfiles that

define each of our sounds.

818 Chapter 20 n Game Sound and Music

After that comes the vehicle datablock. Most of the properties are explained in

the code commentary or are self-explanatory. The ones that we are most inter-

ested in are at the end.

The engineSound property is the sound the vehicle makes while idling. As long as

the vehicle is running, it will make this noise.

The jetSound property is the one used when the vehicle accelerates. The name is a

holdover from the Tribes 2 game engine in the early Torque days.

The squealSound property is the sound emitted by the tires when the vehicle is

manhandled around a corner, causing the tires to slip.

The two impact sound properties, softImpactSound and hardImpactSound, are

used when the vehicle collides with objects at different speeds, as defined by the

softImpactSpeed and hardImpactSpeed properties earlier in the datablock.

Finally, the wheelImpactSound is the sound emitted when the wheels hit some-

thing at greater than the minimum impact speed, defined by minImpactSpeed

earlier in the datablock.

Now we have to make some changes to our player’s behavior. What we want is to

have the player get in the car when he goes up to it.

Open the file \KOOB\control\server\players\player.cs, and locate these lines:

{
%obj.pickup(%col); // otherwise, pick the item up

}

and insert the following after the second brace:

%this = %col.getDataBlock();
if (%this.className $= "Car")
{

%node = 0; // Find next available seat
%col.mountObject(%obj,%node);
%obj.mVehicle = %col;

}

Next, add the following code to the end of the file:

function MaleAvatar::onMount(%this,%obj,%vehicle,%node)
{
%obj.setTransform("0 0 0 0 0 1 0");

Vehicle Sounds 819

%obj.setActionThread(%vehicle.getDatablock().mountPose[%node]);
if (%node == 0)
{
%obj.setControlObject(%vehicle);
%obj.lastWeapon = %obj.getMountedImage($WeaponSlot);
%obj.unmountImage($WeaponSlot);
%db = %vehicle.getDatablock();

}
}

function MaleAvatar::onUnmount(%this, %obj, %vehicle, %node)
{
%obj.mountImage(%obj.lastWeapon, $WeaponSlot);

}

function MaleAvatar::doDismount(%this, %obj, %forced)
{
// This function is called by the game engine when the jump trigger
// is true while mounted

// Position above dismount point
%pos = getWords(%obj.getTransform(), 0, 2);
%oldPos = %pos;

%vec[0] = " 1 1 1";
%vec[1] = " 1 1 1";
%vec[2] = " 1 1 -1";
%vec[3] = " 1 0 0";
%vec[4] = "--1 0 0";

%impulseVec = "0 0 0";
%vec[0] = MatrixMulVector(%obj.getTransform(), %vec[0]);

// Make sure the point is valid
%pos = "0 0 0";
%numAttempts = 5;
%success = -1;

for (%i = 0; %i < %numAttempts; %i++)
{
%pos = VectorAdd(%oldPos, VectorScale(%vec[%i], 3));
if (%obj.checkDismountPoint(%oldPos, %pos))
{

820 Chapter 20 n Game Sound and Music

%success = %i;
%impulseVec = %vec[%i];
break;

}
}
if (%forced && %success == -1)
%pos = %oldPos;

%obj.unmount();
%obj.setControlObject(%obj);
%obj.mountVehicle = false;

// Position above dismount point
%obj.setTransform(%pos);
%obj.applyImpulse(%pos, VectorScale(%impulseVec, %obj.getDataBlock().

mass));
}

This code allows us to get in (mount) the car and then get out (dismount). When

we get out of the car, we want to get far enough away from it so that we don’t

automatically get back into the car—that’s what all the impulse vector calcula-

tion is about. There’s nothing about the sound in there, but it is convenient to

have this ability to get in and out whenever we want.

Now use the same procedures with the World Editor as with the tommy gun to

insert the car into the game world. You will find the car in the Tree view under

Shapes, Vehicles. Remember to tug the model up out of the ground if it’s

embedded in the ground—but don’t tug it too hard, or you might fling it into

outer space!

Run up to the car, and you will automatically go inside and be seated. Use the

normal forward movement key (Up Arrow) to accelerate and the mouse to steer

left and right. Press the spacebar to jump out. Have at it!

Environmental Sounds
A silent world is a dreary one. You can liven up your game world by inserting

sounds to give a sense of the environment using AudioEmitters.

First, copy the file \3D2E\RESOURCES\CH20\loon.wav over to \KOOB\control\

data\sound\.

Then open \KOOB\control\server\misc\sndprofiles.cs, and add the following

AudioProfile to the end of the file:

Environmental Sounds 821

datablock AudioProfile(LoonSound)
{
filename = "control/data/sound/loon.wav";
description = AudioDefaultLooping3d;

};

Run your game, and open the World Editor and then the World Editor Creator

as before.

Next, in the Tree view, locate Mission Objects, Environment, AudioEmitter, as

shown in Figure 20.8. Click AudioEmitter while facing a location where you

would like to place the AudioEmitter.

In the dialog box presented (see Figure 20.9), click the Sound Profile button.

From the list that opens, choose the LoonSound Profile.

Make sure the Use profile’s desc?, Looping?, and Is 3D sound? check boxes are

selected, and then click OK. Check Figure 20.9 to verify the settings.

An AudioEmitter marker will be placed in the game world at the center of your

screen, on the ground, as shown in Figure 20.10.

Now exit the editor by toggling the F11 key, make sure you are in camera fly

mode, and move up and away from where you placed the marker. Then go back

in to the editor. You should see two concentric spheres, as shown in Figure 20.11.

The inner sphere is very faintly defined with gray lines in the figure, while the

outer sphere is defined with black lines. In the Torque Editor, the inner sphere is

made with red lines, and the outer sphere is made with blue lines.

The inner sphere represents the reference (or minimum) distance, and the outer

sphere represents the maximum distance. The larger the outer sphere, the more

822 Chapter 20 n Game Sound and Music

Figure 20.8
AudioEmitter in Tree view.

gradual the drop-off in sound as you move away from the emitter. The larger the

inner sphere, the farther the sound will carry.

Press F3 to switch to World Editor Inspector, and then click the hand cursor on

the marker. At the lower right, the editor frame contains the properties for the

object, as shown in Figure 20.12.

You can use this frame to adjust the settings for the emitter. Click the buttons in the

Inspector frame to expand a selection of properties. After making changes, make

sure to click the Apply button to have your changes applied to the selected object.

Interface Sounds
Torque has a mechanism built in to offer sound effects when you use buttons.

Objects that use the GuiDefaultProfile profile have two sound effects available:

soundButtonDown and soundButtonOver.

Interface Sounds 823

Figure 20.9
The Building Object: AudioEmitter dialog box.

If you look in \KOOB\control\client\default_profiles, you will find a sound effect

for the buttonover context that I’ve created. This sound occurs whenever the

cursor passes over a GUI button that has been defined to use the GuiDe-

faultProfile. The line looks like this:

GuiButtonProfile.soundButtonOver = "AudioButtonOver";

It points the property to client-side AudioProfile. The profile is located in

\KOOB\control\client\misc\sndprofiles.cs.

The AudioButtonOver profile looks like this:

new AudioProfile(AudioButtonOver)
{
filename = "~/data/sound/buttonOver.wav";
description = "AudioGui";
preload = true;

};

824 Chapter 20 n Game Sound and Music

Figure 20.10
The AudioEmitter marker.

We need the client-side profiles loaded before the main menu screen loads. In

fact, we really need them to load before any client-side things get loaded, so that

they are ready when needed. To do that, we will load them from \3D2E\

control\main.cs, which actually initiates both the client- and server-side script

loading. So open \3D2E\control\main.cs and locate the line that says:

Exec("./client/initialize.cs");

And place the following line directly above it:

Exec("./client/misc/sndprofiles.cs");

With that done, you can pop into Koob and wave your cursor around over the

various buttons and hear the beeping goodness. You can also now go into the

Setup screen and move the volume sliders around, and hear the test sound

volume change to match the slider settings.

Interface Sounds 825

Figure 20.11
The AudioEmitter spheres.

A useful exercise for you at this point would be to create a sound effect for

pressing down on the button, insert the appropriate audio profile code, and then

point the soundButtonDown property at it, just as I showed you for the sound-

ButtonOver property.

Music
You can handle music in much the same way as the simple sound effect I showed

you at the beginning of this chapter. A useful way to employ music is to provide a

background for the different dialog boxes or menu screens in the GUI. Of course,

you can also insert music into the game as AudioEmitters or even attach it to

vehicles or players.

We’ll take a slightly more conventional approach and put in some start-up

music. First, locate the file \3D2E\RESOURCES\CH20\TWLOGO.WAV, and

copy it over to \KOOB\control\data\sound\.

Next, open the file \KOOB\control\client\misc\sndprofiles.cs, and add the fol-

lowing code to the top of the file:

826 Chapter 20 n Game Sound and Music

Figure 20.12
World Editor Inspector frame.

new AudioDescription(AudioMusic)
{
volume = 0.8;
isLooping= false;
is3D = false;
type = $MusicAudioType;

};

new AudioProfile(AudioIntroMusicProfile)
{
filename = "~/data/sound/twlogo.wav";
description = "AudioMusic";
preload = true;

};
function PlayMusic(%handle)
{
if (!alxIsPlaying(%handle))
alxPlay(%handle);

}

function StopMusic()
{
alxStopAll();

}

Now open \KOOB\control\client\initialize.cs, and in the InitializeClient

function you will find a line that starts with InitCanvas.

Add the following just below it:

PlayMusic(AudioIntroMusicProfile);

This will start the opening music playing as soon as the sound system is activated

immediately after the game application has been launched.

Now open the file \KOOB\control\client\client.cs, and insert the following line as

the first line in the LaunchGame() function:

StopMusic();

This line will ensure that if the opening music is still playing when you actually go

to start the game, it will be turned off.

Now go ahead and launch the game and listen to the music.

Music 827

You can use the same technique in combination with the CommandToClient

(XXXX)/clientCmdXXXX system that we’ve used in earlier chapters to have the

server trigger music cues on all or selected clients whenever you want.

Moving Right Along
There you go. Enough sound that the people around you will be pestering you to

turn the blasted game down!

You’ve seen the ways that sounds can be added for player-avatars, vehicles, and

weapons. You’ve seen what a state machine does and how it helps define what

sounds occur, and when, when using a weapon.

Then there’s the ability to hurl insults at other players—a very important feature

to know how to put into a game!

You’ve seen how to add sounds into your game world at specific locations, so that

you can bring life to a babbling brook or make the wind howl on an open plain.

Adding sounds to the user interfaces, like buttons on interface screens, is really

reasonably simple, as you’ve seen.

Finally, adding music to your game is really no more complex than adding any

other sound, and in some cases it’s easier. You’ve seen how you can control the

playing of music using TorqueScript.

In the next chapter we begin rolling together all the things covered in earlier

chapters, by starting to create a game world.

828 Chapter 20 n Game Sound and Music

Creating the
Game Mission

Let’s take a moment to step back and see where we are.

In the first chapters of the book you learned the basics of programming and how

to apply those concepts to real things that can be done with amodern game engine.

In the process you learned how to use a programming editor—UltraEdit—and

how to use Torque to try out our ideas. You saw that Torque has a powerful script

system and the things you can do with it are almost limitless.

We then moved on to artwork, starting with textures and graphic images. You

learned about a couple of new tools—the Gimp 2 and UVMapper—and how to

apply them to the task of skinning 3D objects and GUI screens.

Then we got into modeling 3D objects, using a few more tools—MilkShape and

QuArK—to create the models using different techniques. Animating our objects

using MilkShape helped bring static models to life.

After that it was on to some nifty things like creating skyboxes and images for

weather effects, such as lightning and rain.

Then it was sound effects, recording them and using them in a game in different

ways.

Now you might think that all of this is leading somewhere. And you would be

right!

829

chapter 21

Game Design
Okay, enough typing and programming for now. It’s time to examine some

higher-level issues, like game design.

Start with a vision.

Youhave an idea. It canbe an amorphous, gee-I’m-not-really-sure-but-something-

like-this idea, or it can be concrete, specific, and detailed. Using that as your

reference, start asking yourself questions, write them down, and don’t worry about

answering them . . . yet.

Requirements

There are myriad questions you can ask yourself when considering the design of

your game:

n What will the genre or play style be like?

n Will this be a single-player or multiplayer game?

n If it is to be a multiplayer game, will it be an online game or a split-screen

type of multiplayer game?

n Does the game relate to real-world activities?

n Does the player play as a creature-character (human, animal, alien, and so

on) or as some sort of machine?

n If the player isn’t a creature or a machine, is he some sort of higher-level

being that directs or controls a multitude of game entities?

n What are the player’s goals?

n How do we measure player success, and what are the scoring

mechanisms?

n What are the challenges that the game presents to us as players?

n Will the challenges be designed (planned by the game developers), or will

they be random?

n What is the backstory (the narrative that describes the world the game takes

place in), if any?

830 Chapter 21 n Creating the Game Mission

n What is it about the game that will make people want to play it?

n What is the one skill or skill set that the game requires the player to master in

order to succeed?

n What other skills will contribute to player success?

n What mechanisms can the game offer that will help players develop those

skills?

n How much game enhancement of skills is too much help?

Feel free to add more questions of your own.

As you can see, the list is big, and we’ve only scratched the surface here. By

answering these questions, and any others you may want to add, you can build a

list of requirements. It is important to generate at least this list—the requirements

specification—in order to know where you are going with your design and how to

measure your progress toward completion.

Software design is a big-ticket item, andhundreds of books have beenwritten about

it and the various design methodologies that have been proposed. It’s an industry

unto itself. There are dozensof different ideas about thebest approach to take—and

much disagreement. The one area everyone seems to agree on, however, is the need

for the requirements to be determined and recorded in a meaningful way. Func-

tional specs, test plans, schedules, and the likemayormaynotwork for you, but you

will get nowhere fast if you don’t know what it is you are trying to accomplish.

Some of the questions lead to other questions. Some answers may need to be

deferred until later when you have more information. Even if your list of

questions exceeds your list of answers, it is still an important activity. Keep the

list nearby, return to it regularly, and update the answers. See where it leads you.

Perhaps you can see that you are wandering away from your original vision. The

list may uncover things you’d never considered before, that really are important,

and prevent you from wasting time on a mistaken approach.

When you work your way through creating the questions, try hard to stay

general—steer away from specifics until they can’t be avoided any longer.

At some point you will want to ask yourself, ‘‘What technology should I use to

create this game?’’ Don’t ask this question at the very beginning. In most cases you

should wait until you know the answers to the bulk of your questions—in other

Game Design 831

words, wait until your requirements are starting to look meaty and useful—before

you ask yourself technology questions.

Constraints

We usually have to accept that there are constraints that can arbitrarily force us to

move in particular directions or prevent us from moving in others.

The design should drive the technology and not the other way around. However,

in a low-budget development shop, this is often an unaffordable luxury. There

are budgetary constraints caused by available funds that will force us in certain

technological directions. In our case, because this book is about making games

with minimal expenditure and using the Torque Game Engine to help us achieve

that goal, we will have to accept that constraint and monitor the effect it has on

our design as we build it up.

Again in our case, because we already know the technology we are going to use, we

should examine it for its limitations and measure our constraints starting there.

As mentioned elsewhere Torque is designed for online, multiplayer, first-person

shooter-style games. This means that whenever implementation tradeoffs had to

occur when creating the game engine, the developers always tried to make their

decisions in a way that favored efficient and fast networking, first-person per-

spective 3D rendering, and multiplayer support.

One thing that Torque, right out of the box, doesn’t address in its design is

massive multiplayer support. Torque can easily handle 64 players logged in to

one session. It can even handle more than 100. In fact, there is no hard-coded

limit to the number of players that could log in to the same server. But because of

its design, Torque really starts to lose its shine when you exceed the realm of

about 100 players.

Massively multiplayer games require the ability to have thousands of players

playing the same game together. Torque just doesn’t handle this kind of load.

So the server load is a constraint. While Torque’s ability to handle 100 players at

once is better than most, if not all, other FPS-style games out there, that still

doesn’t translate to thousands. We must keep this in mind.

The tools we have available can dictate other constraints. It’s fine to decide that you

will have a certain feature, but it may require an expensive 3D modeling tool to

create and thus sit out of reach. So make sure you can create the things you want.

832 Chapter 21 n Creating the Game Mission

Koob

Let’s go about listing some requirements for Koob, the game we are making. Feel

free to add your own, but the list of 29 items here will serve as a starting place.

1. First-person and third-person perspective play.

2. Internet multiplayer game play.

3. Global in-game chat.

4. Ability to use at least one weapon.

5. Ability to get in and out of vehicles.

6. Ability to drive vehicles.

7. A road or track in the world to drive on.

8. Trees and other foliage.

9. Powerups: health, energy, ammunition, coins (for points).

10. Buildings that serve as hiding places and storage locations for powerups.

11. All other players are enemies.

12. All point values configurable from a setup file.

13. 1 point per enemy killed.

14. 3 points per vehicle destroyed.

15. Ability to race around the track and score 5 points for each lap you lead.

16. Laps can only be scored in the car.

17. A 10-lap race with no time limit.

18. A 10-point bonus for winning the race.

19. On-screen scorecard.

20. Scores retained at the end of each race restored when player resumes the

game.

21. Each player gets an account at startup and must use a password to log in to

the game.

Game Design 833

22. Track must be clearly marked on the terrain.

23. Checkpoints along the way to measure progress and ensure the player stays

on course.

24. Laps can only be completed when all checkpoints are completed for that lap.

25. Checkpoints must be completed in sequential order.

26. Coins of three denominations will be randomly scattered around the maps.

The values will be 1 point, 10 points, and 100 points for copper, silver, and

gold, respectively.

27. Some nice burning objects to admire as we play.

28. A waterfall to drive through just for the heck of it.

29. When one map is finished, cycle to the next in the list.

So as you can probably gather, Koob is a kind of death-match scavenger-hunt

game. The player tries to win the race, accumulate some loot, and, at the same

time, stop his enemies from winning.

As we progress from here to the end of the book, we’ll check back against this list

of requirements to make sure we’ve covered all the items.

Right off the bat, we can check off item 1. A few of the other items are definitely

doable because we’ve chosen the Torque Engine to create the game, but we have

some programming yet to do to make them happen.

Torque Mission Editor
You’ve already been exposed to the Mission Editor—a little bit here, a little bit

there. As you’ve seen, the Mission Editor contains several subeditors: the World

Editor, Terrain Editor, Terrain Terraform Editor, Terrain Texture Editor, and

Mission Area Editor. Themain point of this section is to place objects in the game

world and adjust them as required. To do this we will use the World Editor,

which has two components: the World Editor Creator and its partner, the World

Editor Inspector.

In the Mission Editor the normal movement keys can be used to control both the

player and the camera. The right mouse button is used to rotate the camera or

adjust the player’s view.

834 Chapter 21 n Creating the Game Mission

File Menu

Disk and file operations are carried out using the items in the File menu, as

shown in Table 21.1. These include opening, saving, importing, and exporting.

Edit Menu

As is standard with windowed applications these days, there is an Edit menu that

houses a variety of object and item editing commands. As you can see in Table 21.2,

Torque Mission Editor 835

Table 21.1 File Menu Commands

Command Description

New Mission Creates a new empty mission with a default terrain and sky.

Open Mission Opens an existing mission for editing.

Save Mission Saves changes to the current mission to disk.

Save Mission As Saves the current mission under a new name.

Import Terraform Data Imports Terraform rules from an existing terrain file.

Import Texture Data Imports terrain texture rules from an existing terrain file.

Export Terraform Bitmap (Only active from the Terrain Terraform Editor.) Exports the current Terraform
map to a bitmap.

Toggle Map Editor Closes the editor and return to the previous interface (usually the game HUD).

Quit Quits the game or demo.

Table 21.2 Edit Menu

Menu Item Description

Undo Undoes the last action in terrain or world editing. Not all actions can be undone.

Redo Redoes the last undone action.

Cut Cuts the selected objects in the World Editor from the mission to the Clipboard.

Copy Copies the selected objects in the World Editor to the Clipboard.

Paste Pastes the current clipboard contents into the mission.

Select All Selects all mission objects in the World Editor.

Select None Clears the current selection in the World and Terrain Editors.

Relight Scene Recomputes the mission’s static lighting and applies it.

World Editor Settings Accesses the settings dialog box for the World Editor.

Terrain Editor Settings Accesses the settings dialog box for the Terrain Editor.

in addition to the ubiquitous Cut, Copy, and Paste functions, there are also

commands used to access various settings for the editors.

Camera Menu

Use the Camera menu, as described in Table 21.3, to change camera modes and

adjust the camera fly mode speed.

Other Menus

The World menu is available by default and contains functions related to the

World Editor. Its capabilities will be described in the ‘‘World Editor’’ section,

which is coming up next.

The Window menu is pretty straightforward, so it doesn’t require a table to

describe its functions. It is used to invoke each of the available subeditors.

World Editor

The World Editor provides a view of the 3D world. Objects in this view, like

structures, interiors, shapes, and markers, can be manipulated with either the

mouse or the keyboard.

There are three frames in the view: the World Editor Tree, the World Editor

Inspector, and the World Editor Creator.

World Editor Tree

The World Editor Tree view is displayed in the frame in the upper-right screen

corner in both the World Editor Inspector and the World Editor Creator. This

836 Chapter 21 n Creating the Game Mission

Table 21.3 Camera Menu

Menu Item Description

Drop Camera At Player Moves the camera object to the location of the player, and sets the mode to
camera movement mode (camera fly mode).

Drop Player At Camera Moves the player object to the location of the movable camera, and sets the
mode to player movement mode (player mode).

Toggle Camera Toggles between player and camera fly movement modes. Your view will also
switch to the location of either the player or the camera, depending on the mode.

Slowest to Fastest Adjusts the movement speed of the camera fly mode.

tree displays the hierarchy of the mission data file. Objects selected in the Tree

view will also be selected in the main view. Objects in the Tree view can be

organized into groups.

There is a special group selection called the Instant Group, which is displayed

with gray highlighting in the Tree view. This is the group in the Tree view where

newly created or pasted objects are placed. Objects created from the World

Editor Creator are also placed in the Instant Group. To change the current

Instant Group, AltþClick on a group in the Tree view.

World Editor Inspector

The World Editor Inspector lets you examine and specify properties of mission

objects. When you select an object in Inspector mode, that object’s properties are

displayed in the frame at the lower right of the screen. After editing an object’s

properties, click the Apply button to commit those properties to the object.

Dynamic properties can be assigned to objects with the Dynamic Fields Add

button. Dynamic fields can be accessed via the scripting language and are nor-

mally used to add game-specific properties to objects.

World Editor Creator

The World Editor Creator displays an extra Tree view frame in the lower-right

corner of the screen. This view contains all objects that can be created in a

mission. Selecting an object from this list creates a new instance of it and drops

the new object at the center of the screen (by default) or as specified by the

selected Drop at command in the World menu, which is shown in Table 21.4.

You can use both the mouse and the keyboard for editing, as shown in Table 21.5.

Gizmos are the visual representation of each object’s three axes. When you select

an object, and if you have gizmos enabled in the World Editor Settings dialog

box, accessed from the Edit menu, then they will appear centered on that object’s

local origin.

If gizmos are enabled, they can be clicked and dragged (as described in Table 21.6)

in order to modify the object to which they are attached.

Terrain Editor

We use the Terrain Editor to manually modify the terrain height map and square

properties by using a mouse-operated brush. The brush is a selection of terrain

Torque Mission Editor 837

838 Chapter 21 n Creating the Game Mission

Table 21.4 World Menu

Menu Item Description

Lock Selection Locks the current selection so that it cannot be manipulated from the World
Editor view.

Unlock Selection Unlocks a locked selection.

Hide Selection Hides the current selection to help reduce visual clutter.

Show Selection Unhides hidden objects in the selection.

Delete Selection Deletes the currently selected objects.

Camera To Selection Moves the camera to the selected objects.

Reset Transforms Resets the rotation and scale on the selected objects.

Drop Selection Drops the selected objects into the mission according to the drop rule (see Drop
Selection menu items that follow). If the object is already placed, it is picked up
and dropped again.

Add Selection to
Instant Group

Adds whatever object is currently selected to the Sim Group, which is highlighted
in light gray in the Inspector pane on the right-hand side of the Mission Editor
interface.

Drop at Origin Drops newly created objects at the origin.

Drop at Camera Drops newly created objects at the camera’s location.

Drop at Camera
w/ Rot

Drops newly created objects at the camera’s location with the camera’s current
orientation.

Drop below Camera Drops newly created objects below the camera’s current location.

Drop at Screen Center Drops newly created objects where the view direction hits an object.

Drop at Centroid Drops newly created objects at the center of the selection.

Drop to Ground Drops newly created objects to the terrain ground level at their current location.

Table 21.5 Mouse and Keyboard Operations

Operation Description

Click an Unselected Object Deselects all the currently selected objects, and selects the clicked object.

Click in Empty Space Click-drags a box around the objects, and selects all the objects in the box.

Shiftþ Click an Object Toggles selection of the clicked object.

Mouse Drag a Selected
Object

Moves the selected objects, either on a horizontal plane or sticking to the
terrain, depending on the setting of the Planar Movement check box in the
World Editor Settings dialog box.

Ctrlþ Click and Drag Moves the selected objects vertically.

Altþ Click and Drag Rotates the selected objects about the vertical axis.

Altþ Ctrlþ Click and Drag Scales the selected object by a face on the bounding box.

points or squares centered around the mouse cursor. Table 21.7 describes the

functions available in the Brush menu.

When we use the Terrain Editor, we modify the terrain as if we are piling dirt

onto it or shoveling holes into the ground. Table 21.8 shows the operations

available in the Terrain Editor via the Action menu.

Terrain Terraform Editor

The Terrain Terraform Editor uses mathematical algorithms to generate terrain

heightfields (height maps). Heightfield operations are arranged in a stack, which

is an ordered list of operations. Operations in the stack depend on the results of

previous operations to produce new heightfields. The results of the final

operation on the stack can be applied to the terrain using the Apply button.

There are two Terrain Terraform Editor frames. The top frame displays infor-

mation about the currently selected operation, and the bottom frame shows the

current operation stack. Between them is a pull-down menu for the creation of

new operations. The first operation in the stack is always the General operation,

which can’t be deleted.

Torque Mission Editor 839

Table 21.6 Gizmo Operations

Operation Description

Click and Drag Gizmo Axis Moves the selection along the selected axis.

Altþ Click and Drag Gizmo Axis Rotates the selection on the selected axis.

Altþ Ctrlþ Click and Drag Gizmo Axis Scales along the selected axis.

Table 21.7 Terrain Editor: Brush Menu

Menu Item Description

Box Brush Uses a square-shaped brush.

Circle Brush Uses a circular brush.

Soft Brush Sets the brush so that its influence on the terrain diminishes toward the edges
of the brush. The brush square colors vary from red, where the influence is
greatest, to green, where the influence is least. The Terrain Editor Settings
dialog box Filter view has controls that adjust the falloff.

Hard Brush Sets the brush so that the effect on the terrain is the same across the surface of
the brush. All squares in the brush are the same red color.

Size 1� 1 to 25� 25 Sets the brush sizes.

Table 21.9 shows the operations available.

Click the Apply button to commit the current terrain operation list to the terrain

file.

Terrain Texture Editor

The Terrain Texture Editor uses mathematical techniques to place terrain tex-

tures based on the heightfield at the bottom of the Terraformer heightfield stack.

The editor has three main interface elements on the right side of the screen. From

top to bottom they are the operation Inspector frame, the Material list, and the

Placement Operation list.

Terrain materials are textures that are added using the AddMaterial button. This

will look for any texture (.png or .jpg) in a subdirectory of any directory named

terrains (in this book, this also applies to any directory named maps). Once a

material is added to the terrain, the user can select one of several placement

operations that govern where that material will be placed on the terrain. They are

shown in Table 21.10.

Click the Apply button to commit the current texture operation list to the terrain

file.

840 Chapter 21 n Creating the Game Mission

Table 21.8 Terrain Editor: Action Menu

Menu Item Description

Select Moves the brush in a painting motion to select grid points.

Adjust Selection Raises or lowers the terrain at the currently selected grid points as a group by
dragging the mouse up or down.

Add Dirt Adds terrain ‘‘dirt’’ to the terrain at the center of the brush, raising the affected
terrain area.

Excavate Removes dirt from the center of the brush.

Adjust Height Raises or lowers the area marked by the brush by dragging the mouse.

Flatten Sets the area marked by the brush to a flat plane height.

Smooth Smoothes the area marked by the brush---peaks are lowered and troughs are
raised.

Set Height Sets the area marked by the brush to a constant height---the height is set using the
Terrain Editor Settings.

Set Empty Makes a hole in the terrain in the squares covered by the brush.

Clear Empty Fills in any holes in the squares covered by the brush.

Paint Material Paints the current terrain texture material with the brush.

Mission Area Editor

The Mission Area Editor defines regions in the game that are used to constrain

player travel. If we use mission areas in a game, we normally give warnings or

disqualifications if a player leaves a mission area. Of course, you can probably

find other uses for such a feature.

The Mission Area Editor displays an overhead height-map view of the current

mission map in the upper-right corner of the screen. There are markers for

mission objects, a box for the mission area, and a pair of lines denoting the

Torque Mission Editor 841

Table 21.10 Terrain Texture Editor Placement Operations

Operation Description

Place by Fractal Places the terrain texture randomly across the terrain based on a Brownian
motion fractal operation.

Place by Height Places the texture based on an elevation filter.

Place by Slope Places the texture based on a slope filter.

Place by Water Level Places the texture based on the water level parameter in the Terraform Editor.

Table 21.9 Terraform Operations

Operation Description

fBm Fractal Creates bumpy hills.

Rigid Multifractal Creates ridges and sweeping valleys.

Canyon Fractal Creates vertical canyon ridges.

Sinus Creates overlapping sine wave patterns with different frequencies useful for
making rolling hills.

Bitmap Imports an existing 256 by 256 bitmap as a heightfield.

Turbulence Jumbles the effects of another operation on the stack.

Smoothing Smoothes the effects of another operation on the stack.

Smooth Water Smoothes water.

Smooth Ridges/Valleys Smoothes an existing operation on edge boundaries.

Filter Applies a filter to an existing operation based on a curve.

Thermal Erosion Applies an erosion effect to an existing operation using a thermal erosion algorithm.

Hydraulic Erosion Applies an erosion effect to an existing operation using a hydraulic erosion algorithm.

Blend Blends two existing operations according to a scale factor and a mathematical
operator.

Terrain File Loads an existing terrain file onto the stack.

842 Chapter 21 n Creating the Game Mission

current field of view. Clicking anywhere on the display will move the current view

object (either camera or player) to that location in the mission area.

To edit the mission area, select the Edit Area check box. This will display eight

resizing knobs on the mission area box that can be dragged with the mouse.

Clicking the Center button will cause the terrain file data to be repositioned and

centered at 0,0 in the center of the mission area box.

To mirror the terrain, click the Mirror button. This will put the Mission Area

Editor in mirror mode. The Left and Right Arrow buttons adjust the mirror

plane angle to one of eight different angles (two axis aligned, two 45-degree

splits). Click the Apply button to commit the terrain mirroring across the mirror

plane. Mirroring a mission area is a useful way to quickly create terrain for team-

based games where each side would begin with identical terrain. This would stop

either side from having a terrain advantage. You create the terrain for one side

and then simply mirror it for the other side.

Building the World
Let’s get to work building the game world, and let’s start with items 27 and 28

from our requirements list. I’ve chosen the fire and the waterfall to start with here

because we haven’t really looked at particles much yet, and with particles we get

to touch on various topics we’ve covered in this chapter, like easing into using the

Mission Editor, the World Editor Creator, and the World Editor Inspector. And

besides that, particles are cool.

Particles

Remember the raindrops in Chapter 18? Those were particles. Particles are

basically single-faced polygons that are generated in bulk by a game engine to

simulate a variety of somewhat related real-world phenomena, such as rain,

smoke, wispy fog, splashing and spraying water or mud, fire, and flames. Particles

can be used to simulate any sort of constantly changing fluid- or gaslike entity.

Even a swarm of mosquitoes can be generated using particles.

What I’ll do in this section is show you how to use the Torque particle system to

make a campfire and a waterfall.

Particles are made of three parts:

n Particle. The actual things we see.

n Particle Emitter. The thing that causes the particles to come into existence.

n Particle Emitter Node. The object that the emitter is attached to.

If you attach the word data to the end of each and remove the spaces, you’ll have

the formal names of the datablocks that define those terms of the particle system:

ParticleData
ParticleEmitterData
ParticleEmitterNodeData

Particles can live in the game world in one of two ways: as freestanding particles

or as attached particles. Freestanding particles are defined using all three of

the datablocks just mentioned, while attached particles only require defining the

ParticleData and the ParticleEmitterData. The nodes aren’t needed, because we

are attaching the particle to some other object that supports particles. The object

classes that support particles are players, weapons, projectiles, and all vehicle types.

As noted already, Rain is a specialized object that has a built-in particle capability.

So in the case of freestanding particle emitters, one more definition of interest is

required for placing emitters in the world:

ParticleEmitterNode

We’ll look at freestanding particle emitters a bit more shortly.

Campfire

To make a campfire, we’ll need two particle definitions: one for the flames and

one for the smoke. The particle types used will be freestanding, so we will need to

define all three particle datablocks for both the smoke and the flames.

First, copy the image file \3D2E\RESOURCES\CH21\flame.png to \KOOB\

control\data\particles.

Next, create the file \KOOB\control\server\misc\particles.cs, and add the follow-

ing code to it:

datablock ParticleData(Campfire)
{

textureName = "~/data/particles/flame";
dragCoefficient = 0.0;
gravityCoefficient = -0.35;
inheritedVelFactor = 0.00;
lifetimeMS = 580;

Building the World 843

lifetimeVarianceMS = 150;
useInvAlpha = false;
spinRandomMin = -15.0;
spinRandomMax = 15.0;

colors[0] = "0.8 0.6 0.0 0.1";
colors[1] = "0.8 0.65 0.0 0.1";
colors[2] = "0.0 0.0 0.0 0.0";

sizes[0] = 1.0;
sizes[1] = 2.0;
sizes[2] = 4.0;

times[0] = 0.1;
times[1] = 0.4;
times[2] = 1.0;

};

datablock ParticleEmitterData(CampfireEmitter)
{

ejectionPeriodMS = 15;
periodVarianceMS = 5;

ejectionVelocity = 0.35;
velocityVariance = 0.20;

thetaMin = 0.0;
thetaMax = 60.0;

particles = "Campfire" TAB "Campfire";
};

datablock ParticleEmitterNodeData(CampfireEmitterNode)
{

timeMultiple = 1;
};

Now open \KOOB\control\server\server.cs, locate the function OnServerCreated,

and add the following line to the end of the function, before the closing brace (‘‘}’’):

Exec("./misc/particles.cs");

Next, open your mission file (\KOOB\control\data\maps\koobA.mis, or whatever

your mission file is called, as long as it is the same as the one used for Chapter 6

844 Chapter 21 n Creating the Game Mission

and uses the same terrain), and add the following before the closing brace of the

file:

new ParticleEmitterNode() {
position = "13.2665 -2.0218 196.6";
rotation = "1 0 0 0";
scale = "1 1 1";
dataBlock = "CampfireEmitterNode";
emitter = "CampfireEmitter";
velocity = "1";

};

Okay, save your files, and then launch Koob. When your player spawns in, turn

to the right—you should see a little fire burning in the gully there, as shown in

Figure 21.1.

The flame is the glowing object to the left of the crosshair in the picture. Now let’s

add the smoke.We’ll do it slightly differently.We begin by defining the particle and

emitter as before, but then we’ll place it in an easier way using the World Editor.

Open up the \KOOB\control\server\misc\particles.cs file you created earlier, and

add the following:

Building the World 845

Figure 21.1
Campfire.

datablock ParticleData(CampfireSmoke)
{

textureName = "~/data/particles/smoke";
dragCoefficient = 0.0;
gravityCoefficient = -0.15;
inheritedVelFactor = 0.00;
lifetimeMS = 4000;
lifetimeVarianceMS = 500;
useInvAlpha = false;
spinRandomMin = -30.0;
spinRandomMax = 30.0;
colors[0] = "0.5 0.5 0.5 0.1";
colors[1] = "0.6 0.6 0.6 0.1";
colors[2] = "0.6 0.6 0.6 0.0";
sizes[0] = 0.5;
sizes[1] = 0.75;
sizes[2] = 1.5;
times[0] = 0.0;
times[1] = 0.5;
times[2] = 1.0;

};
datablock ParticleEmitterData(CampfireSmokeEmitter)
{

ejectionPeriodMS = 20;
periodVarianceMS = 5;
ejectionVelocity = 0.25;
velocityVariance = 0.20;
thetaMin = 0.0;
thetaMax = 90.0;
particles = CampfireSmoke;

};
datablock ParticleEmitterNodeData(CampfireSmokeEmitterNode)
{

timeMultiple = 1;
};

T i p

To figure out which mission file you are loading and spawning into, open \KOOB\con-
trol\client\client.cs and look in the LaunchGame function for the CreateServer function call.
The second argument to that call is the path to the mission file you are opening when you run
Koob.

846 Chapter 21 n Creating the Game Mission

Save your work, and then launch Koob. Locate the campfire, and face it in camera

flymode (press F8). Open theWorld Editor (press F11), and then enter theWorld

Editor Creator (press F4). Browse the Tree view until you locate Mission Objects,

Environment, particleEmitter. Click it to place another particle emitter.

You will get the Building Object: ParticleEmitterNode dialog box. Using the

illustration as a guide, choose CampfireSmokeEmitterNode from the datablock

list, and then choose CampfireSmokeEmitter from the particle data list (see

Figure 21.2).

After the smoke appears, move it with the cursor until it’s positioned directly

over the campfire. Press F11 to get out of the editor, grab some s’mores, and get

cookin’!

As you can see, ParticleEmitterNodes are useful for creating nodes that are

stationary but animated. Place them in your world by adding a datablock and

emitter references in your mission file, either through the Torque World Creator

or by directly editing the mission file.

Building the World 847

Figure 21.2
Adding smoke.

Table 21.11 describes the significant properties of the ParticleEmitterNode

datablock. This describes the actual node object that is inserted in a mission file

for a freestanding particle emitter.

Now, if you look at Figure 21.3, you’ll see the relationship between the various

datablocks involved in particles. The items in rectangles need to be defined

somehow—you’ve seen how to do this. The one gotcha in the diagram is that the

items in the dashed rectangles only need to be defined when placing freestanding

particles in the game world. When you attach particles to objects like the player

or vehicles, only the datablocks shown in the solid rectangles (ParticleData and

ParticleEmitterData) need to be defined.

Table 21.12 describes the significant property of the ParticleEmitterNodeData

datablock.

There is only one parameter in this datablock: timeMultiple. You can create any

number of these datablocks with different settings and names.

848 Chapter 21 n Creating the Game Mission

Table 21.11 ParticleEmitterNode Properties

Property Description

velocity Acts as a master speed control modifying the settings for the ParticleEmitter-
NodeData, ParticleData, and ParticleEmitterData datablocks.

datablock The name of the ParticleEmitterNodeData defined elsewhere that will be used.

emitter The name of the ParticleEmitterData defined elsewhere that will be used.

Figure 21.3
Particle system elements.

Table 21.13 describes the significant properties of the ParticleEmitterData

datablock, although we won’t be using them all here. Those that we don’t use will

be assigned default values by Torque.

Table 21.14 describes the significant properties of the ParticleData datablock.

Again, we don’t use all of these properties in the campfire, but we do use most of

them in the waterfall, which is in the next subsection.

Waterfall

As promised, we will build a waterfall. Add the following particle system data-

blocks to your particles.cs file:

datablock ParticleData(WFallAParticle)
{
textureName = "~/data/particles/splash";
dragCoefficient = 0.0;
gravityCoefficient = 0.5;
windCoefficient = 1.0;
inheritedVelFactor = 2.00;
lifetimeMS = 15000;
lifetimeVarianceMS = 2500;
useInvAlpha = false;
spinRandomMin = -30.0;
spinRandomMax = 30.0;
colors[0] = "0.6 0.6 0.6 0.1";
colors[1] = "0.6 0.6 0.6 0.1";
colors[2] = "0.6 0.6 0.6 0.0";
sizes[0] = 5;
sizes[1] = 10;
sizes[2] = 15;
times[0] = 0.0;
times[1] = 0.5;
times[2] = 1.0;
};

Building the World 849

Table 21.12 ParticleEmitterNodeData Property

Property Description

timeMultiple Ranges from 0.01 to 100.0, specifying how often the particles are emitted from
the node. Smaller values are for shorter time intervals between emissions,
which means there is a higher emission frequency.

850 Chapter 21 n Creating the Game Mission

Table 21.13 ParticleEmitterData Properties

Property Description

ejectionPeriodMS Controls how often a particle is emitted in milliseconds (ms). A value of
1000 equals 1 particle per second (1 ms minimum).

periodVarianceMS Introduces randomness to the ejection period. The variance must be less
than ejectionPeriodMS and less than the lifetimeMS setting in
the ParticleData section.

ejectionVelocity Controls how fast the particle image is moved along the emission
vector. Must be equal to or greater than 0, up to 3 meters per second
maximum.

velocityVariance Introduces randomness to the ejectionVelocity. The variance
must be less than ejectionVelocity.

ejectionOffset Modifies the start position of the particle ejection to occur at an offset
along the ejection vector.

thetaMax, thetaMin Sets the range (in degrees) for rotation around the X-axis of the
ParticleNode object. thetaMin must be less than thetaMax, and
both must be in the range of 0.0 to 180 degrees. The particle generator
will randomly pick a value between those limits. Think of these
properties together as ‘‘how high’’ the emitter’s ‘‘aim’’ is.

phiReferenceVel,
phiVariance

Sets the rotation angle around the Z-axis. Both arguments must be in
the range of 0.0 to 180 degrees, with phiVariance less than
phiReferenceVel. Think of these properties together as the
‘‘direction’’ the emitter is pointing.

overrideAdvances Defaults to false. When set to true, this will disable updating the
particle as soon as it is created. This can be used to clean up particles
generated by fast-moving objects.

orientParticles Defaults to false. When set to false, the particle image is presented
as a billboard that always faces the camera. When set to true, the
particle image is oriented with respect to the ejection vector.

orientOnVelocity Defaults to false. When set to true, the particle is displayed oriented
with respect to the ejection vector. At the start the particle faces the
screen, because velocity at the very beginning is 0.

particles Contains the name of the ParticleData datablock to use. Multiple
ParticleData datablocks can be specified in the string, separated by
tab characters. The particle engine will cycle through the list repeatedly.

lifetimeMS Defines how long this emitter will generate particles. It cannot be a
negative value. A setting of 0 specifies no time limit. If not specified,
then the default is 0.

lifetimeVarianceMS Introduces randomness to the lifetime of the emitter. This value must be
less than (and not equal to nor greater than) lifetimeMS.

useEmitterSizes Does nothing if this datablock belongs to a ParticleEmitterNode.
Otherwise, when set to true, use emitter-specified sizes instead of
datablock sizes.

useEmitterColors Does the same as useEmitterSizes, but for colors.

Building the World 851

Table 21.14 ParticleData Properties

Property Description

textureName Specifies path and file name of a PNG or JPG image. Particle textures use
black for the image areas that will be treated as the alpha (transparency)
channel. PNG images will also use black for the transparent areas but
will also alternatively use the real alpha channel for transparent image
regions if one is included. If a real alpha channel is specified in a PNG
image, then black will not be used for transparency. Images must be
sized in powers of 2, to a maximum of 512 pixels by 512 pixels.

useInvAlpha Switches from using black to using white for transparent regions.

inheritedVelFactor Specifies how much of a parent object’s velocity should be imparted in
particles emitted.

constantAcceleration Specifies acceleration rate for each particle along the ejection vector.

dragCoefficient Specifies deceleration rate for each particle along the ejection vector.

windCoefficient Specifies how much the game world’s wind velocity vector should be
imposed on particles emitted.

gravityCoefficient Specifies acceleration rate for each particle vertically. Positive values
indicate acceleration toward the ground.

lifetimeMS Controls how long the particle image is displayed as it follows its ejection
vector. Short lifetimes have a pronounced strobe effect. Default is 1000
(1 second) with a minimum value of 100.

lifetimeVarianceMS Introduces randomness to the lifetime of the particle. This value must be
less than (and not equal to nor greater than) lifetimeMS.

spinSpeed Dictates how fast images will be randomly rotated around the vertical
axis, if particles aren’t set to be billboarded using the orientParti-
cles or orientOnVelocity properties of the ParticleEmitter-
Data.

spinRandomMax Specifies the maximum allowable angle that a particle image can be
randomly rotated. Allowable range is �10000.0 to þ 10000.0.
spinRandomMax must be greater than spinRandomMin.

spinRandomMin Specifies the minimum allowable angle that a particle image can be
randomly rotated. Allowable range is �10000.0 to þ 10000.0.
spinRandomMin must be less than spinRandomMax.

animateTexture Allows use of animated particle image textures, when set to true.

framesPerSec Specifies the animation frame rate.

animTexName Specifies a DML file that contains a list of texture image files. Each file is
a single frame in the animation.

colors[n] Specifies the color interpolation values for three sequences of particle
emissions.

sizes[n] Specifies the scale interpolation values for three sequences of particle
emissions.

times[n] Specifies the time stamp values that pin the moments for the three
particle emission sequences.

datablock ParticleEmitterData(WFallAEmitter)
{
ejectionPeriodMS = 10;
periodVarianceMS = 5;
ejectionVelocity = 0.55;
velocityVariance = 0.30;
thetaMin = 0.0;
thetaMax = 90.0;
particles = WFallAParticle;
};
datablock ParticleEmitterNodeData(WFall1EmitterNode)
{
timeMultiple = 1;
};
//————————————————————————————
datablock ParticleData(WFallBParticle)
{
textureName = "~/data/particles/splash";
dragCoefficient = 0.0;
gravityCoefficient = -0.1; // rises slowly
inheritedVelFactor = 2.00;
lifetimeMS = 3000;
lifetimeVarianceMS = 500;
useInvAlpha = false;
spinRandomMin = -30.0;
spinRandomMax = 30.0;
colors[0] = "0.4 0.4 0.7 0.1";
colors[1] = "0.5 0.6 0.8 0.1";
colors[2] = "0.6 0.6 0.9 0.0";
sizes[0] = 10;
sizes[1] = 15;
sizes[2] = 20;
times[0] = 0.0;
times[1] = 0.5;
times[2] = 1.0;
};
datablock ParticleData(WFallCParticle)
{
textureName = "~/data/particles/splash";
dragCoefficient = 0.0;
gravityCoefficient = -0.1; // rises slowly
inheritedVelFactor = 2.00;
lifetimeMS = 3000;

852 Chapter 21 n Creating the Game Mission

lifetimeVarianceMS = 300;
useInvAlpha = false;
spinRandomMin = -30.0;
spinRandomMax = 30.0;
colors[0] = "0.4 0.4 0.5 0.1";
colors[1] = "0.5 0.5 0.6 0.1";
colors[2] = "0.0 0.0 0.7 0.0";
sizes[0] = 5;
sizes[1] = 5;
sizes[2] = 5;
times[0] = 0.0;
times[1] = 0.5;
times[2] = 1.0;
};
datablock ParticleEmitterData(WFallBParticleEmitter)
{
ejectionPeriodMS = 15;
periodVarianceMS = 5;
ejectionVelocity = 0.25;
velocityVariance = 0.10;
thetaMin = 0.0;
thetaMax = 90.0;
particles = "WFallBParticle" TAB "WFallCParticle";
};
datablock ParticleEmitterNodeData(WFall2ParticleEmitterNode)
{
timeMultiple = 1;
};

Save your work, and launch your game. The area where you want to make your

waterfall is shown in Figure 21.4; the annotations show where I think is the best

place for a waterfall. Anywhere along the water will do, though.

To get there, use F8 to get into camera fly mode, and fly straight up for a second

(do this by looking straight down at the ground and press the w key to go

backward and up). Then turn 180 degrees away from the direction you were

facing when you spawned, and fly over to the area shown in the figure.

Once there, use the same methods used when you added the campfire smoke in

the earlier section. For the top of the waterfall, use WFall1ParticleEmitterNode

with the WFallAEmitter. Then for the splashing effect at the water surface, use

WFall2ParticleEmitterNode with the WFallBEmitter. You should get something

that looks like Figure 21.5.

Building the World 853

You can refine your waterfall by using three nodes for the top—one each for the

left, right, and center of the falling water—and perhaps two at the bottom. You’ll

notice when you look at some waterfalls that the center stream of water has a

different character than the outer fringes—hence the use of three particle

854 Chapter 21 n Creating the Game Mission

Figure 21.5
The falls.

Figure 21.4
Locating the falls.

emitters. Also, when the water hits the pool at the bottom, there are typically two

observable phenomena: splashing and spraying of fine mist. So two emitters at

the bottom would go a long way as well.

The Terrain

I’ve prebuilt two terrains—trackA.ter and trackB.ter—for use in Koob. Of

course, you are free to make your own. Each of these terrains has a different—in

fact, a somewhat opposite—appearance.

trackA.ter is a bit claustrophobic in places, with much of the action happening

in and around canyons and riverbeds, as you can see in Figure 21.6.

trackB.ter, in Figure 21.7, is more wide open, driving around a series of foothills

and mountains.

In both cases, as I laid out the track, I wanted to make sure there was no way to

grossly cheat and find a shortcut that would allow someone who knew of the

shortcut to obtain a huge advantage. In fact, I designed trackB.ter to have two

built-in shortcuts that may or may not be quicker than staying on the track. See if

you can find them!

Also, the specification that says that checkpoints must be used will help minimize

shortcut use as cheating.

Building the World 855

Figure 21.6
trackA.ter.

The trackA terrain is quite similar to the test terrain we’ve been using with

Emaga6 and earlier revisions of Koob. trackB is entirely new. If you want to check

them out, then copy the files trackA.mis, trackA.ter, trackB.mis, and

trackB.ter from \3D2E\RESOURCES\CH21\ and deposit them in the \KOOB\

control\data\maps\ directory.

Next, youwill need to edit the file \KOOB\control\client\client.cs and find this line:

createServer("SinglePlayer", "control/data/maps/koobA.mis");

You can enter the file name of whichever mission file (and thus terrain) you want

to look at—trackA.mis or trackB.mis. Now I know this seems to be an awkward

way to select missions. We will be addressing this issue in the next chapters.

Items and Structures

Go ahead and set up Koob to use trackB. Once that’s done, copy all the files

located in \3D2E\RESOURCES\CH21\STRUCTURES, and put them in \KOOB\

control\data\maps\. If you get a dialog box asking if you want to overwrite

existing files, your answer is yes.

Now launch the game and go into camera fly mode after you’ve spawned. You

should be in the middle of a big parking lot.

856 Chapter 21 n Creating the Game Mission

Figure 21.7
trackB.ter.

Enter the World Editor Creator (press F11 followed by F4), and browse the Tree

view until you find Interiors, Control, Data, Structures. Then look for the

startfinish item and the checkpoint item, placing one of each in the game world,

using Figure 21.8 as a guide.

No t e

When you insert new structures, Torque helpfully provides you with a notification that the
lightmap has changed with a little long message box at the bottom of your screen. If you are not
busy placing dozens of objects in your scene, then go ahead and press on the Relight Scene
button. If you are busy placing lots of things, then just press the Hide button, because relighting
scenes can take quite a while, depending on how complex your scene is.

To rotate an object, select it, hold down the Alt key, and hover the cursor over

one of the gizmo axes (X, Y, or Z) of the item. When the axis label appears, click

and hold. Then drag your cursor left or right, up or down, to cause the item to

rotate around the chosen axis.

If you need to go back and adjust an object already placed, press F4 to enter the

World Editor Inspector to select and adjust the items. Switch back to the World

Editor Creator to resume placing items.

To move an item, select it, hover the cursor over one of the axis gizmos, and click

and drag in the direction you want to move.

Building the World 857

Figure 21.8
The start/finish line.

To scale an object along an axis, select the axis as before, and then hold down

both the Alt and Ctrl keys while dragging the cursor. The checkpoint object will

have to be scaled a bit horizontally and vertically to fit it inside the startfinish

object, as depicted earlier in Figure 21.8.

To define the track, you can use a number of other structures, like barriers (see

Figure 21.9) and direction signs (see Figure 21.10).

You should place checkpoints at the locations indicated in Figure 21.11. There

will be a total of five checkpoints: one at the start/finish line and four more

around the track.

Place barriers strategically to prevent access to certain areas, and use the direction

signs to assist players in understanding which direction the track will be heading.

You should also place a tommy gun and crossbow accompanied by an ammo box

for each somewhere in the vicinity of the start/finish line.

Place a Health Kit somewhere near the start/finish line as well. Also place a

HealthPatch object near each checkpoint. You can use a block structure from the

Interiors list to place these items on to improve visibility. Make sure to sink the

block low enough into the ground that the player can jump up on it.

858 Chapter 21 n Creating the Game Mission

Figure 21.9
Barrier.

Also from the Interiors list, locate the hovels, and place a few around the track,

near it but not too close. Make sure there is a way for a player to get to the hovels,

and perhaps provide enough space to hide a vehicle behind them.

Select some trees and rocks from the Static Shapes list under Static Shapes,

Control, Data, Models, Items. Place them around your map at visually appealing

Building the World 859

Figure 21.11
Checkpoint locations.

Figure 21.10
Direction sign.

as well as strategic locations—you want to provide places for people to hide

during an ambush. (Rocks to hide cars behind and so on.)

Go on and do the same sorts of things for trackA. There is a large flat area in a

canyon near where you currently spawn (it’s actually behind you), with a bridge

leading across the river nearby. This is where you should put your start/finish

line. The direction of travel will be to head from the start directly across the

bridge and on from there. You probably won’t need more than four checkpoints

(other than the start/finish line) to complete the route. If you find you need to

adjust the terrain to accommodate a building or something, by all means do it.

Don’t worry about placing the coins. That is something we will handle with

program code in the next chapter.

Moving Right Along
Well, things got a little more hectic in this chapter. As you saw, designing a game

is about answering questions. Often, the answers are the easy part—coming up

with the questions can be tougher at times. Creating a requirements specification

for your game is not only useful, it’s almost a mandatory activity.

There are things that constrain our design, and we need to keep those constraints

in mind. Every project will have different limits. One example you saw was that

you probably shouldn’t consider using Torque to make a massively multiplayer

game.

We then looked at the Mission Editor in detail. You can use it to place and align

all the objects that will inhabit your game world.We used it to place some particle

effects, in the form of a campfire and a waterfall, as well as some structures that

will be useful for game play.

Let’s examine our requirements again. We checked off item 1 right from the get-

go. Now we can check off a bunch of other items: 4, 5, 6, 7, 8, 10, 22, 27, and 28.

We’ve also done parts of 9, 23, 24, and 25, but they need some programming as

well to make them reality.

In the next chapter we will delve into more server-side game play issues, like

spawning the player into random locations, getting a vehicle into the world, and

triggering events.

860 Chapter 21 n Creating the Game Mission

The Game Server

Now we have some things we’ve either added to the game world in recent chapters

or simply included in our game requirements that are not yet supported in the

program code.

In this chapter we’ll focus on adding the server-side code we need to support the

requirements, as well as adding in some code to bring certain concepts to a more

complete state.

The Player-Character
You’ve probably noticed a few things that are odd or incomplete in the player

behavior or appearance in the code and art we’ve dealt with up to this point.

We’ll tackle those things now.

Player Spawning

For our example games, we’ve used a fixed spawn point. Well, there is a con-

venient spawn point system available that we can employ.

First thing we need for this system is what we call a marker. Create a new file

named \koob\control\server\misc\marker.cs, and add the following to it:

datablock MissionMarkerData(SpawnMarker)
{

category = "Markers";

861

chapter 22

shapeFile = "~/data/models/markers/sphere.dts";
};

function MissionMarkerData::Create(%block)
{

switch$(%block)
{

case "SpawnMarker":
%obj = new SpawnSphere() {

datablock = %block;
};
return(%obj);

}
return -1;

}

This has the by-now-familiar datablock, this one for a MissionMarkerData. The

Create function tells the World Editor Creator how to make the new marker in

the game world. Note the use of the switch$ block, even though there is only one

case—this is for later use for other kinds of markers. Save your work.

Now copy the directory \3D2E\RESOURCES\CH22\markers and all of its con-

tents to \koob\control\data\models\markers, creating a new folder if you need to.

Now open the file \koob\control\server\server.cs and locate the line:

Exec("./misc/item.cs");

Add the following entry after it:

Exec("./misc/markers.cs");

Save your file.

With that done, launchKoob, go into cameraflymode, and thenmove to aposition

overseeing the start/finish line, looking down at it. Go into World Editor Creator

(press F11 followedbyF4), and thenadda PlayerSpawns groupbychoosingMission

Objects, System, SimGroup from the Tree view at the lower right and entering

PlayerSpawns as the object name in the dialog box. Make PlayerSpawns the current

group by locating it in the hierarchy at the upper right and then holding down

the Alt key while clicking the PlayerSpawns entry. The PlayerSpawns folder icon

should now be green. Next, add a spawn marker by choosing Shapes, Markers,

862 Chapter 22 n The Game Server

SpawnMarker from the Tree view at the lower right. A gray-white sphere will be

placed in theworld. Positionabouthalf adozenor soof these around the start/finish

area, hiding a few of them. Make sure they were all created in the PlayerSpawns

group.

Save your mission and exit to the desktop.

Now open the file \koob\control\server\server.cs, and locate the function

SpawnPlayer. Change the createPlayer call to look like this:

%this.createPlayer(SelectSpawn());

Next, add the following method to the end of the file (or immediately after the

SpawnPlayer function, if you like):

function SelectSpawn()
{

%groupName = "MissionGroup/PlayerSpawns";
%group = nameToID(%groupName);

if (%group != -1) {
%count = %group.getCount();
if (%count != 0) {

%index = getRandom(%count-1);
%spawn = %group.getObject(%index);
return %spawn.getTransform();

}
else

error("No spawn points found in " @ %groupName);
}
else

error("Missing spawn points group " @ %groupName);

return "0 0 201 1 0 0 0"; // if no spawn points then center of world
}

This function will examine the PlayerSpawns group and count how many spawn

markers are in it. It then randomly selects one of them and gets its transform

(which contains the marker’s position and rotation) and returns that value.

With this done, go ahead and try your game. Notice how each time you spawn,

it’s in a different place.

The Player-Character 863

Vehicle Mounting

In recent chapters, when you’ve made your player-character get into the car, you

may have noticed—especially from the third-person perspective—that the player

is standing, with his head poking through the roof.

This is addressed by assigning values to a mountPose array. What we do is for each

vehicle, we create mountPoints in the model (which we’ve done for the car). We

need to specify in the car’s model some nodes that will act as the mount points.

We’ll address the pose part of the player model in the next section, leaving the

rest until a later section that covers vehicles.

The Model

In recent chapters I have been using the standard ‘‘Kork’’ the Torque Orc model

as a filler for testing the code, maps, and other models. Now, however, it’s time

for you to use your own model, the Hero model we created back in Chapter 14.

There are a few things we need to adjust in that model, so make a copy of your

Hero model, and add him to your Koob models directory at \koob\control\

data\models\avatars\hero. Create the hero directory if you haven’t already done it.

Copy all of your Hero model files, including the texture files, into that directory.

You also need to change theplayer definitionfile topoint to yourheromodel.Open

\3D2E\control\server\players\player.cs and locate the PlayerData(MaleAvatar)

datablock.

In that datablock, find the line that reads:

shapeFile = "~/data/models/avatars/orc/player.dts";

and change it to:

shapeFile = "~/data/models/avatars/hero/myhero.dts";

If you didn’t name your guy ‘‘myhero’’ use the name you gave him.

Also, notice the top line of this same file that says:

exec("~/data/models/avatars/orc/player.cs");

Even though the file in that line has the same name, ‘‘player.cs’’, you will notice

by the path that it’s a different file. This is the animation sequence binding file. It

associates sequence files with animations that Torque supports. If you have

created your model to use the Torque animation sequences, then leave this line as

it is.

864 Chapter 22 n The Game Server

If you created your own animation sequences, then change the path in that line to

point to a sequence binding file of your own. You can use the standard one as a

model, and just change the internal references to point to your own sequence files.

The best place to keep your sequence binding file and the sequence files them-

selves is in the same folder as your model. You should also name your sequence

file with the same name as your model’s shape file. For example, if your model’s

shape file is ‘‘myhero.dts’’, then name your sequence binding file ‘‘myhero.cs’’.

So, to support your own sequences, change that line at the top of player.cs to be:

exec("~/data/models/avatars/hero/myhero.cs");

and ensure that myhero.dts, its textures and sequence files, and myhero.cs are all

in the \3D2E\control\data\models\avatars\hero folder.

And while we’re talking about heroes, go back into \3D2E\control\server\players\

player.cs and change all instances of OrcClass to HeroClass. There are probably

four places—once in the PlayerData datablock:

className = OrcClass;

and three times in method declarations, looking like this:

OrcClass::onAdd
OrcClass::onRemove
OrcClass::onCollision

Adjusting Model Scale

You may find that your character is not the right size for your needs. If that is the

case, it is easy to resolve. Make a judgment about how his size needs to change.

For the moment, let’s pretend he needs to be 50 percent bigger than he is now.

Fire up MilkShape and load your model. Choose File, Export, Torque DTS Plus

to run the DTSPlus Exporter. If the scale value in the name Scale box is 0.2, then

change it to 0.3 (that’s 1.5 times larger than, or 150 percent of, 0.2).

Animations

To properly mount your character in a vehicle, you will need to create a sitting

pose. In MilkShape add some more frames in the animation window—make

sure to click the Anim button first!

Then select the last frame, and move the joints around until the character looks

something like that shown in Figure 22.1.

The Player-Character 865

Create a special material to be the sequence entry for this—it will be a one-frame

sequence. Name the material ‘‘seq:sitting=102-102’’, save your work, and then

export the file to your \koob\control\data\models\avatars\hero\ directory. The

rest of the mounting stuff will be handled shortly, in the ‘‘Vehicle’’ section.

Server Code

Back in Chapter 6 you saw how we can set up a Torque game to run as a dedicated

server. When a server is dedicated, it doesn’t need to be able to display any of the

fancy editors that Torque makes available. Since wasted code is wasted memory,

let’s put in a simple statement that checks to see if the dedicated server is running,

and if it is, then bypass the Creator functionality.

We already have the variable $Server::Dedicated that is set to true when the

-dedicated command line switch is used to run a dedicated server. We can use it

in our little bypass trick. Open the file \3D2E\creator\main.cs and locate the line:

Parent::onStart();

Immediately below that line, insert the following:

if ($Server::Dedicated)
return;

866 Chapter 22 n The Game Server

Figure 22.1
Sitting pose.

That’s it! If $Server::Dedicated turns out to be true, we just bail out the Creator’s

OnStart method, which happens to be where all the Creator capability is fired up.

Now we avoid all that wasted memory. Now on to other things.

Back in Chapter 20 I provided you with some code to mount and unmount the

vehicle, just so you could hop in and out and test sounds. I didn’t say much about

what it did or why. Let’s take a look now.

Collision

The premise is that you simply run up to a car and collide with it to get in. Now

youmust be mindful not to hit it too hard, or you will hurt yourself when you get

in. If you think that it shouldn’t be so easy to hurt yourself, then you can edit

your player’s datablock to suit. Simply open \koob\control\server\players\

player.cs, find the line that starts with minImpactSpeed=, and increase the value—

maybe to around 15 or so.

When your player collides with anything, the server makes a call, via the class

name of your character’s datablock to the callback method onCollision.

T i p

The class name for any datablock can be set via script like this:

classname = classname;

In the case of our player, classname is HeroClass, so the line is

classname = HeroClass;

Then methods are defined as

HeroClass::myMethod()
{ /// code in here
}

And they are invoked as

MyAvatarObjectHandle.myMethod();

OnCollision looks like this:
function HeroClass::onCollision(%this,%obj,%col,%vec,%speed)
{

%obj_state = %obj.getState();
%col_className = %col.getClassName();
%col_dblock_className = %col.getDataBlock().className;
%colName = %col.getDataBlock().getName();

The Player-Character 867

if (%obj_state $= "Dead")
return;

if (%col_className $= "Item" || %col_className $= "Weapon")
{

%obj.pickup(%col);
}

%this = %col.getDataBlock();
if (%this.className $= "Car")
{

%node = 0; // Find next available seat
%col.mountObject(%obj,%node);
%obj.mVehicle = %col;

}
}

In the parameters, %this refers to the datablock that this method belongs to, %obj

is a handle to the instance of the avatar object that is our player in the game, %col

is a handle to the object we’ve just hit, %vec is our velocity vector, and %speed is

our speed.

The first thing we do is to check our object state, because if we are dead, we don’t

need to worry about anything anymore. We want to do this because dead avatars

can still slide down hills and bang into things, until we decide to respawn.

Therefore we need to stop dead avatars from picking up items in the world.

After that we check the class name of the object we hit, and if it is an item that can

be picked up, we pick it up.

Next, if the class is a Car, then this is where the mount action starts. The variable

%node refers to the mount node. If %node is 0, then we are interested in the node

mount0. That node is created in the model of the car, and the next section will

show how we put that in. (This is not difficult—it’s just a matter of creating a

joint in the right place and naming it mount0.)

Then we make the call into the engine to mountObject for the car’s object

instance, and the game engine handles the details for us. We then update our

player’s instance to save the handle to the car we’ve just mounted.

If the object can’t be picked up and is also not mountable, then we actually hit it.

The next bit of code calculates our force based on our velocity and applies an

impulse to the object we hit. So if we hit a garbage can, we will send it flying.

868 Chapter 22 n The Game Server

Mounting

Now when you call the mountObjectmethod, the engine calls back to a method in

the ShapeBase from which your avatar is derived. The method is onMount, and it

looks like this:

function MaleAvatar::onMount(%this,%obj,%vehicle,%node)
{
%obj.setTransform("0 0 0 0 0 1 0");
%obj.setActionThread(%vehicle.getDatablock().mountPose[%node]);
if (%node == 0)
{

%obj.setControlObject(%vehicle);
%obj.lastWeapon = %obj.getMountedImage($WeaponSlot);
%obj.unmountImage($WeaponSlot);

}
}

Now if you are wondering why the onCollision handler is accessed via the class

name and the onMount handler is accessed via ShapeBase, I’ll just have to admit

that I’m not sure, and the answer isn’t really that apparent. It’s one of the quirks

of Torque, but if you keep it in mind, you won’t have any problems.

The onMount method is interested in the %obj, %vehicle, and %node parameters.

Our player is %obj, and obviously the vehicle we are mounting is %vehicle. The

parameter %node refers to the mount node, as discussed earlier.

The first thing the code does is set our player to a null transform at a standard

orientation, because the rest of the player object’s transform information will be

handled by the game engine, with the object slaved to the car—wherever the car

goes, our player automatically goes as well.

Next, the mount pose is invoked, with the call to setActionThread. The ani-

mation sequence that was defined in the datablock as referring mount0 is set in

action. The animation sequence itself is only one frame, so the player just sits

there, inside the car. However, your player won’t sit until a change is made to the

vehicle definition, which comes later in this chapter.

Now, if we are dealing with node 0, which by convention is always the driver,

then we need to do a few things: arrange things so that our control inputs are

directed to the car, save the information about what weapons we were carrying,

and then unmount the weapon from our player.

The Player-Character 869

Dismounting

Dismounting, orunmounting, is accomplishedusingwhatever key is assigned to the

jump action. It’s a bit more involved than the mount code. First, there is this bit:

function MaleAvatar::doDismount(%this, %obj, %forced)
{

%pos = getWords(%obj.getTransform(), 0, 2);
%oldPos = %pos;
%vec[0] = "1 1 1";
%vec[1] = "1 1 1";
%vec[2] = "1 1 -1";
%vec[3] = "1 0 0";
%vec[4] = "-1 0 0";
%impulseVec = "0 0 0";
%vec[0] = MatrixMulVector(%obj.getTransform(), %vec[0]);
%pos = "0 0 0";
%numAttempts = 5;
%success = -1;
for (%i = 0; %i < %numAttempts; %i++)

{
%pos = VectorAdd(%oldPos, VectorScale(%vec[%i], 3));
if (%obj.checkDismountPoint(%oldPos, %pos))
{

%success = %i;
%impulseVec = %vec[%i];
break;

}
}
if (%forced && %success = = -1)

%pos = %oldPos;
%obj.unmount();
%obj.setControlObject(%obj);
%obj.mountVehicle = false;
%obj.setTransform(%pos);
%obj.applyImpulse(%pos, VectorScale(%impulseVec, %obj.getDataBlock().mass));

}

Mostof thecodehere is involved indeciding if thepoint chosen todeposit theplayer

after removing him from the car is a safe and reasonable spot or not. We start by

setting a direction vector, applying that vector to our player tofigure out in advance

where the proposed landing site for the freshly dismounted player will be, and then

making sure it’s okay using the checkDismountPoint method. If it isn’t okay, the

algorithm keeps moving the vector around until it finds a place that is suitable.

870 Chapter 22 n The Game Server

Once the site is determined, the unMount method is invoked, and we return

control back to our player model, deposit the model at the computed location,

and give our player a little nudge.

When unMount is called, the game engine does its thing, and then it summons the

callback onUnmount. What we do here is restore the weapon we unmounted.

function MaleAvatar::onUnmount(%this, %obj, %vehicle, %node)
{
%obj.mountImage(%obj.lastWeapon, $WeaponSlot);

}

Vehicle
We need to revisit the runabout to prepare it for use as a mountable vehicle. The

enhancement is not complex—just some changes to its datablock.

Oh Yeah, the Model

If you recall, in Chapter 15 we created a vehicle with two mount nodes. These

mount nodes are the locations in the vehicle where the player model will be

mounted. I have slapped Figure 22.2 here just to give you a convenient visual

reminder of what that looks like.

Vehicle 871

Figure 22.2
Car mount nodes.

Datablock

We need to add a few things to the datablock. Open your file \koob\con-

trol\server\vehicles\car.cs, and find the datablock. It looks like this:

datablock WheeledVehicleData(DefaultCar)

Add the following to the end of the datablock:

mountPose[0] = "sitting";
mountPose[1] = "sitting";
numMountPoints = 2;

The properties are pretty straightforward—"sitting" refers to the name of

sequence in the model that we created earlier with the Hero model in the sitting

pose. The name was defined in a special material.

Table 22.1 contains descriptions of the most significant properties available for

adjustment in the WheeledVehicleData datablock, even if we aren’t using them all

with the Runabout.

872 Chapter 22 n The Game Server

Table 22.1 WheeledVehicleData Properties

Property Description

maxDamage Specifies the maximum number of damage points a vehicle can take before it
becomes disabled. Destroyed and disabled states are calculated percentages of
this value.

destroyedLevel Specifies the percentage of MaxDamage that, when reached, causes the
vehicle’s onDestroyed callback to be called by the engine.

disabledLevel Specifies the percentage of MaxDamage that, when reached, causes the
vehicle’s onDisabled callback to be called by the engine.

maxSteeringAngle Specifies the maximum steering angle.

tireEmitter Specifies a dust emitter that is used by all the tires.

cameraRoll Rolls the camera with the vehicle when it rolls.

cameraMaxDist Specifies the farthest distance from the vehicle in third-person view.

cameraOffset Specifies the vertical offset from the camera mount point.

cameraLag Specifies the velocity lag of the camera in third-person view.

cameraDecay Specifies the decay per second rate of velocity lag in third-person view.

mass Specifies the mass of the vehicle in quasi-kilograms.

massCenter Specifies the center of mass for rigid body expressed in object space 3D
coordinates.

massBox Specifies the size of box used for moment of inertia; if 0 it defaults to the
object’s bounding box.

Vehicle 873

drag Specifies the drag coefficient. Used to counteract acceleration.

bodyFriction Determines ‘‘stickiness’’ when the body brushes against the terrain or other
objects.

bodyRestitution Determines, by using rigid body physics, how much deformation is reversed.

minImpactSpeed Specifies the speed at and above which the vehicle’s onImpact callback will
be called by the engine.

softImpactSpeed Specifies the speed at and above which the engine will play the vehicle’s
SoftImpact sound.

hardImpactSpeed Specifies the speed at and above which the engine will play the vehicle’s
HardImpact sound.

integration Specifies the physics integration value: TickSec/Rate. Higher values here yield
higher integration. Higher integration leads to more accurate simulation but at
the potential cost of CPU performance.

collisionTol Specifies the collision distance tolerance. A higher number means that a
collision will be detected sooner (objects are farther apart) than with a lower
number.

contactTol Specifies the contact velocity tolerance. How much leeway is allowed in
determining whether objects have collided or have merely contacted, or
brushed, each other. A higher number means that a more forceful contact can
occur without the contact being considered a collision.

engineTorque Specifies the engine power, which causes acceleration, which leads to higher
velocities.

engineBrake Specifies the braking force caused by the engine when throttle is 0---simulates
the internal ‘‘drag’’ of an engine that tends to slow a vehicle when it is in gear.

brakeTorque Works as the opposite of EngineTorque, when brakes are applied.

maxWheelSpeed Specifies the maximum rotation speed of the wheels, which directly affects the
speed of the vehicle based on the wheel diameter and deformation factors.
Wheel speed derives from engine speed and other factors.

maxEnergy Specifies the maximum amount of energy available to the vehicle for
conversion into motion. Energy can be seen to be the same as fuel load.

jetForce Specifies the additional boost force---a holdover term from the Tribes days.
Means the same as acceleration.

minJetEnergy Specifies the smallest amount of energy needed to apply a jetting boost.

jetEnergyDrain Specifies how quickly the energy of the vehicle is drained by use of jetting.

jetSound Specifies the sound played when jetting or accelerating.

engineSound Specifies the sound played when the engine is idling.

squealSound Specifies the sound played when the tires skid.

softImpactSound Specifies the sound played when a mild collision occurs.

hardImpactSound Specifies the sound played when a serious collision occurs.

wheelImpactSound Specifies the sound played when the wheels and tires hit something.

Property Description

Two other datablocks have significant effect on the behavior of the car: Wheel-

edVehicleTire and WheeledVehicleSpring, shown here:

datablock WheeledVehicleTire(DefaultCarTire)
{
shapeFile = "~/data/models/vehicles/wheel.dts";
staticFriction = 4;
kineticFriction = 1.25;
lateralForce = 18000;
lateralDamping = 4000;
lateralRelaxation = 1;
longitudinalForce = 18000;
longitudinalDamping = 4000;
longitudinalRelaxation = 1;

};
datablock WheeledVehicleSpring(DefaultCarSpring)
{
// Wheel suspension properties
length = 0.85; // Suspension travel
force = 3000; // Spring force
damping = 600; // Spring damping
antiSwayForce = 3; // Lateral anti-sway force

};

In the WheeledVehicleTire datablock you can see that tires act as springs in two

ways. They generate lateral and longitudinal forces to move the vehicle. These

distortion/spring forces are what convert wheel angular velocity into forces that

act on the rigid body.

Triggering Events
When you need your players to interact with the game world, there is a lot that is

handled by the engine through the programming of various objects in the

environment, as we saw with collisions with vehicles. Most other interactions not

handled by an object class can be dealt with using triggers.

A trigger is essentially a location in the game world, and the engine will detect

when the player enters and leaves that space (trigger events). Based on the event

detected we can define what should happen when that event is triggered using

event handlers or trigger callbacks. We can organize our triggering to occur when

there is an interaction with a specific object.

874 Chapter 22 n The Game Server

Creating Triggers

If you recall, some of our Koob specifications require us to count the number of

laps completed. What we’ll do is add a trigger to the area around the start/finish

line, and every time a car with a player in it passes through this area, we’ll

increment the lap counter for that player.

For the trigger to know what object to call onTrigger for, you need to add an

additional dynamic field with the name of instance of the trigger when it is

created using the Mission Editor.

Open the file \koob\control\server\server.cs, and at the end of the onServer-

Created function, add this line:

exec("./misc/tracktriggers.cs");

This will load in our definitions.

Now create the file \koob\control\server\misc\tracktriggers.cs, and put the fol-

lowing code in it:

datablock TriggerData(LapTrigger)
{

tickPeriodMS = 100;
};

function LapTrigger::onEnterTrigger(%this,%trigger,%obj)
{
if(%trigger.cp $= "")

echo("Trigger checkpoint not set on " @ %trigger);
else

%obj.client.UpdateLap(%trigger,%obj);
}

The datablock declaration contains one property that specifies how often the

engine will check to see if an object has entered the area of the trigger. In this case

it is set to a 100-millisecond period, which means the trigger is checked 10 times

per second.

There are three possible methods you can use for the trigger event handlers:

onEnterTrigger, onLeaveTrigger, and onTickTrigger.

The onEnterTrigger and onLeaveTrigger methods have the same argument list.

The first parameter, %this, is the trigger datablock’s handle. The second para-

meter, %trigger, is the handle for the instance of the trigger object in question.

Triggering Events 875

The third parameter, %obj, is the handle for the instance of the object that entered

or left the trigger.

In this onEnterTrigger the method is called as soon as (within a tenth of a

second) the engine detects that an object has entered the trigger. The code checks

the cp property of the trigger object to make sure that it has been set (not set to

null or ‘‘’’). If the cp property (which happens to be the checkpoint ID number) is

set, then we call the client’s UpdateLap method, with the trigger’s handle and the

colliding object’s handle as arguments.

You can use onLeaveTrigger in exactly the same way, if you need to know when

an object leaves a trigger.

The onTickTrigger method is similar but doesn’t have the %obj property. This

method is called every time the tick event occurs (10 times a second), as long as

any object is present inside the trigger.

T i p

Since we’re going to be using the Mission Editor a lot in this next section, we’ll need to change
the resolution so we can work with the various editors’ options comfortably. Launch Koob and at
the startup screen, click the Setup button. Change the Resolution to 800� 600, or even higher if
you can. Be sure to leave the program in windowed mode, in case something goes wrong and you
have to force-kill the program with Altþ F4. Click OK and start the game.

Next, we need to place the triggers in our world. We are going to put five triggers

in: one at the start/finish line and one at each of the checkpoints.

Go into camera fly mode, and then move to a position overseeing (looking down

at) the start/finish line. Go into the World Editor Creator (press F11 followed by

F4), and then add a trigger by choosing Mission Objects, Mission, Trigger from

the Tree view at the lower right.

T i p

Don’t forget that when you are placing a new trigger, you need to give it a relevant name. You
also need to select the LapTrigger datablock from the datablock pop-up in the New Object
dialog box.

Also, establish the extents of your trigger using the scale property---don’t bother fiddling with
the polyhedron values.

Once you have your trigger placed, rotate and position it as necessary underneath

the start/finish banner, and resize it to fill the width and the height of the area

876 Chapter 22 n The Game Server

under the banner. Make the thickness roughly about one-tenth of the width, as

shown in Figure 22.3.

Now switch to the World Editor (F3), locate your new object in the hierarchy at

the upper right, and click on it to select it. In the Inspector frame, locate the

Dynamic Fields section, and then click the sideways button called Add Field

(the arrow cursor in Figure 22.4 points to it). You will see a new entry appear in

the Dynamic Fields section that says ‘‘NewDynamicField’’ on the left side in the

name box, and ‘‘Default Value’’ on the right side in the value box. Enter ‘‘cp’’ in

the name box and ‘‘0’’ in the value box. Then click the Apply button to commit

the changes to the object. What we’ve done is added a property to the object and

named it ‘‘cp’’ with the value 0. We can access this property later from within the

Triggering Events 877

Figure 22.3
Placing a trigger.

Figure 22.4
The Add dynamic field dialog box.

program code. The next checkpoint will be numbered 1, the one after that will be

2, next is 3, and finally 4, which is the fifth checkpoint. The numbering proceeds

in a counterclockwise direction.

T i p

If you need to get rid of a dynamic field, just click on the little trash can icon on the left side of the
field.

Go ahead and add those checkpoints now, using the same technique as just

noted. You can copy and paste the first trigger object to create the rest if you

like—just remember to change the cp property accordingly.

T i p

Some objects behave a little oddly when added via copy and paste. After pasting an object into the
world, even though it will be visually selected in the view of the world, it still needs to be selected
in the Inspector hierarchy in the upper-right frame. There are times when this may not be strictly
necessary, but if you move, rotate, or resize the object by directly manipulating it via the gizmo
handles, the changes will not be reflected in the Inspector frame until you reselect the object in the
hierarchy.

Now we have the ability to measure progress around the track. We have to add

code to use these triggers, and that will be done as part of the scoring system,

which is in the next section.

Scoring

We need to keep track of our accomplishments and transmit those values to the

client for display.

Laps and Checkpoints

Open the file \koob\control\server\server.cs, and put the following code at the

end of the GameConnection::CreatePlayer method:

%client.lapsCompleted = 0;
%client.cpCompleted = 0;
%client.ResetCPs();

%client.position = 0;
%client.money = 0;
%client.deaths = 0;
%client.kills = 0;
%client.score = 0;

878 Chapter 22 n The Game Server

These are the variables we use to track various scores. Now add the following

methods to the end of the file:

function GameConnection::ResetCPs(%client)
{

for (%i = 0; %i < $Game::NumberOfCheckpoints; %i++)
%client.cpCompleted[%i]=false;

}
function GameConnection::CheckProgress(%client, %cpnumber)
{

for (%i = 0; %i < %cpnumber; %i++)
{
if (%client.cpCompleted[%i]==false)
return false;

}
%client.cpCompleted = %cpnumber;
return true;

}
function GameConnection::UpdateLap(%client,%trigger,%obj)
{

if (%trigger.cp==0)
{
if (%client.CheckProgress($Game::NumberOfCheckpoints))
{

%client.ResetCPs();
%client.cpCompleted[0] = true;
%client.lapsCompleted++;
%client.DoScore();
if(%client.lapsCompleted >= $Game::NumberOfLaps)
EndGame();

}
else
{
%client.cpCompleted[0] = true;
%client.DoScore();

}
}
else if (%client.CheckProgress(%trigger.cp))
{
%client.cpCompleted[%trigger.cp] = true;
%client.DoScore();

}
}

Triggering Events 879

function GameConnection::DoScore(%client)
{
%scoreString = %client.score @

" Lap: " @ %client.lapsCompleted @
" CP: " @ %client.cpCompleted+1 @
" $: " @ %client.money @
" D: " @ %client.deaths @
" K: " @ %client.kills;

commandToClient(%client, ’UpdateScore’, %scoreString);
}

Starting from the last, the DoScore method merely sends a string containing

scores to the client using the messaging system. The client code to handle this

string will be presented in Chapter 23.

Before that is the meat of these particular functions: UpdateLap. You will recall

that this is the method that is called for the client from the onEnterTrigger

method.

The first thing UpdateLap does is to check to see if this is the first checkpoint,

because it has a special case. Because we will start and drive through the first

checkpoint at the start/finish line, it can be legitimately triggered without any

other trigger events having occurred. We want to check for this condition. We

check this by calling CheckProgress to see how many triggers have been passed. If

the answer is none (a false return value), then we are starting the race, so wemark

this checkpoint as having been completed and update our score to reflect that fact.

If this isn’t the first checkpoint, then we want to check if all the checkpoints up

until this checkpoint have been completed for this lap. If so, then mark this one

completed and update the score; otherwise, just ignore it.

Nowfinally, if we are back at checkpoint 0 and ifwhenwe check to see if all the other

checkpoints have been passed the result is true, then we are finishing a lap. So we

increment the lap, reset the checkpoint counters, mark this checkpoint completed,

update the score, and then check to see if the race is over; if not, we continue.

The previous method, CheckProgress, is called from UpdateLap and receives the

current checkpoint ID number as a parameter. It then loops through the

checkpoint array for this client and verifies that all lower-numbered checkpoints

have been set to true (they have been passed). If any one of them is false, then

this checkpoint is out of sequence and not legitimate. The function then returns

false; otherwise, all is in order, and it returns true.

880 Chapter 22 n The Game Server

And then first, but not least (grins), is the method ResetCPs. This simple method

just riffles through the checkpoint array setting all entries to false.

Now there are a few odds and ends to deal with. Earlier in this file, server.cs, is the

StartGame function. Locate it, and add these lines after the last code in there:

$Game::NumberOfLaps = 10;
$Game::NumberOfCheckpoints = 5;

Of course, you should adjust these values to suit yourself. You might want to set

NumberOfLaps to a lower number, like 2, for testing purposes. Speaking of testing,

if you want to test this, but before addressing the client-side code, then you can

add some echo statements and view the output in the console window (invoked

by pressing the Tilde key). A good place to put such a statement would be just

before the CommandToClient call in DoScore. It would look like this:

echo("Score " @ %scoreString);

Money

Another requirement is to have randomly scattered coins in the game world.

Open \koob\control\server\server.cs, locate the function StartGame, and add the

following line to the end of the function:

PlaceCoins();

Then place the following function just after the StartGame function:

function PlaceCoins()
{
%W=GetWord(MissionArea.area,2);
%H=GetWord(MissionArea.area,3);
%west = GetWord(MissionArea.area,0);
%south = GetWord(MissionArea.area,1);
new SimSet (CoinGroup);
for (%i = 0; %i < 4; %i++)
{
%x = GetRandom(%W) + %west;
%y = GetRandom(%H) + %south;
%searchMasks = $TypeMasks::PlayerObjectType |
$TypeMasks::InteriorObjectType |
$TypeMasks::TerrainObjectType |
$TypeMasks::ShapeBaseObjectType;
%scanTarg = ContainerRayCast(%x SPC %y SPC "500", %x SPC %y SPC "-100",
%searchMasks);

Triggering Events 881

if(%scanTarg && !(%scanTarg.getType() & $TypeMasks::InteriorObjectType))
{
%newpos = GetWord(%scanTarg,1) SPC GetWord(%scanTarg,2) SPC

GetWord (%scanTarg,3) + 1;
}
%coin = new Item("Gold "@%i) {
position = %newpos;
rotation = "1 0 0 0";
scale = "5 5 5";
dataBlock = "Gold";
collideable = "0";
static = "0";
rotate = "1";

};
MissionCleanup.add(%coin);
CoinGroup.add(%coin);

}
// repeat above for silver coin
for (%i = 0; %i < 8; %i++)
{
%x = GetRandom(%W) + %west;
%y = GetRandom(%H) + %south;
%searchMasks = $TypeMasks::PlayerObjectType |
$TypeMasks::InteriorObjectType | $TypeMasks::TerrainObjectType |
$TypeMasks::ShapeBaseObjectType;
%scanTarg = ContainerRayCast(%x SPC %y SPC "500", %x SPC %y SPC "-100",
%searchMasks);
if(%scanTarg && !(%scanTarg.getType() & $TypeMasks::InteriorObjectType))
{
%newpos = GetWord(%scanTarg,1) SPC GetWord(%scanTarg,2) SPC GetWord

(%scanTarg,3) + 1;
}
%coin = new Item("Silver "@%i) {
position = %newpos;
rotation = "1 0 0 0";
scale = "5 5 5";
dataBlock = "Silver";
collideable = "0";
static = "0";
rotate = "1";

};
MissionCleanup.add(%coin);
CoinGroup.add(%coin);

882 Chapter 22 n The Game Server

}

// repeat above for copper coin
for (%i = 0; %i < 32; %i++)
{
%x = GetRandom(%W) + %west;
%y = GetRandom(%H) + %south;
%searchMasks = $TypeMasks::PlayerObjectType |
$TypeMasks::InteriorObjectType | $TypeMasks::TerrainObjectType |
$TypeMasks::ShapeBaseObjectType;
%scanTarg = ContainerRayCast(%x SPC %y SPC "500", %x SPC %y SPC "-100",

%searchMasks);
if(%scanTarg && !(%scanTarg.getType() & $TypeMasks::InteriorObjectType))
{
%newpos = GetWord(%scanTarg,1) SPC GetWord(%scanTarg,2) SPC GetWord

(%scanTarg,3) + 1;
}
%coin = new Item("Copper "@%i) {
position = %newpos;
rotation = "1 0 0 0";
scale = "5 5 5";
dataBlock = "Copper";
collideable = "0";
static = "0";
rotate = "1";

};
MissionCleanup.add(%coin);
CoinGroup.add(%coin);

}
}

The first thing this function does is to obtain the particulars of the MissionArea.

For this game you should use the Mission Area Editor (press F11 followed by F5)

to expand the MissionArea to fill the entire available terrain tile.

The %H and %W values are the height and width of the MissionArea box.

The variables %west and %south combined make the coordinates of the

southwest corner. We use these values to constrain our random number

selection.

Then we set up a search mask. All objects in the Torque Engine have a mask

value that helps to identify the object type. We can combine these masks using

a bitwise-or operation, in order to identify a selection of different types of

interest.

Triggering Events 883

Then we use our random coordinates to do a search from 500 world units altitude

downward until we encounter terrain, using the ContainerRayCast function.

When the ray cast finds terrain, we add one world unit to the height and then use

that plus the random coordinates to build a position at which to spawn a coin.

Then we spawn the coin using the appropriate datablock, which can be found in

your new copy of item.cs.

Next, we add the coin to the MissionCleanup group so that Torque will auto-

matically remove the coins when the game ends. We also add it to the CoinGroup

in case we want to access it later.

After putting that code in, copy \3D2E\RESOURCES\CH22\item.cs over to

\koob\control\server\misc, replacing the existing item.cs. You will find the

datablocks for the coins (where the coin values are assigned) in there.

Note that when we added the coins in the preceding code, the static parameter

was set to 0. This means that the game will not create a new coin at the place

where the coin was picked up, if it is picked up. The weapons of the ammo do

this, but we don’t want our coins to do it. It’s a game play design decision.

In addition to the datablocks for the coins in item.cs, you will also find this code:

if (%user.client)
{

messageClient(%user.client, ’MsgItemPickup’, ’\c0You picked up %1’,
%this.pickupName);

%user.client.money += %this.value;
%user.client.DoScore();

}

The last two statements in there allow the player to accumulate the money values,

and then the server notifies the client of the new score. Note that it is similar in

that small way to the checkpoint scoring.

Again, until the client code is in place, you can insert echo statements there to

verify that things are working properly.

Deaths

We want to track the number of times we die to further satisfy requirements, so

open \koob\control\server\server.cs, locate themethod GameConnection::onDeath,

and add these lines at the end:

%this.deaths++;
%this.DoScore();

884 Chapter 22 n The Game Server

By now these lines should be familiar. We can expand the player death by adding

some animation. Add the following to the end of \koob\control\server\players\

player.cs:

function Player::playDeathAnimation(%this,%deathIdx)
{
%this.setActionThread("Die1");

}

Now "Die1" should actually be the name of whatever animation youmade for the

character’s death back in Chapter 14. If you are using Torque’s sequences, then

you probably want to use "Death1" instead. In fact, there are 11 Torque death

sequences, so it would be good practice for you to create code in the above

function to randomly pick one of the 11 animations.

We covered how to randomly pick a number and add it to a string back in

Chapter 20, when we were hurling insults at each other.

Kills

The victim, who notifies the shooter’s client when he dies, actually does the kill

tracking. So we go back to GameConnection::onDeath and add this to the end of

the function:

%sourceClient = %sourceObject ? %sourceObject.client : 0;
if (%obj.getState() $= "Dead")
{

if (isObject(%sourceClient))
{

%sourceClient.incScore(1);
if (isObject(%client))
%client.onDeath(%sourceObject, %sourceClient, %damageType, %location);

}
}

This bit of code figures out who shot the player and notifies the shooter’s client

object of this fact.

Now it is important to remember that all this takes place on the server, and when

we refer to the client in this context, we are actually talking about the client’s

connection object and not about the remote client itself.

Okay, so now let’s move on to the client side and finish filling the requirements!

Triggering Events 885

Moving Right Along
So, now we have our player’s model ready to appear in the game as our avatar,

wheels for him to get around in, and a way to figure out where he’s been.

We’ve also put some things in the game world for the player to pursue to

accumulate points and a way to discourage other players from accumulating too

many points for themselves (by killing them).

All of these features are created on the server. In the next chapter we will add the

features that will be handled by the game client.

886 Chapter 22 n The Game Server

The Game Client

By now we’ve met most of our requirements, at least to the point of

implementation. Testing them for correct operation and completeness I will

leave as an exercise for you, gentle reader, because you may (and probably will)

want to modify and enhance the requirements anyway.

According to my list, the requirements that remain outstanding are the following:

2. Networked multiplayer game play.

3. Global in-game chat.

11. All other players are enemies.

12. All point values configurable from a setup file.

14. 3 points per vehicle destroyed.

15. Ability to race around the track and score 5 points for each lap you lead.

(partial)

16. Laps can only be scored in the car.

17. A 10-lap race with no time limit.

18. A 10-point bonus for winning the race.

29. When one map is finished, cycle to the next in the list.

887

chapter 23

Of this list, I will leave numbers 14, 16, 17, and 18 and the remaining portion of

number 15 (scoring 5 points) to you to complete as exercises. They are variations

of the coin scoring and the lap and checkpoint tracking we covered in Chapter 22.

The functioning code is available in RESOURCES\Koob, if you need help.

Most of the remaining work requires additional client code to support the server

additions we made in the last chapter—we’ll add some multiplayer support, a

little bit more client support, and user interfaces to access those capabilities.

Client Interfaces
We are going to add code to allow users to run a server and to allow players to

connect to a server. In order to make that connection, we will want to provide the

user with an interface he can use to find servers, decide which one offers an

interesting game, and then connect to the server.

Another thing we need to do is make sure that when the user quits a server, he

returns to his selection interface rather than simply exiting as Koob does now.

Additionally, we need to add a capability to the playing interface to provide a chat

window with a text entry where players can type in messages to send to other

players. Maybe they’ll want to exchange recipes or something. Yeah, that’s it—

recipes! It’s not like they’re going to taunt anyone anyway, is it?

In Chapter 6 you saw the ServerScreen interface module that combined these

interfaces. In this chapter we’ll look at the same issue but in a slightly different way, in

order to show how easy it is to make different—yet equally valid—design decisions.

Also, we’ll need to modify a few of the files, like the MenuScreen interface, to more

closely conform to our needs.

In a later section we’ll add the code required to make these interfaces functional.

MenuScreen Interface

We will make some changes to our main menu screen so that it provides the user

with the additional choices to

n view information about the games and credits

n play in single-player mode (as it already has)

n host a game

n connect to another server

888 Chapter 23 n The Game Client

Open your MenuScreen.gui file, in KOOB\control\client\interfaces and locate

the following line:

command = "LaunchGame();";

This line is a property statement in a GuiButtonCtrl. Delete the entire control,

from where it says

new GuiButtonCtrl() {

down to the closing brace (‘‘}’’).

In the place of the deleted control, insert the following:

new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "30 138";
extent = "120 20";
minExtent = "8 8";
visible = "1";
command = "Canvas.setContent(SoloScreen);";
text = "Play Solo";
groupNum = "-1";
buttonType = "PushButton";
helpTag = "0";

};
new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "30 166";
extent = "120 20";
minExtent = "8 8";
visible = "1";
command = "Canvas.setContent(ServerScreen);";
text = "Find a Server";
groupNum = "-1";
buttonType = "PushButton";
helpTag = "0";

};
new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";

Client Interfaces 889

vertSizing = "top";
position = "30 192";
extent = "120 20";
minExtent = "8 8";
visible = "1";
command = "Canvas.setContent(HostScreen);";
text = "Host Game";
groupNum = "-1";
buttonType = "PushButton";
helpTag = "0";

};
new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position = "30 237";
extent = "120 20";
minExtent = "8 8";
visible = "1";
command = "getHelp();";
helpTag = "0";
text = "Info";
groupNum = "-1";
buttonType = "PushButton";

};

You may, if you wish, use the built-in GUI Editor (press F10) to do this. Make

sure that you set all the properties to match those just listed.

The significant thing to note about these controls is the command property. Each

one replaces a displayed MenuScreen interface with a new interface, according to

its function, with the exception of the Info button.

The Info button uses the getHelp feature of the common code base. It searches all

the directories nested under the root main directory looking for files with the

extension .hfl, and then it lists them in alphanumeric order. If you preface the file

name with a number (such as 1., 2., and so on), it will sort them numerically.

This should give you a main menu that looks like Figure 23.1.

SoloScreen Interface

The SoloScreen interface, as shown in Figure 23.2, prepares a list of mission files

that it finds in the maps subdirectory in the control\data directory tree. From this

890 Chapter 23 n The Game Client

list, you can select the map or mission you want to play. Its code and definition

can be found in the SoloScreen modules.

It’s worth remembering that even when you play in solo mode, underneath the

hood, the Torque Engine is still running in two parts: a client and a server. They

are just closely coupled with no cross-network calls being made.

Client Interfaces 891

Figure 23.1
MenuScreen interface.

Figure 23.2
SoloScreen interface.

Host Interface

The Host interface is somewhat similar, as you can see in Figure 23.3, but it offers

more options: the ability to set a time limit and a score limit, plus map selection

modes. Its code and definition can be found in the HostScreen modules.

If both time and score limits are set, the first one reached ends the game. A setting

of 0 makes that limit infinite. The sequence mode causes the server to step

through the maps in order as shown in the listing, as each game finishes and the

new one loads. The random mode causes the server to randomly select a map for

each game. The time limit is saved by the control in the variable $Game::Duration,

and the score limit is saved as $Game::MaxPoints.

FindServer Interface

The FindServer interface, shown in Figure 23.4, lets you browse for servers. Its

code and definition can be found in the ServerScreen modules. It will find servers

892 Chapter 23 n The Game Client

Figure 23.3
Host interface.

Figure 23.4
FindServer interface.

that are running on the local LAN you are connected to (if you are connected to

one, of course), and it can attempt to reach out via the Internet to contact the

master servers at GarageGames and find games for you to connect to. You are

not required to use the GarageGames master servers, but then you will have to

write your own master server software to connect to. This can be done using

TorqueScript but is beyond the scope of this book. There are master server

resources available from the GarageGames user community.

ChatBox Interface

In order to display chat messages from other players, we need to put a control in

our main player interface. We also need to have a control that will allow us to

type in messages to be sent to other players, as depicted in Figure 23.5.

Open the file \KOOB\control\client\Initialize.cs, and look for the following lines

in the function InitializeClient:

Exec("./interfaces/chatbox.gui");
Exec("./interfaces/messagebox.gui");

Client Interfaces 893

Figure 23.5
ChatBox interface.

These exec statements load the files that will provide our chat interface. These

files have been sitting in the interfaces folder ever since back in Chapter 5. Time

to put them to work.

Open the file \KOOB\control\client\misc\presetkeys.cs, and add the following

keyboard input binding statements to the end of the file:

function pageMessageBoxUp(%val)
{
if (%val)
PageUpMessageBox();

}
function pageMessageBoxDown(%val)
{
if (%val)
PageDownMessageBox ();

}
PlayerKeymap.bind(keyboard, "t", ToggleMessageBox);
PlayerKeymap.bind(keyboard, "PageUp", PageMessageBoxUp);
PlayerKeymap.bind(keyboard, "PageDown", PageMessageBoxDown);

The first two functions are glue functions that are called by two of the key

bindings at the bottom and then make the appropriate call to the functions that

scroll the messages in the message box. We need these functions in order to filter

out the key up and key down signals from the engine. We only want the action to

take place when the key is pressed. We can do this by checking the value of %val

when we enter the function—it will be nonzero when the key is pressed and zero

when it is released.

Then there is a binding that calls ToggleMessageBox, which is defined in message-

box.cs (one of the files we’ve copied in an earlier chapter that we will examine

shortly).

In the interface files there are a couple of concepts you should note. To illustrate,

look at the definition of the ChatBox interface, contained in chatbox.gui:

new GuiControl(MainChatBox) {
profile = "GuiModelessDialogProfile";
horizSizing = "width";
vertSizing = "height";
position = "0 0";
extent = "640 480";
minExtent = "8 8";

894 Chapter 23 n The Game Client

visible = "1";
modal = "1";
setFirstResponder = "0";
noCursor = true;

new GuiNoMouseCtrl() {
profile = "GuiDefaultProfile";
horizSizing = "relative";
vertSizing = "bottom";
position = "0 0";
extent = "400 300";
minExtent = "8 8";
visible = "1";

new GuiBitmapCtrl(OuterChatFrame)
{

profile = "GuiDefaultProfile";
horizSizing = "width";
vertSizing = "bottom";
position = "8 32";
extent = "256 72";
minExtent = "8 8";
visible = "1";
setFirstResponder = "0";
bitmap = "./hudfill.png";

new GuiButtonCtrl(chatPageDown)
{

profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "217 54";
extent = "36 14";
minExtent = "8 8";
visible = "0";
text = "Dwn";

};

new GuiScrollCtrl(ChatScrollFrame)
{
profile = "ChatBoxScrollProfile";
horizSizing = "width";
vertSizing = "bottom";

Client Interfaces 895

position = "0 0";
extent = "256 72";
minExtent = "8 8";
visible = "1";
setFirstResponder = "0";
willFirstRespond = "1";
hScrollBar = "alwaysOff";
vScrollBar = "alwaysOff";
constantThumbHeight = "0";

new GuiMessageVectorCtrl(ChatBox)
{

profile = "ChatBoxMessageProfile";
horizSizing = "width";
vertSizing = "height";
position = "4 4";
extent = "252 64";
minExtent = "8 8";
visible = "1";
setFirstResponder = "0";
lineSpacing = "0";
lineContinuedIndex = "10";
allowedMatches[0] = "http";
allowedMatches[1] = "tgeserver";
matchColor = "0 0 255 255";
maxColorIndex = 5;

};
};

};
};

};

You’ve probably noticed that there is a heck of lot of indenting. This shows that

there are many nested objects within objects. Each nesting level is there for a

reason.

The outer level, owned by MainChatBox, is a general-purpose GuiControl con-

tainer that encompasses the entire screen, occupying the same extents as the

Canvas that we view the 3D world through.

Inside that is a GuiNoMouseCtrl control whose role is to shield the chat boxes

within it from being accessible by a mouse cursor, if you were to display one on

the screen.

896 Chapter 23 n The Game Client

Inside that is the GuiBitmapCtrl control named OuterChatFrame, which has two

useful functions. You can use it to provide a nice bitmap background for your

chat box if you want one, and it holds two subobjects.

One of those subobjects is an icon that appears to tell you when you’ve scrolled

the chat box up far enough to hide text off the bottom of the box. That control is

a GuiButtonCtrl named chatPageDown.

The other control is a GuiScrollCtrl named ChatScrollFrame, which provides

scroll bars for both vertical and horizontal scrolling.

And finally, in the inner sanctum is the actual control that contains the text of the

chat box when it is displayed. This GuiMessageVectorCtrl supports multiline

buffers of text that will display new text at the bottom and scroll older text up.

You can use commands (that we have bound to the PageUp and PageDown keys)

to scroll up and down through the text buffer.

MessageBox Interface

The MessageBox interface is where we type in our messages, as shown in

Figure 23.6.

Client Interfaces 897

Figure 23.6
MessageBox interface.

It is not normally on the screen but pops up when we press the key we bound to it.

This, too, has several nested levels, though not as many as the ChatBox interface.

new GuiControl(MessageBox)
{

profile = "GuiDefaultProfile";
horizSizing = "width";
vertSizing = "height";
position = "0 0";
extent = "640 480";
minExtent = "8 8";
visible = "0";
noCursor = true;

new GuiControl(MessageBox_Frame)
{

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "120 375";
extent = "400 24";
minExtent = "8 8";
visible = "1";

new GuiTextCtrl(MessageBox_Text)
{

profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "6 5";
extent = "10 22";
minExtent = "8 8";
visible = "1";

};

new GuiTextEditCtrl(MessageBox_Edit)
{

profile = "GuiTextEditProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "0 5";
extent = "10 22";
minExtent = "8 8";

898 Chapter 23 n The Game Client

visible = "1";
altCommand = "$ThisControl.eval();";
escapeCommand = "MessageBox_Edit.onEscape();";
historySize = "5";
maxLength = "120";

};
};

};

It is all familiar stuff, but take note that the outer object, MessageBox, is initially

invisible. The code that pops the box up will make it visible and invisible again as

needed.

There is a GuiTextCtrl named MessageBox_Text that is at the same level as the

GuiTextEditCtrl named MessageBox_Edit. The MessageBox_Text can be used to put

a prompt in front of the area where the message will be typed in, although it has no

text here in the definition. The MessageBox_Edit control is the control that accepts

our typed-in message. The altCommand property specifies what statement to execute

when the Enter key is pressed, and the escapeCommand property specifies what to do

when the Escape key is pressed. The handlers for these two functions will be

discussed later in the code discussion in the following ‘‘Client Code’’ section.

Client Code
I’m not going to make you type in great reams of program code at this stage of

the game, though you don’t get off the hook completely. You will have to make

some changes to accommodate the new stuff, and we’ll also examine the contents

of some of the new stuff to see what it does.

MenuScreen Interface Code

Open the file \KOOB\control\client\initialize.cs, locate the function Initialize

Client, and add the following lines in the grouping with the other similar

statements:

Exec("./misc/hostscreen.cs");
Exec("./misc/soloscreen.cs");

Exec("./interfaces/hostscreen.gui");
Exec("./interfaces/soloscreen.gui");

Client Code 899

Like I promised, I won’t make you type in all the files referenced in those exec

statements; you can copy them from \3D2E\RESOURCES\CH23 and put them

into the directories under the \KOOB\control\client\ directory in the sub-

directories specified in the exec statements.

Each of these files is basically onemodule split into two parts. The actual interface

definitions are in the files with the .gui extensions, while the code that manages

the interfaces is in the files with the same prefix name but ending with the .cs

extension.

If you go back to the previous code listing for menuscreen.gui, you will see where

each of the interfaces is invoked. HostScreen is defined in hostscreen.gui, and

SoloScreen is defined in soloscreen.gui.

Each interface has roughly the same form. There is an OnWake method for the

interface object that is called by the engine when that object is displayed by the

SetContent call in the related button in the MenuScreen interface. This method

prepares the interface and fills the various data fields in the interfaces.

SoloScreen Interface Code

The SoloScreen interface that you saw in Figure 23.2 prepares a list of mission

files that it finds so that you can select one of them to play with. The functional

code for the SoloScreen interface, extracted from soloscreen.cs, is shown here for

discussion:

function PlaySolo()
{
%id = SoloMissionList.getSelectedId();
%mission = getField(SoloMissionList.getRowTextById(%id), 1);
StopMusic(AudioIntroMusicProfile);
createServer("SinglePlayer", %mission);
%conn = new GameConnection(ServerConnection);
RootGroup.add(ServerConnection);
%conn.setConnectArgs("Reader");
%conn.connectLocal();

}

function SoloScreen::onWake()
{
SoloMissionList.clear();
%i = 0;

900 Chapter 23 n The Game Client

for(%file = findFirstFile($Server::MissionFileSpec);
%file !$= ""; %file = findNextFile($Server::MissionFileSpec))

if (strStr(%file, "CVS/") = = -1 && strStr(%file, "common/") = = -1)
SoloMissionList.addRow(%i++, getMissionDisplayName(%file) @ "\t" @

%file);
SoloMissionList.sort(0);
SoloMissionList.setSelectedRow(0);
SoloMissionList.scrollVisible(0);

}
function getMissionDisplayName(%missionFile)
{
%file = new FileObject();
%MissionInfoObject = "";
if (%file.openForRead(%missionFile)) {
%inInfoBlock = false;

while (!%file.isEOF()) {
%line = %file.readLine();
%line = trim(%line);

if(%line $= "new ScriptObject(MissionInfo) {")
%inInfoBlock = true;
else if(%inInfoBlock && %line $= "};") {
%inInfoBlock = false;
%MissionInfoObject = %MissionInfoObject @ %line;
break;
}

if(%inInfoBlock)
%MissionInfoObject = %MissionInfoObject @ %line @ " ";

}

%file.close();
}
%MissionInfoObject = "%MissionInfoObject = " @ %MissionInfoObject;
eval(%MissionInfoObject);
%file.delete();
if(%MissionInfoObject.name !$= "")
return %MissionInfoObject.name;

else
return fileBase(%missionFile);

}

Client Code 901

The onWake method is as described in earlier chapters; in this case the onWake

method makes clear the mission list and then populates it according to the

matching files it finds in the path indicated by $Server::MissionFileSpec. This

variable is set in the file \KOOB\control\server\initialize.cs with the following

line in the InitializeServer function:

$Server::MissionFileSpec = "*/maps/*.mis";

There are a couple of things you should understand about the way the search is

done in the code presented.

First, there is the matter of the syntax used here. It can be difficult to decipher

C-based code because of the looseness allowed—and TorqueScript’s syntax is

extremely close to that of the C language and C++. You will recall that with most

statements that employ a code block, such as if and for, you can use the long

form or the short form, depending on your needs.

For example, the long form using braces

if (%a= =1) { %x=5; }

can also be written as

if (%a= =1) {
%x=5;

}

or as

if (%a= =1)
{

%x=5;
}

There are also other minor variations, but I’m sure you get the idea. The compiler

doesn’t care about the lines the code appears on, and it doesn’t care about the

amount of white space (tabs, spaces, and carriage returns). It only cares that the

correct tokens and keywords are in the right place and that they make sense

according to the compiler’s parsing rules. Of course, white space is used to

separate tokens and keywords, but the amount is not important to the parser.

The short form of these kinds of statements does depend on statement context,

however. First, note that the preceding code can also be written as

if (%a= =1)% x=5;

902 Chapter 23 n The Game Client

This demonstrates that the braces in the earlier example are superfluous in this

particular flavor of statement. However,

if (%a==1)
%x=5;

is a valid rendition of the short form—but the conditional code that you want

executed must exist as a single statement that immediately follows the conditional

test. In this example, if the test is satisfied, %x is assigned the value 5. If the test is

not satisfied, the ensuing assignment is not carried out.

However, using the same form

if (%a==1)
%x=5; %b=6;

if the test is satisfied, %x is assigned the value 5 as before, and %b is assigned the

value 6. But (and this is a big but) if the test is not satisfied, although the ensuing

assignment statement is not carried out, the one after it still is. So with this last bit

of code, %b always gets assigned the value 6.

By now youmay be wondering why this digression. Here’s why: the SoloScreen::

onWakemethod has the following statements that search for available mission files

to use to populate its list:

for(%file = findFirstFile($Server::MissionFileSpec);
%file !$= ""; %file = findNextFile($Server::MissionFileSpec))

if (strStr(%file, "CVS/") = = -1 && strStr(%file, "common/") = = -1)
SoloMissionList.addRow(%i++, getMissionDisplayName(%file) @ "\t" @

%file);

You might be tempted to misinterpret this code, even if you thoroughly

understand programming in C or TorqueScript. What we need to do is simplify

the code to remove obfuscation introduced by the line context: We’ll change all

instances of findFirstFile($Server::MissionFileSpec) to fFF(), all instances of

findNextFile($Server::MissionFileSpec)) to fNF(), and finally, all instances of

getMissionDisplayName(%file) to gMDN(). Now the code will look like this (it

won’t compile, but we don’t care about that):

for(%file = fFF();
%file !$= ""; %file = fNF())

if (strStr(%file, "CVS/") = = -1 && strStr(%file, "common/") = = -1)
SoloMissionList.addRow(%i++, gMDN()@ "\t" @ %file);

Client Code 903

If we tidy up the white space a bit, we get this:

for(%file = fFF(); %file !$= ""; %file = fNF())
if (strStr(%file, "CVS/") = = -1 && strStr(%file, "common/") = = -1)

SoloMissionList.addRow(%i++, gMDN()@ "\t" @ %file);

And hey, presto! The code structure reveals the algorithm quite nicely. The

original line wrapping made the code hard to understand and made it look

wrong when it actually wasn’t. There are several lessons to be learned here:

1. Make sure your programming editor lets you display long lines of maybe

150 characters or more, just in case you have them.

2. Pay attention to your function and variable name lengths. Long descriptive

names are extremely useful when you are trying to understand unfamiliar or

long-forgotten code, but there are times when they can confuse more than

explain.

3. Your own code may confuse you at some later point just as much as it might

confuse someone else who needs to understand it (someone you’ve called in

to fix bugs for you, for example).

What fix do I recommend for this? Shorter names? No. Instead, use braces and

indenting and put the statements in the long form in order to remove any

contextual ambiguity.

for(%file = findFirstFile($Server::MissionFileSpec);
%file !$= ""; %file = findNextFile($Server::MissionFileSpec))

{
if (strStr(%file, "CVS/") = = -1 && strStr(%file, "common/") = = -1)
{
SoloMissionList.addRow(%i++, getMissionDisplayName(%file) @ "\t" @

%file);
} // end of if

} // end of for

You can also add comments if they clarify what you are doing. Don’t worry about

insulting the intelligence of expert programmers by doing this. Any seasoned

hand will greatly appreciate anything you do to make it quick and easy to

understand what you are doing. Especially if they are doing code reviews for you!

Now, after that long-windedness, we can address the second issue about that

code: what does it do?

904 Chapter 23 n The Game Client

The initial findFirstFile uses the variable to search the specified directory for the

first instance of a matching file. If you actually do find a match, the path name is

deposited in the %file variable, and you enter a loop. In each iteration of the loop,

calls are made to findNextFile, which will find any new file in the sequence that

matches the search criteria. If findNextFile does not find any more matching files,

the %file variable is set to NULL, and the loop exits. In the loop we check the

contents of the path name in %file for the existence of two potential invalid

directory names: CVS (used for source code management and not part of Tor-

que) and common. If the file we found is not in either of those two directories,

then we consider it to be valid and add it to our mission list using the Solo-

MissionList.addRow method.

The findFirstFile-findNextFile construct is a powerful one. It maintains an

internal list of the files that it has found on your behalf. You just need to extract

the path names as they appear.

Having said all that about such a small chunk of code, I should point out that this

interface is a basic one. You might consider adding a few more capabilities, such

as the sequence or random map selection option you’ll find next in the Host

interface.

The getMissionDisplayName is a bigger and more impressive-looking bit of work,

but its function is fairly straightforward, albeit with a semimagical twist to it, so

to speak. It opens up a file as directed and looks through it for the line that

contains the statement "%MissionInfoObject = ". It then creates an actual Mis-

sionInfoObject using that statement and uses the name property of the object to

obtain the name and return the name to the calling function. This is a pretty

clever way to examine a file. Pretty sensible, too, when you realize that mission

files are simply TorqueScript files with a different extension.

This bit of code presents to you a lot of possibilities about how you can use

TorqueScript. One that comes to mind is a reprogrammable AI robot, where you

merely read in the new instructions at run time, with the instructions written in

TorqueScript. No need to create your own robot control language!

Host Interface Code

The Host interface code is similar to the SoloScreen code that you just looked at.

There is nothing remarkable about it that hasn’t already been mentioned, except

that you should add some code to provide the player the ability to choose

between playing maps in sequence (as exists now) or randomly.

Client Code 905

You will want to have the Sequence and Random buttons that I’ve already pro-

vided in HostScreen.gui set a variable that your onWake code can examine. If the

variable has one value, leave things as they are. If the variable has a different value,

then have the onWake method choose a map randomly. One simple method to

introduce the randomness is to select a random value between 0 and the number

of available maps and then to reject that many maps when the findNextFile

function returns them. Then you would accept the next map returned.

Give it a try.

FindServer Interface Code

You saw the FindServer interface way back there in Figure 23.4. It lets you browse

for servers with which you can connect. We’ve already looked at how this part of

Torque works, back in Chapters 5, 6, and 7, so I won’t go into too much detail

here. The functional code for the FindServer interface, extracted from Server-

Screen.cs, is shown here for a brief discussion:

function ServerScreen::onWake()
{
MasterJoinServer.SetActive(MasterServerList.rowCount() > 0);

}
function ServerScreen::Query(%this)
{
QueryMasterServer(
0, // Query flags
$Client::GameTypeQuery, // gameTypes
$Client::MissionTypeQuery, // missionType
0, // minPlayers
100, // maxPlayers
0, // maxBots
2, // regionMask
0, // maxPing
100, // minCPU
0 // filterFlags
);

}
function ServerScreen::Cancel(%this)
{
CancelServerQuery();

}
function ServerScreen::Join(%this)

906 Chapter 23 n The Game Client

{
CancelServerQuery();
%id = MasterServerList.GetSelectedId();
%index = getField(MasterServerList.GetRowTextById(%id),6);
if (SetServerInfo(%index)) {
%conn = new GameConnection(ServerConnection);
%conn.SetConnectArgs($pref::Player::Name);
%conn.SetJoinPassword($Client::Password);
%conn.Connect($ServerInfo::Address);

}
}
function ServerScreen::Close(%this)
{
cancelServerQuery();
Canvas.SetContent(MenuScreen);

}
function ServerScreen::Update(%this)
{
ServerQueryStatus.SetVisible(false);
ServerServerList.Clear();
%sc = getServerCount();
for (%i = 0; %i < %sc; %i++) {
setServerInfo(%i);
ServerServerList.AddRow(%i,
($ServerInfo::Password? "Yes": "No") TAB
$ServerInfo::Name TAB
$ServerInfo::Ping TAB
$ServerInfo::PlayerCount @ "/" @ $ServerInfo::MaxPlayers TAB
$ServerInfo::Version TAB
$ServerInfo::GameType TAB
%i); // ServerInfo index stored also

}
ServerServerList.Sort(0);
ServerServerList.SetSelectedRow(0);
ServerServerList.scrollVisible(0);

ServerJoinServer.SetActive(ServerServerList.rowCount() > 0);
}
function onServerQueryStatus(%status, %msg, %value)
{
if (!ServerQueryStatus.IsVisible())
ServerQueryStatus.SetVisible(true);

switch$ (%status) {

Client Code 907

case "start":
ServerJoinServer.SetActive(false);
ServerQueryServer.SetActive(false);
ServerStatusText.SetText(%msg);
ServerStatusBar.SetValue(0);
ServerServerList.Clear();

case "ping":
ServerStatusText.SetText("Ping Servers");
ServerStatusBar.SetValue(%value);

case "query":
ServerStatusText.SetText("Query Servers");
ServerStatusBar.SetValue(%value);

case "done":
ServerQueryServer.SetActive(true);
ServerQueryStatus.SetVisible(false);
ServerScreen.update();

}
}

Here the OnWakemethod makes the list active if there is anything already available

from a previous incarnation to list. It’s invoked as soon as the interface object is

displayed on the screen.

When you click the Query Master button, the Query method is called, which

sends a query packet to the master server, informing the master about what sort

of servers are of interest. If the master server returns any information, it is

deposited in the server information list, the Update method is invoked, and the

list is created on the screen. This back-and-forth transaction is described in

greater detail in Chapter 6.

The onServerQueryStatusmethod handles the various responses from the master

server and deposits returned information, according to the changing states, into

the various fields of the list.

ChatBox Interface Code

Open the file \KOOB\control\client\Initialize.cs, and add the following lines to

the function InitializeClient:

Exec("./misc/chatbox.cs");
Exec("./misc/messagebox.cs");

908 Chapter 23 n The Game Client

Note: it’s important that you place these lines above the line that execs pre-

setkeys.cs, because there will be code in presetkeys.cs in the future that will rely

on those other two files being loaded first.

These two exec statements load the files that will provide our chat interface. You

can copy them from \3D2E\RESOURCES\CH23 and put them into the direc-

tories under the \KOOB\control\client\ directory in the subdirectories specified

in the exec statements.

Now, let’s add something to one of the files you just copied: \KOOB\control\

client\chatbox.cs. Open that file, and at the very top of the file add these two lines

above everything else:

new MessageVector(MsgBoxMessageVector);
$LastframeTarget = 0;

Save your work.

The first line creates a dynamic array that carries chat messages (a MessageVector)

and the second line is a variable that tracks the position within that array.

The ChatBox interface receives its text via a rather convoluted route. The message

text originates at one of the clients and is sent to the server. The server receives the

typed message and passes it to some common code that handles chat messages

between the server and the client. Once the message arrives at the client common

code, it is passed to the message handler called onChatMessage, which we provide

in our client control code in our ChatBox.cs module. There is a parallel handler

we are expected to supply in our client control code called onServerMessage,

which is essentially the same as the one for the chat messages. These two func-

tions look like this:

function onChatMessage(%message, %voice, %pitch)
{
if (GetWordCount(%message)) {
ChatBox.AddLine(%message);

}
}
function onServerMessage(%message)
{
if (GetWordCount(%message)) {
ChatBox.AddLine(%message);

}
}

Client Code 909

Not much needed here—just add the new text to the ChatBox object using its

AddLine method.

The AddLine method is where all the heavy lifting is done; it looks like this:

function ChatBox::addLine(%this,%text)
{
%textHeight = %this.profile.fontSize;
if (%textHeight <= 0)

%textHeight = 12;
%chatScrollHeight = getWord(%this.getGroup().getGroup().extent, 1);
%chatPosition = getWord(%this.extent, 1) - %chatScrollHeight +

getWord(%this.position, 1);
%linesToScroll = mFloor((%chatPosition / %textHeight) + 0.5);
if (%linesToScroll > 0)

%origPosition = %this.position;
while(!chatPageDown.isVisible() && MsgBoxMessageVector.getNumLines() &&

(MsgBoxMessageVector.getNumLines() >= $pref::frameMessageLogSize))
{
%tag = MsgBoxMessageVector.getLineTag(0);
if(%tag != 0)

%tag.delete();
MsgBoxMessageVector.popFrontLine();

}
MsgBoxMessageVector.pushBackLine(%text, $LastframeTarget);
$LastframeTarget = 0;
if (%linesToScroll > 0)
{
chatPageDown.setVisible(true);
%this.position = %origPosition;

}
else
chatPageDown.setVisible(false);

}

We start out by getting the font size from the profile. We need this in order to

determine the height and width spacing requirements for scrolling and frame

sizing.

Then we use getGroup to obtain the handle for the object group this control

belongs to. And we use that handle to get the parent group’s handle. Then we use

that handle to get the extent property, which tells us the height and width of the

parent object. We take the second value in the extent—which is the height—by

910 Chapter 23 n The Game Client

using getWord to get word number 1, which is actually the second word. (We

perverted programmers usually count starting at 0 instead of 1—but not always!)

The object retains the current output position using the position parameter, and

that is used to calculate where the next position will be and saved as %chatPo-

sition. We then use the calculations to figure out %linesToScroll, which dictates

the text scroll action and the scroll bar actions.

Next, we enter a loop that extracts text from the text buffer called MsgBoxMessage

Vector line by line and inserts the lines in the ChatBox control.

Finally, we adjust the visibility of the scroll down prompt based on whether or

not our position causes text to be out of sight at the bottom of the display.

While we’re at it, let’s get that chat box to appear on the player’s display. Open

the file KOOB\control\client\screens.cs and add the following lines to the first

method in the file, PlayerInterface::onWake, placing the lines just below the call

to activateDirectInput:

Canvas.pushDialog(MainChatBox);///***KCF CHAT
chatBox.attach(ChatMsgMessageVector);///***KCF CHAT

There you go. We linked the chat box to the display, and then linked the message

vector to the chat box.

MessageBox Interface Code

The MessageBox interface accepts our input from the keyboard.

We need to add a message handler to the server to receive the typed messages

when they are sent from the client. Because of the context, it makes more sense to

do that here than in Chapter 22, even though we are dealing with client issues in

this chapter.

Open the file \KOOB\control\server\server.cs, and add the following function to

the end of the file:

function serverCmdTypedMessage(%client, %text)
{
if(strlen(%text) >= $Pref::Server::MaxChatLen)
%text = getSubStr(%text, 0, $Pref::Server::MaxChatLen);
ChatMessageAll(%client, ’\c4%1: %2’, %client.name, %text);

}

This handler grabs the incoming typed message, makes sure that it isn’t too long

(we may want to restrict chat messages in order to preserve bandwidth

Client Code 911

requirements), and then sends the message to the common code server function

called ChatMessageAll. The ChatMessageAll function will distribute the message

to all the other clients logged in to our game.

Next, let’s look at the code that manages this on behalf of the MessageBox

interface:

function MessageBox::Open(%this)
{
%offset = 6;
if(%this.isVisible())
return;

%windowPos = "8 " @ (getWord(outerChatFrame.position, 1) + getWord(
outer ChatFrame.extent, 1) + 1);

%windowExt = getWord(OuterChatFrame.extent, 0) @ " " @ getWord(
MessageBox_ Frame.extent, 1);
%textExtent = getWord(MessageBox_Text.extent, 0);
%ctrlExtent = getWord(MessageBox_Frame.extent, 0);
Canvas.pushDialog(%this);
MessageBox_Frame.position = %windowPos;
MessageBox_Frame.extent = %windowExt;
MessageBox_Edit.position = setWord(MessageBox_Edit.position, 0, %textExtent

+ %offset);
MessageBox_Edit.extent = setWord(MessageBox_Edit.extent, 0, %ctrlExtent -

%textExtent - (2 * %offset));
%this.setVisible(true);
deactivateKeyboard();
MessageBox_Edit.makeFirstResponder(true);

}
function MessageBox::Close(%this)
{
if(!%this.isVisible())

return;
Canvas.popDialog(%this);
%this.setVisible(false);
if ($enableDirectInput)

activateKeyboard();
MessageBox_Edit.setValue("");

}
function MessageBox::ToggleState(%this)
{
if(%this.isVisible())

%this.close();

912 Chapter 23 n The Game Client

else
%this.open();

}
function MessageBox_Edit::OnEscape(%this)
{
MessageBox.close();

}
function MessageBox_Edit::Eval(%this)
{
%text = trim(%this.getValue());
if(%text !$= "")
commandToServer(’MessageSent’, %text);

MessageBox.close();
}
function ToggleMessageBox(%make)
{
if(%make)

MessageBox.toggleState();
}

The Open method does some assignments of local variables based on the settings

of properties of the MainChatBox object. This is so we can place the message box

into a position relative to the chat display; in this case we are going to put it below

and offset a little bit to the right.

Once we’ve done this, the code loads the MessageBox control into the Canvas

using Canvas.pushDialog(%this), where %this is the handle of the MessageBox

control object, and positions it according to the values of the earlier saved local

variables.

When we’ve completed the positioning of the control, then the code makes it

visible.

Next, the code turns off keyboard input for the Canvas object and sets the

MessageBox_Edit subobject responsible for handling key inputs. From this point

on, all typing goes into the MessageBox_Edit subobject, until something changes

that.

The Close method removes the control from the Canvas, makes the control

invisible again, and restores keyboard input handling to the Canvas.

The ToggleState method merely opens or closes the message box in a toggle

fashion. If the control is open, it closes it, and vice versa.

Client Code 913

The OnEscape method closes the control. This method is defined as the escape

Command property value in the interface definition in MessageBox.gui.

The Eval method obtains the entered text, trims empty spaces from the end, and

sends the text to the server as the parameter for a TypedMessage message, which

the server knows how to handle.

Finally, the ToggleMessageBox method is bound to the ‘‘t’’ key in our presets.cs

file. When it receives a non-null value in %make, it changes the current MessageBox

open state using the ToggleState method.

Game Cycling
The final feature we need to implement is the ability to cycle games when they are

over—that is, when a player has reached either the score limit or the time limit.

First, add the following functions to the end of \KOOB\control\server\server.cs:

function cycleGame()
{
if (!$Game::Cycling) {
$Game::Cycling = true;
$Game::Schedule = schedule(0, 0, "onCycleExec");

}
}
function onCycleExec()
{
endGame();
$Game::Schedule = schedule($Game::EndGamePause * 1000, 0, "onCyclePause

End");
}

function onCyclePauseEnd()
{
$Game::Cycling = false;
%search = $Server::MissionFileSpec;
for (%file = findFirstFile(%search); %file !$= "";

%file = findNextFile(%search)) {
if (%file $= $Server::MissionFile) {

%file = findNextFile(%search);
if (%file $= "")
%file = findFirstFile(%search);

break;

914 Chapter 23 n The Game Client

}
}
loadMission(%file);

}

The first function, cycleGame, schedules the actual cycling code to occur at some

later point. In this case we do it right away after making sure that we aren’t

actually already cycling.

The function onCycleExec actually ends the game. The endGame function just

stops when it finishes, not doing anything else. Further action is scheduled to be

taken by the onCyclePauseEnd function. This allows us to put up a victory screen

or other messages and leave them up for an appropriate viewing time before

continuing on to the next game.

In order to provoke the actual cycleGame function into being, we do two things. First,

when the game is launched, we schedule its demise based on $Game::Duration.

Locate the function StartGame farther up in the server.cs file, and look at these lines:

if ($Game::Duration)
$Game::Schedule = schedule($Game::Duration * 1000, 0, "CycleGame");

This starts the game timer running. When it expires it invokes the CycleGame

function.

Something we need to do is add some code that checks to see if a player has hit

the $Game::MaxPoints limit.

Locate the function GameConnection::DoScore(), and add this code to the top of

the function:

%client.score = (%client.lapsCompleted * $Game::Laps_Multiplier) +
(%client.money * $Game::Money_Multiplier) +
(%client.deaths * $Game::Deaths_Multiplier) +
(%client.kills * $Game::Kills_Multiplier) ;

This code accumulates the various scoring values into a single overall score. Now

add the following code to the end of the same DoScore function:

if (%client.score >= $Game::MaxPoints)
cycleGame();

This causes the game cycling activity to happen if any one player hits the score

limit. Game cycling entails ending the game, loading a new map, and dropping

the players into the game in the new map.

Game Cycling 915

Final Change
The final, very, very last piece of code we are going to change will allow us to

remain in the program after we exit a game. Previously, when we exited a game

using the Escape key, the program quit. This final change tidies that up for us.

Open the file \KOOB\control\client\misc\presetkeys.cs, locate the function

DoExitGame(), and change it to match the following:

function DoExitGame()
{
if ($Server::ServerType $= "SinglePlayer")
MessageBoxYesNo("Exit Mission", "Exit?", "disconnect();", "");

else
MessageBoxYesNo("Disconnect", "Disconnect?", "disconnect();", "");

}

This function now checks to see if we are in single- or multiplayer mode. It does

this to provide a customized exit prompt depending on which mode it is. In any

event, the disconnect function is called to break the connection with the game

server.

Moving Right Along
So, there you have it. I hope your fingers aren’t worn to the bone. You can see

that there is a great deal of power available to those worn fingertips. I’m sure that

as you’ve progressed through the preceding chapters, your head began to fill with

all sorts of ideas about things you might want to do. In the next and final chapter

of the book, I have a few things I want to say on that topic.

916 Chapter 23 n The Game Client

The End Game

By now you’ve worn many hats, as programmer, 2D artist, 3D modeler, sound

engineer, and level designer, to mention just the big ones. It should be fairly

evident that each of these specialties has a great deal of depth, and it is hard to do

justice to any one of them in a book like this.

However, it should also be apparent that you can make complex and feature-rich

games without the need for million-dollar budgets. In this chapter we’ll look at

some of the things that didn’t quite fit as topics in the earlier chapters.

A great deal of the work is done for us by the Torque Engine, but that’s just where

the process starts—the end is wherever you want it to be. There are other game

engines out there, ranging from free to expensive, but the relationship between

the end result and the price of the engine is not a linear one. The result is

dependent on the amount of effort and inspiration you bring to the table. Making

successful games is about transforming a great idea into a great game, and that

operation can’t be bought with mere money.

If you are going to put together a small team to develop a game using Torque, I

would suggest you fill the artistic slots first—at least sign up a dedicated 3D

modeler. You will also need one programmer tomanage your script work. Finally,

you need someone responsible for doing map layout, creating game rules, and

managing the relationships between the models and the code. This makes a three-

person team, which is probably as close to an ideal size as you’re going to get for a

917

chapter 24

small, low-budget development team. If you have the luxury of adding another

team member, make sure you give him the sound-engineer responsibilities.

Testing
To properly test your game you are going to need to go back to your require-

ments and review them. For each specific requirement you have to decide what

procedure someone elsewould need to perform to prove to you that their software

fulfilled that requirement. Write the procedure down, and move on to the next

requirement. Be hypercritical, a skeptic’s skeptic.

Basics

There are many formalized testing methodologies, but the basic need when

testing is to investigate at least these two aspects of any feature:

1. Does the program feature (operation, appearance, behavior) work the way it

should, when it should?

2. Does the feature make something else not work the way it should, when it

should?

Take your list of test procedures and run through your software answering these

two questions. It is certainly a lot tougher to answer the second question—

sometimes you will see something not working, only to find out later that it was

some other feature that was causing the problem that you witnessed.

You will end up with a list of problems and probably some ideas about how to fix

them. Fill your list up first before running off to repair the bugs, and then sit back

and examine the list of problems to try to identify problems that may share the

same root cause. You can possibly save much effort and time by fixing the root

cause. Otherwise youmight end upwith a series of individual fixes and hacks, each

of which only addresses a single issue, and each of which exposes another issue.

Regression

The phenomenon regression is caused by bug fixes that introduce new bugs or

sometimes expose hidden bugs. Some software engineers dispute the idea of

referring to exposing hidden bugs as regression, but to me it’s a difference

without a distinction. The result is the same.

918 Chapter 24 n The End Game

To deal with regression, we need to run our tests after every bug-fixing session.

Ask the same questions and look for the answers. If you have the time and

patience (neither of which is commonly overly abundant), you should run your

regression test after each bug fix. In other words, don’t do your entire list of bug-

fixing programming all at once and then jump back to your regression test. If new

bugs have been introduced, it may be hard to find them, because the new code

can be quite extensive.

Play Testing

You will also want to enlist a bevy of play testers because there can be more wrong

with the game than simple (or not-so-simple) bugs. You need to ensure that the

game is fun to play, and you need to ensure that the things you can do in the game

have the effect you want them to have. If your game features an Easter egg hunt,

you want to make sure that the players can actually find the hidden items. At the

same time, you will probably want to make sure that the items aren’t too easy to

find. Achieving the balance in game play is why you want to use play testers.

When you and members of your development team are testing the software, this

is usually referred to as the alpha test phase. Alpha testing can be considered

complete when the development team’s own testing is no longer finding pro-

blems. This, however, doesn’t mean that testing is finished! You will eventually

need to use people who have not been involved in the creation of the game for

testing. Once you start letting outsiders play-test your game, you are now in the

beta test phase. If the game is fun (and it will be, right?) then you should not have

much trouble interesting people in being beta testers. And this will introduce a

problem (it’s a problem you want to have, but still a problem), which is that

many beta testers will be playing the game and not testing it. While it is good for

them to be enjoying themselves, you need them to take notes and record pro-

blems, issues, and general feelings about the way the game is played. You need

these notes in order to know what to fix and what to change or add.

Test Harnesses

You should also consider creating test harnesses to use in your testing. These are

programs that are designed to provide the inputs that will cause the various

features of the game to be exercised. The testing software should log its output to

a file, automatically take screens shots, or record whatever else is needed so that

you can review the results.

Testing 919

For example, you could create a special version of the client that will auto-

matically run and play as if it were a real player. Then you could launch dozens of

these clients in order to simulate client loads on the server.

Hosted Servers
As you’ve seen with the example programs, with Torque there are three different

execution modes:

n client only

n server only

n hosted server

Depending on your needs, you might want to create one monolithic program

that will run in all three modes. This is certainly possible with Torque; in fact, the

Torque demo as created by GarageGames supplies this capability by default.

However, you may want to create two or three different program distributions:

one for each mode, or one for client only, the other being one or both of the

server modes. There are some reasons for doing this, and probably the best is for

server security. It depends on your business model (if you have one). If you are

planning to provide all of the server-side hosting, then you might want a client-

only version to be distributed to users. By not sending out the server code, you

minimize the risk of unscrupulous players hacking the game to gain an advantage

over other players in online play.

There are pitfalls to the multiple-version approach, the most noteworthy of

which is the need to maintain two or more different versions of programs. That’s

a potential nightmare looking for a place to happen. Proceed with caution.

Having said all that, the distribution of multiplayer games that allow players to

host other players while they all play in the same game is a common approach.

Not only do many games offer it, but thousands of players use the capability.

Dedicated Servers
Some games, especially those that offer persistent role-playing style features, are

hosted on dedicated servers only. The game’s developer, or a service company that

represents the developer, usually operates these servers. These games generally

920 Chapter 24 n The End Game

offer virtual environments where hundreds or thousands of players connect to the

same world and interact in varying ways. This usually presents bandwidth and

CPU costs well beyond the abilities of casual players and hobbyists looking for an

evening’s entertainment.

These sorts of ‘‘big iron’’ servers are often hosted on clustered servers at dedi-

cated hosting service companies with battery-backup systems and racks and racks

of computers.

This does not mean that you shouldn’t offer your users the ability to run a

dedicated server. There are many 16- or 32-player first-person shooter games on

the market that have hordes of fans that run permanent 24/7 servers. Offering a

dedicated server mode allows your users to run the servers on computers with

less capability than they might otherwise use as their game-playing computer.

That is to say, dedicated servers are an ideal way for users to utilize that two-year-

old computer sitting in the corner gathering dust!

FPS Game Ideas
You might be tempted to think that all the great first-person shooter ideas have

already been done to death. I doubt that’s true. There are a few ideas that have

been tried and have not been terribly successful, but that doesn’t mean they can

never be successful. Maybe with a bit of tweaking, you could make a successful

version of a game that previously bombed. That’s an important concept to keep

in the back of your head.

One such example that immediately comes to mind is the Western—you know,

the Wild, Wild West. Hollywood has produced a ton of successful Western

movies. But there haven’t been any equivalent games. That’s an assignment for

someone out there, and if it is ever going to be fulfilled, it will likely be an

independent like you who does it.

Oneof thegames I’d really like to see someonecreate in theFPSgenre is a chess game

played out with individual battles between pieces, where you can have each player

able toengage incombatappropriate to thechesspiecesas theyaremoved.Thereare

game play issues that would need to be resolved, but that’s something a clever

designer could overcome.Here are someof the issues thatwould have to be tackled:

n Who decides the moves if the game is team based?

n Should each piece have different combat styles?

FPS Game Ideas 921

n Should the standard rules of chess play (movement rules, for example)

prevail?

n Might you need to modify them slightly?

n Should you ever have an overhead board view?

If you broaden the scope a bit and don’t focus on the shooter part of the FPS

genre, the horizon starts to recede—first-person perspective play without the

shooting has been barely touched.

Firefighting is one such topic that seems like it might be ripe for a game, especially

team-based play. You could do forest fires, building fires, and so on. The biggest

challenge would be the fire-propagation algorithms, such as the following:

n Exactly what conditions cause this item or that item to burst into flames?

n How does smoke move through a forest, a building, and so on, and how do

you render that?

n How do you score the game?

n How realistic should the game be?

Other Genres
If you now shift a little to encompass third-person perspective play, the horizon

opens up yet again. Almost any sport you can think of can be simulated from this

point of view: bullfighting, surfing, Rugby, and sailboarding, to name a few.

One that I would like to see is a mountain-biking game. I’d especially like to see

one that accepted input from a stationary bicycle! Imagine being able to ride

single-track trails at Moab while buried under 3 feet of snow in Ontario! That

would be cool. In fact, I think there is an untapped market here: hooking up the

various machines in a gym to computers running games that people can play,

using the exercise machines as the input devices. Exercise equipment manu-

facturers have put out some weak attempts at this, but there could be so much

more—especially in the online multiplayer realm.

Instead of running on a treadmill hooked up to a computer with software that

simulates running on a trail in Oregon, how about using the treadmill to provide

922 Chapter 24 n The End Game

motive input for your player as a rifleman inWorldWar II Online? In fact, there is

hardware that hasn’t evenbeendesigned yet that couldprobably beused in thisway.

Modifying and Extending Torque
If you sign up with GarageGames and buy a developer’s license for their Torque

Game Engine, you get all the source code. Every single bit of it.

Stop and think about that for just a minute. Not only do you get the capabilities

already described in this book—features you’ve been learning how to use to make

your game—but you also get access to the core engine code, with the right to

change it as you like to make your game do absolutely whatever you want it to do!

Earlier I’d pointed out that Torque is not really designed for massively multi-

player games. With access to the source code, you could change that, adding the

missing bits and modifying the existing bits to accommodate your needs.

How about huge, I mean gigantic, game worlds? You could do this by modifying

the Terrain Manager code to accommodate paging terrain, where the game only

loads the terrain in the immediate and viewable area of the player. You would

probably need to make a special world creation tool for managing large worlds—

a tool you would create with Torque. Or you might investigate the Torque Shader

Engine (TSE). TSE is not a finished product as of this writing—it’s still in Early

Adopter (EA) stage. However, you can obtain a low-cost EA license and thus gain

access to size-unlimited demand paged terrains with pixel shader 3.0 support.

I’m just sayin’ . . .

If you go to the GarageGames Web site (http://www.garagegames.com) and

browse the various menus, you will find a user community that is large, active,

and thriving. Several of the retail games made with Torque are included on the

companion CD for this book. At the GarageGames forums you will see the

developers of these games in continuous conversation with people designing and

making their own games—every one of them an independent just like you.

As you browse around, make your way to the Resources postings, and you will

find a whole slew of code modifications submitted by members of the com-

munity to enhance the core capabilities of the Torque Engine. In fact, you will

find that a substantial number of the features that Torque now has that it didn’t

have when it was first released were added as submissions from the user-

developer community.

Modifying and Extending Torque 923

In addition to extending the core capabilities, another reason for modifying the

engine would be to move the more CPU-intensive parts of your game scripts into

the core engine in order to improve the execution speed and sometimes even the

memory footprint (how much memory your game uses). To do these things you

will have to learn how to program in C/Cþþ or at least obtain the services of a

competent C/Cþþ programmer.

Go for It
As an independent game developer, you owe nothing to anyone except yourself

and your family. That being the case, there is an important and sometimes

underrecognized imperative for every independent game developer: have fun!

Given that you’ve picked up this book, you probably already have some ideas

rattling around inside your head, and you’ve been thinking about making them

happen. Armed with the tools and information from this book, you can afford to

try out your ideas without being afraid of wasting years of your life finding out

that an idea didn’t work.

Now you can ‘‘waste’’ a few weeks finding out that an idea doesn’t work and then

spend a few more weeks to refine it, several more weeks to tweak it, and a few

months to build on it, finally coming up with something that might really fly.

Well, we are at the end of our journey. I hope you have enjoyed it as much as I

have. I think the key thing to come away with is this: believe in yourself.

924 Chapter 24 n The End Game

The Torque
Reference

The following tables refer to the Torque release version 1.4 engine build. Here are

some notes about the functions:

n Some functions are available for use on the client only. For the most part,

this is very obvious. For example, any hardware-related functions are client-

only. However, for other functions this may not be so obvious. These

functions are marked ‘‘client-only.’’

n Torque is not case-sensitive with respect to identifiers, like variables and

function names. Internally in Torque, the commands in this list all begin

with lowercase letters, even though in many programming circles it is

conventional for function identifiers to begin with capitals. The TorqueScript

Command Reference is written to conform to the Torque internal

representation, but you may capitalize the functions if you need to to match

your programming standards.

TorqueScript Command Reference
activateDirectInput()

Parameters: none

Return: nothing

Description: Activates direct input device polling.

Usage: activateDirectInput();

925

appendix a

activateKeyboard()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Enables DirectInput polling of the keyboard.

Usage: %result¼ activateKeyboard();

activatePackage(name)

Parameters: name String containing the name of the package.

Return: nothing

Description: Tells Torque to start using the package specified by name.

Usage: activatePackage(Show);

addBadWord(word)

Parameters: word String containing the bad word to be filtered.

Return: nothing

Description: Adds a bad or obscene word to the bad word filter.

Usage: addBadWord("dagnabbit");

addCardProfile(vendor, renderer, safeMode, lockArray, subImage, fogTex-

ture, noEnvColor, clipHigh, deleteContext, texCompress, interiorLock,

skipFirstFog, only16, noArraysAlpha, profile)

Parameters: vendor Name of card vendor.

renderer Name of renderer.

safeMode true or false.

lockArray true or false.

subImage true or false.

fogTexture true or false.

noEnvColor true or false.

clipHigh true or false.

deleteContext true or false.

texCompress true or false.

interiorLock true or false.

skipFirstFog true or false.

only16 true or false.

noArraysAlpha true or false.

profile Name of profile.

Return: nothing

Description: Creates a profile of features of a video card for later reference.

926 Appendix A n The Torque Reference

Usage:

addCardProfile(%vendor, %renderer, true, true, true, true, true, false,
false, true, true, false, false, false,"")

addMaterialMapping(material, sound, color)

Parameters: material Name of string to identify the material.

sound Name of sound profile to attach to material.

color Color specification to attach to material.

Return: nothing

Description: Adds sound and dust color to specified material.

Usage:

addMaterialMapping("sand", "sound:0", "color:0.3 0.3 0.5 0.4 0.0");

addOSCardProfile(vendor,renderer,allowOpenGL,allowD3D,preferOpenGL)

Parameters:vendor Name of card vendor.

renderer Name of renderer.

allowOpenGL true or false.

allowD3D true or false.

preferOpenGL true or false.

Return:nothing

Description: Stores certain aspects of a video card for later usage.

Usage: addOSCardProfile(%vendor,%renderer,true,true,true);

addTaggedString(string)

Parameters: string Normal string to be added.

Return: numeric The tag.

Description: Adds a string to the tagged string list (NetStringTable). Deprecated.

Usage: %tagname¼ AddTaggedString(%name);

aiConnect(id)

Parameters: id ID reference number (0 to 20) of the AI bot.

Return: numeric New object handle.

Description: Creates a new uncontrolled AI connection. The AI is treated the

same as a player.

Usage: aiConnect(1);

TorqueScript Command Reference 927

alGetListener3f(ALenum)

Parameters: ALenum The enum string. Choices:

‘‘AL_VELOCITY’’

‘‘AL_POSITION’’

‘‘AL_DIRECTION’’

Return:numeric

Description: Queries the value of the ALenum.

Usage: %direction¼ alGetListener3f("AL_DIRECTION");

alGetListeneri(ALenum)

Parameters: ALenum The enum string. Choices:

‘‘AL_CONE_INNER_ANGLE’’

‘‘AL_CONE_OUTER_ANGLE’’

‘‘AL_LOOPING’’

‘‘AL_STREAMING’’

‘‘AL_BUFFER’’

Return: numeric

Description: Queries the value of the ALenum.

Usage: %looping¼ ;alGetListeneri("AL_LOOPING");

alGetString(ALenum)

Parameters: string The enum string. Choices:

‘‘AL_VENDOR’’

‘‘AL_VERSION’’

‘‘AL_RENDERER’’

‘‘AL_EXTENSIONS’’

Return: string

Description: Obtains the string specified.

Usage: %vendor¼ alGetString("AL_VENDOR");

alListener3f(ALenum, [‘‘x y z’’] | [x,y,z])

Parameters: ALenum The enum string. Choices:

‘‘AL_VELOCITY’’

‘‘AL_POSITION’’

‘‘AL_DIRECTION’’

‘‘x y z’’ The string contains a tuple indicating where to place

the enumed property in 3D world space.

928 Appendix A n The Torque Reference

TorqueScript Command Reference 929

x,y,z (alternative) If ‘‘x y z’’ isn’t used, then this is a tuple

indicating where to place the audio object in 3D world

space. Note: these are three numerics, not a string!

Return: nothing

Description: Sets the ALenum to value for the listener (the player, who ‘‘hears’’ a

sound).

Usage: alListener3f("AL_GAIN_LINEAR", $pref::Audio::masterVolume);

allowConnections(switch)
Parameters: switch 1 (or true)¼ enable, 0 (or false)¼ disable.

Return: nothing

Description: Enables and disables connections to the game server.

Usage: allowConnections(1);

alxCreateSource({ profile, [x,y,z] } | { description, filename, [x,y,z] })

Parameters: profile Descriptor string.

x,y,z If profile is used, then this is a tuple indicating where

to place the audio object. Note:these are three

numerics, not a string!

description (alternative) If profile isn’t used, then this is an audio

object description string.

filename If description is used, then this string specifies the

audio file to use for the sound.

x,y,z If description is used, then this is a tuple indicating

where to place the audio object.Note: these are three

numerics, not a string!

Return numeric Handle to audio object.

Description: Loads an audio source file into memory, and initializes it for use.

Usage: $handle¼ alxCreateSource("Audio0","~/data/sounds/test.wav");

alxGetChannelVolume(channel)

Parameters: channel Channel ID number.

Return: numeric

Description: Queries the volume of channel.

Usage: %vol¼ alxGetChannelVolume(%channel);

alxGetListenerf(ALenum)

Parameters: ALenum The enum string. Choices:

‘‘AL_GAIN’’

‘‘AL_GAIN_LINEAR’’

Return: numeric

Description: Queries the value of the ALenum.

Usage: %gain=alxGetListenerf("AL_GAIN");

alxGetSource3f(handle, ALenum)

Parameters: handle Handle to audio object.

ALenum The enum string. Choices:

‘‘AL_VELOCITY’’

‘‘AL_POSITION’’

‘‘AL_DIRECTION’’

Return: string ‘‘x y z’’.

Description: Obtains the value of ALenum for the specified handle.

Usage: %pos¼ alxGetSource3f(%handle[%sender], "AL_POSITION");

alxGetSourcef(handle, ALenum)

Parameters: handle Handle to audio object.

ALenum The enum string. Choices:

‘‘AL_PITCH’’

‘‘AL_REFERENCE_DISTANCE’’

‘‘AL_MAX_DISTANCE’’

‘‘AL_CONE_OUTER_GAIN’’

‘‘AL_GAIN’’

‘‘AL_GAIN_LINEAR’’

Return: numeric

Description: Obtains the value of ALenum for the specified handle.

Usage: %gain¼ alxGetSourcef(%handle[%sender], "AL_GAIN");

alxGetSourcei(handle, ALenum)

Parameters: handle Handle to audio object.

ALenum The enum string. Choices:

‘‘AL_CONE_INNER_ANGLE"

‘‘AL_CONE_OUTER_ANGLE"

‘‘AL_LOOPING"

‘‘AL_STREAMING"

‘‘AL_BUFFER"

Return: numeric The pitch value.

Description: Obtains the value of ALenum for the specified handle.

930 Appendix A n The Torque Reference

Usage: %pitch¼ alxGetSourcei(%handle[%sender], "AL_PITCH");

alxGetStreamDuration(handle)

Parameters: handle Handle to the streaming data.

Return: numeric Duration of streaming data, in seconds.

Description: Obtains the length, in seconds, of the streaming data specified by

handle.

Usage: %secs¼ alxGetStreamDuration(%streamDataHandle);

alxGetStreamPosition(handle)

Parameters: handle Handle to the streaming data.

Return: numeric Current playback position in the streaming data, in

seconds.

Description: Obtains the position, measured in seconds, of the current playback

position, in the streaming data specified by handle.

Usage: %posit¼ alxGetStreamPosition(%streamDataHandle);

alxGetWaveLen(fileName)

Parameters: string fileName.

Return: numeric Length of file in bytes.

Description: Obtains the length in bytes of the .wav file specified by fileName.

Usage: %len¼ alxGetWaveLen(%pathToWaveFile);

alxIsPlaying(handle)

Parameters: handle Handle to audio object.

Return: numeric 1¼ true, 0¼ false.

Description: Queries if a handle is currently playing.

Usage: %isPlaying¼ alxIsPlaying(%handle);

alxListenerf(ALenum,value)

Parameters: ALenum The enum string. Choices:

‘‘AL_GAIN’’

‘‘AL_GAIN_LINEAR’’

value Numeric gain value.

Return: nothing

Description: Sets the ALenum to value for the listener (the player, who ‘‘hears’’ a

sound).

Usage: alxListenerf("AL_GAIN_LINEAR", %vol);

TorqueScript Command Reference 931

alxPlay([handle] | [profile [, x, y,z]])

Parameters: handle Handle to audio object.

Profile (alternative) Descriptor string.

x,y,z (optional) If profile is used, then this is a tuple indicating

where to place the audio object. Note: these are three

numerics, not a string!

Return: numeric Returns object handle if profile is used.

Description:Begins audio playback with audio object specified by handle. Alter-

natively, if profile is used, this function creates an object, begins playback at

optional x,y,z coordinates, and then returns a handle to the created object.

Usage:
%handle0¼alxCreateSource("Audio0", "~/data/sounds/test.wav");
alxPlay(%handle0);
%handle1¼alxPlay("Audio1", "100, 100, 10");

alxSetChannelVolume(channel, volume)

Parameters: channel Channel ID number.

volume Volume value.

Return: numeric 1¼ success, 0¼ fail.

Description: Sets the channel to volume.

Usage: %result¼ alxSetChannelVolume(%channel, %volume);

alxSource3f(handle,ALenum, [‘‘x y z’’] | [x,y,z])

Parameters: handle Handle to audio object.

ALenum The enum string. Choices:

‘‘AL_VELOCITY’’

‘‘AL_POSITION’’

‘‘AL_DIRECTION’’

‘‘x y z’’ String containing a tuple indicating where to place the

enumed property in 3D world space.

x,y,z (alternative) If ‘‘x y z’’ isn’t used, then this is a tuple

indicating where to place the audio object in 3D

world space. Note: these are three numerics, not

a string!

Return: nothing

Description: Sets ALenum for the specified handle to 3D.

Usage: alxSource3f(%handle[%sender], "AL_POSITION", "100 100 20");

932 Appendix A n The Torque Reference

TorqueScript Command Reference 933

alxSourcef(handle, ALenum, value)

Parameters: handle Handle to audio object.

ALenum The enum string. Choices:

‘‘AL_PITCH’’

‘‘AL_REFERENCE_DISTANCE’’

‘‘AL_MAX_DISTANCE’’

‘‘AL_CONE_OUTER_GAIN’’

‘‘AL_GAIN’’

‘‘AL_GAIN_LINEAR’’

value Numeric (floating point) value to set ALenum to.

Return: nothing

Description: Sets ALenum for the specified handle to the floating point value.

Usage: alxSourcef(%handle[%sender], "AL_GAIN", %gain);

alxSourcei(handle, ALenum, value)

Parameters: handle Handle to audio object.

ALenum The enum string. Choices:

‘‘AL_CONE_INNER_ANGLE’’

‘‘AL_CONE_OUTER_ANGLE’’

‘‘AL_LOOPING’’

‘‘AL_STREAMING’’

‘‘AL_BUFFER’’

value Numeric value to set ALenum to.

Return: nothing

Description: Sets ALenum for the specified handle to the floating point value.

Usage: alxSourcei(%handle[%sender], "AL_LOOPING", true);

alxStop(handle)

Parameters: handle Handle to audio object.

Return: nothing

Description: Stops the playback from handle.

Usage: alxStop(%handle[%sender]);

alxStopAll()

Parameters: none

Return: nothing

Description: Stops the playback on all registered channels.

Usage: alxStopAll();

934 Appendix A n The Torque Reference

backtrace()

Parameters: none

Return: nothing

Description: Enables echo of script call stack to console.

Usage: backtrace();

buildTaggedString(string, format)

Parameters: string Normal string to be added.

format Format specifying string.

Return: string

Description: Builds and adds a tagged string using string with specified format.

Usage: %tagstring¼ buildTaggedString(%name, %format);

calcExplosionCoverage(location, handle, mask)

Parameters: location Where the target object is.

handle Target object.

mask Object typemask of objects that may block the explosion.

Return: numeric 1¼ affected, 0¼ unaffected.

Description: Determines if an object at a location was affected by an explosion.

Listed object types will be taken into consideration in the calculation, if they

would block the explosion force.

Usage:
%coverage¼calcExplosionCoverage(%location, %targetObject,

$TypeMasks::InteriorObjectType | $TypeMasks::TerrainObjectType
| $TypeMasks::VehicleObjectType);

call(function [, args . . .])

Parameters: function String containing the name of the function.

args Zero or more arguments as needed by function.

Return: string Function’s return value embedded in a string.

Description: Executes the function with the name function with supplied argu-

ments, args.

Usage: %result¼ call(%func, %arg1, %arg2);

cancel(id)

Parameters: id ID number of supposed event.

Return: nothing

Description: Cancels the event specified by id.

Usage: cancel($eventid);

cancelServerQuery()

Parameters: none

Return: nothing

Description: Cancels the current query and drops anything outstanding in the

ping list.

Usage: cancelServerQuery();

clearServerPaths()

Parameters: none

Return: none

Description: Clears all stored paths held by the Path Manager and releases the

memory used.

Usage: clearServerPaths();

clearTextureHolds()

Parameters: none

Return: numeric Amount of memory released.

Description: Releases any textures not being used, and frees the memory.

Usage: %clearedMem¼ clearTextureHolds();

cls()

Parameters: none

Return: none

Description: Clears the console screen.

Usage: cls();

collapseEscape(text)

Parameters: text String.

Return: string The resultant string.

Description: Removes escaped characters in text. For example, \\n becomes \n.

Usage: %coltext¼ collapseEscape(%text);

commandToClient(client, function [,arg1, . . . argn])

Parameters: client Handle of the target client.

function Function on the server to be executed.

arg1, . . . argn Arguments for the function.

Return: nothing

TorqueScript Command Reference 935

Description: Tells the client to execute the command specified by function, and

passes it the arguments. On the client, the function is declared in the following

format:
function clientCmdfunction(arg1, . . . argn) { . . . }

The identifier fragment clientCmd is prepended to the function name.

Usage: commandToClient(%client, ’SyncClock’, %time);

commandToServer(function [, arg1, . . . argn])
Parameters: function Function on the server to be executed.

arg1, . . . argn Arguments for the function.

Return: nothing

Description: Tells the server to execute the command specified by function, and

passes it the arguments. On the server, the function is declared in the following

format:

function serverCmdfunction(%client, arg1, . . . argn) { . . . }

The identifier serverCmd is prepended to the function name. The first

parameter is always the handle of the client that sent the command, and the

actual command arguments follow.

Usage: commandToServer(’ToggleCamera’);

compile(filename)

Parameters: filename String containing the file name.

Return: numeric 1¼ success, 0¼ fail.

Description: Compiles the source script file filename.

Usage: %result¼ compile("/common/default.cs");

containerBoxEmpty(mask, loc, rad [,yrad, zrad])

Parameters: mask Object type mask.

loc Coordinate tuple.

rad Radius distance (or X-axis distance).

yrad Optional distance in Y-axis.

zrad Optional distance in Z-axis.

Return: numeric

Description:Returns true if any objects of given types exist in a sphere of the

specified extent rad and false otherwise. If yrad is specified, then rad is the X-axis

extent, and yrad is theY-axis extent. If zrad is specified, it becomes theZ-axis extent.

Usage:%isAny=containerBoxEmpty(ItemObjectType,"10.0 10.0 100.0", 100);

936 Appendix A n The Torque Reference

containerFindFirst(type, point, x, y, z)

Parameters: type The type mask of objects to find.

point Location of container.

x, y,z Numeric bounds of container specified. Not a string.

Return: numeric Handle of the object found.

Description: Finds objects of type within the box specified with x,y,z at the given

point point. Returns the handle of the first object found.

Usage: %objectHandle¼ containerFindFirst(type, point, x, y, z);

containerFindNext()

Parameters: none

Return: numeric Handle of the object found.

Description: Finds the next object in the container specified immediately pre-

ceding call to containerFindFirst, and gets its handle.

Usage: %objectHandle¼ containerFindNext();

containerRayCast(start, end, mask, [exclude])

Parameters: start Starting coordinate tuple.

end Ending coordinate tuple.

mask Object type mask.

exclude List of handles.

Return: string Hit list.

Description: Finds a list of objects of typemask between the two coords supplied.

A list of object handles can be included in the exempt parameter that will not be

returned in the hit list.

Usage: %tgt=containerRayCast(%cameraPoint, %rangeEnd, ItemObjectType);

containerSearchCurrDist()

Parameters: none

Return: numeric

Description: Gets the current container search distance.

Usage: %dist=containerSearchCurrDist();

containerSearchCurrRadiusDist()

Parameters: none

Return: numeric

TorqueScript Command Reference 937

Description: Gets the current container search radius distance.

Usage: %rad¼ containerSearchCurrRadiusDist();

containerSearchNext()

Parameters: none

Return: numeric

Description: Gets the next object in a container search.

Usage: %nc¼ containerSearchNext();

containsBadwords(text)

Parameters: text String containing text to compare to the bad word list.

Return: numeric 1¼ success (bad word was found), 0¼ fail.

Description: Compares any arbitrary string against the bad word list, looking for

bad words.

Usage: %result¼ containsBadwords("well shucks, dagnabbit,

that r0xx0rszzzz !");

createCanvas(title)

Parameters: title String containing the title of the window.

Return: numeric 1¼ success, 0¼ fail.

Description: Creates a graphics context called a canvas in a window. All graphics

operations are performed within the bounds of the canvas.

Usage: %result¼ createCanvas("My Game");

createEffectCanvas(title)

Parameters: title String containing the title of the window.

Return: numeric 1¼ success, 0¼ fail.

Description: Creates a special effects graphics context called a canvas in a win-

dow. All graphics operations are performed within the bounds of the canvas.

Combined with changes to the core engine code that would need to be made,

effects like in-game interactive 3D panels can be created.

Usage: %result¼ createEffectCanvas("My Effects Game");

dbgSetParameters(port, pw)

Parameters: port Connection port.

pw Password.

Return: nothing

Description: Initializes telnet debug connection request parameters.

Usage: dbgSetParameters(1130, "games");

938 Appendix A n The Torque Reference

deactivateDirectInput()

Parameters: none

Return: nothing

Description: Disables DirectInput device polling (mouse, keyboard, joystick).

Usage: deactivateDirectInput();

deactivateKeyboard()

Parameters: none

Return: nothing

Description: Disables DirectInput polling of the keyboard.

Usage: deactivateKeyboard();

deactivatePackage(name)

Parameters: name String containing the name of the package.

Return: nothing

Description: Tells Torque to stop using the package specified by name.

Usage: deactivatePackage(Show);

debug()

Parameters: none

Return: nothing

Description: Enables debug mode.

Usage: debug();

decreaseFSAA()

Parameters: none

Return: nothing

Description: Decrements FSAA level by 1.

Usage: decreaseFSAA();

deleteDataBlocks()

Parameters: none

Return: nothing

Description: Unloads and removes all registered data blocks from the game.

Usage: deleteDataBlocks();

deleteVariables(wildcard)

Parameters: wildcard Match string to specify variables.

Return: nothing

TorqueScript Command Reference 939

940 Appendix A n The Torque Reference

Description: Deletes global variables specified by wildcard. The wildcard string

supports ‘‘*’’ to match any number of any characters and ‘‘?’’ to match any single

character.

Usage: deleteVariables("*");

detag(tstring)

Parameters: tstring Tagged string.

Return: string String value for the tagged string.

Description: Detags a tagged string.

Usage: %name=detag(%test.name);

disableJoystick()

Parameters: none

Return: nothing

Description: Disables DirectInput polling of the joystick device.

Usage: disableJoystick();

disableMouse()

Parameters: none

Return: nothing

Description: Disables DirectInput polling of the mouse device.

Usage: disableMouse();

DNetSetLogging(switch)

Parameters: switch 1 (or true)¼ enable, 0 (or false)¼ disable.

Return: nothing

Description: Enables network packet logging to the console.

Usage: DNetSetLogging(1);

dumpConsoleClasses()

Parameters: none

Return: nothing

Description: Dumps all registered console classes to the console.

Usage: dumpConsoleClasses();

dumpConsoleFunctions()

Parameters: none

Return: nothing

Description: Dumps all registered console functions to the console.

Usage: dumpConsoleFunctions();

dumpFontCacheStatus()

Parameters: none

Return: nothing

Description: Dumps current state of the font cache to the console.

Usage: dumpFontCacheStatus();

dumpMemSnapshot(filename)

Parameters: filename String containing the file name.

Return: nothing

Description: Dumps memory statistics to the named file.

Usage: dumpMemSnapshot("dump.txt");

dumpNetStringTable()

Parameters: none

Return: nothing

Description: Dumps the NetStringTable stats to the console.

Usage: dumpNetStringTable();

dumpResourceStats();

Parameters: none

Return: nothing

Description: Dumps texture information to the console in the following

format: path, resource, lockCount.

Usage: dumpResourceStats();

dumpTextureStats()

Parameters: none

Return: nothing

Description: Dumps texture information to the console in the following format:

type, refCount, holding (yes or no), textureSpace, texFileName.

Usage: dumpTextureStats();

DumpUnflaggedAllocs(filename)

Parameters: filename String containing the file name.

Return: nothing

Description: Dumps memory allocation information to the named file.

Usage: dumpTextureStats("allocs.txt");

TorqueScript Command Reference 941

duplicateCachedFont(oldfont, oldsize, newfont)

Parameters: oldfont String containing a font name to be replaced.

oldsize String containing the size of the font to be replaced.

newfont String containing a new font name that will be used.

Return: nothing

Description: Creates a new copy of font that exists in the disk cache.

Usage: duplicateCachedFont(oldFontName, oldFontSize, newFontName);

echo(text)

Parameters: text String.

Return: nothing

Description: Prints text to the console with the standard font. Text can be for-

matted according to the string rules.

Usage: echo("Hello World");

echoInputState()

Parameters: none

Return: nothing

Description: Displays the current state of DirectInput (mouse, keyboard, and

joystick).

Usage: echoInputState();

enableJoystick()

Parameters: none

Return: nothing

Description: Enables DirectInput polling of the joystick device.

Usage: enableJoystick();

enableMouse()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Enables DirectInput polling of the mouse device.

Usage: %result=enableMouse();

enableWinConsole(switch)

Parameters: switch 1 enables, 0 disables.

Return: nothing

Description: Displays the console window.

Usage: enableWinConsole(1);

942 Appendix A n The Torque Reference

TorqueScript Command Reference 943

error(text)

Parameters: text String.

Return: nothing

Description: Prints text to the console with red font. Text can be formatted

according to the string rules.

Usage: error("I’m sorry, Dave, I’m afraid I can’t do that.");

eval(string)

Parameters: string String containing script code.

Return: string

Description: Executes functions, assigns variables, and loads packages and data

blocks contained within the string parameter.

Usage: %result¼ eval(%MissionInfoObject);

exec(fileName [, nocalls [,journalScript]])

Parameters: filename String containing the file name.

nocalls When set to true, prevents functions from

being called.

journalScript When set to true, indicates that filename is a

journal script.

Return: string

Description: Compiles, executes functions, assigns variables, and loads packages

and data blocks read from contents of the file filename. If nocalls is set to true,

functions are not executed, but the other operations still take place.

Usage: %result¼ exec("/common/default.cs");

expandEscape(text)

Parameters: text String.

Return: string The resultant string.

Description: Escapes all of the escape characters in text. For example, \n becomes

\\n. In this case the \n would be printed to the console instead of the new line it

would otherwise cause.

Usage: %extext¼ expandEscape(%text);

expandFilename(filename)

Parameters: filename String containing the file name.

Return: string

Description: Obtains the actual OS-specific absolute path of filename.

Usage: %fullmissionpath¼ expandFilename("~/data/missions/test.mis");

export(searchString [, fileName [,append]])

Parameters: search Prefix of variables to search for.

filename String containing the file name.

append Indicates whether to append to the file or overwrite.

Return: nothing

Description: Saves the values of variables starting with search to the file named

filename. When append is set to true, the file is appended; when set to false, the

file is overwritten. The search string supports ‘‘*’’ to match any number of any

characters and ‘‘?’’ to match any single character.

Usage: %result¼ export("$Pref::Game::*", "./game/prefs.cs", False);

exportCachedFont(fontname, fontsize, filename, padding, kerning)

Parameters: fontname String containing a font name to be exported.

fontsize String containing the size of the font to be exported.

filename String containing a file name used to store the font.

padding String specifying the size of the spacing between

character images in the PNG file.

kerning String specifying the global kerning value used for all

characters.

Return: nothing

Description: Exports the specified font to the specified file name as a PNG.

The image can then be processed with image processing tools and reimported

using importCachedFont. Characters in the font are exported as one long strip

image.

Usage: exportCachedFont("Arial", 24, "Arial24.png", 3, -1);

fileBase(filename)

Parameters: filename String containing the fully pathed file name.

Return: string String containing the base name.

Description: Gets the base name of the file specified by the fully pathed filename.

Usage: %base=fileBase("/common/server/script.cs");

fileExt(filename)

Parameters: filename String containing fully pathed file name.

Return: string String containing the extension.

Description: Gets the extension of the file specified by the fully pathed filename.

Usage: %name¼ fileExt("script.cs");

944 Appendix A n The Torque Reference

fileName(filename)

Parameters: filename String containing the fully pathed file name.

Return: string String containing the name.

Description: Gets the file name portion of the file specified by the fully pathed

filename.

Usage: %name=fileName("scripts.cs");

filePath(filename)

Parameters: filename String containing the full file name.

Return: string String containing the path.

Description: Gets the path portion of the file specified by the fully pathed filename.

Usage: %path=filePath("/common/server/script.cs");

filterString(baseString, replacementChars)

Parameters: baseString String pattern.

replacementChars String containing a sequence of characters that

will replace any bad words found in the

baseString.

Return: string The resulting string.

Description: Scans the baseString comparing it against the bad words list, and

replaces the bad words text portions of the string with the contents of replace-

mentChars.

Usage: %result¼ filterString("Gee willikers,Mr.Froople.Thatsurelooks

yummy, dagnabbit!", "*");

findFirstFile(pattern)

Parameters: pattern String pattern.

Return: string The file’s name.

Description: Finds the name of the first file in the Torque Script file name buffer

matching the given pattern. Supports ‘‘*’’ to match any number of any characters

and ‘‘?’’ to match any single character.

Usage: %result¼ findFirstFile("/common/*.cs");

findNextFile(pattern)

Parameters: pattern String pattern.

Return: string The file’s name.

Description: Finds the name of the next file in the Torque Script file name

buffer matching the search by the call immediately preceding findFirstFile.

TorqueScript Command Reference 945

946 Appendix A n The Torque Reference

Supports ‘‘*’’ to match any number of any characters and ‘‘?’’ to match any single

character.

Usage: %result¼ findNextFile("/common/*.cs");

firstWord(text)

Parameters: text String with space-delimited words.

Return: string The resultant string.

Description: Gets the first word-string within text.

Usage: %tgt=firstWord(%text);

flagCurrentAllocs()

Parameters: none

Return: nothing

Description: Walk through memory, flagging all memory blocks that are cur-

rently allocated.

Usage: flagCurrentAllocs();

flushTextureCache()

Parameters: none

Return: nothing

Description: Deletes cached textures from memory.

Usage: flushTextureCache();

freeMemoryDump()

Parameters: none

Return: nothing

Description: Prints free memory statistics.

Usage: freeMemoryDump();

getBoxCenter(box)

Parameters: box String containing two 3D tuples defining the box.

Return: string

Description: Computes the center of a box.

Usage: %c=getBoxCenter("10,10,10,50,50,50");

getBuildString()

Parameters: none

Return: string

Description: Obtains the BUILD type (Release or Debug) of the current build.

Usage: %bs=getBuildString();

TorqueScript Command Reference 947

getClipboard()

Parameters: none

Return: string Clipboard contents.

Description: Extracts the text contained in the current OS clipboard (this is the

clipboard that the OS uses for copy/paste operations).

Usage: %text=getClipboard ();

getCompileTimeString()

Parameters: none

Return: string

Description: Obtains the compile time and date of the current build.

Usage: %ct=getCompileTimeString();

getControlObjectAltitude()

Parameters: none

Return: numeric

Description: (Client-only.) Obtains the altitude of the player object.

Usage: %altitude¼ getControlObjectAltitude();

getControlObjectSpeed()

Parameters: none

Return: numeric

Description: (Client-only.) Obtains the speed of the player object.

Usage: %speed¼ getControlObjectSpeed();

getCoreLangTable()

Parameters: none

Return: numeric

Description: (Client-only.) Obtains the language table ID number.

Usage: %speed¼ getCoreLangTable();

getDesktopResolution()

Parameters: none

Return: string

Description: Reports the current desktop resolution.

Usage: %res¼ getDesktopResolution():

getDisplayDeviceList()

Parameters: none

Return: string

Description: Obtains the device name for each display device.

Usage: %name¼ getDisplayDeviceList();

getEventTimeLeft(eventHandle)

Parameters: eventHandle String containing the handle of the scheduled event.

Return: numeric

Description: Returns the amount of time, in milliseconds, before the scheduled

event will trigger.

Usage: %remaining¼ getEventTimeLeft(%evtHandle);

getField(text, index)

Parameters: text String with field-delimited words.

index Field-based offset into the text string.

Return: string Contains the found field-string.

Description: Gets the field-string at index within text. In the usage example that

follows, if %text equaled ‘‘Of Mice and Men’’, then %word would be set to ‘‘and’’

when the function returned.

Usage: %field¼ getField(%text, 0);

getFieldCount(text)

Parameters: text String with field-delimited words.

Return: numeric

Description: Gets the number of field-strings within text.

Usage: %count¼ getFieldCount(%text);

getFields(text, first [, last])

Parameters: text String with space-delimited fields.

first Field-based offset into the text string specifying the first

field to extract.

last Field-based offset into the text string specifying the last

field to extract.

Return: string Contains the found fields.

Description: Gets one or more field-strings at index within text. If count is

specified, gets count number of field-strings.

Usage: %position¼ getFields(%obj.getTransform(), 0, 2);

getFileCount(pattern)

Parameters: pattern String pattern.

Return: numeric

948 Appendix A n The Torque Reference

Description: Gets the number of files in the Torque Script file name buffer that

match pattern.

Usage: %count¼ getFileCount("/common/server/*.cs");

getFileCRC(filename)

Parameters: filename String containing the full file name.

Return: numeric The Cyclic Redundancy Check (CRC) value.

Description: Gets the CRC value of the file specified by filename.

Usage: %crc¼ getFileCRC("/common/server/script.cs");

getJoystickAxes(instance)

Parameters: instance The joystick object.

Return: string

Description: Obtains the current axes of the joystick pointed to by instance.

Usage: %joyAxes¼ getJoystickAxes(3);

getMaxFrameAllocation()

Parameters: none

Return: numeric

Description: Gets the maximum memory frame allocation unit.

Usage: %maxFrameAlloc¼ getMaxFrameAllocation();

getModPaths()

Parameters: none

Return: string

Description: Gets the current Mod path.

Usage: $mp¼ getModPaths();

getRandom([[max] | [min, max]])

Parameters: max (optional)High limit.

min (optional)Low limit.

Return: numeric Ranges from 0 to 1, exclusive, if no parameters given;

otherwise, see description.

Description: Computes a pseudo-random number. If min is not included, then

0 is the minimum. If max is not included, then 4,294,967,295 (highest 32-bit

number minus 1) is the maximum.

Usage: %random¼ getRandom(1, 99);

TorqueScript Command Reference 949

getRandomSeed()

Parameters: none

Return: numeric

Description: Obtains the current random seed.

Usage: %seed¼ getRandomSeed();

getRealTime()

Parameters: none

Return: numeric

Description: Gets the real time (in milliseconds) since this computer started.

Usage: %rt¼ getRealTime();

getRecord(text, index)

Parameters: text String with new line-delimited records.

index Record-based offset into the text string.

Return: string Contains the found record-string.

Description: Gets the record-string at index within text. In the usage example

that follows, if %text equaled ‘‘Of Mice and Men\nGrapes of Wrath\nCannery

Row’’, then %record would be set to ‘‘Grapes of Wrath’’ when the function

returned.

Usage: %record¼ getRecord(%text, 1);

getRecordCount(text)

Parameters: text String with new line-delimited records.

Return: numeric

Description: Get the number of record-strings within text.

Usage: %count¼ getRecordCount(%text);

getRecords(text, first [, last])

Parameters: text String with new line-delimited records.

first Record-based offset into the text string specifying the

first record to extract.

last Record-based offset into the text string specifying the

last record to extract.

Return: string Contains the found records.

Description: Gets one or more record-strings at index within text. If count is

specified, gets count number of record-strings.

Usage: %books¼ getRecords(%obj.getTransform(), 0, 2);

950 Appendix A n The Torque Reference

getRes()

Parameters: none

Return: string ‘‘w h bpp’’

w: width

h: height

bpp: bits per pixel

Description: Gets the width, height, and bit depth of the screen.

Usage: %res¼ getRes():

getResolutionList(devicename)

Parameters: devicename Name of the device to query.

Return: string

Description: Obtains all available resolutions for the specified device.

Usage: %rl¼ getResolutionList(%device);

getScheduleDuration(eventHandle)

Parameters: eventHandle Handle of the scheduled event.

Return: string

Description: Returns the programmed duration of the scheduled event.

Usage: %time¼ getScheduleDuration(%evtHandle);

getServerCount()

Parameters: none

Return: numeric

Description: Gets the number of available servers from the master server.

Usage: %sc¼ getServerCount();

getSimTime()

Parameters: none

Return: numeric

Description: Gets the current game time.

Usage: %st¼ GetSimTime();

getSubStr(str, loc, count)

Parameters: str String to be processed.

loc Offset into str to where the substring starts

count Number of characters to get.

Return: string The processed resultant string.

TorqueScript Command Reference 951

Description: Gets the substring of string that begins at loc, continuing for count

characters or to the end of the string, whichever comes first.

Usage: %sub¼ getSubStr(%text, 5, 99);

getTag(tstring)

Parameters: tstring Tagged string.

Return: string

Description: Gets the tag for the tagged string tstring.

Usage: %tag¼ getTag(%variable);

getTaggedString(tag)

Parameters: tag Numeric tag of string to be removed.

Return: string

Description: Gets the string associated with tag.

Usage: %name¼ getTaggedString(%tagname);

getTerrainHeight(pos)

Parameters: pos 2D coordinate.

Return: numeric

Description: Gets the terrain height at the specified position.

Usage: %height¼ getTerrainHeight(%pos);

getTimeSinceStart(eventHandle)

Parameters: eventHandle Handle of the scheduled event.

Return: string

Description: Returns the time since the scheduled (and untriggered) event was

posted.

Usage: %time¼ getTimeSinceStart(%evtHandle);

getVersionNumber()

Parameters: none

Return: numeric

Description: Obtains the hard-coded engine version number of the current build.

Usage: %vn¼ getVersionNumber();

getVersionString()

Parameters: none

Return: string

Description: Obtains the hard-coded engine version string of the current build.

952 Appendix A n The Torque Reference

Usage: %vs¼ getVersionString ();

getVideoDriverInfo()

Parameters: none

Return: string

Description: Gets device driver information.

Usage: %info¼ getVideoDriverInfo();

getWord(text, index)

Parameters: text String with space-delimited words.

index Word-based offset into the text string.

Return: string Contains the found word-string.

Description: Gets the word-string at index within text. In the usage example that

follows, if %text equaled ‘‘Of Mice and Men’’, then %word would be set to ‘‘and’’

when the function returned.

Usage: %word¼ getWord(%text, 2);

getWordCount(text)

Parameters: text String with space-delimited words.

Return: numeric

Description: Gets the number of word-strings within text.

Usage: %count¼ getWordCount(%text);

getWords(text, first [, last])

Parameters: text String with space-delimited words.

first Word-based offset into the text string specifying the first

word to extract.

last Word-based offset into the text string specifying the last

word to extract.

Return: string Contains the found words.

Description: Gets one or more word-strings between the offsets first and last.

Usage: %position¼ getWords(%obj.getTransform(), 0, 2);

GLEnableLogging(switch)

Parameters: switch 1 enables, 0 disables.

Return: nothing

Description: Enables OpenGL logging to gl_log.txt.

Usage: GLEnableLogging(1);

TorqueScript Command Reference 953

GLEnableMetrics(switch)

Parameters: switch 1 enables, 0 disables.

Return: nothing

Description: Tracks metrics data for OpenGL features.

Usage: GLEnableMetrics(1);

GLEnableOutline(switch)

Parameters: switch 1 enables, 0 disables.

Return: nothing

Description: Enables OpenGL wire-frame mode.

Usage: GLEnableOutline(1);

gotoWebPage(address)

Parameters: address URL of Web page.

Return: nothing

Description: Opens the default browser with the specified address.

Usage: gotoWebPage("http://www.tubettiworld.com/");

increaseFSAA()

Parameters: none

Return: nothing

Description: Increments FSAA level by 1.

Usage: increaseFSAA()

initContainerRadiusSearch(loc, radius, mask)

Parameters: loc 3D coordinate.

radius To be searched.

mask Mask of the object type to look for.

Return: nothing

Description: Searches for objects of typemaskwithin a radius around the location.

Usage: initContainerRadiusSearch("0 450 76", %somerad, DebrisObjectType);

inputLog(filename)

Parameters: filename String containing the file name.

Return: nothing

Description: (Windows only.) Enables or disables logging of DirectInput events

to log file specified by string.

Usage: inputLog(DI.log);

954 Appendix A n The Torque Reference

isDebugBuild()

Parameters: none

Return: numeric 1¼ true, 0¼ false.

Description: Queries if this version of Torque is a special debug build or not.

Usage: %isDebug=isDebugBuild();

isDeviceFullScreenOnly(devicename)

Parameters: devicename Name of device to query.

Return: numeric 1¼ yes, 0¼ no.

Description: Queries if device is capable of full screen only.

Usage: isDeviceFullScreenOnly(%devicename);

isEventPending(%id)

Parameters: id ID number to check.

Return: numeric 1¼ true, 0¼ false.

Description: Queries if an event is pending with an ID number of id.

Usage: %status¼ isEventPending($eventid);

isFile(filename)

Parameters: filename String containing the full file name.

Return: numeric 1¼ true, 0¼ false.

Description: Queries if the file exists in the Torque Script file name buffer.

Usage: %result¼ isFile("/common/server/script.cs");

isFullScreen()

Parameters: none

Return: numeric 1¼ yes, 0¼ no.

Description: Queries whether the screen mode is set to full screen.

Usage: %result¼ isFullScreen();

isJoystickDetected()

Parameters: none

Return: numeric 1¼ true, 0¼ false.

Description: Determines if a joystick is present.

Usage: %jd¼ isJoystickDetected();

isKoreanBuild()

Parameters: none

Return: string

TorqueScript Command Reference 955

Description: Korean registry key checker.

Usage: %kb¼ isKoreanBuild();

isObject(handle)

Parameters: handle Handle of the supposed object.

Return: numeric 1¼ true, 0¼ false.

Description: Queries if handle is an object.

Usage: %status¼ isObject(%chopper);

isPackage(name)

Parameters: name String containing the name of the package.

Return: numeric 1¼ true, 0¼ false.

Description: Queries if name is a registered package.

Usage: %status¼ isPackage(Show);

isPointInside(point)

Parameters: point ‘‘x y z’’.

Return: numeric 1¼ true, 0¼ false.

Description: Queries if point is coincident with the interior of any object.

Usage: %status¼ isPointInside("123 345 25");

isWriteableFileName(filename)

Parameters: filename String containing the full file name.

Return: numeric 1¼ true, 0¼ false.

Description: Queries if file specified by filename is writeable.

Usage: %result¼ isWriteableFileName("/common/server/script.cs");

lightScene(completion)

Parameters: completion Completion callback.

Return: numeric Function handle.

Description: Lights the current mission using the callback function pointed to by

completion when mission lighting is finished.

Usage: %result¼ lightScene("CompletionCallback");

loadChunkFile(filename)

Parameters: filename String containing the name of the chunk file to load.

Return: numeric Handle to the loaded resource.

Description: Loads a file in chunked format into memory as a resource.

Usage: %handle¼ loadChunkFile(%filename);

956 Appendix A n The Torque Reference

TorqueScript Command Reference 957

lockMouse(switch)

Parameters: switch 1 (or true)¼ lock, 0 (or false)¼ unlock.

Return: nothing

Description: Toggles the mouse state.

Usage: lockMouse(true);

ltrim(str)

Parameters: str String to be processed.

Return: string The processed resultant string.

Description: Strips any white space from the left side (before all other characters)

of str. White space is defined as spaces, carriage returns, or new line characters.

Usage: %tidystring¼ ltrim(%yuckystring);

mAbs(x)

Parameters: x Operand. Can be an integer or a floating point.

Return: numeric

Description: Computes the absolute value of x.

Usage: %val¼ mAbs(76.3);

mAcos(x)

Parameters: x Radians. Can be an integer or a floating point.

Return: numeric

Description: Computes the arc cosine.

Usage: %val¼ mAcos(2.0);

makeTestTerrain(filename)

Parameters: filename String containing the file name.

Return: nothing

Description: Makes a test terrain file.

Usage: makeTestTerrain("testfile");

mAsin(x)

Parameters: x Radians. Can be an integer or a floating point.

Return: numeric

Description: Computes the arc sine.

Usage: %val¼ mAsin(1.5);

mAtan(x, y)

Parameters: x Radians. Can be an integer or a floating point.

y Radians. Can be an integer or a floating point.

958 Appendix A n The Torque Reference

Return: numeric

Description: Computes the arc tangent.

Usage: %val¼ mAtan(-1.667,2);

mathInit(mode)

Parameters: mode The string specifier. Choices:

‘‘DETECT’’ : Autodetect math lib settings.

‘‘C’’ : Enable the Cmath routines. C routines are always enabled.

‘‘FPU’’ : Enable floating point unit routines.

‘‘MMX’’ : Enable MMX math routines.

‘‘3DNOW’’ : 3DNOW’ Enable 3dNow! math routines.

‘‘SSE’’ : Enable SSE math routines.

Return: nothing

Description: Enables math extensions based on CPU type.

Usage: mathInit("DETECT");

matrixCreate(vector, angledvector)

Parameters: vector ‘‘x y z’’.

angledvector ‘‘x y z angle’’.

Return: string

Description: Generates a matrix from the specified values.

Usage: %mtx¼ MatrixCreate("10 10 30", "30 40 50 10");

matrixCreateFromEuler(valstring)

Parameters: valstring ‘‘x y z’’.

Return: string

Description: Generates a matrix from given arguments.

Usage: %val¼ matrixCreateFromEuler("5.5 90 200");

matrixMulPoint(matrix, point)

Parameters: matrix

point

Return: string

Description: Multiplies a matrix by a point.

Usage: %mtx¼ matrixMulPoint(%matrix,%point);

matrixMultiply(matrixA, matrixB)

Parameters: matrixA

matrixB

TorqueScript Command Reference 959

Return: string

Description: Multiplies two matrices.

Usage: %mtx¼ matrixMultiply(matrix1, matrix2);

matrixMulVector(matrix, vector)

Parameters: matrix

vector

Return: string

Description: Multiplies a matrix by a vector.

Usage: %mtx¼ matrixMulVector(matrix, vector);

matrixReloaded()

Parameters: none

Return: none

Description: Hah! Got ya! No such function. Yet.

Usage: There still isn’t any such function :-)

mCeil(x)

Parameters: x Operand. Can be an integer or a floating point.

Return: numeric

Description: Finds the smallest integral value greater than or equal to the

operand.

Usage: %val¼ mCeil(%dialogHeight / %textHeight);

mCos(x)

Parameters: x Radians. Can be an integer or a floating point.

Return: numeric

Description: Computes the cosine.

Usage: %val¼ mCos(69);

mDegToRad(degrees)

Parameters: degrees Degrees to be converted. Can be an integer or a floating point.

Return: numeric

Description: Converts degrees to radians.

Usage: %rads¼ mDegToRad(90);

mFloatLength(x, len)

Parameters: x Operand. Can be an integer or a floating point.

len Number of decimal places.

Return: numeric

960 Appendix A n The Torque Reference

Description: Returns x as a floating point value with len decimal places.

Usage: %mypi¼ mFloatLength((21/7),8);

mFloor(x)

Parameters: x Operand. Can be an integer or a floating point.

Return: numeric

Description: Finds the largest integral value less than or equal to the operand.

Usage: %val¼ mFloor(%dialogHeight / %textHeight);

mLog(x)

Parameters: x Radians. Can be an integer or a floating point.

Return: numeric

Description: Computes the natural logarithm.

Usage: %val¼ mLog(7654.98);

mPow(x, y)

Parameters: x Base. Can be an integer or a floating point.

y Exponent. Can be an integer or a floating point.

Return: numeric

Description: Computes x raised to the power of y

Usage: %val¼ mPow(2, 4);

mRadToDeg(radians)

Parameters: radians Radians to be converted. Can be integers or floating points.

Return: numeric

Description: Converts radians to degrees.

Usage: %degs¼ mRadToDeg(1);

msg(handle, message)

Parameters: handle Handle of the object to receive the message.

message String containing the message.

Return: nothing

Description: Sends message to the object specified by handle.

Usage: msg(%objhandle, %msg);

mSin(x)

Parameters: x Radians. Can be an integer or a floating point.

Return: numeric

Description: Computes the sine.

Usage: %val=mSin(65);

TorqueScript Command Reference 961

mSolveCubic(a, b, c, d)

Parameters: a, b, c, d Operands. Can be integers or floating points.

Return: string

Description: Computes a cubic solution for x. ax^3þ bx^2þ cxþ d¼ 0.

Usage: %val¼ mSolveCubic(a, b, c, d);

mSolveQuadratic(a, b, c)

Parameters: a, b, c Operands. Can be integers or floating points.

Return: string

Description: Computes a quadratic solution for x. ax^2þ bxþ c¼ 0.

Usage: %val¼ mSolveQuadratic(a, b, c);

mSolveQuartic(a, b, c, d, e)

Parameters: a, b, c, d, e Operands. Can be integers or floating points.

Return: string

Description: Computes a quartic solution for x. ax^4þ bx^3þ cx^2þ dxþ e¼ 0.

Usage: %val¼ mSolveQuartic(a, b, c, d, e);

mSqrt(x)

Parameters: x Operand. Can be an integer or a floating point.

Return: numeric

Description: Computes the square root of x.

Usage: %val¼ mSqrt(81);

mTan(x)

Parameters: x Radians. Can be an integer or a floating point.

Return: numeric

Description: Computes the tangent.

Usage: %val¼ mTan(45.0);

nameToID(name)

Parameters: name String containing the name of the object.

Return: nothing

Description: Gets the ID number of the named object.

Usage: nameToID(%chopper);

nextResolution()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Increases the next highest resolution.

Usage: %result¼ nextResolution();

nextToken(str, token, delim)

Parameters: str Initializes the tokenizer when set to a valid string variable.

Uses an empty string (‘‘’’) to specify follow-up operation

on the same string.

token References the handle to the variable that will receive the

found token. Note: when passing a variable by reference

to a function, such as with this parameter, you do not

prefix the variable name with % or $.

delim Specifies the character that delimits the tokens.

Return: string Balance of the string after the found token.

Description: Sets token to the next substring in str delimited by delim. The initial

call to this function specifies str; subsequent calls to this function that operate on

the same string must pass the empty string (‘‘’’).

Usage: %str¼ NextToken("one, two, three", number, ",");

openALInitDriver()

Parameters: none

Return: numeric

Description: Initializes the sound driver.

Usage: openALInitDriver();

openALRegisterExtensions()

Parameters: none

Return: numeric

Description: As of this writing, this function, although present, does nothing.

Usage: OpenALRegisterExtensions();

openALShutdownDriver()

Parameters: none

Return: nothing

Description: Disables the sound driver.

Usage: openALShutdownDriver();

panoramaScreenShot(filename)

Parameters: filename String containing the file name.

Return: nothing

962 Appendix A n The Torque Reference

Description: Captures the panoramic screen view and saves it to the PNG file

specified by filename. The engine will take the panoroma shot as a sequence of

three screen captures, looking left, center, then right.

Usage: panoramaScreenShot("myPanorama");

pathOnMissionLoadDone()

Parameters: none

Return: nothing

Description: Sets the Mod path that will be active when a mission is finished

loading.

Usage: pathOnMissionLoadDone("missE/mission");

playJournal(name, [break])

Parameters: name String containing the file name of the journal.

break If true, then this stops playback after each event.

Return: nothing

Description: Plays back the saved journal specified by name.

Usage: playJournal("myjrnl.jnl");

png2jpg(filename, quality)

Parameters: filename String containing the file name of the PNG file to convert.

quality Conversion quality, numeric range 0 to 100.

Return: numeric �1¼ failure, 0¼ success.

Description: Converts the PNG-formatted file specified by filename to JPG for-

mat, and writes the resulting image file to disk with the same name and path as

filename but with the JPG extension instead of PNG.

Usage: png2jpg("image1.png", 100);

populateAllFontCacheRange(start, end)

Parameters: start Start of range.

end End of range.

Return: none

Description: Populates the font cache for all fonts with Unicode code points in the

specified range. Only BMP-0 is supported, so code points range from 0 to 65535.

Usage: populateAllFontCacheRange(0,100);

populateAllFontCacheString(string)

Parameters: string String of characters that does populating.

Return: none

TorqueScript Command Reference 963

Description: Populates the font cache for all fonts with characters from the

specified string.

Usage: populateAllFontCacheString("abcdefg");

populateFontCacheRange(face, size, start, end)

Parameters: face String containing the name of the font face.

size String containing the size of the font face.

start Start of range.

end End of range.

Return: none

Description: Populates the font cache for the specified font with Unicode code

points in the specified range. Only BMP-0 is supported, so code points range

from 0 to 65535.

Usage: populateFontCacheRange("ariel",12,0,100);

populateFontCacheString(face, size, string)

Parameters: face String containing the name of the font face.

size String containing the size of the font face.

string String of characters that does populating.

Return: none

Description: Populates the font cache for all fonts with characters from the

specified string.

Usage: populateFontCacheString("ariel",12, "abcdefg");

prevResolution()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Decreases the next highest resolution.

Usage: %result=prevResolution();

profilerDump()

Parameters: none

Return: nothing

Description: Dumps NetStringTable statistics to the console.

Usage: profilerDump();

profilerDumpToFile(filename)

Parameters: filename String containing the file name.

Return: nothing

964 Appendix A n The Torque Reference

Description: Dumps NetStringTable statistics to the file specified by filename.

Usage: profilerDumpToFile(dump.txt);

profilerEnable(switch)

Parameters: switch 1 enables, 0 disables.

Return: nothing

Description: Enables or disables profiling.

Usage: profilerEnable(0);

profilerMarkerEnable(markerName, switch)

Parameters: markerName Name of the profile marker.

switch 1 enables, 0 disables.

Return: nothing

Description: Enables or disables profiling for markerName.

Usage: profilerMarkerEnable("mark",1);

profilerReset()

Parameters: none

Return: nothing

Description: Resets the profiler, clearing all of its data.

Usage: profilerReset();

purgeResources()

Parameters: none

Return: nothing

Description: Purges all resources used by the game through the resource manager.

Usage: purgeResources();

queryLANServers(port, flags, gametype, missiontype, minplayers, max-

players, maxbots, regionmask, maxping, mincpu, filterflags)

Parameters: port Host server port.

flags The query flags. Choices:

0x00¼ online query

0x01¼ offline query

0x02¼ no string compression

gametype Game type string.

missiontype Mission type string.

minplayers Minimum number of players for a viable game.

TorqueScript Command Reference 965

maxplayers Maximum allowable players.

maxbots Maximum allowable connected AI bots.

regionmask Numeric discriminating mask.

maxping Maximum ping for connecting clients; 0 means no

maximum.

mincpu Minimum specified CPU capability.

filterflags Server filters. Choices:

0x00¼ dedicated

0x01¼ not password protected

0x02¼ Linux

0x80¼ current version

Return: nothing

Description: Queries all computers found in the LAN, examining the port spe-

cified with port. The responses are accessible from the ServerList array.

Usage:
queryLANServers(
28000, 0, $Client::GameTypeQuery, Client::MissionTypeQuery,
0, 100, 0, 2, 0, 100, 0);

queryMasterServer

(port, flags, gametype, missiontype, minplayers, maxplayers, maxbots,

regionmask, maxping, mincpu, filterflags)

Parameters: port Host server port.

flags The query flags. Choices:

0x00¼ online query

0x01¼ offline query

0x02¼ no string compression

gametype Game type string.

missiontype Mission type string.

minplayers Minimum number of players for a viable game.

maxplayers Maximum allowable players.

maxbots Maximum allowable connected AI bots.

regionmask Numeric discriminating mask.

maxping Maximum ping for connecting clients; 0 means no

maximum.

mincpu Minimum specified CPU capability.

966 Appendix A n The Torque Reference

filterflags Server filters. Choices:

0x00¼ dedicated

0x01¼ not password protected

0x02¼ Linux

0x80¼ current version

Return: nothing

Description: Queries a master server looking for specified information. The

responses are accessible from the ServerList array. Note: buddycount and bud-

dylist are obsolete arguments and no longer included or used.

Usage:

queryMasterServer(
28000, 0, $Client::GameTypeQuery, Client::MissionTypeQuery,
0, 100, 0, 2, 0, 100, 0);

querySingleServer(address, flags)

Parameters: address IP address of server.

flags The query flags. Choices:

0x00¼ online query

0x01¼ offline query

0x02¼ no string compression

Return: nothing

Description: Queries a single server looking for a game being served. The

responses are accessible from the ServerList array.

Usage: querySingleServer("192.168.100.1", 0);

quit()

Parameters: none

Return: nothing

Description: Quits the game engine.

Usage: quit();

quitWithErrorMessage(msg)

Parameters: msg String containing an error message.

Return: nothing

Description: Quits the game engine and displays the specified message msg while

quitting.

Usage: quitWithErrorMessage("Doh! You’re losing, so you quit, huh?");

TorqueScript Command Reference 967

968 Appendix A n The Torque Reference

redbookClose()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Closes the currently open redbook (CD) device.

Usage: %result¼ redbookClose();

redbookGetDeviceCount()

Parameters: none

Return: numeric

Description: Queries for the number of redbook (CD) devices.

Usage: %count¼ redbookGetDeviceCount();

redbookGetDeviceName(idx)

Parameters: idx Device index.

Return: string

Description: Queries the device name of a redbook (CD) at the specified device

index.

Usage: %name¼ redbookGetDeviceName(1);

redbookGetLastError()

Parameters: none

Return: string

Description: Queries for the last error from a redbook (CD) device.

Usage: %error¼ redbookGetLastError();

redbookGetTrackCount()

Parameters: none

Return: numeric

Description: Queries the number of redbook (CD) tracks.

Usage: %tracks¼ redbookGetTrackCount();

redbookGetVolume()

Parameters: none

Return: numeric

Description: Queries the current volume level of a redbook (CD) device.

Usage: %volume¼ redbookGetVolume();

redbookOpen([name])

Parameters: name If non-null, then this specifies the device.

Return: numeric 1¼ success, 0¼ fail.

TorqueScript Command Reference 969

Description: Opens a redbook (CD) device.

Usage: %result¼ redbookOpen();

redbookPlay(track)

Parameters: track Index of a track.

Return: numeric 1¼ success, 0¼ fail.

Description: Plays a track on a redbook (CD) device.

Usage: %result=redbookPlay(2);

redbookSetVolume(volume)

Parameters: volume Volume setting.

Return: numeric 1¼ success, 0¼ fail.

Description: Sets the volume of a redbook (CD) device.

Usage: %result¼ redbookSetVolume(%volume);

redbookStop()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Stops playing on the current redbook (CD) device.

Usage: %result¼ redbookStop();

removeField(text, index)

Parameters: text String with field-delimited words.

index Field-based offset into the text string.

Return: string The resultant string.

Description: Removes the field-string at index from text.

Usage: %result¼ removeField(%text, 0);

removeRecord(text, index)

Parameters: text String with new line-delimited records.

index Record-based offset into the text string.

Return: string The resultant string.

Description: Removes the record-string at index from text.

Usage: %str¼ removeRecord(%text, 0);

removeTaggedString(tag)

Parameters: tag Numeric tag of the string to be removed.

Return: nothing

Description: Removes a tagged string from the list.

Usage: removeTaggedString(%tagname);

removeWord(text, index)

Parameters: text String with space-delimited words.

index Word-based offset into the text string.

Return: string The resultant string.

Description: Removes the word-string at index from text.

Usage: %str¼ removeWord(%text, 0);

resetLighting()

Parameters: none

Return: nothing

Description: Resets the current lighting.

Usage: resetLighting();

restWords(text)

Parameters: text String with space-delimited words.

Return: string The resultant string.

Description: Returns the words remaining after the first word in text.

Usage: %data¼ restWords(%text);

rtrim(str)

Parameters: str String to be processed.

Return: string The processed resultant string.

Description: Strips any white space from the right side (after all other characters)

of str. White space is defined as spaces, carriage returns, or new line characters.

Usage: %tidystring=rtrim(%yuckystring);

saveChunkFile(chunk, filename)

Parameters: chunk The chunk to be written.

filename The name of the file that will be written.

Return: numeric 1 (true)¼ success, 0 (false)¼ fail.

Description: Writes a chunk hierarchy to a file. There must be a root chunk or the

function will fail.

Usage: %result¼ saveChunkFile(%filename);

saveJournal(name)

Parameters: name String containing the file name of the journal.

Return: nothing

Description: Saves a journal to the file specified by name.

Usage: saveJournal("myjrnl.jnl");

970 Appendix A n The Torque Reference

schedule(time, reference, command, <arg1 . . . argN>)
Parameters: time Time to wait for the trigger, in milliseconds.

reference Handle of the object to attach the schedule to, or 0.

command Command to execute.

arg1 . . . argN (optional)Arguments to accompany the command.

Return: numeric Event ID.

Description: Schedules an event that will trigger in timemilliseconds and execute

command, with args. If reference is not 0, then it must be a valid object handle. If

the object is deleted, the scheduled event is discarded.

Usage: $evt¼ schedule(5000, 0, "updateRadar");

screenShot(filename, format)

Parameters: filename String containing the file name.

format One of JPEG or PNG.

Return: nothing

Description: Captures the screen view and saves it to the file specified by filename.

Usage: screenShot("myScreens", PNG);

setClipboard(string)

Parameters: string String containing text.

Return: nothing

Description: Inserts the contents of string into the OS copy/paste clipboard.

Usage: setClipboard("stuff to be pasted");

setCoreLangTable(table)

Parameters: table Index of the language table to set.

Return: nothing

Description: Sets table to be the core language table, by indexed reference.

Usage: setCoreLangTable(%idx);

setDefaultFov(fov)

Parameters: fov Numeric in degrees.

Return: nothing

Description: Sets the default field of view.

Usage: setDefaultFov(60);

setDisplayDevice(deviceName[, width[, height[, bpp[, fullScreen]]]])

Parameters: deviceName Name of the target device driver.

TorqueScript Command Reference 971

972 Appendix A n The Torque Reference

width Screen width.

height Screen height.

bpp Bits per pixel.

fullScreen 1 enables, 0 disables.

Return: numeric 1¼ success, 0¼ fail.

Description: Sets up the display device with specified values.

Usage: %result¼ setDisplayDevice("OpenGL", 800, 600, 32, true);

setEchoFileLoads(switch)

Parameters: switch 1 (or true) enables, 0 (or false) disables.

Return: nothing

Description: Enables or disables File Load echo to console.

Usage: setEchoFileLoads(1);

setField(text, index, subst)

Parameters: text String with field-delimited words.

index Field-based offset into the text string.

subst Substitute string.

Return: string The resultant string.

Description: Substitutes the field-string subst for the word-string found at index

in the string text.

Usage: %rec¼ setField(%text, 0, "blah");

setFov(val)

Parameters: val The field of view (degrees).

Return: nothing

Description: Sets the current field of view.

Usage: setFov(90);

setFSAA(switch, level)

Parameters: switch 1 enables, 0 disables.

level Target level.

Return: nothing

Description: Enables or disables Full Screen Anti-Aliasing at the specified level.

Usage: setFSAA(%newstate,%lvl);

setInteriorFocusedDebug(which)

Parameters: which Handle of interior for focus. If which has a value, then

debugging is enabled; if which is empty (not passed), then debugging is disabled.

Return: nothing

Description: Enables the debug mode for interior focused objects.

Usage: setInteriorFocusedDebug();

setInteriorRenderMode(mode)

Parameters: mode Interior detail render mode, one of:
$Interior::NormalRender = 0,
$Interior::NormalRenderLines = 1,
$Interior::ShowDetail = 2,
$Interior::ShowAmbiguous = 3,
$Interior::ShowOrphan = 4,
$Interior::ShowLightmaps = 5,
$Interior::ShowTexturesOnly = 6,
$Interior::ShowPortalZones = 7,
$Interior::ShowOutsideVisible = 8,
$Interior::ShowCollisionFans = 9,
$Interior::ShowStrips = 10,
$Interior::ShowNullSurfaces = 11,
$Interior::ShowLargeTextures = 12,
$Interior::ShowHullSurfaces = 13,
$Interior::ShowVehicleHullSurfaces = 14,
$Interior::ShowVertexColors = 15,
$Interior::ShowDetailLevel = 16

Return: nothing

Description: Sets the detail render level for interiors. Only one mode can be

inoked at a time.

Usage: setInteriorRenderMode(7);

TorqueScript Command Reference 973

setLogMode(mode)

Parameters: mode The numeric mode value. Choices:

0 Disables logging to console.log file.

1 Enables logging to console.log in append mode. All entries are appended
to the existing log file. This means that to remove the logging info from
earlier sessions, you need to delete console.log manually via the
operating system (using the command shell or Explorer). The log output
buffer is flushed and the console.log file is closed after every logging
write operation to the file. If the first time that Torque encounters
setLogMode(1) in script, it (setLogmode) is setting the log mode to
1, then logging to the console.log file will begin at that first encounter,
and the output begins at the point in the script where that first encounter
takes place.

continued

Return: nothing

Description: Enables or disables error logging to disk according to the mode

descriptions.

Usage: setLogMode(1);

setModPaths(path)

Parameters: path String containing the path.

Return: nothing

Description: Sets the mod path. This specifies which folders will be visible to the

scripts and the resource engine.

Usage: setModPaths("common;game");

setNetPort(port)

Parameters: port Port number.

Return: numeric 1¼ success, 0¼ fail.

Description: Sets the network port.

Usage: %result¼ setNetPort(1313);

setOpenGLAnisotropy(level)

Parameters: level 0¼ trilinear, 1¼ bilinear.

Return: nothing

974 Appendix A n The Torque Reference

2 Enables logging to console.log in overwrite mode. Every time the Torque
demo is launched, the old contents of console.log are overwritten with
new information. The log file remains open while the Torque demo is
running. This yields higher performance, since there is only one log file
open operation and one log file close operation per run session of the
Torque demo. If the first time that Torque encounters setLogMode(1)
in script, it (setLogmode) is setting the log mode to 2, then logging to
the console.log file will begin at that first encounter, and the output
begins at the point in the script where that first encounter takes place.

3 Not used.

4 Not used.

5 Same as mode 1, except all of the contents of the console window created
prior to the point where the setLogMode(5); statement is encountered are
flushed out to the log file when this first setLogMode(5); statement is
encountered in TorqueScript.

6 Same as mode 2, except all of the contents of the console window created
prior to the point where the setLogMode(6); statement is encountered
are flushed out to the log file when this first setLogMode(6); statement
is encountered in TorqueScript.

Description: Sets the level of anisotropy.

Usage: setOpenGLAnisotropy(0);

setOpenGLInteriorMipReduction(level)

Parameters: level Mipmap level (0¼minimum detail, 5¼maximum detail).

Return: nothing

Description: Sets interior texture detail.

Usage: setOpenGLInteriorMipReduction(2);

setOpenGLMipReduction(level)

Parameters: level Mipmap level (0¼minimum detail, 5¼maximum detail).

Return: nothing

Description: Sets shape texture detail

Usage: setOpenGLMipReduction(2);

setOpenGLSkyMipReduction(level)

Parameters: level Mipmap level (0¼minimum detail, 5¼maximum detail).

Return: nothing

Description: Sets skybox and cloud texture detail.

Usage: setOpenGLSkyMipReduction(2);

setOpenGLTextureCompressionHint(hint)

Parameters: hint The compression level hint. Choices:

GL_DONT_CARE ¼ 0x1100

GL_FASTEST ¼ 0x1101

GL_NICEST ¼ 0x1102

Return: nothing

Description: Suggests texture compression mode.

Usage: setOpenGLTextureCompressionHint(GL_NICEST);

setPowerAudioProfiles(up, down)

Parameters: up Power up profile.

down Power down profile.

Return: nothing

Description: Sets the ambient audio manager’s power up/down profiles.

Usage: setPowerAudioProfiles(AudioPowerUpProfile, AudioPowerDownProfile);

setRandomSeed([seed])

Parameters: seed Starting point.

TorqueScript Command Reference 975

Return: nothing

Description: Sets the current starting point for generating a series of pseudo-

random numbers. If no seed is provided then the current time in ms is used.

Usage: setRandomSeed();

setRecord(text, index, subst)

Parameters: text String with new line-delimited records.

index Record-based offset into the text string.

subst Substitute string.

Return: string The resultant string.

Description: Substitutes the record-string subst for the record-string found at

index in the string text.

Usage: %str¼ setRecord(%text, 0, "blah");

setRes(width, height, bpp)

Parameters: width Screen width.

height Screen height.

bpp Bits per pixel.

Return: numeric 1¼ success, 0¼ fail.

Description: Sets the screen resolution to specified values.

Usage: %result=setRes(640, 480, 32);

setScreenMode(width, height, bpp, fullScreen)

Parameters: width Screen width.

height Screen height.

bpp Bits per pixel.

fullScreen 1 enables, 0 disables.

Return: numeric 1¼ success, 0¼ fail.

Description: Sets up the screen with specified values.

Usage: %result¼ setScreenMode(800, 600, 32, 1);

setServerInfo(index)

Parameters: index Row of interest in the server list.

Return: numeric 1¼ success, 0¼ fail.

Description: Changes the indexed reference into the ServerList.

Usage: %result¼ setServerInfo(%index);

976 Appendix A n The Torque Reference

setShadowDetailLevel(level)

Parameters: level Numeric range 0.0 to 1.0.

Return: nothing

Description: Sets the level of detail for shadows.

Usage: setShadowDetailLevel(1.0);

setVerticalSync(switch)

Parameters: switch 1 enables, 0 disables.

Return: numeric 1¼ true, 0¼ false.

Description: Enables or disables the use of Vertical Sync.

Usage: setVerticalSync(1);

setWord(text, index, subst)

Parameters: text String with space-delimited words.

index Word-based offset into the text string.

subst Substitute string.

Return: string The resultant string.

Description: Substitutes the word-string subst for the word-string found at index

in the string text.

Usage: %str¼ setWord(%text, 0, "blah");

setZoomSpeed(speed)

Parameters: speed Transition speed. Ranges from 0 to 2,000 milliseconds.

Return: nothing

Description: Sets the transition speed when changing the field of view.

Usage: setZoomSpeed(speed);

showDeleteThread(threadID)

Parameters: threadID Thread handle.

Return: nothing

Description: Deletes the specified animation thread in the Show tool.

Usage: showDeleteThread(%deathAnim);

showNewThread()

Parameters: none

Return: nothing

Description: Starts a new animation thread in the Show tool.

Usage: showNewThread();

TorqueScript Command Reference 977

showPlay(threadID)

Parameters: threadID Thread handle.

Return: nothing

Description: Plays the specified animation thread in the Show tool.

Usage: showPlay(2);

showSelectSequence()

Parameters: none

Return: nothing

Description: Starts the currently selected animation thread in the Show tool.

Usage: showSelectSequence();

showSequenceLoad(threadID)

Parameters: threadID Thread handle.

Return: nothing

Description: Loads the specified animation thread in the Show tool.

Usage: showSequenceLoad(%deathAnim);

showSetCamera(orbit)

Parameters: orbit String specified whether to orbit or free-fly.

Return: nothing

Description: Sets camera motion to t or T to orbit; otherwise uses the free-fly

mode in the Show tool.

Usage: showSetCamera(%orbit);

showSetDetailSlider()

Parameters: none

Return: nothing

Description: Forms the level-of-detail slider and sets it to working in the Show tool.

Usage: showSetDetailSlider();

showSetKeyboard(shape)

Parameters: shape String containing the name of the shape to use.

Return: nothing

Description: Sets keyboard control for the shape in the Show tool.

Usage: showSetKeyboard(%deathAnim);

showSetLightDirection()

Parameters: none

Return: nothing

978 Appendix A n The Torque Reference

Description: Incrementally moves the light direction in the Show tool.

Usage: showSetLightDirection();

showSetPos(threadID, position)

Parameters: threadID Thread handle.

position Animation frame number in the animation thread.

Return: nothing

Description: Sets the thread threadID to the specified position in the animation

thread.

Usage: showSetPos(1,25);

showSetScale(threadID,scale)

Parameters: threadID Thread handle.

scale Scale value to assign to the animation thread.

Return: nothing

Description: Adjusts the size of threadID by scale size, where 1.0 as scale is 1:1, in

the Show tool.

Usage: showSetScale(2.0);

showShapeLoad(name, faceCamera)

Parameters: name String containing the name of the shape to load.

faceCamera true¼ shape loads facing the camera.

false¼ shape loads facing as it was created.

Return: nothing

Description: Loads the specified shape into the Show Tool, and orients the model

either facing the camera, or as model was originally created..

Usage: showShapeLoad(%shape, true);

showStop(threadID)

Parameters: threadID Thread handle.

Return: nothing

Description: Stops the specified animation thread in the Show tool.

Usage: showStop(2);

showToggleRoot()

Parameters: none

Return: nothing

Description: Toggles the root animation sequence on or off.

Usage: showToggleRoot();

TorqueScript Command Reference 979

showToggleStick()

Parameters: none

Return: nothing

Description: Toggles whether the animated shape is kept rooted to the ground

each time the function is called in the Show tool.

Usage: showToggleStick();

showTurnLeft(amount)

Parameters: amount Rate of turn.

Return: nothing

Description: Commands the shape to start a leftward rotation at the given rate in

the Show tool.

Usage: showTurnLeft(0.5);

showTurnRight(amount)

Parameters: amount Rate of turn.

Return: nothing

Description: Commands the shape to start a rightward rotation at the given rate

in the Show tool.

Usage: showTurnRight(0.5);

showUpdateThreadControl()

Parameters: none

Return: nothing

Description: Updates controls and values displayed in the Show tool.

Usage: showUpdateThreadControl();

snapToggle()

Parameters: none

Return: nothing

Description: Toggles the mouse movement handler for shapes on and off.

Usage: snapToggle();

startClientReplication()

Parameters: none

Return: nothing

980 Appendix A n The Torque Reference

Description: Starts the client-side shape replicator running. Note that you must

actually have the right kind of shapes (fxShapeReplicator) applied in a mission

for this function to actually do anything.

Usage: startClientReplication();

startFoliageReplication()

Parameters: none

Return: nothing

Description: Starts the client-side foliage replicator. This works the same way as

the shape replicator described in startClientReplication.

Usage: startClientReplication();

startHeartbeat()

Parameters: none

Return: nothing

Description: Begins periodic messages to the master server that show that this

server is still alive.

Usage: schedule(0,0,startHeartbeat);

stopHeartbeat()

Parameters: none

Return: nothing

Description: Stops the heartbeat messages.

Usage: stopHeartbeat();

stopServerQuery()

Parameters: none

Return: nothing

Description: Cancels the current query, and marks outstanding pings as finished.

Usage: stopServerQuery();

strchr(str, char)

Parameters: str String to be processed.

char String containing the character to be found.

Return: string

Description: Finds the first substring in the string that begins with char.

Usage: %file¼ strchr("data/file.dat", "/");

TorqueScript Command Reference 981

strcmp(str1, str2)

Parameters: str1 First string.

str2 Second string.

Return: numeric < 0 str1 is less than (but not equal to) str2.

0 str1 is equal to str2.

> 0 str1 is greater than (but not equal to) str2.

Description: Makes a case-sensitive comparison of two strings:str1 and str2.

Usage: if(strcmp(%weaponName,"candlestick")==0) return %weaponFound;

stricmp(str1, str2)

Parameters: str1 First string.

str2 Second string.

Return: numeric < 0 str1 is less than (but not equal to) str2.

0 str1 is equal to str2.

> 0 str1 is greater than (but not equal to) str2.

Description: Makes a case-insensitive comparison of two strings: str1 and str2.

Usage: if(stricmp(%weaponName,"CandleStick")==0) return %weaponFound;

stripChars(str, chars)

Parameters: str String to be processed.

chars String containing characters to be stripped.

Return: string The processed resultant string.

Description: Removes all characters in the string chars from the string str.

Usage: %stripped¼ stripChars(%value, "~");

stripColorCodes(str)

Parameters: str String to be processed.

Return: string The processed resultant string.

Description: Removes all color code characters from the string str.

Usage: %stripped¼ stripColorCodes("\c0Hello\c6World!\cp");

stripMLControlChars(string)

Parameters: string

Return: string

Description: Strips ML special control characters from a string.

Usage: %text¼ stripMLControlChars(%string);

982 Appendix A n The Torque Reference

stripTrailingSpaces(string)

Parameters: string Input string.

Return: string

Description: Strips trailing spaces and underscores from the string to be used for

a player name.

Usage: %name¼ stripTrailingSpaces(strToPlayerName(%name));

strlen(str)

Parameters: str String.

Return: numeric

Description: Obtains the number of characters in str.

Usage: %len¼ strlen(%weaponName);

strlwr(str)

Parameters: str String to be processed.

Return: string The processed resultant string.

Description: Converts all characters in str to lowercase.

Usage: %var¼ strlwr(%value);

strpos(str, target[, offset])

Parameters: str String to be searched.

target String to find.

offset (optional)Search starts at offset.

Return: numeric

Description: Finds the first occurrence of the target string in the search string,

with optional starting offset. Note:this function is identical to strstr when offset

isn’t used.

Usage: %pos¼ strpos(%weaponName, "gun");

strreplace(str, target, subst)

Parameters: str String to be processed.

target Target string to be replaced.

subst Substitute string.

Return: string The processed resultant string.

Description: Replaces all instances of target with subst.

Usage: %dospath¼ strreplace(%path, "/", "\");

strstr(str, target)

Parameters: str String to be tested.

target Target substring to find.

TorqueScript Command Reference 983

Return: numeric Offset within str where target was found.

Description: Finds the first occurrence of target within str.

Usage: %loc¼ strstr(%weaponName, "stick");

strToPlayerName(string);

Parameters: string Player name string.

Return: string

Description: Converts a name string to a properly formatted player name string.

Proper formatting means the player name is limited to 16 characters in length.

Leading and trailing spaces are trimmed; reserved characters are removed.

Usage: %newname¼ strToPlayerName(%name);

strupr(str)

Parameters: str String to be processed.

Return: string The processed resultant string.

Description: Converts all characters in str to uppercase.

Usage: %var¼ strupr(%value);

switchBitDepth()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Switches between 16 and 32 bits per pixel in full-screen mode.

Usage: %result¼ switchBitDepth();

telnetSetParameters(port, consolePW, listenPW[,remoteEcgo])

Parameters: port Connection port.

consolePW Console password.

listenPW ‘‘Listener’’ password.

remoteEcho (optional)Enable echo back to client 1¼ on, 0¼ off.

Return: nothing

Description: Initializes telnet connection request parameters. Remote echoing is

off by default.

Usage: telnetSetParameters(4123, "garage", "games");

toggleFullScreen()

Parameters: none

Return: numeric 1¼ success, 0¼ fail.

Description: Switches between windowed mode and full-screen mode.

Usage: %result¼ toggleFullScreen();

984 Appendix A n The Torque Reference

trace(switch)

Parameters: switch 1 (or true) enables, 0 (or false) disables.

Return: nothing

Description: Turns execution trace on or off.

Usage: Trace(1);

trim(str)

Parameters: str String to be processed.

Return: string The processed resultant string.

Description: Strips any white space from the left or right side (before or after all

other characters) of str. White space is defined as spaces, carriage returns, or new

line characters.

Usage: %tidystring=trim(%yuckystring);

validateMemory()

Parameters: none

Return: nothing

Description: Ensures that sufficient memory is available for the program.

Usage: validateMemory();

vectorAdd(vector1, vector2)

Parameters: vector1 ‘‘x y z’’.

vector2 ‘‘x y z’’.

Return: string

Description: Adds vector2 to vector1.

Usage: %result=vectorAdd("87.21 54.11 10.0", "9.99 12.6 6.00");

vectorCross(vector1, vector2)

Parameters: vector1 ‘‘x y z’’.

vector2 ‘‘x y z’’.

Return: string

Description: Computes the cross product between two vectors.

Usage: %product¼ vectorCross("x y z","x y z");

vectorDist(vector1, vector2)

Parameters: vector1 ‘‘x y z’’.

vector2 ‘‘x y z’’.

TorqueScript Command Reference 985

Return: string

Description: Computes the distance between two vectors.

Usage: %delta¼ vectorDist(%vector1, %vector2);

vectorDot(vector1, vector2)

Parameters: vector1 ‘‘x y z’’.

vector2 ‘‘x y z’’.

Return: string

Description: Computes the dot product between two vectors.

Usage: %product¼ vectorDot("0 0 1",%eye);

vectorLen(vector)

Parameters: vector ‘‘x y z’’.

Return: string

Description: Computes the length of the vector.

Usage: %len¼ vectorLen(%vector);

vectorNormalize(vector)

Parameters: vector "x y z’’.

Return: string

Description: Normalizes a vector.

Usage: %nvector¼ vectorNormalize("5 10 30");

vectorOrthoBasis(vector)

Parameters: vector ‘‘x y z’’.

Return: string

Description: Computes the orthogonal normal for a vector.

Usage: %normal¼ vectorOrthoBasis("x y z angle");

vectorScale(vector, scalar)

Parameters: vector ‘‘x y z’’.

scalar Can be an integer or a floating point.

Return: string

Description: Computes the result of the vector sized by the scale.

Usage: %svector¼ vectorScale("5 10 30", 100);

vectorSub(vector1, vector2)

Parameters: vector1 ‘‘x y z’’.

vector2 ‘‘x y z’’.

986 Appendix A n The Torque Reference

Return: string

Description: Subtracts vector2 from vector1.

Usage: %result=vectorSub("34.0989 989.3249 100.00", %position);

videoSetGammaCorrection(gamma)

Parameters: gamma Gamma correction setting.

Return: nothing

Description: Sets the gamma correction.

Usage: videoSetGammaCorrection(0.5);

warn(text)

Parameters: text String.

Return: nothing

Description: Prints text to the console with light gray font. Text can be formatted

according to the string rules.

Usage: warn("Danger, Will Robinson!!");

writeFontCache()

Parameters: none

Return: nothing

Description: Forces all cached fonts to be written to disk.

Usage: writeFontCache();

Torque Reference Tables

Torque Reference Tables 987

Table A.1 TorqueScript Object Type Masks

Mask Identifier Number Mask Bit Position

DefaultObjectType 0 no bits set

StaticObjectType 1 1

EnvironmentObjectType 2 2

TerrainObjectType 4 3

InteriorObjectType 8 4

WaterObjectType 16 5

TriggerObjectType 32 6

MarkerObjectType 64 7

AtlasObjectType 128 8

InteriorMapObjectType 256 9

DecalManagerObjectType 512 10

continued

988 Appendix A n The Torque Reference

GameBaseObjectType 1024 11

ShapeBaseObjectType 2048 12

CameraObjectType 4096 13

StaticShapeObjectType 8192 14

PlayerObjectType 16384 15

ItemObjectType 32768 16

VehicleObjectType 65536 17

VehicleBlockerObjectType 131072 18

ProjectileObjectType 262144 19

ExplosionObjectType 524288 20

CorpseObjectType 1048576 21

unassigned 2097152 22

DebrisObjectType 4194304 23

PhysicalZoneObjectType 8388608 24

StaticTSObjectType 16777216 25

AIObjectType 33554432 26

StaticRenderedObjectType 67108864 27

DamagableItemObjectType 268435456 28

unassigned 536870912 29

unassigned 1073741824 30

unassigned 2147483648 31

Table A.1 continued

Mask Identifier Number Mask Bit Position

Table A.2 Torque Object Methods

Object Class Method

ActionMap bind(device,action,[modifier,spec,mod. . .],command)

ActionMap bindCmd(device,action,makeCmd,breakCmd)

ActionMap getBinding(command)

ActionMap getCommand(device,action)

ActionMap getDeadZone(device,action)

ActionMap getScale(device,action)

ActionMap isInverted(device,action)

ActionMap pop()

ActionMap push()

ActionMap save([fileName],[append])

ActionMap unbind(device,action)

AIConnection getAddress()

Torque Reference Tables 989

AIConnection getFreeLook()

AIConnection getMove(field)

AIConnection getTrigger(trigger)

AIConnection setFreeLook(isFreeLook)

AIConnection setMove(field,value)

AIConnection setTrigger(trigger,set)

AIPlayer clearAim()

AIPlayer getAimLocation()

AIPlayer getAimObject()

AIPlayer getMoveDestination()

AIPlayer setAimLocation(target)

AIPlayer setAimObject(obj,[offset])

AIPlayer setMoveDestination(goal,slowDown¼true)

AIPlayer setMoveSpeed(speed)

AIPlayer stop()

AIWheeledVehicle getMoveDestination()

AIWheeledVehicle setMoveDestination(goal,slowDown¼true)

AIWheeledVehicle setMoveSpeed(speed)

AIWheeledVehicle setMoveTolerance(speed)

AIWheeledVehicle stop()

Camera getPosition()

Camera setFlyMode()

Camera setOrbitMode(orbtObj,mat,minDist,maxDist,curDist,ownClientObj)

ConsoleLogger attach()

ConsoleLogger detach()

CreatorTree addGroup(group, name, value)

CreatorTree addItem(group, name, value)

CreatorTree clear()

CreatorTree fileNameMatch(world,type,filename)

CreatorTree getName(item)

CreatorTree getParent(n)

CreatorTree getSelected()

CreatorTree getValue(n)

CreatorTree isGroup(g)

DbgFileView clearBreakPositions()

DbgFileView findString(findThis)

DbgFileView getCurrentLine()

DbgFileView open(filename)

Table A.2 continued

Object Class Method

continued

990 Appendix A n The Torque Reference

DbgFileView removeBreak(line)

DbgFileView setBreak(line)

DbgFileView setBreakPosition(line)

DbgFileView setCurrentLine(line,selected)

Debris init(position,velocity)

DebugView addLine(start,end,color)

DebugView clearLines()

DebugView clearText(line¼�1)
DebugView setText(line,text,color¼NULL)

EditManager gotoBookmark(slot)

EditManager setBookmark(slot)

EditTSCtrl renderCircle(pos,normal,radius,segments¼NULL)

EditTSCtrl renderLine(start,end,width)

EditTSCtrl renderSphere(pos,radius,subdivisions¼NULL)

EditTSCtrl renderTriangle(a,b,c)

FileObject close()

FileObject isEOF()

FileObject openForAppend(filename)

FileObject openForRead(filename)

FileObject openForWrite(filename)

FileObject readLine()

FileObject writeLine(text)

FlyingVehicle useCreateHeight(enabled)

fxLight attachToObject(obj)

fxLight detachFromObject()

fxLight reset()

fxLight setEnable(enabled)

fxSunLight reset()

fxSunLight setAzimuthKeys(keys)

fxSunLight setAzimuthTime(time)

fxSunLight setBlendMode(mode)

fxSunLight setBlueKeys(keys)

fxSunLight setBrightnessKeys(keys)

fxSunLight setBrightnessTime(time)

fxSunLight setColourTime(time)

fxSunLight setElevationKeys(keys)

fxSunLight setElevationTime(time)

fxSunLight setEnable(status)

fxSunLight setFadeTime(time)

Table A.2 continued

Object Class Method

Torque Reference Tables 991

fxSunLight setFlareBitmaps(local,remote)

fxSunLight setFlareBrightness(brightness)

fxSunLight setFlareColour(r,g,b)

fxSunLight setFlareSize(size)

fxSunLight setFlareTP(status)

fxSunLight setGreenKeys(keys)

fxSunLight setLerpAzimuth(status)

fxSunLight setLerpBrightness(status)

fxSunLight setLerpColour(status)

fxSunLight setLerpElevation(status)

fxSunLight setLerpRotation(status)

fxSunLight setLerpSize(status)

fxSunLight setLinkFlareSize(status)

fxSunLight setMaxAzimuth(azimuth)

fxSunLight setMaxBrightness(brightness)

fxSunLight setMaxColour(r,g,b)

fxSunLight setMaxElevation(elevation)

fxSunLight setMaxRotation(rotation)

fxSunLight setMaxSize(size)

fxSunLight setMinAzimuth(azimuth)

fxSunLight setMinBrightness(brightness)

fxSunLight setMinColour(r,g,b)

fxSunLight setMinElevation(elevation)

fxSunLight setMinRotation(rotation)

fxSunLight setMinSize(size)

fxSunLight setRedKeys(keys)

fxSunLight setRotationKeys(keys)

fxSunLight setRotationTime(time)

fxSunLight setSingleColourKeys(status)

fxSunLight setSizeKeys(keys)

fxSunLight setSizeTime(time)

fxSunLight setSunAzimuth(azimuth)

fxSunLight setSunElevation(elevation)

fxSunLight setUseAzimuth(status)

fxSunLight setUseBrightness(status)

fxSunLight setUseColour(status)

fxSunLight setUseElevation(status)

fxSunLight setUseRotation(status)

Table A.2 continued

Object Class Method

continued

992 Appendix A n The Torque Reference

fxSunLight setUseSize(status)

GameBase getDataBlock()

GameBase setDataBlock(db)

GameConnection activateGhosting()

GameConnection chaseCam(size)

GameConnection clearCameraObject()

GameConnection delete(reason¼NULL)

GameConnection getCameraObject()

GameConnection getControlCameraFov()

GameConnection getControlObject()

GameConnection isAIControlled()

GameConnection isDemoPlaying()

GameConnection isDemoRecording()

GameConnection isFirstPerson()

GameConnection listClassIDs()

GameConnection play2D(ap)

GameConnection play3D(ap,pos)

GameConnection playDemo(demoFileName)

GameConnection resetGhosting()

GameConnection setBlackOut(doFade,timeMS)

GameConnection setCameraObject(id)

GameConnection setConnectArgs(arg1,. . .)

GameConnection setControlCameraFov(newFOV)

GameConnection setControlObject(object)

GameConnection setFirstPerson(firstPerson)

GameConnection setJoinPassword(pw)

GameConnection setMissionCRC(CRC)

GameConnection startRecording(fileName)

GameConnection stopRecording()

GameConnection transmitDataBlocks(sequence)

GuiAviBitmapCtrl play()

GuiAviBitmapCtrl setFilename(filename)

GuiAviBitmapCtrl stop()

GuiBitmapButtonCtrl setBitmap(filepath)

GuiBitmapCtrl setBitmap(filename)

GuiBitmapCtrl setValue(xAxis,yAxis)

GuiButtonBaseCtrl getText()

GuiButtonBaseCtrl performClick()

GuiButtonBaseCtrl setText(text)

Table A.2 continued

Object Class Method

Torque Reference Tables 993

GuiButtonBaseCtrl setTextID(id)

GuiCanvas cursorOff()

GuiCanvas cursorOn()

GuiCanvas getContent()

GuiCanvas getCursorPos()

GuiCanvas hideCursor()

GuiCanvas isCursorOn()

GuiCanvas popDialog(ctrl¼NULL)

GuiCanvas popLayer(layer)

GuiCanvas pushDialog(ctrl,layer)

GuiCanvas renderFront(enable)

GuiCanvas repaint()

GuiCanvas reset()

GuiCanvas setContent(ctrl)

GuiCanvas setCursor(visible)

GuiCanvas setCursorPos(pos)

GuiCanvas showCursor()

GuiChunkedBitmapCtrl setBitmap(filename)

GuiClockHud getTime()

GuiClockHud setTime(time,in,sec)

GuiColorPickerCtrl getSelectorPos()

GuiColorPickerCtrl setSelectorPos()

GuiColorPickerCtrl updateColor()

GuiControl getExtent()

GuiControl getMinExtent()

GuiControl getPosition()

GuiControl getValue()

GuiControl isActive()

GuiControl isAwake()

GuiControl isVisible()

GuiControl makeFirstResponder(isFirst)

GuiControl resize(x,y,w,h)

GuiControl setActive(active)

GuiControl setProfile(p)

GuiControl setValue(value)

GuiControl setVisible(visible)

GuiDirectoryFileListCtrl getSelectedFile()

GuiDirectoryFileListCtrl setPath(path,filter)

Table A.2 continued

Object Class Method

continued

994 Appendix A n The Torque Reference

GuiDirectoryTreeCtrl getSelectedPath()

GuiDirectoryTreeCtrl setSelectedPath(path)

GuiEditCtrl addNewCtrl(ctrl)

GuiEditCtrl addSelection()

GuiEditCtrl bringToFront()

GuiEditCtrl clearSelection()

GuiEditCtrl deleteSelection()

GuiEditCtrl getSelected()

GuiEditCtrl justify(mode)

GuiEditCtrl loadSelection(fileName)

GuiEditCtrl moveSelection(deltax,deltay)

GuiEditCtrl pushToBack()

GuiEditCtrl removeSelection()

GuiEditCtrl saveSelection(fileName)

GuiEditCtrl select(ctrl)

GuiEditCtrl selectAll()

GuiEditCtrl setCurrentAddSet(ctrl)

GuiEditCtrl setRoot(root)

GuiEditCtrl toggle()

GuiFilterCtrl getValue()

GuiFilterCtrl identity()

GuiFilterCtrl setValue(f1,f2,. . .)

GuiFrameSetCtrl addColumn()

GuiFrameSetCtrl addRow()

GuiFrameSetCtrl frameBorder(index,enable¼true)

GuiFrameSetCtrl frameMinExtent(index,w,h)

GuiFrameSetCtrl frameMovable(index,enable¼true)

GuiFrameSetCtrl getColumnCount()

GuiFrameSetCtrl getColumnOffset(index)

GuiFrameSetCtrl getRowCount()

GuiFrameSetCtrl getRowOffset(index)

GuiFrameSetCtrl removeColumn()

GuiFrameSetCtrl removeRow()

GuiFrameSetCtrl setColumnOffset(index,offset)

GuiFrameSetCtrl setRowOffset(index,offset)

GuiGraphCtrl addAutoPlot(plotID,variable,update)

GuiGraphCtrl addDatum(plotID,v)

GuiGraphCtrl getDatum(plotID,samples)

GuiGraphCtrl matchScale(plotID,plotID,. . .)

Table A.2 continued

Object Class Method

Torque Reference Tables 995

GuiGraphCtrl removeAutoPlot(plotID)

GuiGraphCtrl setGraphType(plotID,graphType)

GuiInspector inspect(Object)

GuiInspector setName(NewObjectName)

GuiInspectorDynamicField renameField(newDynamicFieldName)

GuiInspectorDynamicGroup addDynamicField()

GuiInspectorField apply(newValue))

GuiMenuBar addMenu(menuText,menuId)

GuiMenuBar addMenuItem(mnu,mnuItmTxt,mnuItmId,acc=NULL,chkGrp=�1)

GuiMenuBar clearMenuItems(menu)

GuiMenuBar clearMenus()

GuiMenuBar removeMenu(menu)

GuiMenuBar removeMenuItem(menu,menuItem)

GuiMenuBar setMenuItemBitmap(menu,menuItem,bitmapIndex)

GuiMenuBar setMenuItemChecked(menu,menuItem,checked)

GuiMenuBar setMenuItemEnable(menu,menuItem,enabled)

GuiMenuBar setMenuItemText(menu,menuItem,newMenuItemText)

GuiMenuBar setMenuItemVisible(menu,menuItem,isVisible)

GuiMenuBar setMenuText(menu,newMenuText)

GuiMenuBar setMenuVisible(menu,visible)

GuiMessageVectorCtrl attach(item)

GuiMessageVectorCtrl detach()

GuiMLTextCtrl addText(text,reformat)

GuiMLTextCtrl forceReflow()

GuiMLTextCtrl getText()

GuiMLTextCtrl scrollToBottom()

GuiMLTextCtrl scrollToTag(tagID)

GuiMLTextCtrl scrollToTop()

GuiMLTextCtrl setAlpha()

GuiMLTextCtrl setCursorPosition(newPos)

GuiMLTextCtrl setText(text)

GuiPaneControl setCollapsed(bool)

GuiPlayerView setModel(raceOrGender,skin)

GuiPlayerView setSeq(index)

GuiPopUpMenuCtrl add(name,idNum,scheme=0)

GuiPopUpMenuCtrl addScheme(id,fontColor,fontColorHL,fontColorSEL)

GuiPopUpMenuCtrl clear()

GuiPopUpMenuCtrl findText(text)

Table A.2 continued

Object Class Method

continued

996 Appendix A n The Torque Reference

GuiPopUpMenuCtrl forceClose()

GuiPopUpMenuCtrl forceOnAction()

GuiPopUpMenuCtrl getSelected()

GuiPopUpMenuCtrl getText()

GuiPopUpMenuCtrl getTextById(id)

GuiPopUpMenuCtrl replaceText(doReplaceText)

GuiPopUpMenuCtrl setEnumContent(class,enum)

GuiPopUpMenuCtrl setSelected(id)

GuiPopUpMenuCtrl setText(text)

GuiPopUpMenuCtrl size()

GuiPopUpMenuCtrl sort()

GuiScrollCtrl scrollToBottom()

GuiScrollCtrl scrollToTop()

GuiSliderCtrl getValue()

GuiTabBookCtrl addPage()

GuiTerrPreviewCtrl getOrigin()

GuiTerrPreviewCtrl getRoot()

GuiTerrPreviewCtrl getValue()

GuiTerrPreviewCtrl reset()

GuiTerrPreviewCtrl setOrigin(x,y)

GuiTerrPreviewCtrl setRoot()

GuiTerrPreviewCtrl setValue()

GuiTextCtrl setText(newText)

GuiTextCtrl setTextID(newText)

GuiTextEditCtrl getCursorPos()

GuiTextEditCtrl getText()

GuiTextEditCtrl setCursorPos(newPos)

GuiTextListCtrl addRow(id,text,index=0)

GuiTextListCtrl clear()

GuiTextListCtrl clearSelection()

GuiTextListCtrl findTextIndex(needle)

GuiTextListCtrl getRowId(index)

GuiTextListCtrl getRowNumById(id)

GuiTextListCtrl getRowText(index)

GuiTextListCtrl getRowTextById(id)

GuiTextListCtrl getSelectedId()

GuiTextListCtrl isRowActive(rowNum)

GuiTextListCtrl removeRow(index)

GuiTextListCtrl removeRowById(id)

Table A.2 continued

Object Class Method

Torque Reference Tables 997

GuiTextListCtrl rowCount()

GuiTextListCtrl scrollVisible(rowNum)

GuiTextListCtrl setRowActive(rowNum,active)

GuiTextListCtrl setRowById(id,text)

GuiTextListCtrl setSelectedById(id)

GuiTextListCtrl setSelectedRow(rowNum)

GuiTextListCtrl sort(columnID,increasing=false)

GuiTextListCtrl sortNumerical(columnID,increasing=false)

GuiTheoraCtrl getCurrentTime()

GuiTheoraCtrl setFile(filename)

GuiTheoraCtrl stop()

GuiTickCtrl setProcessTicks([tick=true])

GuiTreeViewCtrl addSelection(id)

GuiTreeViewCtrl buildIconTable(iconListString[csv])

GuiTreeViewCtrl clear()

GuiTreeViewCtrl clearSelection()

GuiTreeViewCtrl deleteSelection()

GuiTreeViewCtrl editItem(item,newText,newValue)

GuiTreeViewCtrl expandItem(item,expand=true)

GuiTreeViewCtrl findItemByName(name)

GuiTreeViewCtrl getChild(item)

GuiTreeViewCtrl getFirstRootItem()

GuiTreeViewCtrl getItemCount()

GuiTreeViewCtrl getItemText(item)

GuiTreeViewCtrl getItemValue(item)

GuiTreeViewCtrl getNextSibling(item)

GuiTreeViewCtrl getParent(item)

GuiTreeViewCtrl getPrevSibling(item)

GuiTreeViewCtrl getSelectedItem()

GuiTreeViewCtrl getTextToRoot(item,Delimiter=none)

GuiTreeViewCtrl insertItem(parent,name,value,icon,normal=0,expanded=0)

GuiTreeViewCtrl lockSelection([id])

GuiTreeViewCtrl moveItemUp(item)

GuiTreeViewCtrl open(okToEdit=true)

GuiTreeViewCtrl removeItem(item)

GuiTreeViewCtrl removeSelection(id)

GuiTreeViewCtrl selectItem(item,select=true)

HTTPObject get(addr,requestURI,query=NULL)

Table A.2 continued

Object Class Method

continued

998 Appendix A n The Torque Reference

HTTPObject post(ddr,requestURI,query,post)

InteriorInstance activateLight(lightName)

InteriorInstance deactivateLight(lightName)

InteriorInstance echoTriggerableLights()

InteriorInstance getNumDetailLevels()

InteriorInstance setAlarmMode(mode)

InteriorInstance setDetailLevel(level)

InteriorInstance setSkinBase(basename)

Item getLastStickyNormal()

Item getLastStickyPos()

Item isRotating()

Item isStatic()

Item setCollisionTimeout(obj)

LangTable addLanguage(filename,[languageName])

LangTable getCurrentLanguage()

LangTable getLangName(language)

LangTable getNumLang()

LangTable getString(filename)

LangTable setCurrentLanguage(language)

LangTable setDefaultLanguage(language)

Lightning strikeObject(id)

Lightning strikeRandomPoint()

Lightning warningFlashes()

MessageVector clear()

MessageVector deleteLine(deletePos)

MessageVector dump(filename,header=NULL)

MessageVector getLineIndexByTag(tag)

MessageVector getLineTag(line)

MessageVector getLineText(line)

MessageVector getLineTextByTag(tag)

MessageVector getNumLines()

MessageVector insertLine(insertPos,msg,tag=0)

MessageVector popBackLine()

MessageVector popFrontLine()

MessageVector pushBackLine(msg,tag=0)

MessageVector pushFrontLine(msg,tag=0)

MissionArea getArea()

MissionArea setArea(x,y,width,height)

MissionAreaEditor centerWorld()

Table A.2 continued

Object Class Method

Torque Reference Tables 999

MissionAreaEditor getArea()

MissionAreaEditor setArea(x,y,w,h)

MissionAreaEditor updateTerrain()

NetConnection checkMaxRate()

NetConnection clearPaths()

NetConnection connect(remoteAddress)

NetConnection connectLocal()

NetConnection getAddress()

NetConnection getGhostID(realID)

NetConnection getGhostsActive()

NetConnection getPacketLoss()

NetConnection getPing()

NetConnection resolveGhostID(ghostID)

NetConnection resolveObjectFromGhostIndex(ghostIdx)

NetConnection setLogging(bool)

NetConnection setSimulatedNetParams(packetLoss,delay)

NetConnection transmitPaths()

NetObject clearScopeToClient(client)

NetObject getGhostID()

NetObject scopeToClient(client)

NetObject setScopeAlways()

ParticleData reload()

ParticleEmitterData reload()

ParticleEmitterNode setEmitterDataBlock(data)

Path getPathId()

PathCamera popFront()

PathCamera pushBack(transform,speed,type,path)

PathCamera pushFront(transform,speed,type,path)

PathCamera reset(speed=0)

PathCamera setPosition(pos)

PathCamera setState({forward,backward,stop})

PathCamera setTarget(pos)

PathedInterior setPathPosition(pos)

PathedInterior setTargetPosition(pos)

PhysicalZone activate()

PhysicalZone deactivate()

Player checkDismountPoint(oldPos,pos)

Player clearControlObject()

Table A.2 continued

Object Class Method

continued

1000 Appendix A n The Torque Reference

Player getControlObject()

Player getDamageLocation(pos)

Player getState()

Player setActionThread(sequenceName,hold,fsp)

Player setArmThread(sequenceName)

Player setControlObject(obj)

Precipitation modifyStorm(Percentage<0.0 to 1.0>,Time<sec>)

Precipitation setPercentage(percentage,<0.0to1.0>)

SceneObject getForwardVector()

SceneObject getObjectBox()

SceneObject getPosition()

SceneObject getScale()

SceneObject getTransform()

SceneObject getWorldBox()

SceneObject getWorldBoxCenter()

SceneObject setScale(scale)

SceneObject setTransform(T)

ShapeBase applyDamage(amt)

ShapeBase applyImpulse(Pos,VectorF vel)

ShapeBase applyRepair(amt)

ShapeBase canCloak()

ShapeBase getAIRepairPoint()

ShapeBase getCameraFov()

ShapeBase getControllingClient()

ShapeBase getControllingObject()

ShapeBase getDamageFlash()

ShapeBase getDamageLevel()

ShapeBase getDamagePercent()

ShapeBase getDamageState()

ShapeBase getEnergyLevel()

ShapeBase getEnergyPercent()

ShapeBase getEyePoint()

ShapeBase getEyeTransform()

ShapeBase getEyeVector()

ShapeBase getImageAmmo(slot)

ShapeBase getImageLoaded(slot)

ShapeBase getImageSkinTag(slot)

ShapeBase getImageState(slot)

ShapeBase getImageTrigger(slot)

Table A.2 continued

Object Class Method

Torque Reference Tables 1001

ShapeBase getMountedImage(slot)

ShapeBase getMountedObject(slot)

ShapeBase getMountedObjectCount()

ShapeBase getMountedObjectNode(node)

ShapeBase getMountNodeObject(node)

ShapeBase getMountSlot(db)

ShapeBase getMuzzlePoint(slot)

ShapeBase getMuzzleVector(slot)

ShapeBase getObjectMount()

ShapeBase getPendingImage(slot)

ShapeBase getRechargeRate()

ShapeBase getRepairRate()

ShapeBase getShapeName()

ShapeBase getSkinName()

ShapeBase getSlotTransform(slot)

ShapeBase getVelocity()

ShapeBase getWhiteOut()

ShapeBase isCloaked()

ShapeBase isDestroyed()

ShapeBase isDisabled()

ShapeBase isEnabled()

ShapeBase isHidden()

ShapeBase isImageFiring(slot)

ShapeBase isImageMounted(db)

ShapeBase isMounted()

ShapeBase mountImage(image,slot,loaded=true,skinTag=NULL)

ShapeBase mountObject(object,slot)

ShapeBase pauseThread(slot)

ShapeBase playAudio(slot,ap)

ShapeBase playThread(slot,sequenceName)

ShapeBase setCameraFov(fov)

ShapeBase setCloaked(isCloaked)

ShapeBase setDamageFlash(lvl)

ShapeBase setDamageLevel(level)

ShapeBase setDamageState(state)

ShapeBase setDamageVector(origin)

ShapeBase setEnergyLevel(level)

ShapeBase setHidden(show)

Table A.2 continued

Object Class Method

continued

1002 Appendix A n The Torque Reference

ShapeBase setImageAmmo(slot,hasAmmo)

ShapeBase setImageLoaded(slot,loaded)

ShapeBase setImageTrigger(slot,isTriggered)

ShapeBase setInvincibleMode(time,speed)

ShapeBase setRechargeRate(rate)

ShapeBase setRepairRate(amt)

ShapeBase setShapeName(tag)

ShapeBase setSkinName(tag)

ShapeBase setThreadDir(slot,isForward)

ShapeBase setVelocity(vel)

ShapeBase setWhiteOut(flashLevel)

ShapeBase startFade(fadeTimeMS,fadeDelayMS,fadeOut)

ShapeBase stopAudio(slot)

ShapeBase stopThread(slot)

ShapeBase unmount()

ShapeBase unmountImage(slot)

ShapeBase unmountObject(obj)

ShapeBaseData checkDeployPos(xform)

ShapeBaseData getDeployTransform(pos,normal)

SimObject delete()

SimObject dump()

SimObject getClassName()

SimObject getGroup()

SimObject getId()

SimObject getName()

SimObject getType()

SimObject save(fileName,<selectedOnly>)

SimObject schedule(time,command,<arg1. . . argN>)

SimObject setName(newName)

SimpleNetObject setMessage1(msg)

SimpleNetObject setMessage2(msg)

SimSet add(obj1,. . .)

SimSet bringToFront(object)

SimSet clear()

SimSet getCount()

SimSet getObject(objIndex)

SimSet isMember(object)

SimSet listObjects()

Table A.2 continued

Object Class Method

Torque Reference Tables 1003

SimSet pushToBack(object)

SimSet remove(obj1,. . .)

Sky getWindVelocity()

Sky realFog(show,max,min,speed)

Sky setWindVelocity(x,y,z)

Sky stormClouds(show,duration)

Sky stormCloudsShow(showClouds)

Sky stormFog(percent,duration)

Sky stormFogShow(show)

StaticShape getPoweredState()

StaticShape setPoweredState(isPowered)

TCPObject connect(addr)

TCPObject disconnect()

TCPObject listen(port)

TCPObject send(. . .)

Terraformer blend(srcA,srcB,dest_register,factor,operation)

Terraformer canyon(dest_register,frequency,turbulence,seed)

Terraformer clearRegister(r)

Terraformer erodeHydraulic(srcreg,dstreg,iterations,arr)

Terraformer erodeThermal(srcreg,dstreg,slope,materialLoss,iterations)

Terraformer fBm(r,freq,roughness,detail,seed)

Terraformer filter(src_register,dst_register,arr)

Terraformer generateSeed()

Terraformer getCameraPosition()

Terraformer loadGreyscale(register,filename)

Terraformer maskFBm(destreg,freq,rough,seed,arr,distortfactor,distortreg)

Terraformer maskHeight(srcreg,dstreg,arr,distortfactor,distortreg)

Terraformer maskSlope(srcreg,dstreg,arr,distortfactor,distortreg)

Terraformer maskWater(srcreg,dstreg,distortfactor,distortreg)

Terraformer mergeMasks(srcarray,dstreg)

Terraformer preview(destination,register)

Terraformer previewScaled(destination,source)

Terraformer rigidMultiFractal(r,freq,roughness,detail,seed)

Terraformer saveGreyscale(register,filename)

Terraformer saveHeightField(register,filename)

Terraformer scale(src_register,dst_register,min,max)

Terraformer setCameraPosition(x,y,z=0)

Table A.2 continued

Object Class Method

continued

1004 Appendix A n The Torque Reference

Terraformer setMaterials(src_array,material_array)

Terraformer setShift(x,y)

Terraformer setTerrain(register)

Terraformer setTerrainInfo(blkSiz,tileSiz,minHgt,hgtRange,waterPercent)

Terraformer sinus(r,a,seed)

Terraformer smooth(src_register,dst_register,factor,iterations)

Terraformer smoothRidges(src_register,dst_register,factor,iterations)

Terraformer smoothWater(src_register,dst_register,factor,iterations)

Terraformer terrainData(register)

Terraformer terrainFile(register,filename)

Terraformer turbulence(src_register,dst_register,factor,radius)

TerrainBlock getHeightfieldScript()

TerrainBlock getSquareSize()

TerrainBlock getTextureScript()

TerrainBlock save(fileName)

TerrainBlock setHeightfieldScript(script)

TerrainBlock setTextureScript(script)

TerrainEditor attachTerrain(terrain)

TerrainEditor buildMaterialMap()

TerrainEditor clearModifiedFlags()

TerrainEditor clearSelection()

TerrainEditor getActionName(num)

TerrainEditor getBrushPos()

TerrainEditor getCurrentAction()

TerrainEditor getNumActions()

TerrainEditor getNumTextures()

TerrainEditor getTerrainMaterials()

TerrainEditor getTextureName(index)

TerrainEditor markEmptySquares()

TerrainEditor mirrorTerrain()

TerrainEditor popBaseMaterialInfo()

TerrainEditor processAction(action=NULL)

TerrainEditor pushBaseMaterialInfo()

TerrainEditor redo()

TerrainEditor resetSelWeights(clear)

TerrainEditor setAction(action_name)

TerrainEditor setBrushPos(x,y)

TerrainEditor setBrushSize(w,h)

Table A.2 continued

Object Class Method

Torque Reference Tables 1005

TerrainEditor setBrushType(type)

TerrainEditor setLoneBaseMaterial(materialListBaseName)

TerrainEditor setTerraformOverlay(overlayEnable)

TerrainEditor setTerrainMaterials(matList)

TerrainEditor undo()

Trigger getNumObjects()

Trigger getObject(idx)

TriggerData onEnterTrigger(trigger,intruder)

TriggerData onLeaveTrigger(trigger,intruder)

TriggerData onTickTrigger(trigger)

WaterBlock toggleWireFrame()

WheeledVehicle getWheelCount()

WheeledVehicle setWheelPowered(wheel#,bool)

WheeledVehicle setWheelSpring(wheel#,spring)

WheeledVehicle setWheelSteering(wheel#,float)

WheeledVehicle setWheelTire(wheel#,tire)

WorldEditor addUndoState()

WorldEditor canPasteSelection()

WorldEditor clearIgnoreList()

WorldEditor clearSelection()

WorldEditor copySelection()

WorldEditor deleteSelection()

WorldEditor dropSelection()

WorldEditor getMode()

WorldEditor getSelectedObject(index)

WorldEditor getSelectionCentroid()

WorldEditor getSelectionSize()

WorldEditor hideSelection(hide)

WorldEditor ignoreObjClass(class_name,. . .)

WorldEditor lockSelection(lock)

WorldEditor pasteSelection()

WorldEditor redirectConsole(objID)

WorldEditor redo()

WorldEditor selectObject(obj)

WorldEditor setMode(newMode)

WorldEditor undo()

WorldEditor unselectObject(obj)

Table A.2 continued

Object Class Method

1006 Appendix A n The Torque Reference

Table A.3 TorqueScript Keywords

Keyword Description

break Breaks execution out of a loop.

case Indicates a choice in a switch block.

continue Causes execution to continue at the top of a loop.

datablock Indicates that the following code block defines a data block.

default Indicates the choice to make in a switch block when no cases match.

do Indicates the start of a do-while type loop block.

else Indicates alternative execution path in an if statement.

false Evaluates to 0, the opposite of true.

for Indicates the start of a for loop.

function Indicates that the following code block is a callable function.

if Indicates the start of a conditional (comparison) statement.

new Creates a new object data block.

package Indicates that the following code block encompasses a package.

return Indicates return from a function.

switch Indicates the start of a switch selection block.

true Evaluates to 1, the opposite of false.

while Indicates the start of a while loop.

Table A.4 TorqueScript Operators

Symbol Meaning

þ Add.

� Subtract.

* Multiply.

/ Divide.

% Modulus.

þ þ Increment by 1.

-- Decrement by 1.

þ= Addition totalizer.

�= Subtraction totalizer.

*= Multiplication totalizer.

/= Division totalizer.

%= Modulus totalizer.

@ String append.

() Parentheses---operator precedence promotion.

[] Brackets---array index delimiters.

{ } Braces---indicate start and end of code blocks.

Torque Reference Tables 1007

SPC Space append macro (same as @ ‘‘ ’’ @).

TAB Tab append macro (same as @ ‘‘\t’’ @).

NL New line append (same as @ ‘‘\n’’ @).

~ (Bitwise NOT) Flips the bits of its operand.

| (Bitwise OR) Returns a 1 in a bit if bits of either operand are 1.

& (Bitwise AND) Returns a 1 in each bit position if bits of both operands are 1s.

^ (Bitwise XOR) Returns a 1 in a bit position if bits of one but not both operands are 1.

<< (Left-shift) Shifts its first operand in binary representation the number of bits to the left
specified in the second operand, shifting in 0s from the right.

>> (Sign-propagating right-shift) Shifts the first operand in binary representation the number
of bits to the right specified in the second operand, discarding bits shifted off.

|= Bitwise OR with result assigned to the first operand.

&= Bitwise AND with result assigned to the first operand.

^= Bitwise XOR with result assigned to the first operand.

<<= Left-shift with result assigned to the first operand.

>>= Sign-propagating right-shift with result assigned to the first operand.

! Evaluates the opposite of the value specified.

&& Requires both values to be true for the result to be true.

|| Requires only one value to be true for the result to be true.

== Left-hand value and right-hand value are equal.

!= Left-hand value and right-hand value are not equal.

< Left-hand value is less than right-hand value.

> Left-hand value is greater than right-hand value.

<= Left-hand value is less than or equal to right-hand value.

>= Left-hand value is greater than or equal to right-hand value.

$= Left-hand string is equal to right-hand string.

!$= Left-hand string is not equal to right-hand string.

// Comment operator---ignore all text from here to the end of the line.

; Statement terminator.

. Object/data block method or property delimiter.

Table A.4 continued

Symbol Meaning

Table A.5 TorqueScript Operator Precedence

High Priority Low Priority

() * / % þ � =

1008 Appendix A n The Torque Reference

Table A.6 Torque Script Tokens

Token Description

string literal A sequence of alphanumeric characters bracketed by single or double quotes.

variable Prefixed with % for a local variable or $ for a global variable, which is then always
followed by a letter character. After the initial letter character, there can be a
series of alphanumeric characters, underscores, or colons; a variable cannot end
with a colon.

identifier An initial letter character followed by an optional sequence of alphanumeric
characters or underscores.

number A decimal integer or floating point number. Hexadecimal numbers can be used if
the token begins with 0x (zero-x).

Table A.7 TorqueScript String Formatting Codes

Code Description

\r Embeds a carriage return character.

\n Embeds a new line character.

\t Embeds a tab character.

\xhh Embeds an ASCII character specified by the hex number (hh) that follows the x.

\c Embeds a color code for strings that will be displayed on-screen.

\cr Resets the display color to the default.

\cp Pushes the current display color onto a stack.

\co Pops the current display color off the stack.

\cn Uses n as an index into the color table defined by GUIControlProfile.fontColors.

Table A.8 Torque Data Blocks

Data Block Parent

AudioDescription SimDataBlock

AudioEnvironment SimDataBlock

AudioProfile SimDataBlock

AudioSampleEnvironment SimDataBlock

CameraData ShapeBaseData

DebrisData GameBaseData

DecalData SimDataBlock

ExplosionData GameBaseData

Torque Reference Tables 1009

FireballAtmosphereData GameBaseData

FlyingVehicleData VehicleData

fxLightData GameBaseData

GameBaseData SimDataBlock

HoverVehicleData VehicleData

ItemData ShapeBaseData

LightningData GameBaseData

MissionMarkerData ShapeBaseData

ParticleData SimDataBlock

ParticleEmitterData GameBaseData

ParticleEmitterNodeData GameBaseData

PathCameraData ShapeBaseData

PathedInteriorData GameBaseData

PlayerData ShapeBaseData

PrecipitationData GameBaseData

ProjectileData GameBaseData

ShapeBaseData GameBaseData

ShapeBaseImageData GameBaseData

SimDataBlock SimObject

SplashData GameBaseData

StaticShapeData ShapeBaseData

TriggerData GameBaseData

TSShapeConstructor SimDataBlock

VehicleData ShapeBaseData

WeatherLightningData GameBaseData

WheeledVehicleData VehicleData

WheeledVehicleSpring SimDataBlock

WheeledVehicleTire SimDataBlock

Table A.8 continued

Data Block Parent

Table A.9 Torque Console Objects

Object Parent

ActionMap SimObject

AIConnection GameConnection

BanList SimObject

ConsoleLogger SimObject

CreatorTree GuiArrayCtrl

continued

1010 Appendix A n The Torque Reference

DbgFileView GuiArrayCtrl

DebugView GuiTextCtrl

DecalManager SceneObject

EditManager GuiControl

EditTSCtrl GuiTSCtrl

Explosion GameBase

FileObject SimObject

GameConnection NetConnection

GameTSCtrl GuiTSCtrl

GuiArrayCtrl GuiControl

GuiAviBitmapCtrl GuiControl

GuiBackgroundCtrl GuiControl

GuiBitmapBorderCtrl GuiControl

GuiBitmapButtonCtrl GuiButtonCtrl

GuiBitmapButtonTextCtrl GuiBitmapButtonCtrl

GuiBitmapCtrl GuiControl

GuiBorderButtonCtrl GuiButtonBaseCtrl

GuiBubbleTextCtrl GuiTextCtrl

GuiButtonBaseCtrl GuiControl

GuiButtonCtrl GuiButtonBaseCtrl

GuiCanvas GuiControl

GuiCheckBoxCtrl GuiButtonBaseCtrl

GuiChunkedBitmapCtrl GuiControl

GuiClockHud GuiControl

GuiColorPickerCtrl GuiControl

GuiConsole GuiArrayCtrl

GuiConsoleEditCtrl GuiTextEditCtrl

GuiConsoleTextCtrl GuiControl

GuiControl SimGroup

GuiControlArrayControl GuiControl

GuiControlListPopUp GuiPopUpMenuCtrl

GuiControlProfile SimObject

GuiCrossHairHud GuiBitmapCtrl

GuiCursor SimObject

GuiDirectoryFileListCtrl GuiTextListCtrl

GuiDirectoryTreeCtrl GuiTreeViewCtrl

GuiEditCtrl GuiControl

GuiEditorRuler GuiControl

GuiEffectCanvas GuiCanvas

Table A.9 continued

Object Parent

Torque Reference Tables 1011

GuiFadeinBitmapCtrl GuiBitmapCtrl

GuiFilterCtrl GuiControl

GuiFrameSetCtrl GuiControl

GuiGraphCtrl GuiControl

GuiHealthBarHud GuiControl

GuiInputCtrl GuiControl

GuiInspector GuiStackControl

GuiInspectorDatablockField GuiInspectorField

GuiInspectorDynamicField GuiInspectorField

GuiInspectorField GuiControl

GuiInspectorGroup GuiTickCtrl

GuiInspectorTypeCheckBox GuiInspectorField

GuiInspectorTypeColor GuiInspectorField

GuiInspectorTypeColorF GuiInspectorTypeColor

GuiInspectorTypeColorI GuiInspectorTypeColor

GuiInspectorTypeEnum GuiInspectorField

GuiInspectorTypeFileName GuiInspectorField

GuiInspectorTypeGuiProfile GuiInspectorTypeEnum

GuiMenuBar GuiControl

GuiMessageVectorCtrl GuiControl

GuiMLTextCtrl GuiControl

GuiMLTextEditCtrl GuiMLTextCtrl

GuiMouseEventCtrl GuiControl

GuiNoMouseCtrl GuiControl

GuiPaneControl GuiControl

GuiPlayerView GuiTSCtrl

GuiPopUpMenuCtrl GuiTextCtrl

GuiProgressCtrl GuiControl

GuiRadioCtrl GuiCheckBoxCtrl

GuiScrollCtrl GuiControl

GuiShapeNameHud GuiControl

GuiSliderCtrl GuiControl

GuiSpeedometerHud GuiBitmapCtrl

GuiStackControl GuiControl

GuiTabBookCtrl GuiControl

GuiTabPageCtrl GuiTextCtrl

GuiTerrPreviewCtrl GuiControl

GuiTextCtrl GuiControl

Table A.9 continued

Object Parent

continued

1012 Appendix A n The Torque Reference

GuiTextEditCtrl GuiTextCtrl

GuiTextEditSliderCtrl GuiTextEditCtrl

GuiTextListCtrl GuiArrayCtrl

GuiTheoraCtrl GuiControl

GuiTickCtrl GuiControl

GuiTreeViewCtrl GuiArrayCtrl

GuiTSCtrl GuiControl

GuiVectorFieldCtrl GuiTickCtrl

GuiWindowCtrl GuiTextCtrl

HTTPObject TCPObject

LangTable SimObject

MaterialPropertyMap SimObject

MessageVector SimObject

MirrorSubObject InteriorSubObject

MissionAreaEditor GuiBitmapCtrl

NetConnection SimGroup

NetObject SimObject

Path SimGroup

SceneObject NetObject

ScriptGroup SimGroup

ScriptObject SimObject

ShowTSCtrl GuiTSCtrl

SimChunk SimGroup

SimGroup SimSet

SimObject ConsoleObject

SimSet SimObject

TCPObject SimObject

Terraformer SimObject

TerrainEditor EditTSCtrl

TextChunk SimChunk

TorqueObject ConsoleObject

UnknownChunk SimChunk

Vehicle SceneObject

WorldEditor EditTSCtrl

Table A.9 continued

Object Parent

Torque Reference Tables 1013

Table A.10 Torque Net Objects

Datablock Parent

AIPlayer Player

AIWheeledVehicle WheeledVehicle

AudioEmitter SceneObject

Camera ShapeBase

ClientAudioEmitter AudioEmitter

Debris GameBase

FireballAtmosphere GameBase

FlyingVehicle Vehicle

fxFoliageReplicator SceneObject

fxLight GameBase

fxShapeReplicatedStatic TSStatic

fxShapeReplicator SceneObject

fxSunLight SceneObject

GameBase SceneObject

HoverVehicle Vehicle

InteriorInstance SceneObject

InteriorMap SceneObject

Item ShapeBase

Lightning GameBase

Marker SceneObject

MissionArea NetObject

MissionMarker ShapeBase

ParticleEmitterNode GameBase

PathCamera ShapeBase

PathedInterior GameBase

PhysicalZone SceneObject

Player ShapeBase

Precipitation GameBase

Projectile GameBase

ScopeAlwaysShape StaticShape

ShapeBase GameBase

SimpleNetObject NetObject

Sky SceneObject

SpawnSphere MissionMarker

Splash GameBase

StaticShape ShapeBase

Sun NetObject

continued

1014 Appendix A n The Torque Reference

Table A.11 Torque Console Types

Type Parent

AudioDescription SimDataBlock

AudioEnvironment SimDataBlock

AudioProfile SimDataBlock

AudioSampleEnvironment SimDataBlock

DebrisData GameBaseData

DecalData SimDataBlock

ExplosionData GameBaseData

FireballAtmosphereData GameBaseData

fxLightData GameBaseData

GameBaseData SimDataBlock

ParticleEmitterData GameBaseData

PrecipitationData GameBaseData

ProjectileData GameBaseData

SplashData GameBaseData

TerrainBlock SceneObject

Trigger GameBase

TSStatic SceneObject

VehicleBlocker SceneObject

WaterBlock SceneObject

WayPoint MissionMarker

WeatherLightning GameBase

WheeledVehicle Vehicle

Table A.10 Torque Net Objects

Datablock Parent

Table A.12 Torque Engine-Sourced Preference Variables

Variable Variable

$Pref::backgroundSleepTime $Pref::OpenGL::force16BitTexture

$Pref::CloudOutline $Pref::OpenGL::forcePalettedTexture

$Pref::CloudsOn $Pref::OpenGL::gammaCorrection

$Pref::Decal::decalTimeout $Pref::OpenGL::lightingAmbientColor

$Pref::Decal::maxNumDecals $Pref::OpenGL::materialAmbientColor

$Pref::decalsOn $Pref::OpenGL::materialDiffuseColor

Torque Reference Tables 1015

$Pref::Editor::visibleDistance $Pref::OpenGL::maxHardwareLights

$Pref::enableBadWordFilter $Pref::OpenGL::noDrawArraysAlpha

$Pref::environmentMaps $Pref::OpenGL::noEnvColor

$Pref::Input::JoystickEnabled $Pref::OpenGL::textureAnisotropy

$Pref::Input::KeyboardEnabled $Pref::OpenGL::textureTrilinear

$Pref::Input::MouseEnabled $Pref::Player::renderMyItems

$Pref::Interior::detailAdjust $Pref::Player::renderMyPlayer

$Pref::Interior::DynamicLights $Pref::ResourceManager::excludedDirectories

$Pref::Interior::LightUpdatePeriod $Pref::SkyOn

$Pref::Interior::lockArrays $Pref::Terrain::dynamicLights

$Pref::Interior::ShowEnvironmentMaps $Pref::Terrain::enableDetails

$Pref::Interior::TexturedFog $Pref::Terrain::enableEmbossBumps

$Pref::Interior::VertexLighting $Pref::Terrain::screenError

$Pref::Net::LagThreshold $Pref::Terrain::texDetail

$Pref::Net::PacketRateToClient $Pref::Terrain::textureCacheSize

$Pref::Net::PacketRateToServer $Pref::timeManagerProcessInterval

$Pref::Net::PacketSize $Pref::TS::autoDetail

$Pref::NumCloudLayers $Pref::TS::detailAdjust

$Pref::OpenGL::allowCompression $Pref::TS::fogTexture

$Pref::OpenGL::disableARBMultitexture $Pref::TS::screenError

$Pref::OpenGL::disableARBTextureCompression $Pref::TS::skipFirstFog

$Pref::OpenGL::disableEXTCompiledVertexArray $Pref::TS::skipLoadDLs

$Pref::OpenGL::disableEXTFogCoord $Pref::TS::skipRenderDLs

$Pref::OpenGL::disableEXTPalettedTexture $Pref::TS::UseTriangles

$Pref::OpenGL::disableEXTTexEnvCombine $Pref::visibleDistanceMod

$Pref::OpenGL::disableSubImage

Table A.12 Torque Engine-Sourced Preference Variables

Variable Variable

Table A.13 Torque Engine-Sourced Console Variables

Variable Variable

$Camera::movementSpeed $mvYawRightSpeed

$cameraFov $OpenGL::primCount0

$Collision::boxSize $OpenGL::primCount1

$Collision::depthRender $OpenGL::primCount2

$Collision::depthSort $OpenGL::primCount3

$Collision::renderAlways $OpenGL::triCount0

continued

1016 Appendix A n The Torque Reference

$Collision::testClippedPolyList $OpenGL::triCount1

$Collision::testDepthSortList $OpenGL::triCount2

$Collision::testExtrudedPolyList $OpenGL::triCount3

$Collision::testPolytope $Player::maxPredictionTicks

$Con::File $Player::maxWarpTicks

$Con::Root $Player::minWarpTicks

$debugControlSync $SB::DFDec

$farDistance $SB::WODec

$frameSkip $SceneLighting::lightingProgress

$GameBase::boundingBox $SceneLighting::terminateLighting

$Interior::DontRestrictOutside $screenSize

$Item::maxWarpTicks $showBackwardAction

$Item::minWarpTicks $showDownAction

$MasterServerAddress $showForwardAction

$movementSpeed $showLeftAction

$mvBackwardAction $showMovementSpeed

$mvDownAction $showPitch

$mvForwardAction $showRightAction

$mvFreeLook $showUpAction

$mvLeftAction $showYaw

$mvPitch $specialFog

$mvPitchDownSpeed $Stats::netBitsReceived

$mvPitchUpSpeed $Stats::netBitsSent

$mvRightAction $Stats::netGhostUpdates

$mvRoll $T2::dynamicTextureCount

$mvRollLeftSpeed $T2::staticTextureCount

$mvRollRightSpeed $timeAdvance

$mvUpAction $timeScale

$mvYaw $TSControl::frameCount

$mvYawLeftSpeed $Video::numTexelsLoaded

Table A.13 continued

Variable Variable

Additional
Resources

Game Development Resources on the Internet
Just about everything you could possibly need to know regarding game devel-

opment can be found on the Internet. But then, you probably already knew this!

Search engines may be your friend, but they can often return a bewildering array

of hits that may or may not be appropriate to your game development needs.

I’ve listed in this appendix every link from my own personal bookmark folder of

game development resources, as well as a some more recommended by friends.

Of course, this is certainly not an exhaustive list. However, the sites listed have

very long histories on the Web, so most are not likely to succumb to ‘‘link rot.’’

I think you will find these resources useful.

Torque-Related Web Sites

BraveTree Productions

ThinkTanks’ home.

http://www.bravetree.com

GarageGames

Home of the Torque Engine.

http://www.garagegames.com

1017

appendix b

Gnometech

Torque modeling and other resources.

http://www.gnometech.com

Hall of Worlds

Torque development notes and tips.

http://www.hallofworlds.com

Holodeck: Virtual Reality Computing for Design

Torque and QuArK tutorials.

http://holodeck.st.usm.edu/vrcomputing/vrc_t

PlanetTribes—Torque

Source for Torque-related files and content.

http://www.planettribes.com/torque

Prairie Games

Information from the company that createdMinions of Mirth, an RPG developed

using the Torque Game Engine.

http://www.prairiegames.com

http://www.minionsofmirth.com

Realm Wars Development Site

Cooperative game development project.

http://www.realmwarsgame.com

Game Development Web Sites

3D Café

3D models and resources.

http://www.3dcafe.com

3Dup.com

2D and 3D models and resources.

http://www.3dup.com

AngelCode

Game development and more.

http://www.angelcode.com

1018 Appendix B n Additional Resources

Art Institute of Toronto

Information on game art and design programs offered in Toronto and various

other locations.

http://wherecreativitygoestoschool.ca/artinstitutes/toronto

CFXweb

Game design, tutorials, and resources.

http://www.cfxweb.net

CodeGuru

Programming news, tutorials, and links.

http://www.codeguru.com

Designer Today Magazine

3D modeling tutorials, resources, and articles.

http://3dtoday.com

Dictionary of Algorithms and Data Structures

National Institute of Standards and Technology resource.

http://www.nist.gov/dads

Dr. Dobb’s Journal

Programming news, articles, and links.

http://www.ddj.com

flipCode

Archives of game development news and resources.

http://www.flipcode.com

Gamasutra

Game development news, articles, and resources.

http://www.gamasutra.com

Game Developer Magazine

Game development news, articles, and resources.

http://www.gdmag.com

Game Developers Conference

GDC news and promotional information.

http://www.gdconf.com

Game Development Resources on the Internet 1019

GameDev.net

Game development news, articles, and resources.

http://www.gamedev.net

Gamer’s Technical Resources

Game development news, articles, and resources—by gamers, for gamers.

http://www.gamerstech.org/forum

iDevGames

Macintosh game development news, articles, and resources.

http://www.idevgames.com

insert credit

Gaming news, articles, reviews, and resources.

http://www.insertcredit.com

Linux Game Development Center

Game development news, articles, and resources.

http://lgdc.sunsite.dk

Linux Game Tome

Game development news, articles, and resources.

http://www.happypenguin.org

Machinima.com

Real-time 3D animation resource.

http://www.machinima.com

MathWorld

Math tutorials, articles, and resources.

http://mathworld.wolfram.com

Mesh Factory

Source for 3D models.

http://www.meshfactory.com

NeHe Productions

Game technology articles and tutorials.

http://nehe.gamedev.net

1020 Appendix B n Additional Resources

NeXe

Game technology articles and tutorials.

http://nexe.gamedev.net

Oxford Dynamics

FastCar library—fast, precise, and simple library for vehicle simulation in games.

http://www.oxforddynamics.co.uk

Polycount

Game development articles, resources, and tutorials.

http://www.planetquake.com/polycount

Prefabland

Freeware 3D models source.

http://www.ejoop.com/pfl

Programmers Heaven

Programming articles, resources, and tutorials.

http://www.programmersheaven.com

Psionic’s 3D Game Resources

3D modeling resources.

http://www.psionic3d.co.uk

SourceForge.net

Open Source software development Web site; large repository of Open Source

code.

http://sourceforge.net

Steering Behaviors for Autonomous Characters

Paper by Craig Reynolds.

http://www.red3d.com/cwr/steer

Wotsit’s Format

Programming articles, resources, and tutorials.

http://www.wotsit.org

Game Development Resources on the Internet 1021

This page intentionally left blank

Game Development
Tool Reference

All of the tools listed in this appendix are forWindowsplatforms. Someof the listed

tools are available also for the Linux andMacintosh systems. Formore information

on Linux and Macintosh game development tools, see Tables C.1 and C.2.

No t e

Quoted prices for tools and their Web sites are accurate at the time of this writing.

1023

appendix c

Table C.2 Macintosh Tool Sources on the Web

Site Link

iDevGames http://www.idevgames.com

Mac’s Heaven http://www.mac-heaven.com

Tucows/Macintosh http://download.tucows.com/perl/Mac.html

Table C.1 Linux Tool Sources on the Web

Site Link

Linux Game Development Center http://lgdc.sunsite.dk

Linux Game Tome http://www.happypenguin.org

Tucows/Linux http://download.tucows.com/perl/Linux.html

Shareware and Freeware Tools
Modeling

Blender

3D modeling

Multiplatform: Windows, Linux, Irix, Sun Solaris, FreeBSD, or Mac OS X.

Free software: Open Source/GPL.

http://www.blender3d.org

Hammer/Worldcraft

3D modeling—maps or levels

Worldcraft (later renamed Hammer) was written for creating Half-Life maps.

Free to be used only for creating Half-Life levels or for use by developers using the

Torque Engine. Plug-ins available for Torque DIF format. Windows only.

VERC Collective Web site:

http://collective.valve-erc.com

MilkShape 3D

3D modeling

Supports Torque using exporter plug-in. Windows only.

INCLUDED ON COMPANION CD

chUmbaLum sOft:

http://www.swissquake.ch/chumbalum-soft

QuArK

3D modeling—maps or levels

Originally written for creating Quake maps. Supports Torque DIF format.

Windows only.

INCLUDED ON COMPANION CD

http://dynamic.gamespy.com/~quark

http://quark.planetquake.gamespy.com/

Image Editing

The Gimp

Image editing

Fully featured image processing, painting, and editing tool.

1024 Appendix C n Game Development Tool Reference

Free software: Open Source/GPL.

http://www.gimp.org

Programming Editing

Tribal IDE

Text editing and debugging

Integrated debugger-editor written specifically to work with Tribes 2 and Tor-

que. Useful to have around for debugging.

Free software. Hosted at GarageGames.

http://www.garagegames.com

UltraEdit-32

Text editing

Includes project and workspace features as well as macros.

INCLUDED ON COMPANION CD

http://www.ultraedit.com

Audio Editing

Audacity

Audio editing and sound processing

Allows manual editing of sound files, recording, and wave manipulation.

INCLUDED ON COMPANION CD

http://audacity.sourceforge.net

SoundEdit Pro

Audio editing and sound processing

Allows manual editing of sound files and conversion between many types.

$39.95

http://www.rmbsoft.com/sep.asp

UVMapper

3D UV texture-mapping utility

Allows users to completely remap the model textures of a Wavefront (obj)

model.

INCLUDED ON COMPANION CD

http://www.uvmapper.com

Shareware and Freeware Tools 1025

Retail Tools
3D Studio Max

3D modeling

Popular commercial 3D modeling software for Windows.

$3,000 (Price is approximate—may vary according to reseller and discount

eligibility.)

http://www.discreet.com

http://usa.autodesk.com

3D World Studio

3D modeling—maps or levels

Worldcraft/Hammer workalike and compatible CSG modeling tool. Also han-

dles meshes and terrains.

$79.95

http://3dworldstudio.thegamecreators.com

Adobe Photoshop

Image editing

Popular fully featured image processing, painting, and editing tool.

$649

http://www.adobe.com

Corel Painter

Image editing

Popular commercial paint program for Windows.

$199 (Price varies—sometimes lower with special offers.)

http://www.corel.com

Corel Paint Shop Pro

Image editing

Fully featured image processing, painting, and editing tool.

$79.00

http://www.jasc.com

http://www.corel.com/

1026 Appendix C n Game Development Tool Reference

Deep Paint 3D

Image editing

Popular commercial paint program for Windows.

$995

http://www.righthemisphere.com

Deep UV

3D UV texture-mapping utility

Fully featured commercial product targeted to professionals.

$795

http://www.righthemisphere.com

Maya

3D modeling

Popular commercial 3D modeling software for Windows.

$1,999 to $6,999 (Price depends on product set.)

http://www.alias.com

http://usa.autodesk.com/

Poser

3D animation editing

Fully featured commercial product with rendering and automated tools.

$249.99

http://www.curiouslabs.com

http://www.e-frontier.com/

ZBrush 2

3D modeling and texturing

Uses 3D pixels to create 3D objects much like a sculptor would, working with

clay.

$489

http://www.pixologic.com

http://www.zbrush.com

Retail Tools 1027

This page intentionally left blank

map2dif_plus_plus
Reference

The tool we use in Constructor for compiling maps to create DIF structures or

interiors is, as we have already seen, map2dif_plus_plus.exe. This program is part

of the Torque SDK package.

The tool can be used outside of Constructor by invoking it from the command

shell. The syntax for using map2dif_plus is as follows:

map2dif_plus [-d][-h][-l][-s][-o outputDirectory][-t textureDirectory]
filename.map

Switches:

The program takes a map file, processes it according to the supplied switches, and

produces as output a Torque DIF file. The DIF file is deposited in the same

directory as the MAP file unless the -o switch is employed to specify the output

directory.

1029

appendix d

-d Process only the detail specified on the command line.

-l Process as a low-detail shape (implies -d).
-h Process for final build (exhaustive BSP search).

-s Don’t search for textures in parent directory.

-t dir Location of textures.

-o dir Directory in which to place the DIF file.

file.map Name of file to be processed.

The textures used in the map have to be loaded in order to process the map.

The map2dif_plus tool needs to load the textures so that it can determine the

width and height of each texture. It uses this information to calculate polygon

texture mapping information that will be included in the DIF file. If you

change the size of a texture, you may need to reprocess any map files that use that

texture.

When it runs, map2dif_plus looks in the default directory of the MAP input file;

it then recursively looks in its parent directory and on upward until it reaches the

root directory or finds the texture in question. If the -t dir switch is used in the

command line, the program starts searching for the textures in the directory

specified by dir. The program will load either JPG or PNG forms of the textures

specified in the map.

When it runs, the Torque Engine expects textures to be in the same directory as

the map files that it uses or in a parent directory. Parent directories are searched

all the way to the root main directory (where the Torque Engine executable

resides). The root directory itself is never searched.

The map2dif_plus tool uses certain texture names to help identify special bru-

shes. These textures are:

n null.png

n origin.png

n trigger.png

n forcefield.png

Table D.1 contains a list of the entities supported by map2dif_plus and the

various entity attribute options.

1030 Appendix D n map2dif_plus_plus Reference

Appendix D n map2dif_plus_plus Reference 1031

Table D.1 map2dif_plus Supported Entities

Category Entity Attribute Data Type

Core Entities

worldspawn

detail_number int (default is 0)

min_pixels int (default is 250)

geometry_scale int must be a power of 2 (default is 32)

light_geometry_scale int must be a power of 2 (default is 32)

ambient_color color (default is 0,0,0)

emergency_ambient_color color (default is 0,0,0)

detail

collision

vehicle_collision

portal

ambient_light bool: pass ambient light (default is 0)

target

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

Light Emitters

light_emitter_point

origin pos (default is 0,0,0)

target

state_index

falloff_type bool: 0 = distance,
1 = linear (default is false)

falloff1 float (default is 10)

falloff2 float (default is 100)

falloff3 float (default is 0)

light_emitter_spot

origin pos (default is 0,0,0)

target

state_index

falloff_type bool: 0=distance,
1=linear (default is false)

falloff1 int (default is 10)

falloff2 int (default is 100)

falloff3 int (default is 0)

direction vector (default is 0,0,-1)

theta radian: inner angle
(default is 0.2)

phi radian: outer angle
(default is 0.4)

Lights

continues

1032 Appendix D n map2dif_plus_plus Reference

light

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

spawnflags int: animation flags . . .

alarm_type bool (default is 0)

state int: state number

duration float: state duration

color color: state color

Scripted Lights

light_omni

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

color color (default is 1,1,1)

alarm_type bool (default is 0)

falloff1 int (default is 10)

falloff2 int (default is 100)

light_spot

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

target

color color (default is 1,1,1)

alarm_type bool (default is 0)

falloff1 int (default is 10)

falloff2 int (default is 100)

distance1 int: inner distance
(default is 10)

distance2 int: outer distance
(default is 100)

Animated Lights

light_strobe

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

target

spawnflags int: animation flags . . .

color1 color (default is 0,0,0)

color2 color (default is 1,1,1)

alarm_type bool (default is 0)

falloff1 int (default is 10)

falloff2 int (default is 100)

speed int

light_pulse

name string (default is ‘‘’’)

Table D.1 continued

Category Entity Attribute Data Type

Appendix D n map2dif_plus_plus Reference 1033

origin pos (default is 0,0,0)

spawnflags int: animation flags . . .

color1 color (default is 0,0,0)

color2 color (default is 1,1,1)

alarm_type bool (default is 0)

falloff1 int (default is 10)

falloff2 int (default is 100)

speed int

light_pulse2

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

spawnflags int: animation flags . . .

color1 color (default is 0,0,0)

color2 color (default is 1,1,1)

alarm_type bool (default is 0)

falloff1 int (default is 10)

falloff2 int (default is 100)

attack float (default is 1)

sustain1 float (default is 1)

sustain2 float (default is 1)

decay float (default is 1)

light_flicker

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

spawnflags int: animation flags . . .

color1 color (default is 1,1,1)

color2 color (default is 0,0,0)

color3 color (default is 0,0,0)

color4 color (default is 0,0,0)

color5 color (default is 0,0,0)

alarm_type bool (default is 0)

falloff1 int (default is 10)

falloff2 int (default is 100)

speed int

light_runway

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

spawnflags int: animation flags . . .

color color (default is 1,1,1)

continues

Table D.1 continued

Category Entity Attribute Data Type

1034 Appendix D n map2dif_plus_plus Reference

target

alarm_type bool (default is 0)

falloff1 int (default is 10)

falloff2 int (default is 100)

speed int

steps int (default is 0)

pingpong bool (default is 0)

Special Entities

mirror_surface

origin pos (default is 0,0,0)

alpha_level int

door_elevator

name string (default is ‘‘’’)

path_name string

trigger[0-7]_name string

force_field

name string (default is ‘‘’’)

color color (default is 0.5,0.8,1.9)

trigger[0-7]_name string

ai_special_node

name string (default is ‘‘’’)

origin pos (default is 0,0,0)

Path Entities

path_node

name string (default is ‘‘’’)

next_node string

next_time int

path_start

name string (default is ‘‘’’)

next_node string

next_time int

Trigger Entities

trigger

name string (default is ‘‘’’)

Table D.1 continued

Category Entity Attribute Data Type

GNU General
Public License

Several of the software packages listed in these appendices and included on the

companion CD—like Audacity and QuArK—are distributed under the terms of

the GNU General Public License (GPL).

The text of the GPL is as follows:

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright � 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share

and change it. By contrast, the GNU General Public License is intended to

guarantee your freedom to share and change free software—to make sure the

software is free for all its users. This General Public License applies to most of the

Free Software Foundation’s software and to any other program whose authors

1035

appendix e

commit to using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to your

programs, too.

When we speak of free software, we are referring to freedom, not price. Our

General Public Licenses are designed to make sure that you have the freedom to

distribute copies of free software (and charge for this service if you wish), that

you receive source code or can get it if you want it, that you can change the

software or use pieces of it in new free programs; and that you know you can do

these things.

To protect your rights, we need to make restrictions that forbid anyone to deny

you these rights or to ask you to surrender the rights. These restrictions translate

to certain responsibilities for you if you distribute copies of the software, or if you

modify it.

For example, if you distribute copies of such a program, whether gratis or for a

fee, you must give the recipients all the rights that you have. You must make sure

that they, too, receive or can get the source code. And you must show them these

terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer

you this license which gives you legal permission to copy, distribute and/or

modify the software.

Also, for each author’s protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If the

software is modified by someone else and passed on, we want its recipients to

know that what they have is not the original, so that any problems introduced by

others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish

to avoid the danger that redistributors of a free program will individually obtain

patent licenses, in effect making the program proprietary. To prevent this, we

have made it clear that any patent must be licensed for everyone’s free use or not

licensed at all.

The precise terms and conditions for copying, distribution and modification

follow.

1036 Appendix E n GNU General Public License

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains a notice

placed by the copyright holder saying it may be distributed under the terms of

this General Public License. The ‘‘Program’’, below, refers to any such program

or work, and a ‘‘work based on the Program’’ means either the Program or any

derivative work under copyright law: that is to say, a work containing the Pro-

gram or a portion of it, either verbatim or with modifications and/or translated

into another language. (Hereinafter, translation is included without limitation in

the term ‘‘modification’’.) Each licensee is addressed as ‘‘you’’.

Activities other than copying, distribution and modification are not covered by

this License; they are outside its scope. The act of running the Program is not

restricted, and the output from the Program is covered only if its contents

constitute a work based on the Program (independent of having been made by

running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code

as you receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice and

disclaimer of warranty; keep intact all the notices that refer to this License

and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

Youmay charge a fee for the physical act of transferring a copy, and youmay

at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,

thus forming a work based on the Program, and copy and distribute such

modifications or work under the terms of Section 1 above, provided that

you also meet all of these conditions:

a. Youmust cause the modified files to carry prominent notices stating that

you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or

in part contains or is derived from the Program or any part thereof, to be

licensed as a whole at no charge to all third parties under the terms of this

License.

Appendix E n GNU General Public License 1037

c. If the modified program normally reads commands interactively when

run, you must cause it, when started running for such interactive use in

the most ordinary way, to print or display an announcement including

an appropriate copyright notice and a notice that there is no warranty

(or else, saying that you provide a warranty) and that users may redis-

tribute the program under these conditions, and telling the user how to

view a copy of this License. (Exception: if the Program itself is interactive

but does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable

sections of that work are not derived from the Program, and can be

reasonably considered independent and separate works in themselves,

then this License, and its terms, do not apply to those sections when you

distribute them as separate works. But when you distribute the same

sections as part of a whole which is a work based on the Program, the

distribution of the whole must be on the terms of this License, whose

permissions for other licensees extend to the entire whole, and thus to

each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your

rights to work written entirely by you; rather, the intent is to exercise the

right to control the distribution of derivative or collective works based

on the Program.

In addition, mere aggregation of another work not based on the Pro-

gram with the Program (or with a work based on the Program) on a

volume of a storage or distribution medium does not bring the other

work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under

Section 2) in object code or executable form under the terms of Sections 1

and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections 1

and 2 above on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any

third party, for a charge no more than your cost of physically performing

1038 Appendix E n GNU General Public License

source distribution, a complete machine-readable copy of the corre-

sponding source code, to be distributed under the terms of Sections 1 and

2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to dis-

tribute corresponding source code. (This alternative is allowed only for

noncommercial distribution and only if you received the program in

object code or executable form with such an offer, in accord with

Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source code

means all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation and

installation of the executable. However, as a special exception, the source

code distributed need not include anything that is normally distributed

(in either source or binary form) with the major components (compiler,

kernel, and so on) of the operating system on which the executable runs,

unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to

copy from a designated place, then offering equivalent access to copy the

source code from the same place counts as distribution of the source code,

even though third parties are not compelled to copy the source along with

the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as

expressly provided under this License. Any attempt otherwise to copy,

modify, sublicense or distribute the Program is void, and will automatically

terminate your rights under this License. However, parties who have re-

ceived copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.

However, nothing else grants you permission to modify or distribute the

Program or its derivative works. These actions are prohibited by law if you

do not accept this License. Therefore, by modifying or distributing the

Program (or any work based on the Program), you indicate your acceptance

of this License to do so, and all its terms and conditions for copying,

distributing or modifying the Program or works based on it.

Appendix E n GNU General Public License 1039

6. Each time you redistribute the Program (or any work based on the Pro-

gram), the recipient automatically receives a license from the original li-

censor to copy, distribute or modify the Program subject to these terms and

conditions. You may not impose any further restrictions on the recipients’

exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement

or for any other reason (not limited to patent issues), conditions are im-

posed on you (whether by court order, agreement or otherwise) that con-

tradict the conditions of this License, they do not excuse you from the

conditions of this License. If you cannot distribute so as to satisfy si-

multaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not distribute the Program at

all. For example, if a patent license would not permit royalty-free redis-

tribution of the Program by all those who receive copies directly or in-

directly through you, then the only way you could satisfy both it and this

License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply and

the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or

other property right claims or to contest validity of any such claims; this

section has the sole purpose of protecting the integrity of the free software

distribution system, which is implemented by public license practices. Many

people have made generous contributions to the wide range of software

distributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to

distribute software through any other system and a licensee cannot impose

that choice.

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-

tries either by patents or by copyrighted interfaces, the original copyright

holder who places the Program under this License may add an explicit

geographical distribution limitation excluding those countries, so that

1040 Appendix E n GNU General Public License

distribution is permitted only in or among countries not thus excluded. In

such case, this License incorporates the limitation as if written in the body of

this License.

9. The Free Software Foundation may publish revised and/or new versions of

the General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address

new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and ‘‘any later

version’’, you have the option of following the terms and conditions either

of that version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of this Li-

cense, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free programs

whose distribution conditions are different, write to the author to ask for

permission. For software which is copyrighted by the Free Software Foun-

dation, write to the Free Software Foundation; we sometimes make ex-

ceptions for this. Our decision will be guided by the two goals of preserving

the free status of all derivatives of our free software and of promoting the

sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-

MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STA-

TED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM ‘‘AS IS’’ WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-

ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-

GRAM ISWITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR

OR CORRECTION.

Appendix E n GNU General Public License 1041

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAWOR AGREED

TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER

PARTYWHOMAYMODIFY AND/OR REDISTRIBUTE THE PROGRAM

AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-

CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-

SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY

TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS

OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES

SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone

can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to

the start of each source file to most effectively convey the exclusion of warranty;

and each file should have at least the ‘‘copyright’’ line and a pointer to where the

full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright � 19yy <name of author>

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANYWARRANTY; without even the implied warranty of MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public

License for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

1042 Appendix E n GNU General Public License

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts

in an interactive mode:

Gnomovision version 69, Copyright � 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type

‘show w’.

This is free software, and you are welcome to redistribute it under certain

conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may be

called something other than ‘show w’ and ‘show c’; they could even be mouse-

clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a ‘‘copyright disclaimer’’ for the program, if necessary. Here

is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may consider

it more useful to permit linking proprietary applications with the library. If this is

what you want to do, use the GNU Library General Public License instead of this

License.

Appendix E n GNU General Public License 1043

This page intentionally left blank

Symbols
þ (addition) operator, 74–75

þ= (addition totalizer) operator, 74

&& (AND) operator, 88
� (asterisk), 69, 75
\ (backslash) character, 72

{ } (braces), 74

[] (brackets), 74

-- (decrement by 1) operator, 74

/ (division) operator, 74

/= (division totalizer) operator, 74

$ (dollar sign) character, 68

// (double-slash) operator, 63

== (equal to) operator, 87

! (exclamation point), 88

/ (forward slash) character, 72, 75

> (greater than) operator, 87

>= (greater than or equal to) operator, 87

þþ (increment by 1) operator, 74

<< (left shift) operator, 74

< (less than) operator, 87

<= (less than or equal to) operator, 87

% (modulus) operator, 74

%= (modulus totalizer) operator, 74

þ (multiplication) operator, 74
�= (multiplication totalizer) operator, 74

!= (not equal to) operator, 87

|| (NOT) operator, 89

() (parentheses), 74

% (percent) character, 68

| (pipe character), 74–75

>> (right shift) operator, 74

@ (string append) operator, 74

$= (string equal to) operator, 87

!$= (string not equal to) operator, 87

- (subtraction) operator, 74–75

-= (subtraction totalizer) operator, 74

~ (tilde) character, 64, 74

Numerics
21-6 Productions, 8

3D Cafe Web site, 1018

3D models. See models

3D sounds, 792

3D Studio Max tool, 1026

3D World Studio tool, 1026

3Dup Web site, 1018

A
abdomen, torso design, 543–544, 548

About UVMapper command, UVMapper Help

menu, 512

accelerate racing control, 372

action bindings, 233

action game forms, 3–4

ActionMap object, 206

activateDirectInput() function, 925

activateKeyboard() function, 926

activatePackage() function, 926

addBadWord() function, 926

addCardProfile() function, 926

addition (+) operator, 74–75

addition blend mode, 342

addition totalizer (+=) operator, 74

addMaterialMapping() function, 927

addMessageCallback function, 305

add-ons, 158

addOSCardProfile() function, 927

addTaggedString() function, 927

1045

INDEX

administrative tools, as support, 29

Adobe Photoshop Web site, 1026

adventure games, 4–5

aerial perspective, 741

Age of Empires III, 11

AI (Artificial Intelligence), 380

aiConnect() function, 927

Air Ace, 8–9

Air Brush tool, 344, 736

alGetListener3f() function, 928

alGetListeneri() function, 928

alGetString() function, 928

Alignment command

UVMapper Cylindrical Cap method, 517

UVMapper Cylindrical method, 514

UVMapper Planar method, 514

UVMapper Spherical method, 518

alListener3f() function, 928

allowConnections() function, 929

alpha channels, 332, 336–338

alpha masks, 334–336

alpha testing, 919

alxCreateSource() function, 929

alxGetChannelVolume() function, 929

alxGetListenerf() function, 929

alxGetSource3f() function, 930

alxGetSourcef() function, 930

alxGetSourcei() function, 930

alxGetStreamDuration() function, 931

alxGetStreamPosition() function, 931

alxGetWaveLen() function, 931

alxIsPlaying() function, 931

alxListenerf() function, 931

alxPlay() function, 932

alxSetChannelVolume() function, 932

alxSource3f() function, 932

alxSourcef() function, 933

alxSourcei() function, 933

alxStop() function, 933

alxStopAll() function, 933

ammunition, 220

AND (&&) operator, 88

Angle and Measurement tool, 346

AngleCode Web site, 1018

Animate menu, MilkShape 3D tool, 492–493

animated lights, 1032–1034

animation sequences

DTSPlus Exporter, 627

GarageGames, 615–617

TGE, 34

back, 525, 580

blended, 525

celsalute, 580

celwave, 580

cyclic, 595, 607

death, 580, 602–606, 611

embedded, 525, 592

fall, 525, 580

head, 525, 580, 601

headside, 580, 601–602

idle, 592–595

jump, 525, 580

land, 525, 580

light_recoil, 580

look, 525, 580, 602

looknw, 580

looksn, 580

root, 525, 580

run, 525, 580, 595–600, 611

scoutroot, 580

side, 525, 580

simple program example, 139–143

sitting, 580

special materials, 606–608

standjump, 580

walk, 525, 580

Animation Settings group (DTS Exporter), 619

animation triggers, 240

AnimShape function, 141

Anistropy module, 297

anti-aliasing, 126

APIs (Application Programming Interfaces), 13

Arbitrary Extrusion, 523–524

area triggers, 240

arguments, function, 84

arm design, character models

fingers, 560–562

hands, 556–560

matching arms to torso, 564–565

skin design, 575

thumbs, 559–560, 562

arrays

computation, 72

defined, 69

elements, 69

index of, 69, 73

initialization, 72

program example, 70–71

Art Institute of Toronto Web site, 1019

Artificial Intelligence (AI), 380

1046 Index

artwork, as texture example, 431

assemblers, 58

assembly language, 58–59

assignment operations, strings and, 73

assignment statements, 66, 155

asterisk (*), 69, 75

atmospheric perspective, 741

Attack & Defend, 3

Audacity program

Audio track type tool, 773

common sample rates, 773

Edit menu, 775–776

editing sound, 769–770

Effect menu, 775, 780–781

Envelope tool, 772

exporting sound, 770

File menu, 773–775

installation, 766

Label track type tool, 773

main screen, 771

Master Gain tool, 772

MIDI track type tool, 773

Play tool, 772

Project menu, 775, 778–779

Record tool, 772

recording sound, 767–769

Selection tool, 772

Stop tool, 772

Time Shift tool, 772

Time track type tool, 773

Track Panel tools, 771–772

View menu, 777–778

Web site, 1025

Zoom tool, 772

audio. See music; sound

audio artists roles, 19

Audio track type tool (Audacity program), 773

authentication, 159

Auto Tool button, MilkShape 3D Model tab, 500

auto-update program, as support, 28

avatar properties

Emaga 4 sample game, 182

Emaga 5 game example, 215

Axial Extrusion, 523

B
back animations, 525, 580

back, torso design, 541–542

backfaces, 113

backslash (\) character, 72

backtrace() function, 934

bandwidth, 35

bark material, solid tree structure, 675

Battlefield 2, 11

best practices, programming concepts, 102–103

billboard tree structure, Folliage Replicator,

677–679

binary numbering system, 57

bit defined, 57

bitmaps

controls, GUI example, 24

vector images versus, 332–333

blend modes, layer, 341–342

Blend tool, 350, 364

blended animation, 525

Blender Web site, 1024

blur, gaussian, 360

Blur tool, 345

bone structures, skeleton design, 585–586

bookmark features, UltraEdit-32, 51–54

Boolean operations, 695–696

boots, character skins, 396

bottom property, 194

Box button, MilkShape 3D Model tab, 499

box method

character models, 522

UVMapper, 513

Box tool, MilkShape 3D modeling tool, 660

braces ({ }), 74

brackets ([]), 74

brake racing control, 372

branches, solid tree structure, 674–675

BraveTree Productions, 4, 1017

break keyword, 1006

brick textures, 434

bridge structures

with pylons, 714–715

roadbeds, 715–717

scaled face texture example, 718

brightness and contrast, texture, 322–324

bring closer key command, TSTP, 371

Brush tools, 343

brushes

brush-like tool options, 348

Constructor, 694–697

dimensions, 714

Oblong, 713–714

Roadbed, 715–717

Subtraction, 723–724

Index 1047

brushes (continued)

sizes, terrain cover creation, 467

Terrain Editor functions, 761–762

Bucket Fill tool, 345, 349, 358

buildTaggedString() function, 934

bulletin boards, as support, 28

bump mapping, 124

burn blend mode, 342

buttonType property, 193, 407

byte code, 161

C
C language, 59

calcExplosionCoverage() function, 934

call() function, 934

Call of Duty 2, 11

calling functions, 85

Camera menu (Mission Editor), 836

campfires, game world creation, 843–849

cancel() function, 934

cancelServerQuery() function, 935

Canvas module, 295–298

Capture the Flag, 3

Carlisle, Phil, 9

carriage return (\r) character, 151

Cartesian coordinates, 115

case keyword, 1006

case sensitivity, search capabilities, 46

case statement, 97–98

C/Cþþ language, 60

celsalute animations, 580

celwave animations, 580

center property, 194

CFXweb Web site, 1019

character designers, 16, 381

character models. See also character skins

Arbitrary Extrusion, 523–524

arm design

fingers, 560–562

hands, 556–560

matching arms to torso, 564–565

thumbs, 559–560, 562

Axial Extrusion, 523

back animations, 525, 580

box method, 522

celsalute animations, 580

celwave animations, 580

continuous-mesh, 526

cyclic animations, 595, 607

death animations, 580, 602–606, 611

fall animations, 525, 580

head animations, 525, 601

head design

back of head/upper neck area, 531–532

cranium area, 533–534

cylinder shapes, 527–529

ears, 532, 534–535

eyes, 537–538

finished appearance, 538

forward vertices, 536–537

jaw, 530–532

matching head to torso, 550–553

nose, 537–538

scalp, 337, 536

temple, 533

headside animations, 580, 601–602

hybrid category, 524

idle animation, 592–595

Incremental Polygon Construction,

522–523

jump animations, 525, 580

land animations, 525, 580

leg design

feet, 553, 555

hips, 554

knees, 553–554

matching to torso, 555

thighs, 554

upper leg, 554

light_recoil animations, 580

look animations, 525, 580, 602

looknw animations, 580

looksn animations, 580

modeling techniques, 521

root animations, 525, 580

run animations, 525, 580, 595–600, 611

scoutroot animations, 580

segmented-mesh model, 526

shape primitives, 521–522

shoulder sockets, 552

side animations, 525, 580

sitting animations, 580

skeleton design

bone structures, 585–586

head, attaching to skeleton, 587–588

joint, 581–583

pelvis, 582

pose-adjusted, 584

torso, attaching to skeleton, 587–592

1048 Index

skin design, 577–578

arms, 575

colors, 570

feet, 575–576

hands, 574–575

head section, 572–573

legs, 575

special materials, 606

standjump animations, 580

testing, 567–570, 610–614

tool chain, testing, 567–570

Topographical Shape Mapping, 524

torso design

abdomen, 543–544, 548

chest mesh, 543–546, 548

chest to head positioning, 539, 640

finished appearance, 549–550

head mesh position, 539

matching arms to torso, 564–565

matching head to torso, 550–553

matching legs to torso, 555

middle back vertices, 541–542

skeleton design, 587–592

sterum vertices, 541–542

well-designed vertices, 549

walk animations, 525, 580

character skins. See also character models

clothes, 392–396

discussed, 380

ears, 387

eyebrows, 386

eyes, 386–387

flesh tones, 383–384

hair textures, 388–390

hands, 390–391

head and neck, 84, 382–383, 385–386

lip color, 386

nose, 387

ChatBox interface, 893–897, 908–911

ChatMessage function, 305

check boxes, 407–408

checkerboard pattern example, terrain

creation, 466

chest mesh, torso design, 543–546, 548

chest to head positioning, torso design, 539, 640

childMargin property, 410

Ciragan, Mete, 473

Civilization IV, 11

classname property, 214

clear value, 483

clearServerPaths() function, 935

clearTextureHolds() function, 935

client functions

control/client.cs module, 171–177

InitBaseClient function, 171, 273

InitializeClient function, 171

messaging, 159

client only execution modes, 920

client versus server design issues, 159

ClientCmdChatMessage function, 305

ClientCmdMissionEnd function, 299

ClientCmdMissionStart function, 299

ClientCmdServerMessage function, 305

ClientConnection module, 286–292

client-only functions, 925

client-only sounds, 792

clothes

character skins, 392–396

texture use, 316

clouds

movement, 743

reflection, 744

textures, 313–314, 744–745

visual appearance, 742

wind velocity, 743

cls() function, 935

code

animation, simple program example, 139–141

array example, 70–71

campfire creation, 843–846

ChatBox interface, 894–896, 908–911

CommandToClient function, 237

CommandToServer function, 236

common/client/canvas.cs module, 295–297

common/client/message.cs module, 303–305

common/client/missiondownload.cs module,

299–302

common/client/mssion.cs module, 298–299

common/main.cs module, 270–274

common/server/clientConnection.cs module,

286–290

common/server/game.cs module, 292–293

common/server/missionDownload.cs module,

281–283

common/server/missionLoad.cs module,

277–280

control main module

Emaga 4 sample game, 167–169

Emaga 5 sample game, 187–188

control/client/client.cs module, 188–190

Index 1049

code (continued)

control/client.cs module, 172–176

control/client/interfaces/menu.gui module,

190–193

control/client/interfaces/playerinterface/gui

module, 194–197

control/client/interfaces/splashscreen.gui

module, 198

control/client/misc/presetkeys.cs module,

201–203

control/client/misc/screens.cs module,

198–200

control/initialize.cs module, 169–170

control/server.cs module, 177–179

control/server/misc/item.cs module, 228–232

control/server/players/player.cs module,

211–213

control/server/server.cs module, 205–208

control/server/weapons/crossbow.cs module,

221–227

control/server/weapons/weapons.cs module,

217–218

cycling game, 914

dedicated servers, 262

exit game, 916

FindServer interface, 906–908

functions, program example, 81–84

game root folder, 157

GuiButtonCtrl class, 406

GuiCheckBoxCtrl class, 408

GuiChunkedBitmapCtrl class, 402

GuiTextCtrl class, 405–406

GuiTextEditCtrl class, 411

GuiTextListCtrl class, 410

Hello World program, 61–65

if-else statement, 93–94

main.cs module, 167–169

markers, 861–863

MenuScreen interface, 899

MessageBox interface, 898–899, 911–913

movement, 135

PlayerInterface control, 194–197

root main module, 162–165

rotation, 137–138

scaling, 138–139

scoring, 878–880

screen.cs module, 198–200

ServerScreen code module, 259–260

ServerScreen interface module, 250–256

SoleScreen interface, 900–904

sound

Emaga6 sample game, 786–787

environmental, 822

footstep, 796–798

interface, 824

music, 827

rustling clothing, 793–795

simple program example, 143–145

storm, 747–751

tommy gun, 805–809

utterances, 798–801

vehicle, 816–821

spawn point, 861–863

SplashScreen control, 198

TorqueScript code fragment example, 22–24

waterfall creation, 849, 852–853

code block, 65

CodeGuru Web site, 1019

coin groups, 881–884

collapseEscape() function, 935

collision

onCollision method, 216, 219

vehicle mounting example, 867–868

collision mesh

DTS Exporter, 618

DTSPlus Exporter, 626

solid tree example, 676

vehicle models, 654–655

color

color balance, texture, 325–326

color blend mode, 342

color matching, photos, 425–427

foreground, terrain creation, 456–457

of text, 352

Color tool (Gimp 2 image processing tool),

734, 736

columns property, 411

combination genres, 3

Command & Conquer, 11

command interface control, 406

command property, 193, 407

commandToClient() function, 237, 239, 935–936

commandToServer() function, 236–237, 276, 936

Comment button, MilkShape 3D

Groups tab, 502

Model tab, 500

comments

defined, 63

function header, 64

common/client/actionMap.cs module, 306

1050 Index

common/client/audio.cs module, 306

common/client/canvas.cs module, 295–297, 306

common/client/cursor.cs module, 306

common/client/help.cs module, 306

common/client/messageBox.cs module, 307

common/client/message.cs module, 303–307

common/client/metrics.cs module, 307

common/client/mission.cs module, 298–299, 307

common/client/missionDownload.cs module, 307

common/client/missiondownload.cs module,

299–303

common/client/recordings.cs module, 308

common/client/screenshot.cs module, 308

common/main.cs module, 269–274, 306

common/server/audio.cs module, 308

common/server/clientConnection.cs module,

286–292, 308

common/server/commands.cs module, 308

common/server/game.cs module, 292–295, 308

common/server/kickban.cs module, 308

common/server/message.cs module, 309

common/server/missionDownload.cs module,

281–286, 309

common/server/missionInfo.cs module, 309

common/server/missionLoad.cs module,

276–281, 309

common/server/server.cs module, 309

common/ui/ConsoleDlg.gui module, 309

common/ui/LoadFileDlg.gui module, 310

common/ui/SaveFileDlg.gui module, 310

community forums, as support, 28

compile() function, 936

compound statements, 65

compression, 331

computation, 72

computers, controlling programs with, 56–59

concatenation operations, strings and, 73

conceptual design sketch, 18

concrete, terrain cover, 448

conditional expressions, 86–87

configuration

DTSPlus Exporter, 624

UltraEdit-32, 41–45

console library, TGE, 30

console objects, 1009–1011, 1013

console types, 1014

constantThumbHeight property, 257

constraints, design, 832

Constructive Solid Geometry (CSG)

brushes, 694–697

intersection operation, 695

subtraction operation, 695

union operation, 695

Constructor

brushes

dimensions, 714

Roadbed, 715–717

Subtraction, 723–724

CSX format, 705

Cube brush, 705–707

directory structure, 698

Execute Script dialog, 711

forms

Layers, 703

Materials, 703, 707, 710

Preferences, 703

Properties, 703

resizing to vertical, 701

Selection Modes, 703, 715–716

Tools, 703, 721

Values, 703

View, 704

installation, 697–698

main screen, 699–700

Oblong brush, 713–714

OSX Graphite theme, 702–703

starting, 705

Texture Browser dialog box, 707–710

Tools form, 700

containerBoxEmpty() function, 936

containerFindFirst() function, 937

containerFindNext() function, 937

containerRayCast() function, 937

containers, resizing, 194

containerSearchCurrDist() function, 937

containerSearchCurrRadiusDist() function,

937–938

containerSearchNext() function, 220, 938

containsBadwords() function, 938

Content Editor, Torque GUI Editor, 413–414

continue keyword, 1006

continuous-mesh model, 526

contrast, texture, 322–324

Control class, 32

control code, game structure, 156

Control Inspector, Torque GUI Editor, 415

control main module

Emaga 4 sample game, 167–169

Emaga 5 sample game, 187–188

program example code, 167–169

Index 1051

Control Panel command, MilkShape Window

menu, 497

Control Tree, Torque GUI Editor, 414

control/client/client.cs module, Emaga

5 sample game, 188–190

control/client.cs module

Emaga 4 sample game, 171–177

example code, 172–176

key binding, 176–177

control/client/interfaces/menuscreen.gui

module, 190–193

control/client/interfaces/playerinterface.gui

module, 194–197

control/client/interfaces/splashscreen/gui

module, 198

control/client/misc/presetkeys.cs module,

201–204

control/client/misc/screens.cs module, 198–200

control/initialize.cs module, 169–171

control/player.cs module, 179–181

controls

interactive, 401

noninteractive, 401

control/server.cs module, 177–179

control/server/misc/item.cs module, 228–232

control/server/players/player.cs module, 210–217

control/server/server.cs module, 205–209

control/server/weapons/crossbow.cs module,

221–227

control/server/weapons.weapons.cs module,

217–220

convex hulls, 655

coordinate systems

Cartesian coordinates, 115

left-handed, 106–107

object space, 106

rectangular coordinates, 115

right-handed, 106, 108

world space, 108

XYZ-axis system, 106–110

Copy Keyframes command, MilkShape 3D

Animate menu, 493

Corel Paint Shop Pro tool, 1027

Corel Painter Web site, 1026

Cox, Steve, 509

cranium area, head design, 533–534

CRC (Cyclic Redundancy Check), 280

Create Face command, MilkShape 3D Face

menu, 492

createCanvas() function, 938

createEffectCanvas() function, 297, 938

CreateGame function, 294

CreatePlayer method, 179, 209

CreateServer function, 275, 294

cropping images, 427–431

crossbow sounds, 804–805

cross-platforms, naming convention

disadvantages, 15

CSG (Constructive Solid Geometry)

brushes, 694–697

intersection operation, 695

subtraction operation, 695

union operation, 695

CSX format, 705

Cube brush, 696–697, 705–707

cube example of 3D models, 109–111

cursors, noCursor property, 175

curved text, 367–368

cuts, Axial Extrusion, 523

cyclic animation, 595, 607

Cyclic Redundancy Check (CRC), 280

cycling game code, 914–915

cylinder

crooked cylinder example, 672–673

solid tree structure example, 671

Cylinder tool, MilkShape 3D modeling tool,

499, 672

Cylindrical Cap method, UVMapper, 515, 517

Cylindrical method, UVMapper, 514

D
Damage method, 216

darken only blend mode, 342

data blocks

assignment statements, 155

creation syntax, 154

defined, 154

reference table, 1008–1009

sound, 782–783

superclass, 155–156

vehicle mounting example, 872–874

database support, 29

dbgSetParameters() function, 938

deactivateDirectInput() function, 939

deactivateKeyboard() function, 939

deactivatePackage() function, 939

death animations, 580, 602–606, 611

Death Match, 3

deaths, tracking, 884–885

1052 Index

Debian Linux distribution, 14

debugging

changes to code, 98–99

debug() function, 939

trace function, 168

decreaseFSAA() function, 939

decrement by 1 (--) operator, 74

decrement operators, 76

dedicated servers, root main module, 262–263

Deep Paint 3D tool, 1026

Deep UV tool, 1026

default keyword, 1006

DefaultMessageCallback function, 306

Delete All command, MilkShape 3D

Edit menu, 490

Delete button, MilkShape 3D Groups tab, 502

Delete Keyframe command, MilkShape 3D

Animate menu, 493

Delete Selection command, MilkShape 3D Edit

menu, 490

deleteDataBlocks() function, 939

deleteVariables() function, 939–940

Delta Force 2, 316

Delta Force: Blackhawk Down, 28

Delta Force series, 248

Delta Force Xtreme, 11

DEM (Digital Elevation Model), 446

design

constraints, 832

Koob game requirements, 833–834

requirements specification, 831–834

designers, roles of, 16

DestroyGame function, 294

DestroyServer function, 209, 275

detag() function, 940

developer roles

audio artists, 19

designers, 16

producers, 15–16

programmers, 16–17

visual artists, 17

Diablo III, 11

dialog boxes

Edit Sequence, 628–629

Find (UltraEdit-32), 45–46

Material Selection, 467

New Folder (UltraEdit-32), 43

New Image (Gimp 2 tool), 319

New Layer, 357, 373

Operation, 461

Preferences (MilkShape 3D modeling tool),

503, 507

Project File (UltraEdit-32), 42

Project Settings (UltraEdit-32), 42–43

Random Pick (Gimp 2 tool), 327

Replace (UltraEdit-32), 47

Save Image (Gimp 2 tool), 329

Stroke Selection, 366

Texture Browser (Constructor), 707–710

difference blend mode, 342

Digital Elevation Model (DEM), 446

digital photos, 422–423

Digital Terrain Model (DTM), 446

Dimensions command, UVMapper

Help menu, 512

direct messaging

CommandToClient function, 237–239

CommandToServer function, 236–237, 276

discussed, 159

initialControlSet() function, 246

message module, 275–276

onConnect() function, 244

onConnectionAccepted() function, 244

onConnectionDropped() function, 245

onConnectionError() method, 246

onConnectionRequest() function, 243–244

onConnectionTimedOut() function, 245

onConnectRequestRejected() function, 245

onConnectRequestTimeOut() function, 244

onDataBlockObjectReceived() function, 247

onDataBlocksDone() function, 247

onDrop() function, 246

onFileChunkReceived() function, 247

onGhostAlwaysStarted() function, 247

request rejection codes, 246

setLagIcon() function, 247

SpamAlert function, 276

TellAll() function, 237

testing, 266–267

Direct3D, 13

directed graphs, 128

directory structure, Constructor, 698

dirt, terrain cover, 448

disabled state, player objects, 217

disableJoystick() function, 940

disableMouse() function, 940

dismounting, 870–871

display screen modules, 190–191

dissolve blend mode, 342

distant object detail, texture use, 317

Index 1053

distorted skybox image, 730–731

distortion, perspective-correcting warp,

738–739

divide blend mode, 342

Divide Edge command, MilkShape 3D Vertex

menu, 491

division (/) operator, 74

division totalizer (/=) operator, 74

DNetSetLogging() function, 940

do keyword, 1006

DoAnimTest function, 141

dodge blend mode, 342

dollar sign ($) character, 68
Doom 3, 4, 11

doors, house structure, 723–725

double-quoted strings, 150

double-sided face, 113

double-slash (//) operator, 63

download phases, mission, 284–285

downstream industry sources, 2

Dr. Dobb’s Journal Web site, 1019

DTM (Digital Terrain Model), 446

DTS Exporter

Animation Settings group, 619

collision mesh, 618

export options, 619–620

material option flags, 620–621

mesh option flags, 621

Other Settings group, 619

DTSPlus Exporter, Torque, 526–527

animation sequences, 627

collision meshes, 626

configuration files, 624

Edit Sequence dialog box, 628–629

general settings and actions, 623

LOS collision meshes, 626

materials, 626

mesh properties, 626

sequence material options, 622–623

Duke Nukem Forever, 11

dumpConsoleClasses() function, 940

dumpConsoleFunctions() function, 940

dumpFontCacheStatus() function, 941

dumpMemSnapshot() function, 941

dumpNetStringTable() function, 941

dumpResourceStats() function, 941

dumpTextureStats() function, 941

DumpUnflaggedAllocs() function, 941

Dungeon Siege, 11

Dungeons & Dragons, 5

Duplicate Selection command, MilkShape 3D

Edit menu, 490

duplicateCachedFont() function, 942

E
ears

character skins, 387

head design, 532, 534–535

echo() function, 99, 942

echoInputState() function, 942

edge-matching, skyboxes, 730

edges, 112

Edit menu

Audacity program, 775–776

MilkShape 3D modeling tool, 488, 490

Mission Editor, 835

UVMapper, 510

Edit Sequence dialog box, DTSPlus Exporter,

628–629

Edit-Compile-Link-Run cycle, 60–61

editing sound effects, 769–770

Effect menu (Audacity program), 775,

780–781

elements, array, 69

Ellipse Select tool, 361, 363, 365

else keyword, 1006

Emaga 4 sample game

avatar properties, 182

control main module, 167–168

control/client.cs module, 171–177

control/player.cs module, 179–181

control/server.cs module, 177–179

development tree setup, 161

folder tree structure, 159

initialization module, 169–171

navigation keys, 183

root main module, 161–167

ServerScreen interface module, 250–257

Emaga 5 sample game

action bindings, 233

avator properties, 215

control main module, 187–188

control/client/client.cs module, 188–190

control/client/interfaces/menuscreen.gui

module, 190–193

control/client/interfaces/playerinterface.gui

module, 194–197

control/client/interfaces/splashscreen/gui

module, 198

1054 Index

control/client/misc/presetkeys.cs module,

201–204

control/client/misc/screens.cs module, 198–200

control/server/misc/item.cs module, 228–232

control/server/players/player.cs module,

210–217

control/server/server.cs module, 205–209

control/server/weapons/crossbow.cs module,

221–227

control/server/weapons/weapons.cs module,

217–220

folder structure, 185–186

modules, 186–187

navigation keys, 233

Emaga 6 sample game

InitializeClient function, 249

map files, 265

ServerScreen code module, 257–261

sound example, 786–787

testing, 265–266

emap property, 214

embedded animations, 525, 592

enableJoystick() function, 942

enableMouse() function, 942

enableWinConsole() function, 942

EndGame function, 281, 294

EndMission function, 280–281

energy depletion, 214

Enter the Matrix, 11

enumerate property, 410

Envelope tool (Audacity program), 772

environment mapping

emap property, 214

overview, 124

environmental scenes

clouds

movement, 743

reflection, 744

textures, 744–745

visual appearance, 742

wind speeds, 743

fog, 746

lightning, 754–756

rain, 755–757

skyboxes

aerial perspective, 741

atmospheric perspective, 741

creation, 732–737

discussed, 727

distorted image, 730–731

edge-matching, 730

exploded view, 729

FOV (Field of View), 731–732

functionality, 728–732

gradient fill, 733–735

MaterialList property, 740

perspective distortion, 738–739

pictorial view, 728–729

pre-distorted image, 730–731

serene scene, 727–728

visibleDistance property, 741

storms

perfect storm example, 757–758

precipitation, 752–753

sound files, 747–751

terrain, 760–763

water blocks, 758–760

water forms, 745

environmental sounds, 821–823

equal to (==) operator, 87

Eraser tool, 344

error() function, 99, 943

eval() function, 943

evaluation, for loop, 80

event handlers, 874

event processing function, TGE, 30

Everquest, 28

Everquest II, 11

example code. See code

exclamation point (!), 88

exec() function, 943

Exec statement, 166

executable code, 64

Execute Script dialog, 711

execution modes, 920

exit game code, 916

exit the game racing control, 372

expandEscape() function, 943

expandFileNmae() function, 943

exploded skybox view, 729

export animation setting, 619

Export command, MilkShape 3D File menu, 489

export() function, 944

export options, DTS Exporter, 619–620

Export UVs command, UVMapper File menu,

510

exportCacheFont() function, 944

expressions

assignment statements, 66

conditional, 86–87

Index 1055

expressions (continued)

logical, 88–90

statements and, 65

extent property, 404

external method, terrain modeling, 446

extrapolation strategies, TGE, 36

Extrude button, MilkShape 3D Model tab, 500

Extrude Edges command, MilkShape 3D Vertex

menu, 491

extrusion, tommy gun example, 680, 685–686

eyebrows, character skins, 386

eyes, character skins, 386–387

F
Face button, MilkShape 3D Model tab, 499

Face menu, MilkShape 3D tool, 491–492

facets, 113

fake phong shading, 121–122

fall animations, 525, 580

false keyword, 1006

Far Cry, 11

fast phong shading, 121–122

F.E.A.R., 4

feather edges, image creation, 347

feet design, character models, 553, 555, 575–576

fender assemblies, vehicle models, 645–652

fidelity

simulation accuracy, 8

terrain characteristic, 445

Field of View (FOV), 731–732

file formats, Gimp 2 tool, 331–332

File menu

Audacity program, 773–775

MilkShape 3D modeling tool, 488–489

Mission Editor, 835

UVMapper, 510

file setup, UltraEdit-32, 41–45

File View (UltraEdit-32), 41–42

fileBase() function, 944

fileExt() function, 944

files, in UltraEdit-32, closing, 41

Fill tool, Gimp 2 image processing tool, 319

film photos, 422–423

filterString() function, 945

Find dialog box (UltraEdit-32), 45–46

Find In Files feature (UltraEdit-32), 48–49

findFirstFile() function, 945

findNextFile() function, 945–946

FindServer interface, 892–893, 906–908

fingers, arm design, 560–561

First-Person Shooter (FPS) games, 3

firstWord() function, 946

fitParentWidth property, 411

flagCurrentAllocs() function, 946

flags parameter, 260

flat shading, 119–120

flat-plane profiles, Axial Extrusion, 523

Flatten command, MilkShape 3D Vertex

menu, 491

flesh tones, character skins, 383–384

flipCode Web site, 1019

flowers, terrain cover, 448

flushTextureCache() function, 946

foamy texture, 313

fog scenes, 746

folder structure, Emaga 5 sample game, 185–186

folder tree structure, Emaga 4 sample game, 159

Folliage Replicator, 677–679

fonts, 352

footstep sounds, 796–798

for keyword, 1006

for loop, how to use, 79–80

foreground colors, terrain creation, 456–457

formatting codes, string, 150–151

forms, Constructor

Layers, 703

Materials, 703, 707, 710

Preferences, 703

Properties, 703

resizing to vertical, 701

Selection Modes, 703, 715–716

Tools, 703, 721

Values, 703

View, 704

forums, as support, 28

forward declarations, 60

forward slash (/) character, 72, 75

forward vertices, head design, 536–537

FOV (Field of View), 731–732

fps demo, 39

FPS (First-Person Shooter) games, 3

frames per second animation setting, 619

freedom, terrain characteristic, 445

freeMemoryDump() function, 946

Frohnmayer, Mark, 35

full transformation, 117–118

function block, 65

function body, 65

function header comment, 64

1056 Index

function keyword, 1006

functions. See also methods

activateDirectInput(), 925

activateKeyboard(), 926

activatePackage(), 926

addBadWord(), 926

addCardProfile(), 926

addMaterialMapping(), 927

addMessageCallback, 305

addOSCardProfile(), 927

addTaggedString(), 927

aiConnect(), 927

alGetListener3f(), 928

alGetListeneri(), 928

alGetString(), 928

alListener3f(), 928

allowConnections(), 929

alxCreateSource(), 929

alxGetChannelVolume(), 929

alxGetListenerf(), 929

alxGetSource3f(), 930

alxGetSourcef(), 930

alxGetSourcei(), 930

alxGetStreamDuraction(), 931

alxGetStreamPosition(), 931

alxGetWaveLen(), 931

alxIsPlaying(), 931

alxListenerf(), 931

alxPlay(), 932

alxSetChannelVolume(), 932

alxSource3f(), 932

alxSourcef(), 933

alxSourcei(), 933

alxStop(), 933

alxStopAll(), 933

AnimShape, 141

arguments, 84

backtrace(), 934

buildTaggedString(), 934

calcExplosionCoverage(), 934

call(), 934

calling, 85

cancel(), 934

cancelServerQuery(), 935

ChatMessage, 305

clearServerPaths(), 935

clearTextureHolds(), 935

ClientCmdChatMessage, 305

ClientCmdMissionEnd, 299

ClientCmdMissionStart, 299

ClientCmdServerMessage, 305

client-only, 925

cls(), 935

collapseEscape(), 935

commandToClient(), 237–239, 935–936

commandToServer(), 236–237, 276, 936

compile(), 936

containerBoxEmpty(), 936

containerFindFirst(), 937

containerFindNext(), 937

containerRayCast(), 937

containerSearchCurrDist(), 937

containerSearchCurrRadiusDist(), 937–938

containerSearchNext(), 938

containsBadwords(), 938

createCanvas(), 938

createEffectCanvas(), 297, 938

CreateGame, 294

CreateServer, 275, 294

dbgSetParameters(), 938

deactivateDirectInput(), 939

deactivateKeyboard(), 939

deactivatePackage(), 939

debug(), 939

decreaseFSAA(), 939

DefaultMessageCallback, 306

deleteDataBlocks(), 939

deleteVariables(), 939–940

DestroyGame, 294

DestroyServer, 209, 275

detag(), 940

disableJoystick(), 940

disableMouse(), 940

DNetSetLogging(), 940

DoAnimTest, 141

dumpConsoleClasses(), 940

dumpConsoleFunctions(), 940

dumpFontCacheStatus(), 941

dumpMemSnapshot(), 941

dumpNetStringTable(), 941

dumpTextureStats(), 941

DumpUnflaggedAllocs(), 941

duplicateCachedFont(), 942

echo(), 99, 942

echoInputState(), 942

enableJoystick(), 942

enableMouse(), 942

enableWinConsole(), 942

EndGame, 281, 294

EndMission, 280–281

Index 1057

functions (continued)

error(), 99, 943

eval(), 943

exec(), 943

expandEscape(), 943

expandFilename(), 943

export(), 944

exportCachedFont(), 944

fileBase(), 944

fileExt(), 944

fileName(), 945

filePath(), 945

filterString(), 945

findFirstFile(), 945

findNextFile(), 945–946

firstWord(), 946

flagCurrentAllocs(), 946

flushTextureCache(), 946

freeMemoryDump(), 946

GameConnection, 171, 209, 243

getBoxCenter(), 946

getBuildString(), 946

getClipboard(), 947–948

getCompileTimeString(), 947

getControlObjectAltitude(), 947

getControlObjectSpeed(), 947

getCoreLangTable(), 947

getDesktopResolution(), 947

getDisplayDeviceList(), 947

getEventTimeLeft(), 948

getField(), 948

getFieldCount(), 948

getFields(), 948

getFileCount(), 948–949

getFileCRC(), 949

getJoystickAxes(), 949

getMaxFrameAllocation(), 949

getModPaths(), 949

getRandom(), 949

getRandomSeed(), 950

getRealTime(), 950

getRecord(), 950

getRecordCount(), 950

getRecords(), 950

getRes(), 951

getResolutionList(), 951

getScheduleDuration(), 951

getServerCount(), 261, 951

getSimTime(), 951

getSubStr(), 951

getTag(), 952

getTaggedString(), 952

getTerrainHeight(), 952

getTimeSinceStart(), 952

getVersionNumber(), 952

getVersionString(), 952

getVideoDriverInfo(), 953

getWord(), 135, 305, 953

getWordCount(), 953

getWords(), 953

GLEnableLogging(), 953

GLEnableMetrics(), 954

GLEnableOutline(), 954

global arrays and, 84

gotoWebPage(), 954

GuiInputControl, 190

how to use, 80–81

increaseFSAA(), 954

InitBaseClient, 171, 273, 295

InitBaseServer, 171, 273–274

InitCanvas, 171

InitCommon, 295

initContainerRadiusSearch(), 220, 954

initialControlSet(), 246

InitializeClient, 249

InitializeServer, 171

inputLog(), 954

insertTestEmitter, 145

IntializeClient, 171

isDebugBuild(), 955

isDeviceFullScreen(), 955

isEventPending(), 955

isFile(), 955

isFullScreen(), 955

isJoystickDetected(), 955

isKoreanBuild(), 955

IsNameUnique, 291

isObject(), 956

isPackage(), 956

isPointInside(), 956

isWriteableFileName(), 956

LaunchGame, 190

lightScene(), 303, 956

LoadAddOns, 166

loadChunkFile(), 956

LoadMission, 209, 275, 280–281

LoadMissionStage2, 280

lockMouse(), 957

ltrim(), 957

mAbs(), 957

1058 Index

mAcos(), 957

makeTestTerrain(), 957

mAsin(), 957

mAtan(), 957

mathInit(), 958

matrixCreate(), 958

matrixCreateFromEuler(), 958

matrixMulPoint(), 958

matrixMultiply(), 958–959

matrixMulVector(), 959

matrixReloaded(), 959

mCeil(), 959

mCos(), 959

mDegToRad(), 959

member, 154

MenuScreen, 192–193

mFloatLength(), 959–960

mFloor(), 960

MissionCleanup, 275

MissionGroup, 275

mLog(), 960

MoveShape, 136, 138–139

mPow(), 960

mRadToDeg(), 960

msg(), 960

mSin(), 960

mSolveCubic(), 961

mSolveQuadratic(), 961

mSqrt(), 961

mTan(), 961

nameToID(), 961

nextResolution(), 961–962

nextToken(), 962

object, 153–154

OnChatMessage, 305

OnClientEnterGame, 179

onConnect(), 244

onConnectionAccepted(), 244

onConnectionDropped(), 245

onConnectionRequest(), 243–244

onConnectionTimedOut(), 245

onConnectRequestRejected(), 245

onConnectRequestTimeOut(), 244

onDataBlockObjectReceived(), 247, 302

onDataBlocksDone(), 247

onDrop(), 246

onExit, 168

onFileChunkReceived(), 247

onGhostAlwaysStarted(), 247

OnMissionEnded, 294

OnMissionLoaded, 209, 294

OnMissionReset, 294

OnServerCreated, 179, 208, 294

OnServerDestroyed, 294

OnServerInfoQuery, 275

OnStart, 166

openALInitDriver(), 962

openALRegisterExtensions(), 962

openALShutdownDriver(), 962

overload, 158

panoramaScreenShot(), 962–963

parameter passing, 85

parameters, 84

with parameters and no return value, 85

ParseArgs, 165–166, 262

pathOnMissionLoadDone(), 963

playJournal(), 963

png2jpg(), 963

populateAllFontCacheRange(), 963

populateAllFontCacheString(), 963–964

populateFontCacheRange(), 964

populateFontCacheString(), 964

PortInit, 274

prevResolution(), 964

problem decomposition, 81

profilerDump(), 964

profilerDumpToFile(), 964–965

profilerEnable(), 965

profilerMarkerEnable(), 965

profilerReset(), 965

program example, 81–84

purgeResources(), 965

queryLANServers(), 260–261, 965–966

queryMasterServer(), 966–967

querySingleServer(), 967

quit(), 967

quitWithErrorMessage(), 967

redbookClose(), 968

redbookGetDeviceCount(), 968

redbookGetDeviceName(), 968

redbookGetLastError(), 968

redbookGetTrackCount(), 968

redbookGetVolume(), 968

redbookOpen(), 968–969

redbookPlay(), 969

redbookSetVolume(), 969

redbookStop(), 969

removeField(), 969

RemoveFromServerGuidList, 275

removeRecord(), 969

Index 1059

functions (continued)

removeTaggedString(), 969

removeWord(), 970

resetLighting(), 970

ResetMission, 280–281, 294

ResetServerDefaults, 275

restWords(), 970

rtrim(), 970

saveChunkFile(), 970

saveJournal(), 970

SceneLightingComplete, 303

schedule(), 208, 971

screenShot(), 971

SendMacro, 236, 266

ServerCmd, 210

ServerCmdUse, 210

ServerGroup, 275

setClipboard(), 971

SetContent, 200

setCoreLangTable(), 971

setDefaultFov(), 971

setDisplayDevice(), 971–972

setEchoFileLoads(), 972

setField(), 972

setFov(), 972

setFSAA(), 972

setInteriorFocusedDebug(), 972–973

setInteriorRenderMode(), 973–974

setLagIcon(), 247

setModPaths(), 166, 974

setNetPort(), 974

setOpenGLAnisotrophy(), 974–975

setOpenGLInteriorMipReduction(), 975

setOpenGLMipRedution(), 975

setOpenGLSkyMipReduction(), 975

setOpenGLTExtureCompressionHint(), 975

setPowerAudioProfiles(), 975

setRandomSpeed(), 975–976

setRecord(), 976

setRes(), 976

setScreenMode(), 976

setServerInfo(), 261, 976

setShadowDetailLevel(), 977

setVerticalSync(), 977

setWord(), 977

setZoomSpeed(), 977

showDeleteThread(), 977

ShowMenuScreen, 190

showNewThread(), 977

showPlay(), 978

showSelectSequence(), 978

showSequenceLoad(), 978

showSetCamera(), 978

showSetDetailSlider(), 978

showSetKeyboard(), 978

showSetLightDirection(), 978–979

showSetPos(), 979

showSetScale(), 979

showShapeLoad(), 979

showStop(), 979

showToggleRoot(), 979

showToggleStick(), 980

showTurnLeft(), 980

showTurnRight(), 980

showUpdateThreadControl(), 980

SizeShape, 139

snapToggle(), 980

SpamAlert, 276

SpamMessageTimeout, 276

SpamReset, 276

SplashScreenInputCtrl, 190

startClientReplication(), 980–981

startFoliageReplication(), 981

StartGame, 208, 294

startHeartbeat(), 981

stopServerQuery(), 981

strchr(), 981

strcmp(), 982

stricmp(), 982

stripChars(), 982

stripColorCodes(), 982

stripMLControlChars(), 982

stripTrailingSpaces(), 983

strlen(), 983

strlwr(), 983

strpos(), 983

strreplace(), 983

strstr(), 983–984

strToPlayerName(), 984

strupr(), 984

switchBitDepth(), 984

TellAll(), 237

telnetSetParameters(), 984

that return values, 85–86

toggleFullScreen(), 984

trace(), 168–169, 985

trim(), 985

TurnShape, 138–139

UpdateLightingProgress, 303

Usage, 165

1060 Index

validateMemory(), 985

vectorAdd(), 985

vectorCross(), 985

vectorDist(), 985–986

vectorDot(), 986

vectorLen(), 986

vectorNormalize(), 986

vectorOrthoBasis(), 986

vectorScale(), 986

vectorSub(), 986–987

videoSetGammaCorrection(), 297, 987

warn(), 99, 987

without parameters, 85

writeFontCache(), 987

G
Gamasutra Web site, 1019

game cycling code, 914–915

game design

constraints, 832

Koob game requirements, 833–834

requirements specification, 831–834

Game Developer Magazine Web site, 1019

game engine elements, 21–22

game root folder, 156–158

game structure

control code, 156

game root folder, 18, 156–157

root main module, 156–157

source files, 157

game world creation

campfires, 843–849

particles, 842–843

terrain, 855–856

waterfalls, 849–855

GameConnection function, 171, 209, 243

GameConnection object, 235

GameDev Web site, 1020

GameDevelopers Conference Web site, 1019

Gamer’s Technical Web site, 1020

games

Age of Empires III, 11

Air Ace, 8–9

Attack & Defend, 3

Battlefield 2, 11

Call of Duty 2, 11

Capture the Flag, 3

Civilization IV, 11

Command & Conquer, 11

Death Match, 3

Delta Force 2, 316

Delta Force: Blackhawk Down, 28

Delta Force series, 248

Delta Force Xtreme, 11

Diablo III, 11

Doom 3, 4, 11

Duke Nukem Forever, 11

Dungeon Siege, 11

Dungeons & Dragons, 5

Enter the Matrix, 11

Everquest, 28

Everquest II, 11

Far Cry, 11

F.E.A.R., 4

Ghost Recon: Advanced Warfighter, 12

Grand Theft Auto: San Andreas, 12

Half-Life 2, 12, 22

Homeworld 2, 12

The Incredible Machine series, 7

King-of-the-Hill, 3

The King’s Quest series, 5

The Longest Journey, 5

Marble Blast, 6

Maximum Football, 9

Medal of Honor: Allied Assault, 12

Minions of Mirth, 6

Myst III: Exile, 12

NASCAR Sim Racing, 8

PlanetSide, 12

Quake 3, 22

Rainbow Six 3: Raven Shield, 12

Return to Castle Wolfenstein, 12

Return to Tubettiworld, 380, 727

Rome: Total War, 12

RPGs (Role-Playing Games), 5

Silent Steel, 8

SimCity 4, 12

SimCity series, 10

Star Wars: Knights of the Old Republic 2, 12

Syberia 2, 5, 12

ThinkTanks, 4

Tom Clancy’s Splinter Cell: Chaos Theory, 12

Tribal Trouble, 11

Tribes 2, 22, 740

Tribes series, 20, 248

Tube Twist, 7–8

Tubettiworld, 5, 24

Unreal II, 22

Unreal II: The Awakening, 12

Index 1061

games (continued)

Unreal Tournament 2004, 12

WarCraft III: Reign of Chaos, 12

World War II Online, 28

World War II Online: Battlefield Europe, 12

GammaCorrection module, 297

Gaps in Map command

UVMapper Cylindrical Cap method, 517

UVMapper Cylindrical method, 514

UVMapper Planar method, 514

UVMapper Spherical method, 518

GarageGames

animation sequences, 615–617

Web site, 12, 20, 22, 923, 1017

gaussian blur, 360

General Public License (GNU), 317

genres

action games, 3–4

adventure games, 4–5

classifications, 11–12

combination, 3

discussed, 1

maze and puzzle games, 6–7

RPGs (Role-Playing Games), 5–6

RTS (Real-Time Strategy), 10

simulator games, 7–8

sports games, 8–10

strategy games, 10

Geographic Information Systems (GIS), 524

geometric center of objects, 106

GeoSphere button, MilkShape

3D Model tab, 499

getBoxCenter() function, 946

getBuildString() function, 946

getClipboard() function, 947

getCompileTimeString() function, 947

getControlObjectAltitude() function, 947

getControlObjectSpeed() function, 947

getCoreLangTable() function, 947

getDesktopResolution() function, 947

getDisplayDeviceList() function, 947–948

getEventTime() function, 948

getField() function, 948

getFieldCount() function, 948

getFields() function, 948

getFileCount() function, 948–949

getFileCRC() function, 949

getJoystickAxes() function, 949

getMaxFrameAllocation() function, 949

getModPaths() function, 949

getRandom() function, 949

getRandomSeed() function, 950

getRealTime() function, 950

getRecord() function, 950

getRecordCount() function, 950

getRecords() function, 950

getRes() function, 951

getResolutionList() function, 951

getScheduleDuration() function, 951

getServerCount() function, 261, 951

getSimTime() function, 951

getSubStr() function, 951

getTag() function, 952

getTaggedString() function, 952

getTerrainHeight() function, 952

getTimeSinceStart() function, 952

getTransform() method, 134–135

getVersionNumber() function, 952

getVersionString() function, 952

getVideoDriverInfo() function, 953

getWord() function, 135, 305, 953

getWordCount() function, 953

getWords() function, 953

Ghost Objects phase, mission

download, 284

Ghost Recon: Advanced Warfighter, 12

Gift, Tim, 35

Gimp 2 image processing tool

Air Brush tool, 344, 736

alpha channels, 336–338

alpha masks, 334–336

Angle and Measurement tool, 346

bitmap images, 331, 333

Blend tool, 350

Blur tool, 345

Brush tools, 343

brush-like tool options, 348

Bucket Fill tool, 345, 349

Color tool, 734, 736

Eraser tool, 344

features, 317–318

file formats, 331–332

files

saving, 329–330

viewing, 327–329

Fill tools, 319, 345

Gradient Fill tool, 733

image analysis statistics, 317

Ink Pen tool, 344

installation, 318

1062 Index

layers

blend modes, 341–342

creating new, 341

hiding, 340

invoking, 340

moving, 341

saving, 343

Magic Wand tool, 345

Magnify tool, 350–351

main window features, 339–340

Measure tool, 351

Move tool, 346, 351

New Image dialog box, 319

Pencil tool, 343

Random Pick dialog box, 327

scanner support, 317

selection mode, 348

Selection tools, 345, 347

Sharpen tool, 345

Smudge tool, 345

Text tool, 352

texture

brightness and contrast, 322–324

color balance, 325–326

color values, 322

creating from scratch, 319–321

hue-saturation settings, 322–323

noise settings, 327

selecting, 322

versions, 319

Zoom tool, 345

GIS (Geographic Information Systems), 524

glass-like surfaces, 316

GLEnableLogging() function, 953

GLEnableMetrics() function, 954

GLEnableOutline() function, 954

global arrays, 84

global scale factor, 619

global scope, 68

GlobalActonMap object, 204

Gnometech Web site, 1018

GNU General Public License (GPL)

discussed, 317

No Warranty clause, 1041–1042

preamble, 1035–1036

terms and conditions, 1037–1041

gotoWabPage() function, 954

gourand shading, 121

gradient blend, 350

gradient fill, 364

Gradient Fill tool (Gimp 2 image processing

tool), 733

grain extract blend mode, 342

grain merge blend mode, 342

Grand Theft Auto: San Andreas, 12

Graphical User Interface. See GUI

graphs

directed graphs, 128

discussed, 127

entity types, 128–129

nodes, 128

grass, terrain cover, 448

Great Hall structure, 131–134

greater than (>) operator, 87

greater than or equal to (>=)

operator, 87

grep utility, 49–50

group nodes, 128

Group Selection Box button, MilkShape 3D

Groups tab, 502

groupNum property, 193

Groups tab, MilkShape 3D tool,

500, 502

gtype parameter, 260

GUI Editor, Torque

Content Editor, 413–414

Control Inspector, 415

Control Tree, 414

interface creation, 417–419

keyboard commands, 417

Menu Bar, 415–416

Tool Bar, 415

GUI (Graphical User Interface)

bitmap controls, 24

controls

interactive, 401

list of, 401

noninteractive, 401

GuiButtonCtrl class, 406–407

GuiCheckBoxCtrl class, 407–408

GuiChunkedBitmapCtrl class,

402–404

GuiControl class, 404–405

GuiScrollCtrl class, 408–410

GuiTextCtrl class, 405–406

GuiTextEditCtrl class, 411–412

GuiTextListCtrl class, 410–411

main screen example, 24–25

MilkShape 3D modeling tool, 474

GuiInputControl function, 190

Index 1063

H
hair textures, character skins, 388–390

Half-Life 2, 12, 22

Hall of Worlds Web site, 1018

handle, object, 151–152

hands

arm design, 556–560

character skins, 390–391

skin design, 574–575

hard light blend mode, 342

head and neck, character skins, 84, 382–383,

385–386

head animations, 525, 580, 601

head design, character models

back of head/upper neck area,

531–532

cranium area, 533–534

cylinder shapes, 527–529

ears, 532, 534–535

eyes, 537–538

finished appearance, 538

forward vertices, 536–537

jaw, 530–532

matching head to torso, 550–553

nose, 537–538

scalp, 337, 536

skeleton design, 587–588

skin design, 572–573

temple, 533–534

Heads Up Display (HUD), 24, 197

headside animations, 580, 601–602

Health Kit

modeling, 659–662

testing, 662–666

Tree view, 665

Z-axis label, 665–666

height maps, terrains, 447

height property, 194

Hello World program, 61–65

help. See support

Help feature, UltraEdit-32, 56

Help menu, UVMapper, 511–512

helpTag property, 193

hexadecimal numbering system, 58

hidden surfaces, 113

Hide button, MilkShape 3D Groups tab, 502

Hide Faces command, MilkShape 3D Face

menu, 492

Hide Selection command, MilkShape 3D Edit

menu, 490

high-level language, 59

highlight map, fake phong shading, 122

high-resolution terrain information, 445

hips, leg design, 554

historySize property, 412

Holodeck Web site, 1018

Homeworld 2, 12

horizontal blur radius option, 361

Host interface, 892, 905–906

hosted server execution modes, 920

hot keys, UVMapper, 512

house structure

discussed, 719

doors, 723–725

windows, 724–725

hScrollBar property, 257, 409

HUD (Heads Up Display), 24, 197

hue blend mode, 342

hue-saturation settings, texture, 322–323

human models. See character models

hybrid modeling category, 524

I
icefall and rock appearances, 312

identifier rules, variable, 67–68

iDevGames Web site, 1020

idle animation, 592–595

if keyword, 1006

if statement

how to use, 90–91

nested, 94–96

if-else statement, 92–93

illusions, texture use, 311–312

image analysis statistics, Gimp 2 image

processing tool, 317

image editing tools, 1024–1025

images. See also Gimp 2 image processing tool;

textures

artwork as, 431

bitmap versus vector, 332–333

feather edges, 347

gradient blend, 350

jaggie edges, 347

layers

blend modes, 341–342

creating new, 341

hiding, 340

invoking, 340

moving, 341

1064 Index

saving, 343

transparency, 341

offset blend, 350

photos

color matching, 425–427

cropping, 427–431

digital versus film, 422–423

postprocessing, 423–425

raster, 332–333

shape blends, 350

Import command, MilkShape

3D File menu, 489

Import UVs command, UVMapper

File menu, 510

increaseFSAA() function, 954

increment by 1 (++) operator, 74

increment operators, 76

Incremental Polygon Construction, 522–523

index of array elements, 69, 73

industry sources, 2

infinite loops, 79

InitBaseClient function, 171, 273, 295

InitBaseServer function, 171, 273–274

InitCanvas function, 171

InitCommon function, 295

initContainerRadiusSearch() function, 220, 954

initialControlSet() function, 246

initialization

arrays, 72

common/main.cs module, 269–274

for loop, 80

initialization module, 169–171

InitializeClient function, 171, 249

InitializeServer function, 171

Ink Pen tool, 344

inline statements, 146

input events, TGE, 31

inputLog() function, 954

insert credit Web site, 1020

InsertTestEmitter function, 145

installation

Audacity program, 766

Constructor, 697–698

Gimp 2 image processing tool, 318

MilkShape 3D modeling tool, 474

TGE (Torque Game Engine), 36–38

TSTP, 369

UltraEdit-32, 40

instance of objects, 151

instantiation, 151

interactive controls, 401

interface creation, Torque GUI Editor,

417–419

interface sounds, 823–826

interior, defined, 693

interior library, TGE, 34

InteriorMipReduction module, 297

internal method, terrain modeling, 446

interpolation strategies, TGE, 36

intersection operation, 695

irregular textures, 436

isDebugBuild() function, 955

isDeviceFullScreenOnly() function, 955

isEventPending() function, 955

isFile() function, 955

isFullScreen() function, 955

isJoystickDetected() function, 955

isKoreanBuild() function, 955

IsNameUnique function, 291

isObject() function, 956

isPackage() function, 956

isPointInside() function, 956

isWriteableFileName() function, 956

Item method, 219

iteration, 79

J
jackets, character skins, 393–395

jaggie edged images, 347

jaw, head design, 530–532

job descriptions

audio artists, 19

designers, 16

discussed, 1

producers, 15–16

programmers, 16–17

QA (Quality Assurance) specialist, 19–20

visual artists, 17

Joint button, MilkShape 3D Model tab, 500

Joint Photographic Experts Group (JPEG) file

format, 331

joint, skeleton design, 581–583

Joints Only command, MilkShape 3D Animate

menu, 493

Joints tab, MilkShape 3D tool, 501, 506

JPEG (Joint Photographic Experts Group) file

format, 331

jump animations, 525, 580

jumpEnergyDrain property, 214

Index 1065

K
key binding, 176–177, 201

key mapping, 176

keyboard command, Torque

GUI Editor, 417

Keyframer tool, 501, 503

keyframes, 579

copying and pasting, 594

as reference frames, 596

keywords

how to use, 67

script, 1006

kill tracking, 885

Kimball, Spencer, 317

King-of-the-Hill, 3

knees, leg design, 553–554

Koob game requirements specifications,

833–834

L
Label track type tool (Audacity program), 773

lag, 159

lambert shading, 120

land animations, 525, 580

Lasso Selection tool, 385

latency, 35

LaunchGame function, 190

layers

blend modes, 341–342

creating new, 341

hiding, 340

invoking, 340

moving, 341

New Layer dialog box, 357, 373

saving, 343

transparency, 341

Layers form (Constructor), 703

lead designers, 16

leaf nodes, 128

left property, 194

left shift (<<) operator, 74

left-click-drag mouse action, 369

left-handed coordinate system, 106–107

leg design, character models

feet, 553, 555

hips, 554

knees, 553–554

matching to torso, 555

skin design, 575

thighs, 554

upper leg, 554

less than (<) operator, 87

less than or equal to (<=) operator, 87

level designers, 16

licensing, 20

light emitters, 1031

light map, fake phong shading, 122

lighten blend mode, 342

lighting

photo color matching, 425–427

reflective textures, 440

lightmaps, 34

lightning, environmental scenes,

754–756

light_recoil animations, 580

lightScene() function, 303, 956

Linux

Linux Game Development Center

Web site, 1020

Linux Game Tome Web site, 1020

Linux platform versions, 14

tool sources, 1023

lip color, character skins, 386

List Lines Containing String option, search

capabilities, 46

litter, terrain cover, 448

Load Model command, UVMapper

File menu, 510

LoadAddOns function, 166

loadChunkFile() function, 956

LoadMission function, 209, 275, 280–281

LoadMissionStage2 function, 280

LoadScreen method, 200

local scope, 68

lockMouse() function, 957

logging, root main module, 165

logical expressions, 88–90

logical operators, 88

look animations, 525, 580, 602

looknw animations, 580

looksn animations, 580

loops

for, 79–80

infinite, 79

iteration, 79

while, 78–79

LOS collision meshes, DTSPlus Exporter, 626

lossy compression, 331

low-level programming, 129–130

1066 Index

low-poly modeling, 521

ltrim() function, 957

M
mAbs() function, 957

machine code, 57–58

Machinima Web site, 1020

Macintosh platform

overview, 15

tool sources, 1023

mAcos() function, 957

macros

Quick Record, 54

SendMacro() function, 236–237, 266

standard, 54–56

Magic Wand tool, 345

Magnify tool, 350–351

main screen

Audacity program, 771

Constructor, 699–700

main window features, Gimp 2 tool, 339–340

main.cs module program code, 167–169

Make Active button (Texture Browser dialog

box), 709

makeTestTerrain() function, 957

Mandrake Linux distribution, 14

Manual Edit command, MilkShape 3D Vertex

menu, 491

map files, Emaga 6 sample game, 265

Map Size command

UVMapper Cylindrical Cap method, 517

UVMapper Cylindrical method, 514

UVMapper Planar method, 514

UVMapper Spherical method, 518

map2dif_plus_plus.exe program

supported entities, 1031–1034

switches, 1029

texture files, 1030

Marble Blast, 6

markers, 861–863

MartrixGames, 9

mAsin() function, 957

masking system, 159

Master Gain tool (Audacity program), 772

master server, 248

mAtan() function, 957–958

material option flags, DTS Exporter, 620–621

Material Selection dialog box, 467

MaterialList property, 740

materials, DTSPlus Exporter, 626

Materials form (Constructor), 703, 707, 710

Materials tab, MilkShape 3D tool, 500–501,

504–505

mathInit() function, 958

MathWorld Web site, 1020

matrixCreate() function, 958

matrixCreateFromEuler() function, 958

matrixMulPoint() function, 958

matrixMultiply() function, 958–959

matrixMulVector() function, 959

matrixReloaded() function, 959

Mattis, Peter, 317

maxbots parameter, 260

maxEnergy property, 214

Maximum Football, 9

maxplayers parameter, 260

Maya 3D modeling tool, 1027

maze games, 6–7

mCeil() function, 959

mCos() function, 959

mDegToRad() function, 959

Meade, Ian D., 40

Measure tool, 351

Medal of Honor: Allied Assault, 12

member functions, 154

member variables, 154

Menu Bar, Torque GUI Editor, 415–416

MenuScreen function, 192–193

MenuScreen interface, 888–890, 899–900

Merge command, MilkShape 3D File menu, 489

mesh, 113

Mesh Factory Web site, 1020

mesh option flags, DTS Exporter, 621

mesh properties, DTSPlus Exporter, 626

Message module, 303–306

Message Panel feature, MilkShape 3D modeling

tool, 508

MessageBox interface, 897–899, 911–914

MessageDialog objects, 204

messaging

CommandToClient function, 237–238

CommandToServer function, 236–237, 276

discussed, 159

initialControlSet() function, 246

message module, 275–276

onConnect() function, 244

onConnectionAccepted() function, 244

onConnectionDropped() function, 245

onConnectionError() method, 246

Index 1067

messaging (continued)

onConnectionRequest() function, 243–244

onConnectionTimedOut() function, 245

onConnectRequestRejected() function, 245

onConnectRequestTimeOut() function, 244

onDataBlockObjectReceived() function, 247

onDataBlocksDone() function, 247

onDrop() function, 246

onFileChunkReceived() function, 247

onGhostAlwaysStarted() function, 247

request rejection codes, 246

setLagIcon() function, 247

SpamAlert function, 276

metallic textures, 439

methods. See also functions

ContainerSearchNext, 220

CreatePlayer, 179, 209

Damage, 216

getTransform, 134–135

Item, 219

LoadScreen, 200

member functions, 154

onCollision, 216, 219, 228

onConnectionError(), 246

onPickup, 232

onThrow, 232

OnWake, 200

PushDialog, 200

Respawn, 232

setTransform, 137

SpawnPlayer, 179

mFloatLength() function, 959–960

mFloor() function, 960

Microsoft Windows platform, 13–14

middle back vertices, torso design, 541–542

MIDI track type tool (Audacity program), 773

MilkShape 3D modeling tool

Animate menu, 492–493

Box tool, 660

Cylinder tool, 672

Edit menu, 488, 490

Face menu, 491–492

File menu, 488–489

Groups tab, 500, 502

GUI, 474

installation, 474

Joints tab, 501, 506

Keyframer tool, 501, 503

Materials tab, 500–501, 504–505

Message Panel feature, 508

overview, 467

plug-ins, 494–496

Preferences dialog box, 503, 507

soup can example

basic shape creation, 478–481

UV unwrapping, 481–483

Sphere tool, 666

Texture Coordinate Editor feature, 506

toolbox

discussed, 497

Model tab, 498–500

Tools menu, 493–495

Vertex menu, 488, 491

views

navigating in, 475

scale and orientation, 476–477

Window menu, 496–497

Minions of Mirth, 6

minJumpEnergy property, 214

minplayers parameter, 260

minRunEnergy property, 214

mipmapping, 124–125

MipReduction module, 297

Mirror Front command, MilkShape

3D Vertex menu, 491

Mirror Left command, MilkShape 3D Vertex

menu, 491

Mirror Top command, MilkShape

3D Vertex menu, 491

mission

defined, 276

download phases, 284–285

mission loading-oriented functions, 280

Mission Area Editor, 841–842

Mission Editor

Camera menu, 836

discussed, 834

Edit menu, 835

File menu, 835

Window menu, 836

World menu, 836

Mission module, 298–299

MissionCleanup function, 275

MissionGroup function, 275

mLog() function, 960

Model tab, MilkShape 3D toolbox, 498–500

modeling process. See also MilkShape 3D

modeling tool

terrain, 446–447

UV unwrapping, 353–354

1068 Index

modeling tool chain, 524

modeling tools, 1024

models. See also character models;

vehicle models

discussed, 108

hidden surfaces, 113

overview, 25

primitive, 109

simple cube example, 109–111

sphere example, 111–112

surface area, 113

vertices, 109

Mods (modification), 158

module header block, 63

modules

defined, 158

Emaga 5 sample game, 186–187

modulus (%) operator, 74

modulus totalizer (%=) operator, 74

mood enhancement, textures as, 421

moon texture, 316

moss, terrain cover, 448

mount methods, 869

mount nodes, vehicle models, 652–653

mouse

left-click-drag action, 369

mouse wheel action, 369

right-click-drag action, 369

view manipulation, 175

Move button, MilkShape 3D Model tab, 499

move farther away key command, TSTP, 371

Move tool, 346, 351

movement

basic movement functions, 204

clouds, 743

demo movement and action keys, TGE, 131

MoveShape function, 136

simple direct movement example, 130–134

simple programmed example of, 134–137

MoveShape function, 136, 138–139

mPow() function, 960

mRadToDeg() function, 960

msg() function, 960

mSin() function, 960

mSolveCubic() function, 961

mSolveQuadratic() function, 961

mSqrt() function, 961

mTan() function, 961

mtype parameter, 260

multiplication (�) operator, 74

multiplication totalizer (�=) operator, 74
multiply blend mode, 342

music. See sound

Myst III: Exile, 12

N
\n (newline) character, 151

naked statements, 146

namespaces

defined, 153–154

helper methods, 217

member variables, 154

nameToID() function, 961

naming conventions, cross-platform software

disadvantages, 15

naming objects, 152

NASCAR Sim Racing, 8

navigation keys

Emaga 4 sample game, 183

Emaga 5 game example, 233

neck and head, character skins, 84, 382–383,

385–386

NeHe Productions Web site, 1020

nested if statements, 94–96

net objects, 1013–1014

NetworkConnection object, 235

networking

dedicated servers, 262–263

design, TGE, 35–36

direct messaging, 236–237

discussed, 235

initialControlSet() function, 246

onConnect() function, 244

onConnectionAccepted() function, 244

onConnectionDropped(), 245

onConnectionError() method, 246

onConnectionRequest() function, 243–244

onConnectionTimedOut() function, 245

onConnectRequestRejected() function, 245

onConnectRequestTimeOut() function, 244

onDataBlockObjectReceived() function, 247

onDataBlocksDone() function, 247

onDrop() function, 246

onFileChunkReceived() function, 247

onGhostAlwaysStarted() function, 247

QueryLANServers() function, 260–261

request rejection codes, 246

servers, finding, 248

setLagIcon() function, 247

Index 1069

networking (continued)

triggers

animation, 240

area, 240

discussed, 239

player event control, 240

weapon state, 240

New command, MilkShape 3D File menu, 489

New Folder dialog box (UltraEdit-32), 43

New Image dialog box (Gimp 2 tool), 319

new keyword, 1006

New Layer dialog box, 357, 373

New Model command, UVMapper

File menu, 510

new project setup, UltraEdit-32, 41–42

newline (\n) character, 151

NeXe Web site, 1021

nextResolution() function, 961–962

nextToken() function, 962

Nintendo GameCube platform, 12

No Warranty clause, GNU GPL, 1041–1042

noCursor property, 175

nodes, 128

noninteractive controls, 401

Non-player Characters (NPCs), 380

normal layer mode, 342

normal mapping, 126

normals, 121

nose

character skins, 387

head design, 537–538

NOT (||) operator, 89

not equal to (!=) operator, 87

NovaLogic, 248

NPCs (Non-player Characters), 380

O
object methods, Torque reference tables,

988–1006

object space, 106

object type masks, Torque reference tables,

987–988

object-oriented programming (OOP), 59

objects. See also structures

controlling, 152

creation, 151–152

data blocks, 154–156

defined, 59

functions, 153–154

geometric center, 106

handle, 151–152

instance of, 151

instantiation, 151

naming, 152

new statement code block, 151

properties, 151

Oblong brush (Constructor), 713–714

Oddlabs, 11

offset blend, 350

.ogg file format, 145

OnChatMessage function, 305

OnClientEnterGame function, 179

onCollision method, 216, 219, 228

onConnect() function, 244

onConnectionAccepted() function, 244

onConnectionDropped() function, 245

onConnectionError() method, 246

onConnectionRequest() function, 243–244

onConnectionTimedOut() function, 245

onConnectRequestRejected() function, 245

onConnectRequestTimeOut() function, 244

onDataBlockObjectReceived() function,

247, 302

onDataBlocksDone() function, 247

onDrop() function, 246

onExit function, 168

onFileChunkReceived() function, 247

onGhostAlwaysStarted() function, 247

OnMissionEnded function, 294

OnMissionLoaded function, 209, 294

OnMissionReset function, 294

onPickup method, 232

OnServerCreated function, 179, 208, 294

OnServerDestroyed function, 294

OnServerInfoQuery function, 275

OnStart function, 166

onThrow method, 232

OnWake method, 200

OOP (object-oriented programming), 59

Open command, MilkShape

3D File menu, 489

OpenAL open-source audio

API, 781–782

openALInitDriver() function, 962

openALRegisterExtensions() function, 962

openALShutdownDriver() function, 962

OpenGL

modules and functions of, 297

overview, 13

1070 Index

operands, 86

Operate On Selected command, MilkShape

Animate menu, 493

Operation dialog box, 461

operator precedence, 1007

operators

decrement, 76

defined, 69

increment, 76

operator precedence, 76

order of evaluation, 76

postdecrement, 76

postincrement, 76

relational, 86–87

symbols and meaning, 74

totalizers, 77–78

typos in, 75

order of evaluation, operator precedence, 76

Orientation command, UVMapper Planar

method, 514

OSX Graphite theme, Constructor, 702–703

Other Settings group, DTS Exporter, 619

overlay blend mode, 342

overload functions, 158

Oxford Dynamics Web site, 1021

P
package keyword, 1006

packages, 158

packet loss, 35

Paintbrush tool, 377

Palm-based computers, 13

panoramaScreenShot() function, 962–963

pants, character skins, 395–396

parallex mapping, 126–127

parameter passing, 85

parameters

defined, 84

flags, 260

functions with, 85

functions without, 85

gtype, 260

maxbots, 260

maxplayers, 260

minplayers, 260

mtype, 260

ping, 260

port, 260

region, 260

parent controls, 414

parentheses (), 74

ParseArgs function, 165–166, 262

particles, game world creation

campfire creation, 843–847

waterfall creation, 849–855

password property, 412

Paste Keyframes command, MilkShape 3D

Animate menu, 493

path entities, 1034

pathOnMissionLoadDone() function, 963

Paths tool, 373, 375

patterned textures, 438

pavement, terrain cover, 448

PDAs (Personal Digital Assistants), 13

pebbled textures, 437

pebbles, terrain cover, 448

pelvis, skeleton design, 582

Pencil tool, 343

percent (%) character, 68

Personal Digital Assistants (PDAs), 13

perspective distortion, 738–739

phong approximation shading, 122

phong map, 122

phong shading, 121

photos

color matching, 425–427

cropping, 427–431

digital versus film, 422–423

postprocessing, 423–425

ping parameter, 260

pipe (|) character, 74–75

pixel shaders, 124

Planar method, UVMapper, 513–514

Plane button, MilkShape 3D Model tab, 500

PlanetSide, 12

PlanetTribes-Torque Web site, 1018

plastic textures, 440

platform layer, TGE, 30

platforms

Linux, 14

Macintosh, 15

Microsoft Windows, 13–14

Nintendo GameCube, 12

Palm-based computers, 13

Sony PlayStation, 12

Xbox, 12

play testing, 919

Play tool (Audacity program), 772

player event control triggers, 240–242

Index 1071

player spawning example, 861–863

PlayerInterface control, 194–197

PlayerKeymap object, 204, 206

players

control/player.cs module, 179–181

CreatePlayer method, 179

SpawnPlayer method, 179

playJournal() function, 963

plug-ins, MilkShape 3D modeling tool,

494–496

PNG (Portable Network Graphics) file format,

331–332

png2jpg() function, 963

Polycount Web site, 1021

Polygonal setting, Paths tool, 373

polygons

decomposed into triangle meshes, 113

facets, 113

triangle, 112

of varying complexity, 113

populateAllFontCacheRange() function, 963

populateAllFontCacheString() function, 963–964

populateFontCacheString() function, 964

populatFontCacheRange() function, 964

port parameter, 260

Portable Network Graphics (PNG) file format,

331–332

PortInit function, 274

pose-adjusted skeleton design, 584

Poser animation editing tool, 1027

postdecrement operators, 76

postincrement operators, 76

PPOV (First-Person Point-of-View), 3

Prairie Games, 6, 1018

preamble, GNU GPL, 1035–1036

precipitation materials, storms, 752–753

predication strategies, TGE, 36

pre-distorted skybox image, 730–731

Prefabland Web site, 1021

Preferences command, MilkShape

3D File menu, 489

Preferences dialog box (MilkShape 3D

modeling tool), 503, 507

Preferences form (Constructor), 703

prefixes, scope, 60, 68

presets, 188

prevResolution() function, 964

primitive, 109

primitive shapes, 478

problem decomposition, 81

problem solving

games, 7

top-down approach, 81

procedural language, 59

producers, roles of, 15–16

Profile class, 32

profilerDump() function, 964

profilerDumpToFile() function, 964–965

profilerEnable() function, 965

profilerMarkerEnable() function, 965

profilerReset() function, 965

profiles, 192

profiles, sound, 782–783

program setup and configuration, UltraEdit-32, 40

Programmers Heaven Web site, 1021

programmers, roles of, 16–17

programming editing tools, 1025

programs. See code

Project File dialog box (UltraEdit-32), 42

Project menu (Audacity program), 775, 778–779

Project Settings dialog box (UltraEdit-32), 42–43

project setup, UltraEdit-32, 41–42

Project tab (UltraEdit-32 File View), 41–43

properties

bottom, 194

buttonType, 193, 407

center, 194

childMargin, 410

classname, 214

columns, 411

command, 193, 407

constantThumbHeight, 257

emap, 214

enumerate, 410

extent, 404

fitParentWidth, 411

groupNum, 193

height, 194

helpTag, 193

historySize, 412

hScrollBar, 257, 409

jumpEnergyDrain, 214

left, 194

maxEnergy, 214

minJumpEnergy, 214

minRunEnergy, 214

object, 151

password, 412

relative, 194

resizeCell, 410

1072 Index

right, 194

runEnergDrain, 214

sinkAllKeyEvents, 412

squareSize, 452–453, 465

top, 194

variable, 408, 412

visible, 405

vScrollBar, 257, 409

width, 194

willFirstRespond, 257, 409

Properties form (Constructor), 703

pseudo-handler, 305

Psionic, 382

Psionic’s 3D Game Web site, 1021

publishing techniques, 20

purgeResources() function, 965

push button, 407

PushDialog method, 200

puzzle games, 6–7

pylons, bridge structures, 714–715

Q
QA (Quality Assurance) specialist, roles of,

19–20

Quake 3, 22

qualifiers, 154

QuArK modeling tool, 1024

QueryLANServers function, 260–261

queryMasterServer() function, 966–967

querySingleServer() function, 967

Quick Record macro (UltraEdit-32), 54

quit() function, 967

quitWithErrorMessage() function, 967

R
\r (carriage return) character, 151

racing demo

accelerate control, 372

brake control, 372

discussed, 39

exit the game control, 372

steer left or right control, 372

toggle from first to third personal viewpoint

control, 372

Torque controls, 372

radial gradient, 365

radio button, 407

rain, environmental scenes, 755–757

Rainbow Six 3: Raven Shield, 12

Random Pick dialog box (Gimp 2 tool), 327

raster images, 332–333

ray-casting, 119

realism, heighten sense of, 129

Realm Wars Development Web site, 1018

Real-Time Strategy (RTS) games, 10

Record tool (Audacity program), 772

recording macros, in UltraEdit-32, 54–56

recording sound, Audacity program, 767–769

Rect Select tool, 358, 360

rectangular coordinates, 115

Red Had Linux distribution, 14

redbookClose() function, 968

redbookGetDeviceCount() function, 968

redbookGetDeviceName() function, 968

redbookGetLastError() function, 968

redbookGetTrackCount() function, 968

redbookGetVolume() function, 968

redbookOpen() function, 968–969

redbookPlay() function, 969

redbookSetVolume() function, 969

redbookStop() function, 969

Redo command, MilkShape 3D Edit menu, 490

Redraw All Viewports button, MilkShape 3D

Model tab, 500

reflection, cloud textures, 744

Refresh Textures command, MilkShape Edit

menu, 490

region parameter, 260

regression testing, 918–919

Regroup button, MilkShape 3D Groups tab, 502

relational operators, 86–87

relative property, 194

Remove All Keyframes command, MilkShape 3D

Animate menu, 493

removeField() function, 969

RemoveFromServerGuidList function, 275

removeRecord() function, 969

removeTaggedString() function, 969

removeWord() function, 970

Rename button, MilkShape 3D Groups tab, 502

rendering

bump mapping, 124

defined, 106

environment mapping, 124

fake phong shading, 121–122

fast phong shading, 121–122

flat shading, 119–120

gourand shading, 121

lambert shading, 120

mipmapping, 124–125

Index 1073

rendering (continued)

normal mapping, 126

parallax mapping, 126–127

phong approximation, 122

phong shading, 121

shaders, 123–124

texture mapping, 123

textured polygon rendering, 21

rendering system, TGE, 33

Replace dialog box (UltraEdit-32), 47

request rejection codes, 246

requirements specification, design, 831–834

resetLighting() function, 970

ResetMission function, 280–281, 294

ResetServerDefaults function, 275

resizeCell property, 410

resizing containers, 194

resource manager, TGE, 31–32

Respawn method, 232

restWords() function, 970

retail tool sources, 1026–1027

return keyword, 1006

return statement, 86

Return to Castle Wolfenstein, 12

Return to Tubettiworld, 380, 727

returned values, functions with, 85–86

Reverse Vertex Order command, MilkShape 3D

Face menu, 492

right property, 194

right shift (>>) operator, 74

right-click-drag mouse action, 369

right-handed coordinate system, 106, 108

Roadbed brush, 715–717

Robertson, Chris, 526

rock and icefall appearances, 312

rock creation

side view, 666

sphere, 667

stretched rock-sphere, 668

terrain cover, 448

testing, 669–670

texture mode, 669

top view, 668

Role-Playing Games (RPGs), 5–6

roll-pitch-yaw method, rotation operation, 116

Rome: Total War, 12

root animations, 525, 580

root main module, 156–157

dedicated servers, 262–263

Emaga 4 sample game, 161–167

example code, 162–165

logging, 165

Rotate All command, MilkShape 3D Animate

menu, 493

Rotate button, MilkShape 3D Model tab, 499

rotate left key command, TSTP, 371

rotate right key command, TSTP, 371

rotate top backward key command, TSTP, 371

rotate top forward key command, TSTP, 371

rotation

roll-pitch-yaw method, 116

simple program example, 137–138

transformation and, 116

Rotation command

UVMapper Cylindrical Cap method, 517

UVMapper Cylindrical method, 514

UVMapper Spherical method, 518

rough textures, 436

RPGs (Role-Playing Games), 5–6

rtrim() function, 970

RTS (Real-Time Strategy) games, 10

run animations, 525, 580, 595–600, 611

runEnergyDrain property, 214

rustling clothing sounds, 793–795

S
sample rates (Audacity program), 773

sand, terrain cover, 448

saturation blend mode, 342

Save As command, MilkShape 3D File menu, 489

Save command, MilkShape 3D File menu, 489

Save Image dialog box (Gimp 2 tool), 329

Save Model command, UVMapper

File menu, 510

Save Texture command, UVMapper

File menu, 510

saveChunkFile() function, 970

saveJournal() function, 970

saving layers, 343

Scale button, MilkShape 3D Model

tab, 499

Scale Result command

UVMapper Cylindrical Cap method, 517

UVMapper Cylindrical method, 514

UVMapper Planar method, 514

UVMapper Spherical method, 518

scaling

simple program example, 138–139

transformation and, 115–116

1074 Index

scaling issues, textures, 432–433

scalp, head design, 337, 536

scanner support, Gimp 2 image processing

tool, 317

scene graphs

directed graphs, 128

discussed, 127

entity types, 128–129

nodes, 128

Scene Lighting phase, mission download, 284

SceneLightingComplete function, 303

schedule() function, 208, 971

scope prefixes, 60, 68

scoring, 878–881

scoutroot animations, 580

screen blend mode, 342

screen.cs module, 198–200

screenShot() function, 971

script tokens, 1008

scripted lights, 1032

scripts

defined, 22

keywords, 1006

operators, 1006–1007

TorqueScript code fragment example, 22–24

scrolling

GuiScrollCtrl class, 408–410

hScrollBar property, 409

vScrollBar property, 409

SDTS (Spatial Data Transfer Standard), 446

search capabilities, UltraEdit-32

case sensitivity, 46

Find dialog box, 45–46

Find In Files feature, 48–49

grep utility, 49–50

List Lines Containing String option, 46

Replace dialog box, 47

special characters, 46–47

segmented-mesh model, 526

Select All command, MilkShape

3D Edit menu, 490

Select button

MilkShape 3D Groups tab, 502

MilkShape 3D Model tab, 499

Select Invert command, MilkShape 3D Edit

menu, 490

Select None command, MilkShape

3D Edit menu, 490

Selection Modes form (Constructor), 703,

715–716

selection modes, Gimp 2 image

processing tool, 348

Selection tool (Audacity program), 772

Selection tools, 345, 347

SendMacro() function, 236–237, 266

sequence material options, DTSPlus Exporter,

622–623

server only execution modes, 920

server versus client design issues, 159

ServerCmd function, 210

ServerCmdUse function, 210

ServerGroup function, 275

servers

dedicated, 262–263

finding, 248

master, 248

server functions

authentication, 159

control/server.cs module, 177–179

control/server/misc/item.cs module,

228–232

control/server/players/player.cs

module, 210–217

control/server.server.cs module, 205–209

control/server/weapons/crossbow.cs

module, 221–227

control/server/weapons/weapons.cs

module, 217–220

CreateServer function, 275

DestroyServer function, 275

InitBaseServer function, 171, 273–274

OnServerCreated function, 179

OnServerInfoQuery function, 275

RemoveFromServerGuidList

function, 275

ResetServerDefaults function, 275

ServerScreen code module, 257–261

ServerScreen interface module,

250–257

server-side code

player spawning example, 861–863

vehicle mounting

collision, 867–868

datablocks, 872–874

discussed, 864–866

dismounting, 870–871

mount methods, 869

vehicle mounting example, server-side code

collision, 867–868

model scale, 865

Index 1075

server-side Game module, 292–295

Set Keyframe command, MilkShape 3D Animate

menu, 493

set value, 483

setClipboard() function, 971

SetContent function, 200

setCoreLangTable() function, 971

setDefaultFov() function, 971

setDisplayDevice() function, 971–972

setEchoFileLoads() function, 972

setField() function, 972

setFov() function, 972

setFSAA() function, 972

setInteriorFocusedDebug() function, 972–973

setInteriorRenderMode() function, 973–974

setLagIcon() function, 247

setModPaths() function, 166, 974

setNetPort() function, 974

setOpenGLAnisotrophy() function, 974–975

setOpenGLInteriorMipReduction() function, 975

setOpenGLMipReduciton() function, 975

setOpenGLSkyMipReduction() function, 975

setOpenGLTextureCompressionHint()

function, 975

setPowerAudioProfiles() function, 975

setRandomSpeed() function, 975–976

setRecord() function, 976

setRes() function, 976

setScreenMode() function, 976

setServerInfo() function, 261, 976

setShadowDetailLevel() function, 977

setTransform method, 137

setVerticalSync() function, 977

setWord() function, 977

setZoomSpeed() function, 977

shaders

defined, 123

pixel, 124

vertex, 123

shading

fake phong, 121–122

fast phong, 121–122

flat, 119–120

gourand, 121

lambert, 120

phong, 121

Z-flat, 120

shape blend, 350

shape class, TGE, 34

shape map, fake phong shading, 122

shape primitives, 521–522

shapes. See also MilkShape 3D modeling tool

backfaces, 113

double-sided face, 113

edges, 112

polygon examples, 112–114

primitive, 478, 521–522

Sharpen tool, 345

shoes, character skins, 396

shoulder sockets, character models, 552

Show Keyframer command, MilkShape

Window menu, 497

Show Message Window command, MilkShape

Window menu, 497

Show Viewport Caption command, MilkShape

Window menu, 497

showDeleteThread() function, 977

ShowMenuScreen function, 190

showNewThread() function, 977

showSelectSequence() function, 978

showSequenceLoad() function, 978

showSetCamera() function, 978

showSetDetailSlider() function, 978

showSetKeyboard() function, 978

showSetLightDirection() function, 978–979

showSetPos() function, 979

showSetScale() function, 979

showShapeLoad() function, 979

showStop() function, 979

showThread() function, 978

showToggleRoot() function, 979

showToggleStick() function, 980

showTurnLeft() function, 980

showTurnRight() function, 980

showUpdateThreadControl() function, 980

side animations, 525, 580

sidewalk texture, 322–327

Silent Steel, 8

Sim City 4, 12

SimCity series, 10

simulation, TGE, 31

simulator games

fidelity, 8

overview, 7–8

single-quoted strings, 150

sinkAllKeyEvents property, 412

sites. See Web sites

sitting animations, 580

sizes, terrain creation, 465

SizeShape function, 139

1076 Index

skeleton design

bone structures, 585–586

head, attaching to skeleton, 587–588

joint, 581–583

pelvis, 582

pose-adjusted, 584

torso design, 587–592

sketches

character skins, 381

tommy gun example, 681

vehicle models, 632–633

skins

character

arms, 575

clothes, 392–396

colors, 570

discussed, 380

ears, 387

eyebrows, 386

eyes, 386–387

feet, 575–576

flesh tone, 383

hair textures, 388–390

hands, 390–391, 574–575

head and neck, 84, 382–383, 385–386

head section, 572–573

legs, 575

lip color, 386

nose, 387

overview, 577–578

sketches, 381

defined, 353

discussed, 25

image color, 357

skin detail, texture use, 316

soup can example

creation, 356–366

curved text, 367–368

foreground color, 358

gradient-filled ring, 364

image color, 357

mapped sides of can, selecting, 360

metal lips, 361–362

new layer entry, 358

opacity settings, 358

patterns, 360

percent selection circle, 366

testing, 368

top of can, 362–363

tommy gun example, 688–690

U-V Coordinate Mapping, 354

UV unwrapping, 353–354

vehicle example

cab roof, 373–375

discussed, 371–372

fenders, 379

racing stripes, 377–378

spray painting, 376–377

testing, 379

vehicle models, 654

skyboxes

aerial perspective, 741

atmospheric perspective, 741

creation, 732–737

discussed, 727

distorted image, 730–731

edge-matching, 730

exploded view, 729

FOV (Field of View), 731–732

functionality, 728–732

gradient fill, 733–735

MaterialList property, 740

perspective distortion, 738–739

pictorial view, 728–729

pre-distorted image, 730–731

serene scene, 727–728

textures, 313–314

visibleDistance property, 741

SkyMipReduction module, 297

Slackware Linux distribution, 14

SMD Adjust Keys command, MilkShape 3D

Animate menu, 493

smooth textures, 438

Smoothing Group Auto Smooth command,

MilkShape 3D Groups tab, 502

Smoothing Group Clear All command,

MilkShape 3D Groups tab, 502

Smoothing Group Number command,

MilkShape 3D Groups tab, 502

Smoothing Groups Assign button,

MilkShape 3D Groups tab, 502

Smoothing Groups Select button, MilkShape

3D Groups tab, 502

Smudge tool, 345

Snap To Grip command, MilkShape

3D Vertex menu, 491

Snap to Plane command, MilkShape 3D Vertex

menu, 491

Snap Together command, MilkShape

3D Vertex menu, 491

Index 1077

snapToggle() function, 980

soft light blend mode, 342

solid tree structure

bark material, 675

branches, 674–675

collision mesh, 676

crooked cylinder example, 672–673

cylinder example, 671

discussed, 671

testing, 676

textured tree example, 676

Soloscreen interface, 890–891, 900–905

Sony PlayStation platform, 12

sound. See also Audacity program; audio

3D, 792

audio editing tools, 1025

audio profile, 145

client-only, 792

datablocks, 782–783

descriptions and properties of, 783–785

discussed, 27

editing, 769–770

environmental, 821–823

exporting, 770

footsteps, 796–798

heighten sense of realism, 129

interface, 823–826

music, 826–828

.ogg file format, 145

OpenAL open-source audio API, 781–782

profiles, 782–783

recording, 767–769

rustling clothing, 793–795

simple program example, 143–146

sound-effect waveform view, 27

storms, 747–751

utterances, 798–801

vehicle, 815–821

.wav file format, 145

weapon

crossbow sounds, 804–805

tommy gun, 805–811

world, 791

SoundEdit Pro audio editing tool, 1025

source files, game structure, 157

sourced console variables, 1015–1016

sourced preference variables, 1014–1015

SourceForge Web site, 1021

SpamAlert function, 276

SpamMessageTimeout function, 276

SpamReset function, 276

Spatial Data Transfer Standard (SDTS), 446

spawn point, 861–863

SpawnPlayer method, 179

special characters, search capabilities, 46–47

special materials, 606

Sphere button, MilkShape 3D Model tab, 499

sphere model example, 111–112

Sphere tool, MilkShape 3D modeling tool, 666

Spherical method, UVMapper, 515, 518

Spherify command, MilkShape

3D Vertex menu, 491

SplashScreen control, 198

SplashScreenInputCtrol function, 190

Split command, UVMapper Planar method, 514

sports games, 8–10

Spread facets at poles command

UVMapper Cylindrical Cap method, 517

UVMapper Cylindrical method, 514

UVMapper Spherical method, 518

spread, terrain characteristic, 445

squareSize property, 452–453, 465

standard macros, UltraEdit-32, 54–56

standjump animations, 580

Star Wars: Knights of the Old Republic 2, 12

startClientReplication() function, 980–981

startFoliageReplication() function, 981

StartGame function, 208, 294

startHeartbeat() function, 981

statements

assignment, 66

case, 97–98

compound, 65

Exec, 166

expressions and, 65

if

how to use, 90–91

nested, 94–96

if-else, 92–93

inline, 146

naked, 146

return, 86

switch, 96–98

Statistics command, UVMapper Help menu, 512

sternum vertices, torso design, 541–542

stone surfaces

mipmap textures on, 125

terrain cover, 448

textures, 434–435

Stop tool (Audacity program), 772

1078 Index

stopHeartbeat() function, 981

stopServerQuery() function, 981

storms

perfect storm example, 757–758

precipitation, 752–753

sound files, 747–751

strategy games, 10

strchr() function, 981

strcmp() function, 982

stretched rock-sphere, 668

stricmp() function, 982

string append (@) operator, 74

string equal to ($=) operator, 87
string formatting codes, 1008

string literal, 153

string not equal to (!$=) operator, 87
strings

assignment operations, 73

concatenation operations, 73

double-quoted, 150

formatting codes, 150–151

single-quoted, 150

tagged, 74, 150

stripChars() function, 982

stripColorCodes() function, 982

stripMLControlChars() function, 982

stripTrailingSpaces() function, 983

strlen() function, 983

strlwr() function, 983

Stroke Selection dialog box, 366

strpos() function, 983

strreplace() function, 983

strstr() function, 983–984

strToPlayerName() function, 984

structure definition, texture use, 312

structures

bridge, 713–719

CSG modeling, 694–697

house, 719–725

interior, 693

strupr() function, 984

stub routines, 165

Subdivide command, MilkShape

3D Face menu, 492

subtract blend mode, 342

subtraction (-) operator, 74–75

Subtraction brush (Constructor), 723–724

subtraction operation, 695

subtraction totalizer (-=) operator, 74

Subtrahend brush, 696

superclass, data blocks and, 155–156

support

administrative tools, 29

auto-update program as, 28

bulletin boards, 28

community forums, 28

database, 29

forums, 28

Web sites as, 28

surface area, model, 113

SuSE Linux distribution, 14

switch statement, 96–98

switchBitDepth() function, 984

switchesm nao2dif_plus_plus.exe program, 1029

Syberia 2, 5, 12

T
\t (tab) character, 151

tablike container, 404

tagged strings, 74, 150

tags, defined, 159

TellAll() function, 237

telnetSetParameters() function, 984

temple, head design, 533–534

terms and conditions GNU GPL, 1037–1041

terrain

bitmap selection, 461

blurring, 458

boundary dimensions, 462–463

brush sizes, 467

characteristics, 443–444, 458

checkerboard pattern example, 466

colored contour drawings, 452, 454

concrete, 448

cropped images, 455

dirt, 448

DTM (Digital Terrain Model), 446

environmental scenes, 760–763

external method, 446

fidelity characteristic, 445

flowers, 448

foreground colors, 456–457

freedom characteristic, 445

game world creation, 855–856

grass, 448

grid texture, 467

height maps, 447

height range, 461

high-resolution information, 445

Index 1079

terrain (continued)

indexed color palette, 455

internal method, 446

litter, 448

maximum elevation, 461

moss, 448

overhead view, 463

pavement, 448

pebbles, 448

rocks, 448

sand, 448

saving, 464

scale and unit numbers, 453–455

scene, relighting, 462

sizes, 465

smoothed edges, 458

spread characteristic, 445

stone, 448

terrain cover, 448, 466–470

terrain data, 444–446

Terrain Manager, 446

terrain modeling, 446–447

Terrain Terraform Editor, 460

textures, 313–314

tile textures, 449–451

tiled edges, 457

trash, 448

untextured terrain tile, 444

Terrain Editor functions, 760–763, 837, 839

terrain library, TGE, 33–34

Terrain Terraform Editor, 839–840

Terrain Texture Editor, 840–841

testing

alpha, 919

basic, 918

character models, 567–570, 610–614

direct messaging, 266–267

DoAnimTest function, 141

Emaga 6 sample game, 265–266

Health Kit, 662–666

play, 919

regression, 918–919

rock creation, 669–670

skin creation

soup can example, 368

vehicle example, 380

test harnesses, 919–920

tree objects, 676

vehicle models, 656–658

weapon structures, tommy gun example, 691

text

color, 352

curved, 367–368

edit controls, 411–412

fonts, 352

GuiTextCtrl class, 405–406

searching, in UltraEdit-32

case sensitivity, 46

Find dialog box, 45–46

Find In Files feature, 48–49

grep utility, 49–50

List Lines Containing String option, 46

Replace dialog box, 47

special characters, 46–47

Text tool, 352

Texture Browser dialog box, 707–710

Texture Coordinate Editor command, MilkShape

Window menu, 497

Texture Coordinate Editor feature, 497, 506

texture files, map2dif_plus_plus.exe

program, 1030

texture manager, TGE, 32

texture mapping, 19, 123

texture pixel, 124

TextureCompressionHint module, 297

textured polygon rendering, 21

textures. See also Gimp 2 image processing tool;

terrain

brick, 434

brightness and contrast, 322–324

cloud, 313–314

color balance, 325–326

color values, 322

creating from scratch, 319–321

distant object detail, 317

fabric, 439

files

saving, 329–330

viewing, 327–329

foamy, 313

glass-like surfaces, 316

hue-saturation settings, 322–323

illusions, 311–312

irregular, 436

metallic, 439

as mood enhancement, 421

moon, 316

noise settings, 327

overview, 25

patterned, 438

1080 Index

pebbled, 437

plastic, 440

player clothing, 316

reflective, 440

rock and icefall appearance, 312

rough, 436

scaling issues, 432–433

selecting, 322

sidewalk, 322–327

skin detail, 316

skybox, 313–314

smooth, 438

stone, 434–435

structure definition through, 312

terrain, 313–314, 449–451

tiling, 433–435

translucency, 333–334

transparency, 333–334

tree object, 313

vehicle detail, 315

water, 313

weapon detail, 315

woodgrain, 311, 319–320, 438

zoom levels, 322

TGE (Torque Game Engine)

animation sequences, 34, 580

console library, 30

control flow, 30

demo movement and action keys, 131

discussed, 1, 29

DTS Exporter

Animation Settings group, 619

collision mesh, 618

export options, 619–620

material option flags, 620–621

mesh option flags, 621

Other Settings group, 619

DTSPlus Exporter

animation sequences, 627

collision meshes, 626

configuration files, 624

Edit Sequence dialog box, 628–629

general settings and actions, 623

LOS collision meshes, 626

materials, 626

mesh properties, 626

sequence material options, 622–623

event processing functions, 30

extrapolation strategies, 36

file type support, 32

GarageGames and, 20

input events, 31

interior library, 34

interpolation strategies, 36

low-level programming and, 130

networking design, 35–36

platform layer, 30

prediction strategies, 36

rendering system, 33

resource manager, 31–32

shape class, 34

simulation, 31

sourced console variables, 1015–1016

sourced preference variables, 1014–1015

terrain library, 33–34

texture manager, 32

utility functions, 32

The Incredible Machine series, 7

The King’s Quest series, 5

The Longest Journey, 5

The Tribes II Engine Networking Model, 35

thighs, leg design, 554

ThinkTanks, 4

thumbs, arm design, 559–560, 562

tilde (~), 64, 74

tiling, repeating patterns, 433–435

Time Shift tool (Audacity program), 772

Time track type tool (Audacity program), 773

toggle button, 407

toggle from first to third-person viewpoint

racing control, 372

toggleFullScreen() function, 984

tokens, 1008

Tom Clancy’s Splinter Cell: Chaos Theory, 12

tommy gun example

barrel, 683

discussed, 681

extrusion, 680, 685–686

forestock faces, 683

grip, 683

gun nodes, 687–688

gun vertices, 682

metal body faces, 684

muzzle faces, 681–682

should stock faces, 684–685

sketch, 681

skins, 688–690

sounds, 805–811

testing, 691

triggers, 683

Index 1081

Tool Bar, Torque GUI Editor, 415

tool chain, testing, 567–570

toolbox, MilkShape 3D tool, 497–500

tools

audio editing, 1025

image editing, 1024–1025

Linux tool sources, 1023

Macintosh platform tool sources, 1023

modeling, 1024

programming editing, 1025

retail, 1026–1027

Tools form, Constructor, 700, 703, 721

top property, 194

top-down approach, problem solving, 81

Topographical Shape Mapping, 524

Torque Game Engine. See TGE

Torque reference tables

console objects, 1009–1011, 1013

console types, 1014

data blocks, 1008–1009

net objects, 1013–1014

object methods, 988–1006

object type masks, 987–988

script keywords, 1006

script operator precedence, 1007

script operators, 1006–1007

script string formatting codes, 1008

script tokens, 1008

TorqueScript

elements of, 150

overview, 149–150

Torque Shader Engine (TSE), 923

Torque Show Tool Pro (TSTP)

bring closer key command, 371

discussed, 368

installation, 369

loading models, 370

Modify Project Directories window, 370

mouse actions, 369

move farther away key command, 371

rotate left key command, 371

rotate right key command, 371

rotate top backward key command, 371

rotate top key command, 371

setup, 369

Torque-related Web sites,

1017–1018

torso design, character models

abdomen, 543–544, 548

chest mesh, 543–546, 548

chest to head positioning, 539, 640

finished appearance, 549–550

head mesh position, 539

matching arms to torso, 564–565

matching head to torso, 550–553

matching legs to torso, 555

middle back vertices, 541–542

skeleton design, 587–592

sternum vertices, 541–542

well-designed vertices, 549

totalizers, 77–78

trace() function, 168–169, 985

Track Panel tools (Audacity program),

771–772

transformation

full, 117–118

rotation operation, 116

scaling operation, 115–116

translation operation, 116–117

translation

programmed movement, 134–137

simple direct movement example, 130–134

transformation and, 116–117

translucency, texture and, 333–334

Transmit Datablocks phase, mission

download, 284

transparency

layers, 341

texture and, 333–334

trash, terrain cover, 448

tree object textures, 313, 671

tree objects

billboard tree structure, Foliage Replicator,

677–679

overview, 670

solid tree structure

bark material, 675

branches, 674–675

collision mesh, 676

crooked cylinder example, 672–673

cylinder example, 671

testing, 676

textured tree example, 676

Tree view, Health Kit, 665

triangles, polygons, 112–113

Tribal IDE programming editing tool, 1025

Tribal Trouble, 11

Tribes 2, 22, 740

Tribes series, 20, 248

trigger entities, 1034

1082 Index

triggers

animation, 240

area, 240

creation, 875–877

event handlers, 874

player event control, 240–242

scoring, 878–881

trigger events, 874

weapon state, 240

trim() function, 985

truncated sphere, 667

truth tables, logical operators, 88

TSE (Torque Shader Engine), 923

TSTP (Torque Show Tool Pro)

bring closer key command, 371

discussed, 368

installation, 369

loading models, 370

Modify Project Directories window, 370

mouse actions, 369

move farther away key command, 371

rotate left key command, 371

rotate right key command, 371

rotate top backward key command, 371

rotate top forward key command, 371

setup, 369

Tube Twist, 7–8

Tubetti Enterprises, 5

Tubettiworld, 5, 24

Turbolinux distribution, 14

Turn Edge command, MilkShape

3D Face menu, 492

TurnShape function, 138–139

type, 60

typos, operator, 75

U
UltraEdit-32 editor

bookmark features, 51–54

configuration, 41–45

discussed, 39

file setup, 41–45

File View, 41–42

files in, closing, 41

Find dialog box, 45–46

Find In Files feature, 48–49

grep utility in, 49–50

Help feature, 56

installation instructions, 40

macros

Quick Record, 54

standard, 54–56

New Folder dialog box, 43

new project setup, 41–42

program setup and configuration, 40

Project File dialog box, 42

Project Settings dialog box, 42–43

Replace dialog box, 47

search capabilities, 45–47

starting, 41

Web site, 1025

Undo command, MilkShape 3D Edit menu, 490

Unhide All command, MilkShape

3D Edit menu, 490

union operation, 695

unmounting, 870–871

Unreal II, 22

Unreal II: The Awakening, 12

Unreal Tournament 2004, 12

Unweld command, MilkShape

3D Vertex menu, 491

Unweld Radial command, MilkShape

3D Vertex menu, 491

Up & Down Buttons button, MilkShape 3D

Groups tab, 502

UpdateLightingProgress function, 303

updates, for loop, 80

Usage function, 165

user interface screen modules,

190–191

utility functions, TGE, 32

utterance sounds, 798–801

U-V Coordinate Mapping, 354

UV unwrapping, 353–354, 481–483

UVMapper

BMP export options values, 483

Box method, 513

Cylindrical Cap method, 515, 517

Cylindrical method, 514

discussed, 509

Edit menu, 510

File menu, 510

Help menu, 511–512

hot keys, 512

OBJ export options values, 483

Planar method, 513–514

Spherical method, 515, 518

unwrapping methods, list of, 511

Web site, 1025

Index 1083

V
validateMemory() function, 985

value blend mode, 342

Values form (Constructor), 703

variable property, 408, 412

variables

arrays, 69–73

defined, 66

identifier rules, 67–68

keywords, 67

member, 154

operators and, 69

string, 73–74

vector triplet, 117

vector versus bitmap images, 332–333

vectorAdd() function, 985

vectorCross() function, 985

vectorDist() function, 985–986

vectorDot() function, 986

vectorLen() function, 986

vectorNormalize() function, 986

vectorOrthoBasis() function, 986

vectorScale() function, 986

vectorSub() function, 986

vehicle details, texture use, 315

vehicle models

body of

body faces, 637–641

first extrusion, 640

nose of car, scaling, 643–644

side view, 634–635

tail of car, scaling, 643, 645

top view, 641–642

window area, 636

windshield, 643

collision mesh, 654–655

dismounting, 870–871

fender assemblies, 645–652

four corners, 652–653

mount nodes, 652–653

mounting example, server-side code

collision, 867–868

datablocks, 872–874

dismounting, 870–871

model scale, 865

mount methods, 869

overview, 632

sketch, 632–633

skins, 654

sounds, 815–821

testing, 656–658

wheels, 656

versions, Gimp 2 image processing tool, 319

Vertex button, MilkShape 3D Model tab, 499

Vertex menu, MilkShape 3D modeling tool,

488, 491

vertex shaders, 123

vertical blur radius option, 361

vertices, 109

videoSetGammaCorrection() function, 297, 987

View forms (Constructor), 704

View menu, Audacity program, 777–778

Viewports command, MilkShape

Window menu, 497

views, MilkShape 3D tool

navigating in, 475

scale and orientation, 476–477

visible property, 405

visibleDistanct property, 741

visual artist roles, 17

vScrollBar property, 257, 409

W
walk animations, 525, 580

WarCraft III: Region of Chaos, 12

warn() function, 99, 987

water blocks, 758–760

water forms, 745

water textures, 313

waterfalls, game world creation, 849–855

.wav file format, 145

weapon details, texture use, 315

weapon objects

ammunition, 220

control/server/weapon/crossbow.cs module,

221–227

control/server/weapon/weapons.cs module,

217–220

sounds

crossbow, 804–805

tommy gun, 805–811

tommy gun structure

barrel, 683

discussed, 681

extrusion, 680, 685–686

forestock faces, 683

grip, 683

gun nodes, 687–688

gun vertices, 682

1084 Index

metal body faces, 684

muzzle faces, 681–682

shoulder stock faces, 684–685

sketch, 681

skins, 688–690

testing, 691

triggers, 683

triggers, 240

Web sites

3D Cafe, 1018

3Dup, 1018

Adobe Photoshop, 1026

AngleCode, 1018

Art Institute of Toronto, 1019

Audacity, 1025

BraveTree Productions, 1017

CFXWeb, 1019

CodeGuru, 1019

Corel Painter, 1026

Designer Today Magazine, 1019

Dr. Dobb’s Journal, 1019

flipCode, 1019

Gamasutra, 1019

Game Developer Magazine, 1019

GameDev, 1020

GameDevelopers Conference, 1019

Gamer’s Technical, 1020

GarageGames, 12, 20, 22, 923, 1017

Gnometech, 1018

Hall of Worlds, 1018

Holodeck, 1018

iDevGames, 1020

insert credit, 1020

Linux Game Development Center, 1020

Linux Game Tome, 1020

Machinima, 1020

MathWorld, 1020

Mesh Factory, 1020

NeHe Productions, 1020

NeXe, 1021

Oxford Dynamics, 1021

PlanetTribes-Torque, 1018

Polycount, 1021

Prairie Games, 1018

Prefabland, 1021

Psionic’s 3D, 1021

Realm Wars Development, 1018

SourceForge, 1021

as support, 28

Torque-related, 1017–1018

Ultra-Edit, 1025

UVMapper, 1025

Wotsit, 1021

ZBrush, 1027

Weld Together command, MilkShape

3D Vertex menu, 491

wheels, vehicle models, 656

while loop, 78–79

white space, 902

widgets, 401

width property, 194

willFirstRespond property, 257, 409

wind velocity, cloud, 743

window area, vehicle models, 636

Window menu

MilkShape 3D tool, 496–497

Mission Editor, 836

windows, house structure, 724–725

windshield, vehicle models, 643

Winter, David A., 9

woodgrain texture, 311, 319–320, 438

World Editor

World Editor Creator view, 837

World Editor Inspector view, 837

World Editor Tree view, 836–837

world environment. See environmental scenes

World menu (Mission Editor), 836

world sound, 791

world space, coordinate systems, 108

World Units (WU), 452

World War II Online, 28

World War II Online: Battlefield

Europe, 12

Wotsit Web site, 1021

writeFontCache() function, 987

WU (World Units), 452

X
Xbox platform, 12

XCF file format, 332

XYZ-axis system, 106–110

Z
Z-axis label, Health Kit, 665–666

ZBrush Web site, 1027

Z-flat shading, 120

zoom levels, texture, 322

Zoom tool, 345, 772

Index 1085

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following terms

and conditions. If, upon reading the following license agreement and notice of

limited warranty, you cannot agree to the terms and conditions set forth, return the

unused book with unopened disc to the place where you purchased it for a refund.

License
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.

You are licensed to copy the software onto a single computer for use by a single user and to a

backup disc. You may not reproduce, make copies, or distribute copies or rent or lease the

software in whole or in part, except with written permission of the copyright holder(s). You may

transfer the enclosed disc only together with this license, and only if you destroy all other copies

of the software and the transferee agrees to the terms of the license. You may not decompile,

reverse assemble, or reverse engineer the software.

Notice of Limited Warranty
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical

defects in materials and workmanship for a period of sixty (60) days from end user’s purchase

of the book/disc combination. During the sixty-day term of the limited warranty, Thomson

Course Technology PTR will provide a replacement disc upon the return of a defective disc.

Limited Liability
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST

ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL

THOMSON COURSE TECHNOLOGY PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER

DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE

FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM,

DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF THOMSON

COURSE TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED

THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM

ANY AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING

WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR

PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR

EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of

law principles. The United Convention of Contracts for the International Sale of Goods is

specifically disclaimed. This Agreement constitutes the entire agreement between you and

Thomson Course Technology PTR regarding use of the software.

