3D

GAME PROGRAMMING

ALL IN ONE

SECOND EDITION

KENNETH C. FINNEY

3D GAME
PROGRAMMING
~ALL IN ONE

SEcCOND EDITION

THOMSON

st

COURSE TECHNOLOGY

Professional m Technical m Reference

© 2007 Thomson Course Technology, a division of Thomson Learning
Inc. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or
retrieval system without written permission from Thomson Course
Technology PTR, except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are
trademarks of Thomson Course Technology, a division of Thomson
Learning Inc., and may not be used without written permission.

MilkShape was created by chUmbaLum sOft. Torque ShowTool Pro,
Constructor, Orbz, ThinkTanks, Marble Blast, Chain Reaction, and Tube
Twist were developed by GarageGames. The Gimp 2 and Audacity are
part of the GNU Project (see Appendix E for license info). UVMapper
was created by Stephen L. Cox. UltraEdit-32 is a registered trademark
of IDM Computer Solutions.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s
technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the
manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results
obtained from use of such information. Readers should be particularly
aware of the fact that the Internet is an ever-changing entity. Some facts
may have changed since this book went to press.

Educational facilities, companies, and organizations interested in
multiple copies or licensing of this book should contact the Publisher
for quantity discount information. Training manuals, CD-ROMs, and
portions of this book are also available individually or can be tailored
for specific needs.

ISBN-10: 1-59863-266-3
ISBN-13: 978-1-59863-266-8
eISBN-10: 1-59863-267-1

Library of Congress Catalog Card Number: 2006927129
Printed in the United States of America
0708091011 TW 10987654321

Thomson Course Technology PTR,

THOMSON a division of Thomson Learning Inc.

* ™ 25 Thomson Place
COURSE TECHNOLOGY Boston, MA 02210

Professional m Technical m Reference http://www.courseptr.com

Publisher and General Manager,
Thomson Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah O’Donnell

Manager of Editorial Services:
Heather Talbot

Marketing Manager:
Heather Hurley

Acquisitions Editor:
Mitzi Koontz

Marketing Coordinator:
Adena Flitt

Project Editor:
Jenny Davidson

Technical Reviewer:
Jacqueline Finney

PTR Editorial Services Coordinator:
Erin Johnson

Copy Editor:
Laura Gabler

Interior Layout Tech:
Interactive Composition Corporation

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Brandon Penticuff

Indexer:
Sharon Shock

For all we have and are,
For all our children’s fate,
Stand up and take the war.
The Hun is at the gate!

Our world has passed away,
In wantonness o’erthrown.
There is nothing left to-day
But steel and fire and stone!

—Rudyard Kipling
“For All We Have And Are”, 1914

This book is dedicated to my students, past, present and future.

—Ken Finney,
Bowmanville, Ontario

ACKNOWLEDGMENTS

I’'m absolutely humbled by how well received this book has been by the inde-
pendent computer game development folks: certainly in the GarageGames
development community, but more significantly, by the larger reader base in
countries all over the world. And I am grateful to each and every one of those who
have allowed me into their dens, basements, living rooms, garages, and yes, even
classrooms.

I want to thank my editors Laura, Jenny, and Mitzi, without whom this book
wouldn’t be possible. I want to extend special thanks to my wife, Jacquie, who
spent hours and hours immersed in both Torque’s C++ engine source code and
TorqueScript double-checking things. To be edited by one’s spouse is an edu-
cational experience in and of itself.

As usual, my boys, Indy and Luc, were veritable fonts o’ gamer wisdom and ideas.
And they kept me on my toes with their late-night ninja Airsoft sneak attacks on
me in the gazebo during the summer when I was working on this book. They only
got me once. However, the many, many paintball bruises and welts I had on my
body all summer are indications that they’re no slouches, tactically speaking.

It almost seems that it should go without saying (because I keep saying it over
and over), but a great deal of thanks, gratitude, and respect go to those guys in the
greasepit at GarageGames, and the greater GG community. It would be a great
disservice to them to not express my gratitude publicly yet again, no matter how
repetitive I risk sounding.

Acknowledgments

Special thanks go to Josh Williams (The Kid) who, along with Jay Moore, helped
me out of a serious bind that I inadvertently constructed for myself about a half a
year ago. Mark Frohnmayer had no small part to play also, and to him go my
thanks as well.

Tip o’ the hat to Dave Wyand, Matt Fairfax, Tom Brampton, John Kabus, and the
rest of the Constructor development team. You guys are kickin’ and takin’.

I want to thank the crew at AiTO for their thoughtfulness and support, and for
continuing to help make my job there the most enjoyable and rewarding one I've
ever had. Special thanks go to Jan Czechowicz, the Gnome of Bay Street. Also,
shout outs and props go to David Smith, Predrag Peshikan, and Lisa Delorme for
their guidance, the latitude they grant me, and for paying me to come to the
school and have fun, day in and day out. Paul Armstrong keeps everything held
together with duct tape or something, and doesn’t kick me out of his office
whenever I come whining to him about some problem.

Last but certainly not least, I want to acknowledge these great people, GAD
students all:

Ali Rafati, Calvin Lee, Colin Dyer, Corrie Ramsey, Cory Phillips, Craig Twigg,
David Dick, Feras Jaber, James Thuss, Jason Cabral, Jim Wray, John Montegro,
Jonathan Gidney, Joseph Pendon, Josh Edgar, Juan Pinzon, Juan Rodriguez, Karl
Nevill, Kyle Kokocinski, Laura Genova, Marlon Tyson, Nathan Tillotson,
Patricia Rossi, Paul Da Silva, Peter Bruce, Randy Abbot, and Shawn Corney.

Future big names in computer games. You just watch and see!

Regards,
Ken

ABOUT THE AUTHOR

Kenneth C. Finney is the lead faculty member for the Game Art & Design
program at the Art Institute of Toronto. He began programming in 1974 and his
career as a software engineer included work on high-speed trading systems
technology, armored fighting vehicle systems design, nuclear reactor safety and
testing technology, robotic pharmaceutical systems, and 3D game engine tech-
nology. In 1997 Ken was a recipient of the prestigious Conference Board of
Canada ITX (Innovation in Technology Excellence) Award for his work on
InScan—a high-speed document scanning system.

At the turn of the millennium, Ken decided to pursue his passion for computer
games, and began gradually moving out of the world of commercial and
industrial technology and into the game development arena. Ken is the creator of
the popular Tubettiworld online game and the ‘QuicknDirty’ game management
tools for Novalogic’s Delta Force 2 game series.

Ken is currently working on the new and unique Return to Tubettiworld action/
adventure game (www.tubettiworld.com) using the Torque Game Engine. The
Return to Tubettiworld design includes integrated episodic single-player, poly-
player, and Internet multi-player combat with distributed player-hosted servers
in a persistent game world.

Vi

|
[
CONTENTS I

[
Introduction Xix
Chapter 1 Introduction to 3D Game Development. 1
The Computer Game Industry 2
3D Game Genresand Styles. i 2
Game Platforms 12
Game DeveloperRoles 15
Publishing Your Game 20
Elementsofa3D Game. it 21
Game Engine 21
SCIPES « o o 22
Graphical User Interface 24
Models. 25
TeXTUresS. . . . e 25
SoUNd ... 27
MUSIC. . 27
Support Infrastructure 28
The Torque Game Engine 29
Descriptionso e 29
Using Torque in ThisBook 36
Installing Torque 36
Moving Right Along 38

Vii

viii Contents

Chapter 2

Chapter 3

Introduction to Programming. 39
UltraEdit-32. e 39
Program Setup and Configuration. 40
Setting Up Projectsand Files. 41
Searchand Replace. 45
Find In Files 48
o 1= 49
Bookmarks. 51
Macros. . . o 54
UltraEdit Review. 56
Controlling Computers with Programs 56
Programming Concepts o 59
How to Create and Run the Example Programs 60
Hello World 61
EXPressions. e e 65
Variables 66
Operators. e 74
LOOPS. e 78
Functions. 80
Conditional EXpressions 86
Branching 90
Debugging and Problem Solving. 98
Best Practices 102
Moving Right Along 103
3D Programming Concepts.cuun.. 105
3D CONCEPES - & v v it 105
Coordinate Systems. 106
3D Models 109
3D Shapes . .. v e 112
Displaying 3D Models 114
Transformation. 115
Rendering 119
Scene Graphso 127
3D AUdio. . ..o 129
3D Programming v it i e 129
Programmed Translation. 130

Programmed Rotation 137

Chapter 4

Chapter 5

Contents

Programmed Scaling. 138
Programmed Animation 139
BD AUIO . - o it 143
Moving Right Along 146
Game Programmingt 149
TorquesScript . . . oo o 149
SEriNGS . . o 150
Objects . . .o 151
Datablocks. 154
Game Structure. 156
Server Versus Client Design Issues. 160
Common Functionality. 160
Preparation. e 161
Root Main. e 161
Control Main. 167
Initialization 169
Client . . 171
1= Y= 177
Player . . . e 179
Running Emagad. 181
Moving Right Along 184
Game Play e e 185
The Changest 185
Folders. 185
Modules. 186
Control Modules 187
control/main.cs. 187
Client Control Modules 188
control/client/client.cs L 188
control/client/interfaces/menuscreen.gui. 190
control/client/interfaces/playerinterface.qui 194
control/client/interfaces/splashscreen.gui 198
control/client/misc/screens.cs 198
control/client/misc/presetkeys.cs. 201
Server Control Modules. 204

CONTrol/Server/Server.csot e e e e e 205

X

Contents

Chapter 6

Chapter 7

control/server/players/player.cs. 210
control/server/weapons/weapon.cs. 217
control/server/weapons/crossbow.cs 221
control/server/misc/item.cs. 228
Running EMAGAS e 233
Moving Right Along 234
Network it e i 235
Direct Messaging. oot e 236
CommandToServer 236
CommandToClient 237
Direct Messaging Wrap-upot 239
Triggers . o o e 239
Area Triggers . . oo ot e e 240
Animation Triggers. 240
Weapon State Triggerst 240
Player Event Control Triggerso .. 240
GameConnection Messages it 242
What GameConnection Messages Do. 243
Specifics. .. . 243
Finding Servers e 248
Code Changest 249
New Modules. 250
Dedicated Server. 262
Root Main Module. 262
Control—Main Module. 263
Control—Initialize Module 264
Emagab Map Files. 265
Testing Emagab. 265
Testing Direct Messaging, 266
Moving Right Along 267
Common Scripts. it i e e 269
Game Initialization 269
Selected Common Server Modules 274
The Server Module 274
The Message Module 275

The MissionLoad Module 276

Chapter 8

Chapter 9

Contents

The MissionDownload Module 281
The ClientConnection Module. 286
The Game Module 292
Selected Common Code Client Modules 295
The Canvas Module i 295
The Mission Module., 298
The MissionDownload Module 299
The Messages Module. 303
AFinal Word. e 306
Moving Right Along 310
Introduction to Textures. 311
USiNg TeXtUres. . . . ot i e e e e e e 311
The GIMp 2. . ..o 317
Installing the Gimp 2 318
Getting Started 319
Working with Files 327
The Gimp Feature Highlights 339
Layers . .. e 340
The Toolbox. 343
Tool Options e 346
Fill Tools 349
Other Tools e 350
Moving Right Along 352
SKINS e e e e 353
UV UNWrappingot e e e e e e 353
The Skin Creation Process, 354
Making a Soup CanSkin 356
The Soup Can Skinning Procedure. 356
Adding Text. e 367
Testing the Soup Can Skin 368
Making a Vehicle Skin. 371
The Dune Buggy Diversion, 371
The Runabout Skinning Procedure 372
Testing the Runabout Skin 380
Making a Player Skin. e 380

The Head and Neck 382

Xi

Xii Contents

Chapter 10

Chapter 11

Hairand Hands i 388
The Clothes 392
Trying ltonforSize 397
Moving Right Along 397
Creating GUI Elements 399
Controls e 401
GuiChunkedBitmapCtrl 402
GuiControl e e 404
GuiTextCtrl. 405
GuiButtonCtrl. 406
GuiCheckBoxCtrl. 407
GuiScrollCtrl. o 408
GuiTextListCtrl 410
GuiTextEditCtrl. 411
The Torque GUI Editor. s 412
The Cook’s Tour of the Editor. 413
Creating anInterface. 417
Moving Right Along 419
Structural Material Textures. 421
SOUICES . o i it e 422
Photography 422
Original Artwork 431
Scaling Issues. 432
TiliNg . o 433
Texture Types 436
Irregular. 436
Rough 437
Pebbled 437
Woodgrain. e 438
Smooth 438
Patterned. 438
Fabric. 439
Metallic 439
Reflective. 440
Plastic 440

Moving Right Along 440

Chapter 12

Chapter 13

Chapter 14

Contents

Terrainsttt e e e 443
Terrains Explained. 443
Terrain Characteristics. i 443
Terrain Data. 444
Terrain Modeling 446
Height Maps e e 447
Terrain CoOVer i e 448
TiliNg . . e 449
Creating Terrains.ottt 452
The Height-Map Method 452
Applying Terrain Cover. 466
Moving Right Along 472
Introduction to Modeling with MilkShape 473
MilkShape 3D 473
Installing MilkShape 3D 474
The MilkShape 3D GUI i 474
Navigating in Views 475
View Scale and Orientation. 476
The Soup Can Revisited. 478
Menus 487
The Toolbox. 497
The Keyframer 501
The Preferences Dialog BOX.o i i 503
Other Features. 506
UVMapper . .o e e 509
The File Menu 510
The Edit Menu 510
The Help Menu i 511
UV Mapping. . . oo e e e e e 511
Moving Right Along 517
Making a Character Model 521
Modeling Techniques 521
Shape Primitives. 521
Box Method 522
Incremental Polygon Construction. 522

Axial Extrusion. 523

Xiii

xiv Contents

Chapter 15

Chapter 16

Arbitrary Extrusion 523
Topographical Shape Mapping 524
Hybrids 524
Modeling for Torque. 524
The Base Hero Model 526
Preparation 526
The Head 527
The Torso. . . oo e 539
Matching the Head tothe Torso. 550
The Legs . .ot e 553
Integrating the Legstothe Torso 555
The Arms o e 556
Integrating the Arms tothe Torso. 564
Testing the Tool Chain 566
The Hero Skin 570
Character Animation. 578
Animating Charactersin Torque 579
Building the Skeleton. 581
Rigging: Attaching the Skeleton 586
Embedded Animations L oo 592
Testingthe Model 610
Animation Sequence Files. 614
MilkShape 3D’s DTS Exporterso 618
The Standard Torque Game Engine (DTS) Exporter. 618
The Enhanced Torque DTSPlus Exporter. 622
Moving Right Along 629
Making a Vehicle Model. 631
The Vehicle Model 632
The Sketch. 632
The Model 633
The Wheels. 656
Testing Your Runabout 656
Moving Right Along 658
Making Weaponsand Items.. 659
The Health Kit. 659
The Model 659

Testing the Health Kit. 662

Chapter 17

Chapter 18

Chapter 19

Contents

A ROCK . . 666
Testingthe Rock. 669
TrES. o o e e 670
The Solid Tree 671
Testing the Solid Tree., 677
The Billboard Tree 677
The Tommy GUN ot e e e e e e e e 680
Making the Model 681
Skinning the Tommy Gun 688
Testing the Tommy Gun 691
The Tommy Gun Script 691
Moving Right Along 691
Making Structures 693
CSG Modeling 694
Torque Constructor e 697
Installing Constructor 697
The Cook’s ToUr. e 698
Quick Start 704
Building Bridges e 713
Buildinga House. 719
Moving Right Along 725
Making the Game World Environment 727
SKY 727
Skyboxes 728
The Sky Mission Object. 739
Clouds . ..o 742
Cloud Specifications 742
Cloud Textures. e e 744
ater. .. e e 745
FOg . oo 746
StOIrmMS . . e 747
Water Blocks 758
Terraforming. L 760
Moving Right Along 763
Creating and Programming Sound. 765
Audacityo 766

Installing Audacity 766

XV

XVi

Contents

Chapter 20

Chapter 21

Using Audacity. i 767
Audacity Reference. L 771
OpenAL . . 781
Audio Profiles and Datablocks 782
Audio Descriptions 783
Trying ROUto 786
Koob . .. 787
Moving Right Along 790
Game Soundand Musiciuiun.. 791
Player Sounds 791
Rustlers 793
Footsteps. 796
Utterances e 798
Weapon SoUNdSot e 802
Installing the Mission Editor 802
Crossbow Sounds 804
Tommy Gun Preparation. 805
Vehicle Sounds 815
Environmental Sounds. 821
Interface Sounds 823
MUSIC . o e 826
Moving Right Along 828
Creating the Game Mission 829
Game Design.o 830
Requirements. 830
Constraints. e e e 832
Koob e 833
Torque Mission Editor 834
File Menu. e 835
Edit Menu e 835
Camera Menu. e 836
Other Menus e e e 836
World Editor 836
Terrain Editor. 837
Terrain Terraform Editor. 839
Terrain Texture Editor. 840

Mission Area Editor 841

Chapter 22

Chapter 23

Contents

Buildingthe World 842
Particles. 842
The Terrain e 855
l[tems and Structures. 856
Moving Right Along 860
The Game Server it ittt i e 861
The Player-Character i 861
Player Spawning.o e 861
Vehicle Mounting. 864
The Model 864
Server Codet e 866
Vehicle e 871
Oh Yeah,the Model. 871
Datablock. 872
Triggering Events e 874
Creating Triggerso e e e e e 875
SCOMNG L ot i e 878
Moving Right Along 886
TheGame Client 887
Client Interfaces 888
MenuScreen Interface. 888
SoloScreen Interface. 890
Host Interface. i e 892
FindServer Interface 892
ChatBox Interface. 893
MessageBox Interface. L . 897
ClientCode. e e 899
MenuScreen Interface Code 899
SoloScreen Interface Code. 900
Host Interface Code 905
FindServer Interface Code. 906
ChatBox Interface Code 908
MessageBox Interface Code. 911
Game Cycling 914
Final Change. 916

Moving Right Along 916

XVii

XViii

Contents

Chapter 24

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

TheEnd Gamettt ittt i iiiaee e 917
TeSting . . oo 918

BasSiCS. o vt e 918

Regressiono 918

Play Testingo 919

Test Harnesseso it e e e e 919
Hosted Servers.ot e e e 920
Dedicated Servers 920
FPS Game Ideas. oo e 921
Other Genres e 922
Modifying and Extending Torque. 923
Go Tor It . oo 924
The Torque Reference 925
Additional Resources i 1017
Game Development Tool Reference 1023
map2dif_plus_plus Reference 1029
GNU General Public License 1035
.. 1045

INTRODUCTION

Beginnings

“Hi, I'm using your software and I was wondering—can you tell me how I can make
a computer game? I don’t have much money, but I have this terrific idea for a shooter
like XYZ game, except I'll make it do . ..”

During the years bracketing the millennium changeover, while working on the
Tubettiland “Online Campaign” software and more recently while working on
the Return to Tubettiworld game, 1 figure I've received more than a hundred
queries from people of all ages about how to get started making games. There
were queries from 40-year-olds and 13-year-olds and every age in between. Most
e-mails were from guys I would estimate to be in their late teens or early 20s.

After about the 30th response or so, I gave up trying to help these people out in
detail and started to just point them to Web sites where they could gather the
information they needed. Finally I stopped responding completely. But this
bugged me to no end (I still get several of these e-mails in a month), so every now
and then I will respond with the Web links or some pointers. However, whenever
I do answer, I often get drawn into long e-mail exchanges for which I just don’t
have the time. Eventually I have to beg out of the exchange, usually by being
nonresponsive at some point. Then I feel bad again.

This book started out as a sort of e-mail to everyone I hadn’t responded to. It had
been rattling around in my head for several years, and I finally managed to get it out!

Xix

XX

Introduction

This Second Edition is two things: an effort to bring the book up-to-date with the
latest version of Torque, from GarageGames, and an attempt to bring the very
best tools available to the Indie game maker. And of course, a number of errors
and omissions in the first edition are corrected, as well.

About This Book

If you want to, you will be able to take this book and a computer, go into a room
without Internet access, and emerge with a completed, ready-to-play first-person
shooter game within weeks. You will then be able to spend as much time as you
want to dream up your game play concepts, and you will have the ability to add
them to your game.

You might think this is a bold claim, but you can see for yourself. Go ahead and
turn to the Table of Contents, or take a quick flip-through skim of the chapters.
It’s all there. If you follow through and do the exercises and work, you will arrive
at the other end of the journey with experience, not just book learnin’.

But keep this in mind: you must start at the beginning and work your way
through to the end. As the book advances, it builds on your efforts in earlier
chapters. This is not the sort of book to leap around in, until you’ve been through
it at least once.

Believe in Yourself

Computer games are a $9 billion per year industry, and that number increases
every year. A growing part of this industry is people like you—part of an
expanding segment of the gamer population that doesn’t just want to play the
games but believes that you can make them better than the game companies can.
Your problem may be that you lack the right combination of training, experi-
ence, and tools needed to turn dreams into reality. This book is for you.

Every year more and more colleges offer game development programs, and every
few months a new online indie game developer site launches on the Web. There is
no lack of training available for those with the money to pay, and there is no lack
of books for those of you who want to create your own engines or other spe-
cialized parts of a game.

The key element missing is a resource that takes the inspired and aspiring game
developer by the hand and walks him through all the steps and tools required to
make a fully featured game. This book is that resource. With the exception of
game music composition (which itself could be a complete book series), you, the

Introduction

Gentle Reader, will learn how to create every part of the game yourself by using a
well-defined toolkit of programs, knowledge, skills, and ideas. Sound, music, art,
and code libraries are included on the companion CD for you to use if you lack a
certain artistic or creative flair.

What You Bring to the Party

I assume that you have more than a passing familiarity with computer games,
especially the first-person shooter genre. Throw in some computer savvy, add a
reasonably capable computer system, sprinkle with desire, spice it with passion,
and you should be good to go!

Skills

You are probably fully able to deal with all aspects of Microsoft Windows-based
computing. You don’t need to be a programmer, but you do need to be aware that
some programming will be required in creating a computer game. The first few
chapters will introduce you to all the programming concepts that you will encounter
in the course of using the book. You will not be expected to learn advanced 3D math
in detail, but you will learn enough about 3D to accomplish your goals.

I’'m going to show you how to create your own artwork, but you don’t need to be
an artist. The companion CD features a collection of art you can use in your
game, distributed throughout the game engine demo and RESOURCES folders.

System

All of the development tools, including the engine, are also included on the com-
panion CD. All of these tools are priced such that even though the shareware version
may be included on the CD, the actual registered versions are less than $100.

You will need a Windows-based computer to use this book. (See below for
minimum system requirements.) It is possible for Macintosh and Linux users to
use this book to create a game, because the game engine used—Torque—is also
available for those platforms. However, not all of the required development tools
are available on Mac and Linux, so the book’s focus will be on Windows on Intel.

System Requirements

Windows 98/SE/ME/2000/XP

Pentium III 500, 128 MB RAM

OpenGL or DirectX Compatible 3D Graphics Accelerator, DirectX compatible
sound card

XXi

XXii

Introduction

Mac OS X
G4 +, 128 MB RAM
OpenGL Compatible 3D Graphics Accelerator

Linux
Pentium 500, 128 MB RAM
NVIDIA TNT2 or better 3D Graphics Accelerator, Linux-supported sound card

XFree86 4.0 or newer with NVIDIA OpenGL drivers

glibc 2.2 or newer (e.g.: Redhat 7.x+, Mandrake 8.x+, Debian 3.0+)
SDL version 1.2 or newer (1.2.3 or later is recommended)

OpenAL Runtime or SDK Installation

Mesa3D version 3.4 or newer (3.4.2 or later reccommended)

What the Book Offers

In this book we are going to look at all aspects of game development, a journey
from first principles to the completed game.

Concepts

We are going to take a look at various aspects of the game industry to give you the
opportunity to see where you might fit in and what sort of opportunities there are.
We'll also examine the elements of a 3D game, game design issues, and game genres.

Programming

Next, you’ll be introduced to the programming concepts that you will need to
understand in the course of using the book. You will see how to structure
program code, create loops, call functions, and use globally and locally scoped
variables. We’ll use a subset of an object-oriented programming language called
TorqueScript, which is built into the Torque Engine. Hands-on sample programs
are available on the companion CD. We’ll move on to examining the 3D con-
cepts that you will need to understand some of the more sophisticated activities
later in the book. This will provide a foundation for both the programming and
the modeling tasks that you will take on later.

Torque

Once you’ve been powered up with sufficient knowledge and understanding of
the main concepts in 3D game development, we’ll get into using the Torque
Engine in detail. You will learn how to handle client/server programming, how to

Introduction

control the player-character, how to send messages between players, and much
more. Concepts will be presented with exercises and sample programs that are
available on the CD. Although we will cover some of the more intricate low-level
workings of the Torque Engine in order to understand it better, it’s important to
realize that as an independent game developer you’ll benefit more from mas-
tering the higher-level functions that utilize the engine for us, so you can worry
about other stuff—like game play. Without game play, you won’t have a game.

Textures

Next, the book will show you everything you need to know about game textures:
how to create them, how to modify and manipulate them, and how to use them
in the game. The coverage is comprehensive; all of the texture types and their uses
are discussed: skins, tiles, terrain, skyboxes, height maps, GUI widgets, and more.
You will be guided through exercises in creating each of the texture types. A
library of textures is available on the companion CD to fill in any gaps in your
texture needs.

Models

Then we get to the meat of a 3D game—the models. In these chapters we will be
delving into the world of low-poly modeling. We'll talk about the general
principles involved in ways that can be applied to other tools, such as the
expensive 3D Max or Maya. But the practical focus will be geared toward using
MilkShape, UVMapper, and other low-cost tools that are included on the
companion CD.

I will show you the various model types, such as polysoup and CSG models. You
will create models for all aspects of the game in the exercises: player-characters,
vehicles, weapons, powerups, decorations or clutter, buildings, and structures.
You will walk through each step in the creation of the different model types so
that you can create your own unique game look, if you want. All of the models in
these chapters, plus many more, are available on the companion CD to round out
your model library.

Sound and Music

After modeling, you will encounter the icing on the game cake: sound and music.
You will discover how to select, create, and modify sounds for use in your game.
You will also get some advice about selecting musical themes and how to inte-
grate music into your game.

XXiii

xxiv Introduction

Integration

After picking up the required programming skills, and learning how to use the art
creation and modeling tools, you will learn how to knit all the parts together to
create a game, populate your game world, and then test and troubleshoot your
game. Finally, we look at where you can go with your shiny new 3D game
developer’s toolkit of ideas, knowledge, skills, and software tools.

The Companion CD

The companion CD contains quite a few resources.

Source Code

The book’s CD contains all of the TorqueScript source code in sample form and
final form. The samples will be aligned with the exercises in each chapter. The
scripts for the final completed game will be included in its own directory tree.
The game will be usable immediately upon installation from the CD so that you
can have an instant and extensive preview of what is to come.

Game Engine

The CD will contain the complete Torque Game Engine version 1.4 with its
executable, DLLs, and all required GUI and support files. It is a fully featured
game engine that includes advanced networking capabilities, blended anima-
tions, built-in server-side anticheat capabilities, a strong and complete object-
oriented C++-like scripting language, and many other advanced features.

Tools

The following shareware tools are included on the CD:

m Torque ShowTool Pro for reviewing 3D player and item models
m MilkShape 3D for 3D player and item modeling

m Constructor for 3D interior modeling

The Gimp 2 for texture and image manipulation

Audacity for sound editing and recording

Introduction XXV

s UVMapper to perform UV unwrapping tasks

m UltraEdit-32 as the text or programming editor

Goodies

The CD also includes a few extras that aren’t mentioned in the book or that are
only briefly touched on:

m Retail games created with Torque: Orbz, ThinkTanks, Marble Blast, Chain
Reaction, Tube Twist

m Additional image and audio resources

= Open Source utility source code

Go Get ‘'em!

The most important asset you have as an independent, and the key to any success,
is your enthusiasm. Remember to use this book, and other books and training
you acquire, as resources that will help you do what you want to do; they are not
vouchers that you can trade in for a nice big pot of success. You have to do the
work in the learning, and you have to do the work in the creating. And if you
believe you can, then I know you can! Go get em!

This page intentionally left blank

CHAPTER 1

INTRODUCTION TO 3D
GAME DEVELOPMENT

Before we get into the nitty-gritty details of creating a game, we need to cover
some background so that we can all work from the same page, so to speak. In the
first part of this chapter, we will establish some common ground regarding the
3D game industry in the areas that matter—the types of games that are made and
the different roles of the developers that make them. In the second part of the
chapter, we’ll establish what the essential elements of a 3D game are and how we
will address them.

Throughout the book you will encounter references to different genres, or types,
of games, usually mentioned as examples of where a particular feature is best
suited or where a certain idea may have originally appeared. In this chapter we
will discuss the most common of the 3D game genres. We will also discuss game
development roles; I will lay out “job descriptions” for the roles of producer,
designer, programmer, artist, and quality assurance specialist (or game tester).
There are various views regarding the lines that divide the responsibilities, so my
descriptions are fairly generic.

Finally, we will discuss the concept of the 3D game engine. If ever there is going to
be an area of dispute between a writer and his readers in a book like this, a
discussion of what constitutes a 3D game engine will be it. I do have a trump card,
though. In this book we will be using the Torque Game Engine as our model of
what constitutes a fully featured 3D game engine. We will use its architecture as
the framework for defining the internal divisions of labor of 3D game engines.

Chapter 1 = Introduction to 3D Game Development

The Computer Game Industry

The computer game industry is somewhat different from other high-tech fields.
With properties, producers, artists, and distributors, as well as its own celebrities,
the computer game business operates more like Hollywood than the traditional
commercial or industrial software development company. It is quite a bit more
informal and relaxed than other high-tech fields in many ways but is quicker
paced with a higher burnout rate. There are independent game developers, or
indies, and big-name studios, but the computer game industry tends to be more
entrepreneurial in spirit.

Just as is true of indies in the motion picture industry, an indie game developer is
not beholden to other businesses in the industry that can direct their efforts.
Indies fund their own efforts, although they sometimes can get funding from
outside sources, like a venture capitalist (good luck finding one, however). The
key factor that makes them independent is that the funding does not come from
downstream industry sources that would receive the developer’s product, like a
major game development house, publisher, or distributor.

Indies sell their product to distributors and publishers after the product is
complete, or nearly so. If a developer creates a product under the direction of
another company, they are no longer independent.

A good measure of the “indie-ness” of a developer is found in the answer to the
following two questions:

m Can the developer make any game he wants, in whatever fashion he wants?

m Can the developer sell the game to whomever he wants?

If the answer is yes in both cases, then the developer is an indie.

Of course, another strong similarity with movies is that, as I pointed out earlier,
games are typically classified as belonging to different genres.

3D Game Genres and Styles

Game development is a creative enterprise. There are ways to categorize the game
genres, but want you to keep in mind that while some games fit each genre like a
glove, many others do not. That’s the nature of creativity. Developers keep
coming up with new ideas; sometimes they are jockeying for an advantage over
the competition, and sometimes they are just scratching an itch. At other times,

The Computer Game Industry

calculating marketing departments decide that mixing two popular genres is a
surefire path to a secure financial future.

The first rule of creative design is that there are no rules. If you are just scratching
an itch, then more power to you. If you are looking to make a difference in the
gaming world, you should at least understand the arena. Let’s take a look at the
most common 3D genres around today and a few that are interesting from an
historical perspective. When you are trying to decide what sort of game you want
to create, you should try understanding the genres and use them as guides to help
focus your ideas.

It’s important to note that all of the screen shots in this chapter are of games by
indie game developers. Some of the games are currently being shipped as retail
games, and some are still in development. Almost all of them use the same
Torque Game Engine we will use in this book to develop our own game.

By no means is this a definitive list; there are many genres that don’t exist in the
3D gaming realm, and the number of ways of combining elements of genres is
just too large to bother trying to enumerate. If you take pride in your creativity,
you might resist attempts to pigeonhole your game idea into one of these genres,
and I wouldn’t blame you. When trying to communicate your ideas to others,
however, you will find it useful to use the genres as shorthand for various col-
lections of features, style, and game play.

Action Games

Action games come in several forms. The most popular are the First-Person
Point-of-View (1st PPOV) games, where your player-character is armed, as are
your opponents. The game play is executed through the eyes of your character.
These sorts of games are usually called First-Person Shooter (FPS) games. Game
play variations include Death Match, Capture the Flag, Attack & Defend, and
King-of-the-Hill. Action games often have multiplayer online play, where your
opponents are enemies controlled by real people instead of by a computer.
Success in FPS games requires quick reflexes, good eye-hand coordination, and
an intimate knowledge of the capabilities of your in-game weapons. Online FPS
games are so popular that some games have no single-player game modes.

Some action games are strictly 3rd PPOV, where you view your player-character,
or avatar, while also viewing the rest of the virtual world your avatar inhabits
(see Figure 1.1).

4

Chapter 1 = Introduction to 3D Game Development

&l Bt 7!
® 0 Ear] 7
& ouy [darf |
® il — 4 Y
® o[k, N T W s
i DB = ¢
@ T

e

Gum [Bot] has been eliminated by Ri{Batll e

Figure 1.1
ThinkTanks—a 3rd PPOV action game made by BraveTree Productions using the Torque Game Engine.

Half-Life 2, FEA.R, and Doom 3 are popular examples of FPS-style action
games.

Adventure Games

Adventure games are basically about exploring, where player-characters go on a
quest, find things, and solve puzzles. The pioneering adventure games were text
based. You would type in movement commands, and as you entered each new
area or room, you would be given a brief description of where you were. Phrases
like “You are in a maze of twisty passages, all alike” are now gaming classics. The
best adventure games play like interactive books or stories, where you as the
player decide what happens next, to a certain degree.

Text adventures evolved into text-based games with static images giving the
player a better idea of his surroundings. Eventually these merged with 3D
modeling technology. The player was then presented with either a first- or third-
person point of view of the scene his character was experiencing.

Adventure games are heavily story based and typically very linear. You have to
find your way from one major accomplishment to the next. As the story develops,
you soon become more capable of predicting where the game is going. Your
success derives from your ability to anticipate and make the best choices.

The Computer Game Industry

Figure 1.2
Tubettiworld—an action-adventure-FPS hybrid game being developed by Tubetti Enterprises using the

Torque Game Engine.

Some well-known examples of adventure games are golden oldies like 7%e King’s
Quest series and more recent fare like 77%e Longest Journey and Syberia 2.

Online adventure games have not really come into their own yet, although some
games are emerging that might fit the genre. They tend to include elements of
FPS action games and Role-Playing Games (RPGs) to fill out the game play,
because the story aspect of the game is more difficult to accomplish in an online
environment. Players advance at different speeds, so a monolithic linear story
line would become pretty dreary to a more advanced player. An example of an
online action-adventure-FPS hybrid game is 7ubertiworld (see Figure 1.2), being
developed by my all-volunteer team at Tubetti Enterprises.

Role-Playing Games

Role-playing games are very popular; that popularity can probably find its roots in
our early childhood. At younger than age six or seven, we often imagined and acted
out exciting adventures inspired by our action figures and other toys or children’s
books. As was also true for strategy games, the more mature forms of these games
first evolved as pen-and-paper games, such as Dungeons & Dragons.

5

Chapter 1 = Introduction to 3D Game Development

Figure 1.3
Minions of Mirth—a Dungeons & Dragons-style RPG made with Torque and created and sold by Prairie
Games.

These games moved into the computer realm with the computer taking on more of
the data-manipulation tasks of the game masters. In role-playing games the player
is usually responsible for the development of his game character’s skills, physical
appearance, loyalties, and other characteristics. Eventually the game environment
moved from each player’s imaginations onto the computer, with rich 3D fantasy
worlds populated by visually satisfying representations of buildings, monsters, and
creatures (see Figure 1.3). RPGs are usually science fiction or fantasy based, with
some historically oriented games being popular in certain niches.

Maze and Puzzle Games

Maze and puzzle games are somewhat similar to each other. In a maze game you
need to find your way through a “physical” maze in which your routes are
defined by walls and other barriers. Early maze games were 2D, viewed from the
top; more recent ones play more like 3D adventure or FPS games.

Puzzle games are often like maze games but with problems that need to be solved,
instead of physical barriers, to find your way through.

Mazes also make their appearance in arcade pinball-style games, such as Marble
Blast (see Figure 1.4) by GarageGames. It is a maze-and-puzzle hybrid game

The Computer Game Industry

Figure 1.4
Marble Blast—a maze-and-puzzle hybrid game by GarageGames using its Torque Game Engine.

where you compete against the clock in an effort to navigate a marble around
physical barriers. The puzzle aspect lies in determining the fastest (though not
necessarily the most direct) route to the finish line.

Puzzle games sometimes use puzzles that are variations of the shell game or that
are more indirect problem-solving puzzles where you must cause a series of
things to happen in order to trigger some further action that lets you advance.
Many puzzle games utilize direct problem-solving modes where the puzzle is
presented visually. You then need to manipulate on-screen icons or controls in
the correct sequences to solve the problem. The best puzzles are those where the
solution can be deduced using logic. Puzzles that require pure trial-and-error
problem-solving techniques tend to become tedious rather quickly. An historic
example of a puzzle game is 7he Incredible Machine series by Dynamix.
The latest variation of this type is the new game 7ube Twist by 21-6 Productions
(see Figure 1.5).

Simulator Games

The goal of a simulator (or s777z) game is to reproduce a real-world situation as
accurately as possible. The measure of the simulation accuracy is usually called

7

8

Chapter 1 = Introduction to 3D Game Development

NEXH
ilFevel

(Save

-

S
Journal

Figure 1.5
Tube Twist—a puzzle game made by 21-6 Productions using the Torque Game Engine.

its fidelity. Most simulators put a heavy emphasis on the fidelity of the visual
appearance, sounds, and physics of the game.

The point is total immersion in the game environment, so that you get the feeling
you are actually there. You may be flying a jet fighter or driving a thoroughbred
Grand Prix racing car. The game mirrors the real-life experience to the maximum
the developers can manage.

Simulators usually require specialized input devices and controllers, such as
aircraft joysticks and rudder pedals. Many simulator enthusiasts build complete
physical cockpit mockups to enhance the immersion experience.

Silent Steel, NASCAR Sim Racing, and Air Ace (see Figure 1.6) are examples of
simulator games.

Sports Games

Sports games are a variation of the simulator class of games in which the
developer’s intent is to reproduce the broad experience of the game as accurately
as possible. You can participate in a sports game at various levels and watch the
action play out in a realistic 3D environment (see Figure 1.7).

The Computer Game Industry

Figure 1.6
Air Ace—a flight combat sim in development by Phil Carlisle, an independent game developer, using the
Torque Game Engine.

Figure 1.7
Maximum Football—a football sports game by David A. Winter, an independent game developer, and
sold by MatrixGames.

10

Chapter 1 = Introduction to 3D Game Development

Unlike the action-oriented flight and driving simulators, sports games usually
have a manager or season angle. While playing the game you can also take on the
role of coach, owner, or team manager. You can execute draft picks and trades or
groom new players like any major league ball organization would. In a modern
sports simulator you could be managing budgets, and you might play or race a
regular year’s schedule, playing in different stadiums or arenas or racing on
different tracks.

Strategy Games

Strategy games began as pen-and-paper games, like war games, and have been
around for centuries. As computer technology evolved, computer-based tables
and random-number generators replaced the decision-making aspects of strategy
games traditionally embodied by lookup charts and dice rolls.

Eventually the tabletop battlefields (or sandbox battlefields) with their cardboard
markers or die-cast military miniatures moved into the computers as well.
The early tabletop games were usually turn based: each player would in turn
consider his options and issue “orders” to his units. Then he would throw
the dice to determine the result of the orders. The players would then modify
the battlefield based upon the results. After this the players would observe the
new shape of the battlefield and plot their next moves. The cycle then repeated
itself.

The advent of computer-based strategy games brought the concept of rea/ time
to the forefront. Now the computer determines the moves and results and then
structures the battlefield accordingly. It does this on a time scale that reflects the
action. This has given birth to the Rea/-7ime Strategy (RTS) genre. Sometimes
the computer will compress the time scale, and other times the computer will
operate in real time, where one minute of time in the game action takes one
minute in the real world. The player issues orders to his unit as he deems them to
be necessary. Recently, strategy games have moved into the 3D realm, where
players can view the battlefield from different angles and perspectives as they plot
their next moves (see Figure 1.8).

There are strategy games that exist outside the world of warfare. Examples
include business strategy games and political strategy games. Some of these
games are evolving into strategic simulations, like the well-known Sz ity series
of games.

The Computer Game Industry

Figure 1.8
Tribal Trouble—a 3D real-time strategy game created by indie-developer Oddlabs.

Some Popular Retail 3D Games and Their Genres

If you are still unclear about what a particular genre is, take a look at the following table. It is a list
of current "big-name” game titles (including one or two that are not yet released). Be aware that you
may find a Web site or magazine somewhere that classifies these games in a slightly different way.
That's cool—don't worry about it.

Game Publisher Genre
Age of Empires Ill Microsoft Strategy
Battlefield 2 Electronic Arts Action-FPS
Call of Duty 2 Activision Action-FPS
Civilization IV 2K Games Strategy
Command & Conquer (various) Electronic Arts RTS

Delta Force Xtreme Novalogic Action-FPS
Diablo Il Blizzard RPG
Doom 3 Activision Action-FPS
Duke Nukem Forever Gathering of Developers Action-FPS
Dungeon Siege Microsoft Action-RPG
Enter the Matrix Infogrames Action-FPS
Everquest Il Sony RPG

Far Cry Ubisoft Action-FPS

continued

11

Chapter 1 = Introduction to 3D Game Development

continued

Game Publisher Genre
Ghost Recon: Advanced Warfighter Ubisoft Action-FPS
Grand Theft Auto: San Andreas Rockstar Games Action-Sim
Half-Life 2 Sierra Action-FPS
Homeworld 2 Vivendi Universal RTS

Medal of Honor: Allied Assault Electronic Arts Action-FPS
Myst lll: Exile Ubisoft Adventure
PlanetSide Sony Action-FPS
Rainbow Six 3: Raven Shield Ubisoft Action-FPS
Return to Castle Wolfenstein Activision Action-FPS
Rome: Total War Activision RTS
SimCity 4 Electronic Arts Strategy-Sim
Star Wars: Knights of the Old Republic 2 LucasArts Action-RPG
Syberia 2 Microids Adventure
Tom Clancy’s Splinter Cell: Chaos Theory Ubisoft Action-FPS
Unreal Il: The Awakening Infogrames Action-FPS
Unreal Tournament 2004 Infogrames Action-FPS
WarCraft Ill: Reign of Chaos Blizzard RTS

World War Il Online: Battlefield Europe Playnet/Cornered Rat Software FPS-RPG-Sim-Strategy

Game Platforms

This book is about computer games written for personal computers. There are
three dominant operating systems: Microsoft Windows, Linux, and Macintosh.
For some of these systems there are quite a few different flavors, but the dif-
ferences within each system are usually negligible, or at least manageable.

Another obvious game platform type is the home game console, such as the Sony
PlayStation or the Nintendo GameCube. These are indeed important, but
because of the closed nature of the development tools and the expensive licenses
required to create games for them, with one bright exception, they are beyond the
scope of this book.

That exception is the Xbox and its more recent state-of-the-art descendent, the
Xbox 360. It is now possible to create your Torque-based game with the Xbox as
the target system. If you think you are interested in doing this, you should contact
GarageGames directly (http://www.garagegames.com). Your approximate develop-
ment plan will involve two large phases: (1) make your game on the PC, and then
(2) convert your game to Xbox.

The Computer Game Industry

Other game platforms include Personal Digital Assistants (PDAs), such as Palm-
based computers, and cell phones that support protocols that permit games to
be played on them. Again, these platforms are also beyond the scope of this
book.

Now that those little disclaimers are out of the way, let’s take a closer look at the
three game platforms of interest. It’s important to note that by using the Torque
Game Engine, you will be able to develop what amounts to a single code base for
a game that you can ship for all three platforms: Windows, Linux, and Macintosh!

Microsoft Windows

Windows has various historical versions, but the current flavors are Windows
2000, Windows XP, and the specialized Windows CE. In this book the expecta-
tion will be that you are developing on or for a Windows XP target system,
because that is the version that Microsoft is now selling to the home computer
market.

Within Windows XP we will be using OpenGL and Direct3D (a component of
DirectX) as our low-level graphics Application Programming Interfaces (APIs).
These APIs provide a means for our engine to access the features of the video
adapters in our computers. Both OpenGL and Direct3D provide basically the
same services, but each has its own strengths and weaknesses. With Torque you
will have the choice of letting your end users use either API.

OpenGL’s greatest strength lies in its availability with different computer sys-
tems. An obvious benefit is that the developer can create a game that will work on
most computers. OpenGL is an open-source product. In a nutshell this means
that if there is a particular capability you want that OpenGL lacks, you can get
access to the OpenGL source code and rebuild it the way you want. This assumes
you have the skills, time, and tools necessary to get the job done, but you can
do it.

DirectX is proprietary—it is the creation and intellectual property of Microsoft
Corporation. Its biggest advantage is that it tends to support more features than
OpenGL, and the 3D video adapter manufacturers tend to design their hardware
to work with DirectX as much as they can. With DirectX you get a much more
complete and the most advanced feature set. Unfortunately, you are limited to
Windows-based systems if you put all your eggs in the DirectX basket.

13

14

Chapter 1 = Introduction to 3D Game Development

The Torque Game Engine uses both APIs and gives you a rather straightforward
set of techniques to set up your game with either API. This means that in a
Windows version of your game, you can offer your users the option of using the
API that best suits their video adapter.

Linux

For most people the single most important reason to use Linux is the price—it’s
free. You may have to pay to get a distribution of Linux on CD with manuals at a
store, but you are paying for the cost of burning the CD, writing and printing the
manuals, and distributing the end product. You don’t have to pay for the
operating system itself. In fact, you can download Linux from many different
locations on the Internet.

As a game developer, you will have a threefold interest in targeting Linux:

m Linux is a growing marketplace, and any market that is growing is a good
target. Although the market is growing, it is still smaller than the Windows
market. The place where Linux is growing is in universities, colleges, and
other postsecondary institutions—and this is probably where your best
computer gaming audience is.

m Few computer games are available for Linux desktops; most developers
focus on Windows because it is the biggest market. If you ship a game
for Linux, you will be a bigger fish in a smaller ocean. That gets you
exposure and a reputation that you can build on. And that’s nothing
to sneeze at.

m Linux offers a more configurable and secure environment for unattended
Internet game servers. Linux servers can be run in a console mode that
requires no fancy graphics, buttons, or mice. This allows you to utilize
slower computers with less memory for servers and still get the computing
power you need for your game server.

Unlike other operating systems, Linux comes in a variety of flavors known as
distributions. There are many ongoing arguments about the merits of one dis-
tribution or another. Some of the more popular distributions are Red Hat, SuSE,
Mandrake, Turbolinux, Debian, and Slackware. Although they may be organized
differently in some cases and each has its own unique graphical look and feel,
they are all based on the same kernel. It is the kernel that defines it as Linux.

The Computer Game Industry

Macintosh

The Macintosh is used a great deal in art-related fields and in the art departments
of many businesses. Although the price point might not be as good as Linux
(where the OS and most software is free), the Macintosh operating system is
typically more accessible to the less tech-savvy users among us.

As with Linux, there has also traditionally been a dearth of computer games
available for the Mac. So the big fish—small ocean factor applies here as well. Go
ahead and make a splash!

Note

One minor disadvantage of working with cross-platform software like Torque is the issue of
naming conventions. In this book, wherever possible, | will head off the potential conflicts with a
note that will cast a particular naming approach in stone for the duration of the book.

An example that will probably become obvious pretty quickly is the concept of directories or
folders. The latter is shorter and easier to type, and the term will be used often. To save my editors
the hassle, | will use folders. If you are a directories person, please just play along, okay?

Game Developer Roles

In the context of the game we will develop during our journey together through
this book, you will wear all of the different game developer hats. The thing to
remember is that oftentimes the lines between the roles will blur, and it might be
hard to tell which hat you are wearing. So wear them all. Many indies wear
multiple hats throughout the life of a game project, so it’s just as well to get used
to it!

Producer

A game producer is essentially the game project’s leader. The producer will draw
up and track the schedule, manage the people who do the hands-on development
work, and oversee the budget and expenditures. The producer may not know
how to make any part of a game at all, but he is the one person on a game project
who knows everything that is happening and why.

It’s the producer who needs to poke the other developers in the ribs when they
seem to be lagging. The producer must be aware when different members of the
team are in need of some tool, knowledge, or resource and arrange to provide
the team members with what they need.

15

16

Chapter 1 = Introduction to 3D Game Development

Sometimes producers just need to spray a liberal dose of Ego-in-a-Can to refresh
a despondent developer who keeps smashing into the same brick wall over and
over while the clock ticks down.

The producer will also be the team’s interface with the rest of the world, handling
media queries, negotiating contracts and licenses, and generally keeping the big
noisy bothersome world off the backs of the development team.

Designer

If you are reading this, I have no doubt that you want to be a game designer. And
why not? Game designers are like fun engineers—they create fun out of their
imaginations. As a game designer, you will decide the theme and rules of the
game, and you will guide the evolution of the overall feel of the game. And be
warned—it had better be fun!

There are several levels of designers: lead designer, level designer, designer-writer,
character designer, and so on. Large projects may have more than one person in
each design role. Smaller projects may have only one designer or even a designer
who also wears a programmer’s or artist’s hat! Or both!

Game designers need to be good communicators, and the best ones are great
collaborators and persuaders. They need to get the ideas and concepts out of their
heads and into the heads of the rest of the development team. Designers not only
create the concept and feel of the game as a whole but also create levels and maps
and help the programmers stitch together different aspects of the game.

The lead designer will put together a design document that lays out all the aspects
of the game. The rest of the team will work from this document as a guide for
their activities. A design document will include maps, sketches of game objects,
descriptions of plot devices, flow charts, and tables of characteristics. The
designer will usually write a narrative text that describes how all of these parts fit
together. A well-written and thorough game design completely describes the
game from the player’s perspective.

Unlike the producer, a designer needs to understand the technical aspects of the
game and how the artists and programmers do what they do.

Programmer

Game programmers write program code that turns game ideas, artwork, sound,
and music into a fully functional game. Game programmers control the speed
and placement of the game artwork and sound. They control the cause-and-effect

The Computer Game Industry

relationships of events, translating user inputs through internal calculations into
visual and audio experiences.

There can be many different specializations in programming. In this book you
will be doing a large amount of programming of game rules, character control,
game event management, and scoring. You will be using TorqueScript to do all
of these things.

For online game programming, specialization may also be divided between client
code and server code. It is quite common to specify character and player behavior
as a particular programmer specialty. Other specialty areas might be vehicle
dynamics, environmental or weather control, and item management.

Other programmers on other projects might be creating parts of the 3D game
engine, the networking code, the audio code, or tools for use with the engine. In
our specific case these specializations aren’t needed because Torque looks after all
of these things for us. We are going to focus on making the game itself.

Visual Artist

During the design stages of development, game artists draw sketches and create
storyboards to illustrate and flesh out the designers’ concepts. Figure 1.9
demonstrates a conceptual design sketch created by a visual artist and used by the
development team as a reference for modeling and programming work. Artists
will later create all the models and texture artwork called for by the design
document, including characters, buildings, vehicles, and icons.

The three principal types of 3D art are models, animations, and textures—and
the artists who create these types of art are 3D modelers, animators, and texture
artists, respectively.

m 3D modelers design and build player-characters, creatures, vehicles, and
other mobile 3D constructs. In order to ensure that the game gets the best
performance possible, 3D modelers usually try to make the least complex
model that suits the job. A 3D modeler is very much a sculptor working with
digital clay.

= Animators make those models move. The same artist quite often does both
modeling and animation.

m Texture artists create images that are wrapped around the constructs
created by 3D modelers. Texture artists take photographs or paint pictures
of various surfaces for use in these texture images. The texture is then

17

8l

(el P L EA S - wf o T
E—’kr_"/-..mrﬁ e = r

Ereai 1, L™
m_‘..“.;,/fu-c it

ey e A &
rrel EarvEl Eiatic
ﬁ_?ﬁﬂ" Hézﬁ" -
o | o P74

i dan e vEmoved
e .

L) Aoy RN TIM F
\.._._,—
' el Aearn 1 . Thewa® (2 oF Faret
‘ - i ard et dTjeard tujbe
- =) BPar rel fviews e —— —
i\ =3
"

BraveTreeProductions
nttp /A weww . bravetree . .com

Figure 1.9
A conceptual design sketch.

The Computer Game Industry

wrapped around the objects in question in a process called fexture mapping:.
Texture artists help the 3D modelers reduce the model complexity by using
highly detailed and cleverly designed textures. The intent is to fool the eye
into seeing more detail than is actually there. If a 3D modeler molds a
sculpture in digital clay, the texture artist paints that sculpture with digital
paint.

Audio Artist

Audio artists compose the music and sound in a game. Good designers work with
creative and inspired audio artists to create musical compositions that intensify
the game experience.

Audio artists work closely with the game designers to determine where the sound
effects are needed and what the character of the sounds should be. Audio artists
often spend quite a bit of time experimenting with sound-effect sources, looking
for different ways to generate the precise sound needed. Visit an audio artist at
work and you might catch him slapping rulers and dropping boxes in front of a
microphone. After capturing the basic sound, an audio artist will then massage
the sound with sound-editing tools to vary the pitch, to speed it up or slow it
down, to remove unwanted noise, and so on. It’s often a tightrope walk balancing
realistic sounds with the need to exaggerate certain characteristics in order to
make the right point in the game context.

Quality Assurance Specialist

Quality Assurance (QA) is a somewhat fancy name for festzng. The general field of
QA is more extensive than that, of course, but in the game business game testers
take the brunt of the QA load. The purpose of testing is to ensure that a finished
game is really finished, with as few bugs or problems as humanly possible. QA
testing requires the quality assurance specialist, or game tester, to play each part
of a game, trying to flush out all glitches and bugs.

Most of the problems QA testing will find are visual or behavioral: text that
doesn’t properly wrap on an edge, characters that don’t jump correctly, or a level
that has buildings misplaced. Testing can find game play problems; these are
usually related more to the design than the programming. An example could be
that the running speed of a player might not be fast enough to escape a particular
enemy when it should be more than fast enough.

19

20

Chapter 1 = Introduction to 3D Game Development

QA specialists need to be methodical in order to increase the chances of finding a
bug. This might mean replaying a certain part of a game many times to the point
of boredom. QA specialists need to be able to communicate well in order to write
useful and meaningful bug reports.

Publishing Your Game

You can self-publish, of course. Whip up a Web site, add a shopping cart system,
get your site added to various search engines, and sit back to wait for the dough to
roll in, right? Well, it #zzg/r work.

If you really think you have the next killer game and want it to sell, however, you
need to hook up with someone who knows what they are doing. That would be a
publisher. If you are an independent game developer, you will probably have
difficulty attracting the attention of the big-name publishers. They usually know
what they are looking for, are normally only interested in developers with proven
track records, and probably already know whom they want to deal with anyway.

But all is not lost—there are options available for the indie. The one I recom-
mend is GarageGames (http://www.garagegames.com). Besides offering com-
petitive publishing terms for indie developers, GarageGames also created the
Torque Game Engine, which it has graciously agreed to allow me to include on
the CD for this book. Torque is the technology behind the popular and successful
Tribes series of games. I'm going to help you learn how to use Torque as an
enormous lever in creating your game.

But wait—there’s more! If you really need to, you can buy a license from
GarageGames for the Torque Game Engine that will give you (under the terms of
the license) all of the source code for the engine, so you can turn any game dream
into a reality—for only $100! That’s a hundred bucks for full access to the inner
workings of an award-winning AAA 3D game engine. As Neo would say,
“Whoa!”

I have no qualms about suggesting that you go to GarageGames. They are the
guys behind the 777bes franchise, which is now owned by Sierra. They know their
stuff, but they are not some big faceless corporate entity. They're basically a
handful of guys who’ve made their splash in the corporate computer game
industry, and now they’re doing their level best to help the independent game
developers of the world make their own splashes.

And no, they aren’t paying for this book!

Elements of a 3D Game

Elements of a 3D Game

The architecture of a modern 3D game encompasses several discrete elements:
the engine, scripts, GUI, models, textures, audio, and support infrastructure.
We’re going to cover all of these elements in detail in this book. In this section
I’ll give you some brief sketches of each element so you’ll have a sense of where
we are going.

Game Engine

Game engines provide most of the significant features of a gaming environment:
3D scene rendering, networking, graphics, and scripting, to name a few. See
Figure 1.10 for a block diagram that depicts the major feature areas.

Game engines also allow for a sophisticated rendering of game environments.
Each game uses a different system to organize how the visual aspects of the game
will be modeled. This becomes increasingly important as games are becoming
more focused on 3D environments, rich textures and forms, and an overall
realistic feel to the game. Textured polygon rendering is one of the most common
forms of rendering in FPS games, which tend to be some of the more visually
immersive games on the market.

By creating consistent graphic environments and populating those environments
with objects that obey specific physical laws and requirements, gaming engines
allow games to progress significantly along the lines of producing more and more
plausible narratives. Characters are constrained by rules that have realistic bases
that increase the gamer’s suspension of disbelief and draw him deeper into
the game.

User Input Graphics Audio

Event, Timing, &
Synchronization

Scene Graph

Networking
Seripting Resouroes
File 110
Figure 1.10

Elements of a game engine.

21

22

Chapter 1 = Introduction to 3D Game Development

By including physics formulas, games are able to realistically account for moving
bodies, falling objects, and particle movement. This is how FPS games such as
Tribes 2, Quake 3, Half-Life 2, or Unreal II are able to allow characters to run,
jump, and fall in a virtual game world. Game engines encapsulate real-world
characteristics such as time, motion, the effects of gravity, and other natural
physical laws. They provide the developer with the ability to almost directly interact
with the gaming world created, leading to more immersive game environments.

As mentioned earlier, this book will employ the Torque Game Engine from
GarageGames (http://www.garagegames.com). The Torque Game Engine is
included on the CD with this book. Later on we will discuss Torque in more
detail—and you will understand why Torque was chosen.

Scripts

As you’ve just seen, the engine provides the code that does all the hard work,
graphics rendering, networking, and so on. We tie all these capabilities together
with scripts. Sophisticated and fully featured games can be difficult to create
without scripting capability.

Scripts are used to bring the different parts of the engine together, provide the
game play functions, and enable the game world rules. Some of the things we will
do with scripts in this book include scoring, managing players, defining player
and vehicle behaviors, and controlling GUI interfaces.

Following is an example of a TorqueScript code fragment:

// Beer::RechargeCompleteCB

// args: %this - the current Beer object instance
// huser - the player connection user by id
!/

// description:
// Callback function invoked when the energy recharge
// the player gets from drinking beer is finished.
// Note: %this is not used.
function Beer:: RechargeCompleteCB (%this,%user)
{
// fetch this player's regular recharge rate
// and use it to restore his current recharge rate
// back to normal
suser.setRechargeRate(%user.getDataBlock().rechargeRate);

Elements of a 3D Game

// Beer::0nUse

// args: %this - the current Beer object instance
// suser - the player connection user by id
/1

// description:
// Callback function invoked when the energy recharge
// the player gets from drinking beer is finished.
/1
function Beer::0nUse(%this,%user)
{
// if the player's current energy level
// is zero, he can't be recharged, because
// he is dying
if (%user.getEnergylLevel() !=0)
{
// figure out how much the player imbibed
// by tracking the portion of the beer used.
sthis.portionUsed += %this.portion;
// check if we have used up all portions
if (%this.portionUsed >=%this.portionCount)
{
// if portions used up, then remove this Beer from the
// player's inventory and reset the portion
%this.portionUsed =0;
%user.decInventory(%this,1);
1
// get the user's current recharge rate
// and use it to set the temporary recharge rate
scurrentRate = Zuser.getRechargeRate();
suser.setRechargeRate(%currentRate +%this.portionCount);

// then schedule a callback to restore the recharge rate

// back tonormal in 5 seconds. Save the index into the schedule

// 1ist in the Beer object in case we need to cancel the

// callback Tater before it gets called
%this.staminaSchedule=%this.schedule(5000, "RechargeCompleteCB",%user);

// if the user player hasn't just disconnected on us, and
// is not a 'bot.
if (%user.client)
{
// Play the 2D sound effect signifying relief ("ahhhhh")
%user.client.play2D(Relief);

23

24 Chapter 1 = Introduction to 3D Game Development

// send the appropriate message to the client system message
// window depending on whether the Beer has been finished,
// or not. Note that whenever we get here portionUsed will be

// non-zero as long as there is beer left in the tankard.

if (#this.portionUsed ==0)
messageClient(%user.client, 'MsgBeerUsed', '"\c2Tankard polished off');

else
messageClient(%user.client, 'MsgBeerUsed', '\c2Beer swigged');

}
1
1

The example code establishes the rules for what happens when a player takes a
drink of beer. Basically, it tracks how much of the beer has been consumed and
gives the player a jolt of energy for five seconds after every mouthful. It sends
messages to the player’s client screen telling him what he’s done—had a sip or
polished off the whole thing. It also plays a sound effect of the player sighing in
relief and contentment with every drink.

Graphical User Interface

The Graphical User Interface (GUI) is typically a combination of the graphics and
the scripts that carries the visual appearance of the game and accepts the user’s
control inputs. The player’s Heads Up Display(HUD), where health and score are
displayed, is part of the GUI. So are the main start-up menus, the settings or
option menus, the dialog boxes, and the various in-game message systems.

Figure 1.11 shows an example main screen using the 7wubettiworld game. In the
upper-left corner, the text that says “Client 1.62” is an example of a GUI text
control. Stacked along the left side from the middle down are four GUI button
controls. The popsicle-stick snapper logo in the lower right and the Zubettiworid
logo across the top of the image are GUI bitmap controls that are overlaid on top
of another GUI bitmap control (the background picture). Note that in the figure
the top button control (Connect) is currently highlighted, with the mouse cursor
over top of it. This capability is provided by the Torque Game Engine as part of
the definition of the button control.

In later chapters of this book we will spend a good deal of time contemplating,
designing, and implementing the GUI elements of our game.

Elements of a 3D Game

Chent 162

TUBETTINC RLEL

Figure 1.11
An example of a main menu GUI.

Models

3D models (see Figure 1.12) are the essential soul of 3D games. With one or two
exceptions, every visual item on a game screen that isn’t part of the GUI is a
model of some kind. Our player’s character is a model. The world he tromps on is
a special kind of model called zerrazn. All the buildings, trees, lampposts, and
vehicles in our game world are models.

In later chapters we will spend a great deal of time creating and texturing models,
animating them, and then inserting them into our game.

Textures

In a 3D game, textures are an important part of rendering the models in 3D
scenes. Textures (in certain cases called skzzs—see Figure 1.13) define the visually
rendered appearance of all those models that go into a 3D game. Proper and
imaginative uses of textures on 3D models not only will enhance the model’s
appearance but will also help reduce the complexity of the model. This allows us
to draw more models in a given period of time, enhancing performance.

25

26

Chapter 1 = Introduction to 3D Game Development

Figure 1.12
A 3D wire-frame model and a textured model of an old-style helicopter.

Figure 1.13
The textures used as the skin of the old-style helicopter.

Elements of a 3D Game

Figure 1.14
A graphical view of a gunshot sound-effect waveform.

Sound

Sound provides the contextual flavoring in a 3D game, providing audio cues to
events and background sounds that imply environments and context, as well as
3D positioning cues for the player. Judicious use of appropriate sound effects is
necessary for making a good 3D game. Figure 1.14 shows a sound-effect wave-
form being manipulated in a waveform-editing program.

Music

Some games, especially multiplayer games, use little music. For other games, such
as single-player adventure games, music is an essential tool for establishing story
line moods and contextual cues for the player.

Composing music for games is beyond the scope of this book. During the later
chapters, however, I will point out places where music might be useful. It is
always helpful to pay attention to your game play and whatever mood you are
trying to achieve. Adding the right piece of music just might be what you need to
achieve the desired mood.

27

28

Chapter 1 = Introduction to 3D Game Development

Support Infrastructure

This is more important for persistent multiplayer online games than single player
games. When we ponder game infrastructure issues, we are considering such
things as databases for player scores and capabilities, auto-update tools, Web
sites, support forums, and, finally, game administration and player management
tools.

The following infrastructure items are beyond the scope of this book, but I
present them here to make you aware that you should spend time considering
what you might need to do.

Web Sites

A Web site is necessary to provide people with a place where they can learn news
about your game, find links to important or interesting information, and down-
load patches and fixes for your game.

A Web site provides a focal point for your game, like a storefront. If you intend to
sell your game, a well-designed Web site is a necessity.

Auto-Update

An auto-update program accompanies your game onto the player’s system. The
updater is run at game start-up and connects via the Internet to a site that you
specify, looking for updated files, patches, or other data that may have changed
since the user last ran the program. It then downloads the appropriate files before
launching the game using the updated information.

Many games, like Delta Force: Blackhawk Down, World War Il Online, and Ever-
guest, have an auto-update feature. Web-based distribution systems, like Steam
from Valve, also have such capability. When you log in to the game, the server
checks to see if you need to have any part of your installation upgraded, and if so
it automatically transfers the files to your client. Some auto-updaters will down-
load a local installer program and run it on your machine to ensure that you have
the latest files.

Support Forums

Community forums or bulletin boards are a valuable tool for the developer to
provide to customers. Forums are a vibrant community where players can discuss
your game, its features, and the matches or games they’ve played against each
other. You can also use forums as a feedback mechanism for customer support.

The Torque Game Engine

Administrative Tools

If you are developing a persistent online game, it will be important to obtain
Web-based tools for creating and deleting player accounts, changing passwords,
and managing whatever other uses you might encounter. You will need some sort
of hosted Web service with the ability to use CGI-, Perl-, or PHP-based inter-
active forms or pages. Although this is not strictly necessary, you really should
invest in a database to accompany the administrative tools.

Database

If you intend your game to offer any sort of persisternce where players’ scores,
accomplishments, and settings are saved—and need to be protected from fiddling
by the players on their own computers—then you probably need a database back
end. Typically, the administrative tools just mentioned are used to create player
records in the database, and the game server communicates with the database to
authenticate users, fetch and store scores, and save and recall game settings and
configurations.

A common setup would include MySQL or PostgreSQL or something similar.
Again, you will probably need to subscribe to a hosted Web service that offers a
database.

The Torque Game Engine

I’ve mentioned the Torque Game Engine (TGE) several times already. I think
now would be a good time to take a little deeper look at the engine and how you
will be using it.

Appendix A provides a reference for the Torque Game Engine, so look there if
you really need more detail.

Descriptions

The following descriptions are by no means exhaustive, but a cup of coffee would
go well with this section. Go ahead and make some—T’ll wait. Black with two
sweeteners, please.

Moving right along, you should note that the main reason for including this
section is to give you, the gentle reader, the right sense of how much behind-the-
scenes work is done for you by the engine.

29

30

Chapter 1 = Introduction to 3D Game Development

Basic Control Flow

The Torque Game Engine initializes libraries and game functions and then cycles
in the main game loop until the program is terminated. The main loop basically
calls platform library functions to produce platform events, which then drive the
main simulation.

Torque handles all of the basic event procession functions as follows:

m Dispatches Windows mouse movement events to the GUI

m Processes other input-related events

m Calculates elapsed time based on the time scale setting of the simulation
m Manages processing time for server objects

m Checks for server network packet transmission

m Advances simulation event time

m Processes time for client objects

m Checks for client network packet transmission

m Renders the current frame

m Checks for network timeouts

Platform Layer

The platform layer provides a cross-platform architecture interface to the engine.
The platform layer is responsible for handling file and network operations,
graphics initialization, user input, and events.

Console

The console library provides the foundation for Torque-based games. The
console has both a compiler and an interpreter. All GUIs, game objects, game
logic, and interfaces are handled through the console. The console language is
called TorqueScript and is similar to a typeless C++, with some additional
features that facilitate game development. You can load console scripts using a
command from the console window as well as automatically from files.

The Torque Game Engine

Input Model

Input events are translated in the platform layer and then posted to the game. By
default the game checks the input event against a global action map that
supersedes all other action handlers. If there is no action specified for the event, it
is passed on to the GUI system. If the GUI does not handle the input event, it is
passed to the currently active (nonglobal) action map stack.

Platform-specific code translates Win32, X Windows, or Mac events into uniform
Torque input events. These events are posted into the main application event queue.

Action maps translate platform input events to console commands. Any plat-
form input event can be bound in a single generic way—so in theory, the game
doesn’t need to know if the event came from the keyboard, the mouse, the
joystick, or some other input device. This allows users of the game to map keys
and actions according to their own preferences.

Simulation

A stream of events drives the game from the platform library: InputEvent,
MouseMoveEvent, PacketReceiveEvent, TimeEvent, QuitEvent, ConsoleEvent,
ConnectedReceiveEvent, ConnectedAcceptEvent, and ConnectedNotifyEvent. By
journaling the stream of events from the platform layer, the game portion of the
simulation session can be deterministically replayed for debugging purposes.

The simulation of objects is handled almost entirely in the game portion of the
engine. Objects that need to be notified of the passage of time can be added to one
of the two process lists: the global server or global client process list, depending
on whether the object is a server object or a client ghost.

Server-side objects are only simulated at certain times, but client objects, in order
to present a smooth view when the frame rate is high, are simulated after each time
event.

There is a simulator class that manages all of the objects and events in the
simulation. Objects are collected in a hierarchy of simulator classes and can be
searched for by name or by object ID.

Resource Manager

The Torque Game Engine uses many game resources. Terrain files, bitmaps,
shapes, material lists, fonts, and interiors are all examples of game resources.

31

32

Chapter 1 = Introduction to 3D Game Development

Torque has a resource manager that it uses to manage large numbers of game
resources and to provide a common interface for loading and saving resources.
Under the auspices of Torque’s resource manager, only one instance of a resource
will ever be loaded at a time.

Graphics

The Torque Game Engine does not perform its own graphics rasterization;
instead, it uses the OpenGL graphics API. Torque includes a utility library that
extends OpenGL to support higher-level primitives and resources.

TGE has a collection of utility functions that add support for complex primitives
and resources like fonts and bitmaps and that add simple functions for more
easily managing textures and 2D rasterization.

There is also a texture manager that tracks the loading and unloading of all
textures in the game. Only one instance of a texture is ever loaded at a given time;
after loading it is handed off to OpenGL. When the game switches graphics
modes or video devices, the texture manager can transparently reload and
redownload all the game’s textures.

Torque supports several bitmap file types: PNG, JPEG, GIF, BMP, and the custom
BM8 format, an 8-bit color texture format used to minimize texture memory
overhead.

The GUI library manages the user interface of Torque games. It is designed
specifically for the needs of game user interface development. The Canvas object
is the root of the active GUI hierarchy. It dispatches mouse and keyboard events,
manages update regions and cursors, and calls the appropriate render methods
when it is time to draw the next frame. The Canvas keeps track of content
controls, which are separate hierarchies of controls that render from bottom to
top. The main content control is a screen in the shell that can be covered by any
number of floating windows or dialog boxes.

A Profile class maintains common instance data across a set of controls. Infor-
mation such as font face, colors, bitmaps, and sound data are all stored in instances
of the Profile class, so that they don’t need to be replicated on each control.

A Control class is the root class for all the GUI controls in the system. A control can
contain any number of child controls. Each control maintains a bounding rectangle
in the coordinate system of its parent control. The Control class processes input
events, rendering, and mouse focus and coordinates automatic sizing.

The Torque Game Engine

3D Rendering

The Torque library has a modular, extensible 3D world rendering system. Game
subclasses first define the camera orientation and field of view and then draw the
3D scene using OpenGL drawing commands. A class manages the setting up of
the viewport as well as the model view and projection matrices. A function
returns the viewing camera of the current control object (the object in the
simulation that the player is currently controlling), and then the engine calls the
client scene graph object to render the world.

On the client, a scene graph library is responsible for traversing the world scene
and determining which objects in the world should be rendered given the
current camera position, while on the server, it determines what objects should
be sent to each client based on that client’s position in the world. The world is
divided into zones, which are volumes of space bounded by solid areas and
portals. The outside world is a single zone, and interior objects can have
multiple interior zones. The engine finds the zone of a given 3D point and
which object owns that zone. The engine then determines which zone or zones
contain an object instance. At render time the scene is traversed starting from
the zone that contains the camera, clipping each zone’s objects to the visible
portal set from the zones before it. The engine also performs the scoping of
network objects, deciding whether a given object needs to be dealt with by a
client.

Every world object in the scene that can be rendered is derived from a single base
class. As the world is traversed, visible objects are asked to prepare one or more
render images that are then inserted into the current scene. Render images
are sorted based on translucency and then rendered. This system permits an
interior object with multiple translucent windows to render the building first,
followed by other objects, and then followed by the building’s windows. Objects
can insert any number of images for rendering.

Terrain

The terrain library deals with objects that render a model of the outside world. It
contains a sky object that renders the outside skybox, animates and renders cloud
layers, and applies the visible distance and fog distance settings for when the
world as a whole is rendered. The sky object also generates the vertical fog layers
and sends them into the SceneGraph object for rendering. The TerrainBlock class
provides a single 256 x 256 infinitely repeating block of heightfield terrain.

33

34

Chapter 1 = Introduction to 3D Game Development

Heightfield data is stored and loaded by the resource manager so that a single
terrain data file can be shared between server and client.

The terrain is textured by blending base material textures with program code into
new material textures and then mapping those across multiple terrain squares
based on the distance from the square. The Blender class performs the blending
of terrain textures and includes a special assembly version to speed things up
when executing on x86 architectures.

Water is dynamically rendered based on distance, making nearby water more
tessellated and detailed. Water coverage of an area can be set to seed fill from a
point on the surface, allowing the water to fill a depression to form a lake without
leaking outside the corners.

Interiors

The interior library manages the rendering, collision, and disk-file services for
interior objects, such as buildings. An interior resource class manages the data
associated with a single definition of an interior, and multiple instances may exist
at any one time. Interiors manage zones for the scene graph and may have sub-
objects that render a mirrored view. A light manager class generates lightmaps for
all currently loaded interiors. Lightmaps are shared among instances whenever
possible. Interior resources are built and lit by an interior importer utility. The
source files are Quake-style .map files that are little more than lists of convex
physical constructive solid geometry “brushes” that define the solid areas of the
interior. Special brushes define zone portal boundaries and objects like lights.

Shapes and Animation

A library manages the display and animation of shape models in the world. This
library’s shape resource class can be shared between multiple shape instances. The
shape class manages all the static data for a shape: mesh data, animation key-
frames, material lists, decal information, triggers, and detail levels. An instance
class manages animation, rendering, and detail selection for an instance of a shape.
The instance class uses the thread class to manage one of the concurrently running
animations on an instance. Each thread can be individually advanced in time or
can be set on a time scale that is used when all threads are advanced. A thread can
also manage transitions between sequences.

Animation sequences can be composed of node/bone animation (for example,
joints in an explosion), material animation (a texture animation on an explosion),

The Torque Game Engine

and mesh animation (a morphing blob; note that most mesh animations can be
accomplished with node scale and rotation animations). Animations can also
contain visibility tracks so that some meshes in the shape are not visible until an
animation is played.

Networking

Torque was designed from the foundation to offer robust client/server network
simulation support. The networking design of Torque was driven by the need for
superior network performance over the Internet. Torque addresses three fun-
damental problems of real-time network programming: limited bandwidth,
packet loss, and latency. For a more detailed, if somewhat outdated, description
of the Torque network architecture, see “The Tribes II Engine Networking
Model,” an article by Tim Gift and Mark Frohnmayer, at the GarageGames site
(http://www.garagegames.com). An instance of a Torque game can be set up as a
dedicated server, a client, or both client and server. If the game is both client and
server, it still behaves as a client connected to a server, but the netcode has a
short-circuit link to other netcode in the same game instance, and no data goes
out to the network.

Bandwidth is a problem because of the large, open terrain environments Torque
supports, as well as the large number of clients Torque can handle—up to 128 or
more per server, which means that there is a high probability that many different
objects can be moving and updating at the same time. Torque uses several
strategies to maximize available bandwidth.

m It sends updates to what is most important to a client at a greater frequency
than it updates data that is less important.

m It sends only the absolute minimum number of bits needed for a given piece
of data.

m It only sends the part of the object state that has changed.

m It caches common strings and data so that they need only be transmitted once.

Packet loss is a problem because the information in lost data packets must
somehow be retransmitted, yet in many cases the data in the dropped packet, if
sent again directly, will be stale by the time it gets to the client.

Latency is a problem in the simulation because the network delay in data
transmission makes the client’s view of the world perpetually out of sync with the

35

36

Chapter 1 = Introduction to 3D Game Development

server. Twitch-style FPS games, for which Torque was initially designed, require
instant control response in order to feel anything but sluggish. Also, fast-moving
objects can be difficult for highly latent players to hit. In order to solve these
problems, Torque employs the following strategies:

m [nterpolation is used to smoothly move an object from where the client
thinks it is to where the server says it is.

m Extrapolationis used to guess where the object is going based on its state and
rules of movement.

m Predictionis used to form an educated guess about where an object is going
based on rules of movement and client input.

The network architecture is layered. At the bottom is the OS/platform layer,
above that the notify protocol layer, which is followed by the NetConnection
object and event management layer.

Using Torque in This Book

As you’ve seen, the Torque Game Engine is powerful, feature rich, flexible, and
controllable. What we will do in this book is create all of the different elements of
the game that we’ll need and then write game control script code to tie it all
together.

Program code, artwork, and audio resources you will need are included on the
companion CD, along with the tools to manipulate them and create your own.

At first glance that may not seem to be too daunting a task. But remember, we will
be wearing a// of the game developer hats. So we will be creating our own models
(players, buildings, decorations, and terrains), recording our own sound effects,
placing all of these things in a virtual world of our own fabrication, and then
devising game rules and their scripted implementations to make it all happen.

Daunted yet?
Hey, it’s not going to be ##ar hard. We’ve got Torque!

Installing Torque

The companion CD contains all the materials you will need to follow the
chapters: the Torque executable, the Torque Game Engine demos and tutorial

Installing Torque

base, any required art and script resources, plus useful tools. Everything you need
will be in the folder called \3D2E.

Some of the tools, which will be located in the \3D2E\TOOLS folder, may require
installation before you use them. Not all of the supplied tools are required in
order for you to follow along in the book. Some are provided as a courtesy in case
you do not have another suitable tool for a particular task.

If the text absolutely requires you to use a specific tool to complete a procedure
outlined in the book, the text will tell you where to find and install it or otherwise
use it for that task.

To install Torque for use with the book, insert the companion CD into your CD
drive, and follow the on-screen instructions. When you have finished, the layout
of the hard drive will match the layout of the companion CD, so anywhere you
see the folder \3D2E or any of its subfolders described in the text, you will be able
to find it on your hard drive or on the companion CD. The \EXTRAS folder on
the CD is not needed in order to use the book, however.

For Macintosh and Linux Users

For readers using an operating system other than one of the Windows variants, the companion
CD’s installation procedure will likely not work for you. The Torque demo executable in \3D2E will
also not work for you. However, the scripts and artwork from the book’s examples will work on
Macintosh and Linux systems, provided you have the correct demo installation from the \EXTRAS
folder on the companion CD installed for your operating system.

When using the installers described in the following, please make sure that your destina-
tion directory or folder during the installation is /3D2E and not the default installer path.
This is to ensure that your installation paths match the paths described in the book. You
might need to create the /3D2E folder manually before running an installer.

To do this, first look in the /EXTRAS folder on the companion CD, and locate and install the demo
for your operating system:

For Macintosh, use /EXTRAS/Macintosh/TorqueGameEngineDemo_1_4.dmg.
For Linux, use /EXTRAS/Linux/TorqueGameEngineDemo-1.4.bin.

After installing the appropriate Torque demo variant on your system, you must then copy the
contents of the companion CD's /3D2E folder into the new /3D2E directory you created where
you've just installed the Torque demo on your system.

After that you can then delete the files demo.exe, getdxver.exe, glu2d3d.dll, OpenAL32.dll, and
opengl2d3d.dil from your new /3D2E folder if you like—they are Windows files that you won't be
able to use anyway.

37

38

Chapter 1 = Introduction to 3D Game Development

In the book you will sometimes see references to folders that use full path names
(like \3D2E\demo\client\init.cs, for example) and other times you will see partial
path names (like RESOURCES\ch2). The drive letter will never be included. This
means that the path to the folder will be appropriate no matter which hard drive or
volume you install to. With the partial paths it will be obvious where the folders
are. RESOURCES is always a subfolder of \3D2E, for instance, as are the TOOLS,
EXTRAS, demo, common, creator, and show folders.

Note

Throughout the book you will see references to the fps demo or the racing demo. These are the
Torque Game Engine demo programs, set to run the fps or racing missions.

Run the fps demo by double-clicking demo.exe in the \3D2E folder. After the splash screen
disappears, in the main menu click the Example: FPS Multiplayer button near the center. On the
next screen make sure the Create Server box is checked, then click the right-facing arrow button
in the lower-left part of the screen.

In addition to the fps first-person shoot-"em-up demo, there is a racing dune buggy demo for you
to distract yourself with. On the main menu in the demo, click the Example: Multiplayer Racing
button (the bottom button). When the screen changes check the Create Server box, and finally
click the right-facing arrow button at the bottom.

Moving Right Along

There you go. You now have the basic Torque Game Engine plus some sample
games installed. Enjoy!

Of course, if you are following along with the game development in this book,
you will need to return to the CD and install all the other components when they
are needed.

In this chapter we’ve looked at computer games from many different angles—the
industry, the genres, and the different roles of developers. And we’ve explored the
kinds of things that make a game engine work and how they relate to each other.

In the next chapter we’ll get into the basics of programming. We’ll use the Torque
Engine itself to run our example programs as we work through the chapter. This
will develop skills you’ll need in later chapters when we start delving into real
game programming scripts.

CHAPTER 2

INTRODUCTION TO
PROGRAMMING

My intent with this chapter is to help you understand programming concepts
and techniques and leave you with a foundation upon which you can build more
advanced skills. By the end of this chapter, you will be proficient with a powerful
programming editor; understand how to create, compile, and run programs
you've written yourself; have a reasonable sense of programming problem-
solving methods; and be familiar with valuable debugging tips and techniques.

UltraEdit-32

To write our programs, we will need to use a text editor, or programming editor.
This kind of editor differs from a word processor, which is what most people use
for writing documents, books, memos, and church bulletins.

A good programming editor has several useful features:
m A project feature that allows you to organize your source files

m A fully featured grep (find, search and replace) capability

Syntax highlighting

m A function finder or reference

Macro capability
m Bookmarks

m Text balancing or matching

39

40

Chapter 2 = Introduction to Programming

I use a shareware editor called UltraEdit-32 (UltraEdit), written by lan D. Meade,
included on the companion CD for this book. It also has several other useful
features that I'll demonstrate later in this chapter.

grep? What Kind of Name Is That?

The name grep comes from the UNIX world, where strange and wonderful names and
incantations for programs abound. The word grep is derived from the command string g/re/p,
which first appeared in old line-editor programs on early UNIX systems. The g meant “global,”
the re meant "regular expression,” and the p meant “print,” as in print to the screen. If you
entered that command into the editor's command line, you were telling the editor to globally
search, using regular expression syntax, and then to print the results—and the expression
would then follow those characters. Eventually that command string was migrated outside of
the editor program and incorporated into a command that was usable from the UNIX command
shell as a way of specifying how to look and what to look for when you were searching files
that contained a particular piece of text. Over time, the name grep has become synonymous
with searching files for embedded text and is a common term in the programming world,
even in non-UNIX environments. Now it is often used as a verb meaning “search for text in
files."

Program Setup and Configuration

If you haven’t already installed the companion CD per the instructions near
the end of Chapter 1, it might be a good idea to go back and review that
section. Briefly: after you insert the companion CD into your computer’s
CD drive, use Explorer to browse the CD and locate the folder called 3D2E.
Drag this folder from your CD to your hard drive, which will presumably be
C:, though you can use whatever hard drive you want. Make sure you have
about 500MB of disk space available, to hold both the CD contents you
copy and the installed versions of the software tools that you will be
installing as you work through this book. When you’ve finished copying,
you are free to remove the CD and store it in a safe place. For ins-
tance, setting it on a windowsill in the hot sun is not a safe place. 'm just
sayin’. . .

Now, browse your way into the new \3D2E folder on your hard drive and into the
folder called TOOLS. In there you will see a folder called ULTRAEDIT-32. Inside
that folder you will find uedit32.zip, which contains setup.exe; open the zip
and double-click on uesetup.exe, and follow the installation instructions that
appear. Finally, also in the TOOLS folder, locate the UESAMPLEPROJECT
folder, and drag and drop the folder into the \3D2E folder.

UltraEdit-32

Setting Up Projects and Files

Like any decent editor environment, UltraEdit-32 allows us to organize the files
we want to work with using a projects concept. You can create, in UltraEdit-32,
virtual folders and save links to your files in these folders. By doing this, you can
make a quick and convenient access channel to files that are stored anywhere,
even somewhere on the network! Setting up your projects takes a wee bit of
effort, however, depending on your needs. Let’s dive in and set up a project.

Configuring UltraEdit
To configure UltraEdit, follow these steps:

1. Launch UltraEdit by selecting Start, Program, UltraEdit, UltraEdit-32 Text
Editor.

2. Close any open files or windows you may have in UltraEdit by selecting
Window, Close All Files.

3. In UltraEdit, select View, Views/Lists, File Tree View. A new docked window
will appear on the left side (see Figure 2.1). This is the File Tree View, also
called the File View.

4. The File View has three tabs, which are used to select different ways of
viewing files. Normally we work with the project files, so click on the tab that
says Project, and this will bring the Project tab to the forefront in the File
View, as depicted in Figure 2.2.

x|

P'ru:uiectl Open Explorer |
H-S
528 D;

Figure 2.1
The File View.

41

42

Chapter 2 = Introduction to Programming

10.

x|

Project | Open | E:-:plu:urerl

Figure 2.2
The Project tab.

. If the File View is free-floating (not docked), click and hold (grab) the

colored bar at the top of the File View window where it says “File View” and
drag it to the left side of your UltraEdit window such that the colored bar
remains in the dark gray space, but the left side of the view window dis-
appears off the left side of the UltraEdit window. You should see the outline
of the view window change from a wide gray line to a thin black line. Let go
of the mouse button and the view will be docked on the left side.

. Select the menu item Project, New Project/Workspace. A Specify Project File

dialog box will appear. Browse your way to \3D2E. Type in the project name
(myscripts), and make sure you have the Project Files type selected in the
drop-down list of the dialog box. Click Save, and the Project Settings dialog
box will appear. If you are given an alert that tells you the file already exists
and asks if you want to replace it, click Yes.

. In the Folder Options section at the bottom, select the Include sub folders in

folder check box if it isn’t already set with a check mark.

. Click Add Folder and select the Group check box.
. Click the ellipsis button to the right of the empty text box.

Locate the folder that contains all the files you want to include in your
project—in our case, it’s the \3D2E folder on your hard drive. Locate and
select that folder, then click OK.

11.
12.

13.
14.

Project Settings - [myscripts]

Froject Directony:

|E: “I02E Brovze |

il myscripts
-7 C:\3D2E),

Optional Wwordfile:

| Browse

Optional CTAGS file:

i

|| Browsze

[Create CTAG file on project load

~ Folder Options

v Include sub folders in folders

Filter: | gui:™ kst~ log:* mis. il dml i

Open

Cloge

&dd Folder

&dd File...

+hctive File
+4]l Open Files

Remove

Filker

Refresh

BRI b

Help

Figure 2.3
The Project dialog box with folder.

UltraEdit-32

When you return to the New Folder dialog box, click OK again.

Down in the Folder Options section again, type the following into the Filter
text box: x.cspx.guis.txt;x.Jogs+.mis;«. hfl;x.dml;*.ifl. Each of these is a
different file type, specified by extension. We are doing this in order to allow
only files of these types to appear in our project. Don’t worry about what
they mean right now; we’ll get into them in later chapters of the book. Your
Project dialog box should look like the one in Figure 2.3.

Click the Close button.

Take a look at your Project tab of the File View, and click the plus sign (the
expand symbol) to the left of the folder there (which should be \3D2E, if all

went according to plan).

43

44

Chapter 2 = Introduction to Programming

-] dient
-7 help
-7 lighting
-7 server
El_l i

£ %] main. cs
| creator

~ demo

1 RESOURCES
—| show

I UESAMPLEPROIECT
' console.log
mair. cs

Figure 2.4
The myscripts Project tab of the File View.

You should now have a Project tab that shows the contents of the \3D2E folder,
which contains several more folders: common, creator, demo, and show, to name

a few, as well as the file main.cs (you might also have the files console.log and a
README.txt as well, but if you don’t, that’s okay).

Your Project tab of the File View should look something like Figure 2.4. You can
click on the plus sign in front of the folder entries in order to expand the folders
to match the view in the figure.

As the saying goes, there is more than one way to skin a cat, and in this case there
are other ways to set up your project. You can do it all from within the Project
Settings dialog box using the Add File button. You can also use the + Active File
button to add whatever file is currently the one being edited in UltraEdit. You
can experiment and find the method that works best for you. I tend to use a
combination of + All Open Files and + Active File, depending on my needs at
the time.

Go ahead and open a few files and close them again, to get a feel for how the
Project tab of the File View works.

UltraEdit-32

After setting up the project, exit UltraEdit. This ensures that the project settings
are properly saved. Then you can go ahead and reopen the project by double-
clicking the myscripts.prj icon in the \3D2E folder. If you don’t take this extra
step of quitting and then relaunching UltraEdit, you may find that the settings
haven’t properly taken, and some functions might not work. Searching through
project files for certain words is one capability that probably will not work
correctly until you close and reopen the project.

Search and Replace

The search capabilities of UltraEdit are quite extensive and thorough. I’'m going
to focus on the few most important capabilities: finding specific text, finding
specific text and replacing it, jumping to a line number, and advanced
searching using wildcards and patterns. To practice the various features, open
the UESAMPLEPROJECT folder, and open the file called sample_file_1.txt. Do
this by browsing through the Project tab. The file called sample_file_1.txt
has some text extracted from an early revision of Chapter 1 that we can hack
away at.

Find

Select the Search, Find menu item, and you should get the Find dialog box (see
Figure 2.5). Make sure the option check boxes match the ones in Figure 2.5. Now,
type in the word you want to find, then click the Find Next button. The Find
dialog box will go away, your text insertion point will jump to the first found
instance of the word you want, and the word will be highlighted. Try this using
the word 7ndie. See that?

Find tWhat: [| Find Hext I

See Help For Meaning of Special Characters, count all |
[~ Direckion

™ Highlight &ll Items Found i Closa |

[List Lines Containing String

% Down
[~ Makch Case
[Makch Whole Word Onby

[Regular Expressions Help |

Figure 2.5
The Find dialog box set for a basic search.

45

46

Chapter 2 = Introduction to Programming

Okay, now get your Find dialog box back and try doing this with the various
options. Notice that the Find operates on the currently active file in the editor.
Check out the various options, like searching “down” the file and then searching
back “up” the file. Change your search word to /ND/E (all capital letters) and
then try your search again. Note that the Find still locates the word. Now try it
with the Match Case option checked. Notice that you get an error message:
Search String Not Found!

When searching, you will often have more than one match to your search criteria.
If you are not using the List Lines option, then you can move through each match
in the text by using Search, Find Next to continue to find matching strings as you
move toward the end of the file (down). Using Search, Find Prev will do the same
thing, though moving toward the start of the file (up). However, you will
probably want to quickly get acquainted with using the keyboard shortcut F3 for
Find Next and Ctrl+F3 for Find Prev.

Tip

A quick and convenient way to search for other occurrences of a word that is already written
and visible in the active window is to highlight the word (double-click it), press Ctrl+F (the
shortcut for Find), and then press Enter. The insertion point will jump to the next occurrence of
the word. Then keep pressing F3 to move to the next, and the next, and the next, ad
infinitum. Ultrakdit will keep starting over from the beginning of the file until you die of
boredom.

A feature of the Find dialog box that I think is particularly useful is the List Lines
Containing String option. With this checked, all instances of the word you are
looking for will be listed as complete lines in a separate window. Try it by
searching for the word action with case sensitivity turned off. This should give
you a window with a list of lines in it. Each line contains at least one instance of
the search term you specified. If you double-click a line, you will see the text and
insertion point in your edit window jump to where that line is located and the
line will become highlighted.

Special Find Characters

When using Find, there are some things you may want to search for that are not normal
alphanumeric characters or punctuation marks—the end of a line, for example.

These are handled by using special characters that are a combination of an escape character and a
symbol. The caret (“A"; you get this when you hold down the Shift key and type the number “6”
on North American keyboards) is the escape character. It is paired with a symbol that is a normal
character. Whenever Find sees the combination of the caret in front of a character, the program
knows it is doing a special character search.

UltraEdit-32

Of course, the first special character is the caret itself; otherwise, we would never be able to do a
search for a caret in text. Look at the following table for a list of the most common special Find

characters.

These do not require you to

turn on the Regular Expressions switch in the Find dialog box,

although they are the same as some of the regular expression entries.

Special Characters Used in a Basic Find Function

Special Symbol

What the Program Looks For

AN caret character (“A"; sometimes called Up Arrow)
As highlighted text (only while a macro is running)
¢ contents of the Clipboard (only while a macro is running)
b page break
p newline (carriage return and line feed) (Windows/DOS files)
Ar newline (carriage return only) (Macintosh files)
n newline (line feed only) (UNIX files)
At tab character
Replace

Select the Search, Replace menu item, and you should get the Replace dialog box
(see Figure 2.6). This dialog box is similar to the Find dialog box, though the
Replace dialog box has more options and a field in which to enter the replace-

ment text.

I
Find Wihat: Izl Start |
Replace 'With: j

See Help for Meaning of Special Characters,
[Match Case

[Preserve Case

[Match Wwhols Ward Only

[Regular Expressions

Replace Al |

Cancel |

Replace Where:
&' Current: File

" Selecked Text
" Al Cpen Files

¥ Replace Allis From Top of File

Help |

Close after replace [

Figure 2.6

The Replace dialog box set for a basic search-and-replace operation.

47

48

Chapter 2 = Introduction to Programming

2
In Files/Types: iﬁ j Cancel I
Diirectory |E:\3DI3F'.t'1'~i'I :j Browsze I
[Match Caze Search I
[Match 'whole ‘wiord Only = Files Listed
:: zegul:lsﬁxgr;ssmns. P
W k

Search Su .|rec. ores ~ Project Files Help I
[Results to Edit Window

[Unicode Search

Figure 2.7
The Find In Files dialog box.

Find In Files

The Find In Files feature is UltraEdit’s closest implementation of grep, which I
mentioned earlier in the chapter. The basic Find In Files capability allows you to
specify what word or phrase you are looking for and where to look for it in files
other than the one you are currently editing (the actrvefile). Figure 2.7 shows the
Find In Files dialog box. You’ll notice that you can specify one of three different
sets of files to search.

First, you can search through the Files Listed. This means you can specify a file name
search pattern with extension and a folder to look in. This is quite similar to the
built-in Windows Search or Find feature. You can use wildcards to fine-tune which
files will be checked. Searching with the In Files/Types box set to “news.txt”, for
example, will search inside files with the names newfile.txt, new_data.txt, and so on.
Setting the pattern to “*.*” will cause the program to search inside every file it finds
in the specified folder. If you have the Search Sub Directories box checked, then it
will also look inside every file inside every folder contained in the specified folder.

When the program finds a match in the file with the word you are looking for, it
will print a listing at the bottom of the UltraEdit window containing a reference
to the file where the word was found, plus the line in which it was found. If you
double-click the line in the bottom window, UltraEdit will open the file and
position the line in your window for viewing.

Next, you can search in the Open Files—that is, only within the files that are
currently open in the editor. If you click the Open Files radio button in the Search

UltraEdit-32

In: box, you see that now you only enter the word to search for; you don’t need to
specify file names or a folder.

Finally, the method I use the most is to search in Project Files. With this option
selected, the program will search through all of the files in the project you
currently have open—and only those files. It doesn’t matter whether the files
themselves are open or not.

grep

The grep capability in UltraEdit (also see the sidebar earlier in this chapter) is an
advanced way of finding text within files and replacing it with other text when
desired. You can use it in Search-related topics covered so far by putting a check
mark in the Regular Expressions box; then Find will operate using standard
UNIX-like grep or the older UltraEdit-specific form of grep.

You can configure UltraEdit to use its own grep syntax or the UNIX-style syntax
in the configuration menu. Select the Advanced, Configuration menu item, and
then select the Find tab. Change the check box labeled UNIX style Regular
Expressions to suit your taste.

UltraEdit-Style grep Syntax

Table 2.1 shows the available UltraEdit-style grep functions. Let’s do a few example
grep searches to get a feel for how it works. Use the file sample_file 1.txt from the
UESAMPLEPROJECT project to do the searches. For this section make sure you have
the UltraEdit configuration setting for UNIX style Regular Expressions turned off.

Let us suppose that we want to find some reference to dungeons in games in the
sample file. We’ll grep (notice that ’'m verbing the noun here!) for the term
game* dungeon.

Press Ctrl+-F to bring up the Find dialog box, and then make sure the Regular
Expressions box is checked. Type in the search term game*dungeon, and click
the Find Next button. The string it finds starts with “game” and ends with
“dungeon”. The words that appear in between were inconsequential to the
search, because the asterisk means that the search program will match any string
of characters of any length between the words garme and dungeon, as long as it
doesn’t encounter a newline character or a carriage return. Try it again, but this
time type in the term computer*game and see what you find. Remember that
you can use F3 as a shortcut to find the next match.

49

50 Chapter 2 = Introduction to Programming

Table 2.1 UltraEdit-Style grep Syntax

Symbol Purpose

% Matches the start of line. Indicates the search string must be at the beginning of a
line but does not include any line terminator characters in the resulting string
selected.

$ Matches the end of line. Indicates the search string must be at the end of a line but
does not include any line terminator characters in the resulting string selected.

? Matches any single character except newline.

* Matches any number of occurrences of any character except newline.

T Matches one or more instances of the preceding character. At least one occurrence of
the character must be found. Does not match repeated newlines.

4 R Matches the preceding character/expression zero or more times. Does not match
repeated newlines.

b Matches a page break.

p Matches a newline (CR/LF) (Windows/DOS files).

Ar Matches a newline (CR only) (Mac files).

n Matches a newline (LF only) (UNIX files).

At Matches a tab character.

[] Matches any single character or range in the brackets.

NANNBA} Matches expression A or B.

A Overrides the following regular expression character.

ALL.A) Brackets or tags an expression to use in the Replace command. A regular expression

may have up to nine tagged expressions, numbered according to their order in the
regular expression. The corresponding replacement expression is ~x, for x in the
range 1-9. Example: If A(h*o”) A(f*s/) matches “hello folks”, A2 A1 would replace
it with “folks hello”.

The operator that is the same as the asterisk, only different, is the question mark
(“?”). Instead of matching any number of any characters, it will match only one

instance of any character. For example, “s?n” matches “sun”, “son”, and “sin”
C_* » (49 2
but not “sign” or “soon’.

Here are some more examples of how the matching criteria work:

be + st will find “best”, “beest”, “beeeest”, and so on but not “bst”
[aeiou] will find every lowercase vowel

[,.?] will find a literal “,”, “.”; or “?”

[0-9a-7] will find any digit or lowercase letter

[~0-9] will find any character excepr a numeral (the tilde [“~”]

means to 7ot include whatever follows)

UltraEdit-32

UNIX-Style Syntax

The UNIX-style syntax is used in the same way as the UltraEdit style but is
different in many ways. The advantages of using the UNIX style are:

m It is somewhat of a standard, so you may be familiar with it from elsewhere.
m It has more capabilities than the UltraEdit syntax.

m At some point in the future it may be the only syntax for grep supported by
UltraEdit, when the program’s author decides to stop supporting the old
UltraEdit style.

You can see the differences by checking out Table 2.2. The first obvious difference
is that the escape character has changed from the caret to the backslash. Our
example searches would be a little different. The asterisk doesn’t match any
character anymore; now it matches any number of occurrences of the character

that appears just before it. Also, now we use the period (“.”) to match any single
character instead of the question mark.

Before proceeding, make sure you have your editor set to use the proper UNIX-
style syntax in the Advanced, Configuration menu under the Find tab.

Now, to go back to our dungeon games example, the way the search term in
UNIX-style grep syntax would look is “game.*dungeon”.

Compare these examples with the ones for the UltraEdit style:

be-+st matches “best”, “beest”, “beeeest”’, and so on buz not “bst”’

be*st matches “best”, “beest”, “beeeest”’, and so on and “bst”

[aeiou] matches every lowercase vowel

[,.2] matches a literal), ©.”, or “?”

[0-9a-z] matches any digit or lowercase letter

[A0-9] matches any character excepr a digit (A means nor the
following)

Bookmarks

One feature I use quite frequently is the Bookmark capability. Its purpose is to
help you quickly find your way around large files. When you are working in an
area that you think you may need to come back to later, just set a bookmark, and
then when you are working in another place in your document, you can use the
Goto Bookmark command to jump through each bookmark you’ve set until you

51

52 Chapter 2 = Introduction to Programming

Table 2.2 UNIX-Style grep Syntax
Symbol Purpose

n_n

\ Indicates the next character has a special meaning. “n” on its own matches the
character “n”. “\n" matches a linefeed or newline character. See examples
below (\d, \f, \n).

A Matches or anchors the beginning of line.
Matches or anchors the end of line.
Matches the preceding character zero or more times.

+ Matches the preceding character one or more times. Does not match repeated
newlines.

Matches any single character except a newline character. Does not match
repeated newlines.

(expression) Tags an expression to use in the Replace command. A regular expression may
have up to nine tagged expressions, numbered according to their order in the
regular expression. The corresponding replacement expression is \x, for x in the
range 1-9. Example: If (h.*0) (f.*s) matches “hello folks", \2 \1 would replace
it with “folks hello”.

[xyz] A character set. Matches any characters between brackets.

[~xyz] A negative character set. Matches any characters not between brackets.

\d Matches a number character. Same as [0-9].

\D Matches a nonnumeric character. Same as [20-9].

\f Matches a form-feed character.

\n Matches a linefeed character.

\r Matches a carriage return character.

\s Matches any white space including space, tab, form-feed, and so on but not
newline.

\S Matches any non-white space character but not newline.

\t Matches a tab character.

\v Matches a vertical tab character.

\w Matches any word character, including underscore.

\W Matches any non-word character.

\p Matches CR/LF (same as \r\n) to match a DOS line terminator.

find the one you want. This sure beats scrolling through all your open files
looking for that one spot you worked on two hours ago!

To set a bookmark, click your mouse on a line of text, and then select the menu
item Search, Toggle Bookmark. The line where the bookmark is set will be
indicated by a lozenge-shaped cyan box around the line number on the left side
(see Figure 2.8)—this is also a user-configurable parameter. In the figure, lines 11
and 13 are the bookmarked lines.

UltraEdit-32

€ ultrakdit-32 - myscripts - [G\3D2E\UESAMPLEPROJECT \sample_file_Lbct*] 10| x|
_;iEJe Edit Search Project View Format Column Maco Advanced Window Help _|E|5]

|« "OCCH|ISAM|BIS| 0B 2E][ZEEEE 4% 4

? sample_file_1.twt™ Iconsole.log |
|

x| W e Snenenz Do e et D nenen et L ez A Eneren b eneier A nenere AN e nznzry—
Project IDpen |Exp|orer| 1 3D Game Genres and Styles
g = Z
55 myscri
C"nr?;DstE‘l, 3 Game dewelopment is a creative enterprise. There are ways t

4 game genres but I want you to keep in mind that while some
E like a glove, many others do not. That's the nature of cre
keep coming up with new ideas; sowmetimes they are Jockeyit
over the competition, sometimes they are just scratching
times, calculating marketing departments decide that mixi:
iz a sure-fire path to a secure financial future.

{1 comman

W o - W

E| ¢ UESAMPLEPROIECT
| SubFolder
SubFolderTwo
sample_file_1. twt
sample_file_2. twt
consale.log

main.cs

10

The first rule of creative design is that there are no rule

1z course, there are exceptions. If ywou are just scratching ar

power to you. If wou are looking to make a difference in tl

14 should at least uhderstand the arena. Here we're going lool

15 3D genres around today, and a few that are interesting fror

16 perspective. When you are trying to decide what sort of gar

17 wou should try understanding the genres and using them as

1& your ideas.

AL

zo It's also important Lo note that all of the screenshots in

21 games by Indie Gawe developers. S3ome of them are currently =
of

« 2] | |
| DRNEEEdde 3t aman®r o Jad Fus|uye

For Help, press F1 |Ln 13, Col. 1, C3 pos | [Mod: &/6/2003 5:31:46PM [File Size: 17981 NS 4

Figure 2.8
Bookmarked text.

To remove a bookmark, click your mouse in the bookmarked line, and select
Search, Toggle Bookmark again. This will turn off the bookmark for that line.

To remove all bookmarks, select Search, Clear All Bookmarks, and all bookmarks
that you previously set will vanish.

Tip

If you are using the Project tab when you close your documents, all the bookmarks you've set will
be saved and restored the next time you open that document. This does not happen with
documents that are not associated with the Project tab.

To navigate between the bookmarks, choose Search, Next Bookmark, and your
insertion point will jump to the next bookmark in sequence. You can also choose
Search, Previous Bookmark to jump in the reverse direction from bookmark to
bookmark.

53

54

Chapter 2 = Introduction to Programming

Tip

Most commands available in the menus have keyboard shortcuts available. Rather than listing
them here, I'll just point you to the menu items. The keyboard shortcut for the command, if
available, is written next to the menu selection. Some menu items, like Clear All Bookmarks, have
no shortcut assigned, but don’t despair. You can assign keyboard shortcuts by using the Key
Mapping tab in the Advanced, Configuration menu and following the instructions. Note that the
command names in the list are written with their main menu entry as the first part of the
command. The Clear All Bookmarks command is written as SearchClearBookmarks. The com-
mands are listed in alphabetical order.

Macros

Macro commands are like shortcuts. You can string together a whole series of
tedious editing operations into a group, called a macro, that you can invoke at
any time later by a simple keystroke, menu item, or toolbar button.

UltraEdit has two forms of macros: the standard and the Quick Record macro.
Let’s take a look at both, starting with the Quick Record macro.

Quick Record Macro

The Quick Record macro is a bare-bones macro function.

1. Select the Macro, Quick Record menu item (or press Shift+Ctrl+R).

2. Start performing all the editing actions you want recorded. In this case just
type in the text blah blah blah somewhere.

3. Select Macro, Stop Quick Recording (or press Shift4Ctrl+R again).

Now replay your edit actions over again at any place in your text by simply
placing your text insertion point where appropriate and typing Ctrl+M or
selecting the Macro, Play Again menu item.

You can only ever have one Quick Record macro—each time you record one, it
replaces the earlier recording.

Standard Macro

Standard macros are a bit more complex. The procedure for recording them is
somewhat similar, but you can assign them to key combinations of your choice,

UltraEdit-32

to menus, or even to toolbar buttons. This gives you much more flexibility than
the Quick Record macro, but at the cost of a bit of setup twiddling, of course.

Let’s make a couple of standard macros. One will insert the words “This is cool”
and the other will jump to the beginning of whatever line the insertion point is
on, capitalize the first word, put a period at the end, and then insert the phrase
“Capital Idea!” after the period.

1.
2.
3.
4.

10.
11.

12.
13.

Place your insertion point in a blank line somewhere.
Select the Macro, Record menu item.
In the Macro Name box, give it a name, something like “InsertCool”.

Click the mouse in the HotKey edit box to the right of where it says “Press
New Key”, and then press and hold Alt+Ctrl+1.

. Click the OK button.
. Type in the phrase This is cool.
. Select Macro, Stop Recording.

. Place your insertion point at the end of the line with the phrase “This is

cool” in it.

. Select the Macro, Record menu item.

In the Macro Name box, give it a name, something like “MakeCapital”.

Click the mouse in the HotKey edit box to the right of where it says “Press
New Key”, and then press and hold Shift+Ctrl+M.

Click the OK button.

Type the following key sequence, one at a time (don’t type the text in
parentheses):

Home

Shift+Ctrl4+Right Arrow
F5

End

. (that’s a period)
spacebar

55

56

Chapter 2 = Introduction to Programming

14. Now type the phrase Capital Idea!

15. Finally, select the Macro, Stop Recording menu item.

There, that’s done. So now let’s test it out.

First, find or create a blank line, place your insertion point on it, and then press
Shift+Ctrl+1. See the text that gets inserted? Okay, now leave your text insertion
point in that new text, anywhere, and then press Shift+-Ctrl4+M. You should end
with a line that says, “This is cool. Capital Idea!”, with the same capitalization.
Macros are cool!

UltraEdit Review

So now you’ve seen how to use what are, in my opinion, the most important
editing features of UltraEdit—grep (find, search, and replace), macros, and
bookmarks—and you’ve seen how UltraEdit can be configured in a project
format to make it easy to use files in an organized fashion.

UltraEdit has a good Help feature that covers all aspects of the program, so I
encourage you to use it.

Remember that UltraEdit is an editor, not a word processor, so there aren’t a great
deal of formatting features in the program, which is just as well because we are
using it to write code and not to write documents or books. The focus is on the
steak, not the sizzle.

Speaking of steak, it is now time to get to the meat of this chapter, coming up
next!

Controlling Computers with Programs

When you create a computer program, you are creating a set of instructions that
tell the computer exactly and completely what to do. Now before you jump all
over me and hammer me with comments like, “Well, duh! Of course pro-
gramming a computer is like telling it what to do,” I want you to read the first
sentence again. It is not an analogy, and it is not some kind of vague and airy all-
encompassing cop-out.

Everything that a computer does, at any time, is decided by at least one pro-
grammer. In the vast majority of cases, the computer’s instructions—contained

Controlling Computers with Programs

in programs—are the work-product of hundreds, if not thousands, of pro-
grammers. All of the programs that a computer uses are organized and classified
in many different ways. The organization helps us humans keep track of what
they do, why we need them, how to link one program with another, and other
useful things. The computer’s operating system is a huge collection of programs
designed to work in conjunction with other programs, or sometimes to work
alone, but in the context created by other programs.

We leverage the efforts of other programmers when we sit down to program a
computer for any purpose. One of the results of many that have gone before is the
creation of programming languages. Computers operate using a language that is
usually unique to each brand and model, called machine code. Machine code is
designed to directly control the computer’s electronics—the hardware. Machine
code is not very friendly to humans.

To give you an idea, we’ll look at an example of machine code that tells a
computer using an Intel 80386 chip to add together two numbers and save the
result somewhere. What we will do is add A and B together and leave the result
in C. To start, A will equal 4 and B will equal 6.

So our formula will be a simple math problem:

A=4
B=6
C=A+B

The computer machine code looks like this:

110001110000010100000000000000000000000000000000000000100000000000000000000
0000011000111000001010000000000000000000000000000000000000110000000000000000
0000000001010000100000000000000000000000000000000000000110000010100000000000
0000000000000000000001010001100000000000000000000000000000000

Now go ahead and look carefully at that and tell yourself honestly whether you
could work with a computer using machine code for longer than, oh, about 12
minutes! My personal best is somewhere around 30 seconds, but that’s just me.
The number system used here is the binary system.

Each one of those 1s and Os is called a bit and has a precise meaning to the
computer. This is all the computer actually understands—the 1s, the 0s, their
location and organization, and when and how they are to be used. To make it
easier for humans to read machine code at those rare times when it is actually
necessary, we normally organize the machine code with a different number

57

58

Chapter 2 = Introduction to Programming

system, called hexadecimal (or hex), which is a base-16 number system (rather
than base-10 like the decimal system we use in everyday work). Every 4 bits
becomes a hex numeral, using the symbols from 0 to 9 and the letters A to F.
We pair two hex numerals to carry the information contained in 8 bits from
the machine code. This compresses the information into an easier-to-read and
more manageable size. Here is the same calculation written in the hex form of
machine code:

C7 0500 00 00 00 04 00 00 00 C7 05 00 00 00 00 06 00 00 00 A1 00 00 00 00 03
05 00 00 00 00 A3 00 00 00 00

Much better and easier on the eyes! There are many people who work close to the
computer hardware who work in hex quite often, but it still is pretty obscure.
Fortunately, there is a human-readable form of the machine code for every
microprocessor or computer, which in general is known as assembly language. In
this case we use words and symbols to represent meaningful things to us as
programmers. Tools called assemblers convert assembly language programs to
the machine code we looked at earlier. Here is the Intel 80386 Assembler version
of our little math problem:

mov DWORD PTR a, 4 (1)
mov DWORD PTR b, 6 ; (2)
mov eax, DWORD PTRa ; (3)
add eax, DWORD PTR b (4)
mov DWORD PTR ¢, eax (5)

Now we are getting somewhere! Let’s take a closer look. Lines 1 and 2 save the
numbers 4 and 6 in memory somewhere, referenced by the symbols a and b. The
third line gets the value for a (4) and stores it in some scratch memory. Line 4 gets
the value for b (6), adds it to the 4 in scratch memory, and leaves the result in the
same place. The last line moves the result into a place represented by the symbol c.
The semicolon tells the assembler tool to ignore what comes after it; we use the
area after the semicolon to write commentary and notes about the program. In this
case I’ve used the comment space to mark the line numbers for reference.

Now that, my friends, is a program! Small and simple, yes, but it is clear and
explicit and in complete control of the computer.

As useful as assembly language code is, you can see that it is still somewhat
awkward. It is important to note that some large and complex programs have
been written in assembly language, but it is not done often these days. Assembly
language is as close to the computer hardware as one would ever willingly want to

Programming Concepts

approach. You are better served by using a high-level language. The next version
of our calculation is in a powerful high-level language called C. No, really! That’s
the name of the language. Here is our calculation written in C:

a=4; /1 (1)
b=6; /1 (2)
c=a+bh; //(3)

Now, if you’re thinking what I think you’re thinking, then you’re thinking, “Hey!
That code looks an awful lot like the original formula!” And you know what? I think
you are right. And that’s part of the point behind this rather long-winded intro-
duction. When we program, we want to use a programming language that best
represents the elements of the problem we want to solve. Another point is that quite
a few things are done for the programmer behind the scenes—there is a great deal
of complexity. Also, you should realize that there are even more layers of com-
plexity “below” the machine code, and that is the electronics. We’re not even going
to go there. The complexity exists simply because it is the nature of the computer
software beast. But be aware that the same hidden complexity can sometimes lead
to problems that will need to be resolved. But it’s not magic—it’s software.

The C language you've just seen is what is known as a procedural language. It is
designed to allow programmers to solve problems by describing the procedure to
use and defining the elements that are used during the procedure. Over time,
programmers started looking for more powerful methods of describing problems,
and one such method that surfaced was called Object-Oriented Programming (OOP).

The simplest point behind OOP is that programmers have a means to describe the
relationships between collections of code and variables that are known as objects.
The C language eventually spawned a very popular variant called C++. C++
includes the ability to use the original C procedural programming techniques, as
well as the new object-oriented methods. So we commonly refer to C/C++,
acknowledging the existence of both procedural and object-oriented capabilities.
From here on, in the book, I will refer to C/C++ as the general name of the language,
unless I need to specifically refer to one or the other for some detailed reason.

Programming Concepts

For the rest of this chapter, we are going to explore basic programming tech-
niques. We will be using TorqueScript for all of our code examples and running
our little programs in the Torque Engine to see what they do.

59

60

Chapter 2 = Introduction to Programming

Now, we just covered the simple math problem in the previous section. I showed
you what the program looked liked in binary machine language, hex machine
language, assembly language, and finally C/C++. Well, here is one more
version—TorqueScript:

%a=14; /7 (1)
%b=16; /1 (2)
%c=%a+%b; // (3)

Notice the similarity to C/C++? Even the comments are done the same way!

As demonstrated, TorqueScript is much like C/C++. There are a few exceptions,
the most notable being that TorqueScript is typeless and does not require forward
declarations of variables. Also, as you can see for yourself in the preceding code,
TorqueScript requires scope prefixes (the percent signs) on its variable names.

Typeless? Forward Declarations? Huh?

In many languages, variables have a characteristic called type. In its simplest form, a type merely
specifies how much memory is used to store the variable. TorqueScript doesn't require you to
specify what type your variable has. In fact, there is no way to do it!

Forward declarations are a construct whereby the programmer must first indicate, usually at the
beginning of a file or a subroutine block, what variables will be used and what their types are.
TorqueScript also doesn't require this and again provides no mechanism for using forward
declarations.

So now that you know what types and forward declarations are, you can forget about them!

The goal for you to achieve by the end of this chapter is the ability to put together
simple programs to solve problems and have enough understanding of program
techniques to make sensible decisions about the approaches to take.

How to Create and Run the Example Programs

There is an ancient and well-understood programming cycle called the Edit-
Compile-Link-Run cycle. The same cycle applies with Torque, with the exception
being that there is no link step. So for us, it can be thought of as the Edit-Compile-
Run cycle. A further wrinkle to toss in is the fact that Torque will automatically
compile a source file (that is, a program file that ends with .cs) into the binary
byte code file (ends with .cs.dso), if there is no binary version of the file, or if the
source file has changed since the last binary was created.

So I guess my point is, for us the cycle can now be regarded as the Edit-Run cycle.

Programming Concepts 61

m Put all user programs in the folder \3D2E\demo as filename.cs where
“filename” is a name you’ve either made up yourself or one that I’ve sug-
gested here in the book. So, for example, the first simple program in the next
pages will be saved as \3D2E\demo\HelloWorld.cs.

m Run the demo by double-clicking \3D2E\demo.exe.

Hello World

Our first program is somewhat of a tradition. Called the Hello World program, it
is used as an early confidence builder and test program to make sure that the
gentle reader (that would be you, if you are reading this book!) has everything in
place on his computer to successfully edit, compile, and run a program.

So, assuming that you have correctly copied the 3D2E folder from your CD to
your hard drive, and you’ve installed UltraEdit-32, you can use your newly
learned UltraEdit skills to create a new file with the name HelloWorld.cs and save
it in the folder \3D2E\demo. Type into the file these lines of code:

//
// HelloWorld.cs

//

// This module is a program that prints a simple greeting on the screen.
//
//

function runHelloWorld()
/1
// Entry point for the program.
/1
{

echo("HelTlo World");
}

Save your work. Now, use the following procedure to run your program:

1. Browse to, and open, your \3D2E folder on your hard drive using Explorer
(not UltraEdit-32!).

2. Locate the Torque Game Engine executable, demo.exe. If you can’t find the
file demo.exe, see the important note following this procedure.

3. Double-click demo.exe to launch the Torque default demo.

62

Chapter 2 = Introduction to Programming

4. After the splash screen clears, you will see the main menu of the demo. Don’t
click any buttons; just press the Tilde (“~) key. This is the key that is
normally to the left of the “1” (or shifted “I"’) key and above the Tab key.
The Tilde key shares the keyspace with the Grave (“") key. Get to know this
key intimately—it is the console key.

5. The console will appear on your screen, looking something like
Figure 2.9.

6. In the console window, type the following:
exec("demo/helloworld.cs");

You will see the following displayed in the console (the output):

Compiling demo/helloworld.cs...
Loading compiled script demo/helloworld.cs.

Console

¥ No script compilation errors occured. e S D K Featu re De mo

UUF T Lidl l£8U O PO

————————— Initializing: Torque Creator ---------
Compiling creator/editor/editor.cs...

Loading compiled script creator/editor/editor.cs.
Compiling creator/editor/particleEditor.cs.

Loading compiled script cr‘eator‘,.-’ed'ltor‘,-"par‘t'lc'leEd'ltor‘ cs.
Compiling creator/scripts/scriptDoc.cs.

Loading compiled script cr‘eator‘fscr"lpts,.-’scr"lptDoc Cs.
Compiling creator/ui/creatorProfiles.cs.

Loading compiled script cr‘eator‘,.-’u'l,fcr'eator‘Pr‘o‘F'l'Ies cs.
Compiling creator/ui/InspectDlg.gui.

Loading compiled script creator,.l’m,flnspec‘tmg qui.
Compiling creator/ui/GuiEditorGui.gui.

Loading compiled script cr‘eator‘,.-’u'l,.-"Gu'lEd'ltor‘Gu'l gui.
Engine initialized.

PushThread: ma'ln_menu thread

Update: main_menu_thread page: 0

isNext: O - 1

Example: FPS Multiplayer

First. Person Shooter Demo based on an early
version of Realm Wars, a multiplayer

community driven project. E0O ’ .L

IESSSSS——
Example: Multiplayer Racing

Racing demo featuring multiplayer vehicle
physics on a simple off-road track with jumps
and obstacles. GO ’

$100%:

F10 = GUI Editor F11 = Mission Editor

Figure 2.9
Output of the Hello World program.

Programming Concepts

7. Now type the following:

Tip

runhelloworld();
You will see the following output:
Hello World!

If you don't get the expected result on your screen, then look in the console. If there were any
errors in your program, diagnostic information will be deposited there. It might be something as
simple as a typo in the file name. Most error messages appear in red.

The contents of the console are also written to the file console.log, which you can view after
you've quit Torque.

Also, if you see any errors regarding “onNeedRelight”, or something from the future, missing
PageGui, missing “inspect” object, a missing “license_other”, or something called “SM_missionList"
or an ammo bounding box, or a failed preload (whew!), then ignore them. They aren’t yours, they're
minor, and don't matter here.

IMPORTANT!

If you are using the Windows XP default desktop setup with the default folder settings, you may
have trouble locating some files. This is because the default settings for Windows XP have the
folder property that allows you to see file extensions turned off. You really, really should have this
ability enabled (not only to use this book, but in all of your uses of Windows XP). Enable the
ability to see file extensions by opening a window view to your computer (double-clicking the My
Computer icon on your desktop is the quickest way), choosing the Tools menu for the window,
and then choosing Folder Options.

When the Folder Options dialog box opens, choose the View tab. In the Advanced settings area,
locate the Hide extensions for known files types check box, and remove the check mark. Do the
same for the Hide protected operating system files check box. Now close the Folder Options dialog
box, and get on with it!

Let’
//

s have a closer look at the code. The first thing you will notice is this stuff:

// HelloWorld.cs

/!

// This module is a program that prints a simple greeting on the screen.

/!
/!

This is the module header block. 1t is not executable code—it’s what we call a
comment. The double-slash operator (“//”’) tells the Torque Engine to ignore
everything from the slashes to the end of the line.

63

64

Chapter 2 = Introduction to Programming

So if the engine ignores the module header block, why do we use it? Well, it’s
included in order to document what the module does so that later, when we’ve
completely forgotten the details, we can easily refresh our memory. It also is
included to help other programmers who may come along and need to under-
stand the module so they can add new features or fix bugs.

Tip

Whenever | tell you to open the console, you should immediately leap into action and press the
Tilde ("~") key. Just making doubly sure you know, you know . . . now back to the action.

There are no real rules regarding the format of these headers, but most pro-
grammers or development shops have some sort of template that they want
followed. At a minimum, the header should include the module file name,
copyright notices, and a general description of what the code in the module is for.
Sometimes we might include other details that are necessary for another person
to understand how the module is used.

Then there is this part:
function runHelTloWorld()

That is executable code. It is the declaration of the function block called
runHelloWorld. This is the function we call from within the console. Following
that, there is this:

//
// Entry point for the program.
/1

This is the function header comment. The function header comment is included
in order to describe the specifics of a function—what it does, how it does it,
and so on. In this case it is fairly simple, but function header comments can
get to be quite descriptive, as you’ll see later. Again, this is not executable
code (note the double slash) and is not required to make your program
work. The dashes could just as well be stars, equal signs, or nothing at all. It
is good practice to always use function header comments to describe your
functions.

Finally comes this:

{
echo("Hello World");
}

Programming Concepts

That would be the function body—the guts of the function where the work is
done. The function body is also sometimes called a function block and more
generically (when used in other contexts that you’ll see later) called a code block.

It is important to note the way a function block is made. It always begins with the
keyword function followed by one or more spaces and whatever name you want it to
have. After the name comes the argument list (or parameter list). In this case there are
no parameters. Then comes the opening, or left, brace (or curly bracket). After the
opening brace comes the body of the function, followed by the closing, or right, brace.

All functions have this same structure. Some functions can be several pages long,
so the structure may not be immediately obvious, but it’s there.

The actual code that does anything interesting is a single line. As you know by now,
the line simply prints the text “Hello World” in the Torque console window.

Expressions

When we write program code, most of the lines, or statements, that we create can be
evaluated. A statement can be a single TorqueScript line of any kind terminated by
a semicolon, or it can be a compound statement, which is a sequence of statements
enclosed in left and right braces that acts as a single statement. A semicolon does
not follow the closing right brace. Here is an example of a statement:

echo("Hi there!");

Here is another example:

if (%tooBig==true) echo("It's TOO BIG!");

And here is one final example of a valid statement:

{
echo("Nah! It'sonly a little motorcycle.");
}

Statements that can be evaluated are called expressions. An expression can be a
complete line of code or a fragment of a line, but the important fact is that it has a
value. In Torque the value may be either a number or text (a string)—the dif-
ference is in how the value is used. Variables are explained in the next section, but
I'll sneak a few in here without detailed coverage in order to illustrate expressions.

Here is an expression:

5+1

65

66

Chapter 2 = Introduction to Programming

This expression evaluates to 6, the value you get when 5 and 1 are added.

Here is another expression:

%ta=167;

This is an assignment statement, but more importantly right now, it is an
expression that evaluates to 67.

Another:

%1s0pen = true;

This expression evaluates to 1. Why? Because true evaluates to the value 1 in
Torque. Okay, so I hadn’t told you that yet—sorry about that. Also, false
evaluates to 0. We can say the statements evaluate to true or false, instead of 1
and 0. It really depends on whatever makes sense in the usage context. You’ll
notice that the evaluation of the statement is determined by whatever expression
is to the right of the equal sign. This is a pretty hard-and-fast rule.

Consider this code fragment:

%ta=05;

if (Za>1)

What do you figure that the (%a > 1) evaluates to, if %a has been set to 5¢? That’s
right—it evaluates to true. We would read the line as “if %a is greater than 1.”

If it was written as (%a > 10), it would have been false, because 5 is not greater
than 10.

Another way we could write the second line is like this:
if((%Za>1)==true)

It would be read as “if the statement that %a is greater than 1 is true.” However,
the Department of Redundancy Department could have written that example.
The first way I showed you is more appropriate.

Just for your information, in the preceding examples, %a and %is0pen are variables,
and that’s what is coming up next.

Variables

Variables are chunks of memory where values are stored. A program that reads a
series of numbers and totals them up will use a variable to represent each number
when it’s entered and another variable to represent the total. We assign names to

Programming Concepts 67

these chunks of memory so that we can save and retrieve the data stored there.
This is just like high school algebra, where we were taught to write something like
“Let v stand for the velocity of the marble” and so on. In that case v is the
identifier (or name) of the variable. TorqueScript identifier rules state that an
identifier have the following characteristics:

m It must not be a TorqueScript keyword.
m [t must start with an alphabetical character.

m It must consist only of alphanumeric characters or an underscore symbol
((_))).
A keyword is an otherwise valid identifier that has special significance to Torque.
Table 2.3 gives a keyword list. For the purposes of Torque identifiers, the

underscore symbol is considered to be an alphanumeric character. The following
are valid variable identifiers:

isOpen Today X the_result item_234 NOW
These are not legal identifiers:

5input miles-per-hour function true+ level

Table 2.3 TorqueScript Keywords

Keyword Description

break Breaks execution out of a loop.

case Indicates a choice in a switch block.

continue Causes execution to continue at the top of a loop.

default Indicates the choice to make in a switch block when no cases match.
do Indicates the start of a do-while type loop block.

else Indicates alternative execution path in an if statement.
false Evaluates to 0, the opposite of true.

for Indicates the start of a for loop.

function Indicates that the following code block is a callable function.
if Indicates the start of a conditional (comparison) statement.
new Creates a new object datablock.

return Indicates return from a function.

switch Indicates the start of a switch selection block.

true Evaluates to 1, the opposite of false.

while Indicates the start of a whiTe loop.

68

Chapter 2 = Introduction to Programming

It’s up to you as the programmer to choose the identifiers you want to use. You
should always try to use meaningful identifiers—choose them to be significant to
your program and what it is doing. Note that Torque is not case-sensitive.
Lowercase letters are 7ot treated as distinct from uppercase letters.

You assign values to variables with an assignment statement:

$bananaCost =1.15;
$appleCost =0.55;
$numApples =3;
$numBananas = 1;

Notice that each variable has a dollar sign (“$”) preceding it. This is a scope
prefix. This means that the variable has global scope—it can be accessed from
anywhere in your program, inside any function, or even outside functions and in
different program files.

There is another scope prefix—the percent sign (“%”). The scope of variables
with this prefix is Jocal This means that the values represented by these variables
are valid only within a function, and only within the specific functions where they
are used. We will delve into scoping in more detail later.

Using our fruit example, we can calculate the number of fruit as follows:
$numFruit = $numBananas + $numApples;

And we can calculate the total cost of all the fruit like this:

$numPrice = ($numBananas * $bananaCost) + ($numApples * $appleCost);
Here is a complete small program you can use to try it out yourself:

//
// Fruit.cs

//

// This program adds up the costs and quantities of selected fruit types
// and outputs the results to the display

/1

function runFruit()

/1

/! Entry point for the program.
/1

{
$bananaCost=1.15;// initialize the value of our variables
$appleCost=0.55; // (we don't need to repeat the above

Programming Concepts

$numApples=3; // comment for each initialization, just
$numBananas=1; // group the init statements together.)

$numFruit=0; // always a good idea to initialize *all* variables!
$total=0; // (even if we know we are going to change them Tater)

echo("Cost of Bananas(ea.):$"@¥bananaCost);
// the value of $bananaCost gets concatenated to the end
// of the "Cost of Bananas:" string. Then the
// full string gets echoed. same goes for the next 3 Tines
echo("Cost of Apples(ea.):$"@$appleCost);
echo("Number of Bananas:"@$numBananas);
echo("Number of Apples:"@$numApples);

$numFruit=$numBananas + $numApples; // add up the total number of fruits
$total = ($numBananas * $bananaCost) +
($numApples * $appleCost); // calculate the total cost
//(notice that statements can extend beyond a single Tine)

echo("Total amount of Fruit:"@$numFruit); // output the results
echo("Total Price of Fruit:$"@$total@"0");// add a zero to the end

// tomake it Took better on the screen
}

Save the program in the same way you did the Hello World program. Use a name
like Fruit.cs and run it to see the results. Note that the asterisk (“*”’) is used as the
multiplication symbol and the plus sign (““4) is used for addition. These
operators—as well as the parentheses used for evaluation precedence—are
discussed later in this chapter.

Arrays

When your Fruit program runs, a variable is accessed in expressions using the
identifier associated with that variable. At times you will need to use long lists of
values; there is a special kind of variable called an a77ay that you can use for lists of
related values. The idea is to just use a single identifier for the whole list, with a
special mechanism to identify which specific value—or elerzent—of the list you
want to access. Each value has numerical position within the array, and we call the
number used to specify the position the 7zzdex of the array element in question.

Let us say you have a list of values and you want to get a total, like in the previous
example. If you are only using a few values (no more than two or three), then a

69

70

Chapter 2 = Introduction to Programming

different identifier could be used for each variable, as we did in the Fruit
program.
However, if you have a large list—more than two or three values—your code will

start to get awkwardly large and hard to maintain. What we can do is use a loop
and iterate through the list of values, using the indices. We’ll get into loops in
detail later in this chapter. Following is a new version of the Fruit program that
deals with more types of fruit. There are some significant changes in how we
perform what is essentially the same operation. At first glance, it may seem to be
more unwieldy than the original Fruit program, but look again, especially in the
computation section.

/1l
/1l
/1l
/1l
/!
/1l
/1l

fu
//
//
//
{

FruitLoopy.cs

This program adds up the costs and quantities of selected fruit types
and outputs the results to the display. This module is a variation
of the Fruit.cs module

nction runFruitLoopy()

Entry point for the program.

//
!/ Initialization
//

snumFruitTypes =5; // so we know how many types are in our arrays

%bananaldx=0; // initialize the values of our index variables
%appleldx=1;

sorangeldx=2;

smangoldx=3;

spearldx=4;

snames[%bananaldx] = "bananas"; // initialize the fruit name values
snames[%appleldx] = "apples";

snames[%orangeldx] = "oranges";

snames[smangoIdx] = "mangos";

#names[%pearldx] = "pears";

Programming Concepts 71

scost[%bananaldx] =1.15; // initialize the price values
%costl%appleldx] =0.55;

scost[%orangeldx] =0.55;

%cost[%mangoIdx] =1.90;

hcost[%pearldx] =0.68;

squantityl[%bananaldx]=1; // initialize the quantity values
squantityl[%appleldx] =3;
squantity[%orangeldx] =4;
%quantity[%mangoldx] =1;
squantityl[%pearldx] =2;

snumFruit=0; // always a good idea to initialize *all* variables!
%totalCost=0; // (even if we know we are going to change them Tater)

/!
// Computation
/!

// Display the known statistics of the fruit collection
for (%index =0; %index < ZnumFruitTypes; %index++)
{
echo("Cost of " @ Znames[%index] @ ":$" @ %cost[%index]);
echo("Number of " @ Znames[%index] @ ":" @ 3quantity[%index]);
}

// count up all the pieces of fruit, and display that result
for (%index =0; %index <= numFruitTypes; %index++)
{

snumFruit = ZnumFruit + Zquantity[%index]1;

}
echo("Total pieces of Fruit:" @ ZnumFruit);

// now calculate the total cost
for (%index =0; %index <= %ZnumFruitTypes; %index++)

{

%stotalCost = %totalCost + (%quantityl[%index]*%cost[%index]);
}
echo("Total Price of Fruit:$" @ ZtotalCost);

}
Type this program in, save it as \3D2E\demo\FruitLoopy.cs, and then run it.

72

Chapter 2 = Introduction to Programming

Of course, you will notice right away that I've used comments to organize the
code into two sections, 7zitialization and computation. This was purely arbitrary.
But it is a good idea to label sections of code in this manner, to provide signposts,
as it were. You should also notice that all the variables in the program are local,
rather than global, in scope. This is more reasonable for a program of this nature,
where having everything contained in one function puts all variables in the same
scope.

Next you will see that I've actually created three arrays: name, cost, and quantity.
Each array has the same number of elements, by design. Also, I have assigned
appropriately named variables to carry the index values of each of the fruit types.
This way I don’t need to remember which fruit has which index when it comes
time to initialize them with their names, prices, and counts.

Then it is just a simple matter of looping through the list to perform the
operation I want.

Elegant, huh? But it could be better. See if you can find a way to reduce the
number of lines of code in the computation section even more, and write your
own version and try it out for yourself. I've written my own smaller version; you
can find it in the \3D2E\RESOURCES\CH2 folder, named ParedFruit.cs.

Tip

If you haven't noticed, it's time you did: when we deal with paths in Windows, we use the
backslash (“\"), as seen with C:\3D2E\demo. However, in TorqueScript (as in Linux and the
Macintosh 0S), we use the forward slash (“/") for the paths, as seen with demo/client/scripts.
You'll run into a lot more of this later. Just keep this in mind if you are having path troubles.

For a further illuminating exercise, try this: rewrite FruitLoopy.cs to perform
exactly the same operations, but without using arrays at all. Go ahead—take
some time and give it a try. You can compare it with my version in the
\3D2E\RESOURCES\CH?2 folder, named FermentedFruit.cs.

Now, the final exercise is purely up to you and your mind’s eye. Imagine that
you have 33 types of fruit instead of 5. Which program would you rather
modify—ParedFruit.cs or FermentedFruit.cs? Can you see the advantage of
arrays now?

Another thing to point out is that the initialization section of the code would
probably read in the values from a database or an external file with value tables in
it. It would use a loop to store all the initial values—the names, costs, and
quantities. Then the code would really be a lot smaller!

Programming Concepts

To review, an array is a data structure that allows a collective name to be given to
a group of elements of the same type. An individual element of an array is
identified by its own unique index (or subscript).

An array can be thought of as a collection of numbered boxes, each containing
one data item. The number associated with the box is the index of the item. To
access a particular item, the index of the box associated with the item is used to
access the appropriate box. The index must be an integer and indicates the
position of the element in the array.

Strings

We've already encountered strings in our earlier example programs. In some
languages strings are a special type of array, like an array of single characters, and
can be treated as such. In Torque, strings are in essence the only form of variable.
Numbers and text are stored as strings. They are handled as either text or
numbers depending on which operators are being used on the variables.

As we’ve seen, two basic string operations are assignment and concatenation, as
illustrated here:

smyFirstName = "Ken";
smyFullName = ZmyFirstName @ " Finney";

In the first line, the string "Ken" is assigned to %myFirstName, then the string
"Finney" is concatenated (or appended) to #myFirstName, and the result is
assigned to #myFul1Name. Familiar stuff by now, right? Well, try this one on for
size:

smyAge = 30; // (actually it isn't you know !)

smyAge = tmyAge + 12; // getting warmer !

At this point, the value in %myAge is 42, the sum of 30 and 12. Now watch this trick:
%aboutMe = "My name is " @ ZmyFulIName @ " and I am " @ ZmyAge @ " years o1d.";

I’m sure you can figure out what the value of the variable %aboutMe is. That’s
right, it’s one long string—“My name is Ken Finney and I am 42 years old.”—
with the number values embedded as text, not numbers. Of course, that isn’t my
age, but who’s counting?

What happened is that the Torque Engine figured out by the context what
operation you wanted to perform, and it converted the number to a string value
before it added it to the larger string.

73

74

Chapter 2

Introduction to Programming

Another form of string variable is called the tagged string. This is a special string
format used by Torque to reduce bandwidth utilization between the client and
the server. We’ll cover tagged strings in more detail in a later chapter.

Operators

Table 2.4 is a list of operators. You will find it handy to refer back to this table
from time to time.

Table 2.4 TorqueScript Operators

Symbol Meaning

4k Add.

— Subtract.

* Multiply.

/ Divide.

% Modulus.

++ Increment by 1.

2 Decrement by 1.

+= Addition totalizer.

-= Subtraction totalizer.

= Multiplication totalizer.

= Division totalizer.

%= Modulus totalizer.

@ String append.

() Parentheses—operator precedence promotion.

[1] Brackets—array index delimiters.

{} Braces—indicate start and end of code blocks.

SPC Space append macro (same as @ “ " @).

TAB Tab append macro (same as @ “\t" @).

NL Newline append (same as @ “\n" @).

~ (Bitwise NOT) Flips the bits of its operand.

[(Bitwise OR) Returns a 1 in a bit if either operand has a bit that is 1.

& (Bitwise AND) Returns a 1 in each bit position if bits of both operands are 1s.

A (Bitwise XOR) Returns a 1 in a bit position if bits of one but not both operands are 1.

<< (Left-shift) Shifts its first operand in binary representation the number of bits to the
left specified in the second operand, shifting in Os from the right.

>> (Sign-propagating right-shift) Shifts the first operand in binary representation the

number of bits to the right specified in the second operand, discarding bits shifted
off.

Programming Concepts 75

Symbol Meaning

= Bitwise OR with result assigned to the first operand.

&= Bitwise AND with result assigned to the first operand.

A= Bitwise XOR with result assigned to the first operand.

<<= Left-shift with result assigned to the first operand.

>>= Sign-propagating right-shift with result assigned to the first operand.

! Evaluates the opposite of the value specified.

&& Requires both values to be true for the result to be true.

I| Requires only one value to be true for the result to be true.
== Left-hand value and right-hand value are equal.

I= Left-hand value and right-hand value are not equal.

< Left-hand value is less than right-hand value.
> Left-hand value is greater than right-hand value.
<= Left-hand value is less than or equal to right-hand value.
>= Left-hand value is greater than or equal to right-hand value.
= Left-hand string is equal to right-hand string.
1$= Left-hand string is not equal to right-hand string.
I Comment operator—ignore all text from here to the end of the line.

; Statement terminator.
Object/datablock method or property delimiter.

Operators range from the familiar to the mighty weird. The familiar will be the
ones like add (““ 4) and subtract (“—). A little strange for those who are adept
with standard secondary school math but new to programming languages is the
multiplication symbol—an asterisk (“*”). The division symbol, though not the
regular handwritten one, is still a somewhat familiar slash (“/””). A mighty weird
operator would be the vertical pipe (“I”’), which is used to perform an OR
operation on the bits of a variable.

Some of the operators are probably self-explanatory or understandable from the
table. Others may require some explanation, which you will find in the following
sections of this chapter.

You’ll recall that strings and numbers are treated the same; there is, however, one
exception, and that is when comparing strings to strings or numbers to numbers.
We use different operators for those comparisons. For number comparisons, we
use == (that’s not a typo—it’s two equal signs in a row; read it as “is identical
to”), and for string comparisons, we use $= (read it as “string is identical to”).
These operators will be discussed more in the sections called “Conditional
Expressions” and “Branching.”

76

Chapter 2 = Introduction to Programming

Operator Precedence

An issue with evaluating expressions is that of order of evaluation. Should %a + %b
* %c be evaluated by performing the multiplication first or by performing the
addition first? In other words, as %a + (%b * %c) or as (%a + %b) * %c?

Torque and other languages (such as C/C++) solve this problem by assigning
priorities to operators; operators with high priority are evaluated before
operators with low priority. Operators with equal priority are evaluated in left-
to-right order. The priorities of the operators seen so far are, in order of high to
low priority, as follows:

* /%

Therefore, %a + %b * %c is evaluated as if it had been written as %a + (%b * %c)
because multiplication (*) has a higher priority than addition (+). If the +
needed to be evaluated first, then parentheses would be used as follows: (%a +
hb) * %e.

If you have any doubt, then use extra parentheses to ensure the correct order of
evaluation. Note that two arithmetic operators cannot be written in succession.

Increment/Decrement Operators

There are some operations that occur so frequently in assignment statements that
Torque has shorthand methods for writing them. One common situation is that
of incrementing or decrementing an integer variable. For example,

m=%n+1; // increment by one
m=1%n-1; // decrement by one

Torque has an increment operator (++) and a decrement operator (--). Thus
In++;

can be used for the increment and

hn--;

can be used for the decrement.

The ++ and -- operators here have been written after the variable they affect; they
are called the postincrement and postdecrement operators, respectively. Torque

Programming Concepts

does not have preincrement and predecrement operators (which are written
before the variable), as you would find in C/C++.

Totalizers

Totalizers are a variation on the increment and decrement theme. Instead of
bumping a value up or down by 1, a totalizer does it with any arbitrary value. For
example, a common situation that occurs is an assignment like this:

%total = %total + Zmore;

where a variable is increased by some amount and the result is assigned back to
the original variable. This type of assignment can be represented in Torque by the
following:

%total+= %more;

This notation can be used with the other arithmetic operators (+, -, *, /, and %),
as you can see in the following:

%prod = %prod * 10;
which can be written as this:
%prod *=10;

You can use totalizers in compound assignment statements quite easily as well.
Here’s an example:

tx=%x/(%y +1);
becomes

X /=%y +1;
and

m=7ink2;
becomes
mh=2;

Be careful on that last one! The percent sign in front of the number 2 is the modulus
operator, not a scope prefix. You can tell by the space that separates it from the 2—
or in the case of the totalizer example, you can tell by the fact that the percent sign is
adjacent to the equal sign on the right. They are certainly subtle differences, so make
sure you watch for them if you work in code that uses these constructs.

77

78

Chapter 2 = Introduction to Programming

In all cases, you must be performing these operations on numbers and not
strings. That wouldn’t make any sense!

Loops

Loopsare used for repetitive tasks. We saw an example of a loop being used in the
FruitLoopy sample program. This loop was used to step through the available
types of fruit. The loop was a bounded one that had a specified start and end, a
characteristic built into the loop construct we used, the for loop. The other kind
of loop we are going to look at is the while loop.

The while Loop

The following piece of TorqueScript demonstrates a while loop. It gets a
random number between 0 and 10 from the Torque Engine and then prints it
out.

//
// WhilingAway.cs

//

// This module is a program that demonstrates while Toops. It prints
// random values on the screen as Tong as a condition is satisfied.
//
//

function runWhilingAway ()

//
// Entry point for the program.
//
{
svalue=10; // initialize %value

while (%value <7) // stop looping if %n exceeds 7
{

%value = GetRandom(10); // get a random number between 0 and 10
echo("value="@%value); // print the result
1 // now back to the top of the Toop

// ie. do it all again
}

Save this program as \3D2E\demo\WhilingAway.cs and run it. Note the output.
Now run it again. Note the output again—and the fact that this time it’s
different. That’s the randomness in action, right there. But the part that we are

Programming Concepts

really interested in right now is the fact that as long as the number is less than 7,
the program continues to loop.

The general form of a while statement is this:

while (condition)
statement

While the condition is true the statement is executed over and over. Each time
the condition is satisfied and the statement executed is called an 7zeration. The
statement may be a single statement (terminated by a semicolon) or code block
(delimited by braces) when you want two or more statements to be executed.
Note the following points. It must be possible to evaluate the condition on the
first entry to the while statement or it will never be satisfied, and its code will
never be executed. This means that all variables used in the condition must have
been given values before the while statement is encountered. In the preceding
example the variable %value was started at O (it was initialized) and it was given a
random number between 0 and 10 during each iteration of the loop.

Now you have to make sure that at least one of the variables referenced in the
condition can be changed in the statement portion that makes up the body of the
loop. If you don’t, you could end up stuck in an finite loop. In the preceding
example by making sure that the randomly chosen %value would always evern-
tually cause the condition to fail (10 is greater than 7) we ensure that the loop
will stop at some point. In fact, the random number code will return 7, 8, 9, and
10 at some point or other—any one of which will cause the code to break out of
the loop.

Here is the important thing about while loops. The condition is evaluated defore
the loop body statements are executed. If the condition evaluates to false when it
is first encountered, then the body is never entered. In the preceding example if
we had initialized %value with 10, then no execution of the statements in the body
of the while loop would have happened.

And now here’s a little exercise for you. Write a program, saving it as
\3D2E\demo\LoopPrint.cs. Make the program print all the integers starting at 0
up to and including 250. That’s a lot of numbers! Use a while loop to do it.

The for Loop

When programming, we often need to execute a statement a specific number of
times. Consider the following use of a while statement to output the numbers

79

80

Chapter 2 = Introduction to Programming

1 to 10. In this case the integer variable count is used to control the number of
times the loop is executed.

scount =1;

while (%count <=10)

{
echo("count="@%count);
scount+t;

}
Three distinct operations take place:

m Initialization. Initializes the control variable %count to 1.
m Evaluation. Evaluates the value of an expression (%count <= 10).

m Update. Updates the value of the control variable before executing the loop
again (%count++).

The for statement is specially designed for these cases—where a loop is to be
executed starting from an initial value and iterates until a control condition is
satisfied, meanwhile updating the value of the control variable each time around
the loop. It has all three operations rolled up into its principal statement syntax.
It’s sort of the Swiss army knife of Toop statements.

The general form of the for statement is

for (initialize; evaluate; update)
statement

which executes the initialize operation when the for statement is first entered.
The evaluate operation is then performed on the test expression; if it evaluates to
true, then the Toop statement is executed for one iteration followed by the update
operation. The cycle of test, iterate, update continues until the test expression
evaluates to false; control then passes to the next statement in the program.

Functions

Functions save work. Once you’ve written code to solve a problem, you can roll
the code into a function and reuse it whenever you encounter that problem
again. You can create functions in a manner that allows you to use the code with
different starting parameters and either create some effect or return a value to the
code that uses the function.

Programming Concepts

When solving large problems we often use a divide-and-conquer technique,
sometimes called problem decomposition. We break a big problem down into
smaller problems that are easier to solve. This is often called the rop-down
approach. We keep doing this until problems become small enough that a single
person can solve them. This top-down approach is essential if the work has to be
shared among a team of programmers; each programmer ends up with a spe-
cification for a small part of the bigger system that is to be written as a function
(or a collection of functions). The programmer can concentrate on the solution
of only this one problem and is likely to make fewer errors. The function can then
be tested on its own for correctness compared to the design specification.

There are many specialized problem areas, and not every programmer can be
proficient in all of them. Many programmers working in scientific applications
will frequently use math function routines like sine and cosine but would have no
idea how to write the code to actually perform those operations. Likewise, a
programmer working in commercial applications might know little about how
an efficient sorting routine can be written. A specialist can create such routines
and place them in a public library of functions, however, and all programmers
can benefit from this expertise by being able to use these efficient and well-tested
functions.

In the “Arrays” section earlier in this chapter we calculated a total price and total
count of several types of fruit with the FruitLoopy program. Here is that program
modified somewhat (okay, modified a /o7) to use functions. Take note of how
small the entry point function—called runTwotyFruity—has become now that
so much code is contained within the three new functions.

//
// TwotyFruity.cs

/!

// This program adds up the costs and quantities of selected fruit types
// and outputs the results to the display. This module is a variation

// of the FruitLoopy.cs module designed to demonstrate how to use

// functions.

/!

function InitializeFruit()

//
// Set the starting values for our fruit arrays, and the type
/! indices

/!

81

Chapter 2 = Introduction to Programming

// RETURNS: number of different types of fruit
/1
/1

{
snumTypes =5; // so we know how many types are in our arrays
$bananaldx=0; // initialize the values of our index variables
$appleldx=1;
$orangeldx=2;
$mangoldx=3;
$pearldx=4;

$names[$bananaldx] = "bananas"; // initialize the fruit name values
$names[$appleldx] = "apples";

$names[$orangeldx] = "oranges";

$names[$mangoldx] = "mangos"”;

$names[$pearldx] = "pears";

$cost[$bananaldx] =1.15; // initialize the price values
$cost[$appleldx] =0.55;

$cost[$orangeldx] =0.55;

$cost[$mangoldx]=1.90;

$cost[$pearldx] =0.68;

$quantity[$bananaldx] =1; // initialize the quantity values
$quantity[$appleldx] =3;
$quantity[$orangeldx] = 4;
$quantity[$mangoldx] =1;
$quantity[$pearldx] =2;

return(%numTypes);
}

function addEmUp(%numFruitTypes)
/1l

// Add all prices of different fruit types to get a full total cost

//

//PARAMETERS: %ZnumFruitTypes -the number of different fruit that are tracked
/1

// RETURNS: total cost of all fruit

/1
/1

{
%total =0;

Programming Concepts

for (%index =0; %index <= numFruitTypes; %index++)

{
%total = %total + ($quantity[%index]*$cost[%index]);
}
return %total;
}
/1l
// countEm
/1

// Add all quantities of different fruit types to get a full total
//
//PARAMETERS: ZnumFruitTypes -the number of different fruit that are tracked
//
// RETURNS: total of all fruit types
//
//
function countEm(%numFruitTypes)
{
%total =0;
for (%index =0; %index <= ZnumFruitTypes; %index++)
{

%total =%total + $quantity[%index];
}
return %total;
}

function runTwotyFruity()
/1!
// Entry point for program. This program adds up the costs
// and quantities of selected fruit types and outputs the results to
!/ the display. This program is a variation of the program FruitLoopy
/1
/1
{
//
/! Initialization
//

ZnumFruitTypes=InitializeFruit(); // set up fruit arrays and variables
snumFruit=0; // always a good idea to initialize *all* variables!
%totalCost=0; // (even if we know we are going to change them Tater)

83

84 Chapter 2 = Introduction to Programming

//
// Computation
//

// Display the known statistics of the fruit collection

for (%index =0; %Zindex < ZnumFruitTypes; %index++)

{

echo("Cost of " @ $names[%index] @ ":$" @ $cost[%index]);
echo("Number of " @ $names[%index] @ ":" @ $quantity[%index]);
}

// count up all the pieces of fruit, and display that result
anumFruit = countEm(ZnumFruitTypes);
echo("Total pieces of Fruit:" @ ZnumFruit);

// now calculate the total cost

%totalCost = addEmUp(%numFruitTypes);

echo("Total Price of Fruit:$" @ %totalCost);
}

Save this program as \3D2E\demo\TwotyFruity.cs and run it in the usual way.
Now go and run your FruitLoopy program, and compare the output. Hopefully,
they will be exactly the same.

In this version all the array initialization has been moved out of the runFruitLoopy
function and into the new InitializeFruit function. Now, you might notice that I
have changed the arrays to be global variables. The reason for this is that Torque
does not handle passing arrays to functions in a graceful manner. Well, actually it
does, but we would need to use ScriptObjects, which are not covered until a later
chapter, so rather than obfuscate things too much right now, I've made the arrays
into global variables. This will serve as a useful lesson in contrast between global
and local variables anyway, so I thought, why not?

The global arrays can be accessed from within any function in the file. The local ones
(with the percent sign prefix), however, can only be accessed within a function. This is
more obvious when you look at the addEmUp and countEm functions. Notice that they
both use a variable called %total. But they are actually two different variables whose
scope does not extend outside the functions where they are used. So don’t get mixed up!

Speaking of addEmUp and countEm, these functions have another construct, called
a parameter. Sometimes we use the word argumentinstead, but because we are all
friends here, 'll stick with parameter.

Programming Concepts

Functions with No Parameters

The function main has no parameters, so you can see that parameters are not
always required. Because the arrays are global, they can be accessed from
within any function, so we don’t need to try to pass in the data for them

anyway.

Functions with Parameters and No Return Value

Parameters are used to pass information into a function, as witnessed with the
functions addEmUp and countEm. In both cases we pass a parameter that tells
the function how many types of fruit there are to deal with.

The function declaration looked like this:

function addEmUp (%numFruitTypes)

and when we actually used the function we did this:
%totalCost = addEmUp (ZnumFruitTypes);

where %numFruitTypes indicates how many types of fruit there are—in this case,
five. This is known as a ca//to the function addEmUp. We could have written it as

%totalCost = addEmUp(5);

but then we would have lost the flexibility of using the variable to hold the value
for the number of fruit types.

This activity is called parameter passing. When a parameter is passed during a
function call, the value passed into the function is assigned to the variable that is
specified in the function declaration. The effect is something like %numTypes =
ZnumFruitTypes; now this code doesn’t actually exist anywhere, but operations
are performed that have that effect. Thus, %numTypes (inside the function)
receives the value of 4numFruitTypes (outside the function).

Tip

Parameters are also called arguments.

Functions That Return Values

The function InitializeFruit returns a number for the number of different fruit
types with this line:

return(%numTypes);

85

86

Chapter 2 = Introduction to Programming

and the functions addEmUp and countEm both have this line:
return %total;

Notice that the first example has the variable sitting inside some parentheses, and
the second example does not. Either way is valid.

Now what happens is that when Torque encounters a return statement in a
program, it gathers up the value in the return statement and then exits the
function and resumes execution at the code where the function was called. There
isn’t always a return statement in a function, so don’t be annoyed if you see
functions without them. In the case of the InitializeFruit function, that would
have been the line near the start of runTwotyFruity that looks like this:

snumFruitTypes=InitializeFruit(); // set up fruit arrays and variables

If the function call was part of an assignment statement, as above, then whatever
value was gathered at the return statement inside the function call is now
assigned in the assignment statement. Another way of expressing this concept is
to say that the function evaluated to the value of the return statement inside the
function.

Return statements don’t need to evaluate to anything, however. They can be used to
simply stop execution of the function and return control to the calling program code
with a return value. Both numbers and strings can be returned from a function.

Conditional Expressions

A conditional or logical expression is an expression that can only evaluate to one
of two values: true or false. A simple form of logical expression is the condi-
tional expression, which uses relational operators to construct a statement about
a given condition. The following is an example of a conditional expression:

wx < by

This reads as %x is less than %y, which evaluates to true if the value of the variable
%x is less than the value of the variable %y. The general form of a conditional
expression is

operandA relational_operator operandB

The operands can be either variables or expressions. If an operand is an
expression, then the expression is evaluated and its value is used as the operand.
The relational operators allowable in Torque are shown in Table 2.5.

Programming Concepts 87

Table 2.5 Relational Operators

Symbol Meaning

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to

I= not equal to

$= string equal to

1$= string not equal to
Note

Another name for logic that involves only the values true or false is Boolean logic.

Note that equality is tested for using the operator == because = is already used for
assigning values to variables. The condition evaluates to true if the values of the
two operands satisfy the relational operator and false if they don’t.

Here are some examples:

%1 <10

svoltage >=0.0

%total < 1000.0

scount !=%n
BXEIX+ By * By <hr*hr

Depending on the values of the variables involved, each of the preceding
expressions is true or false. If 4x has the value 3, %y is 6, and %r is 10, the last
expression evaluates to true, but if %x was 7 and %y was 8, then it would evaluate
to false.

The value of a logical expression can be stored in a variable for later use. Any
numerical expression can be used for the value of a condition, with 0 being
interpreted as false and 1 as true.

This means that the value a logical expression evaluates to can be used in
arithmetical operations. This is often done by programmers, but it is a practice
not to be recommended. It can lead to code obscurity, creating a program that is
difficult to understand.

88

Chapter 2 = Introduction to Programming

Logical Expressions

We can create more complex conditions than those that can be written using
only the relational operators described in the preceding section. There are
explicit logical operators for combining the logical values true and false.

The simplest logical operator is NOT, which is represented in Torque by the
exclamation point (“!”’). It operates on a single operand and returns false if its
operand is true and true if its operand is false.

The operator AND, represented by two ampersands (“&&”), takes two operands
and is true only if both of the operands are true. If either operand is false, the
resulting value is false.

The final logical operator is OR, which is represented by two vertical pipes (“|1”).
It results in true if either operand is true. It returns false only if both its
operands are false.

The logical operators can be defined by truth tables as seen in Table 2.6. The “F”
character is used for false and “T” is used for true in these tables.

Table 2.6 Logical Operator Truth Tables

NOT (1)

A IA

F T

T F

OR (Il

A B AORB
T T T

T F T

F T T

F F F

AND (&&)

A B A AND B
T T T

T F F

F T F

F F F

Programming Concepts

These tables show that NOT reverses the truth value of the operand A; that the
AND of two operands is only true if both operands are true; and that the OR of
two operands is true if either or both of its operands are true. Now we can write
pretty complex logical operations.

If %i has the value 15, and %j has the value 10, then the expression (i > 10) && (j > 0)
is evaluated by evaluating the relation i > 10 (which is true), then evaluating the
relation %j > 0 (which is also true), to give true. If %j has the value —1, then the
second relation would be false, so the overall expression would be false. If i has
the value 5, then the first relation would be false, and the expression will be false
irrespective of the value of the second relation. Torque does not even evaluate the
second relation in this situation. Similarly, if the first relation is true in an OR (II)
expression, then the second relation will not be evaluated. This short-circuit
evaluation enables many logical expressions to be efficiently evaluated.

Examples Using Logical Operators

Note that in the last of the examples that follow, an actual truth value (0 or false)
was used as one of the operands of &&. This means that whatever the value of %1,
this logical expression evaluates to false. In these examples parentheses have
been used to clarify the order of operator application.

(31 <10) && (%3 >0)

((%x + %y) <=15) || (41 ==5)

L% >=10) || (%] <=0))

(%1 <10) &4 0

You’ve got to be careful not to confuse the assignment operator = with the logical
equality operator ==.

Using Table 2.6 with the following expression
x+y<10& x/y=31]| z!=10

shows that the operators are evaluated in the order /, +, <, ==, !=, 84§, and | |. This
is the same as using parentheses on the expression in this way: ((((x+y) < 10) &&
((x/y) ==3)) || (z!=10)).

Similarly, the expressions given above could be written without parentheses as
follows:

<10 8& j> 0
x+y<=15]]i=—

89

90

Chapter 2 = Introduction to Programming

L(i>=10 || j <=0)
<1088 0

Now that we’ve covered the logical expressions (or conditions) in Torque, let’s
move on and take a look at the conditional control mechanisms in Torque.

Branching

The term branchingrefers to the idea that code can follow different execution paths
depending on, well, something. What it depends on . . . ummm . . . depends. Well,
let me try that again. It depends on what your program is doing and what you want
it to do. Like this: say you are driving on a road, and you reach a T junction. The sign
points left and says “Toronto 50 km.” Another sign points right and says “Toronto
(Scenic Route) 150 km.” Which way are you going to go, left or right? Well, you see?
It depends. The fastest way to Toronto might be to go left, but what if you aren’t in a
hurry—maybe you’re interested in the scenic route? Just as we saw earlier with
looping, there are conditions that will dictate what path your code will take.

That act of taking one path over others available is branching. Branching starts
out with some sort of decision-making test. In addition to the two looping
statements we’ve already covered—which employ branching of sorts—there are
also two branch-specific statements: the if statement and the switch statement.

The if Statement

The simplest way to select the next thing to do in a program based upon con-
ditions is to use the if statement. Check this out:

if (&n>0)
echo("n is a positive number");

This will print out the message “n is a positive number’” only if %n is positive. The
general form of the if statement is this:

if (condition)
statement

where condition is any valid logical expression as described in the “Conditional
Expressions” section we saw earlier.

This if statement adds % something to the variable Zsum if 4 something is positive:

if (%something > 0)
%ssum += %something;

Programming Concepts

If %something isn’t positive, then the program branches pasr the totalizer
statement, and so %sum doesn’t get incremented by %something.

This next piece of code similarly adds 4something to 4sum, but it also increments a
positive number counter called %counter:

if (%something > 0)

{
%sum += %something;
scounter++;

}

Note how in the second example a compound statement has been used to carry
out more than one operation if the condition is true. If it had been written like
this:

if (%something > 0)
%sum += %something;
%counter++;

then if 4something was greater than 0, the next statement would be executed—
that is, %sum would be incremented by the amount of %something. But the
statement incrementing %counter is now going to be treated as the next statement
in the program and not as part of the if statement. The program execution is not
going to branch around it. The effect of this would be that %counter would be
incremented every time it is encountered, no matter whether %something is
positive or negative.

The statements within a compound statement can be any Torque statements. In
fact, another if statement could be included. For example, the following code
will print a message if a quantity is negative and a further message if no overdraft
has been arranged:

if (%balance<0)
{
echo ("Your account is overdrawn. Balance is: " @ %2balance);
if (%overdraft <=0)
echo ("You have exceeded your overdraft Timit");
}

Now we could have done the same thing using two sequential if statements and
more complex conditions:

if (%balance < 0)
echo ("Your account is overdrawn. Balance is: " @ %balance);

91

92

Chapter 2 = Introduction to Programming

if (%balance < 0 && %overdraft <=0
echo ("You have exceeded your overdraft 1imit");

You should note that one of these versions will generally execute a little bit faster
than the second when dealing with accounts that are not overdrawn. Before I tell
you later in this chapter, see if you can figure out which one, and why.

The if-else Statement

A simple if statement only allows a single branch to a simple or compound
statement when a condition holds. Sometimes there are alternative paths,
some that need to be executed when the condition holds, and some to be
executed when the condition does not hold. The two forms can be written this
way:
if (hcoffeeholic ==true)

echo ("I 1ike coffee.");

if (5coffeeholic ==false)
echo ("I don't Tike coffee.");

This technique will work while the statements that are executed as a result of
the first comparison do not alter the conditions under which the second if
statement are executed. Torque provides a direct means of expressing these
kinds of choices. The if-else statement specifies statements to be executed
for both possible logical values of the condition in an if statement. The
following example of an if-else statement writes out one message if the
variable %coffeeholic is positive and another message if %coffeeholic is
negative:

if (%coffeeholic == true)
echo ("I 1ike coffee.");
else
echo ("I don't Tike coffee.");

The general form of the if-else statement is this:

if (condition)
statementA

else
statementB

If the condition is true, then statementA is executed; otherwise, statementB is
executed. Both statementA and statementB may be either simple or compound
statements.

Programming Concepts

The following if-else statement evaluates if a fruit is fresh or not, and if it is, the
statement increments a fresh fruit counter. If the fruit isn’t fresh, the statement
increments the rotten fruit counter. 'm going to program my refrigerator’s fruit
crisper to do this one day and send me reports over the Internet. Well, I can wish,
can’t I?

if (3fruitState $="fresh")
{
%freshFruitCounter++;
}
else
{
srottenFruitCounter++;

}

Time for another sample program! Type the following program in, and save it as
\3D2E\demo\Geometry.cs and then run it.

/1l
// Geometry.cs

/1!

// This program calculates the distance around the perimeter of

// aquadrilateral as well as the area of the quadrilateral and outputs the

// values.It computes whether the quadrilateral is a square or a rectangle and
// modifies its output accordingly. Program assumes that all angles in the

// quadrilateral are equal. Demonstrates the if-else statement.

/1!

function calcAndPrint(%theWidth, %theHeight)
//
// This function does the shape analysis and prints the result.
//

// PARAMETERS: %theWidth - horizontal dimension

// %theHeight - vertical dimension
/1

// RETURNS: none

/1

{

// calculate perimeter
%perimeter =2 * (%theWidth+%theHeight);

// calculate area
%area = htheWidth * %theHeight;

93

94 Chapter 2 = Introduction to Programming

// first, set up the dimension output string
sprompt = "For a " @ ZtheWidth@ " by " @
%theHeight @ " quadrilateral, area and perimeter of ";

// analyze the shape's dimensions and select different
// descriptors based on the shape's dimensions

if (ZtheWidth == ZtheHeight) /] if true, then it's a square
sprompt = %Zprompt @ "square: ";
else // otherwise it's a rectangle

sprompt = Zprompt @ "rectangle: ";

// always output the analysis
echo (%prompt @ %area @ " " @ Zperimeter);
}

function runGeometry()
//
// Entry point for the program.
//
{

// calculate and output the results for three
// known dimension sets
calcAndPrint(22, 26); // rectangle
calcAndPrint(31, 31); // square
calcAndPrint (47, 98); // rectangle

}

What we’ve done here is analyze a shape. In addition to printing its
calculated measurements, we modify our output string based upon the
(simple) analysis that determines if it is a square or a rectangle. I realize
that a square 7s a rectangle, but let’s not get too picky, okay? Not yet, at
least.

Nesting if Statements

You saw earlier in “The if Statement” section how an if statement can contain
another if statement. These are called nested if staternents. There is no real limit
to how deep you can nest the statements, but try to be reasonable and only do it if
it is absolutely necessary for functional reasons. It might be good to do it for
performance reasons, and that’s fine as well.

Programming Concepts

By the way, I had asked if you could tell which of the two examples would execute
faster, remember that? The answer is that the nested version will execute faster
when there is no overdraft condition. This is because only one condition is tested,
resulting in less work for the computer to do. The sequential version will always
perform both tests, no matter what the bank balance is.

The if and if-else statements allow a choice to be made between two possible
alternatives. Well, sometimes we need to choose between more than two alter-
natives. For example, the following sign function returns —1 if the argument is
less than 0, returns +1 if the argument is greater than 0, and returns 0 if the
argument is 0.

function sign (%value)
// determines the arithmetic sign of a value

//

// PARAMETERS: %value - the value to be analyzed
//

// RETURNS: -1 - if value is negative

// 0 -ifvalueis zero

/! 1 -ifvalueis positive

{
if (%value<0) // is it negative ?
{

return -1;
}
else // nope, not negative
{
if (%value==0) // is it zero ?
{
return 0;
}
else // nope, then it must be positive
{
return 1;

}
}
}

So there you go. The function has an if-else statement in which the statement
following the e1se is also an if-else statement. If 4value is less than 0, then sign
returns —1, but if it is not less than 0, the statement following the else is
executed. In that case if %value is equal to 0, then sign returns 0; otherwise, it

95

96

Chapter 2 = Introduction to Programming

returns 1. I used the compound statement form in order to make the nesting
stand out more. The nesting could also be written like this:

if (5value <0) // is it negative ?

return -1;
else // nope, not negative
if (4value==0) // is it zero ?
return 0;
else // nope, then it must be positive
return 1;

This is nice and compact, but it can sometimes be hard to discern where the
nesting properly happens, and it is easier to make mistakes. Using the com-
pound form formalizes the nesting a bit more, and personally, I find it more
readable.

Newbie programmers sometimes use a sequence of if statements rather than
nested if-else statements when the latter should be used. They would write the
guts of the sign function like this:

if (%value < 0)
sresult=-1;

if (3value==0)
sresult=0;

if (%value > 0)
sresult=1;
return %result;

It would work and it’s fairly easy to read, but it’s inefficient because all three
conditions are always tested.

If nesting is carried out to too deep a level and indenting is not consistent,
then deeply nested if or if-else statements will be confusing to read and
interpret. You should note that an else always belongs to the closest if
without an else.

The switch Statement

We just explored how we can choose between more than two possibilities by
using nested if-else statements. There is a sleeker and more readable method
available for certain kinds of multiple-choice situations—the switch statement.
For example, the following switch statement will set a game’s weapon label based
upon a numeric weapon type variable:

Programming Concepts 97

switch (4weaponType)

{
case 1: %weaponName = "knife";
case 2: ’%weaponName = "pistol";
case 3: Z%weaponName = "shotgun";
case 4: Z%weaponName = "bfgl000";
default: %ZweaponName = "fist";

}

Here is what that would look like using if-else:

if (3weaponType ==1)
sweaponName = "knife";
else if (%weaponType == 2)
sweaponName = "pistol";
else if (%weaponType == 3)
sweaponName = "shotgun";
else if (%weaponType == 4)
sweaponName = "bfgl000";
else
sweaponName = "fist";

It’s pretty obvious from that simple example why the switch statement is so
useful.

The general form of a switch statement is this:

switch (selection-variable)
{
case labell:
statementl;
case label2:
statement?;

case labeln:
statementn;
default:
statementd;
}

The selection-variable may be a number or a string or an expression that eval-
uates to a number or a string. The selection-variable is evaluated and compared
with each of the case labels. The case labels all have to be different. If a match
is found between the selection-variable and one of the case labels, then the
statements that follow the matched case until the next case statement will be

98

Chapter 2 = Introduction to Programming

executed. If the value of the selection-variable can’t be matched with any of
the case labels, then the statements associated with default are executed. The
default is not required but should only be left out if it is certain that
the selection-variable will always take the value of one of the case labels.

Here is another example, which writes out the day of the week depending on the
value of the number variable %day.

switch (%day)
{

case 1 :
echo("Sunday");
case 2 :
echo("Monday");
case 3 :
echo("Tuesday");
case 4 :
echo("Wednesday");
caseb :
echo("Thursday");
case 6 :
echo("Friday");
case 7 :
echo("Saturday");
default :

echo("Not a valid day number");

Debugging and Problem Solving

When you run your programs, the Torque Engine will automatically compile
them and output a new .cs.dso file if it needs to. Therefore, Geometry.cs (the
source code) will become Geometry.cs.dso (the compiled code). There is a
gotcha though. If the script compiler detects an error in your code, it will abort
the compilation but will not stop the program execution—rather, 7 wi// use
the existing compiled version if one exists. This is an important point to
remember. If you are changing your code, yet you don’t see any change in
behavior, then you should check the log file in console.log and look for any
compile errors.

The log output is pretty verbose and should guide you to the problem area pretty
quickly. It writes out a piece of code around the problem area and then inserts a

Programming Concepts

pair of sharp characters (“##”°) on either side of the exact spot where the compiler
thinks there is a problem.

Once you've fixed the first problem, don’t assume you are done. Quite often,
once one problem is fixed, the compiler marches on through the code and finds
another problem. The compiler always aborts as soon as it encounters the first
problem.

Of the large number of programming errors that the compiler catches and
identifies, here are a few specific ones that frequently crop up:

m Missing semicolon at the end of a statement

Missing a slash in double-slash comment operator

Missing % or $ (scope prefix) from variable names

Using uninitialized variables

Mixing global and local scope prefixes

m Unbalanced parentheses or braces

In a later chapter we will cover how to use the console mode in Torque. That will
give us access to three built-in Torque functions—echo, warn, and error—which
are quite useful for debugging.

Without using those three functions, the best tool for debugging programs you’ve
created is the echo statement. You should print out interim results through-
out your code that will tell you how your program is progressing.

Tell you what—here is a different version of the TwotyFruity program. Type it
in, and save it as \3D2E\demo\WormyFruit.cs. I’ve put five bugs in this ver-
sion. See if you can spot them (in addition to any you might introduce while
typing).

/1l
// WormyFruit.cs

//

// Buggy version of TwotyFruity. It has five known bugs in it.

// This program adds up the costs and quantities of selected fruit types
// and outputs the results to the display. This module is a variation

// of the FruitLoopy.cs module designed to demonstrate how to use

// functions.
//

99

100

Chapter 2 = Introduction to Programming

function InitializeFruit()
//

// Set the starting values for our fruit arrays, and the type
// indices

//

// RETURNS: number of different types of fruit

//

//
{
numTypes =5; // so we know how many types are in our arrays
$bananaldx=0; // initialize the values of our index variables

$appleldx=1;
$orangeldx=2;
$mangoldx=3;
$pearldx=3;

$names[$bananaldx] = "bananas"; // initialize the fruit name values
$names[$appleldx] = "apples";

$names[$orangeldx] = "oranges";

$names[$mangoldx] = "mangos"”;

$names[$pearldx] = "pears";

$cost[$bananaldx] =1.15; // initialize the price values
$cost[$appleldx] =0.55;

$cost[$orangeldx] =0.55;

$cost[$mangoIdx] =1.90;

$cost[$pearldx] =0.68;

$quantity[$bananaldx] =1; // initialize the quantity values
$quantity[$appleldx] =3;
$quantity[$orangeldx] = 4;
$quantity[$mangoldx] =1;
$quantityl$pearldx] =2;

return(%numTypes);

}

function addEmUp(%numFruitTypes)

/1
// Add all prices of different fruit types to get a full total cost

/1

//PARAMETERS: ZnumFruitTypes -the number of different fruit that are tracked
/!

Programming Concepts

// RETURNS: total cost of all fruit

/!
/1
{
htotal =0;
for (%index =0; %index <= $numFruitTypes; %index++)
{
%total = %total + ($quantity[%index]*$cost[%index]);
}

return $total;

//
// countEm

//

// Add all quantities of different fruit types to get a full total

//

//PARAMETERS: %ZnumFruitTypes -the number of different fruit that are tracked
//

// RETURNS: total of all fruit types

//
//
function countEm(%numFruitTypes)
{

stotal =0;
for (%index =0; %index <= $numFruitTypes; %index++)
{
%stotal = %total + $quantityl[%index];
}

}

function runWormyFruit()
/!
// Entry point for program. This program adds up the costs
// and quantities of selected fruit types and outputs the results to
// thedisplay. This programis a variation of the program FruitLoopy
/!
/!
{
/]
/! Initialization
//

101

102 Chapter 2 = Introduction to Programming

snumFruitTypes=InitializeFruit(); // set up fruit arrays and variables
snumFruit=0 // always a good idea to initialize *all* variables!
%totalCost=0; // (even if we know we are going to change them later)

//
/! Computation
//

// Display the known statistics of the fruit collection

for (%index =0; %Zindex < ZnumFruitTypes; %index++)

{

echo("Cost of " @ $names[%index] @ ":$" @ $cost[%index]);
echo("Number of " @ $names[%index] @ ":" @ $quantity[%index]);

}

// count up all the pieces of fruit, and display that result
snumFruits = countEm(%ZnumFruitTypes));
echo("Total pieces of Fruit:" @ ZnumFruit);

// now calculate the total cost

%totalCost = addEmUp (%numFruitTypes);

echo("Total Price of Fruit:$" @ %totalCost);
}

Run the program, and use the original TwotyFruity output as a specification to
tell you whether or not this program is working correctly.

Best Practices

Programming is as much an art as it is anything else. There are often quite strenuous
discussions between programmers about the best way to do certain things. How-
ever, there is consensus on a few practices that are considered to be good.

So take the following list as a guideline, and develop a style that is comfortable
for you.

m Use module and function header comments to document your code.

m Sprinkle lots of commentary through your code, and make sure that it
actually explains what is happening.

m Don’t comment obvious things. Save the effort for the stuff that matters.

m Use white space (blank lines and spaces) to improve readability.

Moving Right Along

m Indent your code with readability in mind.

m Decompose large problems into small ones, and assault the small problems
with functions.

m Organize your code into separate modules, and make sure the module file
name is appropriate for the content, and vice versa.

m Restrict the number of lines of code you put in a module. Pick a size that
suits you—about 1,000 lines should be near your upper limit.

m Use descriptive and meaningful variable names.
m While keeping your variable names descriptive, don’t let the names get too long.

m Never embed tabs in code—use spaces instead. When you view your code
later, you may have different tab settings, and therefore find the code hard to
read. Using spaces guarantees that the visual appearance is consistent. Three
spaces for an indent is a good number.

m Be consistent in your programming style decisions.

m Be alert to what programming decisions you make that work well for you,
and try to consistently employ those techniques.

m Keep a change log of your work so you can keep track of the evolution of
your programs.

m Use revision control software to manage your program versions.

Moving Right Along

You’ve now bitten off a fairly big chunk o’ stuff. You’ve learned a new tool—in
fact, a new 4znd of tool—the programmer’s editor. After getting a handle on
UltraEdit-32, we looked at how software does its thing bringing people and
computer hardware together by using programming languages.

We then went off and started bullying the computer around using one of those
programming languages called TorqueScript.

Coming up next, we’ll delve into the world of 3D programming at a similar level
and discover the basics of 3D objects and then how we can manipulate them
with TorqueScript.

103

This page intentionally left blank

CHAPTER 3

3D PROGRAMMING
CONCEPTS

In this chapter we will discuss how objects are described in their three dimensions
in different 3D coordinate systems, as well as how we convert them for use in the
2D coordinate system of a computer display. There is some math involved here,
but don’t worry—TI’ll do the heavy lifting.

We'll also cover the stages and some of the components of the rendering
pipeline—a conceptual way of thinking of the steps involved in converting an
abstract mathematical model of an object into a beautiful on-screen picture.

3D Concepts

In the real world around us, we perceive objects to have measurements in three
directions, or dimensions. Typically we say they have height, width, and depth.
When we want to represent an object on a computer screen, we need to account
for the fact that the person viewing the object is limited to perceiving only two
actual dimensions: height, from the top to the bottom of the screen, and width,
across the screen from left to right.

Note

Remember that we will be using the Torque Game Engine to do most of the rendering work
involved in creating our game with this book. However, a good understanding of the technology
described in this section will help guide you in your decision making later on when you will be
designing and building your own models or writing code to manipulate those models in real time.

105

106

Chapter 3 = 3D Programming Concepts

Therefore, it’s necessary to simulate the third dimension, depth “into” the
screen. This on-screen three-dimensional (3D) simulation of a real (or imagined)
object is called a 3D model. In order to make the model more visually realistic, we
add visual characteristics, such as shading, shadows, and textures. The entire
process of calculating the appearance of the 3D model—converting it to an entity
that can be drawn on a two-dimensional (2D) screen and then actually displaying
the resulting image—is called rendering.

Coordinate Systems

When we refer to the dimensional measurement of an object, we use number
groups called coordinates to mark each vertex (corner) of the object. We com-
monly use the variable names X, Y, and Z to represent each of the three
dimensions in each coordinate group, or triplet. There are different ways to
organize the meaning of the coordinates, known as coordinate systems.

We have to decide which of our variables will represent which dimension—
height, width, or depth—and in what order we intend to reference them. Then
we need to decide where the zero point is for these dimensions and what it means
in relation to our object. Once we have done all that, we will have defined our
coordinate system.

When we think about 3D objects, each of the directions is represented by an axis,
the infinitely long line of a dimension that passes through the zero point. Width
or left-right is usually the X-axis, height or up-down is usually the Y-axis, and
depth or near-far is usually the Z-axis. Using these constructs, we have ourselves
a nice tidy little XYZ-axis system, as shown in Figure 3.1.

Now, when we consider a single object in isolation, the 3D space it occupies
is called object space. The point in object space where X, Y, and Z are all 0 is
normally the geometric center of an object. The geometric center of an object is
usually inside the object. If positive X values are to the right, positive Y values are
up, and positive Z values are away from you, then as you can see in Figure 3.2, the
coordinate system is called left-handed.

The Torque Game Engine uses a slightly different coordinate system, a right-
handed one. In this system, with Y and Z oriented the same as we saw in the left-
handed system, X is positive in the opposite direction. In what some people call
Computer Graphics Aerobics, we can use the thumb, index finger, and middle
finger of our hands to easily figure out the handedness of the system we are using

3D Concepts

Positive Y
Positive Z
Negative X +——— — Positive X
Negative Z
Negative Y
Figure 3.1
XYZ-axis system.
Positive Y
7\
Positive Z
0,0,0 » Positive X
Figure 3.2

Left-handed coordinate system with vertical Y-axis.

(see Figure 3.3). Just remember that using this technique, the thumb is always the
Y-axis, the index finger is the Z-axis, and the middle finger is the X-axis.

With Torque, we also orient the system in a slightly different way: the Z-axis is
up-down, the X-axis is somewhat left-right, and the Y-axis is somewhat near-far
(see Figure 3.4). Actually, somewhat means that we specify left and right in terms

107

108 Chapter 3 = 3D Programming Concepts

Positive Y
7 3

Positive Z

Positive X <
0,0,0

Figure 3.3
Right-handed coordinate system with vertical Y-axis.

Positive Z
A

Positive Y

—> Positive X

Figure 3.4
Right-handed coordinate system with vertical Z-axis depicting world space.

of looking down on a map from above, with north at the top of the map. Right
and left (positive and negative X) are east and west, respectively, and it follows
that positive Y refers to north and negative Y refers to south. Don’t forget that
positive Z would be up, and negative Z would be down. This is a right-handed
system that orients the axes to align with the way we would look at the world
using a map from above. By specifying that the zero point for all three axes is a
specific location on the map, and by using the coordinate system with the
orientation just described, we have defined our world space.

3D Concepts

o (5,-3,-2)

+Z

Figure 3.5
A point specified using an XYZ coordinate triplet.

Now that we have a coordinate system, we can specify any location on an object
or in a world using a coordinate triplet, such as (5,—3,—2) (see Figure 3.5). By
convention, this would be interpreted as X=5, Y=—3, Z=—2. A 3D triplet is
always specified in XYZ format.

Take another peek at Figure 3.5. Notice anything? That’s right—the Y-axis is
vertical with the positive values above the 0, and the Z-axis positive side is toward
us. It is still a right-handed coordinate system. The right-handed system with Y-
up orientation is often used for modeling objects in isolation, and of course we
call it object space, as described earlier. We are going to be working with this
orientation and coordinate system for the next little while.

3D Models

I previously briefly touched on the idea that we can simulate, or model, any
object by defining its shape in terms of its significant vertices (plural for vertex).
Let’s take a closer look, by starting with a simple 3D shape, or primitive—the
cube—as depicted in Figure 3.6.

The cube’s dimensions are two units wide by two units deep by two units high, or
2 % 2 x 2. In this drawing, shown in object space, the geometric center is offset to
a position outside the cube. I've done this in order to make it clearer what is
happening in the drawing, despite my statement earlier that geometric centers

109

110

Chapter 3 = 3D Programming Concepts

+Z

Figure 3.6
Simple cube shown in a standard XYZ-axis chart.

are usually located inside an object. There are times when exceptions are not only
possible but necessary—as in this case.

Examining the drawing, we can see the object’s shape and its dimensions quite
clearly. The lower-left-front corner of the cube is located at the position where
X=0, Y=1, and Z=—2. As an exercise, take some time to locate all of the other
vertices (corners) of the cube, and note their coordinates.

If you haven’t already noticed on your own, there is more information in the
drawing than actually needed. Can you see how we can plot the coordinates by
using the guidelines to find the positions on the axes of the vertices? But we can
also see the actual coordinates of the vertices drawn right in the chart. We don’t
need to do both. The axis lines with their index tick marks and values really
clutter up the drawing, so it has become somewhat accepted in computer gra-
phics to not bother with these indices. Instead we try to use the minimum
amount of information necessary to completely depict the object.

We only really need to state whether the object is in object space or world space
and indicate the raw coordinates of each vertex. We should also connect the
vertices with lines that indicate the edges.

If you take a look at Figure 3.7 you will see how easy it is to extract the sense of the
shape, compared to the drawing in Figure 3.6. We specify which space definition
we are using by the small XYZ-axis notation. The color code indicates the axis

3D Concepts 111

0,3,-4 2,8,-4
0,3,-2 23 2
0,1,-4 2,1, -4
0,1,-2 2,1, -2
Figure 3.7

Simple cube with reduced XYZ-axis key.

Figure 3.8
Simple cube with axis key at geometric center.

name, and the axis lines are drawn only for the positive directions. Different
modeling tools use different color codes, but in this book dark yellow (shown as
light gray) is the X-axis, dark cyan (medium gray) is the Y-axis, and dark
magenta (dark gray) is the Z-axis. It is also common practice to place the XYZ-
axis key at the geometric center of the model.

Figure 3.8 shows our cube with the geometric center placed where it reasonably
belongs when dealing with an object in object space.

Now take a look at Figure 3.9. It is obviously somewhat more complex than our
simple cube, but you are now armed with everything you need to know in order
to understand it. It is a screen shot of a four-view drawing from the popular
shareware modeling tool MilkShape 3D, in which a 3D model of a soccer ball was
created.

112

Chapter 3 = 3D Programming Concepts

Figure 3.9
Screen shot of sphere model.

In the figure, the vertices are marked with red dots (which show as black in the
picture), and the edges are marked with light gray lines. The axis keys are visible,
although barely so in some views because they are obscured by the edge lines.
Notice the grid lines that are used to help with aligning parts of the model. The
three views with the gray background and grid lines are 2D construction views,
while the fourth view, in the lower-right corner, is a 3D projection of the object.
The upper-left view looks down from above, with the Y-axis in the vertical
direction and the X-axis in the horizontal direction. The Z-axis in that view is not
visible. The upper-right view is looking at the object from the front, with the Y-axis
vertical and the Z-axis horizontal; there is no X-axis. The lower-left view shows the
Z-axis vertically and the X-axis horizontally with no Y-axis. In the lower-right
view, the axis key is quite evident, as its lines protrude from the model.

3D Shapes

We’ve already encountered some of the things that make up 3D models. Now it’s
time to round out that knowledge.

As we’ve seen, vertices define the shape of a 3D model. We connect the vertices
with lines known as edges. If we connect three or more vertices with edges to
create a closed figure, we’ve created a polygon. The simplest polygon is a triangle.

3D Concepts 113

OO

Figure 3.10
Polygons of varying complexity.

LI (D

Figure 3.11
Polygons decomposed into triangle meshes.

In modern 3D accelerated graphics adapters, the hardware is designed to
manipulate and display millions and millions of triangles in a second. Because of
this capability in the adapters, we normally construct our models out of the
simple triangle polygons instead of the more complex polygons, such as rec-
tangles or pentagons (see Figure 3.10).

By happy coincidence, triangles are more than up to the task of modeling
complex 3D shapes. Any complex polygon can be decomposed into a collection
of triangles, commonly called a mesh (see Figure 3.11).

The area of the model is known as the surface. The polygonal surfaces are called
facets—or at least that is the traditional name. These days, they are more com-
monly called faces. Sometimes a surface can only be viewed from one side, so
when you are looking at it from its “invisible” side, it’s called a hidden surface or

114 Chapter 3 = 3D Programming Concepts

edge
backface \

.

hidden line

hidden surface

surface,
or face

vertex

Figure 3.12
The parts of a 3D shape.

hidden face. A double-sided face can be viewed from either side. The edges of
hidden surfaces are called hidden lines. With most models, there are faces on the
backside of the model, facing away from us, called backfaces (see Figure 3.12). As
mentioned, most of the time when we talk about faces in game development, we
are talking about triangles, sometimes shortened to tris.

Displaying 3D Models

After we have defined a model of a 3D object of interest, we may want to display a
view of it. The models are created in object space, but to display them in the 3D
world, we need to convert them to world space coordinates. This requires three
conversion steps beyond the actual creation of the model in object space.

1. Convert to world space coordinates.
2. Convert to view coordinates.
3. Convert to screen coordinates.

Each of these conversions involves mathematical operations performed on the
object’s vertices.

The first step is accomplished by the process called transformation. Step 2 is what
we call 3D rendering. Step 3 describes what is known as 2D rendering. First we will
examine what the steps do for us, before getting into the gritty details.

Displaying 3D Models

Transformation

This first conversion, to world space coordinates, is necessary because we have to
place our object somewhere! We call this conversion transformation. We will
indicate where by applying transformations to the object: a scale operation
(which controls the object’s size), a rotation (which sets orientation), and a transla-
tion (which sets location).

World space transformations assume that the object starts with a transformation
of (1.0,1.0,1.0) for scaling, (0,0,0) for rotation, and (0,0,0) for translation.

Every object in a 3D world can have its own 3D transformation values, often
simply called transforms, that will be applied when the world is being prepared
for rendering.

Tip

Other terms used for these kinds of XYZ coordinates in world space are Cartesian coordinates or
rectangular coordinates.

Scaling
We scale objects based upon a triplet of scale factors where 1.0 indicates a scale of
1:1.

The scale operation is written similarly to the XYZ coordinates that are used to
denote the transformation, except that the scale operation shows how the size of
the object has changed. Values greater than 1.0 indicate that the object will be
made larger, and values less than 1.0 (but greater than 0) indicate that the object
will shrink.

For example, 2.0 will double a given dimension, 0.5 will halve it, and a value of
1.0 means no change. Figure 3.13 shows a scale operation performed on a cube in

before after

L

/ /

Figure 3.13
Scaling.

115

116

Chapter 3 = 3D Programming Concepts

/
7

Figure 3.14
Rotation.

object space. The original scale values are (1.0,1.0,1.0). After scaling, the cube is
1.6 times larger in all three dimensions, and the values are (1.6,1.6,1.6).

Rotation

The rotation is written in the same way that XYZ coordinates are used to denote
the transformation, except that the rotation shows how much the object is
rotated around each of its three axes. In this book, rotations will be specified
using a triplet of degrees as the unit of measure. In other contexts, radians
might be the unit of measure used. Other methods of representing rotations are
used in more complex situations, but this is the way we’ll do it in this book.
Figure 3.14 depicts a cube being rotated by 30 degrees around the Y-axis in its
object space.

It is important to realize that the order of the rotations applied to the object
matters a great deal. The convention we will use is the roll-pitch-yaw method,
adopted from the aviation community. When we rotate the object, we roll it
around its longitudinal (Z) axis. Then we pitch it around the lateral (X) axis.
Finally, we yaw it around the vertical (Y) axis. Rotations on the object are applied
in object space.

If we apply the rotation in a different order, we can end up with a very different
orientation, despite having done the rotations using the same values.

Translation

Translation is the simplest of the transformations and the last that is applied to
the object when transforming from object space to world space. Figure 3.15
shows a translation operation performed on an object. Note that the vertical axis
is dark gray. As I said earlier, in this book, dark gray represents the Z-axis. Try to

Displaying 3D Models

-z

/

L /
/
Figure 3.15
Translation.

figure out what coordinate system we are using here. I'll tell you later in the
chapter. To translate an object, we apply a vector to its position coordinates.
Vectors can be specified in different ways, but the notation we will use is the same
as the XYZ triplet, called a vector triplet. For Figure 3.15, the vector triplet is
(3,9,7). This indicates that the object will be moved three units in the positive
X direction, nine units in the positive Y direction, and seven units in the positive
Z direction. Remember that this translation is applied in world space, so the
X direction in this case would be eastward, and the Z direction would be down
(toward the ground, so to speak). Neither the orientation nor the size of the
object is changed.

Full Transformation

So now we roll all the operations together. We want to orient the cube a certain
way, with a certain size, at a certain location. The transformations applied are
scale (s)=1.6,1.6,1.6, followed by rotation (r)=0,30,0, and then finally translation
(t)=3,9,7. Figure 3.16 shows the process.

Note

The order that we use to apply the transformations is important. In the great majority of cases, the
correct order is scaling, rotation, and then translation. The reason is that different things happen
depending on the order.

You will recall that objects are created in object space and then moved into world space. The
object’s origin is placed at the world origin. When we rotate the object, we rotate it around the
appropriate axes with the origin at (0,0,0) and then translate it to its new position.

If you translate the object first and then rotate it (which is still going to take place around (0,0,0)),
the object will end up in an entirely different position, as you can see in Figure 3.17.

117

118 Chapter 3 = 3D Programming Concepts

grotated / translated

Figure 3.16
Fully transforming the cube.

scaled

rotate, then translate &/
#ﬂ /é/ - 1
g | 450
7

B2 c2

translate, then rotate

Figure 3.17
Changing the transformation order.

Displaying 3D Models

Rendering

Rendering is the process of converting the 3D mathematical model of an object
into an on-screen 2D image. When we render an object, our primary task is to
calculate the appearance of the different faces of the object, convert those faces
into a 2D form, and send the result to the video card, which will then take all the
steps needed to display the object on your monitor.

We will take a look at several different rendering techniques—those that are
often used in video game engines or 3D video cards. There are other techniques,
such as ray-casting, that aren’t in wide use in computer games (with the odd
exception, of course); we won’t be covering the less-common techniques here.

In the previous sections our simple cube model had colored faces. In case you
haven’t noticed (but I'm sure you did notice), we haven’t covered the issue of the
faces, except briefly in passing.

A face is essentially a set of one or more contiguous coplanar adjacent triangles;
that is, when taken as a whole, the triangles form a single flat surface. If you refer
back to Figure 3.12, you will see that each face of the cube is made with two
triangles. Of course, the faces are transparent in order to present the other parts
of the cube.

Flat Shading

Figure 3.18 provides an example of various face configurations on an irregularly
shaped object. Each face is presented with a different color (each visible as a

Figure 3.18
Faces on an irregularly shaped object.

119

120

Chapter 3 = 3D Programming Concepts

different shade). All triangles with the label A are part of the same face; the same
applies to the D triangles. The triangles labeled B and C are each single-triangle
faces.

When we want to display 3D objects, we usually use some technique to apply
color to the faces. The simplest method is flat shading, as used in Figure 3.18. A
color or shade is applied to a face, and a different color or shade is applied to
adjacent faces so that the user can tell them apart. In this case, the shades were
selected with the sole criterion being the need to distinguish one face from the
other.

One particular variation of flat shading is called Z-flat shading. The basic idea is
that the farther a face is from the viewer, the darker or lighter the face.

Lambert Shading

Usually color and shading are applied in a manner that implies some sense of
depth and lighted space. One face or collection of faces will be lighter in shade,
implying that the direction they face has a light source. On the opposite side of
the object, faces are shaded to imply that no light, or at least less light, reaches
those faces. In between the light and dark faces, the faces are shaded with
intermediate values. The result is a shaded object where the face shading provides
information that imparts a sense of the object in a 3D world, enhancing the
illusion. This is a form of flat shading known as lambert shading (see Figure 3.19).

Figure 3.19
Lambert-shaded object.

Displaying 3D Models

Figure 3.20
Flat-shaded (A) and gouraud-shaded (B) spheres.

Gouraud Shading

A more useful way to color or shade an object is called gouraud shading. Take a
look at Figure 3.20. The sphere on the left (A) is flat shaded, while the sphere on
the right (B) is gouraud shaded. Gouraud shading smoothes the colors by
averaging the normals (the vectors that indicate which way surfaces are facing) of
the vertices of a surface. The normals are used to modify the color value of all the
pixels in a face. Each pixel’s color value is then modified to account for the pixel’s
position within the face. Gouraud shading creates a much more natural
appearance for the object, doesn’t it? Gouraud shading is commonly used in both
software and hardware rendering systems.

Phong Shading

Phong shading is a much more sophisticated—and computation-intensive—
technique for rendering a 3D object. Like gouraud shading, it calculates color or
shade values for each pixel. Unlike gouraud shading (which uses only the ver-
tices’ normals to calculate average pixel values), phong shading computes
additional normals for each pixel between vertices and then calculates the new
color values. Phong shading does a remarkably better job (see Figure 3.21), but at
a substantial cost.

Phong shading requires a great deal of processing for even a simple scene, which is
why you don’t see phong shading used much in real-time 3D games where frame
rate performance is important. However, there are games made where frame rate
is not as big an issue, in which case you will often find phong shading used.

Fake Phong Shading

There is a rendering technique that looks almost as good as phong shading but
can allow fast frame rates. It’s called fake phong shading, or sometimes fast phong

121

122

Chapter 3 = 3D Programming Concepts

Figure 3.21
Phong-shaded sphere.

Figure 3.22
Example of a fake phong highlight map.

shading, or sometimes even phong approximation rendering. Whatever name it
goes by, it is not phong rendering. It is useful, however, and does indeed give
good performance.

Fake phong shading basically employs a bitmap, which is variously known as a
phong map, a highlight map, a shade map, or a light map. I'm sure there are other
names for it as well. In any event, the bitmap is nothing more than a generic
template of how the faces should be illuminated (as shown in Figure 3.22).

As you can tell by the nomenclature, there is no real consensus about fake phong
shading. There are also several different algorithms used by different people. This
diversity is no doubt the result of several people independently arriving at the

Displaying 3D Models

Figure 3.23
Texture-mapped and gouraud-shaded cube.

same general concept at roughly the same time—all in search of better perfor-
mance with high-quality shading.

Texture Mapping

Texture mapping is covered in more detail in Chapters 8 and 9. For the sake of
completeness, I'll just say here that texture mapping an object is something like
wallpapering a room. A 2D bitmap is “draped” over the object, to impart detail
and texture upon the object, as shown in Figure 3.23.

Texture mapping is usually combined with one of the shading techniques cov-
ered in this chapter.

Shaders

When the word is used alone, shaders refers to shader programs that are sent to
the video hardware by the software graphics engine. These programs tell the

video card in great detail how to manipulate vertices or pixels depending on the
kind of shader used.

Traditionally, programmers have had limited control over what happens to
vertices and pixels in hardware, but the introduction of shaders allowed them to
take complete control.

Vertex shaders, being easier to implement, were first out of the starting blocks.
The shader program on the video card manipulates vertex data values on a 3D
plane via mathematical operations on an object’s vertices. The operations affect
color, texture coordinates, elevation-based fog density, point size, and spatial
orientation.

123

124

Chapter 3 = 3D Programming Concepts

Pixel shaders are the conceptual siblings of vertex shaders, but they operate on
each discrete viewable pixel. Pixel shaders are small programs that tell the video
card how to manipulate pixel values. They rely on data from vertex shaders
(either the engine-specific custom shader or the default video card shader
function) to provide at least triangle, light, and view normals.

Shaders are used in addition to other rendering operations, such as texture and
normal mapping.

Bump Mapping

Bump mappingis similar to texture mapping. Where texture maps add detail to a
shape, bump maps enhance the shape detail. Each pixel of the bump map con-
tains information that describes aspects of the physical shape of the object at the
corresponding point, and we use a more expansive word to describe this—the
texel. The name texel derives from texture pixel.

Bump mapping gives the illusion of the presence of bumps, holes, carving, scales,
and other small surface irregularities. If you think of a brick wall, a texture map
will provide the shape, color, and approximate roughness of the bricks. The
bump map will supply a detailed sense of the roughness of the brick, the mortar,
and other details. Thus bump mapping enhances the close-in sense of the object,
while texture mapping enhances the sense of the object from farther away.

Bump mapping is used in conjunction with most of the other rendering tech-
niques.

Environment Mapping

Environment mapping is similar to texture mapping, except that it is used to
represent effects where environmental features are reflected in the surfaces of an
object. Things like chrome bumpers on cars, windows, and other shiny object
surfaces are prime candidates for environment mapping.

Mipmapping

Mipmapping is a way of reducing the amount of computation needed to accu-
rately texture-map an image onto a polygon. It’s a rendering technique that
tweaks the visual appearance of an object. It does this by using several different
textures for the texture-mapping operations on an object. At least two, but
usually four, textures of progressively lower resolution are assigned to any given

Displaying 3D Models 125

Figure 3.24
Mipmap textures for a stone surface.

o S

Figure 3.25
Mipmap textures in perspective view.

surface, as shown in Figure 3.24. The video card or graphics engine extracts pixels
from each texture depending on the distance and orientation of the surface
compared to the view screen.

In the case of a flat surface that recedes away from the viewer into the distance,
for the nearer parts of the surface, pixels from the high-resolution texture are
used (see Figure 3.25). For the middle distances, pixels from the medium-
resolution textures are used. Finally, for the faraway parts of the surface, pixels
from the low-resolution texture are used.

126

Chapter 3 = 3D Programming Concepts

Tip

Anti-aliasing is a software technique used in graphics display systems to make curved and
diagonal lines appear to be continuous and smooth. On computer monitors the pixels themselves
aren't curved, but collectively they combine together to represent curves. Using pixels within
polygon shapes to simulate curves causes the edges of objects to appear jagged. Anti-aliasing, the
technique for smoothing out these jaggies, or aliasing, usually takes the form of inserting
intermediate-colored pixels along the edges of the curve. The funny thing is, with textual displays
this has the paradoxical effect of making text blurrier yet more readable. Go figure!

Normal Mapping

Normal mapping is a further enhancement of bump mapping. With normal
mapping what we are doing, in essence, is transferring detail from a very high
poly model to a low poly model using a bitmap gradient. This allows us to
provide an astonishing sense of detail with very fast rendering speeds.

The basic procedure is to first create a very high polygon model of an object.
Now, when I say very high, I mean just that: four or five million polygons. Yeah,
5,000,000—that high. We then make a rendered lighting pass on that object in
our modeling tool and “bake” (preserve) the normals shading of the object in a
bitmap very similar to the UV mapped texture bitmap for the object. Because
what we are preserving is basically a graphical representation of the normals of all
of the polygons in the high poly model, the data we save is called the normal map.

We then create a low poly (in the 2,000-polygon range, give or take 500 or 1,000
polygons) model and apply the normal map to the new model. The pixel values
in the normal map are used to assign brightness values to the pixels of the texture
map, with almost photorealistic results at times.

Parallax Mapping

Upping the ante even further, parallax mapping is yet another evolutionary step
beyond bump mapping.

With parallax mapping, we can create the illusion of holes and protrusions in flat
surfaces, without adding polygons. A parallax map image is pretty well identical
to a bump map, but it is used in rendering in a much more dramatic way.

Try this experiment. Set a drinking glass or cup on a table, and stand above it.
Look straight down at the glass. You will obviously see the circular shape of the
glass—in fact, you will probably see a series of concentric rings: the inside and
outside of the opening rim, the inside and outside of the base, and so on. And in
the background is the surface of the table. Now move your head to one side, while

Displaying 3D Models

keeping your eyes on the glass. The shapes all change, even though the glass
hasn’t moved. The background is still the table. Eventually, as you move your
head farther from the glass, the table stops being the background, starting at the
top of the glass. The edge of the table “moves” down the glass toward the base.
You can hasten this effect by moving your head toward the plane of the table.

Imagine now that those concentric rings that you started with were simply pixels
on a bitmap, but whose values indicate a distance from the plane of a polygon
(the table). Parallax-mapping software calculates where those pixels would be
rendered as you move your head sideways, re-creating the changing appear-
ance—in a 3D manner—of the glass. And yet there are no extra polygons
involved! This is a simulation of the parallax effect—the apparent change of
position of an object in space when viewed from a different location, even though
the object hasn’t moved. The apparent change becomes visible only when the
object is viewed against a static background. In the case of the little experiment I
told you to do (you did do it, right?), the table is the static background.

Now when you move your head closer to the table, off to one side, or you move
your head far enough away from the glass, eventually you will see that the glass
really does protrude up from the table. With parallax mapping and a rendered
glass, if you do the same thing, you will see the pixels of the rendered glass get
squashed together and never leave the bounds of the polygon on which they are
mapped. Because they can’t—they are part of the polygon! But this effect is really
only visible in extreme situations that usually aren’t noticeable when you are
engaged in mortal combat with a room full of electro-ninjas.

The effect is most satisfying when the parallax-mapped objects are crossing the
viewer’s field of view, like when your character is walking past a series of large
bullet holes or craters in a wall. Whole factories filled with pipes and machinery
and valves and stuff can be rendered this way, with very little or no actual polygon
budget penalties. In fact, large buckets of polygon budget can be recovered using
this technique! And those polygons that were once used to create a maze of pipes
and cables can now be better put to use in populating the scene with more nasty
electro-ninjas.

Scene Graphs

In addition to knowing how to construct and render 3D objects, 3D engines need
to know how the objects are laid out in the virtual world and how to keep track of
changes in the status of the models, their orientation, and other dynamic

127

128

Chapter 3 = 3D Programming Concepts

Scene

) Water Sky
Terrain Block Box

i I\ rrstom |
g d
Rubber

= 2

Transform Crate Plank Piling m

Figure 3.26
Simple scene graph.

Pier

i

information. This is done using a mechanism called a scene graph, a specialized
form of a directed graph. The scene graph maintains information about all
entities in the virtual world in structures called nodes. The 3D engine traverses
this graph, examining each node one at a time to determine how to render each
entity in the world. Figure 3.26 shows a simple seaside scene with its scene graph.
The nodes marked by ovals are group nodes, which contain information about
themselves and point to other nodes. The nodes that use rectangles are leaf nodes.
These nodes contain only information about themselves.

Note that in the seaside scene graph, not all of the nodes contain all of the
information that the other nodes have about themselves.

Many of the entities in a scene don’t even need to be rendered. In a scene graph, a
node can be anything. The most common entity types are 3D shapes, sounds,

3D Programming

lights (or lighting information), fog and other environmental effects, viewpoints,
and event triggers.

When it comes time to render the scene, the Torque Engine will “walk” through
the nodes in the tree of the scene graph, applying whatever functions to the node
that are specified. It then uses the node pointers to move on to the next node to
be rendered.

3D Audio

Audio and sound effects are used to heighten the sense of realism in a game.
There are times when the illusion is greatly enhanced by using position infor-
mation when generating the sound effects. A straightforward example would be
the sound generated by a nearby gunshot. By calculating the amplitude—based
on how far away the shot occurred—and the direction, the game software can
present the sound to a computer’s speakers in a way that gives the player a strong
sense of where the shot occurred. This effect is even better if the player is wearing
audio headphones. The player then has a good sense of the nature of any nearby

threat and can deal with it accordingly—usually by massive application of return
fire.

The source location of a game sound is tracked and managed in the same way as
any other 3D entity via the scene graph.

Once the game engine has decided that the sound has been triggered, it then
converts the location and distance information of the sound into a stereo
“image” of the sound, with appropriate volume and balance for either the right
or left stereo channel. The methods used to perform these calculations are much
the same as those used for 3D object rendering.

Audio has an additional set of complications—things like fade and drop-oft or
cutoff.

3D Programming

With the Torque Engine, most of the really grubby low-level programming is
done for you. Instead of writing program code to construct a 3D object, you use a
modeling tool (which we cover in later chapters) to create your object and a few
lines of script code to insert the object in a scene. You don’t even need to worry
about where in the scene graph the object should be inserted—Torque handles

129

130

Chapter 3 = 3D Programming Concepts

that as well, through the use of information contained in the datablocks that you
define for objects.

Even functions like moving objects around in the world are handled for us by
Torque, simply by defining the object to be of a certain class and then inserting
the object appropriately.

The kinds of objects we will normally be using are called shapes. In general,
shapes in Torque are considered to be dynamic objects that can move or
otherwise be manipulated by the engine at run time.

There are many shape classes. Some are fairly specific, like vehicles, players,
weapons, and projectiles. Some are more general-purpose classes, like items and
static shapes. Many of the classes know how their objects should respond to game
stimuli and are able to respond in the game with motion or some other behavior
inherent to the object’s class definition.

Usually, you will let the game engine worry about the low-level mechanics of
moving your 3D objects around the game world. However, there will probably be
times while creating a game that you are going to want to cause objects to move
in some nonstandard way—some method not defined by the class definition of
the object. With Torque, this is easy to do!

Programmed Translation

When an object in 3D world space moves, it is translating its position in a
manner similar to that shown earlier in the discussion about transformations.

You don’t, however, absolutely need to use the built-in classes to manipulate shapes
in your game world. For example, you can write code to load in an Interior (a class
of objects used for structures like buildings) or an Item (a class of objects used for
smaller mobile and static items in a game world, like signs, boxes, and powerups).
You can then move that object around the world any way you like.

You can also write code to monitor the location of dynamic shapes that are
moving around in the world, detect when they reach a certain location, and then
arbitrarily move, or teleport, those objects to some other location.

Simple Direct Movement

What we are going to do is select an object in a 3D scene in Torque using the
Mission Editor and then move it from one location to another using some script

3D Programming 131

instructions entered directly into the game console. The first step is to identify
the object.

1. Run the Torque demo by double-clicking the demo.exe file (the Torque
demo executable) as you did for the exercises in Chapter 2, and click the
mouse button once when the GarageGames splash screen appears.

2. When the main menu appears, press the Example: FPS Multiplayer button.
It’s the second one from the bottom.

3. On the next screen (Play Demo Game), make sure that the Create Server
check box has a check mark in it. You can also put a name for your player in
the Player Name box, but it isn’t absolutely necessary.

4. Press the button with the right arrow in it, located at lower left of the screen.
This will launch the demo. Note: the left arrow button will return you to the
main menu.

Tip

You should make sure you remember steps 1 to 4 in the “Simple Direct Movement” section. These
steps describe how to launch the Torque demo. At later points in the book when you see that I've
written “launch the Torque demo” somewhere in a procedure, it's these four steps that | intend for
you to follow. Yeah, | know. I'm lazy.

5. After you’ve spawned into the game, run over to where you can see the Great
Hall structure (see Figure 3.27). Use Table 3.1 as a guide to the movement
keys in the demo.

Table 3.1 Torque Demo Movement and Action Keys
Key Description

w Run forward

3 Run backward

a Run (strafe) left

d Run (strafe) right
spacebar Jump

F11 Open Mission Editor
Tilde Open console

132

Chapter 3 = 3D Programming Concepts

Figure 3.27
The Great Hall.

6.

7.

8.
9.

10.

Using the mouse, turn your player-character to the left or right a bit, if
necessary, until you have a good view of the Great Hall.

Press F11. Torque’s built-in World Editor will appear. As you move your
cursor over the Great Hall, you’ll notice it change to a hand icon.

Click the hand on the Great Hall to select it.

Move the cursor over to the right side, and click once on the plus sign to the
left of the words “MissionGroup—SimGroup”. You will see the list expand,
and one of the folders that becomes visible will be called “Buildings—
SimGroup”. Expand this folder and you should see that the first entry, of the
type InteriorInstance, will be highlighted with a padlock icon in green on the
left. Take note of the number to the right of the padlock; this is the object’s
instance ID. See Figure 3.28 for help, if necessary. From the figure I get the
object ID 1643, located just below and to the left of the key icon, and also in
the highlighted entry in the list; your result might be the same but could very
well be different.

After noting the Great Hall’s entry highlighted in the upper-right panel,
move your attention to the lower-right panel, where the properties of the

3D Programming 133

File Edit Camera Waorld Window
e ————— — G i :
Lo N c _J 1823: MissionGroup - SimGroup -

_ 1824: MissionInfo - SeriptObject

-

_ﬂ D 1825: MissionArea - MissionArea
[}J 1826 environment - SimGroup
[}__J 1636: PlayerDropPaints - SimGroup
oy 1842; Buildings - SimGroup
e BCNE] 1643: - interiorinstance
TRTERnull
- 1677: ﬁlﬁl)() b _D 1644 - Interiorinstance
===
e N V)] t _D 1845: - Interiorinstance
1&@5‘]‘3 FHaERSS Lo oim s = _D 1648: - Interiorinstance
= } | 1 | [0 1847: - interiorinstance
_D 1848: - Interiorinstance

+* s Fa=

1691 :.(nuII'J 1678 (null) | | 164@: - Interiorinstance

_D 1850: - Interiorinstance
_D 1851: - Interiorinstance ﬂ

»
+ 1648: (null) Apply [Mame:
- 1648; (null) BEe
1650: (nul) . [Transform -
position 175.38 -10.1902 1828832
rotation 00-129.7937
*
1751 (null) scale 111
I Media

intericrFile demafdatalinteriors/re...

W Audio
AudioFrofile

AudiaEnviran J
-

Figure 3.28
Finding the Great Hall object’s instance ID.

Great Hall are located. Scroll this panel down until you come to a section
called “Dynamic Fields”. In here you will find a property called “locked” set
to true. To the left of the property is a little trash can; click it, and the
locked property will vanish. The Great Hall is now in a state where we can
abuse it.

11. Press the Tilde (“~”) key, and the console will pop open. The console
interface allows us to directly type in program code and get immediate
results.

12. In the console window, type echo(1643.getTransform()); and then press
the Enter key. Don’t forget to include the semicolon at the end of the line
before you press the Enter key.

You should get a result like 175.38 —10.1902 182.883 0 0 —1 0.519998,
which is the transform of the Great Hall. The first three numbers are the

134

Chapter 3 = 3D Programming Concepts

XYZ coordinates of the geometric center of the structure. The next three are
the axis normals, which in this case indicates that the Z-axis is pointing
straight up. The final value indicates how much rotation is applied around
the rotation axes. We'll look at rotation in more detail a little later. Here, the
rotation amount (in radians) is applied to only the Z-axis.

Tip

You should note that when you read the rotation angle of an object in the World Editor Inspector,
the value for the rotation is given in degrees. However, when you run the getTransform
method for an object, the rotation value is returned in radians. To convert between the two,
1 radian equals 57.2957795 degrees, and 1 degree equals 0.017453293 radian.

13. In the console window, type 1643.setTransform(“200 0 200 1 0 0 0”’); and
then press the Enter key.

14. Press the Tilde key to remove the console window, and take a look. You will
notice that the Great Hall has moved.

15. Take the next several minutes to experiment with different transforms. Try
rotating the structure around different axes or several axes at the same time.

16. When you are done, press the Tilde key to exit the console window, press
Escape to exit the World Editor, and then press Escape one more time to exit
the game.

Tip

In the little exercise in the “Simple Direct Movement” section, you saw a command that looked
like this: echo(1643.getTransform());. The number 1643 is an object ID, and the
getTransform() part is what is called a method of that object. A method is a function that
belongs to a specific object class. We'll cover these topics in more detail in a later chapter.

Programmed Movement

Now we are going to explore how we can move things in the 3D world using
program code. We are going to use the StaticShape class to create an object based
on a model of a stylized heart, insert the object in the game world, and then start
it slowly moving across the terrain—all using TorqueScript.

Okay, now—so on to the program. Type the following code module into a file,
and save the file as \3D2E\demo\moveshape.cs.

3D Programming

/!
// moveshape.cs

/1

// This module contains a function for moving a specified shape.
/!

function MoveShape(%shape, %dist)
/1
// moves the %shape by %dist amount
//
{
echo ("MoveShape: shape id: ", %shape);
echo ("MoveShape: distance: ", %dist);
%xfrm=%shape.getTransform();
%1x = getword(%xfrm,0); // get the current transform values
%1y = getword(%xfrm,1);
%1z = getword(%xfrm,2);
S1x +=%dist; // adjust the x axis position
%shape.setTransform(%1x SPC %1y SPC 21z SPC "0 01 0");
echo ("MoveShape: done.");

In this module there is one function that does all of the work. The function
MoveShape accepts a shape handle (or instance ID number) and a distance
as arguments. It then uses these to move whatever shape the handle points to.

First, there are a couple of echo statements that print, out to the console, the
shape’s handle and then the distance it will be moved.

Second, the code gets the current position of the shape using the %shape.
getTransform method of the Item class.

Next, the program employs the getword function to extract the parts of the
transform string that are of interest and store them in local variables. We do this
because, for this particular program, we want to move the shape in the X-axis.
Therefore, we strip out all three axes and increment the X value by the distance
that the object should move. Then we prepend all three axis values to a dummy
rotation and set the item’s transform to be this new string value. This last bit is
done with the %shape.setTransform statement.

Finally, another echo statement hurls out to the console the basic bit of infor-
mation that the module is done.

135

136

Chapter 3 = 3D Programming Concepts

This MoveShape function acts something like a wrapper folded around the other
statements. Obviously, it saves us having to type the same set of statements over
and over to move different shapes different amounts at different times.

To use the program, follow these steps:

1. Make sure you’ve saved the file as \3D2E\demo\moveshape.cs.
2. Run the Torque FPS demo.

3. Open the console and type in the following, making sure you press Enter
after the semicolon:
exec("demo/moveshape.cs");

You should get a response in the console window similar to this:
Compiling demo/moveshape.cs...
Loading compiled script demo/moveshape.cs.

This means that the Torque Engine has compiled your program and then
loaded it into memory. The function you defined is now in memory, waiting
with barely suppressed anticipation for your next instruction.

Tip

About those slashes . . . | just want to re-emphasize that when you see the file names and paths
written out, the backslash ("\") is used, and when you type in those same paths in the console
window, the forward slash (“/) is used. This is not a mistake. Torque is a cross-platform program
that is available for Macintosh and Linux as well as Windows. It's only on Windows-based systems
that backslashes are used—everyone else uses forward slashes.

Therefore, the backslashes for Windows-based paths are the exception here. Just thought I'd point
that out again, if it's not burned into your brain yet!

4. Next, make sure that the Great Hall object in the scene is unlocked. Whip on
back to the “Simple Direct Movement” section to refresh your memory
about locking and unlocking shapes, if necessary. You will also need to
obtain the Great Hall’s instance ID—again, the “Simple Direct Movement”
section covers this.

You should be familiar with opening and closing the console window by
now, so I won’t bother explaining that part in the instruction sequences
anymore.

5. Type the following into the console window:
$gh=nnnn;

3D Programming 137

where nnnn is the instance ID number of the Great Hall. This will save that
ID in the global variable $gh so that you don’t have to remember the
number. Note that the variable will be saved only as long as the engine is
running. Once you quit Torque, the value and the variable are lost.

6. Type the following into the console window:
MoveShape($gh,50);

7. Close the console window. You should see that the hall has moved away
from its original location toward the “east” (positive Y).

Go ahead and experiment with the program. Try moving the Great Hall through
several axes at once, or try changing the distance. Also attack some of the other
items in the scene with your new software weapon.

Programmed Rotation

Asyou’ve probably figured out already, we can rotate an object programmatically
(or directly, for that matter) using the same setTransform method that we used
to translate an object.

Type the following program, and save it as \3D2E\demo\turnshape.cs.

/1
// turnshape.cs
//

// This module contains a function for turning a specified shape.
//

function TurnShape(%shape, %angle)
//
// turns the %shape by %angle amount.
//
{

echo (";TurnShape: shape id: ", %shape);

echo ("TurnShape: angle: ", %angle);

%xfrm=%shape.getTransform();

%1x = getword(%xfrm,0); // first, get the current transform values

%1y = getword(%xfrm,1);

%1z = getword(%xfrm,2);

srx =getword(%xfrm,3);

»ry = getword(%xfrm,4);

138

Chapter 3 = 3D Programming Concepts

%rz = getword(%xfrm,5);
sangle +=1.0; // increment the angle (ie. rotate it a bit)
»rd = %angle; // Set the rotation angle
sshape.setTransform(%1x SPC %1y SPC %1z SPC %rx SPC %ry SPC %rz SPC %rd);
echo ("TurnShape: done.");

1

The program is quite similar to the moveshape.cs program that you were just
working with. You can load and run the program in exactly the same way that
you did with the moveShape module, except that you want to use TurnShape
instead MoveShape.

Things of interest to explore are the variables %rx, %ry, %rz, and %rd in the
TurnShape function. Try making changes to each of these, and then observe the
effects your changes have on the item.

Programmed Scaling

We can also quite easily change the scale of an object using program code.
Type the following program, and save it as \3D2E\demo\sizeshape.cs.

/1
// sizeshape.cs

/1

// This module contains a function for scaling a specified shape.
/1

function SizeShape(%shape, %scale)
/1l
// moves the %shape by %scale amount
/1l
{
echo ("SizeShape: shape id: ", %shape);
echo ("SizeShape: angle: ", %scale);
%shape.setScale(%scale SPC %scale SPC %scale);
echo ("SizeShape: done.");
}

Ha! You thought there would be a ton o’ typing in store, didn’t you? Well, the
program is obviously similar to the moveshape.cs and turnshape.cs programs,
sort of. Except for all of the missing bits, that is. You can load and run this

3D Programming

program in exactly the same way, except that you want to use SizeShape instead
of MoveShape or TurnShape.

Why bother to write all this code to replace what is essentially a single line
statement anyway (if you ignore the echo statements)? For the practice, of
course!

You’'ll note that we don’t call the object’s %shape.getScale function (there is
one), because in this case, we don’t need to. Also notice that the three arguments
to our call to %shape.setScale all use the same value. This is to make sure the
object scales equally in all dimensions. Try making changes to each of these, and
then observe the effects your changes have on the item.

Another exercise would be to modify the SizeShape function to accept a different
parameter for each dimension (X, Y, or Z) so that you can change all three to
different scales at the same time.

Programmed Animation

You can animate objects by stringing together a bunch of translation, rotation,
and scale operations in a continuous loop. Like the transformations, most of the
animation in Torque can be left up to an object’s class methods to perform.
However, you can create your own ad hoc animations quite easily by using the
schedule function.

Type the following program, and save it as \3D2E\demo\animshape.cs.

//
// animshape.cs

//

// This module contains functions for animating a shape using

// arecurring scheduled function call.
//

function AnimShape(%shape, %dist, %angle, %scale)
//
// moves the %shape by %dist amount, and then
!/ schedules itself to be called again in 1/5
// of a second.
//
{
echo("AnimShape: shape:", %shape, " dist:",

%dist, "angle:", %angle, " scale:", %scale);

139

140 Chapter 3 = 3D Programming Concepts

if (%shape $="" ||

%dist $="" ||

%angle $="" ||

%scale $="")
{
error("AnimShape needs 4 parameters.syntax:");
error("AnimShape(id,moveDist,turnAng,scaleVal);");
return;
}
%xfrm=%shape.getTransform();
%1x = getword(%xfrm,0); // first, get the current
%1y = getword(%xfrm,1); // transform values
%1z = getword(%xfrm,2);
srx =getword(%xfrm,3);
»ry = getword(%xfrm,4);
%rz =getword(%xfrm,5);

B1x +=2%dist; // set the new x position

%angle +=1.0;

»rd = %angle; // Set the rotation angle

if ($grow) // if the shape is growing Targer
{

if (%scale<5.0) // and hasn't gotten too big
%scale+=0.3; // make it bigger

else
$grow = false; // if it's too big, then
} // don't let it grow more
else // ifit's shrinking
{

if (%scale > 3.0) //and isn't too small
%scale -=0.3; // thenmake it smaller
else
$grow=true; //ifit's toosmall,
} // don't let it grow smaller

%shape.setScale(%scale SPC %scale SPC %scale);
sshape.setTransform(%1x SPC %1y SPC %1z SPC

%rx SPC %ry SPC %rz SPC %rd);
schedule(200,0,AnimShape, %shape, %dist, %angle, %scale);
}

3D Programming

function DoAnimTest(%shape)
{
if (%shape $="" && isObject(%shape))
{
error("DoAnimTest requires 1 parameter.");
error("DoAnimTest syntax: DoAnimTest(shapelD);");
return;
}
$grow = true;
AnimShape(%shape, 0.2, 1, 2);
}

This module contains code from all of the three earlier modules and ties them
together in a way that allows us to watch an absolutely nutso Great Hall gyrate
and gambol about the countryside.

The function AnimShape accepts a shape handle as %shape, a distance step as
%dist, an angle value as %angle, and a scaling value as %scale and uses these to
transform the shape indicated by the %shape handle.

Before getting under way though, the function checks to make sure that it has
values for all of the parameters.

First, it obtains the current position of the shape using the %shape.getTransform
method of the Item class.

As with the earlier MoveShape function, the AnimShape function fetches the
transform of the shape and updates one of the axis values.

Then it updates the rotation value stored as %rd.

Then it adjusts the scale value by determining if the shape is growing or
shrinking. Depending on which way the size is changing, the scale is incremented,
unless the scale exceeds the too large or too small limits. When a limit is exceeded,
the change direction is reversed.

Next, the scale of the shape is changed to the new values using the %shape. -
setScale method for the shape.

Finally, the function sets the item’s transform to be the new transform values
within the %shape.setTransform statement.

The DoAnimTest function accepts an object handle and verifies that it is valid,
emitting an error message and exiting via the return statement if there is no valid
object ID.

141

142

Chapter 3 = 3D Programming Concepts

Then the global variable called $grow is set to true. This variable will determine
whether the shape will start out by scaling up in size or not. This function then
calls the AnimShape function, specifying which shape to animate by passing in the
handle to the shape as the first argument and also indicating the discrete
movement step distance, the discrete rotation angle, and the discrete size change
value with the second, third, and fourth arguments.

To use the program, follow these steps:

1. Make sure you’ve saved the file as \3D2E\demo\animshape.cs.

2. Run the Torque FPS demo.

3. After spawning in, make your way over to the docks, near the Great Hall.
4. Bring up the console window.

5. Type in the following, and press Enter after the semicolon:

exec("demo/animshape.cs");

You should get a response in the console window similar to this:

Compiling demo/animshape.cs...
Loading compiled script demo/animshape.cs.

This means that the Torque Engine has compiled your program and then
loaded it into memory. The datablock definition and the three functions are
in memory, waiting to be used.

6. Now, type the following into the console, and close the console quickly
afterward:

DoAnimTest($gh);

Remember that $gh is the variable that holds the instance handle of the Great
Hall. You will probably need to assign the right value into this variable—
check back in the “Programmed Movement” section for a quick refresher, if
necessary.

What you should see now is the Great Hall start spinning and moving
“inland” while growing and then shrinking.

Go ahead and experiment with the program. Try moving the item through
several axes at once, or try changing the distance. I did not put any code in the
animtest module to stop the animation. Review Chapter 2 and the preceding

3D Programming

section in this chapter and see if you can add statements that will stop the
animation when certain conditions are met.

3D Audio

Environmental sounds with a 3D component contribute greatly to the immersive
aspect of a game by providing positional cues that mimic the way sounds happen
in real life.

We can control 3D audio in the scene in much the same way we do 3D visual
objects.

Type the following program, and save it as \3D2E\demo\animaudio.cs.

/1
// animaudio.cs

//

// This module contains the definition of an audio emitter, which uses
// a synthetic water drop sound. It also contains functions for placing
// the test emitter in the game world and moving the emitter.

/1

datablock AudioProfile(TestSound)

//

// Definition of the audio profile

//

{
filename = "~/data/sound/testing.ogg"; // wave file to use for the sound
description = "AudioDefaultLooping3d"; // monophonic sound that repeats

preload = false; // Enginewill only Toad sound if it encounters it
// in the mission

s

function InsertTestEmitter()

//

// Instantiates the test sound, then inserts it

// into the game world to the right and offset somewhat
!/ from the player's default spawn Tocation.

//

{

// An exampTle function which creates a new TestSound object
%emtr = new AudioEmitter() {

position="000";

rotation="1000";

143

144

Chapter 3 = 3D Programming Concepts

}

scale="111";
profile = "TestSound"; // Use the profile in the datablock above
useProfileDescription="1";
type="2";
volume="1";
outsideAmbient ="1";
referenceDistance="1";
maxDistance ="100";
isLooping="1";
is3D="1";
loopCount ="-1";
minLoopGap = "0";
maxLoopGap ="0";
conelnsideAngle = "360";
coneQutsideAngle = "360";
coneQutsideVolume ="1";
coneVector="001";
minDistance ="20.0";

s

MissionCleanup.add(%emtr);

// Player setup-

semtr.setTransform("200 -52 200001 0"); // starting Tocation
echo("Inserting Audio Emitter " @ %emtr);

return Zemtr;

function AnimSound(%snd, %dist)

/1l

!/ moves the %snd by %dist amount each time

/1l

{

%xfrm=%snd.getTransform();

%1x = getword(%xfrm,0); // first, get the current transform values

%1y = getword(%xfrm,1)

%1z = getword(%xfrm,2);

srx =getword(%xfrm,3);
()
()

sry = getword(%xfrm,4
»rz = getword(%xfrm,5
BIx +=7%dist; // set the new x position
ssnd.setTransform(%1x SPC %1y SPC %1z SPC %rx SPC %ry SPC %rz SPC %rd);
schedule(200,0,AnimSound, %snd, %dist);

3D Programming

function DoAudioMoveTest()
//
// a function to tie together the instantiation
// and the movement in one easy to type function
[/l call.
//
{
sms = InsertTestEmitter();
AnimSound(%ms,1);
}
DoAudioMoveTest(); // by putting this here, we cause the test to start
// as soon as this module has been Toaded into memory

In this program, we also have a datablock that defines an audio profile. It
contains the name of the ogg (sound) file that contains the sound to be played,
a descriptor that tells Torque how to treat the sound, and a flag to indicate
whether the engine should automatically load the sound or wait until it
encounters a need for the sound. In this case, the engine will wait until it
knows it needs the file.

Note

Torque supports both wave (.wav) and Ogg Vorbis (.ogg) audio file formats. If you do not include
the extension part of an audio file's name when specifying one in a datablock or an audio object,
Torque will automatically tack the .wav extension onto the file name and then go look for the
audio file. If Torque cannot find the file using the .wav extension, it will then add the .ogg
extension instead and go look for the file again.

If you do include an extension (.wav or.ogg) as part of the file name, then Torque will look for the
specified file name with extension and give up if the file is not found.

The InsertTestEmitter function creates an audio object with a call to new
AudioEmitter, and there are quite a few properties to be set. These properties will
be explained in greater detail in Chapter 20.

A difference to note compared to the earlier modules you created is the last line,
which is a call to DoAudioMoveTest. This allows us to load and run the program in
one go, using the exec call. After the Torque Engine compiles the program, it
loads it into memory and runs through the code. In our earlier program, like the
AnimShape module, Torque would encounter only the datablock and function
definitions. Because they are definitions, they aren’t executed—they’re just
loaded into memory. The last line, however, is not a definition. It is a statement

145

146

Chapter 3 = 3D Programming Concepts

that calls a function. So when Torque encounters it, Torque looks to see if it
has the function resident in memory, and if so, it executes the function according
to the syntax of the statement. Statements in script modules that are not part of
function definitions or datablock definitions are sometimes called naked state-
ments, or more commonly, inline statements. They are “inline”” because they are
executed as soon as they are encountered (as if in a lineup), not saved elsewhere
in memory prior to being used.

To use the program, follow these steps:

1. Make sure you’ve saved the file as \3D2E\demo\ animaudio.cs.
2. Run the Torque FPS demo.

3. After you spawn in, run down to the docks and out onto a dock, then turn
around and face inland.

4. Press F11 to enter the Mission Editor, and then bring up the console window.

5. Type in the following, and press Enter after the semicolon:
exec("demo/animaudio.cs");

You should get a response in the console window similar to this:
Compiling demo/animaudio.cs...
Loading compiled script demo/animaudio.cs.

You should also begin to hear the dripping “test” sound off to the center-left
side. If you wait without moving your player in any way, not even using the
mouse to turn his head, you will notice the sound slowly approach you from
the left, pass over to the right in front of you, and then go off into the distance
to the left. Pretty neat, huh?

You’ll also notice, while in the Mission Editor, a big black ball of “points” rolling
from left to right. That is the construct that displays the presence and properties
of an audio emitter.

Moving Right Along

So, we’ve now seen how 3D objects are constructed from vertices and faces, or
polygons. We explored how they fit into that virtual game world using trans-
formations and that the transformations are applied in a particular order—scaling,

Moving Right Along

rotation, and then finally translation. We also saw how different rendering
techniques can be used to enhance the appearance of 3D models.

Then we learned practical ways to apply those concepts using program code
written using TorqueScript and tested with the Torque Game Engine.

In the next chapter, we will dive deeper into learning how to use TorqueScript.

147

This page intentionally left blank

CHAPTER 4

GAME PROGRAMMING

In the preceding two chapters you were introduced to a few new concepts:
programming, 3D graphics, 3D object manipulation, and stuff like that. Most of
it was fairly broad, in order to give you a good grasp of what you can do to make
your game.

The next bunch of chapters get down and dirty, so to speak. We’re going to muck
around with our own hands examining things, creating things, and making
things happen.

In this chapter we’re going to hammer at the TorqueScript for a while, writing
actual code that will be used to develop our game. We’ll examine in detail how
the code works in order to gain a thorough understanding of how Torque works.
The game we are going to create has the rather unoriginal name of Emaga, which
is just agame spelled backward. The Chapter 4 version will be called Emaga4. Of
course, you may—and probably should—substitute whatever name you wish!

TorqueScript

As I've said before, TorqueScript is much like C/C++, but there are a few differ-
ences. TorqueScript is typeless—with a specific exception regarding the differ-
ence between numbers and strings—and you don’t need to preallocate storage
space with variable declarations.

149

150

Chapter 4 = Game Programming

You can control all aspects of a game—from game rules and nonplayer charac-
ter behavior to player scoring and vehicle simulation—through the use of
TorqueScript. A script comprises statements, function declarations, and package
declarations.

Most of the syntax in Torque Game Engine (TGE) Script language is similar to
C/C++ language, with a high correlation of keywords (see Table A.3 in
Appendix A) between the two, although, as is often the case in scripting lan-
guages, there is no type enforcement on the variables, and you don’t declare
variables before using them. If you read a variable before writing it, it will be an
empty string or zero, depending on whether you are using it in a string context
or a numeric context.

The engine has rules for how it converts between the script representation of
values and its own internal representation. Most of the time the correct script
format for a value is obvious; numbers are numbers (also called numerics), and
strings are strings. The tokens true and false can be used for ease of code reading
to represent 1 and 0, respectively. More complicated data types will be contained
within strings; the functions that use the strings need to be aware of how to
interpret the data in the strings.

Strings

String constants are enclosed in single quotes or double quotes. A single-quoted
string specifies a tagged string—a special kind of string used for any string
constant that needs to be transmitted across a connection. The full string is sent
once, the first time. And then whenever the string needs to be sent again, only the
short tag identifying that string is sent. This dramatically reduces bandwidth
consumption by the game.

A double-quoted (or standard) string is not tagged; therefore, whenever the string
is used, storage space for all of the characters contained in the string must be
allocated for whatever operation the string is being used for. In the case of sending
a standard string across connections, all of the characters in the string are trans-
mitted, every single time the string is sent. Chat messages are sent as standard
strings, and because they change each time they are sent, creating tag ID numbers
for chat messages would be pretty useless.

Strings can contain formatting codes, as described in Table 4.1.

TorqueScript 151

Table 4.1 TorqueScript String Formatting Codes

Code Description

\r Embeds a carriage return character.

\n Embeds a newline character.

\t Embeds a tab character.

\Xhh Embeds an ASCII character specified by the hex number (hh) that follows the x.

\c Embeds a color code for strings that will be displayed on-screen.

\cr Resets the display color to the default.

\cp Pushes the current display color onto a stack.

\co Pops the current display color off the stack.

\cn Uses n as an index into the color table defined by GUIControlProfile.fontColors.
Objects

Objects are instances of object classes, which are a collection of properties and
methods that together define a specific set of behaviors and characteristics. A
Torque object is an instantiation of an object class. After creation, a Torque object
has a unique numeric identifier called its handle. When two handle variables have
the same numeric value, they refer to the same object. An instance of an object
can be thought of as being somewhat like a copy of an object.

When an object exists in a multiplayer game with a server and multiple clients,
the server and each client allocate their own handle for the object’s storage in
memory. Note that datablocks (a special kind of object) are treated differently—
more about this a little later.

Note

Methods are functions that are accessible through objects. Different object classes may have some
methods that are common between them, and they may have some methods that are unique to
themselves. In fact, methods may have the same name, but work differently, when you move from
one object class to another.

Properties are variables that belong to specific objects and, like methods, are accessed through
objects.

Creating an Object

When creating a new instance of an object, you can initialize the object’s fields in
the new statement code block, as shown here:

152

Chapter 4 = Game Programming

%handle = new InteriorInstance()
{

position="000";

rotation="000";

interiorFile = Zname;
1
The handle of the newly created InteriorInstance object is inserted into the
variable 4hand1e when the object is created. Of course, you could use any valid and
unused variable you want, like %0bj, 4disTing, or whatever. Note in the preceding
example that 4hand1e is alocal variable, so it is only in scope—or valid—within the
function where it is used. Once the memory is allocated for the new object instance,
the engine then initializes the object’s properties as directed by the program
statements embedded inside the new code block. Once you have the object’s unique
handle—as assigned to %handle in this case—you can use the object.

Using Objects
To use or control an object, you can use the object’s handle to access its prop-

erties and functions. If you have an object handle contained in the local variable
%handle, you can access a property of that object this way:

%handle.aproperty =42;

Handles are not the only way to access objects. You can assign objects by name, if
you don’t have a handle at hand. Objects are named using strings, identifiers, or
variables containing strings or identifiers. For example, if the object in question is
named MyObject, all of the following code fragments (A, B, C, D) are the same.

A

MyObject.aproperty =42;
B

"MyObject".aproperty =42;
C

%0bjname = MyObject;
%objname.aproperty =42;

D

%0bjname = "MyObject";
sobjname.aproperty =42;

TorqueScript

These examples demonstrate accessing a property field of an object; you invoke
object methods (functions) in the same way. Note that the object name—
MyObject—is a string literal, not a variable. There is no % or $ prefixed to the
identifier. A string literal is a string embedded in the code, as you see in B and D
above with “MyObject”.

Object Functions

You can call a function referenced through an object this way:
%handle.afunction(42, "argl", "arg2");

Note that the function afunction can also be referred to as a method of the object
contained in %handle. In the preceding example, the function named afunction
will be executed. There can be multiple instances of functions named afunction
in a script, but each must be part of different namespaces. The particular instance
of afunction to be executed will be selected according to the object’s namespace
and the namespace hierarchy. For more about namespaces, see the sidebar.

Namespaces

Namespaces are means of defining a formal context for variables. Using namespaces allows us to
use different variables that have the same name without confusing the game engine or ourselves.

If you recall the discussion in Chapter 2 about variable scope, you will remember that there are
two scopes: global and local. Variables of global scope have a “$" prefix, and variables of local
scope have a “%" prefix. Using this notation, we can have two variables—say, $maxplayers
and Zmaxplayers—that can be used side by side, yet whose usage and meaning are completely
independent from each other. smaxpTlayer can only be used within a specific function, while
$maxplayer can be used anywhere in a program. This independence is like having two
namespaces.

In fact, Zmaxplayer can be used over and over in different functions, but the values it holds
only apply within any given specific function. In these cases, each function is its own de facto
namespace.

We can arbitrarily assign variables to a namespace by using special prefixes like this:

$Game: :maxplayers
$Server::maxplayers

We can have other variables belonging to the namespace as well:
$Game::maxplayers

$Game::timelimit

$Game: :maxscores

153

154

Chapter 4 = Game Programming

The identifier between the “$" and the “::" can be completely arbitrary—in essence, it is a qualifier.
By qualifying the variable that follows, it sets a context in which the variable is meaningful.

Just as functions have a de facto namespace (the local scope), objects have their own name-
spaces. Methods and properties of objects are sometimes called member functions and member
variables. The “member” part refers to the fact that they are members of objects. This membership
defines the context, and therefore the namespace, of the methods and properties (member
functions and member variables).

So, you can have many different object classes that have properties of the same name, yet they
refer only to the objects that belong to that class. You can also have many different instances of
an object, and the methods and properties of each instance belong to the individual instance.

In these examples:

$myObject.maxSize

$explosion.maxSize

$beast.maxSize

the maxSize property could have three entirely different meanings. For $myObject, maxSize

might mean the number of items it can carry. For $explosion, it might mean how large the
blast radius is. For $beast, it might mean how tall the creature is.

When an object’s function is called, the first parameter is the handle of the object
containing the function. Therefore, the function definition of the afunction
method in the preceding example would actually have four parameters in its
parameter list, the first of which will be the #this parameter. Note that only the
last three parameters are used when you call the afunction method. The first
parameter that corresponds to the %this parameter in the definition is auto-
magically inserted by the engine when you call the function. You may be familiar
with the this token in C/C++; however, in Torque there is nothing special about
it. By prior convention, that variable name is often used when referring to an
object’s handle within one of its methods, but you could call that parameter
anything you want.

If you want to access a field of an object, you always have to use something that
evaluates to an object handle or a name followed by a dot followed by the field
name, as in the A, B, C, and D code fragments seen earlier. The only exception to
this rule is in the sequence of field initialization statements when creating an
object with the new statement.

Datablocks

A datablock is a special kind of object containing a set of characteristics that are used
to describe another object’s properties. Datablock objects exist simultaneously

TorqueScript

on the server and all its connected clients. Every copy of a given datablock uses the
same handle whether it is on the server or a client.

By convention, datablock identifiers have the form NameData. VehicleData,
PlayerData, and ItemData are all examples of datablock identifiers. Although
datablocks are objects, we typically don’t explicitly call them objects when refer-
ring to them, in order to avoid semantic confusion with regular objects.

A VehicleData datablock contains many attributes describing the speed, mass,
and other properties that can be applied to a Vehicle object. When created, a
Vehicle object is initialized to reference some already-existing VehicleData
datablocks that will tell it how to behave. Most objects can come and go
throughout the course of the game, but datablocks are created once and are not
deleted. Datablocks have their own specific creation syntax:

datablock ClassIdentifier(Nameldentifier)
{

InitializationStatements
}s

The value of this statement is the handle of the created datablock.

ClassIdentifier is an existing datablock class name, like PlayerData. Name-
Identifier is the datablock name you’ve chosen. In both cases you must use valid
identifiers. InitializationStatements is a sequence of assignment statements.

The assignment statements assign values to datablock field identifiers. It’s pos-
sible for the contents of these fields to be accessible by both the script code and
the engine code—and in fact that is often the case. In that situation you of course
need to assign a value to the field that makes sense for the type of information it’s
supposed to be holding.

You don’t have to restrict yourself to only initializing (and later using) fields that
are accessible by the engine code. An object can have other fields as well; the
engine code can’t read them, but the scripts can.

Finally, note that there’s a variation on the datablock creation syntax:

datablock ClassIdentifier(Nameldentifier : CopySourceldentifier)
{

InitializationStatements
}s
CopySourceldentifier specifies the name of some other datablock from which to
copy field values before executing InitializationStatements. This other datablock
must be of the same class as the datablock you are creating, or a superclass

155

156

Chapter 4 = Game Programming

of it. This is useful if you want to make a datablock that should be almost exactly
like a previously created datablock (with just a few changes) or if you want to
centralize the definitions of some characteristics in one datablock that can then
be copied by multiple other datablocks.

Game Structure

When you create your game, you can use pretty well any organizational structure
you like. Your game will comprise script program modules, graphics images, 3D
models, audio files, and various other data definition modules.

The only real limitation in how you structure your game folders is that the root
main module must reside in the same folder as the Torque Engine executable, and
this folder will be the game root folder.

The least you should do to sensibly organize your game folders is to have a
subtree that contains common code, code that would be essentially the same
between game types and variations, and another subtree that would contain the
control code and specific resources that pertain to a particular game, game type,
or game variation. GarageGames uses these two basic subtrees, common and
control, in its sample games, although the company uses different names (such as
fps, rw, racing, and show) for variations of the control subtree. See Figure 4.1 for a
simple breakdown diagram.

game root

control common

data scripts

Figure 4.1
General game folder tree.

Game Structure

In the game we are creating, we will call the control subtree control.

Source files for TorqueScript have the .cs extension. After the source files are
compiled, they have an extension of .cs.dso. There is no way to convert a .cs.dso
file back into a .cs file, so you must make sure to hang on to your original source
files and back them up regularly.

When you launch TGE, it looks for the module main.cs located in the same folder
(the game root folder, shown in the following—the general tree format used for
the Emaga set of tutorial sample games used in this book) as the TGE executable.
In this chapter we will be using a simplified version of this tree. In the distribution
of TGE you receive with the CD, the executable is called tge.exe. The particular
main.cs file located in the game root folder can be thought of as the root main
module. This expression is useful for distinguishing that particular main.cs
module from others with the same name that aren’t in the game root folder.

emaga (game root folder)
common
client
debugger
editor
help
Tighting
server
ui
cache
control
client
misc
interfaces
data
maps
models
avatars
items
markers
weapons
particles
sound
structures
docks
hovels
towers

157

158

Chapter 4 = Game Programming

server
misc
players
vehicles
weapons

These other main.cs modules are the root modules for the packages in the game.
Although it isn’t explicitly designated as such, the root main module functions as
the root package of the game.

It’s important to realize that the folder structure just outlined is not cast in stone.
Note that although it is similar, it is still not exactly the same as the format used in
the Torque sample games. As long as the root main module is in the same folder
as the demo.exe executable, you can use whatever folder structure suits your
needs. Of course, you will have to ensure that all of the hard-coded paths in the
source modules reflect your customized folder structure.

Packages, Add-ons, Mods, and Modules

If you find the terminology confusing, don't fret—it is a little bit less than straightforward at first
blush.

The first thing to understand is that the term Mod is an abbreviated, or truncated, form of the
word modification. Mods are changes that people make to existing games, customizing the games
to look or play differently. The term is often used in the independent game development scene.
The word Mod is often capitalized.

What we are doing when we create the Emaga game is in many ways similar to creating a Mod—
much like a certain kind of Mod that is often called a Total Conversion. Torque, however, is not a
game; it is an engine. So we are in reality not modifying an existing game, but, rather, we are
creating our own.

Also, there is a bit of an extra wrinkle here. When we create our game, we are going to provide
some features that will allow other people to modify our game! To avoid total confusion, we are
going to call this capability an add-on capability rather than a Mod capability. And we'll refer to
the new or extra modules created by other people for our game as add-ons.

A module is essentially the melding of a program source file in text form with its compiled version.
Although we usually refer to the source code version, both the source file version and the
compiled (object code, or in the case of Torque, byte code) version are just different forms of the
same module.

A package is a Torque construct that encapsulates functions that can be dynamically loaded and
unloaded during program execution. Scripts often use packages to load and unload the different
game types and related functions. Packages can be used to dynamically overload functions using
the parent::function script mechanism in the packaged function. This is useful for writing
scripts that can work with other scripts without any knowledge of those scripts.

To replace the graphical Help features in the Torque demo, for example, you could create one or
more source code modules that define the new Help features and that together could compose a
Mod to the graphical Help package and that could also be considered a Mod to the Torque demo

game as a whole.

Clear as mud?

Game Structure

Figure 4.2 shows the simplified folder tree we will be using for this chapter’s
sample game, Emaga4. The rectangles indicate folder names, the partial rec-
tangles with the wavy bottoms are source files, and the lozenge shapes indicate
binary files. Those items that are not in gray are the items we will be dealing with

in this chapter.

game root
common
glu2d3d.dll
opengl2d3d.dll control
‘ main.cs data

maps

player.cs book_ch4.mis

(image files)

Figure 4.2
The Emaga4 folder tree.

book_ch4.ter

sky_day.dml

L

propertyMap.cs

\/\

159

160

Chapter 4 = Game Programming

Server Versus Client Design Issues

The Torque Engine provides built-in client/server capability. In fact, the engine is
designed and built around the client/server model to such a degree that even if
you are going to create a single-player game, you will still have both a server side
and a client side to your code.

A well-designed online multiplayer game puts as much of the decision-making
activity into the hands of the server as possible. This greatly reduces the chances
that dishonest players could modify their clients to enable cheating or otherwise
gain advantage over other, more honest players.

Conversely, a well-designed online multiplayer game only uses the client side to
manage the interface with the human player—accepting input, displaying or
generating output, and providing setup and game navigation tools.

This emphasis on server-side decisions has the potential to rapidly drain network
bandwidth. This can lead to lag, a situation where a player’s actions are not
reflected on the server in a timely fashion. Torque has a highly optimized net-
working system designed to mitigate against these kinds of problems. For
example, most strings of data are transmitted only once between clients and the
game server. Anytime a string that has already been transmitted needs to be sent
again, a tag is sent instead of the full string. The tag is nothing more than a
number that identifies the string to be used, so the full string need not be sent
again. Another approach is an update masking system that allows the engine to
only provide updates from the server to its clients of data that has actually
changed since the last update.

We will follow these guidelines when designing our sample game.

Common Functionality
The common subtree contains code and resources for the following capabilities:

s Common server functions and utilities, such as authentication
s Common client functions and utilities, such as messaging

m In-game world editor

= Online debugger

Lighting management and lighting cache control code

Root Main

m Help features and content files

m User interface definitions, widget definitions, profiles, and images

We will not be using all of these features in the code we’ll be looking at in this
chapter, but by the end of the book, we will be using all of it!

Preparation

In this chapter we will be concentrating on the control scripts found in the
control subtree, as outlined in Figure 4.2. To prepare for this, you need to set up
your development tree, as follows:

1. In your 3D2E\RESOURCES\CH4 folder, locate the EMAGAA4 folder
(not the EMAGA4 BOOK CODE folder).

2. Copy the EMAGAA4 folder to your root folder on your hard drive, so that
the path to the new folder is \EMAGA4 (you can use any hard drive you
want; [won’t be specifying the hard drives in the paths).

You probably won’t use more than an additional 15MB of disk space, but you
should have more available for backups and temporary files and so on.

You will note that there is no main.cs file in the same folder as tge.exe. This is by
design, because that is one of the files you will be creating. Also note that there are
no .cs files in the control folder either. Again, this is intentional—you will be
creating them from this chapter.

The code in Emaga4 is pretty close to the bare minimum in terms of the game
control code. In later chapters we will expand on this skeletal implementation as
we add more and more useful features and flesh out the game.

Root Main

Once it has found the root main module, Torque compiles it into a special binary
version containing byte code, a machine-readable format. The game engine then
begins executing the instructions in the module. The root package can be used to
do anything you like, but the convention established with the GarageGames code
is that the root package carries out the following functions:

m Performs generic initialization

m Performs the command line parameter parsing and dispatch

161

162 Chapter 4 = Game Programming

m Defines the command line help package

m Invokes packages and add-ons (Mods)

Here is the root main.cs module. Type it in, and save it as Emaga4\main.cs. You
can skip the comments if you like, in order to minimize your typing.

//
// ./main.cs

//

// root main module for 3D2E emaga4 tutorial game
//

// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//

//
// Initializations
!/

$usageFlag = false; //helpwon't be displayed unless the command Tine
//switch (-h) is used

$1ogModeEnabled = true; //track the Togging state we set in the next Tine.
SetLogMode(2); // overwrites existing Tog file & closes Tog file at exit.

//
// Function Definitions
//

function OnExit()
/1!
// This is called from the common code modules. Any Tast gasp exit
// activities we might want to perform can be put in this function.
// We need to provide a stub to prevent warnings in the lTog file.
/1l
{
}

function OnStart()
//
// This is called from the common code modules.

// We need to provide a stub to prevent warnings in the lTog file.
/1
{

Root Main

}

function ParseArgs()

/]

// handle the command 1ine arguments

//

// this function is called from the common code

//

/1

{
for(%i=1; %i < $Game::argc ; %i++) //1oop thru all command Tine args

{
$currentarg = $Game::argv[%il; // get current arg from the Tist

$nextArgument = $Game::argv[%i+1]; // get arg after the current one
$nextArgExists = $Game::argc-%i > 1;// if there *is* a next arg, note that
$1ogModeEnabled = false; // turn this off; let the args dictate

// if Togging should be enabled.

switch$($currentarg)
{
case "-?": // the user wants command Tine help, so this causes the
$usageFlag =true; // Usage function to be run, instead of the game
$argumentFlag[%i] = true; // adjust the argument count

case "-h": // exactly the same as "-?"
$usageFlag = true;
$argumentFlag[%i] = true;
}
1
}

function Usage()
//
// Display the command 1ine usage help
//
{
// NOTE: any logging entries are written to the file 'console.log’
Echo("\n\nemaga4 command Tine options:\n\n" @
"-h, -? display this message\n");

}

function LoadAddOns(%1ist)
//
// Exec each of the startup scripts for add-ons.

163

164

Chapter 4 = Game Programming

/1
{
if (Flist$="")
return;
%1ist = NextToken(%1ist, token, ";");
LoadAddOns(%1ist);
Exec(%token@ "/main.cs");
}

/!

// Module Body - Inline Statements
//

// Parse the command 1ine arguments
ParseArgs();

// Either display the help message or start the program.
if ($usageFlag)
{
EnableWinConsole(true);// send Togging output to a Windows console window
Usage();
EnableWinConsole(false);
Quit();
1
else
{

// scan argument 1ist, and Tog an Error message for each unused argument
for ($i=1; $i < $Game::argc; $i+t)
{
if (!$argumentFlagl$il)
Error("Error: Unknown command 1ine argument: " @ $Game::argv[$il);
1

if (!$logModeEnabled)
{
SetLogMode(6); // Default to a new Tog file each session.
}
// Set the add-on path Tist to specify the folders that will be
// available to the scripts and engine. Note that *all* required
// folder trees are included: common and control as well as the
// user add-ons.
$pathlList=$addonlList!$=""? $addonList@";control;common" : "control;common";
SetModPaths($pathlist);

Root Main

// Execute startup script for the common code modules
Exec("common/main.cs");

// Execute startup script for the control specific code modules
Exec("control/main.cs");

// Execute startup scripts for all user add-ons
Echo("-——— Loading Add-ons ~————— ")
LoadAddOns($addonlList);

Echo("Engine initialization complete.");

OnStart();
}

This is a fairly robust root main module. Let’s take a closer look at it.

In the initializations section, the $usageFlag variable is used to trigger a simple
Help display for command line use of tge.exe. It is set to false here; if the user
specifies the -? or -h flags on the command line, then this flag will be set to true.

After the usage flag, we set the log mode and enable logging. Logging allows us to
track what is happening within the code. When we use the Echo, Warn, or Error
functions, their output is sent to the console.log file, in the root game folder.

The stub routines OnExit and OnStart are next. A stub routineis a function that is
defined but actually does nothing. The common code modules have a call to this
routine, but we have nothing for it to do. We could just leave it out, but a good
policy is to provide an empty stub to avoid warning messages from appearing in
our log file—when the Torque Engine tries to call a nonexistent function, it
generates a warning.

Then there is the ParseArgs function. Its job is to step through the list of com-
mand line arguments, or parameters, and perform whatever tasks you want based
upon what arguments the user provided. In this case we’ll just include code to
provide a bare-bones usage, or Help, display.

Next is the actual Usage function that displays the Help information.

This is followed by the LoadAddOns routine. Its purpose is to walk through the list
of add-ons specified by the user on the command line and to load the code for
each. In Emaga4 there is no way for the user to specify add-ons or Mods, but (you
knew there was a but coming, didn’t you?) we still need this function, because
we treat our common and control modules as if they were add-ons. They are

165

166

Chapter 4 = Game Programming

always added to the list in such a way that they get loaded first. So this function is
here to look after them.

After the function definitions we move into the in-line program statements.
These statements are executed at load time—when the module is loaded into
memory with the Exec statement. When Torque runs, after the engine gets itself
sorted out, it always loads the root main module (this module) with an Exec
statement. All of the other script modules are loaded as a result of what this
module does.

The first thing that happens is a call to the ParseArgs function, which we saw
earlier. It sets the $usageFlag variable for us, you will recall.

Next is the block of code that examines the $usageFlag and decides what to do:
either display the usage Help information or continue to run the game program.
If we are not displaying the usage information, we move into the code block after
the else.

The first thing we do in here is check to see if there are any unused arguments
from the command line. If there are, that means the program doesn’t understand
the arguments and there was some kind of error, which we indicate with the
Error function and a useful message.

After that we set the log mode, if logging has been enabled.

Next, we build the lists that help Torque find our add-ons. We notify Torque
about the required folder paths by passing the list to the SetModPaths function.

Then we call the main module for the common code. This will proceed to load all
the required common modules into memory, initialize the common functions,
and basically get the ball rolling over there. We will talk about the common code
modules in a later chapter.

After that we do the same thing for the control code modules, the details of which
we will cover later in this chapter.

Then we actually start loading the add-ons using the previously defined Load-
AddOns function.

Finally, we make a call to OnStart. This will call all versions of OnStart that appear
in the add-on packages in order of their appearance in $addonList, with common
being first, control next, and finally this root main module. If there is an OnStart
defined in common, then it gets called. Next, the one in control, and so on.

Control Main

When we get to the end of the module, the various threads initiated by the
OnStart calls are ticking over, doing their own things.

So now what? Well, our next point of interest is the control/main.cs module,
which we called with the Exec function just before we started loading the add-ons.

Control Main

The main.cs module for the control code is next on our tour. Its primary pur-
poses in Emaga4 are to define the control package and to call the control code
initialization functions. (In later chapters we will expand on the role of this
module.) Following is the control/main.cs module. Type it in, and save it as
Emaga4\control\main.cs.

//
// control/main.cs

// main control module for 3D2E emaga4 tutorial game
//

// Copyright (c) 2003, 2006 by Kenneth C. Finney.

//
//
//
// Load up defaults console values.

// Defaults console values

//
// Package overrides to initialize the mod.
package control {

function OnStart()
//
// Called by root main when package is Toaded
//
{
Parent::0nStart();
Echo("\n-—————- Initializing control module ————— ");

// The following scripts contain the preparation code for
// both the client and server code. A client can also host
// games, so they need to be able to act as servers if the

// user wants to host a game. That means we always prepare

167

168

Chapter 4 = Game Programming

// to be a server at anytime, unless we are lTaunched as a

// dedicated server.

Exec("./initialize.cs");

InitializeServer(); // Prepare the server-specific aspects

InitializeClient(); // Prepare the client-specific aspects
}

function OnExit()
//
// Called by root main when package is unloaded
//
{

Parent::onExit();
}

}; // Client package
ActivatePackage(control); // Tell TGE to make the client package active

Not a whole lot happens in here at the moment, but it is a necessary module
because it defines our control package.

First, the parent OnStart function is called. This would be the version that resides
in root main, which we can see doesn’t have anything to do.

Then the initialize.cs module is loaded, after which the two initialization func-
tions are called.

Finally, there is the OnExit function, which does nothing more than pass the buck
to the OnExit function in the root main module.

All in all, control/main.cs is a fairly lazy, though important, little module.

Debugging Scripts Using the trace Function

The engine adds extra commentary to the log file. Extremely useful are the notations that tell you
when the engine execution has just begun executing in a particular function or is just about to
leave a particular function. The trace lines include the values of any arguments used when the
function is entered and the contents of the return value when leaving a function.

Here is a fragmentary example of what the trace output can look like:

Entering GameConnection::InitialControlSet(1207)
Setting Initial Control Object
Entering Editor::checkActivelLoadDone()
Leaving Editor::checkActivelLoadDone - return 0

Initialization

Entering GuiCanvas::setContent(Canvas, PlayGui)
Entering PlayGui::onWake(1195)
Activating DirectInput ...
keyboardO input device acquired.
Leaving PTayGui::onWake - return
Entering GuiCanvas::checkCursor(Canvas)
Entering (null)::cursor0ff()
Leaving (null)::cursorQff - return
Leaving GuiCanvas::checkCursor - return
Leaving GuiCanvas::setContent - return
Leaving GameConnection::InitialControlSet - return
Entering (null)::DoYaw(-9)
Leaving (null)::DoYaw - return -0.18
Entering (null)::DoPitch(7)
Leaving (null)::DoPitch - return 0.14
Entering (null)::DoYaw(-6)

To turn on the trace function, add the following statement to the first line of your root main.cs
file:

trace(true);

To turn off the trace function, insert this statement at the place in the code where you would
like to turn tracing off:

trace(false);

Initialization

The control/initialize.cs module will, in later chapters, become two different
modules—one for the server code and one for the client code. Right now, we
have a fairly limited amount of work to do, so we’ll just house the initialization
functions for the two ends in the same module. Here is the control/initialize.cs
module. Type it in, and save it as Emaga4\control\initialize.cs.

//
// control/initialize.cs

//

// control initialization module for 3D2E emaga4 tutorial game
//

// Copyright (c) 2003, 2006 by Kenneth C. Finney.

//

169

170

Chapter 4 = Game Programming

function InitializeServer()

//
// Prepare some global server information & 1oad the game-specific module

/!
{
Echo("\n-———— Initializing module: emaga server -—————- ")

// Specify where the mission files are.
$Server::MissionFileSpec = "*/missions/*.mis";

InitBaseServer(); // basic server features defined in the common modules

// Load up game server support script
Exec("./server.cs");

createServer("SinglePlayer", "control/data/maps/book_ch4.mis");
1

function InitializeClient()

//
// Prepare some global client information, fire up the graphics engine,
// and then connect to the server code that is already running in another
// thread.

/!
{

Echo("\n-———— Initializing module: emaga client —————- ")
InitBaseClient(); // basic client features defined in the common modules
// these are necessary graphics settings

$pref::Video::allowOpenGL = true;

$pref::Video::displayDevice = "OpenGL";

// Make sure a canvas has been built before any gui scripts are
// executed because many of the controls depend on the canvas to
// already exist when they are loaded.

InitCanvas("Emaga4 - 3D2E Sample Game"); // Start the graphics system.
Exec("./client.cs");

%»conn = new GameConnection(ServerConnection);
%conn.connectlocal();

Client

First is the InitializeServer function. This is where we set up a global variable
that indicates to the game engine the folder tree where the map (also called
mission) files will be located.

Next, we prepare the server for operation by performing the common code
initialization using the InitBaseServer function. This allows us to get the server
code running full-bore, which we can do using the createServer call. We tell the
function that this will be a single-player game and that we are going to load up
the map control/data/maps/book_ch4.mis.

After that, we load the module that contains the game code, which is server-side
code.

Then we do the client-side initialization in the InitializeClient function. This
is a bit more involved. After performing the common code initialization with
InitBaseClient, we set up some global variables that the engine uses to prepare
the graphics system for start-up.

And that happens with the InitCanvas call. The parameter we pass in is a string
that specifies the name of the window that the game will be running in.

Then we load the control/client.cs module, which we’ll cover next in this chapter.
We're getting warm now!

Next, we create a connection object using the GameConnection function. This
gives us an object that we will use from now on when referring to the connection.

Now we use that connection object to connect to the server using a local con-
nection. We don’t ever actually use the network or any network ports.

Client

The control/client.cs module is chock-full of good stuff. This is another module
that will need to have some of its code divested when it grows in later chapters.
The main activities taking place in here are as follows:

m Creation of a key map with key bindings

m Definition of a callback that gets called from Torque to generate a 3D
view

m Definition of an interface to hold the 3D view

171

172

Chapter 4 = Game Programming

m Definition of a series of functions that hook key commands to avatar motion

m A series of stub routines

Here is the control/client.cs module. Type it in, and save it as Emaga4\control\
client.cs.

//
// control/client.cs

//

// This module contains client specific code for handling

// the setup and operation of the player's in-game interface.

//

// 3D2E emagad tutorial game

//

// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//

if (IsObject(playerKeymap)) // 1f we already have a player key map,
playerKeymap.delete(); // delete it so that we can make a new one
new ActionMap(playerKeymap);

$movementSpeed = 1; // m/s for use by movement functions
/]

// The player sees the game via this control

/]

new GameTSCtr1(PTlayerInterface) {
profile = "GuiContentProfile";
noCursor ="1";

s

function PTayerInterface::onWake(%this)
!/
// When PTayerInterface is activated, this function is called.
//
{

$enableDirectInput ="1";
activateDirectInput();

// restore the player's key mappings
playerKeymap.push();

Client 173

function GameConnection::InitialControlSet(%this)

//

// This callback is called directly from inside the Torque Engine

// during server initialization.

//

{
Echo ("Setting Initial Control Object");

// The first control object has been set by the server
// and we are now ready to go.

Canvas.SetContent(PlayerInterface);

}

//
// Motion Functions
//

function GolLeft(%val)
/1
// "strafing"
/1
{

$mvLeftAction = %val;
}

function GoRight(%val)
/1
// "strafing"
/1
{
$mvRightAction = %val;

function GoAhead(%val)
//
// running forward
//
{
$mvForwardAction = %val;

174 Chapter 4 = Game Programming

function BackUp(%val)
//

// running backwards
//

{
$mvBackwardAction = %val;

function DoYaw(%val)
//

// Tooking, spinning or aiming horizontally by mouse or joystick control
//

{
$mvYaw += %val * ($cameraFov / 90) * 0.02;

function DoPitch(%val)

//
// Tooking vertically by mouse or joystick control
//
{
$mvPitch += %val * ($cameraFov / 90) * 0.02;
}

function DoJump(%val)

/]
// momentary upward movement, with character animation

/1l
{

$mvTriggerCount2++;

}

/1l

// View Functions
!/

function Toggle3rdPPOVLook(%val)

/1l
// Enable the "free look" feature. As Tong as the mapped key is pressed,

// the player can view his avatar by moving the mouse around.
//

Client

{
if (%val)
$mvFreelLook = true;
else
$mvFreelLook = false;
}
function TogglelstPPOV(%val)
//
// switch between 1st and 3rd person point-of-views.
//
{
if (hval)
{
$firstPerson=!$firstPerson;
}
}
//
// keyboard control mappings
//

// these are available when player is in game
playerKeymap.Bind(keyboard, w, GoAhead);
playerKeymap.Bind(keyboard, s, BackUp);
playerKeymap.Bind(keyboard, a, GoLeft);
playerKeymap.Bind(keyboard, d, GoRight);
playerKeymap.Bind(keyboard, space, Dodump);
playerKeymap.Bind(mouse, xaxis, DoYaw);
playerKeymap.Bind(mouse, yaxis, DoPitch);

—~ o~ o~ o~ o~ —~

// these ones are always available
GlobalActionMap.BindCmd(keyboard, escape, "", "quit();");
GlobalActionMap.Bind(keyboard, tilde, ToggleConsole);

/1
// The following functions are called from the client common code modules.
// These stubs are added here to prevent warning messages from cluttering
// up the Tog file.

/1
function onServerMessage()
{

}

175

176

Chapter 4 = Game Programming

function onMissionDownloadPhasel()
{

1

function onPhaselProgress()

{

1

function onPhaselComplete()

{

}

function onMissionDownloadPhase?2()
{

1

function onPhase2Progress()

{

1

function onPhase2Complete()

{

}

function onPhase3Complete()

{

}

function onMissionDownloadComplete()

{
}

Right off the bat, a new ActionMap called playerKeymap is created. This is a
structure that holds the mapping of key commands to functions that will be
performed—a mechanism often called key binding, or key mapping. We create
the new ActionMap with the intent to populate it later in the module.

Then we define the 3D control (TS, or ThreeSpace) we call PlayerInterface
(because that’s what it is), which will contain our view into the 3D world. It’s not
a complex definition. It basically uses a profile defined in the common code—
something we’ll explore in a later chapter. If we want to use our mouse to provide
view manipulation, we must set the noCursor property of the control to 1, or
true.

Then we define a method for the PlayerInterface control that describes what to
do when the control becomes active (“wakes up”). It’s not much, but what it
does is activate DirectInput in order to grab any user inputs at the keyboard or
mouse and then make the playerKeymap bindings active.

Next, we define a callback method for the GameConnection object (you know, the
one we created back there in control/main.cs). The engine invokes this method

Server

internally when the server has established the connection and is ready to hand
control over to us. In this method we assign our player interface control to the
Canvas we created earlier in the InitializeClient function in the control/
initialize.cs module.

After that, we define a whole raft of motion functions to which we will later bind
keys. Notice that they employ global variables, such as $mvLeftAction. This
variable and others like it, each of which starts with $mv, are seen and used
internally by the engine.

Then there is a list of key bindings. Notice that there are several variations of the
Bind calls. First, there are binds to our playerKeymap, which makes sense. Then
there are binds to the GlobalActionMap; these bindings are available at all times
when the program is running, not just when an actual game simulation is under
way, which is the case with a normal action map.

Finally, there is a list of stub routines. All of these routines are called from within
the common code package. We don’t need them to do anything yet, but as
before, in order to minimize log file warnings, we create stub routines for the
functions.

Server

The control/server.cs module is where game-specific server code is located. Most
of the functionality that is carried in this module is found in the form of methods
for the GameConnection class. Here is the control/server.cs module. Type it in,
and save it as Emaga4\control\server.cs.

/1l
// control/server.cs

/1

// server-side game specific module for 3D2E emagad tutorial game

// provides client connection management and player/avatar spawning
//

// Copyright (c) 2003, 2006 by Kenneth C. Finney.

//
function OnServerCreated()
//
// Once the engine has fired up the server, this function is called
//
{

Exec("./player.cs"); // Load the player datablocks and methods
}

177

178 Chapter 4 = Game Programming

//
// GameConnection Methods

// Extensions to the GameConnection class. Here we add some methods
// to handle player spawning and creation.

/!

function GameConnection::0nClientEnterGame(%this)
//

// Called when the client has been accepted into the game by the server.
//

{
// Create a player object.
%this.spawnPlayer();

}

function GameConnection::SpawnPlayer(%this)
//

// This is where we place the player spawn decision code.

// Tt might also call a function that would figure out the spawn

// point transforms by Tooking up spawn markers.

// Once we know where the player will spawn, then we create the avatar.
/1

{

sthis.createPlayer("002201000");
}
function GameConnection::CreatePlayer(%this, %spawnPoint)
/]

// Create the player's avatar object, set it up, and give the player control
// of it.

/]
{
if (%this.player > 0)//The player should NOT already have an avatar object.
{ // If he does, that's a Bad Thing.
Error("Attempting to create an angus ghost!");
}

// Create the player object
%player = new Player() {

dataBlock = MaleAvatar; // defined in player.cs

client = %this; // the avatar will have a pointer to its
s // owner's connection

Player

// Player setup...
splayer.setTransform(%spawnPoint); // where to put it

// Give the client control of the player
sthis.player =%player;
%this.setControlObject(%player);
}
!/
// The following functions are called from the server common code modules.
// These stubs are added here to prevent warning messages from cluttering
// up the Tog file.
!/
function ClearCenterPrintA11()
{
}
function ClearBottomPrintA11()
{
}

The first function, OnServerCreated, manages what happens immediately after
the server is up and running. In our case we need the player-avatar datablocks
and methods to be loaded up so they can be transmitted to the client.

Then we define some GameConnection methods. The first one, OnClientEnter-
Game, simply calls the SpawnPlayer method, which then calls the CreatePlayer
method using the hard-coded transform provided.

CreatePlayer then creates a new player object using the player datablock defined
in control/player.cs (which we will review shortly). It then applies the transform
(which we created manually earlier) to the player’s avatar and then transfers
control to the player.

Finally, there are a couple more stub routines. That’s the end of them—for
now—I promise!

Player

The control/player.cs module defines the player datablock and methods for use
by this datablock for various things. The datablock will use the standard male
model, which in this case has been named player.dts. Figure 4.3 shows the
standard male avatar in the Emaga4 game world.

179

180 Chapter 4 = Game Programming

Figure 4.3
Player avatar in Emaga4.

Here is the control/player.cs module. Type it in, and save it as Emaga4\control\
player.cs.

//
// control/player.cs
//
// player definition module for 3D2E emagad tutorial game
//
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//
datablock PlayerData(MaleAvatar)
{
className = Avatar;
shapeFile ="~/player.dts";
emap = true;
renderFirstPerson = false;
cameraMaxDist =4;
mass = 100;
density =10;
drag=0.1;
maxdrag=0.5;
maxEnergy = 100;
maxDamage = 100;
maxForwardSpeed = 15;

Running Emaga4

maxBackwardSpeed = 10;
maxSideSpeed =12;
minJumpSpeed = 20;
maxJumpSpeed = 30;
runfForce = 4000;
jumpForce = 1000;
runSurfaceAngle =70;
jumpSurfaceAngle = 80;

//
// Avatar Datablock methods
//

/1l

function Avatar::onAdd(%this,%obj)
{
}

function Avatar::onRemove(%this, %obj)
{
if (%0bj.client.player ==1%0bj)
%obj.client.player =0;
}

The datablock used is the PlayerData class. It is piled to the gunwales with useful
stuff. Table 4.2 provides a summary description of each of the properties.

There are many more properties, which we aren’t using right now, available for the
avatar. We can also define our own properties for the datablock and access them,
through an instance object of this datablock, from anywhere in the scripts.

Last but not least, there are two methods defined for the datablock. The two
basically define what happens when we add a datablock and when we remove it.
We will encounter many others in later chapters.

Running Emaga4

Once you’ve typed in all the modules, you should be in a good position to test
Emaga4. Emaga4 is a fairly minimalist program. When you launch tge.exe, you
will be deposited directly into the game. Once you have been deposited in the

181

182

Chapter 4 =

Game Programming

Table 4.2 Emaga4 Avatar Properties

Property Description

className Defines an arbitrary class that the avatar can belong to.
shapeFile Specifies the file that contains the 3D model of the avatar.
emap Enables environment mapping on the avatar model.

renderFirstPerson
cameraMaxDist

mass
density
drag
maxdrag
maxEnergy
maxDamage

maxForwardSpeed
maxBackwardSpeed
maxSideSpeed
mindumpSpeed
maxJumpSpeed
runForce
jumpForce
runSurfaceAngle
jumpSurfaceAngle

When true, causes the avatar model to be visible when in first-person
point-of-view mode.

Maximum distance from the avatar to the camera in third-person point-
of-view mode.

The mass of the avatar in terms of the game world.
Arbitrarily defined density.

Slows down the avatar through simulated friction.
Maximum allowable drag.

Maximum energy allowed.

Maximum damage points that can be sustained before the avatar is
killed.

Maximum speed allowable when moving forward.

Maximum speed allowable when moving backward.

Maximum speed allowable when moving sideways (strafing).
Below this speed, you can’t make the avatar jump.

Above this speed, you can’t make the avatar jump.

The force, and therefore the acceleration, when starting to run.
The force, and therefore the acceleration, when jumping.
Maximum slope (in degrees) that the avatar can run on.

Maximum slope (in degrees) that the avatar can jump on, usually
somewhat less than RunSurfaceAngle.

game, you have a small set of keyboard commands available to control your
avatar, as shown in Table 4.3.

After you have created all of the modules, you can run Emaga4 simply by double-
clicking Emaga4\tge.exe. You will “spawn” into the game world above the
ground and then drop down. When you hit the ground, your view will shake
from the impact. If you turn your player around, using the mouse, you will see
the view shown in Figure 4.4.

After spawning, you can run around the countryside, admire the countryside,
and jump.

Table 4.3 Emaga4 Navigation Keys

Key Description
w Run forward.

S Run backward.

a Run (strafe) left.
d Run (strafe) right.
spacebar Jump.

Escape Quit game.

Tilde Open console.

[

Figure 4.4
Looking around the Emaga4 game world.

Note

Egamad - 3DGPAIL Sample Game

'-f” |

Running Emaga4

If you are examining the output in the console, or in console.log, you might find a line saying that
the file default.cs is missing—don’t worry, that file isn't used in Emaga4 (or any of the other
example programs you will encounter). It is called from the common code base, which | will not be
modifying, because | want to keep it “pristine”—exactly the same as it appears in the demo
provided by GarageGames.

You should feel free to dive into the common code base, find the offending line that is trying to
load the nonexistent file, and remove it, change it, or whatever. There are enough clues in the

console log to guide you. It's good practice!

183

184

Chapter 4 = Game Programming

Moving Right Along

You should have a fairly simple game now. I'll be the first to admit that there is
not much to do within the game, but then that wasn’t the point, really. By
stripping down to a bare-bones code set, we get a clearer picture of what takes
place in our script modules.

By typing in the code presented in this chapter, you should have added the
following files in your EMAGA4 folder:

\EMAGA4\main.cs
\EMAGA4\control\main.cs
\EMAGA4\control\client.cs
\EMAGA4\control\server.cs
\EMAGA4\control\initialize.cs
\EMAGAA4\control\player.cs

The program you have will serve as a fine skeleton program upon which you can
build your game in the manner that you want.

By creating it, you've seen how the responsibilities of the client and server
portions of the game are divvied out.

You've also learned that your player’s avatar needs to have a programmatic
representation in the game that describes the characteristics of the avatar and
how it does things.

In the next chapter we will expand the game by adding game play code on both
the client and the server sides.

CHAPTER 5

GAME PLAY

In Chapter 4 we created a small game, Emaga4. Well, not really a game—more of
a really simple virtual reality simulation. We created a few important modules to
get the ball rolling.

In this chapter we’ll build on that humble beginning and grow toward something
with some game play challenge in it, called Emaga5. There will be some tasks to
perform (goals) and some things to make those tasks just that much harder
(dramatic tension).

To make this happen we’ll have to add a fair number of new control modules,
modify some of the existing ones, and reorganize the folder tree somewhat. We’ll
do that in reverse order, starting with the reorganization.

The Changes

You will recall that there are two key branches in the folder tree: common and
control. As before, we won’t worry about the common branch.

Folders

The control branch contained all of our code in the Chapter 4 version. For this
chapter we’ll use a more sophisticated structure. It’s important for you to
become familiar with the Emaga5 folder structure, so study Figure 5.1 for a few
minutes.

185

186

Chapter 5

® Game Play

game root
common
control
data
server particles maps
misc
models structures
weapons
p|ayer3 weapons hovels
vehicles items towers
client — avatars docks
misc human
interfaces beast
Figure 5.1

Emagab folder structure.

Modules

You will not need to type in the root main module again, because it won’t be any

different this time around. You can use the one you created for Emaga4.

In the control branch, the first major difference is that the initialize.cs module has
been split in two, with a client version and a server version. Each of the new
modules is now located in its respective branch: control/server/ and control/
client/. They still perform the same tasks as before, but splitting the initialize
functions and putting them in their permanent homes prepares us for all our

later organizational needs.

There were also the two modules: control/server.cs and control/client.cs. We will
now expand these and relocate them as control/server/server.cs and control/

client/client.cs, respectively.

Control Modules

The final module from Chapter 4 is player.cs. We will be expanding it greatly and
relocating it to control/server/players/player.cs.

Furthermore, we will add several new modules to handle various functional
features of the game. We’ll address each file as we encounter it in the chapter.

Make sure you have copied the EMAGAS folder from the RESOURCES\CH5
folder up to your hard drive’s root folder before proceeding, because that will
create our folder tree for us.

Control Modules

As before, the control modules are where we focus our game-specific energies. In
the root control folder is the control main module. The rest of the code modules
are divided between the client and server branches. The data branch is where our
art and other data definition resources reside.

control/main.cs

Type in the following code, and save it as the control main module at \EMAGAS5\
control\main.cs. In order to save on space, there are fewer source code comments
than in the last chapter.

/1!
// control/main.cs

// Copyright (c) 2003, 2006 Kenneth C. Finney
/1l
Exec("./client/presets.cs");
Exec("./server/presets.cs");

package control {
function OnStart()
{
Parent::0nStart();
Echo("\n++++++++++++ Initializing control module ++++++++++++")
Exec("./client/initialize.cs");
Exec("./server/initialize.cs");
InitializeServer(); // Prepare the server-specific aspects
InitializeClient(); // Prepare the client-specific aspects
}
function OnExit()

187

188

Chapter 5 = Game Play

{
Parent::onExit();
}
}; // Client package
ActivatePackage(control); // Tell TGE to make the client package active

Right off the bat, we can see some new additions. The two Exec statements at the
beginning load two files that contain presets. These are script variable assignment
statements. We make these assignments here to specify standard or default settings.
Some of the variables in those files pertain to graphics settings, others specify input
modes, and things like that.

Next we have the control package, which has a few minor changes in its OnStart
function. This is where we load the two new initialization modules and then call
the initialization functions for the server and then the client.

Client Control Modules

Modules that affect only the client side of the game are contained in the control/
client folder tree. The client-specific activities deal with functions like the
interface screens and displays, user input, and coordinating game start-up with
the server side of the game.

control/client/client.cs

Many features that were in client.cs in the last chapter are now found in other
modules. The key mapping and interface screen code that were located in this
module, client.cs, have been given homes of their own, as you’ll see later. Type in
the following code, and save it as \EMAGAS5\control\client\client.cs.

//
// control/client/client.cs
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//
function LaunchGame()
{
createServer("SinglePlayer", "control/data/maps/book_ch5.mis");
sconn = new GameConnection(ServerConnection);
sconn.setConnectArgs("Reader");
%conn.connectlocal();

Client Control Modules 189

function ShowMenuScreen()
{
// Start up the cTient with the menu...
Canvas.setContent(MenuScreen);
Canvas.setCursor("DefaultCursor");
}
function SplashScreenInputCtrl::onInputEvent(%this, %dev, %evt, Zmake)
{
if(%make)
{
ShowMenuScreen();
}
}
//
// stubs
//
function onServerMessage()
{
}
function onMissionDownloadPhasel()
{
}
function onPhaselProgress()
{
}
function onPhaselComplete()
{
}
function onMissionDownloadPhase?2()
{
}
function onPhase2Progress()
{
}
function onPhase2Complete()
{
}
function onPhase3Complete()
{
}
function onMissionDownloadComplete()
{
}

190

Chapter 5 = Game Play

(Click woust 1o contimut)

Figure 5.2
The Emaga5 splash screen.

We’ve added three new functions, the first of which is LaunchGame. The code
contained should be familiar from Emaga4. This function is executed when the
user clicks the Start Game button on the front menu screen of the game. (The
other options available on the front screen are Setup and Quit.)

Next is ShowMenuScreen, which is invoked when the user clicks the mouse or presses
a key when viewing the splash screen. The code it invokes is also familiar from
Emaga4.

The third function, SplashScreenInputCtrl::onInputEvent, is a callback method
used by a GuilnputControl (in this case the SplashScreenInputCtrl). Splash
ScreenInputCtrl::onInputEvent is attached to the splash screen for the narrow
purpose of simply waiting for user input; when that happens, it closes the splash
screen. We get the user input value in the #make parameter. Figure 5.2 shows what
the splash screen looks like.

The rest of the functions are the by-now-famous stub routines. These are mostly
client/server mission (map) loading and coordination functions. These will get
more attention in later chapters. You are free to leave out the stub routines, but if
you do, you will end up with a ton of warning messages in the log file.

control/client/interfaces/menuscreen.gui

All the user interface and display screens now have modules of their own, and
they reside in the interfaces branch of the client tree. Note that the extension of

Client Control Modules 191

these modules is .gui. Functionally, a .gui is the same as a .cs source module. They
both can contain any kind of valid script code, and both compile to the .dso
binary format. Type in the following code, and save it as \EMAGAS5\control\
client\interfaces\menuscreen.gui.

new GuiChunkedBitmapCtrl(MenuScreen) {
profile = "GuiContentProfile";
horizSizing = "width";
vertSizing = "height";
position="00";
extent = "640 480";
minExtent = "8 8";
visible="1";

helpTag="0";
bitmap="./interfaces/emaga_background";
useVariable="0";

tile="0";

new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position="29 300";
extent ="110 20";
minExtent = "8 8";

visible="1";

command = "LaunchGame();";
helpTag="0";

text = "Start Game";
groupNum="-1";
buttonType = "PushButton";

s

new GuiButtonCtr1() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "top";
position="29 400";
extent ="110 20";
minExtent = "8 8";

visible="1";
command = "Quit();";
helpTag="0";

text ="Quit";

192

Chapter 5 = Game Play

groupNum="-1";
buttonType = "PushButton";
}s
b

What we have here is a hierarchical definition of nested objects. The object that
contains the others is the MenuScreen itself, defined as a GuiChunkedBitmapCtr1.
Many video cards have texture size limits; for some nothing larger than 512 pixels
by 512 pixels can be used. The ChunkedBitmap splits large textures into sections to
avoid these limitations. This is usually used for large 640 by 480 or 800 by 600
background artwork.

MenuScreen has a profile property of GuiContentProfile, which is a standard
Torque profile for large controls that will contain other controls. Profiles are
collections of properties that can be applied in bulk to interface (or gui) objects.
Profiles are much like style sheets (which you will be familiar with if you do any
HTML programming), except that they use TorqueScript syntax.

The definition of GuiContentProfile is pretty simple:

if(!IsObject(GuiContentProfile)) new GuiControlProfile (GuiContentProfile)
{

opaque = true;

fil1Color = "255 255 255";
s

Basically, the object is opaque (no transparency allowed, even if an alpha channel
exists in the object’s source bitmap image). If the object doesn’t fill the screen,
then the unused screen space is filled with black (RGB = 255 255 255).

After the profile, the sizing and position information properties are set. See the
sidebar titled “Profile Sizing Settings: horizSizing and vertSizing” for more
information.

The extent property defines the horizontal and vertical dimensions of MenuScreen.
The minExtent property specifies the smallest size that the object can have.

The visible property indicates whether the object can be seen on the screen.
Using a “1”” will make the object visible; a “0” will make it invisible.

The last significant property is the bitmap property. This specifies what bitmap
image will be used for the background image of the object.

Client Control Modules

There are two GuiButtonCtr] objects contained in the MenuScreen. Most of the
properties are the same as found in the GuiChunkedBitmapCtr1. But there are a few
that are different and important.

The first is the command property. When the user clicks this button control, the
function specified in the command property is executed.

The helpTag property is used to keep track of whether a user has encountered this
object previously or not. Set to zero, it means that no help has been displayed for
this object. If you decide to display help, then set the helpTag to a non-zero value
so you can choose not to display help.

Next, the text property is where you can enter the text label that will appear on
the button.

The groupNum property is used to indicate which group a button belongs to. Use
mostly with Radio button.

Finally, the buttonType property is how you specify the particular visual style of
the button.

Figure 5.3 shows the MenuScreen in all its glory.

Figure 5.3
The Emaga5 MenuScreen.

193

194

Chapter 5 = Game Play

Profile Sizing Settings: horizSizing and vertSizing

These settings are used to define how to resize or reposition an object when the object’s container is
resized. The outermost container is the Canvas; it will have a starting size of 640 pixels by 480
pixels. The Canvas and all the objects within it will be resized or repositioned from this initial size.

When you resize a container, all of its child objects are resized and repositioned according to their
horizSizing and vertSizing properties. The resizing action will be applied in a cascading
manner to all subobjects in the object hierarchy.

The following property values are available:

Center The object is positioned in the center of its container.

Relative The object is resized and repositioned to maintain the same size and position relative to
its container. If the parent size doubles, the object’s size doubles as well.

Left When the container is resized or moved, the change is applied to the distance between
the object and the left edge of the screen.

Right When the container is resized or moved, the change is applied to the distance between
the object and the right edge of the screen.

Top When the container is resized or moved, the change is applied to the distance between
the object and the top edge of the screen.

Bottom When the container is resized or moved, the change is applied to the distance between
the object and the bottom edge of the screen.

Width When the container is resized or moved horizontally, the change is applied to the width
extents of the object.

Height When the container is resized or moved vertically, the change is applied to the height

extents of the object.

control/client/interfaces/playerinterface.gui

The PlayerInterface control is the interface that is used during the game to
display information in real time. The Canvas is the container for PlayerInterface.
Type in the following code, and save it as \Emaga5\control\client\interfaces\
playerinterface.gui.

new GameTSCtr1(PlayerInterface) {
profile = "GuiContentProfile";
horizSizing = "right";
vertSizing = "bottom";
position="00";
extent = "640 480" ;
minExtent = "8 8";
visible="1";
helpTag="0";

noCursor ="1";

Client Control Modules

new GuiCrossHairHud() {

s

profile = "GuiDefaultProfile";
horizSizing = "center";
vertSizing = "center";
position="304 224";

extent = "32 32";

minExtent = "8 8";
visible="1";

helpTag="0";
bitmap="./interfaces/emaga_gunsight";
wrap="0";

damageFil1Color ="0.000000 1.000000 0.000000 1.000000";
damageFrameColor ="1.000000 0.600000 0.000000 1.000000";
damageRect = "50 4";

damageOffset ="0 10";

new GuiHealthBarHud() {

} .

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "top";
position="14 315";

extent = "26 138";

minkExtent = "8 8";

visible="1";
helpTag="0";
showFill="1";

displayEnergy ="0";
showFrame="1";
fi11Color ="0.000000 0.000000 0.000000 0.500000";
frameColor ="0.000000 1.000000 0.000000 0.000000";
damageFil1Color ="0.800000 0.000000 0.000000 1.000000";
pulseRate ="1000";
pulseThreshold="0.5";

value="1";

new GuiBitmapCtrl() {

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "top";
position="11299";

extent = "32 172";

minExtent = "8 8";
visible="1";

195

196 Chapter 5 = Game Play

s
new GuiHealthBarHud() {

b

helpTag="0";
bitmap="./interfaces/emaga_healthwidget";
wrap="0";

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing="top";
position ="53 315";
extent = "26 138";
minExtent = "8 8";
visible="1";
helpTag="0";
showFill ="1";
displayEnergy ="1";
showFrame="1";
fi11Color="0.000000 0.000000 0.000000 0.500000";
frameColor ="0.000000 1.000000 0.000000 0.000000";
damageFil1Color ="0.000000 0.000000 0.800000 1.000000";
pulseRate ="1000";
pulseThreshold ="0.5";
value="1";

new GuiBitmapCtr1() {

}s
new GuiTextCtrl(scorelabel) {

profile = "GuiDefaultProfile";
horizSizing = "right";
vertSizing = "top";
position="50299";

extent ="32172";

minkExtent = "8 8";

visible="1";

helpTag="0";
bitmap="./interfaces/emaga_healthwidget";
wrap="0";

profile = "ScoreTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="10 3";

extent ="50 20";

minExtent = "8 8";

Client Control Modules

visible="1";
helpTag="0";
text = "Score";
maxLength = "255";

s

new GuiTextCtrl(Scorebox) {
profile = "ScoreTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="50 3";
extent = "100 20";
minExtent = "8 8";
visible="1";
helpTag="0";
text ="0";
maxLength = "255";

s

b

PlayerInterface is the main TSControl through which the game is viewed; it also
contains the HUD controls.

The object GuiCrossHairHud is the targeting crosshair. Use this to aim your
weapons.

There are two GuiHealthBarHud controls, one for health and one for energy. It is
essentially a vertical bar that indicates the state of health or energy of the player.
Each GuiHealthBarHud is paired with a GuiBitmapCtr1, which is a bitmap that can
be used to modify the appearance of the health and energy displays by overlaying
on the GuiHealthBarHud.

Note

HUD is a TLA (Three-Letter Acronym) that means Heads Up Display. The expression is adopted
from the world of high-tech military aircraft. The HUD comprises information and graphics that are
projected onto the canopy or a small screen at eye level in front of the pilot. This allows the pilot
to continue to look outside for threats, while still having instant visual access to flight- or mission-
critical information. In game graphics the term HUD is used for visual displays that appear in-
game, in a fashion that mirrors the real-world application.

There are two GuiTextCtr1 objects, one for holding the accumulated score (scorebox) and
one to provide a simple label for the scores box (scorelabel). We will be modifying the value
of the text property from within the control source code in another module.

197

198

Chapter 5 = Game Play

control/client/interfaces/splashscreen.gui

The SplashScreen control displays an informational screen (you saw it in
Figure 5.2 when the game is started from Windows. A mouse click or key press
makes this screen go away. Type in the following code, and save it as
\Emaga5\control\client\interfaces\splashscreen.gui.

new GuiChunkedBitmapCtr1(SplashScreen) {
profile ="GuiDefaultProfile";
horizSizing = "width";
vertSizing = "height";
position="00";
extent = "640 480";
minExtent = "8 8";
visible="1";

helpTag="0";
bitmap="./interfaces/emaga_splash";
useVariable="0";

tile="0";

noCursor=1;

new GuilInputCtrl(SplashScreenInputCtrl) {
profile = "GuilnputCtriProfile";
position="00";
extent ="1010";

}s

The only thing special about this module is the new control, GuiInputCtrl.
This control is used to accept input from the user: mouse clicks, key
presses, and so on. With this control defined we can then define our own
handler methods for the control’s object and therefore act upon the inputs.
In our case here SplashScreenInputCtrl::onInputEvent is the handler
method we’ve defined; it’s contained in the client module we talked about
earlier.

control/client/misc/screens.cs

The screen.cs module is where our programmed control and management
activity is located. Type in the following code, and save it as \Emaga5\control\
client\misc\screens.cs.

Client Control Modules 199

!/
// control/client/misc/screens.cs
/1
// Copyright (c) 2003, 2006 by Kenneth C. Finney
/1
function PlayerInterface::onWake(%this)
{
$enableDirectInput ="1";
activateDirectInput();
/1 just update the key map here
playerKeymap.push();
}
function PlayerInterface::onSleep(%this)
{

playerKeymap.pop();
}
function refreshBottomTextCtrl()
{
BottomPrintText.position="00";
}

function refreshCenterTextCtrl()

{
CenterPrintText.position="00";
}
function LoadScreen::onAdd(%this)
{

sthis.qlLineCount = 0;
}
function LoadScreen::onWake(%this)
{

CloseMessagePopup();
}
function LoadScreen::onSleep(%this)
{

// Clear the Toad info:

if (%this.qLineCount !$="")

{

for (%Tine=0; %1ine < %this.qgLineCount; %1ine++)
tthis.qLine[%1inel="";

}

%this.qLineCount =0;

LOAD_MapName.setText("");

200

Chapter 5 = Game Play

LOAD_MapDescription.setText("");

LoadingProgress.setValue(0);

LoadingProgressTxt.setValue("WAITING FOR SERVER");
}

The methods in this module are representative of the sort of methods you can use
for interface controls. You will probably use OnWake and OnSleep quite a bit in
your interface scripts.

OnWake methods are called when an interface object is told to display itself, either
by the Canvas’s SetContent or PushDialog methods.

0nS1eep methods are called whenever an interface object is removed from display
via the PopDialog method or when the SetContent call specifies a different object.

When PushDialog is used the interface that is shown operates like a modal dialog
control—all input events are relayed through the dialog.

There is another pair of interface display methods for other objects, called just
Push and Pop. These will display the interface in a modeless manner, so that
other controls or objects on the screen will still receive input events they are
interested in.

PlayerInterface::onWake enables capturing mouse and keyboard inputs using
DirectInput. It then makes the PlayerKeymap key bindings active using the Push
method. When the PlayerInterface is removed from display, its OnSleep
method removes the PlayerKeymap key bindings from consideration. You will
need to ensure that you have defined global bindings for the user to employ; these
will take over when the PTayerKeymap isn’t in use anymore.

RefreshBottomTextCtrl and RefreshCenterTextCtrl just reposition these output
controls to their default locations on the screen, in case you have moved them
somewhere else during the festivities.

There is also a method called LoadScreen::0nAdd. OnAdd methods are called
when an object is added to a scene or another object. They are usually used to
initialize properties of the object that might differ from the default property
values.

LoadScreen::0nWake is called when we want to display the mission loading
progress. It closes the message interface, if it happens to be open. The LoadScreen
contents are modified elsewhere for us in the mission loading process, which is
covered in Chapter 6.

Client Control Modules

When LoadScreen::0nSleep is called, it clears all of its text buffers and then
outputs a message to indicate that all we need now is for the server to chime in.

control/client/misc/presetkeys.cs

Key bindings are the mapping of keyboard keys and mouse buttons to specific
functions and commands. In a fully featured game we would provide the user
with the ability to modify the key bindings using a graphical interface. Right now
we will satisfy ourselves with creating a set of key bindings for the user, which we
can keep around to be used as the initial defaults as we later expand our program.

Type in the following code, and save it as \Emaga5\control\client\misc\pre-
setkeys.cs.

//

// control/client/misc/presetkeys.cs

// Copyright (c) 2003, 2006 by Kenneth C. Finney

//

if (IsObject(PlayerKeymap)) // If we already have a player key map,
PlayerKeymap.delete(); // delete it so that we can make a new one

new ActionMap(PlayerKeymap);

function DoExitGame()
{

MessageBoxYesNo("Quit Mission", "Exit from this Mission?", "Quit();", "");
}
//
// Motion Functions
//
function GolLeft(%val)
{

$mvLeftAction = %val;
}
function GoRight(%val)
{

$mvRightAction = %val;
}
function GoAhead(%val)
{

$mvForwardAction = %val;
}
function BackUp(%val)

201

202 Chapter 5 ®= Game Play

{ $mvBackwardAction = %val;

;unction DoYaw(%val)

{ $mvYaw +=%val * ($cameraFov / 90) * 0.02;
;unction DoPitch(%val)

{ $mvPitch +=%val * ($cameraFov / 90) * 0.02;
;unction Dodump(%val)

{ $mvTriggerCount2++;

}
/1l

// View Functions

//
function Toggle3rdPPOVLook(%val)
{
if (%val) $mvFreelook = true;
else $mvFreelLook = false;
}
function MouseAction(%val)
{
$mvTriggerCountO++;
}
$firstPerson = true;
function TogglelstPPOV(%val)

/1l
// switch between 1st and 3rd person point-of-view.

//
{
if (%val)
{
$firstPerson = !$firstPerson;
ServerConnection.setFirstPerson($firstPerson);
}
}function dropCameraAtPlayer(%val)
{
if (%val)
commandToServer('dropCameraAtPTayer');

Client Control Modules

function dropPlayerAtCamera(%val)
{
if (%val)

commandToServer('DropPlayerAtCamera’);

}

function toggleCamera(%val)

{

if (%val)

commandToServer('ToggleCamera');

}

//

// keyboard control mappings

//

// available when player is in game

PlayerKeymap.Bind(mouse, button0, MouseAction); // left mouse button

PlayerKeymap.Bind(keyboard, w, GoAhead);

PlayerKeymap.Bind(keyboard, s, BackUp);

PlayerKeymap.Bind(keyboard, a, GoLeft);

PlayerKeymap.Bind(keyboard, d, GoRight);

PlayerKeymap.Bind(keyboard, space, Dodump);

PlayerKeymap.Bind(keyboard, z, Toggle3rdPPOVLook);

PlayerKeymap.Bind(keyboard, tab, TogglelstPPOV);

PlayerKeymap.Bind(mouse, xaxis, DoYaw);

PlayerKeymap.Bind(mouse, yaxis, DoPitch);// always available

GlobalActionMap.Bind(keyboard, escape, DoExitGame);

GlobalActionMap.Bind(keyboard, tilde, ToggleConsole);

The first three statements in this module prepare the ActionMap object, which
we call P1ayerKeymap. This is the set of key bindings that will prevail while we are
actually in the game. Because this module is used in the initial setup, we assume
that there should not already be a P1ayerKeymapActionMap, so we check to see if
PlayerKeymap is an existing object, and if it is we delete it and create a new
version.

We define a function to be called when we exit the game. It throws a Message-
BoxYesNo dialog up on the screen, with the dialog box’s title set to the contents of
the first parameter string. The second parameter string sets the contents of the
dialog’s prompt. The third parameter specifies the function to execute when
the user clicks the Yes button. The fourth parameter indicates what action to
perform if the user clicks No—in this case nothing.

203

204

Chapter 5 = Game Play

Table 5.1 Basic Movement Functions

Command Description

Goleft and GoRight Strafing to the left or the right.

GoAhead and BackUp Running forward and backward.

DoYaw Spinning or aiming horizontally by mouse or joystick control.

DoPitch Looking vertically by mouse or joystick control.

DoJump Momentary upward movement, with character animation.
Toggle3rdPPOVLook Enables the “free look” feature. As long as the mapped key is pressed while

the player is in third-person point of view, the player can view his avatar by
moving the mouse around.

There are two other canned MessageDialog objects defined in the common code
base: MessageBox0k, which has no fourth parameter, and MessageBox0kCancel,
which accepts essentially the same parameter set as MessageBoxYesNo.

Next we have a series of motion function definitions. Table 5.1 provides a des-
cription of the basic motion functions. These functions employ player event control
triggers to do their dirty work. These triggers are described in detail in Chapter 6.

Of particular note in these functions is that they all have a single parameter,
usually called %val. When functions are bound to keys or mouse buttons via a
Bind method, the parameter is set to a nonzero value when the key or button is
pressed and to 0 when the button is released. This allows us to create toggling
functions, such as with TogglelstPP0OV, which will switch between first-person
perspective and third-person perspective each time the bound key is pressed.

After all the function definitions, we have the actual key bindings. With the Bind
method, the first parameter is the input type, the second is the key or button
identifier, and the third is the name of the function to be called.

After all the P1ayerKeymap bindings, there are a few for GlobalActionMap, which is
a globally predefined action map that is always available but can be overridden by
other action maps. In this case we use GlobalActionMap for those bindings we
want to be universally available.

Server Control Modules

Any game play features you want to implement should probably be done as a
server control module, or part of one. If you are going to make a multiplayer online
game, that should probably back there in the last sentence will change to a must. The

Server Control Modules

only way we can ensure a level playing field and game play code security is to run the
code on the server, and not on the client.

control/server/server.cs

On the server side, the server module is probably the single most influential
module. It carries the server control-oriented GameConnection methods for
handling players and other game objects, as well as straightforward server control
routines.

Type in the following code, and save it as \Emaga5\control\server\server.cs.

//
// control/server/server.cs
// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//
function OnServerCreated()
//
// Once the engine has fired up the server, this function is called
//
{

Exec("./misc/camera.cs");

Exec("./misc/shapeBase.cs");

Exec("./misc/item.cs");

Exec("./players/player.cs");

Exec("./players/beast.cs");

Exec("./players/ai.cs");

Exec("./weapons/weapon.cs");

Exec("./weapons/crossbow.cs");
}
function StartGame()
{

if ($Game::Duration) // Start the game timer

$Game: :Schedule =Schedule($Game: :Duration * 1000, 0, "onGameDurationEnd");

$Game: :Running = true;

schedule(2000, 0, "CreateBots");
}
function OnMissionlLoaded()
{

StartGame();
}
function OnMissionEnded()

205

206 Chapter 5 ®m Game Play

Cancel($Game: :Schedule);
$Game: :Running = false;
}
function GameConnection::0nClientEnterGame(%this)
{
// Create a new camera object.
%this.camera = new Camera() {
dataBlock = Observer;
}s
MissionCleanup.Add(%this.camera);
sthis.camera.ScopeToClient(%this);
%this.SpawnPlayer();
}
function GameConnection::SpawnPlayer(%this)
{

%this.CreatePlayer("002011000");
}
function GameConnection::CreatePlayer(%this, %spawnPoint)
{
if (%this.player > 0)//The player should NOT already have an avatar object.
{ // 1f he does, that's a Bad Thing.
Error("Attempting to create an angus ghost!");
}
// Create the player object
%player = new Player() {
dataBlock = MaleAvatar; // defined in players/player.cs
client = %this; // the avatar will have a pointer to its
}s // owner's GameConnection object
%player.SetTransform(%spawnPoint); // where to put it
// Update the camera to start with the player
%this.camera.SetTransform(%player.GetEyeTransform());
%Zplayer.SetEnergylLevel(100);
// Give the client control of the player
sthis.player = %player;
sthis.setControlObject(%player);
}
function GameConnection::0nDeath(%this, %sourceObject, %sourceClient,
%damageType, %damLoc)
{
// Switch the client over to the death cam and unhook the player object.
if (IsObject(%this.camera) && IsObject(%this.player))

Server Control Modules

%this.camera.SetMode("Death",%this.player);
sthis.setControlObject(%this.camera);

}

%this.player =0;

if (%damageType $= "Suicide" || ZsourceClient == %this)

{

}

else

{
// good hit

}

}

//
// Server commands

//
function ServerCmdToggleCamera(%client)
{
%co=9%client.getControlObject();
if (%co==1%client.player)
{
%co="%client.camera;
%co.mode = toggleCameraFly;
}
else
{
sco=1%client.player;
%co.mode = observerFly;
}
%client.SetControlObject(%co);
}
function ServerCmdDropPlayerAtCamera(%client)
{
if ($Server::DevMode || IsObject(EditorGui))
{
%client.player.SetTransform(%client.camera.GetTransform());
sclient.player.SetVelocity("000");
sclient.SetControlObject(%client.player);

}
}
function ServerCmdDropCameraAtPlayer(%client)
{

%tclient.camera.SetTransform(%client.player.GetEyeTransform());

207

208

Chapter 5 = Game Play

sclient.camera.SetVelocity("000");
sclient.SetControlObject(%client.camera);

}
function ServerCmdUse(%client,%data)

{
%client.GetControlObject().use(%data);

}

// stubs

function ClearCenterPrintAl1()

{

}

function ClearBottomPrintA11()

{

}
function onNeedRelight()

{
}

The first function in this module, OnServerCreated, is pretty straightforward.
When called, it loads all the specific game play modules we need.

After that comes StartGame, which is where we put stuff that is needed every time
a new game starts. In this case if we have prescribed game duration, then we start
the game timer using the Schedule function.

Schedule is an extremely important function, so we’ll spend a little bit of time on
it here. The usage syntax is

sevent = Schedule(time, reference, command, <paraml...paramN>)

The function will schedule an event that will trigger in time milliseconds and
execute command with parameters. If reference is not 0, then you need to make
sure that reference is set to be a valid object handle. When the reference object is
deleted, the scheduled event is discarded if it hasn’t already fired. The Schedule
function returns an event ID number that can be used to track the scheduled
event or cancel it later before it takes place.

In the case of our game timer, there is no game duration defined, so the game is
open-ended, and the Schedule call will not take place. If, for example,
$Game: :Duration had been set to 1,800 (for 30 minutes times 60 seconds per
minute), then the call to Schedule would have had the first parameter set to 1,800
times 1,000, or 1,800,000, which is the number of milliseconds in 30 minutes.

Server Control Modules

OnMissionloaded is called by LoadMission once the mission is finished loading. All
it really does is start up the game play, but this is an ideal location to insert code
that needs to adjust its capabilities based upon whatever mission was loaded.

The next function, OnMissionEnded, is called at the conclusion of the running of a
mission, usually in the DestroyServer function. Here it cancels the end-of-game
event that has been scheduled; if no game duration was scheduled—as is our case
at the moment—then nothing happens, quietly.

After that is the GameConnection::0nClientEnterGame method. This method is
called when the client has been accepted into the game by the server—the client
has not actually entered the game yet though. The server creates a new observer
mode camera and adds it to the MissionCleanup group. This group is used to
contain objects that will need to be removed from memory when a mission is
finished. Next, it scopes the camera to the client. This process is similar to key
binding, except that it “connects” a network object (in this case, through a
GameConnection object, via %this) to a game object. This way Torque knows
where to send network events and messages. Then we initiate the spawning of the
player’s avatar into the game world.

The GameConnection::SpawnPlayer is a “glue” method, which will have more
functionality in the future. Right now we use it to call the CreatePlayer method
with a fixed transform to tell it where to place the newly created player-avatar.
Normally this is where we would place the player spawn decision code. It might
also call a function that would figure out the spawn point transforms by looking
up spawn markers. Once we know where the player will spawn, then we would
create the avatar by calling CreatePlayer.

GameConnection::CreatePlayer is the method that creates the player’s avatar
object, sets it up, and then passes control of the avatar to the player. The first
thing to watch out for is that we must ensure that the GameConnection does not
already, or still, have an avatar assigned to it. If it does, then we risk creating what
the GarageGames guys call an Angus Ghost. This is a ghosted object, on all the
clients, that has no controlling client scoped to it. We don’t want that! Once that
is sorted out, we create the new avatar, give it some energy, and pass control to
the player, the same way we did previously in Chapter 4.

GameConnection::onDeath is called from a player’s Damage handler method if the
player’s damage exceeds a certain amount. What we do is switch the client over to
the death cam and unhook the player object. This allows the player to swivel his

209

210

Chapter 5 = Game Play

view in orbit around the “corpse’ of his avatar until he decides to respawn. There
is a code block containing the comment “good hit” where we would add code to
provide points scoring and other game play functionality if we want it. We can
also penalize a player for committing suicide, by either evaluating the damage
type or the ID of the owner of the weapon that killed the player.

There then is a series of ServerCmd message handlers that change whether the
player controls the camera or the avatar based on the message received.

ServerCmdToggleCamera alternates between attaching the player to the camera or
to his avatar as the control object. Each time the function is called, it checks to see
which object is the control object—camera or avatar—and then selects the other
one to be the new control object.

ServerCmdDropPlayerAtCamera will move the player’s avatar to wherever the
camera object is currently located and sets the player-avatar’s velocity to 0. The
control object is always set to be the player’s avatar when the function exits.

ServerCmdDropCameraAtPlayer does just the opposite. It sets the camera’s
transform to match the player-avatar’s and then sets the velocity to 0. The control
object is always set to be the camera when the function exits.

The next function, ServerCmdUse, is an important game play message handler.
We call this function whenever we want to activate or otherwise use an object
that the player controls, “has mounted,” or holds in inventory. When called,
this function figures out the handle of the client’s control object and then
passes the data it has received to that object’s use method. The data can be
anything but is often the activation mode or sometimes a quantity (like a
powerup or health value). You’ll see how the back end of this works later in the
item module.

Finally, there are a few stub routines. As you will recall, these functions are called
from within the common code script modules. We don’t need their functionality
for what we are doing here, so they are empty. They are included in order to
minimize error messages in the console.

control/server/players/player.cs

This is “the biggie.” You will probably spend more time working with, tweaking,
adjusting, and yes, possibly even cursing this module—or your own variations of
this module—than any other.

Server Control Modules

Type in the following code, and save it as \EMAGAS5\control\server\players\
player.cs.

//
// control/server/players/player.cs

// Copyright (c) 2003, 2006 by Kenneth C. Finney.
//
exec("~/data/models/avatars/orc/player.cs");

datablock PlayerData(MaleAvatar)
{
className = OrcClass;
shapeFile = "~/data/models/avatars/orc/player.dts";
emap = true;
renderFirstPerson = false;
cameraMaxDist = 3;
mass = 100;
density =10;
drag=0.1;
maxdrag=0.5;
maxDamage = 100;
maxEnergy = 100;
maxForwardSpeed = 15;
maxBackwardSpeed = 10;
maxSideSpeed =12;
minJumpSpeed = 20;
maxJumpSpeed = 30;
runForce = 1000;
jumpForce =1000;
runSurfaceAngle = 40;
jumpSurfaceAngle = 30;
runknergyDrain=0.05;
minRunknergy =1;
jumpEnergyDrain = 20;
mindumpEnergy = 20;
recoverDelay = 30;
recoverRunForceScale=1.2;
minImpactSpeed = 10;
speedDamageScale =3.0;
repairRate =0.03;
maxInv[Copper] =9999;
maxInv[Silver]=99;
maxInv[Gold] = 9;

21

212 Chapter 5 ®= Game Play

maxInv[Crossbow] =1;
maxInv[CrossbowAmmo] = 20;
}.

//
// Avatar Datablock methods

//
function OrcClass::onAdd(%this,%obj)
{

%0bj.mountVehicle = false;

// Default dynamic Avatar stats
%o0bj.setRechargeRate(0.01);
%obj.setRepairRate(%this.repairRate);
}
function OrcClass::onRemove(%this, %obj)
{
sclient = %obj.client;
if (%client.player == %o0bj)
{
%client.player =0;
}
}
function OrcClass::onCollision(%this,%obj,%col,%vec,%speed)
{
%obj_state = %obj.getState();
%scol_className = %col.getClassName();
%col_dblock_cTassName = %col.getDataBlock().className;
»colName = %col.getDataBlock().getName();
if (%obj_state $= "Dead")
return;
if (%col_className $="Item" || Zcol_className $= "Weapon")
{
%obj.pickup(%col);

}
}
/1
// MaleAvatar (ShapeBase) class methods
/1
function MaleAvatar::onlImpact(%this,%obj,%collidedObject,%vec,%veclen)

{
%obj.Damage(0, VectorAdd(%obj.getPosition(),%vec),
sveclen * %this.speedDamageScale, "Impact");

Server Control Modules

function MaleAvatar::Damage(%this, %obj, %sourceObject, %position, %damage,
%damageType)

{

}

if (%obj.getState() $= "Dead")
return;
%obj.applyDamage(%damage);
%location = "Body";
sclient = %obj.client;
ssourceClient = %sourceObject ? %ZsourceObject.client : 0;
if (%obj.getState() $= "Dead")

{

#client.onDeath(%sourceObject, %sourceClient, %damageType, %location);

}

function MaleAvatar::onDamage(%this, %obj, %delta)

{

}

if (%delta > 0 && %obj.getState() !$= "Dead")

{

// Increment the flash based on the amount.
%flash = %obj.getDamageFlash() + ((%delta / %this.maxDamage) * 2);
if (3flash > 0.75)

%flash=0.75;

if (%flash > 0.001)

{

}

%obj.setDamageFlash(%flash);

%0bj.setRechargeRate(0.01);
%obj.setRepairRate(0.01);

}

function MaleAvatar::onDisabled(%this,%obj,%state)

{

%tobj
%obj
%tobj
%obj

%obj.
.schedule(10000, "delete");

%obj

.clearDamageDt();
.setRechargeRate(0);
.setRepairRate(0);
.setImageTrigger(0,false);

schedule (5000, "startFade", 5000, 0, true);

213

214

Chapter 5 = Game Play

The first line of code loads and executes a “glue module” called player.cs. This
module provides a mapping between animation sequence names and animation
sequence files. How this works is covered later in Chapter 14 when we actually get
around to creating an animated model for use with the Torque Engine. For now,
the important thing to understand is that if we use animation sequence files (of
the type .dsq), then we need to relate those files to the sequence names that
Torque uses to trigger the animations, and also that we describe that relationship
with an animation sequence glue module like the one being exec’d in this line.

Next is a datablock definition for a datablock called MaleAvatar of the PlayerData

datablock class. Table 5.2 provides a quick reference description of the items in
this datablock.

A brief word about the classname property. It’s a GameBase classname property
for this datablock, which in this case is MaleAvatar. We use this class name to
provide a place to hang various methods, which are defined later in the module.

In Chapter 3 we encountered environment mapping, which is a rendering tech-
nique that provides a method of taking the game world appearance and sur-
roundings into account when rendering an object. You can enable environment
mapping when rendering the avatar model by setting the emap property to true.

If we set the property renderFirstPerson to true, then when we are playing in
first-person point-of-view mode, we will be able to see our avatar, our “body,” as
we look around. With it set to false, then we won’t see it, no matter which way
we look.

To control your avatar’s energy depletion, you will want to adjust the following
properties: maxEnergy, runknergyDrain, minRunEnergy, jumpEnergyDrain, and
minJumpEnergy. Generally, the minimum jump energy should be set higher than
the minimum run energy. Also, jump energy drain should be faster, thus a higher
number, than the run energy drain value.

Next is a series of methods that are used when dealing with the avatar as a
GameBase class.

The first, the MaleAvatar::onAdd, is the method called whenever a new instance
of an avatar is added to the game. In this case we initialize a few variables and
then transfer the value of the datablock’s repairRate property (remember that a
datablock is static and unchangeable once transferred to the client) to Player
object in order to have it available for later use. The %obj parameter refers to the
Player object handle.

Server Control Modules

Table 5.2 Emaga5 Avatar Properties

Property Description

className Defines an arbitrary class that the avatar can belong to.
shapeFile Specifies the file that contains the 3D model of the avatar.
emap Enables environment mapping on the avatar model.

renderFirstPerson
cameraMaxDist

mass
density

drag

maxdrag
maxDamage
maxEnergy
maxForwardSpeed
maxBackwardSpeed
maxSideSpeed
minJumpSpeed
maxJumpSpeed
runfForce
jumpForce
runSurfaceAngle
jumpSurfaceAngle

runkEnergyDrain
minRunEnergy
jumpEnergyDrain
minJumpEnergy
recoverDelay

recoverRunForceScale

minImpactSpeed
speedDamageScale
repairRate
maxInv[Copper]
maxInv[Silver]
maxInv[Gold]
maxInv[Crossbow]
maxInv[CrossbowAmmo]

When true, causes the avatar model to be visible when in first-person
point-of-view mode.

Maximum distance from the avatar to the camera in third-person point-of-
view mode.

The mass of the avatar in terms of the game world.

Arbitrarily defined density. Low-density players will float in water.
Slows down the avatar through simulated friction.

Maximum allowable drag.

Maximum damage points that can be sustained before avatar is killed.
Maximum energy allowed.

Maximum speed allowable when moving forward.

Maximum speed allowable when moving backward.

Maximum speed allowable when moving sideways (strafing).
Below this speed, you can’t make the avatar jump.

Above this speed, you can't make the avatar jump.

The force, and therefore the acceleration, when starting to run.
The force, and therefore the acceleration, when jumping.
Maximum slope (in degrees) that the avatar can run on.

Maximum slope (in degrees) that the avatar can jump on, usually
somewhat less than runSurfaceAngle.

How quickly energy is lost when the player is running.
Below this, the player will not move.

How quickly energy is lost when the player jumps.
Below this, the player can't jump anymore.

How long it takes to recover after a landing from a fall or jump, measured
in ticks, where 1 tick = 32 milliseconds.

How much to scale the run force by while in the postlanding recovery
state.

Above this speed, an impact will cause damage.

Used to impart speed-scaled damage.

How quickly damage is repaired when first aid or health is applied.
Maximum number of copper coins that the player can carry.
Maximum number of silver coins that the player can carry.

Maximum number of gold coins that the player can carry.

Maximum number of crosshows that the player can carry.

Maximum amount of crossbow ammunition that the player can carry.

215

216

Chapter 5 = Game Play

Of course, we also need to know what to do when it’s time to remove the avatar,
which is what MaleAvatar::onRemove does. It’s nothing spectacular—it just sets
the handle properties to 0 and moves on.

One of the methods that gets the most exercise from a healthy and active avatar is
the MaleAvatar::onCollision method. This method is called by the engine
whenever it establishes that the avatar has collided with some other collision-
enabled object. Five parameters are provided. The first is the handle of this
datablock, the second is the handle of the player object, the third is the handle of
the object that hit us (or that we hit), the fourth is the relative velocity vector
between us and the object we hit, and the fifth is the scalar speed of the object we
hit. Using these inputs, we can do some pretty fancy collision calculations.

What we do, though, is just find out what the state of our avatar is (alive or dead)
and what kind of object we hit. If we are dead (our avatar’s body could be sliding
down a hill, for example), we bail out of this method; otherwise, we try to pick up
the item we hit, providing it is an item or a weapon.

The engine calls MaleAvatar::onImpact when our avatar hits something. Unlike
onCollision, this method detects any sort of impact, not just a collision with an
item in the world. Collisions occur between ShapeBase class things, like items,
player-avatars, vehicles, and weapons. Impacts occur with those things, as well as
terrain and interiors. So, onImpact provides essentially the same five parameters.
We use that data to calculate how much damage the player should incur, and we
apply that damage to the avatar’s object using its Damage method.

The MaleAvatar::Damage is where we try to ascertain what effect the damage will
have on the avatar. If we want to implement hit boxes, or damage calculations
based on object components, we would do that here. In this case if the player is
dead, we again bail. If not, we apply the damage (which increases the accumulated
damage value) and then obtain the object’s current state. If the object is now dead,
we call the OnDeath handler and exit the function.

Next is the MaleAvatar::onDamage method, which is activated by the engine
whenever the object’s damage value changes. This is the method we want to use
when applying some sort of special effect to the player when damage occurs—Ilike
making the screen flash or using some audio. In this case we do flash the screen,
and we also start a slow energy drain caused by the damage. At the same time, we
start a slow damage repair, which means that after some period of time, we will
have regained some of our health (negative health equals positive damage).

Server Control Modules 217

When the player’s damage exceeds the maxDamage value, the player object is set
to the disabled state. When that happens, the function MaleAvatar::onDisabled is
called. This is where we deal with the final stages of the death of a player’s avatar.
What we are doing is resetting all the various repair values, disabling any
mounted weapons, and then beginning the process of disposing of the corpse.
We keep it around for a few seconds before letting it slowly fade away.

control/server/weapons/weapon.cs

This Weapon module contains namespace helper methods for Weapon and
Ammo classes that define a set of methods that are part of dynamic namespaces
class. All ShapeBase class images are mounted into one of eight slots on a shape.

There are also hooks into the inventory system specifically for use with weapons
and ammo. Go ahead and type in the following module, and save it as \EMAGAS5\
control\server\weapons\weapon.cs.

//
// control/server/weapons/weapon.cs
// Copyright (c) 2003, 2006 Kenneth C. Finney 2003, 2006 by Kenneth
// Portions Copyright (c) 2001 GarageGames.com
// Portions Copyright (c) 2001 by Sierra Online, Inc.
/]
$WeaponSlot =0;
function Weapon::0nUse(%data,%obj)
{
if (%obj.GetMountedImage($WeaponSlot) !=%data.image.GetId())
{
%obj.mountImage(%data.image, $WeaponSiot);
if (%obj.client)
MessageClient(%obj.client, "MsgWeaponUsed', "\cOWeapon selected');

}
}
function Weapon::0nPickup(%this, %obj, %shape, %amount)
{
if (Parent::0nPickup(%this, %obj, %shape, %amount))
{
if ((%shape.GetClassName() $="Player" ||
%shape.GetClassName() $= "AIPlayer") &&
%shape.GetMountedImage($WeaponSlot) == 0)

%shape.Use(%this);

218 Chapter 5 ®= Game Play

1
}
1
function Weapon::0nlInventory(%this,%obj,%amount)
{

if (!%amount && (%slot = %obj.GetMountSlot(%this.image)) I=-1)
%obj.UnmountImage(%slot);
}
function WeaponImage::OnMount(%this,%obj,%slot)
{
if (%obj.GetInventory(%this.ammo))
%0bj.SetImageAmmo(%sTot,true);

}
function Ammo: :0nPickup(%this, %obj, %shape, %amount)
{
if (Parent::0nPickup(%this, %obj, %shape, %amount))
{
}
}
function Ammo::OnInventory(%this,%obj,%amount)
{
for (%1 =0; %1 < 8; %i++)
{

if ((%image = %obj.GetMountedImage(%i)) > 0)
if (IsObject(%image.ammo) && %image.ammo.GetId() == %this.GetId())
%o0bj.SetImageAmmo(%i,%amount !=0);

}
}
function RadiusDamage(%sourceObject, %position, %radius, %damage,
%damageType, %impulse)
{

InitContainerRadiusSearch(%position, %radius,
$TypeMasks::ShapeBaseObjectType);

shalfRadius = %radius / 2;
while ((%targetObject = ContainerSearchNext()) !=0) {
scoverage = CalcExplosionCoverage(%position, %targetObject,
$TypeMasks::InteriorObjectType | $TypeMasks::TerrainObjectType
$TypeMasks::ForceFieldObjectType | $TypeMasks::VehicleObjectType);
if (%coverage==0)
continue;
%dist = ContainerSearchCurrRadiusDist();

Server Control Modules

%distScale = (%dist < ZhalfRadius)? 1.0:
1.0 - ((%dist - %halfRadius) / %halfRadius);
stargetObject.Damage(%sourceObject, %position,
sdamage * %coverage * 3distScale, %damageType);
if (%impulse) {
%impulseVec =VectorSub(%targetObject.GetWorTdBoxCenter(), Zposition);
simpulseVec = VectorNormalize(%impulseVec);
simpulseVec = VectorScale(%impulseVec, %impulse * 2distScale);
%stargetObject.ApplyImpulse(%position, %impulseVec);
}

The weapon management system contained in this module assumes all primary
weapons are mounted into the slot specified by the $WeaponSlot variable.

The first method defined, Weapon: :onUse, describes the default behavior for all
weapons when used. Mount it into the object’s $WeaponS1ot weapon slot, which
is currently set to slot 0. A message is sent to the client indicating that the
mounting action was successful. Picture this: you are carrying a holstered pistol.
When the Use command is sent to the server after being initiated by some key
binding, the pistol is removed from the holster, figuratively speaking, and placed
in image slot 0, where it becomes visible in the player’s hand. That’s what takes
place when you “use” a weapon.

The next method, Weapon::onPickup, is the weapon’s version of what happens
when you collide with a weapon, and the onCo111sion method of the MaleAvatar
decides you need to pick this weapon up. First, the parent Item method performs
the actual pickup, which involves the act of including the weapon in our
inventory. (The Item method is discussed later in this chapter.) After that has
been handled, we get control of the process here. What we do is automatically use
the weapon if the player does not already have one in hand.

When the Item inventory code detects a change in the inventory status, the
Weapon::onInventory method is called in order to check if we are holding an
instance of the weapon in a mount slot, in case there are none showing in
inventory. When the weapon inventory has changed, make sure there are no
weapons of this type mounted if there are none left in inventory.

The method WeaponImage: :onMount is called when a weapon is mounted (used).
We use this method to set the state according to the current inventory.

219

220

Chapter 5 = Game Play

If there are any special effects we want to invoke when we pick up a weapon, we
would put them in the Ammo: :onPickup method. The parent Item method per-
forms the actual pickup, and then we take a crack at it. If we had booby-trapped
weapons, this would be a good place to put the code.

Generally, ammunition is treated as an item in its own right. The Ammo: :onInventory
method is called when ammo inventory levels change. Then we can update
any mounted images using this ammo to reflect the new state. In the method we
cycle through all the mounted weapons to examine each mounted weapon’s ammo
status.

RadiusDamage is a pretty nifty function that we use to apply explosion effects to
objects within a certain distance from where the explosion occurred and to
impart an impulse force on each object to move it if called for.

The first statement in the function uses InitContainerRadiusSearch to prepare
the container system for use. It basically indicates that the engine is going to
search for all objects of the type $TypeMasks::ShapeBaseObjectType located
within %radius distance from the location specified by %position. See Table A.1
in Appendix A for a list of available type masks. Once the container radius search
has been set up, we then will make successive calls to ContainerSearchNext. Each
call will return the handle of the objects found that match the mask we supplied.
If the handle is returned as 0, then the search has finished.

So we enter a nicely sized while loop that will continue as long as Container
SearchNext returns a valid object handle (nonzero) in %targetObject. With each
object found, we calculate how much of the object is affected by the explosion but
only apply this calculation based on how much of the explosion is blocked by
certain types of objects. If an object of one of these types has completely blocked
the explosion, then the explosion coverage will be 0.

Then we use the ContainerSearchCurrRadiusDist to find the approximate radius
of the affected object and subtract that value from the center-of-explosion to
center-of-object distance to get the distance to the nearest surface of the object.
Next, damage is applied that is proportional to this distance. If the nearest surface
of the object is less than half the radius of the explosion away, then full damage is
applied.

Finally, a proportional impulse force vector, if appropriate, is applied using
modified distance scale. This has the effect of pushing the object away from the
center of the blast.

Server Control Modules

control/server/weapons/crossbow.cs

For each weapon in our game, we need a definition module that contains the
specifics for that weapon—its datablocks, methods, particle definitions (if they
are going to be unique to the weapon), and other useful stuff.

There is a lot of material here, so if you want to exclude some stuff to cut back on
typing, then leave out all the particle and explosion datablocks. You won’t get any
cool-looking explosions or smoke trails, and you will get some error warnings in
your console log file, but the weapon will still work.

The crossbow is a somewhat stylized and fantasy-based crossbow—rather medieval in
flavor. It fires a burning bolt projectile that explodes like a grenade on impact. It’s cool.

Type in the following code, and save it as \EMAGAS5\control\server\weapons\
crossbow.cs.

//
// control/server/weapons/crossbow.cs

// Copyright (c) 2003, 2006 by Kenneth C. Finney

// Portions Copyright (c) 2001 GarageGames.com

// Portions Copyright (c) 2001 by Sierra Online, Inc.
/!
datablock ParticleData(CrossbowBoltParticle)
{

textureName ="~/data/particles/smoke";
dragCoefficient =0.0;

gravityCoefficient =-0.2; // risesslowly
inheritedVelFactor =10.00;

1ifetimeMS =500; // lasts 0.7 second
lifetimeVarianceMS =150; // ...more or less

uselnvAlpha = false;
spinRandomMin =-30.0;
spinRandomMax =30.0;

colors[0] ="0.560.360.261.0";
colors[1] ="0.560.360.261.0";
colors[2] ="0000";

sizes[0] =0.25;

sizes[1] =0.5;

sizes[2] =1.0
times[0] =0.0
times[1] =0.3;
times[2] =1.0

221

222 Chapter 5 ® Game Play

datablock ParticleEmitterData(CrossbowBoltEmitter)

{
ejectionPeriodMS =10;
periodVarianceMS =5;
ejectionVelocity =0.25;
velocityVariance=0.10;
thetaMin =0.0;
thetaMax =90.0;
particles = CrossbowBoltParticle;

}s

datablock ParticleData(CrossbowExplosionParticle)

{
textureName = "~/data/particles/smoke";
dragCoefficient =2;
gravityCoefficient =0.2;
inheritedVelFactor =0.2;
constantAcceleration=0.0;
1ifetimeMS =1000;
lifetimeVarianceMS =150;
colors[0] ="0.560.360.261.0";
colors[1] ="0.560.360.260.0";
sizes[0] =0.5;
sizes[1] =1.0;

}s
datablock ParticleEmitterData(CrossbowExplosionEmitter)

{
ejectionPeriodMS=7;
periodVarianceMS = 0;
ejectionVelocity = 2;
velocityVariance=1.0;
ejection0ffset =0.0;
thetaMin =0;
thetaMax =60;
phiReferenceVel =0;
phiVariance = 360;

particles = "CrossbowExplosionParticle";
b
datablock ParticleData(CrossbowExplosionSmoke)
{
textureName = "~/data/particles/smoke";
dragCoefficient =100.0;
gravityCoefficient =0;
inheritedVelFactor =0.25;

}s

constantAcceleration =-0.80;

1ifetimeMS =1200;
lifetimeVarianceMS =300;
uselnvAlpha = true;
spinRandomMin = -80.0;
spinRandomMax = 80.0;
colors[0] ="0.560.360.261.0";
colors[1] ="0.20.20.21.0";
colors[2] ="0.00.00.00.0";
sizes[0] =1.0;

sizes[1] =1.5;

sizes[2] =2.0;

times[0] =0.0;

times[1] =0.5;

times[2] =1.0;

Server Control Modules

datablock ParticleEmitterData(CrossbowExplosionSmokeEmitter)

{

}s

ejectionPeriodMS =10;
periodVarianceMS = 0;
ejectionVelocity =4;
velocityVariance=10.5;

thetaMin =0.0;
thetaMax =180.0;
1ifetimeMS =250;

particles = "CrossbowExplosionSmoke";

datablock ParticleData(CrossbowExplosionSparks)

{

textureName

dragCoefficient 1;

gravityCoefficient =0.0;
0.2

inheritedVelFactor =
constantAcceleration =0.0;

1ifetimeMS =500;
lifetimeVarianceMS = 350;
colors[0] ="0.600.400.301.0";
colors[1] ="0.600.400.301.0";

colors[2] "1.00.400.300.0";

"~/data/particles/spark";

223

224 Chapter 5 ®= Game Play

sizes[0] =0.5;

sizes[1] =0.25;

sizes[2] =0.25;

times[0] =0.0;

times[1] =0.5;

times[2] =1.0;
}s
datablock ParticleEmitterData(CrossbowExplosionSparkEmitter)
{

ejectionPeriodMS = 3;
periodVarianceMS=0;
ejectionVelocity =13;
velocityVariance =6.75;
ejection0ffset =0.0;

thetaMin =0;
thetaMax =180;
phiReferenceVel =0;
phiVariance =360;

overrideAdvances = false;
orientParticles =true;
1ifetimeMS =100;
particles = "CrossbowExplosionSparks";
}s
datablock ExplosionData(CrossbowSubExplosionl)
{
offset=1.0;
emitter[0] = CrossbowExplosionSmokeEmitter;
emitter[1] = CrossbowExplosionSparkEmitter;
b
datablock ExplosionData(CrossbowSubExplosion2)

{
offset =1.0;
emitter[0] = CrossbowExplosionSmokeEmitter;
emitter[1] = CrossbowExplosionSparkEmitter;
}s
datablock ExplosionData(CrossbowExplosion)
{

TifeTimeMS =1200;

particleEmitter = CrossbowExplosionEmitter; // Volume particles
particleDensity = 80;

particleRadius =1;

emitter[0] = CrossbowExplosionSmokeEmitter; // Point emission

s

Server Control Modules

emitter[1] = CrossbowExplosionSparkEmitter;
subExplosion[0] = CrossbowSubExplosionl; // Sub explosion objects
subExplosion[1] = CrossbowSubExplosion2;
shakeCamera = true; // Camera Shaking
camShakeFreq="10.011.010.0";
camShakeAmp="1.01.01.0";
camShakeDuration=0.5;

camShakeRadius =10.0;

1ightStartRadius =6; // Dynamic 1ight
1ightEndRadius = 3;
lightStartColor="0.50.50";
1ightEndColor="000";

datablock ProjectileData(CrossbowProjectile)

{

}s

projectileShapeName = "~/data/models/weapons/bolt.dts";

directDamage =20;

radiusDamage =20;

damageRadius =1.5;

explosion = CrossbowExplosion;
particleEmitter = CrossbowBoltEmitter;
muzzleVelocity =100;
velInheritFactor =0.3;

armingDelay =0;

lifetime =5000;

fadeDelay =5000;
bounceElasticity =0;

bounceFriction =0;

isBallistic =true;

gravityMod =0.80;

hasLight =true;

1ightRadius =4.0;
TightColor ="0.50.50";

function CrossbowProjectile::0nCollision(%this,%obj,%col,%fade,%pos,

{

%normal)

if (%col.getType() & $TypeMasks: :ShapeBaseObjectType)
%col.damage(%obj,%pos,%this.directDamage,"CrossbowBolt");

RadiusDamage(%obj,%pos,%this.damageRadius,%this.radiusDamage,

}

"CrossbowBo1t",0);

datablock ItemData(CrossbowAmmo)

225

226 Chapter 5 ®m Game Play

s

category = "Ammo";

className = "Ammo";

shapeFile = "~/data/models/weapons/boltclip.dts";
mass =1;

elasticity=0.2;

friction=20.6;

// Dynamic properties defined by the scripts
pickUpName = "crossbow bolts";
maxInventory = 20;

datablock ItemData(Crossbhow)

{

}s

category = "Weapon";

className = "Weapon";

shapeFile = "~/data/models/weapons/crossbow.dts";
mass =1;

elasticity=0.2;

friction=20.6;

emap = true;

pickUpName = "a crosshow";

image = CrossbowImage;

datablock ShapeBaseImageData(CrossbowImage)

{

shapeFile = "~/data/models/weapons/crossbow.dts";
emap = true;

mountPoint =0;

eyeOffset="0.10.4 -0.6";

correctMuzzleVector = false;

className = "WeaponImage";

item=Crossbhow;

ammo = CrossbowAmmo;

projectile = CrossbowProjectile;

projectileType = Projectile;

stateName[0] = "Preactivate";
stateTransitionOnLoaded[0] = "Activate";
stateTransitionOnNoAmmo[0] = "NoAmmo";
stateName[1] = "Activate";
stateTransitionOnTimeout[1] = "Ready";

stateTimeoutValue[1] =0.6;

stateSequence[1] =
stateName[2] =
stateTransitionOnNoAmmo[2]
stateTransitionOnTriggerDown[2]
stateName[3]
stateTransitionOnTimeout[3] =
stateTimeoutValue[3] =
stateFire[3] =
stateRecoil[3] =
stateATlowImageChange[3] =
stateSequence[3] =
stateScript[3] =
stateName[4] =
stateTransitionOnNoAmmo[4] =
stateTransitionOnTimeout[4] =
stateTimeoutValuel[4] =
stateAllowImageChangel[4] =
stateSequence[4] =
stateEjectShel1[4] =
stateName[5] =
stateTransitionOnAmmo[5] =
stateSequence[5] =
stateTransitionOnTriggerDown[5] =
stateName[6] =
stateTimeoutValue[6] =
stateTransitionOnTimeout[6] =

s
function CrossbowImage::onFire(%this,
{
Zprojectile=%this.projectile;
%obj.decInventory(%this.ammo,1);
smuzzleVector
%objectVelocity

smuzzleVelocity = VectorAdd(

Server Control Modules

"Activate";
"Ready";

= "NoAmmo" ;

"Fire";

="Fire";

"Reload";
0.2;

true;
LightRecoil;
false;
"Fire";
"onFire";
"Reload";
"NoAmmo" ;
"Ready";
0.8;
false;
"Reload";
true;
"NoAmmo" ;
"Reload";
"NoAmmo" ;
"DryFire";
"DryFire";
1.0;
"NoAmmo" ;

%obj, %slot)

= %obj.getMuzzleVector(%slot);
=%obj.getVelocity();

VectorScale(%muzzleVector, %projectile.muzzleVelocity),
VectorScale(%objectVelocity, %projectile.vellnheritFactor));

%p =new (%this.projectileType)() {
dataBlock =%projectile;

initialVelocity =%muzzleVelocity;
initialPosition =%obj.getMuzzlePoint(%slot);

sourceObject =%obj;
sourceSTot =%slot;
client =%obj.client;

227

228

Chapter 5 = Game Play

b
MissionCleanup.add(%p);
return %p;

}

We will cover the contents of the particle, explosion, and weapon datablocks in
detail in later chapters when we start creating our own weapons. Therefore we
will skip discussion of these elements for now and focus on the datablock’s
methods.

The first method, and one of the most critical, is the CrossbowProjectile::
OnCol1ision method. When called, it looks first to see if the projectile has col-
lided with the right kind of object. If so, then the projectile’s damage value is
applied directly to the struck object. The method then calls the RadiusDamage
function to apply damage to surrounding objects, if applicable.

When shooting the crossbow, the CrossbowImage::onfFire method is used to
handle the aspects of firing the weapon that cause the projectile to be created and
launched. First, the projectile is removed from inventory, and then a vector is
calculated based upon which way the muzzle is facing. This vector is scaled by the
specified muzzle velocity of the projectile and the velocity inherited from the
movement of the crossbow (which gets that velocity from the movement of
the player).

Finally, a new projectile object is spawned into the game world at the location
of the weapon’s muzzle—the projectile possesses all the velocity information
at the time of spawning, so when added, it immediately begins coursing toward
its target.

The projectile is added to the MissionCleanup group before the method exits.

control/server/misc/item.cs

This module contains the code needed to pick up and create items, as well as
definitions of specific items and their methods. Type in the following code, and
save it as \EMAGAS5\control\server\misc\item.cs.

//
// control/server/misc/item.cs

// Copyright (c) 2003, 2005 by Kenneth C. Finney.
/]

Server Control Modules

$RespawnDelay = 20000;
$LoiterDelay = 10000;
function Item::Respawn(%this)
{
sthis.StartFade(0, 0, true);
%this.setHidden(true);
// Schedule a resurrection
%this.Schedule($RespawnDelay, "Hide", false);
#this.Schedule($RespawnDelay + 10, "StartFade", 3000, 0, false);
}
function Item::SchedulePop(%this)
{
#this.Schedule($LoiterDelay - 1000, "StartFade", 3000, 0, true);
%this.Schedule($LoiterDelay, "Delete");
}
function ItemData::0nThrow(%this,%user,%amount)
{
// Remove the object from the inventory
if (%amount $="")
samount = 1;
if (%this.maxInventory !$="")
if (%amount > %this.maxInventory)
%amount = %this.maxInventory;
if (!%amount)
return 0;
%user.DecInventory(%this,%amount);
%0bj = new Item() {
datablock = %this;
rotation="001 " @ (GetRandom() * 360);
count = Zamount;
s
MissionGroup.Add(%obj);
%0bj.SchedulePop();
return %obj;
}
function ItemData::0nPickup(%this,%obj,%user,%amount)
{
scount = %obj.count;
if (%count $="")
if (%this.maxInventory !$="") {
if (1 (%count = %this.maxInventory))
return;

229

230 Chapter 5 ®= Game Play

else
scount =1;
suser.IncInventory(%this,%count);
if (%user.client)
MessageClient(%user.client, '"MsgltemPickup', "\cOYou picked up %1',
%this.pickupName);
if (%0bj.IsStatic())
%0bj.Respawn();
else
%0bj.Delete();
return true;
}
function ItemData::Create(%data)
{
%0bj =new Item() {
dataBlock = %data;
static =true;
rotate = true;
s
return %obj;
}
datablock ItemData(Copper)
{
category = "Coins";
// Basic Item properties
shapeFile ="~/data/models/items/kashl.dts";
mass =0.7;
friction=20.8;
elasticity=0.3;
respawnTime = 30 * 60000;
salvageTime =15 * 60000;
// Dynamic properties defined by the scripts
pickupName = "a copper coin";
value =1;
b
datablock ItemData(Silver)
{
category = "Coins";
// Basic Item properties
shapeFile = "~/data/models/items/kash100.dts";
mass =0.7;
friction=10.8;
elasticity=0.3;

Server Control Modules 231

respawnTime = 30 * 60000;
salvageTime = 15 * 60000;
// Dynamic properties defined by the scripts
pickupName = "a silver coin";
value =100;
}s
datablock ItemData(Gold)
{
category = "Coins";

// Basic Item properties
shapeFile = "~/data/models/items/kash1000.dts";
mass=0.7;
friction=20.8;
elasticity =0.3;
respawnTime = 30 * 60000;
salvageTime =15 * 60000;
// Dynamic properties defined by the scripts
pickupName = "a gold coin";
value =1000;
}s
datablock ItemData(FirstAidKit)
{
category = "Health";
// Basic Item properties
shapeFile = "~/data/models/items/healthPatch.dts";
mass =1;
friction=1;
elasticity =0.3;
respawnTime = 600000;
// Dynamic properties defined by the scripts
repairAmount = 200;
maxInventory =0; // No pickup or throw
}s
function FirstAidKit::onCollision(%this,%obj,%col)
{
if (%col.getDamagelevel() !=0 && %col.getState() !$= "Dead")
{
%col.applyRepair(%this.repairAmount);
%obj.respawn();
if (%col.client)
{
messageClient

232

Chapter 5 = Game Play

(%col.client, 'MSG_Treatment', '\c2Medical treatment applied');
}
}
1

$RespawnDelay and $LoiterDelay are variables used to manage how long it takes
to regenerate static items or how long they take to disappear when dropped.

After an item has been picked, if it is a static item, a new copy of that item will
eventually be added to the game world using the Item: : Respawn method. The first
statement in this method fades the object away, smoothly and quickly. Then the
object is hidden, just to be sure. Finally, we schedule a time in the future to bring
the object back into existence—the first event removes the object from hiding,
and the second event fades the object in smoothly and slowly over a period of
three seconds.

If we drop an item, we may want to have it removed from the game world to
avoid object clutter (and concomitant bandwidth loss). We can use the
Item::SchedulePop method to make the dropped object remove itself from the
world after a brief period of loitering. The first event scheduled is the start of a
fade-out action, and after one second the object is deleted.

We can get rid of held items by throwing them using the ItemData::0nThrow
method. It removes the object from inventory, decrements the inventory count,
creates a new instance of the object for inclusion in the game world, and adds it. It
then calls the SchedulePop method just described to look after removing the
object from the game world.

The ItemData: :0nPickup method is the one used by all items. It adds the item to
the inventory and then sends a message to the client to indicate that the object has
been picked up. If the object picked was a static one, it then schedules an event to
add a replacement item into the world. If not, then the instance picked is deleted,
and we see it no more.

The ItemData::Create method is the catchall object-creation method for items.
It creates a new datablock based upon the passed parameter and sets the static
and rotate properties to true before returning.

Next comes a collection of datablocks defining our coin and first-aid items. We
will cover first-aid items in more detail later, in Chapter 16.

The last method of interest is FirstAidKit::onCollision. This method will
restore some health, by applying a repair value, to colliding objects if it needs

Running EMAGAS

it. Once the treatment has been applied, a message is sent to the client for
display.

Running EMAGA5

Once you’ve typed in all the modules, you should be in a good position to test
EMAGAS5. Table 5.3 shows the game action bindings that apply to in-game
navigation.

Figure 5.4 shows your player-avatar shortly after spawning in Emaga5.

To test the game, travel around the world collecting gold, silver, and copper
coins, and watch the total increase. You will have to watch out, though. The Al
beasts will track you and then shoot you if they spot you. Like the saying goes,
you can run, but you’ll only die tired! You can grab a crossbow and shoot back. In
some of the huts you will find first-aid kits that will patch you up. One more
thing—don’t fall off cliffs. Not healthy.

As an exercise, investigate how you would enable a game timer to limit how
much time you have to gather up the coins. Also, display a message if your score
exceeds a certain value.

Have fun!

Table 5.3 EMAGA5 Game Action Bindings

Key Description

w run forward

s run backward

a run (strafe) left

d run (strafe) right

spacebar jump and respawn

b free look (hold key and move mouse)
tab toggle player point of view

escape quit game

tilde open console

left mouse button fire weapon

233

234

Chapter 5 = Game Play

Figure 5.4
The Avatar in EMAGADb.

Moving Right Along

So, in this chapter you were exposed to more game-structuring shenanigans—
though nothing too serious. It’s always a good idea to keep your software
organized in ways that make sense according to the current state of the project. It
just makes it that much easier to keep track of what goes where and why.

Then we looked at how we can add more features: splash screens, interfaces, and
so on. You should be able to extrapolate from the small amount of game play
stuff we added, like crossbows and pickable items, that the world really can be
your oyster. What your game will do is limited only by your imagination.

In the next chapter we’ll poke a little deeper under the hood at one of the
more hidden, yet very powerful capabilities that any decent game will need—
messaging.

We'll also add more enhancements to our game to allow us to connect to a
master server.

CHAPTER 6

NETWORK

Although little emphasis was given to the subject in recent chapters, a key feature
of working with Torque is the fact that it was built around a client/server net-
working architecture.

Torque creates a GameConnection object, which is the primary mechanism that
links the client (and the player) to the server. The GameConnection object is built
from a NetworkConnection object. When the server needs to update clients, or
when it receives updates from clients, the work is done through the good auspices
of the NetworkConnection, and it is normally quite transparent at the game level.

What this means in practical terms is that the engine automatically handles
things like movement and state changes or property changes of objects that
populate a game world. Game programmers (like you and me) can then poke
their grubby little fingers into this system to make it do their bidding without
needing to worry about all the rest of the stuff, which Torque will manage—
unless we decide to mess around with that too!

I know this seems a bit vague, so in this chapter we will attack the nitty-gritty so
that you can really see how to use Torque’s built-in networking to the best
advantage.

First, we will discuss the features, and look at examples of how they can be
implemented, and then later in the chapter, after you update your Emaga sample
program, you can try them out.

235

236

Chapter 6 = Network

Direct Messaging

The quickest way to get down and dirty with the client/server networking in
Torque is to use the CommandToServer and CommandToClient direct messaging
functions. These extremely useful “ad hoc” messaging functions are used for a
wide variety of purposes in a Torque game, like in-game chat, system messages,
and client/server synchronization.

CommandToServer

The CommandToServer function is used to send a message from a client to a server.
Of course, the server needs to know that the message is coming and how to parse
it to extract the data. The syntax is as follows:

CommandToServer(function [,arg1,...argn])

Parameters: function Message handler function on the server to be executed.
argl,..argn Arguments for the function.
Return: nothing

An example of how to use this function would be a simple global chat macro
capability where a player would press a key, and then a specific message would be
broadcast to all other players. Here is how that would work. First, we would bind
a key combination to a specific function—say, bind Ctrl+H to the function we’ll
call SendMacro(). In the key binding statement, we’ll make sure to pass the value 1
as a parameter to SendMacro().

SendMacro() could be defined on the client as this:

function SendMacro(%value)
{

switch$ (%value)

{

case 1:

smsg = "Hello World!";
case 2:

smsg = "Hello? Is this thing on?";
default:

smsg = "Nevermind!";

}
CommandToServer('TellEveryone', %msg);

}

Direct Messaging

So now, when the player presses Ctrl+H, the SendMacro() function is called, with its
%value parameter set to 1. In SendMacro(), the %value parameter is examined by the
switch$ statement and sent to case 1:, where the variable %msg is stuffed with the
string "Hello Wor1d!". Then CommandToServer is called with the first parameter set
to the tagged string "Tel1Everyone" and the second parameter set to our message.

Now here is where some of the Torque client/server magic elbows its way onto
the stage. The client will already have a GameConnection to the server and so will
already know where to send the message. In order to act on our message, the
server side needs us to define the Tel1Everyone message handler, which is really
just a special purpose function, something like this:

function ServerCmdTellEveryone(%client,%msg)
{

TelTAT1(%client,%msg);
}

Notice the prefix ServerCmd. When the server receives a message from the client
via the CommandToServer() function, it will look in its message handle list, which
is a list of functions that have the ServerCmd prefix, and find the one that matches
ServerCmdTellEveryone. It then calls that function, setting the first parameter to
the GameConnection handle of the client that sent the message. It then sets the rest
of the parameters to be the parameters passed in the message from the client,
which in this case is #msg stuffed with the string "Hello World!".

Then we can do what we want with the incoming message. In this case we want to
send the message to all the other clients that are connected to the server, and we’ll
do that by calling the Te11A11() function. Now we could put the code right here
in our ServerCmdTel1Everyone message handler, but it is a better design approach
to break the code out into its own independent function. We’ll cover how to do
this in the next section.

CommandToClient

Okay, here we are—we’re the server, and we’ve received a message from a client.
We’ve figured out that the message is the Tel1Everyone message, we know which
client sent it, and we have a string that came along with the message. What we
need to do now is define the Te11A11 () function, so here is what it could look like:

function Tel1A11(%sender, %msg)
{
%count = ClientGroup.getCount();

237

238

Chapter 6 = Network

for (%1 =0; %i < %count; %i++)
{
sclient = ClientGroup.getObject(%i);
CommandToClient(%client, 'TellMessage', %sender, msg);
}
}

Our intention here is to forward the message to all the clients. Whenever a
client connects to the server, its GameConnection handle is added to the
ClientGroup’s internal list. We can use the C1ientGroup’s method getCount to
tell us how many clients are connected. ClientGroup also has other useful
methods, and one of them—the getObject method—will give us the
GameConnection handle of a client, if we tell it the index number we are
interested in.

If you want to test these example functions, I'll show you how to do that
toward the end of the chapter. If you feel like giving it a go by yourself, here’s a
small hint: the commandToC1ient function is called from the server side, and the
commandToServer functions belong on the client side.

As you can see, commandToClient is basically the server-side analogue to
commandToServer. The syntax is as follows:

CommandToClient(client, function [,arg1,...argn])

Parameters: client Handle of the target client.
function Message handler function on the server to be executed.
argl,..argn Arguments for the function.

Return: nothing

The primary difference is that although the client already knew how to contact
the server when using CommandToServer, the same is not true for the server when
using CommandToC1ient. It needs to know which client to send the message to each
time it sends the message. So the simple approach is to iterate through the
ClientGroup using the for loop, getting the handle for each client, and then
sending each client a message using the CommandToClient() function, by speci-
fying the client handle as the first parameter. The second parameter is the name
of the message handler on the client side this time. Yup—works the same going
that way as it did coming this way! Of course, the third parameter is the actual
message to be passed.

Triggers

So we need that message handler to be defined back over on the client. You can
do it like this:

function clientCmdTel1Message(%sender, ZmsgString)
{

// blah blah bTah

}

Notice that when we called this function there were four parameters, but our
definition only has two in the parameter list. Well, the first parameter was the
client handle, and because we are on the client, Torque strips that out for us. The
second parameter was the message handler identifier, which was stripped out after
Torque located the handler function and sent the program execution here. So the
next parameter is the sender, which is the client that started this whole snowball
rolling, way back when. The last parameter is, finally, the actual message.

I’ll leave it up to you to decide what to do with the message. The point here was to
show this powerful messaging system in operation. You can use it for almost
anything you want.

Direct Messaging Wrap-up
CommandToServer and CommandToC1ient are two sides of the same direct messaging

coin and give us, as game programmers, a tremendous ability to send messages
back and forth between the game client and the game server.

Direct messaging can also be an important tool in the fight against online
cheating in your game. You can, in theory and in practice, require all user inputs
to go to the server for approval before executing any code on the client. Even
things like changing setup options on the client—which are not normally the
sort of thing that servers would control—can be easily programmed to require
server control using the technique we just looked at.

The actual amount of server-side control you employ will be dictated by both
available bandwidth and server-side processing power. There is a lot that can be
done, but it is a never-ending series of tradeoffs to find the right balance.

Triggers

Right off the bat, there is potential for confusion when discussing the term trigger
in Torque, so let’s get that out of the way. There are four kinds of triggers that

239

240

Chapter 6 = Network

people talk about when programming with Torque:

m area triggers

m animation triggers

m weapon state triggers

m player event control triggers

I’ll introduce you to all four here, but we’ll talk about three of them—area triggers,
animation triggers, and weapon state triggers—in more detail in future chapters.

Area Triggers

Area triggers are special in-game constructs. An area in the 3D world of a game is
defined as a trigger object. When a player’s avatar enters the bounds of the trigger
area, an event message is posted on the server. We can write handlers to be activated
by these messages. We will be covering area triggers in more depth in Chapter 22.

Animation Triggers

Animation triggers are used to synchronize footstep sounds with walking ani-
mations in player models. Modeling tools that support animation triggers have
ways of tagging frames of animation sequences. The tags tell the game engine that
certain things should happen when this frame of an animation is being displayed.
We'll discuss these later, in Chapter 14.

Weapon State Triggers

Torque uses weapon state triggers for managing and manipulating weapon states.
These triggers dictate what to do when a weapon is firing, reloading, recoiling,
and so on. We’ll look at this in more detail later, in Chapter 20 in the section
“Weapon Sounds.”

Player Event Control Triggers

Finally, there are player event control triggers, which are a form of indirect mes-
saging of interest to us in this chapter. These mechanisms are used to process
certain player inputs on the client in real time. You can have up to six of these
triggers, each held by a variable with the prefix $mvTriggerCountn (where nis an
index number from 0 to 5).

Triggers 241

Table 6.1 Default Player Event Control Triggers

Trigger %triggerNum Default Action

$mvTriggerCount0 0 Shoots or activates the mounted weapon in image slot 0
of the player's avatar. (The “fire” button, so to speak.)

$mvTriggerCountl 1 Shoots or activates the mounted weapon in image slot 1
of the player's avatar. (The “alt fire.")

$mvTriggerCount?2 2 Initiates the “jump” action and animation for the player’s
avatar.

$mvTriggerCount3 3 Initiates the “jetting” (extra boost) action and animation
for the vehicle on which a player’s avatar is mounted.

$mvTriggerCount4 4 Unassigned.

$mvTriggerCount5 5 Unassigned.

When we use a trigger move event, we increment the appropriate $mvTriggerCountn
variable on the client side. This change in value causes an update message to be sent
back to the server. The server will process these changes in the context of our control
object, which is usually our player’s avatar. After the server acts on the trigger, it
decrements its count. If the count is nonzero, it acts again when it gets the next
change in its internal scheduling algorithm. In this way we can initiate these trigger
events by incrementing the variable as much as we want (up to a maximum of 255
times), without having to wait and see if the server has acted on the events. They are
just automatically queued up for us via the $mvTriggerCountn variable mechanism.

Torque has default support for the first four control triggers built into its player
and vehicle classes (see Table 6.1).

In the server control code, we can put a trigger handler in our player’s avatar for
any of these triggers that override the default action. We define a trigger handler
like this:

function MyAvatarClass::onTrigger(%this, %obj, %triggerNum, %val)
{
// trigger activity here
$switch(%triggerNum)
{
case 0:
//replacement for the "fire" action.
case 1:
//replacement for the "alt fire" action.

242 Chapter 6 = Network

case 2:
//replacement for the "jump" action.
case 3:
//replacement for the "jetting" action.
case 4:
//whatever you Tike
case b:
//whatever you Tike
}
1

The MyAvatarClass class is whatever you have defined in your player avatar’s
datablock using the following statement:

className = MyAvatarClass;

To use a trigger handler, you merely have to increment a player event control
trigger on the client, something like this:

function mouseFire(%val)

{
$mvTriggerCountO++;
1

or this:

function altFire(%val)
{
$mvTriggerCountl++;

}

GameConnection Messages

Most of the other kinds of messages used when making a game with Torque are
handled automatically. However, in addition to the direct messaging techniques
we just looked at, there are other more indirect messaging capabilities available to
the Torque game developer. These are messages related to the GameConnection
object.

I call these methods indirect because we, as programmers, don’t get to use them
in any old way of our choosing. But we can, nonetheless, use these methods, in
the form of message handlers, when the Torque Engine decides it needs to send
the messages.

GameConnection Messages

What GameConnection Messages Do

GameConnection messages are of great importance to us during the negotiation
process that takes place between the client and server when a client joins a game.
They are network messages with game-specific uses, as opposed to being
potentially more general-purpose network messages.

Torque calls a number of GameConnection message handlers at different times
during the process of establishing, maintaining, and dropping game-related
connections. In the Torque demo software, many of these handlers are defined in
the common code base, whereas others aren’t used at all. You are encouraged to
override the common code message handlers with your own GameConnection
message handlers or use the unused handlers, if you need to.

Specifics
During program execution, the client will at some point try to connect to the
server using a set of function calls like this:

%conn = new GameConnection(ServerConnection);
%conn.SetConnectArgs(%username);
%conn.Connect();

In this example the %conn variable holds the handle to the GameConnection. The
Connect() function call initiates a series of network transactions that culminate at
the server with a call to the GameConnection::0nConnect handler.

The following descriptions are listed roughly in the order that the functions are
used in the Emaga6 program.

onConnectionRequest()

Parameters: none

Return: ”” (null string) Indicates that the connection is accepted.
none Indicates rejection for some reason.
Description: Called when a client attempts a connection, before the connection
is accepted.
Usage: Common—Server

This handler is used to check if the server-player capacity has been exceeded. If not
exceeded, then "" is returned, which allows the connection process to continue. If
the server is full, then CR_SERVERFULL is sent back. Returning any value other than ""

243

244

Chapter 6 = Network

will cause an error condition to be propagated back through the engine and sent to
the client as a call to the handler GameConnection: :onConnectRequestRejected. Any
arguments that were passed to GameConnection::Connect are also passed to this
handler by the engine.

onConnectionAccepted(handle)

Parameters: handle GameConnection handle.

Return: nothing

Description: Called when a Connect call succeeds.
Usage: Client

This handler is a good place to make last-minute preparations for a connected
session.

onConnect(client, name)

Parameters: client A client's GameConnection handle.

name Name of a client’s account or username.
Return: nothing
Description: Called when a client has successfully connected.
Usage: Server

In this case the second parameter (%4name) is the value the client has used, while
establishing the connection, as the parameter to the %(GameConnection).
Set ConnectArgs(%username)call.

onConnectRequestTimedOut(handle)

Parameters: handle GameConnection handle.
Return: nothing
Description: Called when establishing a connection takes too long.

Usage: Client

GameConnection Messages 245

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost because of a timeout.

onConnectionTimedOut(handle)

Parameters: handle GameConnection handle.

Return: nothing

Description: Called when a connection ping (heartbeat) has not been received.
Usage: Server, Client

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost because of a timeout.

onConnectionDropped(handle, reason)

Parameters: handle GameConnection handle.

reason String indicating why the server dropped the connection.
Return: nothing
Description: Called when the server initiates the disconnection of a client.
Usage: Client

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost because of a timeout.

onConnectRequestRejected(handle, reason)

Parameters: handle GameConnection handle.
reason See Table 6.2 for a list of conventional reason codes defined by
GarageGames in script.
Return: nothing
Description: Called when a client's connection request has been turned
down by the server.
Usage: Client

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost.

246

Chapter 6 = Network

Table 6.2 Connection Request Rejection Codes

Reason Code Meaning

CR_INVALID_PROTOCOL_VERSION The wrong version of the client was detected.
CR_INVALID_CONNECT_PACKET There is something wrong with the connection packet.
CR_YOUAREBANNED Your game username has been banned.
CR_SERVERFULL The server has reached the maximum number of players.
CHR_PASSWORD The password is incorrect.

CHR_PROTOCOL The game protocol version is not compatible.
CHR_CLASSCRC The game class version is not compatible.

CHR_INVALID_CHALLENGE_PACKET The client detected an invalid server response packet.

onConnectionError(handle, errorString)

Parameters: handle GameConnection handle.
errorString String indicating the error encountered.
Return: nothing
Description: General connection error, usually raised by ghosted object

initialization problems, such as missing files. The
errorString is the server's connection error message.

Usage: Client

onDrop(handle, reason)

Parameters: handle GameConnection handle.

reason Reason for the connection being dropped, passed from the server.
Return: nothing
Description: Called when a connection to a server is arbitrarily dropped.
Usage: Client

initialControlSet(handle)

Parameters: handle GameConnection handle.
Return: nothing
Description: Called when the server has set up a control object for the

GameConnection. For example, this could be an avatar
model or a camera.

Usage: Client

GameConnection Messages 247

setLaglcon(handle, state)

Parameters: handle GameConnection handle.
state Boolean that indicates whether to display or hide the icon.
Return: nothing
Description: Called when the connection state has changed, based upon the lag

setting. state is set to true when the connection is considered
temporarily broken or set to false when there is no loss of connection.

Usage: Client

onDataBlocksDone(handle, sequence)

Parameters: handle GameConnection handle.
sequence Value that indicates which set of datablocks has been transmitted.
Return: nothing
Description: Called when the server has received confirmation that all datablocks
have been received.
Usage: Server

Use this handler to manage the mission loading process and any other activity
that transfers datablocks.

onDataBlockObjectReceived(index, total)

Parameters: index Index number of datablock objects.
total Count of datablock objects sent so far.
Return: nothing
Description: Called when the server is ready for datablocks to be sent.
Usage: Client

onFileChunkReceived(file, ofs, size)

Parameters: file The name of the file being sent.
ofs Offset of data received.
size File size.
Return: nothing
Description: Called when a chunk of file data from the server has arrived.

Usage: Client

248

Chapter 6 = Network

onGhostAlwaysObjectReceived()

Parameters: none

Return: nothing

Description: Called when a ghosted object's data has been sent across from
the server to the client.

Usage: Client

onGhostAlwaysStarted(count)

Parameters: count The number of ghosted objects dealt with so far.

Return: nothing

Description: Called when a ghosted object has been sent to the client.
Usage: Client

Finding Servers

When you offer a game with networked client/server capabilities, there needs to
be some means for players to find servers to which to connect. On the Internet, a
fairly widely implemented technique is to employ a master server. The master
server’s job is generally straightforward and simple. It keeps a list of active game
servers and provides a client with the necessary information to connect to any
one of the servers if desired.

To see the utility of such a simple system, just take a look at NovaLogic, makers of
the successful Delta Force series of first-person shooters. NovaLogic still hosts
master servers for customers who bought the original Delta Force games from the
late 1990s! The overhead of such a simple system is minimal, and the benefit in
customer goodwill is tremendous.

The Tribes series of games, upon which Torque is based, also offers such master
servers, as do many other games out there.

On a small- to medium-sized local area network, this is not too onerous a task.
An extremely simple method is to have the client merely examine a specified port
on all visible nodes to see if a server is present, and that’s what we’re going to be
doing in this chapter.

Finding Servers

Code Changes

We are going to implement “find a server” support in our version of Emaga for
this chapter. We will create Emaga6 by modifying Emaga5, the game from the last
chapter.

First, copy your entire \EMAGAS5 folder to a new folder, called \EMAGA®6. Then,
for the sake of clarity, rename the UltraEdit project file to chapter6.prj. Now open
your new Chapter 6 UltraEdit project. All changes will be made in the control code.
In addition to changes to the actual program code, you might want to also change
any Chapter 5 comment references so they refer to Chapter 6—it’s your call.

Client—Initialize Module

We’'ll make our first change in control/client/initialize.cs. Open that module and
locate the function InitializeClient. Add the following statements to the very
beginning of the function (after the opening brace):

$Client::GameTypeQuery = "3D2E";
$Client::MissionTypeQuery = "Any";

When one of our servers contacts the master server, it uses the variable
$Client::GameTypeQuery to filter out game types that we aren’t interested in. For
your game, you can set any game type you like. Here we are going to go with
3D2E because there will be at least one 3D2E server listed on the master server,
and for the purpose of illustration it is better to see one or two 3D2E servers listed
than nothing at all. You can change this later at your leisure.

The variable $Client: :MissionTypeQuery is used to filter whatever specific game
play styles are available. By specifying any, we will see any types that are available.
This is also something we can define in whatever way we want for our game.

Farther down will be a call to InitCanvas. Although it is not really important to
make the master server stuff work, change that statement to this:

InitCanvas("Emaga6 - 3D2E Sample Game");

Doing so reflects the fact that we are now in Chapter 6 and not in Chapter 5
anymore.

Next, there are a series of calls to Exec. Find the one that loads playerinterface.gui,
and put the following line after that one:

Exec("./interfaces/serverscreen.gui");

249

250

Chapter 6 = Network

Then find the call to Exec that loads screens.cs, and add the following statement
after it:

Exec("./misc/serverscreen.cs");

Finally, toward the end of the function, find the Exec call that loads
connections.cs. After that statement, and before the call to Canvas.SetContent,
add the following statement:

SetNetPort(0);

This statement is critical. Although we will never use port 0, it is necessary to make
this call to ensure that the TCP/IP code in Torque works correctly. Later on in other
modules the appropriate port will be set, depending on what we are doing.

Now we need to add a button to the main screen. Open \EMAGAG6\control\
client\interfaces\menuscreen.gui and at the end of the file find the last line that
has a single brace/semi-colon pair }; and insert the following code just above it:

new GuiButtonCtrl() {
command = "Canvas.setContent(ServerScreen);";
text = "Connect To Server";

s

New Modules

More typing! But not as much as in previous chapters, so don’t fret. We have to add
a new interface module and a module to contain the code that manages its behavior.

Client—ServerScreen Interface Module

Now we have to add the ServerScreen interface module. This module defines
buttons, text labels, and a scroll control that will appear on the screen; we can use
it to query the master server and view the results. Type in the following code, and
save it as control\client\interfaces\serverscreen.gui.

//
// control/client/interfaces/serverscreen.gui

//

// Server query interface module for 3D2E emaga6 sample game
//

// Copyright (c) 2003, 2006 by Kenneth C. Finney.

//

new GuiChunkedBitmapCtrl(ServerScreen) {
profile = "GuiContentProfile";

horizSizing = "width";
vertSizing = "height";
position="00";

extent = "640 480" ;
minExtent = "8 8";

visible="1";

bitmap ="./emaga_background";
useVariable="0";

tile="0";

helpTag="0";

new GuiControl() {

profile = "GuiWindowProfile";
horizSizing = "center";
vertSizing = "center";
position="2090";

extent = "600 300";

minExtent = "8 8";
visible="1";
helpTag="0";

new GuiTextCtrl() {

b

profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="1835";

extent = "63 18";

minExtent = "8 8";
visible="1";

text = "Player Name:";
maxLength = "255";
helpTag="0";

new GuiTextEditCtr1() {

profile ="GuiTextEditProfile";
horizSizing = "right";
vertSizing = "bottom";
position="2505";

extent = "134 18";

minExtent = "8 8";
visible="1";

variable = "Pref::Player::Name";

maxLength = "255";

Finding Servers

251

252 Chapter 6 = Network

s

ne

s

historySize="5";
password ="0";
tabComplete="0";
sinkAT1KeyEvents = "0";
helpTag="0";

w GuiTextCtr1() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="13 30";
extent ="24 18";
minExtent = "8 8";
visible="1";

text = "Private ?7";
maxLength = "255";
helpTag="0";

new GuiTextCtr1() {

s

profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="76 30";

extent ="6318";

minExtent = "8 8";
visible="1";

text = "Server Name";
maxLength = "255";
helpTag="0";

new GuiTextCtrl() {

profile = "GuiTextProfile";
horizSizing = "right";
vertSizing ="bottom";
position="216 30";

extent ="20 18";

minExtent = "8 8";
visible="1";

text = "Ping";

maxLength = "255";
helpTag="0";

ne

w GuiTextCtrl() {

profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="251 30";

extent = "36 18";

minExtent = "8 8";

visible="1";
text = "Players";

maxLength = "255";

};
ne

b

helpTag="0";

w GuiTextCtr1() {
profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="295 30";
extent = "38 18";
minExtent = "8 8";
visible="1";

text = "Version";
maxLength = "255";
helpTag="0";

new GuiTextCtrl() {

}s

profile = "GuiTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "43330";

extent = "28 18";

minExtent ="8 8";
visible="1";

text = "Game Description”;
maxLength = "255";
helpTag="0";

new GuiScrol1Ctr1() {

profile = "GuiScrol1Profile";

horizSizing = "right";
vertSizing = "bottom";
position="14 55";
extent = "580 190";

Finding Servers

253

254 Chapter 6 = Network

minExtent = "8 8";
visible="1";
willFirstRespond="1";
hScrol1Bar = "dynamic";
vScrol1Bar = "alwaysOn";
constantThumbHeight = "0";
childMargin="00";
helpTag="0";
defaultLineHeight = "15";

new GuiTextListCtrl(ServerList) {
profile = "GuiTextArrayProfile";
horizSizing = "right";
vertSizing = "bottom";
position="22";
extent = "558 48";
minExtent = "8 8";
visible="1";
enumerate="0";
resizeCell ="1";
columns = "0 30 200 240 280 400";
fitParentWidth="1";
clipColumnText ="0";
noDuplicates = "false";
helpTag="0";

s

s

new GuiButtonCtrl() {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing="top";
position="16 253";
extent = "127 23";
minExtent = "8 8";
visible="1";
command = "Canvas.getContent().Close();";
text ="Close";
groupNum="-1";
buttonType = "PushButton";
helpTag="0";

Finding Servers 255

new GuiButtonCtrl(JoinServer) {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "bottom";
position = "455 253";
extent = "130 25";
minExtent = "8 8";
visible="1";
command = "Canvas.getContent().Join();";
text = "Connect";
groupNum="-1";
buttonType = "PushButton";
active="0";
helpTag="0";

b

new GuiControl(QueryStatus) {
profile = "GuiWindowProfile";
horizSizing = "center";
vertSizing = "center";
position="149100";
extent = "310 50";
minkExtent = "8 8";
visible="0";
helpTag="0";

new GuiButtonCtrl(CancelQuery) {
profile = "GuiButtonProfile";
horizSizing = "right";
vertSizing = "bottom";
position="9 15";
extent ="64 20";
minExtent = "8 8";
visible="1";
command = "Canvas.getContent().Cancel();";
text = "Cancel";
groupNum="-1";
buttonType = "PushButton";
helpTag="0";

s

new GuiProgressCtr1(StatusBar) {
profile = "GuiProgressProfile";
horizSizing = "right";

256

Chapter 6 = Network

vertSizing = "bottom";
position= "84 15";
extent = "207 20";
minExtent = "8 8";
visible="1";
helpTag="0";

s

new GuiTextCtrl(StatusText) {
profile ="GuiProgressTextProfile";
horizSizing = "right";
vertSizing = "bottom";
position="8514";
extent = "205 20";
minExtent = "8 8";
visible="1";
maxLength = "255";
helpTag="0";

The first half of the module is an interface definition, defining a number of
buttons, text labels, and a scroll control that will appear on the screen. Most of
the properties and control types have been covered in previous chapters; how-
ever, some of them are of particular note here.

The first item of interest is the GuiScrol1Ctr1. This control provides a scrollable
vertical list of records; in this case it will be a list of servers that satisfy the filters
used in subsequent Query calls that we will look at a bit later.

Some of the GuiScroll1Ctriproperties of interest are explained in Table 6.3.

The next significant control to examine is the GuiTextEditCtrl. It has an inter-
esting property, shown by this statement:

variable = "Pref::Player::Name";

What this does is display the contents of the variable Pref::Player: :Name in the
control’s content. If we change that content by placing our edit cursor in the
control’s field while it is being displayed and typing in new text, then the contents
of the variable Pref::Player::Name are also changed.

Finding Servers

Table 6.3 Selected GuiScrollCtrl Properties

Property Description

willFirstRespond If set to true or 1, indicates that this control will respond to user inputs
first, before passing them on to other controls.

hScroll1Bar Indicates how to decide whether to display the horizontal scroll bar. The
choices are

alwaysOn: The scroll bar is always visible.
alwaysOff: The scroll bar is never visible.

dynamic The scroll bar is not visible until the number of records in the
list exceeds the number of lines available to display them. If this happens
the scroll bar is turned on and made visible.

vScrollBar The same as hScrol1Bar but applies to the vertical scroll bar.

constantThumbHeight Indicates whether the thumb, the small rectangular widget in the scroll bar
that moves as you scroll, will have a size that is proportional to the number
of entries in the list (the longer the list, the smaller the thumb) or will have a
constant size. Setting this property to 1 ensures a constant size; 0 ensures
proportional sizing.

Also in this GuiTextEditCtrlcontrol is the following statement:

historySize="0";

This control has the ability to store a history of previous values that were held in
the control’s edit box. We can scroll through the list’s previous values by pressing
the Up Arrow and Down Arrow keys. This property sets the maximum number
of values that can be saved in the control’s history. A setting of 0 means that no
history will be saved.

Now go take a look at the control of type GuiControl with the name QueryStatus.
This is the definition of a subscreen that will display the progress of the query. It
contains a couple of other controls that we’ve seen before, but I just want you to
note how they are nested within this control, which is nested within the larger
ServerScreen.

Client—ServerScreen Code Module

Next, we will add the ServerScreen code module. This module defines how the
ServerScreen interface module will behave. Type in the following code, and save
it as control\client\misc\serverscreen.cs.

257

258 Chapter 6 = Network

//
// control/client/misc/serverscreen.cs

/!

// Server query code module for 3DGPAI1 Emaga6 sample game
!/

// Copyright (c) 2003, 2006 by Kenneth C. Finney.

//

function ServerScreen::onWake()

{
JoinServer.SetActive(ServerList.rowCount() > 0);
ServerScreen.querylan();

}

function ServerScreen::QuerylLan(%this)

{
QueryLANServers(

28000, // TanPort for Tocal queries
0, // Query flags
$Client::GameTypeQuery, // gameTypes
$Client::MissionTypeQuery, // missionType
0, // minPlayers
100, // maxPlayers
0, // maxBots
2, // regionMask
0, // maxPing
100, // minCPU
0 // filterFlags
)

1

function ServerScreen::Cancel (%this)
{

CancelServerQuery();
}

function ServerScreen::Close(%this)
{
CancelServerQuery();
Canvas.SetContent(MenuScreen);
}

Finding Servers

function ServerScreen::Update(%this)

{

QueryStatus.SetVisible(false);
ServerList.Clear();

%sc = GetServerCount();

for (%1 =0; %1 < %sc; %i++)

{

SetServerInfo(%i);
ServerList.AddRow(%i,
($ServerInfo::Password? "Yes": "No") TAB

$Serverinfo:
$ServerInfo:
$Serverinfo:
$ServerInfo:
$ServerInfo:

i)
}

:Name TAB

:Ping TAB

:PlayerCount @ "/" @ $ServerInfo::MaxPTayers TAB
:Version TAB

:GameType TAB

ServerList.Sort(0);
ServerList.SetSelectedRow(0);
ServerList.Scrol1Visible(0);
JoinServer.SetActive(ServerList.RowCount() > 0);

}

function ServerScreen::Join(%this)

{

CancelServerQuery();

%id = ServerList.GetSelectedId();

%index = GetField(ServerList.GetRowTextById(%id),6);

if (SetServerInfo(%index)) {
%sconn = new GameConnection(ServerConnection);
%conn.SetConnectArgs($pref::Player::Name);
sconn.SetdoinPassword($CTient::Password);
sconn.Connect($ServerInfo::Address);

}
}

function onServerQueryStatus(%status, %msg, %value)

{

if (!QueryStatus.IsVisible())
QueryStatus.SetVisible(true);

switch$ (%status) {

case "start":

259

260

Chapter 6 = Network

case "ping":
StatusText.SetText("Ping Servers");
StatusBar.SetValue(%value);

case "query":

case "done":
QueryStatus.SetVisible(false);
ServerScreen.Update();

}

This module is where we’ve put the code that controls how the Master Server
screen behaves.

The first function, ServerScreen::onWake, defines what to do when the screen
is displayed. In this case we first set the Join button to be active if there are
any servers in the server list at the moment we display the screen. Then
ServerScreen::QueryLAN is called. It executes a call to QueryLANServers, which
reaches out across the local area network and talks to each computer on port
28000 (you can use any available port). If it manages to contact a computer with
a game server running on that port, it establishes contact with the game server,
obtains some information from it, and adds that server to a list. There are quite a
few parameters to the call to QueryLANServers. The following syntax definition
shows them in more detail:

QueryLANServers (port, flags, gtype, mtype, minplayers, maxplayers, maxbots,
region, ping, cpu, filters, buddycount, buddylist)
Parameters: port The TCP/IP port where game servers are expected to be found.
flags Query flags. Choices:
0 x 00 = online query
0 x 01 = offline query
0 x 02 = no string compression

gtype Game type string.

mtype Mission type string.

minplayers Minimum number of players for a viable game.
maxplayers Maximum allowable players.

maxbots Maximum allowable connected Al bots.

region Numeric discriminating mask.

ping Maximum ping for connecting clients; 0 means no maximum.

Finding Servers

mincpu Minimum specified CPU capability.
filterflags Server filters. Choices:

0 x 00 = dedicated

0 x 01 = not password protected

0 x 02 = Linux

0 x 80 = current version
buddycount Number of buddy servers in the buddy list.
buddylist List of server names that are buddies to this server.

Return: nothing

The response to the QueryLANServers function is accessible from the ServerList
array.

The next function, ServerScreen::Cancel, is called when the Cancel button is
clicked while the query is under way.

After that is the ServerScreen::Close function, which is called when the user
clicks the Close button. It cancels any pending query and then returns to the
MenuScreen.

ServerScreen::Update is the function that inserts the obtained information in
the ServerList after it is obtained from the master server. The information is
found in the $ServerInfo array. To update the scrolling display, we find the
number of servers that pass the filters on the master by calling GetServerCount.
Then we iterate through our displayable list, extracting the fields from each
$ServerInfo record. Take note of the call to SetServerInfo. Passing an index
number to this function sets the $ServerInfo array to point to a specific record in
the MasterServerList. Then we access the individual fields in the $ServerInfo
array by referencing them with the colon operator: $ServerInfo::Name or
$ServerInfo::Name, to demonstrate with two examples.

The next function, ServerScreen::Join, defines how we go about joining a server
that has been selected from the list. First, we cancel any outstanding queries,
get the handle of the server record that is highlighted in the interface, and then
use that to obtain the index number of the server record. We use the SetServerInfo
to set the $ServerInfo array to point to the right server record, and then we
can access the values. After setting some network parameters, we finally use
$ServerInfo::Address to make the network connection.

The last function in the module is the message handler callback that makes the
whole shebang go: onServerQueryStatus. It gets called repeatedly as the server

261

262

Chapter 6 = Network

query process unfolds. We use the %status variable to determine what response
we are receiving from the master server, and then we use either the #msg or %value
variable, set by the master server to update various fields in the displayed server
list. The start and query cases aren’t needed in our example.

Dedicated Server

Sometimes we will want to host a game as a server without having to bother with
a graphical user interface. One reason we might want to do this is because we
want to run the server on a computer that doesn’t have a 3D accelerated graphics
adapter. Another reason is because we might want to test our client/server
connectivity and master server query capabilities. This need arises because we
can’t run two instances of the Torque graphical client at the same time. However,
if we have the ability to run as a dedicated server, we can run multiple dedicated
servers, while running one instance of the graphical client, all on the same
computer. And if we have set up the dedicated servers appropriately, other
players out on the network can connect to our servers.

There are a few more modules you will have to change to implement the dedi-
cated server capabilities.

Root Main Module

In this module we’ll need to add some command line switches in case we want to
use the command line interface of Windows, or we’ll need to decide to embed
the switches in a Windows shortcut. Either of these methods is how we can tell
the game to run the server in dedicated mode. In the module main.cs located
in the root game folder (which is the folder where the tge.exe executable is located
for your Chapter 6 version of Emaga), locate the ParseArgs function, and scroll
down until you find the statement containing $switch($currentarg). Type the
following code in directly after the $switch statement (after the opening brace):

case "-dedicated":
$Server::Dedicated = true;
EnableWinConsole(true);
$argumentFlag[%i]++;

case "-map":
$argumentFlagl%i1++;
if (%nextArgExists)

Dedicated Server

$mapArgument = ZnextArgument;
$argumentFlag[%i+1]1++;
hitt;
}
else
Error("Error: Missing argument. Usage: -map <filename>");

Both of these switches are needed to run a dedicated server. The -dedicated
switch puts us into the right mode, and then the -map switch tells us which
mission map to load when the server first starts running.

The result of these changes is that we can now invoke the dedicated server mode
by launching the game with the following syntax from the command line (don’t
try it yet): tge.exe -dedicated -map control/data/maps/book_ch6.mis.

The game will launch, and all you will see will be a console window. You will be
able to type in console script statements, just as you can when you use the Tilde
(“~”) key in the graphical client interface. However, don’t try this just yet,
because we still need to add the actual dedicated server code!

You can also create a shortcut to the tge.exe executable and modify the Target
box in the shortcut properties to match the command line syntax above. Then
you can launch the server merely by double-clicking on the shortcut icon.

Control—Main Module

Next, we have a quick modification to make to control/main.cs. In the OnStart
function, locate the line that contains InitializeClient. Replace that one line
with these four lines:

if ($Server::Dedicated)
InitializeDedicatedServer();
else
InitializeClient();

Now, when the program detects that the -dedicated switch was used, as
described in the previous section, it will fire up in dedicated mode, not in client
mode.

263

264

Chapter 6 = Network

Control—Initialize Module

Okay, the meat of the dedicated server code is contained in this module. Open up
the module control/server/initialize.cs, and type in the following lines just before
the InitializeServer function.

$pref::Net::DisplayOnMaster = "Never";

$pref::Master0 ="2:master.garagegames.com:28002";
$Pref::Server::ConnectionkError = "You do not have the correct version of 3D2E
client or the related art needed to play on this server. This is the server for
Chapter 6. PTease check that chapter for directions.”;

$Pref::Server::FloodProtectionEnabled =1;
$Pref::Server::Info = "3D Game Programming AT1-In-0One by Kenneth C. Finney.";
$Pref::Server::MaxPlayers = 64;

$Pref::Server::Name = "3D2E Book - Chapter 6 Server";
$Pref::Server::Password="";

$Pref::Server::Port = 28000;
$Pref::Server::RegionMask = 2;
$Pref::Server::TimeLimit = 20;
$Pref::Net::LagThreshold ="400";
$pref::Net::PacketRateToClient ="10";
$pref::Net::PacketRateToServer = "32";
$pref::Net::PacketSize ="200";

$pref::Net::Port =28000;

You can change the string values to be anything you like as long as it suits your
purposes. You should leave the RegionMask as is for now.

Next, locate the function InitializeServer again, and insert the following lines
at the very beginning of the function:

$Server::GameType = "3D2E";
$Server::MissionType = "Emaga6";
$Server::Status = "Unknown";

The value of $Server::Status will be updated when the server makes contact
with the master server.

Finally, you will need to add this entire function to the end of the module:

function InitializeDedicatedServer()
{
EnableWinConsole(true);
Echo("\n--------- Starting Dedicated Server --------- ")

$Server::Dedicated = true;

Testing Emaga6

if ($mapArgument !$="") {
CreateServer("MultiPlayer", $mapArgument);
1
else
Echo("No map specified (use -map <filename>)");
1

This function enables the Windows console, sets the dedicated flag, and then calls
CreateServer with the appropriate values. Now it may not do very much and
therefore seem to be not too necessary, but the significance with the Initi-
alizeDedicatedServer function is in what it doesn’t do compared with the
InitializeClient function, which would have otherwise been called. So that’s
the reason why it exists.

Emaga6 Map Files

There is a special map (mission) file with accompanying terrain file for use with
this chapter. Locate these files at RESOURCES\CH6\EMAGAG®6\control\data\
maps\book_ch6.mis and RESOURCES\CH6\EMAGAG6\control\data\maps\
book_ ché.ter, respectively, and copy them to \EMAGAG6\control\data\maps\.

Testing Emagab

With all the changes we’ve made here, we’re going to want to see Emaga6 run. It’s
really fairly easy. Open a command shell in Windows, and change to the folder
where you’ve built the code for this chapter’s program (\EMAGAS®6). Then run the
dedicated server by typing in this command: tge.exe -dedicated -map control/
data/maps/book_ché6.mis.

Note

When you are testing, if you should happen to peek into the console while the game is running or
into the console log file afterward, you might notice a whole bunch of lines like this:

No such file "control/data/models/avatars/orc/player.jpg’.

Don’t worry—that's not even an error. When loading shapes, Torque has an automatic system that
looks for texture files associated with those shapes. Torque supports both JPG and PNG image file
types for use with shapes, and depending on how the textures are defined in the shape files
themselves, Torque may not find the specified file immediately. When that is the case, it goes
through its seek routine and spews out a message every time one of its attempts doesn’t succeed.
Once the correct file is located, Torque moves on to the next instruction without any further fuss
over that particular shape.

265

266

Chapter 6 = Network

After it displays lots of start-up information, it will eventually settle down and tell
you in the console window that it has successfully loaded a mission. When you
see these things, your dedicated server is running fine.

Tip

You may be wondering how to do this over the Internet. I've written a different version of this
chapter that is available on the Internet as a supplement on a page called “Internet Game
Hosting.” Browse your way to http://www.tubettiworld.com/book/ALT_CH6.php and click on the
ALTERNATE CHAPTER 6 PDF FORMAT link.

That supplement is provided on an as-is basis.

Next, double-click your tge.exe icon as you’ve done in the past to run the Emaga
client. When the Menus screen appears, click the Connect To Server button.
Look for the 3DGPAIl server name (or whatever value you assigned to
$Pref:: Server::Name in the Control—Initialize module). Select that server
entry, and then click Join. Watch the progress bars, and eventually you will find
yourself deposited in the game. Send copies of this to your friends, and get them
to join in for some freewheeling havoc or reckless mayhem—whichever you prefer!

Testing Direct Messaging

If you will recall, back at the beginning of the chapter, in the “Direct Messaging”
section, we discussed the functions CommandToServer and CommandToClient. You
might want to take this opportunity to test the code shown in that section.

Put the ServerCmdTellEveryone and TellA11 functions to the end of your
\EMAGA®6\control\server\server.cs module, and then add the SendMacro function
to the end of your \EMAGAG6\control\client\misc\presetkeys.cs module. Also in
the presetkeys.cs module, add the following after the SendMacro function that you
just added:

function clientCmdTel1Message(%sender, %smsgString)
{

MessagePopup("HELLO EVERYBODY", %msgString, 1000);
}
PlayerKeymap.bindCmd(keyboard, "1", "SendMacro(1);", "");
PlayerKeymap.bindCmd(keyboard, "2", "SendMacro(2);", "");
PlayerKeymap.bindCmd(keyboard, "3", "SendMacro(3);", "");

Moving Right Along

You can go ahead and test it when you’ve completed those additions, if you like.
You can test it both in stand-alone (player-hosted) form or using a dedicated
server with a client on the same or different machine on a LAN.

Moving Right Along

Now you have some understanding of how to pass messages back and forth
between the client and the server. Keep in mind when you contemplate these
things that there can be many clients—hockey socks full of clients, even. There
will probably only be one server, but you are in no way restricted to only one
server. It’s all a matter of programming.

You’ve also seen how you can track specific clients on the server via their
GameConnections. As long as you know the handle of the client, you can access any
of that client’s data.

In the next chapter we’ll poke our noses into the common code that we have been
shying away from. We want to do this so that we can get a better big-picture
understanding of how our game can operate.

267

This page intentionally left blank

CHAPTER 7

COMMON ScCRIPTS

For the last several chapters I have been keeping the contents of the common
code folder tree out of the limelight. I hope you haven’t started thinking that it is
some deep, dark keep-it-in-the-family-only secret, because it isn’t. The reason
for maintaining the obscurity is because we’ve been looking at the areas of
scripting that you will most likely want to change to suit your game development
needs, and that means stuff not in the common code.

Having said that, there may be areas in the common code that you will want to
customize or adjust in one way or another. To that end we are going to spend this
chapter patrolling the common code to get the lay of the land.

You can gain access to this code for yourself in the common folder tree of any of
the Emaga versions you installed in the previous chapters.

Game Initialization

As you may recall from earlier chapters, the common code base is treated as if it
were just another add-on or Mod. It is implemented as a package in the common/
main.cs module. For your game you will need to use this package or make your
own like it. This is in order to gain access to many of the more mundane features
of Torque, especially the “administrivia”-like functions that help make your
game a finished product but that are not especially exciting in terms of game play
features.

269

270

Chapter 7 ® Common Scripts

Here are the contents of the common/main.cs module.

/!

// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
/1l

/!

// Load up defaults console values.

exec("./defaults.cs");

/!

function initCommon()

{
// A11 mods need the random seed set
setRandomSeed();

// Very basic functions used by everyone
exec("./client/canvas.cs");
exec("./client/audio.cs");

function initBaseClient()

{
// Base client functionality
exec("./client/message.cs");
exec("./client/mission.cs");
exec("./client/missionDownload.cs");
exec("./client/actionMap.cs");

// There are also a number of support scripts Toaded by the canvas
// when it's first initialized. Check out client/canvas.cs
}

function initBaseServer()
{
// Base server functionality
exec("./server/audio.cs");
exec("./server/server.cs");
exec("./server/message.cs");
exec("./server/commands.cs");

Game Initialization

exec("./server/missionInfo.cs");
exec("./server/missionLoad.cs");
exec("./server/missionDownload.cs");
exec("./server/clientConnection.cs");
exec("./server/kickban.cs");
exec("./server/game.cs");

}

/1

package Common {

function displayHelp() {
Parent::displayHelp();
error(

"Common Mod options:\n"@

);
}

-fullscreen
-windowed
-autoVideo

-openGL

-directX

-voodoo?2

-noSound

-prefs <configFile>

function parseArgs()

{

Parent::parseArgs();

Starts game in full screen mode\n"@
Starts game in windowed mode\n"@

Auto detect video, but prefers OpenGL\n"@
Force OpenGL acceleration\n"@

Force DirectX acceleration\n"@

Force Voodoo2 acceleration\n"@

Starts game without sound\n"@

Exec the config file\n"

// Arguments override defaults...
for (%1 =1; %i < $Game::argc ; %1+ +)

{

%arg = $Game::argv[%il;
%nextArg = $Game::argv[%i+11;
shasNextArg = $Game::argc - %1 > 1;

switch$ (%arg)

{

case "-fullscreen":
$pref::Video::fullScreen=1;
$argUsed[%i]+ +;

271

272 Chapter 7 ® Common Scripts

case "-windowed":
$pref::Video::fullScreen=0;
$argUsed[%i]+ +;

case "-noSound":
error("no support yet");
$argUsed[%i]+ +;

case "-openGL":
$pref::Video::displayDevice = "OpenGL";
$argUsed[%i]l+ +;

case "-directX":
$pref::Video::displayDevice ="D3D";
$argUsed[Zil+ +;

case "-voodoo2":
$pref::Video::displayDevice = "Voodoo2";
$argUsed[%i]+ +;

case "-autoVideo":
$pref::Video::displayDevice =
$argUsed[%i]+ +;

case "-prefs":
$argUsed[%i]+ +;
if (%hasNextArg) {
exec(snextArg, true, true);
$argUsed[%i +11+ +;
i+ 4
}
else
error("Error: Missing Command Line argument. Usage
<path/script.cs>");
}
}
}

: -prefs

Game Initialization

function onStart()

{
Parent::onStart();
echo("\n--------- Initializing MOD: Common --------- ");
initCommon();

}

function onExit()

{
echo("Exporting client prefs");
export("$pref::*x", "./client/prefs.cs", False);

echo("Exporting server prefs");
export("$Pref::Server::*", " /server/prefs.cs", False);
BanlList::Export("./server/banlist.cs");

OpenALShutdown();
Parent::onExit();
}

}; // Common package
activatePackage(Common);

Two key things that happen during game initialization are calls to InitBaseClient
and InitBaseServer, both of which are defined in common/main.cs. These
are critical functions, and yet their actual activities are not that exciting to

behold.

function initBaseClient()

{
// Base client functionality
exec("./client/message.cs");
exec("./client/mission.cs");
exec("./client/missionDownload.cs");
exec("./client/actionMap.cs");

// There are also a number of support scripts Toaded by the canvas
// when it's first initialized. Check out client/canvas.cs
}
function initBaseServer()
{
exec("./server/audio.cs");
exec("./server/server.cs");

273

274

Chapter 7 ® Common Scripts

exec("./server/message.cs");
exec("./server/commands.cs");
exec("./server/missionInfo.cs");
exec("./server/missionLoad.cs");
exec("./server/missionDownload.cs");
exec("./server/clientConnection.cs");
exec("./server/kickban.cs");

(

"./server/game.cs");
}

As you can see, both are nothing more than a set of script loading calls. All of the
scripts loaded are part of the common code base. We will look at selected key
modules from these calls in the rest of this section.

Selected Common Server Modules

Next, we will take a close look at some of the common code server modules.
The modules selected are the ones that will best help illuminate how Torque
operates.

The Server Module

InitBaseServer loads the common server module, server.cs. When we examine
this module we see the following functions:

Portlnit

CreateServer
DestroyServer
ResetServerDefaults
AddToServerGuidList
RemoveFromServerGuidList

OnServerInfoQuery

It’s not hard to get the sense from that list that this is a pretty critical module!

PortInit tries to seize control of the assigned TCP/IP port, and if it can’t it starts
incrementing the port number until it finds an open one it can use.

Selected Common Server Modules

CreateServer does the obvious, but it also does some interesting things along the
way. First, it makes a call to DestroyServer! This is not as wacky as it might seem;
while DestroyServer does release and disable resources, it does so only after
making sure the resources exist. So there’s no danger of referencing something that
doesn’t exist, which would thus cause a crash. You need to specify the server type
(single- [default] or multiplayer) and the mission name. The PortInit function is
called from here, if the server will be a multiplayer server. The last, but certainly
not the least, thing that CreateServer does is call LoadMission. This call kicks off a
long and somewhat involved chain of events that we will cover in a later section.

DestroyServer releases and disables resources, as mentioned, and also game
mechanisms. It stops further connections from happening and deletes any
existing ones; turns off the heartbeat processing; deletes all the server objects in
MissionGroup, MissionCleanup, and ServerGroup; and finally, purges all data-
blocks from memory.

ResetServerDefaults is merely a convenient mechanism for reloading the files in
which the server default variable initializations are stored.

AddToServerGuidList and RemoveFromServerGuidList are two functions for
managing the list of clients that are connected to the server.

OnServerInfoQuery is a message handler for handling queries from a master
server. It merely returns the string ' 'Doing 0K' '. The master server, if there is one,
will see this and know that the server is alive. It could say anything—there could
even be just a single-space character in the string. The important point is that if
the server is not doing okay, then the function will not even be called, so the
master server would never see the message, would time out, and then would take
appropriate action (such as panicking or something useful like that).

The Message Module

InitBaseServer loads the common server-side message module, message.cs. Most
of this module is dedicated to providing in-game chat capabilities for players.

MessageClient
MessageTeam
MessageTeamExcept

MessageAll

275

276

Chapter 7 ® Common Scripts

MessageATlExcept
SpamATert
GameConnection::SpamMessageTimeout

GameConnection::SpamReset

The first five functions in the preceding list are for sending server-type messages
to individual clients, all clients on a team, and all clients in a game. There are
also exception messages, where everyone is sent the message except a specified
client.

Next are the three chat message functions. These are linked to the chat interfaces
that players will use to communicate with each other.

These functions all use the CommandToServer function (see Chapter 6) internally.
It is important to note that there will need to be message handlers for these
functions on the client side.

The three spam control functions are used in conjunction with the chat message
functions. SpamATert is called just before each outgoing chat message is processed
for sending. Its purpose is to detect if a player is swamping the chat window with
messages, an action called spamming the chat window. If there are too many
messages in a short time frame as determined by the SpamMessageTimeout
method, then the offending message is suppressed, and an alert message is sent to
the client saying something like this: “Enough already! Take a break.” Well, you
could say it more diplomatically than that, but you get the idea. SpamReset merely
sets the client’s spam state back to normal after an appropriately silent interval.

The MissionLoad Module

Torque has a concept of mission that corresponds to what many other games,
especially those of the first-person shooter genre, call maps. A mission is defined
in a mission file that has the extension of .mis. Mission files contain the infor-
mation that specifies objects in the game world, as well as their placement in the
world. Everything that appears in the game world is defined there: items, players,
spawn points, triggers, water definitions, sky definitions, and so on.

Missions are downloaded from the server to the client at mission start time or
when a client joins a mission already in progress. In this way the server has total
control over what the client sees and experiences in the mission.

Selected Common Server Modules

Here are the contents of the common/server/missionLoad.cs module.

/!
// Torque Game Engine

/!

// Copyright (C) GarageGames.com, Inc.
/1l

//
// Server mission loading
//

// On every mission Toad except the first, there is a pause after
// the initial mission info is downloaded to the client.
$MissionLoadPause = 5000;

function LoadMission(%missionName, %4isFirstMission)
{
EndMission();
Echo("*** LOADING MISSION: " @ #missionName);
Echo("*** Stage 1 1oad");

// Reset all of these
ClearCenterPrintAl11();
ClearBottomPrintA11();

// increment the mission sequence (used for ghost sequencing)
$missionSequence+ +;

$missionRunning = false;

$Server::MissionFile = ZmissionName;

// Extract mission info from the mission file,
// including the display name and stuff to send
// to the client.

BuildLoadInfo(#missionName);

// Download mission info to the clients
%count = ClientGroup.GetCount();
for(%¢1=0; %cl < %count; %cl+ +) {
%client = ClientGroup.GetObject(%cl);
if (1%client.IsAIControlled())
SendLoadInfoToClient(%client);

277

278 Chapter 7 ® Common Scripts

// if this isn't the first mission, allow some time for the server
// to transmit information to the clients:
if(%isFirstMission || $Server::ServerType $= "SinglePlayer")
LoadMissionStage2();
else
schedule($MissionLoadPause, ServerGroup, LoadMissionStage?);
}

function LoadMissionStage2()

{
// Create the mission group off the ServerGroup
Echo("*** Stage 2 1oad");
$instantGroup = ServerGroup;

// Make sure the mission exists
%file =$Server::MissionFile;

if(IIsFile(3file)) {
Error("Could not find mission " @ %file);
return;

}

// Calculate the mission CRC. The CRC is used by the clients
// to cache mission Tighting.
$missionCRC = GetFiTeCRC(%file);

// Exec the mission, objects are added to the ServerGroup
Exec(%file);

// If there was a problemwith the Toad, Tet's try another mission

if(IsObject(MissionGroup)) {
Error("No 'MissionGroup' found inmission \"" @ $missionName @ "\".");
schedule(3000, ServerGroup, CycleMissions);
return;

}

// Mission cleanup group
new SimGroup(MissionCleanup);
$instantGroup =MissionCleanup;

// Construct MOD paths
PathOnMissionLoadDone();

// Mission Toading done...
Echo("*** Mission Toaded");

Selected Common Server Modules 279

// Start all the clients in the mission
$missionRunning = true;
for(%clientIndex =0; %clientIndex < ClientGroup.GetCount();
%clientIndex++)
ClientGroup.GetObject(%clientIndex).LoadMission();

// Go ahead and Taunch the game
OnMissionLoaded();
PurgeResources();

}

function EndMission()
{
if (1IsObject(MissionGroup))
return;

Echo("*** ENDING MISSION");

// Inform the game code we're done.
OnMissionEnded();

// Inform the clients
for(%clientIndex =0; %clientIndex < ClientGroup.GetCount();
%clientIndex++) {
// clear ghosts and paths fromall clients
%cl =ClientGroup.GetObject(%clientIndex);
%cl.EndMission();
%c1.ResetGhosting();
%cl.ClearPaths();

// Delete everything
MissionGroup.Delete();
MissionCleanup.Delete();

$ServerGroup.Delete();
$ServerGroup = new SimGroup(ServerGroup);
}

function ResetMission()
{
Echo("*** MISSION RESET");

280

Chapter 7 ® Common Scripts

}

/!
Mi
$i
ne
$i

/!
On

Remove any temporary mission objects
ssionCleanup.Delete();

nstantGroup = ServerGroup;

w SimGroup(MissionCleanup);
nstantGroup =MissionCleanup;

MissionReset();

Here are the mission loading—oriented functions on the server contained in this
module:

LoadMission
LoadMissionStage?
EndMission

ResetMission

LoadMission, as we saw in an earlier section, is called in the CreateServer
function. It kicks off the process of loading a mission onto the server. Mission
information is assembled from the mission file and sent to all the clients for
display to their users.

After the mission file loads, LoadMissionStage? is called. In this function the
server calculates the CRC value for the mission and saves it for later use.

What's a CRC Value, and Why Should I Care?

We use a Cyclic Redundancy Check (CRC) when transmitting data over potentially error-prone
media. Networking protocols use CRCs at a low level to verify that the sent data is the same data
that was received.

A CRC is a mathematical computation performed on data that arrives at a number that represents
both the content of the data and how it's arranged. The point is that the number, called a
checksum, uniquely identifies the set of data, like a fingerprint.

By comparing the checksum of a set of data to another data set’s checksum, you can decide if the
two data sets are identical.

Why should you care? Well, in addition to the simple goal of maintaining data integrity, CRCs are
another arrow in your anticheat quiver. You can use CRCs to ensure that files stored on the clients
are the same as the files on the server and, in this regard, that all the clients have the same files—
the result is that the playing field is level.

Selected Common Server Modules 281

Once the mission is successfully loaded onto the server, each client is sent the
mission via a call to its GameConnection object’s LoadMission method.

EndMission releases resources and disables other mission-related mechanisms,
clearing the server to load a new mission when tasked to do so.

ResetMission can be called from the EndGame function in the control/server/misc/
game.cs module to prepare the server for a new mission if you are using mission
cycling techniques.

The MissionDownload Module

Here are the contents of the common/server/missionDownload.cs module.

/!
// Torque Game Engine

/!

// Copyright (C) GarageGames.com, Inc.
/!

//
// Mission Loading

// The server portion of the client/server mission Toading process
/1l

function GameConnection::LoadMission(%this)
{
// Send over the information that will display the server info.
// when we Tearn it got there, we'll send the datablocks.
sthis.currentPhase=10;
if (%this.IsAIControlled())
{
// Cut to the chase...
%this.OnClientEnterGame();
1
else
{
CommandToClient(%this, "MissionStartPhasel', $missionSequence,
$Server::MissionFile, MissionGroup.musicTrack);
Echo("*** Sending mission Toad to client: " @ $Server::MissionFile);
1
}

282 Chapter 7 ® Common Scripts

function ServerCmdMissionStartPhaselAck(%client, %seq)

{
// Make sure to ignore calls from a previous mission lToad
if (%seq !=$missionSequence || !$MissionRunning)
return;
if (%client.currentPhase !=0)
return;

%client.currentPhase=1;

// Start with the CRC
%client.SetMissionCRC($missionCRC);

// Send over the datablocks...

// OnDataBlocksDone will get called when have confirmation
// that they've all been received.
sclient.TransmitDataBlocks($missionSequence);

function GameConnection::0nDataBlocksDone(%this, #missionSequence)
{
// Make sure to ignore calls from a previous mission Toad
if (kmissionSequence !=$missionSequence)
return;
if (%this.currentPhase !=1)
return;
%this.currentPhase=1.5;

// On to the next phase

CommandToClient(%this, "MissionStartPhase2', $missionSequence,
$Server::MissionFile);
}

function ServerCmdMissionStartPhase2Ack(%client, %seq)
{
// Make sure to ignore calls from a previous mission load
if (%seq !=$missionSequence || I$MissionRunning)
return;
if (%client.currentPhase !=1.5)
return;
%client.currentPhase =2;

// Update mod paths, this needs to get there before the objects.
%client.TransmitPaths();

Selected Common Server Modules 283

// Start ghosting objects to the client
%client.ActivateGhosting();

}

function GameConnection::ClientWantsGhostAlwaysRetry(%client)
{
if($MissionRunning)
%client.ActivateGhosting();

function GameConnection: :0nGhostAlwaysFailed(%client)
{

}

function GameConnection::0nGhostAlwaysObjectsReceived(%client)
{

// Ready for next phase.

CommandToClient(%client, "MissionStartPhase3', $missionSequence,
$Server::MissionFile);

}

function ServerCmdMissionStartPhase3Ack(%client, %seq)
{
// Make sure to ignore calls froma previous mission load

if(%seq !=9$missionSequence || !$MissionRunning)
return;

if(%client.currentPhase !=2)
return;

%client.currentPhase = 3;

// Server is ready to drop into the game
%client.StartMission();
%client.OnClientEnterGame();

}

The following functions and GameConnection methods are defined in the Mis-
sionDownload module:

GameConnection::LoadMission

GameConnection::0nDataBlocksDone

284

Chapter 7 ® Common Scripts

GameConnection::ClientWantsGhostAlwaysRetry
GameConnection::0nGhostAlwaysFailed
GameConnection: :0nGhostATwaysObjectsReceived
ServerCmdMissionStartPhaselAck
ServerCmdMissionStartPhase2Ack

ServerCmdMissionStartPhase3Ack

This module handles the server-side activities in the mission download process
(see Figure 7.1). There are three phases: Transmit Datablocks, Ghost Objects, and
Scene Lighting.

This module contains the mission download methods for each client’s Game-
Connection object.

The download process for the client object starts when its LoadMission method in
this module is called at the end of the server’s LoadMissionStage?2 function in the
server’s MissionLoad module described in the previous section. It then embarks
on a phased series of activities coordinated between the client and the server (see
Figure 7.2). The messaging system for this process is the CommandToServer and
CommandToClient pair of direct messaging functions.

l

Transmit
Datablocks

A

Ghost
Objects

A

Scene

Lighting

'

Figure 7.1
Mission download phases.

Client

Mission
Start
Phase 1
Handler

Receive
Datablocks
Datablocks

Mission
Start
Phase2
Handler

Receive
Ghost
Objects

Ghost Objects

Mission
Start
Phase3
Handler

Figure 7.2
Mission download process.

Datablocks

Server

Load
Mission

Transmit

Torque

Datablocks
Done

Mission
Start
Phase2Ack
Handler

Transmit
Ghost
Objects

Mission
Start
Phase3Ack
Handler

Selected Common Server Modules

The server invokes the client MissionStartPhasen (where nis 1, 2, or 3) function
to request permission to start each phase. This is done using our old friend
CommandToServer. When a client is ready for a phase, it responds with a Mis-
sionStartPhasenAck message, for which there is a handler on the server contained

in this module.

285

286

Chapter 7 ® Common Scripts

The handler GameConnection::onDataBlocksDone is invoked when phase 1 has
finished. This handler then initiates phase 2 by sending the MissionStartPhase2
message to the client.

The GameConnection::onGhostATwaysObjectsReceived handler is invoked when
phase 2 is completed. At the end of this phase, the client has all the data needed to
replicate the server’s version of any dynamic objects in the game that are ghosted
to the clients. This handler then sends the MissionStartPhase3 message to the
client.

When the server receives the MissionStartPhase3Ack message, it then starts the
mission for each client, inserting the client into the game.

The ClientConnection Module

The ClientConnection module is where most of the server-side code for dealing
with clients is located. Here are the contents of the common/server/
clientConnection.cs module.

//
// Torque Game Engine

/!

// Copyright (C) GarageGames.com, Inc.
//

function GameConnection::0nConnectRequest(%client, %netAddress, %Zname)
{
Echo("Connect request from: " @ ZnetAddress);
if($Server::PlayerCount >= $pref::Server::MaxPlayers)
return "CR_SERVERFULL";
return "";

}

function GameConnection::0nConnect(%client, %name)

{

MessageClient(%client, 'MsgConnectionError',"",$Pref::Server::
Connectionkrror);

SendLoadInfoToClient(%client);
if (%client.getAddress() $= "Tocal") {

sclient.isAdmin = true;
%client.isSuperAdmin = true;

Selected Common Server Modules 287

}
else {
%client.isAdmin = false;
%client.isSuperAdmin = false;
}
// Save client preferences on the Connection object for later use.
%client.gender = "Male";
%client.armor ="Light";
%client.race = "Human";
%client.skin = AddTaggedString("base");
#client.SetPlayerName(%name);
%client.score=20;

$instantGroup = ServerGroup;
$instantGroup = MissionCleanup;
Echo("CADD: "@ %client@" " @ %client.GetAddress());

// Inform the client of all the other clients
scount = ClientGroup.GetCount();
for (%¢1=0; %c1 < %count; %cl+ +) {

sother =ClientGroup.GetObject(%cl);

if ((%other !=%client)) {

MessageClient(%client, 'MsgClientdoin', "",
%sother.name,
%other,
%other.sendGuid,
%other.score,
%other.IsAIControlled(),
%other.isAdmin,
%other.isSuperAdmin);
}
}

// Inform the cTient we've joined up
MessageClient(%client,

'"MsgClientdoin', '"\c2Welcome to the Torque demo app %1.",

%client.name,

sclient,

%sclient.sendGuid,

%client.score,

%client.IsAiControlled(),

%client.isAdmin,

%client.isSuperAdmin);

288 Chapter 7 ® Common Scripts

// Informall the other cTients of the new guy
MessageAllExcept(%client, -1, "MsgClientJdoin', '"\c1%1 joined the game."',
sclient.name,
»client,
sclient.sendGuid,
%sclient.score,
%client.IsAiControlled(),
»client.isAdmin,
%client.isSuperAdmin);

// 1f themission is running, go ahead and download it to the client
if ($missionRunning)
%client.LoadMission();
$Server::PlayerCount + +;
1

function GameConnection::SetPlayerName(%client,%name)

{
%client.SendGuid =0;

// Minimum Tength requirements
#name = StripTrailingSpaces(StrToPlayerName(%name));
if (Strlen(%name) < 3)

sname = "Poser";

// Make sure the alias is unique, we'll hit something eventually
if (IIsNameUnique(%name))
{
%isUnique = false;
for (Asuffix=1; !%isUnique; Asuffix+ +) {
ZnameTry = %name @ "." @ Zsuffix;
hisUnique = IsNameUnique(%nameTry);
}
sname = ZnameTry;
}
// Tag the name with the "smurf" color:
sclient.nameBase = %name;
sclient.name = AddTaggedString("\cp\c8" @ Zname @ "\co");

function IsNameUnique(%name)
{

Selected Common Server Modules

%count = ClientGroup.GetCount();
for (%1 =0; %1 < %count; %i+ +)
{
%test =ClientGroup.GetObject(%i);
%rawName = StripChars(detag(GetTaggedString(%test.name)),
"\cp\co\c6\c7\c8\c9");
if (Strcmp(%Zname, %rawName) ==0)
return false;
1
return true;
}

function GameConnection::0nDrop(%client, %reason)
{
%client.OnClientLeaveGame();

RemoveFromServerGuidList(%client.guid);
MessageAlTExcept(%client, -1, '"MsgClientDrop', '\cl%1 has Teft the game."',
%client.name, %client);

RemoveTaggedString(%client.name);
Echo("CDROP: " @ %client@ " " @ %client.GetAddress());
$Server::PlayerCount--;

if($Server::PlayerCount == 0 && $Server::Dedicated)
Schedule(0, 0, "ResetServerDefaults");
}

function GameConnection::StartMission(%this)
{

CommandToClient(%this, "MissionStart', $missionSequence);
}

function GameConnection::EndMission(%this)
{
CommandToClient(%this, "MissionEnd', $missionSequence);

}

function GameConnection::SyncClock(%client, %time)
{

CommandToClient(%client, "syncClock', %time);
}

289

290

Chapter 7 ® Common Scripts

function GameConnection::IncScore(%this,%delta)
{

%this.score +=%delta;

MessageAl1('MsgClientScoreChanged', "", %this.score, %this);
}

The following functions and GameConnection methods are defined in the Client
Connection module:

GameConnection::0nConnectRequest
GameConnection::0nConnect
GameConnection::SetPlayerName
IsNameUnique
GameConnection::0nDrop
GameConnection::StartMission
GameConnection::EndMission
GameConnection::SyncClock

GameConnection::IncScore

The method GameConnection: :0nConnectRequest is the server-side destination of
the client-side GameConnection: :Connect method. We use this method to vet the
request—for example, to examine the IP address to compare to a ban list, to
make sure that the server is not full, and stuff like that. We have to make sure that
if we want to allow the request, we must return a null string (" ").

The next method, GameConnection::0nConnect, is called after the server has
approved the connection request. We get a client handle and a name string
passed in as parameters. The first thing we do is ship down to the client a tagged
string to indicate that a connection error has happened. We do not tell the client
to use this string. It’s just a form of preloading the client.

Then we send the load information to the client. This is the mission information
that the client can display to the user while the mission loading process takes
place. After that, if the client also happens to be the host (entirely possible), we set
the client to be a superAdmin.

Selected Common Server Modules

Then we add the client to the user ID list that the server maintains. After that
there are a slew of game play client settings we can initialize.

Next, we start a series of notifications. First, we tell all clients that the player has
joined the server. Then we tell the joining player that he is indeed welcome here,
despite possible rumors to the contrary. Finally, we tell all the client-players that
there is a new kid on the block, so go kill him. Or some such—whatever you feel
like!

After all the glad-handing is done, we start downloading the mission data to the
client starting the chain of events depicted back there in Figure 7.2.

GameConnection::SetPlayerName does some interesting name manipulation.
First, it tidies up any messy names that have leading or trailing spaces. We don’t
like names that are too short (trying to hide something?), so we don’t allow those
names. Then we make sure that the name is not already in use. If it is, then an
instance number is added to the end of the name. The name is converted to a
tagged string so that the full name only gets transmitted once to each client; then
the tag number is used after that, if necessary.

The function IsNameUnique searches through the server’s name list looking for a
match. If it finds the name, then it isn’t unique; otherwise, it is.

The method GameConnection::0nDrop is called when the decision is made to drop
a client. First, the method makes a call to the client so that it knows how to act
during the drop. Then it removes the client from its internal list. All clients
(except the one dropped) are sent a server text message notifying them of the
drop, which they can display. After the last player leaves the game, this method
restarts the server. For a persistent game, this statement should probably be
removed.

The next method, GameConnection::StartMission, simply notifies clients
whenever the server receives a command to start another server session in order
to give the clients time to prepare for the near-future availability of the server.
The $missionSequence is used to manage mission ordering, if needed.

Next, GameConnection::EndMission is used to notify clients that a mission is
ended, and hey! Stop playing already!

The method GameConnection::SyncClock is used to make sure that all clients’
timers are synchronized with the server. You can call this function for a client
anytime after the mission is loaded but before the client’s player has spawned.

291

292

Chapter 7 ® Common Scripts

Finally, the method GameConnection::IncScore is called whenever you want to
reward a player for doing well. By default, this method is called when a player gets
a kill on another player. When the player’s score is incremented, all other players
are notified, via their clients, of the score.

The Game Module

The server-side Game module is the logical place to put server-specific game play
features. Here are the contents of the common/server/game.cs module.

//
// Torque Game Engine

// Copyright (C) 2001 GarageGames.com, Inc.
//
function OnServerCreated()
{
$Server::GameType = "Test App";
$Server::MissionType = "Deathmatch";
createGame();
}

function OnServerDestroyed()
{

DestroyGame();
}

function OnMissionLoaded()
{

StartGame();
}

function OnMissionEnded()
{

EndGame();
}

function OnMissionReset()
{

// stub
}

Selected Common Server Modules 293

function GameConnection::0nClientEnterGame(%this)
{

//stub

}

function GameConnection::0nClientLeaveGame(%this)
{

//stub

}

//
// Functions that implement game-play
//
function CreateGame()
{

/!
}

function DestroyGame()
{
//
}
function StartGame()
{
//stub
}

function EndGame()
{

//stub

}

The following functions and GameConnection methods are defined in the Game
module:

OnServerCreated
OnServerDestroyed
OnMissionlLoaded

OnMissionEnded

294 Chapter 7 ® Common Scripts

OnMissionReset

CreateGame

Destroy Game

StartGame

EndGame
GameConnection::0nClientEnterGame

GameConnection::0nClientLeaveGame

The first function defined, OnServerCreated, is called from CreateServer when a
server is constructed. It is a useful place to load server-specific datablocks.

The variable $Server: :GameType is sent to the master, if one is used. Its purpose is
to uniquely identify the game and distinguish it from other games handled by the
master server. The variable $Server::MissionType is also sent to the server—
clients can use its value to filter servers based on mission type.

The next function, OnServerDestroyed, is the antithesis of OnServerCreated—
anything you do there should be undone in this function.

The function 0nMissionLoaded is called by LoadMission once a mission has fin-
ished loading. This is a great location to initialize mission-based game play
features, like perhaps calculating weather effects based on a rotating mission
scheme.

OnMissionknded is called by EndMission just before it is destroyed; this is where
you should undo anything you did in OnMissionLoaded.

OnMissionReset is called by ResetMission, after all the temporary mission objects
have been deleted.

CreateGame, Destroy Game, StartGame, and EndGame are all stub routines. The
demo expects you to override these functions with your own code game’s control
scripts.

The function GameConnection::0nC1ientEnterGame is called for each client after it
has finished downloading the mission and is ready to start playing. This would be
a good place to load client-specific persistent data from a database back end, for
example.

Selected Common Code Client Modules

GameConnection::0nClientLeaveGame is called for each client that is dropped.
This would be a good place to do a final update of back-end database information
for the client.

Although we don’t use too many of the functions in this module, it is a great
location for a lot of game play features to reside.

Selected Common Code Client Modules

Next, we will take a close look at some of the common code client modules. The
modules selected are the ones that will best help illuminate how Torque operates.

Keep in mind that all of these modules are designed to affect things that concern
the local client, even though they might require contacting the server from time
to time.

This point is important: when you add features or capabilities, you must always
keep in mind whether you want the feature to affect only the local client (such
as some user preference change) or you want the feature to affect all clients. In
the latter case it would be best to use modules that are server-resident when they
run.

The Canvas Module

The Canvas module is another one of those simple, small, but critical modules.
One of the key features of this module is that the primary function contained in
here, InitCanvas, loads a number of general graphical user interface support
modules. This module is loaded from the InitCommon function rather than from
the InitBaseClient function, which is where the rest of the key common
modules get loaded. Here are the contents of the common/client/canvas.cs
module.

//
// Torque Game Engine

// Copyright (C) GarageGames.com, Inc.
/1

//
// Function to construct and initialize the default canvas window
// used by the games

295

296 Chapter 7 ® Common Scripts

function InitCanvas(%windowName, %effectCanvas)

{
VideoSetGammaCorrection($pref::0penGL::gammaCorrection);
if(%effectCanvas)
%CanvasCreate = CreateEffectCanvas (ZwindowName) ;
else

%CanvasCreate = CreateCanvas ($windowName):

if (!CreateCanvas(%windowName)) {
quitWithErrorMessage("Copy of Torque is already running; existing.");
return;

}

SetOpenGLTextureCompressionHint($pref::0penGL::compressionHint);
SetOpenGLAnisotropy($pref::0penGL::textureAnisotropy)
SetOpenGLMipReduction($pref::0penGL::mipReduction);
SetOpenGLInteriorMipReduction($pref::0penGL::interiorMipReduction);
SetOpenGLSkyMipReduction($pref::0penGL::skyMipReduction);

// Declare default GUI Profiles.
Exec("~/ui/defaultProfiles.cs");

// Common GUI's
Exec("~/ui/ConsoleDlg.gui");
Exec("~/ui/LoadFileD1g.gui");
Exec("~/ui/ColorPickerDlg.qui");
Exec("~/ui/SaveFileD1g.gui");
Exec("~/ui/MessageBox0kD1g.qgui");
Exec("~/ui/MessageBoxYesNoDlg.qui");
Exec("~/ui/MessageBox0KCancelD1g.gui");
Exec("~/ui/MessagePopupDlg.qui");
Exec("~/ui/HelpDlg.gui");
Exec("~/ui/RecordingsDlg.qui");
Exec("~/ui/NetGraphGui.gui");

// CommonTy used helper scripts
Exec("./metrics.cs");
Exec("./messageBox.cs");
Exec("./screenshot.cs");
Exec("./cursor.cs");
Exec("./help.cs");
Exec("./recordings.cs");

// Init the audio system
OpenALInit():

Selected Common Code Client Modules 297

function ResetCanvas()
{
if (IsObject(Canvas))
{

Canvas.Repaint();
}
}

InitCanvas is obviously the main function in this module. When it is called, it
first calls VideoSetGammaCorrection using a global preferences variable. If the
value passed is 0 or undefined, then there is no change in the gamma correction
(see Table 7.1).

Then we attempt to create the canvas, which is an abstracted call to the Windows
API to create a window. The %windowName variable is passed in as a string that sets
the window’s title. If we can’t create the window, we quit because there is no
point continuing without any means to display our game. CreateEffectCanvas is
a special version of CreateCanvas that gives us some extra methods and prop-
erties for doing special effects. CreateCanvas is mostly just an abstracted way to
create a window with a graphics context. It’s abstracted due to the need to

Table 7.1 OpenGL Settings

Module Function

GammaCorrection Gamma correction modifies the overall brightness of an image. Images that are
not corrected can look either overbleached or too dark.

TextureCompressionHint ~ The choice of how much texture compression (to reduce memory and graphics
transfer bandwidth) to employ is left up to the drivers and hardware, but we can
hint at how we would like the compression to work, if feasible. Valid hints are

GL_DONT_CARE
GL_FASTEST
GL_NICEST

Anisotropy Anisotropic filtering is used to address a specific kind of texture artifact that
occurs when a 3D surface is sloped relative to the view camera. The higher the
value set for this (between 0 and 1, exclusive), the more filtering is performed by
the hardware. Too high a setting might cause too much fuzziness in an image.

MipReduction See Chapter 3 for a discussion of mipmapping. This value can be from 0 to 5.
The higher the number, the more mipmapping levels supported. Image textures
must be created to support these levels in order to achieve the best effect.

InteriorMipReduction The same as MipReduction, but for use in interiors (.dif file format models).

SkyMipReduction The same as MipReduction, but for use in skybox images.

298

Chapter 7 ® Common Scripts

support similar capabilities on three very different platforms (Windows, Linux,
and Macintosh).

Following that, there is a series of OpenGL settings, again using global preference
variables. See Table 7.1 for an explanation of these settings.

Next, the function loads a bunch of support files that establish user interface
mechanisms, dialogs, and profiles for describing them.

Then there is a series of calls to load modules that provide access to some
common utility functions that can be used for measuring performance, taking
screen shots, displaying Help information, and so on.

The ResetCanvas function checks to see if a canvas object exists, and if so,
ResetCanvas then forces it to be repainted (re-rendered).

The Mission Module

The Mission module doesn’t really do much. Its existence is no doubt because
some forethought had been given to future expansion directions for the common
code scripts. Here are the contents of the common/client/mission.cs module.

//
// Torque Game Engine

// Copyright () GarageGames.com, Inc.
//

//
// Mission start / end events sent from the server
//

function CTientCmdMissionStart(%seq)

{
// The client receives a mission start right before
// being dropped into the game.

}

function ClientCmdMissionEnd(%seq)

{
// Received when the current mission is ended.
alxStopA11();
// Disable mission Tighting if it's going; this is here
// in case the mission ends while we are in the process

Selected Common Code Client Modules

// of loading it.
$1ightingMission = false;
$scenelighting::terminatelighting = true;

}

ClientCmdMissionStart is a stub routine. Not much to say here other than this
routine gets called immediately before the client-player finds himself in the game.
This is a handy place for last-minute client-side code; the mission is known and
loaded, and all objects (including any remote clients) are ghosted. This might be
a good place to build and display a map or to possibly fire up an Internet Relay
Chat session, if you have written one for yourself in TorqueScript (it is possible—
a member of the GarageGames community has done just that).

ClientCmdMissionEnd resets some lighting variables after calling alxStopAll,
which halts any audio tracks that might be playing. This would be the place to
undo anything you started in the C1ientCmdMissionStart function.

The thing that makes this module, and therefore its functions, key is its existence.
You should consider utilizing these functions in your game and expanding their
functionality.

The MissionDownload Module

Just as the server side has a module called MissionDownload, so has the client
code. It certainly can be confusing, so you have to stay on your toes when dealing
with these modules, always being aware of whether you are dealing with the client
or the server version. The choice of names is understandable though, when you
realize that they are functionally complementary—the mission download
activity requires synchronized and coordinated actions from both the client and
the server. Two peas in a pod.

Here are the contents of the common/client/missiondownload.cs module.

/1
// Torque Game Engine

// Copyright (C) GarageGames.com, Inc.
//

//
// Phase 1
//

299

300 Chapter 7 ® Common Scripts

function ClientCmdMissionStartPhasel(%seq, smissionName, %ZmusicTrack)
{
// These need to come after the cls.
Echo ("*** New Mission: " @ ZmissionName);
Echo ("*** Phase 1: Download Datablocks & Targets");
OnMissionDownloadPhasel(%missionName, smusicTrack);
CommandToServer('MissionStartPhaselAck', %seq);

}

function OnDataBlockObjectReceived(%index, %total)
{

OnPhaselProgress(%index / %total);
1

1/

// Phase 2
//

function ClientCmdMissionStartPhase2(%seq,%missionName)
{
onPhaselComplete();
Echo ("*** Phase 2: Download Ghost Objects");
purgeResources();
onMissionDownloadPhase2(%missionName);
commandToServer('MissionStartPhase2Ack', %seq);

function OnGhostAlwaysStarted(%ghostCount)
{

$ghostCount = %ZghostCount;

$ghostsRecvd =0;
1

function OnGhostATwaysObjectReceived()
{
$ghostsRecvd + + ;
OnPhase2Progress($ghostsRecvd / $ghostCount);
}

!/
// Phase 3
!/

Selected Common Code Client Modules

function ClientCmdMissionStartPhase3(%seq,%missionName)

{

OnPhase2Complete();
StartClientReplication();
StartFoliageReplication();

Echo ("*** Phase 3: Mission Lighting");
$MSeq = %seq;
$Client::MissionFile = ZmissionName;

// Need to Tight the mission before we are ready.
// The sceneLightingComplete function will complete the handshake
// once the scene 1ighting is done.
if (LightScene("ScenelLightingComplete", ""))
{
Error("Lighting mission....");
schedule(l, 0, "UpdatelLightingProgress");
OnMissionDownloadPhase3(%ZmissionName);
$1ightingMission = true;

function UpdatelightingProgress()

{

}

OnPhase3Progress($Scenelighting::TightingProgress);
if ($1ightingMission)
$1ightingProgressThread = schedule(1, 0, "UpdatelLightingProgress");

function ScenelightingComplete()

{

}

/!

Echo("Mission 1ighting done");
OnPhase3Complete();

// The is also the end of the mission Toad cycle.
OnMissionDownloadComplete();
CommandToServer('MissionStartPhase3Ack', $MSeq);

// Helper functions

/1!

function connect(%server)

{

301

302

Chapter 7 ® Common Scripts

%conn = new GameConnection();
%conn.connect(%server);
}

When reviewing this module, you should refer back to the server-side Mis-
sionDownload module descriptions and Figures 7.1 and 7.2.

The first function for phase 1, ClientCmdMissionStartPhasel, calls the function
OnMissionDownloadPhasel, which is something you want to define in your control
code. Its basic purpose is to set up for a progress display as the datablocks are
loaded. As soon as this call returns, an acknowledgment is sent back to the server
using CommandToServer to send the MissionStartPhaselAck message back. At this
time it also reflects the sequence number (%seq) back to the server, to ensure that
the client and server remain synchronized.

The next function, OnDataBlockObjectReceived, is an important one. This message
handler gets called every time the Torque Engine client-side code detects that it
has finished receiving a datablock. When invoked, it then calls onPhaselProgress,
which needs to be defined in our control client code.

The next function, C1ientCmdMissionStartPhase?, is part of the phase 2 activities.
Its duties are much the same as for C1ientCmdMissionStartPhasel, but this time
using OnMissionDownloadPhase2 and MissionStartPhase2Ack.

The next function, OnGhostAlwaysStarted, is called by the engine after it processes
the MissionStartPhase2Ack message. It is used to track ghosted object counts.

When an object has been successfully ghosted, onGhostAlwaysObjectReceived is
called from the engine. We use this to call onPhase2Progress in order to update
our progress display.

The ClientCmdMissionStartPhase3 function is the last in the series. When it is
called we update our progress display and then turn on two client-side replica-
tion functions. These functions provide special objects (such as grass and trees)
that will be computed and rendered only by the client. For example, the server
sends a seed for the location of a tuft of grass. The client-side replication code
calculates the locations of hundreds or even thousands of copies of this tuft of
grass and distributes them appropriately.

Because these objects are deemed not to be critical for game play, we can take the
risk of client-side computation without risking someone modifying the code to
cheat. Someone could modify the code, but it wouldn’t gain him any online
advantage.

Selected Common Code Client Modules

Next we call the function LightScene to perform the scene’s terrain and interior
lighting passes. We pass the completion callback function Scenelight-
ingComplete, which will be called when the lighting calculations are finished.

We also schedule a function (UpdatelLightingProgress) to be repeatedly called
while the lighting is under way, as follows:

schedule(l, 0, "updateLightingProgress");

In this case the function is called after one millisecond.

UpdatelightingProgress is a short function. It makes a call to update the progress
display and then schedules itself to be called again in another millisecond if the
lighting is not finished. It can tell if the lighting is finished by checking the
variable $1ightingMission. If it is true, then lighting is still under way.

ScenelLightingComplete is the completion callback passed to LightScene. When
ScenelLightingComplete is called, lighting has completed, so it sets the variable
$1ightingMission to false, which will, within a millisecond or so, be detected by
UpdateLightingProgress. It then notifies the server that lighting is complete by
sending the MissionStartPhase3Ack message. And away we go!

The insignificant little connect function, marked as a “Helper” function by the
GG code comments, is nothing more than the most important function in the
client/server code! Heh. Take that somebody! You can see that it creates a new
GameConnection object, and then establishes the connection. Without that call,
there is no way for the client to talk to the server. Trouble is, small functions just
don’t get no respect!

The Messages Module

The Messages module provides front-end generic message handlers for two
defined message types, as well as a tool for installing handlers at run time. You
may or may not find this useful, but a look at how these functions work will help
when it comes to creating your own sophisticated messaging system. Here are the
contents of the common/client/message.cs module.

//
// Torque Game Engine

// Copyright (C) GarageGames.com, Inc.
/1l

303

304

Chapter 7 ® Common Scripts

function ClientCmdChatMessage(%sender, %voice, %pitch, #msgString, %al, %a2,
%a3, %ad, %ab, %ab, %a’/, %a8, %a9, %all)
{
OnChatMessage(detag(%msgString), %voice, %pitch);
}

function ClientCmdServerMessage(%msgType, #msgString, %al, %a2, %a3, %ad, %ab,
%ab, %a7, %a8, %a9, %all)
{

// Get the message type; terminates at any whitespace.

%tag = GetWord(%msgType, 0);

// First see if there is a callback installed that doesn't have a type;
// if so, that callback is always executed when a message arrives.
for (%1 =0; (%func = $MSGCBL"", %i1) 1$=""; %i+ +) {
call(%func, #msgType, smsgString, %al, %a2, %a3, %a4, %ab, %a6, %a’/, %a8,
%a9, %al0);
}

/1 Next Took for a callback for this particular type of ServerMessage.
if (%tag 1$="") {
for (%1 =0; (%func = $MSGCB[%tag, %i1) I$=""; Zi+ +) {
call(%func, smsgType, %msgString, %al, %a2, %a3, %a4, %ab, %a6, %a7,
%a8, %a9, %all);
}
}
}

function AddMessageCallback(%msgType, %func)
{
for (%1 =0; (%afunc = $MSGCB[%msgType, %11) !$=""; %1+ +) {
// If it already exists as a callback for this type,
// nothing to do.
if (%afunc $= %func) {
return;
}
}
// Set it up.
$MSGCBL%ZmsgType, %11 = %func;
}

function DefaultMessageCallback(%msgType, ZmsgString, %al, %a2, %a3, %ad, %ab,
%a6, %a7, %a8, %a9, %all)

Selected Common Code Client Modules

{
OnServerMessage(detag(%msgString));
}

AddMessageCallback("", DefaultMessageCallback);

The first function, ClientCmdChatMessage, is for chat messages only and is
invoked on the client when the server uses the CommandToC1ient function with the
message type ChatMessage. Refer back to the server-side message module if you
need to. The first parameter (%sender) is the GameConnection object handle of the
player that sent the chat message. The second parameter (%voice) is an Audio
Voice identifier string. Parameter three (%pitch) is rarely used, but is offered as a
means for providing pitch control for an audio message. Finally, the fourth
parameter (%msgString) contains the actual chat message in a tagged string. The
rest of the parameters are not actually acted on so can be safely ignored for now.
The parameters are passed on to the pseudo-handler OnChatMessage. It’s called a
pseudo-handler because the function that calls OnChatMessage is not really calling
out from the engine. However, it is useful to treat this operation as if a callback
message and handler were involved for conceptual reasons.

The next function, ClientCmdServerMessage, is used to deal with game event
descriptions, which may or may not include text messages. These can be sent
using the message functions in the server-side Message module. Those functions
use CommandToClient with the type ServerMessage, which invokes the function
described next.

For ServerMessage messages, the client can install callbacks that will be run
according to the type of the message.

Obviously, C1ientCmdServerMessage is more involved. After it uses the GetWord
function to extract the message type as first text word from the string 4msgType, it
iterates through the message callback array ($MSGCB) looking for any untyped
callback functions and executes them all. It then goes through the array again,
looking for registered callback functions with the same message type as the
incoming message, executing any that it finds.

The next function, addMessageCallback, is used to register callback functions in
the $MSGCB message callback array. This is not complex; addMessageCallback
merely steps through the array looking for the function to be registered. If it isn’t
there, addMessageCallback stores a handle to the function in the next available
slot.

305

306

Chapter 7 ® Common Scripts

The last function, DefaultMessageCallback, is supplied in order to provide an
untyped message to be registered. The registration takes place with the line after
the function definition.

A Final Word

The common code base includes a ton of functions and methods. We have only
touched on about half of them here. I aimed to show you the most important
modules and their contents, and I think that’s been accomplished nicely. For
your browsing pleasure, Table 7.2 contains a reference to find all the functions in
all common code modules.

Table 7.2 Common Code Functions

Module Function

common/main.cs InitCommon
InitBaseClient
InitBaseServer
DisplayHelp
ParseArgs
OnStart
OnExit

common/client/actionMap.cs ActionMap: :copyBind
ActionMap::blockBind

common/client/audio.cs OpenALInit
OpenALShutdown

common/client/canvas.cs InitCanvas
ResetCanvas

common/client/cursor.cs Cursor0Off
CursorQOn
GuiCanvas::checkCursor
GuiCanvas::setContent
GuiCanvas::pushDialog
GuiCanvas::popDialog
GuiCanvas::poplLayer

common/client/help.cs HelpDlg::onWake
HelpFileList::onSelect
GetHelp
ContextHelp
GuiControl::getHelpPage
GUiMLTextCtrl::onURL

Table 7.2 continued
Module

A Final Word

Function

common/client/message.cs

common/client/messageBox.cs

common/client/metrics.cs

common/client/mission.cs

common/client/missionDownload.cs

ClientCmdChatMessage
ClientCmdServerMessage
AddMessageCallback
DefaultMessageCallback

MessageCallback
MBSetText

MessageBox0K
MessageBoxOKDTg: :onSTeep
MessageBoxOKCancel
MessageBoxOKCancelD1g::onSTeep
MessageBoxYesNo
MessageBoxYesNoDlg::onSleep
MessagePopup
CloseMessagePopup
FpsMetricsCallback
TerrainMetricsCallback
VideoMetricsCallback
InteriorMetricsCallback
TextureMetricsCallback
WaterMetricsCallback
TimeMetricsCallback
VehicleMetricsCallback
AudioMetricsCallback
DebugMetricsCallback
Metrics

ClientCmdMissionStart
ClientCmdMissionEnd
ClientCmdMissionStartPhasel
OnDataBlockObjectReceived
ClientCmdMissionStartPhase?
OnGhostAlwaysStarted
OnGhostAlwaysObjectReceived
ClientCmdMissionStartPhase3
UpdatelightingProgress
ScenelightingComplete
Connect

continued

307

308

Chapter 7 ® Common Scripts

Table 7.2 continued
Module

Function

common/client/recordings.cs

common/client/screenshot.cs

common/se