

Software
Engineering

for Game
Developers

John P. Flynt

with Omar Salem

SVP, Thomson Course
Technology PTR:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Senior Acquisitions Editor:
Emi Smith

Senior Editor:
Mark Garvey

Associate Marketing Manager:
Kristin Eisenzopf

Series Editor:
André LaMothe

Marketing Coordinator:
Jordan Casey

Project/Copy Editor:
Karen A. Gill

Technical Reviewer:
John Hollis

PTR Editorial Services Coordinator:
Elizabeth Furbish

Interior Layout Tech:
Susan Honeywell

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Brandon Penticuff

Indexer:
Sharon Shock

Proofreader:
Kim Benbow

© 2005 by Thomson Course Technology PTR. All rights reserved. No part
of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or
by any information storage or retrieval system without written permis-
sion from Thomson Course Technology PTR, except for the inclusion of
brief quotations in a review.

The Premier Press and Thomson Course Technology PTR logo and
related trade dress are trademarks of Thomson Course Technology PTR
and may not be used without written permission.

SmartDraw is a trademark of SmartDraw.com, Inc. Windows, Microsoft
Project, Microsoft Word, Microsoft Excel, DirectX, and Microsoft Visual
Studio .NET are trademarks of Microsoft Corporation. FrameMaker and
Photoshop are trademarks of Adobe Systems Incorporated.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s technical
support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from descrip-
tive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the
fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the publisher for quantity
discount information. Training manuals, CD-ROMs, and portions of this
book are also available individually or can be tailored for specific needs.

ISBN: 1-59200-155-6
Library of Congress Catalog Card Number: 2004106451
Printed in the United States of America
04 05 06 07 08 BH 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR, a division of
Thomson Course Technology

25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

This book is dedicated to its readers.

iv

B
en Vinson was the lead programmer for Ankh. He exerted an enormous effort, and
the game simply would not exist had he not been willing to make the effort he did.
Ben was instrumental in the software design and saw to development of the game

from beginning to end. He was by far the central and greatest contributor.

John Rose was the game designer for Ankh. John authored the game design document. He
also composed the music, wrote the user’s guide, created the installation package, and
was helpful in documenting CVS. He was at the center of the effort. (Thanks to Jayme
Catalano for keeping track of John.)

Carlos Villar worked as a development and maintenance programmer on Ankh. His work
on the design, sound, and AI was a strong contribution to the project’s success.

Paul Whitehead was the central figure in creation of the art for Ankh. He showed amaz-
ing drive as he developed the meshes and textures for the game. The game just would not
have happened had he not been a part of the team.

Adrian Flynt developed the character art to accompany Paul’s work.

Ben Schulz contributed voice talent.

John Hollis was the book’s technical reader. John brought to this effort a perspective con-
nected with the larger world of software engineering. John provided an essential element
in the development of the content.

Charlie Allbee offered important suggestions concerning audience needs.

Acknowledgments

Rob Johnson made suggestions about how to structure the text.

Iraj Eftekhari, Deb Mahon, and Tony Caggiano offered encouragement.

Amy Flynt checked the math.

Marcia Flynt helped with contracts and accounting. The book would not have been writ-
ten without her support.

Many people at Thomson, Premier, and Course Technology did their usual magic.

Karen Gill edited the text.

André LaMothe provided the example of how to write books about developing games.

Emi Smith guided the effort from its conception.

Stacy Hiquet made everything possible.

Acknowledgments v

vi

JOHN P. FLYNT, Ph.D., is a software developer who has worked extensively as a software
engineering process specialist. He is president of The ewowe Corporation (http://
www.ewowe.com), which specializes in interactive educational software and related prod-
ucts and services. His experience with game development began when he programmed a
game for education. He has taught game development and has worked with colleges and
universities to create game programs. His educational background includes degrees from
the University of Chicago and the University of Colorado. Along with his wife, Marcia,
and his children, Amy and Adrian, John lives in the foothills north of Boulder, Colorado.

OMAR SALEM lives in Denver, Colorado. Prior to becoming a game development teacher,
he was a member of the technical staff at Bell Labs/Lucent Technologies/Avaya, where he
worked for nearly 20 years. His emphasis is on both development and quality assurance
software engineering. He holds BS and MS degrees in computer science and mathemat-
ics. To date, Omar has seen 17 large-scale software systems to completion, and all prod-
ucts he has worked on have been successfully deployed.

About the Author

ANDRÉ LAMOTHE, CEO of Xtreme Games LLC and the creator of the XGameStation, has
been involved in the computing industry for more than 27 years. He wrote his first game
for the TRS-80 and has been hooked ever since! His experience includes 2D/3D graphics,
AI research at NASA, compiler design, robotics, virtual reality, and telecommunications.
His books are top sellers in the game programming genre, and his experience is echoed in
the Thomson Course Technology PTR Game Development books. You can contact André
at ceo@nurve.net and http://www.xgamestation.com.

vii

About the Series Editor

S
oftware engineering. This is a phrase that almost no one on the planet can actually
define. Sure, many people have the title of software engineer, many books are writ-
ten on the subject, and many people have a whole slew of definitions, but at the end

of the day, what is it? Well, I will tell you what it isn’t. Software engineering is not about
C++, and it’s surely not about object-oriented programming. Those are tools, and soft-
ware engineering is simply engineering. And herein is the problem. Engineers in elec-
tronics, mechanics, and other fields have been around forever. They are taught how to
think, solve problems, organize their work, test, manufacture, assemble, distribute, and so
forth. Programmers are just guys who learned a computer language and then made pro-
grams; they are not engineers. Before we even knew what happened, there were millions
of programs written without proper engineering. Thus, a few years ago, a new term was
coined “software engineering” like it was a new idea! I have been software engineering for
25 years; engineering is engineering. And that’s where this book comes in.

This book isn’t some theoretical masterpiece that uses Venn diagrams and cost analysis to
show you how many hours should be spent on a for loop. This is a real book, by a real
engineer who happens to apply engineering techniques to software. Therefore, you aren’t
going to learn about something that is unique to software. These engineering techniques
will, of course, use tools of the trade such as C++, object-oriented programming, config-
uration management, UML diagrams, patterns, process improvement, and so forth.

This book is not going to make you a better programmer; programming is an art form.
Instead, this book is going to make you a better software engineer. And, in the real world,
companies do not need programmers; they need engineers who are reliable, efficient, and
expert.

viii

Letter from the Series
Editor for Software
Engineering for Game
Developers

I am excited about this book and its authors, John Flynt and Omar Salem. They’re sea-
soned professionals who have both academic and professional backgrounds. They have
worked in the real world and know what the real world wants. In this book, you aren’t
going to be inundated by useless information, but given exactly what you need: the tools
to organize your programming into proper engineering patterns.

So without further ado, start your first program the proper way. Open your engineering note-
book, date and sign it, title the program you are going to design, and you are ready to go!

André LaMothe
Game Development Series Editor, 2004

Letter from the Series Editor ix

x

Contents

Introduction .xxxiv
Chapter 1 Getting into the Game .1
Chapter 2 Requirements—Getting the Picture .27
Chapter 3 A Tutorial: UML and Object-Oriented Programming 75
Chapter 4 Software Design—Much Ado About Something121
Chapter 5 Old Is Good—The Library Approach .165
Chapter 6 Object-Oriented Fantasies and Realities .201
Chapter 7 P Is for Pattern .233
Chapter 8 Risk Analysis .269
Chapter 9 Iterating Design .303
Chapter 10 Control Freaks and Configuration Management 341
Chapter 11 Evident Evil—The Art of Testing .381
Chapter 12 Numbers for Nabobs .429
Chapter 13 What People Do—Development Strategies .473
Chapter 14 Practice, Practice, Practice .511
Chapter 15 Team Work .539
Chapter 16 Process Improvement .577
Chapter 17 Release Planning and Management .617
Chapter 18 Documentation—Learning How to Learn .659
Chapter 19 Philosophy of Software Engineering and Game Development 691
Appendix A Installation and Setup .731
Appendix B Working with Files .741
Appendix C Source Control .743
Appendix D Software Engineering and Game Design Documentation 751
Appendix E Resources .811

Glossary .815
Index .821

Contents at a Glance

xi

Contents

Introduction . xxxiv

Chapter 1 Getting into the Game .1
Software Engineering and Game Development 1

Engineering .2

Cottage Industries and Formalized Disciplines 3

Repetition and Perfection .4

To Engineer Is... .5

The Path .7

Integrity .10

Answering Risk with Design .11

Game Design and Software Design .13

Design and Development .14

Class Design and Implementation .16

Refactoring and Patterns .17

Development and Testing .19

Code Documentation .21

Learning and Capabilities .21

Maintenance and Revision .23

Measurement .23

The Industry .23

Profession and Craft .25

Conclusion .26

Contentsxii

Chapter 2 Requirements—Getting the Picture 27
Essential Notions .28

What Are Requirements? .28

Where Do Requirements Originate? .29

Who Gathers Requirements? .31

Why Do You Need Requirements? .32

What Results from Requirements? .33

Avoiding Difficulties with Requirements .35

Establish the Scope of the Project .36

Identify Your Customers .38

Feasibility .38

Uncontrolled Growth .39

What Makes a Good Requirements Specification? 40

Make Requirements Complete .41

Make Requirements Correct .41

Necessary Requirements Only .42

Consider the Feasibility of a Requirement 42

Requirement Priorities .43

Eliminate Ambiguity .43

Verify and Validate Requirements .43

Manage Requirements for Change .44

Engineering Requirements .44

Iterative Increments .44

Cycles of Requirements Development .45

Eliciting Requirements .46

The Requirements Specification Document 47

Using the Design Document for the Game 52

Using Mod Requirements .55

Preliminaries of Use Case Exploration .55

Exploration .58

Using Use Case Diagrams and Scenarios .59

The Sixty-Seconds-of-Play Use Case Diagram 60

Making a Starting Specification List .61

Finding Potential Class Names .63

Using a TOR Chart .63

Contents xiii

Analysis .64

Using Use Cases to Analyze Actions .65

Activity Diagrams .68

Refinement, Verification, and Validation .68

Using Use Cases for Tests .69

Using a Requirements Matrix .70

Refining Specification Dependencies .70

Anticipating and Managing Change .71

Change Procedures and Reviews .71

Document Control .72

Conclusion .72

Chapter 3 A Tutorial: UML and Object-Oriented Programming75
UML History .75

A UML Diagram and Its Elements .76

Why Bother with Symbols? .77

Starter Terms .79

UML Diagrams .80

Use Case Diagrams .83

Use Cases Tell Stories .84

What If? .85

Different Use Cases .87

Activity Diagrams .89

Class Diagrams .91

Class and Object Basics .92

Class Diagrams in Practice .93

Diagramming a Class .94

Class Relations and Class Diagrams .96

Generalization .99

Associations .102

Aggregation and Composition .105

Different Types of Association .106

Object Diagrams .107

Links, Dynamic Modeling, and Messages 109

Message Types .110

Contentsxiv

Message Arrows .110

Message Parameters .111

Sequence Diagrams .112

Objects and Lifelines .112

How to Read Messages .113

Collaboration Diagrams .113

State Chart Diagrams .114

Events, States, and Transitions .115

More on State Transitions .116

Component Diagrams .116

Package Diagrams .118

Deployment Diagrams .118

Conclusion .119

Chapter 4 Software Design—Much Ado About Something 121
Beginning Design .122

Why Design? .122

Architecture and Design .125

Designing for Quality .132

Maintainability .133

Portability .133

Usability .134

Performance .134

Testability .134

Efficiency .134

Reliability .135

Finding Elements and Relationships .135

CRC Cards .137

Using the TOR Chart .138

Generating Operations .140

Moving to a Sequence Diagram .140

Reframing Operations with a Collaboration Diagram 142

Low-Level Design Tools .143

Class Diagrams .143

Operation Specifications .145

Component/Package Diagrams .146

Contents xv

Presenting the System Design .146

The SDD Template .147

How to Set Up the SDD .147

Introducing an SDD .148

Conceptual or Use Case View .150

Behavioral or Implementation View .150

Logical View .150

Component View .150

Deployment View .151

Designing the System in Stripes .151

Increments and Iteration in Stripes .151

Team Efforts at Designing System Stripes152

A First Stripe from Ankh .154

Beginning a Stripe .155

The Use Case for the First Stripe .156

Starting with a Context .156

Discovering a Component .157

Moving to a Scenario .158

Stripe Collaboration Diagram .160

Refining Operations and Generating Classes 160

Creating the Component Diagram .162

Verification .162

Conclusion .163

Chapter 5 Old Is Good—The Library Approach 165
Libraries and Reuse in General .165

Open C++ Libraries .167

Game Engine Libraries .167

Profiled Engines .168

Criteria for Reuse .169

What Qualifies for Reusable .170

The Problems of Creating Reusable Code171

Taking a Class Approach .172

Using Standard Class Forms .173

Class Implementation .175

Contentsxvi

Making Code Efficient .178

Needless Declaration .178

Needless Copying .179

Reference Counting .180

Exceptions and Errors .182

Try and Catch .183

Declaring Exception Classes .184

Defining Exception Classes .184

Throwing Exceptions .187

Compatibility and Maintainability .188

Reducing Redundancy .188

The Danger of Early Optimization .191

Using Shallow Hierarchies .191

Installation and Ease of Use .191

The Boost and STL Libraries .193

Using the STL .194

Using Boost .195

Documentation and Deployment .196

Watch for Cut-and-Paste Code .196

Do Not Address Obvious Things .196

State the Common Use First .197

Show How to Do Things .197

Avoid Preaching .198

Self-Documenting Code .198

Conclusion .199

Chapter 6 Object-Oriented Fantasies and Realities 201
Class Beginnings .201

The Concept of Class .202

Scope .202

Construction .203

Interface .203

Abstraction .205

Abstract States .205

Abstract Behavior .205

Contents xvii

Encapsulation .206

Cohesion .207

Responsibilities .208

Coupling .208

Decoupling .209

Inheritance .210

Generalization .210

Specialization .211

Associations .213

Aggregation or Hierarchy? .213

Aggregation .214

Composition .214

Abstract Classes .215

Polymorphism .216

Coupling Problems with Collections of Classes 217

Points on Class Design and Implementation 218

Information Hiding .219

Refactoring .220

Modularity .220

What Destroys Modularity? .222

General Remedies .223

Using Refactoring .224

Practices of Refactoring .224

Specific Ills and Remedies .225

Conclusion .230

Chapter 7 P Is for Pattern .233
Patterns and Their Contexts .234

The History of Patterns .234

Patterns and Objects .237

Pattern Origins .238

GoF .239

Kinds of Patterns .240

A Short List of Patterns .241

How to Document Patterns .244

Applied Patterns .248

Contentsxviii

Singleton .249

Composite Pattern Features .251

Chain of Responsibility Pattern Features .252

State Pattern Features .253

Strategy Pattern Features .254

Observer Pattern Features .255

Façade Pattern Features .257

Memento Pattern Features .258

Command Pattern .259

Boss Pattern .261

Boss Implementation .262

Conclusion .267

Chapter 8 Risk Analysis .269
The Story of Risk .269

Applied Risk Analysis .271

External Risks .272

Internal Risks .273

What Promotes Risk Assessment? .274

General Attitudes Toward Risk and Risk Management 274

Things That Foster Awareness .277

Goals .279

Strategies .280

The Paradigm .281

Identifying Risks .282

Scope Risk Identification .283

Schedule Risks Identification .286

Resource Risk Identification .287

Estimating Risk .290

Scope Risk Estimation .290

Schedule Risk Estimation .291

Resource Risk Estimation .293

Evaluating Risk .294

Evaluating Risks That Are Associated with Scope294

Evaluating Schedule Risks .295

Evaluating Resource Risks .296

Contents xix

Planning for Risks .297

Planning and Scope .298

Planning and Scheduling .298

Planning and Resources .299

Controlling Risks .299

Scope Control .300

Schedule Control .300

Resource Control .300

Monitoring Risks .301

Scope Monitoring .301

Schedule Monitoring .301

Resource Monitoring .301

Conclusion .302

Chapter 9 Iterating Design .303
Iterative Design Basics .304

Applied Design .305

Software Systems and Gravity .307

Reversing Gravity .307

Conceptualizing Iteration .307

Ankh Development Using Stripes .309

Stripe 1—Opening .309

Use Case Scenario .310

Component View .310

Stripe 2.1—GUI Objects .310

Use Slider Use Case .311

GUI Objects Component View .311

Stripe 2.2—Floor Tiling .312

Select Tile Use Case View .312

Level Floor Tiling Component View .313

Stripe 2.3—Mesh Placement .315

Select a Building Use Case View .315

Mesh Placement Component View .315

Stripe 2.4—Save and Load .316

Save a Map Use Case View .316

Save and Load Component View .317

Contentsxx

Stripe 3.1—Navigate Alexandria .318

Navigate Alexandria Use Case View .318

Navigate Alexandria Component View 319

Stripe 4—Character Editor .320

Create Character Profile Use Case View 320

Character Editor Component View .321

Stripe 5—Unit Physics .322

Walk Character Use Case View .322

Unit Physics Component View .323

Stripe 6—Inventory Items .324

Select Inventory Items Use Case View .324

Inventory Items Component View .325

Stripe 7—Combat .326

Battle Guard Use Case View .326

Battle Guard Component View .327

Stripe 8—Acquire Skills .328

Acquire Skills Use Case View .328

Acquire Skills Component View .329

Stripe 9—Acquire Weapon .330

Acquire Weapon Use Case View .330

Acquire Weapon Component View .331

Stripe 10—View Statistics .332

View Strengths Use Case View .332

View Statistics Component View .333

Stripe 13—Save Replay .334

Save Replay Use Case View .334

Save Replay Component View .335

Map Editor Resources .336

Construction Using the Map Editor .337

Game Design Specification .338

Conclusion .340

Chapter 10 Control Freaks and Configuration Management 341
Software Configuration Management in General 342

Policies .343

Defining Roles .343

Change Control Parameters .344

Contents xxi

Setting Up the System .346

Selection of Tools .346

Version Control Applications .347

TortoiseCVS .348

Installer Creation Applications .349

Problem Reporting Applications .350

Creating an SCM Plan .351

Using a Template .351

Coding Standards .353

Reviewing the Plan .353

Development Activities .354

Auditing Program States .354

Build Activities .355

Program Files and Components .355

Controlling Development Domains .357

Baselined Versions and Releases .357

Branching Models .359

Concepts .359

Architecting Branching .364

Branching and Version Control Practices .367

Promotion .369

Development .370

Quality Assurance .370

Beta .371

Release .371

Management Issues .371

Individual Practices .371

Test Coordination Issues .374

Disaster Recovery Issues .374

Automated Builds .375

Installation .375

ISTool .375

Creating a Project .376

Adding a Script .377

Compiling and Testing .377

Conclusion .379

Contentsxxii

Chapter 11 Evident Evil—The Art of Testing .381
Basics of Testing .381

Three Concepts .383

Formalized Testing .385

Approaches to Analysis .387

General Domain .387

Application .388

Architectural .388

Detail (Class) .389

Maintenance .389

The “V” Model .390

Ways to Test .391

Inspection .391

Unit or Class Testing .392

Integration .393

System .394

Planning Activities .394

Project Test Plan .395

Component/Class Test Plan .396

Integration Test Plan .397

System Test Plan .398

Acceptance Test Plan .398

Organizing Test Planning Documents .399

Using Templates .399

IEEE 829 .400

Test Case Template .404

Test Report Templates .407

Tables for Testing .410

Testing Activities .413

Test Cases and Procedures .413

Converting Use Cases to Test Cases .414

Using Outlines .414

Test Suites .414

Black-Box Testing .415

White-Box Testing .415

Contents xxiii

Assessing Risks .419

Coverage .420

Complexity .421

Orthogonal Defect Categories .422

Impact .425

Testing Roles .427

Conclusion .427

Chapter 12 Numbers for Nabobs .429
Justifications for Collecting Metrics .430

Key Metrics .430

Information Sources .431

Metrical Terms .432

Where to Find Data .433

Object-Oriented Product Data .433

Core Metrics for Projects and Processes 434

Benchmarking .436

Relationships .436

Regression .438

Terms of Regression for Line Graphs .439

Trend Lines .441

Pareto .442

Statistical Curves .443

Sigma .444

Six Sigma .444

Picturing Data .446

Divisions of Statistics .450

Descriptive Statistics .450

Inferential Statistics .451

Statistical Basics .453

Summing .453

Standard Deviation .460

Validity and Reliability .461

Models .463

Static Models .463

Dynamic Models .463

Contentsxxiv

The Rayleigh Approach .464

Rayleigh Applied .465

Ankh Metrics .466

Lines of Code and Stripes .466

Requirements and Stripes .467

Collaborative Complexity .469

Function Points .470

Conclusion .472

Chapter 13 What People Do—Development Strategies 473
Starting Points .473

Team Formation .474

Definition .475

Working with Software Design .477

Setting Up Tools .477

SmartDraw .477

Documentation .479

CVS .480

Concept Formation .481

Requirements Ruminations .482

Formalizing Requirements .482

Working with Conceptual Tools .482

Designing Software .485

Testing .486

Project Planning .487

Beginning Development .487

Design Again—Low Level .488

Configuration Formalities .490

Coding Conventions .491

Libraries and Resources .492

Working with Specifications and Plans .492

Requirements .494

Design .494

Project Plan .496

Configuration Management and Version Control 498

Contents xxv

Applying Coding Conventions .499

Test Plan .502

Release Plan .502

Quality Assurance Plan .503

Settling Disputes .504

Reaching the Goal .505

Alpha and Beta .505

Gathering It Together .506

Reviewing the Project .507

Conclusion .508

Chapter 14 Practice, Practice, Practice .511
Software Revision .511

Modifications .512

Scope and Complexity .513

Technical Symmetry .514

Gauging the Impact of Requirements .515

Linear Growth in Complexity .517

Determining the Scope of Revisions .518

Changes to Ankh .519

Optimization Candidates .519

General Risk Assessment .520

Optimization Selections .521

Ranks of Difficulty and Priority .523

Evaluating Classes and Operations .524

Specifying Revisions .530

Use Case Confirmation .531

Configuring Revisions .532

Designing Revisions .532

Implementing Revisions .533

Testing Revisions .534

Conclusion .536

Chapter 15 Team Work .539
Basic Tendencies of Teams .539

When Teams Form .541

Formal Measures of Team Formation .544

Contentsxxvi

How Team Numbers Are Determined .546

What Teams Do .546

When Teams Dissolve .547

Important Factors in Team Formation .547

Technical Fit .548

Emotional Fit .548

Finding a Fit .549

Formal Development Roles .550

Personal Project Roles .552

Combining Formal and Personal Roles .554

Team Activities .555

Aligned Goals .556

Participating in the Information Flow .559

Review Strategies .560

Building a Team .562

Managing Project Team Work .565

Project Leadership .565

Project Management Skills .566

Means of Management .567

WBSs .567

WBS Task Lists .569

PERT Charts .569

Gantt Charts .570

Why Projects Fail .571

Conclusion .574

Chapter 16 Process Improvement .577
The Basics of Process Improvement .578

Quality .579

Cycles of Quality .580

Contrasting Approaches .581

ISO .582

ISO in General .582

ISO 9000 Specifics .583

ISO Suggestions .585

Contents xxvii

The ISO and CMM .587

Means and Ends—Templates .589

IEEE Standard 730 .589

SEI Key Process Area Template .594

Template Results .595

CMM Background Information .596

The CMM, CMMI, and PSP .596

Levels of Maturity .597

Key Process Areas and Key Practices .600

The Continuous Model .602

Making Change Happen .605

Approaches to Improvement .609

SEPG .609

Source of the Initial Process .610

Journals and Personalized Endeavors .612

Reviews .614

Conclusion .614

Chapter 17 Release Planning and Management 617
Release Basics .617

Structuring Releases .618

Code Complete .619

Alpha .625

Beta .628

Production Releases .631

Updates .632

Numbering Products .632

Release .634

Version .634

Update (or Upgrade) Level .635

Test Level .636

Tracking Information for Release Activities 636

Tracking Build Information .637

Tracking Release Information .639

Tracking Defects .641

Contentsxxviii

Making the Decision .644

Summary Development Data .644

The Release Manager .644

Release Signoff .645

Establishing Software Support .646

Obtaining Information .646

Categories of Information .647

Reporting .650

The Maintenance Process and Tiers .653

Conclusion .656

Chapter 18 Documentation—Learning How to Learn 659
The Concept of Information Management .660

Sharing Knowledge .662

Overcoming Limitations .663

Learning Through Documentation .665

Pathways of Learning .665

Participation .670

Nondocumentation-Centered Information Management 671

Teaching Culture .672

Technical Versus Customer Documentation 673

Different Approaches .674

Journaling .674

Indexed Journaling .674

Content Management Systems .675

E-Mail Exchanges .676

Templates .676

What Is a Template? .677

Where to Find Templates .677

How to Use Templates .679

Document Maintenance .680

Tracking .680

Numbering Systems and Baselines .681

Ownership Responsibilities .681

Contents xxix

Document Reviews .682

Anticipating Reviews .683

Conducting Reviews .683

Team Focus .684

Approaches to Storage and Display .685

Tools for Documentation .685

Word Processing .685

Graphics .686

Technical Drawings and UML .686

Display .686

Preventing Excesses .687

Using a Standard Process .687

Relating Documents to Each Other .687

Reducing Maintenance .688

Keeping Only Essential Material .688

Conclusion .688

Chapter 19 Philosophy of Software Engineering
and Game Development .691
The New Undertaking .691

Defining the Domain .692

Formal Engineering .692

Software Engineering Areas of Knowledge 693

Science and Engineering .694

Complex Products .695

Professional Licensing .696

Why Licensing? .697

Back a Step .697

Practice, Not Licensing .698

A Challenge .700

Professionals as Craftsmen and Artists .700

Inertia and Innovation .701

Finding Your Development Style .703

Craft, Engineering, and Style .703

Evolving Style .703

Large Companies Versus Small Companies .705

Group Specialization .705

Project Orientation .706

Working Within the Large Organizational Structure 706

Seeking Core Knowledge .707

How to Learn .708

Learning Paths .709

Finding a Place to Learn .713

Specialization .714

Methodology .714

Workable Methods .716

Growth Patterns .717

Working Metaphors .718

Taking It Seriously .719

Ethics .720

The IEEE/ACM Code of Ethics .720

Applied Ethics .721

Social Implications .722

Satisfaction with Work .722

Workflows .723

Parallel Paths .724

Information and Publications .725

Conclusion .727

Appendix A Installation and Setup .731
Viewing the Files .737

The Ankh Directory .737

The Stripe Directories .738

The Bin Directory .739

The Documentation Directory .739

Playing the Game .740

Uninstall .740

Installing SmartDraw .740

Contentsxxx

Contents xxxi

Appendix B Working with Files .741
The Ankh Source Files .741

The SmartDraw Files .742

Obtaining TortoiseCVS .743

Appendix C Source Control .743
Locking and Simultaneous File Access .743

Repositories .744

File Management .744

Setting Up a Repository .745

Adding Files .746

Checking Out Files .747

Updating Files .748

Appendix D Software Engineering and Game Design
Documentation .751
List .751

Ankh Game Design Document .752

Introduction .753

Lead Game Line .753

Control .753

Units and Characters .754

Classes .754

Characters .755

Attributes, Skills, and Experience .755

New Characters .758

Level Dynamics .759

Level Discriptions .765

Level 1: Streets of Alexandria .766

Battles .768

Resources .770

Ankh Software Requirements Specification 771

Description .772

Perspective .772

Product Functions System Decomposition View 772

User Characteristics .773

Contentsxxxii

Constraints .773

Assumptions and Dependencies .774

External Resource Requirements .774

User Interface .774

Hardware Interface .774

Software Interface .774

Communications Interface .774

Functional Requirements Views .774

Primary List of Functional Requirements 775

Functional Requirements Component View 778

Use Case View of the Requirements .780

Design Constraints .780

Availability .780

Security .780

Maintainability .780

Other Requirements .780

Use Cases .780

Ankh Software Design Specification .786

Purpose and Layout of the Document .786

Source Documentation .786

CRC Views .786

Requirements .787

Use Cases .787

TOR Chart .788

Glossary and Definitions .788

Component Descriptions .789

List of System Stripes .790

Stripe 1: Start of Game .790

Stripe 2.2: Floor Tiling .798

Stripe 2.3: Mesh Placement .801

Stripe 2.4: Save and Load .804

Sample CRC Cards .807

Appendix E Resources .811
Software Engineering Glossaries and Topics 811

Code Help .811

Topical Sites .812

Commercial .812

History and Analysis .813

Reviews .814

Glossary . 815

Index . 821

Contents xxxiii

xxxiv

T
his book is about how a small team of developers can build a computer game using
practices that are fostered by software engineering. It takes you through the major
phases of the software engineering lifecycle and introduces you to the subjects

named in the Software Engineering Body of Knowledge (SWEBOK). The development
process that this book documents started from a set of requirements. It guided the team
to consistently design and implement a game according to requirements. The team stayed
within budget and delivered on time.

The game is called Ankh Adventure (or just Ankh). (See Figure I.1.) The game provides a
3D graphics engine built with DirectX. Its design incorporates customizable levels and
characters. (It features map and character editors.) It provides save and replay options, a
particle engine, and MP3 music. The code for the game is extensive enough that you can
gain from it a sense of the complexity that characterizes games created by programmers
who are working in the game industry. On the other hand, the code is limited enough that
you can study it in detail. (The game consists of roughly 30,000 lines of code.)

As you read the book, you will see how the requirements for the game were laid out. The
effort started with a game design document. Using the game design document, the team
engineered a set of software requirements. To accomplish this, the team employed use
cases and other tools of analysis. After that, the team designed the game software. You will
be able to follow along through all of this activity. You can see how the team created the
configuration management plan from the design. You can see how the team created the
test plans by using the requirements and the design. (The artifacts—documents—that
resulted from these activities are on the CD.)

Introduction

Introduction xxxv

In addition, you can see how the team subjected the design to scrutiny to discover oppor-
tunities to use software design patterns. With the implementation effort, you can see how
the team refactored code to simplify and optimize it. With respect to processes and prac-
tices, you can read about how elements of the Capability Maturity Model (CMM) were
put to work, how the development team was organized, how reviews were conducted, how
templates were used, and how documentation was created.

Specific activities abound. One chapter covers the Unified Modeling Language (UML) in
a way that shows that UML is a practical, flexible tool. Another chapter investigates pro-
gramming using object-oriented programming practices. A chapter on testing explains
different approaches to testing and how to develop test plans. A chapter on metrics gives
you starter information on how to quantitatively assess games and their development.
Also included are chapters on managing the release of a game and planning and execut-
ing a revision.

Figure I.1
The game stripes start simple and grow in complexity.

Introductionxxxvi

The code for the game is set up so that you can explore it without difficulty. The key to
this is that the code is set up in 19 stripes. A stripe is another name for a software module.
A software module is a collection of classes. Each stripe embodies a set of functionality
that is specified in the requirements. The stripes were developed sequentially. Stripe 1, for
example, sets up the basic Windows framework of the game. Stripe 2 adds GUI features.
By Stripe 4, you can see a character mesh. (See Figure I.2.) By Stripe 9, the game offers
characters who are engaged in combat. When you get to Stripe 14, you are in a world of
multiple levels and all sorts of features.

Whether you are in a classroom or working on your own, one effective way to use the
stripes for learning is to study the difference between sequential stripes. Set up your pro-
ject with the lower of two stripes, and then add the code to develop your code until it
resembles the higher of the two stripes. Use the Design Description as a guide.

The installation program makes it easy for you to access all the code using Microsoft
Visual Studio. Each stripe is set up as a separate project. Just access the folder for the stripe

Figure I.2
Editors allow you to customize game features.

Introduction xxxvii

and click on the Ankh.dsw or Ankh.sln file. (An appendix provides you with a little
startup help with Visual Studio if you need it.) The appropriate version of DirectX will be
installed for you, along with the Boost library and all the assets. Nothing that is already
installed on your computer will be disturbed.

The installation program allows you to install stripes selectively. This means that you can
adjust the complexity of the game to suit your curiosity. If you want to see just the basic
framework for a Windows application, you can install Stripe 1. If you want to see how the
characters are set up for combat, you can install Stripe 7. You can look up any of the
stripes in the Ankh Software Design Description, which is included on the CD. (An appen-
dix provides an excerpt of this document.) Read the use cases at the beginning of each
stripe design section to acquire a sense of what the stripe is designed to do. In addition to
the use case, the Description provides simplified UML diagrams to help you understand
how the code in each stripe works.

The installer program attempts to accommodate all your needs. (See Appendix A, “Instal-
lation and Setup,” for instructions.) You can install only the documentation if you prefer.
You can also install an executable for each stripe. Alternatively, you can install a project for
each stripe and compile it yourself. If you want to install only the game and the user’s
guide, that is an option, also. Regardless of what you want, the installation package sets
things up for you. Just insert the CD and follow the prompts.

The game has been created using C++, DirectX, Win32 functions, and the Boost library.
The game code starts from scratch and uses no MFC classes. Even the dialog boxes are
built from scratch. Around 25 percent of the code consists of comments to help you
understand how the code works. Object-oriented programming is the best approach to
most complex programming tasks, but structured programming can still be useful. (C++
is not a pure object- oriented programming language, and the game does not make a pure
application of it.)

Despite extensive discussion of programming, keep in mind that this book is not on how
to program using Windows components, C++, or DirectX. Nor is it about how to code a
game. It is about software engineering. As a result, this book does not require you to write
code. You don’t even need to study the game code on the CD. Still, it is hoped that you will
thoroughly investigate the code and perhaps begin tweaking it for your own purposes. An
enormous effort has been invested in making certain you can do so.

If you want to work with the main executable and perform design work, the game has a
variety of character classes. (See Figure I.3.) You can customize characters and add levels.

You will find that this book is a toolbox. It preaches nothing and advocates no method-
ologies. This book provides a set of useful tools for software developers in any area,
including game software development professionals, game producers and designers, man-
agers, software quality assurance specialists, testers, writers, artists, and those who are
involved in education relating to computer science, software engineering, or game devel-
opment.

Creating a book with a scope as broad as this one necessarily requires that a great deal be
omitted. To compensate for the missing details, each chapter provides a list of texts that
you can consult to deepen your knowledge of the topics that this book discusses. The
books that are referred to represent accounts that practitioners have given of the work
they perform. When a reference to a college textbook is included, the textbook is one that
the authors have found useful in the industry.

Introductionxxxviii

Figure I.3
Fully implemented, the Ankh game provides a challenging subject of study.

1

Getting into the Game

Chapter 1

A
nyone who develops software for games can benefit from knowledge of software
engineering. This book presents software engineering as a toolbox from which
developers can select the tools they need. A great deal of latitude characterizes both

what tools developers select and how they use them. Acquiring a clear understanding of the
tools available to you and how you can apply them enables you to refine your development
efforts. Examining these and other themes easily leads to many introductory topics:

■ Mixing engineering and art

■ Software as a practice

■ Software as a professional concern

■ Approaches to learning how to design and engineer a product

■ The development of Ankh and software engineering

■ Strategies for making the best use of formalized engineering knowledge

■ Learning from skills that you can apply anywhere

Software Engineering and Game Development
If you develop software for games, you can benefit tremendously if you acquire knowledge
of software engineering. Software engineering concerns everything that has to do with
software development. It can be defined informally as the study and practice of how to
improve software development. If you develop games, it is worthwhile to acquire knowl-
edge of software engineering. The following paragraphs explain why.

To start with, consider that game development sustains its own culture, and this culture
consists of much more than developing software. Any given game development project

involves the efforts of many highly creative individuals who perform a wide variety of
work. Among these individuals are those who design games, create graphical assets, com-
pose music, and write dialogues. These are just a few of the many people who might be
involved in a game development effort.

It makes little sense to contend that those who do all these things should have any great
concerns about software engineering. Software engineering consists of a set of practices
that apply to the development of software. Although the software remains fundamental,
it forms only part of the picture.

Still, software engineering benefits everyone involved in a game development effort
because it allows software developers to identify and apply solid, proven practices to their
efforts. Their efforts address the needs of others. Consider, for example, a game designer.
This individual works long hours to define precisely the world of the game. This person
depends on the software developers to develop the game functionality so that the world
of the game can be realized. As the software developers commence their efforts to devel-
op this functionality, they should take care to understand fully what the game designer
requires before they begin to develop the software; otherwise, they stand little chance of
meeting the designer’s expectations.

Software engineering consists of a body of knowledge that guides developers as they
develop software. One recommendation that this body of knowledge offers to developers
is that they carefully gather and analyze the requirements for the software system they
have been asked to build. Another recommendation is that they create a software design
that thoroughly addresses the requirements. Among other recommendations is one that
developers test the system they develop to ensure that its design and implementation
exactly express the requirements.

If software developers follow such recommendations as they work with the game design-
er, they will appropriately address the needs of the designer. They will make good use of
the designer’s time, and they will have used established practices and processes. They also
will develop a product without redundancy and rework. Using software engineering prac-
tices, the software developers will know how to ask the right questions and how to make
the best use of the information they gather. Their efforts will make the best use of every-
one’s time.

Engineering
Software engineering is a formal discipline that is dedicated to enhancing the quality of
software development processes and the products that result from them. When a software
product possesses quality, it is, among other things, reliable, maintainable, and extensible.
A reliable software product is one that performs as specified and lacks defects. A main-
tainable software product is one that you can fix when it is defective. An extensible prod-
uct is one that enables you to extend its life by adding functionality.

Chapter 1 ■ Getting into the Game2

When a software development process possesses
quality, it is, among other things, consciously
understood as an engineering process. When it is
consciously understood as an engineering process,
it is something you view as being open to continu-
ous improvement. In other words, like a software
product, you can fix a software development
process if it is defective, or you can modify or add
to it as part of a continuous effort to improve it.

Continuously improving processes lies at the basis
of how you continuously improve products. On the
other hand, seeking to continuously improve prod-
ucts motivates you to seek new ways to improve
processes. Software engineering joins these two
activities in a continuous cycle. (See Figure 1.1.)

Cottage Industries and Formalized Disciplines
Chapter 19, “Philosophy of Software Engineering and Game Development,” relates ideas
about the extent to which market forces have transformed software game development
during its first decades of existence. What began as a cottage industry has become an
industry that large corporate operations currently dominate. Making games often involves
some of the most complex software development efforts to be found anywhere. You can-
not undertake such efforts without extensive planning. Furthermore, you cannot sustain
such efforts without attention to the processes that support them.

Software engineering is pervasive because developing entertainment software products
poses financial risks. Corporations face risks when they hire individuals who do not pos-
sess the appropriate professional qualifications. Corporations seek individuals who can
perform their work efficiently and effectively. Such efficiency and effectiveness ultimately
result from the application of disciplined approaches to work. This discipline results from
the application of engineering principles and practices to software development.

Such pronouncements ring of a type of authoritarianism that many programmers and
others who are involved in game development find disturbing. Given the romantic images
that many of the early game development histories present, the idea that game develop-
ment has become a realm of engineering expertise rather than heroic drive proves
discouraging.

The degree of discouragement depends on how you look at the big picture. The big pic-
ture certainly establishes that a few dozen game developers and publishers dominate the

Cottage Industries and Formalized Disciplines 3

Figure 1.1
Software engineering involves a
dynamic of improvement between
product and process.

industry. It dictates that game development often is characterized by production plan-
ning, budgeting negotiations, and large personnel management undertakings. Surviving
in this world is difficult. The competition is ruthless, and the odds of success are minimal.

However, outside the inner circle of prevailing corporate interests, many thousands of inde-
pendent game developers create games that they hope to sell to the mass market. The situ-
ation is analogous to some aspects of the music and film industries. Although a few distrib-
utors, studios, publishers, and artists occupy the center of the market and speak for most of
its revenues, on any day of any year, talented individuals form groups and work together to
create new products. Whether they form film production companies, bands, or game devel-
opment groups, those involved dream of success. They have every right to do so.

The stories that you hear from game developers differ in wonderful ways from the stories
that you sometimes hear when you talk to professionals in other areas of the software
industry. You often hear how people view software development as a kind of accounting
or factory activity governed by marketing and engineering dictates. To an extent, game
development has gone in that direction. On the other hand, for those who are interested
in becoming involved in game development, dreams of individualized or entrepreneurial
success dominate their thinking.

Keep in mind that regardless of how you decide to try to participate in the game industry—
as an entrepreneur or as an employed professional—if you proceed with your work in a
systematic, disciplined way, you will be able to perform more effectively and stand a strong
chance of success. Software engineering provides a set of tools that anyone who is involved
in software development can use. Whether the development effort involves a small band of
developers or a large corporation matters little.

Repetition and Perfection
Software engineering offers a toolbox that is open to anyone who wants to reach into it.
Whether you develop a game on your own or work with a few others, the tools that soft-
ware engineering offers can help you in the same way that they help a large group of peo-
ple who are working in a corporate context. The tools provide an immediate, flexible way
to formalize your efforts and render them more effective. On the other hand, because you
can use the tools of software engineering at will, you are not bound by them to surrender
your creativity or proceed with your efforts in a dry, formalized way.

Figure 1.2 provides a rough sketch of Sekhem, the avatar of Ankh. This book documents
how a team of developers developed Ankh. The game begins with a game design document
that the game’s designer produced. The game design document provides descriptions of
the world that Sekhem inhabits and the challenges that he faces. You must transform such
information into software requirements. In turn, you transform the requirements into a
software design. You then systematically implement the software according to the design

Chapter 1 ■ Getting into the Game4

path laid down in a software develop-
ment plan. With the implementation
effort guided by the software develop-
ment plan, the game takes shape. As
the game takes shape, you store and
manage the files and assets that com-
pose it according to a software config-
uration plan. To confirm that the
game is taking form according to
design and in conformity to its
requirements, you perform testing on
system, integration, and component
levels.

Software engineering releases many
potentials. One of the most salient
potentials involves freeing yourself, as
an individual or a member of a team,
from development activities that take
place without a strong sense of direc-
tion or purpose.

This is mostly what engineering has
been about for at least the past 6,000
years. When the builders of the pyra-
mids went to work, they were doing so at the command of a ruling class that wanted them
to defy time and achieve immortality by piling up carved blocks in a systematic way. In
response to the challenge, nameless engineers over many centuries struggled with the minu-
tiae of metallurgy, geology, rope strengths, labor schedules, heat pressures, pillars, beams,
pikes, ramps, and all the rest. The labor went on. In time, the engineers learned to study their
failures and successes. They applied planning and discipline to their efforts. Reliability and
maintainability entered the picture. Engineering emerged as a discipline of labor.

You can read similar accounts of almost anything that enters into the history of engineer-
ing. Among these are galleons, clipper ships, steam ships, railway engines, skyscrapers,
telephones, hair pins, bridges, dolls, and pencils. Everything that you can build over time
becomes the object of engineering.

To Engineer Is. . .
Software engineering begins with the notion that it is important to learn from what you
do and to apply what you learn incrementally to perfect your capacity to do what you do.

To Engineer Is. . . 5

Figure 1.2
The game involving Sekhem begins with a game
design.

The focus of almost any software engineering activity you care to name involves helping
those who perform such activities find ways to gather and retain information about what
they do so that they can improve their efforts with each iteration of development.

The scholar of technology, Jacques Ellul, contended that everything is eventually subordi-
nated to technique. Technique is a process of refinement that characterizes formalized
knowledge. Everyone knows how this works. You do something for the first time, such as
bake a cake. The first time is characterized by a lot of extra work. You pursue this path and
that. You make mistakes. The counter is strewn with flour and egg yoke. Your efforts result
in a sunken, undercooked product.

The next time around, things go a bit more smoothly. You have learned a few things. You
fold what you learn into creating a technique for doing what you do. The technique is a pro-
cedure, a tried way of doing things. Depending on your personal style of learning, your
approaches to technique are more or less regimented. Some people go by numbered lists and
measuring spoons. Others work from a tested sense of what comes next and what counts as
a teaspoonful of sugar. Whatever the approach, you learn from each iteration. Over time,
you eliminate the excess and redundancy of the first try. This is how technique works.

Technique means that you store knowledge about how you do things and then consciously
try to use this knowledge to improve how you do things. After a time, you begin to apply
technique even to the way that you go about storing knowledge. You refine the informa-
tion you store to specific categories:

■ Time. You learn that some ways of doing things take longer than others. There is
something painful about doing things that take a long while to complete. Yes, some
things you want to last. But compare the experience of sharpening a pencil with a
penknife to using an electric pencil sharpener.

■ Energy. Energy comes in different forms. Some energy is stored up, waiting for
use. Water resides in reservoirs. The energy is reserved, ready to generate electricity
or run a mill. When the energy is released, you use it either effectively or ineffec-
tively. You learn that when you use stored potentials, it is best to use them effec-
tively. Often, life offers no second chances.

■ Efficiency. There are hard and easy ways to do things. If you are asked to write a
structured essay, you can write a stream-of-consciousness narrative and then take
days or weeks to rewrite and refine it into a structured essay. Or you can follow the
dictates of your early rhetoric teachers and write an outline. You use the outline to
guide and refine your thoughts as you write. With the outline in place, you might
still write a stream-of-consciousness narrative, but now the stream is like a river in
its course.

Chapter 1 ■ Getting into the Game6

■ Reliability. A bridge builder builds a bridge in soft soil, and after time, the bridge
collapses. The builder learns that building a bridge that lasts requires study of the
rock beneath the prospective bridge. Reliability involves refining the view you have
of the conditions under which you work, the materials with which you work, and
the assumptions you make as you work. Such wisdom grows with time.

■ Maintainability. Imperfection characterizes everything, so even when something is
built well, it possesses defects. However, if something is built well, even its defects
are accounted for. You can repair a well-built product easily. Consider something
as simple as changing a tire on a bicycle. You can anticipate a flat. To improve the
maintainability of the bicycle, bicycle designers make it easy for riders or mechan-
ics to change tires.

■ Appropriateness. Every form of technology is a monstrosity unless it is created in
a context of utility. This was the lesson that Mary Shelley might have presented
when she wrote Frankenstein. It is hard to say, but if you read that story, you find
both a technological marvel and the marvel’s creator reduced to insanity. Technol-
ogy that lacks appropriateness generally follows the route of Frankenstein’s mon-
ster. Examples include leaded gasoline, DDT, weapons that kill with radiation, and
automobiles without safety features like seatbelts. You learn to sense when technol-
ogy is appropriate, and your sense of its appropriateness guides your work as an
engineer.

The previous list provides just a few of the possible items. Ultimately, such refinements of
the knowledge lead you to develop things in a self-conscious, self-aware way. If you devel-
op things in a self-aware way, technique begins to study itself. This is how engineering
works and how software engineering influences game development. Software engineering
allows you to improve the way you develop games as you develop them. It allows you to
put some distance between you and your work and to assess whether you can introduce
improvements in how you do things.

The Path
Consider for a moment the initial efforts involved in developing Ankh. The game design
document provides information about the game from the perspective of the game design-
er. The game designer seeks to create a game with a map editor, a character editor, sever-
al levels, and a complex world. This set of features allows the avatar, Sekhem, to have a
place in which to exist. (See Figure 1.3.)

The Path 7

Software engineering activities kick into gear as soon as someone decides that providing
a world for an avatar involves creating a software program. The first step you take in this
direction is to engineer the requirements for the game. When you engineer requirements,
you perform your work effectively if you use tools you obtain from the software engi-
neering toolbox. One such tool is the Unified Modeling Language (UML). Another tool is
the use case. Chapter 3, “A Tutorial: UML and Object-Oriented Programming,” offers an
extended discussion of these tools.

Moving from a game design document to an engineering framework for realizing the
design calls for an abrupt reckoning with limitations. If engineering is about anything, it
is about limitations. To provide safe, reliable products, engineers face the sobering oblig-
ation that they must limit every engineered system in scope in one way or another. Every
beam that an engineer uses to construct a building can bear only so much weight.
Likewise, every algorithm that an engineer uses in the module of a software system can

Chapter 1 ■ Getting into the Game8

Figure 1.3
Sekhem enters his world.

perform poorly if it is implemented improperly. When you deter-
mine scope, you establish the general context in which the use and
design of every component of the product you are creating can be
visualized.

Many things govern scope, and chief among these is complexity.
The complexity of a software system results, in part, from the
raw number of logical nodes that the software system includes. A
logical node is a point at which a decision is made. But software
complexity also results from the way that developers design and
develop the software. Design affects the efficiency with which the
system moves information through its decision points. Development
determines the order in which components are created.

If developers do not begin with a clear understanding of the
requirements as they work with design and development con-
cerns, the situation that results is analogous to what might happen
if builders begin building a tower without first understanding how
high it is to reach. (See Figure 1.4.) Up to a point, the construction
effort might result in a reasonable structure. But then trouble is
likely to begin. For starters, without planning, the builders cannot
know how strong the lower walls should be. Even before consider-
ations of this type, the builders would need to reckon with the
depth and strength of the foundation.

Reworking the building after several stories have been constructed is not an impossibili-
ty, but certain problems result. For example, the cost of the building increases because
rework comes to characterize the effort. A change on the top story necessitates returning
to lower stories and rebuilding them. Each addition to the structure might require revi-
sion of the whole. No one knows, after a time, how much effort any given addition will
require. The effort becomes characterized by unpredictability and ad hoc work.

Consider a simple situation in which you create a game that features many characters. If
you work steadily forward from the requirements that the designer provides for the game,
you can comprehensively profile the character. Given this profile, you can create a design
for a general character type. In the world of object-oriented programming, this design is
expressed as a data type—a class. The design of the class anticipates repeated instances of
the class, and the result is that when it is time to replicate characters in the game, the effort
to do so is relatively effortless. A development schedule tells you to create the design after
you have created the requirements. The requirements tell you to design the class so that it
can accommodate many character instances. (See Figure 1.5.)

The Path 9

Figure 1.4
Ad hoc development
leads to problems.

Integrity
Integrity becomes evident when something can stand on its own and display consistency
with itself. When software developers do not engineer games or other software products
they develop, the products emerge from rework, inefficiency, and reactionary changes.
Such products ultimately lack integrity. One thing that results from lack of integrity is risk.

To achieve integrity and diminish risk, software engineering practices establish that you
should consider such issues as scope, architecture, planning, testing, and implementation:

■ Scope. Requirements establish the scope of a product. They express what the prod-
uct will provide to its users when it is completed.

■ Architecture. Architecture tells you how the software that composes the product
will be designed physically and logically.

■ Planning. Scope and design combined allow software developers to plan how they
will develop a product.

■ Testing. Software developers test their work to verify and validate it in the light of
requirements and quality objectives, such as performance, reliability, and main-
tainability.

■ Implementation. The development of the product, instead of being a point of
departure, becomes a manifestation of other activities.

Figure 1.6 illustrates how engineering combines scope, architecture, testing, implementa-
tion, and planning to form the basis of the development effort.

Chapter 1 ■ Getting into the Game10

Figure 1.5
Warriors populate the world, and a class accommodates their
proliferation.

Answering Risk with Design
Philosophers contend that nature offers nothing free. Within the environment in which
software developers plan software construction efforts, each time they add a module to
the emerging system, the module both draws them nearer to the completion of the system
and presents the potential to disrupt fatally the development of the system. One particu-
larly hazardous assumption is that because you have created a design, you have created the
right design. Risk assessment can control this tendency.

Considerations of risk underlie practically everything that takes place during a develop-
ment effort guided by engineering practices. At the heart of risk analysis lies the question,
“What can go wrong?”

This question possesses importance because it requires that those who are involved in the
development effort consider the implications of every action they take. Whenever you add
a new component to a game, you make progress toward completing the game. At the same
time, everything you add to the game increases its complexity. The more complex the
game becomes, the more extensive the implications if you do something wrong.

The issues of design reveal how important it is to assess risk. When you design the soft-
ware for a game (Chapter 4, “Software Design—Much Ado About Something,” discusses
design in detail), the decisions you make relatively early in the project about how you
intend to architect the software have enormous bearing on the work that follows.

Answering Risk with Design 11

Figure 1.6
Software engineering provides a context for implementation.

If you create stripes that are too large, for
example, you can end up stalling your effort
because you need to break a large stripe into
smaller ones before you can simplify it
enough to be able to complete it. If the
stripe is too small, you end up preparing
testing material in a manner that is not cost
effective. (See Figure 1.7.)

Developing a world for Sekhem involved
anticipating the risks posed whenever fea-
tures that characterized the world were
added to the system. Figure 1.8 illustrates a
setting from Ankh. This view of the game
became possible only after the implementation of thousands of lines of code. The mesh-
es, the tile floor, the AI, the character dialogues, and the lighting each represent the suc-
cessful completion of a stripe. The design anticipated each stripe, but despite the victory
that the completion of each stripe brought, had any one stripe failed to integrate with the
whole, the development of the game might have been delayed so seriously through rework
that the game could not have been completed on time. (See Figure 1.8.)

Chapter 1 ■ Getting into the Game12

Figure 1.7
Each addition contributes risk.

Figure 1.8
A complex scene involves increased complexity and risk.

To reduce risk, the team created a
design that stipulated that the game
should be developed in 14 separate
stripes. The team made a strong effort
to limit the size of each stripe so that it
could redesign a stripe if it proved too
difficult to implement. This approach
to development, which is based on
increments and iterations in the devel-
opment process, limits the develop-
ment activity to a selected set of
sequenced problems. The functionality
that each stripe includes constitutes a
subset of the whole. The overall com-
plexity of the system decreases because
it is broken into such subsets. (See
Figure 1.9.)

Game Design and Software Design
It is important to distinguish between game creative design and game software design.
Figure 1.10 provides a summary of the differences. The development effort behind Ankh
began with a set of technical requirements drawn from a game design document.
(Chapter 2, “Requirements—Getting the Picture,” discusses requirements engineering in
detail.) The game design document provides information about the game as an artistic
entity. The requirements that are drawn from this document constitute the first step in
transforming the vision of the game into a technical specification.

Game Design and Software Design 13

Figure 1.9
The design provides an approach to understanding
the system. It breaks the whole into a set of prob-
lems that you can solve in the best possible
sequence.

Figure 1.10
Technical and artistic design efforts underlie a game development effort.

Using the software requirements specification, you can create the software design docu-
ment, which provides information about the game as a software system. (Appendix D,
“Software Engineering and Game Design Documentation,” provides excerpts from the
game design and the software design documents.) When the development team conclud-
ed its requirements effort, it had a list of approximately 70 requirements. Most of these
were functional requirements—requirements that would necessitate programming. The
raw number was not enough to establish fully the scope of the software effort, however.
To reach this goal, it was necessary to create the software design specification.

Design and Development
The Ankh development effort unfolded as a series of limited objectives that were focused
on stripes defined during the software design phase of the project. The design of these
stripes involved high-level and low-level activities. At the high level, the team’s primary
effort focused on determining how to divide the functionality of the system to make
implementation possible in the most risk-free manner. The team documented the divi-
sion of the effort into stripes in the software design description. The description provid-
ed the following list of stripes:

Stripe 1—Opening, Requirements 8, 14, 15, 16, 17, 18, 23, 28, 38, 46, 57

Stripe 2.1—GUI Objects, Requirements 18, 52

Stripe 2.2—Floor Tiling, Requirement 43

Stripe 2.3—Mesh Placement, Requirements 13, 43

Stripe 2.4—Save and Load, Requirement 4

Stripe 3.1—Navigate Alexandria, Requirement 13, 14, 15, 16, 17, 36, 61

Stripe 3.2—Sound, Requirements 29, 30, 31, 32, 33

Stripe 4—Character Editor, Requirements 18, 19, 20, 21, 22, 35, 44

Stripe 5—Unit Physics, Requirements 13, 14, 15, 16, 17, 35, 41, 42, 45, 47, 48, 64

Stripe 6—Inventory Items, Requirements 40, 49, 55

Stripe 7—Combat, Requirements 54, 56

Stripe 8—Acquire Skills, Requirements 20, 34, 47, 55, 56

Stripe 9—Acquire Weapon, Requirements 14, 15, 16, 17, 40, 49

Stripe 10—View Statistics, Requirements 14, 15, 16, 17, 18, 19, 20, 21

Stripe 11—AI, Requirements 24, 25, 26, 37

Stripe 12—Remaining Levels, Requirement 27

Stripe 13—Saving and Loading, Requirements 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Stripe 14—Options, Requirement 39

Stripe 15—Revisions

Chapter 1 ■ Getting into the Game14

All of the development activity that
took place during the Ankh project
followed from this list. This list
provided, for instance, structural
divisions that were replicated in the
configuration and testing plans. It
also established the basis of the work
breakdown structure in the project
plan. As for the implementation
effort, team members worked wholly
within the contexts that the stripes
provided. Although members of the
team might refer at times to the total
size of the game, most of the time,
talk centered on the size and charac-
teristics of the current stripe. (See
Figure 1.11.)

Each stripe accounted for one or more requirements. To talk about how much of the game
had been completed, you counted the number of stripes and the number of requirements.
You could say, for example, that 60 percent of the code had been written, but 50 percent
of the requirements had been met.

Figure 1.12 shows a UML package diagram. The Ankh team used package diagrams to rep-
resent stripes that were configured to form the system. Each of the package folders repre-
sented a set of classes compiled to provide a given level of functionality to the system. In
some instances, one stripe would be heavily dependent on another. In others, the depen-
dencies would not be so direct. Such independence did not necessarily represent irre-
sponsible coupling of classes. (Chapter 7, “P Is for Pattern,” discusses class coupling, as
does Chapter 6, “Object-Oriented Fantasies and Realities.”) Excessive coupling of classes
occurs when one class includes objects of another class in a random, messy way. If you
create an elegant design, you can plan for dependencies so that you decrease coupling and
reduce the risks it introduces.

Design and Development 15

Figure 1.11
A combat scene and a dialog box represent two stripes.

Class Design and Implementation
The Ankh software architecture includes approximately 60 C++ classes. In addition to
these, the software uses components from the Boost and Microsoft DirectX libraries and
a library of global operations. The Ankh team used Class-Responsibility-Collaboration
(CRC) cards for class design efforts. The team employed them in conjunction with a Task-
Object-Remarks (TOR) table to investigate relationships between proposed classes. As the

Chapter 1 ■ Getting into the Game16

Figure 1.12
The game consists of a set of stripes that encapsulate design features and minimize development risks.

team investigated these relationships, it was able to discern more clearly the essential class-
es. To track this activity, you can access the requirements specification and the software
design description on the CD or consult the appendixes. (Chapter 13, “What People Do—
Development Strategies,” provides a detailed view of the general approach to development.)

Before each implementation effort, the team had to create low-level stripe specifications.
The team used several UML tools, including UML sequence, collaboration, and class dia-
grams. By exploring the ways that objects communicate with each other, the team could
anticipate the difficulties and problems that each stripe posed.

With each cycle of development, stripes tended to increase in size. The sizes of the stripes
tended to increase in relation to the responsibilities that the design laid out for them. In
this way, the design and the development schedule worked together to confine the growth
of the complexity of the game software. In addition, each iteration of the development
effort afforded opportunities to assess development risks. (See Chapter 9, “Iterating
Design” for the techniques to control the growth of complexity.)

Refactoring and Patterns
The development effort involved using software design patterns as a way to bolster the
design and development efforts. You can find extensive discussion of the approach used
in Chapter 7; alternatively, class diagrams in the software design description provide a
basis on which you can proceed with your own analysis.

As the discussion in many chapters of this book emphasizes, patterns and refactoring pro-
vide effective ways to approach incrementally improving software design.

Consider what happens when you program. One approach involves starting out and
exploring possible solutions by seeking and solving problems as they emerge. This
approach presents drawbacks because it proceeds in a random fashion and lacks a gener-
alized, guiding perspective. A more refined approach involves exerting a strong effort to
solve problems conceptually before the implementation effort begins. This approach pos-
sesses great merit, because it allows developers to proceed with a generalized view of the
system and to make changes in the design without worrying about features that are imple-
mented already.

On the other hand, consider what happens if you rigidly conform to a development model
that requires everything to be designed at the start of the project. If you follow this model,
the implementation of the design takes place without allowing questions to be asked. Such
an approach effectively bars developers from improving the design by applying lessons
learned during the development effort.

Software engineering studies indicate that the more time you spend on design, the better.
One reason for this is that when you explore problems during implementation, you

Refactoring and Patterns 17

struggle against the tendency to accept as good enough whatever you happened to have
programmed. If the program works, it seems to be good enough. This is often not the case.

But then just because implementation without design poses risks does not mean that
development should have no impact on design. Implementation almost always provides
valuable insights into the weaknesses of the design. Having no latitude to change design
during the implementation effort can force developers into the untenable position of
implementing a solution that their efforts have shown to be inferior.

The Ankh development effort provided two contexts for design assessment. The first was
at the beginning of the project, when the team established the scope and architecture of
the product. The context of the second stage of design assessment unfolded during the
implementation phase. The team reviewed each stripe in terms of the lessons learned dur-
ing the development effort. The team could make adjustments to the design prior to the
commencement of the implementation effort. (See Figure 1.13.)

One assumption guiding the Ankh development effort was that the older (waterfall) mod-
els of development did not provide the best approach to game development. Game devel-
opment requires design flexibility so that the team can incorporate the lessons learned
during the development effort into a continuous effort of quality improvement.

Chapter 1 ■ Getting into the Game18

Figure 1.13
Phases of design reduce risk.

Development and Testing
The approach that this book takes to testing involves formalized procedures. To formalize
your testing effort, you can use test plans. For the Ankh effort, the team developed several
test plans. You can find the test plans on the CD in the form of Microsoft Word documents.
In one way or another, the test plans use procedures and test criteria that are presented in
IEEE standard 829. The development of test plans is discussed in Chapter 11, “Evident
Evil—The Art of Testing.”

One thing that the testing effort for Ankh emphasizes is that you can benefit extensively if
you employ use cases. Among other things, use cases provide a ready way to accumulate
information in one context and transfer it to another. For example, use cases help you to
formulate scenarios with which to understand requirements. At the same time, writing
requirements use cases allows you to accumulate information with which to develop
scripts for testing efforts.

Behavioral (white-box) testing provides an excellent context in which to establish models
for comprehensive test planning. If you establish a development effort based on use cases,
your effort begins with use cases that explore requirements. You can then employ these
uses cases to develop test cases. This is a patterned approach to testing that you can intro-
duce into any development effort.

Requirements generate
the design of the soft-
ware, and the design
generates the general
testing divisions. The
design divisions are
expressed best in use
cases for integration
testing. Figure 1.14
provides a truncated
example of an integra-
tion use case, this one
for Stripe 14.

Although extensive
work is necessary to
break the information
that a use case pro-
vides into tables and
scripts that contain
specific directions for
testing, use cases still

Development and Testing 19

Figure 1.14
Use cases tie everything together.

can guide the entire game software testing effort. The value of creating use cases for game
development efforts becomes especially clear when you consider that with highly inte-
grated team development efforts (efforts in which a high degree of communication occurs
between programmers and graphical designers), some of the most original parts of the
game arise after the initial design has been completed. During the various passages of
implementation, the features that achieve visibility with each new build of the game
empower the designers of the game to grasp new potentials for enhancement.

Use cases ensure that potentials for enhancement remain visible to the whole develop-
ment team throughout the development project. They also prohibit the team from
becoming too immersed in details. Likewise, because use cases are developed with specif-
ic references to the requirements, they drive the project from start to finish and provide a
clear context for regulating things like feature creep and goldplating (activities that can
seriously endanger the development effort).

Although they bind the requirements to the design and then the design to test plans, use
cases remain a flexible medium for information exchange in all areas of development.
Figure 1.15 provides an overview of the relationships that use cases facilitate during the
overall development effort.

Chapter 1 ■ Getting into the Game20

Figure 1.15
Game development efforts that are characterized by highly integrated teams
can benefit from use cases.

Code Documentation
An attempt has been made to provide roughly one line of documentation for every four
lines of code to help you understand why and how operations and classes have been
implemented. The documentation in the code allows you to study the specific aspects of
how classes and operations have been implemented. On the other hand, understanding
the design and architecture of the code requires a high-level view. Generally, you benefit
if you begin with a high-level understanding of a system before you begin examining the
code in specific files. That’s because the overall flow of design as introduced in this book
is from the large to the small.

Learning and Capabilities
Software engineering prescribes no fixed set of procedures or methodologies for creating
software. Still, many organizations and individuals present procedures and methodologies
as embodying the best approaches to software engineering. As anticipated by the model
Jacques Ellul established for technique, there are even organizations and individuals who
advocate rejecting or revolting against procedures and methodologies. Regardless of how
you might be inclined to view questions concerning methodologies or procedures, the fact
remains that software engineering provides you with tools you can use to refine your
development practices continuously.

Software engineering can be characterized as a kind of contemporary historical study.
People who perform such work shape processes and practices so that they can be
improved. In this light, improvement is based on the assumption that you perform a given
activity or a set of activities over and over. To the extent that an individual or organiza-
tion can say that it has documented and can repeat its development activities, it possess-
es development capabilities. The Software Engineering Institute captured this concept and
embodied it in the Capability Maturity Model (CMM). Chapter 16, “Process
Improvement” discusses this and other maturity models in detail.

Incremented iteration provides the basic approach to developing capabilities. If you recall
the general discussion presented previously of how technique involves refining the process
of creating something, it becomes clear that developing capabilities through iterations
extends the notion of technique.

Formalized development of capabilities involves understating practices, processes, and
procedures. Consider the following:

■ Documenting practices. When you document a process, your actions can be as
simple as writing a numbered list. In fact, in most contexts, this is the best begin-
ning. When you write a numbered list to document what you do, consider what
happens. First, you establish a benchmark for evaluation. You can ask yourself
whether you have forgotten anything. You can evaluate what you have documented

Learning and Capabilities 21

and add things you have forgotten. You can elaborate on the items that you have
listed, making it possible to explore the specific tasks that each step entails. Add to
this that you can copy the list and distribute it to others; this way, others can bene-
fit from what you have recorded and possibly provide valuable insights concerning
their own experiences with your practices.

■ Following documented practices and procedures. A practice differs from a proce-
dure. A procedure is a fixed way to do things. A practice is just a way to do things.
It is probably not right to dictate procedures to developers, but at times procedures
can prove essential. Consider a situation in which you are working to support your
customers. The service manager has put in place procedures for responding to cus-
tomer complaints. The procedures require you to follow specific guidelines when
you meet, acquire information from, and respond to customers. If you follow the
procedures, you have a guide to what is essential. You do not need to put your own
feelings on the line. You can approach the situation objectively.

■ Collecting data. Experienced professionals can do at least one thing better than
novices. They can estimate how long they will require to perform a given task.
They can do this because they have repeatedly gauged their efforts over time and
have an empirical basis on which to estimate the effort involved in completing
tasks. If you ask experienced programmers how long they think a class with x
number of operations will require to program, the answers will be based on prior
experiences with such work. Collecting data about such experiences can take place
in various ways. For an individual developer, the best approach is to use a log. You
can automate much of this activity on an organizational level.

■ Review. Reviews are ways to evaluate practices and procedures formally. If you
have made a list of things you do when you perform a given task, you can review
this list either on your own or with others. Review allows you to assess the list
from different points in time. Note that a difference of time creates a difference of
perspective. What applies to differences of time also accounts for the value of
group reviews. Group reviews allow you to expose something that you have done
on your own to the perspectives that others provide.

Chapter 15, “Team Work,” discusses the value of reviews in relation to teamwork. Reviews
also relate to documentation, generally, because setting up a review requires that you create
a body of information for review. Chapter 18, “Documentation—Learning How to Learn,”
provides specific information on how to gather and document development activities.

A template provides an especially useful tool for documentation. It furnishes you with a
guide that consists of a set of questions that direct your attention to essentials. A template
establishes a scope of inquiry or activity. You can use a template to create a context for
communicating about specific development efforts. A template does not prescribe how to
gather or organize information. Instead, it only suggests.

Chapter 1 ■ Getting into the Game22

Maintenance and Revision
A successful software product has a lifetime that extends years or decades beyond its point
of release. Software engineering studies indicate that developing a software product
accounts for about one-third of its total budget. The maintenance phase of its life
accounts for the rest.

The way that you conduct the release process can be instrumental in reducing the expense
involved in maintaining a software product. Releasing a software product consists of gath-
ering together the parts of the product that are slated for release, but it also involves eval-
uating the state of the product as it nears release to ensure that it is ready for distribution.
In addition, release management involves preparing the organization for response to the
information that the product creates after its release. The most important such informa-
tion concerns the defects that customers encounter.

As Chapter 17, “Release Planning and Management,” discusses, alpha and beta tests can
provide solid information on whether a product is ready for general release. Likewise,
after a product has been made available for general release, a problem-tracking system can
ensure that when customers report defects, developers can respond to the reports in an
expeditious, effective way.

Measurement
Chapter 12, “Numbers for Nabobs,” discusses the basics of collecting numerical data.
Metrics constitute one of the most important aspects of software development because
companies increasingly encounter economic pressures that they can address only if they
have data that allows them to assess their productivity quantitatively. In addition to the
big picture, however, is a small one, the picture that includes the work of the individual
developer. Chapter 16 discusses how personalized logs help you collect quantitative data
on your own activities. The most likely scenario for such data collection involves tracking
the durations and efforts that are involved in given tasks. Among such information is how
long it takes you to complete a given task (effort) or how many lines of code you can write
in a day (productivity). As pointed out previously, collecting and assessing such informa-
tion helps you to mature as a developer.

Quantitative information forms the foundation of scientific experimentation. It is the
bedrock of positive knowledge. When quantitative data applies to a specific industrial
model, it becomes metrics. Key metrics in software engineering are product size, produc-
tivity, effort, duration, and reliability. Many other metrics apply, also.

The Industry
As it has evolved, the game software industry, like every other industry, has tended to fos-
ter greater specialization. Early on, programmers dominated the game development

The Industry 23

effort. As the industry has matured, however, programming, although still essential, has
become subordinated to production management. In the corporate settings that current-
ly dominate the industry, programmers usually are not the principal developers of games.
Instead, they are treated as “resources” hired by producers to implement the software that
supports game designs. Game designers create games. Programmers develop the tools
with which to create games.

One result is that some programmers have exited the game production side of the indus-
try. Rather than founding game studios, they start software companies that develop soft-
ware to create games. Among these are companies specializing in engines, algorithms for
collision detection, audio production, scripting, testing, and other things. Figure 1.16
summarizes the situation.

Specialization tends to atomize people. On the other hand, a common or core set of skills
and practices can counteract the tendencies of specialization. If your interest is in work-
ing as a software developer in the game industry, you probably stand the best chance or
finding a place if you can extend your skills through generalized software engineering
knowledge. One guide to the core knowledge of software engineering is the Software
Engineering Body of Knowledge (SWEBOK). As Chapter 19 discusses, although the
SWEBOK was developed to facilitate professionalism, it can serve as a ready source of
information for those seeking to pursue software development as a craft. It is more or less
a list of the bins you can find in a good software development toolbox. Figure 1.17 pro-
vides a high-level view of the types of work that the SWEBOK includes.

Chapter 1 ■ Getting into the Game24

Figure 1.16
Specialized products increasingly characterize the game industry.

Profession and Craft
This book takes no strict line on whether you should seek certification as a software pro-
fessional. Generally, you can make a strong argument in either direction. On the one
hand, most of the visible game software developers do not possess professional certifica-
tion as either game developers or software engineers. On the other hand, the type of
understanding that one acquires through the study of software engineering might elimi-
nate many of the situations in which developers undermine their own efforts by failing to
address elementary engineering issues.

This book provides information on solid development practices. Despite enormous push-
es in recent years to shape software engineering into a profession, it remains part profes-
sion, part craft. Engineering that is grounded in science tends to be self-critical and ori-
ented toward quantification of knowledge. Engineering that is grounded in craft tends to
be oriented toward tradition and best practices. Both perspectives on engineering provide
valuable insights.

Large corporations now dominate the game development industry. They are in a position
to limit or confine employment specifications and opportunities for game developers to
the point that only a highly qualified elite can expect to obtain such jobs.

Profession and Craft 25

Figure 1.17
Core skills ensure increased success in a competitive industry.

On the other hand, other forces are at work, forces that are represented in part in the film
industry through such efforts as those of Robert Redford and Michael Moore. These
efforts are characterized by individuals who are largely self-taught and self-made. Such
individuals seek independent roles in which to create products usually spoken for by mas-
sive corporate efforts. Their successes serve as inspiration to continue to maintain open,
egalitarian access to the body of knowledge and set of practices that given movements seek
to make the exclusive property of certified professionals.

Conclusion
This chapter has provided a general perspective from which you can proceed as you read
this book. This book discusses software engineering both generally and in relation to the
development required for Ankh.

Software engineers seek to foster the development of tested and reliable development
practices and products. The body of knowledge that constitutes software engineering
extends far and wide, but at the core lies the notion that you can gather information about
what you do and use it to refine what you do on an iterative, incremental basis. There is
no mystery to this, and the approach to developing products does not require an exten-
sive, expensive education that establishes one as a “certified professional.” Instead, it
requires only a proper attention to science, detail, tradition, and craft. It is a toolbox open
to anyone.

Following are a few books that provide more information on the topics touched on in
this chapter:

Brooks, Frederick P., Jr. The Mythical Man-Month. Boston: Addison-Wesley, 1995.

Demarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams. New York:
Dorset House, 1987.

Ellul, Jacques. The Technological Society. Trans. John Wilkinson. New York: Random
House, 1964.

Humphrey, Watts S. Introduction to the Personal Software Process. SEI Series in Software
Engineering. Boston: Addison-Wesley, 1997.

Petroski, Henry. To Engineer Is Human: The Role of Failure in Successful Design. New York:
Random House, 1992.

Pirsig, Robert M. Zen and the Art of Motorcycle Maintenance. New York: Bantam
Books, 1974.

Shumacher, E. F. Good Work. New York: Harper & Row, 1979.

Chapter 1 ■ Getting into the Game26

27

Requirements—Getting
the Picture

Chapter 2

T
his chapter shows you how to start a software engineering project. The chapter is
laid out in two parts. The first part gives you a general view of the concepts and
tools. The second part, starting with “Engineering Requirements,” guides you

through specific tasks. At the start of the project, you establish the project scope. When
you know the scope, you can determine precisely what you are expected to develop. You
designate what you are expected to develop by creating a list of requirements. The require-
ments list specifically identifies the functionality that lies within the scope you have estab-
lished. To develop a list of requirements, you use a number of techniques and tools to
ensure that your requirements are complete, accurate, verifiable, and worded so that
developers can easily understand them. The result of this activity is the contents of a sin-
gle document, called a software requirements specification. Along the way, you also create
use cases and a traceability matrix; these become part of the requirements specification. In
addition, you begin work on yet another major document, a test plan. A rough sketch of
the chapter topics is as follows:

■ Identify what counts as a software requirement.

■ Establish criteria for making sense of and writing requirements.

■ Determine ways to collect or discover requirements.

■ Explore how to employ uses cases to refine and analyze requirements.

■ Find techniques to confirm that requirements are complete.

■ Verify the accuracy of the requirements.

■ Trace changes to the requirements.

Essential Notions
Requirements mark the starting place of the lifecycle of any software engineering project.
Gathering requirements is the first concerted activity you engage in as a software engineer
assigned to a development project. The reason for this is that the software project you
intend to develop must first be defined as an engineering problem. You engineer require-
ments so that you can engineer a product. The next few sections explore what require-
ments are and how engineering processes can ensure that they are properly developed.

What Are Requirements?
A requirement is a concisely worded statement that establishes how the software you want
to create will behave when it’s complete. Sometimes software engineers use shall to refer
to the relationship that a requirement establishes with the behavior of a proposed system.
In other words, after you have implemented a requirement, the system shall behave in
accordance to the conditions that the requirement establishes.

n o t e

Shall might sound a little medieval these days, but engineers still use it. It serves as a kind of order
or promise that the developers will construct the system as described.

During the software development effort, you implement two types of requirements.
One type is known as a functional requirement. A functional requirement addresses the
operations that the system performs. The other type of requirement is known as a nonfunc-
tional requirement. The behavior of the system does not usually manifest a nonfunctional
requirement. Instead, a nonfunctional requirement applies to the standards or qualities of
performance that constrain the design or operations of the system. For example, if someone
says that the splash screen shall be appealing to the user, the requirement falls under the
nonfunctional heading. On the other hand, if someone says that the system shall provide a
splash screen, then the requirement falls under the functional heading.

Whether they are functional or nonfunctional, a somewhat overworked point about
requirements is that you should not express them in the language of implementation.
Implementation is the activity of building the software. Requirements specify the objec-
tives of implementation (what), not the implementation itself (how). When you address
the functionality of the system without reference to implementation, you address the sys-
tem from an external or user-oriented perspective.

To provide an example of the language of implementation, suppose that you say, “The
user shall click a dialog button to open a new window.” The problem is that “dialog” and
“window” echo the language of implementation. Instead, you should say something along
the lines of “After the user selects the next level option, the next level appears.” Granted,

Chapter 2 ■ Requirements—Getting the Picture28

this sounds vague, but this second formulation avoids making the requirement into a pre-
mature design decision. The second formulation restricts the wording so that you hear
only about what the system does. Determining how this will happen comes later.

Where Do Requirements Originate?
As a software engineer, you might find that you do not create the idea of the game you
build. Instead, you build the software that provides the functionality that supports the
idea. As an engineer, you translate features into functionality. To discover what you are to
support, you begin the requirements engineering effort.

When you engineer requirements, you spend a great deal of time—sometimes weeks or
months—eliciting information about the software system you intend to build. In a setting
in which games result from business, design, and marketing plans, the game is likely to be
something you find described in documents that others create. The people who create
these documents are game designers. In other settings, the source of the requirements
information is much less formal. For example, you might talk with others and create an
idea with them about a game. Regardless of the setting, at the beginning of the engineer-
ing effort, you elicit specific functional and nonfunctional requirements. To repeat the
point made earlier, these requirements concern not how you implement the functionality
of the software but rather what the software does from a user’s perspective.

Eliciting requirements is painful at first. Even if you work from a formal game design doc-
ument, you must still analyze the document to discover the system features you must sup-
port. To accomplish this task, you require information from others. A short list of the
resources for this information might be as follows:

■ Users of the game you want to create

■ Your previous experiences with game development

■ Marketing, graphics design, and other experts involved with the effort

■ Games that might be modified (mods) to create the game you want to develop

■ Designers of the game you want to create

■ The programmers who will create the new system

Other resources exist, but the primary idea here is that when you engineer anything, first
you figure out what to build, then you figure out how to build it, and finally, you build it.
If something is complex and serves many people, then it stands to reason that you are
going to need help. You are not likely to find any one person from whom you can elicit all
the information you need to collect. The next few sections visit some of the sources of
information mentioned in the previous list. Figure 2.1 provides a summary view of the
discussion.

Essential Notions 29

Users or Players

The first information resource named in the previous list is the user. The user of a game is
the player. Game designers ask many questions about players because designers target spe-
cific player markets. As an engineer involved in a requirements engineering effort, your con-
cern about players might have a different objective, but you should still consider the player
important. Because players have a good sense of how a game should feel and perform, they
have important information to offer you as you develop requirements. If you develop your
software using prototypes, players can work as testers. From testers, you can audit the playa-
bility of the game. Players provide you with an important nontechnical basis of information.

Previous Experiences

Your understanding as a software developer of how you have built a game provides an
enormously valuable starting place for requirements engineering. If you know how to
build a game, you can begin to make candidate statements for requirements modeled on
requirements statements you have made in the past. The requirements you generate in this
way must address the current system, but knowing key features in previous efforts helps
you more quickly locate them in the current effort.

c a u t i o n

When you use knowledge from the past on a new system, you can begin to prematurely design the
new system. You begin to implement the features of the system before you fully identify them. To
avoid premature design, use previous knowledge only to determine what is needed, not how you
will implement what is needed.

Chapter 2 ■ Requirements—Getting the Picture30

Figure 2.1
Requirements information originates in many places.

Mods

Games that are developed from existing games are called mods (for modified games). If
you use a mod as a template for your new game effort, you can save months of work.
However, mods can also create major risks. One risk is to assume that the mod does not
possess faults that might end up costing you development time rather than saving you
development time. It could be that the mod has major design flaws or was released with-
out thorough testing. Because such risks inevitably accompany legacy software, if you
assume you can take something for granted, you might be inviting disaster. The best pol-
icy is to be cautious. When you work with a mod, break away from the tendency to think
that you can assume that the mod represents the best possible way to do things. If you use
a mod, do not start by accepting every feature of the mod without criticism. Begin your
requirements effort as a blank slate. Until you have critically assessed the risks, do not
bring anything forward from the mod.

n o t e

An old saying in engineering circles is that engineering innovations are not revolutions; they are
evolutions.

Designers and Design Documents

Designers are not necessarily programmers. They are often artists who specialize in game
design. They sometimes work in a marketing or creative group wholly separate from the
engineering group. As an engineer, your first exposure to designers’ work might be
through a game design document. (Appendix D, “Software Engineering and Game Design
Documentation,” provides a sample game design document.) Such documents, along with
their authors, inform you about the audience that the game addresses, the genre and rules
of the game, and how the game should look and feel as the user plays it. The game design
document lays out the stories, levels, characters, rules, musical themes, and a multitude of
other things that go into a game. These are all candidate features of the game. From these
features, you derive the functional and nonfunctional requirements of the system.
Requirements support features.

Who Gathers Requirements?
A person who gathers requirements is a requirements analyst. A requirements analyst is
someone who knows how to work with the documents, processes, and techniques that are
involved in the activities encompassed by requirements engineering (which is also called
requirements analysis). Requirements analysts work in several capacities (identifying busi-
ness processes or data schemes, for example), so if you want to be precise about your lan-
guage, you refer to someone who is involved with software as a software requirements

Essential Notions 31

analyst. This person’s work involves eliciting, analyzing, specifying, verifying, and manag-
ing the functional and nonfunctional requirements of the software system.

Because the activities of requirements analysis extend throughout the lifecycle of the soft-
ware product, the work of the requirements analyst becomes fairly involved. Consider the
following list:

■ Obtaining from executives the scope of the game

■ Interviewing customers

■ Guiding developers through the refinement of requirements

■ Analyzing requirements to discover basic system properties

■ Maintaining documents that list and elaborate requirements

■ Managing how requirements are changed during the development process

This chapter deals with all of these activities.

Why Do You Need Requirements?
Engineering involves stating a problem and solving it. Requirements are how you state a
problem. What happens if you state no requirements? Well, then you are not in a position
to perform engineering. This might sound a bit arrogant, so let’s try another approach.
Take the case of the classical hacker. A hacker is something like a performance artist. He
performs and then figures out afterward what the performance was about. This is, in fact,
what makes the performance worthwhile. Along the same lines, the difference between
hacking a game and engineering a game is that the hacker first codes and then discovers
after the fact the product or resulting game. The game is a kind of controlled accident. The
engineer, on the other hand, specifically plans the game before code is written.

Other justifications exist for requirements. Table 2.1 shows you some of the standard
arguments.

Chapter 2 ■ Requirements—Getting the Picture32

Table 2.1 Reasons for Requirements

Reason Explanation

Solving the problem You must specify the problem you want to solve.
Planning Unless you specify all the behavior that the system needs to support,

you cannot determine how much time you require to create the
system.

Testing Unless you create a list of the things a system is supposed to do,
when you finish your development effort, you will have no way to
responsibly test whether the system actually does what it is supposed
to do.

What Results from Requirements?
When you engage in a requirements gathering (engineering) process, your main deliver-
able is a software requirements specification. This topic will be discussed in this section and
in the sections that follow, but it will not hurt at this point to repeat that five general activ-
ities of requirements engineering are often named in software engineering literature.
These are as follows: elicitation, analysis, specification, verification, and management. You
create and use different tools, documents, and processes as you perform these activities.
The sections that follow name some of these. Figure 2.2 shows you some of the common
requirements tools.

Essential Notions 33

Reason Explanation

Extension If you want to add to a system after it has been released, you will find
your work difficult to accomplish unless you know what it does and
how you can add to what it does.

Cost Studies indicate that when products are well specified, they can be
developed much less expensively than otherwise.

Maintainability When products are specified, they can be fixed much more readily
than when they are not specified.

Maturity A software development organization cannot meet the Capability
Maturity Model (CMM) standards for organizational maturity without
putting in place procedures for engineering requirements.

Figure 2.2
Common tools aid in the requirements engineering effort.

Use Cases

You employ use cases in most areas of requirements engineering to help you understand
how events occur, how things depend on each other, and whether you have left things out.
Use cases involve use case diagrams and use case narratives and scenarios. Chapter 3, “A
Tutorial: UML and Object-Oriented Programming,” presents a discussion of the Unified
Modeling Language (UML) and use case diagrams. This chapter examines employing use
cases in the development of a set of requirements for Ankh, the game discussed in the
course of this book.

A use case is basically something that you write, but the appeal of diagrams is enormous.
You can use both diagrams and narratives. You’re encouraged to use diagrams as tools of
analysis and comprehension (in fact, try using SmartDraw as a kind of surrogate CASE
tool for diagramming use cases), but at the same time, it is important to emphasize that
in practice, a use case is a document rather than a diagram. When this book suggests, for
example, that you create an appendix to your software requirements specification for use
cases, it is encouraging you to include text versions of use cases rather than diagrams.

The terms narrative and scenario designate what might be referred to as informal and for-
mal versions of use cases. A narrative is just what you would probably expect: a paragraph
that tells a short story about how the user interacts with the system. Scenario designates a
narrative that has been broken into a numbered sequence of events.

Conventions differ. This book presents a set of suggestions. The books mentioned at the
end of the chapter provide excellent sources for a deeper, more disciplined, and scientific
understanding of how to develop use cases.

Activity Diagrams

The UML provides a tool called an activity diagram, which is a flow chart that allows you
to show, among other things, how events you have named in use cases can be ordered and
traced. (Chapter 3 provides a review of the UML activity diagram.) When you find that
the events that make up a use case are difficult to order, activity diagrams can help.
Activity diagrams enable you to unravel complex or concurrent event flows so that you
can place them in use case scenarios. In addition, activity diagrams are analysis tools, so
they provide a ready means of moving into design activities that involve sequence dia-
grams. (See Chapter 4, “Software Design—Much Ado About Something.”)

Software Requirements Specification

This book uses both use case–driven requirements development and a more traditional
approach based on the drafting of a list of requirements formally stated in a requirements
specification. Some analysts consider this approach redundant. It isn’t. One reason to both
list requirements and present them as use cases is that it makes little sense to start from

Chapter 2 ■ Requirements—Getting the Picture34

scratch when developing a game. A list allows developers a ready avenue for starting out
the requirements. Use cases can then be used to expand, explore, and verify requirements
in the list. Another reason is that the use case–driven approach usually leads from user
needs to what is referred to as the user interface. With games, the opposite is the case. The
software engineer involved in creating a game usually knows a great deal about what the
game will look like; the question is how to provide a system that achieves what is given.

The Institute of Electrical and Electronics Engineers (IEEE, usually pronounced I-triple-E)
provides a document template (see Appendix D) that shows you how to organize the infor-
mation you gather as you specify the requirements for the software system you want to
develop. Begin with this template, which is for a Software Requirements Specification (SRS).

The SRS feeds into other documents: the project plan and the design document. The pro-
ject plan, among other things, lists all the tasks that developers must perform to complete
the product. The design document shows how the functionality detailed in the SRS is to
be implemented. Unless the SRS is complete, the design specification ends up requiring a
great deal of rework.

TOR Chart

A Task-Object-Remarks (TOR) chart allows you to list tentative objects that address the
functionality the requirements stipulate. If you make use of the TOR chart from early on
in your requirements effort, you will have at hand a good tool for identifying the tasks that
your requirements imply and the objects you might name in association with the tasks.
For now, this book uses class and object interchangeably. Chapter 3 explores the differ-
ences. A class is a static model used to create objects. You can use a TOR chart to collect
names you might later assign to classes.

Traceability Matrix

After you have engineered requirements for a software system (a game), you must main-
tain and track the requirements. A useful tool for this work is the traceability matrix. To
create a traceability matrix, you can use an Excel spreadsheet, a table in a Word document,
or a tool such as SmartDraw. The resulting matrix allows you to track and confirm
changes to your requirements. You can also use the matrix to trace test cases you develop
to verify or validate requirements. A final use for this matrix is to record the priorities and
statuses of requirements.

Avoiding Difficulties with Requirements
Before delving into the labor of engineering a set of requirements, it is wise to spend a bit of
time reviewing things you should and should not do as you work with requirements.
Engineering requirements alone are not enough. You must use care not to create incomplete,

Avoiding Difficulties with Requirements 35

spotty, redundant, or inaccurate requirements. Whether you work with requirements state-
ments or use cases, you seek to find the essential behavior of the system and to specify this
behavior in nontechnical, clearly stated terms.

Establish the Scope of the Project
One of the major reasons that a software project fails is that those involved in the project
neglect to establish a clear project scope. What is scope? It is the boundary of the engi-
neering effort. It designates the set of functionality you want to include in the system.
With respect to the effort of requirements exploration, scope is where you stop. If you
decide to develop a single-player Role-Playing Game (RPG), your knowledge of the scope
of the project allows you to determine that you will not invest your time in developing
multiple-player or Internet capabilities. Figure 2.3 summarizes the main points.

Scope Statements

Where do you find information that allows you to establish the scope of the requirements
effort? The game design document provides the most readily available source of this
information. In the game design document for Ankh, for instance, the section of the doc-
ument that summarizes the game provides most of the information needed to determine
the functional features the game software includes.

Chapter 2 ■ Requirements—Getting the Picture36

Figure 2.3
Taking a few precautions prevents requirements rework.

If you do not possess a game design document, you can establish the scope of the prod-
uct by creating what is sometimes known as a scope statement. Any number of names
exists for such a document, but its general intention is to establish the following:

■ What the project is intended to do

■ What group of people the project should serve

■ How long the project should require to build

If you do not begin your engineering effort from a scope statement, then it is likely that
your engineering effort will cost more and will take longer to complete. Further, to repeat
a point made earlier, your project is also more likely to fail.

Outer and Inner Scope Boundaries

Scope has two types of boundary. The boundaries stem from the fact that any given sys-
tem or subsystem has extensive and intensive features. System features can be viewed as
such things as the ability to show variable camera angles or support world motion. Such
features give the game general qualities that do not vary much from game to game because
the technology and design concepts behind such features are common throughout the
industry. Such features provide an outer scope.

On the other hand, scope can have an inner scope. At a given level, for example, an enor-
mous number of player options can be made available. These can be so arcane or cryptic
that it is almost impossible that any other game will have them.

To help control the growth of outer and inner scope, you have two ready resources. Both
are available in most game design documents. (See Appendix D.) The first resource is the
game overview, which provides a guide to the extensive features of the game. If no such
narrative is available, you can write your own. This can be a general use case narrative that
describes the features and objectives of the game. Artifacts that capture this narrative are
system context use cases and system context diagrams.

The second resource allows you to obtain an inner scope view of a game. For this, you can
draw upon a sixty-seconds-of-play scenario, which you usually find in the game design
document. There might be a multitude of such narratives, depending on how the game
designers who are associated with your project do things. The play scenario establishes the
level of complexity you must capture as you develop your requirements. If no such nar-
rative exists, then it is a good idea to compose the scenario yourself. Artifacts that are good
for capturing the sixty-seconds-of-play scenario are use case narratives, use case scenarios,
use case diagrams, and activity diagrams.

Avoiding Difficulties with Requirements 37

Identify Your Customers
A customer is sometimes called a stakeholder, but here, to keep things simple, the term cus-
tomer is used. From an organizational perspective, you can describe a customer in many
ways. Most commonly, a customer is the end user of the game—the player. Many other cus-
tomers can be found as well. Game designers and people who specialize in developing
graphics are customers. People who create music, sound effects, character dialogues, and
voice recordings are also customers. All of these people expect what you develop to give life
to what they have contributed. Each such specialist is a customer of the requirements
effort.

Consider again the customer who is the player of the game. Upon deeper analysis, you will
find that the player has many roles. Use cases allow you to explore these roles. These roles
have different objectives or goals. For example, a player might be someone seeking to set
up a session of play. At another time, the player might be someone wanting to know a
cumulative score. At yet another time, a player might be someone wanting to learn the
game. Each is a different role, and considering these different roles is important to the
requirements effort.

When requirements fail to capture functionality that comprehensively addresses the needs
of all customers, they are said to be incomplete. Generally, the design document for the
game provides sections for the features of concern to all the key customers (or stakehold-
ers), but as you elicit software requirements, it is easy to overlook features. To avoid
incomplete requirements, develop use cases to ensure you have achieved completeness.

Feasibility
The feasibility of a requirement rests on whether the development group possesses the
technical and budgetary capabilities to implement the functionality that the requirement
stipulates. Technical capabilities stem from the expertise of the developers. Budgetary
capabilities depend on a number of factors not discussed here, but one general way of
putting it is to say that even if the expertise exists to develop the solution, the money to
pay for the development might not. To determine whether a system meets technical and
budgetary constraints, managers must possess a clear statement of requirements.

When requirements are clearly stated, development managers can more readily assess the
three major feasibility (also called risk) factors that every project faces:

■ The number of features. If you want to create a game with lots of features, then
you might be willing to take as much time and to spend as much money as is
needed to add the features. Still, even if you have plenty of time and money, you
must consider the maximum number of features you can realistically expect to
implement and test.

Chapter 2 ■ Requirements—Getting the Picture38

■ The amount of money. If money is a factor, then you obviously need to limit the
number of features. Each feature adds to the expense of the project, and in addition
to construction alone, you must pay for quality assurance (testing). If you release a
system that has been inadequately tested, the consequences can be painful.

■ The quality of the product. If you
want to produce a product that has
the maximum degree of quality, then
cost and feature count might not be
high on your priority list. It remains,
however, that you will have more
time and money to spend on the
quality of each feature if you limit
the number of features.

Features, cost, and quality are feasibility fac-
tors that you can understand if you know
the scope of the system. Figure 2.4 shows
the basic relationship among these three
factors.

Uncontrolled Growth
Many software development efforts fail because software developers do not adhere to the
requirements specifications as they develop the software. Two major risks in this respect
are feature creep and goldplating. One especially troublesome outcome of feature creep
and goldplating is that the testing effort becomes more difficult because the test team
might not have test cases or scenarios for the added features. Such untested features might
be the cause of problems when the product is deployed. The following sections describe
these two types of risk in greater detail.

Avoid Feature Creep

Feature creep occurs when developers, customers, or managers add features to a project
even though the scope of the project has already been set. This happens in two general ways.
One form occurs when you begin to engineer the requirements list. You can discover fea-
tures that you add because you think they make the product more interesting. For example,
if the game design document lists what you consider a rather bland set of character options,
you might decide to add extra options to make the basic list more interesting. Other people
might add still more options. In this way, you extend the specified features of the game
beyond what the designers asked for.

Avoiding Difficulties with Requirements 39

Figure 2.4
Requirements feasibility involves cost, number,
and quality.

The other form of creep occurs after development begins. Although the specification
might state clearly the requirements you are to implement, you extend the requirements
as you work when you find something that seems to enhance the game. You add unspec-
ified functionality. Although the functionality specified in the requirements remains the
same, the implemented functionality grows. New features result from unspecified work
on the product, but the specified product is not more complete.

Avoid Goldplating

Goldplating occurs when developers develop the technology they want to develop rather
than the product the requirements specify. Goldplating undermines the development
effort because while developers make the game interesting from a technical perspective,
they drive the implementation costs of the game sky high. Developers might even fail to
implement the features that the requirements specify. Goldplating begins when a pro-
grammer finds an interesting innovation on one or another path of implementation that
begins with a requirement. Rather than seeking only to implement the requirement, the
programmer becomes obsessed with exploring the implementation process itself in some-
thing akin to a sophisticated hacking experiment.

What Makes a Good Requirements Specification?
During the requirements engineering phase of the development effort, you create a set of
requirements and prepare the way for the design effort. The first sign that you have not
successfully completed the requirements is that the design effort becomes bogged down
in rework. Rework requires that those involved in the design effort eliminate flaws in work
performed earlier in the project. What makes a good requirements specification? The
answer is that after the design effort begins, you find that you can work steadily from the
requirements without having to correct or update them.

Most authorities state that if a set of requirements possesses eight basic qualities, then the
success of the development project that follows from them is likely to succeed. Figure 2.5
provides a high-level view of these qualities. The following sections present a bit more
detail.

Chapter 2 ■ Requirements—Getting the Picture40

Make Requirements Complete
To be complete, a set of requirements establishes the scope of the project and states the
functionality that must be implemented to reach this scope. Nothing is left out. To achieve
this goal, you should explore requirements so that you can see how they relate to each
other. The most ready means of exploring requirements is to employ use case scenarios.
The goal is to find gaps. Stating a set of requirements without exploring them using use
cases might result in gaps, and gaps are costly.

Make Requirements Correct
Correctness has to do with whether the requirement provides the developer with the
information needed to implement the stated feature. For this reason, as you elicit require-
ments, it is important to use different models and views of the product you want to build

What Makes a Good Requirements Specification? 41

Figure 2.5
Seek quality in requirements engineering.

to ensure that you arrive at the appropriate level of precision for the requirement. Making
a list of what you think will need to be implemented does not do the job. Instead, it is a
good idea to reduce the complexity of the product and sort out what needs to be imple-
mented. You can’t think of everything at once. You must analyze, decompose, and explore
the features of the product before you can come to understand how to build it. A require-
ment is correct when the resulting system behavior supports the feature that the require-
ment addresses. An incorrect requirement leads to system behavior that does not support
the feature that the requirement addresses. Add to this the fact that the cost of a system
increases if a problem with a requirement is discovered after a feature has been imple-
mented, for then it might be necessary to do everything over.

Necessary Requirements Only
As you will see when this book explores the narrative analysis approach to requirements,
almost any phase of requirements elicitation begins with a set of provisional statements.
What makes these statements provisional is that some of them will be eliminated. If you
do not eliminate redundancies during the requirements engineering phase of your pro-
ject, you end up dealing with them once again at the design phase. The number of prob-
lems then increases. In the requirements phase, everything is open to debate and is fairly
easily changed. In contrast, during the design phase, the complexity of the product
increases. If you have begun design work for an inessential feature, after a time you are
bound to discover your mistake. If you have developed a number of design features that
need to be reworked when you decide to remove the redundant feature, you might easily
fall behind schedule. When unnecessary requirements are not questioned during the
requirements analysis phase, they cause unnecessary complexity during the design and
construction phases.

The more you explore the relationships among objects, the more you discover how func-
tionality can be duplicated. When you have made such discoveries, you refine or eliminate
requirements. The process is iterative and incremental. In other words, you write a require-
ment as a tentative statement. You explore the requirement using different tools, such as
use cases and activity diagrams. Tools help you understand the requirement so that you
can rewrite it with greater precision.

Consider the Feasibility of a Requirement
Earlier, feasibility was discussed in the context of the scope of a game. When you include
a requirement in a requirements specification, your inclusion brings with it an associated
risk. The risk goes in the two directions mentioned in the discussion of scope: project fea-
sibility and technical feasibility. Project feasibility has to do with whether you have the
time and money needed to implement the feature. Technical feasibility concerns whether
the technology you are working with makes it possible to implement the feature. (Chapter
8, “Risk Analysis,” investigates risk analysis in detail.)

Chapter 2 ■ Requirements—Getting the Picture42

Generally, each requirement should be subjected to the following question: Can this be
implemented? In other words, do you have the time, technology, and testing capabilities
necessary to ensure that the feature is implemented responsibly and robustly? If not, then
you might want to remove the feature from the list. Risk has much to do with how you
prioritize requirements.

Requirement Priorities
Even if you have fully developed a list of requirements, you are not finished yet. You must
evaluate the list to discover, first, which requirements are on the critical path. In other
words, which requirements support features that are absolutely necessary if the game is to
be delivered? Next, you must decide what constitutes a desired but unessential feature.
Such requirements support features of the game that make it more interesting or mar-
ketable than it might be otherwise but are not necessary for it to be released. Still other
requirements can be regarded as secondary. Secondary requirements support features that
can be implemented either as an upgrade or during a subsequent release.

Secondary features possess value because they provide momentum for future develop-
ment efforts. They can also be the basis of a scheduled product upgrade. If you plan
accordingly, you can reuse requirements to implement secondary features during a subse-
quent release. You are able to begin where you left off.

Eliminate Ambiguity
Ambiguity has to do with whether a single requirement is stated clearly or whether two
(or more) requirements can be distinguished. Consider the following two statements:

The player shall be able to exit the game at any time.

The player shall be able to choose to exit the game at any time.

Are these statements the same? What are they asking for? It is not the job of the develop-
er to either have to guess or to state the obvious. If a question remains to be asked, it is the
responsibility of those who elicit the requirements to ask the question.

Verify and Validate Requirements
All requirements should be validated and verified. These activities involve using use cases
and other tools to make the requirements visible in the behavior of the product. This
behavior is what the customer expects. Even if a requirement does not strike you as some-
thing that can be shown to exist or to work properly, it is possible to set up test scenarios
in which, either directly or by inference, it can be shown that a given requirement meets
the needs of the customer.

What Makes a Good Requirements Specification? 43

n o t e

Verification in general means confirming that the system possesses a feature or requirement. Vali-
dation tries to ascertain that a feature correctly provides what the user expects or needs.

Manage Requirements for Change
Requirements must be placed under change control. (See Chapter 10, “Control Freaks and
Configuration Management,” for a detailed discussion of change control.) As you proceed
with your development effort, requirements might change. You track the changes in the
SRS by noting how you have changed requirements. In addition, you can use a require-
ments matrix. The matrix allows you to track the status of each requirement. It allows you
to see the use cases and test cases that are related to each requirement. It also allows you
to trace each requirement to design features (which Chapter 4 deals with).

More extensive issues related to managing requirements are covered in the discussion of
software configuration management. (See Chapter 10.) A number of techniques for con-
trol, storage, and retrieval of documents and source code come into play.

Engineering Requirements
In this section, you begin the work of moving through a requirements engineering process.
One theme developed throughout this book is that you develop a software system itera-
tively and incrementally. Requirements engineering works like all other activities involved
in software engineering.

Iterative Increments
When you engineer requirements, you face a number of problems. The best approach to solv-
ing these problems is to regard requirements engineering as both incremental and iterative.

In the requirements engineering phase of a project, you visit a requirement many times.
For example, you start with a statement culled from a discussion of the game design doc-
ument. You formulate the requirement and make it a tentative part of the SRS. Days later,
you might revisit the requirement and analyze it using a use case. When you examine the
requirement through the use case, you might find that its first formulation was limited or
defective. You reshape the requirement to accord with the new understanding that your
analysis reveals.

In this way, you develop the requirement both iteratively and incrementally. Visited at dif-
ferent stages of the requirements effort, the requirement is examined iteratively. Examined
and changed in the light of a growing body of knowledge, the requirement is reformulated
incrementally. You engage in the two activities together to gradually refine the requirement.

Chapter 2 ■ Requirements—Getting the Picture44

Cycles of Requirements Development
The development of a set of requirements proceeds incrementally and iteratively. The
approach that this text proposes involves four increments—which can be called phases—
and any number of iterations. The four phases are open to adaptation and are not offered
as a methodology. (See Chapter 16, “Process Improvement.”) The phases reflect a model
used by many companies and presented in many requirements engineering texts. Table 2.2
presents the phases with brief descriptions. Figure 2.6 indicates how they might be viewed
as a process flow.

The elicitation phase begins with the layout of the SRS, the review of the game narrative,
and the incorporation of concepts or elements from a mod. The IEEE SRS template is
good to use because it provides a convenient way to centralize the activity of the require-
ments engineering effort. Use cases can be appended to the requirements document. A
matrix can be also be appended, and through the matrix, requirements and uses cases can
be traced to the test plan.

Next comes the exploration phase, which involves developing candidate use cases and
requirements. Using a task-object-remarks table, you can find relationships among
objects, requirements, and use cases that help you eliminate unnecessary requirements
and prioritize those that remain.

During the analysis phase, you seek to develop the details of requirements and to discov-
er gaps that your initial pass through the candidate lists might have left open. This phase
allows you to develop use cases that are detailed enough to show you how to test require-
ments. As you prepare test material, you can also establish criteria to use to validate
requirements.

Engineering Requirements 45

Table 2.2 Requirements Engineering Phases

Phase Description

Elicitation Gather information about the requirements from the game design document
and other sources. Use information drawn from a game that provides com-
ponents that are to be brought into the current effort. Create a first draft of
the software requirements specification.

Exploration Create a candidate list of use cases. Create an initial list of requirements. The
first use case to be created should be the game context use case. The next case
should be the sixty-second scenario. Update the SRS.

Analysis Develop use cases based on the candidate list. Start with the list of
requirements and test for completeness and validity. Add use cases and
requirements. Generate a test case for each use case.

Refinement Prioritize the requirements you generate. Create a requirements matrix. Refine
requirements language. Refine test cases. Update the SRS.

In the refinement phase, you determine the priorities and dependencies of your use cases
and requirements. You baseline the requirements and use cases for inclusion in the soft-
ware requirements specification, and you place the information you possess in a require-
ments traceability matrix.

Eliciting Requirements
Figure 2.7 provides an overview of the activities that are involved in eliciting requirements.

Chapter 2 ■ Requirements—Getting the Picture46

Figure 2.6
Requirements engineering iterates through different types of activity.

Figure 2.7
Explore requirements using different approaches.

When you elicit requirements, your main tasks are to lay out the requirements document and
to begin bringing forward any components from previous games that you think you want to
use. Further, you analyze the game design document to discover the scope of the game.

The Requirements Specification Document
The most essential artifact involved in the requirements engineering effort is the SRS.
This, together with use cases, is usually the primary deliverable of the requirements analy-
sis phase of the software engineering effort. Although it is the end product, it is also a doc-
ument that you first draft at the start of the requirements phase. As you work through the
requirements engineering process, you rewrite this document and use it as the central
focus of your development effort.

This section examines the SRS document in detail. (Appendix D provides a sample SRS.)
It begins with an overview of the steps used to develop an SRS. These steps are based on
the process put in place for development of Ankh.

The SRS Template

The first phase of activity shown in Figure 2.7 involves laying out the SRS. To lay out the
SRS, you begin with a template, preferably one that you base on the IEEE Standard 830.
Reasons to use the IEEE template are that it provides the most universally acknowledged
template for software requirements specification, and is also open to modification. The
description that the IEEE provides of the template continues for several pages, and one
thing that you discover as you read it is that the IEEE allows you to use it as you deem nec-
essary. Generally, the main requirement is that you preserve the general form. The tem-
plate provides the following structure of information:

Table of contents

Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References

1.5 Overview

Overall description

2.1 Product perspective

2.2 Product functions

Eliciting Requirements 47

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

Specific requirements

3.1 External interface requirements

3.1.1 User interfaces

3.1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communications interfaces

3.2 Functional requirements

3.2.1 Subsystem A name

3.2.1.1 Requirement statement—

3.2.1.2 Requirement statement—

3.2.2 Subsystem B name

3.2.21.2 Requirement statement—

3.2.21.2 Requirement statement—

3.3 Performance requirements

3.2.1 Standards

3.2.1 Hardware limitations

3.4 Design constraints

3.2.1 Availability

3.2.1 Security

3.2.1 Maintainability

3.6 Other requirements

Appendixes

Index

Table 2.3 reviews the sections of the SRS. You can find an example of the SRS for Ankh in
Appendix D. Generally, every project should customize the template to eliminate parts
that are not needed. Ignore parts of the template that have no applicability to your devel-
opment style.

Chapter 2 ■ Requirements—Getting the Picture48

Eliciting Requirements 49

Table 2.3 Topics of the SRS Specifically Described

Section Description*

Table of contents If you set up your document as a FrameMaker, Word, or
WordPerfect document, this will be taken care of
automatically.

Introduction purpose State why the product is to be created. In other words, the
product furthers a given product line, seeks to explore a
given type of technology, provides a given service, or
exploits a given market sector.

Scope State the general constraints that apply to the system. For
example, the game is an RPG for a standalone personal
computer with a single-user interface.

Definitions, acronyms, Provide a heading and a brief introductory sentence; then
and abbreviations make a definition list of every technical term, abbreviation,

or acronym you use in your document. Add to this as you
go. It is a good idea to put the terms in bold and to
alphabetize them.

References At a bare minimum, list references to the design document,
the test plan, the project plan, and the game design docu-
ment. What is a reference? Basically, it is the document
name, the document number, and the document date. The
date might not be relevant, but you should always seek to
identify documents that are current with the requirements.
You can supplement the references with hyperlinks.

Overview This can consist of a narrative, a context diagram, or other
elements. You can use this section in a number of ways. For
example, if you use a context diagram, you can show general
subsystems. Provide a general system view of the product
that anticipates the details you offer in section 3, “Specific
requirements.” Make reference to section 3.

Overall description A document division heading that the IEEE provides. Use it
if you need it.

Product perspective In this section, you explain, for example, that the game is
based on a game design document. (In this case, it’s the
game design document for Ankh). You explain the genre of
the game—an RPG for standalone personal computer
users, for example. If the game is a mod, you identify and
explain the extent to which its components or conceptual
framework originates with the mod. You also briefly ex-
plain how the game works. For example, a single player
guides a character through seven levels of combat to seek
a final goal. From this section, the reader gains a sense of
the derivation, intent, and interactive goals of the product.

(continued on next page)

Chapter 2 ■ Requirements—Getting the Picture50

Table 2.3 Topics of the SRS Specifically Described (continued)

Section Description*

Product functions Break the system into its general subsystems, if possible.
The subsystems contain classes. The classes provide ser-
vices, such as Graphical User Interface (GUI) interactivity,
Artificial Intelligence (AI), and file save capabilities.
Generally, then, you report that the system has anywhere
from a few to, say, a dozen basic types of functionality, and
you label these types of functionality in anticipation of
your high-level system diagram.

User characteristics Profile the player of the game. For example, the game is
designed for players in their teens or older. The levels of
complexity range from rank beginner to advanced. If you
think that players of a given game will like this one, then
draw the comparison here. If you have access to a market-
ing document or a game design document, then you can
draw on it to fill out this section.

Constraints State what you know about the limitations that apply to
the game. For example, it is a single-player game that can-
not be extended to multiplayer or Internet use. The game
should not be expected to run satisfactorily on computers
with less than a given performance rating or, on the other
hand, will run best on computers that meet specific perfor-
mance ratings.

Assumptions and dependencies Explain, for instance, that development of the system
depends on the use of DirectX and Win32 functions.
Explain, for example, that you are using a given installation
package.

Specific requirements A document division heading that the IEEE provides. Use it
if you need it.

External interface requirements A document division heading that the IEEE provides. Use it
if you need it.

User interfaces User interfaces include interactions (for a PC game) with
the keyboard, a mouse, or a joy stick (to name a few). User
interfaces also include screens or menus. You can point to
an appendix for examples of interfaces. Another approach
is to provide a reference to the game design document,
where screen shots or mockups might be available.

Hardware interfaces State whether you need a modem, a joy stick, or anything
else to play the game. Identify the standard, if any, that
applies to the device. If the system uses stereo sound, say
so here. If it plays movies, say that, also.

Software interfaces State whether the game depends on other software and
state the dependency specifically. For instance, the game
requires Windows XP.

Eliciting Requirements 51

Section Description*

Communications interfaces State here if the game requires a modem or other devices.
You can also specify minimum transfer rates.

Functional requirements A document division heading that the IEEE provides.
Use it if you need it.

Subsystem name Break up requirements according to the subsystem or com-
ponent to which they apply. You might have to wait a
while before you can accomplish this task. It is usually not
possible until you have created a high-level design context
diagram. When you do this, create abbreviations or codes
for each subsystem and prefix them to the requirements
number.

Requirement statement Use statements that specify the requirements. You might
want to vary this approach, however. As shown in the SRS
in Appendix D, state each requirement and number it. Do
not try to list, for example, classes or objects. Provide use
cases and other artifacts to supplement requirements
statements. Hundreds of requirements statements might
appear under a given subsystem. For this reason, you’ll find
that the IEEE form of specification inevitably becomes dis-
proportionately large in section 3, where the functional
requirements appear.

Performance requirements State the constraints that apply to your game. Performance
relates to the performance of the software. If you have set
specific requirements for how fast levels should take to
appear, then you can state them here.

Standards If you are developing the game for export or introduction
into a specific market, then state the specific standards
with which the game must comply.

Hardware limitations State the hardware limitations that apply to your game.
State at least the minimum system requirements. This
includes the performance of the machine, the graphics
card, and Internet capabilities.

Design constraints A document division heading that the IEEE provides. Use it
if you need it.

Availability Availability for a standalone computer that runs on a PC is
a fairly straightforward proposition, so you need to say
only that the game is available to the system user at all
times. On the other hand, if the game has Internet depen-
dencies and load or operational factors limit the time the
user can access the network, then you can state such limi-
tations here.

Security State whether the system includes security measures, such as
passwords, and whether the system presents security risks.

(continued on next page)

Using the SRS Template

The way you set up your requirements document depends on the development style you
adopt. It’s good to use the template as a starting point. Section 3 is the most important
part of the template, and as mentioned before, this section is used to list requirements
statements. An appendix is then used to state corresponding use cases for many of the
requirements listed in section 3. Examine the SRS in Appendix D for an example of how
to create the primary document.

Using the Design Document for the Game
The documentation for your project depends on how your organization or group sets up
your game development project. (See Chapter 18, “Documentation—Learning How to
Learn,” for more discussion on this topic.) Generally, before the engineering effort begins,
the game designers finalize the game design document. The game design document is not
an engineering document. Do not confuse it with the SRS. For a sample of a game design
document, turn to Appendix D or see the documents on the CD.

It is assumed that you have a description of the game from which you can extract much
of the basic information about the game. This information begins with two narratives.
One tells about the game in a general way. This is the game summary. The other tells about
what it is like to play the game. This is a sixty-seconds-of-play sequence. Until you have
these two items in place, you have no way to establish the scope of the requirements effort.
When you cannot establish the scope, as mentioned before, you cannot know when you
have finished your task.

Chapter 2 ■ Requirements—Getting the Picture52

Table 2.3 Topics of the SRS Specifically Described (continued)

Section Description*

Maintainability State whether and how the system can be modified—
upgraded or fixed.

Other requirements If anything outside the previous exhaustive litany occurs to
you, put it here.

Appendixes You can include appendixes for use cases and a require-
ments matrix.

Index This is optional unless you have a technical writer around
who is an expert at generating indexes. Word, WordPerfect,
and FrameMaker make it easy for you to create an index
even if you are not a technical writer.

*The template here is based on the version of the IEEE template developed by Hans van Vliet, Software Engineering
Principles and Practices, Second Edition (New York: John Wiley & Sons, 2000), pp. 224–231.

The Game Summary

The game summary is usually a part of the game design document. It might begin the
document. Its length varies from a few paragraphs to many pages. It describes the game
as a product: theme, objective of play, audience, number of levels (if applicable), type,
number of players, strategic points, and so on. From the game summary, you derive a clear
concept of what you will have to do, generally, to create the game.

As an example of a game summary, consider a paragraph from the game design document
for Ankh drafted by designer John Rose:

Ankh follows the quest for vengeance undertaken by Sekhem, an Egyptian
warrior determined to destroy those who defeated and killed his father. The
game focuses on the battles fought by Sekhem and his party of rebel warriors
on their journey to the Egyptian capital of Thebes. These conflicts escalate
from skirmishes to bloody clashes as the band of adventurers cross the desert
sands of ancient Egypt. Along the way, additional characters join the band
and new enemies attempt to stop Sekhem’s advance. Interaction involves tac-
tical control of the small army during Ankh’s many mêlées, including strate-
gic maneuvers, hand-to-hand combat, and spell casting.

The player is faced with winning battle after glorious battle, driving Sekhem
toward his final confrontation with Uheset, the bloodthirsty Queen of Egypt.
Conflicts take place in real time, stressing the tactical and chaotic aspect of
warfare. Each level possesses its own ambiance and strategy, from the barren
plains of Thebes to the lush splendor of the Dashur gardens.

The graphics of Ankh illustrate the varied and stylish architecture and land-
scapes of ancient Egypt. The game’s music varies from haunting chants to
blood-quickening battle drums. All aspects of the game’s art and sound
immerse the player in the primal rage of ancient warfare.

What you derive from this passage begins with looking closely at the nouns. Note that you
see such terms as battle, player, Sekhem, additional characters, enemies, journey, tactical
control, strategic maneuvers, chants, drums, music, and sound. Working with this list, you
can begin to identify the general scope of the game. For example, the game has a player,
not players, and it has a single main character, Sekhem. Additional characters are identi-
fied as enemies. There is a journey, which implies the existence of several scenes in which
different battles take place. In every battle, players scheme and maneuver to achieve vic-
tory. Note likewise that the game offers chants, sounds, and music. And it is evident that
there is a winning battle.

The pattern of the game might be stated explicitly. You might recognize this as an RPG or
a strategy game. You might also begin to think of many features of games you have already

Eliciting Requirements 53

developed that help you understand from the start how this game might be laid out. For
example, you might envision real-time or turn-based actions. Such notions possess great
value, but at this point, it remains important to resist talking about how you intend to
implement the game. The main goal is to derive an idea of what the general scope of the
game is. The outer scope should already be falling into place.

The Play Narrative

If the general game description helps you establish the outer scope, the sixty-seconds-of-
play narrative helps you establish the inner scope. This narrative is a part of most game
design documents, but it might be disguised in one way or another. For instance, you
might have to extract it from the game description. Wherever you find it, you will be able
to recognize it because it describes what it is like to play the game. Add to this that what
it describes has a specific beginning, middle, and end (which Aristotle said any real story
needs to have before it can be called a real story). If you have to create a sixty-seconds-of-
play narrative for yourself, find someone who knows the game design and work with this
person to envision a set of specific gameplay events.

As an example of a sixty-seconds-of-play narrative, consider a passage from the game
design document for Ankh authored by programmers Ben Vinson and Carlos Villar:

When the sequence begins, the narrator reads the back story as the text of the
story scrolls from the top to the bottom of the screen. General theme draw-
ings appear in the background of the text. At the conclusion of back story dis-
play, the scrolling words and screen fade and the level-one world appears.
This is Alexandria. Sehkem walks in from the edge of the map. As he walks,
four guards appear ahead of him, blocking the way. The guards declare,
“Give up your money!” At this point, the screen dims and the objective of the
challenge appears. The screen shows words in the foreground. The message
is, “Defeat all enemies.” Music starts playing. The reader can hear the words
read. The screen lasts two seconds before it begins to fade. Within five sec-
onds, the screen has disappeared and the player again sees Sekhem. The
guards approach. They bear short spears and shields. The guards jab with
spears. Sekhem must engage each of the guards and kill him. If Sehkem does
nothing, he is killed. (If you click on a guard, the character attacks that
guard. If you click the right button, Sehkem moves or attacks. If you click the
left button, you select.) Chases and attacks follow. A sound accompanies
each slash of Sekhem’s sword. Sekhem kills all the guards. When each guard
is killed, a quiet death cry is heard. When the last guard is dead, the current
level fades. The game auto-saves every twenty seconds.

From the sixty-seconds-of-play narrative, you can begin to establish a fairly precise defi-
nition of the inner scope of the game. You can identify specific actions. For example, the

Chapter 2 ■ Requirements—Getting the Picture54

main character appears in a setting and faces several enemies. Each enemy approaches, and
the player must manipulate the character and kill the enemy. Music plays in the background,
and before the battle begins, a narrative appears to tell the player the story leading to the
scene. You also learn that to conduct battle, the player clicks the mouse, repositioning the
cursor to move the character.

Using Mod Requirements
The title of this section might be a bit difficult to understand. It does not mean that you
should go off to a file cabinet or some remote directory on your disk and retrieve a doc-
ument in which you have made requirements for some components of a game you now
want to use as the basis of a new game. On the other hand, you can reuse old games. With
respect to the requirements effort, what you have done before can benefit you now
because it provides you with a knowledge pattern. To use old components effectively, a few
precautions are necessary:

■ Do not cut and paste. This is not elicitation. It is cutting and pasting. Always start
a new SRS and write it without cutting and pasting. Use the old document (if you
have one) as a kind of template or reference.

■ Start with the view you have of the new game. Carry this view back to the old
game, somewhat as you might carry a flashlight into a dark place. What your new
game allows you to see is legitimate.

■ View critically each notion you gain from a legacy specification. Evaluate the
worth of the old specification using ideas you derive from the context of your
new game.

The requirements you will find most useful in a legacy game are those that pertain to the
specification of outer-scope game engine features and outer-scope game genre features.
For example, Ankh is a limited role-playing game with some strategy and action features.
The game design document says that it will have a dialogue form of interaction. You
know, then, that you will be bringing classes forward from a legacy game that has this
same feature. You will not modify the requirements for this feature to any great extent
because you don’t need to. The strength of the game does not lie in the features of an exist-
ing game but rather in features added to the inner scope of the new game.

Preliminaries of Use Case Exploration
Use cases make it possible for you to successfully engineer requirements. Although this
book prescribes no fixed method, it can offer a few points concerning how your effort can
benefit from using use cases. The first point is that use cases should be regarded as tools
or means, not as ends. If you employ use cases as tools, you use them whenever you
require a convenient way to explore a problematic aspect of the system you are develop-
ing. You can also make use cases a formal part of your SRS, replacing the traditional

Eliciting Requirements 55

statements with scenarios of use. Alternatively, you can adopt the approach provided here,
one of listing the requirements in section 3 of the SRS and then including an appendix in
which you provide use cases to supplement the stated requirements. Whatever approach you
adopt, creating use cases allows you a convenient way to formally explore requirements.

A Narrative Template for Use Cases

A narrative use case is best described as a paragraph relating events that have a beginning,
a middle, and an end. The beginning is sometimes called the trigger. The end is sometimes
called the goal or objective. You can develop a template for a narrative use case as a docu-
ment with headers, a table, or even a spreadsheet. (You can use SmartDraw—see Appendix
D.) The narrative form of a use case should be characteristic of the initial iterations of your
requirements-engineering effort, when you seek to establish the outer scope and play con-
text of the game. Figure 2.8 provides a basic template for a narrative use case. The template
has been filled in for demonstration purposes.

Chapter 2 ■ Requirements—Getting the Picture56

Figure 2.8
Use narrative use cases for preliminary exploration.

A Scenario Template for Use Cases

A use case that includes a numbered scenario serves best for exploring functional require-
ments. The major difference between a narrative use case and a scenario use case is that
the scenario divides the narrative into a numbered list and seeks to explore the actions
involved in greater detail. Because this form of use case allows you to track exceptional
and alternate courses of action, it is especially suited for tracing the level of detail that is
necessary for the full exploration of functional requirements. Figure 2.9 shows a use case
template for a numbered scenario.

Eliciting Requirements 57

Figure 2.9
Employer scenario use case for requirements analysis and exploration.

Practices and Explanations

In Figures 2.8 and 2.9, the main course of action is the course of action that usually occurs.
The alternate courses of action are those that diverge from the central course of action but
do not represent failures of the game. The exceptional courses of action provide informa-
tion that proves useful during test scenarios. You can relate use cases to each other through
generalization or specialization (include) relationships and composition (extend) rela-
tionships. Use cases usually document less than 15 steps. If they become longer, you might
want to reduce their scope and create more specific use cases. One use case can use one or
more other use cases. If you want to indicate a connection, just name the use case in the
step and underline it for emphasis.

Approaches to Using Use Cases

To expand a bit on the way that the use case templates featured in Figures 2.8 and 2.9
might be used, note that you have options. If you do not know what requirement to state,
you can begin by imaging a context of. You can then relate the sequence of actions you
think might unfold in this context as a use case. The use case helps you identify how the
system must function if it is to support the sequence of actions.

You can follow inductive or deductive approaches to requirements discovery and refine-
ment. The use case can serve as an inductive approach to requirements discovery if you
collect details and from the details discover a requirement. You can also follow a deduc-
tive approach. In this instance, you might begin with a requirements statement and then
write the use case as a way of seeing whether the requirement fits into a context of use the
system provides. If it does, then you confirm the need for the requirement.

One of the central purposes of requirements exploration and refinement is to teach your-
self what it is that you want to build. You must learn about the product. If completing use
cases seems tedious, remember that every time a use case allows you to alter the wording
of a requirement (if you use the approach offered here) or to spot a detail you did not at
first recognize, it has done its job. The purpose of a use case is to force you to expand and
refine your understanding of the system.

Exploration
Requirements exploration begins with trying to name the features that you must support.
Your starting places are the narratives you have of the game, the many details about the

Chapter 2 ■ Requirements—Getting the Picture58

game that the game specification document includes, and specifications from any legacy
game that you want to use as the basis of the new game. Other sources of information
might be at hand, of course. For example, you might turn to an expert user of the type of
game you want to develop, or you might bring in notions that are wholly new and untried.
During exploration, you are doing precisely what the word implies: You are looking
around, investigating, prodding, trying to see in every candidate requirement whether you
have found something you want to make a part of your game. Figure 2.10 illustrates some
of your primary exploration tasks.

Using Use Case Diagrams and Scenarios
One of the first use cases to develop for a game is called the context use case. This use case
more or less reflects the activity you find in the game summary portion of the game
design document, but it excludes as much detail as possible. The goal of the context use
case (represented here with a diagram) is to show the outer scope of the game. Other use
cases can then be created to explore the inner scope of the game.

Figure 2.11 shows the context use case developed from a combination of the details pro-
vided in the game design document and the summary narrative given earlier. As you can
see, the use case diagram conveniently summarizes the major occasions of player interac-
tion with the game. It shows the start and end of the game. It also shows that the player
can quit the game and restart it.

Exploration 59

Figure 2.10
Exploration involves use cases and candidate requirements.

The Sixty-Seconds-of-Play Use Case Diagram
Whereas you can establish the outer scope of the game with the game context use case dia-
gram, you can establish the inner scope by creating a use case for the sixty-seconds-of-play
narrative. Figure 2.12 shows one use case of several that you can create to capture the
events given by sixty seconds of play. Note that even though the use case is selective and
still fairly general in its detail, it still begins at a much more in-depth level than the game
context diagram. You can unfold a dozen such use cases from the context diagram with
relative ease.

Chapter 2 ■ Requirements—Getting the Picture60

Figure 2.11
A use case context diagram helps scope the game.

Making a Starting Specification List
From the start of your project, develop both use cases and a requirements list. Generally,
developers either list requirements or use cases. It’s best if you do both. You can begin list-
ing your requirements in section 3 of the SRS, and you can record use cases in an appen-
dix of the SRS. You can also maintain this as a separate document that you fold into the
SRS as an appendix later on.

Exploration 61

Figure 2.12
A use case diagram summarizes sixty seconds of play.

You can begin making requirements statements by making statements about what the sys-
tem should do. Obviously, you can interview people. You can read the game design docu-
ment over and over again. You can play the game you want to modify. Whatever you do,
you formulate statements about what the game should do. You then begin a process of
refining these statements. You must test to see whether the statements make sense and are
complete. Use cases enable you to expand basic statements because they force you to place
the basic statement in contexts of use. The context of use shows you whether the state-
ment is valid or whether it implies that other things need to happen for it to occur.

When you begin to create sentences for your requirements document, word them in the
active voice, use the verb “shall,” and try to make them pertain to only one feature at a
time. Try to use only two subjects—player (user) or system (software). Avoid wording that
conveys assumptions about implementation.

Here are a few requirements that might be generated from the previous use cases:

<Req_1> The software shall have the capability to save the game state from
a menu.

<Req_2> The software shall have the capability to return to a saved state by
loading a file.

<Req_3> The software shall have the capability to associate user profiles
with saved game files.

Notice how making a statement about the functionality of the system is a combination of
analysis and guessing. The point is that you have to begin somewhere. If you write your
statement as a requirement, you are suddenly in the position to begin refining the state-
ment. The important thing is to formally make the statement.

After you make the statement, the hard part is over. Then refinement begins. You can
make refinement easier if you take a little care up front about how you make your state-
ments. There are a few problems with the statements presented earlier. For example, in
requirement 1, the expression “from a menu” assumes implementation details. Likewise,
“loading a file” in requirement 2 designates only a capability and yet calls for using a file.
Requirement 2 also implies using a file. You can express the requirements more actively if
you explicitly mention the player. Here are slightly reworded versions of the three state-
ments given earlier:

<Req_1> The player shall have the capability to save the game state.

<Req_2>The software shall have the capability to return to a saved state by
loading saved information about the state.

<Req_3> The software shall have the capability to associate user profiles
with saved game information.

Chapter 2 ■ Requirements—Getting the Picture62

These three candidate requirements are tentative. They are a first go at something that
requires much work to refine. The next step for each requirement might be to create a use
case to test the statement in a context of use. You begin with the narratives, find statements
that summarize what you think the system should do, generate use cases to test the state-
ments, and at last arrive at a full set of statements to describe the functionality that you
observe. At first, the process is slow and painful, but as you fall into a pattern of work, you
pick up speed.

Finding Potential Class Names
From the start, the assumption is that you are using object-oriented programming tech-
niques. For this reason, you will be using classes to encapsulate the behavior your
requirements specify. You should try to name classes during the requirements exploration
phase. This chapter provides a few ways to do this. Classes are generic names you apply to
the services you want to create. The sooner you can begin thinking about general ways to
name collections of functionality, the better. On the other hand, it is important to keep in
mind that the purpose of requirements exploration is to explore requirements, not to start
the design effort. (See Chapter 4 for detailed discussions of design.)

Two approaches to discovering candidate classes are as follows:

■ Analyze narratives for nouns that might qualify as class names.

■ Search candidate requirements for prospective classes. In this case, it is assumed
that you might be bringing legacy material into play.

You have already glimpsed what is involved in picking through a narrative to find nouns.
After you have created a list of nouns, you can proceed to analyze the list to discover
whether the nouns can be generalized. For example, if you find nouns such as priest,
guard, minstrel, dancer, and merchant, you can probably arrive without too much trouble
on a summary noun, such as character. You are then in a position to imagine contexts in
which a character can be used. This helps you with both your requirement statement and
a tentative name for a class.

In the approach shown here, both the requirements statement and the narrative analysis
approach are used to find candidate classes. You can begin naming classes fairly early in
the game. When you generate class names from requirements statements, the best
approach is to use a TOR chart to explore the initial usefulness of the names.

Using a TOR Chart
A TOR chart provides an immediate way to explore the validity of a candidate require-
ment. Figure 2.13 illustrates a TOR chart for two of the previous requirements. The con-
cepts behind a TOR chart are pretty simple. In the left column, you can write the require-
ment in full or substitute the number with which you designate the requirement. In the

Exploration 63

Task column, state the requirement as a task. In other words, anticipate the basic function
that the requirement seems to call for. What do you need to accomplish?

The next column might seem a little odd. As has been noted, it’s good to push ahead with
object-oriented thinking as early as possible. For this reason, there is a tentative Objects
column. You can use this column as an opportunity to try to name the collection of func-
tionality that you think will answer your requirement. In Figure 2.13, for example, the
requirement to save the game might be met with an object called SaveGame. This need
not be anything definite at this point, but you can still take a first shot at creating a name.

You can go even further. In the Remarks column, you can say what you think the tenta-
tively named object might accomplish relative to the task you have named.

When you create the TOR chart, everything is flexible. Even if you feel as though you are
making up names and classes, you are still moving in the right direction.

Analysis
Analysis is sometimes used to designate the entire process of requirements engineering.
Here, analysis is used to designate the activity of subjecting candidate requirements to
fairly intensive procedures that reveal weaknesses, redundancies, and gaps. The primary
artifacts of this phase of activity are use case diagrams, use case scenarios, and activity dia-
grams. If you have begun work on a TOR chart, it might also be a deliverable of this phase.
The emphasis, however, should be on perfecting the requirements though use cases and
activity diagrams. Figure 2.14 reviews activities of analysis.

Chapter 2 ■ Requirements—Getting the Picture64

Figure 2.13
A TOR chart allows you to tentatively name requirements and candidate classes.

Using Use Cases to Analyze Actions
You analyze a requirement after you have initially formulated it based on the information
you have elicited during the first phase of requirements engineering. Analysis of a require-
ment involves searching the wording of the requirement to see whether it contains the
information the developers require to construct the feature that the requirement specifies.
Analysis also involves examining whether the requirement depends on other require-
ments or should be broken down into further requirements.

One approach to analyzing a requirement is to place it in the context of play. You can then
break down the context of play into a sequence of actions, and with the sequence of
actions, you can generate a use case. At times, you might find that the context of play has
a number of alternative paths. One path occurs most often. Analysts refer to this central
path as the basic course of events or happy path. Analysts refer to other paths as alternate
and exceptional paths. An alternate path is one that differs from the basic course of events
but presents no problems. An exceptional path is a path in which a problem occurs.
Exceptional paths are essential in the development of test cases.

To proceed with the analysis, you start with a use case scenario and work through the
sequence of events that the scenario captures. As you go, your goal is to discover in what
ways the requirement might imply dependencies, represent redundancies, inadequately
cover the actions present, or fail to make sense. If the requirement does not cover the
action, others should. If others do not, you have found a gap. Consider the scenario illus-
trated in Figure 2.15.

Analysis 65

Figure 2.14
Analysis refines requirements and explores relations.

In this case, you are analyzing requirements that specify features that allow the user to save
the state of the game and play it back (listed above as requirements 1 and 2). The scenario
allows you to view each requirement in a context of use. The scenario traces a series of
events from beginning to end. When you trace the series of events, you are seeking both
to confirm the need of the requirement and to see whether it covers the actions listed.
Does the requirement need to be reworded to cover the actions in the scenario? What
other requirements are necessary? Are the other requirements specified? Is a requirement
missing? Does the requirement still make sense now that you have placed it in a scenario
in which it has been conceptually tested?

Although most people prefer to write scenarios, some people use diagrams to start things
out. Diagrams allow you to capture actions you think might belong to the scenario with-
out having to figure out from the start exactly when they occur. Figure 2.16 shows a use
case diagram with these events.

Chapter 2 ■ Requirements—Getting the Picture66

Figure 2.15
A use case scenario traces a sequence of events.

Let’s consider again the wording of one of the requirements:

The player shall be able to replay game actions.

Using the scenario in Figure 2.15 and the diagram in Figure 2.16, you can extract several
angles of functionality from the wording of the requirement. A few are as follows:

■ The player interacts with the view of the game.

■ The player plays the game according to the player’s profile.

■ The system records the player’s play.

■ The system allows information about actions to be stored.

■ The system coordinates activities involved in stopping, starting, and replaying the
action.

Analysis 67

Figure 2.16
Use a use case diagram to explore relations.

As it develops a requirement, the development team does not attempt to name the spe-
cific interface features that support the requirement. Rather, the point of the analysis is to
investigate what type of behavior must be supported and to examine whether the named
requirement does, indeed, have a context of use and accounts for this use without having
to be reworded. It also allows you to see whether it’s necessary to add requirements.
Likewise, if you were to find that two requirements generate the same scenario, then you
might want to eliminate one of the requirements.

Activity Diagrams
If you cannot understand how a sequence of events unfolds, you can use an activity dia-
gram to supplement a use case. The activity diagram allows you to view how action flows
from one event to another. The activity diagram is especially useful if you want to capture
simultaneous actions—something that a regular flow chart does not allow you to do.
(Chapter 3 provides a detailed discussion of action diagrams.) Figure 2.17 shows how the
events represented in the use case shown in Figure 2.16 can be illustrated with an action
diagram. As simple as it is, the diagram forces you to specifically identify the order of the
actions that make up the scenario.

Refinement, Verification, and Validation
Refinement involves tuning the requirements list so that dependencies and priorities
become visible. Likewise, refinement is closely associated with verifying and validating
requirements. At this point, you can also put in place some formal measures for baselin-
ing requirements. A requirements matrix is a handy tool for keeping track of most of the
information that emerges during the refinement phase.

When you verify requirements, you check to make certain that you are building the sys-
tem in the right way. When you validate requirements, you check to make certain the
requirements specification thoroughly addresses the requirements that the customers
have presented. If you view the game as a problem statement, validation ensures that you
have comprehensively addressed the scope of the problem you have decided to solve.
Figure 2.18 illustrates the refinement phase.

Chapter 2 ■ Requirements—Getting the Picture68

Figure 2.17
You can use an activity diagram to analyze the flow of use case events.

It is good engineering practice to validate and verify requirements before proceeding to
the next phase of system development, which is system design. When you have developed
the requirements to the point that you think they represent a complete and accurate
description of the problem, you establish your first baseline for the SRS. A baseline is a
controlled version of the document. After establishing the first baseline, you update the
requirements document only through formal measures, such as group reviews or individ-
ual change requests.

Given the baseline of the SRS, you can develop a test plan. The test plan is a separate doc-
ument that has its own set of priorities and complexities. This book examines test plans
in Chapter 11, “Evident Evil—The Art of Testing.” (You can also see the example docu-
ments on the CD.) In the test plan, you show how you will test the functionality you have
specified in the SRS. Two key components of a test plan are test cases and a requirements
matrix. The test case documents how you intend to verify and validate requirements. The
requirements matrix ensures that you can trace the work you perform as you implement
and test the functionality that your requirements specify.

Using Use Cases for Tests
At this point, there is no need to extensively discuss test cases for requirements, for
Chapter 11 discusses testing in detail. However, you should develop at least one test case
for each requirement listed in the SRS. The exceptional and alternate paths discussed ear-
lier in this chapter are important parts of test scenarios. Although the basis for the test
case can be the basic course of events given in the use case you develop to analyze the
requirements, you must develop at least one exceptional course of events for each basic
course of events.

Each requirement you list in the SRS should have a reference to a test case. To accomplish
this, include a requirements matrix as an appendix to the SRS.

Refinement, Verification, and Validation 69

Figure 2.18
Refinement involves verification and validation.

Using a Requirements Matrix
You can append a requirements matrix to the SRS. A requirements matrix is a tabular rep-
resentation of the requirements you name in the SRS. Figure 2.19 illustrates a sample
requirements matrix. Notice how the matrix ties together most of the artifacts created
during the requirements engineering phase of the software development process. (See
Appendix D or the CD for a complete example.) You see the requirements number, so you
can trace information to the SRS. On the other hand, you see a test case number, so you
can trace information to the test plan. If you have an appendix in the SRS that shows use
cases, the matrix provides use case references. On the other hand, the list of classes points
to the TOR chart. You can expand the matrix if you want to include other information.
Two additional columns might list the names of code files and design stripes. (See Chapter
4.) Also, if you hyperlink the cells of the matrix, you can more easily access named items.

Refining Specification Dependencies
Notice the columns in Figure 2.19. One column is titled Stat (for Status). A second col-
umn is titled Priority. These two column titles affect refining specifications. Although the
status of a requirement has more to do with managing the project than with refining the
requirement for implementation, it remains important to include discussion of it at this
point to prepare for future development efforts. The status of a requirement is the extent
to which the functionality that it specifies has been constructed.

When you consider status, you also need to consider what priority the requirement has
during the construction phase of development. Generally, there are three ways to rate or set
the priority for a requirement. Table 2.4 describes these rankings. As shown in the table,
these rankings can be coded as numbers. For example, Essential is coded as priority 1.

One fairly heavy factor in determining the priority of a requirement is whether other
requirements depend on it. If a first requirement depends on a second, then the
construction of the functionality for second must be completed before the first can be
completed.

Chapter 2 ■ Requirements—Getting the Picture70

Figure 2.19
Include a requirements matrix in an SRS appendix.

Anticipating and Managing Change
Requirements change during the development process. Changes present challenges if you
are not ready for them. To control changes, you can use the following tools and strategies:

■ Change procedures. Put in place a set of rules to follow every time you change the
wording of the requirements document.

■ Review. At regular intervals, review suggestions for changes. Make no changes to
the baselined document unless you have reviewed the changes. (Chapter 15, “Team
Work,” provides discussion of how to do reviews.)

■ Documentation control. Place the requirements in the same control system you
use for your code.

■ Updating the matrix. Continue to update the matrix so that you can easily move
from the requirements specification to other documents.

The sections that follow review some approaches to these activities. Chapter 10 discusses
these topics in the context of software configuration management.

Change Procedures and Reviews
You can easily establish procedures for change with a single document containing a num-
bered list. You tell the members of the team what to do when they want to make changes.
In addition, it is appropriate to designate a change control coordinator. This is someone
who has responsibility for knowing document ownership, numbering conventions, review
schedules, and procedures for submitting requests for change.

Reviews are the most convenient way for a small team to exercise change control proce-
dures. Generally, each artifact in a requirements effort is assigned to a given individual.
The person responsible for the artifact develops it in accordance with the findings of a

Anticipating and Managing Change 71

Table 2.4 Priorities for Requirements

Priority Description

Essential This type of requirement is considered a part of the critical path of the product.
If it is not completed, nothing else can be completed.

Desired This type of requirement is not considered a part of the critical path. Often, such
a requirement is associated with nonfunctional features. If the requirement is
not a nonfunctional feature, it has no dependencies and could be dropped
without creating difficulties.

Secondary This type of requirement is something that you discover has no bearing on the
critical path of the project and does not add much that is important to the pro-
duct. It is so inessential, in fact, that you try to implement it only if you have
time to spare after all essential and desired functionality are implemented.

team. At scheduled intervals, the team reviews the work and approves the changes that
have accumulated since the previous review. The coordinator can keep a running tally of
who owns what and when reviews take place.

Document Control
The SRS is the most important document in the requirements analysis effort. It contains
the primary list of requirements and, in an appendix, the use cases involved in the require-
ments analysis effort. Other artifacts also result from the requirements analysis effort.
These include the requirements matrix and the game design document.

Document control is best accomplished using some type of software that is designed to
control changes. A source control application can be used for document control. Chapter
10 provides greater detail on source control issues.

Because requirements engineering is a process of discovery, number your requirements
and do not allow the numbers to be changed. Number requirements by using a number-
ing system that makes each requirement clearly identifiable and unique. Add a subsystem
identifier as a prefix to the number. You can also number use cases. Number use cases with
a naming convention that is similar to what you use for your requirements. If you create
a requirements matrix and place it in an appendix of the SRS, you will have a convenient
way to trace the development activity relating to each requirement.

Conclusion
Requirements allow you to capture the scope of your development project. When you
develop a game, you approach the game as a problem. You define the problem through
requirements engineering. Requirements engineering allows you to precisely define the
scope of your development effort, but it also allows you to know specifically what func-
tionality you must implement to support the features that make up your game. During
the requirements engineering phase of the product lifecycle, you can establish the criteria
you will use to test the functionality of your game. The work you perform during the
requirements engineering phase of the project can be captured in several artifacts. Among
these are the software requirements specification (SRS), the use case, and the TOR chart.

For further reading on requirements engineering, you might find the following resources
useful:

Cockburn, Alistair. Writing Effective Use Cases. Boston: Addison-Wesley, 2001.

Dulak, Daryl and Eamonn Guiney. Use Cases: Requirements in Context. New York: ACM
Press, 2000.

Chapter 2 ■ Requirements—Getting the Picture72

Wiegers, Karl E. Software Requirements, Second Edition. Redmond, Washington:
Microsoft Press, 2003.

The work you perform during the requirements phase lays the groundwork for the design
phase of the software engineering effort. During the design effort, you begin the work of
trying to solve the problem you have scoped out during the requirements engineering
effort. If the work you have performed during the requirements effort has been done well,
you can begin design work with minimal rework.

Conclusion 73

75

A Tutorial: UML and
Object-Oriented
Programming

Chapter 3

A
lmost all successful software systems are built from models. A model is a simple
representation of something complex. A model makes it possible for those who
want to build a system to visualize the system. It’s a way to specify what the system

is to do and to guide the construction of the system. A model creates a common language,
or a common way of understanding. If you put a model in place, your project can move
forward with force and momentum that are otherwise beyond your reach.

The Unified Modeling Language (UML) provides a set of elements that allow you to
model software systems. This chapter covers some of these elements, which are examined
on three levels: diagrams, modeling elements, and views. In addition, this chapter covers
several concepts that are associated with object-oriented design, which is important in the
use of the UML.

Even with such a limited set of topics, this chapter has a lot to explain, such as the following:

■ Origins of the UML

■ Why and when to use the UML

■ Elements and relations

■ Object-oriented concepts

■ Diagrams considered basic to the UML

UML History
The UML “unified” what amounts to dozens of modeling languages that software design-
ers, engineers, and analysts had developed independently during the middle and late
decades of the twentieth century. The unification culminated in the work of the Object
Management Group (OMG), which in 1997 adopted the UML as a standard (Version 1.1).
In 2003, the OMG approved Version 2.0.

If you access the OMG UML site on the Internet (http://www.uml.org), you can obtain
most of the information you need to take your study of the UML far beyond the scope of
this book. (Also see the list of books at the end of this chapter.) On the other hand, almost
any understanding of the language is likely to provide you with the ability to communi-
cate with far more people than you would otherwise when talking about software.

Even if one organization governs the UML’s development, it is important to realize that
the UML is not associated with any one tool or methodology. Many software modeling
tools incorporate its elements. Likewise, it is important to remember that the UML is an
extremely useful medium for communication in situations in which you want to draw
informal diagrams to illustrate ideas you have about software components and systems.
In other words, although it is a good idea to use the UML properly, it is also a flexible,
completely customizable medium of communication.

The UML is a general-purpose modeling language. To fulfill its purpose, the UML offers
a set of diagrams, views, and modeling elements that help you do the following:

■ Gather requirements

■ Analyze the requirements you have gathered

■ Design software using your requirements

■ Document the software you have developed

■ Develop test cases

■ Plan product releases

■ Discuss and conceptualize software

A UML Diagram and Its Elements
This chapter covers nine UML diagrams. To begin, look at Figure 3.1, which illustrates a
common UML diagram—a class diagram.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming76

Figure 3.1
A UML diagram explores relationships among classes.

It is not important now to go into the meaning of the elements represented in Figure 3.1.
Note, however, the following general notions, which Table 3.1 explains in detail.

■ The rectangles that are divided into three parts are examples of elements that rep-
resent classes. Each class element provides the class name, class attributes, and class
operations.

■ The lines with the open arrows, closed arrows, and diamonds are examples of ele-
ments that represent relationships.

■ The bold italic of CCharacter illustrates an adornment.

■ The numbers on the lines illustrate multiplicity (which you might know as cardi-
nality).

■ The curly braces enclosing “interface” show the use of a property.

■ The actual diagram is a class diagram.

■ The box with the folded upper-right corner is a note.

■ The diagram provides a logical, static view of a system of classes.

If this is your first exposure to the UML, these terms might seem a bit alien. Don’t be
discouraged. The elements that make up the language are few in number and easy to iden-
tify. You’ll learn more about them in the discussion that follows.

Why Bother with Symbols?
Why bother learning about a set of symbols for communicating about software? The first
part of the answer goes back to the notion of modeling things. Almost every successful
software system has been modeled. A model is an abstraction of a real system. The UML
offers you what amounts to a simple set of tools for modeling. Central among these tools
are the diagrams, which are also known as artifacts. The artifacts provide you with a ready
way to quickly describe the system you are working on.

Description is the second big factor. It’s a key issue, in fact, when it comes to software
design and testing. To view how this is so, consider what it would be like to verbally
describe the software system represented in Figure 3.1. The description might go some-
thing like this:

From a logical point of view, the class system consists of four classes:
CCharacter, CProfile, CHero, and CFoe. CHero and CFoe have an attribute or
data member that is an instance of the class CProfile. The relationship is one
of composition—strong association. CCharacter is an abstract class that is
used as an interface, and its interface consists of one operation—
AssertStrength()—which is overridden in the two implementations of
CCharacter: CHero and CFoe. The return value of AssertStrength() is void.

UML History 77

Somewhere deep down, you know that this is really talking about a computer program—
lines of code. If the computer program exists, you might set aside all this discussion and
illustration and instead refer to the code. If implemented in C++, the code might appear
as something along the following lines:

//declaration CProfile

class CProfile
{
//…
};
//declaration CCharacter as abstract class—interface
class CCharacter
{
protected:

CProfile *m_pProfile;
public:

//pure virtual operation
virtual void AssertStrength() = 0;

};
class CHero: public CCharacter
{
public:

//overridden version of operation from parent class
void AssertStrength();

};
class CFoe: public CCharacter
{
public:

//overridden version of operation from parent class
void AssertStrength();

};
//implementation…
CFoe::CFoe()
{

//aggregated instance of CProfile
m_pProfile = new CProfile();

}
//implementation…
void CFoe::AssertStrength(){/*..*/}
//implementation…
CHero::CHero()
{

//aggregated instance of CProfile
m_pProfile = new CProfile();

}
//implementation…
void CHero::AssertStrength(){/*..*/}

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming78

If you are not yet completely comfortable with the syntax of C++, don’t worry. The pre-
vious code sample fairly accurately implements both the diagram and the description, but
the implementation is not what is important—not here, anyway. What is important is the
sheer bulk of space and amount of time required to represent and communicate the idea
when only the code is at hand to illustrate the idea. Consider what happens if the system
includes 30–100 classes, each containing hundreds or thousands of lines of code.

The fact of the matter is that the program cannot be its own model. To model a program,
you need something other than the program, and to model something effectively, you
need a set of modeling conventions that everyone can agree on to mean the same thing
and that everyone uses in roughly the same way. Explaining and showing the implemen-
tation are good, but being able to draw diagrams is better.

As an experiment, try returning periodically to this part of the book. Look at the diagram,
read the prose passage, and read the code. Yes, perhaps the UML is vague at this point, but
almost anyone who conducts such an experiment after a little exposure to the UML
reports that the diagram presents the same picture as the prose and the code, but it
requires only a fragment of the time. Add to this that the diagram ends up being able to
communicate the purpose and flow of the activity in the system with much more clarity
than either the prose or the pseudocode.

n o t e

Chapter 10, “Control Freaks and Configuration Management,” provides a discussion of naming
conventions. When we show the code for a diagramed class, we add a C to the name of a class. An
example is CMesh. The C stands for class. The letter m and the underscore indicate that the variable
is a member of the class. An example is m_intXCord.

Starter Terms
The most effective way to become familiar with UML is to use it. Toward this end, we can
briefly list some of the main terms and topics of this chapter. Look at Table 3.1. These
terms refer to general UML features. We’ll build on these features from this point forward.

UML History 79

Table 3.1 UML Starter Terms

General Term Description

Relations Represented by solid or dashed lines that might be capped with an open
arrow, a closed arrow, or a diamond. They indicate ways that system
entities communicate with each other.

(continued on next page)

UML Diagrams
As was mentioned before, the UML offers several diagrams that you can use as a model-
ing framework for your software. Examine Table 3.2 for a summary.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming80

Table 3.1 UML Starter Terms (continued)

General Term Description

Elements Generally, elements fall into three groups: symbols, lines, and labels.
Symbols stand for such things as class rectangles and object rectangles.
They also represent other things, such as actors and use cases in use
case diagrams. Lines stand for associations, links, dependencies, and
transitions in state transition diagrams. Finally, labels stand for such
items as names and roles.

Diagrams The nine diagrams discussed in this chapter. Diagrams offer ways to
illustrate systems or parts of systems. The diagrams we examine are as
follows: class, object, state, sequence, collaboration, activity, component,
and deployment.

Views Ways to look at software systems or system components. They are as
follows: component, logical, deployment, use case, and concurrency.

Note A rectangle with its upper-right corner folded over.
Adornments Special ways of enhancing the meanings of relations, elements, and

diagrams. Examples are underlined words, bolded lettering, and
characters that indicate scope, such as +, -, and #.

Extensions Ways you can customize the UML for your own purposes. One of the
most important extensions is called a stereotype. You can assign a
specific name to almost anything that the UML offers if you use a
stereotype, which you create using guillements (angled brackets,
pronounced Gill-EH-ma). Example: <<special characterization>>.

Properties Ways to define anything you represent in a UML diagram. To do this, you
enclose your definition in curly braces. Example: {abstract}.

Multiplicity A way to show the cardinality of things. The figure that follows shows a
many-to-one relationship between the two boxes. Read the star as
“many.”

UML Diagrams 81

Table 3.2 UML Diagram Inventory

Diagram
Name Description

Use Case A use case diagram depicts the system from the perspective of the system user
(also called an actor). It shows how the user uses the system to derive some type of
beneficial service from it. This diagram can contain one or more use cases. Some
use cases extend others, whereas others include others. Some generalize or special-
ize others.

Activity An activity diagram provides an excellent way to explore use cases. It resembles a
flow chart and has things in common with state chart diagrams.

Class A class diagram consists of elements that depict classes and the relationships
among classes. Some classes generalize or specialize other classes. Other classes
are composed of objects of other classes. The relationships among classes can be
described as association, aggregation, or composition. A class diagram provides a
static view of a system.

Object An object diagram consists of elements that depict objects and the relationships
among objects. Like a class diagram, a generic object diagram might represent a
system statically or dynamically.

State Chart Suppose that you want to see how a single object changes—how its state changes.
Say that it starts with a given value set to 0 and, after a time, the value grows to
1,000. If you want to see how this happens, you investigate the transitions in its
state.

Sequence Like a collaboration diagram, a sequence diagram is an interaction diagram. Objects
in a given system communicate with each other through messages. The sequence
diagram shows the sequence in which the messages occur. It allows you to trace
the flow of the system activity. In a sequence diagram, a timeline shows the lifetime
of each of the objects in the system. Messages connect the timelines.

Collaboration Like a sequence diagram, a collaboration diagram is an interaction diagram. A col-
laboration diagram shows how objects communicate with each other rather than
the sequence in which they communicate with each other. It provides a way to
investigate the logic of the system and the roles of the objects that the system uses.

Component This diagram allows you to depict the way the architectural components of the sys-
tem have been grouped. Other terms for components are frameworks, modules, and
patterns. Along with the deployment diagram, this provides an implementation view
of the system.

Package Used in a design document, this diagram can show collections of classes. We use it
to show the stripes of Ankh. Package diagrams can also depict modules, patterns, or
frameworks.

Deployment If you need to show how you are going to install the different parts of a game, you
can use a deployment diagram. Assume, for example, that you have a distributed
game—one part goes on the client machine, and the other part goes on the server.
Along with the component diagram, this provides an implementation view of the
system.

n o t e

A class diagram depicts only classes. It does not show the instances of the classes. Such a diagram
is static. When the instances of the class (in other words, objects) come into existence or go out of
existence doesn’t matter. What matters are the relations between the classes without respect to
time. When an object diagram shows only classes, it is static. On the other hand, other diagrams
show changes through time. Among these are state chart, sequence, and collaboration diagrams.
When a diagram shows changes over time or changes in state, it is dynamic.

The sections that follow go into detail in the discussion of each of the diagrams that Table
3.2 lists. For now, you might want to flip ahead and glance at the diagrams. In fact, you
should review Table 3.2 several times.

The diagrams are tools. Whether you derive benefit from the UML depends on whether
you can use the tools it offers. Grand conceptualizations about how and why you should
use the tools are secondary.

Together with the discussion of the diagrams comes a flood of new terms. One thing you
can take for granted—the UML goes on and on. This chapter covers a fair degree of detail,
but keep in mind that full documentation of the UML requires, at a minimum, many more
pages than are available here. The end of this chapter provides a few good reference works.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming82

Know Tools by Use, Not Definition

Keep in mind that the UML is an extremely flexible standard. For this reason, think of the diagrams
as tools that allow you to perform different types of work. To review a bit:

■ Use a use case diagram to gather and explore requirements for purposes of design or
testing.

■ Use an activity diagram to explore the scenarios of use cases.

■ Use a class diagram to identify classes and see how classes relate to each other.

■ Use an object diagram to see how one object communicates with another.

■ Use a state chart diagram to explore how the attributes of an object change.

■ Use a sequence diagram to fully explore a use case by tracing the order in which objects
send messages to themselves or each other.

■ Use a collaboration diagram to view the logic of the system and the way that objects send
messages to each other.

■ Use a component diagram to explore whether and how subsystems exist within your
game product.

■ Use a deployment diagram to figure out how to set up the installation package for
your game.

Use Case Diagrams
A use case diagram allows you to show how someone might use a system. Such a diagram
is especially helpful during the early stages of a project, when you are trying to develop or
analyze requirements and figure out test criteria for the requirements. Because it is con-
cerned with what people do, a view of the system created with use case modeling is some-
times referred to as a functional view of a system. (For specifics on developing functional
requirements, see Chapter 2, “Requirements—Getting the Picture.”) In other words, you
analyze the system in terms of what it is expected to do.

Modeling with use cases involves use case diagrams. However, before getting involved in a
discussion of creating diagrams, it is important to talk first about use cases specifically. A
use case is a description of a sequence of actions that a system performs. On the other
hand, a use case is not a description of just any sequence of actions. It is a description of
a sequence of actions that produces a result. The result is not just any result, though. The
result has to be something that someone who uses the systems finds beneficial. The
requirements often specify the result.

n o t e

Keep in mind that a use case is not the same thing as a use case diagram. Although the two often
are referred to as use cases, a use case is primarily something written. A use case diagram is some-
thing that illustrates a use case. Use case diagrams are tools you can employ to develop use cases.
See Chapter 2 for more discussion on writing use cases.

A use case diagram graphically
depicts how the system user expe-
riences or interacts with one or
more use cases. Because more
than one system user might par-
ticipate in any given use case, a use
case diagram might also feature
several system users. Likewise, a
use case diagram usually depicts
several use cases—sometimes
dozens. To familiarize yourself
with the basics of a use case dia-
gram, look at Figure 3.2.

Use Case Diagrams 83

Figure 3.2
An actor interacts with three use cases.

As Figure 3.2 shows, you employ only a few modeling elements, as follows:

■ A stick figure, which represents the user of the system (player). The stick figure is
generically called an actor. Any number of actors can participate in a system.
Although actors are usually people, they can also be external factors (such as time,
alarms, and so on) or other systems.

■ Ellipses, which represent the use cases. Each use case represented in the use case
diagram is named. Generally, the names should begin with a verb (“Identify
Demon”).

■ Lines with open arrows, which represent relationships between the actor and the
use cases. Such lines might also relate use cases to each other.

■ A use case diagram name, which appears inside the box. Practices concerning use
case diagram names differ. You obviously don’t need to name a use case diagram if
you are experimenting, although it does help.

■ A bounding box, which represents the boundary of the system. (This is some-
times considered unnecessary.)

In Figure 3.2, a stereotype beneath the actor identifies the actor as a game player
(<<Player>>). The actor is not part of the system other than as a user, so you depict the
actor outside the bounding box. Next comes the use cases—the ellipses. Each use case has
a name, as does the use case diagram. You can have just a few use cases, as in Figure 3.2,
or you can have many of them. You can also have many actors gathered around just one
use case. Everything is flexible.

The lines, as you see, are topped with open arrows that point to the use cases. Sometimes
you see the lines point the other way, at the actor—if the user receives information from
the system. In many cases, designers do not use arrows. One rule is that unless you can
think of a specific input the actor provides to the system, the line requires no arrow.

Use Cases Tell Stories
A use case is a description of a sequence of actions that the system performs for a user and
that results in something the user finds valuable. A use case diagram shows how an actor
interacts with use cases. It also shows how use cases interact with each other. Given this
start, the language tends to become loosely employed. Sometimes analysts refer to all the
activity in a given use case diagram as a use case. This is okay. Generally, what counts as a
use case or a system of use cases depends on your level of specificity or generality. How
much have you broken things down?

A good way to establish what you mean is to think of the use case diagram as a scenario,
a script, or a story. Imagine, for example, the startup session of your game. The start
screen comes into view. You are playing a role-playing game. You view the roles (charac-
ters) available to you. You select the role you like most. Then you start the game. Look at
Figure 3.3 to see how a use case diagram depicts this scenario.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming84

Here are a few points to review:

■ The set of use cases in the use case diagram represents a bounded sequence or set
of activities. This set of activities is a view of the system, an arbitrarily selected
path through the possible paths that are available to the system user.

■ The use case diagram has a name—a title—that appears inside the system box. The
name unifies the action of the diagram.

■ A use case diagram depicts a scenario of system use. A scenario is a selected path of
system use.

What If?
What if? This seems like a simple enough question, and it is. However, at the same time,
this question identifies one of the leading roles that use cases have come to play in systems
analysis, requirements gathering, and testing. Look at Table 3.3.

Use Case Diagrams 85

Figure 3.3
A use case diagram tells the story of the start of a game.

The scenario that a use case dia-
gram depicts might be one among
many. As an example of how this
is so, suppose that you change just
one use in a given scenario. In
Figure 3.3, the player selects a role
and starts the game. In Figure 3.4,
the player selects a role but
decides to exit the game.

Here, then, is an alternative path
through the set of actions that
comprises the startup use cases.
The use case diagrams depict the
two scenarios. The two scenarios
show how the same set of actions
leads to different results.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming86

Table 3.3 Use Case Diagram Roles

Question Asked Use Cases Provide. . .

What if there’s one path? A way to visualize a set of interactions with the system
on the part of a single user of the system.

What if there are many paths? A way to visualize two or more sets of interactions that
two or more users in different roles have with the system.

What if roles are unclear? A way to visualize alternative paths through the same
general sequence of actions. This becomes the basis of
test scenarios. Use cases have extraordinary value as
ways to work out test routines. Here, the important thing
to ask is, “What if it does not work?”

What if there is redundancy? A way to see if you have duplicated actions when you
have laid out requirements. When you are able to see the
essential actions involved in the user’s interaction with
the system, you can easily spot when you have had the
user do things either needlessly or in duplicate.

What if requirements are unclear? A way to explore requirements—filling in the details you
have forgotten. When you analyze requirements, you can
use case diagrams to discover whether you are missing
requirements.

What if tests don’t seem obvious? A way to work out test scenarios for any given
requirement.

Figure 3.4
A use case diagram depicts one scenario among many.

Use cases and use case diagrams represent events that occur in sequence and can be traced
from a start point to a stop point. There are different paths. The fact that you can explore
different paths enables you to both eliminate redundant details and fill in details that have
been omitted as you have developed a set of requirements.

n o t e

Use case diagrams depict scenarios. However, one use case can be broken down into other use
cases, so a single use case can represent a scenario. One of the best ways to examine any scenario
is to employ an activity diagram. You will learn more about activity diagrams later in this chapter.

Different Use Cases
Use cases relate to each other in different ways. Note the following list:

■ One use case can extend another use case. In other words, a use case can take what
another use case offers and add to it.

■ One use case can be said to include the actions of another use case. When a use
case does this, it includes a complete use case in its own set of actions.

■ One use case can inherit the properties of another. In this case, one use case spe-
cializes the actions of another case. This is called generalization.

■ Use cases can be grouped together to offer a packaged set of activities.

Making an Extension

When you first lay out a use case or use case diagram, you try to think of a complete activ-
ity. This activity can be simple, such as when you select a character from a set of charac-
ters in a role-playing game. It can also be involved, such as when you are well into the
game (think of Diablo) and need to buy the right armor for your character. You might cre-
ate the following use case narrative:

Select Armor. The character goes to the armory and talks with the armory
master about acquiring armor. Armor stands in rows, and the character
selects the armor he can afford.

The use case is named Select Armor. Figure 3.5 depicts the use case and the player’s inter-
action with it.

Use Case Diagrams 87

Figure 3.5
The player interacts with the Select Armor
use case.

Suppose that you discover something else is possible: You can both buy and trade armor.

Select Armor with Trade. The character goes to the armory and talks with
the armory master about acquiring armor by trading old armor for new. The
character wears armor to be traded, and armor stands in rows and can be
selected. The character selects new armor that the armor master values as
equivalent to the armor traded.

This second use case extends the
action of the first. It is the same, but
it also has a new twist: the trade.
Figure 3.6 depicts how one use case
extends another.

Figure 3.6 displays a dashed line
capped by an arrow. The use case
that the arrow points to (Select
Armor) is complete. The use case
pointed from (Select Armor with
Trade) adds features to the Select
Armor use case, extending it. The
stereotype (<<extend>>) tells you
explicitly what is going on. When
one use case extends another, it adds features to it while leaving it intact. What is extend-
ed here is that the transaction now includes using armor in addition to money.

Including

An alternative use case for acquiring
armor arises if you consider what it is to
acquire armor generally. Suppose that a
use case is concerned with bargaining.
Acquisition might involve paying any
named price. However, suppose that you
can also ask if a price can be lowered or
offer a lower price than the named price.
You can view the bargaining use case as a
separate, independent action, but you
can also include it in the activity of
acquiring armor if an occasion for bar-
gaining arises. Figure 3.7 shows an
include relationship.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming88

Figure 3.6
One use case extends another.

Figure 3.7
Acquiring armor can include bargaining.

Generalization and Specialization

If you want to reuse use case properties, you can use class generalization. Generalization is
often referred to as inheritance. Suppose that you begin with a use case that allows the
player to renew the character’s life.

Renew Life. The player selects the healing box and the renewal option. The
player is renewed.

This use case provides a sequence of actions that restores the character’s health. Suppose,
however, that the player of a game might use a number of approaches to renewing the
character’s health. All involve the same actions, but slight differences mark each.

Renew Life with Potion. Player opens healing box and selects potion. Player
drinks potion, and he is renewed.

Renew Life with Charm. Player selects healing box and healing option.
Player confirms charm, and he is renewed.

Figure 3.8 illustrates generalization among use cases.

n o t e

If you create a use case that embodies all the basic properties of a number of other use cases, you
create a generalized use case. If you take a generalized use case and adapt it to some special situ-
ation, you specialize a use case. Such language is derived from object-oriented programming.

Activity Diagrams
An activity diagram possesses great potential as a way to investigate how a use case works.
In broader terms, activity diagrams illustrate workflows. This section discusses the activity

Activity Diagrams 89

Figure 3.8
Generalization allows two use cases to be derived from another.

diagram as a way of expand-
ing on the meaning of use
cases. Keep in mind, howev-
er, that you can use activity
diagrams in almost any situ-
ation in which you want to
investigate how control of
flow passes through a system.

Figure 3.9 reviews the use
case offered before in Figure
3.4. You can work with the
use case in this section to
show at least one application
of an activity diagram.

Start Session. The user views the characters that can be selected for the game
role. The user selects the character. After the selection is confirmed, the user
is asked to enter a player name. The player enters a name, and the game
begins.

This story gives you a good idea of what the use case is about, but if you want to fully
explore it for requirements for design purposes, you might need to know just how the sce-
nario under study might unfold. As discussed before, there might be more than one sce-
nario. Suppose that you want to quickly grasp the different paths through the use case.

Note the following features of the activity diagram depicted in Figure 3.10:

■ The filled circle designates the start of the flow (the start state).

■ The circle with the dot in it represents the end of the flow (the end state).

■ Solid lines with open arrows represent transitions or the flow of activity.

■ The rounded rectangles are activities.

■ Dark bars can be used to show synchronous flows.

■ A synchronous flow stipulates that either of the actions in the flow might occur
first, but both actions must be completed before the flow can continue.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming90

Figure 3.9
To establish a starting point, you might examine a use case story
that unfolds something along the following lines:

n o t e

Developing a sequence or collaboration diagram further extends the process of investigating a use
case. Before you can accomplish this, however, you must derive classes from use cases. Class-
Responsibility-Collaboration (CRC) cards provide a ready tool for deriving classes from use case
and activity diagrams. Chapter 4, “Software Design—Much Ado About Something,” examines the
use of CRC cards in relation to activity diagrams and use cases.

Class Diagrams
If you want to model what a system contains and how the components in a system are
related, you can use a class diagram. A class diagram is a tool for static modeling. In other
words, it does not show you how the system changes. Rather, it allows you to see the com-
ponents that make up the system, and it allows you to know whether they communicate
with or depend on each other and how they relate to each other.

Class Diagrams 91

Figure 3.10
An activity diagram illustrates the flow of activity.

Classes are an essential aspect of object-oriented programming. Before discussing class
diagrams, then, it’s good to review a few concepts that are central to understanding class-
es and object-oriented programming. Even if this material is not new, you might want to
give it a quick reading to ensure that the terms are fresh for the discussion that follows.

n o t e

No fixed law says that the UML must be used only with object-oriented programming models. Still,
the people who created the UML assumed that software should be designed using object-oriented
techniques. For this reason, an understanding of objects and classes is important in most discus-
sions of the UML. In recent times, patterns have increased in their importance, which means that
knowledge of classes and objects alone no longer suffices for understanding all aspects of the UML.
Chapter 7, “P Is for Pattern,” discusses patterns in more detail.

Class and Object Basics
Central to object-oriented programming is an understanding of classes and objects. Here
are a few beginning points:

■ Software engineers design and develop software in components.

■ When software engineers develop software in components, they make subsystems
that they can reuse in different ways toward different ends.

■ Object-oriented programming is one approach to building components.

■ At the basis of object-oriented programming is the object.

■ An object is a set of data together with the mechanisms needed to operate on
the data.

■ To create an object, a model of the object is created, which is called a class. A class
is an abstract (or programmer-created) data type.

■ A class defines the state and behavior of all the objects that can be created using
the class.

■ The state of an object is anything that characterizes the object: how large, how
small, what color, and so on. The attributes of a class define its state.

■ The behavior of an object is what the object does. For example, an airplane flies,
lands, and taxies. The operations of an object make possible the behavior of the
object. Because the operations allow only a limited number of changes to be made
in the object, they are said to be an abstraction of the possible behavior.

■ Every class has a name, and its name is its identity.

■ The operations of a class are called the interface of the class.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming92

Figure 3.11 allows you to glimpse
some of this language in a friendlier
way. You use a class to create objects.
An object is an entity that stores
information about itself. It also con-
tains ways to change the information
it stores about itself. The information
is called its state (attributes). The
ways of changing things are referred
to as its behavior (operations).

Class Diagrams in Practice
Class diagrams illustrate classes and
static relationships. To understand
how this is so, contrast a class with a
use case. A use case is a sequence of actions. A class is a set of attributes and behaviors.
Here’s a simple way of looking at it:

■ A use case (or an activity diagram) allows you to see a sequence of actions unfold.

■ A class diagram allows you to see the things through which actions unfold.

A class embodies state and behavior, as discussed earlier. Another way to express this is to
say that a class encapsulates state and behavior. The state comprises the attributes. The
encapsulation is made possible by the syntax of the programming language and the con-
ceptualization of the class.

Information hiding also applies to classes. A class should not allow users to have direct
access to its data—its attributes. The attributes should be private. If users want to access
or change the state of an object, they should use special operations called accessors and
mutators. These operations should be public. The interface is the public view of what the
class encapsulates.

A term of great importance when discussing classes is cohesion. A class is a set of attrib-
utes and behaviors that address a specific type of activity—a specific need. All the opera-
tions and attributes of the class should be focused on the same set of needs—or services.
Perhaps you have a class called CMesh. A CMesh is a simple character in a game. The respon-
sibilities of CMesh are to move and appear. Table 3.4 profiles the CMesh class.

Class Diagrams 93

Figure 3.11
Attributes and operations define the state and behavior
or classes and objects.

Table 3.4 shows characteristics of a highly cohesive class. Notice that the class concerns a
narrow set of activities that are focused on the provision of one basic service—in this case,
the appearance and movement of the object instantiated from the class. The class does not
concern itself with such things as landscape or texture.

Diagramming a Class
Table 3.4 provides a set of items that can be recast using the UML symbol for a class.
Figure 3.12 shows the result.

Figure 3.12 depicts how the UML graphically represents a class. The representation shows
that classes have a name, attributes, and operations. Note the following features:

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming94

Table 3.4 CMesh Properties

CMesh Attributes CMesh Behaviors

The mesh has a position characterized The mesh can be created.
by three dimensions: x, y, z The mesh can be destroyed.
The mesh has a size characterized by The mesh moves.
magnitudes in the range 0 to 10, with 5 as normal. The mesh can be visible or invisible.
The mesh is associated with a named mesh file. The mesh can be resized.
The mesh has visibility status. The mesh file for the mesh can be changed.

Figure 3.12
The UML represents a class using a rectangle divided for class name, class
attributes, and class operations.

■ The name appears in the first or top division of the rectangle, the attributes appear
in the second division, and the operations appear in the bottom division. This is
the most common representation of a class. Note that in some cases, the number
of divisions can be increased so that properties can be listed. Generally, however,
the order is name, attributes, and operations.

■ The plus and minus (+, –) signs tell you about the scope of an attribute or opera-
tion. The plus means public. The minus means private. A third such sign, the
pound sign (#), indicates protected.

■ The word following the colon tells you the type of the attribute or the return type
of the operation.

The following code declares and implements the UML CMesh class representation featured
in Figure 3.12. If you are new to C++, don’t worry about the specifics:

//Declaration...
#include “stdafx.h”

//Declaration...
class CMesh
{
private:

string m_strMeshName;
int m_intXCoordinate,

m_intYCoordinate,
m_intZCoordinate;

bool m_bVisibility;
public:

CMesh(int x, int y, int z,
string meshName,
bool visibility);

void SetSize(int size);
void SetPosition(int x, int y , int z);
bool SetMesh(string name);
bool SetVisibility(bool status);

};

//implementation ...
CMesh::CMesh(int x, int y, int z,

string meshName,
bool visibility):

m_intXCoordinate(x),
m_intYCoordinate(y),
m_intZCoordinate(z),
m_strMeshName(meshName),
m_bVisibility(visibility)

{
/*...*/

}

Class Diagrams 95

void CMesh::SetSize(int size)
{

/*...*/
}

void CMesh::SetPosition(int x, int y , int z)
{

/*...*/
}
bool CMesh::SetMesh(string name)
{

/*...*/
return true;

}
bool CMesh::SetVisibility(bool status)
{

/*...*/
return true;

}

Class Relations and Class Diagrams
A class diagram statically represents a software system or subsystem. Table 3.5 lists a few
features of class diagrams. Chapter 6, “Object-Oriented Fantasies and Realities,” provides
extended discussions of these and other concepts.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming96

Table 3.5 Features of Class Diagrams

Term Description

Service provider When a class performs a task for an object of another class, the class is
called a service provider.

Client When one class receives information from an object of another class, the
receiving object is a client.

Generalization One class can be designed so that it becomes a pattern for other classes.
The class that serves as a pattern for other classes is a generalized class.

Specialization A number of classes can be derived from the same parent class but
modified in ways that make them unique. The child classes are said to be
specializations of the parent class.

Inheritance Generalization and specialization are instances of what is usually
referred to as inheritance. The UML term for inheritance is
generalization.

Attribute State of a class. Information that defines an essential aspect of the
object the class creates.

Operation Behavior of a class. An activity that changes or communicates
information about the state of the class. Operations are often referred to
as member functions or methods.

Class diagrams depict relationships between classes. Two primary relationships describe
most of the activity that a class diagram depicts: generalization and association. Note the
following:

■ An “is a” relationship characterizes generalization. In other words, one class is a
version of another.

■ A “has a” relationship characterizes association. One class has an instance of
another class.

These two relationships are illustrated in Figure 3.13. The Weapon class “has a” Grip. The
Weapon class “has a” Blade. On the other hand, Axe “is a” Weapon, as is Sword.

Class Diagrams 97

Term Description

Class interface The interface is the set of operations (methods) that allows an object to
communicate with other objects.

Instance Another name for an object. An object is an instance of a class. A class
can create many objects, and a class can have many instances.

Concrete class A class that can be used to create an object. It has no abstract
operations.

Abstract class A class that contains at least one abstract operation. An instance of the
class cannot be created.

Abstract operation An operation that must be overridden or implemented in a specialized
class. In C++, an abstract operation (member function) is identified with
the keyword virtual.

Virtual operation An operation (or member function) that is defined in a base class and
that you can override (or redefine) in a derived class. Unlike an abstract
operation, the defined operation does not have to be defined in the
derived class.

Pure virtual class Also called an interface class. This class consists wholly of abstract
functions and is used purely as a pattern for deriving classes.

Association One class has an instance of another class. The instance need not be an
attribute. The relationship can be general.

Aggregation One class has an instance of another class. The instance is an attribute,
but the attribute might or might not be used.

Composition One class has an instance of another class, the instance is an attribute,
and the attribute is always used.

Note the following features of Figure 3.13:

■ The diamonds illustrate composition, which is a special version of association. The
diamond shows that the class it touches “has an” instance of the class that its line
points to.

■ The diamonds touch against the class, Weapon, which has instances of Handle and
Blade.

■ The closed arrow indicates inheritance. It points to the generalized class. The spe-
cialized classes (Axe and Sword) inherit features from the generalized class (Weapon).

■ The Sword class has two concrete operations. The two derived classes (Axe and Sword)
automatically inherit these operations. In other words, they become part of Axe and
Sword. The operations are reused in this way.

■ The generalized class has one abstract operation, which the word “virtual” identi-
fies. When a class has an abstract operation, the classes that are derived from it
must make their own versions of the abstract operation. This is why the operation
appears in all three classes. This is also how polymorphism is implemented.

■ Because it contains an abstract operation, Weapon cannot be instantiated. For the
functionality embodied in this class to be used, other classes must be derived from
the class. The derived classes, given that they override any abstract operations they
inherit, are concrete classes. In other words, you can create instances of them.

The sections that follow discuss these terms in detail.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming98

Figure 3.13
Generalization and association in a class diagram.

Generalization
Generalization is usually defined as a relationship in which one class (a derived or child
class) is able to reuse the attributes and operations of another class (a base or parent class).
The more common term for generalization is inheritance. Generalization also encom-
passes a relationship in which one class can implement another. The UML provides a ready
means of illustrating such activities.

Class diagrams show three primary types of generalization that result from the three types
of class involved in generalization. Table 3.6 provides a review of terms and their definitions.

Concrete Classes

Figure 3.14 illustrates a concrete class, Weapon, in a generalization relationship with two
concrete derived classes: Axe and Sword.

Class Diagrams 99

Table 3.6 Class Types and Generalization

Type of Class Description

Concrete This class contains no operations that a derived class cannot inherit and
use without further ado. You can declare an instance of a concrete class.

Abstract This class contains at least one abstract function. (In C++, this is referred
to as a pure virtual function.) An abstract operation is one that another
class must implement or define. You cannot declare an instance of an
abstract class.

Interface This class contains only abstract operations. It serves as a pattern, forcing
its user to implement all the operations that it lists. You cannot declare an
instance of an interface.

Figure 3.14
Concrete classes are inherited without qualifications.

The Weapon class has two attributes: m_Handle and m_Blade. It has one operation—
SetActive()—which two derived classes—Axe and Sword—can access. A public operation
within a concrete class, SetActive() automatically becomes accessible in any class that is
derived from Weapon.

Axe and Sword extend Weapon because each offers an operation in addition to the one inher-
ited from Weapon. When a class is concrete, you can declare an instance of it. In this class
diagram, then, you can declare an instance of Weapon. You can also declare instances of Axe
and Sword.

Abstract Classes

An abstract class has at least one abstract operation. When a class has an abstract opera-
tion, you cannot declare an instance of it. In Figure 3.14, the three concrete classes allow
you to declare instances of all three classes. In Figure 3.16, the situation differs, as
explained next.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming100

Concrete and Abstract Operations

When one class establishes features that are common to several other classes, the class is a gen-
eralization of other classes. Class designers who create generalized classes have a choice to make.
The choice involves whether they want to force those who use the class to specialize specific oper-
ations listed in the generalized class. Figure 3.15 illustrates the decisions the class designer makes
when evaluating operations that are defined in a generalized class.

Figure 3.15
Designers make choices about abstract and concrete operations.

In Figure 3.16, the Weapon class has a single abstract operation—SetActive()—so it is an
abstract class. You cannot create an instance of this class. To make use of its operations,
you must first specialize the abstract class. To accomplish this, in each of the derived class-
es (Axe and Sword), you must implement SetActive(). Create a nonvirtual (or nonabstract)
operation of the same name, parameters, and return type.

In addition to the SetActive() operation, notice in Figure 3.16 that the abstract class
includes another operation: GetStatus(). This operation is concrete. You do not need to
override it in the derived class. Given that each class has an implemented version of
SetActive(), Axe or Sword objects can make immediate use of GetStatus().

Interfaces and Polymorphic Activities

You can also use an abstract base class in at least two other ways. One way is to set up a
type that imposes a pattern across a set of subclasses. In Figure 3.16, all those classes that
are added to the game to define weapons must have a SetActive() operation. If many dif-
ferent weapons are stored in a container of the type Weapon, it remains necessary to call
only one operation to set all the weapons to an active mode.

In addition to forcing a pattern on a set of classes, you can use an abstract class as a para-
meter type that will accommodate all the derived types of data. Note how the following
C++ operation uses Weapon as a parameter type.

class CCombat
{
//…
public:

Class Diagrams 101

Figure 3.16
Abstract operation creates abstract classes.

ArmCharacter(Weapon& wpn)
{

wpn.SetActive();
}

};

The ArmCharacter() operation calls SetActive() for any subclass of Weapon, and for this
reason, objects of the types Axe and Sword can be passed to it. This is an example of poly-
morphism.

Interfaces

An interface is a class that has only
abstract operations. Figure 3.17
provides one way to represent an
interface class. In C++, such a
class has pure virtual functions
and is said to be a purely virtual
class. An interface forces all the
derived classes to implement the
functions that are named in the
interface. An interface provides a
ready means to make it possible to
achieve polymorphism in opera-
tion parameters. You can also use
an interface to specialize opera-
tions from a parent class.

Associations
Classes and their objects relate to each other in several ways. Whereas generalization is
reserved for classes, another relationship, association, is used to characterize relationships
between both classes and objects.

Further, you can represent objects both statically and dynamically. You represent objects
statically in what is known as a generic object diagram. On the other hand, you can also
represent object relationships dynamically, in what are known as interaction diagrams.

To make good use of both class and object diagrams, you need to understand associations.
When applied to objects, associations are called links.

You use associations to show relationships between objects. Association differs from gen-
eralization in a few significant ways:

■ Generalization implies that the derived class is a version of the base class. One class
“is” another class.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming102

Figure 3.17
A pure virtual (interface) class requires operations to be
implemented.

■ Objects (or classes) that are related through association are not generalized or spe-
cialized versions of each other.

■ Associations apply to both objects and classes. Inheritance is a static structural
relationship, so it only involves classes.

■ Whether an object or a class, when two things are associated with one another, a
dependency exists between the two.

Both class and object diagrams use lines from one class to another to show that one class
depends on another. You can adorn the line in different ways to convey information about
the dependency. Figure 3.18 shows a rudimentary association.

Note the following features of the association shown in Figure 3.18.

■ “Wears” is the name of the association. It allows you to understand what a
Character object does with a Hat object.

■ The small arrow to the right of “wears” indicates the direction of the action, so you
can read, “A character wears a hat.”

■ “Social status” is the role that the Hat object plays. When you create role names,
anticipate the name you intend to use as an attribute name. The Hat object is likely
to become an attribute in the Character class, and m_SocialStatus could be the
attribute name.

■ Only class names identify the objects. Note that the division of the rectangle into
name, attribute, and operation regions is eliminated to make things easier to draw.
This condensation of features characterizes many class diagrams.

■ The numbers at the ends of the relationship (the line) indicate the multiplicity or
cardinality of the objects. One character can have from one to six hats.

Visibility and Multiplicity

Visibility refers to what objects can see. An open arrow at the end of the relationship estab-
lishes which object is visible. Figure 3.19 shows a pair of classes. You can read the arrow as
“can see.” In this case, the Sky object can see the Cloud object. Although how this is so
depends on how we develop the classes, one approach is for the Sky class to contain an
object of the Cloud class. When you create a Sky object, then, you might also create some

Class Diagrams 103

Figure 3.18
An association has a direction and a role.

Cloud objects in it, and with the creation of the Cloud object, the Sky object depends on the
Cloud object. On the other hand, the Cloud object does not know that the Sky object exists
and has no dependency on it.

Multiplicity is another term for cardinality, which designates the ratio of objects of one
class to those of another. Figure 3.19 shows a multiplicity in which for one Sky object, one
or more objects of the Cloud class might occur.

Symmetry, Asymmetry, and Coupling

When the arrow points in only one direction, the association is asymmetrical. When the
arrows adorn both ends of the relationship, the association is symmetrical. Generally,
designers favor the use of asymmetrical relationships and discourage the use of symmet-
rical relationships. The reason for this is that if classes are mutually dependent, they are
more tightly coupled. If classes are more tightly coupled, it becomes difficult to reuse
them. Reuse is one of the primary goals of object-oriented design efforts.

n o t e

One authority wrote, “Coupling is the degree to which elements of the design are connected to
each other. For class diagrams, it is essentially a measure of how much a class or object knows
about the world around it.” (See Charles Richter, Designing Flexible Object-Oriented Systems with
UML [Indianapolis: Macmillan, 1999], p. 58).

Qualified Associations

If you develop a class that contains a lookup list of objects of another class, you are likely
to make use of qualified association. Such an association allows you to indicate that you
base the relationship between the objects of the two classes on a key. Figure 3.20 illustrates
a qualified association in which an attribute of the Star class serves as the lookup key in
the Sky class. Each Star object has a unique lookup key.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming104

Figure 3.19
Association shows visibility and multiplicity.

Figure 3.20
One class accesses another class object using a key.

Recursive Associations and Association Classes

Two more terms relevant to associations offer themselves for consideration. When a class
has a relationship with itself, the relationship is recursive. (Another term for this is reflex-
ive.) To save space, this chapter does not illustrate this type of association.

A class that is created solely to allow two other classes to communicate with each other
and that lasts only as long as the communication is valid is an association class.

Figure 3.21 illustrates an association class. Notice that the name of the class must be the
same as the name of the association. The vertical dotted line descending from the associ-
ation between the Dock object and the Ship
object is called a dependency line. The oper-
ations that are associated with the “is
moored to” class might provide the num-
ber of the dock or the time the ship has
been moored. By convention, the name of
the association and the name of the associ-
ation class are the same.

Aggregation and Composition
Association has two closely related variants: aggregation and composition. These two types
of association provide a way to identify different whole-part relationships that exist
between one class and the instances of other classes that it includes as attributes.

Both aggregation and composition imply that one object has an object of another class as
an attribute. Note the following points:

■ When the composing object must always be a part of the composed object, from
its beginning to its end, the relationship is a composition association. A filled dia-
mond indicates composition.

■ When the composing object might or might not be a part of the composed object
but is still given as a reference in the attribute list, the relationship is an aggregation
association. A hollow diamond indicates aggregation. Figure 3.22 shows an exam-
ple of composition and aggregation.

Class Diagrams 105

Figure 3.21
An association class shows a complex relation-
ship between two classes.

Figure 3.22
Aggregation and composition.

In Figure 3.22, Sarcophagus is in an aggregated relationship with Tomb because at times a Tomb
object might lack a Sarcophagus. A tomb might be empty. Thus, a Tomb object can be instan-
tiated without a Sarcophagus object.

On the other hand, every Tomb must have a Door, and in Figure 3.22, this relationship is
mandated with the use of a composition association.

Different Types of Association
To grasp the general dimensions of association, aggregation, and composition, examine
Figure 3.23. First, note the way Lightning is in many-to-one relationships with the Axe and
Sword classes.

Figure 3.23 shows an aggregation of the Sheath and Weapon classes. Not all weapons have
sheathes. The relationship between the Weapon and the Grip and Blade classes is one of com-
position. Every Weapon must have a Blade and a Grip, start to finish.

Lightning is associated with Axe and Sword. To see how this is so, assume the following use
case description.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming106

Figure 3.23
The Lightning class is associated with Axe and Sword.

Weapon Strike. The player battles with Demons. If the Demon is of max
power, the weapon creates a flash of lightning every fifth contact with the
Demon. The lightning shoots from the weapon.

The question to ask is this: Does the player always manage to strike a Demon five times? The
answer here is no. It might be the case that the player never strikes a Demon five times.
Lightning is not an attribute of Weapon. Rather, it is an object that is created by a given oper-
ation of Weapon. For this reason, the relationship between the classes that specialize Weapon
and Lightning is a simple association.

Object Diagrams
If you want to model the way objects in a system interact through messages, you use a
dynamic diagram. You can use dynamic diagrams to examine relationships among
objects. Dynamic diagrams are sometimes referred to as object diagrams. An object repre-
sents an instance of a class. Object diagrams offer little that you do not use in class dia-
grams. The following list details a few of the more important differences between class
diagrams and object diagrams:

■ Rather than show classes, object diagrams represent the objects that classes
generate.

■ Whereas a class diagram is static, an object diagram is often dynamic. In other
words, an object diagram shows how a particular object sends a message to
another specific object.

■ Object diagrams feature the relationships that are familiar from class diagrams, but
in object diagrams, the relationships between objects are referred to as links rather
than associations. Still, designers commonly refer to the relationships shown in
object diagrams as associations. The terms are interchangeable.

■ A few adornments not glimpsed in class diagrams appear in object diagrams.
These adornments usually involve how objects are named and how objects send
and receive messages.

Figure 3.24 shows a class diagram (top) and two object diagrams (bottom).

Object Diagrams 107

Notice the following features of Figure 3.24:

■ The first row shows three associated class elements. The names of the classes at the
top of Figure 3.24 are not underlined.

■ In contrast, in the second row, the names of the objects are underlined. Likewise,
the object names consist of compounded parts. The object name comes first
(fancy), followed by a colon, and the name of the class comes last (Grip). The con-
vention reveals that the object is a named instance of the class (fancy:Grip).

■ The third row illustrates another approach to naming objects: A colon is prefixed
to the class name, and the name is underlined. This shows that the object is a
generic instance of the class.

■ Designers commonly illustrate object relationships both ways. No hard rule dic-
tates when and where a given approach is used.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming108

Figure 3.24
Diagrams can represent classes or objects.

Links, Dynamic Modeling, and Messages
The relationships between objects are called links. For all practical purposes, links and
associations are synonymous. Links reveal how messages pass from one object to anoth-
er. When a model shows how different messages pass between different objects at varying
times, the model is called dynamic.

Objects communicate with each other via messages. A message is sent whenever an oper-
ation executes. Note how messages are related to the following details of an object:

■ An instance of a class has to exist. An instance of a class is an object.

■ The class defines the operations that are available to the object, and these opera-
tions are known as the class interface. All objects of a given class have access to the
interface of the class.

■ Operations allow objects to send messages.

■ The object that initiates the message is the sender of the message.

■ The object to which the message is sent is the receiver of the message.

■ To show a message, you use a line tipped by an arrow—which can be referred to as
an association or link. The arrow points from the sender to the receiver.

Object Diagrams 109

About Objects

An object represents an instance of a class, and an instance of a class at some point comes into
existence and at another point goes out of existence. This is called the lifetime of the object. When
you diagram how an object changes during its lifetime, your diagram is dynamic. Object diagrams
are often dynamic.

Objects also actively send messages to each other through their operations. (C ++ programmers
call operations member functions.)

Objects are featured in three important UML diagrams. You’ve already glimpsed the first in the
investigation of class diagrams. This is the generic static object diagram. Object diagrams are con-
venient media for showing the dependencies and multiplicities of objects.

The two other types of diagrams are known as interaction diagrams. The first of these is called a
sequence diagram. Sequence diagrams show the lifetimes of objects and the sequences in which
they communicate with each other. The other type of diagram is called a collaboration diagram.
Collaboration diagrams show how objects communicate with each other.

Message Types
When a system processes messages, it passes along control of the program from one object
to another. An object that has control of the flow is active. When an object is active and
sends a message, different things can happen. You can classify messages according to what
happens. Table 3.7 shows you the messages and how they are classified. In this case, a given
object sends a message to another.

Message Arrows
Now that you know the types of messages, it’s good for you to learn the ways to represent
these messages. Figure 3.25 illustrates the four arrow elements that the UML provides to
indicate messages. Review Table 3.7 if you need help with the terms.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming110

Table 3.7 Messages and Their Types

Message Description

Simple messages The object can send a message to another object; by sending the
message, the object relinquishes control of the flow. No further
messages are sent.

Synchronous messages The object can send a message and momentarily relinquish control.
When it does this, it puts itself in a kind of suspended state of activity
while the receiver of the message takes control and does something.
When the receiver finishes whatever it is doing, it passes a message
back to the first object. When this happens, the first object regains
control.

Asynchronous messages The object can send a message to another object and expect no
message in return. In addition to expecting no return message, it also
retains control of the flow and can send still more messages.

Return message This is not so much a message as an acknowledgement. If an object is,
say, waiting for a reply to a message it has sent, the message it
receives to terminate its suspension (or to allow it to continue on with
its activity) is called a return. Most software designers do not consider
this a message, but it can still be traced in an object diagram. In fact,
it might be important to do so.

Message Parameters
Message parameters form an essential part of interaction diagrams, especially collabora-
tion diagrams. A full discussion of the syntax of messages is beyond the scope of this chap-
ter, but this section will examine a few basics. Figure 3.26 illustrates the basic syntax of a
message.

In most instances, you need only show the message named followed by open and close
parentheses. The following list discusses the syntax shown in Figure 3.26.

■ The value returned by the operation that conveys the message.

■ The name of the message. In most cases, you will use only the message name fol-
lowed by open and close parentheses (for example, startAction()).

Object Diagrams 111

Figure 3.25
Messages fall into four general categories.

Figure 3.26
The message syntax allows you to show parameters and return values.

■ The value or values that the message conveys.

■ The data type of the message parameter.

■ The data type of the return value of the message.

Sequence Diagrams
A dynamic object diagram, the sequence diagram allows you to trace the flow of the mes-
sages from object to object. To make the flow easy to comprehend, the sequence diagram
depicts behavior of an object along two axes: vertical and horizontal. The vertical axis
shows the lifeline of each object. The horizontal axis allows you to see how messages pass
between objects.

Objects and Lifelines
To create a sequence diagram, you can align the objects of the system or subsystem you
want to investigate across the top of the diagram. Then you can draw lifelines downward
for each object. You can establish nodes on each lifeline that allow you to indicate when
one object communicates with another object. Figure 3.27 illustrates a sequence diagram.

Four objects stretch across the top of the sequence diagram of Figure 3.27. Note the fol-
lowing features of the diagram:

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming112

Figure 3.27
Vertical and horizontal axes trace lifelines and message paths.

■ The objects appear across the top. Notice here that class names preceded by colons
indicate that the objects are generic. Objects do not have to be across the top. They
can be located anywhere it is convenient or appropriate to show them being con-
structed or destructed.

■ The vertical boxes are called activations. They indicate when an operation is active.
They’re included here for purposes of illustration, but because all the messages are
depicted as synchronous, it might be imagined that they are waiting for return val-
ues and remain active.

■ The lines going from left to right indicate synchronous messages. Such messages
pass control and usually expect some type of return message.

■ A dashed arrow depicts return values.

■ In all the instances shown here, the messages are in sequence: The timer issues a
start time, the AI device tells the character to strike, and the character strikes the
foe. When the foe is struck, he returns a value, as does the character and the AI
device. When the timer receives the return, it quits.

■ You can identify messages in different ways. The notation can be elaborate. To keep
it simple, you can use the message or the name of the operations that issue the
messages.

How to Read Messages
To make sense of the way the messages work in Figure 3.27, consider the following points:

■ The class Combat has an operation called StartAction(). The message sent from the
Timer object to the Combat object is sent through StartAction().

■ The class Character has an action called StrikeEnemy(). The message that Combat
sends to the Character object is sent through the StrikeEnemy() operation.

■ The class Foe has an operation called DecreaseHealth(). The message that Character
sends to Foe is sent through DecreaseHealth().

■ In each case, you can replace the operation names with message names, such as
start, strike, and diminish.

Collaboration Diagrams
Both sequence diagrams and collaboration diagrams are interaction diagrams. Further, a
sequence diagram can be converted into a collaboration diagram and vice versa. If a
sequence diagram helps you understand the order in which objects interact with each
other, collaboration diagrams allow you to investigate the specific messages and how they
contribute to the logic of the system. Figure 3.28 shows a collaboration diagram.

Collaboration Diagrams 113

Figure 3.28 shows a few salient features of collaboration diagrams, as follows:

■ Military numbering (1.1, 1.1.1, and so on) shows the path that messages follow as
the system completes a given task.

■ Objects bear specific or generic names, and the names are underlined.

■ Side arrows reveal the direction of the actions of links.

■ Labels identify links. Usually, you can add several pieces of information to
the label.

State Chart Diagrams
A state chart diagram is also called a state transition diagram. Such a diagram allows you
to investigate how the state of an object changes. Whereas an activity diagram is a conve-
nient tool for examining use cases, a state transition diagram allows you to go into an
object at one moment in its life and see how its state changes as you move to another
moment in its life.

The most basic use of a state transition diagram is to illustrate an event. An event is a
bounded happening. You begin at one state, make a transition, and end at another state.
This is called an event. The specific items under investigation are the attributes of the
object. You examine the values stored in the attributes at one point, you consider the mes-
sages or changes the object goes through (the operations that make these changes), and
you finish by viewing the changed state of the attributes. Again, this is an event.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming114

Figure 3.28
Collaboration diagrams aid with understanding how objects form into components through the mes-
sages they send to each other.

Why does an object change? It changes because it receives messages that tell it to change.
It receives messages when it interacts with other objects. Messages are sent to an object by
invoking its operations. The object changes when its state (its attributes) changes in
response to information it receives from other objects. When the object changes, the
change is an event.

Events, States, and
Transitions
Three terms describe what happens in
a state chart diagram:

■ An object starts in a given state.

■ The object receives a message.
The message need not always
come from another object
(although it will most of the
time). A message might come
from the hardware system. The
object might send a message to
itself.

■ In response to the message, the
attributes of an object change.
The object goes through a tran-
sition. This transition is said to
be an event.

Figure 3.29 shows a state chart diagram.

Note the following features of Figure 3.29:

■ The rounded rectangles represent states.

■ The arrows mark transitions.

■ The filled dot is called the initial state.

■ The circle with the dot inside is called the end state.

■ In Figure 3.29, at the Start state, the character attribute has a default type of “char-
acter.”

■ The Selected state shows the changed state of the object.

setCharacterType(characterType) [characterType = Igor]

State Chart Diagrams 115

Figure 3.29
State charts show objects in different states.

■ This message specification tells you the action that must take place for the object
to change.

■ The arrow indicates the direction of the transition.

More on State Transitions
In addition to showing single transitions, state transitions can show composites. A com-
posite consists of a set of states and transitions that can be viewed as a single event. Figure
3.30 shows a composite state diagram. The large rounded rectangle surrounds two states,
showing a composite event.
The composite event has a
name—given in the top of
the composite rectangle.

In Figure 3.30, note that the
composite diagram shows
two states and one transition
inside the composite box—
which is titled “Exiting.” The
composite state deals with a
set of states that involve the
same changes. Although
these changes are not shown
here, the “selected” action
might apply, say, to a setting
that says that the state of the
game is to be saved. If select-
ed, then the state is saved to a
file for future startup activity.

Component Diagrams
As you develop your game, you usually develop components that take care of sound, ani-
mation, data storage, and other tasks. You might develop these as separate executables. In
all such instances, it is a good idea to organize these components so that they are grouped
according to the services they provide. A component diagram provides you with the abil-
ity to show the groupings of these libraries and resources.

n o t e

A component is sometimes called a subsystem. A component is also sometimes called a module. A
component is occasionally a unit of execution—a set of files compiled into a single dynamic link
library. In other cases, a component is a collection of “resource” files.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming116

Figure 3.30
Composite states show substates.

The organization of the components of a system has both logical and physical implica-
tions, but the governing factor in component diagrams is how they are grouped in the sys-
tem architecture. Figure 3.31 illustrates a component diagram.

Note the following features of the component diagram depicted in Figure 3.31:

■ The tabbed rectangles represent components. A component can be a separate exe-
cutable, replaceable entity. It can also represent collections of files. In this case, the
engine for the game, the music player, and the database engine have been set up so
that they can be separately installed or updated.

■ A stereotype is used with the Engine component. You can use stereotypes and
other notation to describe the component.

■ Tagged values or properties can provide supplemental information. Here, a prop-
erty for version allows the version number of the engine to be identified.

■ The stemmed line extending from the Audio component represents an interface,
which is a common feature with components.

■ The broken lines with the open arrows indicate dependencies. In other words, the
engine uses Audio and Database components.

■ A name for each component should appear somewhere near the component. The
name is a logical name rather than the name of a file or executable that the com-
ponent contains.

Component Diagrams 117

Figure 3.31
Component diagrams depict larger component groups.

Package Diagrams
Package diagrams closely resem-
ble component diagrams. They
offer a way to group together ele-
ments (such as classes) when you
create design documentation.
The relationships that apply to
object and class diagrams also
apply to package diagrams. A
folder indicates a package.
Dashed lines show dependen-
cies. Packages usually contain
groups of classes that provide a
common service. Figure 3.32
illustrates a package diagram.

Deployment
Diagrams
A deployment diagram
provides information
on the physical loca-
tion of different com-
ponents or packages. It
differs from a compo-
nent diagram because
it identifies the physical
(hardware) locations.
Figure 3.33 shows a
deployment diagram.

Chapter 3 ■ A Tutorial: UML and Object-Oriented Programming118

Figure 3.32
Use package diagrams to group elements during the design
phase.

Figure 3.33
Deployment diagrams identify physical system locations.

Note the following features of Figure 3.33:

■ The boxes are nodes. A node can be a server or any other physical device on which
the system software is installed.

■ The tabbed folders are packages.

■ Packages appear within the nodes, but other elements might appear, also. Exam-
ples might be serialized classes that are written to a given server. In this case, you
might see a class or object diagram in a node.

■ The line with the circle represents an interface. The database package is accessed
through its interface.

■ Each node is named. The names are arbitrarily assigned but should indicate the
type or identity of the hardware designated as a node.

■ The dashed lines with open arrows represent dependencies. The client package
requires a connection to the server node, and the server node requires a connec-
tion to the database node.

Conclusion
UML offers an extensive set of conventions, and acquiring full knowledge of these con-
ventions requires extensive study. However, you can put the knowledge you have gained
in this chapter right to work if you use UML notation the next time you plan a program.
Use the notation! If you work informally, expanding on an idea or explaining something
to someone else, you really cannot go wrong. As long as the notation helps you in your
work, it is doing its job. Refine your knowledge as you go.

If you want to investigate the subject more extensively, check out the following books:

Ambler, Scott W. The Elements of UML Style. New York: Cambridge University Press, 2003.

Bennett, Simon, John Kelton, and Ken Lunn. Schaum’s Outline of UML. New York:
McGraw-Hill, 2001.

Booch, Grady, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language User
Guide. Reading, Massachusetts: Addison-Wesley, 1998.

Booch, Jacobson, and Rumbaugh take you to the source. They unified the things that
became the UML. Reading their book allows you to gain a sense of the spirit of the
language.

Computer-Aided Software Engineering (CASE) tools incorporate the syntax of the UML.
These tools are available widely as both commercial products and freeware. Appendix A,
“Installation and Setup,” introduces you to SmartDraw. SmartDraw is not a full-fledged CASE
tool, but it allows you to manually create UML diagrams. It is also an excellent tool for working
with all aspects of game development. (A demonstration copy of SmartDraw is on the CD.)

Conclusion 119

121

Software Design—Much
Ado About Something

Chapter 4

W
hen you design software, you begin with a collection of information you have
gathered during the requirements phase of the development lifecycle. This
information allows you to define a multitude of software entities that express

the functionality that the requirements specify. In addition to creating a group of func-
tional entities, however, you also organize the entities so that they can work together. The
software design effort involves understanding what counts as a good software system and
then using a select set of tools to discover and depict such a system. In this chapter, you
will do things in two parts toward these ends. First, you’ll learn the guiding concepts of
design. Later, you’ll delve into the nitty-gritty of the design effort with Ankh. Many factors
come into play. Among the topics covered in this chapter are the following:

■ Why do design at all?

■ The elements of design, including reducing complexity and focusing on
responsibilities

■ The principles of design, which involve—among other things—abstraction, cohe-
sion, and coupling

■ Design patterns, which are also carried into another chapter

■ The developing of design using stripes

■ The use of design tools, such as interaction diagrams, class diagrams, Class-
Responsibility-Collaboration (CRC) cards, and component diagrams

■ One approach to creating a design and the contents of a software design
description

Beginning Design
After you finish the work of engineering a set of software requirements, you can begin
work on the software design. Design work differs from requirements engineering.
Software requirements engineering involves discovering what functionality you need to
create to support the features of your game. Software design involves planning how to
build the software system according to the requirements.

As discussed in Chapter 2, “Requirements—Getting the Picture,” you capture require-
ments in a Software Requirements Specification (SRS). This document states requirements
as a list and then elaborates on them with use cases. This chapter introduces another doc-
ument: the Software Design Description (SDD). The SDD shows developers how to build
the software system. It does so by taking the information provided in the requirements
and transforming it into diagrams and other design artifacts that show developers how to
build the software that addresses the needs that the requirements express.

Why Design?
Software engineers design software systems for a variety of reasons. One of the most
important reasons is that the complexity of a system tends to increase drastically as you
add elements to it. One way to approach the need to reduce the complexity of software
systems is to consider Figure 4.1.

Chapter 4 ■ Software Design—Much Ado About Something122

Figure 4.1
Complexity characterizes any random system.

Figure 4.1 (A) shows a set of differently shaded squares arranged in a random manner. If
you think of the squares as software components, such as classes, you can arrive fairly eas-
ily at a sense of what a design effort might accomplish. Notice in set A how difficult it is
to see how many different shades of squares there are. Suppose that someone told you to
uniformly change the shades of the squares. Set A would make this task fairly difficult
because you would have to work individually with all the squares. The squares have no
order. Because no order in the arrangement of the squares exists, the squares are said to
be part of a complex system.

What can you do with this set of squares? One thing you can do is reduce the complexity
by organizing the squares according to their relationships. What relationships? You might
name shades of gray first.

Note the following results of analysis:

■ Eighty-one squares form the pattern of squares.

■ If you group the squares according to their colors, you find nine color groupings.

■ The squares occur in sets of nine, so you can create nine sets of nine.

■ You can further reduce the complexity by making the groupings symmetrical
(putting them in 3 � 3 matrices).

Figure 4.1 (B) shows the colors regrouped into columns. The analogous situation in soft-
ware is when, for example, functions of a given type are organized into specific, well-
focused classes or classes are, in turn, organized into components that provide specific
types of service. Notice how the reorganization reduces the complexity of the design. It is
now much easier to see how the squares can be grouped into nine components. Figure 4.1
(C) shows the squares reorganized so that the groups are more symmetrical. Figure 4.2
elaborates on the effects of the design effort.

Software design involves examining the elements of a system to find ways to group the
elements according to the relationships that pertain between them. Ultimately, this activ-
ity involves seeking certain design objectives. To identify the elements and their relation-
ships, you can use design rules. Design rules begin with objects and messages. When you
reorganize the elements and refine their relationships, you apply design principles. Design
principles help you identify collaborations of objects. You can move to a higher level of
organization when you consider the different possibilities for how to arrange the collabo-
rative elements so that they achieve the best results. For example, notice that the squares
went from being in columns to being in matrices. At this level, you apply design patterns.
At a still higher level, you consider what is known as the architectural style of the system.
Figure 4.3 illustrates a hierarchy of these concepts of design.

Beginning Design 123

Chapter 4 ■ Software Design—Much Ado About Something124

Figure 4.2
Design reorganization reduces the complexity of the system.

Figure 4.3
Design involves moving from the least to the most
encompassing views of the system.

Architecture and Design
In its labor of reducing the complexity of software systems, software design draws upon a
collection of practical tools that you use to analyze and refine a system into interacting
objects. At the same time, it also draws
upon high-level conceptualizations of
software systems. Architecture provides
you with a set of conceptualizations of
what a system should be when completed.
The architectural vision of the system
marks both the beginning and the end of
the design journey. It marks the beginning
because it provides a set of assumptions
that guide the design activity. It marks the
end because it calls for a general view of
the system as an architectural creation.
Figure 4.4 summarizes the perspective.

In contrast to architecture, design concentrates on details and seeks to organize the ele-
ments within a system to produce a system that fulfills the specifications given in the
requirements. Architecture and design are sometimes regarded as the same thing. This is
not a particularly beneficial way of looking at things. At some moments, you assess a task
from an architectural perspective. At other moments, you immerse yourself in details and
concentrate on specific features of design. As you move forward in this chapter, it’s impor-
tant to remember the distinction between practical component refinement and overall
system style.

Rules for Identifying Design Elements

The approach to design used in the Ankh development effort involved rules. Ways of defin-
ing design elements that formed the groundwork of the design effort were designated as
rules. These were not rules in the sense of laws that spell out right and wrong behavior for
system designers. Rather, these rules consisted of assumptions that helped designers under-
stand the content of what they were dealing with. The rules fall under five general headings:
state machines, functions, relationships, collaborations, and responsibilities. When you seek to
design a system, you can first identify items that fall under such rules. Using the rules as
guides, you can then design the system. Figure 4.5 offers a summary view of ways to identi-
fy elements.

Beginning Design 125

Figure 4.4
Design and architecture meet in practice.

State Machines

The generic state machine is one of the first basic elements of design. Generally, a state
machine is an entity that is capable of storing information and making decisions based on
that information. An object is often identified as a state machine because its attributes
store information and its operations respond to input using the stored information.

The point is to establish that a software system can contain entities that store information
and are capable of reacting in an indirect fashion to the system around them. When enti-
ties behave in this way, they are called state machines or, more simply, objects.

Functions

Another element of design is the function—or operation. In contrast to state machines,
operations might not store information. Instead, they might immediately process the
information and return a result. Such entities are not state machines; they are usually
identified as functions. Functions can be collected together into libraries. The libraries can
provide a set of services. An example is the C math library.

Relationships

Whenever one element (whether it’s an operation, a class, a state machine, or a compo-
nent) communicates with another, a relationship is established between the two elements.
A relationship can be considered asynchronous when one entity communicates with

Chapter 4 ■ Software Design—Much Ado About Something126

Figure 4.5
Find ways to identify the fundamental elements of
design.

another without needing to receive information in return. A relationship can be charac-
terized as synchronous when it expects a response or an acknowledgement. The outcome
of the relationship between two elements is that messages that the relationships transfer
allow the states of elements to change. An element’s state is characterized by the informa-
tion it contains. The message might cause a state change.

Collaborations

When you collaborate with someone to do something, you join with that person to
accomplish certain goals. Both functions and state machines can collaborate. From an
object-oriented perspective, a collaboration involves division of labor and specialization,
so that a group of objects provides the system with a type of service that transcends the
service provided by any one object within the collaboration.

Responsibilities

Responsibilities in a software system begin with the requirements specification. Ultimately,
with every line of code, you should seek to implement the functionality that the require-
ments specify. What does not trace back to the requirements deserves questioning. System
designers often use role names to illustrate the responsibilities of particular elements. Class
and function names convey their responsibilities. Likewise, component names reveal the
collective responsibilities of the elements that the component groups together.

Principles of Design

Principles differ from rules on a num-
ber of levels. Principles of design guide
you as you refine the relationships you
develop within and between the classes
or components that make up your soft-
ware system. Principles of design help
you know how to reshape the system
through incremental refinements. You
use these principles to help you deter-
mine how to merge, divide, eliminate,
and generally refine the elements of
your system. Rules, in contrast, relate
to the simple identification of visible
elements or component groupings of
the system. Figure 4.6 offers a summa-
ry view of a few common principles of
design.

Beginning Design 127

Figure 4.6
Establish principles of design.

Seek Abstraction and Encapsulation

Because objects in the real world are complex, people form abstractions to capture their
essence. For example, you might employ abstractions to create characters in a game. You
create these characters using classes. The characters are less complex than real people
because the classes with which they are created allow them to behave in only a limited
number of ways and to have a limited number of states. This activity of limiting the char-
acters to behaving and existing in limited ways is a key to understanding encapsulation.

Encapsulation combines attributes (which are the things that hold the state of a object)
and operations (which are the things that change the behavior of an object) into a single
entity—a class. You use the class to create objects. Each object performs according to the
behaviors and attributes that the class encapsulates. It is in this way that a class encapsu-
lates the attributes and behaviors of the characters in a game.

The user of the class should be concerned only with receiving the services that the class
provides. Services are provided to an interface. An interface consists of the public opera-
tions of a class. The interface simplifies the use of what might be thousands of lines of
code; the only thing the user of the interface sees is the operation through which the ser-
vice is obtained.

You can also apply abstraction and encapsulation to larger design contexts. For example,
in the use of components and frameworks, you can package a software component con-
sisting of many classes so that it, too, offers a simple interface. Frameworks abstract the
work of large groups of classes so that programmers can easily develop specific types of
applications. (C# Forms, MFC, and Java Swing are examples.)

Seek Cohesion

Cohesion describes how well the operations in a class address one specific theme. The
theme is usually spoken of as the responsibility of the class. Every operation within a class
should address some aspect of the responsibility that is assigned to the class. If a class is
concerned, for example, with Artificial Intelligence (AI), then it probably has no business
providing operations that deal with sizing dialog boxes or regulating audio output.
Generally, classes should be highly cohesive.

Avoid Coupling

Coupling is a principle of design because it, like cohesion, can apply to every element in
the system. Coupling refers to the extent to which elements depend on each other, but it
goes a step beyond. Every element in a system, to some degree, depends on other elements
in the system. On the other hand, when elements depend on each other too much, their
dependencies require that when one part of the system must be changed, many other
parts of the system might have to be changed as well. Tight coupling reduces the flexibil-
ity of the system. Two major problems result from tight coupling. One problem has

Chapter 4 ■ Software Design—Much Ado About Something128

already been mentioned: For every one change, many others must be made. The other
problem is that if any one part of the system fails, many others will fail, also. Such a sys-
tem is said to possess a high degree of instability.

Practice Decomposition

Decomposition is a way to achieve both coupling and cohesion. To decompose an entity
is to break it into pieces. You break a complex set of system functionality into subsystems
to reduce its complexity. Decomposition reveals whether subgroupings exist. You can sim-
plify complexity by breaking noncohesive classes into cohesive classes.

Practice Consolidation

Although approaches to programming differ from individual to individual, programmers
commonly solve problems by first decomposing problems into tasks. Each task can then
become the subject of a separate function. This type of work can characterize the devel-
opment of a class. For example, when you design the interface for a class, it is important
to see whether operations are redundant. Do you require two function calls when one
would do?

Eliminate Redundancy

Each class in a program should address a single responsibility, and no two classes should
focus on the same one. Consider a situation in which you have two classes that provide
similar services. An example might be classes that create sliders. You develop two classes,
one for vertical sliders and the other for horizontal sliders. Clearly, the objects you create
with these classes resemble each other closely, with the difference only that objects of the
classes adjust for vertical or horizontal positions. Is it worthwhile having two classes? You
can eliminate such redundancy by creating one class that allows you to instantiate sliders
horizontally or vertically, depending on the setting, say, of one attribute or the value pro-
vided to one operation within the class.

Share Resources

You can view resources in several ways. Resource sharing in this context is referred to as
relating to a given type of service (or activities that address a given responsibility). The
elements that provide a given type of service can be grouped into one class or component.
Other components can then draw upon this one class or component for the services it
offers. Sharing of resources reduces complexity and supports software reuse. One of the
prime means of sharing resources is to create hierarchies and employ inheritance to spe-
cialize operations. Another approach is through composition, which involves creating an
instance of one class inside another.

Beginning Design 129

Reduce Hierarchy Depth

This principle arose in response to the tendency that inexperienced designers have of cre-
ating deep hierarchies. The drawback of using deep hierarchies is that system perfor-
mance declines when classes become large. Large classes result when a class lower down
in a hierarchy inherits an enormous amount of functionality from classes higher up. Each
class absorbs memory. Experienced designers seek to reduce the depth of hierarchies to a
minimum. Reduced depth provides less coupling and better performance. Rather than
seeking extensive hierarchies, designers should seek to accomplish as much as possible
through aggregation.

Patterns

Patterns extend principles. Patterns have become so important in recent years that they
have permanently altered the basic practices of object-oriented programming. They have
added to the principles of object-oriented design the notion that certain solutions to
design problems can be applied across any number of instances of application develop-
ment. Chapter 7, “P Is for Pattern,” is dedicated to patterns.

For now, it is enough to observe that a pattern provides a way to understand how to design
components. Although one pattern, the Singleton, provides a model for one class, it is
generally the case that patterns apply to groups of elements. In other words, they struc-
ture components, or subsystems. Patterns can also extend beyond components, becoming
models for collections of other components. And patterns can be said, likewise, to apply
to entire frameworks and applications.

Here are a few patterns, which are discussed in more detail later:

■ Controller. Controller patterns find a wide application in the Ankh design because
the user repeatedly interacts with the system through a variety of objects. Rather
than embed event-processing capabilities in interface features, you can use con-
trollers. A Controller pattern allows a dialog box or window to pass events to the
system. Such objects should not contain operations that communicate directly
with the system.

■ Singleton. A Singleton is a pattern that can be implemented to control the number
of times a class is instantiated. A Singleton can contain a special create() function
that ensures only a single instance of the class is ever created. The basic game
instance can be implemented using a Singleton pattern.

■ Expert. The Expert patterns solve a problem that often arises when a body of infor-
mation derived from several sources is needed to respond to a given event. The
Expert pattern allows one class to capture this information in one place so that
other classes can use it. The alternative is to repeatedly embed expert capabilities in

Chapter 4 ■ Software Design—Much Ado About Something130

a number of classes whose responsibilities involve performing activities that have a
much wider applicability than the focus of information that the Expert pattern
possesses.

■ Bridge. A Bridge pattern is a way that a proxy can be set up. This pattern is often
used to eliminate deep hierarchies, which can cause major problems with perfor-
mance. You can implement a Bridge pattern when, say, one class has a number of
specializations based on what might amount to one attribute change. Perhaps you
have a CCharacter class. You might derive two classes based on whether CCharacter is
animated or static. This would create the beginning of a hierarchy that might be-
come bulky. Suppose, for instance, that you added audio capabilities later on. To
overcome the problem, you might create an abstract class called CMode. Two classes
named CAnimateMode and CStaticMode could be derived using CMode. CCharacter would
require only a reference or pointer to CMode. It could then acquire the capabilities
needed through the Bridge.

Styles

Chapter 19, “Philosophy of Software Engineering and Game Development,” uses style to
refer to the management practices that characterize a game development organization.
The parallel with architectural style is intentional. Architectural style defines the compre-
hensive software design vision that either guides or emerges from the design effort. In
some instances, the effort might begin with a dictated style. A larger organization, for
example, might have subcontracted the organization for which you work to produce a
game of a given description. The architectural style might be dictated to you through the
game design and an exacting list of constraints that expressly document how you are to
build the game.

On the other hand, you might be involved in an organization that is evolving its own game
engine. The way you design the engine might be based on the best architectural information
you can find, but you might decide to take specific risks and design components with a com-
pletely new approach. You reveal your architectural style in the design that you create.

You can study architectural styles the same way that you study the architectural styles of
buildings, and within the game industry, such a trend is well underway. This kind of study
is beyond the scope of the current discussion; however, consideration of a few generic
styles would be beneficial.

Extensible Design Style

An extensible framework seeks to make a standard set of products fairly easy to produce.
It also allows the functionality of the products to be gradually extended through repeated
development efforts. Components are added or enhanced within the same basic frame

Beginning Design 131

work. If you were to examine the games produced by a company that maintains an exten-
sible game framework, you might find that the characters interact in the same ways from
game to game. You might find the AI predictable. In addition, you might note similarities
in the way layers are managed. You might find functionality that is clearly built upon the
older functionality. Such continuity (to put it politely) occurs because all the games are
developed with the same underlying software. This is the framework.

Distributed Design Style

A distributed architecture means that the user interface will be designed on a client-server
model. Tiers can be added for processing and database interactions. Components are like-
ly to be packaged as modules (in other words, packaged as separate executables that run on
separate machines). Such an architectural style makes the development of the game from
the start a top-down, sophisticated undertaking.

Componential Design Style

Many books on “game design” blithely tell software developers to go out and buy things
like game engines or Computer-Aided Software Engineering (CASE) tools. The value of
this approach to game development is based on the extraordinarily successful history of
component-based software in other industries. Unlike extensible design styles, compo-
nential design styles allow companies to assemble products from off-the-shelf, well-tested
software. Componential design strategies emerge most often in organizations that have no
strong desire to enter directly into core game development. Their preference might be to
place emphasis on publication, market research, and game design. They then buy the
component software that allows them to quickly give shape to the product.

Free-Form Style

Free-form architecture might be where the greatest potential for creativity lies. Generally,
free-form styles of architecture use bottom-up design approaches and try to find patterns
in what is discovered during the design effort. The creation of Ankh falls into this catego-
ry. This approach seeks empirical information about the design and development process.
The Ankh effort begins with an atomized set of classes and analyzes them for features that
have bearing on design decisions.

Designing for Quality
As a final discussion leading up the actual work of designing a software system, it’s neces-
sary to take a short excursion into the realm of quality issues. Quality might seem to be
an illusive thing, but in software engineering efforts, quality almost always has a strong
impact on the lifetime cost of a software system.

Chapter 4 ■ Software Design—Much Ado About Something132

The sections that follow provide a short
and traditional list of the elements of
quality. Such organizations as the
International Standards Organization
(ISO) have established a set of quality
standards and the ways that metrics can
be collected for them. In the context of
this chapter, it is acceptable to offer
general statements about a few of the
ISO and other standards of quality.
Figure 4.7 summarizes some of the
quality issues.

Maintainability
Maintenance programming character-
izes any successful software product.
You might relish the idea of participat-
ing in one of those organic, experiential
adventurers in which you and a small
group of colleagues create the next
best-selling game, but the reality is that around 70 percent of the work in the game indus-
try involves maintenance programming. In other words, you will be fixing bugs and
extending or enhancing a product that already exists. What many people forget about
maintenance programming is that a complete software development cycle characterizes it.
In other words, to extend a product, you must perform requirements engineering, design,
implementation, testing, and release operations.

Software that is maintainable makes success easier than it would be otherwise. When design-
ers design for maintainability, they seek to create software that will be easy to repair and
extend. They design with the idea that what they are designing is a beginning as much as it
is an end. Chapter 17,“Release Planning and Management,” discusses software maintenance.

Portability
Porting software involves moving it from one operating environment to another. A prime
example of portability is a game that developers first develop for a personal computer and
then later port to a game console. What makes porting easy? What reduces the cost and
time needed to port the software? The techniques are fairly standard for those who per-
form such work regularly. Among other things, calls to the operating system should be
collected into specific components. The components can then work to mediate between
the rest of the game and the operating system on which the game runs. The discussion in
Chapter 5, “Old Is Good—The Library Approach,” concerns some aspects of portability.

Designing for Quality 133

Figure 4.7
Quality design reduces software lifetime development
costs.

Usability
Software has several modes of use. Players use a game. But then programmers later in the
lifecycle of the game use the classes or components that the original developers create.
Usability in the software engineering context takes both realms into consideration, but in
this book, the focus centers on how to design the software system so that programmers
can extend or reuse it. Usable software is software that provides interfaces that are straight-
forward to use. Usable software is documented so that it can be readily understood. Many
issues relating to usability might be addressed. One is primary development practices (see
Chapter 13, “What People Do—Development Strategies”).

Performance
Many C++ programmers who are involved in an initial experimentation with game devel-
opment have the experience of watching a game slow down and eventually grind to a halt.
Memory leaks are a performance issue. Likewise, programmers who develop deep class
hierarchies and store a multitude of the heavy objects in a gigantic vector or queue also
know about declining performance. Animation might be sluggish. Information transfer
takes time, and the more information there is, the more time that’s required. Software tun-
ing provides one of the most challenging and technically difficult areas of game develop-
ment (see Chapter 6, “Object-Oriented Fantasies and Realities”).

Testability
Componential isolation of functionality facilitates testability. In other words, effective
testing of a software system occurs because the testing engineers can test areas of the sys-
tem in isolation from each other. Assume that a system consists of 100 components. If test
engineers can test individual components in isolation from others, they have a much bet-
ter chance than otherwise of determining whether the component has performance prob-
lems. Testability also involves specifying software so that test engineers know what to test
for. Testing involves a wide range of criteria, and unless designers initially design the soft-
ware for testability, testing engineers find their work extremely difficult. Chapter 11,
“Evident Evil—The Art of Testing,” addresses some of the central issues of testing.

Efficiency
Efficiency has to do with both the size of the program and the rate at which it performs.
Size is related to things like algorithm performance. A given algorithm can be evaluated in
terms of the time it takes to complete its work. Added to the raw performance of the algo-
rithm, however, is the complexity of the implementation relative to the task performed. A
component that is tangled or mired with complexity might not be the most efficient
implementation of a solution even if its performance is as good or better than another,
less complex solution. Efficiency involves studying several variables. Chapters 9, “Iterating

Chapter 4 ■ Software Design—Much Ado About Something134

Design,” and Chapter 12, “Numbers for Nabobs,” discuss metrics and other criteria used
in evaluating software efficiency.

Reliability
Reliability is a measure of failure rates. In other words, if you run a program a million
times, what percentage of the time will it fail? The resulting data is sometimes labeled as
the meantime to failure. Testers assume from the first that the system will fail.

At the beginning of the test cycle, the software fails often, but as bugs are removed, the fail-
ure rate declines to the point where it is rare. It is only when failure is rare that the soft-
ware is ready to ship. Only then is the failure rate said to be acceptable.

n o t e

Chapter 11 covers testing in detail. For an interesting discussion of reliability and failure in tradi-
tional engineering terms, you might want to examine Henry Petroski’s To Engineer Is Human: The
Role of Failure in Successful Design. (New York: Vintage, 1992). An experienced engineer, Petroski
notes an interesting contradiction in engineering history. “While engineers can learn from structural
mistakes what not to do, they do not necessarily learn from successes how to do anything but
repeat the success without change” (99). One outcome of this observation in software design is
that if a system is forced to fail, you can learn a great deal about how to improve reliability.

Finding Elements and Relationships
This section works toward understanding the preliminaries of design. Some authorities
place the activity of describing elements and relationships in a software system as analy-
sis. Whatever it is called, it involves taking into consideration the information that has
resulted from the requirements engineering phase. Your efforts in Chapter 2, which con-
cerned requirements engineering, resulted in three things:

■ The requirements list. The list provided a convenient way to track requirements
during the requirements engineering phase. The requirements list helped reduce
the amount of information so you could understand the scope of the system.

■ The use cases. The use cases allowed you to understand the context of the require-
ments and to have at hand a ready way to solidify your understanding of the
requirements list. Some experts say that only the use cases are necessary; others
contend that the requirements list is necessary and the use cases are throwaway
work. Actually, both are necessary. You will return to use cases as you begin your
design effort.

Finding Elements and Relationships 135

■ The Task-Object-Remarks (TOR) chart. This was a working table intended to
provide a ready way to store information about objects and their responsibilities
and relationships. Joined with CRC cards, the TOR chart becomes a starting point
for your design work.

The work of design requires that you examine the information these artifacts provide and
determine whether you can see ways to organize it so that you can create a software sys-
tem that solves the problems the requirements present. Figure 4.8 illustrates how you can
use the information from the requirements phase, together with a set of design tools, to
gain an initial view of the primary elements and relationships of a software design.

Figure 4.8 summarizes activities you perform as you work from requirements to a candi-
date class list. You start with use cases and a requirements list. From there, you proceed to
use CRC cards (described in the next section) to explore collaborations and responsibili-
ties. CRC cards document classes, but at the same time, the content of the CRC card close-
ly corresponds to the object and task listed in the TOR chart. For this reason, the TOR
chart is an intermediary step between the requirements statement and the CRC card. The
end result of the analysis phase should be a list of candidate classes you can begin putting
together through your design effort. Figure 4.9 shows the flow of activity from require-
ments through a candidate class list.

Chapter 4 ■ Software Design—Much Ado About Something136

Figure 4.8
Basic design tools allow you to generate objects and their relationships.

CRC Cards
CRC cards provide a convenient way to explore how classes (or objects of classes) relate to
each other. Each class has at least one responsibility to provide some type of service to the
system. Each class, likewise, collaborates with other classes when it delivers services. The
classes to which it delivers services are its clients. If a class delivers services, it is a server.

One way that classes relate to each other is through the services they provide to each other.
The collection of services that one class offers to others is through an interface. The inter-
face consists of the public operations that a class contains. A CRC card helps you begin to
establish what operations it should contain. It does this by offering you the chance to ask
why one class communicates with another. Each class is a collection of services. Each col-
lection of services in some way corresponds to the functionality the requirements specify.
Figure 4.10 illustrates the layout of a CRC card.

Finding Elements and Relationships 137

Figure 4.9
Design tools provide a way to move from requirements to candidate

Figure 4.10
CRC cards explore relationships between classes.

The next section discusses using a TOR chart to augment your effort of developing CRC
cards. Following are a few procedural steps:

■ Use the TOR chart and its task listing to establish the name of a class.

■ Use your use cases and requirements to derive the names of objects. Search for
tasks that must be completed in light of the requirements.

■ Determine what you think this class should do. It must have at least one responsi-
bility. It should not have more than three or four. If this class has multiple respon-
sibilities, these responsibilities should be closely related.

■ Discover whether your class seems to require information from another class. If it
does, then list this class as a collaborator.

Using the TOR Chart
If you focus on the tasks in the TOR chart, you can derive a candidate list of responsibilities
for the classes you name in the CRC cards. A class might have several responsibilities. You
can also focus on the object name and decide whether it is a suitable beginning for a class
name. To determine the list of collaborative classes, explore the remarks section of the TOR
chart together with the dependencies you observed in your use cases. Figure 4.11 illustrates
the first few listings from the TOR chart. See Appendix D, “Software Engineering and Game
Design Documentation,” (or the CD) for the complete chart.

Starting from the TOR chart created during the requirements phase, you can use the CRC
cards to generate a tentative list of 41 classes. Even though these classes are preliminary,
they serve as a starting point for working through the use cases to identify the final ele-
ments and relationships that define the system. Figure 4.12 shows a candidate list of class-
es. The classes named at this point will be iteratively examined as you move into the next
stage of activity, which involves creating stripes of functionality that bring your prelimi-
nary class lists under intense scrutiny.

Chapter 4 ■ Software Design—Much Ado About Something138

Finding Elements and Relationships 139

Figure 4.11
A TOR chart provides a list of candidate objects and operations.

Generating Operations
Use case scenarios provide statements that indicate how objects interact through mes-
sages. When you work with a use case, you can isolate terms that help you identify objects.
One approach is to fall back on the preliminary class list to grab the names of classes that
might serve as “collectors” of the actions observed in the use case scenarios. The proce-
dure is fairly rudimentary.

1. Select a requirement you want to begin incorporating into the design.

2. Select the appropriate or corresponding use case(s).

3. Carefully work through the scenario. If you spot a noun that fits one of the classes
you have identified on a preliminary basis, bring this forward to become a general-
ized object in a sequence diagram.

4. Assign actions to objects.

5. Move through the use case until you have assigned all actions in the use case to
operations you place in the sequence diagram and assign, tentatively, to objects.

If you return to a scenario dealt with in Chapter 2, you can examine the events that start
a game. Figure 4.13 illustrates a use case scenario that was introduced in Chapter 2.

Moving to a Sequence Diagram
If you work from the scenario in Figure 4.13, you can generate a tentative sequence dia-
gram. The sequence diagram attempts to translate the actions in the use case into a con-
ceptual view of objects and relationships. Generally, the names of the messages between
the objects don’t need to be precise at this point. The purpose is largely to test whether it
is possible to envision a sequential flow of activity. The sequence diagram allows you to

Chapter 4 ■ Software Design—Much Ado About Something140

Figure 4.12
The TOR chart provides a list of candidate classes.

take a set of classes and generate objects from them. Then you explore the sequence of
messages that pass between the objects. Figure 4.14 provides a sequence diagram for the
scenario in the startup use case.

Generating Operations 141

Figure 4.13
Start with a use case to investigate a scenario.

Reframing Operations with a Collaboration Diagram
The collaboration diagram is an interaction diagram, like the sequence diagram. It shows
how objects interact. In many ways, the collaboration diagram is simply an alternative
view of the information you see in the sequence diagram. On the other hand, it differs
tremendously from the sequence diagram because it offers a way to view a set of interac-
tions between objects as a software component. Figure 4.15 illustrates the sequence dia-
gram shown in Figure 4.14 recast as a collaboration diagram.

Chapter 4 ■ Software Design—Much Ado About Something142

Figure 4.14
A sequence diagram translates the use case scenario into object interactions.

Figure 4.15
A collaboration diagram recasts a sequence diagram to emphasize the operations that relate the
objects.

In the current context, as pointed out earlier, a component is a set of objects that interact
to provide an identifiable service to the overall system. One of the major differences
between a sequence diagram and a collaboration diagram is that a sequence diagram
shows you the flow of activity modeled on a scenario. The collaboration diagram, in con-
trast, makes it easier to view the collection of relationships between objects as composing
a component. Figure 4.16 contrasts sequence and collaboration diagrams.

Low-Level Design Tools
Low-level design activity immediately precedes or accompanies implementation. One
goal of low-level design is to refine class and operation names and descriptions into
implementation terms. Conceptualizations diminish and class designs become prevalent.
To facilitate the gathering of this information, the specific nature of each operation in a
class needs to be known. This is the work of the operation specification.

Class Diagrams
Before discussing operations specifications, it’s good to review a few notions about class-
es and class diagrams. Toward this end, the first notion introduced is that a class is a stat-
ic entity. In other words, a class is a pattern for objects of a given type. Because a class is a
pattern, it incorporates attributes and operations that might not be fully visible in the
behavior of any one object instantiated using the pattern. To discover the operations in a
class, you might have to explore the class in a number of contexts. To accomplish this, you
can refine the operations in classes using collaboration diagrams in conjunction with
CRC cards and use cases. Note the following:

Low-Level Design Tools 143

Figure 4.16
Sequence and collaboration diagrams provide different views of the system design.

■ Use cases set different contexts of use for a class.

■ Different contexts of use require that different operations come to life.

■ You can use interaction diagrams to explore contexts of use. The use case can be
translated first into a scenario and then into a sequence or collaboration diagram.

■ As different operations come to life, you can refine the class. A combination of
contexts of use reveals that the class has a range of operations that exploration of
no one context of use can expose.

■ To ensure that each operation is fully explored, you can write an operation specifi-
cation. You can supplement this with an activity or state transition diagram to
reveal precisely how the operation changes the object that hosts it or calls it. Such a
diagram is often called a low-level design tool because it might be the last thing a
programmer does before beginning to write the code for the class.

Given full exploration of operations, it becomes possible to know both the attributes and
operations of a given class. Figure 4.17 provides a summary view of the activities that
allow you to analyze and design a class.

Chapter 4 ■ Software Design—Much Ado About Something144

Figure 4.17
SDD artifacts emerge from the design development effort.

Operation Specifications
An operation specification has its parallels in CRC cards and use cases. It is a formal medi-
um for structuring the activity that’s involved in developing a software component. As
with CRC cards and use cases, creating a template in Microsoft Word or SmartDraw pro-
vides a convenient means of documenting your work. Figure 4.18 shows a blank opera-
tion specification.

You can create an operation specification from an interaction diagram. Generally, it is a
good idea to create an operation specification after you have worked through most of the
high-level activities, such as creating sequence, collaboration, and class diagrams. The fol-
lowing points might be useful when you work with an operation specification:

■ When you name a function or method (in UML, an operation), just copy the
operation call (message) from the class, interaction, or collaboration diagram into
the specification template. Chapter 3, “A Tutorial: UML and Object-Oriented Pro-
gramming,” provides a review of the syntax of messages.

Low-Level Design Tools 145

Figure 4.18
An operation specification refines the operations. (For more information, see
the reference for Craig Larmon at the end of this chapter.)

■ You derive an operation’s responsibility from observing what the operation does in
the interaction diagram. The language does not have to be formal or even very
precise.

■ A precondition is what must be true for the operation to work.

■ A postcondition is what is changed after the operation is completed. According to Lar-
mon, postconditions usually fall into three categories: something is deleted or created,
an attribute is changed, or an association is created or broken (Larmon, 149).

Component/Package Diagrams
A final way of examining a class is to place it into a context with other classes. This is the
opposite of examining the internals of a class. Instead, you put it into a package or com-
ponent diagram and see how it works with other classes that compose a single subsystem.
Chapter 3 provides a review of component or package diagrams. When you examine the
software design description for Anhk (later in this chapter), you will have a chance to see
how the classes derived from the first stripe design effort are grouped into a component
diagram.

Presenting the System Design
The tools of design allow you to depict the design of the software system in different ways.
Being able to look at the system in different ways allows you to analyze and refine your
system to an extent that would not be possible without such tools. In addition to simpli-
fying your design effort, the tools of design allow you to meet the recommendations that
the Institute of Electrical and Electronics Engineers (IEEE) has set for how a software sys-
tem is to be portrayed in the software description. The IEEE standard dealing with such
descriptions is IEEE 1471. The standard calls upon software engineers to portray the sys-
tems they create from different viewpoints, but it does not specify which viewpoints
should be used. Generally, the viewpoints address different stakeholders in the software
product. Viewpoints meet the needs of users of the system, such as

■ Developers of the system

■ System users

■ Those who purchase or take ownership of the system

■ Those who have responsibility for maintaining or extending the system

In an object-oriented design effort, among the options for depicting the system are use
cases, interaction diagrams, package or component diagrams, and class diagrams. Use
cases define the system scope and its use scenarios. Interaction diagrams depict the behav-
ior of the system. Class diagrams depict static views of the system. Package diagrams pro-
vide a componential view. If you use these views of a system, you can satisfy the guidelines
that the IEEE has established for design description.

Chapter 4 ■ Software Design—Much Ado About Something146

The SDD Template
You can use the IEEE’s SDD template as a starting point for organizing the views you cre-
ate during your design effort. The best approach is to shape the document so that it gives
expression to the design and development styles your group or organization finds most
comprehensible. If you have specific stakeholders whose interests you must address, you
can fashion your document to accommodate their needs. You might want to include both
technical and nontechnical views, for example, and you might add use cases along with
diagrams. Here is a modified version of the IEEE SDD outline:

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions and Acronyms

2. References

3. Conceptual View

3.1 Use Case

3.2 Diagram. . .

4. Behavioral View

4.1 Object Diagram 1

4.2 Object Diagram 2. . .

5. Logical View

6.1 Class Diagram 1

6.2 Class Diagram 2. . .

7. Component View

7.1 Diagram 1

7.2 Diagram 2. . .

8. Deployment View

How to Set Up the SDD
Appendix D (and the CD) provides an example of the SDD for Ankh. The way you set up
the SDD depends on your developmental and architectural styles. One approach involves
dividing the description into sections that mirror what are referred to as stripes. A stripe

Presenting the System Design 147

is one iterative implementation of a game. It is characterized as a design entity that rep-
resents a functional subset of the game. Stripes characterize the development effort. A
number of justifications exist for following this approach:

■ If you divide the architecture according to the ways you iteratively and incremen-
tally implement it, then the document serves as a guide to both the overall archi-
tecture of the game and the way the game is implemented.

■ In addition to allowing you to inspect the design from different use perspectives,
components that are based on stripes enable you to break the description of differ-
ent classes into manageable and understandable wholes. Every feature, in other
words, can be described from the point of view of the responsibility it fulfills;
therefore, empty itemizing is not likely to be a problem.

■ When the design effort uses stripes, you incrementally move toward a comprehen-
sive grasp of the entire system. At the same time, you discover both functionality
and features that might be redundant. If you use stripes, you start from what is
simple and move toward what is complex. The arrangement of the SDD can
progress in the same way, making the document easier to comprehend. This can
prove especially valuable to developers who might inherit the system during future
mod or maintenance efforts.

Even if you do not decide to divide your document according to incremental stripes, it still
stands that the IEEE recommends division into different views. The following sections
provide descriptions of these views. Later on, you’ll see the process used for developing the
information that fits into these views. The views that are common to most interpretations
to the UML are logical, component, implementation, use case, and deployment. Figure
4.19 provides a summary of the SDD views.

Introducing an SDD
The SDD template shown previously begins with an introduction that includes para-
graphs on purpose, scope, and definitions of terms and acronyms. In the purpose section,
you tell the reader what you think the SDD offers. You are talking about the purpose of
the document, not the game. For the scope, help the reader understand the scope of the
document. Scope relates to the information that the reader can expect to obtain from the
document. In the glossary and definition section, you should list any terms that apply
specifically to the game software or its design. Generally, be on the lookout for terms that
people ask about during the design effort.

Chapter 4 ■ Software Design—Much Ado About Something148

You can also add supplemental information to the introductory section. In the SDD for
Ankh, a section refers the reader to the requirements and other documents that contribute
to the design effort. If you set up the SDD early on with hyperlinked references to other
documents, your design work can proceed much more smoothly than otherwise because
you will not have to search through directories for the relevant resource material.

Presenting the System Design 149

Figure 4.19
Design views address different stakeholder priorities.

Conceptual or Use Case View
This view of the system ensures that nontechnical readers of the design description can
benefit from reading the design description. On the other hand, all stakeholders can ben-
efit from the use case view. Among those who might be named are play testers, software
testers, customers, game designers, software designers, graphics developers, and software
developers. In addition, a use case can provide a way to establish the scope of a given com-
ponent, module, or stripe. Generally, a use case view (in the form of a narrative or sce-
nario) should accompany each stripe description.

Behavioral or Implementation View
The implementation views in the Ankh SDD reflect the architecture developed using
stripes. Implementation views can be depicted using class diagrams, object diagrams,
activity diagrams, state diagrams, sequence diagrams, and collaboration diagrams.
Generally, any description of the system that aids in the implementation effort is suitable
to include under the implementation heading.

Logical View
The logical views that are most useful are static object diagrams and class diagrams. Class
diagrams can work on both high and low levels. Generally, you should create a static
object view of each component. For the design effort for Ankh, this involved creating a
class diagram for each stripe. A stripe is the functionality that represents a set of use cases
or requirements that have been selected for a given design iteration. The approach used
for Ankh involved designing the entire system using stripes and beginning the first itera-
tion of implementation after all the named requirements had been accounted for. The
number of logical or static object views provided depends on how many stripes you need
to fully design and implement the system.

Component View
Package diagrams show the collections of classes that fall under each stripe. This is a com-
ponent view. The fact that different stripes might use the same classes is not an issue.
Stripes collect the functionality of the system in different ways. Stripe 2.1, GUI Objects,
differs from Stripe 2.3, Floor Tiling, which provides the basic framework for layers. Both
stripes use a common set of classes. Both use different facets of the interfaces that the
classes offer, however, and this is where redundancy can be justified. Describing different
facets of use under more than one component view makes it easier for readers to under-
stand relationships between components.

Chapter 4 ■ Software Design—Much Ado About Something150

Deployment View
To show how your system is deployed, use a component diagram or a deployment dia-
gram. Chapter 3 discusses these two types of diagrams. This chapter doesn’t show how to
create such diagrams because it focuses on design. In Chapter 17, however, you will find
detailed coverage of release management. Generally, the deployment view can also, in
part, reflect the stripes in which the product has been developed. One component, for
example, can contain all the functionality of several stripes, but at the same time, subsys-
tems that address different groups of functionality (game, Internet, tools, and so on) can
represent both different stripes and different component and deployment groupings.

Designing the System in Stripes
The Ankh development effort involved an approach that was iterative and incremental. At
the center of this process is the notion of a system stripe. A stripe embodies a subset of the
functionality described in the requirements document. Generally, the first stripe consists
of only the most general system features, such as the framework of the game. With each
successive stripe, the features addressed become more refined. The level of detail and
complexity grows with each stripe, but because the detail and complexity are layered, at
no point does complexity become overwhelming.

Increments and Iteration in Stripes
Notions about stripes can be derived in part from an approach to development known as
prototyping. Prototyping involves quickly and cheaply developing part of a system for pur-
poses of inspection, risk analysis, or customer understanding. Because developers devel-
op prototypes to be thrown away, prototypes usually lack all but the most rudimentary
quality measures. They are literally thrown together. The problem with prototypes begins
precisely at this point. Although prototypes are thrown together to allow developers and
customers to visualize concepts, they can end up as part of the end product. This is like
having an unbaked brick at the base of a tall tower. The results prove dismal to recount.

The approach to stripes used in the Ankh effort calls for designing all stripes before begin-
ning software construction. Using this approach, each stripe opens the design process to a
degree of creativity that is not possible if too much emphasis is placed on the whole system.

The game software industry abounds with stories about how game software developers
discover relatively late in the development process the one feature that makes a game a
success. Development is not a linear process. On the other hand, things like feature creep
and goldplating regularly derail game development efforts. The compromise is to make
room for a game design to be extended at regular, controlled intervals. If someone dis-
covers a valuable feature, it becomes possible to assess risks and schedule the inclusion of
the feature even though it might not have been a part of the original requirements set.

Designing the System in Stripes 151

Figure 4.20 illustrates some of the features of stripe-based development. The general out-
lines of this approach might be familiar to someone who has had some experience with
the Rational Unified Process or the Agile Process. The basic description of the iterative
approach to development goes back, however, more than 20 years, to the spiral develop-
ment models introduced during the 1980s.

Team Efforts at Designing System Stripes
The stripe approach to development assumes that you complete a set of requirements and
develop a design for the whole system prior to starting implementation work on the first
stripe. After you have made at least one pass over all the requirements and generated a
rough initial design of the system, you start implementation work on the first stripe.

Chapter 4 ■ Software Design—Much Ado About Something152

Figure 4.20
The striped-based approach to development involves incremental and iterative implementation efforts.
First the whole of the system is designed, but it is divided into components that address stripes.

n o t e

If you want to begin implementation on a stripe right after you have designed it, just remember
that hidden dependencies lurk within any incomplete design. If you implement too early, you might
have to perform extensive rework.

Your work on the first stripe involves selecting and refining the requirements and devel-
oping a design for the stripe. As Figure 4.20 shows, after you complete a first iteration of
design work on the first stripe, you then start work on the second. For each stripe, you
select a set of requirements that you believe cover the stripe, you select a group of CRC
cards for the classes you think cover the requirements, and using what you consider to be
the appropriate use case(s), you then begin to generate a design. Start by creating a basic
object diagram with a tool like SmartDraw. If you can project the diagram onto a screen
for the team to view and discuss, you will find that the work goes much better than if you
try to use paper. Have copies of all your basic documents on a laptop so that they can be
projected on a screen. Then you can grab information quickly for display whenever any-
one needs it.

To refer again to Figure 4.20, for example, you first move through the requirements and
high-level design of all the stripes before you return to stripe 1 and begin work. At that
point, you begin development. You work through risk analysis, design, implementation,
test, and integration (or deployment), and your work results in an incremental phase of
the game. When you have completed this release, you then move to the next, increment-
ing and iterating until you reach the full scope of the game and can account for all require-
ments. (Ankh consisted of 19 stripes.)

To determine stripes, begin with your use cases and decide what comes first for you. You
should try to implement first either the general framework of the system or features of the
system that you feel present especially high risks. High-risk features can be implemented
in test harnesses and later folded into the game framework. If you begin with a framework
(as was the case with the Ankh development effort), you might view your work as moving
from greater to less risk. Another approach might involve establishing the framework first
but then undertaking to develop risky features. Figure 4.21 shows the basic steps of the
Ankh design effort.

Designing the System in Stripes 153

A First Stripe from Ankh
Following is the five-step process to generate the content of the software design description:

1. Select requirements and use cases for the stripe and create a unifying design use
case.

2. Create a context diagram for the design use case.

3. Create sequence and collaboration diagrams to explore the scenario of the design
use case.

4. Create a class diagram to provide a logical view of the stripe.

5. Create a context diagram to show the stripe in relation to other stripes.

Excerpts from resulting software design description are available for your inspection in
Appendix D. (The entire document is on the CD.) You might want to open this document
as you read this portion of the text.

Figure 4.22 illustrates the four activities that are involved in creating the design document.

Chapter 4 ■ Software Design—Much Ado About Something154

Figure 4.21
Iterate through strip designs until you have a set of components that address the complete scope of
the game.

Beginning a Stripe
To begin a stripe, the Ankh development team started with the following documents,
which were all open for display on a large screen using a projection device attached to a
laptop computer:

■ The CRC cards in tabular form in a Word document with a hyperlinked table of
contents for quick access.

■ The game design document, which was kept at hand as a way of having direct
information about the game in case the team needed to expand a bit on a given
use case or, for that matter, settle a dispute by generating a new use case.

■ The Ankh Software Requirements Specification set to section 3 so that the team
could quickly view all the requirements statements.

■ A new project open in SmartDraw, with the UML tool pallet open for creation of
class, object, and interaction diagrams.

A First Stripe from Ankh 155

Figure 4.22
Class or logical diagrams grow from other work.

n o t e

In the first section of the SDD, references to all the associated documents are provided. This makes
it much more convenient to develop the SDD. Project the documents onto a screen. Work as a team
and move from document to document as team members pursue ideas. In Windows, you can use
the Alt+Tab option to go from document to document as needed.

At first, the team debated about what portion of the game to develop first. The team
decided it wanted to start with a rudimentary implementation of the framework.
Members talked about the splash screen and the menu. They drew a rough system context
diagram for these two areas of interest and found that they provided good material for a
first stripe. The team then decided to set up a use case for the design effort.

The Use Case for the First Stripe
The use case the team developed for the design of the first stripe is included in Appendix
D. The title of the use case is Select Exit at the Game’s Start. Note that this use case does
not constitute a modification or addition to the requirements list. This use case is for the
design effort alone.

Use Case: Select Exit at the Game’s Start

This use case is triggered by the closing of the splash screen. The system
shows the basic game window. The system displays the main play options for
the game. The player views the options: New Game, Load Game, Continue,
Change Profile, Options, Exit. The player chooses one option: Exit. The sys-
tem acknowledges the choice. The system requests the user to confirm the
choice. The user confirms the choice. The system exits. This use case ends
when the system exists.

Starting with a Context
After generating an initial use case for the stripe, the team searched the requirements list
to find those requirements that corresponded to the design use case. The team searched
through the TOR chart, the CRC cards, the requirements statements, and the use cases
time and time again. Team members were careful to continually review assumptions
about responsibilities even though these responsibilities were established in the CRC
cards. At last, the team arrived at a definitive list of the requirements the first stripe would
cover. The requirements involved in the stripe are as follows:

■ Req 8 (Software shall have a main menu that will have a load replay option.)

■ Req 16 (Software shall support a custom mouse pointer.)

■ Req 18 (Software shall support panels, menus, buttons, sliders, text boxes, and
pictures.)

Chapter 4 ■ Software Design—Much Ado About Something156

■ Req 38 (Software shall support a main menu with these entries: New Game, Con-
tinue, Change Profile, Options, Exit, Editor, and Load Game.)

■ Req 46 (Software shall load in no more than 20 seconds and display a progress bar
or some other indicator that loading is in progress.)

■ Req 14 (Software shall run only in full-screen mode.)

■ Req 15 (Software shall support Alt+Tab key combinations.)

■ Req 17 (Software shall support alpha channels.)

The list of requirements addressed was not easy to discover. A good deal of debate took
place. The team also spotted some weaknesses. Because the team had all the documents
open, however, it was easy to go back and forth between the documents and spot irregu-
larities. The team updated things as it went. Turning on the Track Changes capability of
Word gave more cautious team members a sense of security; they were not comfortable
with changing anything on-the-fly.

Discovering a Component
To show you how the team worked with the problem of developing views of the first
stripe, it is possible to present some “in progress” diagrams. The value of showing the lack
of perfection is to reveal the extent to which the design process can be viewed as experi-
mental or heuristic. In other words, one thing you can gain from design work is knowl-
edge of the system to be built.

n o t e

If you have explored different approaches to development, you might be familiar with the Agile
Process approach to design. According to this perspective, requirements and design should be an
active, living process mingled with the implementation effort. The approach used for the Ankh effort
differs from the Agile Process. Still, this chapter includes references to texts on the Agile Process.

The Ankh team’s approach was to have the whole team work on the design effort. The
team developed the SDD as it went, building its content on a projected screen. The team
also set all the diagrams in SmartDraw projects. From there, it was easy to transfer them
to the SDD. A team member refined the work afterward. Following a final review, the dia-
grams could be folded into the design document. (See Appendix D or the CD.)

The team used a context diagram to supplement the use case for the first stripe. This prac-
tice was not used very often in subsequent stripes. Dashed relationship lines were used to
maintain a sense that the diagram shows tentative relationships. The object at the base of
the arrow might contain a reference to the object pointed to. Figure 4.23 shows the Stripe
1 context diagram.

A First Stripe from Ankh 157

Moving to a Scenario
The next step involves looking closely at the design use case and recasting it slightly so that
it becomes the basis of a sequence diagram. To create the sequence diagram, the team
looked closely at each candidate object. (All objects are addressed at this point as generic
objects, so the class names are preceded by a colon.) The team started out by including
some unneeded classes in the sequence. For example, it had a CGraphics class, and after

Chapter 4 ■ Software Design—Much Ado About Something158

Figure 4.23
The Stripe 1 context diagram for Ankh seeks only to show tentative relationships.

going back and forth over how this might fit into the initial scenario, it decided to drop it.
Figure 4.24 illustrates an early iteration of a sequence diagram for the first stripe.

A First Stripe from Ankh 159

Figure 4.24
Use CRC cards and use case scenarios to create sequence diagrams.

Stripe Collaboration Diagram
The collaboration diagram for the first stripe allows the team to refine the names of the
operations and arrive at a clearer visual representation of the operations that each class
contains. When you move from a sequence diagram to a collaboration diagram, if you are
not using a CASE tool, you might need several iterations before you refine the operations
to the point that the flow of activity for the stripe becomes evident. With a CASE tool, you
might tend to overlook the value that the difference of the two diagrams provides.
Generally, improving a design involves changing the design and seeing the difference that
the change makes. In this way, you incrementally view and improve the design. Figure 4.25
shows the collaboration diagram.

As you refine your collaboration diagrams, you might find it beneficial to use operation
specifications, which were discussed earlier in this chapter. Although operation specifica-
tions are often considered part of the implementation phase, they can be useful during
design as a way to explore the conditions that preceded or follow a given message (or
function or method call).

Refining Operations and Generating Classes
A class diagram is a static view of the classes that occur in a given component of the sys-
tem. Class diagrams appear in the section of the SDD that’s dedicated to the logical view
of the component. Because the static representation of a class incorporates information

Chapter 4 ■ Software Design—Much Ado About Something160

Figure 4.25
The collaboration diagram helps refine the flow of messaging.

from a number of components (called stripes), the cycle of development for the class dia-
grams is slower than the cycle of development for the interaction (sequence and collabo-
ration) diagrams. Any given stripe is likely to make use of only a limited number of the
operations of the classes it uses.

Given participation in multiple stripes, each class is likely to possess more operations than
are used by any one stripe. For this reason, you are not likely to complete any particular
class diagram until you have completed the design of all the stripes of the game. On the
other hand, you can begin work on a class diagram as soon as you start the first stripe.
With each iteration, you add information to your class and component views. Class dia-
grams grow with each iteration of the design effort. By the time you reach the final stripe,
you can fairly safely conclude that any classes in your proposed class list that have not been
included in one or another interaction diagram are not needed.

Figure 4.26 provides an early, preliminary view of a starter class diagram for the first
stripe. Note that it was possible, at this point, to fill in only a limited number of opera-
tions. With each new stripe, however, the team had a chance to revisit the class, refining
its definition as it went. Generally, a rudimentary diagram is enough to get you started.
Iteration fills in the details.

A First Stripe from Ankh 161

Figure 4.26
Class diagrams receive refinement with each design iteration.

Creating the Component Diagram
The final section of the SDD for this stripe is the component diagram. A group of classes
developed during a stripe can be referred to as a component. To illustrate the component, the
UML package diagram can be used. The package (file folder) element shows that classes for
this stripe are grouped into a single unit. Figure 4.27 illustrates the Start Game component.

Notice in Figure 4.27 that empty packages have been included to depict other compo-
nents. The other components serve as placeholders at this point. In subsequent iterations,
packages can be added to the first stripe to show the dependencies and relationships that
characterize each successive stripe. In this way, the design can be iterated and the work on
stripes shown.

Verification
In this chapter, the discussions of verification and validation are restricted to a few simple
observations that are revisited in Chapters 6, “Object-Oriented Fantasies and Realities,”
and 7, “P Is for Pattern.” The first observation is that the primary way to verify the quali-
ty of a design is to see what happens when alternative design schemes are used. For the

Chapter 4 ■ Software Design—Much Ado About Something162

Figure 4.27
The component view provides a starting point for design validation.

Ankh development effort, this involved building the product using a series of stripes.
Before each implementation effort, the design of each stripe was inspected.

The design views offer a collective view of the system. They represent one architectural
interpretation. But the fact is that many architectural styles might be applied to the sys-
tem. It is possible to show the appropriateness of a given architecture if you critically
assess the way classes are grouped. An excellent approach to this is to begin examining the
initial design groupings using patterns.

Conclusion
This chapter discussed the design process. The aim was to show you one approach to
design: the one used in the development effort for Ankh. This design was based partly on
some industry-standard approaches. It is not contended that you should use this one
approach. Rather, the approach is suggested. When you develop your own approach, you
can consider the style of your organization and move forward from there.

Most companies have something resembling a design effort in place. Some tend to merge
requirements analysis with design; others keep the two separate. The most mature orga-
nizations continuously seek to improve the performance of their software by scrutinizing
the assumptions their designers and developers have made about the architecture. Each
design effort provides the opportunity to improve on the architectural style. One of the
most important results for software engineers is, of course, the game engine, and many of
these are now available for purchase by organizations that do not want to develop their
own. Groups that want to continue to occupy dynamic leadership positions in the mar-
ket, however, must have in place a design process that draws upon the skills of those who
are most directly involved in the engineering effort to develop state-of-the-art software.
The process offered here provides a possible inroad to such an effort.

Hundreds of texts have been published over the years on software design. The list that fol-
lows provides you with nonacademic views:

Albin, Stephan T. The Art of Software Architecture: Design Methods and Techniques.
Indianapolis, Indiana: Wiley Publishing, 2003.

Larmon, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design. Upper Saddle River, New Jersey: Prentice Hall PTR, 1998.

Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, New Jersey: Pearson Education, Inc., 2003.

Richter, Charles. Designing Flexible Object-Oriented Systems with UML. Indianapolis,
Indiana: Macmillan Technical Publishing, 1999.

Witt, Bernard I., F. Terry Baker, and Everett W. Merritt. Software Architecture and Design:
Principles, Models, and Methods. New York: Van Nostrand Reinhold, 1994.

Conclusion 163

165

Old Is Good—The
Library Approach

Chapter 5

A
library is a collection of resources. The description of the resources can vary enor-
mously, depending on the type of project you undertake. From the perspective of
software engineering, a library can consist of such things as code snippets, opera-

tions, classes, data structures, algorithms, frameworks, patterns, precompiled compo-
nents, documents, or just about anything that might be used repeatedly during multiple
development efforts. The key term, then, is reuse. A library serves as a vehicle of software
reuse. The question then arises as to what makes something related to software reusable.

Although answering this question is the purpose of this chapter, the topic proves to be
much more extensive than this book can cover comprehensively. Still, it is worth trying at
least to isolate a few basic ideas. Toward this end, this chapter first identifies the pathways
of reuse. It then delves into how software can be made suitable for reuse. Following are
among the points touched on along the way:

■ Why developers find reusing software worthwhile

■ The general ways in which software can be developed specifically for reuse

■ How software can be wrong for reuse

■ How software that is wrong for reuse can he changed so that it becomes appropri-
ate for reuse

■ What prevents software developers from more frequently or profitably reusing
software

Libraries and Reuse in General
A software library consists of a body of code that developers can reuse. Reuse results from
both planned and unplanned development efforts. On the planned side of reuse, one of

the most common types of library is called an application framework. An application
framework is designed to provide developers with a set of code that enables them to devel-
op a specific type of application. Examples of such efforts are the MFC library, the Win32
API, and the Java Swing classes. These application frameworks allow developers to devel-
op Windows applications.

In other instances, libraries do not result from a planned development effort. Instead, they
result from the efforts of developers to save and perfect code for reuse. Because no design
effort precedes the development of such libraries, the code simply accumulates over time
until, somewhat ironically, it might become a resource for planned development efforts.
If such libraries are preserved and refined, documentation can be added, and the code can
be reviewed and rewritten to be useful in more general, robust ways.

Game engines fall into both the accidental and the planned categories. If you are a pro-
grammer who has been working for several years, it is likely that you have a large store of
code you work from whenever you begin a new project. The code you offer does not nec-
essarily represent a complete product, but it does offer parts of a game.

Games that have met with success can also become a source of reusable code. Several game
development organizations have made their game code available on the web. In most
cases, programmers who are not developing for commercial gain can in this way have
access to compete game architectures. In some cases, even if commercial gain forms part
of the picture, the code is still available without cost.

Among the Internet sites that might prove useful as general information resources for
game code are the following:

■ thefreecountry.com (http://www.thefreecountry.com). A general resource site for
programmers, webmasters, and developers who are involved with security issues.

■ flipcode (http://www.flipcode.com). Game development news and resources.
Good links for DirectX resources and tutorials.

■ Digital Games Research Association (http://www.digra.org). Necessary to register
first, but you can then download resources and tutorials.

■ Game Development Search Engine (http://www.gdse.com). Provides numerous
links to code libraries and tutorials.

■ GameDev.net (http://www.gamedev.net). Provides multiple links to code sources,
tutorials, articles, and other resources.

■ CPP-home.com (http://www.cpp-home.com). Provides a large store of tutorials
and accompanying source samples. Strong on Win32 and C/C++.

■ Game Tutorials (http://www.gametutorials.com). Immediate links to a wide vari-
ety of code libraries for nearly anything related to basic game development. Offers
tutorials.

Chapter 5 ■ Old Is Good—The Library Approach166

■ Game Foundry. Source Forge (http://gaming.foundries.sourceforge.net). Pro-
vides direct access to a multitude of open source games. The available material
overwhelms you at first, but after a time, you can begin to identify specific targets.

This list presents just a few among hundreds of sites where you can obtain resources for
C++, DirectX, OpenGL, and a variety of other tools for game development. These
resources together constitute an enormous Internet library. Your best bet is to assemble a
personalized list of sites you find most useful.

Open C++ Libraries
The Standard Template Library (STL) and Boost offer two of the richest free libraries avail-
able to C++ programmers. The STL has been a standard part of C++ since its formalization
by the ISO in 1998. Use of the library has become a core element for most programmers
working with C++.

The Boost library offers a large collection of highly respected resources for C++ develop-
ment. Unlike the STL, the Boost library is not standardized. Still, it is well-maintained and
provides valuable resources. Among its offerings are a string class that combines capabil-
ities of the STL and MFC string classes and a variety of hash containers. (The STL does
not provide a hash class.)

The following short list provides the names of Internet sites that offer information on the
STL and Boost:

■ Standard Template Library Programmer’s Guide (http://www.sgi.com/
tech/stl/index.html). A guide to the STL sponsored by Silicon Graphics, Inc.

■ ACM Crossroads Student Magazine Introduction to the STL
(http://www.acm.org/crossroads/xrds2-3/ovp.html). A quick overview of key
components of the STL.

■ Boost (http://www.boost.org/). With a few exceptions, the Boost libraries are
compatible with the C++ STL. In fact, the Boost organization provides a center to
which developers who are developing classes or other resources that might some-
day be included in the STL can lodge their material for peer review.

Game Engine Libraries
The Internet offers access to thousands of game engines at any given moment. Two gen-
eral approaches to use characterize most of these. On the one hand, you can download the
code, without cost or obligation, and begin hacking at it for learning purposes. On the
other hand, you can acquire the code through a license. One type of license is proprietary.
Another type is open source. Generally, whether proprietary or open source, the licenses
tend to be either free or of minimal cost if you develop a game for personal learning pur-
poses. When you enter the market, however, the conditions and fees stiffen.

Libraries and Reuse in General 167

If you acquire an engine according to open source provisions, you pay nothing to use it.
On an open source basis, the license you agree to when you download the source stipu-
lates requirements along the following lines:

■ If you modify the code, you agree to release your modifications to the engine and
any of its accompanying tools for use by others.

■ You are usually asked to retain a disclaimer in the code or display a logo in a
prominent place within the game.

■ If a logo, disclaimer, or license statement forms part of the open source agreement,
the agreement requests that you refrain from modifying or deleting it.

If you want to use the software without these requirements, you can purchase a license.
Prices for licenses vary enormously. Some sell for a few thousand dollars (U.S.), whereas
others run much higher.

Among the features that might serve to recommend a game engine are the following:

■ Demo applications. You should be able to acquire a few demonstration applica-
tions with the engine when you download it. Generally, with respect to the demon-
stration applications, you should be free to do whatever you want with them.

■ Companies that use it. You should be able to obtain a list of companies that
develop products using the engine. A list of customers or users usually appears on
the engine site. It is not always the case that a good engine will have many users,
but if no one uses the engine, you should be suspicious.

■ Documentation. Before you decide to invest your time and effort in trying to
make use of an existing body of code, spend some time studying its documenta-
tion. If you cannot make sense of the documentation, consider going elsewhere.

■ A user group. A user group or forum is likely to exist for any engine that has
received general recognition on an open basis. The Quake engines, for example, are
everywhere, and many developers on many different sites provide each other with
mutual support concerning use and abuse. For commercial engineers, of course,
the engine vendor formalizes support and markets it as part of the product.

Profiled Engines
Sifting through the large number of sites that provide game code and engines proves a
tiresome task. Still, the time you spend searching can yield worthwhile results. Although
most of the resources are probably not useful as the basis of a commercial undertaking,
for students and hobbyists, the resources can be genuine assets. Among the sites that pos-
sess strong potential for students, hobbyists, and even professionals are the following, all
of which feature C/C++ engines that support DirectX or OpenGL on either a Windows
or a UNIX/Linux platform.

Chapter 5 ■ Old Is Good—The Library Approach168

■ QuakeII.NET. QuakeII.NET requires Microsoft Visual Studio .NET 2003. This ver-
sion of Microsoft’s 2003 compiler is roughly 98 percent compliant with the ISO
standard for C++ compilers. The engine was ported to this platform to demon-
strate its compliance. If you have this version of the compiler, you have an excel-
lent version of this fairly robust engine (http://www.vertigosoftware.com/
Quake2.htm).

■ Sierra (SCI) Studio. The SCI Studio was used to create games such as King Quest,
Space Quest, and Quest for Glory. You can use this engine on Windows 2000 and
XP. In addition, the site provides documentation, tutorials, and scripting tools. You
can obtain a demo game, also (http://www.bripro.com/scistudio).

■ Heretic and Hexen. Raven Software and its affiliate id Software allow you to obtain
the source code for Heretic and Hexen for free if you are not developing for profit
(http://www2.ravensoft.com/source).

■ Quake III Arena, Quake III Team Arena, Quake II, Quake. This is the combined
source code for Quake III Arena and Quake III: Team Arena. It contains project
files and related game source code. The code is for Win32 (http://www.idsoftware.
com/business/techdownloads).

■ Crystal Space free 3D Engine. Crystal Space is an open source 3D engine written
in C++. Among its features are colored lighting, mirrors, 3D sprites, alpha trans-
parency, true six degrees of freedom, procedural textures, radiosity, particle sys-
tems, halos, 16-bit and 32-bit display support, Direct3D support, font support, and
hierarchical transformations (http://crystal.sourceforge.net).

■ ClanLib Game SDK. This development kit handles sound, display, input, network-
ing, files, and threading and is developed for Linux and Windows. It handles 2D
display, sound and input support (keyboard, mouse, joysticks), and network sup-
port. For 3D support, it uses OpenGL (http://www.clanlib.org).

■ Pathlib. Pathlib is a C library for finding optimal paths for objects in a map, tim-
ing objects and their movements, detecting collisions, and resolving deadlocks
(http://pw2.baf.cz/pathlib/pathlib.html).

■ ColDet 3D Free 3D Collision Detection Library. ColDet is a free 3D collision
detection library. Versions are available for use with Microsoft Visual C++
(http://photoneffect.com/coldet).

■ id Software’s Wolfenstein. This is the 3D engine that underlay id Software’s
Wolfenstein (ftp://ftp.idsoftware.com/idstuff/source/wolfsrc.zip).

Criteria for Reuse
Thus far, this chapter has looked at libraries that already exist, but another perspective
remains to be developed. This perspective involves the libraries you might develop on

Libraries and Reuse in General 169

your own as either an isolated developer or as a member of a team of developers. When
you consider the topic of what code you or your team might want to reserve for reuse, a
fairly large number of questions arise. As you answer these questions, you discover many
subtle points about why code resource libraries succeed or fail.

A key feature of reuse is that the code you write should conform to the criteria established
for standardized libraries. Such criteria relate to every field of software engineering, and it
is impossible to cover them all in a single chapter. However, following are some address-
able notions:

■ Requirements analysis enables developers to develop classes that address excep-
tional situations or can be extended readily into anticipated uses.

■ Design allows classes to be structured with minimum dependencies.

■ Documentation provides users with clear explanations and examples of use.

■ Testing shows ways in which classes can be optimized or deoptimized.

■ Configuration provides information on how a program can be structured so that
components can be removed or updated.

Aside from specific software engineering topics, the general observation can be made that
well-crafted code almost always readily qualifies for reuse.

What Qualifies for Reusable
Whether or not code is designed to be reusable, the fact of its reuse can be explained fair-
ly readily. The reasons are ultimately numerous, of course, but here are four starting
points:

■ Available. First, code is reused because it is available. In other words, when a pro-
grammer has a problem to solve and knows of the existence of code that solves the
problem, he is likely to find the code and try to make it work in the new context.
At the heart of this type of reuse is knowledge of the code and the ability to find
and adapt it.

■ Correct. A second quality that makes code reusable is that it has been shown to be
correct. Code that repeatedly provides a simple service, such as a reliable sorting
algorithm, becomes a solid resource that can be identified and used according to
the function it performs. No change in the code is needed. Rather, the programmer
simply uses it as is. As long as a given problem must be solved, the code that reli-
ably embodies the algorithm that solves the problem has a place in the develop-
ment effort.

■ Current. The third quality of reuse fits with the second. Programmers reuse code
when they find that it fits in with their current development effort. They likewise
reject code that does not. In this respect, for example, code for a sound library that

Chapter 5 ■ Old Is Good—The Library Approach170

caters only to 8-bit sound files might not be regarded as a strong candidate for
reuse on a 32-bit platform that incorporates MPEG sound.

■ Immediate. The final quality of reuse is that developers can use the library imme-
diately without having to modify the code it provides. This is the great virtue of
the services in the Boost and STL libraries. Programmers can import and use these
libraries with relative ease in both Windows and UNIX efforts. This is possible
because both libraries have been developed using standard C++ and have been
thoroughly tested. Generally, unless programmers seek to optimize them, such
libraries require no change or adaptation in a standard C++ development setting.

The Problems of Creating Reusable Code
Not all code qualifies as reusable. When you consider whether to copy code to or from a
library, you benefit if you ask a few questions. Among these questions are the following:

■ It is worth it? This might seem a strange question to ask, but failing to ask it can
lead to dire results. The simplest context for understanding this question arises
with a piece of code that addresses an uncomplicated but nevertheless specific task
and can be written in, say, anywhere from a few minutes to a few hours. In such
cases, it might be best to rewrite the code rather than trying to find a library com-
ponent that serves the same purpose.

■ Does the effort required to refine code for reuse yield a profitable return? This
question involves a bit of cost-benefit analysis. When you fashion code for reuse,
the code you fashion usually requires more documentation and testing than other
code. The reason for this is that you want to make the code so that many people
can use it in many contexts. To provide for such use, you must test the code in the
contexts in which you think it might be used. This effort consumes time. It be-
comes necessary, then, to consider whether the code ever will, in reality, receive
use in multiple contexts. If you are unable to name at least a few of these contexts,
refining the code and placing it in a library might not be worth the effort.

■ Can the code be maintained? This is a question that people need to ask about
almost any software, but it has special bearing on code that is designed for reuse,
because such code stands alone as its own product, apart from any deliverable it
might be made part of. Do you have time to maintain a library in addition to
developing the application in which you initially use the components of the
library?

■ Can you find it after you make it a part of the library? When you create reusable
operations, you must be able to identify them later on if you are to make use of
them. For this reason, you face the problem of how to design the library so that its
interface is easy to understand and so that the documentation that the library
includes clearly addresses its services and contexts of use.

Libraries and Reuse in General 171

■ Is the library legal? Issues of legality can arise if the library you are developing or
want to develop includes components from libraries that you have purchased. If
the purchased libraries are of a proprietary or open source form that stipulates
they cannot be made a part of another library, your efforts at constructing a
library could be legally hazardous. If you cannot develop a library that is free of
dependencies on other libraries (besides the STL or Boost), you might want to
reconsider your efforts.

■ Does the code have a large number of contexts of use? If the code you develop
cannot be used in a number of different ways, toward a variety of different solu-
tions, it is probably not worth trying to shape into a library. If you maintain a
library of snippets, you might find that in specific situations you remember that
a piece of code you once wrote can be brought forward and refashioned to address
a similar problem. Cutting and pasting a bit of old code into a new context differs
from identifying a generalized pattern or context of use and then writing code so
that it addresses such use.

■ Can you write code so that it can be reused in ways that you might not antici-
pate? In some ways, this is the hardest question, and it defines a characteristic of
the best libraries. Code written to anticipate changing use scenarios is both robust
and extensible. The mechanisms of extensibility include abstraction, generaliza-
tion, and pattern-oriented design.

■ Can you say where the code cannot be used? This is sometimes as important as
asking where the code can be applied. Another way to view this issue is to consider
the limitations of the component or class you have designed. Trying to design a
class for too many purposes is as inadvisable as designing it for too specialized a
purpose.

Taking a Class Approach
Chapter 4, “Software Design—Much Ado About Something,” and Chapter 6, “Object-
Oriented Fantasies and Realities,” discuss in detail some of the issues of object-oriented
design. This section touches on a few specifics regarding classes as vehicles for reusable code.

Programming a game with C++ often involves using an object-oriented approach to
application development. A game written in C++ that uses object-oriented development
strategies is likely to draw together functions into classes. The actions of the game take
place through interactions between the objects. In contrast, a game that is written in C
might employ a set of libraries that draw together functions and defined values. The
actions of the game take place through function calls involving the manipulation of the
data that is established to define different states of the game.

Chapter 5 ■ Old Is Good—The Library Approach172

Arriving at a conclusive argument for using classes over function libraries is not as easy as
it might appear to be, but in the end, the general practice is to design a game as a set of
classes. Generally, the software industry has gravitated toward object-oriented programs
because such programs contain and control complexity better than do structured pro-
grams and function libraries. A class gathers into one place the data that describe the state
of the object and the operations (or functions) that control the behavior of the data.
Further, classes allow a programmer to modularize the development of the game, so that
a change to one part of a game does not impact many other parts of the game.

Using Standard Class Forms
Programmers can more readily use code when they do not have to spend a great deal of
time figuring out how to use it. This notion applies to the collection of operations that
form the interface of a class or set of classes. If the interfaces for the classes in a library do
not conform to a standard model that implicitly identifies the services provided, the user
must study the interface of each class in isolation to determine what services it provides.
If the difference from class to class proves extensive, the user might not be able to trust
even the most generalized notions about class design. Frustration results.

Consistency

Consistency in class construction begins with the way that a class designer designs a class
interface. Chapter 6 deals with this topic in more specific detail, but it is important to
mention here that applying similar names to similar operations is a good idea. As an
example, consider the meaning of the following operations:

//mutator...
void SetPos(const POINT& vecPos);
//accessor...
POINT GetPos()const;

You can determine fairly easily the meaning of these operations. If you call the GetPos()
operation, the operation returns a reference to a POINT. In other words, if you want to
know the values of the current coordinate, you can obtain them from the returned vector.
On the other hand, if you call the SetPos() operation, you can set the values of the current
position by passing a reference to a POINT object. The balance of “set” and “get” allows the
operation users to understand easily how the operation works. Likewise, the use of a sin-
gle data type makes using the operation symmetrical and easy.

In contrast, consider the inconvenience that might be occasioned with the following
variation:

//mutator...
void SetPos(POINT vecPos);
//accessor...
int GetPos()const;

Taking a Class Approach 173

In this case, you still see two operations, but the second operation, the accessor, suddenly
becomes a mystery. You have no way to understand what the single integer value means in
relation to the two operations. It might be that some type of look-up strategy is implied,
but whatever this is cannot be known without investigations.

Consistency in class design implies using standard approaches to things like accessing and
mutating (changing) class data. “Getting” or “setting” the state of the class implies getting
or setting the state of the class according to easy-to-understand patterns of use.

Nice Versus Practical Classes

Although you should seek to limit classes so that they provide the services you need, you
still can establish what is generally referred to as a “nice” class. Such a class is akin to a
standard approach to creating classes. Keep in mind that a nice class is developed in a spe-
cific setting and conveys a sense of formalism. It provides a set of services that a given
development team might establish as standard. The following list itemizes some possible
services:

■ Copy construction

■ Object destruction

■ Assignment

■ Boolean operations

■ Accessor and mutator operations

■ Inequality operations

A class that provides such services possesses a standard interface. Note that, among other
features, a standard interface provides an explicit constructor. Likewise, it provides opera-
tors that are overridden for assignment and comparison activities. And it offers a destruc-
tor. As shown in the earlier examination of the accessor and mutator operations, classes
that are designed using a standard interface promote understanding and ease of use.

Having defended the notion that standard interfaces facilitate understanding and use, you
can also defend the opposite. Situations arise in which it is inadvisable to implement a
standard interface. In the following code sample, the definition of the interface has been
limited because it makes little sense to fully implement the services that a nice class should
provide. Instead, the interface is defined according to practical considerations. In the
CEntity class, one such consideration is whether the user of the class will ever require an
accessor or a copy constructor. Such uses are unlikely, so an option is to declare the copy
constructor as private.

#ifndef _CENTITY_HEADER_INCLUDED
#define _CENTITY_HEADER_INCLUDED
#include “game.h”
class CEntity

Chapter 5 ■ Old Is Good—The Library Approach174

{
public:

// constructor
CEntity(CStdString strName);
// destructor.
virtual ~CEntity();
// Draws the entity
virtual void Draw();
// Get and Set methods ///////////////////////////////////////
virtual void SetMesh(CMesh *pMesh)

{m_pMesh = pMesh;}
virtual void SetPos(D3DXVECTOR3 vecPos)

{m_vecPos=vecPos;BuildWorldMatrix();}
virtual void SetRot(D3DXVECTOR3 vecRot)

{m_vecRot=vecRot;BuildWorldMatrix();}
virtual void SetScale(D3DXVECTOR3 vecScale)

{m_vecScale = vecScale;BuildWorldMatrix();}
//

protected:
CStdString m_strName;
// Pointer to the mesh for this entity
class CMesh *m_pMesh;
// The position, rotation, and scaling vectors
D3DXVECTOR3 m_vecPos,m_vecRot,m_vecScale;
// A matrix in which to store all our info so we don’t have to
// generate it every time
D3DXMATRIX m_matWorld;
// Builds the world matrix according to the 3 vectors (pos,rot,scale)
virtual void BuildWorldMatrix();

};
#endif _CENTITY_HEADER_INCLUDED

Before you implement a standard interface for a class, consider whether you anticipate
that you will use the class in unanticipated ways. If you were to create a generic CEntity
class for a game engine that you anticipated distributing widely, for example, providing a
fully implemented standard interface might be mandated. But in the context of use devel-
oped here, the time investment that the standard interface requires lacks justification.

Class Implementation
In the declaration of CEntity shown earlier, inline versions of mutator operations were cre-
ated. Here, for example, is the inline version of SetMesh():

virtual void SetMesh(CMesh *pMesh)
{m_pMesh = pMesh;}

When you both declare and define an operation in the declaration of a class, your activi-
ties implicitly inline the operation. When you inline an operation, you request the com-
piler to create the object code for the operation every time the operation is called. The

Taking a Class Approach 175

alternative is for the compiler to create the object code for the operation once and store a
lookup to this code in a table. The compiler can create the object code only once and then
reference this code when it encounters subsequent calls to the operation. In this way, the
compiler reduces the amount of object code that a program requires.

Compiler manufacturers often optimize inlining, so the compiler decides for itself
whether to create object code inline. In some instances, you can still force inlining.
Specifically, unless your compiler manufacturer has stipulated otherwise, using the key-
word inline can force inline generation of object code.

With or without optimized compilers, however, a couple of reuse points arise. It makes lit-
tle sense to write an enormously large operation inline. If you write large operation defi-
nitions in the declaration of a class, users of your code might find it difficult to discover
what constitutes the class interface. To discover the basic services that the interface pro-
vides, the code user must pick through possibly hundreds of lines of implementation
code. Such picking can be exhausting and irritating.

Why, then, is it good to implement some operations inline in the CEntity class? The answer is
that if an operation involves only a return statement, it might make much more sense than
otherwise to maintain the operation in one place in the program. Ease of maintenance justi-
fies inlining. On the other hand, in most cases you will want to declare and implement your
operations separately. This chapter provides separate declaration and implementation of the
constructor and two other operations in the CEntity class. The implementations of these
operations are in separate files, apart from their declarations.

n o t e

You can inline code without cluttering your class declaration if you place inline operations in the
header file after the class declaration. When you do this, mark the inlined operations in the decla-
ration with an inline comment, //inline. This way, you still achieve the speed that an inline oper-
ation offers, but the interface is much easier to read. Here is an example of what this looks like for
SetMesh():

};//This is the end of the class declaration
inline void CEntity::SetMesh(CMesh *pMesh)

{m_pMesh = pMesh;}

Advice is courtesy of John Hollis.

One other point arises. Keep in mind that unless your complier possesses optimizing
capabilities, which most modern compilers do, inlining can possibly result in an enor-
mous amount of object code even if the operation declared inline possesses only a few
lines of code. Consider the BuildWorldMatrix() operation in the code sample that follows.
This operation consists of only a few lines of code, but each line calls another operation.

Chapter 5 ■ Old Is Good—The Library Approach176

If operations call other operations on an inline basis, a potentially vast amount of object
code might result, for each called operation might be generated inline. For this reason,
when one operation calls other operations, it should not be defined inline.

#include “../game.h”
//
// CEntity::CEntity()
// Creates an entity object
//
CEntity::CEntity(CStdString strName)
{

// Set up some default parameters
m_vecPos = D3DXVECTOR3(0,0,0);
m_vecRot = D3DXVECTOR3(0,0,0);
m_vecScale = D3DXVECTOR3(1,1,1);
m_pMesh = NULL;
m_strName = strName;
// Build the default world matrix
BuildWorldMatrix();

}
//
// CEntity::~CEntity()
//Destroys an entity object
//
CEntity::~CEntity(){}
//
// CEntity::BuildWorldMatrix()
// Builds the world matrix to be used during drawing
//
void CEntity::BuildWorldMatrix()
{

D3DXMATRIX matPos,matRot,matScale;
D3DXMatrixTranslation(&matPos,m_vecPos.x,m_vecPos.y,m_vecPos.z);
D3DXMatrixRotationY(&matRot,m_vecRot.y);
D3DXMatrixScaling(&matScale,m_vecScale.x,m_vecScale.y,m_vecScale.z);
D3DXMatrixMultiply(&m_matWorld,&matScale,&matRot);
D3DXMatrixMultiply(&m_matWorld,&m_matWorld,&matPos);

}
//
// CEntity::Draw()
// Draws the object
//
void CEntity::Draw()
{

// Set up the world matrix
Graphics->GetDevice()->SetTransform(D3DTS_WORLD, &m_matWorld);
// Draw the actual mesh
m_pMesh->Draw();

}

Taking a Class Approach 177

Making Code Efficient
The efficiency of your code depends in most cases on how many redundancies it contains.
A redundancy is anything that is performed more than once. When you write code effi-
ciently, you reduce the number of redundancies.

Redundant code occurs on many occasions. One occasion occurs when you declare
instances of objects in settings in which such declaration is not needed. Another occasion
of needless redundancy is when you allow your program to create multiple copies of an
object. The passages that follow examine these two situations.

Needless Declaration
Needless declaration occurs in many contexts. One of the more frequent problems arises
when you develop an algorithm through trial and error and along the way create many
instances of different types of data but do not in the end clean things up so that the redun-
dancies are eliminated. Consider the following bit of code:

int CStateMachine::GetIndex(CStdString strName)
{

CStdString tempstrName = strName;
bool flag = false;
int index = 0;
// Find the state
for(int i=0;i<NUM_STATES;i++)
{

if(m_pStates[i]->GetName() == tempstrName)
{

flag = true;
index = i;

}
}

if(flag)
{

return index;
}
else
{
// utter failure
return(-1);
{

}

In this situation, an object of the CStdString type was declared and assigned to a local
string for testing purposes. Then a flag was declared to register whether the CStdString
value was found within an array. In an attempt to observe structured programming prin-
ciples (one point of entrance, one point of exit), a flag was declared and an integer data
type was used to store the results of the operation. Likewise, a for loop was used to iterate
through the array.

Chapter 5 ■ Old Is Good—The Library Approach178

The previous sample creates a number of redundant declarations. Consider, likewise, the
number of selection statements. The CStdString instance, the flag, and the integer for stor-
ing the index value are all in part justified, but at the same time, if the code can be made
more efficient, you need to consider whether such declarations are justified. Generally,
they are not. Nothing is gained, for example, by replicating the CStdString instance.
Likewise, the selection statements are questionable. Rather than iterating through the
whole array, you can simply return the index as soon as you find it. And even if you vio-
late strict structural programming principles by doing so, you can exit the loop with a
return value.

Consider another version of the operation:

int CStateMachine::GetIndex(CStdString strName)
{

// Find the state
for(int i=0;i<NUM_STATES;i++)
{

if(m_pStates[i]->GetName() == strName)
return(i);

}
// utter failure
return(-1);

}

This version of the operation eliminates much of the redundancy. It still poses a few prob-
lems with copying (covered next), but the form it assumes here possesses much greater
simplicity and is more efficient.

Needless Copying
Returning to the code in the CEntity, consider the declarations of the operations in the
class as presented earlier:

D3DXVECTOR3 GetPos(){return m_vecPos;}
D3DXVECTOR3 GetLookAt(){return m_vecLookAt;}
D3DXVECTOR3 GetUp(){return m_vecUp;}
void SetPos(D3DXVECTOR3 vecPos){m_vecPos = vecPos;}
void SetLookAt(D3DXVECTOR3 vecLookAt){m_vecLookAt = vecLookAt;}
void SetUp(D3DXVECTOR3 vecUp){m_vecUp = vecUp;}

These declarations are all sound enough as given. The accessor functions return instances
of the items requested, and the mutators change values as requested. Redundancy plagues
the activity, however. For starters, consider how the arguments are passed to the mutators
(SetPos(), SetLookAt(), and SetUp on a copy basis. Copying objects can require an enormous
expenditure of effort on the part of the operating system, and the result is a decline in the
performance of the program.

Making Code Efficient 179

You can solve the problem fairly easily by using references. When you designate the para-
meters as references, no copying takes place. To round out your modifications, you can
assign const to the parameters. This key word protects the object from change. In this case,
when you prevent the D3DXVECTOR3 from being copied, you restrict what could be a fairly
significant drain on resources.

void SetPos(const D3DXVECTOR3 &vecPos){m_vecPos = vecPos;}
void SetLookAt(const D3DXVECTOR3 &vecLookAt){m_vecLookAt = vecLookAt;}
void SetUp(const D3DXVECTOR3 &vecUp){m_vecUp = vecUp;}

When you pass large objects to operations, you can increase the amount of memory usage
if you do not attend to the dangers of unintended copying. There are several points at
which passing arguments to an operation can invoke copying:

■ If you pass an object to a function and do not use a reference or a pointer, the
object might be copied.

■ If you declare a local instance of the object for purposes of assigning the values of
attributes for temporary purposes, the object can be constructed redundantly dur-
ing the assignment operation.

■ If you return the results of the operation as something other than as a reference or
a pointer, again, you can invoke a constructor.

■ If you pass the results of the operation to a new instance of the object, you can
again invoke the constructor.

Generally, the fewer the copy operations, the better. Using references provides perhaps the
easiest approach to eliminating needless copying. Using pointers is also an option.

Reference Counting
In C++, one of the biggest problems that developers face is a memory leak. Memory leaks
often occur when a program loses track of how many objects of a given type it has creat-
ed. Reference counting provides a simple mechanism for making objects easier to track.
Although it is not suggested that everyone should use this approach to eliminating the
problem, this section does describe the approach and show you how to implement it.

To create a class that can track the number of instances in which it has been instantiated,
you can create a constructor that counts each time it is called. For Ankh, a situation that
merited reference counting arose with image files. It was necessary to ensure that multi-
ple copies of the same image files were not loaded into memory. Video memory is a scarce
resource that should be conserved whenever possible.

To implement the reference-counting code, the CImage and CImageMgr classes were changed.
Following are the steps that were used:

Chapter 5 ■ Old Is Good—The Library Approach180

■ An integer variable, m_iRefCount, was added to the CImage class. This variable tracked
the number of objects currently using the image.

■ The operations AddReference() and RemoveReference() were added to the CImage class
to change the reference count from the image manager as objects requested access
to the image.

■ When the image manager’s Get() operation was called, the reference count was
increased. Another function, DoneWithImage(), allowed an object to inform the
image manager that it was done using an image and could decrease its reference
count.

■ If an image’s reference count dropped to zero, the CImage object was destroyed and
the memory was freed.

Here is the code for CImageMgr::DoneWithImage():

void CImageMgr::DoneWithImage(CStdString strName)
{

CImage *imgFound = NULL;
for(unsigned int i=0;i<m_vecImages.size();i++)
{

// Look for the image with the matching name
if(m_vecImages[i]->GetName() == strName)
{

imgFound = m_vecImages[i];
break;

}
}

// The image couldn’t be found...
if(!imgFound)
{

Log->Add(“CImageMgr::DoneWithImage()
Tried to unload %s, and it does not exist...”,
strName.c_str());
return;

}
// Remove a reference to the image (it will unload
// itself if it needs to)
imgFound->RemoveReference();

}

When the CImageMgr object is destroyed, it loops through the remaining images and
unloads them. Because all objects are supposed to destroy themselves before the man-
agers, there should be no images left to destroy at this point. If any are found, they are
added to the log file. The data in the log file can determine where the leak has occurred.
The code is as follows:

Making Code Efficient 181

void CImage::Unload()
{

// Only unload if we are currently loaded
if(m_bLoaded)
{

// Release the texture
if(m_pTexture) m_pTexture->Release();
m_pTexture = NULL;
// Add a warning if someone is still holding on to us
if(m_iRefCount>0)
{
Log->
Add(“CImage::Unload()> %s unloaded with\

iRefCount=%d (There are objects still\
holding onto this image!)”,
m_strName.c_str(), m_iRefCount);
}
// Reset reference count back to 0, set unloaded
m_iRefCount = 0;
m_bLoaded = false;

}
}

Keep in mind that you can use different approaches to initiating counts. One approach is
when you construct an object. Another approach is to invoke the AddReference() operation.
Also, note that copies will point to the same count set, so the reference count increases
with copying. Likewise, note that the RemoveReference() operation deletes the primary
object when the count reaches zero.

Exceptions and Errors
An error is a problem in the program that a tester can detect or create through testing. The
most obvious type of error is a syntax error. The compiler catches syntax errors. Omit a
semicolon or a brace, for example, and the compiler is likely to object. On the other hand,
errors can also occur in the logic of the program. If you find that the program distorts your
mesh, for example, you must go back through the code to find the point at which the pro-
gram logic fails and the mesh becomes distorted. Such an error is usually referred to as an
internal error. Testing can eliminate most such errors. If the code is shipped with glaring
errors, it usually means that the product has not been tested and debugged sufficiently.

Another type of error is an external error. You can view such an error as an exception
caused by circumstances that are external to the code. Consider a situation in which your
game runs on a computer that resides on a yacht. The owner of the yacht sails out to sea,
into a storm. Seeking refuge from the storm, the owner of the yacht battens down the
hatches and huddles below decks, where he starts playing your game to pass the time until
the weather clears. But then lightning strikes the mast, and electrical static is generated.
Your game crashes. This is an external error or an exception.

Chapter 5 ■ Old Is Good—The Library Approach182

Why did the exception occur? Strange things can happen with static electrical fields. The
static electricity from the storm might have affected the CPU in such a way that an inte-
ger was turned into a float or vice versa. The program crashed as a result. It might be that
no program could resist the electrical static that the storm generated, but a program can
possess a way to handle exceptions. A program that handles all exceptions without crash-
ing is said to be exception free.

Handling an exception involves either correcting the exception or shutting down grace-
fully. In some instances, shutting down is the best alternative. With most Windows office
applications, shutting down is a reasonable option, especially if the state of your docu-
ment can be saved before the application closes. With a heart monitor in a hospital, in
contrast, shutting down is not an option. If the software detects an exception, it should
have the ability to recover. If it cannot recover, it should generate an alarm.

To respond to an exception, a program must have a mechanism that can detect the excep-
tion and then either retry or terminate the execution of the program in response to the
exception. This is the basis of try and catch blocks.

Try and Catch
Try blocks offer a place in which you can station code that might generate exceptions. Try
blocks replace an older technique for handling exceptions. This approach involved putting
code in repeated selection blocks. Each selection block could write an error message upon
failure. Although in many ways this older approach was reliable, the code tended to clut-
ter up a program. The reduction of such clutter was one of the reasons that try and catch
blocks were added to C++.

C++ provides a try-catch mechanism for exception handling. This mechanism includes
three primary features, as follows:

■ A try part, which encloses the code you want to monitor.

■ A throw part, which enables you to deliver information about an exception when it
occurs.

■ A catch part, which catches the information you have thrown from the try part.

C++ offers a number of approaches to using the try-catch mechanism. One of the most
straightforward is to first create a class that you can use to identify exceptions. You can
then use the constructor from this class with a throw statement. You can throw an anony-
mous instance of the class. The catch block can then catch the anonymous instance of the
exception class. The catch block catches the exception because you place a parameter in
the argument list of the catch block that is of the exception type. When the catch block
catches the exception, code in the catch block can identify the exception and respond to it
appropriately.

Exceptions and Errors 183

Declaring Exception Classes
To illustrate how to write code that can handle exceptions, this section begins by creating
a fairly lightweight hierarchy of classes that handle exceptions. To create this hierarchy,
consider that exceptions fall into two general categories. Some are fatal, whereas others are
not. A fatal error requires you to gracefully close things down. A nonfatal error leaves two
options: gracefully closing things down, or logging the error, issuing a warning, and going
on with the game.

In Ankh, an abstract exception class was created from which to derive classes that addressed
the two main types of exceptions. The abstract class, CException, established the basic model
for all exceptions that the game might throw and provided a general data type that could
be used in all catch blocks. Every catch block could catch objects derived from CException.
The member operations included a default constructor, a constructor in which to embed a
message about the exception, and operations that could record and obtain data about the
exception. Each exception could be identified with a number and a message associated with
the exception. The code is as follows:

class CException{
protected:

// Description of the exception
CStdString m_strDesc;
// The file in which the exception occurred
CStdString m_strFile;
// Which line number
int m_iLine;

public:
// Default constructor
CException(){}
// Creates an exception
CException(CStdString strDesc,CStdString strFile,int iLine);
CStdString GetDesc() const {return m_strDesc;}
CStdString GetFile() const {return m_strFile;}
int GetLine() const {return m_iLine;}

// Returns the full description of the exception
CStdString GetFullDesc() const;

};

Defining Exception Classes

n o t e

The STL offers a class called exception that provides an excellent approach to handling errors. This class
provides an operation, what(), that you can use to report the error being thrown.A set of four runtime and
three logic error classes are derived from std::exception. Several basic exceptions can be processed:
bad_alloc, length_error, out_of_range, runtime_error, bad_cast, and overflow_error. See the
reference to Cameron Hughes and Tracey Hughes at the end of this chapter for more information.

Chapter 5 ■ Old Is Good—The Library Approach184

Given the creation of the abstract base class for exceptions, the team then proceeded to cre-
ate two derived classes. The two derived classes address the two types of exception handling
routines developed for the game. One logs the exception and goes on. The other logs the
exception and closes the game. When the program logs an exception, the result is what
the team labeled a warning exception. When an exception results in the close of the game,
the exception becomes a fatal exception. The code for the exceptions reads as follows:

// Used for fatal exceptions. When a fatal exception is thrown,
// we must terminate the game.
class CFatalException : public CException{
public:

// Creates an exception
CFatalException(CStdString strDesc,CStdString strFile,int iLine);

};

// Used for warnings
class CWarning : public CException{

CWarning(CStdString strDesc,CStdString strFile,int iLine);
};

——————-Implementation——————————
//
// CException::CException //
// Creates an exception //
//
CException::CException(CStdString strDesc,CStdString strFile,int iLine)
{

// Store the description of the exception
m_strDesc = strDesc;

// Get the relative path to the file (this is so that if the user
// has the source code installed, we can drop the source straight
// into the Exception message box to help debug)
int idxAnkhSource = strFile.find(“ankhsource\\src\\”);
m_strFile = strFile.Right(strFile.length() –
idxAnkhSource - strlen(“AnkhSource\\src\\”));
m_strFile.Format(“..\\%s”,m_strFile.c_str());
m_strFile = FullPath(m_strFile);
// Store the line number
m_iLine = iLine;

}
//
// CException::GetFullDesc //
// Returns a full description (with source code) of //
// the exception that was thrown //
//
CStdString CException::GetFullDesc()
{

Exceptions and Errors 185

CStdString strFullDesc;
// If we can, read in the source file where the exception occurred
// and put this information in the description as well
char buf[256];
CStdString strSource;
std::ifstream fsSource(m_strFile);
// We found the source file! Grab the source code from around
// the line where we threw the exception and add it to the
// description
if(fsSource.is_open())
{

for(int iLine = 0;iLine<m_iLine;iLine++)
{

fsSource.getline(buf,256);
if(iLine>=m_iLine-8)
strSource.Format(“%s\n%s”,strSource.c_str(),buf);

}
}
strFullDesc.Format(“%s\n(%s:%d)\n\nSource:\n%s”,

m_strDesc.c_str(),m_strFile.c_str(),m_iLine,strSource.c_str());
return(strFullDesc);

}
///
// CFatalException::CFatalException //
// Creates a fatal exception (thrown when the game //
// must be terminated //
///
CFatalException::CFatalException(CStdString strDesc,

CStdString strFile,int iLine)
{

// Store the description of the exception
m_strDesc = strDesc;
// Get the relative path to the file (this is so that if the user
// has the source code installed, we can drop the source straight
// into the Exception message box to help debug)
int idxAnkhSource = strFile.find(“ankhsource\\src\\”);
m_strFile = strFile.Right(strFile.length() –

idxAnkhSource - strlen(“AnkhSource\\src\\”));
m_strFile.Format(“..\\src\\%s”,m_strFile.c_str());
m_strFile = FullPath(m_strFile);

// Store the line number
m_iLine = iLine;
// Add the information to the log
Log->Add(“FATAL EXCEPTION: %s”,GetFullDesc().c_str());

}

Chapter 5 ■ Old Is Good—The Library Approach186

Throwing Exceptions
Given the implementation of concrete exception classes, it is possible to equip the pro-
gram to throw clearly identified exception objects at any location where it is reasonable to
insert a try block. One such location is in the WinMain() operation. To accomplish this, the
programmer surrounds the game code with a try block and catches the possible excep-
tions. The result is that either the code exits the game or the activity is logged.

When the try block throws a fatal exception, due to the forms of overloaded constructors
that have been created, it is possible to furnish a description of the exception as an argu-
ment to the constructor. It is also possible to identify the source file in which the error
occurred and the line number of the code that was executed last. The exception class auto-
matically checks for the existence of this source file and, if it finds it, adds the block of
code directly into the description of the exception. This description appears in a dialog
box that displays when the program throws the exception. Although this feature is prob-
ably not something you want to ship with a game, it proves useful for debugging. The
try and catch blocks for the exception handling routine in the WinMain() operation are as
follows:

int APIENTRY WinMain(…)
{
// Our CGame object
CGame *pGame;
try{

// Set up our global instance pointer
g_hInstance = hInstance;
// Initialize the game object, and have it run
pGame = new CGame();
pGame->Run();
// Now simply delete the game object. We’re done
delete(pGame);

}catch(CFatalException exFatal){
// Shut down the game by deleting the game object
delete(pGame);
// Show a message box with information about the exception
MessageBox(NULL,exFatal.GetFullDesc(),

“FATAL ERROR”,MB_OK);
return 0;
}catch (CWarning exWarning){
// Just log the warning
Log->Add(“WARNING: %s”,exWarning.GetFullDesc().c_str());

}
}

To throw a fatal exception, you can create a helper operation. Used in the CImage class, the
program throws a FatalExcepion object if it fails to find an image file. The code is as follows:

Exceptions and Errors 187

bool CImage::LoadFromFile(CStdString strFname)
{

// The image info structure holds width, height, formats, and so on
D3DXIMAGE_INFO info;

// Try to load the texture
if(FAILED(D3DXCreateTextureFromFileEx(…)
{

throw FatalException(__FILE__,__LINE__,
“CImage::LoadFromFile ->
Failed to load %s!”,strFname.c_str());

return(false);
}

}

Compatibility and Maintainability
When a body of code is compatible with another body of code, its potential for reuse
increases. Compatibility has to do with how well operations, classes, or modules interact.
If you add a module to a program and find that the addition of the module requires that
you change either your original code or the code in the added module, the two sets of code
are not readily compatible. Compatibility means that the two bodies of code can be used
together without rework.

Along other lines, maintainability bears heavily on reuse. When a body of code is readily
maintainable, it can be changed with relative ease. One effective way to reduce the work
involved in changing code is to reduce the number of times you have to make the same
change. You usually have to repeatedly make the same change if the code contains many
passages that have been cut and pasted from some previous body of code. Remember that
if you copy a defective piece of code to several places in your program, to correct the
defect, you must visit each place where you have copied the code.

Reducing Redundancy
You improve the maintainability of your code if you decrease the number of times a main-
tenance programmer must change parts of the code to make a single change in one area
of logic that the code offers. If you develop code through frequent copy-and-paste oper-
ations, you might find, in the end, that maintenance of your code becomes difficult. To
solve this problem, you can take precautions to properly modify code as you copy and
paste it or to reduce the number of times you copy and paste.

As an example of how copy-and-paste practices lead to problems, consider the duties you
contract when you copy and paste. Usually, you copy the code in one block. The change
usually involves altering the names of local variables to correspond to the new context of
use. After the code is in place, if you find a way to improve the original block, you also

Chapter 5 ■ Old Is Good—The Library Approach188

need to change the code in the copied block. Likewise, you face a similar obligation if you
spot an error in the original block. Add to this another problem. Each time you change
the context of a block of code, you face the need to change the documentation.

Clearly, such repeated tasks reduce ease of maintenance and increase chances that errors
will occur. Among the chief problems are that the documentation and variable names
remain unchanged and that an improvement to one block might not be made to another,
resulting in code that lacks symmetry.

Eliminating duplicate blocks of code begins with not creating them in the first place.
Short of this, however, when duplicated blocks do exist, you still have the option of find-
ing such blocks and merging them. To accomplish this, you can first isolate the duplicat-
ed functionality in a distinct operation. You can then call this operation in place of the
duplicated blocks. To illustrate this situation, consider an early stage of the first stripe of
Ankh. In the early stripe, a programmer created two sliders: horizontal and vertical. The
approach used to create the sliders was to copy and paste a block of old code into two dis-
tinct functions. A situation of dual maintenance responsibilities resulted. The following
bit of code illustrates the situation:

// CSlider update method. This is for a horizontal slider…
void CSlider::Update()
{

int iMouseX=Input->GetMouseX();

// Call parent update
CGuiObject::Update();

//Change the Slider’s location to the mouseX if pressed
if (m_bPressed)
{

if (((iMouseX + (m_sprSlider->GetWidth() / 2))
<= m_iRight) && ((iMouseX –
(m_sprSlider->GetWidth() / 2)) >= m_iLeft))

m_iSliderPos = iMouseX;
}

}

As you can see, the CSlider::Update() operation takes care of vertical motions. Creation of
this code involved solving only one problem: vertical sliding. After solving the first prob-
lem, it’s necessary to turn to the second problem: implementing a horizontal slider. At
start is to copy and paste code to create an Update() operation for another object that pro-
vides horizontal motion. Most of the code is identical.

void CScrollBar::Update()
{

int iMouseY=Input->GetMouseY();
// Call parent update

Compatibility and Maintainability 189

CGuiObject::Update();
//Change the Scrollbar location to the mouseY if pressed
if (m_bPressed)
{

if (((iMouseY - (m_sprScroller->GetHeight() / 2))
>= m_iTop) && ((iMouseY +
(m_sprScroller->GetHeight() / 2)) <= m_iBottom))
m_iScrollPos = iMouseY;

}

}

The problem here is that much of the code is, indeed, the same. The question becomes
whether it is worthwhile to have one slider object for both horizontal and vertical motions
and to needlessly proliferate objects (CSlider, CScrollbar). To overcome this problem, you
can merge the different blocks into a single CSlider class and implement a single operation:

void CSlider::Update()

{
// Get mouse x and y
int iMouseX=Input->GetMouseX();
int iMouseY=Input->GetMouseY();
// Call parent update
CGuiObject::Update();
// Make sure we’re in bounds
if(m_iStyle == HORIZONTAL)
{

if(m_iSliderPos > m_iRight - m_sprSlider->GetWidth()/2)
m_iSliderPos = m_iRight - m_sprSlider->GetWidth()/2;

if(m_iSliderPos < m_iLeft + m_sprSlider->GetWidth()/2)
m_iSliderPos = m_iRight - m_sprSlider->GetWidth()/2;

}
else if(m_iStyle == VERTICAL)
{

if(m_iSliderPos > m_iBottom - m_sprSlider->GetHeight()/2)
m_iSliderPos = m_iTop + m_sprSlider->GetHeight()/2;

if(m_iSliderPos < m_iTop + m_sprSlider->GetHeight()/2)
m_iSliderPos = m_iTop + m_sprSlider->GetHeight()/2;

}
//Change the Slider location to the mouseX if pressed
if (m_bPressed)
{

if (((iMouseX + (m_sprSlider->GetWidth() / 2))
<= m_iRight) &&

((iMouseX - (m_sprSlider->GetWidth() / 2))
>= m_iLeft) && m_iStyle == HORIZONTAL)

m_iSliderPos = iMouseX;
else if(((iMouseY - (m_sprSlider->GetHeight() / 2))

>= m_iTop) &&

Chapter 5 ■ Old Is Good—The Library Approach190

((iMouseY + (m_sprSlider->GetHeight() / 2))
<= m_iBottom) && m_iStyle == VERTICAL)

m_iSliderPos = iMouseY;
}

}

This new block of code might appear more involved than the two original blocks code, but
the advantages in terms of maintenance are significant. The functionally now exists in one
location. Add to this that if you want to refactor the code, you can more readily do so with
code that you have placed in one location. (See Chapter 6 for a discussion of refactoring.)

The Danger of Early Optimization
If eliminating duplicated code blocks can decrease the number of times you have to make
a given change, refraining from early optimization can ease the difficulty of making a
change. Optimization involves, among other things, concentrating algorithms into brief,
often cryptic lines that are extremely difficult to decipher. Most programmers tend to
optimize after they work out the basic logic of an operation.

Optimization can cause problems, however. When you optimize a body of code, you
almost always make it more difficult to understand and change. Because code written
early in a project is likely to be changed as the project progresses, optimizing code early in
a project makes little sense. But it is also the case that even during later stages of develop-
ment, optimization might be a problem. That is because it is almost impossible to know
when a given body of code will require no more changes.

One remedy to premature optimization is to eschew it. Unless performance issues force
you to do so, it is best to strive first for ease of maintenance rather than optimization.

Using Shallow Hierarchies
Avoid deep class hierarchies. As is discussed in greater detail in Chapter 6, each level in a
hierarchy adds weight to the classes in the hierarchy. If a user of your library instantiates
a given object of a given class, the penalty should not be that the resulting program sud-
denly slows down in an unexpected way or absorbs an enormous store of memory. To
eliminate such problems, change aggregation to generalization. Poor design efforts can
easily allow frequently instantiated objects to be defined within deep hierarchies.

Installation and Ease of Use
You can create utility classes that facilitate operations in other classes. Such operations (or
classes) can be fairly lightweight and easy to port along with the classes they support. As
the team developed Ankh, it tended to park utility operations in a file called utils.cpp.
These utility operations were retained as global functions to make them easier to use.

Installation and Ease of Use 191

Using a namespace, such as Ankh, could help make them easier to integrate with other
utilities in the future by avoiding function name collisions. Among the operations in the
utility category are those that provide a means of locating resources. Usually, resources
reside in either the same directory as the executable or in specified directories. For exam-
ple, when you execute the program from the IDE and try to load data\something.png, the
compiler might seek a path relative to the project file instead of the executable and thus
cause an error. To remedy this situation, you can develop two utility functions:
GetAddPath() and FullFileName(). They provide the full path to the correct location. The
code is as follows:

//
// GetAppPath() //
// Returns the current path that the game is running in //
// Best used when loading/creating files to make sure we are //
// looking in the correct place //
//
CStdString GetAppPath()
{

// Start out as nothing
static CStdString strPath = “”;

// If it’s our first time, do the actual name lookup
if(strPath == “”)
{

// Get the file name of our app
char buf[MAX_PATH];
memset(buf,0,MAX_PATH);
GetModuleFileName(NULL,buf,MAX_PATH);
// Starting from the last character,
// move back until we find a ‘\’
for(int i=strlen(buf)-1;i>0;i—)
{

if(buf[i] == ‘\\’) break;
}
// Insert a null char, and then put the result in strPath
buf[i+1] = ‘\0’;
strPath.Format(“%s”,buf);

}
return(strPath);

}

///
// FullFileName(CStdString strFile) //
// Takes the relative path given in strFile, and appends on the //
// full path to the executable. This makes it safe to start the //
// app from any location. (The game will still be able to find its //
// data files.) //
///

Chapter 5 ■ Old Is Good—The Library Approach192

CStdString FullFileName(CStdString strFile)
{

CStdString strFullPath;
// Remove backslash at beginning if we need to
if(strFile[0] == ‘\\’)
{

strFile = strFile.Right(strFile.length()-1);
}

// If the full path is already in there,
// return the original string
if(strFile.Find(GetAppPath())>0)
{

return(strFile);
}
// Otherwise, append the app path to the file name
strFullPath.Format(“%s%s”,GetAppPath().c_str(),strFile.c_str());
return(strFullPath);

}

You can craft operations that are similar to GetAddPath() and FullFileName() and place them
in a utility file or in a class that is designed as a repository for utility operations. The draw-
back of creating a class is that even if you want only one function, you must instantiate an
instance of the class, which means that you might invoke a heavy construction cost if the
class has a lot of baggage. On the other hand, using functions from a file library is not ter-
ribly elegant in object-oriented parlance. Static operations in a class are another alterna-
tive, because they are part of a class but don’t require an instance. Still, if the operation
library proves easier to use and renders a program that performs more efficiently, main-
taining a function library makes sense.

The Boost and STL Libraries
As mentioned earlier in this chapter, commercial and freeware libraries offer standard
data structures, algorithms, and other items useful in game development. Among those
available for C++ are the STL and Boost libraries.

Even with the availability of the STL and Boost libraries, developers still like to develop
code from scratch. If you want to craft your own container class, you are certainly free to
do so, but every day you invest in perfecting your container is a day you lose toward devel-
oping your game. Add to this that the product that results from your labor is more than
likely to be inferior to the product available through Boost or the STL. If dozens or even
hundreds of world-class programmers work on a given library for tens of thousands of
hours, what results is more than likely going to be more robust and efficient than what a
lone individual can complete during a few days of dedicated programming.

The Boost and STL Libraries 193

The discussion goes on, even with respect to those who use the STL and Boost libraries.
Advanced programmers enhance the STL and Boost classes in a variety of ways, but except
for fairly infrequent occasions, it is unlikely that redeveloping STL or Boost capabilities
will render a better product. This is especially true if someone whose primary business is
developing a game, not optimizing string classes or data structures, undertakes the devel-
opment effort.

Using the STL
You can use the STL in several contexts. To focus on one of many uses, consider the CGuiMgr
class of the Ankh code, which uses an STL vector. The CGuiMgr class tracks all of the GUI
objects under its management. The number of objects that CGuiMgr manages tends to be
indeterminate and varying. At the same time, the class should be able to iterate through
the objects it manages fairly quickly and access them randomly. Given such requirements,
an STL vector was the best type of container for the job.

Implementing a vector from scratch always remains an option, but the STL makes such
implementation unnecessary. The vector type needs to be of the CGuiObject class. Creating
the constructor for CGuiObject involves only providing the data type to the template con-
structor. The code is as follows:

class CGuiMgr{
[el}
//Our list of GUI objects
std::vector<CGuiObject *> m_guiObjects;
}

To add a GUI object, you can simply call Register(), which registers the instance of
CGuiObject with the manager:

void CGuiMgr::Register(CGuiObject *guiObj)
{

// Make sure we don’t already have this one registered
if(GetIndex(guiObj->GetName())<0)
{

m_guiObjects.push_back(guiObj);
}
else
{

Log->Add(“CGuiMgr::Register() - >\
Tried to register %s but it was already \
registered!”,guiObj->GetName().c_str());

}
}

To remove an instance of CGuiObject from the vector, you can use one of the operations
that the vector class provides. In this instance, the program uses the erase() operation. In

Chapter 5 ■ Old Is Good—The Library Approach194

this code segment, a for loop that is predicated on an iterator controls the action. The iter-
ator is a special kind of pointer furnished by the STL library. It works in conjunction with
the begin() and end() operations of the vector class. Using the iterator, i, you can traverse
the vector. It is possible to dereference the iterator and in turn call the GetName() function
of the CGuiObject class. An alternative, not used here, is the find() function, which is imple-
mented in the STL as an operation in the vector class. The code is as follows:

// Removes the GuiObject from the GUI manager’s control
void CGuiMgr::Unregister(CStdString strName)
{

std::vector<CGuiObject *>::iterator i;
// Find the object
for(i=m_guiObjects.begin();i<m_guiObjects.end();i++)
{

// We found a match; erase it from the vector
if((*i)->GetName() == strName)
{

m_guiObjects.erase(i,i);
return;

}
}

}

Using Boost
For game developers who are using C++, the Boost library offers capabilities that can be
considered to be a superset of the STL library. Among the classes that the library offers are
those that help with writing GUI code in a Win32 setting. As a part of the Ankh develop-
ment effort, the code included OnClicked() and OnKeyPress() functions (among others) to
handle events. The effort that is required to implement handles from scratch is extensive.
Boost provides an elegant alternative.

As an example of how the Boost library provides a solution, consider the CImageButton
class. To implement a handler for this class, the program included a function pointer to
the CGuiObject class for the OnClicked, OnMouseDown, and OnMouseUp events. The Boost library
features a class called boost::function, which allows you to add function pointers. To set up
a basic function pointer, you use boost::functionX where X is the number of arguments to
be passed into the function. You then list the types of the arguments. As you list the types,
start with the return type. In the instances shown here, the return type is void:

boost::function0<void> OnClicked;
boost::function3<void,int,int,int> OnMouseDown;
boost::function3<void,int,int,int> OnMouseUp;

The Boost and STL Libraries 195

Following the definition of the function pointers for the OnClicked(), OnMouseDown(), and
OnMouseUp() operations, the program links the operations to those invoked when a given
event occurs. Consider, for example, an OK button. The OK button needs to be linked to
an OnClicked() operation. To link the button and the action that follows for its use, you can
use the boost::bind() operation. As the following code example shows, in the CMenuState
class, the boost::bind() operation links the OnClicked() event that is associated with the Exit
button to the butExit_OnClicked() operation. You can call the boost::bind() operation at
any time, but it makes the most sense to do so when the button is created.

void CMenuState::OnEnter()
{
...
// Set up some event handlers

buttons[EXIT]->OnClicked =
boost::bind(&CMenuState::butExit_OnClicked,this);

}

The STL allows you to create function pointers, and the operations in the Boost libraries
in some ways anticipate them. The difference is that although the Ankh team did not
abandon the STL, it found a library that both complements and extends it.

Documentation and Deployment
Documenting your code is an essential aspect of reuse. It is impossible in the space avail-
able in this chapter to treat this topic comprehensively, but a few points of value might
be presented. (See the texts listed at the end of this chapter for a more comprehensive
treatment.)

Watch for Cut-and-Paste Code
A frequent problem with comments is that they are pasted into a program along with a
reused segment of code without being updated to reflect the new context in which the
code is used. The frequency of such occurrences is fairly amazing. It is often easy to ignore
the comments while working through the changes to the code.

A solution to the problem is to eliminate as many of the starting comments as possible so
that you force yourself to write new comments. If you use this approach and do not write
new comments, you at least spare the user of your code the problem of trying to under-
stand the code by reading comments that discuss a context that is not applicable to the
current use of the code.

Do Not Address Obvious Things
When you address implementation, explain operations or algorithms that are not obvi-
ous. Granted, after working for hours to solve a problem, it is sometimes tempting to write

Chapter 5 ■ Old Is Good—The Library Approach196

a testimonial to the effort, but the fact remains that the user of the operation might have
little use for such information. Generally, you should address what the function returns.
In other cases, as mentioned earlier, you should address aspects of the operation that rep-
resent complex algorithms. Consider the following operation:

//Wraps the STL map find function and returns
//a string version of the key,
//regardless of the value stored
bool GetKey(string keyName);

Implementation details clutter up the documentation provided with the operation. In the
end, the user receives little information about how to use the operation. This should be
rewritten, perhaps along the following lines:

//Returns true if the provided string is found
bool GetKey(string keyName);

State the Common Use First
When documenting an operation that might be used in a number of contexts, program-
mers tend to gravitate toward creative uses. As interesting as such interpretations of the
function might be, the best approach is to document the most common, straightforward
activity. Consider the following bit of documentation:

//If used in conjunction with the ResetWorld() function,
//can facilitate the update operations
MAP& SetMap(int mapID);

The problem with the above is that the reader really doesn’t learn anything about what the
SetMap() operation does. An alternative is to provide simple terms of use:

//Returns current map according to ID
//CLayer::GetID() returns the current map ID
MAP& SetMap(int mapID);

Show How to Do Things
When you write documentation, avoid providing comments on how not to do things.
Consider what it would be like if a swimming coach first taught swimmers how not to
swim. Negative admonition usually results after a newly implemented function burns an
unwary programmer. Consider the following:

//Don’t use MAP objects that you have not tested for existence!
MAP& AddMap(const MAP& A, const MAP& B);

The comment is worthy of considering, no doubt; however, the reader has no idea, except
from inference, what the operation does when it is used correctly. This is what the reader
needs to know. An alternative might be along the following lines:

Documentation and Deployment 197

//Returns new instance of map that combines
//common coordinates from the two MAP parameters
MAP AddMap(const MAP& A, const MAP& B);

Avoid Preaching
If you find that you have written as many lines of documentation as you have of code just
to guide yourself through the intricacies of the operation, you probably need to rethink
things. You should probably consider whether you are adding anything helpful to your
program. Generally, anything beyond a brief explanation of use probably belongs in an
accompanying user’s manual. Consider the following epistle:

//When you use this operation, you can cut down
//on how long it takes you
//to get up and running. You know it is bad to put
//fixed paths into a program. This
//function makes it unnecessary to do so.
//But the thing is that you must use it!
bool CImage::LoadFromFile(CStdString strFname)

Although such comments sometimes make for interesting reading, they seldom con-
tribute to the ability of the user to use the code in an expedient way. When programming
Ankh, the team determined that for each 100 lines of code, 30 sufficed for comments.
Some experts contend that many, many more lines are needed, up to several for each line
of code.

Self-Documenting Code
Here the object of discussion is the documentation you write as a programmer. This is in
contrast to the automated documentation approaches that are available with C++, Java,
and C#. (You can generate HTML documentation with C++ by using the utility class pro-
vided with the Microsoft IDE.) With Java and C#, you can generate XML or HTML com-
ments into convenient user-oriented documents.

In contrast, you can manually create self-documenting code if you attend to how you
name operations and parameters. Generally, consider the following practices:

■ Operation names should consist of at least two words.

■ The first word should be a verb.

■ The second word should be the object of the verb.

■ The two words should be combined by capitalizing the second word. Whether you
capitalize the first word is up to you.

A second concern is how you name the parameters of operations. Parameters names
should help with the identification and use of the operation. Using a single letter is incon-
siderate. Using generic terms is also inconsiderate. Consider the following operation:

Chapter 5 ■ Old Is Good—The Library Approach198

HRESULT DoRectangle(IDirect3DSurface9* sa,
IDirect3DSurface9* sb,
int n1, int n2, int n3, int n4, int n5);

The problem with this operation is that the reader does not receive the slightest hint from
its name or its parameter names what it does.

If the purpose of the operation is to copy one surface onto another, the name of the oper-
ation merits being changed to something along the lines of CopySurfaceToSurface(). If the
integer values represent anything but arbitrary numbers, then what the numbers repre-
sent merit being identified with parameter names.

CopySurfaceToSurface(IDirect3DSurface9* SourceSuface,
IDirect3DSurface9* DestinationSurface,
int NumberOfRects, int DestinationRow,
int DestinationCol, int NumOfCols, int NumOfRows);

The user gains from the second version of the operation a fairly clear idea of what the
operation is about and what values it uses to accomplish its work. To clear up the last few
details, you can add a line of documentation.

Conclusion
Libraries of code can be created from collections of usable snippets. Libraries can also be
the result of long, concerted, and well-designed efforts. An example of the first type of
library might be the collection of code that you accumulate over the years as you work on
different projects. Snippets are short bodies of code that accomplish specific tasks but that
can be adapted fairly readily to different contexts.

Designed libraries take an entirely different turn. They are designed to accommodate a
wide variety of uses in different contexts. They seldom require adaptation. Fully designed
libraries are tested like any other software product. They are tuned and optimized. Users
of designed libraries are presented with an interface that attempts to hide details of imple-
mentation from them.

Well-crafted code is often readily suitable for reuse, but even then, if it is to become a part
of a planned library, it usually requires reworking. Reworking extends to both writing the
code so that it is easy to use and maintain and providing good documentation. This chap-
ter moved from identifying a few standard sources of reusable code (game engines and
formalized function and container libraries) to a few of the practices that you can use to
tune code for reuse. The goal has been to suggest a few of the many things you can do to
enhance your code through the use of libraries or, on the other hand, to tune your code
so that it might better qualify for reusability.

Among the books that provide good information on libraries and how to craft or rewrite
code for reuse are the following:

Conclusion 199

Cargill, Tom. C++ Programming Style. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1992.

Carroll, Martin D. and Margaret A. Ellis. Designing and Coding Reusable C++. Reading,
Massachusetts: Addison-Wesley Publishing Company, 1995.

Hawkins, Brian, Preventative Programming Techniques: Avoid and Correct Common
Mistakes. Hingham, Massachusetts: Charles River Media, 2003.

Hughes, Cameron and Tracey Hughes. Mastering the Standard C++ Classes: An Essential
Reference. New York: John Wiley & Sons, 1999.

Llopis, Noel. C++ for Game Programmers. Hingham, Massachusetts: Charles River
Media, 2003.

McConnell, Steve. Code Complete: A Practical Handbook of Software Construction.
Redmond, Washington: Microsoft Press, 1993.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs.
Boston: Addison-Wesley, 1998.

Misfeldt, Trevor, Gregory Bumgardner, and Andrew Gray. The Elements of C++ Style. New
York: Cambridge University Press, 2004.

Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and
Solutions. Boston: Addison-Wesley, 2000.

Chapter 5 ■ Old Is Good—The Library Approach200

201

Object-Oriented
Fantasies and Realities

Chapter 6

C
reating object-oriented programs was once considered something on the order of
a revolution. The revolution is now over, however. Languages such as C++, Java,
and C# have been developed as object-oriented languages, as have Visual Basic and

even Perl, and object-oriented programs characterize every field of programming. With
the capacity of chips to store more code, object-oriented programming now prevails even
in the world of device drivers, where procedural code was once considered superior
because it required less memory. The object-oriented paradigm dominates the program-
ming world because it provides a powerful approach to combating complexity. As the
average program grows in size, so does the need to control complexity. Object-oriented
programs provide one of the most effective means of accomplishing this.

The discussion of object-oriented programming provided here accepts the superiority of
the object-oriented paradigm for game development. On the other hand, object-oriented
programming is not the only thing that can be used in game development efforts. The dis-
cussion goes in a number of directions. Among the topics covered are the following:

■ Conceptualizing object orientation

■ Abstraction as a way of limiting the world

■ Encapsulation as a vehicle of defending a limited world

■ Strategies for developing classes and systems of classes

■ Conventions for object-oriented development

Class Beginnings
You likely have heard of object-oriented programming, and if you have developed code
for a game, you probably have done so using object-oriented code. For that reason, it is

assumed that you know a few things about object-oriented programming. Maybe you are
even an accomplished object-oriented programmer. But even if you can create object-
oriented programs, you might become somewhat nervous when a software engineer
shows up and starts using terms like interface, client, or services when talking about class-
es and objects. If this is so, this chapter provides some useful information.

The Concept of Class
In general programming terms, class is a keyword that you use to create customized data
types. Another term for a customized data type is abstract data type. When you use a class,
you create instances of the data type that the class defines. An instance of a class data type
is said to be an object. A class is a static entity that is evoked again and again to create
objects of the class. An object is a dynamic entity that you can create, change, and destroy.

The data type is a model of something. The class data type models objects in two ways. In
one way, it stores information about the object it models. The information about the
object it models is said to be the state of the class object. A class also allows the informa-
tion that the object stores about itself to be changed. The capacity of the object to change
the information it stores is said to be its behavior.

The operations of a class mediate its behavior. In this book, the term operation appears in
place of member function, property, and method. This term is derived from the UML. At
times, however, you might see member function in deference to C++ programmers.

The state of an object is captured in its attributes. Again, derived from usage that the UML
has fostered, attribute makes it possible to avoid confusion arising from such terms as data
member and property.

Scope
The syntax of a C++ class begins with the use of the keyword class, the name of the class,
and opening and closing braces to designate the scope of the class. A semicolon terminates
the declaration. Following is an example:

class CStateMachine
{
};

The braces define the scope of the class. The scope of the class is by default private, which
means that anything declared or defined inside the braces cannot be accessed outside the
class. Usually, the attributes of a class are placed in a private scope. In contrast to private
scope is public scope. In C++, use of the keyword public class makes everything following
it accessible outside the class. Following is an example:

Chapter 6 ■ Object-Oriented Fantasies and Realities202

class CStateMachine
{
public: //keyword for public scope

void DoFrame(); //operation can be reached outside the class
private: //keyword for private scope

CStdString m_strNextState; //attribute cannot be reached
};

In this example, CStateMachine() contains an operation called DoFrame() and an attribute
called m_strNextState. DoFrame() is public because it follows the keyword public, and
m_strNextState is private because it follows the keyword private. A third keyword, protected,
allows derived classes to access attributes or operations that follow it. This topic is discussed
at greater length later in this chapter.

Construction
When you create an object using a class in C++, you do so using a constructor. You use a
constructor to create an instance of a class. Creating an instance of a class differs from sim-
ply declaring an identifier that is reserved for the class. When you construct an object, you
allocate memory for it. A constructor is a function that has the same name as the class. It
has no return type. In addition to a constructor, C++ classes can have destructors. A
destructor is a function that has the same name as the class. Its purpose is to remove the
instance of the class from memory. A destructor has no return type. It is preceded with a
tilde (~). Following are some examples:

class CStateMachine
{
public: //keyword for public scope

CStateMachine(); //constructor
~CStateMachine(); //destructor
void DoFrame(); //operation

private: //keyword for private scope
CStdString m_strNextState; //attribute

};

Interface
The list of all public operations that a class provides is said to be its interface. The inter-
face provides a set of services. Note the code sample that follows:

class CStateMachine
{
public:

CStateMachine();
~CStateMachine();
void EnterState(CStdString strName); //interface operations
void HandleGUIEvent(CStdString strObjectName,

CStdString strAction,
CStdString strParams);

void DoFrame();

Class Beginnings 203

SetCurrentState(CState * state); //mutator operation
const CState* GetCurrentState()const; //accessor operation

private:
int GetIndex(CStdString strName); //utility operation
class CState *m_pStates[NUM_STATES];
class CState *m_pCurrentState;
CStdString m_strNextState;

};

The previous interface consists of seven operations, and each operation provides a service.
Besides the constructor and destructor, operations include EnterState(), HandleGUIEvent(),
and DoFrame(). Each of these operations provides a fairly complicated service. Two other
operations provide services of a less complicated type. One is called GetCurrentState(),
which is an accessor operation. It accesses a value that defines the state of the class object.
Another is called SetCurrentState(), which is a mutator operation. A mutator changes a
value that defines the state of the class object.

At the bottom, after the private keyword, is one more operation, GetIndex(). This opera-
tion is said to be a utility operation. It cannot be used outside the class.

You create the class attributes using abstract data types. The first two are of the type
CState. Two instances of CState are created through forward declarations. The forward dec-
laration tells the compiler to wait until it finds the definition of the class that is forward
declared. In this way, you can avoid difficulties that arise when the game has a complex
header structure and might not have reached the files that contain the declarations of the
data types used. The last element’s type, CStdString, is from the Boost library.

class CState; // forward declaration

class CStateMachine
{
public:

CStateMachine();
~CStateMachine();
void EnterState(CStdString strName);
void HandleGUIEvent(CStdString strObjectName,

CStdString strAction,
CStdString strParams);

SetCurrentState(CState *state); //mutator operation
CState* GetCurrentState()const; //accessor operation
void DoFrame();

private:
int GetIndex(CStdString strName);
class CState *m_pStates[NUM_STATES]; //uses the forward declaration
class CState *m_pCurrentState; //uses the forward declaration
CStdString m_strNextState;

};

Chapter 6 ■ Object-Oriented Fantasies and Realities204

Abstraction
One of the key concepts in object-oriented programming is abstraction. When you
abstract something, you remove it from an immediate context and place it in a more gen-
eralized context. When you create classes, you are concerned with two basic types of
abstraction. One type of abstraction has to do with the things that allow you to recognize
an object. The other type of abstraction has to do with how you determine that changes
can be made to an object. These two forms of abstraction are usually referred to as the
state and the behavior of an object.

Abstract States
Consider, for example, how you might picture a tree. Outside your window, a burly spruce
might stand. You perhaps have a ready picture of a spruce when you close your eyes. The
spruce features silvery, light-green needles and reddish-brown bark. Not far away is a cot-
tonwood tree. This cottonwood tree possesses grayish bark and broad leaves of a light
green color. A third tree might be a willow, with whitish bark and narrow leaves that are
dusty gray-green in color. The immediacy of each context makes necessary the use of
adjectives for distinctions. The more the adjectives come into play, however, the more the
common characteristics of the trees tend to stand out. With respect to the trees mentioned
here, two features receive repeated mention. These are bark and leaves.

A third feature might be the cones or nuts that the trees shed. At least for the trees men-
tioned, you can tell them apart based on their needles or leaves and their bark. An abstrac-
tion of this situation arises when you create a class for describing trees. The class takes the
following form:

class CTree
{

string barkDescription;
string leafDescription;

};

The class begins with a simple description of the states of the trees mentioned. Using
barkDescription and leafDescription, you can briefly distinguish the objects you create with
the CTree class. You create two attributes. Because you have a way of describing a tree that
you can apply to all of the trees mentioned thus far, the descriptions have been removed
from the immediate contexts of the individual trees and placed in an abstract context.
When something is abstract, it is applicable across many instances of the thing it has been
created to describe.

Abstract Behavior
The work of abstraction continues when you consider the behavior of trees. A forester or
botanist would probably be able to name an immense number of ways in which trees

Abstraction 205

change from day to day or season to season. The attributes for CTree focus on a few dis-
tinctive features. One of these is the tree’s growth: height. With the addition of this
attribute, you can consider whether the height of the tree changes from time to time. If it
does, you can create an abstraction of the change in the form of an operation. In this case,
the operation can be called SetHeight():

class CTree
{

string barkDescription;
string leafDescription;
float height;
void SetHeight(fload height);

};

Each of the trees considered has a multitude of qualities. Specific instances of trees have
been abstracted to arrive at a generalized version of a tree. Attributes abstract the state of
trees. Operations abstract their behavior.

Encapsulation
Abstraction is a conceptual undertaking. Encapsulation is a capability of C++ that makes
abstraction possible. You have already seen the beginnings of encapsulation in the previ-
ous discussion of scope. When you limit how and when information stored within an
object can be accessed, you have the beginnings of encapsulation. A class encapsulates
state and behavior.

class CTree
{
private:

string barkDescription;
string leafDescription;
float treeHeight;

public:
void SetHeight(fload height);

};

With the addition of the scope keywords, you reinforce the way that the class encapsulates
state and behavior. The scope of the class prevents the information that the class stores
from being generally available. The use of the scope keywords refines this further. You can-
not access the information stored in the attributes directly outside the class. You can only
access information about the height of the tree. The accessor operation SetHeight() makes
this possible.

Encapsulation in this way serves as a means for refining abstraction. A class is abstract
because a programmer has arbitrarily determined that only a limited number of a poten-
tially vast number of features of a given entity is relative to the program being written. On

Chapter 6 ■ Object-Oriented Fantasies and Realities206

the other hand, features of the language—such as braces, keywords, and scope—allow the
abstraction to be achieved through encapsulation. An object encapsulates state and behav-
ior. Abstraction is the means by which the state and behavior of a class are derived from
the many specific instances of things that the class is said to represent.

Cohesion
A class represents an abstraction of some object in the real world. Often, however, a class
emerges from an odd collection of attributes and behaviors and seems to lack a central
focus. Consider the following class:

class CThing
{

string bookName;
string monthName;
string address;
public:
void SetBookName(string bn){bookName = bn;}
void SetMonthName(string mn){monthName = mn;}
void SetAddress(string ad){address = ad;}
int AddNums(int a, int b){return a + b;}
void AddColor(COLOR& color);

};

This class tends to create questions in a number of ways. First, it is not evident what this
class might be used for. Because the name designates no specific object, it is unclear why
this odd collection of data exists. In addition, if you inspect the interface, you find that a
group of accessor operations precedes an operation that adds two integers. An operation
that adds color occurs last.

The problem with the class as a whole is that it is not cohesive. When a class is cohesive, it
has a central, clearly evident line of business, and its interface provides services that
address this line of business. Achieving cohesion within a class involves shaping it so that
its operations bear on the business or entity it abstracts. Consider the following class:

class CArithmetic
{
int numA, numB;
public:

void Add(int a, int b);
void Subtract(int first, int second);
void Divide(int first, int second);
void Multiply(int a, int b);

};

As simple as it is, CArithmetic possesses superior qualities over CThing because CArithmetic
offers a centralized, focused set of services. It is cohesive because it clearly addresses one
idea in both its name and in the work its operations perform.

Encapsulation 207

Given this starting place, when class designers find a class that contains operations that
address several lines of business, their remedy involves creating separate classes and then
moving operations around until each of the resulting classes addresses one line of business.

Responsibilities
When you create a tightly cohesive class, you achieve a much praised design goal, but you
also face a few liabilities. Generally, cohesion of a class can be defined in terms of its respon-
sibilities. If the responsibilities focus on one line of business, all is well. But consider a sit-
uation in which something is missing. The following class illustrates a few problems:

class CSale
{

float saleSub;
float saleTotal;
vector<float>items;
float tax;
void AddItem(float item);
void SetTax(float tax);
void SubTotal();

};

The problem here is that operations are missing. For example, although the class clearly
focuses on the business of allowing the user to process a sale, services relating to calculat-
ing the total and the tax are missing. The problem here, then, is that although the respon-
sibilities of the class are cohesive, they are not completely fulfilled. Effective class design in
this instance reduces to examining the process fully to ensure that the class comprehen-
sively encapsulates the attributes and operations that address its responsibilities.

Coupling
Abstract classes work in conjunction with each other to give expression to complex activ-
ities. When you model complex activities, it often becomes necessary to create a large
number of classes. Assume here that you set about modeling a bank account. You think
for a while and then create three classes, as follows:

class CName
{

private:
string firstName;
string lastName;
string middleI;

};
class CAccount
{

private:
CName accountHolder;

Chapter 6 ■ Object-Oriented Fantasies and Realities208

string accountNumber;
};
class CCustomer
{

private:
CName customerName;
string customerNumber;
CAccount(CName cust);

};

The CAccount class contains an attribute of the CName type, and the CCustomer class contains
attributes of the CAccount and CName types. The result of this set of relationships is that if
you want to use the CAccount, you must also use the CCustomer and CName classes. The class-
es are tightly coupled.

Tight coupling creates a problem because it requires that when you want to perform what
seems to be a simple operation involving, for instance, the setting of the attributes of a sin-
gle object created with an abstract data type, you must learn all sorts of things about other
abstract data types. For example, CCustomer involves you with CAccount and CName. To use
CCustomer, then, you must also use CAccount and CName. The classes are coupled.

Decoupling
Creating tightly coupled classes is possible if you give consideration to what is called data
coupling. All programming languages offer default data types, and users of the language
will readily understand these data types. For C++, the STL provides the string class. If you
change the classes presented earlier so that they communicate with each other using STL
string parameters, you alter the situation so that the classes can still effectively communi-
cate and yet are not tightly cohesive. Consider the following code, altered from the first
version:

class CName
{

string firstName;
string lastName;
string middleI;
string GetFullName(){return firstName+middleI+lastName;}

};
class CCustomer
{

string customerName;
string customerNumber;
string GetCustomerNumber;

};
class CAccount
{

string accountNumber;

Decoupling 209

string accountHolder;
SetAccountHolder(string fullname);

};

The altered set of classes communicates using STL strings. The capacity to communicate
through strings arises with the use of accessor operations that return strings rather than
abstract objects.

Inheritance
If you ever need to remember the quintessential aspects of object-oriented programming
with C++, tattoo the letters P-I-E on your forearm. P is for polymorphism, I is for inher-
itance, and E is for encapsulation. Now the discussion will turn to inheritance, which
comes in two forms. One form of inheritance begins with a collection of similar or asso-
ciated classes and tries to discover whether a common or generalized version of the class-
es might be created. This is generalization. The other form of inheritance begins with a
single class that stands as a common model or template and queries whether this can be
used to provide a common pattern for a large number of specialized classes that might be
derived from it. This approach is called specialization.

As you might suspect, generalization and specialization imply that you are investigating a
group of classes from two vantage points. It is likely, for example, when you seek to gen-
eralize a set of classes, that you are either engaged in a design effort that will lead to an
implementation effort or that you are engaged in a remedial effort to try to bring order to
a group of classes that seem to offer similar operations that might best be merged into a
common parent entity. Reworking a set of classes tends to be a much more demanding
task than designing and then implementing a set of classes. However, in either case, given
a proper regard for principles of design (see Chapter 4, “Software Design—Much Ado
About Something,” for a review), you can tremendously improve the performance, testa-
bility, and maintainability of your game code through such efforts.

Generalization
Generalization is analogous to induction. Induction involves collecting items until you
have enough of them to begin sorting them according to common features. That, at least,
is one way to put the matter. As an example, imagine that you collect marbles for many
months. At some point, you decide to begin examining your collection. As you examine
the marbles, you find similarities and differences. On the basis of such discoveries, you
begin to arrive at conclusions about how many species of marbles exist, what purposes
marbles can be used for, and so on.

In the design effort for Ankh, it did not take long to conclude that buttons, drop-down list,
sliders, and other visible features of the game could be grouped according to common

Chapter 6 ■ Object-Oriented Fantasies and Realities210

features. Some of these features could be anticipated in an abstract generalized class,
CGUIObect. (For more information on abstract classes, see the section “Abstract Classes”
later in this chapter.) Figure 6.1 illustrates the resulting class hierarchy.

In the generalized approach to creating a hierarchy, it was easy to name several GUI items.
After a time, creation of an abstract class, CGUIObject, that could be used as a pattern for
the GUI items became evident. Reasons for generalization might be summarized along
the following lines:

■ Two or more classes have common attributes.

■ You see occasions in which the design of your game might benefit from being able
to make use of polymorphism with respect to a group of classes.

■ Two or more classes have common interface features.

■ Two or more classes might not initially have the same attributes or interfaces, but
with a little rework, you can redefine them so that they possess common attributes
and interface features.

Specialization
Specialization involves finding a class that might be heavily laden with attributes and
operations that address different sets of responsibility. Generally, a class should have a
central responsibility or at least a core set of closely aligned responsibilities. If you see one
class undertaking several lines of business, you probably have a candidate for specializa-
tion. To specialize a group of classes, you begin by investigating the ways in which the class
you initially inspect concentrates on too many responsibilities. An iterative design activi-
ty in Ankh involved a struggle with a catch-all class that was used to manage graphical fea-
tures. This was the class CEntity. After some discussion, it was decided that CEntity should
be defined as an abstract class and then followed by three derived classes: CActor, CProp, and
CItem. Figure 6.2 illustrates the resulting hierarchy.

Inheritance 211

Figure 6.1
An abstract class collects features that several GUI items embody.

The process involved examining a single class and deciding that it contained enough
responsibilities to justify specialization. The criteria for such a decision are along the fol-
lowing lines:

■ Each of the specialized classes contains at least one unique attribute.

■ The classes you specialize differ in ways other than a single value they assign to an
attribute in the generalized class.

■ All of the specialized classes have some features that can be defined in the general-
ized class.

■ Each of the specialized classes contains at least one unique operation.

Before leaving this topic, consider the second point in greater detail. Needless specializa-
tion occurs when developers create derived classes that do nothing more than assign a dif-
ferent value to an attribute that the generalized class names. Figure 6.3 illustrates an
instance of needless spe-
cialization. Notice that
the classes that imple-
ment the abstract class
do nothing more than
assign a unique value to
a common attribute.

Chapter 6 ■ Object-Oriented Fantasies and Realities212

Figure 6.2
CEntity specialized into three implementations.

Figure 6.3
Needless association occurs when specialized classes do nothing more
than assign a unique value to a common attribute.

Associations
The UML designates aggregation and composition as variations of association. As point-
ed out in Chapter 3, “A Tutorial: UML and Object-Oriented Programming,” distinguish-
ing the three notions of how classes relate to each other involves remembering three basic
notions:

■ Association. Assume that one class contains an operation in which one of the
parameters is another class type. The two classes are in this way in association with
each other.

■ Aggregation. Assume that one class contains a pointer of the type of a second
class. The pointer might or might not be assigned an object, depending on differ-
ent behaviors of the class that contains the pointer. In this respect, then, you can
view the object that the pointer points to as impermanent.

■ Composition. Assume that one class contains attributes of another class type. The
attributes are initialized upon construction of the class object. Under no condi-
tions are the attributes not initialized.

These distinctions might not cover all situations and might be defective in some respects,
but they provide you with a starting point from which it might be possible to make sense
of a distinction that the authors of the UML seemed to labor over rather extensively.

For convenience, the term aggregation is used to refer generally to situations in which one
class in some way contains an object of another class. If it is necessary to concentrate on
specific details, the terms will be used with greater precision.

Aggregation or Hierarchy?
Is creating aggregations better than creating hierarchies? In the design of Ankh, aggregation
was preferable to hierarchies. Given the extent to which inheritance occupies a central place
in the world of object-oriented programming, this preference might seem somewhat arbi-
trary.

Inheritance tends to create performance and maintenance issues. The performance issues
arise because deep hierarchies can require that when the constructor for a derived class is
invoked, the constructor for the base classes is invoked also. The result can be heavy
resource use. Maintenance issues arise because a derived class has dependencies on the
parent class. If a derived class depends on values set in the base class, then if the derived
class requires different value types, you must make changes to both the derived class and
the parent class. Such performance and maintenance issues comprise what is known as
inheritance coupling.

Associations 213

Aggregation
Sometimes aggregation is a rea-
sonable alternative to inheri-
tance. The situation encoun-
tered on Ankh involved two
classes. One class, called CImage,
loaded an image. The other
class, called CImageMgr, managed
the image after it was loaded.
From one perspective, it made
sense to create a base class that
included management and
loading capabilities and a
derived class that specialized the
loading capabilities for ease of
use. But then inheritance
brought with it a situation in
which any change in the specifi-
cations of image would have required changes to two classes. Creating an association solved
the problem. A container of the CImage type was set in the CImageMgr class, which left both
classes with greater independence. To anticipate the need for an alternative image type, the
option of creating an abstract image class was left open. The abstract image class could be
implemented through distinct versions of CImage. Figure 6.4 illustrates the situation.

Composition
Composition can reduce the complexity and
depth of hierarchies. As Figure 6.5 illus-
trates, although a shallow hierarchy was
maintained, composition relationships were
created between CMenuState and the other
classes. The composition relationships occur
low in the hierarchy, thus reducing the over-
all coupling of the system in the event, for
example, that other classes are to be derived
from CState. Composition proves to be more
flexible than inheritance because it allows
complex relationships to be isolated.

Chapter 6 ■ Object-Oriented Fantasies and Realities214

Figure 6.4
Aggregation created a dependency structure less characterized
by class coupling.

Figure 6.5
Composition can be used to isolate complexity.

Abstract Classes
An abstract class is a class that contains at least one abstract operation. In C++, an abstract
operation is known as a virtual operation (or function). A virtual operation offers only a
signature line. To define the virtual operation, you derive a class from the class that con-
tains the virtual operation and then define the operation in the derived class.

C++ offers two basic types of virtual operations. One is called a pure virtual operation and
can be recognized by the terminating null expression (=0). The other might best be called
an abstract operation. It can include a definition of the function. Consider the following
code sample:

class CTop
{

static int number;
public:

virtual void SetVal(string v)=0;
virtual string GetVal()=0;
int GetNumber(){return number++;}
virtual ~CTop(){}

};
int CTop::number = 0;

class CNextA:public CTop
{
private:

string value;
public:

void SetVal(string v){value=v;}
string GetVal(){return value;}
~CNextA(){}

};

class CNextB:public CTop
{
private:

string value;
public:

void SetVal(string v){value=v;}
string GetVal(){return value+value;}
~CNextB(){}

};

CTop is an abstract class that contains two pure virtual operations and one concrete func-
tion. The destructor of CTop is set as virtual so that the inheriting classes can perform
cleanup with their own destructors. The static integer in CTop enables counting of all the
objects created with the two derived classes.

Abstract Classes 215

Unless you override the SetVal() and GetVal() operations, the inheriting classes remain
abstract. It is not necessary to override the GetNumber() operation. Table 6.1 provides some
summary information that applies to pure virtual, virtual, and concrete operations.

Polymorphism
Working from the CTop, CNextA, and CNextB classes given earlier, you can create an STL vec-
tor to store instances of the two derived classes. The vector created here is of type CTop.
Because CTop serves as a pattern for the derived classes, storage of the derived objects in the
vector container provides an example of polymorphism.

//CTop data type allows the operation to receive
//data from all the derived classes
void ChangeValue(CTop* val);
int main()
{

const int SIZE = 10;
vector<CTop*>list;
for(int count = 0; count < SIZE; count++)
{

list.insert(list.end(), new CNextA);
list.insert(list.end(), new CNextB);

Chapter 6 ■ Object-Oriented Fantasies and Realities216

Table 6.1 Practices of Design

Topic Discussion

Public inheritance For the most part, although C++ provides for private and protected
inheritance, what you are usually seeking is public inheritance.
Public inheritance makes the derived class an instance of the base
class. Private inheritance basically cuts the derived class off from
the base class, so the features of the base class are implemented
wholly in terms that the derived class provides.

Redefinition of operations If you intend to provide operations in a base class that are to be
redefined in a derived class, force the redefinition by making the
base class operations pure virtual.

Pure virtual operations A pure virtual operation is declared as purely virtual. It has no
implementation.

Virtual operations A virtual operation can be defined, and this definition is inherited
by default. A virtual function does not need to be declared in the
inheriting class if the base class definition will suffice.

Concrete operations Concrete operations are inherited and should not be declared in the
derived class. If you declare them, you usually overload them by
changing their parameter list.

Public and virtual When you use public inheritance, you should declare as virtual as
many of the base class operations as possible. This helps establish
that you want the derived class to specialize the base class.

}
for(count = 0; count < list.size();)
{

list[count++]->SetVal(“A”);
if(count < SIZE/2) //polymorphic passing of list items
{

ChangeValue(list[count++]);
}
list[count++]->SetVal(“B”);

}
for(count = 0; count < list.size(); count++)
{

cout << “\n” << list[count]->GetVal();
cout << “\t” << list[count]->GetNumber();

}
for(count = 0; count < list.size(); count++)
{

delete list [count];
}
/code left out
void ChangeValue(CTop* val)
{

val->SetVal(“UU”);
}

You can pass both CNextA and CNextB to the ChangeValue() function because the parameter
of this function is defined as CTop. The displayed values show that polymorphism allows
the values to be changed regardless of the subtype of the class:

A 0 UUUU 1 B 2 AA 3 UU 4
BB 5 A 6 BB 7 A 8 BB 9
A 10 BB 11 A 12 BB 13 A 14
BB 15 A 16 BB 17 A 18 BB 19

Coupling Problems with Collections of Classes
Maintenance problems and complexity can arise during the development of a game if no
one takes time on a regular, iterative basis to examine the relationships between classes
and to develop policies for controlling or reducing coupling and other forms of depen-
dency. Complexity grows randomly during the development effort if programmers regard
classes as an open set of resources that can be extended without risk through inheritance.
Complexity also grows if programmers do not use restraint in the ways they aggregate
classes. Each new derivation or aggregation creates added weight to a given hierarchy.

In light of the dangers that complexity presents, now is a good time to extend a few points
about coupling touched on earlier. The list presented next by no means exhausts the topic,
but it at least establishes a few possible constraints.

Coupling Problems with Collections of Classes 217

■ Identities. An identity can arise between two classes, A and B, if class A contains
an instance of class B and class B contains an instance of class A. Several reliable
avenues exist for avoiding identity relationships between classes. Chapter 7, “P Is
for Pattern,” explores a few of these avenues. For now, however, note that most
identities can be resolved between two classes by reworking the associations so that
only one class contains an instance of the other.

■ Representation. As mentioned earlier, it is sometimes considered good practice to
include accessor and mutator operations in your classes. The reason for this is not
purely formalistic. Accessors and mutators provide a ready way to prevent one class
from directly accessing data from another class. Direct access of data violates the
general principle of data hiding, which is a particular application of encapsulation.
One class should, as a general rule, interact with another class through a service
interface. If you design the interfaces of the classes you implement so that the data
that the interface supplies serves the needs of many classes, you eliminate the pri-
mary way that representation couples classes.

■ Inversion. Inversion occurs when a given class establishes relationships with the
subclasses of another class. In most such situations, the way this happens involves
the creation of a pointer. The class that develops the dependency does so through a
pointer to the subclasses of another class. The problem with this is that a situation
can easily arise in which the client class requires a second pointer. If the second
pointer is to another subclass in the same hierarchy as the first, the complexity of
the client class increases because it now holds two distinct pointer types. The solu-
tion to this problem is to try to implement pointers as high in a hierarchy as is
possible. Polymorphism allows the pointer to the generalized class to accommo-
date references to many subclass instances.

■ Inheritance. This type of dependency has already been discussed. One thing to
keep in mind is the extent to which hierarchies create complexities that are related
to construction and destruction of objects. Hierarchies require sensitivity to the
need, for example, of virtual destructors. They require attention to the drawbacks
of initializations of attributes that might be needlessly invoked among base and
derived classes.

■ Multiple inheritance. Multiple inheritance involves the use of more than one base
class to create a derived class. C++ allows multiple inheritance. The hazards of this
form of inheritance cannot be overly stressed. Generally, it is best to avoid multiple
inheritance.

Points on Class Design and Implementation
Previous sections have dealt with a variety of notions that are central to object-oriented
programming. At this point, it becomes appropriate to concentrate on some of the issues

Chapter 6 ■ Object-Oriented Fantasies and Realities218

that arise with the implementation of classes. It is impossible to list in any brief form the
many issues that arise with the implementation of classes in C++. It is possible, however,
to pursue lines of thought that have proven fairly pervasive over time.

Information Hiding
Discussion of encapsulation brings with it a concept that is often viewed as synonymous
with encapsulation but is more a product of policy than anything specifically implied by
scope. The concept is that of information hiding. When you hide information, your goal is
to reduce the complexity of the relations between classes by ensuring that one class knows
as little as possible about the information that another class contains.

The primary means by which information hiding can be achieved are the interface of the
class and the use of the private keyword to deny class users access to any part of a class
that the interface exposes. The importance of this approach to class design and imple-
mentation arises from its bearing on what is sometimes called common coupling.

Common coupling occurs when programmers develop classes in what might be regarded
as an extremely immature way. As an example, consider the situation that arises with the
following section of code:

void CD3DFont::Unload()
{

if(m_pFont)m_pFont->Release();
m_pFont = NULL;
m_iHeight = 0;
Log->Add(“Font destroyed: %s”,m_strName.c_str());
m_strName = “”;
CImage::Unload(); //direct call to a function

//from another class
}

In the previous code sample, a call is made to a function from another class. The implica-
tion here is that the call can be made on a static basis. CImage::Unload() performs some
mysterious work that is invoked at this point with no explanation.

The principle of information hiding stipulates that one class communicates with another
through fairly formalized relationships. Among other things, if a client class accesses infor-
mation from a service class, the client class should use an operation that the interface of the
service class provides. To accomplish this, the client class must contain an instance of the
service class, and it must call information from the service class as much as possible
through the portals that are provided by the parameters of its own interface operations.

In the previous code sample, the use of the external function is especially offensive given
its position inside the CD3DFont::Unload() function. The situation could be improved, how-
ever, if the CD3DFont::Unload() either contained an associated instance of the service class
or received information from the service class through a parameter argument.

Points on Class Design and Implementation 219

Generally, the principle of information hiding stipulates that the operations inside a class
should be self-contained. This policy extends in two directions. In one direction, it per-
tains to the attributes of the class. The attributes should be private, and accessor functions
should regulate how client classes derive information about the attributes. On the other
hand, information about the insides of the operations of the functions should also be pri-
vate. If information enters the scope of the class, it should do so through attributes that
are included in the definition of the class or parameter, set in the interface operation.

Refactoring
The Agile methodology is currently one of the most pervasive approaches to software
development. Methodologies tend to come and go, but they usually gain popularity
because they provide excellent insights into how to develop software. This is certainly true
of the Agile methodology.

The Agile methodology views software development as iterative and test-driven, and a key
element in its success is its advocacy of a practice known as refactoring. According to
Martin Fowler, the originator of the practice, refactoring involves changing software so
that the behavior of the software remains the same while the internal structure of the
software is improved. (See the reference to Martin Fowler at the end of this chapter.)

The success of the Agile approach depends on the ability of developers to create software
to which new behavior can be added without needing to change the existing code. For this
reason, refactoring plays a central role. Refactoring encourages developers to incorporate
the quality of extensibility into the software they create. In this context, extensibility cap-
tures the notion that a body of code can be extended without being changed.

Modularity
Ultimately, object-oriented programming might be said to begin with the idea that soft-
ware can be developed in a modular form. Modularity involves controlling complexity
through encapsulation and abstraction, as noted earlier. But modularity also involves cre-
ating software so that it is, from the start, extensible. The key to extensibility in many ways
lies in abstraction. Abstraction ensures that a given module can be viewed as providing a
service that other modules can use. To make use of the service that the module provides,
the client modules should have to do nothing more than call to the interface that the ser-
vice module provides. Figure 6.6 illustrates the way modules (also called components or
packages) might be depicted in a UML diagram.

Chapter 6 ■ Object-Oriented Fantasies and Realities220

You can view a module as a class or set of classes. You can refer to it as a package or a com-
ponent. Whatever its name, a module provides a limited, defined set of services that con-
tribute to a software system and can be accessed readily as developers add new behavior
to the system.

With iterative and incremental approaches to software development, modularity is crucial;
otherwise, the development activity erodes into a reactive, unstable process. At any given
stage of development, the
modules that comprise the sys-
tem must bear and accommo-
date the addition of new
behavior to the system. As the
discussion of design in Chapter
4 shows, the approach to devel-
opment for Ankh depended on
the creation of robust stripes
(components or modules) to
which other stripes could be
added during the development
process. Figure 6.7 illustrates
the cycle of activity that char-
acterized the development
effort. Each iteration began
with an investigation of
requirements for the next
stripe of development.

Modularity 221

Figure 6.6
Component or Package architec-
tures, which are based on the
modular approach to development
that object-oriented programming
fosters, lay the groundwork for
extensibility.

Figure 6.7
The development effort for Ankh was based on modular
development.

Modular development is
ideal for game software
development efforts. Flex-
ibility facilitates the discov-
ery of features that often
provide the most appealing
aspects of games. If an iter-
ative, modular approach
defines the development
process, regular openings
are created for the investi-
gation of how the require-
ments of the game might
be extended to incorporate
newly discovered innova-
tions. On the other hand,
the effort cannot succeed if
the modules that comprise
the existing system are not
stable and extensible. Figure 6.8 illustrates the chain of iterations.

What Destroys Modularity?
Chapter 4 explored reasons that design and requirements efforts fail. Besides those, you
can add a number that specifically addresses object-oriented paradigms and the goal of
extensibility. The ideas offered here are derived from the Agile methodology. (See the ref-
erences at the end of this chapter.) Table 6.2 summarizes some of the properties of soft-
ware that tend to reduce extensibility.

Chapter 6 ■ Object-Oriented Fantasies and Realities222

Figure 6.8
The Ankh development effort was based on the stability and exten-
sibility of the stripes from which each new iteration began.

Table 6.2 Terms Applied to Extensibility

Problem Description

Rigidity When you cannot change software without difficulty, it is rigid. Tightly coupled classes
that lack clearly defined responsibilities characterize rigid code. Any change tends to
cascade, for example, into the need to effect many changes. Because each change
represents a point at which the system resists change, it is clear how rigidity develops.
Rigidity is resistance to change.

Fragility When you cannot change software without it being broken, it is fragile. Complex, two-
way dependencies often characterize systems that are fragile. For example, if you have
two objects that mutually depend on each other, changing one is likely to break the
other. Were the direction of dependency one-directional, this would be less likely to
happen.

General Remedies
The problems that Table 6.3 presents are restatements of problems that software engineers
have long identified. Such problems destroy modularity because they disrupt the conti-
nuity of the development effort as a planned undertaking. They work counter to the goals
that object-oriented techniques of development establish because they challenge develop-
ment as an undertaking that design guides and requirements constrain. And they lead, in
the end, to a tendency to revert to code-and-test tactics that are characteristic of inveter-
ate hackers.

Modularity 223

Problem Description

Immobility When software lacks sequential flow, it tends to be immobile. One example of this is
when a number of global or static variables tend to nail a body of code into place, so
that moving a variable to a local setting requires a fairly involved effort to determine
just how and in what ways the information it works with depends on external
processes.

Software When developers develop software without following a general design, they tend to
viscosity solve problems in random ways. For this reason, among others, reading and under-

standing the code becomes extremely difficult. The resulting code is akin to an
anthology that collects the works of vastly different writers. The reading can be slow
and painful.

Environmental When changing code becomes painful, developers might neglect to implement
viscosity changes according to design. One especially common cause of this is slow compi-

lation time. Lack of things like forward declarations and other include-reducing
measures can lead to cumbersome link and build activities. When developers face
painfully long builds, they try to minimize the ways in which they change code. The
result is that they often put design principles aside.

Needless When developers stray from the targeted requirements, they might begin writing
complexity something akin to a work of anticipatory fiction, anticipating features that no one has

planned and that ultimately will never be added to the product. Any unused feature
of the software, such as needlessly normalized classes, tends to add to the bulk of the
software and, ultimately, to the features that require testing and maintenance.

Needless Copying and pasting and premature optimization can increase redundancy. In
repetition addition to needlessly repeated blocks of code, copying and pasting can result in

things like unchanged and thus completely meaningless comments. Variable names
can become completely estranged from their original contexts.

Opacity When code is difficult to understand, it takes more time to change. At the same time,
developers habitually seek to optimize code. If code optimization is performed
relatively late in a development effort, the harm might be minimal. On the other
hand, premature optimization can lead to an absurd situation in which developers
need to rewrite code that was written earlier in a project so that they can understand
it clearly enough to change it. If it is assumed that code should always be written so
that it can be changed easily, the assumption that a development process can reach a
point at which it is okay to optimize code into a cryptic essence clearly deserves to be
challenged.

Object-oriented programming promotes a philosophy of development that combats the
ills that Table 6.3 details. At the basis of this philosophy rests the disposition to begin every
task by focusing on an entity that can be clearly identified in terms of a set of responsi-
bilities. The virtue of this disposition is that right from the start, developers are encour-
aged to decompose systems into coherent, clearly defined collections of behavior.

Using Refactoring
Refactoring offers a set of powerful analytic tools that augment the basic work of object-
oriented programming. Refactoring offers powerful tools of analysis because it is iterative
and at the same time characterized by a well-tested set of principles and practices. Among
the principles are the following:

■ Promote single responsibility. Each class should focus on a single responsibility.

■ Promote extensibility. According to this principle, each class should be developed
so that if it is either extended or used as the basis of extension, it does not need to
be changed extensively to accommodate the extension.

■ Promote the Liskov Substitution Principle. In other words, when you specialize a
base class, the specialized class should still implement the base class. If the special-
ized class does not fully implement the base class, so that recasting becomes neces-
sary, something is probably wrong.

■ Resist dependency inversion. Instead of aggregations at the low level, aggregations
should be limited to the base class. And, if possible, the base class should be
abstract.

■ Resist interface segregation. One class should not contain operations that clearly
belong in another class.

Practices of Refactoring
Refactoring involves changing code so that it is easier to maintain. As Fowler and others who
have written extensively on refactoring contend, no definitive set of principles can be said to
determine when you should refactor. One term that appears often in the literature is “smell.”
If you come across a segment of code that you find falls under the metaphor of “smelling
bad,” it is probably time for refactoring. Although this chapter later provides a detailed rep-
resentation of the items that Fowler lists, consider the following situations for starters:

■ Classes, operations, or parts of operations might be difficult to understand. You
have programmed to solve a problem, and solving the problem, rather than pre-
paring the program for future changes or readability, has been your central
preoccupation. Now that the primary problem has been solved, you can look
again at the code and change it so that the solution you have implemented can
be understood more easily.

Chapter 6 ■ Object-Oriented Fantasies and Realities224

■ You have written a program that contains duplicated logic. In this case, you
might have found it easy to do something several times rather than making use of
single operations or classes that encapsulate the logic in a clear, precise way.

■ You are examining code that you wrote in the past and find it difficult to know
how and where to add additional functionality. You wrote a program that imple-
ments its logic correctly, but now you must add functionality to it. Before you
begin adding more functionality, you can benefit by taking time to simplify the
code to make it easier to work with.

■ You have been given a body of code and are expected to understand it. You find
the code you are working with complex and difficult to understand, and you do
not know how to test it. By refactoring the code, you can prepare the way for much
more efficient programming in the future.

As this list indicates, no specific objective needs to mark the beginning of a refactoring
effort. The main emphasis is that as you move forward in a development project, you can
use refactoring to continuously simplify and clarify your code.

Specific Ills and Remedies
This chapter does not afford enough space to demonstrate how you refactor code, but it
can point out a few general notions. One of the first is that refactoring is iterative and
incremental. It usually proceeds in small, well-tested steps. As you go, you constantly seek
to expose new opportunities for reducing complexity and making the code you are work-
ing with easier to understand.

Do not confuse refactoring with efforts to optimize code. At times, refactoring can opti-
mize code, but optimizing code often moves in precisely the opposite direction of refac-
toring. Likewise, do not confuse refactoring with an effort to reduce the number of code
lines. Fewer code lines can be a result, but overall, little reduction in the lines of code is
likely to result, and in some cases, the number of code lines might increase.

Refactoring often begins with examining the names of attributes and the names of oper-
ations. It easily involves elimination of redundancies and long, clustered sets of logic.
Refactoring can easily extend to examining hierarchies and component collections of
classes to establish whether a pattern might be substituted for an ad hoc body of code.
Table 6.3 provides a summary of some of the occasions for refactoring that Fowler and
others have named. To supplement the first table, Table 6.4 provides a list of the refactor-
ing techniques that Fowler and others have named.

Using Refactoring 225

n o t e

Method and operation, along with member function, designate the same thing. Fowler, following
Java conventions, uses method rather than member function (for C++ programmers) or operation
(for UML users). Likewise, he uses field to refer either to variables that are local to an operation or
to data members (C++) or attributes (UML). This book preserves Fowler’s names for the techniques
of refactoring but uses operation to refer to methods and attributes to refer to class data members.

Chapter 6 ■ Object-Oriented Fantasies and Realities226

Table 6.3 Occasions for Refactoring

What Prompts
Refactoring Description

Duplicate code The same code appears several places. Possible remedies: pull up method,
extract method extract class, form template method.

Long operations Methods in the class are too long and complex. Possible remedies: extract
method, replace temp with query, replace method with method object, decom-
pose conditional.

Large classes A class contains so many operations that they can be subgrouped.
Alternatively, a class contains numerous attributes. Possible remedies: extract
class, extract subclass, extract interface, replace data value with object.

Long parameter lists A constructor or an operation contains multiple parameters, many of which
might not be needed. Possible remedies: replace parameter with method,
introduce parameter object, preserve whole object.

Divergent change A given class has been changed in several ways, each of which represents a
different interpretation of the class. Possible remedies: extract class.

Shotgun surgery This applies to a set of classes. It might be, when you go to make a single
change, that you have to touch several classes before you can make the
change work. Possible remedies: move method, move field, inline class.

Feature envy A given method in class A makes more use of class B than it does of class A.
Possible remedies: move method, move field, extract method.

Data clumps A set of data appears often, in different classes or within a given class, clus-
tered together into some temporary set of values. Possible remedies: extract
class, introduce parameter object, preserve whole object.

Primitive obsession A set of primitives that clearly represents a record or some other object is
repeatedly used in a class or set of classes. Possible remedies: replace data
value with object, extract class, introduce parameter object, replace array with
object, replace type code with class, replace type code with subclasses, replace
type code with state/strategy.

Switch statements Switch statements are used repeatedly throughout a program to redirect
activity through the same basic set of operations. Possible remedies: replace
conditional with polymorphism, replace type code with subclasses, replace
parameter with explicit methods, introduce null object.

Parallel inheritance You have begun two or more lines of descent from a single base or set of base
hierarchies classes. Each line of descent tends to carry the same group of operations.

Possible remedies: move method, move field.

As mentioned, Table 6.4 provides a summary of the refactoring techniques listed by
Fowler and others. The list provided here is but a partial representation of the full list, but
it indicates the richness of approaches to cleaning up code refactoring offers. See the texts
listed at the end of this chapter for a more comprehensive treatment of the subject.

Using Refactoring 227

What Prompts
Refactoring Description

Lazy classes A derived class adds nothing to the hierarchy. Possible remedies: inline class,
collapse hierarchy.

Speculative generality One or more operations have been added to a class in anticipation of a use of
the class that does not yet exist. Possible remedies: collapse hierarchy, inline
class, remove parameter, rename method.

Temporary fields Temporary fields are used within operations that prove difficult to understand.
Possible remedies: extract class, introduce null object.

Message chains One object requires an object from another class, which requires an object
from yet another class. Possible remedies: hide delegate.

Middle man Class A communicates with class C. Class B conveys most of the communica-
tions between A and C and yet contributes little or nothing to the conversa-
tions. Possible remedies: remove middle man, inline method, replace delegation
with inheritance.

Inappropriate intimacy When the class directly accesses information in another class. Possible reme-
dies: move method, move field, change bidirectional association to unidirec-
tional, replace inheritance with delegation, hide delegate.

Alternative classes Two classes might have methods that do the same thing but have different
with different interfaces names. The fact that they do the same thing but are named differently proves

confusing. Possible remedies: remove method, move method.
Incomplete If you use a library that features classes that contain operations that are in
library class what you consider the wrong classes, the situation can become confusing.

Also, you might expect a given library class to have an operation that it does
not, so you feel the need to place such an operation in the class. Possible
remedies: introduce foreign method, introduce local extension.

Data class A class is simply a set of data. It has not been developed so that it encapsu-
lates the behavior of the data. Possible remedies: move method, encapsulate
field, encapsulate collection.

Refused bequest A specialized class requires little of the interface that the base class offers.
Possible remedies: replace inheritance with delegation.

Comments After you have refactored your code, you find that many comments are cos-
metic or unneeded. Possible remedies: extract method, introduce assertion.

Source: Martin Fowler, Kent Beck, John Bryant, William Opkyke, and Don Roberts. Refactoring: Improving the Design of
Existing Code (Addison-Wesley: Boston, 1999).

Chapter 6 ■ Object-Oriented Fantasies and Realities228

Table 6.4 Refactoring Techniques

Technique Description

Change bidirectional association If you have a two-way relationship between classes, and it is
to unidirectional clear that one of the classes no longer needs the services provid-

ed by the other, you can eliminate the superfluous association.
Collapse hierarchy If you have created a subclass, but the subclass has few or no

distinct attributes or functions, you can eliminate or at least
merge the subclass features back into the base class and elimi-
nate the subclass.

Decompose conditional If you have a complex if-then-else statement, decompose it
into operations.

Encapsulate collection An operation returns a collection. Because this can be a costly
operation, you can improve the situation if you provide only
read-only views of the container contents. You can also provide
accessor operations for adding and removing items.

Encapsulate field Abide by object-oriented design principles and make attributes
private to the class. Provide accessor and mutator operations.

Extract class One class contains operations that perform work that two class-
es should perform. Create two classes and separate the opera-
tions accordingly.

Extract interface You can create an interface class if you find that two or more
classes share a common set of operations.

Extract method If one or more code fragments can be placed in a single opera-
tion, create a single operation with a name that identifies its
purpose.

Extract subclass If two classes share the same features, it makes sense to create a
common base case. (Using language that was introduced earlier,
you can generalize the two classes into a common base class,
which you will probably want to make abstract.)

Form template method If you find that you have created the same methods in two or
more specialized classes in a hierarchy, you can move the meth-
ods up the hierarchy.

Hide delegate If class A needs to know about the state of class B, you can cre-
ate a middle class that enables you to obtain the information
you need without closely coupling A and B.

Inline class You have a class that apparently has no real purpose. Move its
operations inside another class and delete it.

Inline method One function calls another, and the operation called adds noth-
ing. You can put the called operation into the body of its caller.

Inline temp You have a temp value to which you assign the value that the
operation returns. Take out the temp and use the operation.

Introduce assertion If you need to ascertain the state of the program, create an
assertion operation that returns the state.

Using Refactoring 229

Technique Description

Introduce foreign method A relationship exists between classes A and B. A needs B to
have an additional operation, but B cannot be changed. You can
add an instance B to A and use this to create an additional
operation that provides the needed operation.

Introduce local extension If you have a class that you cannot modify but you need to add
an additional operation, create a derived class and add the
operation there.

Introduce null object If you have a situation in which you check for a null value, you
can create a class that acts as a null value.

Introduce parameter object If you have a group of parameters that you should treat as a
single object, create a class to hold them.

Move field If you have a field within a given class that is used more by an
external class than by the one of which it is a member, move it
to the external class.

Move method You have an operation that is used more by another class than
the class of which it is a member. Move it to the other class.

Preserve whole object If you sometimes retrieve several values from an object using
several different calls, you can send the whole object instead.

Pull up method If you have a hierarchy in which several subclasses contain the
same operation, move the operation higher up in the hierarchy.

Remove middleman Picture three classes: CDoctor, CReceptionist, and CPatient.
The CDoctor in this case goes through the CReceptionist to
do everything, and the CReceptionist does nothing other than
deal with CPatients. The CReceptionist can be removed, so
that the CDoctor communicates, say, with both the CPatient
and CReceptionist directly.

Rename method If the name of an operation does not clearly indicate the pur-
pose of the operation, change the name.

Replace array with object An attribute of a given class is becoming rather complex to deal
with. You can turn the attribute into a class and then use an
instance of the class in place of the old attribute.

Replace data value with object If the attribute of a class becomes complex enough to require
supplemental data or even its own operations, create a separate
class to model this attribute and use an object of the new class
as the attribute.

Replace delegation with inheritance If you find that you are using several of the operations of an
object used as an attribute, you should probably consider deriv-
ing your class from the class used to create the attribute.

Replace inheritance with delegation If you have a subclass that makes little use of the features of a
base class, eliminate the subclass relationship and replace it
with one in which you create an instance of the needed class in
the base class.

(continued on next page)

Conclusion
At this point in time, most everyone who is involved in the development of a game engine
is going to use object-oriented programming. Among the key concepts of object-oriented
programming are abstraction, encapsulation, polymorphism, and generalization (also
known as inheritance). It is important to realize that abstraction lies at the basis of most
design efforts. Abstracting the features of a game into a set of objects is one of the main
tasks involved in developing a game engine. This chapter explored the principles and
practices of programming that object-oriented programming fosters.

Use of component architectures helps eliminate some of the complexity that systems of
classes pose. Components (also called modules) offer a way in which groups of classes can
be viewed as providing a central service or set of services to a software system. Developing
software systems incrementally and iteratively using a component architecture based on
collections of classes offers a good way to realize the benefits of software engineering
based on object orientation.

In some ways, for every solution that object-oriented programming provides, a set of
problems also emerges. Avoiding things like closely coupled classes that lack focused
responsibilities requires a great deal of work. One of the most effective approaches
to eliminating the problems that arise through object-oriented programming is to use
refactoring.

Chapter 6 ■ Object-Oriented Fantasies and Realities230

Table 6.4 Refactoring Techniques (continued)

Technique Description

Replace method with method object If a class contains an inordinately complex method, take the
method out and make it into its own class.

Replace parameter with If you have a single operation that contains a selection state-
explicit methods ment that invokes significantly different actions, break the

selection statement into separate operations.
Replace parameter with method If you have an object that passes the result of an invoked oper-

ation, eliminate the parameter and just use the invoked opera-
tion alone.

Replace temp with query If you have created a temporary variable in which you store the
result of some combination of values and that you use in two
or more situations, replace the temporary value with a query
operation.

Replace type code with subclasses If a type conveys numeric codes that do not change its behavior,
you can replace the numbers with a new class.

Source: Martin Fowler, Kent Beck, John Bryant, William Opkyke, and Don Roberts. Refactoring: Improving the Design of
Existing Code (Addison-Wesley: Boston, 1999). See Table 6.3 for a list of various opportunities of use.

Drawing from Martin Fowler, Kent Beck, and others, this chapter offered a summary of
techniques for refactoring. Refactoring involves incremental, iterative development that is
integrated thoroughly with testing. The objective of refactoring is not so much to achieve
the implementation of a specific set of design principles as it is to free code from such
things as complexity, lack of clarity, difficulty of extension, and needless comments.

The following books provide deeper insight into the topics covered in this chapter:

Braude, Eric. Software Design: From Programming to Architecture. Hoboken, New Jersey:
John Wiley & Sons, 2004.

Coplien, James O. Advanced C++ Programming Styles and Idioms. Reading, Massachusetts:
Addison-Wesley, 1992.

Fowler, Martin, Kent Beck, John Bryant, William Opkyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley: Boston, 1999.

Lippman, Stanley B. Inside the C++ Object Model. Reading, Massachusetts:
Addison-Wesley, 1996.

Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, New Jersey: Prentice Hall, 2003.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs.
Boston: Addison-Wesley, 1998.

Meyers, Scott. More Effective C++: 35 New Ways to Improve Your Programs and Designs.
Boston: Addison-Wesley, 1998.

Richter, Charles. Designing Flexible Object-Oriented Systems with UML. Indianapolis:
Macmillan Technical Publishing, 1999.

Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and
Solutions. Boston: Addison-Wesley, 2000.

Conclusion 231

233

P Is for Pattern

Chapter 7

P
atterns provide a set of ideas about how to solve problems that arise as you program
a game. Most patterns show you how to work with a collection of classes. Likewise,
most of the articles and books on patterns illustrate patterns using UML diagrams.

Given this situation, before you try to understand how patterns work, it is a good idea to
familiarize yourself with the topics covered in Chapters 3, “A Tutorial: UML and Object-
Oriented Programming,” and 5, “Old Is Good—The Library Approach.” On the other
hand, you don’t need to put off studying patterns until you have learned UML or object-
oriented programming techniques. In fact, the tendency in recent times has been to study
all three together.

When you use patterns, the work you perform as you move from problem to solution
takes place in a context that includes much more than creating the interfaces to classes.
Instead, your work involves finding the pattern that most appropriately solves the prob-
lem you face and then applying your programming skills to elegantly constructing a set of
classes that gives expression to the pattern. Given this beginning, you can then use the
techniques of refactoring to tune your program. (See Chapter 6, “Object-Oriented
Fantasies and Realities.”)

If you use patterns and refactoring in combination with object-oriented programming,
you end up with programs that are easier to understand and maintain. Although the use
of patterns obligates you to learn yet another layer of programming skills, the result jus-
tifies the extra effort. This chapter covers the following topics, among others:

■ Where patterns originated

■ Patterns in the context of object-oriented programming and game design

■ Why patterns improve the quality of your game

■ How to identify a software design pattern

■ Nine patterns from the Gang of Four and other sources

■ How to document your own pattern

Patterns and Their Contexts
A pattern provides a way to solve a design problem, but a pattern is not simply the solu-
tion to a design problem. Instead, a pattern describes a context in which you might
encounter a given type of design problem, and it helps you identify an approach to design
that might address the design problem. A pattern describes the problem to be solved, the
context in which the problem occurs, and a strategy you can use to solve the problem. To
arrive at an understanding of what programming based on patterns is about, this chapter
begins with a short historical narrative of other approaches to solving programming
problems.

The History of Patterns
The history of patterns begins in the realms of psychology, anthropology, and architec-
ture. In the history of psychology, you might have heard of Carl Jung, who introduced the
term archetype. An archetype is a symbol or collection of symbols that tells you about the
state of your mind. Another use of patterns emerged with what became known as Gestalt
psychology. Here, again, psychologists used patterns as the starting point of therapy. In the
realm of anthropology, you might be familiar with the work of Ruth Benedict, who wrote
an influential book called Patterns of Culture. By studying patterns in relation to cere-
monies or rituals, Ruth Benedict contended, it is possible to understand why people do
what they do. And in the realm of architecture, the name Christopher Alexander possess-
es great significance. He contended that architects should use patterns to shape the space
people live in.

The notion that programmers can enhance their programming practices if they use patterns
achieved widespread recognition in the mid-1990s. A key element in this recognition was
the publication of a text by Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides
titled Design Patterns: Elements of Reusable Object-Oriented Software. (See the reference at
the end of this chapter.) The emergence of programming based on patterns represents what
might be viewed as the culmination of several phases of programming history. Figure 7.1
summarizes these phases. Understanding how these phases lead progressively toward pat-
terns helps reveal the value of pattern-based programming strategies.

Chapter 7 ■ P Is for Pattern234

Flow Charts

From early on until well into the 1970s, the flow chart as the plan of a program was central
to programming. Programming using this model often assumed that a program consists
of a fairly deterministic course of events. The events occur one after the other, from the
beginning to the end of a program. Because a continuous flow of logic characterized a well-
designed procedural program, programmers considered the use of the go-to statement a
serious problem. Extensive use of such statements could render the logic of a program inde-
cipherable. Programmers adopted flow charts as tools to eliminate go-to statements and
ensure the smooth flow of program logic.

Historically, charting programs worked well because the programs were relatively short by
current standards. Programs were short because computer hardware could not easily
accommodate large bodies of code. Other physical limitations intervened, also.
Programmers often wrote code by hand and then transferred it to punch cards or entered
it for batch processing using Teletype terminals and tape drives. Such work was slow and
painful. For an engrossing account of how such limitations affected game developers, read

Patterns and Their Contexts 235

Figure 7.1
Objects and patterns result from increased software complexity
size.

Brad King and John Borland’s Dungeons and Dreamers. One story involves Richard
Garriott’s early programming adventures. Garriott wrote his programs in longhand in
notebooks even before he was sure he had a computer with which to compile them.
Needless to say, given such requirements, precision of intent characterized flow-oriented
programs. (See the reference to King and Borland at the end of this chapter.)

Structured Programming

Structured programming arose during the late 1970s and early 1980s and allowed program-
mers to establish the best practices of functional decomposition. Functional decomposition
involves, among other things, placing the actions that a program uses into functions and then
pulling together the functions to build the overall logic of the program. The readability and
logical success of the program depends on the design of the functions, each of which should,
among other things, have one and only one purpose: provide only one avenue of entrance
(the parameter list), and have only one point of return. A structured program features a long
list of functions and no code that a function does not encapsulate. Structured programming
advocates often discouraged the use of global variables. When global values occurred, the best
practice was to place them in a header file.

Object-Oriented Programming

Object-oriented programming surfaced during the 1980s. A major point of interest for
game developers is Bjarne Stroustrup, who released C++ in 1983. Stroustrup used notions
that he derived from studies of Algol (short for Algorithmic Language) and Simula.

Historians say that Simula (invented in Norway in the 1960s) was the first object-oriented
language. Simula embodied many of the best features of object-oriented programming, but
programmers did not use it widely. Limited demand accounts for the limited use. When
Simula first appeared, programs generally failed to achieve the size and complexity that
were necessary to encourage programmers to break from the paradigms of logical flow and
functional decomposition.

Unlike Simula, C++ enjoyed wide recognition right from the start. Its popularity lay in
part in the way it extended C. C++ allowed C programmers to transition easily to an
object-oriented language. Authorities also explain that the average size of computer pro-
grams, augmented by increased hardware processing powers, required a new paradigm for
controlling complexity. By extending C and providing for encapsulation, inheritance, and
polymorphism, C++ emerged easily as the leading object-oriented language.

The framework forms what you might consider one of the key results of object-oriented
programming. A framework consists of a collection of classes with which a programmer
can create a standard software application. Examples of frameworks are the Microsoft
Win32 API (a procedural C API, not an object-oriented one) and MFC. Such frameworks
provide components that allow programmers to develop Windows applications. The

Chapter 7 ■ P Is for Pattern236

framework provides roughly 80 percent of the code that the end product might contain.
The work of the programmer involves creating the functionality that the framework deliv-
ers to the application user. Accounting programs exemplify framework-based software.

Patterns

During the 1990s, with the standardization of C++, the emergence of Java, the widespread
use of SmallTalk, and the general prevalence of object-oriented programming, compo-
nent engineering became prevalent. A component often consists of a collection of classes
that perform a specific service within a software system. Patterns provide a convenient
way to understand components. A component resembles an architectural feature, such as
a sheltering roof or a farmhouse kitchen (to use two examples drawn form Christopher
Alexander). A pattern enables programmers to commence programming tasks with a
component view of their work.

Patterns and Objects
Chapter 6 discusses both object-oriented programming and refactoring. The points cov-
ered are along the following lines:

■ Object-oriented programming allows programmers to capture the state and behav-
ior of a real-world object.

■ Polymorphism, inheritance, and encapsulation form key elements of object-
oriented programming.

■ In addition to inheritance (also known as specialization or generalization), associa-
tion, aggregation, and composition form important facets of object-oriented
programming.

■ Refactoring furnishes a rich variety of techniques for eliminating inelegant
programming practices and shaping programs so that others can understand
and maintain them.

To this list, you can now add the work of patterns. Like procedural and structure pro-
gramming, object-oriented programming, combined with refactoring, provides what the-
orists call a design paradigm. A design paradigm is a general way of understanding how to
develop programs. Patterns extend the object-oriented paradigm. Patterns provide
descriptions of commonly encountered design problems that programmers can address
using standard solutions. Figure 7.2 summarizes the dynamic that exists among object-
oriented programming, refactoring, and patterns.

Patterns and Their Contexts 237

Pattern Origins
If you want to display a fair degree of sophistication about patterns, read The Timeless Way
of Building (TWB) that the architect Christopher Alexander wrote several decades ago.
(See the full reference at the end of this chapter.) This book provides a meditative, philo-
sophical view of how a great architect understood and solved the problems he typically
faced when designing living space. It is a fundamental document in the history of software
engineering because it establishes a technique for solving problems that can be applied to
any number of software engineering contexts. Consider the following passage:

There is a definable sequence of activities [that] are at the heart of all acts of
building, and it is possible to specify precisely under what conditions these
activities will generate a building [that] is alive. All that can be made so
explicit that anyone can do it (TWB, 10).

. . .

Chapter 7 ■ P Is for Pattern238

Figure 7.2
Object-oriented programming, refactoring, and patterns complement each other.

Although the process is precise and can be defined in exact scientific terms,
finally it becomes valuable, not so much because it shows us things [that] we
don’t know, but instead, because it shows us what we know already, only
daren’t admit because it seems so childish and so primitive (TWB, 13).

. . .

To make the pattern really useful, we must define the exact range of contexts
where the stated problem occurs and where this particular solution to the
problem is appropriate (TWB, 253).

As you might surmise from the preceding passages, a strong parallel exists between archi-
tectural conception and software design. Alexander contends in so many words that archi-
tectural knowledge consists of a set of solutions embedded in contexts of understanding.
These solutions answer innumerable problems that builders over the centuries have dis-
covered as they have explored different living spaces. Many of the solutions resonate with
simplicity, yet people have consumed lifetimes discovering them. Add to this one other
characteristic. In many instances, the greatest difficulty that builders face begins with the
preservation of the solutions they have discovered. For someone to understand a solution
fully, the builder cannot divorce it from the context in which it was discovered.

The discovery of patterns, then, for builders and software engineers alike, begins in three
places. First, they must preserve the context of the problem. Second, they must describe
the problem. Finally, they must document the problem.

In many cases, programmers use UML diagrams to document patterns explicitly. As
Alexander wrote of building architecture, “If you think you have a pattern, you must be
able to draw a diagram of it” (TWB, 267). Such a statement might sound demanding, but
it remains that UML and other diagram-based approaches to documentation increase the
efficiency of the software development effort.

GoF
Design Patterns: Elements of Reusable Object-Oriented Software, mentioned earlier in this
chapter as the classic work on software patterns, was authored by Eric Gamma, Richard
Helm, Ralph Johnson, and John Vlissides. This group of software engineers has become
known as the Gang of Four (GoF). The appellation has become the basis of a convention
that software engineers use when they document patterns. Pattern developers provide a
reference to the GoF. This activity is covered in greater detail later in this chapter.

One point that the GoF emphasizes is the centrality of pattern discovery. Practices such as
those fostered by refactoring and iterative and incremental design and development
enable you to explore problems in a way that creates opportunities for defining and using

Patterns and Their Contexts 239

patterns. Given this orientation, the implication from the first is that the GoF provides a
living document on patterns rather than a statement of law. When you describe the prob-
lem in the context in which it occurred and join this with a description of the solution,
you have a candidate design pattern. You can refer the pattern to a passage in the GoF, but
you are not obligated to find justification for your pattern in the GoF.

Kinds of Patterns
As Figure 7.3 illustrates, design patterns come in many shapes and forms. The GoF initial-
ly provided only three groupings of patterns, all based on purpose. They categorized the
purposes of patterns as creational, structural, and behavioral. To this basic division, the
Gang of Four added a supplemental distinction: scope. Scope allows designers to indicate
whether a pattern, regardless of category, applies primarily to classes or the object instances
of classes. Accordingly, creational patterns relate to creation of objects, structural patterns
concern how classes and objects can be composed, and behavioral patterns emphasize how
classes or objects interact and how responsibility is distributed among them.

Chapter 7 ■ P Is for Pattern240

Figure 7.3
The GoF groups patterns into three categories.

As time has passed, software engineers have tried to find new language for identifying pat-
tern categories. Some say that you can sort patterns into architectural, design, and idiomat-
ic bins. This set of categories parallels the earlier division. Architectural patterns concern
how software engineers can construct entire software systems. Design patterns encompass
the patterns that the GoF proposed. In other words, design patterns involve the creation
of classes and objects. Idiomatic patterns concern approaches to design that are specific to
given programming languages.

A third way of viewing patterns divides them into conceptual, design, and programming
categories. According to this version, a conceptual pattern describes anything that relates
to how a developer might design an application. A design pattern, remaining true to the
GoF notion, covers anything pertaining to collections of classes and objects.
Programming patterns, once again, relate to uses of programming languages.

A Short List of Patterns
The primary list of patterns that software engineers use in the design and development of
software products has remained stable. The primary list consists of the patterns present-
ed by the GoF. At the same time, developers have created many other patterns. Table 7.1
summarizes the patterns that the GoF present. The sections that follow investigate some
of these patterns in detail. Also included is a unique pattern based on the code in Ankh.

Patterns and Their Contexts 241

Table 7.1 Patterns and Descriptions

Pattern Description

Abstract Factory You need to create several class instances that are derived from the same
abstract class. To accomplish this, you create a single class that manu-
factures the objects you need.

Adapter You have a class that requires a given interface. You cannot change this
class. On the other hand, a class is at hand that provides the services you
require, but the interface is not quite right. To remedy the situation, you
create a class that holds a reference to the class that provides the services
and adapts the interface for use by the class that requires the services.

Bridge You have one class that is a specialization of another. You would like to
make it so that you have more flexibility than what the specialization
provides, so you limit or eliminate the way that the specialization works by
delegating responsibility outside your primary hierarchy to classes in which
you encapsulate the qualities you seek. In this way, rather than creating a
heavy, deep hierarchy, you bridge over to what you need. Aggregation and
composition replace inheritance.

Builder You want to be able to create objects of a given class with a fair degree of
flexibility. To reach this goal, you create a class with several operations that
are capable of either building or acquiring complex features.

(continued on next page)

Chapter 7 ■ P Is for Pattern242

Table 7.1 Patterns and Descriptions (continued)

Pattern Description

Chain of Responsibility An object from one class passes a request to an object from another class,
which in turn passes a request to an object from yet another class. The chain
can go on. You normalize and control this process by developing handlers
for the chained events.

Command You must convey a message complex enough to merit the creation of a class
that encapsulates the attributes and operation that comprise the message.
To accomplish this, you create an abstract object from which you can derive
such a command object when needed.

Composite You have a set of objects that you group together to create what you want
to treat as a single component. To accomplish this, you create one class that
serves as an abstraction of the composite class. You can implement the
abstract class to serve as a composite class.

Decorator You have one class that offers a given set of functionality. You want to
enhance this functionality without changing the class. To accomplish this,
you create a second class that enhances the functionality of the first. The
second class is a decorator class.

Factory Method You want to have a user class create varying instances of a service class. To
accomplish this task, you create one class that is able to express the primary
set of needs that defines the user class. You create other classes that anti-
cipate the services that the service class is to offer. Then, within the user
class, you create a factory operation that can determine the required
instances of the service classes.

Façade You have a collection of classes that provide multiple involved but essential
operations that you would like to access in a friendly, familiar way. To reach
this goal, you define a single class that provides a fresh new interface that
has the capabilities you want to access from the collected objects.

Flyweight You have several specific items that share a common set of features. Rather
than repeating these features, you create one class that allows the objects
to share the feature set.

Interpreter You have developed a hierarchy of classes that models a set of rules. You
can use an interpreter to evaluate the rules.

Iterator You have one class that contains in some way a set of objects. You want to
be able to visit these objects in a specific sequence to convey messages to
them. To accomplish this, you employ an iterator pattern. The iterator pattern
accesses one element at a time and tracks the position of each element
relative to the next.

Mediator If you have a set of objects and want to have in place a single class that
encapsulates the way any given client objects might interact with objects in
the set, you can mediate the relationships between the client and the other
objects by using an object from a class that is designed as a mediator.

Memento You want to capture the behavior of a given class and store it for later
retrieval. To accomplish this, you create a class that stores the information
you want to retrieve. In this instance, the information is protected.

Patterns and Their Contexts 243

Pattern Description

Proxy You do not want to instantiate an object of an especially heavy nature
unless you are sure that the state of your game mandates its instantiation.
To solve this problem, you create a proxy class. The proxy class is a stand-in
class for the heavy class. The proxy class might have the look and feel of the
heavy class, but it serves only as a stand-in until either it or the game knows
that it is time to load the heavy class.

Observer You want to use one class to process events that another class presents. To
make it possible for objects of a first class to notify objects of a second
class, you can follow two courses of action. First, you can create a container
of the second, observed objects in the first class. Second, you can equip the
second class with an interface that allows its objects to be updated readily.

Prototype You want to be able to create instances of classes that you cannot name or
do not care to name when you build your system. Imagine, for instance, a
type of object created from graphical primitives according to the state of
your game at a given moment. To meet this need, you create a prototype
pattern. The prototype pattern includes an abstract class that offers an
interface that is common to all the possible concrete instances. The proto-
type pattern also incorporates a creator class that uses the abstract class to
shape specific instances of prototyped classes.

Singleton If you need to know that only a single instance of an object can be created,
you can create a singleton class. Generally, a singleton class offers opera-
tions that other classes can access to obtain unique services.

State You have a set of states that you want to audit. You can distribute infor-
mation about the set of states across classes that are designed for this
purpose.

Strategy You have one class that needs to be configured to accord with differing
occasions of use. Rather than creating multiple versions of this class, you
create a separate class that manages the features of your class so that you
do not need to change it. The second class provides a strategy for the first
class that allows it to meet the requirements of its contexts of use.

Template Method You have a class or collection of classes that provides a set of elementary
operations that you have to adapt in small ways every time you want to use
them to effect a slightly altered version of what they do as a group. To avoid
the necessity of writing slightly varied routines repeatedly to accomplish
slightly varied tasks, you create a class that brings these elementary
operations into one group that you can control with a single, facile call.
The class that gathers and orchestrates the features is called a template
method class.

Visitor You have one class that needs to communicate with a number of classes
that it contains, say, as compounded objects. To make this possible, in each
of the compounded classes, you create an operation that allows the com-
pounding object to visit it. The compounding object then has an operation
that can traverse through the compounded objects and convey a message
through the visitor operation.

How to Document Patterns
Approaches to documenting patterns differ. Generally, it is a good idea to use the pattern
template that is considered appropriate in the setting in which you work. At some com-
panies, for instance, a patterns collection group might create a template for patterns. Most
such templates originate with the headings that the GoF uses. The headings of the GoF
template are as follows:

■ Intent

■ Also Known As

■ Motivation

■ Applicability

■ Structure

■ Participants

■ Collaborations

■ Consequences

■ Implementation

■ Sample Code

■ Known Uses

■ Related Patterns

As useful as these headings are in guiding the documentation of patterns, many pattern
developers elect to follow a shorter course. This chapter follows the shorter course and
uses the following headings:

■ Name

■ Intent

■ Problem

■ Solution

■ Participants and Collaborators

■ Consequences

■ Implementation

■ GoF Reference

The next few sections offer descriptions of the items in the shorter list. Figure 7.4 provides
a summary of some of the elements of a pattern description.

Chapter 7 ■ P Is for Pattern244

Name

Each pattern possesses a unique name. As with the name of a class, the name of a pattern
should serve as a mnemonic for the solution that the pattern implements. As you can see
from the patterns that Table 7.1 lists, the names that the GoF created emphasize the solu-
tion rather than the problem. Usually, pattern names consist of a single word or a phrase
consisting of no more than three words. The names are brief because the pattern from the
start concerns an abstract entity, and longer names tend to restrict abstraction.

Note that in many instances a given pattern goes by several names. This happens because
developers discover the same pattern in different contexts, document their findings,
and only after publication find that someone else has identified the same pattern. Cross-
references provide a convenient way for pattern developers to identify duplicates. The
literature provides a convention of writing “Also Known As” when several names for the
same pattern have arisen.

Patterns and Their Contexts 245

Figure 7.4
Develop patterns according to current models.

Intent

As the GoF list implies, the intent is what motivates you to document the pattern. Your
intention relates to the context in which you are working and what you want to achieve
with the pattern. The intent you establish might and perhaps should be more than only
the solution to a specific problem; therefore, most designers work toward a generalized
scope. The reason for this is that a pattern that people can use in many contexts through-
out a system is likely to be more successful than one that cannot.

Intent also encompasses the principle(s) of design you seek to concretize through your
pattern. In this respect, you must view a pattern as both a practical solution to a problem
and evidence that a given type of problem can be solved according to a given principle of
design. Statements of intention that resonate practical and theoretical concerns tend to be
more convincing than those that are restricted to practical concerns. If a pattern propos-
es only a theoretical agenda, it is not properly a pattern.

Problem

The problem statement includes a description of the context. Pattern developers some-
times refer to “forces” and “constraints” when specifying the information that a problem
statement ideally includes. A force can be anything that has bearing on the problem, the
context of the problem, or the solution to the problem. Although the discussion of a given
force probably should be restricted to what helps the user of the pattern understand and
apply the pattern, a larger number of factors help identify a problem. Among just a few
forces that come to bear on a problem are whether the problem affects performance, pro-
gram maintenance, program extensibility, and testing.

Forces also work as constraints. Following the lead of two pattern experts, James Coplien
and Brad Appleton, stating a problem involves recognizing the minimal criteria for pat-
tern validity. Among these are the following:

■ Concrete. It does not help to state the problem as an abstract principle. If you have
no context of implementation and no specific remedy to provide, you do not yet
have a pattern.

■ Supported by evidence. When you document a pattern, you should do so on the
basis of empirical evidence of its efficacy. If you base the validity of the pattern
only on conjectures about how it might help its user, you fall short of providing a
useful product.

■ Useful. A pattern that documents an obvious solution is not likely to prove very
useful to anyone. Generally, a pattern gives expression to a principle of software
design. The pattern can help developers bridge a difficult gap between an abstrac-
tion and a practical way to implement code according to the abstraction.

Chapter 7 ■ P Is for Pattern246

■ Generality of application. Patterns should not be simple snapshots of the compo-
nents of a system. It is not enough, for example, to capture the way a set of classes
provides a service to your system and then to designate these classes as a pattern.
A pattern has to do with the design of systems in general and needs to show how
someone can achieve a given principle of design in many contexts.

■ Grace. Patterns provide a means by which software developers can achieve greater
control over and comfort with the software they create. If a pattern lacks grace, it is
probably not a very good pattern. In this respect, software engineering and archi-
tecture share a concern for engineering aesthetics.

Solution

The solution that a pattern offers should describe how to achieve the solution that the pat-
tern offers. The description can include almost any type of information that you find ben-
eficial. Most texts feature, for example, a UML diagram. Such a diagram can show the
abstract form of the pattern and provide a place to discuss alternative approaches to its
implementation. Generally, pattern developers discuss the solution that the pattern offers
in specific contexts, those that directly answer problem statements. Such an approach
ensures that the presentation of the pattern proceeds quickly and efficiently. After all, the
presentation of the pattern should allow developers to move directly into the implemen-
tation of a patterned solution in the program they are working on. Although theoretical
discussion in this respect can result in extra work, it remains important in the statement
of the solution to provide information that enables a developer to understand the differ-
ent contexts in which to implement the solution.

Participants and Collaborators

The notion that one pattern might relate to others should not seem strange. The abstract
factory pattern, for example, stands as a relative of the method factory pattern. Explaining
one in the light of the other can be helpful. On the other hand, it is also the case that one
pattern incorporates another. For example, a pattern might use an iterator pattern in con-
junction with a command pattern. If this happens, the description of the primary pattern
should include discussion of why and how supplementary patterns are used.

Consequences

When implemented, patterns can have both positive and negative consequences. Every
system is cybernetic. In other words, a change in one part of the system is likely to result
in some impact on other parts of the system. For this reason, documenting negative
results of the implementation of a pattern is as important as documenting what is posi-
tive. In some spheres, developers regard neglect of such documentation of dangers as
unethical, and their stern attitude is probably justified. If you have not thoroughly tested

Patterns and Their Contexts 247

the implementation of a pattern, it is appropriate to at least state that no adverse conse-
quences have as yet been discovered. Generally, however, if a pattern proves successful in
a well-documented set of contexts, little reason exists for not publishing it.

Implementation

Most pattern developers show how to use the pattern by providing code samples. In fact,
developers are likely to regard with skepticism a presentation of a pattern that lacks an
example of implementation. When you provide an example of an implementation, the
documentation you place in the code should be refined. Likewise, developers generally
refrain from showing implantation details that are not immediately relevant to the oper-
ation of the pattern.

GoF Reference

Provide page references to the GoF. Some developers provide chapter references. The
problem with the chapter references is that the chapters do not necessarily explore single
topics. Ideally, the GoF reference points to a specific GoF pattern, but it might also be the
case that the reference points the reader only toward the pattern context.

Applied Patterns
The sections that follow discuss some of the opportunities for implementing patterns for
Ankh. The explanations provided concern the ways that the patterns were interpreted and
implemented rather than the generalized pattern definitions found in texts such as those
by the GoF. The patterns that the GoF provide represent inroads to refactoring class rela-
tionships. They can guide the perceptions of the designer as he approaches the task of
improving the quality of a program. The patterns investigated in this respect are as follows:

■ Singleton

■ Composite

■ Chain of Responsibility

■ State

■ Strategy

■ Observer

■ Façade

■ Memento

■ Command

In addition to applying patterns that the GoF furnished, the team experimented with the
derivation of its own pattern, which it named the boss pattern. This chapter provides both
a diagram and a sample implementation of this class.

Chapter 7 ■ P Is for Pattern248

Singleton
A singleton pattern provides a way that you can restrict a class so that only a single instance
of it can be created. Within the context of Ankh, the CGame class fits into the singleton pat-
tern. The CGame class owns everything; therefore, it provides a context in which it is possi-
ble to access all objects. Creating more than one instance of CGame amounts to creating a
new game. For this reason, during any given session of play, no more than one instance of
the CGame class occurs. Table 7.2 summarizes the features of the singleton pattern.

The following code example shows the declaration of the CGame class. The pointers that the
class encapsulates become much more manageable as attributes of a singleton class than
would be the case, for example, than if you declared them as global instances of their
respective classes. A few functions have been added to the class to enable tracking of its
state and version.

class CGame
{
public:

CGame();
~CGame();
// The run method is basically like “main.” It does everything.
int Run();
// Get and set operators //////////////////////////////
bool IsRunning(){return m_bRunning;}
void SetRunning(bool bRunning){m_bRunning = bRunning;}
///

private:
// Here is the massive list of game classes
CGraphics *m_pGraphics;

Singleton 249

Table 7.2 Singleton Features

Topic Feature

Intent You want to restrict the use of the class to one instance.
Problem You want to provide a place in which several client objects can

communicate readily, and you want to ensure that you can control
the number of object instances.

Solution You have only one instance of the object.
Participants and Collaborators A single operation creates an instance of the singleton, and one

operation controls how the singleton can be accessed.
Consequences Client objects do not require knowledge of the state of the

singleton object because the singleton object contains the
instances of the client objects.

Implementation You can implement a static instance of the singleton class.
GoF Reference See pages 127–134.

CCamera *m_pCamera;
CAi *m_pAI;
CPlayer *m_pPlayer[NUM_PLAYERS];
CLog *m_pLog;
CProfile *m_pProfile;
CGuiMgr *m_pGuiMgr;
CImageMgr *m_pImageMgr;
CStateMachine *m_pStateMachine;
CInput *m_pInput;
CFontMgr *m_pFontMgr;

// static int m_iCount;
float m_fVersion;

// Are you running?
bool m_bRunning;

};

n o t e

The approach that the Ankh team took to a singleton differs from standard singleton approaches.
One reason for this is that the team considered it important to have global pointers for graphics
and sound. Because these point to member variables of CGame, they would be destroyed upon exit.
Further, it is clear that they are always up to date, because they get set in the constructor of the
“singleton” object.

A standard approach would have involved using a private constructor, a static data member
(CGame* m_instance), and a static public member operation (CGame* GetInstance(). Further, a
destructor could be used to ensure an instance of the game is destroyed upon program exit.

One of the most significant aspects of this implementation of the singleton class is that
the class creates the objects that are required for the creation of the game. The Run() oper-
ation contains the code that accomplishes this task. Its implementation is as follows:

//
// CGame::Run() //
///
int CGame::Run()
{

// Set the graphics mode
m_pGraphics->SetGFXMode(800,600,false);
m_pInput = new CInput();
Graphics->SetFont(“John Handy LET”,24);
Input->SetPointer(“MouseCursor.png”);
StateMachine->EnterState(“Menu”);
while(IsRunning())
{

MSG msg;
if (PeekMessage(&msg, 0, 0, 0, PM_REMOVE))
{

if (msg.message == WM_QUIT)
break;

Chapter 7 ■ P Is for Pattern250

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else
{

// Do the frame
StateMachine->DoFrame();
Sleep(0);

}
if (GetAsyncKeyState(VK_ESCAPE))
{

PostQuitMessage(0);
}

}
return(0);

}

Composite Pattern Features
A composite pattern enables you to treat objects from a set of primitive classes as a single
component. To accomplish this, you create one class that serves as an interface for the
primitive classes. Both the primitive and the composite classes can implement the inter-
face type. In the design of Ankh, the team found an opportunity to assert a composite pat-
tern in the design when it examined the relationship existing among the dialog elements
it had created. Because these primitives acquired meaning only when composed into a
graphical entity, unifying them with a composite pattern made sense. See Table 7.3.

Composite Pattern Features 251

Table 7.3 CGUIObject Composite Pattern Features

Topic Feature

Intent Simplify the presentation of graphical primitives.
Problem Most of the graphical primitives in the windows tend to be used exclusively in

the dialog box, so it makes sense to create a component that treats these
primitives as one.

Solution Create a CGUIObject class that pulls the primitives together.
Participants and Among the participants were CButton, CPanel, CLabel, and CTextBox,
Collaborators which were generalized as CModalDialog, and CEnvironmentDialog, and

CInventoryDialog. These, in turn, were generalized as the CModalDialog class.
Consequences It became much easier to manage the CGUIObject objects, which could be

placed in a container that accommodated all the basic graphical components
that were associated with dialog boxes.

Implementation Find the graphical user interfaces relative to the dialog box, and generalize them
into an abstract class, CGUIObject. Then create a container for items of the
CDialogue class in the CWindow or other contexts.

GoF Reference See pages 163–173.

Figure 7.5 provides a UML representation of the CGUIObject composite pattern. The imple-
mentation used in Ankh remains somewhat limited because the pattern wasn’t utilized in its
entirety. Full use implies that the composite serves in a recursive role. In other words, the
pattern might be used in one of its own subclasses to create a container. Notice, however,
that CModalDialog generalizes three dialog types. This represents an extension of the pattern.

Chain of Responsibility Pattern Features
A chain of responsibility occurs when several objects in succession pass a message that has
the same content and intent. The chain of responsibility pattern enables you to simplify your
message transfer because, for example, you can create a handler class or appoint an opera-
tion with a given name to accomplish the transfer. With the Ankh design effort, the team dis-
covered an occasion for a chain of responsibility pattern at work in the component model
used in our dialogs. The OnClick() operation could be written in each instance to transfer
messages along the chain to the appropriate level. Full implementation of this pattern calls
for a handler class, but the team decided to develop a common interface. See Table 7.4.

Chapter 7 ■ P Is for Pattern252

Figure 7.5
The CGraphic composite pattern gathers together graphical primitives.

Table 7.4 CDialog Chain of Responsibility

Topic Feature

Intent User interface elements tend to communicate messages, one to
another, along a chain.

Problem It is easy to lose track of the flow of the message if the classes
involved contain operations that have different names that behave
in different ways.

Solution Standardize the transfer of messages through a common interface
feature that focuses on the given responsibility.

Figure 7.6 provides a UML representa-
tion of the CDialog chain of responsibility
pattern.

State Pattern Features
When the development team approached
the state pattern, it found occasion to use
it to manage general game states. The pat-
tern can be valuable if you have a set of
states that you want to audit. You can dis-
tribute information about the set of states
across classes that are designed for this
purpose. To audit the different states, you
use a separate class to represent each
state, all derived from a single abstract
class. When you switch between the
respective objects from the implement-
ed classes, you can obtain, using the
same interface, information about the
different states. Among distinct game states are “menu,” “game in play,” and “map editor.”
See Table 7.5.

State Pattern Features 253

Topic Feature

Participants and Collaborators Participant classes implement a common handler, OnClick().
Consequences You can avoid difficulties in handling events because all classes

transfer a common message in a common way.
Implementation You implement a common operation for each of the chained classes.
GoF Reference See pages 223–233.

Figure 7.6
A chain of responsibility automates message transfer.

Table 7.5 Game State Pattern

Topic Feature

Intent You want to make it as easy as possible to obtain information about
the current state of the game.

Problem You face a problem of wanting to obtain general state information
about the game. Obtaining the information requires adding attrib-
utes to the game object or creating classes, such as a history class,
to store state information.

(continued on next page)

Figure 7.7 provides a
UML representation of
the CState state pattern.

Strategy Pattern Features
The strategy pattern allows you to extract a basic type of behavior from a given class and
place the behavior into separate classes. The separate classes then embody complex inter-
pretations of the common behavior. An abstract base class provides an interface that is
suitable for accessing the complex interpretations, which are embodied in concrete
derived classes.

With Ankh, one candidate area for this pattern is the attitude that the character takes up
in different play contexts. Three such attitudes are those for defensive, offensive, and mag-
ical play. Although the player might invoke the same set of operations with relation to
changing game contexts, the force, health, and other aspects of play change, and these
changes represent changes of strategy. Creating an abstract class for strategy and then
using derived classes with complex characteristics to provide different behaviors helps
simplify the movement between contexts. The client class can then form an association
with the strategy class to adopt the appropriate context of play. See Table 7.6.

Chapter 7 ■ P Is for Pattern254

Table 7.5 Game State Pattern (continued)

Topic Feature

Solution Create a state class from which you can derive objects that
represent the main states of the game.

Participants and Collaborators CPlayState, CMenuState, and CMapEditorState provide key classes
for the game. CState is an abstract class.

Consequences Storage of the state of the game is facilitated. You have only to set
up criteria for when to access a given state to update its object.

Implementation An abstract state class defines an interface that provides information
about key elements of the game state. You can derive classes from
this for each of the game states and access them as needed.

GoF Reference See pages 305–313.

Figure 7.7
You can audit game states by using a state pattern.

Figure 7.8 provides a
UML representation of
the CAI strategy pattern.

Observer Pattern Features
If an object of a first class is the source of events for one or more objects of a second class,
you can create a collection of objects of the second class within the first class, along with
operations for adding objects of the second class. For the second class, you must define an
interface that allows the first class to update all its instances. The outcome of this rela-
tionship between the two classes is that the first class observes the second class. The
observer pattern characterizes this relationship.

As the team worked with the Ankh design, it discovered an occasion for implementation
of an observer pattern in the relationships that existed between the CGuiMgr class and all

Observer Pattern Features 255

Figure 7.8
The strategy pattern simplifies complex changes of attitude.

Table 7.6 Strategy Pattern Features

Topic Feature

Intent Simplify changing between complex contexts of game behavior.
Problem When gameplay moves from one context to another, subtle,

complex changes in the overall nature of play take place. If one
class takes care of all such concerns, the information that the class
must contain becomes extremely complex.

Solution Abstract the context of play into a strategy class and derive classes
that can contain the information needed for changing contexts.

Participants and Collaborators CAI is an abstract class. CMagicAI, COffensiveAI, and
CDefensiveAI embody different contexts of play.

Consequences Using an abstract AI class provides a convenient way to centralize
the definition of different AI contexts. Although defensive, magical,
and offensive might be the first contexts, you can add others as the
game increases in scope and depth. You can first add several levels
with themes only vaguely designed. Having in place a strategy
pattern makes it easy to negotiate the design issues.

Implementation Create a CAI class. Then derive strategy classes from CAI for each
leading context of play. For example, CMagicAI and COffensiveAI, in
addition to CDefensiveAI, might serve as common interpretations.

GoF Reference See pages 315–323.

the classes derived from the CGUIObject class. By creating a container of the CGUIObject type
in the CGUIMgr class, the team allowed the events that the CGUIMgr class processed to be chan-
neled to the objects that were derived from the CGUIObject class. In accordance with the
observer pattern, the team made the CGUIObject an abstract class. See Table 7.7.

Figure 7.9 provides a
UML representation of
the CGUIObject observer
pattern.

Chapter 7 ■ P Is for Pattern256

Table 7.7 Observer

Topic Feature

Intent Provide an easy way to notify different objects of generalized type
of events.

Problem Objects regularly require notification of events channeled through
another class. You want to avoid having to wrap or otherwise filter
objects so that the notifying class can update them. Further, you
want to avoid a cumbersome, inefficient hierarchy.

Solution You can create a container of an abstract type in a first class that
channels the events. You can implement an interface for the abstract
type that allows the first class to notify the objects of the classes
that implement the abstract class.

Participants and Collaborators CGUIMgr, CGUIObject, and classes that implement CGUIObject,
such as CView.

Consequences The container in CGUIMgr hides the complexity of the event-
notification process. The interface that is implemented for the
classes derived from CGUIObject allows all objects that are stored
in the container in the CGUIMgr to be audited or updated readily.

Implementation Create a container of objects of the CGUIObject type in the
CGUIMgr class. Create an abstract class, CGUIObject. Provide this
class with an interface that enables the GGUIMgr to audit or notify
objects of its derived classes of events that it processes. Provide the
CGUIMgr class with an operation that allows objects of the
CGUIObject type to be added to the container. You can add
additional operations as needed.

GoF Reference See pages 293–299.

Figure 7.9
With the observer pattern, a container enables a contained object to
be notified of events.

Façade Pattern Features
You’ll often want to use complex classes or components in a way that hides the complex-
ity of the classes. The key to achieving this goal is to expose a limited set of operations
from the assembled classes or components. A façade pattern helps with this situation. A
façade class allows you to wrap the interfaces from the complex classes in operations that
are friendly and specific to your context of use.

The occasion the team found most promising for the use of the façade pattern emerged
when it undertook to make use of the DirectX and Win32 API objects. Having set up the
objects for devices, services, and other elements, the team required continuing use of only
a narrow range of the total interface features. Further, because the team tended to use con-
stant values to create instances of the DirectX and Win32 API objects, allowing continu-
ing exposure of operations was unwise. For this reason, the team created CGraphics, which
both facilitated and restricted access to the DirectX and Win32 API objects. See Table 7.8.

Figure 7.10 provides a UML representation of the CGraphics façade pattern.

Façade Pattern Features 257

Table 7.8 Façade

Topic Feature

Intent Simplify access to the interfaces that the DirectX and Win32 API
components offer.

Problem The richness of the DirectX and Win32 API interfaces becomes a
liability if access to them is not restricted to a relatively narrow
scope. After you initialize the game, for example, you have little
need for the vast majority of operations. Accessing such operations
can create complexities that are difficult to control. You need a way
to capture the operations of these components and restrict them to
the context of your game.

Solution Create a single class that wraps the interfaces that the complex
components offer in a convenient, restricted set of operations.

Participants and Collaborators These are objects that are drawn from the DirectX and Win32 API
components. CGraphics provides operations that access the DirectX
and Win32 API capabilities.

Consequences CGraphics reduces the complexity of the graphical components.
Use of the interfaces becomes easier because parameters can be
simplified or set with default values.

Implementation Create a CGraphics class that contains instances of the relevant
GDI and DirectX objects. Wrap operations from the DirectX and
Win32 API objects in CGraphics operations that restrict scope and
facilitate use.

GoF Reference See pages 127–134.

Memento Pattern Features
During gameplay activity, actions unfold one after another according to the actions that
the player takes in response to the challenges that the game presents. At certain moments,
players might want to stop the gameplay and replay recent action sets. Although this is not
the exact equivalent of an undo command in a word processing program, it does make use
of similar features. For the replay or undo actions to occur, the application must be able
to store and retrieve a series of application states that have been recorded in some type of
database. When the user issues the undo or replay command, the system must retrieve and
apply the stored information. The memento pattern readily facilities this activity. (See
Figure 7.11.)

Ankh used the memento pattern when functionality was implemented to support game
replay commands. The primary classes for this interaction were CHistory and CWorld.
CHistory provides a container of CWorld states that can be popped when the player requests
a replay of game actions. See Table 7.9.

Chapter 7 ■ P Is for Pattern258

Figure 7.10
A façade pattern refines and customizes access to other interfaces.

Table 7.9 Memento

Topic Feature

Intent Provide a way that you can store and replay states of the
game.

Problem You need to be able to store the game events and, upon
request, replay them. This activity encompasses everything that
occurs in the game world during a given sequence of game-
play. You must retrieve all actions if the continuity of the game
action is to be saved.

Command Pattern
At times, commands you pass from one object to another become complex enough to
merit the creation of a separate class that embodies the command. In such cases, the com-
mand has both a state and a behavior. Such a situation arises when the command is in
some way responsible for tracking instances of itself. A ready example arises when a

Command Pattern 259

Topic Feature

Solution Designate the world as an originator object. Designate another
object, which stores states of the originator object, as a
memento object. Store the states in a stack that you can pop
upon request.

Participants and Collaborators Examples are CHistory and CWorld.
Consequences A container of CHistory objects stores successive states of

CWorld. The system retrieves CAction instances from the
CHistory container when events in the world must be
replayed. Because the CHistory object stores all the infor-
mation that the system requires to replay a sequence of play, a
container of CAction objects streamlines replay actions. It is
necessary to refine CHistory only to the point that it can
access and provide the information that CWorld processes
during play sequences.

Implementation Create a CHistory object that can record states of CWorld.
Create a sequential container of CAction objects. Refine
CHistory until it accesses, stores, and provides information
that is necessary to address fully any given state of CWorld.

GoF Reference See pages 283–291.

Figure 7.11
A memento pattern facilitates game replay.

message you send to a menu disables a menu item. The command should be able to detect
when the menu item has been disabled. The command pattern accommodates such trans-
actions.

In the context that Ankh provided, an occasion for a command pattern arose in the inter-
actions between the CEntity and CHistory classes. CEntity needed to notify CHistory of
updates using a complex message, one that needed to be able to track its own history. To
accommodate the complexity of the message transfer, a CAction class was created. Both
CEntity and CHistory could then interact using CAction instances. See Table 7.10.

Figure 7.12 provides a UML representation of the CHistory command pattern.

Chapter 7 ■ P Is for Pattern260

Table 7.10 Command Pattern Features

Topic Feature

Intent Consolidate the complexity of a message transaction to reduce the
complexity of the transaction.

Problem The complexity of the interactions between the CEntity and
CHistory classes was extensive enough that effecting the trans-
action required storage and manipulation of data that were
relative to the message transfer. Both classes needed to be
equipped with such capabilities.

Solution Create a class to embody the message.
Participants and Collaborators Examples are CHistory, CEntity, and CAction. CAction

embodies the message.
Consequences The complexity of the interactions between the classes is reduced

because the state and behavior of the message are encapsulated
in the CAction object.

Implementation Create a CAction class that is capable of containing the
information passed between CHistory and CEntity. Provide an
interface that retrieves the information that the interactive classes
require.

GoF Reference See pages 233–242.

Figure 7.12
Develop patterns
according to cur-
rent models.

Boss Pattern
The patterns that the GoF supplies cover design problems that are common in most appli-
cation areas. Applying these patterns to contexts that are specific to game development usu-
ally involves refactoring game code until it assumes a form amenable to pattern-oriented
design strategies. In other cases, rather than refactoring code, you can turn to the patterns
and consider whether you can combine or alter them to accommodate an occasion that does
not perfectly fit any one pattern but clearly displays features of one or more patterns.

To illustrate this approach, it is possible to offer a custom pattern the team developed to
address an occasion in which it wanted to manage resources. The problem the team faced
was that it wanted to track resources that were instantiated for the game but, at the same
time, given a resource that did not exist, it wanted to have the ability to instantiate the
resource upon detecting a need for it. The team wanted to store all instances of resources
in one convenient place and have at hand an interface that would allow us to add, retrieve,
delete, and detect the existence of any specific resource. The answer to this need arose in
the boss pattern. See Table 7.11.

Boss Pattern 261

Table 7.11 Boss Pattern Features

Topic Feature

Intent Provide a way to easily track the existence of resources. If a resource
exists, use it. If a resource does not exist, create an instance of it
and place it in a container for detection, access, and deletion.

Problem During the life of the game, you must load many large images. In
some instances, you can load duplicates of an image. In other
instances, you face the danger that a resource that the program has
added might be added again. Such transactions reduce the efficiency
of the game and pose problems of resource allocation and
management.

Solution Create a class that maintains a list of loaded resources. When you
try to load a resource that has been loaded already, it returns a
pointer to the loaded resource. If the resource has not been loaded,
it loads the resource and returns a pointer.

Participants and Collaborators These include CResourceMgr and the resource classes it tracks. In
addition, an abstract CResource class should be present.

Consequences CResourceMgr maintains a list of objects of the CResource class
and provides an interface that allows the resources to be tracked,
loaded, and unloaded.

Implementation Create a CResourceMgr class. This class provides Get() and
Release() operations. Create a collection of resource objects in this
CResourceMgr. The resource class should have an interface that
provides AddReference(), RemoveReference(), IsLoaded(), and
Unload().

GoF Reference See pages 127–134.

Figure 7.13 provides a UML representation of the CResourceMgr boss pattern.

Boss Implementation
The following code sample illustrates the implementation for the boss pattern for the
CImage class.

class CResource
{
public:

CResource();
~CResource();
// Removes a reference from this resource
virtual void RemoveReference();
// Inline members //////////////////////////////
virtual void AddReference(){m_iRefCount++;}
void SetName(const CStdString &strName)
{

m_strName = strName;
}

void SetFileName(const CStdString &strFname)
{

m_strFileName = strFname;
}
CStdString GetName(){return m_strName;}
CStdString GetFileName(){return m_strFileName;}
bool IsLoaded(){return m_bLoaded;}
virtual void Unload(){m_bLoaded = false;}

Chapter 7 ■ P Is for Pattern262

Figure 7.13
The boss pattern provides a way to track resources.

virtual bool Load(CStdString strFile)
{

m_bLoaded = true;return(true);
}
///

protected:
// What is your name?
CStdString m_strName,m_strFileName;
// Your reference count
int m_iRefCount;
// Are you loaded?
bool m_bLoaded;

};
//
// CResource::RemoveReference() //
// Removes a reference to this object, //
// unloading it if necessary. //
//
void CResource::RemoveReference()
{

// Decrement reference counter
m_iRefCount—;
// If you hit 0, unload the resource to save memory
if(m_iRefCount==0)
{

Unload();
}
else if(m_iRefCount<0)
{

// Shouldn’t really have a negative count
Log->Add(“CResource::RemoveReference() - >

%s has a negative reference count...”,
m_strName.c_str());

}
}
class CResourceMgr
{
public:

// Default constructor
CResourceMgr();
// Destructor
~CResourceMgr();
// Gets a resource. If it has not yet been loaded, the manager
// will load it.
class CResource *Get(const CStdString &strName);
// Gets a Font resource
class CD3DFont *GetFont(const CStdString &strName,

int iHeight);
// Releases a resource, decrements its reference count, and
void Release(const CStdString &strName);

Boss Implementation 263

private:
// Your list of resources to manage
std::vector<class CResource *> m_lstResources;
// Loads a resource from a file by calling its ‘Load’ method
bool Load(const CStdString &strName,

const CStdString &strFile);
// Loads an image object
bool LoadImage(const CStdString &strName,

const CStdString &strFile);
// Loads a font object
bool LoadFont(const CStdString &strName,int iHeight);
// Load a mesh resource
bool LoadMesh(const CStdString &strName,

const CStdString &strFile);
};

///
// CResourceMgr::Load(...) //
// Loads a resource and adds it into the list //
///
bool CResourceMgr::Load(const CStdString &strName,

const CStdString &strFile)
{

// Get the extension of the file
int idxDot = strFile.Find(“.”,strFile.length()-4);
CStdString strType =

strFile.Right(strFile.length() - idxDot - 1).ToLower();

// Load an image file
if(strType == “png” || strType == “jpg”

|| strType == “bmp” || strType == “tga” ||
strType == “pcx” || strType == “gif”)

{
return(LoadImage(strName,strFile));

}
else if(strType ==”x”)
{

return(LoadMesh(strName,strFile));
}
else
{

return(false);
}

}
//
// CResourceMgr::Get(...) //
// Gets a resource or loads it if it is not loaded //
//
CResource *CResourceMgr::Get(const CStdString &strName)
{

Chapter 7 ■ P Is for Pattern264

CResource *resFound = NULL;
for(unsigned int i=0;i<m_lstResources.size();i++)
{

// Look for the image with the matching name
if(m_lstResources[i]->GetName() == strName)
{

resFound = m_lstResources[i];
// Load the image if you need to
if(!resFound->IsLoaded())

resFound->Load(resFound->GetFileName());
resFound->AddReference();
return(resFound);

}
}
// No resource found... try to load ‘strName’ and name it.
// Same as the file name (except without the full path).
if(!Load(strName,FullPath(strName)))
{

Log->Add(“CResourceMgr::Get() -> Couldn’t find/load %s”,
strName.c_str());

return(NULL);
}
// Re-call yourself to get the image you just loaded!
return(Get(strName));

}
///////////////////CIMAGE////////////////////////
// Holds basic information about an image
class CImage : public CResource
{
public:

// Default constructor
CImage();
// Default destructor
~CImage();
// Loads an image from a file
bool Load(const CStdString &strFname);
// Frees memory used by the image and sets loaded to false
void Unload();
// Get and set methods //
IDirect3DTexture9 *GetTexture(){return m_pTexture;}
float GetWidth(){return m_fWidth;}
float GetHeight(){return m_fHeight;}
float GetTexCoordX(){return m_fTexCoordX;}
float GetTexCoordY(){return m_fTexCoordY;}
///

private:
// Holds the Direct3D9 texture for the image
IDirect3DTexture9 *m_pTexture;
// Holds direct3d related info

Boss Implementation 265

D3DSURFACE_DESC m_descTexture;
// The texture’s width
float m_fWidth;
// The texture’s height
float m_fHeight;
// The rightmost x texture coordinate
float m_fTexCoordX;
// The bottommost y texture coordinate
float m_fTexCoordY;

};

///
// CImage::LoadFromFile(CStdString strFname) //
// Loads the image from the given filename //
///
bool CImage::Load(const CStdString &strFname)
{

// The image info structure holds width, height, formats, and so on
D3DXIMAGE_INFO info;

// Try to load the texture
if(FAILED(D3DXCreateTextureFromFileEx(Graphics->GetDevice(),

strFname,
0,0,0,0,D3DFMT_UNKNOWN,
D3DPOOL_MANAGED,D3DX_FILTER_NONE,
D3DX_FILTER_TRIANGLE,
D3DCOLOR_XRGB(255,0,255),&info,NULL,&m_pTexture)))

{
FatalException(__FILE__,

__LINE__,
“CImage::LoadFromFile -> Failed to load

%s!”,strFname.c_str());
return(false);

}
// Get info from the texture
D3DSURFACE_DESC desc;
m_pTexture->GetLevelDesc(0,&desc);
m_fWidth=(float)info.Width;
m_fHeight=(float)info.Height;
// Set up your texture coordinates
m_fTexCoordX = (float)(m_fWidth/desc.Width);
m_fTexCoordY = (float)(m_fHeight/desc.Height);
// Set the file name
m_strFileName = strFname;

// You are now loaded
m_bLoaded = true;
return(true);

}

Chapter 7 ■ P Is for Pattern266

///
// CImage::Unload() //
// Unloads the image and sets the loaded flag to false //
///
void CImage::Unload()
{

// Only unload if you are loaded currently
if(m_bLoaded)
{

// Release the texture
if(m_pTexture) m_pTexture->Release();
m_pTexture = NULL;

// Warning if someone is still holding onto you
if(m_iRefCount>0)
{

Log->Add(“CImage::Unload()-> %s unloaded with iRefCount=
%d(Object still holding image!)”,
m_strName.c_str(),m_iRefCount);

}
// Reset reference count back to 0, set unloaded
m_iRefCount = 0;
m_bLoaded = false;

}
}

Conclusion
Pattern-oriented programming, combined with refactoring, provides an extension of
object-oriented programming. As conceived originally, object-oriented programming
sought to furnish a set of components that programmers could use without having to
modify them. This goal had many virtues, but it fell short in situations in which the pro-
vided components did not encompass all the functionality that an occasion of use
required. To solve this problem, classes were grouped into larger collections, and with
such groupings arose the observation that the groupings occur in patterns that address
specific problems. To augment the observation, the practices that the architect
Christopher Alexander had embodied in his documentation of architectural patterns were
ready at hand. The result was that the Gang of Four, which included Eric Gamma, Richard
Helm, Ralph Johnson, and John Vlissides, was at hand to formulate a collection of 23 basic
patterns for software engineering.

This chapter investigated some of the fundamentals of patterns. In addition to discussing
how to define a pattern, this chapter briefly defined a few of the patterns that Gamma and
others have documented in terms of Ankh. A unique pattern, the boss pattern, controlled
resource counts in Ankh.

Conclusion 267

Using patterns requires that you investigate the existing patterns, their occasions of use,
and the possibilities that refactoring affords you as you refine or increment the design of
your game. Generally, you can achieve the best results if you begin your design efforts with
a ready store of patterns.

To investigate patterns comprehensively, turn to full-length texts on the subject. The text
by Gamma and others tends to be the central reference point for advanced programmers
who have acquired grounding in patterns. Other texts explain and illustrate patterns for
beginners. Because of the general trends that have prevailed in software engineering prac-
tices over the past decade, the predominant number of works currently available on pat-
terns addresses Java implementations. However, although some patterns address specific
language implementations, the majority does not. Even those that do address specific lan-
guages can be altered with little effort to fit another language context.

The following publications provide deeper insight into the topics covered in this chapter:

Appleton, Brad. “Patterns and Software: Essential Concepts and Terminology.”
http://www.enteract.com/~bradapp/docs/patterns-intro.html

Coplien, James O. “Software Patterns.” http://hillside.net/patterns/definition.html

Horstmann, Cay. Object-Oriented Design & Patterns. Hoboken, New Jersey: John Wiley &
Sons, 2004.

Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, New Jersey: Prentice Hall, 2003.

Richter, Charles. Designing Flexible Object-Oriented Systems with UML. Indianapolis:
Macmillan Technical Publishing, 1999.

Shalloway, Alan and James R. Trott. Design Patterns Explained: A New Perspective on
Object-Oriented Design. Indianapolis: Addison-Wesley, 2002.

Vlissides, John. Pattern Hatching: Design Patterns Applied. Reading, Massachusetts:
Addison-Wesley, 1998.

Chapter 7 ■ P Is for Pattern268

269

Risk Analysis

Chapter 8

R
isk analysis requires that you look at how you develop software and ask yourself
whether the way you develop software poses dangers to your project’s success. For
a game, the dangers range from how members of a development team get along, to

whether the organization has budgeted enough time and money for the team to finish the
project, to whether the game is worth creating.

This chapter approaches software risk analysis from a traditional perspective but adds to
this perspective several considerations that are not found outside the game industry.
Among these considerations are those involving the aesthetics and technical innovation
involved in game development. An important aspect of software engineering involved
with game development is that it must encourage and protect creativity. The reasons for
this are legion, but one in particular is that developers often add creative features to a
game late in the development effort. Failing to consider the risks of allowing either too lit-
tle or too much latitude in the development effort is one of the many aspects of risk analy-
sis that this chapter investigates. The topics covered in this chapter include the following:

■ Defining risk as a category of software engineering

■ Establishing criteria to use for risk analysis

■ Analyzing risks so that you can prevent them

■ Developing a risk management plan that is suitable for your setting

■ Tracking and controlling risk

The Story of Risk
The story of risk involves many stories stretched out across a narrative that includes loss-
es of life, lawsuits, failed products, returned products, failed development efforts,

breakups of development teams, breakups of individuals, and as might be expected, bank-
ruptcy. The stories stretch far out into space, too, to things like lost Mars probes (for mis-
sions that launched successfully) to rockets exploding just a bit above the launch pad (for
those that did not launch successfully). These have been among the most costly losses. The
Mars probe disappeared when the two teams that were developing the software used dif-
ferent measurement systems (metric and avoirdupois). The Ariane 5 rocket crashed after
a software engineer left a few lines of test code in the launch program that shut off the
engine. Stories like this are mortifying for organizations like NASA and the ESP, which
have to budget projects years (sometimes decades) in advance and then, sadly, often do
not discover the problems until months in to flight. Add to this the billions of dollars (U.S.
or EU) required to finance a doomed effort.

Closer to home are the many games that possess irritating errors or that development
teams create for game players who do not exist. Many games never reach a market because
the teams involved in their development become embroiled in disputes and break up.
Others become sidetracked in feature generation, so that money enough to finance them
to completion does not exist. Still others reach the market full of errors, thus harming the
reputation of the development group responsible for their creation. And still others reach
the market with relatively few problems only to fail because no one buys them.

Software engineering risk assessment begins with a mandate to identify, address, and reduce
or eliminate problems in the software development effort before they cause the develop-
ment effort to fail. As Figure 8.1 illustrates, how it goes from this starting point depends on
how those involved in the development effort choose to anticipate risk. Three basic avenues
characterize the activity that follows:

Chapter 8 ■ Risk Analysis270

Figure 8.1
Risk analysis involves prevention, reduction, and damage control.

■ Prevention. In its best form, risk assessment commences and the project starts up.
It allows those who are involved in the planning and initiation of the development
effort to recognize and either alter or eliminate practices that are destined to cause
problems.

■ Reduction. In a second form, risk assessment can provide wisdom, not about how to
eliminate risks (in some situations, risk cannot be eliminated) but how to reduce risk.

■ Damage control. In a third form, risk assessment provides developers with sugges-
tions or procedures for solving problems after they have erupted in an uncon-
trolled or unexpected way. In such situations, the objective cannot be to reduce or
prevent risks. The objective must be to control the damage.

Applied Risk Analysis
A risk consists of anything that can delay a project, increase its cost, create liabilities for the
organization, adversely affect the quality of the software product, or work to the detriment
of those involved with the development or use of the software product. Assessing such risks
involves having tools at hand with which to identify them, describe them, analyze them,
and remedy them. Although the tools of risk analysis might be available and effective, just
realizing that a risk exists tends to be the hardest part of risk analysis. When people are
deeply committed to or involved in a project, the force of cognitive dissonance tends to pre-
vail. Cognitive dissonance is a term that social psychologists use to describe the tendency
of people to deny that something they are doing is in some way responsible for harm that
others suffer. A programmer who has just finished working days or weeks on a given pro-
gram, for example, is not likely to volunteer that the program possesses errors and might
be badly designed. The effort that the development requires seems to stand as evidence that
the result must be good. Nothing could be further from the truth, however. If risk assess-
ment is to occur, a strong program of risk assessment needs to be in place.

Programmers are not the only ones who have trouble discovering the risks that charac-
terize the work they perform. Generally speaking, everyone who is involved with software
development or any type of product development faces risks. Discovering the risks
requires a painful, concentrated effort, not of finding faults, but of assessing the product
to discover those situations in which its development or use might lead to irregular
results. Finding the situations in which irregularities arise begins, generally, with a divi-
sion of the world into two general playing fields. One of these has to do with external
risks. The other has to do with internal risks. Figure 8.2 provides a high-level view of these
two divisions of risk.

Applied Risk Analysis 271

External Risks
External risks for a software development effort consist of anything that provides for the
successful completion of the project. Among these are the following:

■ Financing. Does enough money exist to fund the development effort? Ultimately,
the executive group must find funding for the project. Funding originates from a
multitude of sources, but a leading risk in any funding or investment situation
arises because investors usually want to audit what the company does with its
money.

■ Organizational support. Does the organization support the development effort?
Given adequate funding, the dynamics of the organization come into play. Con-
sider the difference between an organization that trusts its developers to undertake
creative, experimental work and an organization that trusts no one and demands
that fairly high-level game and software designers plan every activity in advance.

■ Resources. Where are you working, and what equipment are you using? If you are
part of a startup venture, you might be using the back room of a coffee shop or an
idle college classroom in which to do some or all of your work. But in other areas,
where you are involved in a mature or maturing corporate effort, the amount of
money that executives or managers budget for development resources heavily

Chapter 8 ■ Risk Analysis272

Figure 8.2
Risk assessment deals with external and internal risks.

impacts the efficiency of developers. For example, if your organization purchases a
well-supported configuration management system, you might spend less time fig-
uring out how to negotiate glitches in the system than you do when you use free-
ware. This is not a jab at open source products. However, it is true, generally, that if
your company purchases supported tools, you can expect other developers to have
responsibility for fixing product bugs in a timely way.

■ Customer support. Can the market sustain its demand for the game? If no one
wants to buy your product, you are probably in trouble. But even before anyone
buys your product, you still have customers. Such customers consist of the artists,
managers, executives, and others in your organization who are expected to support
and defend your development effort. Whether such people support your effort
might depend on whether you have periodic demonstrations of the game you are
developing.

■ Creative support. Who is providing game resources? Can you find graphics artists
and musicians? Can these people produce the resources you need? A major factor
for larger organizations is the amount of money available to purchase the rights to
different works of art. The price tags rise with the product’s profile. When you
reach the point at which the theme of the game reflects a soon-to-be-released
movie, the sums involved increase enormously. In any event, stealing even the
smallest identifiable sound bite from a creative source poses enormous and unjus-
tified risks.

One important general consideration with respect to external risks involves protecting the
development team from knowledge of such risks. Such a priority might appear ironic, but
consider the implications if members of the team lie awake at night preoccupied, not with
pipeline performance issues, but with next week’s venture capitalist visit.

Internal Risks
On the internal side, issues become much more complex. As Figure 8.2 illustrates, the
issues that arise often involve the development team. Among the leading concerns are the
following:

■ Equipment. Equipment is just what you would expect. Are the computers that the
programmers use powerful enough to reduce compilation time to an acceptable
minimum? Are the RAM and graphics cards powerful enough to enable developers
to develop without having to battle system limitations? Does the equipment on
which developers develop the game correspond in its description to what those
who will purchase the game possess?

■ Team members. How do the members of the team work together? A team can
remedy a bad idea for a game or a poor design, but if dispute, distrust, and deser-
tion characterize the effort, the development effort stands little chance of success.

Applied Risk Analysis 273

Even with a brutally impersonal corporate effort, in which individuals supposedly
mean little, if members of the development team cannot work in complementary
ways, management will find that replacing people and rekindling lost inspiration
are nearly impossible tasks.

■ Technology. What kind of technology is being used? Technology refers to things
such as shaders and alpha channels, capabilities that seem mundane after a time
but at some point in history deeply impressed those who were first introduced to
them. New technology poses two general types of problems. The first occurs when
new technology does not form a part of the project. The second occurs when new
technology does form a part of the project. In the first situation, risk develops if the
game features nothing appealing and represents only a modification of an old
game. In the second situation, risk develops if the developers who use the new
technology require a great deal of effort and time to perfect their innovations.

■ Creative input. Is the game creative? No game can succeed if its creative elements
lack luster. Three of the main components of any game are its script, its audio
tracks, and its graphics. Such elements might seem distant from the immediate
concerns of software engineering, but they are not. From the requirements for-
ward, the software engineering effort succeeds only if it comprehensively addresses
the needs of all stakeholders. For this reason, attention must be afforded to soft-
ware developers who are capable of implementing functionality that supports
superior dialogue, music, and graphical efforts.

■ Product development duration. What’s the estimated time to market? A key risk
characteristic of development schedules involves failure to balance quality, cost,
and timeliness. A game that is delivered two months after another company has
released a similar game faces diminished chances of success. On the other hand, a
game that is released before another and yet possessing serious errors faces as
many troubles as one delivered late. And if the development costs exceed the bud-
get that the company has established for the game development effort, executives
might decide that the risk of proceeding with the effort exceeds the likelihood that
the game will generate the revenues needed to cover its extended development life.

What Promotes Risk Assessment?
This topic concerns the factors that contribute to the ability of an individual, a team, or
an organization to understand and respond to risks. If people react fearfully to risk assess-
ment efforts, such efforts might result in more harm than good.

General Attitudes Toward Risk and Risk Management
What happens when people assess the risks that accompany a game development effort?
Figure 8.3 provides a summary of some of the general tendencies that promote willing-
ness to engage in risk assessment activities.

Chapter 8 ■ Risk Analysis274

Consider that if you accept risk openly, you more willingly take measures to prevent risks
from adversely affecting you. On the other hand, if you fear risks because you consider
them a challenge to your competence, you either ignore them or try to explain them away.
Organizations work the same way. Some development groups behave recklessly, charging
into a game development project without thought about what to do if things go wrong.
When bad things begin to happen, no one knows how to respond. No one has a contin-
gency plan in place. In the worst of situations, everyone begins blaming everyone else.

Contrast the worst situation with the best. In the best of situations, everyone undertakes
the project with enthusiasm, but at the same time, reason prevails. Reason says, among
other things, that risks accompany any effort, simple or complex, and that some attention
at the start of the project should be given to what to do if things go wrong.

Look again at Figure 8.3. The following list describes some of the ideas:

What Promotes Risk Assessment? 275

Figure 8.3
If risk assessment meets with positive attitudes on the part of those
involved, positive changes result.

■ Problem areas. Whether you work alone or in a group, taking time to discover the
problems that characterize your effort remains essential to a productive risk assess-
ment program. Two groups, for example, might begin developing a role-playing
game with common themes, the same number of layers, the same world descrip-
tions, and many other common features. The teams might have adequate equip-
ment and expertise. They might be funded sufficiently. And yet one effort might
fail whereas the other succeeds. The question to ask focuses on what risk factors
one team anticipated and dealt with that the other did not.

■ Receptivity to risk analysis. Cooperation resides at the root of a group’s ability to
receive information about risks. If you view information about risks, not as an
opportunity to escape danger, but as a criticism, you will tend to turn away from
those who openly speak about risk. Some organizations are so pathologically
embedded in fragile, unplanned development efforts and games of ego dominion
that they cannot stand openness. The same goes for code. People can be afraid of
code walkthroughs or reviews and keep their work to themselves. They are this way
because they fear criticism. Such fears can lead to major risks, for those who isolate
themselves from opportunities to receive information about their work will not
have the opportunity to improve it.

■ Auditing. “Audit” here does not just refer to the kind of formal assessment of per-
formance that might characterize, say, activities that are involved in achieving ISO
certification. Instead, audit in this case encompasses self-imposed, self-regulating
techniques for acquiring information. Among these are surveys, questionnaires,
and reviews. On the other hand, quantitative or formalized information often
proves invaluable in identifying risks and deciding how to deal with them, so audit
also refers to formalized mechanisms for gathering information. The point here is
that if an organization is open to the collection of information, it more likely will
be able to negotiate risk factors.

■ Plans for responding to risk. A risk management plan can be as simple as a sug-
gestion that people avoid walking where water has been spilled. It is strange that
people who would issue such warnings easily might also find the notion of imple-
menting a risk management plan threatening. A warning to walk around spilled
water can be easily presented in a clear context that leaves no one offended, and
procedures can be presented in the same way. Still, written procedures that are
issued to a group of programmers for performing different tasks often have the
appearance of being punitive. To avoid the danger of this happening, an organiza-
tion can encourage those who deal with risks to pose their plans in positive lan-
guage and to reward those who work with the plans through praise or other
incentives. If risk management appears to be punitive and remedial, everyone will
seek to avoid it.

Chapter 8 ■ Risk Analysis276

Things That Foster Awareness
Things that foster awareness of risks come in many forms. Generally, the more that an
organization opens itself to communication among its employees, the more ably it deals
with risk. Figure 8.4 provides a summary view of some of the group or organization qual-
ities that foster risk awareness.

As Figure 8.4 shows, risk awareness does not begin with suspicion, doubt, distrust, authoritar-
ian security measures, or draconian proceedings that are characteristic of a world supposedly
laden with dreadful events. Rather, for software engineering and game development, risk
awareness begins with fairly undemanding activities that are open to everyone.

Table 8.1 itemizes some of the key elements of risk awareness. Later, this chapter covers
the specific risk management techniques that positive organizational attitudes can foster.

What Promotes Risk Assessment? 277

Figure 8.4
Risk awareness begins with organizational or group awareness.

Chapter 8 ■ Risk Analysis278

Table 8.1 Risk Awareness

Item Discussion

People assume responsibility. Everyone can contribute to the dialogue without
necessarily sounding critical.

Team members assume different roles. If people are not assigned to narrow slots of activity with-
in the group, they are more likely to be aware of how mis-
communications might lead to problems.

People own their work. If people can feel they own their work, they will care more
for it.

Teams decide. If a group of people arrives at an understanding of a risk,
it is likely that many facets of the risk will be discussed,
and the risk will be known that much better.

People enjoy differences of A consensus does not require conformity. If people dis-
opinion and perspective. agree on risks and risk-management measures, the differ-

ences can still be documented.
The work encourages Risk management is not censorship or punishment. If lack
professional development. of knowledge characterizes a risk, those who lack knowl-

edge deserve to learn.
Opportunities for training arise. When a team needs training to adjust for a risk, training

should be provided.
People are allowed to be members Cross-team development tends to be enormously bene-
of different teams simultaneously. ficial to both development organizations and individuals

within those organizations when it comes to risk assess-
ment. The reason is that risk usually develops in gaps.

Everyone solves problems. The notion that only a few people are responsible for risk
management is extremely hazardous.

If people disagree, disagreement If people express differences of opinion, they tend to try to
can receive acceptance. explore the issues in greater detail to findstrengths and

weakness. If such explorations occur in game development
contexts, the results are likely to be beneficial, even if con-
sensus is not reached.

Customers have input. Customers vary from people who play games to artists
who want their products represented in the best
possible way.

The authority of the company is This one is a bit tricky. The point here is that when risk
not always supreme. analysis takes place, if everyone thinks about the situation

in authoritarian terms, it is likely that the first response will
be one of trying to escape blame. When information that
reduces risk is the goal, no one should feel threatened.

New ideas are welcomed. Stagnation poses a major risk to any organization that is
trying to anticipate risk.

Goals
Even though a set of standard risks can be obtained from any of a dozen good texts on
software engineering, the risks that a group or organization discovers depend on the goals
it sets for itself. The goals have to do with the business and technical objectives that char-
acterize the culture of the organization. Establishing a common set of goals that all game
development groups could adopt is an almost impossible task. Still, here are a few ideas:

■ Reduce lost productivity. Such a goal is not necessarily one of increasing produc-
tivity. Rather, its focus is on reducing waste. Things like rework, sloppy documenta-
tion, poor class design, bad use of libraries, and other such things can cause an
enormous amount of lost productivity. Lost productivity means that developers
have less time to use toward refining and perfecting the selling features of the game.

■ Increase productivity. Such a goal contrasts with that of decreasing lost produc-
tivity, because it addresses the idea of finding cheaper, quicker, and better ways to
create a game. Granted, the first implication might be that what results from this is
some sort of sordid game factory, but this is not the intent. Rather, just consider
the numerous games that fail to get to market. It could be that those who are
working on the product are not productive enough to meet the deadlines that the
publisher has set for the game.

■ Increase opportunities for aesthetic expression. This goal implies that when you
develop an engine, you make it flexible and extensible and that your efforts toward
risk assessment allow you to increase the opportunities that the development pro-
ject offers those who are trying to introduce innovative art into a game effort.

■ Increase opportunities for technical innovation. This goal implies that you do
not lock yourself into modification of existing game engines but trust your devel-
opment capabilities enough to try things that are fairly risky. If you know how to
manage and control risk, you are in a better position to undertake the type of risk
that innovation mandates.

■ Create a safer environment for experimentation. This goal involves several things.
Experimentation cannot occur in an environment that is so beset by unanticipated
problems that no one has time to do anything except fight fires. Risk assessment
enables developers to understand how much leeway a schedule involves and to
gauge whether creativity will lead to a cool new feature or a disruption in the
schedule.

■ Reduce the number of errors the game has when it ships. Risk assessment
involves investigating the approaches used to obtain requirements and create
designs. Introduce flexibility into the design stage so that iterative design efforts
allow adjustments to be made as the development effort goes forward. (This
approach also is advocated by the Agile philosophy of software development.)

What Promotes Risk Assessment? 279

■ Increase the quality of the product. Yes, this is a platitude, but it is a good one.
Any new feature is a risk, even if it is technically sound. Why this is so involves ask-
ing about how a new feature affects the entirety of the game as played. At the same
time, quality stems from a multitude of factors that can be dealt with as antici-
pated risks. Risk assessment involves trying to think of unexpected events that
might occur when new features are added.

■ Add to the quality of the development experience. Risk assessment can make a
development effort much easier than it would be otherwise. If people express dissat-
isfaction with game development work, something really must be wrong. However, if
development involves what appears to be uncontrolled chaos, it becomes under-
standable that expressions of dissatisfaction might, after all, be heard periodically.

This list is far from complete, but the message should still emerge. Unless risk management
or risk assessment takes place in a positive context, the danger arises that the undertaking
has no goal beyond that of correction. Risk assessment involves more than correction.

Strategies
In addition to setting goals, groups or organizations that engage in risk assessment must
arrive at a suitable set of strategies. Because the strategies that emerge depend on the cul-
ture of the group or organization, it’s not possible to provide a comprehensive list. The list
that follows can serve as a starting point, though. It arises from the general notion that
most groups or organizations have a fairly common set of risk-assessment tools.

■ Culture and awareness. The first strategic measure involves attending to the
culture of the group or organization. Refer to Table 8.1, where risk awareness
is discussed.

■ Responsibilities. Responsibilities in this context respect those to whom risk assess-
ment tasks are assigned. Generally, regardless of how much a group encourages
everyone to be on the lookout for risks, some individual or group of individuals
must undertake to formalize and store information about risks and to host meet-
ings and reviews in which strategies can be evolved for addressing risks.

■ Standard ways of talking about risk. As strange as it might sound, when people do
not have a way to talk about risk assessment, the talk can become soured easily. Risk
assessment and complaining are different. The difference is that risk assessment
involves informed discussion toward definitive ends. Likewise, risk assessment pro-
vides a set of tools that people can use to collect information and create remedies.

■ Standards. Chapter 6, “Object-Oriented Fantasies and Realities,” discusses notions
of organizational maturity. Standards can provide models for collecting, assessing,
and formulating response to risk. Among the examples that might be set forward
in this respect are those pertaining to how risk analysts develop questionnaires,
conduct reviews, or write reports.

Chapter 8 ■ Risk Analysis280

■ Roles. The SWEBOK provides a category of expertise that corresponds to risk
management. Within an organizational framework, risk management can be a
highly specialized undertaking. The individual who is involved in such work is a
risk management expert, someone with refined skills regarding all phases of risk
management.

■ Best practices. Best practices enable individuals to chart a course of life-long
development. One of the chief reasons for staying informed about industry hap-
penings is that technical publications and technical conferences provide ready
avenues for information about what works best among communities of software
engineers. Risk assessment involves continuously examining current practices to
discover how they might be less risky. Risk is reduced when practices that have
been evaluated for risk can be tried across a community of practitioners.

The Paradigm
The remaining sections of this chapter concentrate on describing and showing different
aspects of a paradigm that represents any of a number of techniques and philosophies of
risk management. Putting this flow of activities to work in your own group or organiza-
tion requires that you shape it to accord with the culture of your organization, because
each organizational setting is bound to be unique. Figure 8.5 represents the larger features
of the risk management paradigm advocated in this chapter. A classical presentation of
this model appears in Robert N. Charette, Software Engineering Risk Analysis and
Management (New York: Intertext Publications, 1989).

The Paradigm 281

Figure 8.5
General approaches to risk assessment extend across the development
lifecycle from gathering information to testing remedies.

Identifying Risks
Risk has to do with chance. Chance plays a part in the development project because no
one possesses complete knowledge of all the factors involved in the development project.
In other words, uncertainty characterizes the undertaking, and it arises in several ways.
Consider the following conditions:

■ No information. This type of uncertainty is called descriptive or structural uncer-
tainty. It occurs in several ways. For example, when a project starts, little data exists
by which to judge whether anything is going forward according to schedule. In
another situation, no data about a given type of project might exist. Consider, in
this light, a setting in which you join a team that has developed many games for
single players but has now decided to create a massively multiplayer game.

■ Limitations of measurements. In some situations, any type of quantifiable or even
clearly descriptive information about the undertaking proves difficult to find. Pro-
blems arise because what you are trying to measure tends to be extremely difficult
to reduce to a fixed, measurable form. This type of uncertainty is called measure-
ment uncertainty. An example of this type of uncertainty might be whether a game
will appeal to its players. How do you measure whether someone will find a game
pleasurable to play?

■ Unknown results. This type of uncertainty can be called event uncertainty, and it
arises because no one knows the result of a given combination of factors. This type
of uncertainty occurs when those who are responsible for risk assessment either
cannot or do not sufficiently analyze the source material and do not, therefore,
arrive at information that allows anyone to comprehend adequately the scope or
severity of consequences. Consider a situation in which you are immersed in a
development effort that is on schedule but suddenly discover some trendy feature
you feel must be added to a game. Suppose that you proceed without first stopping
to establish clear requirements, create a design, or produce a development sched-
ule. You proceed with development. The situation is laden with uncertainty,
because you do not know what you are looking for and you do not know what you
will find. The result that emerges is little more than accident.

Given this beginning, it is possible to offer a few generalizations about how to begin iden-
tifying risks. Risk occurs in situations in which you have no model from which to derive
a sense of what works. Risk also occurs when you do not possess a medium by which to
estimate or track progress. Finally, risk occurs when you do not properly establish bound-
aries for what you are trying to accomplish. Three terms sometimes used to summarize
these areas of risk are scope, resources, and schedule. These and other central ideas are cov-
ered in the passages that follow.

Chapter 8 ■ Risk Analysis282

Scope Risk Identification
Most of the technical details of game development fall under scope. Among the things
considered are programming languages, graphics, functionality sought, platforms
addressed, errors, configuration management issues, requirements and design, testing,
component integration, system integration, and installation, to name a few of the more
visible. In each of these areas, risk occurs for a multitude of reasons, but the following sec-
tions address those that might be considered most common.

Scope Creep

Scope creep, more commonly known as feature creep, occurs when requirements fail to
constrain the development effort. If requirements change, risk arises, because the devel-
opment project might suddenly encompass much greater functionality, and increased
functionality requires more testing, results in more problems with integration, and might
impact every component of the system.

Scope creep arises in various ways. One of the more common ways emerges when pro-
grammers randomly decide to add what they consider to be interesting features to the
game. The requirements for the game do not call for these added features. The features
might be discovered by chance. Adding them requires time and creates the need for addi-
tional testing. At the same time, while additional, unspecified features become visible,
other features, clearly specified, remain undeveloped.

Another common source of creep arises when developers decide to incorporate an exter-
nal body of code. Consider, for example, a set of sound components. Ostensibly, it looks
as though the components will save an immense amount of development time. They
appeal to everyone because they seem to enhance the appeal of the game enormously. But
then when the sound components are imported, the work of making them compatible
with the main components of the games can prove extraordinarily costly.

A third form of creep occurs when developers, rather than turning to an established
library, decide to implement algorithms on their own. A task that is budgeted to involve a
fairly brief development effort ends up requiring a large expenditure of time and results
in a poorly tested body of custom code. Given this beginning, consider the following items
and how they characterize possible occasions of scope creep:

■ No one has produced a clear and bounded set of requirements.

■ No one has consulted records of past projects to find out how long a task will
require to perform.

■ No one has performed an estimation of how long the task will require.

■ Something has been designated as part of the effort, but no one has checked to see
whether it or anything like it has been done before.

Identifying Risks 283

■ An all-or-nothing solution has been chosen without first testing, in isolation,
whether at least a few of the features of the solution offer feasible, effective contri-
butions to the project.

■ A large body of code is being folded into the project because a few of its capabili-
ties are beneficial.

In each of these instances, the project grows in scope because either the features or the
effort involved in the creation of the features grows as the project is underway. Scope creep
removes the possibility that the developers can stabilize the project and test it for com-
pletion. It is one of the leading causes of project failure.

Scope Gaps

Gaps reveal that the development team has not given enough attention to the scope of the
project. When developers create a scope description and formalize it through a set of
requirements, they create risks if they neglect to use tools like use cases to investigate the
meaning of the requirements. Further, if the developers do not pursue some type of
design effort, they tend to begin work before they have a solid sense of how they are to
implement the functionality of the system.

The approach used on Ankh proved reliable. (See Chapter 9, “Iterating Design.”) This
approach involved working in stripes. Each stripe consisted of a collection of functional-
ity that could be implemented as a single logical and physical component. The work on
each stripe began with a use case representing a typical and unified set of behavior for the
stripe. The obligation was to create a design based on the use case. The design informa-
tion provided the following artifacts:

■ A class diagram for the stripe that includes all classes that contribute objects to the
stripe.

■ Collaboration and sequence diagrams that trace the messaging involved in the sce-
nario that the use case presents.

■ A representation of the stripe in the context of other stripes (or components).

Given this preliminary activity, development on the stripe could proceed. At the same
time, the stripe design effort provided the opportunity to review and revise the design
prior to beginning the coding. In every instance, some revision was possible, and one of
the common results was the discovery of a gap. On the other hand, when this type of
requirements-and-design verification activity was not completed, it was usually necessary
to rework the stripe. This was particularly the case with the second stripe, when nearly
four development weeks were lost. Consider the following items and how they character-
ize possible occasions of gap creep:

■ Development begins without a strong effort to analyze and verify the
requirements.

Chapter 8 ■ Risk Analysis284

■ Features creep into the product, and gaps arise because no thorough investigation
has been conducted to determine what is needed to make the planned and un-
planned features compatible and complementary.

■ Development begins before an effort has been made to design the product.

■ Development begins without a design, and an attempt is made after the fact to
bring what amounts to an accidental product into compliance with a design.

Scope Dependencies

Scope dependencies include both external and internal factors. An example of an external
factor is a library that you purchase from a vendor and decide to use in selective but indis-
pensable parts of your game. Any number of dependencies might exist. You might plan,
for instance, that the library will support seven important features. You are progressing
nicely, with nearly half of the project completed, when you discover that you can accom-
plish your goals in only four of the seven targeted instances. The dependencies are then
factors in the completion of the game.

Internal dependencies reduce to segments of functionality that must be implemented if
others are to be implemented. For Ankh, a dependency for the development of levels was
the map editor. Without a map editor, there could be no levels. This was so because char-
acters, buildings, and other features were introduced to each level only through the edi-
tor. Without the editor, features could not be assigned. The risk that this approach to the
game involved was significant, but this risk was mitigated by introducing it early in the
project.

Given this beginning, consider the following items and how they characterize possible
occasions of dependency creep:

■ No one has performed a sanity check on each type of functionality that a library
intended for use supposedly provides.

■ Parts of the game that will impact many other parts of the game are not scheduled
for early development.

■ You have decided to use a library, device, or tool that developers anticipate finish-
ing at a certain point during the project.

■ Certain components tend to have an enormous number of features, whereas others
have very few. In other words, design considerations have not given enough atten-
tion to the distribution of risk.

■ You have decided that, because something is difficult to figure out, you should wait
until late in the project to figure it out. By then, you reason, you will know enough
to resolve it.

Identifying Risks 285

■ You have not considered alternate courses of action for deliverables that lie on the
critical path. If one solution does not work, no one has given consideration to
whether it is possible to substitute another, less complex solution.

The tasks that are involved in identifying risks to your game development schedule might
seem to be the sole responsibility of the project manager, but this is not so. Creation of the
schedule often involves contributions from every member of the development team. In
many instances, project managers call upon members of the team to provide estimations
of the time required to create required functionality. Unless each team member reliably
estimates the time required to perform tasks, the project manager cannot formulate a real-
istic project schedule. Risks other than those entailing estimation also apply to the game
development schedule. Among these are the risks that delays and dependencies pose.

Schedule Risks Identification
Estimating how long the performance of a given task will take can become an element of
risk if you consider the implications of the profile of risk presented earlier (lack of historic
data, means of measurement, and definition of result). Developers often fail to recognize
that estimating how long something will take to complete involves folding together at least
three bits of information, as follows:

■ Effort. Effort is the raw amount of time you think you will require to complete a
task. In the world of effort, the phone never rings, no one ever takes a long lunch,
no meetings require your attendance, and snow, rain, or wind never prevent you
from putting in a day’s work.

■ Duration. Duration enters when you consider that the phone, after all, does ring,
and that all the other things named in the first bullet do enter the picture. Maybe
you think of the workday as an eight-hour adventure behind company doors, but
in fact, the time available to you to work a programming task is much less than
that. If you decide, for example, that the task is a forty-hour effort, you might find
that that two weeks, not one, are required to complete it. The duration of the task
extends over the total number of days required to expend the effort.

■ Calendar. Even if you carefully determine the total amount of time you must dedi-
cate each day to meetings, the water cooler, and talk on the telephone, other factors
still intervene. One is that you might not be able to work because management has
scheduled the team for training, you are not allowed to work weekends, or your
vacation has arrived. The duration of a task receives definition through its inser-
tion into a calendar that you and the organization establish as the fundamental
context for task completion. Table 8.1 provides a few specific items that commonly
enter into estimations.

Chapter 8 ■ Risk Analysis286

Resource Risk Identification
Resources pertain to funding, developers hired for the primary development team,
and developers hired on contract. The risks that are involved in each of these areas can
overshadow all others. That lack of funding might dwarf all other concerns is probably
fairly conspicuous, but consider the risks involved in heavy project turnover or faulty con-
tracted services.

Cost

Cost has two sides. On the one hand, cost has to do with securing funding. Securing fund-
ing involves a vast collection of activities associated with sales and marketing. As a soft-
ware engineer, this is not your line of work. On the other hand, as a software engineer,
attending to whether your work contributes to excessive cost is your line of work.
Following are areas of risk relating to cost:

■ Already done. This involves failure to ask whether a library or other resource is
available and does not need to be created.

■ Not yet proven feasible. This is failure to establish that a given type of functional-
ity has been implemented and will have to be proven to be feasible as the project
progresses. Implementation of untried technology is bound to increase the cost of
the product.

Identifying Risks 287

Table 8.1 Common Estimation Risks

Item Description

Day Consider that your workday might allow you a relatively brief time for concerted
effort.

Learning curve Every new task poses the prospect that you will have to acquire new infor-
mation before you can complete the task.

Tracking You will probably have to spend time preparing reports on your activities.
Tracking your progress is an accompaniment to primary development activity.

Testing After you complete a task, you might have to incorporate its results into a larger
project. Integration and testing time might be required.

Reviews Scheduling time to meet with others for things like reviews might occasion the
need for additional hours.

Complexity Not every task is equal. If you implement a simple sort routine, you are done in a
fraction of a day. If you decide to use a sophisticated sort routine, several days
might elapse before you are done.

Requirements When you are given a task, do you take time to understand precisely what it is
that you are supposed to deliver? It might be that understanding the task will
require much longer than what it takes to read a requirements document.

Others If you are working with someone else, have you gauged how much more or less
productive the other person might be? Also, consider the number of people you
must communicate with.

■ Inadequate support. This is failure to determine whether you have the support
you need before you commit to completing a task.

■ Wishful thinking. Risk lies with thinking that if a solution does not exist to a
given problem, the team will find the solution by the time the problem becomes an
issue in the project. For example, assume that you want to do something amazing
with a feature effect. No one yet knows how to do it, but you begin with the
assumption that because the need for the effect is a month or two off, someone
will have figured out by that point in time how to do it. If you set this feature as a
central selling point of the game, you might enormously increase the cost of the
development effort if you end up having to extend the development effort by
weeks or months while developers try to create what has not been created before.

Developers Hired Full Time

The biggest risk relating to developers hired for a project is whether they will leave before
the project is completed. People quit for a variety of reasons. At other times, people are
fired. Both forms of turnover are costly. Other problems relate to competence. Some peo-
ple seem to possess skills, but when they’re called upon to perform, they can’t. Given this
start, here are a few ways to itemize risk associated with resources:

■ Emotions. Find out during the interview process whether someone is going
through some type of emotional passage that might lead him to leave the
project early.

■ Professional concerns. If an individual is overly qualified for the position you
are putting him in, he is likely to leave unless you provide him with greater respon-
sibility.

■ Team incompatibility. Have multiple members of the team interview the prospec-
tive member to determine whether his personality is compatible with the team.

■ Technical fit. Inspect or in some other way evaluate the work that an individual
has performed to determine whether it reveals a level of sophistication and compe-
tence that is suitable for the current undertaking.

But even with these observations, a competent developer still requires some time to learn
what a project is about. Learning about a project can require anywhere from a few days to
several weeks, depending on the complexity and scope of the software and the people
involved. Games tend to fall into general categories, such as tactical and role-playing, and
an experienced developer usually requires little time to understand the general layout of
such games. Likewise, at this point in the industry’s history, it is unlikely that more than
15 percent of the overall functionality of any given game is going to represent technology
that is in any way new.

Chapter 8 ■ Risk Analysis288

Even if most experienced developers know most of what goes into the engineering of a
game, each game offers specific implementations that differ from every other game. If the
lead developer asks a developer who is new to the project to fix an error in the code that
creates special effects, the new developer might require several days to complete the task,
not because he lacks competence, but because, for instance, someone who was responsi-
ble for the code previously optimized it and then did not properly comment the opti-
mization. Such concerns lead to a second set of risk categories:

■ Software engineering disposition. This is failure to establish that people who join
the team can produce work that others must be able to maintain.

■ Disposition toward design and requirements. This is failure to establish that peo-
ple who join the team can work according to a set of requirements and within the
context that a design provides.

■ Scheduled work. This is failure to establish that the people who join the team can
estimate the time required to perform work and can work according to a schedule.

■ Ability to follow up. This is failure to establish that the people who join the team
can look professionally upon the work that others have done. For example, they
will not set about trying to fix everything needlessly that they themselves have
not done.

Contracts

A final category of risk identification in relation to resources concerns contracts.
Contracts involve both people and products. If your game development effort requires
something that you cannot do yourself, you might hire a contractor. An example of this
might be the acquisition of high-end audio products. The cost of setting up a sound stu-
dio can be enormous, because it requires the physical modification of a building so that a
room is insulated from outside sounds. To avoid such costs, you can contract companies
or individuals who possess such facilities.

As wise as seeking contractors for specific products and services might be, certain prob-
lems might still arise. Here are a few:

■ Vague requirements. You do not clearly state what it is that you want. If your
game requires realistic whale sounds, you probably expect legally acquired and
edited sounds taken from recordings of whales. It the sounds turn out to be
human imitations of whales, you have not received what you requested, regardless
of how clever the fabrication might be.

■ No contract. You do not establish, in writing, what you expect and when you
expect it.

Identifying Risks 289

■ No background research. You do not ask for samples of products and services and
use these to establish that the contractor provides the type of product you are
looking for. Consider, for example, what would happen if the contractor delivers
files of the wrong format and explains when challenged that you did not specify
the format.

■ No standards. You fail to examine whether the contracting organization subscribes
to an established set of quality assurance standards, such as those that the ISO and
the SEI provide.

■ All in one basket. You do not distribute risk so that alternatives are available if a
contractor fails. If you are going to turn everything over to a given individual, that
person should have a solidly established record with your organization.

Estimating Risk
You estimate risks to determine how much damage they might do to your project or prod-
uct. During the investigative phase of risk analysis, you usually arrive at several ways that
you can determine how to estimate the extent to which a risk can affect your project. You
can now formalize this measurement and begin establishing which risks pose the greatest
threats according to the criteria you have developed.

Scope Risk Estimation
You can estimate scope risk by rating risks according to how much they might impact a
project. In this light, you can examine scope issues in terms of whether the risks evaluat-
ed impact the critical path. The items that go into the critical path of a game development
effort involve the essential features of a game.

At this point in time, for example, it is almost impossible to envision a game that does not
offer the following features:

■ Audio

■ 3D animation

■ Free of fatal errors

■ Scoring capabilities

■ Map/character customization capabilities

This list represents nothing more than a beginning, but it still supports the central notion
that some features of a game cannot be dropped. Would it be worthwhile, for instance, to
deliver a game that has no sound? Who would buy it?

Risk estimation requires that you rank the risks you identify. For example, assume that
you cannot negotiate the audio capability. Sound, then, lies in the critical path. But then

Chapter 8 ■ Risk Analysis290

assume that the requirements state that the sound encompasses both a default sound
capability and customized sound capabilities. You can implement the default soundtrack
with little risk because you already have at hand a sound library that can fulfill your needs.
On the other hand, assume that the requirement is extended so that it states that the
sound capability shall accommodate MP3 and several other formats, and that the game
player shall be able to configure a jukebox that plays different combinations of selections
for each level depending on the health status. You can break this down a bit and in the
process set up a basic ranking of risks associated with the audio capabilities of the game:

■ Low risk. Basic sound with music that your organization owns. Uses standard
components from the audio component library developed for a previous game.

■ Medium risk. Ability to play music using several formats. No customization of the
play sequence through selection. The player simply plays his own soundtrack. The
functionality is available through a plug-in that can be licensed for minimal cost.

■ High risk. Customized track-selection and select-to-scene capabilities. Complete
customization of sound selection and occasion of play. This entails tracking each
level and scene of play in conjunction with storing and selecting from a library
of user-loaded soundtracks. It involves combining plug-in modules and cus-
tomized code.

Estimating risk does not involve trying to solve the problem. Instead, it involves trying to
establish different views of the risks that the problem poses.

Schedule Risk Estimation
As an example of an issue that frequently arises in schedule estimation, consider software
errors (also known as bugs or defects). Errors pose a risk to your game because you can-
not deliver your game to your customers if it possesses an unacceptable number of errors.
If your game crashes frequently, you might end up with legal liabilities from a consumer
group, and even if this does not eventuate, it is almost certainly the case that game review-
ers will prove unmerciful in their condemnation of the game.

The point in the life of the game development effort at which a risk arises affects how
much the risk impacts the cost and schedule of the game development effort. You increase
your chances of success if you take this into consideration. An example of how this works
arises when you consider the cost of a software error. The longer that a software error
requires to fix, the more fixing the error costs. For example, an error that is detected after
the product has been delivered usually involves a cost at least seven times greater than the
cost of an error that is detected during the early stages of the development effort. Figure
8.6 depicts this situation.

Estimating Risk 291

An assessment of the costs of software errors shows that anticipating the cost of fixing
errors can be one of the most significant factors in the risk profile of any software prod-
uct. As Figure 8.7 illustrates, if the number of errors detected in a software product
remains constant over time, the effect is that cost increases even as revenues from the
product increase. Ultimately, errors either eat up profits or make the product so costly to
maintain that it must be taken off the market. This is especially the case after the release
of the product, when the cost of defects skyrockets.

Given this scheme, then, it becomes possible to create a ranking of possible defects based
on when they are likely to occur during the development process. Certain errors are like-
ly to occur during the requirements phase. Others are likely to occur during design and
implementation. Still others arise at deployment time. It’s possible to draw from this dis-
cussion the following tentative generalizations:

Chapter 8 ■ Risk Analysis292

Figure 8.6
Software error costs increase over the life of the software
project.

Figure 8.7
Increasing error counts with increasing time presents high risk.

■ Highest risk. During the requirements phase, risks are associated with poor
requirement definition. Lack of good requirements accounts for up to 80 percent
of failed products.

■ High risk. During the design phase, risks are associated with poor product design.
Lack of good design might lead to poor product performance, but development
efforts that fail due to lack of poor design number far fewer than those that are
characterized by poor requirements and scope statements.

■ Medium risk. During the implementation phase, risks tend to be associated with
scope creep and goldplating. Other risks include poor documentation of code, cut-
ting and pasting, and early optimization.

■ Low risk. During the deployment phase, risks are associated with final builds of
the installation package. Failure to package the product conveniently for installa-
tion will occasion rework, but this rework should involve only the installation
program.

■ Distributed risk. Testing takes place in all phases. It’s mentioned here as an indica-
tion of how a single form of neglect can affect risk in a major way. Testing is the
primary way that risk can be assessed during the development process, so neglect-
ing to develop a test plan that covers each point of the requirements invites risk.

Resource Risk Estimation
Estimating risks that are associated with people might seem arbitrary, but every day, pro-
ject managers who are staffing up for a project try to use solid criteria for judging whether
they want to hire a given individual. Here are a few approaches to establishing risk cate-
gories for people you want to work with:

■ Team health poses the highest risk. If the people who make up a development
team cannot work together, the game will not happen. Even the presence on the
team of an extraordinarily capable individual does not guarantee its success.

■ Individual compatibility poses high risk. If you cannot establish that an
extremely capable candidate programmer has stayed with a project to the end, you
should perhaps ask a few more questions.

■ Technical capability poses high risk. If an individual possesses no technical com-
petence, then regardless of his commitment to the game development effort, he is
not likely to contribute much to the success of the effort.

■ Individual emotional stability poses medium risk. An individual who has
superior technical capabilities might become embroiled in emotional difficulties
that make it difficult for him to cooperate with others. The factors here are
multitudinous.

Estimating Risk 293

■ Professional competence poses lower or medium risk. A degree or the fact that
someone has held a job before do not ensure that a software engineer possesses the
ability to work competently with a team. Around 40 percent of the people who are
currently working in the software industry lack degrees in computer science or
software engineering. Likewise, candidates who have extensive resumes might lack
evidence of even a single completed project. The point is not that records of
degrees or experience prove poor indicators of abilities; rather, generalizations
pose risks.

Evaluating Risk
When you evaluate a risk, you determine the general characteristics of your response.
Determining a response involves investigating what happens if a risk becomes a reality. In
other words, to evaluate a risk, you determine the courses of action you will consider in
the event that a problem arises. Again, as with risk estimation, you can rank risk respons-
es. Whether a given risk response scenario fits a given risk depends on a number of fac-
tors. One of the chief considerations in this respect is the stage of the development effort
during which the problem arises. As mentioned earlier, dealing with risk usually involves
considering three general courses of action, and these courses of action present a general-
ized approach to ordering risk responses:

■ What measures can you take to eliminate the risk? This is the most preferable
avenue. If you can discover a risk response that eliminates a risk, it should be
ranked highest. This is the common sense of the issue. On the other hand, preven-
tive measures can sometimes become risks themselves. After all, if you fall into the
habit of eliminating anything that is at all risky, it is likely that your game will be
completely without interest to game reviewers and prospective buyers.

■ What measures can you take to reduce the risk? This is the second most prefer-
able approach to risk response. If risk is a part of life, anticipating the risk to the
point of knowing what to do when it occurs can do much to reduce the overall
damage.

■ What measures can you take to contain the damage after it has occurred? This is
the worst alternative. Here, you assume that the problem occurs. Now you must
accept the penalty and simply try to recover.

Evaluating Risks That Are Associated with Scope
The best approach to reducing the risks that are associated with scope is to detect errors
early in a game development project. Risk assessment with an emphasis on risk preven-
tion focuses on trying to find ways to put in place proper testing and quality assurance
measures as soon as possible. Some development methodologies emphasize creating a test

Chapter 8 ■ Risk Analysis294

strategy before programmers write code. The Agile approach advocates this practice, as
does extreme programming. These approaches possess virtue because they fully incorpo-
rate the notion that if you think through a test scenario before you begin programming,
your coding effort will begin as a kind of defensive, informed effort and will tend to be
more proactive than reactive.

In addition to early testing, requirements analysis has proven effective as a way of reduc-
ing the scope of risk. A solid majority of software projects that fail can be traced back to
inadequate requirements or requirements to which the development team did not adhere.
Poorly developed requirements might force the development team to rework substantial
portions of the code. Because testing and the creation of reliable requirements make a
significant difference in the cost of the development project, putting in place people
who possess these skills early in the development effort proves to be a significant risk-
reduction measure.

Evaluating Schedule Risks
You can evaluate risks that are associated with schedules fairly easily if you consider that
most errors originate with an incongruity between the task and how the developer esti-
mates it. Among the many approaches used for estimating tasks are the following:

■ Breaking the work down into small units. This approach involves exploring a task
until you find its constituent parts. Generally, the smaller the unit of work esti-
mated, the more accurate the estimate.

■ Delving into historical data to discover how much time completion of the last
such task required. You can examine old project schedules, documentation, logs,
or any other record of work to obtain historical data that might help you to esti-
mate the duration of the task before you.

■ Turning to a group. One example of this is called the Delphi approach. The Del-
phi approach is a fairly involved process that requires, among other things, obtain-
ing information from a group of experts. Your goal is to establish minimum and
maximum estimations of damage and scope that you can use to tune your
assumptions about risk.

■ Using a model. Models abound, and of the most popular is the PERT chart.
Dozens of estimation models have been derived from the PERT chart. Using this
approach, you assess risk in terms of dependencies. Because a PERT representation
of a task reveals simultaneous and sequential actions, it allows you to study differ-
ent profiles of risk. Figure 8.8 illustrates how a PERT chart can track a series of
actions that together comprise a task. Note that the chart forces you to see that it
might be possible to drop some activity if a bind develops. To do this, however,
you must determine the critical path of the task. In other words, you determine the
features you must implement to complete the task.

Evaluating Risk 295

Evaluating Resource Risks
Evaluating risks that are associated with resources can focus on how people are recruited
for a development effort and what measures you can take during the development effort
to ensure that everyone on the team communicates effectively.

As an example of how to approach finding the right team members and then finding the
right fit for them, consider the following scenarios:

■ Prevention. During the interview, you ask the prospective candidate to write a
program that accomplishes a given task. If the program appears to be written fairly
competently, you have clear evidence that the programmer possesses the technical
competence needed for the project.

■ Reduction. You cannot find people who possess the level of expertise you want,
but you do find several who seem to be marginally acceptable. You can assign such
people to roles that are supervised by a technical lead and develop functionality
that does not lie on the game’s critical path.

■ Control. Despite a technical assessment at interview time and being assigned to a
role under a lead, someone is still not performing well. Damage control might
involve seeking some type of remedial training or terminating the individual as
soon as possible. As painful as it is to see someone fired, carrying the weight of
someone who accomplishes no productive work can bring the project to a halt.

Chapter 8 ■ Risk Analysis296

Figure 8.8
Closely analyzed, estimations using tools like a PERT chart allow you
to see which features can be dropped in the event of a time crunch.

Planning for Risks
When you plan for risks, you take into consideration the strategic goals you want to estab-
lish for your development effort. Strategy is like a battle plan that a general formulates.
The strategy establishes the general philosophy of risks. In software engineering circles,
the equivalent of the battle plan is the risk control plan. The work of creating a control
plan is sometimes called risk management.

Figure 8.9 provides a generalized template for a risk management plan.

Planning for Risks 297

Figure 8.9
A plan for risk management helps limit
the risk management effort to those
areas of risk that are most pressing.

Planning and Scope
One of the most common strategies used for scope management involves the creation of
a scope statement early in the project, in addition to a set or requirements. A statement of
scope establishes the limits of the functionality that the development effort will seek to
implement. The statement of scope can serve to establish the product constraints.

Using a scope statement implies that the risk management strategies center on risk pre-
vention and reduction. In contrast to this might be an approach that incorporates a weak-
er scope statement and a sketchy set of requirements but imposes a stringent demand for
continuous employment of use cases to reduce the risk of activities that occur during the
development effort. This approach affords much greater freedom to the developers but
also assumes that the developers possess a high level of professionalism.

An approach that strategically centers on risk control might advocate negotiating for the
most remote possible date of delivery. If you make the assumption, for example, that cre-
ativity is more important than anything else, then you need to budget for many delays and
rework sessions. You must anticipate unanticipated features and the rework they occasion.
The strategy, then, is to accept the rework that creativity might involve. Such a plan is most
characteristic of settings that involve research and development efforts.

Planning and Scheduling
Managing schedule risks involves establishing a project plan. But beyond that, you must use
the project plan according to a given strategy. Examples of different approaches are as follows:

■ If the development effort falls behind schedule, features will be cut.

■ If the development effort falls behind schedule, no features will be cut, but mea-
sures will be taken to reduce the depth of given features. For instance, all features
must conform to those that were already developed in previous efforts.

■ If the development effort falls behind schedule and the schedule reveals that,
despite reduction of features by 20 percent, the game still will be delivered late, the
development effort will be cancelled.

Strategy also calls for general measures that involve shifting risks to different areas of the
schedule. Here are a few approaches:

■ The team will try to do a first pass of the game as quickly as possible so that it can
provide a demonstration session to the investment group. To accomplish this, test-
ing will be deferred. It is more important at this stage to secure funding than it is
to produce a product of the highest quality.

■ The team will move forward only with highly stable components. It will begin with
solid requirements and develop functionality that is robust and componential. The
team will not perform rework as it proceeds.

Chapter 8 ■ Risk Analysis298

■ The team will use a mixed approach based on a triage of the system components.
A good basic engine is already in place. The components that the team brings for-
ward will not be tested. Testing will take place only for the components that are
developed anew. The team also will perform thorough integration testing.

Planning and Resources
Planning how to manage people who are committed to a development effort usually
begins with implicit assumptions. For example, you usually accept a job developing a
game with the assumption that you are going to be able to work on the game until it is
ready for delivery. This is a safe enough assumption, but planning for resource risks also
involves anticipating variations in theme. Consider the following scenarios:

■ It is important to find incompatibilities among team members as early as possible.
Anyone who is not technically competent or shows an inability to work with oth-
ers will be removed from the project as soon as possible. Because it’s necessary to
move in a fairly decisive manner, the team will try to find people who will work on
a contract basis to alleviate legal liabilities in the management approach.

■ Competence and compatibility issues will be discerned as early in the process as
possible so that additional training or team-building sessions can be implemented
quickly. This approach focuses on building a team that can be together for a long
while and working with people on a fairly extensive basis.

■ The schedule is the most important factor. It doesn’t matter whether personality
conflicts are decreasing the efficiency of the team, but only whether the deliver-
ables are being presented according to schedule. Resolving differences isn’t crucial,
but enforcing a schedule is.

Controlling Risks
When you control risks, you follow procedures that you establish in your management
plan. Following the procedures involves using the criteria and options that your plan pre-
sents you to follow through on risk situations. If you have established strict response mea-
sures, you will have set criteria along the lines shown in Table 8.3.

Controlling Risks 299

Scope Control
The requirements document is essential in controlling scope. In this respect, continuous-
ly verify that functionality is being delivered according to the requirements specification.

Schedule Control
The project plan forms the primary medium through which you can assess risks that are
associated with schedule. Given the creation of a good set of requirements, you can use
the project plan to establish the schedule by which the functionality that addresses the
requirements can be implemented. As the project moves along, you can evaluate estima-
tions against actualities and gain a sense of whether your estimations have a predictable
pattern of error. Generally, experts do not advise that you revise your estimation but
rather that you leave it as you originally made it and adjust it using a formula that you
develop based on your findings.

Resource Control
Take measures at the beginning of a development effort to ensure that a good team is
formed. After that, a team member’s performance depends on timelines and quality of
work. Task dependencies prove essential in being able to monitor the performances of
individual team members. If one person does not complete tasks on time and occasions
delay for others, you need to take action. Along one line, the individual who is responsi-
ble for the delay might be under too much pressure. If that’s the case, take measures to dis-
tribute his work among others, thus freeing him to concentrate on the problem that might
be causing the delay.

Chapter 8 ■ Risk Analysis300

Table 8.3 Control Measures

Risk Response

Sound components exceed budget by 20 percent Revert to old sound library. Put aside new work.
Delay of mesh components Shift effort to tuning AI.
Excess of 15 errors per unit of code Halt new feature implementation and temporarily

reassign everyone to testing.
Hiring new people for the project Verify that everyone has shown a sample of

previous work.
Personality conflicts threaten the team Have everyone complete the self-assessment

form and talk with them about their contri-
butions. Review assignments with everyone who
scores less than 60 percent.

Possibly unreliable contractors Do not assign work without contract. Audit
progress.

Monitoring Risks
When you monitor risks, you engage in an activity that most clearly parallels what has
been discussed elsewhere as process improvement. At this phase of risk control, you can
assess risk proactively. If your organization develops several games in succession, each
game development effort can generate a set of data that you can use to shape a general risk
plan for all products that your organization creates.

On the other hand, if the effort is isolated, you can use data collected for the post mortem
to assess the project itself, without consideration to other projects. A key aspect of such
self-assessment involves examining the budget to see whether it exceeded the plan.
Another key aspect of self-assessment is whether the project took longer than was
planned. In each area, surveying to what extent select risk factors caused schedule delays
serves as a way to confirm the accuracy of risk identifications, estimates, and evaluations.

Scope Monitoring
Monitoring scope risks involves obtaining information that will enable you to anticipate
adjustments in the technology you plan to implement and the processes you intend to use
for future development efforts. Accumulating data toward these ends involves using a
database to store data relating to how well you do in your identification, estimation, and
other work with risk. For example, if you track the number of nonspecified features that
ended up being a part of the product, you place yourself in a position to assess the extent
to which these features might have delayed the deployment of the game. On the other
hand, if you detected dangerous delays early on and were in a position to transfer and
adjust responsibilities so that the schedule could continue on track, you confirm the valid-
ity of specific strategies and tactics.

Schedule Monitoring
Collecting data about a project is helpful in monitoring the schedule. Discovering the fea-
tures that occasioned the greatest schedule lag can enable you to plan accordingly for the
next effort. In this respect, you can associate the greatest risks with those items that caused
the greatest delay. At the basis of such estimations is the discrepancy between planned and
actual schedule estimations. If risk is correlated directly with how much time was esti-
mated for each task, it becomes possible to adjust the weight of risk for a given task up or
down on the basis of whether the task was completed early or late.

Resource Monitoring
Tracking how well people do or whether given contractors deliver on time is at the center of
resource monitoring. Assessing the situation involves more than learning who should not be
hired or contracted the next time around, however. Among other lessons are the following:

Monitoring Risks 301

■ If someone did not perform well, is it possible to assess whether his performance
improved after he was reassigned work or assigned to work with different people?

■ If a contractor delivers on time, is it important to note contributing factors? For
example, were the requirements stated articulately? It might be, for example, that a
good contractor received a difficult, poorly crafted set of requirements and in the
end failed to deliver because of the requirements.

■ If certain measures such as reviews and walkthroughs tended to improve the per-
formance of the development team, you might be able to establish quantitatively
just how much productivity increased as a result of such activities.

Conclusion
This chapter dealt with some of the concerns of risk analysis. It investigated how to iden-
tify risks, which involves searching the proposed project for moments of possible stress. It
also investigated risk estimation, which requires inspection of identified risks and devel-
oping ways to rank them according to how they might affect the project. In addition, this
chapter investigated risk evaluation, which involves exploring the impact that risks might
have on the project. It also explored risk planning. A leading element in a risk planning
effort is a written plan for risk management. The chapter provided a simple template that
you can use as the beginning of a risk management plan. Next, the chapter focused on
control of risk. Risk control requires acting on the strategies and tactics laid out in the risk
management plan. Finally, the chapter turned to risk monitoring, an activity that you can
characterize as process improvement.

Generally, risk analysis should be a part of every game development effort, but it is prob-
ably best to use some degree of restraint before leaping into a risk analysis effort
that requires a full-time commitment from someone on the team. Generally, for smaller
development efforts, it is best to make risk management a part of everyone’s work. A few
additional tasks, dedicated to risk assessment, can enable a team to institute risk-control
measures responsibly.

This chapter described only the most general aspects of risk management. Among the
many excellent books on risk management are the following:

Charette, Robert N. Software Engineering Risk Analysis and Management. New York:
Intertext Publications, 1989.

Karolak, Dale Walter. Software Engineering Risk Management. Los Alamitos, California:
IEEE Computer Society Press, 1996.

Kendrick, Tom. Identifying and Managing Project Risk. New York: ANACOM, 2003.

McMannus, John. Risk Management in Software Development Project. C. Burlington,
Massachusetts: Elsevier Butterworth-Heinemann, 2004.

Chapter 8 ■ Risk Analysis302

303

Iterating Design

Chapter 9

T
his text refers to a collection of classes that provide a specific set of capabilities to a
game as a component. (See Chapter 4, “Software Design—Much Ado About
Something,” for a review of design concepts.) For development purposes, a com-

ponent is a stripe. Each stripe, in turn, usually represents several stages of development. A
stage is an iteration of the development effort involving creation of the functionality
embodied in a given component.

This development effort—which moves from state to stripe and eventually to completed
game—lies at the basis of iterative design. If you break down your development project
into cohesive design pieces and then iteratively develop each piece until you achieve the
design goals you have set for your product, you move forward in a steady way toward a
robust product. Given this model, this chapter covers the following topics:

■ Learning the basics of iterating design

■ Selecting the right size components

■ Applying principles that are derived from object-oriented programming, refactor-
ing, risk analysis, and patterns to your design effort

■ Effectively using the software design document

■ Projecting plan considerations with iterative design efforts

■ Testing on an iterative basis

■ Knowing when to break off an iterative effort

■ Knowing when things have gone wrong

Iterative Design Basics
The design of a game consists of the evolving view you have of the operations, classes, and
components that embody the functionality that the requirements document for your
game presents to you. Because maintaining fairly strict control of the scope of the require-
ments remains fundamental to the success of a game development effort, restraint should
characterize anything that you do when it comes to changing, expanding, or dropping
requirements. If restraint in the treatment of requirements characterizes successful game
development efforts, however, a different perspective applies to design. Design benefits
from continuous exploration. You can afford to show greater flexibility when engaging in
design efforts as long as you work within the scope that the requirements establish and
have a development plan that enables you to concentrate your efforts on specific game
components.

Appendix D, “Software Engineering and Game Design Documentation,” contains numer-
ous documents, one of which is the Ankh Software Design Description. The Description
provides a glossary of terms that is useful to review here. Table 9.1 provides a summary of
the items that the software design document presents.

Chapter 9 ■ Iterating Design304

Table 9.1 Design Glossary and Definitions

Term Discussion

Behavioral view A representation of the system that shows objects created
from the classes that are named in the logical view.

Component A collection of classes that share the same set of respon-
sibilities. One stripe might have dependencies distributed
among several components.

Component view A representation of the system that shows the collections of
classes that have common system responsibilities. Component
views take two forms: internal and external.

Conceptual view A representation of the system using either a use case or an
object diagram. If the general object diagram is used, the
boxes depict class objects.

External Component view A view of a component shown with all other components
active during its lifetime. As stripes are developed, components
take on definition; therefore, any given component shown in
the documentation of a stripe might not appear in its entirety.
However, the component appears in its entirety relative to the
specified functionality for the stripe. Likewise, all other com-
ponents with responsibilities within the stripe are represented
in the same way. This representation of the system is intended
to show the general features of the system that exist when a
given stripe has reached completion.

Applied Design
As you can see from Table 9.1, iterative design involves a few basic ideas. You can place
them in a list fairly readily:

■ First, you take time at the beginning of your project to formulate a set of require-
ments. You do your best at this point to study the game design document thor-
oughly to discover the functionality you must develop if you are to address the
features that the game design document presents. Being careful to fully assess the
scope of the game is an essential part of this effort.

Applied Design 305

Term Discussion

Internal Component view A view of the component or components that contain the
primary functionality of a given stripe. This representation of
the system exposes the features of the system that are specific
to a given stripe. It does not represent the system as a whole.

Logical view A representation of the system that shows the classes that
compose the system and their static relationships. Included in
this view are known attributes and operations of classes.

Stage A version of a stripe. Stripes might have stages, which are,
again, reflected in the build history of the system. The stripe
stages do not, however, have bearing on the design. They are
implementation measures.

Stripe A set of functionality embodied in a single component of the
system. Stripes represent both logical and physical views of the
system. They are logical because they define a specific build
status. Each stripe is represented in the configuration scheme
of the system. All dependencies for a stripe should be stored
with the stripe. The stripes provide a history of the construction
of the project.

Use Case view A proof of concept for the stripe. To create a use case for
design, the developer works from the game design document
and creates a scenario that captures a representative subset of
the functionality that the stripe is intended to implement.

View A way of looking at the system. Views are conceptual (use
case and entity), logical (class), behavioral (sequence and
collaboration), and component (internal and system).

■ Second, having studied the requirements thoroughly, you try to create a view of
how you might implement the functionality. The most facile approach to this goal
is to employ an object-oriented perspective and make a list of objects you think
might contain the functionality. Try using a Task-Object-Remarks (TOR) chart to
achieve this goal. Basically, such a chart allows you to name things you think the
software must accomplish to fulfill the requirements. You are free to start with an
object, a task, or a responsibility. Where you start makes no difference; the chart
allows you to begin collecting ideas about how you intend to implement the func-
tionality of the game.

■ Third, you can begin formulating the findings of your TOR chart into a well-
defined list of classes, and you can place these in a Class-Responsibility-
Collaboration (CRC) list. (See Appendix D for the CRC list for Ankh.) The
CRC list consists of tables divided into three parts. One part lists the class, another
part lists the responsibilities that the class should address, and the third part
addresses the classes with which the class communicates. In this way, you reach
a point at which you can begin assessing how the classes might be formed into
components. A component is an area or portion of the system in which classes
are coupled fairly tightly and in which you might recognize after brief study a
single set of services or a single general capability.

If you work the CRC list in a systematic way, you can draw a complex diagram in which
you illustrate the relationships that pertain between all the classes you have named in your
CRC effort. To reduce the complexity of this
undertaking, you can break the system into
components. Breaking the system into compo-
nents constitutes an architectural manipula-
tion of the design of the system. That’s because
when you group classes into components, you
have a view of the system that begins to show
you what might be called the specific gravity of
various components. When you begin to sense
the pull of certain centers of gravity, you have
a way to assess the relative weights and posi-
tions of the classes within each component.
Likewise, you have a way to question how the
interfaces of classes can be designed so that
they communicate in an efficient way and
achieve other design goals, such as ease of
maintenance and low coupling. Figure 9.1
illustrates the flow of activity that is character-
istic of a stripe.

Chapter 9 ■ Iterating Design306

Figure 9.1
Stripes present a flow of activity from
requirements to components.

Software Systems and Gravity
When a solar body begins forming, it is probably safe to assume that one particle attracts
another because both particles, possessing mass, also possess gravity. As the number of
particles comprising the growing solar body increases, the gravity of the solar body
increases. After a time, the gravity of the body grows to an immense scale, attracting not
only particles but also planets.

More time passes, and then you find that the gravity has grown so great that the particles
crush against each other to the point that they begin to generate heat. If the pressure grows
great enough, a thermo-nuclear reaction ensues. The explosion tends to push particles
out, generating light to the surrounding space. At the same time, gravity continues to exert
its influence on the surrounding space. An equilibrium exists.

When you develop a software system, you toy, at least metaphorically, with forces of
attraction and repulsion that in some ways bear comparison to the life of a solar body. At
first, the system might be extremely tenuous, consisting of little more than a few functions
or classes. After a time, the functions or classes form bonds, so that the gravity and com-
plexity of the system grows. Eventually, you have a game that delivers an enormous num-
ber of functional capabilities and yet is vast and complex.

Reversing Gravity
Success in software development involves creating a counterforce to the tendency of the
system to become vast and tightly coupled. A first approach to this is to create both a
vision of the components that comprise the system and a plan by which you can sequen-
tially develop, refine, and integrate components. When working with components, you
can put in place a set of practices based on refactoring and the use of patterns. Such prac-
tices allow you to investigate and rework operations, classes, and components to achieve
the design goals you have set for your development effort.

The software that makes up a game must remain accessible to its developers. If the software
is so optimized, coupled, or diffuse in its integration as to be impossible to understand, it
is not nearly as maintainable as it could be. Iterative design, above all, provides a way for
the density and complexity of software systems to be reduced to reasonable levels.

Conceptualizing Iteration
Iteration begins with determining a context of iteration, and one approach to this is to use
the notion of a stripe. A stripe is a selection of functionality you decide you want to imple-
ment at a given point in your project. Generally, a stripe should represent a well-defined
set of functionality. You should be able to see the results of the completion of each stripe.
Its completion should bring you a degree of satisfaction and serve as a platform from

Conceptualizing Iteration 307

which to understand, view, and develop other stripes. Likewise, a stripe should enable you
to think creatively about your design, in such a way that if you suddenly realize that you
can add a feature that will tremendously enhance the game, you have a basis on which to
determine the overall impact that the implementation of the feature will have on your
development effort.

You can adjust and scale stripes. Each stripe, as an iteration of design, allows you to per-
form risk analysis, testing, and design refinement. Each stripe also allows you to create a
unified subset of the game. Finally, each stripe enables you to view what you have accom-
plished and what remains to be completed. Figure 9.2 illustrates the perspectives that a
stripe affords.

Chapter 9 ■ Iterating Design308

Figure 9.2
Each stripe affords a sense of the project’s history and potentials.

Ankh Development Using Stripes
The sections that follow trace several stripes of the development effort for Ankh. The code
for the stripes is available on the CD. By examining the stripes, you can retrace how Ankh
was developed. Each stripe is a component or collection of classes that implements the func-
tionality that is documented in a use case. Most stripes also consist of stages, or versions. The
use cases and component diagrams in this chapter and the software design document allow
you to follow the iterative approach to development that was used. To conserve space, a few
stripes have been omitted from this chapter, but you can still go to the CD and the software
design document for the full version of the document from which the material in this chap-
ter has been drawn.

Stripe 1—Opening
Each stripe of a game can consist of a set of stages. You can identify a stage as almost any
set of functionality that you want to establish as a baseline within the context of a stripe.
When Ankh was developed, the first stage of stripe 1 was nothing more than a proof of
concept that the component set up for the game shell provided a framework for achiev-
ing a full-screen version of the game and displaying bitmaps and a revolving mesh. Figure
9.3 provides a screen shot of the stripe.

Stripe 1—Opening 309

Figure 9.3
The first stage of a stripe offers an opportunity to test concepts.

Use Case Scenario
Every stripe originates with a use case. A use case, as mentioned in Chapter 4, provides a
tool for testing one set of functionality within a stripe. Because it serves largely as a proof
of concept, a use case does not need to be comprehensive. The use case for a stripe might
be one scenario among what might be many hundreds of scenarios. One scenario for each
stripe can adequately guide the implementation, because even one use case forces the
development to achieve a specified design objective. The result is that the project remains
within scope, and the development effort conforms to the schedule. As the game grows in
completeness, you can develop numerous test scenarios. For the first stage of the first
stripe, it was enough to state that the user can view the full-screen version of the main
icon of the game.

Component View
The component view of a stripe illustrates the classes that are involved in the implemen-
tation of the stripe. In the software design document, the component view can appear in
two ways. In one way, it can represent an internal view of the component. In this view, a
class diagram can be summarized so that the viewer views only the most general compo-
sition patterns. In the other way, the viewer can view one component among many.
Generally, the further a game moves toward completion, the more components appear in
relationships with other components. This became the case with Ankh when implemen-
tation of levels became the chief concern. After designing and implementing the classes
that created such components as the map editor, the character editor, and the first level,
the team implemented the later levels by doing little more than calling on the services that
the interfaces of stable components provided. (For a component view of Stripe 1, see
Chapter 4.)

Stripe 2.1—GUI Objects
For the second stripe, the team decided to work first with the development of items that
provided for things like dialog boxes and text fields. This approach to development had
several advantages. For example, the team felt it could implement the GUI items with little
trouble, so by undertaking to implement them first, the team placed itself in a position to
pursue several project tuning activities, such as setting up the software configuration man-
agement system, establishing the folders and file structure for the classes, and familiarizing
itself with naming and documentation conventions. In addition, when it performed what
it considered to be simpler, more routine tasks, it could begin gathering project metrics
more easily.

Chapter 9 ■ Iterating Design310

Use Slider Use Case
Testing a single GUI object served as a convenient way to demonstrate the functionality
that the GUI objects provided. Figure 9.4 illustrates the Use Slider use case.

GUI Objects Component View
The object component diagram for the Use Slider use case illustrates the classes developed
to provide the functionality that the use case stipulates. The component views for the early
stripes provide internal views of the system. The GUI classes specialize CGUIObject. Figure
9.5 illustrates the GUI Objects component view.

Stripe 2.1—GUI Objects 311

Figure 9.4
The Use Slider use case focuses on the slider.

Stripe 2.2—Floor Tiling
Initially, the development of GUI objects, floor tiling, mesh placement, and saving and
loading entities set with the map editor were included in a single stripe. However, the
stripe was far too large. The first indication of the problem was that the team fell behind
schedule. After several weeks, everyone realized that the stripe did not involve a single
component. Rather, the stripe merged work into a single component that should have
been developed in several components. When the team realized what was happening, it
iterated the design. It found that its work with the GUI objects could be understood more
easily as a single stripe. This opened its view to several other areas of development. One
result was work with floor tiling.

Select Tile Use Case View
The use case view of the floor tiling component centers on the simple activity of selecting
a tile for the layer. Figure 9.6 illustrates the Select Tile use case.

Chapter 9 ■ Iterating Design312

Figure 9.5
A class diagram view provides material for a component view of GUI elements.

Level Floor Tiling Component View
The component view for the Level Floor Tiling component showed the need for a class
that was not anticipated initially: CTileMap. This class encapsulates responsibilities for
drawing the tile map. Figure 9.7 illustrates the Floor Tiling component view.

Stripe 2.2—Floor Tiling 313

Figure 9.6
The map editor allows the user to select a tile.

Figure 9.8 provides a screen shot of the floor tile for Ankh. The menu items are not fully
implemented at this point in the game development.

Chapter 9 ■ Iterating Design314

Figure 9.7
The map component for tiles incorporated a new class: CTileMap.

Figure 9.8
Implementation of Stripe 2.2 allows customization of the floor tile.

Stripe 2.3—Mesh Placement
Deciding how to implement functionality for the mesh placement in the map editor
extended once again to examining how to break down the work on the stripes to smaller
collections of functionality. Mesh placement depends on the existence of the floor; there-
fore, breaking the floor into separate components simplified the work of moving on to
implement the functionality of creating editor capabilities for placing a mesh.

Select a Building Use Case View
The use case view of the Mesh Placement component centers on selecting and placing a
mesh for a building. Figure 9.9 illustrates the Select a Building use case.

Mesh Placement Component View
The component view for mesh placement involved using only classes that the team antic-
ipated in its initial design. Figure 9.10 illustrates the Mesh Placement component view. To
view a screen shot of the implemented component, see Figure 9.31.

Stripe 2.3—Mesh Placement 315

Figure 9.9
The map editor allows the player to select a building.

Stripe 2.4—Save and Load
The final bit of work on the map editor was to create load and save functionality. The
implementation of this functionality involved work that the team anticipated expanding
later on, when it would complete the stripe for saving and loading the game replays. For
this reason, the team was careful to limit the scope of development activities needed for
this stripe. Premature optimization or implementation might have brought rework.

Save a Map Use Case View
The Save a Map use case traces the basic activity of saving and loading. The functionality
that the use case encompasses can be extended later to encompass saving a sequence of
game states. Figure 9.11 illustrates the Save a Map use case.

Chapter 9 ■ Iterating Design316

Figure 9.10
Mesh placement involved no unanticipated classes.

Save and Load Component View
The component view for the Save a Map use case involved no complexities. The primary
concern was to filter information from the CFileDialog class. Figure 9.12 illustrates the
Save and Load component view.

Stripe 2.4—Save and Load 317

Figure 9.11
The map editor allows you to save a map.

Stripe 3.1—Navigate Alexandria
The map editor makes possible the positioning of the meshes that make up the city. You
then can navigate through the city as a way of testing the camera and other features of the
game engine.

Navigate Alexandria Use Case View
The use case for this stripe involves visiting structures placed in the map and viewing
them from different angles. Viewing a given structure might involve inspecting a mesh
from 360 degrees, moving the camera, or in some other way manipulating the level in
ways that might be restricted after you have fully implemented the features of the game.
Figure 9.13 illustrates the Navigate Alexandria use case.

Chapter 9 ■ Iterating Design318

Figure 9.12
The Save a Map component exposed the need for CFileSystem.

Navigate Alexandria Component View
The component view for this stripe brings the CCamera class into play. For now, you can
adjust the camera position and angle arbitrarily to provide full views of all the items on
the level. Figure 9.14 illustrates the Navigate Alexandria component view.

Stripe 3.1—Navigate Alexandria 319

Figure 9.13
The navigation stripe confirms mesh movement.

Stripe 4—Character Editor
The character editor stripe allowed the team to place a character on a level and manipu-
late the character through the level meshes. No artificial intelligence or combat capabili-
ties were in place, because the primary objective was to simplify and refine the operations
involved in character motion. The meshes for this level model a fictional version of
Alexandria, Egypt.

Create Character Profile Use Case View
The game provides the ability to build both levels and characters. The character editor,
like the map editor, serves as a tool with which to construct the game. Later, players can
use the character editor to build custom characters. Figure 9.15 illustrates the Create
Character Profile use case.

Chapter 9 ■ Iterating Design320

Figure 9.14
Navigating the city allows you to test camera angles.

Character Editor Component View
Work with the character editor did not lead to creations of additional classes, but it did
lead to refinement of existing relationships. Figure 9.16 illustrates the Create Character
component view.

Stripe 4—Character Editor 321

Figure 9.15
You can use the character editor for game development and for custom characters.

Stripe 5—Unit Physics
Unit physics has to do with the operations limited to moving a given feature in the game,
most notably characters. Given that the animated meshes represent human beings, the
functionality developed for one human being, Sekhem, proved a solid basis on which to
develop the functionality appropriate for priests, guards, and other characters.

Walk Character Use Case View
The Walk Character use case involves moving one character, Sekhem. The use case shows
the turn-based design of the game. First, the player selects a character and a distance for
the character to move. Then the player moves. Figure 9.17 illustrates the Walk Character
use case.

Chapter 9 ■ Iterating Design322

Figure 9.16
This stripe marked the addition of the CActor class.

Unit Physics Component View
Implementing the functionality in the Walk Character use case required working with a
substantial set of classes. Again, Ankh features humans only as animated characters, so the
work put into the unit physics for the use case covered most of the character animation
scenarios in the game. Figure 9.18 illustrates the Unit Physics component view.

Stripe 5—Unit Physics 323

Figure 9.17
You can demonstrate unit physics by using a single character.

Stripe 6—Inventory Items
Inventory items include weapons, healing charms, magic potions, and other items. The
game is designed to allow inventory manipulation in several ways. For example, charac-
ters can swap items. In the use case created for inventory item, the scenario assumes a kind
of closet to be the source of inventory items.

Select Inventory Items Use Case View
Players can add or drop inventory items. In the use case for this stripe, the team investi-
gated only the acquisition of inventory items from a fixed source, such as a closet or chest.
This view of the stripe allowed the team to test only one of many possible scenarios, but
it still served, given that the character takes possession of the inventory, to confirm the
basic functionality involved in inventory transactions. Figure 9.19 illustrates the Select
Inventory Items use case.

Chapter 9 ■ Iterating Design324

Figure 9.18
Walking the character involves using a large component.

Inventory Items Component View
The functionality that is involved in the creation of the component for inventory items
uses much of the functionality that was developed for the unit physics stripe. The major
addition is the CAction class, along with the uses made of CEntity. Figure 9.20 illustrates the
Inventory Items component view.

Stripe 6—Inventory Items 325

Figure 9.19
Inventory items involve different acquisition scenarios.

Stripe 7—Combat
Combat comprises the set of actions that characters perform when they battle each other.
Each level offers several battles. In fact, the unifying action theme of the game is battle.
The game depicts battles as turns the characters take in striking or warding off blows.
Battles also incorporate skills and levels of difficulty.

Battle Guard Use Case View
Although a battle on most levels consists of a situation in which Sekhem finds a cluster of
enemies, the use case for this stripe is still suitable because it anticipates the behavior of
all enemies, in clusters or alone. In this instance, Sekhem battles a guard. Figure 9.21 illus-
trates the Battle Guard use case.

Chapter 9 ■ Iterating Design326

Figure 9.20
The set of classes for the inventory acquisition stripe became extensive.

Battle Guard Component View
One of the main points of effort in this stripe involved implementing the operations of
CAction. Until this point, CAction had not been enhanced for the types of activities that
combat requires. Figure 9.22 illustrates the Battle Guard component view.

Stripe 7—Combat 327

Figure 9.21
Battles occur with groups of enemies, but a scenario that involves a single combat is
still suitable for the stripe.

Stripe 8—Acquire Skills
Characters can gain skills throughout the game. Special potions and spells are two forms
of skill. In a fully implemented game, the skills can extend to many forms, such as the
powers of priests or the resilience of warriors.

Acquire Skills Use Case View
To simplify the acquisition of skills, the design provides a palette and allows the player to
select skills and skill attributes from it. To test the design of the skills-acquisition compo-
nent, a test scenario might stipulate the acquisition of a lone skill. Figure 9.23 illustrates
the Acquire Skills use case.

Chapter 9 ■ Iterating Design328

Figure 9.22
Addition of operations to CAction was a central concern.

Acquire Skills Component View
For the implementation of the skills component, the team developed CPlayState to provide
the state and behavior that skills encompass. At this stage of the game, only limited imple-
mentation is needed to serve as a proof of concept. Figure 9.24 illustrates the Acquire
Skills component view.

Stripe 8—Acquire Skills 329

Figure 9.23
Acquiring a single skill demonstrates how the process works.

Stripe 9—Acquire Weapon
Weapons are fairly involved, and setting up the component for acquisition and use of
weapons is intricate. Among the weapons that the game provides are broadswords, scim-
itars, spears, bows, daggers, whips, and axes. Because Sekhem and other characters can
change their weapons, the functionality to add and drop weaponry is essential.

Acquire Weapon Use Case View
Even though weapons come in various forms, setting up a use case for the acquisition of
just one weapon serves nicely to demonstrate general capabilities. The specific imple-
mentation of the weaponry acquisition component calls for a dialog box that might be
implemented in any number of ways, but here, the use case assumes that the source is a
generic armory. In the initial design, the player can acquire weapons from several sources,
including scavenging. Figure 9.25 illustrates the Acquire Weapon use case.

Chapter 9 ■ Iterating Design330

Figure 9.24
CPlayState tracks skills.

Acquire Weapon Component View
A complication of the scenario for acquiring weapons is that you must purchase or in
some way restrict them when characters acquire them. Two classes—CWorldState and
CShopDialog—provide the operations necessary to regulate the acquisition of weaponry.
Figure 9.26 illustrates the Acquire Weapon component view.

Stripe 9—Acquire Weapon 331

Figure 9.25
An armory serves as a generalized source of weaponry.

Stripe 10—View Statistics
Statistics tell you about the health of the characters. The game provides a status card of
sorts, which allows you to view most of the statistics that relate to a character simultane-
ously. Making the changing statistics of the characters easy to view forms an important
task of the game interface design.

View Strengths Use Case View
Viewing of strength statistics requires considering whether all statistics are relevant at all
times. In this instance, the team developed a use case that calls only for a dialog to display
statistics. This implementation required refinement later in the game. Figure 9.27 illus-
trates the View Strengths use case.

Chapter 9 ■ Iterating Design332

Figure 9.26
Weapons require regulation through a dialog for purchasing.

View Statistics Component View
CStateDialog provides an implementation of CDialog that is appropriate for the statistics
view. The complexity of the level remains minimal and simply expands functionality that
was developed previously. Figure 9.28 illustrates the View Statistics component view.

Stripe 10—View Statistics 333

Figure 9.27
A single use case investigates strengths in general.

Stripe 13—Save Replay
Earlier in the development effort, the team developed the save and load capabilities that
are required for customizing characters. At this point, it becomes possible to expand the
basic set of functionality to allow implementation of the capabilities associated with sav-
ing and storing game events.

Save Replay Use Case View
You can store game events at any point in the game. Because storing the state of the game
requires that much of the game to be implemented for storage, this stripe is best imple-
mented last. Figure 9.29 illustrates the Save Replay use case.

Chapter 9 ■ Iterating Design334

Figure 9.28
CLevelDialog provides an interface to the character and game statistics.

Save Replay Component View
At the heart of the replay component is the CHistory class, which tracks and stores game
events. The use case assumes that the game captures events on a continuing basis and then
retrieves them upon demand. Figure 9.30 illustrates the Save Replay component view.

Stripe 13—Save Replay 335

Figure 9.29
Storing events for replay requires extensive game functionality.

Map Editor Resources
The map editor serves both as a tool of development and as a tool that game players can
use to customize levels. As mentioned earlier in this chapter, when the team set out to
design the map editor, its first plan for development included a stripe that was far too
complex to allow for smooth implementation. As a result, it experienced a schedule delay
and other difficulties. Among other things, it found itself bogged down in the details sur-
rounding implementation of the dialog boxes.

When the team backed off from the picture a bit and examined the situation for what it
was, it found that it had included too much in the stripe. It remedied the situation by con-
sidering the components of the map editor. One component was the tile floor. Another
was the dialog box capability. Still another was the capacity of load and save. When the
team broke these into separate stripes, the complexity of the task diminished, details of
implementation became much clearer, and it was possible to proceed with confidence into
the development of what became the full functionality of the map editor. Figure 9.31
shows a screen shot of the map editor used to place a mesh. (It was pleasing to everyone
to at last make use of Paul Whitehead’s meshes, because this opened up many new testing
and tuning opportunities.)

Chapter 9 ■ Iterating Design336

Figure 9.30
Storage of a sequence of events makes use of the CHistory class.

Construction Using the Map Editor
The map editor as a tool for development is invaluable. The functionality of the map edi-
tor tremendously facilitates the construction of layers. Figure 9.32 illustrates the map edi-
tor that was used to begin construction of the first level. At this point in development, it
is possible to set the camera at a high angle. It is also possible to maintain wide views of
the layer area, so objects in the layer can be positioned easily to accord with the game
design document specifications. (Some of this functionality was eliminated from the
deliverable.) Figure 9.32 illustrates construction of the level as conducted by Ben Vinson.

Construction Using the Map Editor 337

Figure 9.31
Stripes 2.0 through 2.4 implement the map editor.

Game Design Specification
So that you have some perspective, all of the stripes detailed thus far could be developed
using only one layer as a base of development. Combining the map editor with a thor-
oughly detailed design document made the construction of the game levels fairly easy.
Figure 9.33 provides a view of the first level from the game design document, as specified
by Ankh game designer, John Rose. To view the complete game design document for Ankh,
access the game design documentation directory on the CD.

Chapter 9 ■ Iterating Design338

Figure 9.32
Ben Vinson used the map editor to construct the first level.

Game Design Specification 339

Figure 9.33
John Rose’s view of the first level.

Conclusion
This chapter showed movement through the iterative design and implementation of
Ankh. Design can be a flexible undertaking. As long as the requirements for the game exist
in a stable form, the design remains open to alterations as the implementation effort pro-
ceeds. The key to successful design iteration lies in establishing stripes of functionality
that can be understood easily and developed readily. From a design perspective, a stripe
can be depicted as a component, which can be defined as a set of classes that provides a
single service or set of services to the game as a whole. A use case view can be employed
to verify the design of a stripe.

The theme of this chapter remains the same as it has been in earlier chapters. Although
some methodologies of software development allow requirements to be flexible, it
remains that a stable set of well-scoped, well-defined requirements underlies successful
software development. From this basis, you can develop a set of preliminary classes to
address the requirements. Then you can begin to group the classes into components and
provide a way of implementing components. Two stripes might involve substantially the
same set of classes and the same components, but each stripe represents the implementa-
tion of specific refinements of the component’s capabilities.

As you proceed with a game development project, realize that you can break one large
effort into smaller efforts. If you find that the development of a component requires much
more time than anticipated, you might benefit from taking time to consider whether your
effort can be redirected so that you attempt to develop limited aspects of the component.
You can view these limited aspects of the first component as independent components.

Although no vast literature exits for the approach to iterative design presented here, several
current methodologies provide perspectives on design that have proven highly successful for
application development. These approaches are also suitable for game development. For
further explorations, see the following books:

Braude, Eric. Software Design: From Programming to Architecture. Hoboken, New Jersey:
John Wiley & Sons, 2004.

Liberty, Jesse. Clouds to Code. Birmingham, United Kingdom: WROX Press Ltd, No Date.

Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, New Jersey: Pearson Education, Inc, 2003.

Chapter 9 ■ Iterating Design340

341

Control Freaks and
Configuration Management

Chapter 10

D
uring your game development effort, you are likely to create many thousands of
lines of code. In addition, you or those with whom you work will create many
assets, such as sound and graphics files. To ensure that you do not lose, overwrite,

or accidentally delete such files, you can put in place a Software Configuration
Management (SCM) system. An SCM system has both software application and policy
divisions. In the software application division, you choose and implement a software
application that allows you to track versions of your files. You also select a software appli-
cation that allows you to create an installation package. In the policy division, you create
a software configuration plan. The software configuration plan enables you to document
how you want to set up the directories for your development effort. It also allows you to
establish conventions for writing code and naming files. Following are some of the topics
covered:

■ Establishing a culture for configuration activities

■ Establishing policies for configuration practices

■ Selecting tools for version control and installation

■ Analyzing the design document to discover prospective directory structures and
file names

■ Setting up a build schedule

■ Creating baselines using the software design and the project plan

■ Arranging for disaster recovery

■ Assisting with the creation of the installation package

Software Configuration Management in General
SCM is a requirement that most standards organizations establish as a starting point for
organizational maturity. The term “configuration” applies to both the equipment you use
for development and the changes in the files that the software system you are developing
comprises. As a software configuration manager, you might find yourself during one hour
working with the names of all the code and asset files that your game encompasses.
During another hour, you might find yourself erasing a drive on a test machine so that
you can conduct a test installation. Configuration also applies to identifying the elements
of the system and auditing the status of each element in relation to each other element.
When you perform this type of work, you ensure that one developer does not repeat or
delete the work of another developer.

As a software configuration manager, you are in a position to select tools and set policies
that allow the development team to work in an efficient, effective way. Among possible
responsibilities, you might help the team develop polices to cover code integration, testing,
and the use of private and shared resources. In addition to helping focus on policies, you
work extensively with the version control system. Throughout the development process,
the team’s collective effort forms an increasingly valuable product, and you must take mea-
sures to ensure that versions of
files and assets are managed
continuously so that developers
do not work in counterproduc-
tive ways by deleting
or needlessly rewriting each
other’s work. In addition to ver-
sion control, you are concerned
with disaster recovery and prod-
uct security.

As a configuration manager,
your job can extend over numer-
ous activities that en-compass
responsibilities for designing,
developing, testing, and deploy-
ing the software in a coherent,
coordinated fashion. Figure 10.1
provides a summary view of
these activities.

Chapter 10 ■ Control Freaks and Configuration Management342

Figure 10.1
Software configuration management involves performing a
variety of different activities.

Policies
Software configuration management concerns can be divided into two general areas. One
is policies; the other is development activities. With respect to policies, the configuration
manager is the person on the team who creates the culture and policies that guide the
team as it maintains its code configuration. Creating a culture involves vocalizing good
practices and helping others put good practices to work. Creating policies involves creat-
ing documents and programming tools that formally describe and restrict code manage-
ment activities.

Defining Roles
Practices as policies possess effectiveness if they reflect and reinforce conventions. To estab-
lish conventions, you can build awareness among team members of how roles can foster
consistent practices. Probably the most common roles encompass development, testing,
and configuration management. These three roles are welded together by a common set of
practices that serve to ensure that code is not needlessly lost, duplicated, or deleted, that
changes are merged, that progress is audited and evaluated, and that the product remains
safely stored. Figure 10.2 illustrates the dynamic that emerges. As a software configuration
manager, you are likely to find that although your work is distinct and in some ways at odds
with the work of testing and development, you are nevertheless central to ensuring that
everyone else on team finds it easy to participate in the development effort.

Policies 343

Figure 10.2
Roles emerge and foster a fundamental dynamic of responsibilities.

Change Control Parameters
When you work as a software configuration manager, you are often in the position, espe-
cially at the initial stages of a project, of establishing parameters that the rest of the team
can accept or challenge as it creates its configuration policies. Although comprehensively
naming these parameters requires much more space than is available in this chapter, it is
still possible to select from the many possibilities a set that gives you an idea of the issues
that often erupt when members of a team begin debating what they find acceptable or
unacceptable in the creation of configuration policies.

The following list summarizes a few of the many policy issues that arise during a devel-
opment effort:

■ Strict change control. You can configure your version control software so that
whenever a developer checks out or checks in code, he must perform a set of
mandatory actions. These can include activities such as adding comments to the
code, adding comments to a log, or running tests. You also can set up strict
requirements on how and whether developers can create branches and how long
they can maintain private versions of code before merging or integrating.

■ Flexible change control. If you work with a development team that consists of
individuals who possess a strong degree of professional maturity, you might decide
that the best policy involves sticking with a basic configuration management sys-
tem and leaving it to developers to decide for themselves how to do things. In such
settings, you must depend on developers to communicate frequently with each
other to resolve conflicts in code and to schedule divisions of labor that allow
everyone to work in a concerted manner.

■ Propagating changes. Assume that you have one module that provides functional-
ity that two other modules require. Assume, further, that you can develop the first
module in a rudimentary way so that it provides the functionality that the other
two modules require but does so in a slow, cumbersome way. When you approach
the problem of how to develop these three modules, you face a problem of propa-
gation of changes. If you hurriedly develop the first module and then immediately
launch into work on the second and third modules, you likely will have to return
to the first module, make changes to increase efficiency and ease of use, and then
change the second and third modules to reflect these changes. It is worthwhile to
consider policies relating to this. One approach, for example, might be that you
don’t change the names of operations (functions). Likewise, if you are to imple-
ment improved functionality, you might not change the parameters and return
values of the improved operation.

■ Version numbers. Version numbers can be a problem. Chapter 17, “Release Plan-
ning and Management,” provides a discussion of numbering formats, but here the
focus is on how much detail you want to capture during the development process.

Chapter 10 ■ Control Freaks and Configuration Management344

Some numbering systems use a combination of the date and the time to provide a
unique version stamp for each build. Others use a simple system that increments
the number for each build. Generally, it is important to assess whether your ver-
sion control software supports the type of numbering template you want to imple-
ment. If your system cannot automate the numbering template, it is probably a
good idea to consider another template (or possibly another versioning system).

■ Release naming. In many software development settings, developers use nomencla-
tures rather than numbers. For example, some development teams name releases
after rocks: mica, feldspar, granite, obsidian, and so on. Developers use names
rather than numbers when numbers create needless confusion. Imagine, for exam-
ple, that you plan to release your game at version 1.0, and you have had all the
boxes and literature printed up to indicate as much. At the last possible moment, a
marketing representative wants to release a special “limited” version. To deal with
this situation, using a name rather than a number proves extremely useful.

■ Files between branches. Many developers adamantly insist that branches should
not share files. This is usually an excellent policy. But if your team allows for spe-
cial cases of branching, it might be more convenient to share files. Imagine a situa-
tion in which you decide temporarily to create two branches so that you can
explore the options provided by two successive releases of a component library.
Except for those files to which you want to apply the questioned library compo-
nents, you share all files between the two branches. Because this is a temporary,
experimental branching operation, sharing is probably a reasonable option.

■ Maintain the current version. Even if the primary code line is not ultimately
harmed, difficulties can be created if developers manage their files irresponsibly.
Consider what happens if someone is working on a local drive, fetches files from
an earlier version, and replaces current versions with them. An extraordinary
amount of work might become necessary before the work that results can be inte-
grated fully with the work of others. Because such things happen, accidentally or
intentionally, it is reasonable to restrict permissions in certain ways.

■ Permissions. Developers should probably be the only people who have full per-
missions to check in and check out files. If other people have access to the code,
harm might result. One obvious area of concern is whether the code is secure. In
some instances, state-of-the-art development efforts represent extremely valuable
company assets. Although it requires extra work to set up the system so that
restrictions govern code and asset file access, the effort might be worth it.

■ Source cleanup. When developers check in files, they can leave a great deal of test
code in them. They also can leave them uncommented. Finally, they can leave them
in need of a great deal of tuning. Establishing policies about how much work
should be put into cleaning up a file prior to checking it in can result in a substan-
tial improvement in productivity.

Policies 345

Setting Up the System
Generally, a software configuration manager does not work alone to choose the develop-
ment environment. The choice of a development environment usually rests with the cul-
ture of the company, the requirements of the customer, and the preferences of the project
manager and the team as a whole. After the development environment has been specified,
however, it often remains the responsibility of the configuration manager to help all mem-
bers of the team maintain the same environment for the duration of the project. Among
the responsibilities that fall under this heading are these:

■ Maintaining the same basic equipment configuration. It is usually considered
essential that everyone work with the same compiler. The same goes for any soft-
ware application used in the development effort. Even the use of two versions of
the same compiler can create problems. Battling errors that result from differences
that arise from conflicting versions of development equipment wastes develop-
ment time.

■ Checking on upgrades of the integrated development environment. It is more
than likely that on a project that extends for a month or more, new releases of soft-
ware used in the development effort will occur. You can deal with such releases in
two ways. You can make a decision at the start of the project not to use upgrades
or releases that occur after the commencement of the development effort. This is
an extreme position, and in some cases might be impossible to honor. The other
approach is to carefully evaluate the effects that a new release has on the develop-
ment effort. You can use branching to offset some of the risks of using newly
released software. This topic is discussed later in this chapter.

■ Maintaining licenses for software. One hazard that any development company
faces arises from strictures regarding ownership and uses of software. Even if you
are using open source software, sometimes development efforts must proceed with
permissions. Likewise, using a pirated copy of a commercial application to develop
a commercial product creates enormous liabilities, even if the application plays a
minor role in your development effort. To ensure that all members of the team
have legally sound working environments, the software configuration manager
sometimes ends up as a kind of friendly auditor.

Selection of Tools
Selecting software applications that address version control, installer creation, and trou-
ble tracking involves addressing a list of requirements that are specific to your project. On
the other hand, certain requirements are general and tend to extend almost any project.
Whether specific or general, the requirements you use to select tools establish what you
will be able to do as you proceed with your development effort.

Chapter 10 ■ Control Freaks and Configuration Management346

Version Control Applications
It is almost universal that a development team will want to exert tight control over ver-
sions of software created during the development effort. A version control system is the
primary, if not sole, means to such control. Later sections of this chapter discuss use of
version control software fairly extensively. Table 10.1 provides a set of criteria you can use
to evaluate a version control application.

Setting Up the System 347

Table 10.1 Version Control Tool Evaluation Criteria

Item Discussion

Operating system If you are developing in a Windows environment, you need to choose a
system that is suitable for Windows. Selecting a recently ported system is
probably not a good idea.

Dependencies If you select a version control system that depends on Oracle, SQL
Server, or some other database, you might have to acquire a license or
licenses for the database in addition to the licenses for the version
control software. If you use a system like Concurrent Versions System
(CVS), you can avoid this situation, but then factors that mandate use of
a commercial database might dictate a different choice.

Current version Even if a vendor promises the world, you probably shouldn’t invest in a
first release. Likewise, use caution in using an untested release. If a
stable release exists, use it.

Customization Software applications that provide you with extensive customization
options also tend to be more difficult to use. Consider whether you really
need several custom features.

Size The size of an application can be a major factor. If the application is so
large that you need to upgrade everyone’s workstation just to install the
client, you should consider other options. On the other hand, even the
server can be an issue. If the application requires disk and storage
capacities that are far outside the requirements of the other software
applications used on your project, again, you might want to reconsider.

Cost Although many small development teams will choose SourceSafe or a
flavor of CVS, excellent version control systems are available from
companies like IBM (Rational) and Borland. The proprietary version
control systems are usually part of a suite of applications, and if your
company has a culture and the funds available for such products, they
are worth considering.

(continued on next page)

TortoiseCVS
For the Ankh project, the team chose to use TortoiseCVS. TortoiseCVS is an implementa-
tion of CVS that runs on Windows. CVS and TortoiseCVS are software that you can
acquire through the GNU General Public License. This license basically stipulates that
although you can copy and use the software, you cannot change it. Following are some
websites that provide information and downloads:

■ TortoiseCVS. Access http://www.tortoisecvs.org/index.shtml.

■ Concurrent Versions System. Access https://www.cvshome.org.

■ Free Software Foundation. Access http://www.gnu.org.

TortoiseCVS is convenient for Windows users because it integrates into Windows
Explorer. When you access files under version control management, you access them the

Chapter 10 ■ Control Freaks and Configuration Management348

Table 10.1 Version Control Tool Evaluation Criteria (continued)

Item Discussion

Installation There are two sides to the installation of a version control system. One
side is the server side, which involves setting up permissions, file
structures, and backup and restore procedures, among other tasks. The
other side is the client, which among other things allows the user to
check out and check in files. Installing the server should be quite a bit
more involved than installing the clients, but limitations apply. Consider
a situation, for example, in which you must first configure an Oracle
database before you can install your version control manager. This might
be worth doing. However, if it is worth doing, the price in terms of time
and money could be substantial.

Branching If a version control system does not enable you to branch with relative
ease, something is wrong. Among the things to look for are whether and
how easily you can change the name of branches, whether branch num-
bers or names can be incremented automatically, whether keywords can
be used, and how easy it is to identify and access files of a given label.

Merging A version control system should reliably track files and notify you when
it discovers stale, conflicting, or unstable files. It also should provide you
with file histories. As time goes on, version control systems that are
capable of automatically resolving severe conflicts might be available.
For now, unless you can afford an expensive commercial system, it is
best not to put too much confidence in automated merging that involves
resolving difficult code conflicts.

Promotion You will probably want to set up versions as baselines, as the team did
with the Ankh effort. When you do this, you apply a label to a given
version and then branch it according to a level of promotion. See how
easily the system you are evaluating handles such tasks.

same way that you access any other file in Windows Explorer. When you open a file direc-
tory, for example, the TortoiseCVS options are available to you as pop-up menu options.
Using these options, you can check out, update, commit, and view differences in versions.
Figure 10.3 shows a screen capture of folders that have been placed under TortoiseCVS
management.

Although TortoiseCVS does not manage builds or allow you to enforce change control
policies, it does allow you to tag, branch, and merge versions of files. It also allows you to
access log information by using such utilities as CVSWeb. TortoiseCVS stores differences
between versions of files and then assembles these differences when you request it to do
so. Specific uses of TortoiseCVS could easily consume several chapters of this book. To
learn how to use TortoiseCVS, go to the sites mentioned previously and read the instruc-
tions provided with the application.

Installer Creation Applications
An application for creating installation programs allows you to designate the files and
directories you want to have created when your application is installed, and it allows you

Setting Up the System 349

Figure 10.3
Integration with Windows Explorer makes TortoiseCVS easy to use.

to designate which material you want placed in the directories. Table 10.2 provides a set
of criteria you can use to evaluate applications that create installation programs. You can
obtain commercial applications for creating installation programs from Wise and
InstallShield. Free of charge, Microsoft offers the Windows Installer (MIS). The Ankh
development team chose an application from Jordon Russell called Inno Setup (ISTool).
Later on, in the “Installation” section, this chapter discusses a sample session using ISTool.

Problem Reporting Applications
You can use a tracking system for problem reports in various ways. During the develop-
ment phase, you can use such a system to log defect reports. For criteria on applications
for reporting problems, see Chapter 17.

Chapter 10 ■ Control Freaks and Configuration Management350

Table 10.2 Installation Creation Tool Evaluation Criteria
Operating system If you are developing in a Windows environment, you need to choose

a system that is suitable for Windows. InstallShield and Wise provide
the best commercial products for the creation of installation packages
for Windows.

Customization Of the two most popular commercial installers for Windows, Wise and
InstallShield, Wise is said to be the most difficult to use. Difficulty of
use generally means that you get a greater variety of customization
options. The Ankh team selected ISTool because it was free (as is the
Windows installer from Microsoft, MSI) and easy to use.

Cost For the Ankh project, the team decided to use ISTool, which is free-
ware. This application was perfect for Ankh because the game was
designed to be installed on the Windows operating system and had no
complexities that might have justified investment in a commercial
product. If you are involved in a project in which you want to cus-
tomize and automate your installation options using files from a
database, you might find that the professional and enterprise options
justify the price.

Ease of use Selecting files and creating directories should be easy. Likewise, you
should be able to customize names and set install options for files and
directories as you go. These are the basics. For more involved oper-
ations, the efforts increase in complexity, as does the price you need
to pay.

Scripting capabilities To add dialogue, download options, and other features to your
installation routine, your installer application should provide a
convenient scripting option.

MSI support The ISTool does not use Microsoft Windows Installer (MSI). MSI
provides a store of capabilities that allow you to control the
installation and removal of your application, but it is generally
considered difficult to use. Wise and InstallShied are alternatives to
MSI, as is ISTool.

Creating an SCM Plan
When establishing policies for software configura-
tion management, it is a good idea to reserve specif-
ic planning with respect to directories and files until
the design of the software has been baselined. Using
the software design, you then can proceed confi-
dently with structuring directories and creating
items such as build schedules. In addition to man-
aging the configuration of the software, you can
establish coding conventions. Configuration infor-
mation regulates how the development team names
files and directories. Coding standards regulate what
goes inside of files, such as how you name classes,
operations, and class attributes. Together, a configu-
ration plan and a set of coding conventions allow
the team to proceed with a coordinated effort.

Using a Template
The IEEE Standard 1042 provides a template for a
software development plan. Figure 10.4 provides a
summary view of the IEEE template.

As with any template, it is a good idea to review the included headings to see if they offer
reasonable guides for gathering and organizing information that is relative to your pro-
ject. Exclude headings that you find superfluous. Table 10.3 reviews the topics introduced
in the template shown in Figure 10.4.

Creating an SCM Plan 351

Figure 10.4
The IEEE standard provides a starter
set of categories for an SCM plan.

Table 10.3 SCM Template Topics

Topic Discussion

Introduction This is the first division of the document. This section provides a way to
present the general dimensions of your plan.

Purpose Point out that the purpose of the plan is to set polices and establish tool
customization priorities. Also, indicate that the plan provides a guide to
the structure of the directories and modules (or stripes) that embody the
design. In addition, specify that the plan establishes a working basis for
regulating testing, file merger, integration, and release activities.

Scope The scope extends to the whole of the game software product. One
qualification is that the scope of the software configuration plan cannot
be fully specified until the software design specification is completed.

(continued on next page)

Chapter 10 ■ Control Freaks and Configuration Management352

Table 10.3 SCM Template Topics (continued)

Topic Discussion

Definitions The definition list includes terms that help the reader understand how
your game software is designed and used. With the development of
Ankh, for example, the design of the configuration for the directories and
files was predicated on the creation of stripes, so it was worthwhile to
include “stripe” in the list of defined terms.

References Two important references are those to the software requirements
specification and the software design specification. The software
requirements specification provides a reference for testing. The software
design specification provides information you need to set up directories
and plan baselines and releases. If you have developed supplemental
documents, such as a coding standards document or a release
management plan, you can provide references to them under this
heading.

Management This is a major section of the document. It explains how you intend to
manage the SCM program that the document specifies.

Organization You can use this section to explain that the SCM plan applies to the
group on a consensus basis and is intended as a guide, not a set of
dictates. On the other hand, you can point out that certain stipulations
must be observed strictly.

Responsibilities Roles can be described in this section. Developers have responsibilities
to name files and directories according to the conventions that the
document provides. Among other things, you can provide suggestions or
stipulations about checking out and checking in code.

Interface Control You can use this section to discuss use of the version control system and
the installation creation package. Control issues pertain to permissions
and use.

Plan Implementation The implementation of the plan can appear as a table that shows
needed stages of development. The preliminary plan, for example, might
establish policies and practices. Then a detailed plan might follow the
first baseline of the software design specification.

SCM Activities This is a major section of the document. It easily can become the largest
and most important part of the document, because it provides infor-
mation about the details of day-to-day operations.

Identification Under this heading, you can list criteria for how to identify versions. It
would be appropriate, for example, to designate your numbering tem-
plate or to list the pool of terms from which you can draw to designate
releases. You can include file-naming conventions, in addition to
approaches to using labels and keys.

Control You can state policies in this section. Issues that are suitable for
discussion include policies you intend to assert through strict
enforcement or to use as specifications for customization of tools.

Coding Standards
Chapter 13, “What People Do—Development Strategies,” discusses the practical use of
coding standards. In the current context, the discussion can involve approaches to struc-
turing and presenting coding standards. It is a good idea to provide a reference to this
document—if you create it as a separate document—in the software configuration plan.
See the item for “References” in Table 10.3.

Reviewing the Plan
It is probably not a good idea to try to create a software configuration management plan
in one work session. Rather, you should create the plan over the period extending from
the start of the project to the beginning of the software implementation. For most efforts,
the implementation of the software begins after the software has been designed. The
design enables everyone to understand the architecture of the software. The architecture,
in turn, enables the software configuration manager to determine with a fair degree of
accuracy just how the directory structure for the software should be laid out. Figure 10.5
illustrates the flow of activity that might characterize the creation of a configuration plan.

Creating an SCM Plan 353

Topic Discussion

Status Accounting You can name the types of information you want to collect through
software configuration management activities. The information for which
you can obtain summary reports depends on the tools you use. For
example, you can obtain information about incremental versions of files
between baselines, identity of system users, problems with stale or
conflicting files, and the time required to effect mergers.

Audits and Reviews You can use this section to address how to review code or the SCM
process. An audit might involve identifying the quality assurance
measures that a standards organization provides. Review might pertain
to the maintenance of the SCM plan.

Release Process In this section, you can provide a list of key items to be attended to
during the release phase of your game software development effort. If
the information you want to include in this section proves too extensive,
you can create a separate document, a software release plan.

Tools and Techniques This is a major section of the document. In it, you can name and discuss
reasons for buying, leasing, or acquiring through open source whatever
applications you decide to make a part of the SCM effort. Obvious
candidates are the version control system, the installation creation
application, and the problem reporting system.

Supplier Control This, too, is a major section of the document. If you use vended or
acquired software, you should collect information in this section that
allows you to document license agreements, contact service and support
representatives, and understand release schedules.

Development Activities
Especially on smaller teams, configuration management can involve a dual role, one that
combines configuration management and development. When this happens, the individ-
ual in this role can become frustrated because he has the unenviable task of being respon-
sible for both specific development tasks and maintenance of the software configuration
for others. To keep such work in perspective, the best approach is to define specifically the
work that constitutes configuration management. If the work is well defined, the person
who assumes such responsibilities will be able to know the set of essential tasks and plan
accordingly.

Auditing Program States
SCM involves being able to tell how and to what extent files change between work ses-
sions. Such information proves essential to the development effort because developers
must be able to know with certainty how their work affects the work of others. If two
developers work on the same file, for example, they must be able to determine if their
changes represent successive states of the software. If this is the case, it is likely that the
developer whose changes are second in succession will be able to merge his work into the
files that the first developer modified. The state of a program, then, can be characterized
as a point in its development when a given degree of functionality has been developed.

Chapter 10 ■ Control Freaks and Configuration Management354

Figure 10.5
Information about design establishes a firm basis for the finalization of the configuration plan.

Knowing both the time at which the program has been modified and the changes that
have been made in the program allow developers to determine how to judge and guide
their efforts in implementing functionality.

Build Activities
If auditing the state of a software system is the first concern of SCM, performing builds is
the next. Builds during the development process represent incremental assemblages of the
functionality of the system. Probably the best terms to apply to such assemblages are “ver-
sions” or “revisions.” During the development phase of a game software lifecycle, devel-
opers can create hundreds of such versions. In each case, to create a version, developers
build and compile the system. As the number of lines of code increases, building and com-
piling the system can become a drawn-out process. For this reason, developers prefer to
restrict builds to encompass only files that have been changed during a given session of
work. Working on a file or set of files and building and compiling the system using only
changed files allows developers to check their work continuously. But it remains that if the
entire system is to be assembled from the work of many people, all the changes must be
integrated.

Because comprehensive integrations of newly developed or revised code often require that
the build has hours to run, developers write scripts to automate build routines.
Developers generally program these to run at night. As the developers build a product,
they can generate a log of warnings and errors. Then they can inspect a record of the build
to see what problems occurred. They usually perform builds on a daily basis. Policies reg-
ulate actions to be taken with respect to different build results. For example, a policy
might stipulate that if a given version of a given file creates errors, the programmer must
revert to the previous successful version of the file and work forward until he discovers the
problem. If this is too draconian, the programmer might not be allowed to proceed with
the implementation of further functionality until he eliminates all the problems from the
existing build.

Program Files and Components
Given that you have completed the software design specification, you are in an excellent
position to plan the directory structure of the product. You can map the directory struc-
ture on a tentative basis and then add it to the configuration management plan for revi-
sion as the project progresses. In an object-oriented context using C++, you know that
most classes will have corresponding header and implementation files. To establish the
directory structure, you must examine the software architecture. As shown in Figure 10.6,
the Ankh team created a table in which prospective files could be organized via function-
al groupings. Early in the project, you can name the files tentatively on the basis of the
classes for which CRC cards have been created.

Development Activities 355

In addition to setting up directories and creating an initial set of files, early configuration
work involves evaluating and planning components—files of classes that are treated as
single units. Some components are derived from third-party software libraries. These
might be in the form of binary files. Others might be in the form of code that must be
compiled but that become separate executables when compiled. Regardless of how the
components come into existence, it remains that they have versions, and differences of
version present a risk to the stability of the system. For this reason, it makes sense to track
the components of the system in much the same way that you track versions of files.
Figure 10.6 provides a table created for the Ankh Configuration Management Plan.

Chapter 10 ■ Control Freaks and Configuration Management356

Figure 10.6
A table allows you to examine the ways in which you can group prospective code files.

Controlling Development Domains
Generally, files that are stored on the server constitute the shared domain, whereas files
that are stored on the drives of developers constitute private domains. Even with a strong
effort to define and implement a coherent directory and file configuration, configuration
management efforts can fail if developers allow control of the configuration to migrate
from the server to the drives of developers. Notice in Figure 10.7 that the broken lines
indicate the files that developers transfer to each other locally. The solid lines indicate files
under version control. The number of possible file combinations increases enormously
when developers begin combining files in this way.

Figure 10.7 illustrates what happens when developers begin trading files they are working
on without using version control. Ultimately, the complexity increases exponentially. You
can prevent this sort of thing by setting policies that make the dangers clear to everyone.
Even the use of game assets can lead to problems, because all files are subject to change,
even if they seem to be finished graphical or audio objects.

Baselined Versions and Releases
You can apply the term baseline to any version of your software and the artifacts (docu-
ments, diagrams, and so on) that apply to it. A baseline is, as the word implies, a line that

Development Activities 357

Figure 10.7
Establish protocols for file use to reduce the complexity of versioning.

you can use as a start, or base, of something else. Because a baseline is the start of some-
thing else, when a document or a set of implemented functionality has been baselined, the
implication is that a review has taken place. A review is a formal examination, and it
results in a conscious assertion by those who engage in it that the item under review meets
or does not meet certain standards of quality.

Developers can create a version of a product at any point during the development cycle,
and given versions can become baselines in a continuing effort. This is the approach that
the team used in the development of Ankh. The Ankh Software Configuration Plan used
the product design presented in the Ankh Software Design Specification to establish that
the configuration scheme would be structured according to the stripes that the design
anticipated.

In Chapter 13, in Figure 13.15, you can see the way that the stripes were configured. In
Chapter 17, Figure 17.3 illustrates the stripes alone. The overall development effort is
aided by a configuration scheme that makes the development something other than a long
process that begins with the creation of files and ends with the final release of the prod-
uct. Creating versions as baselines allows those on the project to incrementally examine
the way that the development activity is proceeding and take measures to improve their
effort as they go. Part of this effort involves examining the cohesiveness of the configura-
tion. At each baseline, developers can take measures to clean up files and refactor code to
eliminate redundancy and inelegance. Figure 10.8 shows the relationship among reviews,
baselines, versions, and stripes. The shaded circles represent points of review.

Chapter 10 ■ Control Freaks and Configuration Management358

Figure 10.8
Versioning in conjunction with reviews and baselines enables developers to maintain the integrity of
the configuration.

Branching Models
The term branching receives elaboration throughout the next several sections, but for
starters, it applies to how you designate the lines (or branches) of code you are going to
develop as you go. You can view a line of code as a set of files you maintain as a distinct
development unit through successive builds. At the start of a development effort, it makes
sense to think about what you want to allow with respect to branching, for if you do not,
you can end up with a project that consists of many parallel efforts that must be merged
with each other.

Concepts
Certain vocabulary items that refer to the version control and other configuration activi-
ties constantly crop up during any given development effort. For this reason, it is useful to
review a few of these terms. Generally, illustrations help tremendously, but as yet, no stan-
dard UML diagram exists for showing version control operations.

Code Lines (Trunks), Deltas, and Merging

Figure 10.9 illustrates the most elementary type of version control activity software con-
figuration. The long solid line is the primary code line or trunk. The primary code line or
trunk is the collection of all files and assets that make up the system. In this situation, the
developer might be pictured as opening a file, modifying it, and then saving it and trying
to compile it. Practically everyone learns how to program using this approach.

The primary line of code for the beginner programmer migrates to a new state every time
the beginner makes a change in the code. Because a backup file is not created, each time

Development Activities 359

Figure 10.9
Beginner programming patterns involve a single branch of code.

a state change occurs in the code, the previous state vanishes. Because the previous state
vanishes, the beginning programmer soon discovers one of the first big problems with this
way of doing things. Losing the difference (delta) between any two successive states means
that it is no longer possible to revert to a previous state if something goes wrong.

One of the first lessons to arise from this situation is that it is extremely useful to “save
off” a version of a file. Figure 10.10 illustrates the situation. Now the programmer has a
backup copy of the code at each success stage. As much of a revolution as this approach
to development might bring to the efforts of the beginner, one immediate result is that the
number of versions of the software tends to equal the number of software sessions during
which a change has been made to the code line.

Branching and Merging

Although initiating each coding session by saving back a version of the primary line of
code has its advantages, the proliferation of archived files becomes a management prob-
lem. The question becomes whether there is a way that the trunk can change in a more
restricted way. A simplified illustration of one approach to remedying this situation is
shown in Figure 10.11. Here, the approach is to create a copy of the main line of the code.
When you make a copy in this way, the copy is a branch. The branch is the set of files that
make up the system. Then the branch is changed. If the changes prove acceptable, you can
merge them back into the main line of code.

Chapter 10 ■ Control Freaks and Configuration Management360

Figure 10.10
Saving to a new version or saving a backup preserves the delta.

This approach allows the programmer to have what might be viewed as a temporary
branch of the primary line of code for development purposes. The great advantage to this
approach is that it preserves the integrity of a primary line of code while providing a way
that development can occur on a provisional basis, away from the primary line of code.

Trees and Stale and Conflicting Files

The utility of branching becomes a little more evident if you consider the actions of two
or more programmers. Consider the situation that Figure 10.12 depicts. In that figure, two
developers make changes in the primary line of code. Both start with the code at version
1.0. They obtain branching copies of the primary line of code, work on separate parts of
it, and then merge the code back into the primary line of code. Momentarily branching
for purposes of development allows both programmers to work simultaneously, make
changes to the code, and then merge their changes back into the primary line of code.
What makes the merger easy is that both developers start with the same version, and both
merge their changes back into the code in sequence.

Development Activities 361

Figure 10.11
Version control begins with the notion that temporary branching can restrict the scope of change.

In the situation that Figure 10.12 represents, both developers begin with the same body of
code, work on distinct files, and merge their changes in succession. As smooth as this
operation seems to be on the surface, when several developers work on a primary line of
code, one developer often submits changes that create difficulties for others. In one such
situation, code becomes stale. Figure 10.13 illustrates what happens. Notice that develop-
er B created a temporary branch of the code and went to work. Then developer A created
a temporary branch of the code and likewise went to work. Developer A merged his
changes with the primary line of code before developer B finished his work. When devel-
oper B tried to merge his code, he found that the main line of code was not the same as
what he started with. For some or all of his development effort, then, he has been work-
ing with a stale version of the primary line of code.

Chapter 10 ■ Control Freaks and Configuration Management362

Figure 10.12
Two programmers work simultaneously through temporary branches and then merge their changes
back into the primary line of code.

Yet another situation arises when two developers create temporary branches of the code
and change the same lines of code in different ways. Figure 10.14 illustrates the situation.
In this instance, developer A and developer B start off in good fashion with the same pri-
mary line of code. But then they change the same sections of the branched code, and when
they go to merge their changes, they find they have a conflict. When this happens, the two
developers must meet and decide which set of changes should be retained.

Development Activities 363

Figure 10.13
Stale code results when a developer begins work with code that has already been ren-
dered out of date.

Figure 10.14
A conflict can occur when two developers change the same lines of code.

Tip of the Trunk and Labeling

The discussion so far has intended to drive home the idea that branching is any activity
that allows developers to duplicate a primary line of code for development purposes and
to isolate deltas. On a day-to-day development basis, a version control application, such
as CVS, allows multiple developers to “check out” and “check in” code. The versions of
code created in this way represent deltas in the sense that the CVS system creates a data-
base that contains all the changes that occur between files. As these changes accumulate,
you can view the latest configuration of the software system as the tip of the branch. To
provide the information needed to designate what constitutes the tip, you use a version
label. The label is a list of all the files and all the changes in the files that bring the prima-
ry line of code (or branch) to a given state.

Integration and Versions

If you take a given label and merge all the changes to form a primary line of code, you are
on your way to integrating the changes fully. For the work on Ankh, the development team
performed integrations at each baseline. The integration involved creating a clean build of
the code that embodied the functionality specified for a given stripe. In each instance, the
team tried to make it so that each stripe, as a baseline, represented a clean starting point
for the next stripe. Technically, then, if stripe 6 ended up being completely unacceptable,
the team could have redone it from scratch by using a different view of the design.

Architecting Branching
In addition to the practical aspects of branching already mentioned, a more abstract level of
branching often receives attention. The abstract level of branching has to do with different
approaches to how developers design both development builds and product releases.

Parallel Development

The two most generalized approaches to developing builds and product releases involve
parallel and serial development. Parallel development allows you to create two or more
branches of a software system and then maintain these branches simultaneously. Figure
10.15 illustrates parallel branching architecture.

Chapter 10 ■ Control Freaks and Configuration Management364

The enduring problem that arises with parallel development efforts is that you end up
having a set of primary developers and a set of maintenance developers. The primary
developers start a new version of the product by grabbing the primary code line at a given
point, usually from the most recent release, and then extend it in ways that ultimately
prove either difficult or impossible to merge with the previous release.

However, there is some virtue to parallel development efforts. They allow you to extend
the profitability of a given body of software even as you develop a new version of it. In
Figure 10.15, for example, it is likely that versions 1.1 and 1.2 would be purely mainte-
nance releases. Maintenance releases usually do not involve the development of new func-
tionality. Instead, they represent only the removal of defects.

With version 2.0 in Figure 10.15, notice what happens. The merge line has only one arrow,
meaning that the developers merge the changes that have been made in versions of release
1.0 into versions of release 2.0. The merger is in one direction, because if it went both
ways, customers of release 1.0 and its versions would receive free of charge the function-
ality that was sold with release 2.0.

It is also the case, however, especially with release 3.0, that the merging work becomes
increasingly complex. Defects are going to be detected in any branch of the software, so
the more branches, the more defects. With the increased number of defects comes an
increased number of fixes. All the fixes represent changes that must be merged if the entire
product is to evolve in a consistent way toward successive releases.

Development Activities 365

Figure 10.15
Parallel build and release architectures require that, at some point, you must maintain several
separate and possibly irreconcilable versions of your software.

Many developers arrive at the conclusion that development efforts involving multiple
dimensions are too costly and too complex. Unless you can afford an expensive version
control application, this is true. Even then, a leading factor in any software development
setting is the cost of programming labor. The more branches that exist, the higher the cost
of maintenance and service.

Serial Development

Parallel development efforts pose problems. Most developers believe that serial develop-
ment is preferable to parallel development. Figure 10.16 illustrates a serial development
effort.

The advantage of a serial approach to development is that the only branching that occurs
is on the temporary level, which means that the software system is branched only while
new functionality is being developed. As soon as the new functionality has been tested, it
can be integrated into the primary line of code. The functionality of the product contin-
ues to grow, but separate maintenance efforts are not sustained.

A serial development effort mandates relatively brief maintenance histories. In Figure
10.11, for example, version 1.1 might represent a maintenance fix, but it also represents
an extension of functionality that is folded back into the primary line of code to become

Chapter 10 ■ Control Freaks and Configuration Management366

Figure 10.16
Serial development involves the maintenance of one primary line of code.

part of release 2.0. The extent to which activity on release 1.0 can continue is determined
by what developers designate as the functional enhancement of version 2.0. If the versions
of release 1.0 begin to encroach on release 2.0, it is time to discontinue support of release
1.0 and begin moving customers to the purchase of an upgrade.

Notice in Figure 10.11 that each new release represents a branch that is folded back into
the primary code line. When a development effort proceeds in this way, it is sometimes
called branching to release. On the other hand, because over the history of the product an
effort is made in sustaining a serial form of product extension, the primary code line is
said to be flat, or one-dimensional.

Branching and Version Control Practices
Branching practices encompass what you do from day to day as you work with your code.
The most significant such practices have to do with how you check out and check in your
code and how you merge it. In addition to these basic practices are those that establish
limitations on how long you work on your code between merges and if and to what extent
you test your code when you check it in. Establishing practices to define such activities can
make an enormous difference in how smoothly day-to-day work proceeds.

The following list discusses practices that are related to branching. It also addresses issues
that frequently are encountered in day-to-day development efforts:

■ Local directories. The directories that developers maintain on their workstations
are said to be local. When directories are local, they are assumed to be private.
In other words, one local directory should not be able to access another local
directory.

■ Shared directories. The directories that the CVS or other version control systems
make available to developers are shared. They are shared in the sense that a devel-
oper can access the version control system and obtain the most recent version of
the primary line of code at any time. Everyone has access to this shared body of
code. However, no one can change it arbitrarily.

■ Revision control. When software is revised, it can be called a version or a release.
Revision control applies to both versions and releases. Usually, version designates a
prerelease development build of a software system. Release, on the other hand,
usually applies to the state of the product during beta or general availability (pro-
duction). It still stands, however, that policies and practices determine how people
use the words.

■ Checking out. When a developer accesses the primary line of code and copies its
most current version to a local directory, he checks out the code. In reality, how-
ever, nothing is checked out in the sense of removing code from the version con-
trol system.

Branching and Version Control Practices 367

■ Checking in. When a developer copies files from local directories to the version
control system, the operation is called checking in code. This operation does not
replace existing code. The version control system usually tracks only the changes in
the code, which it stores in a database. The files in the main line of code are not
replaced.

■ Merging. Changes involve both whole files and parts of files. Merging changes that
involve different versions of different files usually requires less of an effort than
merging changes that have taken place in a single file.

■ Regression. This term is used as a noun to designate what happens when someone
makes a change in a body of code that reveals a defect in something that has been
viewed as stable.

■ Reverting. If a new version of code reveals severe defects, you might have to revert
to a previous version. It makes little sense to take such actions when the version
you are working with represents generally sound code. Reverting does make sense,
however, if the obstacles you face are because of external factors. Perhaps between
two versions of your code, you have decided to begin using a new release of a
third-party library. Much to your chagrin, you find that the new release is seriously
flawed. Rather than pick through the current version and edit it so that it excludes
the troublesome components, you might revert to the previous version of your
own code and start with a clean slate.

■ Locked files. If you check files out and want to have exclusive use of them, you can
lock them. Generally, this is the most common and effective approach to prevent-
ing conflicts.

■ Exclusively locked files. Some version control systems allow for locked and exclu-
sively locked files. The distinction is you can share a locked file. One person only
can use an exclusively locked file. It would make sense to have locked files shared
between two developers if the developers are trying to reconcile a problem. They
would want to restrict access to themselves until they finished their work. Someone
making a crucial change to a key component might want to have an exclusive lock
on a file.

■ Collaborative tools. A version control system is a collaborative tool, but a version
control system also contains collaborative tools. An example of a collaborative tool
is one that allows two developers to work simultaneously on a single file. The tool
might lock individual lines or merge files dynamically.

■ Binaries. Some software configuration managers refuse to store binaries. Binaries
consume a lot of disk space. In addition, if you work in an environment in which
you check in or check out code across Internet connections that have slow transfer
rates, binaries prolong check-in and check-out operations.

Chapter 10 ■ Control Freaks and Configuration Management368

■ Stable release. Developers usually refer to a version of a product that lacks signifi-
cant defects as a stable release. Your picture of stability can depend on time and the
types of defects that you face. In some cases, a release is considered stable when its
rate of defects reaches an acceptable minimum. If this point is reached, the pri-
mary criterion for stability is likely to be that the software does not crash but
instead shows problems that relate to the finer (benign) aspects of its functionality.

■ Unstable release. It is probably inappropriate to speak of an unstable release,
because a primary criterion for release should be stability. Still, an unstable release
usually is characterized as one that contains memory leaks, freezes, or crashes.
Many developers maintain that there is no reason that an alpha release should be
so well tested that it no longer crashes. One reason for an alpha release might be to
verify the instability of a proposed release.

■ Modularity. Modularity relates to parts of a system that can stand on their own.
This can happen in any number of situations in which a set of functionality
becomes a separate plug-in. Many developers allow a module to be maintained as a
separate line of code.

■ Tag. A tag identifies a label. One label can have more than one tag. A label is a list
of files and assets. A tag allows you to identify the label as pertaining to a given
build, version, or release.

■ Key. A key is an abbreviation. Developers often use keys in scripts so that they can
package the files for a build more easily.

■ History. Each file has a history, and each version or release of a system has a his-
tory. The history is the cumulative set of changes that have been made from one
point in time to another.

■ Status. Files and systems have different statuses. If you have not merged two files
into the primary line of code, the files are not synchronized. Files can be stale, con-
flicted, or corrupted. The same applies to systems. A label can be incomplete if some
of its files are locked exclusively, thus preventing it from being built. Status usually
has a bearing one way or another on whether you can or cannot accomplish a build.

■ Comments. Comments in relation to configuration management usually pertain
to a brief statement that developers input when they check in code. The comment
summarizes the task that the developer has accomplished.

Promotion
This section is included largely out of respect for tradition. Chapter 17 provides a paral-
lel discussion, but its focus is on releasing a product. This chapter provides a perspective
on promotion that focuses on development. Software system promotion involves histori-
cally describing the system configuration according to its status and with relation to the
project plan.

Promotion 369

Development
A game software product begins its life with the development phase. During this phase,
builds usually occur at least once each day. The frequency of builds depends on the time
the build takes. One common approach is to have automated builds occur each night. A
log report is generated from the build, and developers attend to the log report each morn-
ing before proceeding with the development of new functionality.

During the development phase, you should make regular backups of the software for dis-
aster recovery purposes. Most standards require that companies store copies of their
source code and other assets offsite. Small game companies might not do this regularly,
but it makes sense to capture a snapshot of your software on CDs periodically and to store
the CDs at a different location. A trusted employee’s house is not a bad choice. A deposit
box is better.

The most central configuration concerns of the deployment phase are code conflicts,
merges, and incrementally developed code. Unit testing tends to be the prevailing type,
although integration and system tests can be part of a standard cycle. The team used this
approach on Ankh, where each stripe went through integration and system testing. This
phase ends when developers have implemented all specified functionality.

Configuration concerns are largely those of daily builds and the efforts of developers and
testers to implement adequately the functionality stated in the requirements specification.
Often, implementation efforts do not take place with attention to the overall, integrated
functionality of the system. Through formalized testing, regressions are detected. The goal
during this phase is to implement specific functionality rather than test a wholly inte-
grated system. Indeed, because the system remains largely incomplete during this phase of
development, testing the whole system is impossible.

Quality Assurance
This phase could also be called debugging or alpha testing. It marks a phase in the software
cycle when you deal with the system as a complete product. The primary activity of this
phase is searching for and eliminating defects detected in the wholly integrated function-
ality of the product.

The work of this phase might involve substantial integration efforts if it’s necessary to
refactor significant areas of functionality. Refactoring can cause regressions if problems
with dependencies are detected. In addition, this phase is complicated because defect
reports usually have significant bearing on regulating the actions of developers. As test
results are logged, developers must be prepared to put in long hours refining the system
as a whole.

Chapter 10 ■ Control Freaks and Configuration Management370

Beta
The beta phase of the development cycle marks a point at which you can release the prod-
uct to customers on a trial basis. The product at this point is likely to be fairly stable. Its
functionality is complete. The purpose of the test is to comb the software for defects.

Configuration management continues at this phase as a process of managing the release.
Integration is not likely to be a problem. Tasks of this phase consist largely of closely track-
ing defect reports, fixing defects, testing the fixes, and closing out the reports.

Release
After the product is released, the software configuration manager usually must assemble
all the code and assets for the software and store them in a secure place. The need to cre-
ate a copy for the vault can result directly from business agreements.

The release of the product begins the maintenance phase of the software lifecycle. The
branching of the product determines how the development team addresses defect reports.
With the release of the software comes the need to begin planning the next release. The
team must make decisions about how much effort to put into maintaining the current
release. One crucial factor is the extent to which defect reports can be viewed as opportu-
nities to begin developing features of the next release.

Configuration management at this point focuses primarily on either the serial or parallel
definition of the software product. If the release strategy involves a parallel effort, the team
will maintain the release as a separate branch and create maintenance branches from it. If
the development strategy involves a serial effort, the team will make a strong effort to cre-
ate maintenance branches that merge back into the primary code line for the product.

Management Issues
Three areas of concern for configuration management are those that involve the individ-
ual practices of developers, the type of testing that is done prior to the check in of code,
and how the team plans for catastrophes. The next few sections discuss the topics encom-
passed by these areas of concern.

Individual Practices
Configuration management issues relating to workspaces deserve attention. Generally, an
individual developer who is part of a team works on one area of code while other team
members work on other areas of code. Reviewing the assumptions and rules that define
this activity can help promote practices that enable individuals and teams to work more
effectively. The following list names a few issues that arise in this respect:

Management Issues 371

■ Focus development on the primary line of code. Development activity that does
not focus on the primary line of code creates a liability. Stories about schisms
destroying projects illustrate the importance of focusing on the primary line of
code. Problems usually arise when headstrong developers begin using different
approaches to solving problems and develop redundant sets of functionality.
Another situation arises when someone is brought in for a few days as a contrac-
tor. The contractor comes and goes, and the result is a component that functions
perfectly when compiled on the contractor’s computer but, lacking integration, is
so problem plagued that no one can make it work during the next integration.

■ Use integration and baselines. The Ankh development team decided to use inte-
grations and baselines implicitly to enforce configuration policies. The approach
used stripes as occasions for bringing all the development activity into a compre-
hensive integration that had to be synchronized across the board. Using the project
management schedule as a strategic guide and the configuration management plan
as a kind of archeological map, you can re-create the development history of the
game. Although the Ankh team effort possessed many distinctive (or eccentric)
characteristics, the advisability of such incremental, iterative approaches to devel-
opment is acknowledged almost universally.

■ Merge on a frequent and shallow basis. The more changes you make between
builds, the longer it’s going to take to resolve difficulties. Obviously, keeping files
out for days on end is probably going to create problems. The policies you set are
up to your team. One rule is that a work session should involve one task. Of
course, tasks can be longer or shorter, but if you analyze your work, you can prob-
ably break down longer tasks into shorter ones if the tasks you initially encounter
extend over several days or weeks.

■ Do not use the repository in a sloppy way. In most smaller development settings,
you are at liberty to create files as you need them. Generally, however, you should
add files that clearly express the architecture that the software design specifies. For
example, within this context lies the creation of files for the declaration and imple-
mentation of code for each of the classes named in the design. Along the same
lines, you can create logical groupings of files on the basis of how classes are
grouped architecturally. Adding directories or files that fall outside or distort these
boundaries of design leads to increased system complexity. For this reason, take
time to review additions before making them.

■ Anticipate dangers of private builds. Private builds become a problem when
developers maintain code on local drives for long periods. The longer you go with-
out merging your code with the main line code, the more merger problems you are
likely to encounter. Among the most obvious problems are those associated with
stale code. Other problems arise when you access code from library or Internet

Chapter 10 ■ Control Freaks and Configuration Management372

sources and create dependencies that have not been integrated fully. Generally,
cycling your code through a consistent schedule keeps your configuration
synchronized.

■ Be cautious of third-party inclusion. This and the next point concern problems
that arise when you have to deal with libraries that have their own revision histo-
ries. Your configuration is made more complex because you suddenly must antici-
pate a calculus of change that exists between your revision patterns and those of
the libraries you have used. To anticipate revisions, you might find that you are
doing things like changing the name of the directory that holds your audio com-
ponents because every month the components receive an update. It would have
been easier if you had created a parallel branch in which you tracked the successive
releases of the audio library components. Other than using separate branches for
third-party libraries, you might also consider that a thorough analysis of risk
should precede decisions to include external libraries. One question to ask is
whether the candidate for inclusion has a stable revision history and a stable cur-
rent release.

■ With third-party code, consider separate branches. Many configuration managers
advocate maintaining third-party libraries as separate branches. The reason for this
is that any third-party library has its own revision history, and tracking this revi-
sion history is made easier if the library is not buried in history of your primary
line of code. If you do not take measures to identify the separate history of the
library, you will end up at some point picking through files to find out why the
next build failed when someone locally downloaded a library file from the Inter-
net. With the Ankh project, this type of problem occurred even with the Boost
library, which tends to be well documented.

■ Enforce policies. Policy avoidance and defiance are much less common than the
kind of quality slippage that sometimes characterizes work performed under pres-
sure. As a developer, it is easy to use the pressures that usually characterize the last
part of a development project to throw aside many quality assurance measures.
Although programmers seldom fail to program according to form, they often
neglect comments, work on a given checked out version of the code for days on
end, or become sloppy about updating local configurations. This type of sloppi-
ness leads to delay. Policies should be nothing more than formal statements of
common sense and best practices. If you do not abide by a policy, it should be evi-
dent that your actions will result not in administrative punishment but rather in
delay or failure of the development effort.

■ Coordinate work. Although CVS tracks the history of any file and makes it possi-
ble to eliminate many conflicts, if you can use the design document and the pro-
ject plan and coordinate tasks so that dependencies do not create bottlenecks, your
project likely will proceed with greater expedience and less frustration.

Management Issues 373

■ Anticipate releases. When preparing a release, the configuration manager often
cleans up directories and conducts quality assurance audits of files. As a developer,
you can help with this effort if you anticipate releases and attend to day-to-day
quality assurance activities. One such activity is to eliminate inessential material,
be it temporary assets used for testing or code that has been commented out.
Along with eliminating inessential material comes providing suitable comments in
your code. The configuration management plan can facilitate this effort by provid-
ing a checklist of such tasks.

■ Consider the identity and quality of assets. When you develop locally, you tend to
find assets on your own and insert them into your local configuration. When you
do such things, consider how you name the file, whether the file represents legally
acquired property, and whether its quality is consistent with the overall quality of
your team effort. Most of the time, when you use such assets, you do so provision-
ally, but then weeks later, after you have long forgotten the problem, someone else
begins work on the code and finds it confusing. Maybe it takes only 10 minutes to
investigate the issue and decide that the Dr. Seuss character was not, after all, a part
of the plan. The problem is enlarged if the asset is associated with an obscure bit of
functionality. Unless the testing operations are thorough, you can end up with a
situation in which a player of your game sends you an e-mail asking whether the
Dr. Seuss character was really supposed to be part of the dungeon scene. What is
worse is when the e-mail arrives from a lawyer making inquires about your com-
pany’s legal right to use the Dr. Seuss character. Configuration management can
help with this situation, at least ostensibly, by enforcing naming conventions. One
simple measure is to ask everyone to name test assets in an identifiable way.

Test Coordination Issues
When developers check in code, they can subject the code they check in to certain kinds
of tests. Sometimes such tests are rudimentary. Other times they are complex. Generally,
the more involved the tests, the less likely developers will check in their code on a frequent
basis. Infrequent checking in of code can result in merger nightmares. In addition to this
basic problem, the way that integration is established as a part of the configuration man-
agement scheme can have a significant bearing on both testing and development.

Disaster Recovery Issues
Any banking or medical operation that uses software is likely to be required by law to
maintain backed up data. The requirements are not quite so stringent with respect to
maintaining backed up development files, but the impact on the lives of those involved in
the effort can be just as significant. If the hard disk on the server crashes and the files that
the system comprises are lost, the price of the system increases by the value of the time

Chapter 10 ■ Control Freaks and Configuration Management374

needed to reconstruct the lost files. Likewise, the team might require as much time to
reconstruct lost software as was taken to create it in the first place. If the development
team is supposed to finish work on a software system by a given date, then one automat-
ic implication of lost development files is that the team will no longer be able to deliver
the software by the given date. This often leads to the cancellation of the software project.

Automated Builds
One of the basic jobs involved in software configuration management is the creation of
scripts that automatically build the software system at regular intervals during the devel-
opment process. For this reason, this chapter devotes some attention to how you can cre-
ate a script for automated builds. The procedure provided here is general. References to
books that contain greater practical implementation information are listed at the end of
this chapter. Among the activities that fall under this heading are these:

■ Setting up automatic build and compile routines

■ Designing and writing the scripts to accomplish automated builds

■ Running the scripts

Installation
Configuration managers sometimes create installation packages. More often, configura-
tion managers work with programmers who are responsible for creating installation pack-
ages. At the point of release, the configuration manager often assumes the role of release
manager. As is discussed in Chapter 17, release management involves a wide variety of
important details. In some cases, the configuration manager, like the developer who is
responsible for the installation package, will have a task list that the release manager
assigns.

As a developer or a configuration manager, you are responsible for creating an installation
package. The Ankh development team used ISTool.

ISTool
ISTool is the best current freeware installer for Windows programs. It is easy to obtain,
reliable, and easy to use. You can obtain ISTool from jrsoftware.org, and the best starting
place is to select the Inno Setup QuickStart Pack from the Web page list of download
options. The download is quick, and the installation is clean and immediate. You can
begin using it without preliminaries.

Installation 375

The license language is typical and uninvolved:

■ Must retain all copyright and notices.

■ Binary redistribution must retain copyright notice and Web site addresses.

■ The origin of the software must be represented correctly.

■ Modified versions must be labeled clearly.

Creating a Project
To use an installation package, you create a project and then select files you want to use.
Figure 10.17 shows the main working window of the ISTool with the File List view open.

To add a file to the installation package, you right-click, which opens a file selection win-
dow. Using the directory browser, you select the file you want to use. You can then set the
destination directory, the destination name, and other information that allows you to cus-
tomize the installation package.

Chapter 10 ■ Control Freaks and Configuration Management376

Figure 10.17
A tabular layout provides a summary view of file information.

Adding a Script
A script enables you to designate which prompts the installation operation will evoke and
how the user’s responses will be processed. Figure 10.18 shows the main working window
for ISTool with the Script view open.

Compiling and Testing
To compile your installer using ISTool, select the compile option from the Project menu.
Figure 10.19 indicates the installer options.

After you select Compile Setup, a log window is generated, and you can run a test version
of your installer. For the sample project, Figure 10.20 shows the resulting interface.

Installation 377

Figure 10.18
The scripting option for most installation packages is essential.

Chapter 10 ■ Control Freaks and Configuration Management378

Figure 10.19
ISTool provides you with a rich variety of project options.

Figure 10.20
The installation interface that results leads users through a
standard installation session.

Conclusion
SCM encompasses many tasks. At the beginning of the project, the software configuration
manager can work to build an SCM plan and encourage everyone to consider such issues
as which tools to use for SCM and which policies to set formally and informally. Other
early concerns involve coding standards, selection of installation tools, and how the soft-
ware design specification can be addressed most effectively through the build process.

In addition to setting policies for the group, the software configuration manager can work
to encourage everyone on the team to consider good local practices. For example, team
members might benefit from a review of the problems that can arise if they do not merge
their code on a reasonably frequent basis or when they add files to the configuration that
the design of the product does not justify.

The software configuration manager can facilitate the development effort by creating and
driving an SCM schedule that builds and integrates the components of the system. As an
extension of this activity, the development effort benefits tremendously if baselines of the
system are created in accord with the architectural mapping laid out in the software design
specification and the production schedule laid out in the project plan.

Creating an installation package for the game can in some cases be the responsibility of
the software configuration manager. Even if the release manager has the ultimate respon-
sibility for creating the installation package, the software configuration manager likely will
be responsible for selecting and configuring the tools with which the installation package
is created.

For further reading on SCM, you might find the following resources useful:

Berczuk, Stephen P. with Brad Appleton. Software Configuration Management Patterns:
Effective Teamwork, Practical Integration. Boston: Addison-Wesley, 2003.

Cockburn, Alistair. Agile Software Development. Boston: Addison-Wesley, 2002.

Compton, Stephen B. Configuration Management for Software. Ed. Joan R. Callahan.
New York: Van Nostrarand Reinhold, 1994.

Hass, Anne Mette Jonassen. Configuration Management Principles and Practice. Boston:
Addison-Wesley, 2203.

Kenefick, Sean. Real World Software Management Configuration, San Francisco: Apress,
2003.

Conclusion 379

381

Evident Evil—The Art
of Testing

Chapter 11

T
his chapter examines software testing. Software testing constitutes one of the major
aspects of software development. It involves investigating software to discover its
defects, which come in two general types. One type of defect arises when you have

not developed your software according to specification. Another type of defect arises when
you have developed software so that you add things to it that the specifications have not
anticipated. From one perspective, your game fails to do what you expect it to do. From the
other perspective, your game does things that you do not expect or want it to do. To elim-
inate defects, you subject your game to a variety of tests. Among these tests are those
involving components, integration, and the system as a whole. Testing presents an enor-
mous field of practice and study, but the following topics provide a good starting place:

■ Identifying what counts as a defect

■ Formalizing testing

■ Creating documents to guide testing

■ The types of domain knowledge that testing involves

■ Using test reports and test templates

■ Recognizing and guarding against coverage risks

■ Efforts and effects of testing

■ Different testing roles

Basics of Testing
Software testers explore software to discover whether it contains defects. To understand
the implications of this assertion, consider what it means to find a defect. What does it
mean to say that you think a program is defective? Perhaps it means that the program does

not do what you expect it to do. But then what does it mean to expect something? One
answer to this is that when you have expectations, you have been told or have intuitively
arrived at an understanding that the software should behave in certain ways. When soft-
ware does not behave as you expect it to, something is wrong. The software is defective.

Some types of misbehavior are obvious. Others are not. You are playing a game, and sud-
denly it freezes up and you have to reboot your computer manually. You try again and the
same thing happens. This counts as a defect that almost anyone can recognize intuitively.
On the other hand, you play the game and everything seems to be okay. However, even
though you know you have landed a killer blow on Manfred, the Barbarous, his strength
inexplicably increases, defying the logic, intent, and objectives that govern every other
aspect of the game.

This type of defect might be something you grasp intuitively, but it is more difficult to
understand precisely how to address the problem—especially if you are not a veteran
game player or a programmer. Some players might try to rationalize the odd behavior. The
rationalization might go along the following lines:

“Oh, well, on this level, when Manfred, the Barbarous attacks you, let him beat you to a pulp
and don’t hit him. His power will diminish to nothing, and he’ll die. If you hit him, he’ll
become more powerful, and then you’ll die. On the next level, however, if you do this,
Manfred will pulverize you. This is a subtle part of the game known only to the elite players.”

If you assume that the programmers specified Manfred’s behavior as consistent through-
out the game, you can assume that such behavior is not an intended, expected part of the
game, not even for elite players. Such behavior is accidental, unexpected, and defective.

The defect that the tester searches for has been inserted into the game through the devel-
opment effort and represents something that must be eliminated. The defect does not
result so much from the requirements or the design (assuming they are consistent) as it
does from faulty implementation. Manfred, like all characters, is supposed to inflict dam-
age when he successfully strikes a blow. Like all characters, he is supposed to suffer a loss
of health when struck. A software defect makes possible the reversal of this behavior.

As Figure 11.1 illustrates, the software tester works from the software specifications and
creates a test case. The test case establishes a way that the tester can work from the speci-
fications to test the behavior of the software within a strictly defined context. Using infor-
mation derived from the specifications, the tester defines initial and resulting conditions
for the test case. If the specifications stipulate that Manfred should lose health when
struck, and the tester discovers that Manfred instead gains health when struck, the soft-
ware fails the test case. When the software fails the test case, the tester forwards a defect
report to the maintenance programmer.

Chapter 11 ■ Evident Evil—The Art of Testing382

Software testers differ from programmers because they detect defects instead of altering
the code to eliminate them. Testers apply formalized test cases to the software, and based
on the results of the test cases, they forward reports of defects to programmers. Working
with the information that the testers provide, programmers eliminate the defects. Testers
then verify that the programmers have eliminated the defects.

Three Concepts
Figure 11.2 illustrates three concepts that are central to testing. Although testing involves
many other things, understanding what verification, validation, and exploration entail
helps you grasp the basic reasoning that motivates the development of different approach-
es to testing.

Basics of Testing 383

Figure 11.1
A defect is an implanted or created form of misbehavior.

Verification

Before developers plan a software product—a game—they specify it in one form or
another. In this book, a set of requirements specifies the game. Requirements consist of a
set of sentences, a set of use cases, or both. They establish how the game is expected to
behave. When you test whether the game satisfies the requirements, you verify that the
developers have developed the product in accordance with the requirements.

Validation

Even if developers develop a game so that it ostensibly looks like it satisfies the require-
ments, it still might not. Consider, for example, a requirement that two numbers shall be
added and a correct answer shall result. Suppose that 2 and 4 are added, and the result is
“cat.” To validate this situation, the tester first must determine the appropriate answers. (In
this case, assume that the requirements really mean numbers.) It might be that in a meta-
physical dimension beyond the mundane, 2 and 4 really do make “cat.” But the tester knows
that only numbers are expected.
Using this information, the tester
designs a validation test. If the
numbers result in numbers and if
the result is correct according to
standard arithmetical reasoning,
the implemented software pos-
sesses validity.

Chapter 11 ■ Evident Evil—The Art of Testing384

Figure 11.2
You can view testing as verification, validation, and exploration.

Exploration

Testing attempts to find defects that the development process has inserted into the soft-
ware product. Validity and verification offer the most direct ways to discover defects, but
testers have other approaches to testing. These tests involve not so much what is supposed
to be implemented (which, again, you can determine if you investigate the requirements
and the design of the software) but what is not supposed to be implemented. When you
investigate what is not supposed to be implemented, you enter into an exploratory realm
of testing. In some realms of testing, bugs become butterflies.

Bugs become butterflies because exploratory testing involves finding out whether the soft-
ware still behaves as specified when it is subjected to demands that it behave in ways that
are not specified. Testers figure out how to break things. Breaking software involves getting
it to behave in ways that are not specified. For example, in Ankh, a field in the character
designer allows the player to enter an arbitrary name for a character. Normally, players
would type a name, such as “Babba,” “Rah,” or “Slick.” But what happens if someone
decides to type a series of spaces? Discovering the answer requires exploratory testing. If
the system accepts spaces, it might still perform perfectly okay. At a later moment of play,
however, the player would see a blank line in the character selection list. When you click the
blank line, the character that is named using the spaces appears. Is this how you want the
game to behave?

Formalized Testing
The story of how you formalize testing begins with the story of how you test without for-
malization. When you test without formalization, you conduct what is known as reac-
tionary, or find-and-fix, testing. A great deal of programming falls under this heading. A
programmer types a few lines of code, tries to compile or build, and observes whether the
compiler detects a syntax error.

Basics of Testing 385

When a game involves tens or hundreds of thousands of lines of complex code, reac-
tionary programming no longer works. Instead, testing must take place according to an
overriding plan. Testers formulate tests that cover the entire scope of the product and
investigate as many logical or operational pathways through the product as possible.

Designing tests involves considering phases of development. Software begins with some
type of specification. It takes form through design. It is implemented, deployed, and
maintained. A type of testing corresponds to each of these phases. For example, you can
conduct behavioral, or functional, testing to verify that developers have implemented the
requirements. You can conduct integration testing to confirm that the modules or com-
ponents constructed to satisfy the requirements can be merged together. When you con-
duct system testing, you can take the system and observe whether it can be installed and
operated on different operating systems of computers.

As Figure 11.3 illustrates, you can encapsulate your testing activity in a relatively small
number of formal tests. Many more tests with exotic names can supplement these basic
forms of testing, but the core tests remain the starting point of almost any comprehensive
testing effort.

Chapter 11 ■ Evident Evil—The Art of Testing386

Figure 11.3
Test plans reflect development phases.

Approaches to Analysis
Games differ in at least one respect from other forms of software because they rarely lack
some type of preliminary documentation. On the other hand, games resemble most other
forms of software because the documentation on which they are based often lacks detail.
When you formally test a game software product, you might have to spend a great deal of
time analyzing the game software so that you know how to test it.

General Domain
Computer games, generally, constitute a domain of software. This domain comprises
game genres, character types, learning scenarios, and a multitude of other items. As a
game software tester, you apply knowledge of these items in a number of ways. Among
many possibilities, for example, you formulate test scenarios, plan test strategies, and
understand how much of the behavior of a game the test plan should cover. Without
domain knowledge, it might not be easy to determine how much to test the scope of a
game’s behavior or what level of detail specific test cases require.

Domain knowledge extends in every direction and excludes nothing related to game devel-
opment. Figure 11.4 illustrates a few common terms that are associated with game design.

Approaches to Analysis 387

Figure 11.4
Domain knowledge furnishes a context in which to scope the testing effort.

General game development domain knowledge provides you with insights that help with
the following tasks, among others:

■ Understanding the genre of the game so that you can focus testing to cover the
behavior that is most crucial to your game’s genre

■ Testing requirements specifications

■ Estimating the performance standards that your game should achieve in light of
benchmarks derived from knowledge of other games

■ Profiling the operational characteristics of the game to determine whether they are
on par with those of other games

■ Being able to communicate readily with both game designers and game software
developers during the testing effort

Application
You can consider application knowledge a subset of the more generalized domain of com-
puter game knowledge. When you address application concerns, your attention shifts to a
context that relates to the features of the game that express the current or forefront tech-
nologies that games embody. In recent history, among these are such items as particles,
shadows, wavering motion effects, bump maps, refinements in collision detection, multi-
player voice interactions, databases, and security extensions. In addition to current and
forefront technologies, games embody standard game application technologies. Among
these are dialog boxes, buttons, sliders, console layouts, help options, and navigation com-
ponents. Application domain knowledge enables you to test the game more effectively in
some of the following ways:

■ Designing test cases for verification and validation of requirements

■ Understanding what parts of the game represent new techniques and deserve spe-
cial attention

■ Making use of standard testing artifacts to address standard game features

Architectural
Games also comprise architectural components. You can identify these components in
numerous ways. From a design perspective, you work with modules. You can test modules
for encapsulation, coupling, and complexity. The UML provides tools that you can use to
depict architectural features. Among these are class, sequence, and package diagrams. (See
Chapter 3, “A Tutorial: UML and Object-Oriented Programming,” for discussion of these
tools.) Testing that is related to architectural issues can involve both implemented code
and design documents. Architectural domain knowledge helps you with some of the fol-
lowing activities:

Chapter 11 ■ Evident Evil—The Art of Testing388

■ Understanding how to structure the integration test plan

■ Knowing what test cases you can use from the design documentation as the basis
of the integration and system test plans

■ Establishing test criteria for test cases involving modules

Detail (Class)
Detailed design encompasses the development of functions and classes. You can consider
global functions as utility objects that you can test much as you might test a class object.
Classes involve interfaces, operations (which C++ programmers call member functions),
attributes (also known as class variables), accessor and mutator operations, and a variety
of other features that are specific to programming tasks. Knowledge of the detail domain
helps you to conduct structural or white-box testing. Such testing requires that you work
with the code. Among the tasks that such detail knowledge helps you perform are the
following:

■ Creation of test harnesses for classes and functions

■ Insertion of static and other functions into classes to audit object states

■ Writing standalone programs that you can use to test specific instances of objects

■ Working with test tools like those from the Boost C++ testing library

Maintenance
Chapter 17, “Release Planning and Management,” discusses testing as it relates to software
after release. Just before the release of the game, testers face an intensive effort to guide the
game through acceptance testing. Acceptance testing in general software efforts focuses on
the customer. This is true to some extent in the game world, too, but it is more accurate
to say that acceptance testing in the game world consists of formal measures that testers
implement.

As an example of the challenges that you face when you test a game for release, consider
a scenario in which your group has targeted Microsoft as a customer. Microsoft has estab-
lished an extensive list of criteria that games must meet if they are to be included in its
game suite. At last count, this list of criteria stretched to more than 100 pages. (For a
humorous review of the list, see Mike McShaffry’s book, Game Coding Complete. A refer-
ence appears at the end of this chapter.) Following are some paraphrases of a few of the
test conditions for Microsoft:

■ The application performs primary functions and remains stable during
functionality testing.

■ The application does not create temporary folders or place files in the wrong
locations.

Approaches to Analysis 389

■ The application remains stable when it processes a long file name.

■ The application remains stable when it is directed to use unavailable devices.

After a game has been released, its characteristics as a software product change. For one
thing, a game’s life does not usually include addition of new features and functionality.
Perfection of its existing features and functionality defines the focus of the programming
and testing efforts exerted toward it. Generally, this phase of a software product’s life is
anything but trivial. On the average, 60 percent of the expense that is involved in a soft-
ware product accrues after its release. Domain knowledge of maintenance efforts enables
you to augment your efforts in the following ways:

■ Understanding how to develop test procedures that address user-oriented issues.

■ Working with a trouble tracking system.

■ Verifying and validating software fixes on a revolving basis. In other words, you
might have to verify first that a bug that a user reports is valid and then, following
the efforts of the maintenance programmer, verify that the bug has been fixed.

The “V” Model
You can align testing activities with the software development cycle. One approach to this
is the “V” model. The “V” model starts with requirements and moves downward, on the left
leg of a “V,” through design and detail design. Then it begins upward, on the right of a “V,”
with implementation of classes, functions, components, and finally the whole system.
Figure 11.5 illustrates the flow of activities related to the domains discussed previously.

Chapter 11 ■ Evident Evil—The Art of Testing390

Figure 11.5
You can depict testing activities as a V that emphasizes design on one leg and development on the
other.

Ways to Test
Testing involves more than playing the game. Playing the game constitutes a significant
chunk of the activity that is involved in testing; however, the tests that you create often
focus on implementation rather than on gameplay. Whereas you might view the experi-
ence of playing the game as the big picture, working at the software engineering level, you
concentrate on an atomized view of the game that encompasses searching for defects in
how the behavior has been implemented. For this reason, you might tend to view the
game as a system that consists of components, modules, and performance characteristics,
not as something you play.

n o t e

Playability and usability testing differ from testing that focuses on classes, integration, components,
and systems. Playability and usability tests directly address how players of the game interact with
the game’s visible features. They also address the aesthetic qualities of the game. If you work as a
software engineer or software developer, such testing is definitely your concern, but you might be
able to accomplish your work much more readily by structuring your test plans so that expert (or
other) playability and usability testers are brought into the picture. You might view your job as
structuring and supervising such tests. Others follow test cases that you set up for them.

Inspection
Inspection involves examining items that are usually placed in the category of documen-
tation. You use inspection as your primary mode of testing when you have the luxury of
beginning your testing work at the beginning of a project. This is a good way to do things,
but unfortunately, many development groups do not bother to retain testers until rela-
tively late in the project. Here are some focal points of inspections:

■ Requirements. Participate in the development of requirements. Test the require-
ments to discover whether they are redundant, poorly worded, or fail to address
the functionality of the game.

■ Use cases. Assist with the development of use cases for requirements. Determine
whether the use cases address requirements adequately. Verify that the trigger and
ending conditions have been included. If a use case is excessively long, suggest that
it be broken down into two or more use cases. You can begin creating test cases (or
test procedures) using the use cases developed for requirements.

■ Design. Inspect the software design description. If the development team employs
UML diagrams, check the diagrams for accuracy and completeness.

■ Configuration. Inspect the configuration management plan to determine whether
the coding conventions, configuration policies, and other such items provide a
comprehensive framework for development.

Ways to Test 391

■ Documentation. Test documents to ensure that they are identified and numbered
correctly. If the versioning scheme creates confusion, report the problem.

In each case, you can test documentation and other inspected artifacts using the same
tools that you use to inspect code. In other words, create a test procedure and follow it. If
the procedure shows a problem, report it.

Unit or Class Testing
The traditional term for testing that involves examining the smallest components of the
software product is unit testing. Unit testing most commonly identifies the activity of
testers as they work along with the implementation effort. Unit testing can involve almost
any part of the software product before it is integrated into the complete system. The
focus of testing at this level is to examine behavior in isolation, before it is folded in with
other behavior and rendered, as a result, complex.

Another term for unit testing is class testing. The terms are interchangeable because both
relate to the smallest components in the software system. With object-oriented develop-
ment efforts, the smallest unit is the class. In procedural development efforts, the smallest
unit is the function. For the development effort for Ankh, almost all of the system con-
sisted of classes. Still, in a few instances, global functions were used. Combining classes
and libraries of functions characterizes many C++ development efforts because C++ does
not require that programmers use only object-oriented constructions.

n o t e

When you use UML to illustrate global functions, you can name the function as though it were an
object and then comment it so that readers can understand its origin.

Unit testing involves a large set of tools, some of which are illustrated in this chapter. For
now, an important point to emphasize is that unit (or class) testing offers the primary
medium through which you can test functional requirements. Note the following:

■ Component test plan. You can use the component test plan to detail most of the
test procedures you intend to execute to verify and validate the implementation of
the functionality that the requirements specify. With Ankh, the team began its

Chapter 11 ■ Evident Evil—The Art of Testing392

component testing by examining use cases that were included in the Ankh Software
Requirements Specification. Each use case provided a starting point for the creation
of a test procedure for the requirement.

■ Black-box testing. You can employ black box testing to test the behavior of com-
ponents. A class object is a component that receives parameter information and
returns a result. You can base a test case on these two points of interaction.

■ White-box testing. State-transition diagrams illustrate the work of white-box test-
ing. Such diagrams allow you to understand how the attributes of objects change
as they perform their work. White-box testing offers a powerful analytical tool to
evaluate the robustness of components at their most elemental level.

See “Using Templates” later in this chapter for more information about the tools you use
to conduct unit or class testing.

Integration
Integration testing involves creating test procedures to detect defects that result when
developers assemble the components created at the class level into modules. Interactions
among several classes usually characterize the life of a module. When two objects
exchange messages, the message that the first (client) object communicates to the second
(server) object can cause problems. Among common problems are those involving
improper instantiation of server objects. Improper instantiation of the server objects
results in failure of the client object. The error you detect, however, might indicate only
that the client fails. You must analyze the interactions of the assembled objects to deter-
mine the real source of the failure.

Planning integration testing requires that
you understand the design of the soft-
ware system. For this reason, you can
most effectively create an integration test-
ing plan after you have completed the
software design specification. With the
Ankh development effort, the team creat-
ed a design that comprised 14 stripes (or
modules). Planning the integration
efforts began with developing use cases
for each integration event. The use cases
established behavioral scenarios that
characterized expected system behavior
following each integration. (See Figure
11.6.)

Ways to Test 393

Figure 11.6
Use cases for integration provide conceptual
frameworks from which to begin test planning.

Creating use cases to visualize integrations serves as a reliable way to ground a testing
effort. Each integration use case provides a conceptual framework in which to understand
what functionality should be newly visible as a result of the integrated stripe. You then can
work from this understanding to test the specific behaviors that characterize this new sit-
uation. Using the collection of 14 integration use cases developed for the Ankh Software
Design Specification, the Ankh development team easily generated the initial set of test
procedures that composed the Ankh Integration Test Plan.

System
Consider what happens when a player installs a game. The installation succeeds if the
player can begin playing the game immediately after the installation concludes. It fails if
this is not the case. System testing involves examining the behavior of the software as a
complete entity. Its goals consist largely of ensuring that the player knows the game only
as an experience that begins and ends with what happens in the game.

The context of system testing encompasses using systems that represent those that you
expect your customers to use. It involves assembling the completed software into an isolat-
ed entity. To test this entity effectively, you first should remove dependencies. To accomplish
this, testers create a system test environment. Such an environment is usually a bare-bones
operating system installed on a machine that you consider typical of your customers. In
most development settings, the systems testing effort involves several environments that
mirror those of anticipated customers.

A system test plan consists of specifications of the targeted operating systems and
machines. It also provides test cases that require you to perform installations. On more
detailed levels, it can establish criteria for stress tests. A stress test can involve, for instance,
seeing what happens if the system on which you install your game has little available
RAM. How does the game then perform? Another test involves system failure. If a power
outage occurs, for example, how much data does your game lose?

As with component and integration tests, an effective approach to developing system tests
involves creating use cases. You can use common installation scenarios or stress condi-
tions as the basis of your use case development effort.

Planning Activities
When you plan test activities, you create test plans that address both different approach-
es to testing and different aspects of the system being tested. (See Figure 11.7.) You set
these two priorities because no one type of testing suffices to test all aspects of the system.
Likewise, the best way to test different aspects of the system is by using different approach-
es to testing. To confirm that the requirements have been met, for example, behavioral
(black-box) testing allows you to set up tests based on the use cases in the software

Chapter 11 ■ Evident Evil—The Art of Testing394

requirements specification. To
investigate performance and com-
plexity issues, you can use struc-
tural (white-box) testing. Test
plans allow you to think through
the approaches you want to use
and establish how you want to
analyze the system for testing.

Project Test Plan
You can quickly generate a project
test plan if you use a template.
IEEE standard 829 provides one of
the most common test plan tem-
plates. (For information about
IEEE standard 829, which provides
one of the most common tem-
plates, refer to “Using Templates.”)
The project test plan provides a
context in which you can plan the
overall testing effort. Among the tasks it can help you complete are the following:

■ Specific plans. Use the project test plan to determine what test plans you want to
write. Figure 11.8 illustrates the plans created for Ankh. You might determine that
other plans best suit your needs. For example, the Ankh development team decided
not to create an acceptance test, but such a test would have been mandated had a
game publisher been in the picture.

■ Testing targets. When you work at the project scope, you can consider what
aspects of the project possess the greatest importance. If you have developed a
game intended to display graphically superior features, you might draft playability
and usability plans that require you to subject these features to particularly harsh
scrutiny. Any type of testing can be accommodated as long as you take time up
front to plan your testing strategy.

■ Testing risks. The primary risks that any testing effort faces usually encompass
resources, schedule limitations, and granularity of testing. For example, if you do
not test enough, the quality of the game declines. If you try to test too much, your
testing effort almost inevitably fails to reach completion. If you lack testers or test-
ing resources, even if you have planned well, you might fail to test the product
adequately.

Planning Activities 395

Figure 11.7
Test plans lay the groundwork for approaches to testing
and different ways of analyzing the system.

■ Testing priorities. Priorities often reflect development cultures. If you work with a
group that centers its efforts on performance, your primary testing effort might
involve component test plans. Such plans often require construction of test har-
nesses designed to generate precise data to use for optimization. On the other
hand, priorities often arise from scheduling and resource limitations, so you might
find that you concentrate on the project test plan so that you can distribute limited
efforts as effectively as possible.

■ Scope and intensity of testing. A general view of the testing effort allows you to
plan the degree of coverage you want to achieve. Only by segmenting, analyzing,
and defining a specific testing agenda can you determine the scope and intensity of
the testing effort.

■ Scheduling. A project test plan often contains a detailed testing schedule. This
almost always occurs when the testing effort resides in a group that works sepa-
rately from the development group. When the development and testing efforts are
merged, however, you can fold the testing activity into the project test plan. For the
Ankh effort, testing efforts were not separate, so the project test plan referred the
reader to the project development plan for information about the testing schedule.

Component/Class Test Plan
The component or class test plan often features test procedures accompanied by tables
containing multitudes of test cases. In addition, you might find that this plan includes
specifications for test harnesses and automated testing scripts. Such tools allow you to
perform intensive structural testing at the component level. A component test plan often
comprises the most exacting plan in the suite of plans you develop for a software product.
It also can contain both behavior and structural test specifications. Among the tasks that
this plan can help you perform are the following:

■ Designation of test cases. For the Ankh development effort, the component test
plan named test cases that corresponded fairly directly to the use cases named in
the requirements specification. Further, the emphasis of the component test plan
was on behavioral testing. Structural testing was reserved for a relatively few
instances in which performance issues were estimated to be high risks.

■ Naming and specification of scripts. Whenever an automated testing script is
required, you can provide it as a supplement to a primary test procedure. You can
assign each requirement a primary test procedure. The primary test procedure
(which also can be referred to as a test case) can provide references to supplemen-
tary tables of test cases or separate test procedures.

Chapter 11 ■ Evident Evil—The Art of Testing396

■ Naming of classes to be tested. Name the classes and the features of the classes
that you want to test. To accomplish this, you identify initial and expected final
states of the objects you investigate. To carry out the test, you might have to design
a test harness that will set initial values and go from there.

■ Convert requirements use cases to test cases. The component test plan provides a
context by which you can convert use cases drawn from the requirements specifi-
cation into test procedures (or test cases). The value of starting with use cases is
that you work with material that you have already substantially refined, so most of
the information you require, if not already provided, is at least clearly outlined.

■ Formalization of test reports. Document every test so that you can record the
result of the execution of the test in a convenient, self-evident fashion. One
approach to this is to use a formalized test report. (See “Test Report Templates”
later in this chapter.) In other instances, you can embed test cases in tables that
allow you to include pass/fail results along with the cases.

■ Summarization of test results. Summary test reports provide a view of the overall
testing effort. Although it is important to establish that no test failed (or to explain
why you waived a failed test), it also is important to be able to account for the per-
cent of the overall planned testing activity you completed. You can summarize the
percent of overall functionality that you estimate you covered.

Integration Test Plan
The integration test plan should provide a clear roadmap for how you intend to test the
system as the developers construct it. As the developers assemble the modules (or stripes)
of the system, the integration test plan should indicate how you intend to confirm that the
assembly is acceptable. With the Ankh testing effort, the team reached this goal by creat-
ing test procedures based on the use cases that appeared in the design document. Among
the tasks that an integration test plan can help you perform are the following:

■ Set specific criteria for pass/fail of integration. When you set criteria for integration
testing, consider the percent of functionality you want to see covered before you
accept integration as successful. For example, you might establish that for each inte-
gration, the requirements included in the newly integrated module be tested individ-
ually to establish whether anomalies have developed or performance has declined.

■ Determine the depth of regression testing to be performed. You can set up tables
of test cases at this point to establish how much you want to test. If the testing for
each integration involves following a scenario based on use cases, you should des-
ignate which use cases you want to use. These can become standard models for
regression that you can use with each successive integration.

Planning Activities 397

■ Establish the extent to which black-box and white-box testing are to be used.
The integration plan provides a context in which you can set general polices and
practices regarding how you want to test integration. For example, you can say that
you want to verify functionality only, or you can designate that you test for perfor-
mance problems that might follow each integration.

■ Convert design use cases into integration test cases. As with the component test
plan, if you draw upon the use cases that you have developed during the design
effort, you might find that a substantial portion of your work has already been
done.

System Test Plan
You can use the system test plan to assemble the pass/fail criteria you want to assert
against the overall system. Among the tasks that this plan can help you perform are the
following:

■ Establish items to be installed. You can draw on the configuration plan to deter-
mine which components, assets, and documents should be installed. Testing the
installation, then, involves determining whether all the components, assets, and
documents have been installed. It also involves determining whether anything
other than these items has been installed.

■ Establish targeted environments. You can designate the machines and systems
you have targeted.

■ Performance. You can designate what, specifically, you consider successful perfor-
mance on the targeted system. One approach to this is to assign specific time val-
ues to tasks you think the system should be able to perform.

Acceptance Test Plan
An acceptance test plan allows you to name procedures and pass/fail criteria that repre-
sent the perspective of your customer. Among different approaches to acceptance testing
are alpha and beta testing. Beta tests receive the greatest attention because they allow your
customers to use your product in a friendly way. Friendliness involves providing feedback
that helps you identify and repair lingering defects. Other types of acceptance testing
involve exacting or legally stipulated items that you must confirm have been addressed to
the satisfaction of the client. In such situations, you might find that you turn your soft-
ware over to testers who work for your client. They apply a given set of tests to your soft-
ware and then advise you about the results. Publishers often have a game testing system of
this type in place.

Chapter 11 ■ Evident Evil—The Art of Testing398

Organizing Test
Planning Documents
A convenient way to organize
documents involves creating a
project test plan and then
making references to other,
specialized test plans in the
References section of this doc-
ument. In this way, you can
use a standard template (such
as the IEEE 829) to provide
coverage of common topics
while referring readers to spe-
cialized documents for specif-
ic testing issues, such as test
cases and test reports. Figure
11.8 shows a basic document
hierarchy similar to the one
that the Ankh team used.

Using Templates
You can group the templates
that you use for developing
testing artifacts into a simple set:

■ Tables with multiple columns. Tables provide a convenient way to store the data
derived from testing. This proves especially true when you want to document test
cases and must provide, in the process, specific itemizations of how you intend to
combine input values.

■ Test cases. As a part of its standard 829 commentary, the IEEE furnishes several
extremely useful tabular templates for test cases. These templates provide headings
you can implement in a document format, but the tabular form tends to make
everything easy to understand.

■ Test reports. As with the templates for test cases, the IEEE also furnishes sample
test reports. Test reports have few sections, but often you must supplement each
section with extensive tables of output values.

■ Test document outlines. Templates for documents help you understand how to
organize test cases, test reports, and tables of generated values so that you can
readily access them.

Using Templates 399

Figure 11.8
A simple document hierarchy directs readers from a project to a
test-implementation view of testing activities.

IEEE 829
Standard 829 for test plans con-
stitutes one of the best starting
places for generalized test plans.
Figure 11.9 provides topics from
IEEE Standard 829. For a specific
listing of the topics and extensive
discussion of how to use them,
you can consult the IEEE Web
site (http://www.ieee.org). The
template’s superiority lies in its
ability to help you focus on the
types of testing you want to per-
form. The Ankh team employed
the template to create the project
test plan. The project test plan
presented general policies and
definitions. For specific informa-
tion on testing, the plan referred
the reader to other documents.
Figure 11.8 illustrates how the
primary test plan based on IEEE
829 relates to the other three test
plans.

Among the most important topics are those that relate to how you want to approach the
overall test strategy. Thinking these topics through from the start helps you determine
how you can anticipate risks involving coverage. Ultimately, every test strategy must dic-
tate that not everything can be tested. You can test only what you have the time and
resources to test. Because of this, you must give consideration to how to best compensate
for limited testing. The template helps you do just this when it asks you to name things
like the features to be tested, the approaches to be taken, the items you intend to designate
for testing, and the risks you anticipate.

Table 11.1 discusses the topics that IEEE Standard 829 includes. (The CD includes the test
plans developed for the Ankh development project. Appendix D, “Software Engineering
and Game Design Documentation,” provides instructions about how to access the docu-
ments.)

Chapter 11 ■ Evident Evil—The Art of Testing400

Figure 11.9
Project test plans can use the IEEE Standard 829 as a start-
ing point.

Using Templates 401

Table 11.1 IEEE Standard 829 Topics

Topic Discussion

Test Plan Identifier The identifier should allow you to identify both the document
type and the version of the document. The identifiers that the
Ankh team used consisted of abbreviated document titles and a
number designating the level of release. The identifiers were as
follows: AnkhSWTP1_0.doc (project test plan, first version),
AnkhSWCTP1_0.doc (component/class test plan, first version),
AnkhSWITP1_0.doc (integration test plan, first version), and
AnkhSWSTP1_0.doc (system test plan, first version).

References The References heading in the project test plan for Ankh included
the names of the documents that contained specific testing infor-
mation. This approach to documentation reduced the amount of
general information included in the subordinate test plans (the
integration, system, and component test plans). Subordinate test
plans included a reference to the project test plan. Reducing
redundant information decreased maintenance work.

Introduction The introduction explains the overall test plan. If you want to use
a minimum of narrative, you can use a diagram representing
documents and their associated purposes.

Test Items Test items designate identifiable components, classes, operations,
logical entities, or other testable entities. Identifying test items
allows you to determine the types of test plans and test suites
that you want to develop. For example, if you work in an object-
oriented context, you name classes, operations, and modules as
test items.

Software Risk Issues Testing risks can go in many directions. Two key elements are
how much time you have to test and the scope and complexity
of the system you are responsible for testing. See “Assessing
Risks,” later in this chapter, for more information.

Features to Be Tested Those who play the game experience the features of the game.
Software requirements specify the functionality that supports the
features of the software. The features of the game, then, concern
how it is played. Use cases provide an excellent way to name
and describe features. You group features by placing them in
general subheadings. After grouping them, you can assess their
importance in relation to the testing effort.

Features Not to Be Tested Features that you do not intend to test consist of those that your
team planned but decided to exclude from the current release.
Among these are functionality that might be implemented but
left unused, documents, “trusted” components, and nonfunc-
tional requirements. The more formally you test your game, the
more you must clearly indicate what you have and have not
tested and the extent to which you have covered the features
you have tested.

(continued on next page)

Chapter 11 ■ Evident Evil—The Art of Testing402

Table 11.1 IEEE Standard 829 Topics (continued)

Topic Discussion

Approach When you describe your approach, you describe what might be
viewed as the terrain of your testing activity. In other words,
you might explain that the testing effort encompasses class,
module, and system testing, and that module testing is spec-
ified in the integration test plan. You might explain that
regression testing forms, in your approach, an important
element of integration testing. In addition, you might indicate
that your approach addresses multiple platforms, strives to
generate valuable metrics, and will adhere to a strictly planned
(documented) course. See “Ways to Test,” earlier in this chap-
ter, for specific information on this topic.

Item Pass/Fail Criteria Pass and fail criteria apply both to individual tests and the
overall test effort. This section allows you to establish policies,
such as that the test scenario of every test case must be com-
pleted and reported before the test suite containing the test
case can be said to be complete. Further, you can say that every
test case that a procedure contains must pass before the test
procedure can pass. On the other hand, you might designate
percentages of acceptable coverage. Generally, a test case does
not pass until it has shown that the software flawlessly fur-
nishes the behavior set as the pass criteria for the test case.

Suspension Criteria and This section provides a space in which to list such reasons
Resumption Requirements for suspension. One commonly occurring reason for sus-

pending testing is that a given type of testing no longer
generates useful data. For example, if you are testing a given
field and have tested boundary conditions and 75 percent of
the numbers you could enter into the field, you can suspend
testing. Another commonly occurring reason for suspending
testing is that you have detected a defect in the software
that shows that any results that follow will be unreliable. Until
maintenance programmers eliminate the defect, further testing
is a waste of time.

Test Deliverables This section allows you to state specific deliverables, such as
test cases, test reports, and test plans. When you complete this
section, name items such as logs, tables, summary reports,
reviews, and documents that should accompany your test
documentation effort.

Remaining Test Tasks You purposely exclude some test items, and other test items fall
outside the scope of your testing effort. Just because such items
fall outside the scope of your testing effort does not imply that
anyone should assume they should not be tested. For this reason,
after you have completed the actions named in the test plan, you
describe testing tasks that might still need to be tested.

Using Templates 403

Topic Discussion

Environmental Needs This section names the tools you use for testing. The tools
include software and hardware. For example, in most industrial
settings, it is considered essential to establish a separate and
distinct test environment from the ground up for testing pur-
poses. When you describe environmental needs for testing, you
identify everything you need to establish and sustain the
testing effort.

Staffing and Training Needs Staffing and training needs can relate to tools required to per-
form testing. How this works out depends on the culture of
your organization. You can include a schedule that names
those who are to perform testing.

Responsibilities Defining roles facilitates the development effort. You can set
policies about how you want the testing effort to proceed.
Even if roles are mixed, you can establish ground rules about
what responsibilities people have when they work as testers.

Schedule For the Ankh effort, a separate test team was not established.
Because of this, the testing schedule was folded into the pro-
ject plan. When setting up the project plan, the project man-
ager sets up specific testing tasks to be assigned to testers.
Many industry experts contend that software products benefit
if the managers assign testers and developers to separate
groups. There is great virtue to this approach. In a setting in
which separate teams exist, the test manager should create a
distinct test plan. The testing schedule should provide infor-
mation about when testing is to begin, what amount of time is
to be allotted for testing for each component or stripe, and
when testing is to be completed.

Planning Risks and Risks include what happens when you do not have enough
Contingencies time to test everything that you plan to test. Another issue is

what to do if you lack people to perform testing. A risk is any-
thing in the testing effort that endangers the completion of the
game development effort. If the testing effort can endanger
the schedule, you should list it.

Approvals Name the people who should approve the test plan. This
includes the project manager and the test manager, but you
can designate many other people, too.

Glossary Include a glossary of the terms that apply to your project. Even
if you think that things like “black-box testing” are clear to
everyone, ensure that disagreements or misunderstandings do
not occur. Definitions ensure that everyone has a common
understanding of basic terms.

Test Case Template
The IEEE defines a test case as a specific action, usually isolated from others, that you take
to evaluate the performance characteristics of a software system. The view taken in this
book is that the expression “text case” can be used interchangeably with “test procedure.”
Still, it is important to note that some testers use the expressions to designate different
things. Accordingly, a test case is said to be a specific action performed to evaluate a spe-
cific software property. On the other hand, a test procedure is said to consist of a set of test
cases. Again, the approach to testing that this book presents merges the two. Many devel-
opment organizations commonly do the same thing.

To expeditiously formulate a test case (or a test procedure), you can use the IEEE standard
829 template. To accomplish this, you can begin by creating a table for the test case using
a word processor (Word, FrameMaker, and so on) or a tool such as SmartDraw. If you use
this approach, you expend the greatest effort when you create the first test table. After that,
the effort involves copying, pasting, and modifying. If you want to assert a specific set of
policies for creating test cases, you can include instructions in the first table you create.
Figure 11.10 illustrates one of the templates that the Ankh tests used.

Chapter 11 ■ Evident Evil—The Art of Testing404

Figure 11.10
IEEE standard 829 provides a template that you can use to create test cases.

To use the template effectively, you can create two or more columns instead of just one. If
you use several columns, you can more effectively detail the information that you want to
use to conduct the tests. Table 11.2 discusses the information that’s included in the test plan.

Using Templates 405

Table 11.2 Test Case Headings*

Heading Discussion

Test identifier The unique identifier that you use for test cases varies with the
approach that you adopt to testing. For the Ankh testing
effort, because most of the test cases were general, the team
used a simple type of identifier. In more intensive testing
environments, this scheme can be extended to accommodate
large numbers of test cases or test cases that identify different
types of testing scenarios. The numbering scheme for the Ankh
test effort was as follows: The letter R or S (for requirement or
stripe) and the number of the test case, an underscore, letters
designating the type of test (ITC for integration, CTC for
classes, STC for system), an underscore, and an integer iden-
tifying the version or segment of the test case. Example:
S001_ITC_01.

Requirements addressed List the requirements that the test case addresses. This activity
extends in two directions. For black-box test cases (also known
as functional or behavioral testing), a test case might address
only one requirement. For the Ankh effort, because each black-
box text of the requirements originated with the use case
included in the requirements document, it made sense to
address only one requirement at a time. For test cases con-
cerning stripes or modules, you should include the require-
ments that cover the functionality of the stripe or module. For
the Ankh effort, the integration test plan listed test cases
derived from the software design specification. The software
design specification included use cases for each stripe.
Determining the correctness of system responses with respect
to stripes was the central focus of integration testing.

Prerequisite conditions Prerequisites can be specified in a number of ways. If you are
testing classes, for example, the values of attributes when an
object of a class is instantiated constitute testable precon-
ditions. The test case can specifically list the values that define
the preconditions. On a broader basis, when you are dealing
with modules in the integration test plan, you might designate
dependencies on other modules. This approach also provides a
context in which regression tests can be performed.

(continued on next page)

Chapter 11 ■ Evident Evil—The Art of Testing406

Table 11.2 Test Case Headings* (continued)

Heading Discussion

Test input Detailed test cases require that you provide tables of values
you want to use for testing. For the Ankh effort, the devel-
opment team worked at several levels. At the most general
level, the team designated input as general as the action. In
other cases, the team evaluated operations through stress and
similar tests involving specified data. For example, trying
letters, numbers, nonletter characters, and blank spaces in the
dialog box fields involved creating tables that listed such
values.

Expected test results For the black-box tests of the requirements, the use cases
included in the requirements specification made it easy to
determine expected results. Having at hand such ready-made
scenarios for testing constitutes a major reason for including
use cases in the requirements specification. With brief re-
wording of the scenarios and insertion of specific test data, the
use cases almost always completely anticipate the categories
of information states in the test case. If you are testing classes,
you can define expected test results at specific levels. For
example, you can use sequence, collaboration, or state
diagrams to determine the values you expect to see when
messaging occurs. In basic terms, for example, given that you
have created an instance of a class, what value do you expect
when you use a given operation with a given set of parameter
values?

Criteria for evaluating results When you evaluate the results of testing, you do so using
criteria such as acceptable variations and performance profiles.
In other words, you try to provide a generalized context in
which you can judge the significance of the results you have
obtained through testing. That a given operation returns zero
means nothing unless you have established a context in which
you can tell whether such a return value properly expresses
the conditions set for the operation. In other cases, it is pos-
sible to speak fairly broadly. For example, given that a use case
from the design specification establishes the context of perfor-
mance, it might be reasonable to write that evaluation of a
stripe cab be based on system responses. The Ankh testing
scenario designated that the system should perform as
prompted and allow the user to successfully complete the
action named in the test scenario.

Test Report Templates
Test report templates provide you with an expeditious way to record test results. Figure
11.11 illustrates a test report template that is suitable for reporting the results of test cases
or test procedures. The test report template guides you as you create tables or other arti-
facts for recording the results of testing. As with test cases and test procedures, the best
approach to organize test reports involves using a table.

Using Templates 407

Heading Discussion

Instructions for conducting If you create use cases for both requirements and design
procedure efforts, you can begin writing instruction sets for test

cases by copying the scenario from the use case. If you do not
use this approach, then you can formulate a numbered list of
steps you intend to follow as you conduct the test. If you are
using a test harness, you should provide enough information to
allow readers of the test case to repeat the actions you name. It
is helpful, for instance, to tell the user of the test case to copy
code into the harness (if this is what you do) and how to
proceed from there.

Features to be tested A requirement designates the functionality that is to be imple-
mented to support a feature, so to establish the feature to which
a test of a requirement relates involves inspecting the game for
specific ways that the implementation of the requirement affects
the player’s experience of the game. If you employ a use case
approach to requirements engineering, the use cases in the
requirements specification provide the best starting place for
identifying features to be tested.

Requirements traceability Requirements tend to be mutually dependent, so you should
trace dependencies. Requirements often address modules or
stripes, so you should trace them to modules and stripes. On the
other hand, when given classes embody the functionality a given
requirement has designated, then you should trace the class to
the requirement.

Rationale for decisions Most test results fall into four categories, as follows: pass, fail,
deferred, and cancelled. Regardless of the result you reach, it is
beneficial to make a statement that helps the reader know how
the test case can be used in different ways to accord with dif-
ferent circumstances. As an extreme example, you might set up
tests for the numbers 1 through 100. You could say that if you
test 0,1, 100, and 101 (boundary conditions), the other tests are
not needed.

*See Figure 11.10 for a sample test case.

Effectively developing testing reports requires examining how much information you
must record if you are to document the results of testing. For the vast majority of tests
involving fields and buttons, you might find that it is best to use a single table to combine
test procedures or cases with reports. In other instances, the test reports might require that
you document a succession of results that are more easily understood if examined in iso-
lation. In this case, a table similar to the one shown in Figure 11.11 might be best. Table
11.3 discusses the information included in the test report.

Chapter 11 ■ Evident Evil—The Art of Testing408

Figure 11.11
A test report template guides you through either recording test results or
developing tables and other artifacts to record test results.

Using Templates 409

Table 11.3 Test Case Headings

Heading Discussion

Test report identifier For the Ankh effort, the identifier involved the abbreviation for the
stripe, an underscore, a three-letter designation of the type of test
(ITC, for integration test case, for example), an underscore, an inte-
ger identifying the version of the test case, an underscore, and the
word “Report.” Example: S1_ITC_001_Report

Summary The summary should provide an overview of the test. You can write
a summary. To make things easy, you can check boxes for Open,
Completed, Failed, or Complete-Passed.

Variances Variances can describe differences in initial test conditions, pro-
cedures, and results. While it is important to conduct consistently
repeatable tests, you often need to make allowances for unantic-
ipated aspects of the planned testing routines. Chief among such
variations are those that arise due to limitations of time. For
example, if you stipulated 100 test cases but due to scheduling
limitations decided to test a sample of this, you can note this as a
variation.

Comprehensive assessment You can refer readers to a table of summary values, or you can
provide a simple description of the results. The purpose of the report
is to provide developers with information about how the system
failed (or passed) the test you applied to it. In contrast to the Sum-
mary section, this section calls for specific testing data. You can
provide, for example, specific data to help with further analysis of
the defect.

Summary of results Say what the problems were that caused the failure. If you set up a
table in this section, you can provide metrics on how many times
you conducted the test before it rendered a passing result and how
much effort you expended to remove the defect.

Evaluation The easiest approach to this might be to create check boxes.
Summary of activities As the template featured in Figure 11.11 indicates, important

metrics center on duration and effort. The information that you call
for when you summarize activities depends on what you or your
organization views as important. Key metrics, such as number of
testers, duration, and effort, are usually beneficial.

Test design If you develop a standard set of testing tools, you can create a set of
check boxes that enables you to indicate quickly which standard
design you applied. See “Tables for Testing” later in this chapter for
a list of table types that you can employ to guide test design.

Driver development If you apply a standard test harness to a multitude of test cases, you
can provide a reference to the files that contain the driver. Readers
of the report can then view this material to see how it was
implemented.

(continued on next page)

Tables for Testing
Tables are one of the most used type of testing artifact. To set up tables for your testing
effort, you might find that it is best to take some time at the start of your project to cre-
ate table templates. To create table templates, you can review your test plans and derive
from them the types of tables you will need. Experienced testers often develop an exten-
sive set of table types that address specific testing needs. In her book Introducing Software
Testing, Louise Tamres provides an extensive review of tables she has developed. (The
complete reference appears at the end of this chapter.) Among the tables that Tamres dis-
cusses are the following:

■ Decision. A decision table allows you to organize information along the lines typi-
cal of logical tables. Such tables are useful when you have multiple conditions that
correspond to multiple actions.

■ Keystroke/mouse action. This table tracks keystrokes or mouse actions against
fields and buttons. Among other tasks, this table provides a convenient way to
track the minute test cases that are involved in testing user interfaces.

■ Test procedure summary. This table enables you to coordinate test procedures
when you have a set of test procedures that consist of many test cases or when you
have test cases that involve procedures or a set of subordinate test cases.

■ Boundary condition tables. This table provides a way to ensure that you cover the
relatively few values you apply to a test scenario involving boundary conditions.

■ Cross reference. This can be a general utility table for tracking test procedures and
test cases. For example, suppose that you face a set of dependent operations. You
might use one dialog box in the GUI to enter values and then, later, access another
dialog box to retrieve the values. You might find it necessary to cross reference the
results of the two sets of interactions.

■ Test management. Test management involves tracking the performance of tests
and the results. You might want to create a table that summarizes the results of
dozens of test procedures.

Chapter 11 ■ Evident Evil—The Art of Testing410

Table 11.3 Test Case Headings (continued)

Heading Discussion

Stripe (module) revision This topic proved useful in the Ankh development effort because the
team conducted development and testing in the context of specific
stripes. It was important, then, always to trace activities to stripes.

Approval initials of tester It is important to identify those who are involved in a given test
scenario. This information proves useful if the defect is still current
and if you are gathering historical data.

■ Test cases, procedures, and reports. With the Ankh development effort, the team
used tables for test cases, test procedures, and testing reports because these things
provided a convenient way to reduce the amount of writing involved in creating
testing material.

■ State transition. You can use tables to track the changes in objects. If you first cre-
ate a UML state transition diagram when you use such tables, you can readily visu-
alize the attributes that the table contains.

■ Test requirements. Summarizing requirements in a table ensures that you can
track your testing progress.

■ Failed and passed reports. Summarizing testing reports, generally, makes it easier
to gather metrics and present summaries.

n o t e

Companies like IBM (Rational) and Borland manufacture testing tools that automatically generate
tables. For cottage industry endeavors, you can create tables using a spreadsheet, such as Excel,
Lotus, or Quattro Pro. Use spreadsheets if you anticipate extensive work with metrics or if you want
to access data for automated test scripts. If you want things to be easy to use, the table features of
word processors, such as Corel WordPerfect, Microsoft Word, or Adobe FrameMaker, are the best.
A final option is a general-purpose application, such as SmartDraw.

Limitations of space make it
impossible to provide extensive
discussion of how to use tables,
but a simple scenario can illus-
trate a few key ideas. (For compre-
hensive treatment of the topic, see
the book by Tamres listed at the
end of the chapter.) As an exam-
ple of how the Ankh test effort
used a table, consider the dialog
box in Figure 11.12.

The dialog box shown in Figure 11.12 is the central control dialog box that the player sees
during most of the game. To designate an action for a turn, the player clicks one of the
buttons. The dialog box features three sliders that indicate health and other points. Testing
the dialog box requires the tester to investigate the behavior of each of its features.

To set up a testing table that facilitates this effort, you create a matrix that shows the test
cases that guide you as you subject each of the features of the dialog box (such as buttons
and fields) to the possible inputs (mouse clicks, keystrokes, scroll actions, and so on).

Tables for Testing 411

Figure 11.12
A table helps you control the testing of dialog boxes.

As Figure 11.13 illustrates, after you have created a table to track the keystrokes and mouse
actions against sliders, fields, and buttons, you can easily work through each test case that
the table names and record the results.

The table in Figure 11.13 is set up so that the column on the left names buttons and slid-
ers (fields), and the top row identifies actions. The plus and minus signs signify that the
tester should try the action, but only those actions that a plus sign marks should elicit a
response. The two columns containing result information allow you to know the specified
result or, if the specified result does not occur, to note what did happen. If you take an
action and the expected result occurs, the test case or procedure passes. P indicates pass.

This table satisfies the basic criteria for setting up a test case. When you use such a table,
you should exercise caution to ensure that you distinguish each test case. In this instance,
either clicking on the Walk button or pressing the G key results in the action described.
(Note that the table should indicate if the Shift key is used with any other keys.) If the test
fails for either input, this table requires that you employ the Exceptional Result column to

Chapter 11 ■ Evident Evil—The Art of Testing412

Figure 11.13
Track involved test case scenarios using a table.

explain how the test failed. Perhaps a better approach would be to set up the keys in the
Cursor Location column. This table decreases the number of rows but can introduce some
confusion.

Testing Activities
When you perform testing activities, one maxim is that you should test as many things as
possible as much as possible. What and how much you test depend to a great extent on
how you plan your efforts and what tools you employ. Tools consist of documentation,
strategies, and test programs. The following few sections concentrate on strategies and
programs that you can create.

Test Cases and Procedures
Test cases and test procedures are documented instances of testing. The IEEE distinguish-
es between test procedures and test cases, but the practice in this chapter is to use the two
expressions interchangeably. The IEEE defines a test case as a specific, isolated instance of
testing. A procedure is defined as a collection of test cases. In practice, however, a proce-
dure can consist of test cases; likewise, a test case can be a procedure. Testers also employ
the expressions test scenario and test script in much the same way that they do test case and
test procedure. Context determines meaning.

Although the specific terms that apply to testing might be open to interpretation, a few
recommendations drawn from the IEEE should be followed fairly strictly:

■ Identified start state. Every procedure or test must commence with a clearly
defined set of conditions. In other words, when you design a test, you identify the
state of the system from which the test is to be initiated.

■ Procedures that can be repeated. A second stipulation is that you describe the test
that you perform so that it can be repeated. To achieve this goal, you can use a
script of actions you perform to complete the test. You can supplement your test
procedure with data tables and other artifacts. If you find yourself plodding
through directories and files to find test scripts, data, result information, and other
such items that you have not documented as part of your test scenario, it is
unlikely that you have created a test that you or others are likely to be able to
repeat. Documenting a test procedure amounts to writing a set of instructions that
others should be able to use.

■ Identified end state. A test determines whether or not the system properly transi-
tions from one state to another. Because transitions constitute primary criteria for
a test, as part of your test, you must identify criteria you can use to establish that
transitions result in specified changes. Just as you designate the state of the system
at the start of the test, you designate the state of the system at the conclusion of the

Testing Activities 413

test. The way you designate the concluding state depends on the type of test you
are performing. If you work at a behavioral level of testing, describing what the
game does might suffice. On the other hand, if you are working at a structural
level, you might need to know the specific values stored in object attributes.

Every test in some way tests a change in the system. You must be able to know, identify,
and evaluate these changes.

Converting Use Cases to Test Cases
Converting use cases to test cases constitutes a central activity of testing in object-oriented
development efforts. This occurs because the use cases you develop during the require-
ments and design phase of your development effort can anticipate almost every behavioral
scenario of the software product. What results is a substantial body of material from which
you can draw most of the information you require to create test plans and develop test pro-
cedures or test cases. (Page limitations make it impossible to discuss this important activi-
ty in detail in this chapter. For a full description of how to convert a use case to a test case,
see the section titled “Use Case Confirmation” in Chapter 14,“Practice, Practice, Practice.”)

Using Outlines
An alternative to converting use cases to test procedures is developing test outlines. This
approach to testing predates object-oriented programming, but it remains an instrumen-
tal part of many testing efforts. One reason for this is that many testers enter the develop-
ment process only after the product has been substantially completed and the available
documentation traces the design of the product in a rudimentary, incomplete way.

When this type of situation arrives, the tester can initiate a testing process based on trac-
ing the activities that the product is supposed to perform. An outline allows you to begin
a general level and gradually refine the outlines as you collect more information about the
product. As you go, you can begin supplementing the outline with use cases, test cases,
testing tables, and other artifacts.

Test Suites
A test suite is a group of test procedures that you package together to investigate what you
consider to be an area of behavior that the test procedures commonly address. A test suite,
for example, can address a module that provides GUI services. The test cases in the suite
investigate classes, operations, assets, and other items that you have determined to sup-
port GUI capabilities. Ideally, you can use the tests that you develop for one component
in a test suite for others in the suite.

Chapter 11 ■ Evident Evil—The Art of Testing414

Black-Box Testing
Black-box testing is also called behavioral or functional testing. To perform black-box test-
ing, you create a test procedure that establishes a set of start conditions for a given scenario
of change you expect to take place. To investigate this change, you establish a clearly defined
set of results. You then write a procedure that allows you to operate the system so that it
goes through the changes you have anticipated. The test succeeds if you can repeatedly per-
form the same operations, beginning from the same set of conditions, and end up with the
same results.

Black-box testing is most frequently applied to verification and validation of require-
ments. The approach employed for Ankh involved converting the use cases from the
requirements specification into test procedures. Each use case provided a scenario of use.
The scenario of use began with trigger conditions and ended in a given state change. The
test procedure formalized this scenario. The testing, then, investigated only the behavior
of the system. The way that the system structurally affected the changes that were investi-
gated was left to other types of testing.

White-Box Testing
White-box testing is also known as structural testing. It has some of the features of black-box
testing (beginning conditions, test scenario, end conditions), but with white-box testing, the
granularity of the test activity becomes much finer. The objective involves investigating the
specific changes of state that objects undergo as the system transitions from the beginning
conditions to the end conditions that your test describes. This type of transition is known as
a state transition. UML tools provide ways to trace and depict such transitions.

To execute white-box test procedures, you develop several types of artifacts. Among these
are main function programs that you employ to instantiate and explore class objects,
operations you add to a class so that you can derive information from objects of its type
as they go through state transitions, and complex test harnesses that allow you to investi-
gate the interactions of objects from different classes.

You can refer to the code that you write to conduct such tests as test harnesses. Harnesses
allow you to execute operations in isolation. Because a test harness executes a given body
of code in isolation, you can develop it any way you want without fear of corrupting the
entire program. Reducing the amount of system interaction limits the complexity of the
material you are testing.

Harnesses with Static Class Operations

Some testers use static operations and attributes to report object counts and states. You
can use a static attribute as a gauge for the activities of all instances of a given class.

Testing Activities 415

Therefore, if you include static functions in your classes, you can maintain tallies of object
counts and the cumulative values of attributes among class objects. In most cases, when you
output values, you should output to a log file. The following program shows only the basics:

namespace test{
class CThing
{
private:

string thingName;
int thingPower;
int id;
static int testTotal;
static int testPower;
static int testName;

public:

CThing(int power):id(0),thingPower(power)
{

testTotal++;
id = testTotal;
testPower = power;

}

static void ShowAttributes()
{

cout << “\nTotal - “ << testTotal << endl;
cout << “\Power - “ << testPower << endl;

}

~CThing()
{

cout << “Destructor: “ << testTotal << endl;
testTotal—;
cout << “Count: “ << testTotal;

}
};

int CThing::testTotal = 0;
int CThing::testPower = 0;
} //end test nsp

int main()
{

using namespace test;
cout << “\n” << “Harness”;
CThing* t1 = new CThing(0);
CThing::ShowAttributes();
CThing* t2 = new CThing(10);
CThing::ShowAttributes();

Chapter 11 ■ Evident Evil—The Art of Testing416

delete t2;
getch();
return 0;

}

Class Test Harnesses

To create a class test harness, you can develop a template class as your primary test har-
ness. The advantage of using a template class for a test harness is that you can establish
temporary messaging systems that simulate those that occur in the game. To make a class
harness system work effectively, you should explore the design of the game to discover
whether class hierarchies afford you opportunities to make use of existing code features
as you develop your test harness. Using abstract classes in your template definition makes
it easier to manipulate complex message exchanges. The following bit of code creates two
classes, one of which is a template. The template class enables you to immediately put the
tested class to work:

/*
———————————————————————————
The template declaration in this program sets up a class
that can receive generic data types.
The calls are cascaded, as in
ctrObjD.getFirstOfItems().getDataMName();
————————————————————————————
*/

template <class SDataS>
class CTestContainer
{
private:

SDataS firstOfItems;

public:
CTestContainer(SDataS setVal):firstOfItems(setVal)
{}

~CTestContainer(){}
SDataS GetFirstOfItems()
{

return firstOfItems;
}

void SetFirstOfItems(SDataS setVal)
{

firstOfItems = setVal;
}

};//end of CTestContainer Class

Testing Activities 417

class CGameClass
{
private:

string boxName;
long boxNumber;

public:
CGameClass(string bName, long bNum):

boxName(bName),
boxNumber(bNum)

{}
~CGameClass(){}

string GetDataName()
{

return boxName;
}

long GetDataNumber()
{

return boxNumber;
}

};//end CGameClass class

int main()
{
CGameClass dMObj(“Helper”, 45);

/*
The CTestContainer constructor uses the CGameClass type.
Having done this, it is then possible to access
operations associated with the object.
*/

CTestContainer<CGameClass> ctrObjD(dMObj);
cout << ctrObjD.GetFirstOfItems().GetDataName() << “\n”;
cout << ctrObjD.GetFirstOfItems().GetDataNumber() << “\n”;
cout << “\nEnd of program.”;
getch();
return 0;
}

Module Testing Harnesses

One of the biggest tasks that you face as a tester involves testing modules—classes that
work together to provide an identifiable service to your game. (The Ankh development
team referred to modules as stripes.) Being able to test modules requires that you have an
architectural view of the system that enables you to determine if a set of classes behaves
correctly as a service provider.

Chapter 11 ■ Evident Evil—The Art of Testing418

With the Ankh development effort, stripe testing began with the isolation of the classes
that composed specific stripes. To develop a module test, the team first had to establish
the behavioral scope of the test using a design use case. Then the team was able to use a
sequence diagram to scope out how to test specific class interactions for the stripe. (See
Figure 11.14.)

Although Figure 11.14 shows only six classes and a set of five message exchanges, it still
provides an excellent start for testing. If you start from such a beginning, you can con-
struct a test harness that allows you to create instances of these classes and then proceed
from there to specific types of tests. When you develop harnesses for testing modules, your
objective is to create a context that resembles the entire system but is simpler. Such test
harnesses require planning.

Assessing Risks
Risk assessment is an area of quality assurance, but testing can contribute to risk assess-
ment in important ways. This chapter emphasizes the way that risk assessment can involve
determining the extent to which your tests cover the complete scope of the game and pro-
vide a suitable level of testing granularity. In the large world of quality assurance, many
considerations that go beyond this relatively limited horizon come into consideration. For
example, quality assurance efforts endeavor to determine how maintainable software is.
In other words, given that something is bound to go wrong at some point, how much
effort (cost) will be required to fix the problem?

Assessing Risks 419

Figure 11.14
A sequence diagram is a starting point for module testing.

In the smaller world of test-specific work, two quality assurances that come into play are
testability and complexity. Testability is the extent to which you can reliably test the software.
Complexity is sometimes said to be a measure of how many logical paths you can take as you
operate a software program. If a program possesses high complexity, you have to expend a
greater effort to test it. Given that you have limited testing resources, if the complexity is
great and you are to competently test the software, you might have to tell the project man-
ager that the duration of the project must be extended to accommodate the testing effort.
(This is likely to meet with objections.)

Coverage
Consider the class
diagram that Figure
11.15 illustrates. In
this diagram, class A
communicates with
class B. After it has
received a return
value from its com-
munication with class
B, class A communi-
cates with an abstract object of class C. Depending on the return value communicated to A
from B, the abstract object of class C can be instantiated as an object from class D, E, F, or G.

As a tester, designing a set of tests that comprehensively covers the interactions of the sys-
tem classes involves investigating each of the paths that the system generates. As a starting
point, you might construct a table to trace the logical branches that the system of classes
sustains. Figure 11.16 illustrates a rudimentary venture in this direction. The table consists
of a set of test procedures. The test procedures contain a multitude of test cases (which the
table does not document specifically).

In Figure 11.16, all paths
begin with class A. Class
A communicates with
class B. Then class B
returns a value that allows
A to communicate with
class C, a factory class.
Depending on the value
that C receives, it pro-
vides an instance of the
specialized class (D, E,
F, G).

Chapter 11 ■ Evident Evil—The Art of Testing420

Figure 11.15
A system of classes sustains a multitude of interactions.

Figure 11.16
A table traces the interactions of a system of classes.

To test this system of classes, you can develop a structural (white-box) test. You face the
task of creating a test harness that can support at least the manipulation of an object of
class A. If you are to completely cover the interactions of this class, you must script the test
procedure so that you can evaluate whether classes D, E, F, and G have been instantiated
correctly. To accomplish this, you must have initial data to provide to class A and a table
of result data by which to evaluate the instances of classes D, E, F, and G. These are the
basic paths. Your coverage is determined by your analysis of the interactions of the class-
es and the number of test cases you develop to test the interactions. Further, the picture
grows in detail when you test the specific attributes of each of the evaluated classes to
determine whether they possess acceptable values at all points during the transaction.

The example presented so far involves white-box testing, which requires you to investigate
the code. You can use another approach, however. Assume that the complexities that are
exposed in Figure 11.16 are accounted for by clicks on the screen. Classes D, E, F, and G
are really characters that appear when you click given icons. In this instance, you can cre-
ate a black-box test. Generally, even if you decide to engage in white-box testing, you
should employ black-box testing first. That’s because it is essential to test the system to
determine whether it has met the specifications set by the requirements. If the system
should create a character when you click a given icon, you should establish this first
through a black-box test. Generally, you should achieve as much coverage of requirements
as possible using white-box testing before you begin developing black-box tests.

Complexity
Due to limitations of space and scope, a concept that is not dealt with in detail in this chap-
ter is cyclomatic complexity. This approach to complexity constitutes one of the leading
ways that software engineers investigate software complexity. Cyclomatic complexity mea-
sures a software system’s structural complexity. To establish a software system’s cyclomatic
complexity, software engineers measure the number of ways it is possible to navigate a
given body of code. The paths through a body of code are usually referred to as logical
branch points that the system contains.

For the purposes of the discussion here, the definition of complexity can be scaled back
to the basic idea that a game can be tested in terms of the number of ways a player might
be expected to use it. The requirements and design of the game software determine the
number of ways that a player interacts with a game. If developers competently engineer
and implement the software, player interactions will be limited to those that are specified.
Unanticipated or unspecified interactions that result in unanticipated or unspecified sys-
tem changes reveal defects. It is the job of testing to discover such defects.

Assessing Risks 421

Considerations of complexity underlie the confidence with which testers can anticipate
unanticipated interactions. To achieve a high degree of confidence, testers must design test
efforts along two general lines. Along the first line, they create large matrix-based testing
plans in which they schematize all the possible interactive pathways. They test each of the
possible interactions. Along the second line, they try to arrive at statistical determinations
of the paths through the software that are most important. By placing emphasis on test-
ing these paths, testers make effective use of their time and can say, in the end, that they
have exerted the greatest testing effort on the areas of greatest risk. This is one goal of
orthogonal defect categorization.

Orthogonal Defect Categories
The story of testing risks continues when you consider
what happens when you create so many test cases that you
do not have time to execute them all. Good testers plan
their tests and lay them out in a test plan. However, consid-
er a situation in which a tester plans 1,000 test cases and
then has time to execute only the first 30. Assuming the ini-
tial set of tests comprehensively covers the product, if the
tester just started at the top of the list and worked down,
only approximately 3 percent of the product would under-
go adequate testing.

To avoid such risk situations, you use orthogonal
approaches to categorize test cases. To understand the
notion of orthogonal categorization of test data, consider,
for example, what happens when you test combinations of
values generated from a dialog box. In almost any situa-
tion that involves two or more input fields in a dialog box,
the combinatorial product tends to create a large number
of test cases. (See Figure 11.17.)

Consider a simplified version of the type of dialog box
interaction represented in Figure 11.17. The player can, at
different points, configure a character so that it is identi-
fied with a distinct class, possesses a primary skill, and
wields a particular weapon. Figure 11.18 presents a tabu-
lar representation of these attributes. At arbitrary
moments during the life of the game, the player can access
a dialog box and select any combination of the items list-
ed in Figure 11.18. After the player completes this activity,
the resulting character has a distinct appearance, possess-
es a given skill, and wields a given weapon.

Chapter 11 ■ Evident Evil—The Art of Testing422

Figure 11.17
Multiple fields create large com-
binatorial products.

To create the test for the dialog box, you begin with the state of the character. You can set
the state of the character using default values. You then designate as the test input the val-
ues obtained from the selected items. The game design document provides information
that allows you to determine expected results. To assess the results, you examine the state
of the character after you close the dialog box. At this point, the state values that are
assigned to the character should be precisely those obtained from the dialog box selections.

When you test this dialog box, the work is extremely cumbersome even with a relatively
limited number of fields unless you automate the testing. Figure 11.19 illustrates the typ-
ical combinatorial procedure. To create test cases, you begin with the first item in the
Name column, Sekhem, you proceed to the next column, Skills, to the first item, Healing,
and then you test these two items in combination with each of the items in the Weapon
column. Having completed this work, you return to the Name column and again select
Sekhem. You then move to the Skills column and select the second item, Meditation. Then
you test these two items in combination with each of the items in the Weapon column.
The work is tedious.

Assessing Risks 423

Figure 11.18
Tabular representation of data combinations allows orthogonal
classifications.

You can determine the possible combinations (permutations) of the values displayed in
the table in Figure 11.18 if you multiply the number of values in each row (7 � 8 � 7).
The result is the number of possible test cases (392). When you determine the number of
possible test cases using simple combinatorial procedures, you create quite a few redun-
dant test cases.

When you employ an orthogonal approach to testing, you try to discover a few paths
through the combinatorial options that can responsibly represent all paths. Considering
again the values shown in Figure 11.18, the simplest approach emerges when you test only
one combination, such as Sekhem-Healing-Greek Dagger. You can say that you have tested
the dialog box scenario with minimum coverage (and substantial risk). The problem with
this approach is that it is so minimal that it is nearly irresponsible. A better approach
involves obtaining a healthy mixture of test cases while avoiding having to work through an
endless enumeration of combinatorial possibilities. Figure 11.20 illustrates one approach.

Chapter 11 ■ Evident Evil—The Art of Testing424

Figure 11.19
When you create test cases, you anticipate all possible
combinations.

The approach shown in Figure 11.20 is not as scientific as it might be, but it serves to show
what can be viewed as a practical approach to orthogonal classification. The scheme
involves moving down each column in a way that distributes coverage in each instance
across all possible items but also reduces the number of permutations to a minimum.

Impact
Impact concerns how much testing activities affect the development schedule. Testing
activities affect the testing effort in two ways. The first way entails causing the develop-
ment process to take longer than it would without testing. The second way entails decreas-
ing or increasing the reliability of the product. Generally, to a certain extent, the longer
you test a software product, the greater its reliability. On the other hand, it is also the case
that the longer you test, the fewer defects you discover. After a certain point, you arrive at
a crossover point. Determining when you will reach this point heavily impacts the extent
to which you can say that you have achieved a high degree of coverage and reduced risk
to a minimum.

Assessing Risks 425

Figure 11.20
Taking a moment to create, vary, and distribute combinations expedites testing
in a responsible way.

On the implementation level, each test requires a certain amount of time. The more
specifically you plan a test procedure and its constituent test cases, the more you can say
precisely how long a test will take to perform. Add to this that experienced testers usually
declare that you should make test cases as specific as possible, so that you can perform any
given test case as quickly as possible. When you use this approach to test development, you
can more flexibly adapt to schedule pressures.

Figure 11.21 illustrates the danger that arises if you plan only a few extensive tests. If you
spend a great deal of time setting up four large tests rather than 12 to 16 short ones, your
testing effort becomes vulnerable in terms of effort and effect. Respecting effort, you cre-
ate a risk because, for example, if you have time to complete only the first two tests, you
will cover only 50 percent of the system. The effect this has on the quality of the system is
significant. In the second situation, which involves the creation of numerous test cases
that do not involve a great deal of preparation, you can adjust your effort if you face time
restraints so that you will have time to test all parts of the system in some way. Testers
sometimes contend that it is better to test a little bit of a lot rather that a lot of a little.

Chapter 11 ■ Evident Evil—The Art of Testing426

Figure 11.21
Test a little of a lot rather than a lot of a little.

Testing Roles
Testing roles differ from organization to organization. Generally, experts of the old school
contend that it is best to have separate test and development teams. Those who have
adopted practices from the Agile Process tend to regard testing and development as mixed
roles. The position taken in this book is that testing is a distinct type of software develop-
ment work, so the more you can spend time learning the special skills that apply to it, the
better. Specialization over the centuries has been shown to be a key to quality.

Along similar lines, any given tester is likely to take up different testing roles at different
times during the project. These roles, to an extent, take on definition according to the
tools and techniques that are developed and acquired during the performance of the
work. Some of more common roles are as follows:

■ Integration. When you perform this work, you are generally the person on the
team who is taking the high-level view. Assembling pieces enables you to discern
problems of performance that others, working on specific components, might not
notice.

■ System. When you work with the system, you are thrown into the customer realm
because you are seeing the product as a whole, one that has to install and operate
correctly. Issues of size, completeness, and operability surface.

■ Manager. If you have worked long enough in a testing capacity and have a good
sense of how to develop test plans and schedule work, you are qualified to assume
a management role. As a manager, key tasks involve understanding the scope of the
game, assessing the appropriate level of test coverage, and assigning enough people
to the work to ensure that it is completed.

■ Structural. This is a general term for testing that penetrates into the system and
involves continuous dissection and inspection of minute aspects of the code. An
experienced developer who wants to assume a lead test position serves best in this
position.

■ Player. Expert players need not be software testers or programmers, but they need
to know their business as game players. Such testers are excellent resources at all
phases of the development effort as long as you structure their activity so that the
information they provide can be used effectively.

Conclusion
This chapter has investigated a few of the many topics that arise when you test software.
Testing software is, along with design and implementation, one of the major activities
involved in creating an engineered software product. To understand the intent of testing,
reviewing the concepts of validation, verification, and exploration proves helpful. Much

Conclusion 427

of the purpose of testing is to verify and validate the implementation effort in light of the
functionality that is specified in the requirements. In addition to ensuring that the soft-
ware product meets specifications, testing has an exploratory role. The role of exploration
involves combing the software to discover if random defects have been added to the prod-
uct. Exploration differs from validation and verification because it searches for behavior
that was not planned.

Planning a testing effort involves creating documents that guide you through your testing
activities. The IEEE standard 829 provides an excellent guide for creating such docu-
ments. Generally, it is a good idea to start with a high-level test plan for the whole project
and then to derive from this high-level plan several low-level plans that cover compo-
nents, integration, system, and acceptance testing.

Many tools and techniques of testing comprise a successful testing effort. Tables you can
create using spreadsheets or word processors are among the most humble but most use-
ful tools for software testers. You can customize tables to fill specific testing functions. You
can also use them to organize cases that test the behavior of dialog boxes. Finally, you can
use tables to cross reference or logically relate test cases. Table uses are multitudinous and
can expedite almost any testing operation.

Testing tends to go in two general directions: behavioral and structural. Behavior testing,
also known as black-box testing, seeks to establish only that the software behaves as spec-
ified. Such testing can be conducted largely from a user’s perspective. Structural testing,
also known as white-box testing, involves investigating the inner workings of operations,
classes, and modules. To pursue such testing, it is often necessary to construct test har-
nesses, which come in many forms. Among commonly used harnesses are those that make
use of such language features as static operations and template classes.

When you formulate specific test cases or test procedures, try to test a little of everything
rather than a lot of a few things. If you can design a multitude of tests that you can per-
form quickly, even if time limitations restrict the extent of your testing effort, you still
stand a chance of being able to test a wide variety of system features. This is better than
testing only a few features in depth.

For further reading on testing, consult the following sources:

Beizer, Boris. Software Testing Techniques. New York: Van Nostrand Reinhold, 1983.

Black, Rex. Critical Testing Processes: Plan, Prepare, Perform, Perfect. Boston: Addison-
Wesley, 2004.

McGregor, John D. and David A. Sykes. A Practical Guide to Testing Object-Oriented
Software. Boston: Addison-Wesley, 2004.

Tamres, Louise. Introducing Software Testing. Boston: Addison-Wesley, 2002.

Chapter 11 ■ Evident Evil—The Art of Testing428

429

Numbers for Nabobs

Chapter 12

W
hen software engineers measure either software products or development activ-
ities, they create metrics. The proper name for the work of measuring things
(software or otherwise) is metrology, but you will hardly ever hear this term

applied to the measurement of software or software development. Instead, most people
use the word metrics. Some people refer to metrics as a single set of activities, so it is fol-
lowed by a singular verb. For example, “Metrics is about quality.” When other people use
metrics, they are referring to numbers, so the word is treated as a plural. For example,
“The metrics were wrong on the last survey.”

Metrics encompasses both collecting data and developing mathematical tools for analyz-
ing data. To collect data, you learn how to ensure that it is accurate and valid. To analyze
data, you learn how to use statistical tools. Among other things, software developers use
metrics to estimate schedules, establish quality indicators, and develop production capa-
bilities. This chapter covers just a few of the vast number of ways that metrics are collect-
ed and analyzed:

■ Why metrics benefit software engineering efforts

■ Elementary notions about software data

■ Elementary notions about software statistics

■ Using Microsoft Excel as a tool for analysis

■ Ways to display metrics

■ Approaches to refining metrics for your project

■ Personalized metrics

■ Extended applications of metrics

Justifications for Collecting Metrics
Plenty of justification exists for trying to obtain quantitative information about what you
do as a game developer. One is personal. If you keep a log of how long it takes you to do
things, you will soon become good at estimating the effort involved in given tasks because
you will have historical data on which to base your estimates. Another, less personal jus-
tification for collecting data is that you can gain a better sense of what you have done dur-
ing your development effort. If you say, for example, that you think a class is complex, you
might have a sound intuitive grasp of the features of the class, but what you say has much
more meaning if you report that, on the average, each class has 16 operations and that the
one under consideration has 64.

A final justification for collecting metrics involves general organizational objectives.
Working in the capacity of a quality assurance specialist, you might be part of a team that
collects data to substantiate your organization’s capability standing. An organization
receives a capability rating according to whether it can show that it can create a given
product in roughly the same way on a repeatable basis. One way of evaluating whether
you can repeat a process is to collect data about your development activities. How long
does it take you to create a product? What is the size, in terms of operations, components,
or lines of code, of the games you create? How many defects were reported during a given
testing phase? How much did you spend on the development of the product? Such ques-
tions are those best answered with numbers.

Key Metrics
Data that you collect about a given type of activity, such as software development,
becomes metrical data. In other words, this data measures a process or system of doing
something. To determine how the activity in which you are involved can become the sub-
ject of metrics, consider how you can categorize your activities as you work on a software
product. Generally, you can establish categories in terms of four major divisions of data
often named by software engineers who are involved in metrics. These are as follows:

■ Process. Metrics relating to process can concern any of the activities listed in the
Software Engineering Body of Knowledge (SWEBOK) or documented in such
standards as those provided by the International Standards Organization (ISO) or
Software Engineering Institute (SEI). Processes usually transcend the boundaries
established by any one product or development effort, so metrics on process help
you identify trends that persist across products.

■ Personal. Metrics can begin with your own tasks. A reference is given at the end of
this chapter to Watts S. Humphrey’s Introduction to the Personal Software Process.
You can gain a sense of the usefulness of metrics if you collect data on your own
productivity as a developer.

Chapter 12 ■ Numbers for Nabobs430

■ Project. Metrics that are drawn from projects concern such items as how many
people were assigned to the project, how productive they were, how much within
or over budget the project was, and how long it took to finish work on the project.

■ Product. Metrics relating to the software product describe its size in lines of code,
modules, or other design features; its complexity in terms of the interaction of its
modules, classes, or operations; its performance; and its level of quality.

Information Sources
Several sites on the Internet provide information on software metrics and statistical (or
parametric) analysis. Among these are the following:

■ Center for Software Engineering (University of Southern California). This site
has significance because it is the home of COCOMO, CodeCount, and other tools
that are useful for metrics. Go to http://sunset.usc.edu/cse/COCOMO.

■ The Fraunhofer Center for Experimental Software Engineering (University of
Maryland). This site provides a great deal of information on software development
practices, with an emphasis on Capability Maturity Model Integration (CMMI).
Go to http://fc-md.umd.edu/fcmd/index.html.

■ International Society of Parametric Analysts (ISPA). ISPA is a professional soci-
ety that fosters research and practices relating to parametric cost modeling. As an
extension of this basic activity, it sponsors studies relating to risk analysis and tech-
nology forecasting. Parametric analysis involves studying relationships among cost,
schedule, and attributes that are specific to given software (and other) systems. Go
to http://www.ispa-cost.org/index.htm.

■ Quantitative Software Management (QSM). This site is significant for two rea-
sons. The first is that it supports Software LIfecycle Management (SLIM), which is
a major tool used for project control and estimation. The other reason is that it is
one of the few commercial sites that offers a good selection of useful papers on
metrics. Go to http://www.qsm.com/provisions.html.

■ SEI Software Engineering Measurement and Analysis. This site is a valuable
resource for acquiring knowledge about measurement and analysis practices as
they relate to the Capability Maturity Model (CMM) and its successor programs.
Go to http://www.sei.cmu.edu/sema/welcome.html.

■ Six Sigma. You can find a great deal of useful information about process quality
improvement through the Six Sigma Forum. Click on the Terms link. Go to
http://www.sixsigmaforum.com. For information about charts and other tools, go
to http://www.isixsigma.com. This is a supplemental page for SkyMark, which
offers PathMaker.

Information Sources 431

Metrical Terms
The vocabulary items that apply to software metrics have been adapted in part from sta-
tistics, but at the same time, the terms have been shaped so that they usually have mean-
ings that are best understood in relation to the software development environments in
which they are used. Although no formal categories exist for sorting out the terms you are
likely to encounter in discussions of software engineering metrics, you might find it use-
ful to work with three informal categories:

■ Those drawn directly from statistics

■ Those used in relation to general issues of software engineering

■ Those that apply to object-oriented programming

A glossary of definitions in a quality assurance plan provides everyone with a single source
of reference for how you have applied terms in the context of your project. For terms used
generally, a glossary from the SEI or the IEEE can help prevent most misunderstandings.
Table 12.1 provides definitions of some of the more common metrical terms.

Chapter 12 ■ Numbers for Nabobs432

Table 12.1 General Metrics and Metrical Terms

Term Discussion

LOC Lines of Code. This is a tricky term. When this term was first used, it was applied to
assembly language, so each line of code counted as an executable statement. With
higher-level languages, the term has taken on different meanings. Disputes arise, for
example, about whether LOC should refer to comments. Still, if you define the term
before you use it, you can anticipate most difficulties that might apply to your
project. See also KLOC.

KLOC Thousand Lines of Code. This term is important because it sets what might be called
the minimum acceptable number of LOC you can use to establish a ratio. The usual
practice is to take whatever measure you use and convert it to KLOCs. For example,
if you have a program that consists of 500 LOC, you have 0.5 KLOC.

Granularity The precision of detail that applies to the metrics you are using. The term is
intuitive. If your sampling has, say, 100 data points, and you have a possible sample
of several million, someone might conclude that your sampling is coarse grained.
On the other hand, you can apply sophisticated refinement techniques to almost
any data sample to tune the granularity.

Calibration Defining a scale according to a local context. The teeth on a comb are calibrated. If
you increase or decrease the distance between the teeth, you recalibrate the comb.
Any scale that begins with zero can be calibrated with any other scale that begins
with zero. To calibrate one scale based on another, you establish a ratio.

Where to Find Data
The title of this section should be “Things to Count,” and the picture you have of the sit-
uation should be the Count on Sesame Street. The emphasis in this chapter is on what you
can do with metrics in relation to development of a game software product, but it also
gives attention to processes and projects. Where to find data depends on what you want
to explore.

Object-Oriented Product Data
Table 12.2 provides a summary of possible data points that are applicable to object-
oriented efforts.

Where to Find Data 433

Term Discussion

Defect density The number of defects relative to the size of the program investigated. In most
cases, the unit of measure is KLOC, but in other cases, modules, function points,
classes, and other entities can be used. A program that consists of 1000 KLOC that
shows 23 defects has a lower density of defects than a program that consists of 1
KLOC that shows 10 defects. Historical studies indicate that NASA has achieved a
defect density of around a few defects per KLOC. Metrics for the software engineer-
ing industry in general show an average defect density of as high as 40–60 per
KLOC.

Size The number of lines, requirements, or other features that defines the scope of your
project. This value is fairly literal, but to define it precisely, you must turn to the
culture in which you are working. Do people think in terms of lines of code? Do
they think in terms of number of requirements?

Defect rate Rate is a dynamic way to talk about defects. It refers to the frequency with which
you can expect to encounter defects as you investigate a given body of code.
Because rate is dynamic, software engineers can be heard to talk about “declining”
defect rates. Such declines are typical of most successful software development
efforts as they near release. The defect rate is usually based on defects per KLOC.
See also defect density.

Function point In this text, function and operation are used synonymously. A set of executable
statements that performs a single task constitutes a function point. When this
term was first used, it applied to a group of specific functions designated with the
acronym CRUD, which referred to Create, Read, Update, and Delete and applied
primarily to database transactions. This way of addressing functions was too narrow
for many software developers, so over time, definitions of function points
proliferated.

Core Metrics for Projects and Processes
Across the software industry, a set of metrics referred to as core metrics has been in place
for several decades. Core metrics concern project, product, and process. They are most
often used for project management and process improvement purposes. Table 12.3 pro-
vides a summary of core software metrics. It is important to note that the descriptions
represent generalizations. Each organization tends to choose its own core metrics and
define them in culturally specific terms.

Chapter 12 ■ Numbers for Nabobs434

Table 12.2 Metrics for Object-Oriented Projects

Metric Description

Operations For operations, you can explore such items as the number of parameters that the
operation uses, the number of statements the operation contains, and the LOC per
operation. You can also explore how complex an operation is or what type of
message the operation sends. (In this text, the term operation is synonymous with
function and method.)

Classes You can explore how many operations in classes are public, private, or protected.
You can count the total number of operations, the instance attributes and
operations in a class, and the class attributes and class operations.

Inheritance You can count levels of hierarchy (how much or how far classes are descended),
the number of abstract classes, the number of operations in derived classes that
represent overridden or concrete versions operations in base classes, and the
number of operations added to derived classes.

Program Hygiene You can count the number of lines of comments, the number of times friend
functions or public attributes occur, and the number of commented and
uncommented operations.

Complexity You can count the number of classes with which given classes are in collaboration,
the number of operations used within operations, the number of times the same
messages are sent or received within the context of a class or an operation, and
the number of times class or code patterns occur.

For more information on what to count, see the Mark Lorenz and Jeff Kidd book titled Object-Oriented Software Metrics.
A full reference appears at the end of this chapter.

Where to Find Data 435

Table 12.3 Core Metrics for Processes and Projects

Metric Description

Product size The size of the product in terms of requirements, estimated lines of code, or other
indicators. Other indicators include function points, number of classes, or module
(stripe) counts. If you use requirements, you must perform a bit of design work to
determine how many modules or components are necessary. Ultimately, the unit of
size you use can be calibrated for use in determining required effort.

Productivity The number of LOC (or other units of measure) that team members or teams as a
whole create per unit of time measured. Normally, such counts are made on the basis
of weeks or months, but occasionally, you see day or year counts. Productivity can be
a difficult metric to establish because skill levels among individuals vary hugely.
Studies indicate that productivity in a group can vary as much as 20 to 1.

Effort The amount of work required by those involved in the development process to com-
plete the process. This differs from productivity. Productivity has to do with units of
code (or product completed) per unit of time measured. This has to do with hours
people who are assigned to the development of a product required to finish the prod-
uct according to specification. If you estimate, for example, that a product will require
6,000 lines of code and that during a year’s time, a developer can write 1,000 lines of
code, the effort will be either six years for one developer or one year for six develop-
ers. (Such estimations are naïve and a little bit dangerous, but here they serve only as
illustrations.)

Duration The calendar time required to complete the project. This differs from effort. Effort is
how many hours developers work on a product. Duration is the number of weeks,
months, or years that elapse as developers work on the project. On the average, for
instance, a developer might work 60 hours per week on a project. Therefore, if the
product required 600 hours of effort, the shortest duration for the development of the
product would be 10 weeks. If a developer were able to work only 30 hours per week
on the product (which is more likely to be the case at companies where meetings are
frequent), the effort extends to 20 weeks.

Reliability The number of defects found in the product. Reliability usually concerns a product
that has been released, but you can count defects at any point in the development
process that you deem appropriate. Developers unit test as they go, and their correc-
tions are usually considered a part of the primary development effort. After code is at
the completion stage, however, you can begin to assess its reliability relative to the
number of problems that customers report.

Lawrence H. Putnam and Ware Myers (Five Core Metrics) provide a good starting place for understanding core metrics as
they apply to process improvement. A full reference appears at the end of this chapter.

Benchmarking
Benchmarking is akin to best practices. When something is designated as a best practice,
however, the description is usually qualitative. It might be described as an order of actions
or a process. Benchmarking is quantitative rather than qualitative. A benchmark is a mea-
surement you can use for comparison. Some benchmarks are averages. Some benchmarks,
such as six sigma, are goals that are difficult to achieve.

There are three prevailing approaches to benchmarking:

■ Seek databases that are maintained by quality organizations. Sources for bench-
marks are available through the links listed under the heading “Internet Informa-
tion Sources.” The categories you use for benchmarking are up to you. You can
begin with the core metrics: effort, product duration, productivity, defect rate, and
size. An organization such as QSA maintains a database that consists of data from
thousands of software development projects spanning several decades.

■ Develop a database involving the test results from your own efforts. The key to
success in this area is to find ways to segment data. You can segment data in several
ways. For example, it is likely that when you are roughly one-fourth of the way
into your development effort, you will be able to begin gathering metrics that are
useful for benchmarking. For example, you can count the number of operations in
several classes and find an average. You can then use the mean as a benchmark as
you proceed with development efforts.

■ Concentrate on applying to your own setting the benchmarks that quality orga-
nizations maintain. You can obtain benchmarks from similar projects and place
them on file to be compared with your own benchmarks. This approach is a com-
bination of the two just mentioned. The benefit that this approach offers is that
although you do not isolate yourself from the world, you also do not subordinate
yourself to it. You allow your own organization to customize its benchmarks.

Relationships
At the basis of a relationship is an ordered pair. Designating or creating an ordered pair
involves examining two sets of data between which you want to establish a correlation. A cor-
relation is an assertion that a relationship exists between two or more sets of data that allows
you to say that when one item of data changes, the correlated item of data will also change.

Chapter 12 ■ Numbers for Nabobs436

The easiest way to set up relationships is to use the Cartesian coordinate plane. In its two-
dimensional version, the Cartesian plane provides two axes: the y-axis and the x-axis. In
Figure 12.1, the y-axis maps what is called the dependent variable. The x-axis maps what
is known as the independent variable. The value on the y-axis is dependent because its
value is calculated using the value on the x-axis.

To establish a primary relationship between two variables, you can develop a correlation
coefficient, which is represented using r. You can view the correlation coefficient in gen-
eral terms as a mathematical expression that transforms the independent variable so that
the result is a value that appears as the dependent variable.

Relationships 437

Figure 12.1
Dependent and independent variables relate through correlation.

When you analyze data to formulate relationships, you can proceed in a few basic
directions:

■ Exploration. Explore relationships between sets (columns) of data to discover a
mathematical formula that explains the relationship. If you can produce the values
in the column that contains the dependent variables using the values in the col-
umn containing the independent variables, you have gone far in proving the valid-
ity of the correlation coefficient.

■ Prediction and causality. You can also use formulas to generate data. When you
try to predict events on the basis of simple correlations, you risk being overly sim-
plistic. If you are conservative, you say only that if function A is applied to value x,
value y results. This is safe enough. People get into difficulty when they say things
like this: “Because A applied to x resulted in y, A is the cause of y.” Such simplistic
formulations are almost always disproven. One software engineering sage, Tom
DeMarco, refers to such talk as “limbaughing.” Predictive or cause-and-effect mod-
els are usually difficult to validate and verify, and they usually involve years of
work and dozens, if not hundreds or even thousands, of test situations and
variables.

■ Visualization. You can place the elements of two or more sets of data into a stan-
dard graphical format and inspect the result to enhance your intuitive awareness of
the layout of the data. This is one of the most effective and safest ways to analyze
software metrics.

Regression
To determine the validity of a relationship that you perceive between two or more vari-
ables, you can perform regression analysis. The way to understand the meaning of regres-
sion is to picture a graph that depicts a curve. Imagine that the curve is a graph of the
equation y = d2. If you graph the relationship between x and y, you end up with a parabo-
la. This is a standard graph of a set of numbers that have been squared. (See Figure 12.2.)
If you consider a second set of numbers and plot them on the graph, you see that they,
too, tend to follow the same pattern, although with slight variations from the pattern
established by the curve. This is an example of regression. The values in the two sets tend
to regress toward the curve.

Chapter 12 ■ Numbers for Nabobs438

Terms of Regression for Line Graphs
Figure 12.3 illustrates four basic types of regression.

Relationships 439

Figure 12.2
Regression designates a pattern toward which values tend to move.

Regression can be categorized according to a limited set of mathematical expressions:

■ Constant. When a regression follows a constant pattern, one value spawns many
other values. This type of regression makes sense if you consider, for example, that
one stripe of the software can be correlated with the classes that the stripe con-
tains. Suppose your development schedule requires that for each stripe, you imple-
ment some number of new classes. The number for the stripe remains constant
(1), but the number of classes changes.

■ Linear. When a regression follows a linear pattern, you see a straight line that runs
at an angle to the x (or y) axis. In practical terms, this relationship tells you that
the dependent variables change relatively gradually when compared to the inde-
pendent variables. You see this mathematically as follows: y = 2x, so 2(2) = 4, 2(4)
= 8, 2(10) = 20. You’ll find, for example, that when you revise a system, you should
increase the complexity of the system on a linear basis. (See “Linear Growth in
Complexity” in Chapter 14, “Practice, Practice, Practice.”)

■ Exponential. Another name for exponent is power. You raise a number to a power
by multiplying the number by itself the number of times that the power indicates.
You see this mathematically as follows: y = x2, so 22 = 4, 32 = 9, 102 = 100. Expo-
nential growth rates in things like complexity can be extremely hazardous to sys-
tem performance. Other names for exponential relationships are quadratic (raised
to a power of 2) and cubic (raised to a power of 3). Exponential is often used to
indicate anything above the power of 3.

■ Logarithmic. A logarithm is the inverse of an exponent. The logarithm of 32, base
2, is 5. You can see this mathematically as follows: log2(32) = log2(25) = 5. The
logarithm, base 10, of 100 is 2. You can see this mathematically as follows:
log10(100) = log10(102)= 2. You can say, then, “What exponent, given the base of
x, raises the base to the named number?” Logarithmic changes generally indicate
that a given change rate tends to level off after time. For example, as your project

Chapter 12 ■ Numbers for Nabobs440

Figure 12.3
You can mathematically characterize regression in four basic ways.

progresses, you might see a leveling off of defects in your software. Many good sort
algorithms tend to level off in their efficiency as the number of items they deal
with reaches a given size. Because a logarithm is the inverse of an exponent, the
curves are “flipped.”

Trend Lines
You can infer a lot from regression. Beginning with the caveat that some degree of caution
should characterize any effort that someone makes to draw inferences from simple sets of
data, it remains that basic regressions provide a way to investigate trend lines or, simply,
trends.

Rates are analogous to trends. If something is growing at an exponential rate, the news
could be good or bad. The higher the exponent, the more drastic the rate of change. To
arrive at a sense of what this means, suppose you have a program that consists of 60 class-
es. Picture creating a test harness in which you generate a mock error report when objects
from given classes in your program are called. Suppose that you disable loosely coupled
classes that provide minor GUI services, such as buttons. If you graph the results, you
might discover a linear rate of defects logged by the compiler. In contrast, suppose that
you disable heavily coupled classes that deal with IO or state management. If you graph
the results, you might discover an exponential rate in the increase of the number of defects
that the compiler logs. The trend in defect counts tends to be upward as you move from
less to more coupled classes.

Many areas of software analysis make use of rates and trends. For example, rates and
trends have a bearing on the efficiency of different sort algorithms. Sort algorithms with
logarithmic characteristics are preferable in many situations. With such algorithms, one
trend is that as the sample grows, the rate at which the algorithm sorts the sample tends
to level off. Likewise, when you investigate effort and defects, you analyze data to find rates
and trends. For example, you could say that the greater the effort you expend on the
design of your product, the more likely it is that you will observe a decreasing trend in
rework during implementation.

Relationships 441

Pareto
Pareto analysis offers a simple, effective way to analyze many situations that require sched-
uling. Almost everyone has heard the generalization that 20 percent of the population con-
trols 80 percent of the wealth. This notion is derived from Vilfredo Pareto (1848–1923),
who contended that income and wealth are distributed according to a logarithmic formu-
la. The formula reads log N = log A + m log x. In this equation, N designates the number of
income earners who receive incomes higher than x. The variables A and m are constants.

The 20-80 dichotomy applies to many situations and can be depicted graphically using a
histogram or frequency-based bar chart in conjunction with an inverted curve or stepped
graph. Figure 12.4 shows Pareto analysis applied to a categorized set of software defects.

Chapter 12 ■ Numbers for Nabobs442

Figure 12.4
Pareto analysis provides a convenient way to prioritize work.

Figure 12.4 shows the most practical way to set up a Pareto analysis. Values are organized in
descending order from the left. A calibrated scale appears on the left to indicate the total
number of items. A percentage scale appears on the right. In Figure 12.4, the body of data
being investigated concerns issues detected during code reviews. Issues concerning opera-
tional complexity and logical errors prevail. The break point seems to fall on class complex-
ity.You might draw a conclusion that efforts should concentrate on these three review issues.

Statistical Curves
The more sophisticated that your work with models becomes, the more you begin to pic-
ture the world as curves that represent probabilities of distribution. Working with proba-
bility and more advanced topics in statistics is beyond the scope of this chapter, but it is
worthwhile at least to mention a few of the curves that frequently represent distributions.

A distribution can be represented by the area under a curve. You can picture the area
under the curve as a kind of target. Imagine that you put a curve on a big poster and hang
it on a wall. Then you throw darts at it. You are likely to hit some areas and unlikely to hit
others. Your likeliness of hitting an area tells you the probability that your dart throw will
hit the target.

If you change the shape of the curve, more or less data will fit under it based on the curve’s
profile. Elsewhere in this chapter, for example, the Rayleigh model is discussed. When you
use this model to analyze the data on a project, a distinctive curve results. The curve that
results is familiar to statisticians as a Weibull curve. (See Figure 12.5.)

Statistical Curves 443

Figure 12.5
Curves provide ways of visualizing data.

This chapter covers only the normal and Weibull curves. The normal curve is said to cor-
respond to most distributions found in nature. It is shaped like a bell, it has a single mode,
and its tails extend infinitely.

Sigma
The Greek letter sigma (σ) represents standard deviation, which is a measure of variation.
(See the section called “Summing” for more discussion.) When statisticians address devi-
ation, they like to do so in terms of sigmas. If you calculate the mean and the standard
deviation of a normal curve, you will find that with a normal distribution, roughly 68 per-
cent of the data you have collected fits within a region described by plus and minus one
sigma from the mean. Further, around 95 percent of the values are within two sigmas from
the mean. Finally, around 98 percent of the values are within three sigmas from the mean.
These properties make the normal curve a good tool for evaluating the design of software.
The distribution of data relating to the size and complexity of classes, modules, or opera-
tions can be evaluated in terms of how well it fits a normal curve. (See Figure 12.6.)

Six Sigma
The expression six sigma refers to a standard of quality that has for some time received
wide recognition in the electrical and mechanical engineering world and has in more
recent times been applied to software engineering efforts. As was pointed out previously,
the distribution of elements of a population can be predictably grouped into percentiles
if the x-axis is calibrated using sigmas. A sigma can be viewed as a unit of standard devi-
ation calculated for the population or sample under consideration.

Engineers extended this notion so that rather than providing only a quick way to assess
deviation, sigma became a way to set a benchmark for quality. The benchmark, to put it
lightly, is exacting. It extends to Parts per Million (PPM). Figure 12.7 illustrates what you
can expect to encounter in terms of software defects after you have achieved a six sigma
quality rating.

Chapter 12 ■ Numbers for Nabobs444

Figure 12.6
Sigma provides a way to characterize distribution easily.

The way that the six sigma quality standard works is that the area outside the curve con-
tains the defects. The area under the curve represents the probability that the product is
free of defects. Over time, engineers have worked with the raw normal distribution (which
allows .002 PPM) to arrive at the quality goal of 1.5 sigma, or 3.4 PPM. The difference is
accounted for by a margin of drift.

When you consider how such a standard can be applied to a software product, the first
thoughts might be LOC, function points, or complexity. These are certainly options. Still,
although applying the six sigma standard along these lines is possible, the more useful and
common measurement applies to processes. For software engineers, the measurement is
best used to test the product against what the customer has specified, and it should be
applied not to one project, but to many. In this respect, six sigma becomes a measure of
the extent to which an organization or team is able to consistently produce products that
meet exacting quality standards.

Statistical Curves 445

Figure 12.7
Six sigma allows 3.4 defective parts per million.

Picturing Data
Making good use of data involves picturing the data you use. Even the most entrenched
hacker usually takes an interest in software engineering data presented in an attractive for-
mat. This book lacks room to include illustrations of all but a few of the standard charts
used to represent data. All those included here are created using Excel. They are but a few
from among the many that you can generate. Likewise, the illustrations deal with only a
few sets of data. For example, some represent names issues brought up during code
reviews. Others represent requirements addressed per stripe.

Pie Charts

A pie chart provides a convenient way to depict all the data in a given data set. When you
use an application such as Excel, you enter data in a column in a table and then tell the
application to generate the chart. For each item in the table, you see a wedge that provides
you with an intuitive grasp of the proportion of the whole that the data item represents.
(See Figure 12.8.)

Chapter 12 ■ Numbers for Nabobs446

Figure 12.8
Pie charts depict percentages.

Bar Charts

Bar charts provide a way to represent values so that you can compare them. It is not nec-
essary to order the values, but ranking them makes it easier to detect trends. Note, for
instance, that Figure 12.9 allows you to understand much more readily that complexity
was more frequently discussed than syntax errors.

Run Charts with Trend Lines
When you establish relationships between data sets, you often search for trends. A run
chart allows you to graph data using Cartesian coordinates and then to estimate trends. In
Figure 12.10, the lighter line shows the run (or set of plotted data). The heavier line shows
the trend. To determine the trend, imagine positioning the edge of a ruler on the graph so
that all the distances between the points covered by the ruler’s edge and the points repre-
sented by the run are as short as possible. The resulting position of the ruler shows you
the trend of the run.

Statistical Curves 447

Figure 12.9
Bar charts make it easy to show relative quantities.

Radar Charts

Radar charts serve
well to shows the
importance of groups
of data. As Figure
12.11 shows, opera-
tional complexity, log-
ical errors, and class
complexity constitut-
ed the major issues
discussed during the
course of this project.
Note how this view of
the data supplements
Pareto analysis by
helping you intuitive-
ly grasp the most
important issues.

Chapter 12 ■ Numbers for Nabobs448

Figure 12.10
Run charts can show trends.

Figure 12.11
Radar charts make data relations visible.

Scatter Plots

One purpose of a scatter plot is to quickly give you a sense of ranges or general distribu-
tions. In the example shown in Figure 12.12, although no trend is visible, you can quick-
ly gain a sense of how the design effort distributed implementation of the requirements
among the different stripes. After a few seconds, you can see that the maximum was 12
and the minimum 1.

Histograms and Frequency Polygons

As is discussed in greater detail in the section titled “Mode” later in this chapter, you can
group data into bins or intervals. Say that you count the number of defects reported each
day of the month for nine months. (See Figure 12.13.) If you divide the days into units
equal to the lengths of the months, you create intervals or bins. Each interval or bin con-
tains the values for a given month. The averages for the bins or intervals allow you to
establish data frequencies for the bins or intervals. Grouping data according to frequen-
cies is one of the primary uses of a histogram. From month to month, given the way the
data has been summarized, you can gain a general sense of tasks accomplished. This form
of representation is also called a frequency polygon. A polygon is a four-sided figure. The
averages of the data plots for the intervals allow you to determine where to place the cor-
ners of the polygons.

Statistical Curves 449

Figure 12.12
Scatter charts provide a way to detect clustering.

Divisions of Statistics
Software metrics makes continuous use of knowledge derived from statistics. Statistics
consists of two main branches. One is called descriptive statistics, and the other is called
inferential statistics.

Descriptive Statistics
Consider this short list of tasks you can accomplish using the tools of descriptive statistics:

■ Define and classify data. Data has two primary properties. One is that it must be
named. The other is that, in most cases, it must be quantified. A large set of stan-
dard categories for data have been established over the years. Among core data are
work effort, lines of code, duration of project, number of defects, and productivity.
Other data include a multitude of measures that concentrate on the code, such as
number of classes, number of functions, collaborations among classes, complexity
of classes.

■ Visualize data. Graphical tools help you to represent data so that it is easy to
understand. Among the tools that Excel makes available are graphs, pie charts,
grids, bar charts, radar charts, and matrixes.

Chapter 12 ■ Numbers for Nabobs450

Figure 12.13
Histograms provide frequency polygons.

■ Describe data features. You compute, among other things, means, medians, and
modes. Such profiles of data help you to understand the static characteristics of
software. For example, by counting the numbers of functions in a set of classes,
you can arrive at a general understanding of how consistently the classes have been
developed. The same applies to the amount of code you create during a week.

■ Analyze data features. You can compute such things as variance, deviation, and
range. When you can examine data and arrive at conclusions about trends, rates,
and distributions, you move into a deeper realm of data description that helps you
make judgments about the quality of your planning and implementation efforts.

Inferential Statistics
When you gather samples of a body of information and then create mathematical mod-
els that allow you to use these samples to predict trends, you have begun to perform sta-
tistical inference. The big difference between description and inference is that whereas
description tries to represent what is known, inference takes a sampling of what is known
and tries to project what is unknown. When you try to infer from the known to project
the unknown, you deal with uncertainty.

Science deals with uncertainty by using the structured hypothesis. When you make a state-
ment about what you think the numbers will reveal, you present a statistical or null
hypothesis. To test the hypothesis, you first create a model for sampling and then collect a
random sample of data. From there, you use an established mathematical model to struc-
ture the data and draw from it a conclusion. If your model generates data that contradicts
your hypothesis, your hypothesis fails.

Inferential statistics has had a wonderfully successful record in electrical and mechanical
engineering. One famous product of inference is the Mean Time to Failure (MTTF), which
is a number inferred from a set of random tests that engineers perform on a given prod-
uct to determine how long the product will operate correctly before it fails. NASA and
most companies that deal with engineering products that fly or go far into space must
worry endlessly about how long a piece of equipment will operate correctly before it fails.
The same applies, to a lesser extent, to buildings, bridges, and electrical motors.

With buildings and bridges, the most intensive efforts to infer MTTF concern construc-
tion materials. All materials that are subjected to prolonged stress become brittle, and an
engineer who is involved in determining MTTF seeks to discover how much stress a given
material can bear and how long, even with acceptable levels of stress, the material will last
before it begins to abrade or disintegrate. (Henri Petroski has written an excellent book
that features many stories about this type of engineering activity. See the reference at the
end of this chapter.)

Divisions of Statistics 451

Software usually does not become brittle, but it does have characteristics that correspond
to those of materials engineering. The similarity is that engineers project current trends
in failure rates into the future. The difference is that when the failure rates are known,
actions taken do not usually involve decommissioning the product. Materials experts
want to know when a bridge needs to be replaced. Software engineers seek to know what
is called the Mean Time to Defect (MTTD). The MTTD is a pattern that characterizes how
long a given body of software must be tested before its defects will no longer show up at
a rate that presents a danger.

Consider that all software, regardless of how well it’s designed, possesses defects when it
reaches the point of code completion. From this moment on, testing and maintenance of
the product begins. (In Figure 12.14, for example, a typical defect trend is shown.) If the
software is to see service on a space probe that is to spend decades in space, testing should
take place until engineers can establish that the rate at which defects are detected reaches
an acceptable minimum. To accomplish this, they examine the record for defects and
establish a trend.

The objective is not so much one of eliminating defects (although this is a big part of the
effort) as it is one of trying to predict when the testing of the software will have reached a
point at which the rate of software defect detection has leveled off to a predictable, stable
level. (See Figure 12.14.) It is unlikely that the software will ever reach a point at which no
defects are detected. It is likely, however, that with enough testing, a point will be reached
at which defects will occur in a stable, predictable pattern.

Chapter 12 ■ Numbers for Nabobs452

Figure 12.14
The MTTD shows how long you must test software before you can consider it acceptable for release.

Statistical Basics
A few books on statistics and metrics are listed at the end of this chapter, but a short dis-
cussion of some of the basic notions involved in statistical studies can help you under-
stand the scope and depth of knowledge required to perform tasks associated with basic
software metrics. One realization likely to result is that the activities can be only margin-
ally demanding and yet yield a surprisingly rich set of results.

Summing
When you study statistics, one of the first things you learn is how to perform summations.
Summations involve adding together the numbers of a set. The benefit of summation is
that many pieces of data can be collected into a whole, so that the value or significance of
each piece can be known in relation to the whole. If you record how long it takes you to
create one operation in a C++ GUI class, you are taking a step in the right direction, but
you have only one piece of data, and in isolation, data has little meaning. If you record
how long it takes you to create each operation in several C++ classes, you can begin com-
paring how long one operation takes relative to your entire effort. If you establish a ratio
of part to whole, you can begin seeing items such as the average and boundary efforts.

Sequences and Series

A summation involves adding together the elements of a sequence. A sequence is a set of
numbers drawn together by a common characteristic. When you add together the ele-
ments of a sequence, the result is called the sum of a series. A series is a set of numbers
that you can examine as a pattern.

For example, assume that you use a sequence of values that represent the number of oper-
ations in the classes of Stripe 4 of Ankh:

64, 1, 4, 4, 5, 6, 10, 11, 29, 19, 6, 6, 1, 8

The expression used to indicate the sum of the series is Sn. (You can pronounce this as “S
sub n,” or “the series S.”) To calculate the series, Sn, you recursively add the numbers start-
ing with the first number, until you reach the end. The result is called a summation. Here
is how you can represent this activity:

Sn = 64 + 1 + 4 + 4 + 5 + 6 + 10 + 11 + 29 + 19 + 6 + 6 + 1 + 8

The sum of the series, Sn, is 174. Each number in isolation is a piece of the whole. You have
now created a whole. (See Figure 12.15.)

Statistical Basics 453

Sigma

When you sum a series, the math is simple, as the previous example shows, but saying just
how the math should be done ends up being a little difficult. Mathematicians use the
Greek letter sigma (�) to indicate summation. Here is how to instruct someone to sum
the values in the sequence previously defined:

The way this reads is as follows: “The sum as i goes from the first element in the series, a1,
to the last element in the series, an .” The i is a pointer, and it points to elements in the
series. By convention, the letter a indicates an element, and the subscript indicates the
place in the series. A subscript of 1 (a1) indicates the first element. A subscript of n (an)

indicates the last element. The element a8 is 10.

Summation provides the beginning of a set of relationships. With the result of a summa-
tion, you can begin to detect the proportion of each part to the whole.

Chapter 12 ■ Numbers for Nabobs454

Figure 12.15
Summation unifies parts into a whole, which forms the basis of proportion.

Tabular Data

When statisticians create summa-
tions using data from a table, they
often use the name of the data col-
umn to designate the series.
Assume that an Excel table stores
the data for the operations dealt
with previously. (See Figure
12.16.) The name of the column is
f '. (You can pronounce this as f-
prime). To show that the data from
column f ' is to be summed, you
create a summation expression
naming the column. In Figure
12.16, the sigma expression
means, “Sum the elements from
column f '.”

Mean

You can use summation to arrive at
the mean of a set of values. The
mean of a set of values is also
known as its arithmetic average.
You can calculate the mean of the
values using the following formula:

According to the formula, you first sum the elements in the column. Next, you divide the
sum of the elements by the number of elements you have summed:

Statistical Basics 455

Figure 12.16
Sigma notation indicates that elements from the table
column f' are to be summed.

Note that you use an approximation operator (≅) for this equation. That’s because the
value is not exact. In this context, it makes little sense to show anything other than an inte-
ger. This is the case unless you are dealing with precise numbers and compute margins of
error. (See Figure 12.17).

Median

Continuing to work
from the table of values
in Figure 12.16, to find
the median value, you
can organize the num-
bers from lowest to high-
est. If the set of values is
odd, you can take the
value in the middle. If
the set of values is even,
you can find a number
that is half the sum of the
two middle values. (See
Figure 12.18.)

Chapter 12 ■ Numbers for Nabobs456

Figure 12.17
The mean is the arithmetic average.

Figure 12.18
The median provides a sense of what value lies at the middle of the
sample.

Range and
Midrange

The midrange is the value
that is halfway between
the largest and smallest
value. (See Figure 12.19.)

When you subtract the
smallest value from the
largest value, you estab-
lish the range of the data
sample. Range provides
you with a picture of the
variability of the data
sample. Range tends to
be smaller than the total
data sample (however, in this case, it is not), and it tends to represent extremes. If you use
the range to calculate the midrange, you can begin to see degrees of deviation (which is
discussed more in the upcoming section titled “Standard Deviation”).

Mode

The mode of a series is the value that occurs most frequently. The value that occurs most
frequently in the set of data on operations is 6. Mode is an indicator of what is known as
peak frequency. Peak frequency is one part of the distribution of frequencies within any
given set of frequencies. Within different samples or populations, several modes can exist.
You can establish several modes by dividing the set into a group of bins or intervals. (See
the discussion in the previous section titled “Histograms and Frequency Polygons.”)
Figure 12.20 shows the sample classes treated as one data set, with one main mode.

Statistical Basics 457

Figure 12.19
Range and midrange confirm the spread of data.

Consider, for example what happens if you look at mode, median, and mean as they give
shape to the data points you have sampled from the classes in Stripe 4. (See Figure 12.21.)
The pattern that emerges is one that represents a skewed distribution. Compare this with
a symmetrical distribution, which occurs when the mode, median, and mean line up with
the same or close to the same values, as shown in Figure 12.22.

Chapter 12 ■ Numbers for Nabobs458

Figure 12.20
Mode expresses frequency.

Figure 12.21
The frequency skews the curve for the operations in the analyzed class.

Deviation and Variance

Deviation is the difference between any selected value in your data set and the mean of
your data set. The computation of deviation is represented in Figure 12.23.

Although it is not evident from the small sampling used in Figure 12.23, adding together the
deviations can result in values that are not very useful, such as zero or negative numbers. To
overcome this problem, rather than deviation, you seek variance. Variance is calculated by
squaring all the deviations, adding them together, and then obtaining the average:

Statistical Basics 459

Figure 12.22
With symmetrical distribution, the mode, the median, and the
mean are aligned.

Figure 12.23
Deviation is the difference between the mean and a selected value from the set.

If you have information on all members of the data set you are using, the data set is called
the population. The square of the lowercase Greek letter sigma (�2) represents population
variance. You pronounce this sigma squared. When you are dealing with all members of a
sample set, you can also replace the bar X with the Greek letter mu (�). When you calcu-
late population variance, the number used for the denominator is equal to the total pop-
ulation or to the sample size minus 1.

On the other hand, if you are dealing with only a selected set of the population, you can
calculate the sample variance. You represent the sample variance using s2. Following are
the mathematical representations for population and sample variance:

Standard Deviation
To arrive at the standard deviation, you take the square root of either the population vari-
ance or the sample variance. Because you are taking the square roots of sample variances,
the symbol for the standard deviation for population is lowercase sigma (�), and the sym-
bol for the standard deviation for a sample is s. Following are formulas you can use for
both population and sample standard deviation:

Note that the lowercase s is used in these formulas. You can substitute the lowercase sigma
(�) if you are calculating standard deviation for a population. The formulas apply to both
populations and samples. Given these formulations, the standard deviation for the oper-
ations from Stripe 4 is 16.00.

Chapter 12 ■ Numbers for Nabobs460

Validity and Reliability
If you sample data in a consistent way, so that each piece of data is collected using the same
method and unit of measurement, the data you collect has a high degree of reliability.

Inevitably, however, any measurement can be off the mark. If you want to treat your data
in a highly scientific manner, you can calculate an index of variation, which is more or less
a ratio that expresses the margin of error in your data. The symbol for index of variation
is IV. The math is as follows:

As in software testing, validity applies to whether the measurement actually measures
what it is said to measure. For instance, with the operations in the class from Stripe 4, you
can establish what counts as an operation by examining the programming syntax. (See
Figure 12.24.)

Statistical Basics 461

Figure 12.24
You can establish data validity by clearly defining the source of the data and the criteria used to iden-
tify it.

Proportion

In Figure 12.16, when you count operations in classes in Stripe 4 and then add the results
so that you can calculate the mean, you lay the groundwork for another important notion:
proportion. When you determine the ratio of a subset to a set, you discover a proportion.
A proportion applies to either a population (the group of all things of a given category)
or a sample.

The symbol that indicates proportion when you are using a population is the lowercase
Greek letter pi (�). The symbol that indicates proportion when you are using a sample is
the capital letter P. Because the quantity of a subset is always less than the set of which it
is a subset, the value of statistical π is always going to be between 0 and 1. Figure 12.25
illustrates the mathematical formulas for calculating proportions for populations. The
formulas are shown with a table generated by the application of the formula that applies
to populations.

Groupings

You can divide data according to groupings based on fractiles. You usually encounter the
results of such operations in graphical representations like pie or bar charts.

The easiest use of fractiles is to begin with the familiar notion of percentile. A percentile
places everything on a scale of 100:

Chapter 12 ■ Numbers for Nabobs462

Figure 12.25
Proportions relate parts to the whole.

You can determine quartiles by grouping percentiles into four groups that are the same
size. Following are tabular and graphical representations of information from the table
grouped into quartiles:

Models
Models differ according to how they use data and what data they use. The deeper you go
into the study of statistical modeling, the more you realize that most models can be clas-
sified according to whether they analyze historical data or whether they combine data
from a variety of current sources to predict trends.

Static Models
Statistical models that fall into the historical category usually draw upon data from many
projects that have been pursued over several years or decades. Such models are sometimes
referred to generally as static models. These models often seek to make data coherent and
easily understood. They also might offer ways to verify data and determine its accuracy.
For example, a software statistician analyzes data derived from several hundred projects
over a 20-year period and places this data into tables from which software developers can
obtain benchmarks. In addition, the statistician might derive average and mean values for
different areas of activity, such as defect density, project duration, productivity, and so on.
With respect to specific development projects, the statistician might gather data on the
number of operations in classes or function points in operations. He then could make cal-
culations to determine the complexity of the application.

Dynamic Models
Statistical models that fall into the second, synchronic, category usually draw upon data
that a single project generates. Such models are often referred to as dynamic models. Such
models seek to use, in some cases, several different types of data to generate predictions
of a trend for a variable outside the primary data set. For example, a software statistician
might study the way that requirements and design efforts are scheduled and executed and

Models 463

then, using data from these activities, attempt to predict defect trends during the release
phase of a project.

The Rayleigh Approach
The Rayleigh model is dynamic. It dates back several decades and is used to evaluate soft-
ware reliability. It is a dynamic model because it can draw upon information relating to
the software lifecycle for a single project and from this generate predictions about defect
trends that are likely to characterize the product after it reaches general availability.

The math involved in the Rayleigh models is important to study if you intend to employ
or extend the model in your own work, but for the general purposes established here,
viewing a graphical representation of the Rayleigh model presents the best approach to
the topic. The math for the model, after a little juggling (see the reference for Stephen H.
Kan at the end of this chapter), is along the following lines:

The total number of defects is
the number of defects reported
from testing during the develop-
ment phases of the project. You
must calibrate these for most
projects. You can accomplish this
in several ways, one of which is
to adjust the time parameter.

In the context of the develop-
ment process that IBM had in
place during a study that involved
calculations of defect rates using
the Rayleigh model, the project
defect rate that resulted resembles
the profile provided in Figure
12.26. The Rayleigh model allows
you to predict defect rates follow-
ing general release of a software

Chapter 12 ■ Numbers for Nabobs464

Figure 12.26
The Rayleigh model allows you to predict defect.

product. (See Stephen H. Kan, Metrics and Models in Software Quality Engineering, Second
Edition, Boston, [MA: Addison-Wesley, 2003.])

In Figure 12.26, notice that the tail (the right side) of the curve slopes downward and
gradually smoothes out until its decline is almost imperceptible. Such a curve is called an
asymptotic curve because it can extend infinitely without ever reaching the axis toward
which it is moving (in this case, the Development Phase, or x-axis). How can such a thing
happen? Consider what occurs when you increase the denominator in a fraction with a
numerator of 1:

The fraction becomes smaller and smaller, but it never reaches zero. The number of test
instances can increase infinitely, but the number of discovered defects will always remain
smaller. For this reason, the defect rate after the release of a product is described by an
asymptotic curve.

Rayleigh Applied
The Rayleigh model is said to provide a pattern for defect rates that can be applied to almost
any software development project if the phases of the project are calibrated to accord with
the model. A great deal of work has been done to test this notion. Figure 12.27 represents
what you might regard as a typical software product development profile as represented
using the Rayleigh model.
First, the project manager
hires developers. The dev-
elopers go to work as soon
as possible and generate
code. After a time, inten-
sive testing efforts begin,
usually with the full inte-
gration of the product.
Following that, the product
is released.

Models 465

Figure 12.27
The Rayleigh model allows software engineers to relate defects,
productivity, and the number of developers on a team.

The curves in this figure depict a typical but not necessarily ideal pattern. Consider, for
example, the peak of the staffing curve. The project manager apparently wanted to hire a
relatively large number of developers to make early gains on the amount of code produced
for the product. The curves depict the relationships that exist between the number of
developers, the productivity of the developers (in terms of LOCs per day, week, or
month), and the defect rate. When the project manager chose to put many developers to
work producing code at a high rate, the result was a higher rate of defects.

You can reshape these curves. For example, you can decrease the number of programmers,
with resulting lower productivity. Lower productivity might bring a lower rate of errors.
In addition, if the amount of testing increases relative to productivity, the defect rate is
likely to be lowered. Each trend relates to the other, and the model shows how this is so.

As a final observation, consider in Figure 12.27 the way the curves follow a succession, and
the tails of the curves tend to slope consistently downward after peaking. This indicates that
one phase of activity followed fairly consistently upon another. Coding apparently followed
requirements and design, and no rework sessions characterized the development effort.

Ankh Metrics
Data for Ankh was assembled using Excel. Excel is suitable for statistical work because it
offers a group of roughly 80 built-in functions that are suitable for statistical calculations.
In addition to the built-in functions, you will find that many vendors provide statistical
packages that can be installed as Excel options.

Lines of Code and Stripes
The first set of metrics that the team found it easy to assemble showed the growth of the
product. For the Ankh development effort, as shown in Figure 12.28, the software design
specification divided the system into 18 stripes. The figure shows data taken after the com-
pletion of a number of stripes. By graphing line counts, the team could easily track the
growth of the product with each stripe. As you can see, 2,000 lines of code, on the aver-
age, were added for each stripe. However, in most cases, the number of lines added was
around 1,000 per stripe. On the average, the increase was less than one-fourth of the size
of the stripe.

Chapter 12 ■ Numbers for Nabobs466

In Figure 12.28, you can see that, with a few exceptions, the design effort paid off because
it broke the development effort into consistent blocks. Consistently sized blocks allowed
the development team to benefit during its testing efforts, because the smaller the unit of
code to be tested, the less complexity the unit of code is likely to present.

Requirements and Stripes
Another study that helped the team understand the product involved the number of
requirements that each stripe addressed. Drawing from the information that the software
design specification presents (see Figure 12.29), you can see that a stripe addressed from
1 to 12 requirements. In some instances, two or more stripes addressed the same require-
ment, but in most cases, only one stripe addressed a requirement.

Ankh Metrics 467

Figure 12.28
Lines of code provide a basic way to gauge size.

Again, as with the distribution of the lines of code across the stripes, the software design
specification benefited the team because it distributed the requirements fairly evenly
across the 19 stripes. Four stripes involved large sets of requirements. Seven stripes fell
into a middle range. Eight stripes were on the lower end. Picturing the stripes in terms of
these three groups provides a way to glimpse how the design of the software addressed the
requirements. This helps, likewise, illustrate that although one stripe might have involved
four times as many requirements as another, the overall complexity of the code develop-
ment effort corresponded not to the number of requirements, but to the complexity of the
problems that the requirements represented.

As an extension of the study of requirements per stripe, as Figure 12.30 shows, the num-
ber of classes implemented during the construction of a given stripe raised questions.
Notice, for example, that stripe 16 has both a large number of requirements and a large
number of classes. Does the number of requirements affect the number of classes imple-
mented for the stripe? Although it is risky to immediately draw the conclusion that a large
set of requirements correlates with a large set of implemented classes, it is still the case that
the information that Figure 12.30 provides serves as a tool with which to evaluate the
quality of the software design specification.

Chapter 12 ■ Numbers for Nabobs468

Figure 12.29
Distribution of requirements can indicate the quality of the design.

Investigating the distribution of classes reveals that the software design specification did a
good job of distributing the complexity of the requirements across the stripes. Although
in some instances the number of implemented classes grows with the number of require-
ments that the stripe addresses, it is also the case that in several instances, a middle-sized
set of classes results. Figure 12.30 shows the different sizes of requirements groupings. No
stripe addresses an inordinately large set of requirements. When you consider this infor-
mation with the implementation efforts that the various stripes required, it becomes clear
that the design made it possible to develop the game in balanced stages.

Collaborative Complexity
Figure 12.31 provides a way to study some of the implications of the complexity of class-
es. Consider a situation in which a stripe requires the implementation of only a few class-
es and yet generates a sizeable addition of code. How does this happen? A possible answer
arises if you give attention to the software design specification, which records the number
of collaborations for each class.

Ankh Metrics 469

Figure 12.30
The number of classes implemented for each stripe helps show how system responsibilities have been
distributed.

A collaboration can occur in various ways. For example, one object might contain another.
In this case, the object that contains the other object receives a service from the contained
object. The collaboration occurs because one object has direct dependencies on another. In
other instances, two objects might serve a third object. In this instance, although the objects
serve each other, both objects might communicate with the object that contains them.

In each instance, the complexity of an object increases with the number of messages it
exchanges with other objects. If the complexity increases so that a given class collaborates
with several other classes, good design practices call for trying to find ways to refactor the
class so that you distribute its complexity across other classes.

Figure 12.31 shows the number of collaborators for the core set of classes for Ankh. In
most cases, the number of collaborators tends to be around four. In some instances, the
number climbs inordinately high. Although explanations for the number of collabora-
tions might be justified, it remains that the classes might be candidates for refactoring. On
the other hand, because the number of collaborators for all classes, including those for
large numbers of collaborators, does not tend to vary to an extreme, it becomes evident
that the design document holds up well when the design of its classes is considered.

Function Points
A class is considered to be well designed when it addresses a single responsibility. Its col-
laborations are justified to the extent that they provide services directly stipulated by their

Chapter 12 ■ Numbers for Nabobs470

Figure 12.31
Collaborators show the way that class responsibilities are supported and how responsibility has been
distributed.

responsibilities. Still, the more that an object of one class interacts with objects of other
classes, the more it extends its collaborations and its complexity.

A classical way to study how an object interacts with other objects is to use function points.
Software analysts often associate function points with database applications, and a func-
tion point is a system activity that involves creating, updating, deleting, or reading. Other
descriptions of function points are often added to this basic set. In object-oriented pro-
gramming, people often equate function points with the number of objects created or the
number of messages exchanged between objects.

To determine function points for the Ankh software, the development team used a for-
mula empirically derived from a survey of object uses. The formula attempted to fold
together the number of collaborations and the number of messages involved in a collab-
oration. Using this formula, the team generated a scatter diagram that showed how, from
class to class, complexity tended to vary.

Figure 12.32 shows class types as numbered items. The lower, darker marks indicate the
number of classes each class supported through collaborations. The higher, lighter marks
indicate the number of messages a given instance of a class supported during its lifetime.
Using this way of plotting interactions among objects, you can investigate how a stripe that
addressed few requirements might involve relatively few classes and yet call for an exten-
sive development effort. Notice, for instance, that although all classes had fewer than 10
collaborators, around 20 percent had collaboration indexes that numbered more than 20.

Ankh Metrics 471

Figure 12.32
As an alternative to function point analysis, you can use collaborators and message interactions.

Conclusion
Collecting quantitative data provides a way to formalize your examination of develop-
ment activities. To ensure that you gather valid data, a good approach is to collect data
that is commonly discussed by metrics and quality assurance specialists. When you follow
this approach, you can find plenty of information with which to refine both your data def-
initions and the analytical models you apply to your data.

After you collect data, you can work with it empirically or analytically. If you work with
data on an empirical basis, your primary goal should be to display it so that you can gain
general ideas about rates and trends. Many graphical tools are available for this. Using
Microsoft Excel, for example, you can generate pie, bar, radar, and other charts.

More advanced techniques for dealing with data involve using knowledge you draw from
statistics. Among key statistical concepts are summation, mean, median, mode, variation,
and standard deviation. Given a basic understanding of such notions, you can apply a
variety of distribution curves to your data. Among the most widely used curves are the
normal distribution and Weibull curves. The Weibull curve is the basis of the Rayleigh
model, which allows you to evaluate defect rates that occur after product release.

The Ankh team used a few basic tools of statistics and metrics to collect and analyze the
complexity of classes, the distribution of functionality across stripes, and the raw growth
in the size of the product per stripe.

For further reading on statistics, quality assurance, and metrics, consult the following
sources:

Humphrey, Watts S. Introduction to the Personal Software Process. SEI Series in Software
Engineering. Boston: Addison-Wesley, 1997.

Kan, Stephen H. Metrics and Models in Software Quality Engineering, Second Edition.
Boston: Addison-Wesley, 2003.

Lapin, Lawrence L. Business Statistics. New York: Harcourt Brace, 1984.

Lorenz, Mark and Jeff Kidd. Object-Oriented Software Metrics. Englewood Cliffs, New Jersey:
PTR Prentice Hall, 1994.

Pandian, C. Ravindranath. Software Metrics: A Guide to Planning, Analysis, and Application.
New York: Auerbach Publications, 2004.

Petroski, Henry. To Engineer Is Human: The Role of Failure in Successful Design. New
York: Random House, 1992.

Putnam, Lawrence H. and Ware Myers. Five Core Metrics: The Intelligence Behind Successful
Software Management. New York: Dorset House Publishing, 2003.

Stephens, Larry J. Advanced Statistics Demystified. New York: McGraw-Hill, 2004.

Chapter 12 ■ Numbers for Nabobs472

473

What People Do—
Development Strategies

Chapter 13

T
he discussion in this chapter draws heavily from material presented in other chap-
ters, but it’s not assumed that you have studied other chapters. This chapter offers
you a guide on how to proceed with a development project according to a design

and using a development plan. Along the way, it investigates ways to work with documents
relating to game design, requirements, software design, project planning, configuration
management, and testing. Working according to a plan and using documentation to shape
and guide your effort ensures that you can monitor and improve your development activ-
ity continuously. Likewise, when you proceed with a planned, traceable effort, your game
development activity assumes a polished, professional dimension that it would not other-
wise possess. Where there is no history, there is no progress. Toward the end of finding a
path to creating a history of what you do, this chapter offers the following topics:

■ Defining a starting point for a project

■ Putting together a set of working principles

■ Documenting the product to be developed

■ Documenting the plan for development

■ Proceeding through reviews

■ Introducing quality measures

■ Making transitions from one project to another

Starting Points
From the perspective of software engineering, the starting point of a game development
effort begins with a directive. The directive originates from a source that usually lies some-
where outside the programming group. The game design document provides the most

visible expression of the directive. The game design document provides information that
you can use to establish the scope of your effort.

As organizations get bigger, specialization increases, so if you are responsible for develop-
ing software, you might find that your role in the development of the game reduces to cre-
ating the software that supports features that other people have dreamed up. If this is a
discouraging picture, consider that engineers are almost always in the same position.
Architects work with structural engineers, automobile designers work with mechanical
engineers, and game designers work with software engineers or programmers. One sup-
ports the other. Almost no industry fails to reveal this division of labor.

Things might vary from situation to situation, but if you serve in an engineering role
while others serve in design roles, your role begins with providing a specified product to
others. The product you provide is the software that makes the game possible. For this rea-
son, your starting point is an understanding of what is needed to support the features of
the game.

Team Formation
The assumption here is that you will eventually find yourself working for an established
game development organization. In this world, a game development effort begins with
several things that do not involve programming. Among these are contracts, a game
design document, and a corporate production plan. Rights must be secured, funding must
be approved, and a corporate production schedule must be created. After all this activity
has been completed, a project manager or team lead is chosen for the programming effort.
The project manger’s first job, usually, is to assess how much effort development of the
software that supports the game will require and how many people will be needed to com-
plete the project on time.

Although no formula covers all situations, if you find yourself in the project management
position, you will probably conclude that you require a team who is capable of perform-
ing a few basic types of activity:

■ Plan and manage the development effort.

■ Know the answers to difficult technical questions.

■ Answer questions about how the game has been designed and what goals its func-
tionality should support.

■ Perform secondary or specialized programming tasks that require a high invest-
ment of time.

■ Create documentation for the project.

■ Perform or coordinate work that involves game assets, such as sound and graphics.

■ Work on tools that can support various development activities.

Chapter 13 ■ What People Do—Development Strategies474

■ Set up and manage the software configuration.

■ Formally define and work in a software testing role.

Although the members of your team might not find these specific roles at the start of a
project, as you go, everyone will end up assuming and defining the roles that these activ-
ities encompass.

The assertion here is not that if
you want to create a game, you
should find a specific number of
people and command them to
work in specific roles. In reality,
things do not work this way. Even
in the most rigidly monotonous
corporate settings, people still
explore and discover roles as the
development effort progresses.
But it remains that certain types
of work must be done. The effort
of Ankh involved six people. The
tasks that the team performed
tended to vary from day to day,
and fewer or more people could
have been involved in the effort.
Regardless, the tasks documented
in the preceding list recurred
constantly. Figure 13.1 summa-
rizes the activities.

Definition
At the beginning of the game software development effort, you likely will be sitting in a
room with a group of developers and begin talking about the game. Everyone is probably
enthusiastic. Everyone has in mind something great. This is good, certainly. Such talk is
bound to burn up quite a bit of time. The talk might encompass past efforts, existing code
resources, what should be avoided, and what tools to use. At some point, however, for any-
thing to get done, the group must assert a few common themes:

■ The team must design the software. The design emerges from the requirements,
and the requirements must be based on the game design document. The team
must understand the scope of the game and the selling features. Likewise, it must
create a design for the software.

Starting Points 475

Figure 13.1
Members of a development team might not be assigned
roles, but before long, roles find them.

■ The team must plan and manage the project. The project manager must under-
stand the requirements, set the budget, establish the deadlines, and determine the
number of people needed. Add to this that everyone on the team must understand
the plan for the development of the product and what he should do as part of the
team effort.

■ The team must test everything. For testing to take place, a testing specialist must
be involved in the development effort. Different schools advocate different
approaches to software testing. The approach advocated in this book features a
testing specialist—someone who works with the primary developer to detect and
eliminate software errors.

Figure 13.2 simplifies the startup situation. Notice that implementation is just one of several
activities. The urge to begin implementation immediately can cause problems, even in
mature development settings.
You begin implementation too
soon if you do not take time to
fully understand the function-
ality that you are being asked to
develop. Programmers enter
the picture late enough that
they must learn from others
what the product is about, and
that takes time. A good way to
learn about the product is to
create a scope statement and a
requirements specification. The
scope statement allows every-
one on the development team
to have a common understand-
ing of the project, and the
requirements statement forces
everyone to spend several days
precisely naming what it is that
is to be developed.

Management involves controlling the urge to start work on the game before taking the
time to understand what the game design document portrays. Design involves beginning
the painful process of trying to think through what is wanted and putting it into a form
that allows it to be developed systematically. Testing involves reviewing the startup activ-
ities to ensure that developers refine, verify, and validate features from the start.

Chapter 13 ■ What People Do—Development Strategies476

Figure 13.2
At the beginning of a project, the team must assert manage-
ment, design, and testing priorities against the urge to begin
programming.

Working with Software Design
The focal point of the design effort for a software engineering project is the software
design specification. That specification might end up being the central document in your
development effort. As the project progressed for Ankh, the team tended to rely more
heavily on the software design document. Development of the software design document
required continuous iteration, and the document did not stabilize until late in the project.
From the first, laying out the game software as a set of stripes (or components) was essen-
tial. Laying out stripes forced the team to concentrate on specific implementation tasks.

Setting Up Tools
The tools that the Ankh team used most frequently at the beginning of the project were as
follows:

■ SmartDraw. This provided a graphical tool that everyone on the team could use
with relative ease to draw UML representations of design concepts.

■ Microsoft Word. This provided a word processing tool that also accommodated
graphics and tables.

■ CVS. This provided source control for builds and served as a control tool for
documentation.

■ A laptop and a projector. The team projected the design and code work onto a
large screen. The team watched as one person worked at the laptop. In this way, the
team could review documentation, participate in code reviews, and generally work
as a team toward a focused objective with little effort. During an average group
work session, regardless of the task, two or more team members would take turns
at the keyboard.

SmartDraw
One of the problems that cottage industry endeavors face is that tools that provide UML
and other support are too costly to use. And if tools are extremely demanding, they can
be more of a problem than an asset. Several of the industrial-strength tools that are com-
monly associated with UML emerged during a time when the notion of “software facto-
ries” was fairly prevalent in software engineering discussions.

The problem with the industrial tools, besides price, is that they can enforce rather than
accommodate a vision of software development. In a corporate setting in which months or
years can be occupied training software designers to use such tools, employing such tools
certainly is justified. For cottage industry game developers, however, the picture differs.
The goal in cottage industry is to maintain work as craft, not production line, so flexibil-
ity, individual creativity, and exploration are important.

Setting Up Tools 477

However, even when game development efforts emerge from extremely rigorous industrial
settings, they tend to benefit from a degree of randomness that factory production of games
cannot accommodate easily.Automated software design is something akin to pouring concrete
into a mold rather than shaping the mold for the concrete. Many of the best features of the
great games of the past few decades have tended to emerge with the effort of developing the
game. A mixture of engineering discipline and artistic freedom has characterized these efforts.

To preserve the virtues of cottage industry programming while making use of the tools for
conceptualization that UML offers, you can use a software application such as
SmartDraw. With SmartDraw, you can create use cases, class diagrams, sequence dia-
grams, and other diagrams in the UML suite but still be flexible in the way you work.
Given this flexibility, you achieve the goal of clarifying concepts while avoiding the need
to struggle with subtle levels of detail. SmartDraw, unlike Rational Rose or other such
applications, is not a Computer-Aided Software Engineering (CASE) tool. Instead, it is a
tool that allows you to quickly and easily illustrate ideas.

Figure 13.3 shows how the team stored the use cases and UML diagrams for Ankh in
SmartDraw. This view of the project material is midway between the lowest and highest
magnifications. Each of the rectangles contains a use case, an object diagram, and a
sequence diagram for a stripe of the game. To zoom in on the material in any of the rec-
tangles, you click anywhere in the rectangle you want to enlarge. If you want to zoom out
so that you see all of the stripes, hold down the Ctrl and Shift keys.

Chapter 13 ■ What People Do—Development Strategies478

Figure
13.3
SmartDraw
provides a
canvas that
is large
enough to
accommo-
date almost
all the UML
diagrams
and use
cases that
appear in
your design
document.

Working with SmartDraw, the developers projected design drawings on a screen and then
discussed and modified them as a team. Creation of the diagrams required some upfront
work. For example, the use cases are SmartDraw tables, and the object and sequence dia-
grams are collections of graphical primitives. You can simplify the work required to create
the tables and diagrams because SmartDraw allows you to create and store prefabricated
graphical objects. You can even place these objects in a pallet, so that creating new diagrams
or use cases only involves clicking to select the object you want. After making a few refine-
ments in your starter diagrams, it becomes easy to use SmartDraw as a primary design tool.

Documentation
Many software documentation specialists consider Microsoft Word and Adobe
FrameMaker to be the best tools in the industry for documentation creation and mainte-
nance. The Ankh team used Word because everyone on the team had it.

Choosing a documentation application that everyone knows and has access to is impor-
tant, but even then, documentation problems easily crop up. One key problem is when the
team creates too many documents or imposes a ridiculous level of control on documents.
Such excesses tend to reduce the likelihood that documentation will be maintained.
Tendencies to create documentation problems generally result when team members apply
practices that are suitable for other areas of development to the documentation effort. For
example, programmers tend to create problems by trying to treat documents as though
they are code modules. The result is a ridiculously large number of documents that need-
lessly preserves a history of changes that no one is likely to care about.

When documentation becomes difficult to manage, developers usually stop managing it.
If the situation is too troublesome, they completely abandon the documentation effort.
When this happens, it becomes difficult to track the history of the project, trace the
progress of the project, or know the extent to which original plans have changed. Resisting
the tendency to neglect documentation involves taking time to understand how to use a
document as a working medium of development.

The most important aspect of the document is not the many changes that have gone into
its development. Instead, the real value of a document is that it can serve as a way of help-
ing people focus on the current state of the product. For this reason, as is covered in
Chapter 18, “Documentation—Learning How to Learn,” developers can benefit in enor-
mous ways if they treat documents as flexible, evolving media and view them as resources
for reviewing work and learning about problems. Preserving a history of changes in a doc-
ument is often a waste of time.

Documents can be too long and too numerous. Overly zealous configuration managers
sometimes want to preserve every e-mail someone writes during a project. Occasionally,

Setting Up Tools 479

testers want to create a huge library of error reports. Programmers often go in the direc-
tion of wanting to separate documents into dozens of pieces, such as one for each head-
ing. Project managers might go in the other direction, wanting to cram everything into
one monolithic document. Technical writers might want to enforce templates over con-
tent. All of these tendencies represent professionally grounded concerns for avoiding
problems, but when carried to an excess, problems result. To resist these tendencies, it is
important to view the document as useful only so long as it is used as a tool of develop-
ment. If the document is no longer used, something has gone wrong, and it is time to alter
it so that it can be used.

During the startup phase of a project, the team is likely to use the following documents a
great deal if they are kept brief and incorporated into planning activities through the use
of an overhead projector:

■ A software requirements specification

■ A software design specification

■ A project plan

■ A test plan

■ A configuration plan

■ Project conventions

CVS
The team must set up a way to control versions of code as early in the project as possible.
That’s because during the design phase, developers might decide to explore design con-
cepts with code. The team should version such code formally, because it more than likely
will be brought forward later in the project.

The Ankh team used a Concurrent Versions System (CVS) called TortoiseCVS.
TortoiseCVS requires that you set up client and server capabilities, which are discussed in
Chapter 10, “Control Freaks and Configuration Management.” Setting up the CVS server
early in the process ensures that you will be able to add new users easily.

When you set up a versioning system, you should work from a configuration plan. Laying
out the complete directory structure is not possible until you have created a software
design document and know what stripes (also called modules or components) and what
component groupings within the stripes you want to create.

In the early phases of the project, the configuration plan can start as a document of a few
pages. The important points are to title the document and to place it under version con-
trol. Placing the document under version control can be as simple as assigning it a version
number, which you can type directly below the title of the plan on the title page.

Chapter 13 ■ What People Do—Development Strategies480

A convenient way to illustrate directory structures is to use SmartDraw and create a direc-
tory illustration. (See Chapter 10.) As irritating as this activity might be for a group of
people who want to get on with the development of a game, the effort will pay off enor-
mously almost immediately. If your team has the fortune of having a configuration man-
ager, this person will be able to ask the right questions and assemble the right material in
a way that will be relatively painless. If this is not the case, the team should move slowly
and try to avoid doing too much too soon.

Concept Formation
Before you code, you need to plan your code. Before you plan your code, you need to under-
stand the product you are being asked to build. To understand the product you are being
asked to build, you can use a variety of well-tested tools to help you grasp and conceptualize
the system you are seeking to build. A few of the best tools are discussions, lists, and diagrams.

When you begin discussing the software project, have everyone involved gain familiarity with
the game design document. If you are a project manager, you might consider having dupli-
cate paper copies made for everyone on your team. Another approach is to save the game
design document to an HTML format and make it available through a project Web site. If you
are in an organization that creates massive design documents, the Web site combined with
paper copies of selected portions of the document is probably the best avenue to follow.

The reason for having everyone study the design document is that it acquaints everyone
with the feel and intent of the game. Viewing the whole design enables each team mem-
ber to feel involved with every
aspect of the game. Yes, certain-
ly, your work might stop with
implementation of the engine
for the game, but if you have a
sense of what is going on among
the graphics artists, the voice
talent, the script writers, and the
music composers, you are much
more equipped, imaginatively,
to gain satisfaction from the
hours and hours you will spend
fighting problems with the
code. Figure 13.4 shows a rudi-
mentary view of some of the
information that the game
design document provides.

Concept Formation 481

Figure 13.4
If members of the programming team read the game design
document, they stand a better chance of fully understanding
the game.

Requirements Ruminations
Requirements begin as a list of software functions. These functions support the features
of the game. One difficult part of creating requirements involves distinguishing features
from the functionality that supports them. At the start of the discussion, for example,
someone might start reviewing all the different ways that the characters move around a
given level. This discussion can detail everything down to how dense the polygons should
be. It is good that this type of discussion takes place, but it also is important that this activ-
ity does not end with a long list of requirements specifying that the characters in the game
will be able to bend their elbows or wiggle their toes. Unless you are working with soft-
ware that does, indeed, reduce to creation of such functionality, chances are you will be
dealing with an animated mesh that your software must load, render, and manipulate.
Getting to the requirement involves seeing past the details to the core functionality that
supports the features of the game.

Formalizing Requirements
As with the configuration management plan, your team benefits if you keep the require-
ments document as simple as possible at first. As before, a title and a version number on
the title page are a good start. Following that, you can create a numbered list of the func-
tionality that you think must be implemented if the features named in the game design
document are to be supported. If you set up the requirements document in Microsoft
Word, do not let the automatic numbering undermine your effort. In the effort for Ankh,
requirements numbering involved placing angle braces around the numbers. For exam-
ple, for requirement 36, the document shows <Req_36> as the number for the require-
ment. You must number each requirement uniquely, and you should preserve the number
assigned to the requirement from the time the requirement is first recorded to the end of
the project.

With the creation of requirements, it is easy to become hung up on trying to do things
comprehensively the first time. Although no fixed formula can be stated, requirements
might take days, weeks, or even months to formulate properly.

Working with Conceptual Tools
When you read the game design document, you discover a complex set of descriptive ele-
ments that you must reduce to a restricted set of functional elements. With some projects,
getting past the details of the design document can be a harrowing experience. Details prove
a plague, however, only when you forget that roughly 90 percent of the functionality evident
in any game has been implemented in previous games. If you are working on your tenth
game, you know this without hesitation. If you are working on your first industrial-grade
game, the picture changes. Wherever you stand, however, you benefit if you put to work
standard conceptual tools to elicit requirements.

Chapter 13 ■ What People Do—Development Strategies482

Among these tools are the Task-Object-Remarks (TOR) chart, use cases, and Class-
Responsibility-Collaboration (CRC) cards. The TOR chart is more a table than anything
else, and you can use it as a quick way of drawing information from team members about
the kinds of objects they think will be needed to implement the functionality they discern
in the game design document. When the team started work on Ankh, the TOR chart was
developed in conjunction with the requirements. The team did things this way because a
tremendous amount of conceptual energy tended to be liberated as the team worked
through the game design document. Notice the following bit of dialogue. (Names have
been changed to conceal identities.)

ALPHA: If we are going to set up the initial game state like that, we need to have. . .

GAMMA: If we are going to have some sort of replay capacity, like it says here. . . , we will
have to move from the Start menu. . .

EPSILON: I don’t see why we have to have that. We need to save off actions according to
some clock and just auto save. . . It’s clear.

ALPHA: I wasn’t talking about that. Let’s just set up a state for that and go from there
to replay.

GAMMA: The player needs to do this
real-time. Look [holding up the game
design document and pointing]. This is
going to be more complex than what you
are thinking.

If you cannot make sense of this conver-
sation, don’t fret. This type of talk went
on for hours, everyone absorbed in one
or another preconceived notion about
how the game should work and no one
apparently trying to hammer out any
kind of supporting detail from the game
design document. Still, the team made
progress. The point was not to push too
hard for specifics. Even with the abstrac-
tion of the preceding conversation, it
was possible to elicit sound conjectures
about what objects the game would
require. Recording remarks and associ-
ated objects tended to create synergy.
Figure 13.5 summarizes the results of the
discussion that the TOR chart tracked.

Concept Formation 483

Figure 13.5
Abstract discussion resulted in words or comments
that could be placed in a TOR chart, and with this
effort, it became possible to focus on the core
functionality of the game software.

After you have established a field
of possible objects, even if many
of your guesses about how the
functionality of the game might
be encapsulated are premature
and utterly wrong, you will find
that you can suddenly make
statements that relate to the
functionality of the game. Figure
13.6 shows a few requirements
that emerged from the associa-
tions dealt with previously in the
dialogue and the TOR chart.

The key to success when working
with the initial, conceptual phase
of a project is to keep going.
Inevitably, many of the state-
ments about functionality are
going to be redundant
or entirely inessential.
Worrying about this is
ridiculous. The greater
the number of state-
ments, the clearer the
conceptual framework
of the product will
become and the easier
it will be to tell what
belongs and what does
not. Setting up use
cases forces you to be
specific in your think-
ing about require-
ments. Figure 13.7
shows what happened
when some of the
requirements named
in the list in Figure
13.6 were put into a
use case context.

Chapter 13 ■ What People Do—Development Strategies484

Figure 13.6
Dialogue and work with the TOR chart render statements
that begin to capture the functionality of the game.

Figure 13.7
Use cases can concretize the functionality of the game.

Designing Software
After you have formulated a list of
requirements and examined them
through use cases, the first step
toward design is to group the
requirements into sets. Each set
should represent a functionality that
you can develop as a whole, as a sep-
arate component or module. In the
work on Ankh, each of these sets was
called a stripe.

Creating a stripe amounts to gather-
ing the information you have and
using it to plan how to develop the
system and what functionality to
group into a cohesive set. Like
requirements, stripes tend to take
on greater definition as you create
more of them. An extremely effec-
tive tool for grouping functionality
is the CRC card. Creating CRC cards
involves taking responsibility for a
given type of functionality, assign-
ing it to an object, and then deter-
mining what other objects you need
to support the functionality.

The Ankh development team placed
the CRC cards in tables and includ-
ed the tables, in alphabetical order,
as an appendix to the Ankh Software
Design Specification. Hyperlinks to
the table of contents made it easy to
access the CRC listings. Figure 13.8
illustrates the extension and refinement of the initial object list using CRC cards.

Stripes emerge from clusters of activity. You can derive them empirically from inspection
of a comprehensive set of CRC cards. You can use object diagrams and sequence diagrams
to give them reality. To test your hypotheses about how to group classes, use a use case.
Figure 13.9 shows an object diagram for the Use Slider use case. In the design of Ankh, this
is Stripe 2.1.

Concept Formation 485

Figure 13.8
Creating a comprehensive set of CRC cards that captures
the functionality stated in the requirements document
enables you to group objects for design purposes.

After a time, stripes account for all the requirements you have documented, and at this
point, the first iteration of your design is complete. Just because you have managed to
account for all the requirements by creating objects and then groupings of objects does
not indicate the end of the design task, however. In addition to grouping objects, you have
a great deal of work to do to ensure that redundancies and inefficiencies are eliminated. A
software designer might work from both the stack of CRC cards and a set of patterns.
Patterns are ways of putting objects in communication with each other.

Testing
Testing should begin early, and whatever can be tested should. Testing at the start of a pro-
ject involves analysis. Generally, analysis differs from the type of testing that many people
picture. Although this topic is covered in detail in Chapter 11, “Evident Evil—The Art of
Testing,” it is worthwhile to mention here that the notion that testing begins after devel-
opment concludes represents an antiquated view of software development. Such a view of
testing tends to focus too heavily on testing execution, on the notion that testing has to do
with code. This is true enough, but testing also has to do with everything related to the
code, including requirements, design, and documentation.

As applied to requirements and design, one focus of testing can be on the testability of
requirements and use cases. As developers develop use cases for requirements, for exam-
ple, testers can evaluate the use cases to determine whether they can provide suitable sce-
narios for test cases and test suites. One of the most reliable testability criteria for any
given use case is whether it provides enough information to allow a tester to determine
input to the use case and the anticipated result of the use case. The tester requires such
information to write the test case.

Chapter 13 ■ What People Do—Development Strategies486

Figure 13.9
An object diagram shows the relationships among objects in a stripe.

You also can test use cases to determine whether they pose varying degrees of risk. As
Chapter 8, “Risk Analysis,” reviews, several categories of risk apply to a software engineer-
ing project, but one of special interest during the startup phase of a software project con-
cerns the likelihood that a requirement will change. Testers are in a position to analyze the
relative stability of requirements and to anticipate, to some extent, the need to develop
stronger or more varied test cases to anticipate changes.

Project Planning
Stripes constitute the architecture of the game. After the architecture is in place, you can
begin planning how to develop the software. This book does not offer an extensive dis-
cussion of project planning. Such a discussion, although important to the work of soft-
ware engineering, belongs more to the realm of management than development. Still, the
best approach to accurate planning for the development of a software product, game or
otherwise, is to break the development activity into tasks. You can view each stripe as a set
of tasks. Each stripe requires the implementation of classes that provide functionality stip-
ulated by the requirements document. Each class, in turn, consists of operations and
attributes. When programmers can see things in such basic terms, they can make at least
ballpark estimations of how much effort is required to implement a stripe. (Figure 13.15
illustrates the stripes in the Ankh software design.)

The project manager must assemble estimations, identify dependencies, and sort tasks
into a unified production schedule. Microsoft Project remains the premier tool for per-
forming this work, but even without that software, a project manager can create a project
schedule in good time if the software design provides a clear breakdown of the compo-
nents of the system. For Ankh, the design ended up featuring 18 stripes, and each stripe
represented one or two weeks of development time. Likewise, dependencies related to
graphical and sound assets must be included in the estimations. (Figure 13.16 shows you
a Microsoft Project view of the schedule for the Ankh development project.)

Beginning Development
This book advocates an iterative and incremental approach to development. As reviewed
in Chapter 9, “Iterating Design,” much is to be gained from making the project into a
process that allows you to improve your understanding continuously of the design of the
product and how you implement the design. The fact that you design the product as a set
of stripes and then undertake the creation of each stripe in succession makes the devel-
opment effort iterative. The fact that you perform testing and risk analysis during each
iteration makes the development process incremental.

If you can learn as you go, you can improve your development effort. For this reason, it is
important that you begin development so that you allow for learning. Likewise, it is

Beginning Development 487

important that you begin development using a design that gives you a solid sense of how
and when you can implement the functionality that the requirements specify. As you go,
if you work incrementally and iteratively toward complete implementation of the func-
tionality, you are in an excellent position to manage things like changes in the require-
ments, problems with the design, and disruptions in the development schedule.

Design Again—Low Level
From an object-oriented design perspective, a stripe represents a subset of the total func-
tionality of the game that you have determined can be addressed best in a single set of
classes. In this book, a stripe is pictured as a component or package. The UML package
diagram shows a stripe as a set of classes that communicate with each other and share a
common responsibility. (See Figure 13.15 for the design as embodied in stripes.)

Design on a low level involves investigating the elements of a stripe at the class level. You
can proceed with this work in two directions. In one direction, you can create class and
operation specifications. You can create a class definition by using a UML class diagram,
which shows you the operations and attributes of a class. The operation specification
investigates the logic of a given operation within a class. In the other direction, you can
work with sequence and collaboration diagrams to investigate how classes use operations
to send messages to each other.

In highly evolved engineering contexts, UML-based CASE tools allow software engineers
to create software systems in minute detail before code is written. From a cottage indus-
try standpoint, UML allows developers to conceptualize their coding project. A UML dia-
gram or a use case provides a proof of concept, a way to visualize, before the implemen-
tation work begins. The contention in this book is that such work is highly beneficial even
if it does not result in reversible engineering products.

One approach to analyzing a stripe is to subject the objects that comprise the implement-
ed stripe to scrutiny using sequence and collaboration diagrams. This type of scrutiny
involves a good deal of give and take. For every functional stripe of Ankh, the development
team set the ground rule that development could not begin unless it had tested the con-
cept of the stripe through at least a use case, an object diagram, and either a sequence
or a collaboration diagram. For Stripe 2.1, for example, in addition to the use case and
the object diagram, the team created a sequence diagram. Figure 13.10 illustrates this
diagram.

Chapter 13 ■ What People Do—Development Strategies488

As is reviewed in Chapter 3, “A Tutorial: UML and Object-Oriented Programming,” the
type of arrow you see in this diagram indicates a simple message. A simple message arrow
can indicate that when an operation executes, it might or might not receive acknowledge-
ment for the message it issues. In other words, whether it is synchronous or asynchronous
is not shown. Many other specifics are omitted from the diagram, and under close scruti-
ny, you see that the technical details in the diagram are lacking. But precision was not the
purpose of the exercise. Rather, the purpose of the exercise was to explore conceptually
how objects in this stripe might communicate with each other. As a result of the exercise,
several notions resulted:

■ Scope. Use of the objects in a generic fashion allowed the team to determine
whether their assessment of the objects designated for the stripe was accurate.

■ Complexity. Establishing a sequence of messaging based on the scenario laid out in
the use case (see the previous section titled “Working with Conceptual Tools”)
offered an approach to the functionality that the team could deal with in a straight-
forward way. Had the sequence diagram revealed a long, involved set of operations
that exchanged complex messages, further analysis would have been merited.

■ Feasibility. Being forced, up front, to envision the sequence of messages and the
operations involved in sending the messages forced the team to consider the degree
to which it would be feasible to implement the functionality embodied in the

Beginning Development 489

Figure 13.10
A sequence diagram serves as a proof of concept.

stripe. Discovering whether you can envision the service that the stripe is responsi-
ble for as a sequence of messages issued by a finite set of operations establishes a
starting point for the stripe implementation.

■ Familiarity. A final contribution of the sequence diagram to the design effort arises
with the familiarity that the development team acquires of the design of the game.

Configuration Formalities
Setting up the configuration management elements of the project involves, first, creating a
file structure. As a preliminary measure, the Ankh team established the basic directory
structure and the basics of a file-naming system. These did not correspond to the stripes.
There were several reasons for not establishing a directory structure based on stripes. One
was that even with a substantial design effort, the risk of changes remained pronounced,
and making any change in the directory structure introduced difficulties. Another down-
side was complexity. During early iterations, the stripes totaled 12. This number increased
to 18 by the end of the project. Duplicating directory structures across stripes made man-
agement through CVS difficult and threatened to absorb an inordinate amount of disk
space. The best approach, then, lay in developing the directory structure according to what
the development team considered to be a standard game layout scheme. Figure 13.11 shows
a partial breakout of the file structure and the implementation files for the initial stripes.

Chapter 13 ■ What People Do—Development Strategies490

Figure 13.11
The file structure allows files to be organized into standard categories.

Along with the creation of a file structure and file-naming conventions, setting up a CVS
server becomes essential. At this point, everyone in the project should establish client ses-
sions with the server and download the current stripe to test connectivity and become
familiar with the workings of the system. Formalized configuration management involves
documenting naming conventions and setting up CVS.

Coding Conventions
If you work in an organization that has achieved some level of maturity, chances are that
someone has created a document that captures the coding conventions agreed upon by
the development group. If this is not the case, the team should take time to create a set of
coding standards. Everyone on the team should participate in this effort.

Developing coding standards usually involves meeting as a team and working through a
list of standard coding issues. If you have not yet had the experience of becoming
embroiled in a dispute with other developers over things like the placement of braces or
what should be capitalized, be forewarned. The intensity of the exchanges can be startling,
especially when someone speaks in a derogatory or disparaging way about one of your
favorite practices.

Because establishing coding standards can be a difficult undertaking, this activity affords
the members of a team an opportunity to introduce early in the project practices for con-
ducting team reviews. One practice is to set up a board of arbitrators that consists of the
three most senior developers. Discussion can go on for as long as anyone has anything to
say, but following the discussion, the arbitrators should take a vote to determine whether
the standard is adopted or put aside.

Several good books provide coding conventions, and one approach to reducing contro-
versies is to adopt the standards that one of these books presents. This can at least offer a
starting point. Another option is to assemble a set of central coding issues. Developers can
then work through these and arrive at a first set of conventions. The following list pro-
vides a few such issues:

Beginning Development 491

■ Naming classes

■ Naming class objects

■ Naming operations

■ Naming class attributes

■ Type identity prefixes

■ Length of names

■ Length of lines

■ Breaking lines

■ Using white space

■ Naming accessor and mutator
operations

■ Summary comments for classes

■ Summary comments for operations

■ Comments for parameters

■ Comments within operations

■ Documentation of known defects

■ Labeling closing braces

■ Setting tabs

It is good practice to publish online the document in which you list your team’s coding
conventions. You also can appoint an administrator to whom comments can be sent. Later
in the project, if time allows, someone might be prompted to provide code samples to
illustrate accepted usage. Beware that this activity is usually involved. When you cut and
paste code samples for use in a Web page, you sometimes have to spend a great deal of
time massaging a few lines of code so that they conform to something as simple as a tab-
bing convention.

Libraries and Resources
If you intend to use libraries or resources, either the project manager or an experienced
developer should establish at the start of the project formal permission to use the libraries
or resources. Design decisions that make assumptions about libraries and resources pose
tremendous risks. At the same time, a team consisting of a programmer and a tester (or
at least someone with both perspectives on software) should assess prospective libraries to
verify the following:

■ They provide the functionality sought.

■ They will work on the targeted platform.

■ They can be accessed in time.

■ They are supported in the right ways.

Also, even in what you assume to be the most elementary situations, you need to establish
which version of a library you intend to use. During the development period, the library
you use likely will be released in a new version. You should identify clearly the features of
the library that you must have and evaluate whether new releases of the library will con-
tinue to support these features.

Working with Specifications and Plans
Some approaches to software development advocate dedicating up to two-thirds of the
project development time to shaping the concept of the product. Figure 13.12 shows a pie
approximation of this approach to development. As a general rule, the more time you

Chapter 13 ■ What People Do—Development Strategies492

■ Using scope

■ Using break statements

■ Using exceptions

■ Using threads

■ Creating global operations

■ Creating global variables

■ Using define statements

■ Using typedef

■ Using include statements

■ Unacceptable practices

■ File names and class names

spend planning implementation, the less time you spend implementing. Reasons for this
become evident after a little reflection. Consider, for example, what happens if you begin
implementation without planning and cram a massive number of operations into a sin-
gle class. You then develop several classes with dependencies on the first class. But then
you find that you want to separate the functionality of the first class into several smaller
classes. The result is that you must rewrite lots of code. Planning would have eliminated
the need for the rewriting and reduced the overall time required for implementation.

Planning involves documents, lists, diagrams, and discussions. For this reason, naming
documents amounts to naming types of thinking and questioning that characterize prod-
uct development. A document represents an occasion for thinking and questioning. That
you work with a template, write passages, and add diagrams is in many ways secondary.
The primary work is that of shaping ideas and planning development activities.

Working with Specifications and Plans 493

Figure 13.12
Time invested in planning a product reduces the time required to
implement it.

The documents discussed under the next few headings represent responsibilities that a
development team can assume as it plans a product. They also can represent responsibil-
ities that a development team can assume as it audits its progress in following through on
its plans. Different approaches to development advocate different ways of planning and
tracking development activity. The Software Engineering Body of Knowledge (SWEBOK)
provides the most comprehensive view of ways to plan and track software development.
What is presented here represents a partial view.

Requirements
One of the primary purposes of a software requirements document is to establish, inter-
nally and externally, the scope of the game. In other words, you have to know how inten-
sive your development effort is going to be in terms of doing something new, and you have
to know what kind of game is going to be created. As a preliminary to the software
requirements document, you can write a scope statement.

Another primary purpose for creating software requirements is to produce a list of sen-
tences that state what functionality you must implement to cover the internal and exter-
nal scope of the product. If you are creating a game, the functionality of the software at
best tends to express indirectly the features you see named in the game design document.
If you are creating a set of components for collision detection or graphical rendering, the
abstraction tends to be even more pronounced. Ultimately, this is what makes develop-
ment of requirements difficult.

To reduce the difficulty of moving from features to functional support of features, this
book suggests that you work with both stated requirements and requirements that are
presented as use cases. If you employ both statements and use cases, you immediately can
create a context in which the different ways you present the requirements allow you to dis-
cern ways to refine and test them.

Design
When you design a software system, you seek to find ways to group the functionality that
is established in the software requirements specification. A class encapsulates many oper-
ations. This is one way to group functionality. You can group classes into stripes. A stripe
groups classes that fulfill a common responsibility. For example, Stripe 2.4 creates the map
editor and displays a set of meshes. Players at this point can load and save maps. Figure
13.13 shows the visible manifestation of the implementation of Stripe 2.4.

Chapter 13 ■ What People Do—Development Strategies494

You can illustrate the operations that are key to this stripe in a UML sequence diagram.
The Ankh Software Design Specification provides separate sections for each stripe. Each
section, at a minimum, provides a use case, a sequence or collaboration diagram, and a
package diagram. Figure 13.14 illustrates the sequence diagram that appears for Stripe 2.4.
Note that the purpose of the sequence diagram as used by the Ankh team was not to
reduce things to minute details of implementation but to test the general conceptual
validity of the stripe. Using class, sequence, and other diagrams, the team could gain sev-
eral views of the game software for each stripe. Creating such diagrams, regardless of how
preliminary, helped the team comprehend the scope of the software and understand the
effort involved in its creation.

Working with Specifications and Plans 495

Figure 13.13
Each design stripe groups responsibilities to address specified functionality.

In Figure 13.15, a package diagram illustrates the relationship among the stripes that con-
stitute the system. The segmented lines show paths of development. In roughly half the
cases, a given path resulted from the selection of one among several paths. In other cases,
dependencies determined the paths. Developing Stripe 1 was a precondition for Stripes
2.1, 2.2, 2.3, and 2.4. The completion of these opened the path to Stripes 3.1 and 3.2, and
either might have been developed first. Later on, with Stripe 10, any of the final four
stripes lay open for development. Precisely how to proceed with the development efforts
requires an evaluation of risks, work schedules, and external dependencies.

Project Plan
You can unfold the project plan, in its general layout, from the design document. See
Figure 13.16. Determining how long development of each stripe requires involves using
the material derived from the design process to create detailed work breakdown schedules.
You can take several approaches to this. With the Ankh team, a reliable technique was to
project the object and sequence diagrams for a given stripe onto a big screen. The team

Chapter 13 ■ What People Do—Development Strategies496

Figure 13.14
Documentation aids with conceptualization and the practical tasks involved in planning how and
when to construct the stripe.

Working with Specifications and Plans 497

Figure 13.15
The final component system view of the game software provides a conceptual pathway through the
development project, but the final decision of what to do rests with the decisions that go into the pro-
ject plan.

then evaluated the stripe and came up with estimations of the required effort. From there,
discovering the duration of the effort involved determining who had expertise to com-
plete specific tasks and whether and how the tasks could be distributed.

Configuration Management and Version Control
Before you begin coding, create a configuration management plan. The plan needs to be
complete enough to show you how to name the files for the first few stripes. Earlier in this
chapter, under the heading “Configuration Formalities,” a basic directory structure was
shown. In addition to the layout of the directory structure, you need to list a standard
check-in and check-out procedure. A numbered list of actions to be performed will suf-
fice. You also need to set up a version control system. With the Ankh team, the entire team
watched as the lead programmer went through a standard development session. Everyone

Chapter 13 ■ What People Do—Development Strategies498

Figure 13.16
To arrive at an initial schedule, use the stripe information you derive from the soft-
ware design document.

had a chance to ask questions, make suggestions for changes, and generally become famil-
iar with what was to become a standard procedure. Figure 13.17 provides a view of the
TortoiseCVS system being used to access Stripe 1.

Applying Coding Conventions
Even after the team has initially agreed on a set of coding conventions, it should test the
conventions against the first stripe. One approach is to have the lead programmer code
the first stripe. Then, using the written conventions as a basis of examination, walk
through the code as a team. The code for the first stripe of Ankh provided the team with
a way to determine whether the coding conventions resulted in a format that everyone on
the team found acceptable:

Working with Specifications and Plans 499

Figure 13.17
TortoiseCVS provides a client that integrates with Windows Explorer.

//file name: CGraphics.h
#ifndef CGRAPHICS_INCLUDED
#define CGRAPHICS_INCLUDED 1
extern class CGraphics *Graphics;

// Blender mode definition
#define ALPHA_NONE (0)
#define ALPHA_BLEND (1)
#define ALPHA_ADD (2)
#define ALPHA_ADD2X (3)
#define ALPHA_ADD4X (4)
#define ALPHA_SUB (5)

///
// The CGraphics class is a wrapper //
// around Direct3D and all Windows //
// graphics functionality. //
///
class CGraphics
{
public:

// Default constructor
CGraphics();

// Default destructor
~CGraphics();

// Creates the main game window
void InitWindow(int iWidth,int iHeight,bool bWindowed);

// Creates a window and initializes Direct3D
bool SetGFXMode(int iWidth,int iHeight,bool bWindowed);

// Begins the scene
void Begin();

// Ends the scene (and presents the backbuffer)
void End();

// Clears the screen to the given color
void Clear(D3DCOLOR Color);

// Sets an orthogonal view matrix for viewing
// 2D screen elements

void SetOrthoView();

// Sets a 3D matrix up
void Set3DView();

Chapter 13 ■ What People Do—Development Strategies500

// Sets the current alpha blend mode
void SetBlendMode(int mode);

// Get and Set Methods ////////////////////////////////
// Gets the Direct3D Device

IDirect3DDevice9* GetDevice(){return m_d3dDevice;}
///

private:
// Window handle
HANDLE m_hWnd;

// Width and height of the window
int m_iWidth,m_iHeight;

// Are we in fullscreen mode
bool m_bWindowed;

// Direct3D interfaces
IDirect3D9* m_d3d;
IDirect3DDevice9* m_d3dDevice;

// Finds the best pixel format to use for fullscreen mode
D3DFORMAT FindPixelFormat(IDirect3D9* d3d);

};
#endif

As an example of the discussion that resulted from the walkthrough, consider the follow-
ing observations:

1. Comments should precede an operation.

2. Comments put on the right side tend to be hard to find.

3. Comments should, if possible, start on the left side of the page.

4. No space should come between the pointer asterisk and the type to which the
asterisk applies.

5. If the comment is just one sentence, no period is needed.

6. For an inline operation that has elementary content, it is okay to put the entire
operation on one line.

At the start of a project, it is easy to amend coding conventions. As time goes on, people
become more defensive about their practices, but it is never too late to question a practice
that causes problems. To avoid hot disputes, you can always ask questions during code
walkthroughs. If other developers have questions similar to your own, you can slate the
issue as a prospective addition to the conventions list. To formalize the addition of a con-
vention, if you have set up a Web page for conventions, you can publish the proposed

Working with Specifications and Plans 501

change in a clearly identified “Proposed Changes and Additions” section. It is generally a
good idea to make this as objective as possible. State the proposed convention and nothing
more. Depending on how your organization does things, you can then set aside a meeting
for discussion of proposed conventions and vote on changes. The entire team should
review conventions before they are designated as standard for the development effort.

Test Plan
Testers can begin writing test cases as soon as the requirements are complete. They also
can work during the requirements phase to review the requirements for conceptual and
practical completeness. The effort extends to the design work, too.

Testing is a separate activity from programming, but it is clearly associated with pro-
gramming. Testing requires a special set of skills. Even if you possess these skills, it is gen-
erally acknowledged that you cannot reliably test your own code. Reliable testing requires
the intervention of someone who possesses a perspective developed separately from the
perspective of the person who creates the code. Chapter 11 gives considerable attention to
this topic. One outcome of the discussion is the observation that because testers provide
a special perspective on all aspects of the development effort, they have a claim to the
requirements and design documents. Their claim is that of assessing such artifacts early
on to determine whether they are valid and verifiable as guides for development.

In addition to increasing their knowledge of the software through conceptual analysis and
documentation review, testers can benefit from early inclusion in a project because they
can begin developing test tools as soon as they comprehend the scope of the project. In
many cases, they will want to acquire existing tools and modify them for the current
effort. The team should budget such activity into the project from the start.

Release Plan
At the start of the project, the team should devote some attention to the release plan
because it can reveal dependencies that require time to settle. Among such dependencies
are legal contracts with vendors or suppliers. You might be able to acquire a library or a
collection of resources almost overnight, but the legal intricacies of securing rights to such
items could require months of negotiation. If any such dependencies exist, you should
anticipate them from the start. If the release plan consists of nothing more than a num-
bered list of items appended to a section of the configuration management plan, it still
serves its purpose. Regardless of where the information is formalized, it allows the project
manager to include tasks relating to it in the project plan. Such scheduling ensures that
finalization of the plan will be accomplished before final testing and release activities
begin. As the time approaches for the release activities to begin in earnest, the team can
appoint a release manager and develop a formal release plan.

Chapter 13 ■ What People Do—Development Strategies502

Quality Assurance Plan
The Quality Assurance (QA) plan can be much simpler than it sounds. This plan tells you
what artifacts you are going to create and how you are going to manage them. The QA
plan does not have to include, at the beginning of the project, anything beyond a list of
the major deliverables for the project and the reviews you intend to use to confirm them.
Following are a few points that you might consider addressing in the initial QA plan:

■ Procedures and protocols. If you want to name external standards to apply to
your project, you can name them in the QA plan and then elaborate on them dur-
ing the first few weeks of the project. Include a list of the documents that you must
create for the project. In the configuration management plan, an important deci-
sion to make at the start of the project is what will constitute a baseline of the
product and when baselines will be captured. You should also determine a num-
bering system for baselines.

■ Review practices. Establish a standard procedure for conducting reviews. Such a
procedure does not need to be much more than a numbered list of how a proce-
dure can take place. During the Ankh development effort, the development team
conducted reviews by viewing the document projected onto a screen that everyone
could see. One person, the scribe, edited the document while others made com-
ments. The editing of the document usually took place with the Track Changes
option of Microsoft Word turned on. At the conclusion of the review, if the team
voiced consensus, the changes were accepted. Accepting the changes usually
involved saving a version of the document, with the changes still visible, to an
archive. After you save a version that shows the changes, you can accept the
changes in your working document.

■ Assessing progress against the design specification. After the team completes the
code for each stripe, it should perform a review. Conduct of this review consists of
assembling the team and inspecting the software design specification and the code
for the current stripe. Again, with the Ankh development effort, documents and
code files usually were projected onto a screen for general inspection. Assessing the
code against the design involved checking to see how closely class implementation,
messaging, design patterns, and other implementation features expressed the
architecture and spirit of the design. Further, the team could tune the design to
reflect discoveries and realities.

■ Determining the next step. In most of the classical models of iterative, incremen-
tal development, the development team assesses risks before proceeding from one
iteration to the next. The development team for Ankh followed this course of
action but also tried to pursue a proactive agenda. Although the team reviewed the
design in light of lessons learned from the stripe it had just completed, it also

Working with Specifications and Plans 503

assessed its approach to development and attempted to designate policies or prac-
tices that could improve its productivity and the quality of its work during the
next iteration. The team made changes in the quality assurance plan or the config-
uration plan if it could formulate policies for improving the development process.

■ Formalizing baselines. A baseline differs from a version of a build or a version of
a document because it is a formally defined entity and consists of a collection of
everything that defines the project at the time of the baseline. It makes sense to
baseline the product after each stripe is completed. This strategy falls in line with
that of conducting a review of work performed.

■ Altering design. Altering design differs from assessing or tuning the design. When
you alter the design, you decide to do something significant, such as splitting a
stripe into parts or merging initially separate stripes. In other words, you make
changes that can impact the design heavily and, by extension, the development
schedule. This is a perfectly reasonable course of conduct in many situations.
Among the more common situations might be those in which you discover that a
stripe is so complex that it poses a major risk to the project because it forces you to
wait weeks or months before you can complete it to the point that you can test it
fully. Another situation is one in which you discover a way to reduce redundancy if
you merge two stripes.

■ Assessing and altering requirements. Altering requirements creates potential
problems, but it also can improve the product. The Agile approach to development
advocates changing requirements. This book suggests that you change require-
ments only after extensive deliberation. If you alter a requirement, you should ana-
lyze risks to determine whether the change adversely impacts the development
effort. Likewise, any time you change a requirement, you should update the
requirements, design, and testing documents to reflect the change.

Settling Disputes
Disputes happen. The best thing to do is deal with them as they arise and bring them to
closure through definitive actions. Often, the project manager must be the one who deter-
mines how to resolve disputes. It is far better to irritate a few members of the team
momentarily with a strong decision than it is to allow differences to grow until they begin
to absorb significant amounts of time and energy. Here are some contact points for deal-
ing with disputes:

■ Detecting disputes. If you are on the team in a nonmanagement position and you
see that a couple of people are having a hard time finding common ground, the
best route is to mention the problem to the project manager in a disinterested way.
Concentrate on the issue. The disputes worth worrying about are those that

Chapter 13 ■ What People Do—Development Strategies504

involve central issues. If the dispute involves personalities, it is still worth worrying
about, but settlement of such disputes is usually a matter that people can manage
on their own. With technical issues, however, everyone involved could have a valid
point, and the discussion or argumentation could go on for weeks.

■ Formalizing the issues. You can settle technical issues if you pose them scientifi-
cally. You can view an issue as a scientific hypothesis, and a hypothesis is a state-
ment that is settled according to data that experimentation provides. One way to
pose a technical issue in this way is to create a table that contains criteria you can
use, pro and con, to evaluate the issue. After you have created the table, you can
distribute it at a meeting and specifically assess the information it contains. You
can take votes and score each alternative if necessary.

■ Deciding how to proceed. It does no good to decide in favor of a given technical
alternative and then do nothing to pursue the alternative. For this reason, you
should develop a plan to put in place any change in technology or process that the
resolution of a dispute has brought about.

■ Preserving good information. It is good to preserve information that relates to
both winning and losing sides of a dispute. The resolution of a dispute sometimes
leads to the wrong decision. If the decision is wrong, everyone will discover the
consequence soon. At that point, the key to survival might be to move immediately
toward the rejected alternative.

Reaching the Goal
Moving toward the final release involves changing gears in a number of ways. Development
activity ceases and maintenance programming (in the form of defect elimination) begins.
In addition, the responsibilities of the person who is viewed as the lead developer can shift
or change. For example, a release manager, who might not be a technical person, might
suddenly become the most visible person on the team. At least temporarily, like a pilot
guiding a ship to open water, the release manager must be in command of the ship.

Alpha and Beta
You should schedule the completion of the release plan to accord with the code comple-
tion data. You can tune the plan with the data you gather during the project. The release
plan should detail what preliminary releases you intend to create and distribute. It also
should describe how you want to interact with your customer group. With respect to
alpha and beta releases, the major criteria for choosing to pursue them are as follows:

■ Alpha. You are not yet comfortable with the features of your game. A reliable
group of game players and testers is available inside your organization. You have

Reaching the Goal 505

set up a way they can report their findings as they use the game. Even if the func-
tionality is not stable or complete, you are interested in knowing how it is working
and whether it possesses appeal. As it is, however, the game is too rough to turn
over to inexperienced players or users. You need a friendly audience.

■ Beta. The functionality of the game is complete but still needs testing. Testers
within your organization have given the game a thorough going over, but you
think it is best to subject it to an external testing group that consists of prospective
or actual customers. You have set up a way that your customers can report their
experiences, and you have established an agreement with your customers that
clearly defines boundaries and liabilities. You are interested in tracking down every
possible defect in the product. Only when the users find a particularly obnoxious
problem with the game will you consider changing its specified functionality.

Gathering It Together
Final release should take place according to the release plan and under the command of
the release manager. As a general rule, the final approval for release of the product should
occur only after the release manager has called together the members of the release man-
agement team and polled them, one by one, to secure from them an affirmation that the
product is ready to release. A good idea is to have a form with a blank next to the title and
position of each person on the team. Although such a document is not likely to represent
a legal liability for those who sign it (although this can be the case), it can at least make
everyone involved pause for a moment to think about whether the product is really ready
to go. Here are some items for consideration:

■ The team has completed every item in the project plan.

■ The team has logged every defect.

■ The team has obtained all the permissions for assets and libraries.

■ The team has packaged the product correctly and tested the delivery, which is
flawless.

■ The configuration manager has archived the final baseline of the product, and
members of the team know where to find the material.

You might think that this is going a bit overboard, but consider a scenario in which things
go wrong. Suppose, for example, that you have a company that consists of seven people.
The seventh is a dynamic woman who agreed to come aboard as your marketing repre-
sentative a few weeks before you finished your game. She went out into the world, found

Chapter 13 ■ What People Do—Development Strategies506

a publisher, and negotiated a contract to guarantee you royalties far beyond anything you
ever imagined. The final day arrives, and you ship your product to the publisher. Well, it
turns out that the game was really not done. It seems that you included in your game a
few assets from a popular artist, and someone forgot to secure rights. The next thing you
know, you have no royalties, your marketing genius has abandoned you, and the artist is
demanding payment.

Formalize release activities.

Reviewing the Project
Postmortem is the term usually applied to an assessment that the team makes of the devel-
opment effort after the product has been released. Any organization that seeks to achieve
a higher standing according to a maturity model must use some form of postmortem for
every project, successful or otherwise. It is from the vantage point of a concluded effort
that you can gather information that you can use to improve processes. Whether the pro-
ject is successful does not matter. If you have failed to meet deadlines and ultimately not
implemented the functionality, you can still learn from your efforts.

Here is information that is worth keeping and assessing:

■ Schedule information. If you have estimations that you can compare to actual
times, do so, and see if you can arrive at some generalities about how much, in
percentiles, you were over or under on your estimations. If possible, examine work
breakdown information to discover which tasks were off. This will allow you to
tune future efforts more finely.

■ Testing information. Find out how many defects plague which stripes. If possible,
sort defects according to general categories. Consider, for example, defects of logic,
defects of design, and defects related to performance. Likewise, try to summarize
information relating to the testing of classes as opposed to stripes. Also examine
logs of what alpha and beta tests revealed. Such information can aid in future
development efforts by helping programmers be on the alert for practices that
might promote defects. Such information also can be useful to testers for the
design of testing tools or test suites for future projects.

■ Process information. In a group session, elicit opinions about what did and did
not work. Generally, everyone can learn something from such talks. A project
manager might be able to make use of such knowledge if it is formalized in future
project plans, but it is also the case that everyone can better understand the work
of developing a game if the team takes time to discuss the activity as a whole.

Reaching the Goal 507

Conclusion
The practice of game software development involves taking time to understand the scope
of the task and then developing a set of requirements that formalize understanding. From
the requirements, you can create a design. One approach to design is to divide the func-
tionality into groups, called stripes. The stripes serve a dual purpose. They allow you to
understand how to implement the functionality of your game software, and they allow
you to plan your development activity. Among the tools that can aid your development
and planning efforts are SmartDraw and Microsoft Project. SmartDraw allows you to col-
lect use cases and UML diagrams that document your design into one large canvas.
Microsoft Project enables you to take the results of your design effort and use them as the
core elements in your project planning activity.

After you have arrived at a design and scheduled your development activities, you will
want to start coding. Before creating code, you should have a configuration management
plan in place. This plan provides conventions for structuring directories and naming files.
In addition, you should have a set of coding conventions in place. To ensure that the code
you create is managed safely, you should install a version control system (such as
TortoiseCVS). If you supplement this system with conventions set down in a configura-
tion plan, you can create baselines of your project at designated intervals.

Testing is an essential aspect of the development effort, and a testing effort should be in
place from the beginning. Testers can develop a test plan from the software design speci-
fication, but even before they develop specific test cases, they can contribute to the quali-
ty of the requirements elicitation and design specification efforts.

For further reading on practical aspects of development efforts, you might find the fol-
lowing resources useful:

Bates, Bob. Game Developer’s Market Guide. Boston: Premier Press, 2003.

Cockburn, Alistair. Writing Effective Use Cases. Boston: Addison-Wesley, 2001.

Dulak, Daryl and Eamonn Guiney. Use Cases: Requirements in Context. New York: ACM
Press, 2000.

Hallford, Neal, with Jana Hallford. Swords & Circuitry: A Designer’s Guide to Computer
Role Playing Games. Boston: Premier Press, 2001.

Henderson, Peter. Object-Oriented Specification and Design with C++. New York:
McGraw-Hill, 1993.

Chapter 13 ■ What People Do—Development Strategies508

McGregregor, John D. and David A. Sykes. A Practical Guide to Testing Object-Oriented
Software. Boston: Addison-Wesley, 2001.

McShaffry, Mike. Game Coding Complete. Scottsdale, Arizona: Paraglyph Press, 2003.

Page-Jones, Meilir. Practical Project Management: Restoring Quality to DP Projects and
Systems. New York: Dorset House Publishing, 1985.

Rollings, Andrew and Dave Morris. Game Architecture and Design, A New Edition.
Indianapolis: New Riders Press, 2004.

Wiegers, Karl E. Peer Reviews in Software: A Practical Guide. Boston: Addison-Wesley,
2002.

Wiegers, Karl E. Software Requirements, Second Edition. Redmond, Washington: Microsoft
Press, 2003.

Creating Your First C++ Program 509

511

Practice, Practice,
Practice

Chapter 14

T
his chapter discusses specific ways you can revise software. Practices dealt with in
previous chapters are emphasized in this context. The approach used involves
examining code from Stripe 14, which you can find on the CD. Before making

changes to the code, the Ankh team first assessed the risks involved. An important part of
this activity centered on documenting and diagramming the areas of the system under
consideration and the reasons actions might be taken. Generally, why you might perform
such work depends on the context of your effort. For example, you might be responding
to user complaints, market pressures, or a technical imperative to optimize your code.
Revising the code for a game or any other software product presents an enormous field of
activity, and it’s impossible to cover very many of them in one short chapter. Still, a few
topics provide a good starting place:

■ Examining the stripes to find candidates for revision

■ Determining the more feasible options

■ Planning and justifying revisions

■ Estimating the effort required

■ Developing ways to test the revisions

■ Implementing the code

■ Revising supporting materials

■ Implementing the extension

Software Revision
In many environments, where a given game engine or game code framework (many devel-
opers consider an engine to apply only to graphical components) has met with technical

and marketing success, those in executive positions wisely elect to revise rather than re-
create. Revision possesses superiority over re-creation after a successful release because
revision can almost always improve on an existing framework, whereas starting work on
a new product poses all the risks that usually accompany new efforts.

At the same time, revision poses numerous risks. Risks arise because executives, managers,
designers, and developers sometimes cannot resist the enthusiasm they feel when they
have initially released a successful game. The first impulse, rightfully, should be to follow
up with either an improved version of the first game or another game of the same type.
Following this impulse can lead to enormous profits because customers are willing to
invest in new versions of the games they like or games that are similar to those they like.
On the other hand, if developers act on unbridled impulses, risks result. One major risk
involves trying to cram a multitude of features into the new release. If you do such a thing,
you can create a game that is far more complex and far less perfect than the first. If defects
plague the game that follows on your success, you risk losing the victory you worked so
hard to earn.

Modifications
This chapter addresses revision in general, but some mention should be afforded at the
outset to one specific type of revision: modification. When you develop a modified (or
mod) game, you use the framework of an existing game and apply new themes and char-
acters to it. In essence, you present to the world a game you want to be viewed largely as
original. You do not present such a game to the world as a new release of an already estab-
lished game. It is simply a new game that resembles others. This can work well in many
instances. Some players want to play games that are modifications of older games. They
enjoy this type of product.

There is a subtle art to developing a mod successfully. Success rests in part on recogniz-
ing, from the first, the limitations and potentials that apply to mod development. One of
the first things to consider is that when you develop a mod, you do so to save development
expenses. If you embrace a given game framework as a starting point and then proceed to
rework it so extensively that you take as much or more time than you would have required
had you begun from scratch, you have clearly defeated your purpose.

Designing a modification involves giving attention to what you can do with the frame-
work as it exists rather than what you can do with the framework if you rework it. If you
do not take the time to evaluate the framework and use as much as possible those features
that it already possesses, you can easily end up involving yourself in a development effort
that easily equals or exceeds in complexity that of an original development effort. This
happens because when you rework existing code, you have to perform a great deal of
analysis that development of original code does not require.

Chapter 14 ■ Practice, Practice, Practice512

Still, if you have a framework you want to revise, the economics of revision are well estab-
lished. Getting your money’s worth involves clearly identifying how you can get the most
from the revisions or extensions you make to the code you start with. Starting with a body
of well-tested, proven code is better than starting from scratch. You are assured success if
you take time to evaluate the effort involved in each action you intend to take. Such work
involves attending to the scope, complexity, maintainability, and extensibility of the
framework you are working with.

Scope and Complexity
Many case histories indicate that success with the development of a game can be haz-
ardous. A common scenario arises when an enthusiastic group of developers enjoys suc-
cess with a first release and has ample money with which to develop a second release. This
is where the trouble starts.

Such a group of developers can decide to concentrate their energies on modifying the first
release so that it incorporates an enormous number of untried, risky features. What
results is a product that customers do not like and developers regret ever having released.
This phenomenon offers an interesting area for psychological study.

The psychological issues that surface involve both software engineering and game design.
From the software engineering perspective, the issue is that the developers release a feature-
rich game that is plagued with defects. From the game design perspective, the issue is that
the customers—most of whom probably bought the second release because they were sat-
isfied with the first—express deep discontentment with the defects in the game and report
that they find the game dissatisfying to play.

From the software engineering perspective, the problems result because cramming a mul-
titude of new features into a limited framework is likely to overwhelm the design of the
framework. At a certain point, any container can become too small if you try to pack too
much into it. Games are like any other containers. Their design determines how much
they can be modified and extended.

From the perspective of the customer, the situation resembles that of someone who is
forced to take an advanced math course immediately after completing an elementary one.
The curve proves too steep. The feature richness is overwhelming. The comfort that the
player experienced playing the old game has been lost.

In both cases, development and design, a cybernetic or ecological quality can be said to gov-
ern the extent to which extensions or modifications can be made to the framework of the
game. To drive home this notion, many design experts strongly emphasize the notion of
KISS (Keep It Simple, Stupid). As harsh as this piece of advice might sound, it lies at the
root of a multitude of successfully extended or revised games. Enhancing an existing game

Software Revision 513

(either as a new release or as a modification) provides an opportunity to increase player
satisfaction in an incremental way. The goal of design is to keep the primary experience
that the user has of the game consistent with what the user expects while improving the
game in ways that satisfy him. Each new feature should represent a gradual step up from
the old.

The same general rule applies to technical aspects of a game that are hidden from the play-
er. From the development perspective, controlling complexity involves restricting the
modifications you make. You must balance the scope of such an effort so that it does not
lead you to completely redesign the existing framework. Effective modifications involve
things like increasing performance, streamlining the user interface, and equipping the
game with better visual
qualities. They do not
involve starting from
scratch and creating a
“super game.” If you are
going to create a super
game, it is best to start
from scratch.

Figure 14.1 provides an
abstraction of the notion
of scope and complexity.
One pattern accommo-
dates a possibly endless
extension. The other
shows disjuncture and
fragmentation, implying
that the original design
does not anticipate the
newer extensions.

Technical Symmetry
Enhancing the hidden, technical properties of a game poses risks that are similar to those
that arise when you incorporate a vast array of new features visible to the user. The crux
of the problem lies in incorporating too much too soon. When too much too soon is
incorporated into a game framework, testing and other quality assurance measures can
receive short shrift. In addition, feature and functional proliferation can result in a prod-
uct that lacks technical symmetry. When a product possesses technical symmetry, its tech-
nical features consistently represent the same general level of engineering sophistication.
Nothing stands out in a glaring, ungraceful way.

Chapter 14 ■ Practice, Practice, Practice514

Figure 14.1
Consider at what point modifications can overburden the existing
framework.

With respect to requirements that specify revisions to a software product, the metrics that
contribute to defining symmetry can include the number of logical decisions that a given
module includes, the anticipated effort that the implementation of the changes or addi-
tions involves, and the number of classes that must be revised. Many other criteria can
also be included.

Figure 14.2 provides graphical representations of symmetrical and asymmetrical patterns
of complexity. In the trends that Figure 14.2 depicts, the development team might ask why
one requirement possesses so much more complexity than the others. Is the feature focus
of the game to center on this one requirement? If this is the case, the requirement might
receive approval. But if this is not the case, the team should perhaps reconsider whether it
has adequately refined the requirement.

Gauging the Impact of Requirements
Complexity of implementation detail encompasses the number of changes or additions
that you make to the existing software to achieve new functionally. Consider the require-
ments that are named in Table 14.1. Suppose that these requirements represent first and
second releases of the same game.

Gauging the Impact of Requirements 515

Figure 14.2
An asymmetrical pattern of complexity begs the question of whether revisions have been refined
adequately.

The two columns of requirements listed in Table 14.1 represent rough formulations, but
they still clearly convey requirements that differ substantially as to the extent to which
they require new functionality to be implemented. Consider, for example, revision
requirement 1, which concerns creating realistic effects for explosions. Taken literally, the
requirement makes it necessary for someone on the development team to possess a strong
knowledge of chemistry, because the requirement cannot be satisfied unless someone
establishes the combustion properties of the substances from which the target objects are
made. The way that a burning object appears to burn
depends on the combustion properties of the ele-
ments that compose it. If the developers for this
game were held to the requirement, they would face
an enormous task, one that is widely separated from
the current requirement. The question then arises as
to whether the scope of the current requirement
anticipates that of the revision.

Consider the revision of current requirement 2,
which concerns the sounds that characters make as
they are affected by the actions in the game. Suppose
that the way the gameplay affects players can be cat-
egorized in four basic ways, as Figure 14.3 illustrates.

What tasks are associated with implementing sounds that convey these categories of plea-
sure and pain? First, the developers have to identify the significant interactions that define
the lives of the characters. Second, they must categorize these interactions to accord with

Chapter 14 ■ Practice, Practice, Practice516

Table 14.1 Requirements Comparisons for Revision

No. Current Requirement Revision Requirement

1 The game shall feature wavering The game shall feature effects
images that resemble fire whenever for any object designated as a
a targeted object explodes. target such that when the target

explodes, the flames produced shall
precisely simulate those of the
materials composing the target.

2 The game shall feature sounds that The game shall precisely imitate the
mark the death or injury of characters. sounds of characters as they are

injured, killed, or otherwise affected
by actions in the game.

3 Networked players shall be able to Networked players shall be able to
communicate with each other. communicate with each other during

gameplay via written, voice, and video
communications on a real-time basis.

Figure 14.3
The simple utility of pleasure and
pain.

the states of pleasure and pain. Beyond this, the software developers must provide the
functionality that looks up the sound that is assigned to each interaction. The developers
might ask how much the revision requirement exceeds the current requirement in terms
of complexity.

The final set of requirements, current and revision requirements 3, concerns player inter-
actions through an Internet-distributed game. The revision requirement contains some
involved new functionality. It is not possible to tell from the information given how the
developers implemented current requirement 3, but they might have simply linked the
game to a browser. A dialog box display of online players might have provided these links.

Consider again the possibility of making use of browser capabilities to implement revi-
sion requirement 3. Through instant messaging and video streaming, everything might be
covered. The difficulty then lies once again in developing local features that allow players
to connect to each other using browser capabilities. But then the implications of the
requirement are that players connect in the context of play. Suppose that the context of
play is an RPG. In this context, players appear or disappear according to the visibility that
the game gives them. Game sessions conform to either elective or assigned player interac-
tions, and a database tracks sessions over periods extending from minutes to hours.

Suddenly, the complexity of the game could increase in an enormous way, with the demand
that if an extended server system does not already support the game, one will have to be
developed to do so. Add to this that some type of architecture must be developed to accom-
modate the way that the game clients open and close communication sessions.

As all three sets of requirements in Table 14.1
reveal, the complexity that is introduced into a
game can increase exponentially if the team does
not make an effort to refine requirements for
revisions according to the impact they might
have on both the system and the development
effort.

Linear Growth in Complexity
One simple approach to controlling the complex-
ity that requirements for revisions might impose
on a game involves maintaining a linear gradient
in the growth of the complexity that you allow
requirements for revisions to create. Such a gradi-
ent can apply to a system, a module, or a compo-
nent. Figure 14.4 illustrates a linear complexity
growth model.

Linear Growth in Complexity 517

Figure 14.4
Complexity that grows on a linear basis
guards against overwhelming development
tasks and products that lose their symmetry.

In Figure 14.4, r2 designates the revised or resultant complexity, whereas r1 designates the
existing complexity of the system. Determining complexity is difficult. (Discussion of this
topic appears in Chapter 12,“Numbers for Nabobs.”) It suffices in this context to note that
the number of decision points or calls within an operation serves as a simple measure of
complexity.

The prevailing risk that revision
presents centers on quality.
Consider, for example, what
happens if you extend a thor-
oughly tested, successful game
framework by quickly imple-
menting a set of highly visible
features that possess glaring
technical and aesthetic flaws.
The results almost inevitably
ruin the player’s experience and
damage the game’s reputation.
Figure 14.5 shows what happens
as the complexity of require-
ments increases. If your team
has achieved a high level of test-
ing coverage for the functionali-
ty of the game over its successive
releases, quality is compromised
if your team creates require-
ments that call for implemented
functionality that you do not
have time or resources to test.

Determining the Scope of Revisions
As a software developer, you might not enjoy the prerogative of deciding when the prod-
uct you work with is to be revised. That prerogative might reside with the marketing or
customer support group. On the other hand, it’s almost always the prerogative of the engi-
neering group to challenge or question the scope of revisions. In fact, not doing so con-
stitutes, in some respects, a failure to perform. If your company has successfully released
a product, you endanger the success each time you revise it. A product enjoys what might
be viewed as a natural product life. (Its utility or appeal is almost always destined to
diminish after months or years.) Nonetheless, if a revised version of the product possess-
es substantial flaws, the engineering effort kills the product long before its market viabil-
ity might come to an end.

Chapter 14 ■ Practice, Practice, Practice518

Figure 14.5
If you sustain the same level of test coverage across all
aspects of your revision effort and the same level of test cov-
erage from revision to revision, it is likely that your product is
evolving in a consistent, linear way.

In addition to life in the consumer marketplace, a software product can face problems
when one company sells it to another. Cultures of development treat products in different
ways. If a poorly designed but feature-rich product moves from a company that is deficient
in design capabilities to a company that excels in design capabilities, the feature status of
the game can suffer. This occurs because the engineers who are employed for the acquiring
company might decide to put aside feature changes while they rework the architecture.

You can reduce the risks of neglecting product strengths if you create a scope document
that balances the general ways in which products can be revised. A scope document
defines the general intention of the release. Consider the following points of departure:

■ New features. The revision aims to incorporate new features. The existing design
adequately supports these features.

■ Design extension. The revision aims to incorporate substantial new features that
require extension of the design.

■ Component merger. The revision aims to merge existing components. The focus
of the effort is on the implantation of interfaces that make this merge possible.

■ Fixes and optimizations. The revision aims at fixes and optimizations. No changes
to the architecture or functionality of the game are anticipated.

If you take time to consider, generally, the primary objectives of your revision effort, you
immediately put in place a thematic focal point for deliberations about what revisions are
acceptable and what the scope of the revision effort should be.

Changes to Ankh
When the development team proposed revision of Ankh, its revisions were limited to opti-
mizations. Arriving at the decisions about what to revise required several sessions of
debate. The process involved accumulating suggestions and evaluating risks.

To conduct a review of proposed revisions, you can treat the whole process like a require-
ments gathering session. Participants in the sessions should come prepared to propose
requirements for the release. Suggested revisions can be recorded formally and subjected
to preliminary debate.

Optimization Candidates
When the team examined Ankh for potential revisions, its members proposed several
options. Among the options considered were the following:

■ High resolution. Increasing the game resolution would make the game more
attractive visually. After a first pass through the development of the code, refitting
the assets and some of the classes with enhanced capabilities would be a relatively
easy way to improve the game.

Changes to Ankh 519

■ Real-time. Ankh is a turn-based game. Making it into a real-time game would give
it a different flavor. Developing an AI that uses real-time capabilities would offer
opportunities to make the game framework open to different teaching and learn-
ing scenarios. For example, both turn-based and real-time modules might be made
available to those who want to rework the code for their own purposes.

■ Component optimization. Numerous technical features of the game were not
designed as thoroughly the first time through as they might have been. Among
those was the way compression capabilities of DirectX were used. The capabilities
were enhanced during a recent release of DirectX. Another item of concern was the
performance hit that resulted when vectors were used instead of hashes.

■ Multiplayer. The game could be made multiplayer as a way to enhance its appeal
and demonstrate different development options.

These and other ideas emerged at different times as the team intermittently discussed
revising the game. All suggestions were general at first but represented real possibilities for
all members of the team.

General Risk Assessment
Assessing the general risks that proposed revisions pose sometimes requires a great deal
of effort. That’s because different team members favor different revisions. It is hard to
relinquish an idea that you have for revision of a system you have worked on for weeks or
months. Some of the discussion was fairly heated for the Ankh team, even going so far as
to involve position papers. The risk assessment sessions rendered the following decisions:

■ High resolution. The team rejected this revision because it offered little that gen-
uinely enhanced the game and did not provide enough opportunities to change
the code in ways that might be suitable for this book. (Needless to say, such a rea-
son would not usually arise in most commercial game development efforts.)

■ Multiplayer. Modifying the game to be multiplayer arose as an interesting option,
and no one voiced strong objections to it. This revision seemed to be an accept-
able—if somewhat unexciting—prospect. Reasons for rejecting this revision arose
when the team considered that changing the game to multiplayer would bring only
minor overall benefit to the game but require a fairly extensive set of changes.

■ Component optimization. The team realized that component optimization was
the best option when it became evident that the game could be enhanced in a vari-
ety of ways and that the enhancements could be distributed over a set of seven
areas of the system that ranged from minor to involved in complexity. Distribution
of the effort over seven tasks minimized the overall impact that the inability to
implement any one task might present. On the other hand, overall system quality
would be enhanced with the completion of any or all of the revisions.

Chapter 14 ■ Practice, Practice, Practice520

■ Real-time. The debate over real-time optimization of the game was prolonged and
extensive. Some on the team favored the idea of real-time because it would provide
the game with a framework that many people would find interesting. The down-
side of real-time optimization was the amount of work that such an optimization
would involve in duplicating the AI and other modules.

Optimization Selections
The Ankh team decided to put
aside all proposed revisions
except those involving optimiza-
tion of performance. Such per-
formance optimizations affected
immediately visible features of
the game, such as the opening
dialogue. (See Figure 14.6.) The
central task became one of iso-
lating the optimizations that
would achieve this end. Among
the candidate optimizations were
the following:

■ Revise CResourceMgr to
replace vectors with
hashes. With respect to
sort and find operations,
hashes provide greater effi-
ciency than vectors. They
are also relatively easy to
implement.

■ Revise CImage so that it uses DirectX-compressed textures in addition to normal
textures. The class would have to load textures with a *.dxt extension, but it would
also be able to use *.png and *.jpg files. Consideration of this change led to discus-
sion of ways that users might be able to create suitable files for the game. Photoshop
and a utility that is packaged with the DirectX Software Development Kit (SDK)
enable system users to convert files to these formats. This change would result in
the use of less memory, generally, so increased performance would likely result.

Changes to Ankh 521

Figure 14.6
Performance impacted the smoothness with which even the
images showing the background story displayed.

■ Revise CTileMap, CGraphics, and CWorld so that the game does not draw the tile
map to nonvisible areas. This optimization would involve increasing the sensitiv-
ity of the software to detect when tiles need to be refreshed. If there’s no change to
the area that encompasses the tile, there’s no reason to refresh the tile.

■ Revise CTileMap so that nothing is drawn below the surface created by the tiles.
This would reduce the amount of work that the graphics card has to do. (See
Figure 14.7.)

■ Revise CWorld so that drawing orders are changed. For example, buildings should
be drawn first. Anything that is behind the Z buffer would not have to be drawn.
This optimization would also eliminate all instances that allow the same part of
the screen to be drawn twice.

■ Revise CMesh so that state changes are minimized. One measure would be to
detect whether characters or buildings are off the screen. If so, they should not be
redrawn. (See Figure 14.8.)

Chapter 14 ■ Practice, Practice, Practice522

Figure 14.7
Tuning operations involving the Z buffer increase performance.

■ Revise CEmitter so that it is updated while drawing. The original approach to
developing the emitter did not follow the code model given in the SDK. Following
the model would increase performance.

Ranks of Difficulty and Priority
Ranking the risks posed by difficulty involved considering the scope of the changes to be
made, the effort required, and the technical complexity of the changes. The team could
assess the risk that the implementation of a given change posed against the benefit that the
change promised. Given limited time and resources, how much would benefits justify risks?
Changes that pose few risks but also bring few increases in performance or aesthetic rich-
ness should probably receive low priority. Extensive change resulting in few benefits poses
a high-risk situation and likewise merits low priority. Changes that pose high risks but
bring large increases in performance or aesthetic richness should receive a high priority.

Such reasoning stands up in regular test situations. For example, if testers or users find a
defect that crashes the game, the result clearly affects both performance and aesthetic

Changes to Ankh 523

Figure 14.8
Achieving efficiency in the order in which the system paints tiles, buildings, and other meshes
was one objective of the proposed revisions.

richness in an extensive way. Removing a fatal error always amounts to an extensive
change. Thus, you are justified if you assign the change high priority.

Table 14.2 shows a risk-rank view of the classes considered for change. Notice that CMesh
receives first priority. Even though it poses the greatest risk, it results in the greatest benefit.
Changing CResourceMgr involves making changes to almost every member operation it con-
tains but results in a net gain to system performance and aesthetic richness that is marginal.

Evaluating Classes and Operations
To arrive at estimations of how changes or additions can impact a system, you must
inspect the code that the changes impact. For example, the Ankh team could not establish
the risks and priorities documented in Table 14.2 until it had opened the files containing
the classes and carefully examined the operations and attributes that the classes contained
to determine how much the changes would be likely to result in altered code.

Revisions to CResourceMgr

The scope of changes involved in revising CResourceMgr was extensive. Changing vectors
to hashes affected almost every operation. Making this set of changes received low prior-
ity even though, in terms of complexity, it posed low risk. In such situations, you can look
at the work from different perspectives. One thing to consider is that making extensive
changes to a class that communicates with many other classes, even if the changes appear
trivial, can result in a testing nightmare. This was one factor that had bearing on the rat-
ing of the change. Again, however, the changes were not considered all that difficult, so the
testing effort was not deemed a major issue (probably much to the team’s hazard). In this
case, the tradeoff between the work needed to make the changes and the net gain in per-
formance pushed the set of changes to the tail end of the priority list.

Changes to CMesh

Changing CMesh to reduce the number of state changes and prevent buildings and char-
acters that were not onscreen from being drawn involved altering CMesh:Draw() and

Chapter 14 ■ Practice, Practice, Practice524

Table 14.2 Ranking of Revision Risks

Rank Risk Priority

1 CMesh—Most Risk CMesh—First Priority
2 CEmitter CEmitter
3 CWorld CImage
4 CTileMap CWorld
5 CImage CTileMap
6 CResourceMgr CResourceMgr

CWorld:Draw(). The complexity of this one operation was a good indication of the over-
all complexity of CMesh. The change involved work with approximately 130 lines of code
in the implementation file. It presented a relatively complex testing situation.

Scope of CMesh Changes

Figure 14.9 shows partial details of a UML class diagram representing the attributes and
operations of CMesh. Two salient features are the Draw() operation and the CImage objects.
The Draw() operation has a DWORD parameter. The UML diagram adequately details most
of the complexity, but one point of concern arises with an association in the Draw() oper-
ation with a pointer to a CGraphics object. The CGraphics object is global, declared in the
util.cpp file. An Ankh class, CImage, forms several aggregations with CMesh. These, howev-
er, do not directly impact the Draw() operation. Generally, changes to the operation
involve attending to messages among CMesh, DirectX objects, and CGraphics.

Changes to Ankh 525

Figure 14.9
A UML class diagram reveals most of the
complexity of CMesh.

The Code

A final step in assessing risk and planning changes involves going to the code. In some
instances, you must add operations. In other instances, additions aren’t necessary.

The operation that was central to limiting state changes and changing the visibility of
meshes centered on the Draw() operation. Because the implementation of the operation
consumed approximately 130 lines of code, it was a somewhat large operation.
CMesh:Draw() contained calls to CMesh:Update() and CMesh:DrawFrame(), adding to the
complexity:

///
// CMesh::Draw() //
// Draws the mesh. //
///
void CMesh::Draw(DWORD dwColor)
{

if(dwColor != D3DCOLOR_XRGB(255,255,255))
{

D3DXCOLOR color(dwColor);
m_matColor.Diffuse = color;
m_matColor.Ambient = color;
m_bColoredDraw = true;

}
else
{

m_bColoredDraw = false;
}

if(m_bSkinned)
{

Update();
DrawFrame(m_pRootFrame);
return;

}
// For each material, render the polygons that use it
for(DWORD i=0; i<m_dwNumMaterials; i++)
{

// Set the material and texture for this subset
if(m_bColoredDraw)

{
Graphics->GetDevice()->SetMaterial(&m_matColor);

}
else
{

Graphics->GetDevice()->SetMaterial(&m_pMaterials[i]);
}

if(m_imgBumpMap && Graphics->GetBumpMapping())
{

Chapter 14 ■ Practice, Practice, Practice526

// Set the direction of the light for the bump mapping
D3DLIGHT9 light;
Graphics->GetDevice()->GetLight(0,&light);
D3DXVECTOR3 vec = light.Direction;
DWORD dwTFactor = VectorToRGB(&vec);
Graphics->GetDevice()->

SetRenderState(D3DRS_TEXTUREFACTOR,dwTFactor);
if(Graphics->GetDetailMaps()>0)
{

// Scale the detailmap
D3DXMATRIX matTexture;
D3DXMatrixScaling(&matTexture,4,4,4);
Graphics->GetDevice()->

SetTransform(D3DTS_TEXTURE3,&matTexture);
Graphics->GetDevice()->
SetTextureStageState(3,

D3DTSS_TEXTURETRANSFORMFLAGS,D3DTTFF_COUNT2);
}
else
{

Graphics->GetDevice()->
SetTextureStageState(3,
D3DTSS_TEXTURETRANSFORMFLAGS,D3DTTFF_DISABLE);

}
Graphics->GetDevice()->SetTextureStageState(1,

D3DTSS_TEXTURETRANSFORMFLAGS,
D3DTTFF_DISABLE);

Graphics->GetDevice()->
SetTextureStageState(
2, D3DTSS_TEXTURETRANSFORMFLAGS,
D3DTTFF_DISABLE);

// Bump map pass
Graphics->GetDevice()->SetTextureStageState(
0,D3DTSS_COLORARG1,D3DTA_TEXTURE);
//normal
Graphics->GetDevice()->SetTextureStageState(
0,D3DTSS_COLORARG2,D3DTA_TFACTOR);
//light vector
Graphics->GetDevice()->SetTextureStageState(
0,D3DTSS_COLOROP,D3DTOP_DOTPRODUCT3);
// Render the texture
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_COLORARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_COLORARG2, D3DTA_CURRENT);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
Graphics->GetDevice()->SetTextureStageState(

Changes to Ankh 527

1, D3DTSS_COLOROP, D3DTOP_MODULATE2X);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_ALPHAOP, D3DTOP_MODULATE2X);
// Add the lighting

Graphics->GetDevice()->SetTextureStageState(
2,D3DTSS_COLORARG1,D3DTA_CURRENT); //normal
Graphics->GetDevice()->SetTextureStageState(
2,D3DTSS_COLORARG2,D3DTA_DIFFUSE); //light vector
Graphics->GetDevice()->SetTextureStageState(
2,D3DTSS_COLOROP,D3DTOP_MODULATE);
// Detail map it
if(Graphics->GetDetailMaps()>0)
{

Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_COLORARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_COLORARG2, D3DTA_CURRENT);
Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_COLOROP, D3DTOP_MODULATE2X);
Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_TEXCOORDINDEX, 1);
Graphics->GetDevice()->SetTexture(
3, m_imgDetail->GetTexture());

}
else
{

Graphics->GetDevice()->SetTexture(3,NULL);
Graphics->GetDevice()->SetTextureStageState(
3,D3DTSS_COLOROP,D3DTOP_DISABLE);

}

// Set up the textures; stage 0 is the
// bump map, and stage 1 is the texture
Graphics->GetDevice()->SetTexture(
0, m_imgBumpMap->GetTexture());
Graphics->GetDevice()->SetTexture(
1, m_imgTextures[i]->GetTexture());

}
// No bump map, just a regular texture
else if(m_imgTextures && m_imgTextures[i])
{

Graphics->GetDevice()->SetTexture(
0, m_imgTextures[i]->GetTexture());
Graphics->GetDevice()->SetTexture(1, NULL);
Graphics->GetDevice()->SetTexture(2, NULL);

}
// No texture!
else
{

Chapter 14 ■ Practice, Practice, Practice528

Graphics->GetDevice()->SetTexture(0, NULL);
}

// Draw the mesh subset
m_pMesh->DrawSubset(i);

Graphics->GetDevice()->SetRenderState(
D3DRS_ALPHABLENDENABLE,TRUE);

}

// Reset to default state
Graphics->GetDevice()->SetTextureStageState(

0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(

0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
Graphics->GetDevice()->SetTextureStageState(

0, D3DTSS_COLOROP, D3DTOP_MODULATE);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_COLOROP, D3DTOP_DISABLE);
Graphics->GetDevice()->SetTextureStageState(

2, D3DTSS_COLOROP, D3DTOP_DISABLE);
Graphics->GetDevice()->SetTextureStageState(

3, D3DTSS_COLOROP, D3DTOP_DISABLE);
}//end Draw()

Other Changes

Unfortunately, page constraints prohibit a detailed discussion of all changes to the Ankh
system. However, by using such tools as UML diagrams, code inspections, and generalized
risk assessment and priority ratings, the team was able to discern how to proceed with
revisions. The revisions that this chapter shows represent only minor changes. Such
changes do not necessarily characterize industry practices, but it is common for a prod-
uct revision to consist of numerous minor changes.

The revisions that were designated to become Stripe 15 of Ankh were symmetrical. In
other words, all revisions required modifications of 1–3 member operations. Likewise, all
required modifications took no more than three classes. The following list summarizes the
revisions:

■ Changes to CWorld. Changes to CWorld supplemented those to CMesh. The change
that received first priority involved reducing the number of state changes. This
class was involved in two revisions. Because of this fact, the team had to assess
whether the two revisions would conflict with each other. The revisions did con-
flict. Both the work to eliminate redundant drawing and to detect objects drawn
below the tile surface involved making changes to CWorld:Draw(). The team dealt
with the situation by coordinating activities so that those involved in making the
changes were aware of what the other was doing and could assess how to order
their activities to prevent rework.

Changes to Ankh 529

■ Changes to CEmitter. Changing CEmitter so that it would draw particles and
chunks with greater efficiency involved altering CEmitter:Draw(). Like the changes
to CMesh, the changes to CEmitter required work up front to determine the scope
of the changes and the risks involved.

■ Revisions to CImage. The second lowest risk was assigned to CImage. Because it
allowed the system to reduce memory use and speed performance in fairly sub-
stantial ways, it was ranked third in priority. This revision involved changes to
CImage::Load().

■ Revisions to CTileMap, CGraphics, and CWorld. This set of revisions centered on
reducing drawing to nonvisible areas. After some analysis, the team determined
that only CTileMap:Draw() and CWorld:Draw() required revision.

■ Changes to CTileMap. Revisions to eliminate drawing below the tile map involved
changes to CTileMap:Draw().

Specifying Revisions
You can specify revisions in the same way that you specify primary functionality. You can
create a software requirements specification for the revision. The requirements specifica-
tion for revisions must refer to the primary requirements, if possible, so that you can
examine the requirements for revision to determine whether they conflict with the pri-
mary requirements. Following are the basic scenarios for merging requirements:

■ Extension. If you consider the changes made to Ankh, the use of the compressed
format for asset files constituted an extension of existing functionality. The team
retained the old functionality, because if the system encountered *.jpg files, for
instance, they would still be read. The revision made possible the automatic com-
pression of files.

■ Substitution. The use of hashes to replace vectors in the CResourceMgr class repre-
sented substitution. In this instance, the team decided that the hash container was
superior to the vector container. However, the operational interface of the hash
container differed little from the vector container, so much of the work involved
replacing the container instances. Of course, even though the operational inter-
faces of the two classes displayed extensive similarities, testing was necessary to
establish the success of the substitution.

■ Supersession. The changes to CEmitter constituted an instance of supersession.
The change fell under this heading because the implemented code provided a
superior solution to the problem, one that used components and algorithms that
spoke of an evolved understanding of the problem and its solution. Supersession
implied that the resulting code would provide the same functionality as the old
code. The moment of supersession arrived with the superior way that the code
provided the functionality.

Chapter 14 ■ Practice, Practice, Practice530

■ Conflict. As an example of a conflict, consider that if the Ankh team had enhanced
the game so that it could be displayed only on high-resolution monitors, it might
have excluded the vast majority of its prospective customer group. A nonfunc-
tional requirement for Ankh might state that the game shall be executable using
the widest possible variety of graphics cards.

Use Case Confirmation
Generally, when you engineer requirements for revisions, you can follow the same proce-
dures that you follow when you develop requirements for a system you construct from
scratch. Accordingly, regarding the prospective changes to the functionality supported by
CMesh, a requirement might read

The system shall restrict painting of meshes to the plane that is defined by the
floor of the level.

Given this beginning, you could then create a use case to test the general conceivability of
the requirement. Figure 14.10 illustrates a possible use case.

Use Case Confirmation 531

Figure 14.10
A use case serves as a proof of
concept for the requirement.

Configuring Revisions
When you determine the scope of a revision, you establish on the most basic level which
classes and other components your revisions will affect. To plan the configuration of a
revision, you can create a configuration management plan (or update the existing plan).
You should name the impacted files and show how to configure them to most effectively
facilitate the development effort.

Designing Revisions
The extent to which revisions impact the existing system design depends largely on
whether you need to add or factor components. The impact of breaking existing compo-
nents into new components is greater in most cases than adding new components. That’s
because if one class (a client) depends on another (a server), the server is likely to impact
the client if its operations are moved to classes with different names.

The need to factor did not arise with the revisions that the team proposed for Ankh. For
example, most of the interactions of the CMesh operations involved DirectX, Boost, and
CGraphics objects. In Figure 14.11, the package symbols represent the DirectX and Boost
libraries, and the composition associations indicate that objects from these libraries sup-
port operations in CMesh. The CImage object relates to the CMesh object on the basis of
aggregation. The object from the CGraphics class is declared globally. Calls using its oper-
ations occur within the CMesh:Draw() operation. Extending the functionality of the CMesh
class involves no changes to the existing design.

Chapter 14 ■ Practice, Practice, Practice532

Figure 14.11
The scope of the changes extends over the DirectX, Boost, and a few Ankh classes.

Implementing Revisions
One contributing factor to successful implementations of releases involves precisely iden-
tifying the components that the release requires you to revise. Identification of components
enables you to operate surgically, first changing key operations within existing classes and
then testing these through integration with the largely unchanged whole. In the instance of
the changes to CMesh, the team identified CMesh:Draw() as the primary target for changes.
The following body of code resulted from the revision of CMesh:Draw():

void CMesh::Draw(DWORD dwColor)
{

// Set the material/color. The color is not WHITE.
if(dwColor != D3DCOLOR_XRGB(255,255,255))
{

D3DXCOLOR color(dwColor);
m_matColor.Diffuse = color;
m_matColor.Ambient = color;
m_bColoredDraw = true;

}
else

m_bColoredDraw = false;
// If you’re skinned, call DrawFrame instead

if(m_bSkinned)
{

Update();
DrawFrame(m_pRootFrame);
return;

}

// For each material, render the polygons that use it
for(DWORD i=0; i<m_dwNumMaterials; i++)
{

// Set the material and texture for this subset
if(m_bColoredDraw)

Graphics->GetDevice()->SetMaterial(&m_matColor);
else

Graphics->GetDevice()->SetMaterial(&m_pMaterials[i]);

if(m_imgBumpMap && Graphics->GetBumpMapping())
{

// Set the direction of the light for the bump mapping
D3DLIGHT9 light;
Graphics->GetDevice()->GetLight(0,&light);
D3DXVECTOR3 vec = light.Direction;
DWORD dwTFactor = VectorToRGB(&vec);
Graphics->GetDevice()->SetRenderState(

D3DRS_TEXTUREFACTOR,dwTFactor);
if(Graphics->GetDetailMaps()>0)

{

Implementing Revisions 533

Graphics->ApplyStateBlock(“MeshDetailAndBumpMap”);
Graphics->GetDevice()->SetTexture(

3, m_imgDetail->GetTexture());
}
else
{

Graphics->GetDevice()->SetTexture(3,NULL);
Graphics->GetDevice()->SetTextureStageState(

3,D3DTSS_COLOROP,D3DTOP_DISABLE);
Graphics->ApplyStateBlock(“MeshBumpMap”);

}
// Set up the textures; stage 0
// is the bump map, and stage 1 is the texture

Graphics->GetDevice()->SetTexture(
0, m_imgBumpMap->GetTexture());

Graphics->GetDevice()->SetTexture(
1, m_imgTextures[i]->GetTexture());

}
// No bump map, just a regular texture
else if(m_imgTextures && m_imgTextures[i])
{

Graphics->GetDevice()->SetTexture(
0, m_imgTextures[i]->GetTexture());

Graphics->ApplyStateBlock(“MeshNoBumpMap”);
}
// No texture!
else

Graphics->GetDevice()->SetTexture(0, NULL);
// Draw the mesh subset

m_pMesh->DrawSubset(i);
Graphics->GetDevice()->SetRenderState(

D3DRS_ALPHABLENDENABLE,TRUE);
}

// Reset to default state
Graphics->ApplyStateBlock(“ResetTextures”);

}

Testing Revisions
Testing revision work differs little from testing the work of primary implementation. A
difference does distinguish the two types of work, however. When you revise a product,
your testing effort must concentrate on integration from the first. Testing components in
isolation is almost secondary. The reason for this should be clear. Even if a development
effort renders an excellent component, you cannot subordinate the operational integrity
of the entire system to the one component. Testing of the component should assume an
integration or system bias. In other words, if the component does not communicate with

Chapter 14 ■ Practice, Practice, Practice534

the system, then the sanity of the system, rather than that of the component, should be
assumed first.

Developing test cases is covered in Chapter 11, “Evident Evil—The Art of Testing.” Here,
it is useful to show that you can develop a black-box test procedure from the use case illus-
trated in Figure 14.10. The test procedure allows you to access existing functionality of the
system and to operate the system so that it tests the new functionality. Figure 14.12 illus-
trates a test procedure for the revision.

As Figure 14.13 shows, you can use the character editor for Ankh to test the revised func-
tionality, which the test procedure stipulates.

Testing Revisions 535

Figure 14.12
A test black-box test procedure provides a convenient way to ver-
ify revised functionality.

Conclusion
This chapter dealt with the dangers and advantages that you encounter when you revise a
game framework. Reference was made to a “game framework” in preference to “game
engine” because the emphasis has been on using an existing body of code, complete with
meshes, textures, and other assets, to create either a modified game or introduce a new
release of the existing game. No core set of functionality is necessarily implied, as would
be the case with a game engine.

The dangers that modifications or revisions pose usually originate with a failure to thor-
oughly investigate the scope of the proposed revisions. If you extensively alter an existing
framework, you can end up expending more effort than if you had started from scratch.
Given that the intention of revision encompasses reuse and improvement of an existing
body of code, revision proves worthwhile only if you selectively refine a limited portion of
the existing framework.

If you pursue several revisions, you can benefit from assessing the scope of the revisions
comparatively. A symmetrical relationship among revisions occurs when all of the revi-
sions possess roughly similar scopes. For example, most of the revisions proposed for
Ankh involved modifying or extending 1–3 classes. Had any one revision strayed far from
this range, it might have been appropriate to question it.

Chapter 14 ■ Practice, Practice, Practice536

Figure 14.13
The character editor provides a context for testing the new requirement.

Planning revisions involves assessing risk and setting priorities. You can assess risk by
comparing the benefit to be derived from the proposed revision to the amount of work
required to bring about the revision. If the amount of work is disproportionate to the
improvement that the work will bring to the system, you should consider putting the revi-
sion aside. Along similar lines, if you are dealing with a set of revisions, you can reduce
risk by assessing which revision has the highest priority. Determining the priority of a
revision depends on such factors as how much work it requires, whether it poses high risk,
and what benefit it brings to the system. Other factors include whether the revision has
dependencies and whether failure to implement the revision poses a risk to the overall
revision effort.

Following are books that extend the discussion in this chapter:

Aßmann, Uwe. Invasive Software Composition. New York: Springer-Verlag, 2003.

Blunden, Bill. Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code.
Berkeley, California: Apress, 2003.

Jacobson, Ivar, Martin Griss, and Patrick Jonsson. Software Reuse: Architecture, Process,
and Organization for Business Success. Reading, Massachusetts: Addison Wesley Longman,

1997.

Conclusion 537

539

Team Work

Chapter 15

G
ame software development is almost always a group effort. Where you fit into a
team effort depends on the skills you possess and how you work with others. How
a team takes shape depends on the way the organization puts teams together and

how the members of the team interact. If a team does not form itself into a tight working
unit, it is unlikely that the project will succeed. This chapter looks at some of the elements
of team success, as follows:

■ What a team is and how it is formed to address the needs of a new project

■ The roles people play both formally and informally when they join a team

■ How members of a team can communicate using standard software engineering
tools

■ How reviews contribute to the ability of team members to communicate effectively

■ Ways to view the team in light of project management perspectives

■ The use of project tracking media to help everyone on the team focus on tasks and
understand dependencies

■ How teams fail and how you can work to remedy some of the causes

Basic Tendencies of Teams
A development team in a software engineering organization consists of a group of people
who work in specialized roles toward a common goal. The goal is the completion of a pro-
ject. A project is defined as “a temporary endeavor undertaken to create a unique product,
service, or result” (PMBOK, 204). When software engineers work toward a common goal,
they do so as professionals who might possess roughly the same general level of technical

expertise. After they join the project, however, they tend to dedicate themselves to specif-
ic tasks. The expertise that software engineers develop as they perform these tasks enables
them to accomplish more than they could as individuals trying to do a little of everything.
The fact that this happens almost invariably in every production environment confirms a
generalization that Adam Smith made much of in his Wealth of Nations: Division of labor
increases productivity, but productivity demands division of labor.

Teams, then, join people together in a common endeavor, but at the same time, the demands
of the project force members of the team to assume diverse roles, and the roles tend to iso-
late members of the team from each other. When individuals are isolated, inefficiencies in
the coordination of efforts and communications result. To counteract this tendency, soft-
ware engineering practitioners prescribe a set of standard measures for regularizing the
communications and interactions of team members. Among these are such things as spe-
cific types of documents, formalized reviews, and standard techniques of tracking the
progress of a project. A balance develops between specialization and cooperation.

To repeat, the balance between specialization and cooperation is achieved only through a
combination of different software engineering practices. Among those investigated in this
chapter are the following:

■ Understanding the flow of activity that allows a project to come into existence.
This depends on the style of development that the organization sustains.

■ Knowing how a project takes form as a managed set of tasks. At the center of this
activity is the project manager, who has the ability to plan activities so that even in
the face of tensions that arise due to tight production schedules, people who have
little time to communicate with each other about their deliverables can still work
toward a unified end.

■ The roles of people who are on the team. Roles can be both formal and informal.
Understanding the importance of both is the responsibility of everyone on the
team. Everyone learns how to work with everyone else.

■ Recognizing the importance of creating, tracking, and focusing on schedules.

■ Understanding the factors that are known to contribute to the failure of teams.

■ The level of professionalism or sense of craft that guides both individuals in their
specialized roles and the team in its group role.

Chapter 15 ■ Team Work540

The sheer amount of time consumed developing a game requires that the tasks involved in
developing the game be apportioned between several people, and achieving efficiency and
accuracy in the performance of these tasks dictates that each member of the team should
concentrate on a fairly narrow range of tasks. By the time you count them all, you’ll find
that the software work involved in a game can be divided into 20 or more specializations.

Any one individual can attend to only a few of these specializations. Granted, a program-
mer might test code, or a configuration manager might write documentation, but experi-
ence shows that the more intensive the project work becomes, the more each member of
the team tends to gravitate toward an increasingly narrow range of tasks.

As a result of the tendency toward specialization of effort, the work of project scheduling
and tracking grows in importance, and members of the team must learn to work within the
context that the schedule provides. Not only must everyone work with the schedules, but
those who work on projects must more than ever accustom themselves to communicating
by using tools that reduce things like personality conflicts, unintentional miscommunica-
tions, or deceptions. Becoming accustomed to such tools is difficult for some people. The
difficulty is usually something that you can remedy fairly quickly by looking at the formal
mechanisms that any successful organization has in place to guide communications.

When Teams Form
Being able to participate in the work of a team requires a realistic view of what the team
is about. It is about, among other things, the performance of work relative to a project,
which is a temporary undertaking, as noted earlier, that is focused on a unique product.
A software development team is temporary.

A software development team does not usually come into existence as soon as the idea for
a game originates. Other things come first. The start of the software engineering effort
does not occur until the organization, of which the software team is a part, decides to fund
the development of the game. The style of development that the organization maintains
determines how the organization decides to fund the development of a game. In small or
entrepreneurial organizations, the initiative might come from a developer or group of
developers who want to create a given type of game. As the organization increases in size,
the likelihood that software developers will create the idea for a game decreases. In mature
companies, the decision to impetus to create a game almost always comes from outside
the software engineering group.

Game development companies often identify the activities relating to the game production
using terms derived from the film industry. Finding, assessing the feasibility of, and acquir-
ing funding for an idea constitute the preproduction phase. The construction of the game
constitutes the production phase. The release of the game makes up the postproduction

Basic Tendencies of Teams 541

phase. Software development activities occur during all three phases, but they are clearly
most prevalent during the production phase. It is during this phase that the software devel-
opment team is formed.

The Sponsor

If your organization possesses an evolved business and production structure, chances are
that the marketing group will be the starting place of new game projects. Someone in mar-
keting will write a proposal for the creation of a new game. Although the idea for the game
might be from a game designer outside the company, someone in marketing must still
acquire or formalize the idea. On the other hand, marketing might support a creative group
whose responsibility is to research and generate new game ideas. Organizations differ.
Regardless of the differences, however, after an idea has been formalized through a pro-
posal, the next step is for someone in the executive or funding group to become the spon-
sor of the idea. The sponsor is someone with control of funding who decides to finance the
development of the game. Without this person’s blessing, nothing goes forward.

The Champion

A sponsor is a guardian angel. At another level, however, someone closer to the produc-
tion process must enter the picture. This is the project champion. This person might also
be fairly high in the company, but such a person need not be immediately responsible for
funding the project. This person works on a day-to-day basis to give the idea of the game
visibility and to urge the sponsor to fund the game. It is possible, of course, that the cham-
pion might be the sponsor, but divisions of labor occur even in high places.

The Startup Team and Approval

Given that the idea for a game has a sponsor and a champion (who might be the same per-
son), the next step is that a startup committee for the game must convene. If your compa-
ny is fairly large, the startup group might consist of a designer and a few project managers.
It might be the game champion who brings together this team. The members represent dif-
ferent divisions of the company. The work of the team is to conduct a feasibility study of
the game idea. A feasibility study establishes that the game can be produced for the amount
of money slated for it and that no technical or creative obstacles stand in the way of its suc-
cessful completion.

In bigger companies, the marketing group might drive the game production effort through
several stages. In such a setting, a person who works in the marketing group might coordi-
nate all preproduction activities. This person (perhaps under the title of producer or direc-
tor of development) might take charge of the game production effort in much the same way
that a producer in the film industry takes charge of starting a film production effort. The
producer or development director works with a few others to scope out the project. As indi-
cated before, it must be clearly established that the game is worth doing and can be done.

Chapter 15 ■ Team Work542

The worth of a game has to do with its potential as a market entity. Key elements in the
evaluation of market risk are whether similar games are on the market, whether the idea
is appealing to a strong segment of the game market, and whether the idea behind the
game will be current when the game reaches the market (which could be anywhere from
a matter of weeks to a year or more). Other factors are whether the game matches the gen-
res of game that the organization has already produced and whether developers that the
organization either already has employed or can find to employ can address the technol-
ogy that the game calls for.

Figure 15.1 shows some of the people who might be involved in a feasibility or high-level
assessment of a prospective game. Keep in mind that roles, titles, and hierarchies differ, so
this representation is nothing more than an abstraction. Likewise, the perspective offered
here might be a bit distorted because it is centered on the software engineering effort. In
some organizations, the software engineers are under a software team lead. The lead might
report to a game designer who is a graphical artist or graphics designer. The important thing
to realize is that the idea for a game, as well as its initial design, emerges from an effort that
extends quite a bit beyond the rather narrow confines of the software development team.

Software Engineering Startup Input

Do software engineers take part in the startup activities? In some situations, they do, but in
other situations, they do not. Software engineers participate when the startup team
requires information about the technical feasibility of the game. This might be the case
whether the organization is large or small. Regardless of how interesting an idea for a game

Basic Tendencies of Teams 543

Figure 15.1
The person who initiates a game development effort depends on your
organization.

might be, if someone has proposed using technology that is not within the development
capabilities of the organization, then the risk the game poses might be too great to justify
funding its production. Someone with technical expertise is required to establish the level
of risk that the proposal contains, and the best person to do this is a software engineer.

On the other hand, even if the technical development of the game is feasible, the startup
team requires information concerning how much effort will have to be put into develop-
ing the game. For example, if it is assumed that the game will use an engine purchased
from a vendor, then it’s important to state the capabilities and cost of the engine. If the
organization is going to develop or extend its own engine, then this, too, must be taken
into consideration. Someone with expertise in determining engineering efforts might also
be needed. This person provides estimations of time and needed personnel. The person
in the best position to perform this work is a software engineering project manager.

The Successful Start

If the preproduction phase leads to a successful outcome, then the producer or program
director summons together people from different divisions of the organization to form
the beginning of the production effort. To move forward with the startup of the produc-
tion effort, the people who are initially assigned to the project must complete a fair
amount of paperwork. They perform the paperwork so they can plan how to build the
product. The plans involve how to assemble teams, order materials, contact vendors, and
generally get the project into gear. This, then, is the real beginning of the production
effort. To begin development of a game, you require a good idea, an executive sponsor
who agrees to fund its development, and a group of people to conduct a feasibility study
to ensure that the game is worth developing. Then you need a startup initiative involving
a producer or program director who contacts several project managers or team leads to
perform the work of planning the development effort.

The project managers are specialists. Some specialize in graphics, some in music, and
some in software engineering. One of the immediate tasks that project managers face is
that they must write planning documents that are likely to be included in a master design
document for the game. In the instance of the software engineering project lead or man-
ager, the emphasis might be at first upon developing a high-level document that describes
what the software team will do as part of the overall project.

Formal Measures of Team Formation
Regardless of the size of your organization, some type of documentation is likely to
underlie the formation of the software development team. Granted, you might work for a
company that produces only a few documents as part of its production effort, but the
more people who participate in the effort, the more the activity of development must be
formally planned and tracked. For this reason, formal communications become necessary.

Chapter 15 ■ Team Work544

A plan for the overall game project is almost always produced. This plan might be called the
game production plan. This document is not likely to be the work of a software engineer. It
might be something that a person in marketing authors. Or it might be the result of a game
designer who works in a high-level program development group. Again, the marketing
group might draft a marketing plan. The graphical design group might draft a design feature
plan. Several other groups might draft plans that represent their stake in the project.

The software engineering group (which might be referred to as the software development
or programming group) is likely to be asked to draft a software project development plan,
which might, in the end, contain several constituent documents, such as the software
vision statement, the software requirements specification, the software design description,
the software test plan, the software quality assurance plan, and the software deployment
plan. Figure 15.2 illustrates how a chain of documentation might be created in an orga-
nization after an idea for a game has been accepted. It’s not necessary to include the doc-
umentation that’s specific to the software engineering group at this point. Note, however,
that a software development plan is part of the picture.

Basic Tendencies of Teams 545

Figure 15.2
Plans might abound. The software development plan might begin a brief document that explains how
the software team intends to put together a development effort.

As is evident from the earlier discussion, the first software developer who is assigned to
the team is usually the software project manager. The next person on the team is likely to
be a senior developer, who is sometimes called a software architect. The roles of these two
individuals differ fairly drastically. The project manager draws up a plan for the develop-
ment of the game software, hires people to construct the software, and manages the soft-
ware development effort to its conclusion. Software engineering project managers might
have highly technical backgrounds, but their current role confines them largely to man-
aging a schedule and ensuring that the team connects up in the right way with the orga-
nization and works according to a well-planned schedule.

The software architect designs the software, helps the project manager assess the techni-
cal capabilities of those recruited for the team, and usually assumes a lead role in the
design and construction of the game. The title assigned to this person might be something
along the lines of lead developer, lead programmer, or senior software engineer. Whatever
the title, the software architect might be said to be the one who knows how the entire sys-
tem goes together and to whom everyone can turn for technical advice.

How Team Numbers Are Determined
The program manager usually estimates how many people a project requires. This esti-
mation is based on information that is usually extracted from the initial requirements
specification. The information in the specification establishes the scope of the project and
the number of features that must be supported. Combined with the funding and the time
allotted for construction of the game, this information allows the project manager to esti-
mate how many developers are needed to develop the game.

In organizations that produce games according to a standard model, the project manager
has a fairly precise idea of how many software developers the game requires. In situations
in which the scope of the game cannot be defined until the requirements have been engi-
neered, the project manager must first evaluate the requirements and the design before
determining how many developers to hire.

To review: Two major factors shape the estimation of how many people are on the soft-
ware development team. The first of these is the number of features that the development
effort must address. The second is the time that the organization intends to allow for the
software development effort. It is up to the software project manager to create a develop-
ment schedule and determine the number of developers who must be assigned or hired
for the software development effort.

What Teams Do
Obviously, this topic deserves a stronger treatment than it is going to receive here. Most
of this book provides details about what the team does during its lifetime, but the follow-
ing is a standard set of software engineering tasks:

Chapter 15 ■ Team Work546

■ Prepare a software development plan.

■ Gather technical requirements for the game and summarize these in a software
requirements document.

■ Design the software system that supports the features of the game and document
this design in a design description.

■ Construct the software for the game and create documentation for the code.

■ Prepare a test plan for the software and conduct the tests that the plan specifies.

■ Prepare a deployment plan for the software and deploy the software.

When Teams Dissolve
Generally, the deployment of a game marks what is known as the postproduction phase.
Deployment does not mean that work on the game ceases, of course, but this is sometimes
precisely what happens. If production ceases, it might be that everyone on the team is laid
off, assigned to other projects, or idled. If the organization decides to start right to work
on another release of the game, then it is unlikely that the development team will be dis-
banded. To begin another release, risks must be assessed, and requirements must be gath-
ered. In short, another preproduction phase must be initiated, and given the momentum
the existing product has already established, a production phase is likely to follow soon.

If a given game merits a subsequent release, it is seldom that a company willingly lays off
developers who have worked on the game. This does happen, of course. Usually, layoffs of
developers of a successful game occur only when exceptional incidents occur, as when the
company loses a contract with a publisher, sells the rights to the game, or becomes so
mired in its internal political conflicts that it can no longer function as a viable business
entity. In a few instances, after a company has sold a game to another company, the team
that developed the game has pulled up its roots and migrated to the company that bought
the game. As the industry matures, such instances are likely to become exceedingly rare.

Important Factors in Team Formation
A software project manager recruits people to be part of a game development effort. The
cooperation level of the people who make up the team often depends on two major fac-
tors. These two factors are the technical expertise of the members of the team and whether
the personalities of the team members complement each other so that the team jells into
a productive whole. Figure 15.3 illustrates the relationship. Both topics bear quite a bit of
discussion.

Important Factors in Team Formation 547

Technical Fit
Technical expertise can sometimes be a difficult expression to define. Generally, when peo-
ple work together in a team effort, they must assume specialized roles. The roles they
assume must be roles they find interesting and absorbing if they are to work well with the
team. A given individual might be perfectly qualified, technically, to assume several roles,
but if it is clear to those who interview this individual that the individual is not a good fit
for the open role, then hiring that person is probably not a good idea.

Consider a situation in which a game is to be developed according to well-defined require-
ments and within the structure of a fairly nonnegotiable project schedule. A programmer
who is used to working for sweatshop operations in which hacking is the primary criteri-
on of success might not strike the project manager as a good candidate. It might be the
case that this person is a dynamite programmer, but he has not been trained to work with-
in a schedule and according to the definition of the project that the requirements and the
design present. Working within such boundaries is a technical qualification.

On the other hand, the project manager might be looking for someone who is an excel-
lent tester. If a dynamic, creative programmer shows up who clearly wants a role other
than testing, then the fit is not a good one. Here, the programmer’s general technical qual-
ifications might be exquisite. He might be perfectly qualified to be a tester. However, the
role that the individual seeks to assume does not match the role that the program manger
seeks to fill. Here, again, the assessment of the individual’s fit is based on the technical fit
of the candidate.

Emotional Fit
The fit of the software engineer for the team extends to nontechnical dimensions. Just as
teams create technical roles, teams also create emotional roles. This is especially true in

Chapter 15 ■ Team Work548

Figure 15.3
The success of a team depends on how well the members of the team
complement each other technically and personally.

game development, where production efforts often occasion some of the most exciting
and demanding work to be found anywhere. The pace and pressure of a schedule can
become so demanding that those on the team are likely to be forced at some point to show
the raw edges of their personalities. At such moments, the emotional compatibility of
those on the team far outweighs in importance their technical compatibility.

At certain moments in the life of a project, members of a team are likely to begin to attack
or blame each other for delays or inefficiencies. Such raw exposures reveal different person-
ality types as few other passages in a development cycle can. Although professionalism
should prevent individuals from becoming petty or stupid to an extreme, it remains that
when the bad passages occur, a team must possess a self-healing quality. A team can possess
this quality if, in one scenario, it has members who view themselves as healers—people who
will try to smooth out conflicts and move people toward renewed efforts. On still another
level, self-healing also means maintaining a clear view of the object to be accomplished.
Those who provide the impetus in this direction are sometimes called motivators, people
who remain focused on the schedule regardless of how they might feel personally about
issues.

The way that members of a team emotionally jell (some people call this the “chemistry”
of the team) depends on the roles they assume. A good team consists of people with dif-
ferent personality types. Some people want to lead; others want to be led. Some are intro-
verted, taciturn, or shy. Others are extroverted, vociferous, and bold. The ability of a team
to absorb the dispositions of its members and to find ways to provide the best working
context for personal expression proves essential for the success of the team. The team
must be able to absorb differences and exploit the momentum that consensus provides.

Finding a Fit
Teams come into existence through the recruitment efforts of the project manager and, to
a lesser extent, the technical lead (identified as the architect). Because the project manag-
er often looks for personality compatibility and the lead developer looks for technical
capability, it is likely that a balance of technical and emotional factors will determine who
is recruited for the team. As a team grows in size, interviews can be conducted in which
all the members of a team have a chance to interview each new candidate. Such an
approach to interviewing can render mixed results. In some situations, members of the
team can confer and determine whether the new person fits into the team; however, it is
also possible that if the team gets off on the wrong footing, the recruiting effort might
tend to enforce one personality type. Teams that lack mixtures of personalities tend to fail.

At such times, the project manager might intervene. It is almost always the case that some-
one with strong technical capabilities will be able to find a role within the team, even if
personality mixes might not seem to be the best. The project manager can use this argu-
ment to bring people with complementary but distinct personalities into the team. As an

Finding a Fit 549

example of how this scenario might unfold, consider people who do not come off well
during job interviews because they are forthright in their declarations of what they think
is the best technical way of doing things. Although studies indicate that such “devil’s advo-
cates” characterize almost all successful teams, it is still the case that if left on their own,
teams almost always resist including such people.

If a project manager asks you to join a team early, you are most likely considered a senior
developer. Your responsibility then becomes one of working with the project manager to
technically assess other candidates for the team. You might find that the project manager
sometimes disagrees with you about the fit of an individual even if the individual pos-
sesses, in your judgment, exceptional technical strengths. If this happens, you should be
aware that the project manager is likely considering that person’s emotional fit.

Formal Development Roles
Technical qualifications for a job usually fall within the boundaries established by formal
development roles. The ability to describe a development role can be a tremendous help
both to a person seeking a position on a team and to those on the team who are inter-
viewing a candidate for a position. For example, if a software engineer is clearly identified
as a tester and the team needs a tester, then the main consideration for inclusion into the
team is the fact that the candidate fits into the named development role. If no other can-
didate has clearly identified this role as a specialization, then the decision seems almost a
forgone conclusion.

In many descriptions of the game industry, roles in software engineering tend to be
labeled with such bland, generic titles as “lead programmer,” “tester,” or “programmer,”
but the fact remains that the roles become much more subtle. Part of the reason for the
lack of detail is that the descriptions of day-to-day software engineering activities are
washed over by general, high-level visions of the production or development process. In
reality, gradations of skill and expertise create a multitude of specialized roles.

One way to avoid the generalities is to explore how the skills usually included under the
heading of software engineering lead to fairly specific job descriptions in highly struc-
tured organizations. The specializations might not receive titles in many organizations,
but the roles and specializations still exist. Descriptions of these roles and specializations
are included in the pages of the Software Engineering Body of Knowledge (SWEBOK),
which breaks the work that software engineers perform into 10 basic categories and sev-
eral more subcategories. Figure 15.4 illustrates some of the specializations drawn from the
SWEBOK descriptions.

Chapter 15 ■ Team Work550

Table 15.1 identifies some of the roles that software engineers might assume as part of the
software engineering effort that game production requires. Note that although gradations
in levels of skill play a part in the roles that software engineers can assume, it remains that
every role is open to everyone. You might be a programmer who specializes in meshes or
Artificial Intelligence (AI), but you might also be an excellent tester. Combinations of
roles often prove important. On the other hand, contending to be a specialist in every-
thing portrays you as a software generalist. This can be a disadvantage. Consider the dif-
ference between a heart surgeon and a general practitioner if you are having chest pains.
Likewise, consider the difference between a software generalist and a testing specialist for
a team that is having testing problems.

Finding a Fit 551

Figure 15.4
Your ability to contribute to the team in a specific role might be the leading factor
in your recruitment for the team.

Personal Project Roles
The personal roles that individuals on a project find are as mixed and multifarious as are
those involving formal roles. For the most part, it is almost impossible for all the people
on a team to have the same role. The impossibility lies in the fact that group dynamics
tend to place people into different roles. Perhaps a question of how to solve a given design
problem arises. If three people participate in solving the problem, one of the problem

Chapter 15 ■ Team Work552

Table 15.1 Software Engineering Roles

Role Description

Requirements analyst Gather and analyze requirements for the software.
Software architect Determine the best architecture for the software. Select

vendor components for inclusion in the development effort.
Software designer Refine the software to achieve performance and other

objectives.
Software tester Test the software to ensure that it performs according to the

requirements.
Senior programmer Develop low-level design documentation, serve as a tech-

nical lead for others, and implement the software according
to the design.

Programmer Implement software according to design.
Maintenance programmer Work on software created during previous development

efforts to add functionality or eliminate errors. Work with
customer support.

Configuration manager Integrate software, manage builds, and maintain a know-
ledge base of the product builds.

Software project manager Direct the software development team in its development
effort; negotiate with members of the organization outside
the development team; and negotiate with shareholders,
stakeholders, and customers.

Quality assurance specialist Put in place the documents and standards that ensure that
the product is developed in a consistent manner.

Tools developer Develop applications that aid the development team in such
tasks as configuring, testing, debugging, and building the
software.

Change control manager Oversee requests for change and ensure that changes are
made in a documented, approved manner.

Metrics specialist Collect data on software performance and development
activities and analyze them for general product and process
improvement efforts.

Risk analyst Track factors that might endanger the development effort.
Technical writer Create and manage documentation for the project. Write

user documentation.

solvers is bound to end up knowing a bit more about the solution than the other two. This
person then becomes, perhaps, the one who leads or guides the discussion. On the other
hand, a well-informed person in the group might have strong opinions even though he is
not a lead developer, and he becomes a kind of devil’s advocate who argues steadily with
the person in the lead role. The remaining person in the trio then becomes the mediator
or team worker. Figure 15.5 illustrates some of the roles Edward Yourdon, drawing upon
the work of Rob Thomsett, has documented (Yourdon, 115).

It is difficult to name all the roles that a given team’s interactions will create. A seasoned
observer usually develops a short list of roles, however. Table 15.2 elaborates on the roles
Yourdan identifies as typical of software development teams (Yourdan, 115–117).

Finding a Fit 553

Figure 15.5
Team roles take form according to the dynamics of the team and the personality types
involved.

Combining Formal and Personal Roles
You might be both a senior programmer and a monitor-evaluator. In other words, others
look to you for advice about technical solutions, but they also seek your guidance in per-
sonal contexts about how to do things like get along with others, handle stress, or estimate
and schedule tasks. On the other hand, you might be a beginning programmer who comes
across to others as a completer. Because of the mix of your qualities, you might find that
more senior-level people approach you with opportunities to apply your skills to complex
tasks and establish yourself as a solid member of the team.

These are but two scenarios. Clearly, any combination is possible, for most people fit into
several personal and technical roles. The point here is to show that the role you end up
having on the team will be a combination of your technical contributions and the fit of
your personality into the dynamic of the team.

To an extent, however, teams that do not find formal mechanisms for guiding or chan-
neling the roles that people play in the development process stand at great risk. It is for
this reason that activities involving controlled documentation and formalized reviews can
help tremendously with a team effort. Figure 15.6 illustrates how formal and team roles
combine.

Chapter 15 ■ Team Work554

Table 15.2 Personal Project Roles

Role Description

Chairman Has a clear understanding of each member’s abilities and personality
characteristics and manages to find where each person fits in best.

Shaper Summarizes discussions or arrives at generalities that guide group dis-
cussions. Might be a lead designer or architect. Tends to see the big
picture.

Plant Challenges others and introduces new ideas. Often a problem solver.
Sometimes viewed as a “devil’s advocate.”

Monitor-evaluator Provides precise analysis and criticism of the key ideas, technology, and
processes that the project encompasses.

Company worker Works according to established procedures. Remains quiet and works
steadily toward designated ends.

Team worker Works to cement and strengthen the ties that bind the members of the
team. Often helps others.

Resource investigator Communicates well with people outside the group. Finds resources and
technologies that the team requires to move ahead. A “scavenger.”

Completer Works with a sense of deadlines and the need to complete tasks. Can be
trusted to bring things to closure.

Team Activities
A team is something more than a group of people joined by roles. As Tom Demarco and
Timothy Lister have pointed out in Peopleware (see the reference at the end of this chapter),
one of the most important elements in the formation of a successful team is a common sense
of purpose. Teams exist because people embrace a common goal, and when they embrace a
common goal with the right spirit and commitment, they form a whole that is much greater
than any one of its parts (Demarco and Lister, 123). If the organization tries to shape the team
from outside through the imposition of methodologies, success is not likely to result. Nor is
success likely to result if a strong manager tries to command a team into existence from the
inside through demands and threats. The sense and understanding of a common goal by
those on the team remains the primary element in the formation of the team.

When people possess a common sense or understanding of a goal, they are not surren-
dering their individuality to reach something that is outside their specialized effort.
Everyone on the team might have a different view of the final product, but despite these
differences of view, everyone is still able to move forward in an efficient, coordinated way
to complete the final product. That this occurs leads to a further observation. As Demarco
and Lister write, “The purpose of a team is not goal attainment but goal alignment” (126).

Goal alignment can form the basis of a unified effort by a group of software engineers
because the software engineers understand both the roles that they as individuals occupy
on a team and the set of communication tools and skills that allow them as members of

Combining Formal and Personal Roles 555

Figure 15.6
Roles combine to define your unique position on the development team.

the team to work together as a team. If you look at the list of things a software engineer is
assumed to know about planning, controlling, and documenting a software project, for
instance, you will soon recognize that the majority of these things are essentially tools for
enhancing the ability of specialists to align their efforts toward a common goal. Software
engineers who formally understand the best practices that apply to team management
tend to be more effective as team members.

Aligned Goals
In his Software Project Survival Guide (see the reference at the end of this chapter), Steven
McConnell provides an essential list of items that should be placed under change control.
When something is placed under change control, it has special significance, for it is some-
thing that forms an essential part of the finished product. In a sense, things that are paced
under change control constitute the central pathways and tools through which the team con-
certs its efforts toward a finished product. For this reason, when you become familiar with
the items that McConnell includes in his essential list, you can at the same time become aware
of what might be viewed as the collective consciousness of the team. Change control helps to
shape the information that allows the team to work as a team, to possess a common under-
standing of the project. Change control makes possible the aligned goals of all the developers
who form a team. Figure 15.7 illustrates items that are often put under change control.

Chapter 15 ■ Team Work556

Figure 15.7
Information under change control can be viewed as information that provides the team
with a common or aligned sense of what the project is about (McConnell, 81).

Change control involves more than having a control board of a few people regulating how
and when people can make changes to code or documents. Instead of limiting control of
information to a few people, change control actually has the opposite effect: one of allow-
ing all team members to have access to the core information from which an understand-
ing of the project and the product is obtained. The work of change control is to ensure
that everyone on the team can share in the development effort on a fairly equal footing.
In light of this goal, it’s possible to expand on McConnell’s essential list and describe how
each type of information contributes to the team’s ability to understand the project as a
common goal. Table 15.3 summarizes the controlled items of information as pathways.
Such pathways are so important that the success of the team depends on the ability of the
team to maintain them. Without these pathways, the ability of the team to align its efforts
deteriorates because it can no longer coordinate the specialized roles and efforts through
a shared body of information.

Combining Formal and Personal Roles 557

Table 15.3 Core Information Pathways for Teams

Path of Information Description

Vision statement A statement that the team might compose together that briefly
expresses the purpose and goal the team has set for itself in its
development effort. A vision statement is a starting point of
common understanding.

Change control plan An agreement among the members of the team about how
changes to important work, such as requirements and code,
are to be made so that everyone on the team can keep track
of them.

Change proposals An agreement about how team members can propose change.
This might be a brief form or a convention involving sending an
e-mail to a change control coordinator.

Top 10 risk list A list of the major dangers to the success of the project. Every-
one on the team contributes to this list, and knowledge of the
list allows everyone to know the ways in which the project is
most likely to be derailed.

Software development plan The schedule that everyone is expected to follow during the
development effort. It provides a common view of the mile-
stones, the costs, and the scope of the project.

Interface prototype For a game, an interface prototype is a stripe. (See Chapter 4,
“Software Design—Much Ado About Something.”) A stripe is a
proof of concept, a way of demonstrating the feasibility of a
concept or the desirability of a given approach to constructing
the game.

User documentation Information that’s intended for the user, such as an online man-
ual. The primary value of user documentation is that it represents
the customer or player viewpoint.

(continued on next page)

Chapter 15 ■ Team Work558

Table 15.3 Core Information Pathways for Teams (continued)

Path of Information Description

Requirements specification The starting place for the whole software development project.
As pointed out in Chapter 2, “Requirements—Getting the
Picture,” the software requirements specification contains the
plan of how the software system is to address the requirements.

Use cases Contexts of stated requirements. You can employ use cases in the
design effort to define system performance contexts. You can also
use them for testing. Developers, documentation specialists, and
testers require ongoing access to use cases to solidify their
understanding of the project.

Quality assurance plan A schedule and protocol for reviews. A quality assurance plan
differs from a change control plan because it provides a way that
members of the team can review each other’s work. It sets up a
model, for instance, for code reviews. It establishes a way that
the team can agree to continue on from one stripe of devel-
opment to the next.

Software architecture The principles and quality measures that the software developers
should seek to fold into the software. These principles give shape
to the software design description, discussed in Chapter 4. The
software design description provides logical, behavioral, user, and
deployment views of the system, views that allow everyone to
know the scope and development strategy that underlie the
development effort.

Integration procedures For the software developers, integration procedures are essential
to being able to work together on a day-to-day basis. These
procedures are also necessary for understanding how different
layers and components of the system are to interact.

Staged delivery plan The coordination of efforts from incremental release to incre-
mental release is essential for the success of the project. In the
scheme presented beginning in Chapter 4, delivery is not so
much a staged delivery as it is an iterative and incremental
approach to the development of the game.

Milestone schedules For each stripe of Ankh, tasks were scheduled to be performed to
reach intermediary milestones. That resulted in a project plan and
a set of smaller plans that fit within the project plan. In this way,
all members of the team had a way to clearly understand the
short-term release goals.

Coding standards The way that classes, attributes, operations, and other features of
the code for the game should be named. This agreement imme-
diately reduces the possibility that developers will implement
incompatible design features.

Test cases A specialized but commonly shared approach to testing the
validity and functionality of implemented features. Everyone
should have access to test cases. An element or component that
cannot be tested is inevitably a major risk to the project.

Participating in the Information Flow
Although members of a team can align goals if they communicate formal project infor-
mation through the pathways of information listed in Table 15.3, creating a common
effort requires everyone to develop a common understanding. A common effort is a liv-
ing process that artifacts alone cannot convey. The living process consists of a continuous
effort on the part of every member of the team to learn about the product, to iteratively
reshape and improve the product, and to teach others about the product. The primary
way that a team can accomplish these goals is through reviews.

Combining Formal and Personal Roles 559

Path of Information Description

Source code A standard way to store and retrieve code. Source code control is
the one thing that can be controlled when everything else is left
open. Even projects that lack all documentation tend to end up
having fairly coherent source control procedures.

Incorporated media Includes music, sounds, animations, bitmaps, and everything else
that software allows to be drawn into the game. For a game dev-
elopment effort, the software developers develop toward both
temporary (programmer) and final production art. Art is what
makes the game, of course, as much or more so than the
software.

Game design document A high-level, inclusive document that defines the game and
establishes the roles of all the groups involved in the devel-
opment effort.

Build instructions A brief description of how to perform a build should be available
to all the programmers from the beginning. The procedures should
be a closely detailed, numbered set of steps. This is a common
way that everyone can safeguard the central product. It deserves
special treatment.

Detailed design documents Specific implementation views of how to build the product.
Installation program Information about the installation of the program makes the

game the property of the whole team as a deliverable.
Release checklist A checklist that provides a final view of the product. It should

provide a comprehensive description of precisely what is needed
to deliver the fully functional product.

Project log A record of the group’s effort as it has created the product. The
log might list day-to-day accomplishments or concerns. It allows
everyone on the project to have access to a living history of the
development effort. It also provides the core documentation for
the project postmortem.

Project history Compiled from the project log and a few other documents, such
as the project plan. It is useful to the team as a way to discover
the most central issues and findings of the development effort.
For an organization, it forms the basis of continuing quality
improvement.

Reviews are the leading formal means by which all members of a team can focus their
efforts on the project. Reviews provide a controlled medium of information exchange.
During a review, team members examine and productively contribute to the work of
other team members. The exchange is controlled because people who are involved in a
review are placed, once again, in specific project roles. The role of the reviewer differs
from that of someone who is simply trying to find fault. If a team is moving in the right
direction, everyone on the team has an established place as a reviewer.

In the role of a reviewer, you have certain responsibilities. One responsibility is to try to
eliminate faults from the material being reviewed. The spirit of what you say during a
review, then, should be positive. This next section offers a few basic practices that can
serve to carry the members of a team successfully through the many reviews that charac-
terize a successful project.

Review Strategies
It is a good idea to establish a documented procedure for conducting formal reviews.
Reviews need not be painfully formal, but they should be structured so that they are pro-
ductive. The comments made about the work under review should be recorded so that the
author of the work can benefit from them. If remarks are not formally recorded, chances
are no record will be made of them, and opportunities for improving work will be lost.

When material is reviewed, the strongest effort possible should be made to avoid person-
al reference to the competence or performance of the team member who produced the
material under review. The person responsible for crafting the code is irrelevant. What is
relevant is anything that might improve the code.

On the other hand, even if reviews should incorporate formal procedures, they need not
have the feel of formal procedures. In many situations, as Richard Whitehead notes,
reviews can be set up informally on an ongoing basis (Whitehead, 28–33). Informal
reviews occur when one person works continuously with another and makes helpful com-
ments. An example of this type of review is the work of paired programmers. In this
arrangement, one programmer tests another programmer’s code on a continuous basis.
Paired programmers trade roles regularly. The goal is to ensure that the development
effort undergoes continuous, robust testing right from the start.

Another approach is formalized review. Such reviews are often conducted to move the
general vision of the project further along the development path or to bring closure to a
development phase. They involve either the whole team or a large portion of it. For exam-
ple, the team might conduct a formal review of the software requirements specification
prior to beginning the design effort.

Chapter 15 ■ Team Work560

Informal Review Practices

Whitehead recommends the following practices for informal reviews (Whitehead, 31):

■ Concentrate on talking about what will improve the work you are reviewing. Just
saying something is wrong does little to contribute to the review.

■ If something is wrong, concentrate on what is wrong. Try not to apologize or, on
the other hand, show your superiority. Anyone about to make a costly mistake will
be grateful to you for your warning if what you say has the same sincerity and
directness of a warning about, say, a slippery floor or a tainted dish of food.

■ For quality improvement, try to refer to examples of superior work. Pointing to
good solutions is better than trying to improve or reshape something by being
critical of it.

■ As Whitehead puts it, “listen.” People might be defensive about things you say, so it
is important to be sensitive to how they are reacting to your words. If you listen,
you can respond in a way that shows you are not making a judgment.

■ Try to avoid expressing opinions. If something is done in a way that differs from
the way you would have done it, it is not therefore wrong.

■ Do not rely too much on automated tools. Try to look at code, for example, rather
than a report that a tool has produced about the code.

■ Look toward the finished product, not the intermediary, developing product. What
you suggest ultimately serves as a guide that another person can use toward a dis-
tant end.

Formal Review Practices

Steve McConnell suggests a set of best practices for formal reviews. Again, formal reviews
can have a familiar feel to them, but on the other hand, they usually involve a structured
examination of a document, code, or some other project artifact by either the whole team
or a significant subset of the team (McConnell, 132–133).

■ Begin reviewing documents and other artifacts early in the project. When you con-
duct reviews, have in place a quality assurance agreement about how you will con-
duct reviews.

■ Try not to speculate about solutions to problems during reviews. Instead, just
point out what you believe to be problems.

■ Do not digress from the technical focus that the review centers on. It does no good
to try to impress anyone or put anyone down. If you have a solution you would
like to propose, then you can do so in another context, through a formal proposal,
for example.

Combining Formal and Personal Roles 561

■ Keep notes so that the information gathered during the review will not be lost.
A scribe for the review should always be appointed.

■ Record defects during the review rather than leaving them to be documented later.
In other words, obtain precise statements about what is wrong and record these
statements as they are made.

■ After the review is over, verify that the problems identified during the review have
been acted on. Avenues to this goal include issuing change requests or creating
team action items.

■ Share the information obtained during the review with everyone on the team.
Sharing is possible through publication of review minutes or inclusion of minutes
in the project log.

Building a Team
Even if you understand roles, skills, project artifacts, and the use of informal and formal
review techniques, what you derive from your experience with a team depends on what
you bring to the team that falls outside the standard software engineering toolkit. As
Edward Yourdan and others have pointed out, feuding team members, incompetent plan-
ning, poor management, and faulty product designs often characterize software develop-
ment projects, and sometimes the best thing a responsible software engineer can do in
response is resign. On the other hand, it remains that if you refuse to become cynical
toward your project and try to take the initiative to make it better, then you are at the very
least preventing a bad situation from becoming worse.

One thing that can go far to contribute to the success of a team effort is for everyone on
the team to work with the assumption that the project will result in something positive
for everyone on the team. What team members seek individually is difficult to assess.
Feelings and thoughts about career expectations, intellectual interests, technical paths,
and spiritual concerns are but a few of the many things that motivate people to partici-
pate in a team.

In contrast to the things that comprise the multitude of personal visions that characterize
the experiences of individuals on a team are the common goals that are often the subject
of team discussions. Table 15.4 provides a summary of some of these items.

Chapter 15 ■ Team Work562

Building a Team 563

Table 15.4 Qualities That Build a Team*

Team Quality Discussion

Common purpose The team arrives at a shared understanding of the project it
has assembled to accomplish. The team senses that its mem-
bers are on a mission, one that will lead to the accomplish-
ment of tasks that all members of the team consider
important.

Commitment Members of the team are willing to commit themselves fully to
the completion of the project. For the duration of the project,
the project will have a central place in the lives of all members
of the team. Allowances must be made for certain family and
personal concerns, but at least professionally, the project
stands at the center.

Mutual commitment Members of the team are dedicated to helping each other
complete the project. They avoid speaking disparagingly about
each other or trying to benefit at each other’s expense. If one
person on the team disrupts the progress of the work, then
the team is willing to join ranks and accept the idea that this
person must be dropped from the team. Members of the team
must be able to trust each other to complete the work that
needs to be done.

Defined purpose It is necessary to have a clearly defined purpose. Toward this
end, everyone must know what is to be accomplished, and
everyone must be able to point to evidence that shows how
they will accomplish this task. Such evidence consists of,
among other things, a project plan, a set of requirements,
and a project design.

A sense of worth The team must sense that the project is worth doing. When
members of the team can boast a bit about what they are
doing, things are moving in the right direction. In other words,
if you hear that the game you are working on is the best game
ever, then for the person making the boast, you can be sure
that the project possesses worth.

Communications Good communications tend to be frequent and informal. The
members of the team need to be located so that they can
easily communicate with each other. Programmers working as
a team, for example, work less effectively if they do not share
the same workspace. The quick, fruitful exchanges that allow
for informal reviews are fostered by close proximity.

Lack of disruptions Along with close proximity goes stability of setting. A team
should have a secure, well-equipped work area. A team that is
asked to move from building to building during a project or
that lacks a properly equipped work environment loses
productivity and experiences stress.

(continued on next page)

Chapter 15 ■ Team Work564

Table 15.4 Qualities That Build a Team*

Team Quality Discussion

No bottlenecks Few restrictions should be placed upon when or how team
members can communicate with each other. Table 15.3 listed a
number of formal media by which the team can track its pro-
gress and formalize its work on the project. These are part of
the picture. Another part of the picture is where people sit,
when they interact, and how they decide they can commu-
nicate most effectively with each other. An example might be
if a tester and a programmer are placed in the same office or
if someone of junior standing is placed alongside someone
with senior standing.

Strong sense of progress The team needs to see that it is making regular progress
toward the completion of its project. In this respect, the com-
munications of the project manager can be extremely valuable.
Milestones shown on a Gantt chart provide a way to show
everyone on the team that progress is being made.

Keeping skills current The members of the team need to receive support to keep their
skills current. The project should provide a way to learn
new skills.

Acceptance of team goals Members of a successful team usually make the team goals
fairly personal. In other words, whether the project succeeds
has for them important personal implications because they
sense that if the project fails, they have more at stake than
transfer or unemployment. A deeper commitment ties them to
the project’s success: a sense of professionalism.

A mixture of personalities The members of the team should feel free to be themselves.
Some of the personality descriptions Yourdan noted are listed
in Table 15.2. That this mixture is not only nearly inevitable but
positively necessary might come as a novel thought, but the
fact is that if a team does not possess a rich mixture of
personalities, it is likely to fail.

The social fountain The team must be united, in part, by social bonds. Granted,
older people with families might have little time to gather at a
pub to talk about the issues the product faces, but this is still a
fact of every successful project. People who are committed to
an exciting game development project tend to form close
bonds for the duration of the project.

Leadership style Teams must be lead by people who have a management style
that is compatible with the members of the team. Bad man-
agers can destroy the efforts of even the best teams.

*See Richard Whitehead, Leading a Software Development Team, pp. 116–122.

Managing Project Team Work
The roles and responsibilities of the individuals who participate in a team must balance out
if the team is to be successful in its development effort. More than anything else, what bal-
ance means here is that the work of each member of the team complements the work of every
other member of the team. Mutual respect forms the basis of successful team interactions.

When one member of the team attempts to dominate the activity of the team, some
observers refer to such a developer as a “hero.” The hero can insist, for instance, that every-
one on the team should accept his personal vision of what a game should be. If this vision
has little to do with the game that has been specified in the requirements, then the devel-
opment effort is in trouble.

It might seem that an appropriate response to the hero mentality is for the team to ignore
the hero, but this is sometimes easier said than done. If the hero has a strong personality,
possesses advanced technical knowledge, and is extremely skilled as a developer, other
team members might find it impossible to ignore him. Dealing with the hero becomes the
responsibility of the project manager. Although the project manager has many responsi-
bilities, ensuring that personalities and efforts balance out according to roles, responsibil-
ities, and scheduled tasks is one of the most central.

Project Leadership
Regardless of how this effort might be embedded in the overall game production effort,
the person who manages the software development project will be referred to in this book
as the project manager. When it comes to defining the role of the project manager, the best
reference is the Project Management Body of Knowledge (PMBOK) Guide, published by the
Project Management Institute. (See the reference at the end of this chapter.) According to
the PMBOK, “Project management is the application of knowledge, skills, tools, and tech-
niques to project activities to meet project requirements” (6). This definition implies the
following responsibilities:

■ Initiating the project by writing the project plan, scoping the project, and recruit-
ing personnel to work on the project

■ Planning the project so that the product can be developed to accord with the
requirements and schedule set for the delivery of the product

■ Executing the development of the product, which involves scheduling, managing,
and reviewing the activities of all those who participate in the development effort

■ Controlling the costs of the project, which involves ensuring that the development
of the project does not cost more than what the budget stipulates it should cost

■ Closing out the development effort, which involves delivering the product and
accessing the product development activity in a way that yields information that
can benefit future development efforts

Managing Project Team Work 565

Project Management Skills
Table 15.5 provides a list of the qualities that the PMBOK considers important if project
managers are to accomplish the tasks of initiating, planning, executing, controlling, and
closing the project. Such skills are part of the work of every member of the team, but with
a project manager, these skills must be developed to a highly polished level. The project
manager must be the most visible representative of the project, the person who must
defend the project’s existence when it is called into question for technical, scheduling,
staffing, or budgetary reasons. Along similar lines, the project manager must be the per-
son on the team who is best at resolving disputes, explaining problems so all can under-
stand them, and making decisions when a number of perplexing alternatives are at hand.

Chapter 15 ■ Team Work566

Table 15.5 Project Management Skills*

Skill Description

Leading Establish direction by developing a vision of the future and the
strategies that can achieve the goals established for the team.
Align the efforts of the people on the team by communicating
clear goals to all members of the team. Motivate and inspire
those on the team by showing them ways to overcome political,
bureaucratic, and personal obstacles.

Communicating Exchange information in a clear, unambiguous, and complete
way. Write, listen, and speak with and for the team. Develop
information for both the team and its customers. Produce formal
documentation to record or justify the efforts of the team. Report
information to those higher in the organization who audit or
champion the project.

Negotiating Confer with those on the team and to whom the team is ac-
countable to reach agreements on such things as project scope,
project cost, project schedules, contracts and salaries, task
assignments, and hiring and firing decisions.

Problem solving Define problems and make decisions. Determine the causes and
symptoms of problems and whether problems are internal (as
with a difficult employee) or external (funding, work spaces) to
the team effort. Identify solutions and decide which solution is
the best.

Influencing the organization Get things done by understanding the formal and informal ways
the organization works. Understand how different groups in the
organization—such as customers, partners, contractors, and
others—relate to the project.

*Source: Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide)
(Newtown Square, PA: Project Management Institute, 2001), pp. 24–27.

Means of Management
Project managers plan and schedule the tasks that team members perform to meet the
requirements of the project. Three artifacts of planning and scheduling that project man-
agers use almost without exception are the Work Breakdown Structure (WBS), the PERT
chart, and the Gantt chart. Just as the paths of information that Table 15.3 presents form
the central ways in which members of a team formally communicate, the WBS, PERT
charts, and Gantt charts form the central means by which the tasks, milestones, and
dependencies that a team faces can be analyzed and made a part of a realistic schedule.

Making the case for the value of setting milestones and maintaining a clear understand-
ing of project dependencies, Frederick Brooks, Jr., wrote in The Mythical Man-Month that
“Disaster is due to termites, not tornadoes. . .” (154). In other words, projects often fail
because people allow schedules to slip in small, largely imperceptible ways. Small slippages
of schedule are, according to Brooks, more dangerous than catastrophic events because
after a catastrophe everyone knows that a major problem has occurred and that major
steps must be taken to repair the damage. In contrast, small slippages are unseen or even
concealed, and the damage they bring with them does not emerge until it is too late to do
anything about it other than admitting that the project will not be completed on time.

Creating WBSs and Gantt and PERT charts allows you to develop a reliable way to track
progress and know when a delay has occurred. Being able to track progress and delays
helps the team sustain what Brooks—borrowing a term from baseball—referred to as hus-
tle. Hustle is the general tendency to make certain that small delays do not occur. There is
really no better term for it. When a team hustles, the team commits to doing tasks on time
and with energy and care. Taking care of small things, as Brooks contends, ends up being
more important than concentrating completely on big things.

WBSs
After the requirements of a project have been completed, the project manager is in a posi-
tion to begin estimating the number of tasks the team must complete to develop a soft-
ware product. One means by which the project manager can analyze the collection of
activities encompassed by the requirements is the WBS. The WBS is a chart that decom-
poses the tasks involved in a project. Figure 15.8 illustrates a WBS for some of the tasks
associated with the development of Ankh.

Means of Management 567

As Figure 15.8 shows, the WBS begins at the highest level of generality. From there, it
moves downward, through multiple tiers, until it reaches a level of detail that makes indi-
vidual tasks visible. At the task level, it becomes possible to begin making estimations
about the time and effort each task requires. Only by decomposing the project until it can
be viewed as a set of specific tasks can the project manager hope to reach a point at which
estimating work requirements can be made with accuracy.

Even if you are not working as a project manager, the WBS is a helpful tool for analyzing
and estimating the work that a given task requires. If you are working at the level of detailed
design and your project manager asks you to estimate the time you will require to perform
a task, you can use the same general approach. Some useful steps are as follows:

1. Understand what it is that you are expected to do.

2. Assume from the first that you will have to plan, construct, and test your work.

3. For the construction phase, break the project down until you can easily picture the
components you will have to construct. For example, a class might consist of oper-
ations. Estimate the number of operations.

4. Further, estimate whether the operations are complex or simple. If they remain
complex, break down the work into smaller units.

5. After you have arrived at an estimation, add time for emergencies. You can call this
a margin of error.

Chapter 15 ■ Team Work568

Figure 15.8
A WBS provides a way to decompose project tasks to a level of detail that makes it possible to accu-
rately estimate the time, effort, and cost.

WBS Task Lists
After you have completed a WBS, you can recast its results in tabular form. In this form,
you can view the task in terms of its status, who is going to do it, and how much of it
remains to be done. You can then assign each task a simple completion status, such as
begun, in progress, or complete. On the other hand, you can assign an estimation of dura-
tion to the task. Figure 15.9 illustrates a partially populated WBS task table.

PERT Charts
PERT stands for Project Evaluation and Review Technique. The importance of a PERT
chart lies in its ability to show dependencies among several tasks. One of the most dam-
aging things about a small delay is that it can cause several delays in many other activities
that depend on it. Additionally, a PERT chart allows you to detect when a given task
depends on several other tasks. Figure 15.10 illustrates a PERT chart representing a few
events drawn from the WBS task list. The chart shows task interdependencies. Arrows
indicate that one task leads to the start of another.

Means of Management 569

Figure 15.9
WBS task tables provide a way to translate details into assignments, durations, and statuses of com-
pletion.

Gantt Charts
The Gantt chart is named after its originator, Henry Gantt, who invented it during the
early part of the twentieth century. The Gantt chart’s greatest value is that it can show
what is usually referred to as the critical path of a project. The critical path of a project is
the sequence of tasks that must be performed on time if the project is to remain on sched-
ule. Slippage in any one task in the critical path leads to an overall slippage in the progress
of the project as a whole.

The layout of the Gantt chart is fairly straightforward. Task names are depicted in a col-
umn at the left of the chart. The duration of each task is then depicted to the right of the
task name. Although one bar might overlap another, one bar tends to flow into another,
indicating in this way the course of activities that define the project.

The Gantt chart can be adorned in many ways. Icons at the ends of duration bars show
milestones. A milestone usually marks the completion of a task that is within the critical
path. For this reason, when a milestone is completed, the overall status of the project can
be gauged. Milestones are valuable because the team can gain from them a sense that the
project is moving forward in good order. On the other hand, slippage of a milestone can
serve as an alert that not all is well. Figure 15.11 illustrates a Gantt chart. In the chart, the
horizontal lines represent the period scheduled for a given task. The dark pentagons that
follow, for example, the Integration task bars are milestones.

Chapter 15 ■ Team Work570

Figure 15.10
PERT charts provide a convenient way to see how one task is dependent upon another or creates a
dependency for another.

Why Projects Fail
Despite lists of best practices and people who clearly understand their work, software pro-
jects fail all the time. In fact, whether for games or other software products, the failure rate
is still much higher than the success rate. The reasons for the failures frequently trace back
to flaws in project management, but blaming project managers is not the solution. A pro-
ject manager is the person who is most visible to an organization when a project fails. If
observers blame project managers, they are doing little more than what sport fans do
when they blame a coach. The whole team occupies a similar role, one that is less visible
but not necessarily less painful. Members of a team that fails to complete a software prod-
uct often lose their jobs.

According to Whitten, Bentley, and Dittman, the reasons that projects fail can be account-
ed for under 12 key headings. (See the reference at the end of this chapter.) Although
a few of the reasons for failure indicate that lack of funding and organizational short-
comings are at the root of project failures, it is interesting to note how many trace back to
dysfunctional team dynamics. The objective is not to try to establish blame or propose
specific solutions but rather to provide a set of warning signs you might watch for as you
participate in a game development effort. Table 15.6 provides a summary of these causes.

Why Projects Fail 571

Figure 15.11
A Gantt chart tracks the duration of tasks and shows their dependencies.

Chapter 15 ■ Team Work572

Table 15.6 Reasons Teams Fail

Cause Description

Upper management abandonment If the sponsor of a project abandons a project, the
funding comes to an end. Reasons for such aban-
donment abound, but one to watch out for is when
another project is perceived as holding greater
potential. It is important that you convey positive
messages about the project you are on.

Methodology shortcuts If an audit of the project occurs and it is found that
the team has been neglecting to follow a coherent
approach to development, the project might be
viewed as a liability. The lesson here is that if the
project falls behind schedule, it is still important to
stick with a steady, professional approach to devel-
opment. If it is perceived that your team is going
about its work in a sloppy, risky, or wasteful manner,
you can expect repercussions.

Worthless methodologies This is the opposite of the previous reason. In this
case, the project follows a methodology that requires
a great deal of expensive, meaningless work, such as
the maintenance of worthless documentation. It is
important to follow quality assurance measures, but
if people are taking up enormous amounts of time on
worthless paperwork or other such methodological
overhead, then it is time to ask questions.

Loss of scope The development team loses track of the require-
ments and begins allowing feature creep or
goldplating to drive the project. In time, the game
might become complex, bloated, and expensive and
yet show few finished features from the require-
ments. When sponsors see such failures, they begin
to doubt that the development effort can be suc-
cessful. If you are on a project that has no estab-
lished scope or requirements, something is wrong.
If people are not working within the scope or
addressing the requirements, there’s a problem.

Unrealistic schedule The initial plan for development lacked realistic
estimations, but a commitment was still made. The
development team is unable to meet the deadline.
This is what Edward Yourdon refers to as a “death
march” project. Veterans of such projects represent
some of the wisest people in the industry. Even if
such projects are unavoidable, you can still survive
them. One piece of wisdom that veterans offer is
that your choice is primarily one of first asking for
more time and second asking for fewer features.

Why Projects Fail 573

Cause Description

Poor estimations If the estimations for how long developers will take
to complete specific tasks are insufficiently precise,
the result is that estimations for total project costs
and resource requirements will also be off. For this
reason, using care in your own estimations is
important. Be honest. Use established techniques.
Review your results.

Too much enthusiasm Often, developers imagine that a new technology or
approach to development will allow it to cut its
development time. This is seldom the case on a first
pass with a new technology. The result can be the
opposite, in fact. Because the team must learn the
new technology, the learning time throws the project
far off schedule. Try to solve problems using tech-
nology you know. If you are going to incorporate new
technologies, take such risks as planned approaches
to development rather than reactions to scheduling
demands.

Mythical man-month Managers often think that throwing people at a
development project will shorten the amount of time
taken to finish the project. The opposite is true.
Doubling the number of people on a project, rather
than halving the development time, can easily have
the effect of doubling the development time. This is
the famous “Mythical Man-Month” hypothesis
Brooks offered the world.

Team disintegration Personality differences among members of the team
prove too strong for the project manager to overcome.
The result is that squabbling and other negative beha-
vior overtake and destroy the ability of the team to
work toward a common goal. One of the surest ways
to avoid many problems of miscommunication is to
make use of the standard documents and devices that
software engineering provides. Reviews formalize
communication, as do documents.

The company goes under Even if everything is going well, if the company lacks
funding to go on with the project, it must come to an
end. Game development companies often go out of
business.

Lack of resources If a project manager does not properly calculate the
number of people (resources) needed for the project,
even if everyone on the team is attuned to a common
goal, it is still possible to fail. The fact remains that
people can work only so many hours of a day.

(continued on next page)

Conclusion
A sense of purpose is a key to the success of any team, but a number of factors contribute
to the ability of the team to possess a sense of purpose. Among these are an understand-
ing on the part of the members of the team that both personal and formal roles come into
play during the life of a development project. Each member of the team should celebrate
and respect the risks presented by different personalities. Formal roles present little risk,
but those who assume formal roles are placed in the position of being responsible to oth-
ers on the team to provide the expertise that the role prescribes.

Roles themselves are important but do not alone account for a team’s success. Another
factor is a set of tools the members of the team share in common. Among these tools are
the documents and other artifacts that the team uses to record, trace, and negotiate its
work. In addition to working tools are formal and informal occasions of review. Reviews
are the leading means by which a team can move its work forward as a team.

Even with reviews, however, a team still faces a number of risks that can be addressed only
with extremely flexible responses. Two key measures ensure flexibility of response. These
are placing the members of the team in a work area and under working conditions that
allow them to easily and effectively communicate. Another measure of flexible response is
that team members are given the freedom to socialize and communicate so that they form
a tight, purposeful bond with each other.

Even with well-tuned working conditions, a solid sense of purpose, well-established for-
mal and informal roles, comprehensive reviews, and flexibility of response, a team still
requires good management. One of the key qualities of a good manager is the ability to
use project tracking tools to gain a clear view of the dependencies and scheduling issues
that a project faces. In addition, a project manager should continually update the team
with news about the progress the team is making toward the completion of the project.

Chapter 15 ■ Team Work574

Table 15.6 Reasons Teams Fail (continued)

Cause Description

Lack of equipment A team that lacks the equipment necessary to do a
job cannot be expected to succeed. It is important to
both expect and request the tools that are appropriate
for the work.

Divergence from the project plan A project can fail if it does not deliver what the
development plan says must be developed. Going
astray can happen in a number of ways. The team
might neglect to implement the game on the basis of
the requirements statement. On the other hand, the
team might neglect to stick with the production plan.

An enormous number of excellent books have been written on software development
teams and project management. Turn to the sources on the list for more extensive practi-
cal discussion of the topics introduced in this chapter. The works represent the perspec-
tives of some of the most well-respected practitioners of software engineering.

Bennatan, E. M. On Time Within Budget: Software Project Management Practices and
Techniques. 3rd Ed. New York: Wiley Computer Publishing, 2000.

Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition. Boston: Addison-Wesley, 1995.

DeMarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams. New York:
Dorset House Publishing, 1987.

McConnell, Steve. Software Project Survival Guide. Redmond, Washington: Microsoft
Press, 1998.

Project Management Institute. A Guide to the Project Management Body of Knowledge
(PMBOK Guide). Newton Square, Pennsylvania: Project Management Institute, 2001.

Whitehead, Richard. Leading a Software Development Team: A Developer’s Guide to
Successfully Leading People and Projects. New York: Addison-Wesley, 2001.

Whitten, Jeffrey L., Lonnie D. Bentley, and Keven C. Dittman. Systems Analysis and Design
Methods. 5th Ed. Boston: McGraw-Hill, 2000.

Yourdon, Edward. Death March: The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects. Upper Saddle River, New Jersey: Prentice Hall, 1999.

Conclusion 575

577

Process Improvement

Chapter 16

T
his chapter discusses process improvement, which people often view as cumber-
some, bureaucratic, paper-laden (or at least file-laden) and boring. Such perspec-
tives, unfortunately, are more than justified. At the same time, hardly anything is

more worthwhile in the software engineering industry than a clearly understood approach
to assimilating new technologies or finding new approaches to solving problems. The only
reliable way of ensuring that such change can take place in a given company, large or
small, is to put in place both a process of development and, just as important, a process
for improving the process of development. Process improvement encompasses both types
of activity.

As will become evident in the discussion in this chapter, some people like change for the
sake of change. Others embrace change after they have a chance to see that it brings
improvements. Still others resist change until they face an ultimatum. All three perspec-
tives are valuable to an engineering process. Change should be a welcome aspect of any
engineering process, but when change is made for the sake of change, catastrophe might
not be far off.

Process refers both to how a team or organization adjusts to or accepts change and how a
team or organization formulates and sustains a change process. The two go hand in hand.
To forget this is to fall prey to the illusion that change is not an essential aspect of engi-
neering and that an organization can buy a ready-made quality improvement process.
There is more to it than what can be bought. Toward understanding this perspective, this
chapter discusses the following topics:

■ The basics of process improvement

■ How processes use change management strategies

■ Models of capability maturity for software development

■ International standards of quality for software development

■ Capability maturity models that extend beyond software development

■ Applying standards to a team or organization

■ Implementing procedures for managing change and improving processes

The Basics of Process Improvement
When a team or organization decides to improve its processes, it usually does so for a few
simple reasons. Among these are the following:

■ Poor quality. People fail to finish work on time, and the work they finish possesses
errors and causes problems for customers.

■ Increased profits. Having standardized processes has been proven time and time
again to add to a company’s ability to sustain profitability.

■ New technologies. The existing products satisfy customers and generally lack
errors, but a new technology has emerged, and everyone needs to learn it as
quickly as possible. Competitors have already embraced the new technology and
could run the team or organization out of business.

■ Regulatory and trade requirements. The product has been amazingly successful,
and a big marketing corporation has entered the picture and asked that your team
or organization be in compliance with a set of standards or have in place a quality
control process for the way you conduct business.

■ Merger. You just merged your efforts with another team or organization, and the
two groups, both of which have good ways to do things, are resisting merge efforts
because of turf and other issues. You must find a way to obtain the best from both.

Other reasons for process change exist, but from this short list arises a common set of fea-
tures. First, you must examine what people are doing right now in the light of either what
others do or what some external standards organization suggests must be done. Second,
you must find some formalized way to allow your team to know whether it is imple-
menting the standards. It’s not enough, for example, to write a set of standards and put
them on the shelf, unused. You need to find a process of change. One source of this
process might be an external agency that provides you with a standard approach to
process change. Third, for the changes to take effect, they must represent the culture of
your team or organization, so you must engage in some type of effort to customize and
apply both the standards and the processes you bring in from the outside.

Figure 16.1 explores some of the dynamics involved in process improvement. Your orga-
nization might seek initially to implement the standards that an external agency provides
by using a process provided by that agency. Such organizations as the SEI (which sponsors

Chapter 16 ■ Process Improvement578

the CMM) and the ISO (which sponsors the ISO 9000 series of standards) provide gener-
al standards that you customize for your organization with the help of a registered stan-
dards auditor. At the same time, process improvement is an individualized undertaking.
Everyone who is involved in a process improvement effort has the opportunity to evalu-
ate and improve the way things have been done.

Quality
Many of the positive arguments about quality reduce to the assertion that when you
improve the way you create a product, you improve the product. However, most of the
well-seasoned software engineering process specialists also emphasize that quality is the
capacity to create a capacity. Regardless of the product it produces, if an organization is
able to use self-critical knowledge to proactively improve itself, it possesses quality. The
same can be said for an individual. Quality implies the capacity to learn from the past and
to apply the results of learning to the future.

In practical terms, three main features of quality improvement emerge as both benefits
and goals. They are as follows:

■ Predictability. The ability to deliver a specified product lies at the basis of the suc-
cess of most software development undertakings. After organizations adopt soft-
ware process improvement programs, their ability to deliver the specified product
tends to increase dramatically. Generally, not delivering the specified product does
not result in a bogus one. Rather, the product delivered might eventually conform
to specifications, but the development team delivers it far later than predicted.

The Basics of Process Improvement 579

Figure 16.1
Standards and processes combine during a process improvement effort.

■ Effectiveness. Organizations that adopt process improvement programs use their
development time more effectively. The primary results are that products cost less
to produce and possess fewer errors. You can tune effective production processes to
eliminate faulty production techniques. You can place greater emphasis on elimi-
nation of defects during the requirements and design phase of development, so the
number of errors detected later in the development process decreases. The later
that a development team detects an error, the more costly the error.

■ Control. Software quality improvements result in the ability to predict the delivery
of a product with greater accuracy. A couple of factors contribute to this ability.
Consider, for example, that adoption of a process improvement program does not
necessarily result in a single, monolithic development process. In fact, the case is
wholly the opposite for many organizations. Instead of one process, a mature orga-
nization develops a customizable set of process components that can be combined
to accommodate different types of development efforts. The result is that the orga-
nization can apply streamlined development processes to specific types of products
and determine development efforts and delivery dates with great precision.

Cycles of Quality
You can use quality or process improvement to characterize any attempt that individual
software engineers or game developers make to improve the way they do things. To
accomplish this, they must seek opportunities for self improvement. Some of these oppor-
tunities arise through team efforts. Others arise on a personalized level. In both cases,
quality improvement results from a cycle that involves logging data about activities per-
formed according to standard procedures and then evaluating the resulting data to find
ways to remove defects, improve performance, or refine the procedures.

Generally, quality improvement reflects classical scientific methodology. Scientific
methodology involves proposing a hypothesis, setting up an experiment to test the
hypothesis, performing the experiment to generate data, and then interpreting the data to
discover whether it confirms the hypothesis.

In terms of software engineering process improvement, the starting point is what people
do on a day-to-day basis. You might view this as the hypothesis, that the way things are
done is the only and the best way to do them. The experiment involves documenting this
way of doing things as a standard script. The script lists the tasks that you need to perform
to complete the procedure that the script documents.

To collect data on the script, you can keep a record of such things as how many mistakes
occur during the performance of the tasks and how much time is required to complete
each task. A third thing that you can document is boundary conditions. To do this, you
must complete one boundary condition before you can start the tasks in a script and a sec-
ond boundary condition before you can consider the procedure finished.

Chapter 16 ■ Process Improvement580

To move to interpretation, you can summarize the data that results from the performance
of the tasks in the procedure (the experiment). The summary provides a historical model
of the script performance. From this point on, you are in a position to treat every subse-
quent performance of the procedure as an opportunity to generate a body of data that can
be compared with the historical data.

The interpretation of data allows you to make decisions about how to improve the
process. Each iteration of the script provides an opportunity for process improvement.
Figure 16.2 illustrates the basic cycle of process improvement.

Contrasting Approaches
This chapter discusses several approaches to quality improvement. Among the approach-
es are those that the Institute of Electronics and Electrical Engineers (IEEE), the
International Standards Organization (ISO), and the Software Engineering Institute (SEI)
provide. This chapter also discusses how single standards, such as the ISO 9000 and the

Contrasting Approaches 581

Figure 16.2
The scientific method, which emphasizes hypothesis and experiment, forms the basic model for soft-
ware engineering process improvement.

Capability Maturity Model (CMM), have been extended through such additions as ISO
9001 and the extended Capability Maturity Model Integration (CMMI). Regardless of
what agency or set of processes or practices comes into view, a common set of key prac-
tices prevails. For this reason, rather than describing in detail any one approach to process
improvement, this chapter concentrates on showing how process improvement enables
organizations to identify and improve key practices. Both the ISO and the SEI offer
extremely effective approaches to process improvement. Likewise, the IEEE provides
many important tools. Exploring different approaches allows you to set the groundwork
for more extensive investigations. The texts listed at the end of this chapter provide you
with a few inroads to such investigations.

ISO
Quality can begin as an assumed set of standards. The ISO provides generic standards that
help organizations create and sustain processes that possess quality. Other organizations
specialize in ISO certification, which usually takes a year. Certification experts (sometimes
called auditors) work with companies that want to achieve this. Certification requires that
an auditor verify that a company applying for certification has implemented production
processes that meet the standards that the ISO establishes.

Companies that obtain certification benefit in numerous ways. For one thing, they attain
recognition in international markets. Companies that have ISO ratings are eligible for
contracts that they would not be eligible for without ISO standing. In addition, as surveys
have shown repeatedly, when companies adopt ISO standards, the quality of their prod-
ucts improves, as does their ability to make a profit.

ISO in General
On its Web site (http://www.iso.org), the ISO provides a clear statement about the inten-
tions and purposes of the standards it publishes. Generally, the ISO provides two broad
sets of standards: ISO 9000 and ISO 14000. More than half a million organizations in
roughly 160 countries have applied for and received certification with the ISO. ISO 9000
serves as a way that companies doing business across national boundaries can be certain
that the companies with which they form business relationships have a shared perception
of quality. Whereas ISO 9000 has tended to focus more on the concerns of software man-
ufacturers, the ISO 14000 standards focus on a broader range of concerns that the ISO
refers to as “environmental.” Of the ISO 9000 series of standards, those that bear most
specifically on software are under the heading of ISO 9001. The ISO 9001 standards are
simply one segment of the ISO 9000 series.

The ISO 9000 focuses on the following concerns:

■ The requirements that the customer sets for quality

Chapter 16 ■ Process Improvement582

■ Regulatory requirements that might apply to the product

■ Measures that can be used to increase customer satisfaction with products and
services

■ Ways a company can implement measures for continuous process and product
improvement

In contrast, the ISO 14000 standards focus on the environment, and in this sense, the
environment encompasses a wide variety of social and economic concerns. According to
the ISO, the ISO 14000 concentrates on the following concerns:

■ Reduction of the existing negative effects that an organization might cause to the
environment

■ Finding new ways that an organization can safely interact with the environment

In most cases, when companies implement ISO standards, they do so with specific language.
They interpret the standards. That standards are interpreted completely falls within the
guidelines for adoption of standards that the ISO has established. Almost any organization
can adopt the ISO standards, regardless of size. The standards can encompass the produc-
tion of almost any product, and they can define a basis for doing business in almost any area,
be it governmental, nongovernmental, or private.

A company that seeks ISO certification has a set of tasks that requires approximately a year
to complete. On the other hand, if a company has already undertaken, independently, an
effort to normalize and standardize its processes, achieving a registered ISO status might
take much less time.

ISO 9000 Specifics
The range of topics that the ISO 9000 (or ISO 9001) documentation lists encompasses
what might be viewed as areas of concern any organization seeking to sustain a reputation
for quality should be concerned with. The topics considered can be reduced to a fairly
short list, but the list might shrink or grow depending on how a company structures its
business operations.

For a company that is involved in game software development, the ISO 9001 topics pre-
sent no great diversion from common sense. The topics tend to emphasize what an over-
all business organization should be concerned with. However, specifically defining the
topics so that they focus on the activities of a game development organization requires no
great effort. Table 16.1 summarizes the areas of emphasis of the ISO 9000 standards.

ISO 583

Chapter 16 ■ Process Improvement584

Table 16.1 ISO 9000 Areas of Concern

Area Description

Management responsibility Does your organization have a clear statement that shows its
commitment to adoption and maintenance of standards?

Quality review Is a process in place that allows for the review of the products
and services that your company offers?

Contract review Is a procedure in place that allows your company to clearly
establish its obligations toward its customers?

Design control Is a process in place that allows your company to gather
requirements for and then design the product that is to be
provided for the customer?

Document and data control Can your organization store and retrieve documents that are
relative to all stages of its business processes?

Purchasing When your company buys products or services from other
companies, does it have bidding and other criteria to use in
determining which products or services are the best?

Control of customer-supplied Can your company track how products are supplied to
products customers?
Product identification and Can your company uniquely identify all the parts that con-
traceability stitute a product, and can it uniquely identify all the

products it distributes?
Process control Does your company possess enough knowledge about its own

production processes to be able to change them?
Inspection and testing Is the technology that your company uses tested, and are the

products that your company distributes inspected to ensure
that they conform to minimum quality standards?

Control of inspection, measurement, Is data collected on the products that you distribute and and
testing equipment the production processes that you have in place?
Inspection and test status Can you identify the extent to which a given product has been

tested?
Nonconforming product control Can your company recall and isolate products that are released

with errors?
Correction and prevention Does your company have in place a process that allows it to

repair the errors that might have been identified in the pro-
ducts that your organization creates?

The items that Table 16.1 present concern general operational goals. How people within a
given company interpret those goals depends on the product they create and the agenda
they have set for quality improvement.

ISO Suggestions
The ISO offers other standards that apply specifically to software development concerns.
As mentioned earlier, the ISO 9001 series is usually considered most central for software
development organizations. Within this context, the ISO Standard 9126 provides a list of
specific areas of concern that extend to nearly two dozen headings. You can reduce the
general concerns to the set of six that Figure 16.3 illustrates.

ISO 585

Area Description

Handling, storage, packaging, Does your company have in place processes that ensure that
delivery the product will be packed, handled, and delivered to the

customer in a reasonable time and in excellent condition?
Quality records Does your company maintain records respecting defective

products, production efficiency, and other factors that have a
bearing on the product?

Quality audits Does your company have quality assurance audits performed
on a regular basis and have in place a procedure for respon-
ding to the findings of the audits?

Training Does your organization train its employees to ensure that they
follow established procedures and practices for the production
and delivery of the products that your company creates?

Service Does your company have in place procedures for assisting its
customers after they have purchased the products that your
company creates?

Statistical techniques Does your company have a standard way to evaluate the data
it collects about its products, processes, and other operational
dealings?

The set of six quality assurance themes that Figure 16.3 depicts represents a general
approach to software development. For each of the main headings, two to three more spe-
cific types of activity apply. The statements in the larger boxes summarize the information
that falls under the specific headings. For example, “functionality” applies to gathering
requirements and creating a software design. To achieve the goals of functionality, you can

Chapter 16 ■ Process Improvement586

Figure 16.3
ISO 9126 and other standards establish the general categories for software quality.

create such things as a software requirements specification (see Chapter 2,
“Requirements—Getting the Picture”) or a software design specification (see Chapter 4,
“Software Design—Much Ado About Something”).

To provide the information that the ISO requires, you can hire a standards specialist who
evaluates your organization. This specialist might work in conjunction with a team from
your organization. The team helps gather data and might form the core of the process
improvement effort that can begin with the evaluation. The results of the evaluation
reveal strengths and weaknesses, and this information provides a starting point for
improving processes.

As is emphasized in Chapters 15, “Team Work,” and 19, “Philosophy of Software
Engineering and Game Development,” your group or organization might have unique
approaches to how its developers form into groups. Because each organization forms a
unique culture, the way that auditors or evaluators apply ISO standards varies from orga-
nization to organization. This is not to say that the ISO applies standards less than com-
prehensively. Rather, it is to say that how an organization meets standards depends on the
operational structure it has evolved. Two groups in one company might take care of a con-
cern that is the sole property of a single group in another company. Neither approach sur-
passes the other. The ISO auditor or evaluator recognizes that the differences in structure
have little bearing on whether an organization meets the provisions of the standards.

How does a group of developers who is developing a game picture its activities in terms
of the quality categories that Figure 16.3 displays? Again, culture comes into play. No sin-
gle process or set of development stages can depict properly the unique aspects of a given
development culture. For this reason, about the best that you can do when an organiza-
tion intends to begin developing a formal set of processes is to establish the areas in which
it is most important to either create or improve processes.

The ISO and CMM
If your company seeks an ISO rating, how will it stand if it also seeks a CMM rating? The
question ends up being simple to answer. Two main areas of concern emerge. One area
concerns which compliance model encompasses the greater number of practices. The
other concerns which compliance model demands more for the practices it does name,
regardless of number. In general, for software concerns, the best approach is to implement
first the processes that the CMM stipulates. Although the CMM covers most of the areas
of concern that the ISO has established, it covers them with greater depth and rigor. In
other words, what passes with the CMM is likely to pass also with the ISO. The efforts to
bring the two quality programs into harmony are extensive.

The ISO and CMM 587

As Figure 16.4 shows, the ISO addresses all of the process areas that the CMM or CMMI
addresses. The difference is that the ISO concentrates more on generalized goals, whereas
the CMM model has been developed to address specifically the needs of software devel-
opment organizations. Two general trends have emerged over the past decade. The ISO
has tended to seek greater specificity to accommodate its software engineering clients. The
SEI, on the other hand, has made efforts to extend the CMM through the CMMI to
accommodate clients other than those that produce only software products. (See Mark C.
Paulk, et al., The Capability Maturity Model: Guidelines for Improving the Software Process
[Boston: Addison-Wesley, 1995], p. 417.)

On the part of the ISO, the Software Process Improvement and Capability dEtermination
(SPICE) effort focuses mostly on software process improvement. For the CMMI, the

Chapter 16 ■ Process Improvement588

Figure 16.4
CMM/CMMI and ISO cover the same process areas.

addition of the Integrated Produce and Product Development (IPPD) program has
extended the CMM to encompass processes to a wider business scope than was encom-
passed by software-specific processes.

Means and Ends—Templates
Almost any process improvement effort begins with the documentation of what current-
ly exists. The current process establishes the starting line. Standards resemble goals.
Between the starting line and the goals that the standards set is an involved process that
often requires documenting what exists and determining what must be changed or added
to reach the goals. Only after this has been accomplished can the manner of improving a
process really begin.

Process documentation templates provide the most frequently employed technique for
capturing information about existing processes. Organizations such as the ISO and the
SEI provide such templates. Certification organizations also provide such templates. A
template provides a pattern for gathering and organizing information, but it is special
because it represents a way of gathering and
organizing information that has been refined
through repeated use. For this reason, a tem-
plate offers a better starting place than a
document that is created from scratch. The
templates that the standards organizations pro-
vide usually impose no fixed rules and imply no
obligations. They serve simply as starting
points.

IEEE Standard 730
As an example of available templates for
processes, you can consider IEEE Standard 730.
This template enables a development group to
document standard development processes.
Figure 16.5 illustrates the main headings of the
template.

To dwell on Standard 730 a bit (see Figure 16.5),
consider that the template provides a ready way
to identify and isolate a given process and its
constituent tasks and allows you to identify
quickly what resources or capabilities you have
with respect to the process. Further, note that

Means and Ends—Templates 589

Figure 16.5
Templates like the IEEE Standard 730 pro-
vide guides that software development
groups can use to identify and shape
processes.

Chapter 16 ■ Process Improvement590

Table 16.2 IEEE Template Categories

Area Description

Purpose Briefly state what you are trying to do with the document.
Generally, you are trying to capture information about existing
activities. The activity at hand can be anything you decide needs
attention. For instance, if the object of your investigation involves
how your organization creates software design documents, the
capture of design document activities is the purpose. If the pur-
pose extends to one of putting in place the groundwork of pro-
cess improvement, collecting information for a process improve-
ment effort is also part of the purpose.

Documents Useful as References If your organization has produced documents that relate to the
topic you are exploring, you can list them here. You can also
include references to books, articles, or Web sites that might be of
help.

Process Management You can provide a flow chart (see the activity diagram in Chapter
3, “A Tutorial: UML and Object-Oriented Programming”) to show
how a given activity is managed. Basically, informal management
of a process amounts to how the best practitioners in your organi-
zation perform the task. An activity diagram can capture this
information regularly.

Existing Documentation If anyone has gathered data on the specific activity you are docu-
menting, identify it here. It is best to do nothing more than note
the existence of the document. Starting from scratch is not always
the best way to go, but neither is cutting and pasting.

Applicable Categories You can use this section of the document to relate the process
you are documenting to key practices drawn from CMM or ISO
guides.
■ Standards. Use this if you have in mind a set of standards

you want to use.
■ Practices. You can describe practices that you want to imi-

tate here.
■ Conventions. This category is more general than Standards.
■ Metrics. Use this if you have in mind specific data you want

to collect.

the template guides you in two general directions. First, it offers you a way to collect his-
torical data about the process (if a body of data exists). Second, as you perform the process,
it encourages you to capture information so that you can compare data about your cur-
rent work with historical data. (See the discussion of the topics presented in Table 16.2.)

Means and Ends—Templates 591

Area Description

Reviews or Audits Any process proposal that receives no review is ultimately not
going to render a useful organizational change. Implied here is
how you intend to review and update the current document. You
also can state how long you expect the review to take and even
when or at what intervals you expect the review or audit to be
conducted. Add to this, however, that your organization might be
anticipating auditing by an external (ISO or CMM) organization. If
this is the case, you can identify this organization at this point.

Text Descriptions A text description is like a narrative of activity. You can place
almost anything in this section, as long as you provide it with a
section heading that allows the reader to know its main theme.
The audit is a means of validating and verifying whether your
process improvement effort is leading to anything tangible. You
can use the text description to describe anything that has to do
with implementation, including why it has or has not proceeded
in a significant way toward a tangible result.

Reporting Any data that you can capture about the process under considera-
tion helps provide a basis on which to evaluate and improve the
process.
■ Problems. You can provide a template for how to report a

problem relative to the process you are examining. For exam-
ple, if your organization ends up time and again with incom-
plete requirements specifications, the problem is one of
not gathering or examining requirements specifications
thoroughly.

■ Corrective Actions. This section asks for two types of infor-
mation. If you have taken an action, you can document it here.
On the other hand, if you have in mind a tentative action, you
can also list it here. You can design a report that combines
information about problem statements and corrective actions.

Software Support If you have a bug tracking program set up in your organization,
you can add a category for the current document. If this is the
case, the section on reporting clearly must have some bearing on
the categories of information that your bug tracking software pro-
vides. If you can alter or customize the software for a given topic,
all the better.
■ Tools. A tool is a software package or a report form.
■ Techniques. A technique is something along the lines of an

interview or a statistical sampling method.
■ Methodologies. A methodology is a generalized approach to

process improvement or quality assurance. Examples dealt with in
this chapter are CMM, PSP, and CMMI.

(continued on next page)

Templates that the IEEE provides for process improvement suggest categories of concern
rather than prescribing them. As will become evident later in this chapter, when the CMM
and ISO are investigated, IEEE Standard 730 clearly anticipates the key practices that are
named in the CMM and ISO programs. Regardless of the approach you use for process
improvement, you can adopt the topics that your group considers most important and
shape the templates you use to accommodate the topics. Certainly, when organizations
adopt templates to meet standards, they do so because they recognize that the adopted
templates capture the information that the certification organizations require, but it
remains that most standards allow a fair margin of flexibility.

Templates that a given organization might use, even though they are adopted from an
organization like the IEEE, can be customized until they genuinely reflect the culture of
the company that adopts them. Standards organizations seldom seek conformity but
rather endeavor to assist organizations to develop criteria for truthfully reporting on
development processes.

Chapter 16 ■ Process Improvement592

Table 16.2 IEEE Template Categories (continued)
Area Description

Source Code Control This relates largely to documentation control if you are dealing
with process development, but it also can relate to any program
that involves your process development activity. You can state a
procedure for controlling the document, such as when and how it
can be changed.

Maintenance Records Most tracking tools generate an audit trail, which is what this
topic is about. If you want to specify the format for the records,
you can do so in this place, along with precisely what information
you want tracked.

Training This applies to how to introduce someone to the process you are
creating. If your organization is developing a capability maturity
model, it will have in place a group that is responsible for con-
ducting process change training. If not, this section might name
groups or individuals in your organization who are authorities or
resources for information on process improvement activities.

Risk Management Anticipating problems that might arise forms one of the most fun-
damental activities of a mature process. This heading provides a
starting point for collecting information on problems that you
anticipate might arise.

Means and Ends—Templates 593

Terms of Improvement

The terms listed here occur in both ISO and CMM literature. The meanings provided here relate
most directly to the CMM.

■ Software Process. A software process is a set of activities, methods, or practices that
software developers use to develop or maintain software.

■ Task. A task is a simple work component, such as filling out a form or commenting a line
of code. A task is sometimes referred to as a job if it consists of several component tasks.

■ Process. A process is a sequence of steps. The steps usually involve the performance of a
task or a set of tasks.

■ Process Description. A process description is usually a document. Do not mistake it for
the process itself.

■ Project. A project is a set of activities that leads to the development of a product. A pro-
ject is sometimes referred to as a job.

■ Capability. Software process capability relates to what you can expect to achieve if you
follow a software development process. The capabilities of an organization allow experts
to judge what an organization can be expected to do.

■ Maturity. An organization possesses a mature process when it has defined, managed, and
measured the process. Further, maturity encompasses the ability to control a process and
iteratively increase its effectiveness.

■ Organization. An organization can be an entire corporation, a division within a company,
or simply a group of people assigned to a common task.

■ Software Process Assessment. An assessment relates to an effort on the part of an
organization to initiate a software process improvement program.

■ Software Capability Evaluation. An evaluation relates to a formal process in which a
qualified standards expert determines whether one organization qualifies to contract work
from another organization.

■ Key Process Area. Key process areas are requirements for achieving a maturity level.
Each key process area designates a set of related activities that allows an organization to
achieve capabilities.

■ Key Practice. A key practice is a specific way that an organization reaches the goals that
distinguish its process. Each key process area encompasses several key practices. A key
practice designates only what is to be accomplished, not how something is to be accom-
plished.

SEI Key Process Area Template
Later, this chapter extensively examines the notions
of key process areas and key practices. For now, it
emphasizes the similarity between the information
that the IEEE captures with the template that
Standard 730 provides and the template for key
process areas that the CMM provides. Figure 16.6
illustrates the main headings of the template. (See
Mark C. Paulk, et al., The Capability Maturity Model:
Guidelines for Improving the Software Process
[Boston: Addison-Wesley, 1995], pp. 43–46.)

Chapter 16 ■ Process Improvement594

Figure 16.6
The CMM template for key processes
corresponds in intent with the IEEE
Standard 730.

Table 16.3 CMM Key Process Area Template

Area Description

Name of process Both the CMM and the CMMI depend heavily on key process
areas for the capabilities that an organization possesses. A set of
key process areas characterizes each maturity level. In an alter-
native approach used by the CMMI, the key process areas are
still central to the process. In this scheme, rather than subsets
divided according to maturity levels, all the key process areas
relating to all levels are applied to an organization from the
start. Examples of key processes areas are requirements man-
agement, organization process focus, quantitative process
management, and defect prevention.

Goals A goal is an activity that enhances an organization’s ability to
achieve process capabilities. Goals summarize key practices and
determine whether an organization has implemented key process
areas. In the CMM scheme, a set of goals characterizes each key
process area, and key practices address the commitments that
the goals implement.

Commitment to perform Commitments to perform designate actions that an organization
takes to establish a key practice. To ensure that members of an
organization respect and fulfill commitments, an organization
usually documents its commitments formally, sometimes using
informal contracts.

Ability to perform Whenever an organization formulates a commitment to reach a
goal, reaching the goal involves having in place resources that
enable members of the organization to perform the tasks that the
goals encompass. Under this heading fall resources, training that
people might require, or ways that the organization might need to
be restructured to allow people to work toward the goals.

Template Results
Figure 16.7 shows the results of the key process area template as applied to one key process
area, requirements management, for the repeatable (level 2) maturity level. The table rep-
resents a terse summary of the information that the template allows process developers to
gather. Generally, at a bare minimum, a few sentences would describe each of the expres-
sions that the table contains. The table shows goals, commitments, abilities, activities,
measurements, and means of verification.

Means and Ends—Templates 595

Area Description

Activities performed Goals imply that members of the organization must take on
specific roles and takes. Under this heading are descriptions of
the roles to be assumed and the tasks to be performed. Toward
this end, you can formulate specific procedures, implementation
plans, and change control processes and procedures.

Measurement and analysis You can determine progress toward achievement of goals by
using measurements obtained through formally established data
collection devices. You then can use the data you collect to
control activities.

Verifying implementation After the organization mandates key processes and sets goals, it
also must ensure that some individual or group that is involved
in process improvement verify that the process improvement
activities that the organization is implementing are those that it
has said it will implement.

Figure 16.7
The key process area template allows process developers to identify the process activities for each
CMM/CMMI level.

CMM Background Information
The Software Engineering Institute (SEI) performs work that resembles the work that the
ISO performs, but until recently, its efforts have centered on process improvement in soft-
ware engineering rather than business practices in general. As a center of software engi-
neering research, the SEI created the Capability Maturity Model (CMM), which in many
ways stands as a landmark in the history of software engineering. The CMM introduced
what is generally recognized as the first process improvement model for software devel-
opment organizations. Since its introduction, the CMM has helped thousands of software
development organizations improve their processes in an incremental way from ad hoc to
mature levels.

The SEI—which is affiliated with Carnegie Mellon University—initiated its work on the
CMM in response to a request that the U.S. government issued during the mid-1980s. The
request was for a set of criteria that the U.S. government could use to evaluate the
capabilities of companies seeking contracts from the U.S. government. The SEI and its
affiliated organizations responded with the CMM, which describes how a software devel-
opment organization can develop its software development processes through five levels
of maturity.

A leading name in the development of the CMM is Watts S. Humphrey, whose text,
Managing the Software Process (1986), achieved a status in many software engineering cir-
cles equal to that of The Mythical Man-Month, by Frederick Brooks. Humphrey was asso-
ciated with the SEI, and his text formalized the notions encompassed in the maturity
model. In 1991, the SEI issued the first version of the CMM. The SEI released Version 1.1
of the CMM in 1993. Other releases have followed, but the primary five-level profile has
remained largely unchanged.

The CMM, CMMI, and PSP
Currently, the SEI has begun to extend the CMM to all business organizations through the
Capability Maturity Model Integration (CMMI), but knowledge of the CMM remains valu-
able because it presents a simple view of how software organizations can improve develop-
ment processes incrementally. If a drawback applies to the CMM, it is that the SEI developed
it for large software engineering efforts, those of a size that NASA or the ESA might sponsor.
As small teams have tended to more and more characterize software development, however,

Chapter 16 ■ Process Improvement596

the focus of quality improvement efforts has tended to shift in emphasis. As one example of
the shift, Watts Humphrey, with the endorsement of the SEI, created the Personal Software
Process (PSP). Another example is that the CMMI addresses both large and small efforts.

The sections that follow examine the CMM from a perspective that is oriented toward
large development groups. Then you learn of specific activities that are involved in process
improvement. With this movement, it is possible to draw upon some of the ideas that
Watts Humphrey presents in his writings on the PSP and discuss many of the features of
the CMMI. The goal is not that of trying to show in a few pages what requires many books
elsewhere. Instead, by concentrating on a few tasks close at hand, the discussion offers an
approach to viewing the essential activities involved in the process improvement activities
that software engineering encompasses.

n o t e

The CMM was designed for large-scale software engineering projects. In the 1980s, a large software
development project for NASA involved approximately 750,000 lines of code and 250 developers.An
organization that was capable of undertaking such a project was considered ideal for the CMM.
Today, commercial game products easily can include many more lines of code and yet involve far
fewer developers. The complexity of the undertaking, however, in many respects remains the same.

Levels of Maturity
The classical view of the CMM offers five levels of maturity. Figure 16.8 displays these five
CMM levels and some of their general features. These levels of maturity start at the
ground floor, where no processes exist. The lowest level is called Level 1, or Initial. The
highest level is called Level 5, or Optimizing. Between these are the Repeatable (2),
Defined (3), and Managed (4) levels. Movement from one level to the next involves devel-
opment of a set of capabilities.

Level 1—Initial

A game development company that a group of capable individuals form in a garage with
a common sense of task and highly motivated leadership falls easily into the Initial (Level
1) category of maturity. Generally, the group simply gets the job done, without specific,
documented processes or a sense of having to repeat the task or even account for it after

Means and Ends—Templates 597

it is finished. Everything generally focuses on the development of the game, and when
anyone asks what went into the development, the standard response might be to point at
the game and explain that what went into the development of the game was anything that
you could find in the game, beautiful, divine, good, and bad. Of the initial state, you could
say that the team develops the game until it reaches a point at which it can be released.

Chapter 16 ■ Process Improvement598

Figure 16.8
Each CMM level involves increasing capabilities.

Level 2—Repeatable

A game development organization that achieves Level 2 capabilities can manage projects
according to a documented development plan. It can determine the number of people
who are required to create a game, and it knows what tools and how much funding the
development of a game involves. A Level 2 organization knows its development processes
well enough to be able to train people to teach its employees about its development
processes. It can place what it develops under configuration management. It can track
defects in the product and take appropriate measures to correct them. Finally, a Level 2
organization usually conducts a postmortem for each completed game development
effort, and the information derived from this postmortem is used to improve subsequent
development efforts.

Level 3—Defined

A Level 3 organization possesses all the capabilities of a Level 2 organization, but it initi-
ates additional measures to improve the way it manages projects. Such an organization
possesses a generalized project management process that it can customize to meet the
requirements of different types of development efforts. For example, two versions of the
project management process might be created to accommodate Internet-distributed as
opposed to standalone games. At Level 2, each project manager more or less pursues a
competent but individualized approach to developing a game. At Level 3, the organization
brings all these different approaches into a common organizational model, so that the
strengths of each can be applied, potentially, to all others. The capabilities that are devel-
oped in all other documented areas receive the same definition. The organization has doc-
umented practices and made them part of an organization-wide process repository of best
practices.

Level 3 is considered appropriate for companies that are seeking government contracts.

Level 4—Managed

The central focus of Level 4 is the collection of data about processes. Given the collection
of data, the organization can set goals for increasing its efficiency, reducing costs, or mak-
ing better predictions. Historical data exists for most categories of activity, so the organi-
zation can evaluate the process quantitatively. Using historical data, the organization can
establish goals at the beginning of each new project. Likewise, the organization can iden-
tify and eliminate risks before a project commences. Generally, risk prevention enables a
company to reduce the cost of errors tremendously. (Error costs can be reduced, for exam-
ple, up to 90 percent.)

Means and Ends—Templates 599

Level 5—Optimizing

At the top of the stairs is the Optimizing level. When a company reaches an optimized level,
several things have happened. For example, to name but a few capabilities that might apply
to a game development company, the company has documented all the basic work areas
that are required to create a game. It has collected data on numerous game development
efforts, and it can use this data to determine ways that it can improve not only the specific
activities that are involved in the development of a game, but also the processes that foster
these development efforts. Above all, at Level 5, the organization can concentrate on
improving its processes rather than improving its products. At this point, it no longer reacts
to standards; rather, it sets them for itself. You can say that such an organization views the
quality of its products as arising primarily from the quality of its processes.

Key Process Areas and Key Practices
For each level of maturity, a set of process areas apply. Processes areas define general group-
ings of key practices that enable an organization to achieve capabilities. For each key
process, several key practices follow. Key practices address goals. Several key practices
might address any one goal. The SEI provides a group of starter goals, but generally they
vary in number according to the culture of the organization. The following few sections
examine key process and associated practices from both the CMM and the CMMI models.

Level 1—Initial

The Initial level deserves as much attention as any other because it is the starting place.
Arrogance on the part of someone who is evaluating a Level 1 organization deserves a
degree of censure. That’s because such an organization has rich capabilities. It has enjoyed
the success necessary for being able to compete for contracts or afford to give greater
structure to its operations. Unsuccessful organizations do not enjoy such prerogatives.

What then are a Level 1 organization’s key processes and practices? There are none.
However, as Kim Caputo has noted (Caputo, 36), some generic capabilities deserve notice:

■ Everyone in the organization completes a variety of tasks.

■ Everyone in the organization exerts a great deal of judgment in determining how
things get done.

■ An unconscious, seemingly systematic harmony might characterize the actions of
the developers.

At the same time, other factors are at work, such as the following:

■ One person might do something that completely cancels out the gains of another
because the two are unaware of how their efforts contribute to the effort of the
whole.

Chapter 16 ■ Process Improvement600

■ One person finds an answer, applies it, and then goes about his work. The answer
is forgotten, but a few days or weeks later, another person confronts the same
problem, works through to the answer, and, once again, goes about his work. An
enormous amount of redundancy (waste) characterizes the effort.

■ Breakdowns in the culture occur frequently, some with devastating results. Because
people define their work as they go, the strengths of personalities often prove the
biggest factor in whether the project development effort moves forward. Surviving
often amounts to living in something resembling a feudal society in which the pre-
vailing heroes storm about, out of control, while everyone else waits to see what
they will do next.

■ The configuration management effort is a mixed bag. People might store code
locally. Builds might be haphazard. No one has documented just what it is that
people are supposed to do, so it is a quiet consensus.

■ Requirements are never really established all that clearly, so the concept of what is
to result resides with the big egos on the team. Everyone else just works along with
them, visionaries that they are.

■ Generally, even if everyone gathers around the game every few days to see the
results of the latest build, no one really knows when or if the game will be finished.

It might be beneficial at this point to pause and consider one other situation. Consider
what might happen if you represented a large corporation and were seeking to contract
the services of a smaller game company. Would you want to entrust such a company with
a project for which you are paying it a large sum? Such considerations make it easy to
understand why smaller companies benefit if they take measures to formalize their
approaches to develop.

Level 2—Repeatable

In the CMM and CMMI schemes, the full treatment of Level 2 capabilities requires atten-
tion to the following key processes:

■ Requirements management (see Figure 16.8 for a fuller explanation of the items
involved in each of the key process areas)

■ Software project planning

■ Software project tacking and oversight

■ Software subcontract management

■ Software quality assurance

■ Software configuration management

Means and Ends—Templates 601

Level 3—Defined

In the CMM and CMMI schemes, the full treatment of Level 3 capabilities requires atten-
tion to the following key processes:

■ Peer reviews

■ Project interface coordination

■ Software product engineering

■ Integrated software management

■ Organizational training program

■ Organizational process definition

■ Organizational process focus

Level 4—Managed

In the CMM and CMMI schemes, the full treatment of Level 4 capabilities requires atten-
tion to the following key processes:

■ Statistical process management

■ Organizational process performance

■ Organizational software asset commonality

Level 5—Optimizing

In the CMM and CMMI schemes, the full treatment of Level 5 capabilities requires atten-
tion to the following key processes:

■ Organizational improvement deployment

■ Organizational process and technology innovation

■ Defect prevention

The Continuous Model
The CMMI provides an alternative to the CMM level mode known as the continuous
model. The continuous model allows an organization to pursue simultaneously all the key
process areas from the initiation of the process improvement program forward. The
development of the organization’s capabilities is not viewed as stages but rather as a con-
tinuum of efforts that extends across all process areas. Table 16.4 maps the items that the
continuous model features.

Generally, the same key process areas apply to both the staged and continuous develop-
ment models. The difference is that with the continuous process approach, an organiza-
tion has much more freedom to determine for itself how it wants to organize its efforts.

Chapter 16 ■ Process Improvement602

Organizations that do not concentrate exclusively on software development efforts tend
to favor the nonstaged approach. If a combination of software and hardware characterizes
the company’s business operations, for example, a continuous model allows activities to
be folded more easily into common processes. In this case, the key process areas are orga-
nized into four groups. An organization can access each of these areas according to the key
areas that apply to it.

Using the key process areas listed in Figure 16.9, you can develop a continuous process
evaluation scale. In this instance, the bars represent the maturity of each of the key process
areas on a scale that is roughly equivalent to the maturity levels of the stage model. A vari-
ation of this approach could be to group the key process areas in the same way that they
are grouped in the staged maturity model. The average of the bar readings provides an

The Continuous Model 603

Table 16.4 Continuous Process Areas

Grouping Process Area

Process Management Organizational process focus
Organizational process definition
Organizational training
Organizational process performance
Organizational innovation and deployment

Project Management Project planning
Project monitoring and control
Supplier agreement management
Integrated project management
Risk management
Integrated teams
Qualitative project management

Engineering Requirements management
Requirements development
Technical solutions
Product integration
Verification
Validation

Support Configuration management
Process and product quality control
Measurement and analysis
Decision analysis and resolution
Organizational environment for integration
Causal analysis and resolution

estimation of the relative maturity of the organization relative to the staged model. On the
other hand, you need to realize that the continuous model addresses the needs of organiza-
tions that do not have structure that lend themselves to a staged maturity model evaluation.

Chapter 16 ■ Process Improvement604

Figure 16.9
You can set up the continuous maturity model so that you can group key process areas according to
the culture of the company.

Making Change Happen
Organizations that do not change do not survive. Although this notion does not possess
the power of an eternal truth, in software engineering, it is very nearly a pronouncement
without known exceptions. To arrive at a sense of just how much this notion applies to
games, consider a game that you have seen go through several releases over a period of,
say, five years. Generally, it is probably safe to say that the improvements you witness in
this way are tremendous, and the idea of surrendering the visual richness and logical
depth that the later releases possess and reverting to the earlier releases is something akin
to giving up a birthday cake in exchange for a bowl of flour and water.

The change in what you experience does not occur naturally. Changes in what you see in
a game result from enormous, ongoing, and sometimes painful modifications in the orga-
nization that creates the game. The results indicate the extent to which the programming
and technology behind the screen have changed. The crucial factor in this change is that
the organization that created the game changed along with the game. But even more to
the point is that the organizations (and people within the organizations) that produce
many successful releases of a game over the years have discovered how to make change a
part of their everyday work experience. It is not enough to do something right in software
engineering. Success depends on creating both products and production processes that
are friendly to continuous change.

Software engineers have traced and measured how engineering organizations change and
have detected reliable patterns. The software engineers who are associated with the SEI
have documented an eight-stage change model that provides an excellent beginning for
most discussions of how to view change. This model depicts organizational change as
occurring as a result of a combination of two main ingredients. The first ingredient is
time; the other is the extent to which members of the organization become convinced that
change is something they want and actively begin making change a part of their everyday
work activity.

Table 16.5 provides a list of the generally recognized stages of change that mark the
progress of an organization from the time it acknowledges or at least recognizes the need
for change and the full assimilation of the results of a change cycle. The source of the
information in the table is a study by Kim Caputo (see the footnote for Table 16.5) that
concerns organizations that have contracted the services of agencies that specialize in
change processes. The mapping of the stages shows how organizational change happens
and how much effort and time each stage involves.

Making Change Happen 605

The efforts involved in making changes can surprise those who undertake to make them.
Efforts required to implement organizational changes easily can require a year or longer.
Change occurs only with effort and planning, and the larger the organization, the more
this proves to be the case.

Chapter 16 ■ Process Improvement606

Table 16.5 The Stages of Organizational Change

Stage Description

Getting Started Either through management initiative or some jolt that the organization experi-
ences, the organization decides that something has to change. For example, the
organization might decide to bid for a governmental contract or another, larger
organization might acquire the organization. Alternatively, perhaps two or more
groups within a given organization want to begin working with each other.

Awareness Everyone who is involved with the change (which can be everyone in the organi-
zation) needs to be aware of the needed changes and what can or should be
done to bring them about. A general sense of the need or desirability of change
marks this stage, but awareness of the general approach to making a change
also arises.

Understanding A task group within the organization representing the areas affected formulates a
plan for how to decide on changes and how to bring them about. The group must
make decisions about the scope of change and how to implement the plan.

Defining At this point, a process group is in place. The group conducts interviews and
determines what exists currently. The group also lays the groundwork, in the
form of process suggestions, about what it must accomplish to reach the goals
that it has defined.

Adopting Peer and committee reviews, along with surveys, provide the change group with
information about how members of the organization regard the measures
adopted for change. In addition, those whom the changes affect must examine
and adopt the changes. Although the organization can formulate a process
guide, the processes that the guide documents mean little if members of the
organization do not implement them in meaningful, effective ways.

Changing Routine Changes must be self-justifying; everyone needs to accept them if they are to
take effect. Assimilating changes involves implementing them so that while
members of the organization accept and use the new processes, the processes
become routines for everyone. Generally, different people accept changes at dif-
ferent rates and in different ways, and if everyone, the most flexible and the
most inflexible, does not begin making the changes a part of the everyday work
process, the changes are not likely to be effective.

Acceptance The “old ways” have been forgotten and the “new ways” now become candi-
date material for the next round of change. In other words, the changes are no
longer viewed as changes but as the standard operating procedures, and the
change management process should be flexible and dynamic enough to detect
immediately and initiate new change processes.

See Kim Caputo, CMM Implementation Guide: Choreographing Software Process Improvement (Boston: Addison-Wesley,
1998), pp. 49–59.

Small organizations are just as hard to change as large ones. The effort required differs
largely in scope rather than in time. The reason for this is that individuals who make up
an organization remain fairly predictable, regardless of the size of the organization. People
in management positions, for example, are usually more apt to find new ways of doing
things than are entrenched members of a development team. Upper managers can often
be almost fatally attracted to change, expecting drastic organizational changes to take
place in unrealistic frameworks.

Figure 16.10 displays a few indicators of just how much time a given stage of change requires.
The data that the figure represents varies from organization to organization, but the impor-
tant general trends still emerge. (Source: Kim Caputo, CMM Implementation Guide:
Choreographing Software Process Improvement [Boston: Addison-Wesley, 1998], p. 52.)

Making Change Happen 607

Figure 16.10
Change processes can be broken down into stages.

As Figure 16.10 shows, organizations require different amounts of time to accept differ-
ent stages of change. For example, at the start of a change initiative, hardly anyone recog-
nizes or can even imagine the need or steps by which change might come about. After a
time, however, as managers and other people who drive change make headway, the aware-
ness of the need for change grows and with it a greater organizational willingness to
undertake a change process. The curve in Figure 16.10 shows that not until more than half
of the change activity has taken place can the majority of people embrace the changes that
have been brought into the organization.

Figure 16.11 provides an alternative view of the steps of change. This view shows the
efforts of each stage broken into distinct percentages of the total effort.

As Figure 16.11 shows, making changes so that they are routine parts of the workday con-
stitutes just over 25 percent of the total change effort. What this means becomes evident
if you consider the effort preceding this stage. At this point, the organization has recog-
nized the need for changes, a plan has been made for the change process, individuals from
the affected groups have been consulted concerning how to make changes, and everyone

Chapter 16 ■ Process Improvement608

Figure 16.11
The effort that each stage of a change effort requires tends to differ from organization to organiza-
tion, but general patters still emerge.

has in some way begun working in a changed way. And yet it remains that an enormous
effort is required to make the changes stick to the point that they become so routine that
they are considered candidate material for the next round of change.

Approaches to Improvement
You can take two basic approaches to process improvement. The first is the personalized
or journal approach. This approach serves best anyone who is working alone or wants to
know how to track individualized performance information so that it can be used in a
more generalized setting. A starting point for the personalized strategy is the approach
that Watts Humphrey developed in the PSP. Using this as a starting point, you can learn a
few fundamental skills about logging and evaluating engineering practices on an individ-
ualized basis.

A second approach is preferable for almost any software engineering situation involving
complex tasks and any but the most rudimentary development groups. This approach
involves convening a Software Engineering Process Group (SEPG). An SEPG consists of
only a few people, but it can end up consulting with practically everyone involved with the
software product development effort.

n o t e

People usually refer to the Software Engineering Process Group by the letters of the acronym (S-E-
P-G) rather than pronouncing the letters as a word. For this reason, you will hear people say that
they are on “an S E P G.”

SEPG
Probably the best approach to forming an SEPG is to have one person designated as the
SEPG coordinator. This person should have time to work on the SEPG and should—at least
with respect to the SEPG—report to someone high up in the organization. The reason for
this is that any process improvement effort tends to encounter a great deal of resistance
when it is first started, and without high-level backing, no one is likely to commit to it.

The purpose of the SEPG can be summarized in a few brief statements:

■ Allow one or more people in the organization to dedicate themselves for a period
of months to fully understanding the process improvement model that the organi-
zation has elected to try (CMM, CMMI, ISO, and so on).

■ Enable one or more people to examine thoroughly and communicate to everyone
in the company what your current processes are and how they differ from the
processes that your organization wants to establish.

Approaches to Improvement 609

■ Establish the processes that your organization must put into place if it is to reach
the goals it sets for itself relative to the standards it wants to meet.

■ Ensure that the members of your organization follow and participate in the
improvement activity relating to the software engineering processes that your
organization develops.

■ Maintain the process guide so that it is an open, living document that everyone in
the organization can own.

Source of the Initial Process
The information that the SEPG collects for the process guide originates with members of
the organization. Even if an organization has no formally documented process, the SEPG
can use a tool such as the CMM key process area template to gather information on each
of the key process areas. Several approaches are available. For example, the SEPG can use
interviews, questionnaires, and process papers. The sections that follow present a generic
approach that an SEPG can use to document processes and set staged goals.

Assessing Existing Processes

When you follow an SEPG approach, you can use documents to concert energies and
focus issues effectively. A simple strategy for pursuing this approach involves the follow-
ing steps:

1. Obtain copies of templates for each of the key process areas. An example of a suit-
able template is given earlier in the discussion of IEEE Standard 730. Likewise, for
a listing of the key process areas, see the preceding section titled “Key Process Areas
and Key Practices.”

2. Call senior developers in each of the areas into an SEPG meeting and explain the
templates and how to create documents using them. Make arrangements through
management for the senior developers to have time to complete the documents.

3. As each draft of the key process area document is completed, place it in a change
control system.

4. Distribute each draft document to a working group of developers with expertise in
the relative process area with instructions for them to study it for review and im-
provement. Convene a review in which these people share their thoughts about the
document. Note suggested changes.

5. Revise the document according to the suggested changes. If your organization is
large enough, obtain the services of a technical writer from the start. There are two
good reasons for this. One reason is that a review session usually calls for a good
scribe. A second reason is that changes are often painful; although the senior devel-
oper of a document remains its owner, incorporating the changes obtained

Chapter 16 ■ Process Improvement610

through the working groups that the SEPG convene is best performed by a disin-
terested third party who has a solid handle on how to use and format documents
built using templates.

6. Baseline the document and convene a meeting that includes managers, developers,
and those who are already involved in the working group effort to review the doc-
ument and verify that it documents current processes. If the review group finds
new reasons to change the document, do so. Another general review is not needed,
but you should distribute the changed document for individual inspection by
those who have participated in its development. The SEPG should request that all
reviewers either sign off on the document or state their objections. If individuals
voice strong objections, the SEPG can deal with them by negotiating changes with
the reviewer or convening another general meeting to discuss difficulties.

Setting Process Improvement Goals

After the SEPG has documented existing processes, it uses data obtained about existing
processes to establish measures for process improvement. If management has adopted the
CMM, the best approach to formulating goals lies with the template of key processes. For
the information that this template requests, refer to Table 16.3, “CMM Key Process Area
Template.” The topics listed in the template are as follows:

■ Name of process

■ Goals

■ Commitment to perform

■ Ability to perform

■ Activities performed

■ Measurement and analysis

■ Verifying implementation

Generally, the SEPG and the working group that is associated with each key process can
use criteria for key practices provided by the SEI or a similar standards organization. On
the other hand, an organization can address a key process area in almost any way it choos-
es. The main stipulation is that it must give attention to the six practices listed in the pre-
vious section,“Assessing Existing Processes,” to be able to establish that it has, indeed, doc-
umented its processes and put in place a set of procedures by which it can monitor and
improve its processes.

Creation of a process document with specified improvement measures usually involves the
same steps listed in “Assessing Existing Processes” for primary process documentation.
Responsibility for drafting the document is given to a senior developer who has expertise in
the area under consideration. The SEPG provides the senior developer with some tutoring

Approaches to Improvement 611

on how to use the process improvement document. The SEPG and the working group who
is convened for the process area collect and review a draft of the document. The SEPG then
places the document in a change control system. After a final review, the SEPG sets the doc-
ument as a baseline.

Creation of a key process document becomes especially important when an organization
that is seeking certification finds that its existing processes lack coverage of a key process
area. In this case, the SEPG needs to develop an action plan for creation of the capability
that the key process stipulates. In this situation, the SEPG requires management interven-
tion. Funding and other resources are needed, too.

Effecting Change

How change occurs within an organization depends on the culture of the organization. The
SEPG might be empowered to work with managers to designate process change priorities
and fold them into the overall organizational timelines. For example, if organization-wide
software configuration management capabilities do not exist, the group involved with test-
ing is often heavily impacted. The testers might convene and decide to assign one of their
members to the task of creating the configuration management system. The goals stated in
the process change document are the starting point, but in addition to this, the SEPG needs
to draw up a plan for creating and deploying the system. The project might require a year
to complete, so management must be behind the effort, providing funding, equipment,
space, and other resources. Add to this that the SEPG must arrange for the appropriate per-
son or group to monitor the progress of the project to see that it is reaches the established
goals.

Journals and Personalized Endeavors
At the basis of every process improvement effort is the collection of data about existing
processes. On an individual basis, if you want to improve the way you do things, you begin
by collecting data about how you do things. Three general aspects of this data collection
are detailed in this section.

Discover a Script

The first aspect is that you record what you do and find within what you do common tasks
that you can collect under given headings. For example, without giving attention to the
more general nature or direction of your activity, you know that when you write code, you
usually spend a certain amount of time creating documentation or eliminating defects
from the first versions of your code. If you were to collect data about these tasks, after a
time, you would be able to recognize clear patterns in your activity. If you at least keep a
log of the time required to complete the tasks, you can create a table of data that will
enable you to estimate how much time you need to perform the tasks.

Chapter 16 ■ Process Improvement612

Refine the Script

Another type of logging activity concerns collections of activity. Here, the goal is to exam-
ine what you do when you perform a given task and ask yourself whether what you are
doing can be refined. For example, assume that you begin composing a program without
first spending time designing it. Although you might end up with a unit of code that per-
forms the task you set out to accomplish, your effort might lack elegance or might be a
result of repeated efforts that required you to dispense with your code and start over
again. By evaluating your effort, you might discover that if you initially design the unit of
code and then begin programming it, you eliminate much of the activity of writing and
dispensing with code. You reduce the time you need to complete the code. Then you can
establish a script for the procedure that encompasses the design as your standard coding
procedure.

Quantify the Script

The easiest types of quantification you can perform when you deal with personal process-
es are as follows:

■ Count the number of tasks you perform as you complete a given script. When
you count tasks, you can begin to evaluate the process under consideration for
things like redundancy. If two processes accomplish the same thing, and one takes
10 steps whereas the other takes 5, you can ask several questions. For example,
have you made things too simple or not simple enough? Is there redundancy?

■ Identify and count the types of processes you engage in as you work. Certain
processes fall into similar categories. For example, some processes might fall under
a security heading. Among these might be maintaining passwords and backing up
files. You can analyze these activities to discover whether better ways exist to per-
form them.

■ Time how long you require to complete a given task. Establishing how long you
require to perform a given task or process is part of almost any process improve-
ment project. As an individual developer, for instance, if you work in an organiza-
tion that has an established project management approach, you will be asked to
estimate the time you need for given tasks. Becoming good at this involves collect-
ing data on as many instances of work as you can and averaging them. Even if esti-
mating is at first painful and often mistaken, after a while you will find that you
can provide accurate predications fairly easily.

■ Time how long you require to complete a given process. A process is a collection
of tasks. A process can be all the work you perform on a given project. As with
tasks, the way you become an expert at being able to predict the time you require
to complete a complicated job is to collect data and average it.

Approaches to Improvement 613

Planning

Planning encompasses both knowing how long you require to perform a given task and
being able to designate procedures you will use to reach a given goal. The exploration of
refinement of both of the activities lies at the root of planning, and one of the central
objectives of process improvement, for both organizations and individuals, is to make it
possible to plan development efforts. Generally, the closer that a process’ development
plans can come to predicating the time, efforts, and expense involved in a development
effort, the more mature they are said to be. Every effort that helps refine the ability to pre-
dict contributes to the improvement of the process.

Reviews
Among the most important reviews used during process improvement efforts are peer
reviews. Peer reviews involve the interaction of a group of people who are fairly equal in
their status in the organization and who work jointly toward a common end. An example
of a peer review is when one programmer reviews code that another programmer has
written. In this instance, one programmer is not necessarily better than another. It is just
that the programmer who reviews the code can see the code from an alternative perspec-
tive, one that is likely to detect features of the code that the first programmer, for under-
standable reasons, cannot detect.

Another form of review is more generalized. It, too, can be characterized as a peer review,
but it takes place within the context of a team. An example of such a review is a code
inspection. A code inspection occurs when a group of developers (not necessarily all pro-
grammers) gathers around a table and reads the code that a given individual has developed.
In this instance, the purpose is to discover as many errors or irregularities in the code as
possible without treating the developer of the code in a disrespectful way. The team bene-
fits if the code that each of its members produces lacks errors. If the team can help the indi-
vidual produce code that contains fewer errors than otherwise, the team benefits.

In the context of process improvement, peer reviews work most effectively when a group
of people involved in a given task confers together to establish a common approach to
accomplishing the task. An example of this is when a quality improvement effort begins
and management asks a group of developers to meet together to document a common
process. Everyone in the group is an authority, and the process definition emerges from
the group’s common view of the best process.

Conclusion
This chapter discussed how organizations engage in process improvement. At the core of
this activity is the use of some type of standard. Among the most widely recognized stan-
dards organizations are the IEEE, the SEI, and the ISO. These three organizations offer

Chapter 16 ■ Process Improvement614

products and services that a company can use with relative ease. Standards help the mem-
bers of an organization determine goals for process improvement, but standards alone are
not enough to bring about quality improvement. In addition to standards, an organiza-
tion must be able to collect and process information about its own processes. One thor-
oughly tested vehicle to information collection is the template. Several excellent templates
for process improvement information are available through organizations such as the
IEEE, the SEI, and the ISO.

Even with standards and templates for the collection and refinement of information
about processes, organizations that are seeking change still face major obstacles because
they must coordinate and support the efforts of those members of the organization who
are entrusted with initiating the change process. To aid those who spearhead the change
effort, organizational managers can create an SEPG. An SEPG allows one or more people
to concentrate their energies on collecting information about existing processes and set-
ting goals for the change of the processes. For an SEPG to succeed, experts generally con-
tend that strong support from upper management is needed. Process change is difficult,
and the majority of people within an organization seldom respond immediately in a pos-
itive way to initiatives for change.

This chapter concentrated on approaches to change fostered by such organizations as the
SEI and the ISO. These are the most generally recognized sources of information about
organizational process improvement. An enormous store of information on process
improvement is available from the SEI and the ISO. The following texts provide further
discussion of the topics introduced in this chapter:

Ahern, Dennis M., Aaron Clouse, and Richard Turner. CMMI Distilled: A Practical
Introduction to Integrated Process Improvement. Boston: Addison-Wesley, 2001.

Caputo, Kim. CMM Implementation Guide: Choreographing Software Process Improvement.
Boston: Addison-Wesley, 1998.

Humphrey, Watts S. Introduction to the Personal Software Process. Boston: Addison-Wesley,
1997.

Humphrey, Watts S. Managing the Software Process. Boston: Addison-Wesley, 1989.

Paulk, Mark C., Charles V. Weber, Bill Curtis, et al. The Capability Maturity Model:
Guidelines for Improving the Software Development Process. Boston: Addison-Wesley,
1995.

Conclusion 615

617

Release Planning and
Management

Chapter 17

T
his chapter investigates the activities that are involved in managing the game software
after game developers have completed their primary work. Many of the tools and
tasks that you studied in Chapter 10, “Control Freaks and Configuration

Management,” come into play during the release management phase of a game’s life, but
many subtle differences separate the two realms of activity. The most fundamental differ-
ence is that when a game reaches the release stage, it becomes visible to the customer and,
because of this, it poses liabilities and potential that it does not possess during the prerelease
development phase. The following topics, among others, present themselves for study:

■ Defining the basic activities of release planning

■ How release planning differs from release management

■ Levels of release

■ Release schedules

■ Planning for profits

■ How different types of games require different management strategies

■ Responding to release problems

■ Making the world safe for the next release

Release Basics
Given the structure of the computer game industry, in most cases, you release your soft-
ware to a publisher instead of directly to a consuming audience. In other instances, if you
work with a software development company that creates Artificial Intelligence (AI) com-
ponents, graphics components, collision detection software, testing tools, debugging tools,

or other products, your release operations will involve delivering software to software
developers. Properly managing the release of your software product involves delivering it
to your customers in a form that allows them to use it immediately in a satisfying, prof-
itable way. To ensure that this happens, you must take care to anticipate a variety of risks.

Releasing a software product does not usually involve a single step. Instead, you release
your product in stages, beginning with a preliminary release often known as an alpha
release. Beginning with this release, you collect information about the system. Some of
this information allows you to detect defects. Other information allows you to understand
how the product might be improved in a future release. To properly collect and filter the
information, you use a release tracking system. One approach is to use an Internet-based
system. Such a system allows customers to log problems or suggestions easily. It also
enables a widely distributed group of developers to have easy access to the central issue
repository.

Structuring Releases
The release management process centers on the production release. The production release
is also known as the final release. It is the version of the product that customers purchase.
Before the production release, you can present your game in alpha and beta releases. The
alpha release usually contains functionality that you consider unstable or questionable.
The purpose of the evaluation might be to determine whether you want to change or
remove the functionality. A beta release offers functional completeness, and its purpose is
to help you eliminate lingering errors. At this point in the product’s life, developers seek
only to eliminate problems. They do not try to change the functionality of the product.

Developers refer to the point in the product’s life at which development of any new prod-
uct functionality ceases as code complete. This point in the product’s life indicates not the
end of the product development, but the point at which no new functionality will be
added to the product unless under strictly controlled circumstances. Developers deter-
mine that they have reached code complete when they have implemented all the func-
tionality that the software requirements specification stipulates.

After you have released your product to the public, you are likely to find that even after
the most strenuous testing, some part of the game malfunctions. To remedy such prob-
lems, you can offer the customer a product update. Release managers sometimes regard a
product update as a release. A release is any version of a product that requires that the cus-
tomer install the product. An update might require only that the customer install a pack-
age that is integrated into the product through a means other than compiling. The update
is usually a compiled entity that corrects a specific product error that customers or testers
have reported after the production release of the product.

Chapter 17 ■ Release Planning and Management618

Figure 17.1 illustrates a basic promotion schedule. The five types of activity that character-
ize the promotion process fall into three general categories. Release managers usually con-
sider code complete and alpha and beta releases to be parts of the prerelease phase of a
product’s life. The production release marks the beginning of the release phase of a prod-
uct’s life. Although the terms can become fuzzy if your product enjoys the fortune of mak-
ing it through several releases (think of Final Fantasy), release managers usually refer to
any activity that takes place after the release of a given version of a product as the postre-
lease phase of the product’s life.

Code Complete
An important expression in the development cycle is code complete. This place in the
development cycle marks the point at which developers cease adding new features or
functionality to the game software product. As mentioned previously, developers deter-
mine the point of code completeness by reviewing their work in light of the software func-
tional specification. To verify that the functionality has been implemented, developers
work according to a software test plan. (See Chapter 11, “Evident Evil—The Art of
Testing.”)

Structuring Releases 619

Figure 17.1
Promotion activity takes place in three phases.

As Figure 17.2 illustrates, verification and validation of requirements allow the testers to
determine when the developers have completed the work of implementing the code. Code
completion involves creating the product as specified. The software design specification
helps the developers understand how to implement the functionality. The approach used
for Ankh makes use of stripes. You can implement and test each stripe separately and then
integrate all stripes into the complete game product.

Code completion involves a formal “locking down” of the code. At this point, developers
begin a process of responding to testing data and fixing errors.

Verification of Functionality

Testing activities accomplish three primary tasks:

■ Verify that the functionality that the software functional specification designates
has been implemented.

Chapter 17 ■ Release Planning and Management620

Figure 17.2
You reach code complete when you have verified that all requirements have
been implemented.

■ Validate the functionality. In other words, determine whether the functionality that
has been implemented does what it is supposed to.

■ Determine whether the software contains errors.

A software test plan guides testing activity. Generally, testing begins with the implemen-
tation effort. Throughout the development phase, developers work in tandem with testers
to test the code as they create it. The approach used for Ankh involved breaking the prod-
uct into stripes. The test plan allowed the testers to approach each stripe of the game as a
separate entity. Testing results during each stripe of the development cycle focused on the
functionality that each stripe encompassed. Again, although each stripe addressed a given
set of requirements from the software requirements specification, how the requirements
were to be implemented was documented in the software design specification.
Incremental, iterative development of stripes continued until the team reached code com-
plete. Figure 17.3 illustrates the flow of activity for a few of the stripes.

Structuring Releases 621

Figure 17.3
Testing and implementation proceed in tandem during the development of each
successive stripe.

Moving Toward Code Complete

Code complete often represents a key point in the development process, because at this point,
all of the stripes of the product should be integrated into the build. This might be the first
time that such a build has occurred. It represents the first complete version of the product.
Figure 17.4 provides a view of the stripes that comprised the first complete build of Ankh.

Chapter 17 ■ Release Planning and Management622

Figure 17.4
The code complete state represents the entire scope of the product.

Chapter 10 discusses in detail the techniques and tools that the team employed to manage
builds as it progressed toward the final integration of all stripes into the complete version of
the game. During the day-to-day development process, you can use the software configura-
tion management system to orchestrate the builds. During this phase of the development
process, builds do not represent a complete build of the product. With some development
efforts, of course, builds can be representative of what is complete up to the day of the build,
but given that the product is still under development, no build during the prerelease devel-
opment process can be said to represent the entire functionality of the product.

When you reach the point of code complete, the build no longer represents a limited set
of functionality. The build now represents the complete product. For this reason, you
must now manage the product as a single entity. One important implication of this
change is that you must test changes to any part of the system against the entire system.
You can no longer assume that a change affects only a single stripe.

After Code Complete

The general pattern of development that is established before code completion continues
even after code completion. At this point, however, things change. Before code comple-
tion, developers implement new functionality and testers ascertain whether the function-
ality meets the requirements. After code completion, developers no longer build new
functionality. Instead, they respond to the defect, or error, reports that the testers issue.
Once again, testers seek to verify and validate the functionality that the requirements
specification documents.

The first major concern after code completion is the verification that the code is, indeed,
complete. This activity involves more verification. By this point in the development
process, unless the development has proceeded in a haphazard way, you should verify the
functionality of the product for each of the functional stripes. If you have developed all
stripes according to the software design specification, it is likely that you have imple-
mented all functionality. Still, problems can arise when you must integrate the stripes into
the whole. Sometimes when you integrate the components, or modules, that make up the
product into the complete system, defects arise and the product no longer displays its
specified functionality. You must solve such integration problems.

You can designate the activity that follows code completion as debugging. That’s because
the process is one of reacting to the discoveries of the testers. The focus of development
work involves reducing the number of errors. Figure 17.5 shows some of the relationships
among testing, requirements, and detected defects.

Structuring Releases 623

Categories of Debugging

At this point, many test factors enter into the picture. Among these factors are those that
arise from general gameplay. After code complete, you can develop the full play of the
game. With the development effort for Ankh, for instance, given the completion of the
game engine, you could fully implement the level features. Implementation of the level
features for Ankh involved the use of existing functionality, not the creation of new func-
tionality. Testers and developers worked with stable functionality.

The errors you discover after you have completed the code generally fall into three broad
categories:

■ Some of the defects concern engineering issues. You can summarize this best as a
problem with performance. Performance problems can arise in any number of ways
and might not be evident to players. One example of a performance problem is
memory allocation. Memory leaks might or might not become visible to the
player. If a leak causes the game to crash, it most certainly will become evident.

Chapter 17 ■ Release Planning and Management624

Figure 17.5
Testing after code completion drives a process that tries to reduce or eliminate the
errors that are evident in the game as a whole.

On the other hand, if the leak is relatively minor and degrades the performance
only after hours of play, many players might not detect the problem. Discovery of
memory leaks often involves sophisticated testing tools.

■ Some concern game feature issues. Gameplay testers might discover that charac-
ters are sluggish, lighting is wrong, or scenes do not refresh with smooth transi-
tions. Such problems might require different approaches to the way graphics
designers use the game engine, or they might require adjustments to the game
engine itself. Developers must investigate the code to discover the root of the prob-
lem. If the game performs sluggishly, the problem might lie in an inefficient algo-
rithm. You can tune or rewrite an algorithm without changing the functionality of
the game.

■ Some reflect failure in the implementation of functionality. This is probably the
worst type of defect that testers can discover at this point in the development
process. If the team declares the code as complete and testers discover afterward
that a functional feature has not been implemented, something was seriously
wrong with the software design. If this does happen, the team must seriously con-
sider how to handle the situation. If some functionality has been omitted but 98
percent of the functionality has been verified as complete, the missing functional-
ity might not represent anything critical to the overall system. In this case, the pro-
ject manager might decide to leave out the functionality. The project manager
would have to admit a failure, but implementing the missing functionality this late
in the development process could cause the team to miss its delivery date.

Alpha
An alpha release of a game allows you to investigate whether the functionality you have
implemented is the functionality you want. It also allows you to test functionally that
might remain seriously questionable, to the extent that, although it is clear that the func-
tionality is implemented correctly, it is not clear that it belongs in the game.

The difference between a version of the game you test after code complete and a version
of the game you test as an alpha release is that you document an alpha release as a release.
In other words, you assign it a release number, which identifies it as a complete product.
Further, you distribute the alpha release to a select group of game players, testers, and oth-
ers who are not involved in the primary development effort. To distribute the alpha release
to these people, you must create an installation package of some type so that you can
deliver the game as a standalone executable.

Alpha Criteria

Games do not always go through alpha releases. Some developers feel confident enough
about their work to proceed immediately to a beta release. This happens when the

Structuring Releases 625

developers, for example, are working with a mod. The functionality of the mod might be
established so clearly that releasing the game as an alpha release makes no sense. All that the
developers require is that testers discover defects that might remain after the prerelease test-
ing. They are confident that all of the functionality specified for the game is solidly in place.

To decide on whether to proceed with an alpha release, you might consider some of the
following points:

■ Friendly internal testers. In most instances, you perform an alpha release entirely
in-house. Play testers for an alpha release usually are regarded as “friendly” testers.
In other words, they are individuals who are willing to work with the functionality
of the game even though it might be implemented in an incomplete way. These
individuals should be willing to tell you how they think the game might be
improved. They might make suggestions about features they would like to see
dropped.

■ You have the time for extended testing. Even if a game possesses major flaws and
friendly play testers are around who want to work with you, you still need to antic-
ipate that any testing requires time. Alpha testing is an opportunity for developers
to work closely with testers in an immediate, interactive way. The decision remains,
however, about whether time allows for alpha testing. If you are working with a
publisher, you might find that you want to pass the game to the testers at the pub-
lishers. You might find that you want to involve the testers at the publishers right
away, in effect skipping a true alpha test phase.

■ It would be hazardous not to make an alpha release. If the game is so defect-
prone that sending it to your customer for a first view might create liabilities, you
have no choice but to make an alpha release.

■ You have requirements or functionality that you are not sure about. Sometimes
certain functional aspects of the game present liabilities even if you have developed
them in a competent way. In such situations, you can cut the functionality from
the product, creating a slightly scaled-back version of your anticipated first release.
To gather information about whether you should proceed along these lines, con-
duct an alpha test.

Scaling Alpha Builds

Any build that you produce after code complete represents the complete software prod-
uct. This said, any given product offers the opportunity for several different versions. Such
a situation is analogous to a film in which the director, having shot different final scenes,
decided at the conclusion of the production effort what ending to use.

In the software development effort, the choice of final versions is usually restricted, but
you should not underestimate the importance of even narrow choices. Typical of such sit-
uations are the following:

Chapter 17 ■ Release Planning and Management626

■ Your company creates physics components. Your release offers three components
that simulate disintegrating objects. One, an “upgraded” burning metal ball, works
perfectly except under extremely accelerated situations. In these situations, the
reality of the deterioration no longer precisely corresponds to what films depicting
physical experiments show. If you think even the slightest chance exists that the
customer will be dissatisfied with the upgraded capability, you might consider
building an alpha release that does not include it.

■ The game works fine—up to a certain point. The history of the project up to code
completion shows that at about the middle point of the development effort, the
team detects a problem. No one can solve it, so it remains unsolved. This problem
concerned functionality that, although specified, is not needed for most of the
gameplay activity. In fact, if you omit the functionality, no one is likely to know the
difference. On the other hand, if you keep the functionality, it eventually crashes
the game. You have a problem that you cannot fix in the time given.

Figure 17.6 illustrates a situation in which the functionality that is available at code com-
plete presents two options. Each release build represents a complete software product. You
decide on an alpha build of the product. You provide this version of the product for alpha
testing to discover whether it is safe to omit the problem functionality. Given the results
of the alpha release testing, you have a body of test data on which to base the actions you
take as you proceed to the beta release.

Structuring Releases 627

Figure 17.6
A release build represents an entire product, but different products can emerge from
release builds.

Beta
When you create a beta release of a product, you create something you are willing to ship
to customers. The functionality of the product is complete. You are looking for a thorough
testing effort on the part of the product users. The beta release allows you to subject the
product to a thorough test cycle that involves actual users or customers rather than pro-
fessional testers.

Before you ship the release version to the customer, you usually have the customer sign an
agreement. The agreement protects you from liabilities that the product might present. It
also establishes ground rules, such as how long the beta test will go on, how defects will
be handled, and whether you are liable for damages that the user might suffer because of
using the software. In the world of computer games, such an agreement might seem
unnecessary, but it is still important to pay attention to liabilities and limitations. An
example of a liability might be that an online user of your game creates a character pro-
file, investing many hours, only to discover that with the first release, the character profile
is no longer valid. If this player is not warned beforehand about the loss of data, he is like-
ly to be extremely dissatisfied with your game.

An example of a limitation is that you must tell those who install the beta release that after
a certain time, you will no longer support the beta release. Although in some situations it
might be reasonable to try to support a beta release even after the first production release,
in most cases, such a move is absurd. After all, the first release should contain all the fixes
to the product that were issued during the beta test.

You also extend or establish an issue tracking system that enables the customer to report
all use issues. Not having such a system in place at the start of the beta trial wastes the time
and energy of everyone involved.

Beta Criteria

Effective beta testing involves establishing an issue tracking system. It is not enough to
begin a beta evaluation of your software and then wait for e-mail or phone messages to
arrive. Instead, you must proceed with an explicit plan for releasing the product. Table
17.1 illustrates the main components of a beta release plan.

Chapter 17 ■ Release Planning and Management628

Structuring Releases 629

Table 17.1 Beta Release Plan Components

Beta Component Description

A principal contact This might seem self-evident, but it is often neglected. A principle
contact is the person who is in charge of the beta process at the
customer end. If you send out 100 beta versions of your multi-
player game, you must establish each of these people as principal
contacts. If you ship your set of AI components to a game engine
company, you are likely to have one person on the customer end
who is responsible for coordinating the beta effort.

A contract Do not ship a product unless you have established clear legal
boundaries on what happens if the product causes problems.
When you ship a beta release of a software product, those who
receive the beta release must understand that the product con-
tains defects and that the defects might cause damages. The
contract allows you to avoid liability for such damage.

An issue tracking system For purposes of a beta release, make reporting issues as easy as
possible for the customers. Generally, you want to track the point
at which the problem occurs. If you have folded an immense
amount of sophistication into your development effort, you can
plant automatic response mechanisms in your code. Such response
mechanisms trace when the system crashed and automatically
transmit problem codes over the Internet. Short of that, you can
ask the beta user to write a sentence that details what he was
doing when the problem arose. In addition, you can ask for a
description of the problem.

A set of issue ratings Your release test team must have a set of ratings in place for the
issues that users report. Consider, for example, a user who
reports that he thinks the game is stupid. This differs from the
report received a few minutes later from a user who writes that
when he navigated the avatar to a pillar on the left of Level 3,
the application froze. (See Table 17.2 for a discussion of ratings.)

Documentation A beta release of a software product brings with it the need to
describe formally the software and its operation. When you issue
a beta release, you should include a set of documentation that
covers, at a minimum, how to install, operate, and remove the
software.

Customer understanding The documentation also should include a list of responsibilities
that you would like your customers to assume as they participate
in the beta effort. For example, you should have a technical
writer create a document titled something along the lines of
“How to Describe and Report Problems and Issues.” Direct
everyone who participates in the beta trial to this document.

(continued on next page)

Scaling a Beta Test

Many development efforts involve only a beta test. A scenario that involves only a beta test
might be a mod effort in which the modifications of the previous game are so clear-cut
that an established group of beta testers will be able to identify clearly what is new and old
and have little trouble working with the defects that might characterize an alpha release.

Beta tests usually involve durations rather than functional features. The reason for this is
that the beta tester is a prospective customer who already understands the scope of the
product and who has agreed to use the specified functionality on a preliminary basis.
Moreover, when you ship the beta release, you have had a chance to validate and verify the
product’s functionality. What you have not had a chance to do is interact intensively with
the software in a use context. This is the job of the beta tester. Figure 17.7 provides a sum-
mary view of a likely scenario of a beta test.

Chapter 17 ■ Release Planning and Management630

Table 17.1 Beta Release Plan Components (continued)

Beta Component Description

An acceptance plan An acceptance plan applies to a customer to whom you have
assigned the beta release as a part of a final software delivery.
An acceptance plan establishes the criteria that you must meet
as a developer before the customer is obligated to take full
possession of the software. One recommended approach is to
base the acceptance plan on a duration rather than an item-
ization. For example, although you still will want the customer to
verify that the requirements you have stated in your require-
ments agreement have been implemented, the beta can proceed
on the basis that the customer has the right to expect fixes to
the product for a given period. The beta concludes when this
time expires.

Clear criteria for acceptance The acceptance plan should include clear criteria for acceptance.
If you are developing a set of components for another software
company, one engaged, for example, in the development of an
engine, you need to include a precise statement of what is
expected. On the other hand, if you are forwarding a game to a
publisher, you can encapsulate the criteria in a list of test con-
ditions that must be fulfilled. Beta testing continues until you
have demonstrated that all test conditions have been met.

Production Releases
Production releases sometimes are called final releases. The distinguishing characteristics
of final releases can be as follows:

■ Marketed. In one way or another, someone pays for this release, so your product
user becomes, not a tester or a partner, but a customer.

■ Targeted. The release is for a specific platform. You can install it on this platform.

■ Documented. The release is accompanied by a release letter that explains items such
as how to install the product and issues that might affect the use of the product.

■ Numbered. The release is identified with a number.

■ Packaged. The release is packaged in a distinctive way.

■ Defect concerns. Defects in this release are treated as failures, not as production
issues. You must fix such defects via product updates. The need for such updates
constitutes a liability.

Structuring Releases 631

Figure 17.7
Beta tests involve contracted users in a thorough test of established functionality.

Updates
It is almost impossible that a software product will enjoy a life free of defects after it has
been released. This is true especially of games. In a console or PC setting, players play the
game in ways that no amount of testing can anticipate realistically. Inevitably, the diligent
player detects an anomaly. If the anomaly crashes the game, you must provide the player
with a fix. If the anomaly does not crash the game, you have a couple of options. One is
to suggest a workaround to the player. Some people might regard a workaround as a
cheap, silly way to deal with a software problem, but even systems designed for NASA have
had problems that engineers have dealt with through workarounds. When your probe is
millions of kilometers away from Earth, if the software on board creates a problem when
instructed to perform actions x, y, and z, it is probably best, at least for the time being, not
to instruct it to perform actions x, y, and z. The decision not to perform the action is a
workaround.

Always consider workarounds as temporary. A workaround is a logistical or strategic solu-
tion that you can provide the player of the game while you prepare a technical solution.
With console games, the technical solution is not likely to appear until the next release of
the game. With PC games, you might deliver the solution via a download from the
Internet.

A software solution that you apply to a released software product is known as a patch.
Historically, a patch differs from a release because it does not require that the user rein-
stall the software. This definition of a patch tends to be too restrictive for many PC games
that have appeared over the years. The reason for this is that game developers for PC
games have sometimes found it easier to replace the game executable.

For console games, the need for a patch tends to spell the end of the game’s life. Console
game players usually choose to return the game rather than deal with a severe flaw. If the
game possesses a minor defect, reviewers and players often react with caustic remarks, but
they might not go so far as to demand their money back.

Patches are developed as separate, isolated modules that you can integrate into an already
installed product. The use of dynamically linked libraries, COM, and .NET components
makes patching easy in a Windows system. In the world of console games, patches can be
a bit more problematic. Sometimes, the best solution for a defective console game is to
reissue the whole game.

Numbering Products
Regardless of the type of software product you create, tracking how you have developed
and released your product remains an important part of your development activities. Not
doing so is inviting situations in which developers overwrite files, testers retest or fail to test
functionality, or customers receive versions of the product that are incomplete or defective.

Chapter 17 ■ Release Planning and Management632

Tracing the development history of your product obligates you to examine three types of
activity: building the product during development, assembling the product for release,
and updating the product as you address defects. Each of these activities calls for a clear
approach to labeling your work so that you can easily identify when you have performed
work and what the work has encompassed.

To address this challenge, organizations establish numbering systems. A numbering sys-
tem consists of a template for assigning numbers to a product and a set of rules for deter-
mining how to insert information into the template. The template that an organization
develops depends on how much information it wants to store. Figure 17.8 illustrates one
among many possibilities of numbering. According to this scheme, the numbering system
provides four basic types of information: release, version, update level, and test level. The
sections that follow discuss these four types of information in detail.

Numbering systems provide data that allows you to know several types of information in
addition to basic release levels. As Figure 17.8 illustrates, you can set up the number sys-
tem so that dots (or periods) separate fields. Each field provides information about the
level of a given type of activity. In the system used here, the first field contains the infor-
mation about the release level. To illustrate how this numbering system might work with
a release under alpha test, use the number 00.07.10.A01.

■ The release level is set at zero as long as the product is in the prerelease phase.

■ The version level indicates that the product has been through seven trial builds at
the prerelease level.

■ During the seventh integration of the product, the update level is 10, which indi-
cates that the developers have added 10 fixes of some type.

Numbering Products 633

Figure 17.8
A template for numbering ensures consistency.

■ The alphanumerical field at the end is more complex than the others because
developers can use it in several ways. The A indicates that a formal alpha test
release has been created. The 01 following the A indicates that this is the first pass
at the alpha test. When the product passes the alpha test, the release manager can
change the A to a B and reset the numbers that follow to accord with the version of
the beta test.

Release
A release is a separately installed, complete product. It is what is shipped to the customer.
With each new release, you should reset the release number so that it’s the only field that
has a value greater than zero. In other words, you should set version, update, and test fields
within the release number (if you use the type of numbering that this chapter discusses)
to zero. The first release of a product according to the template given in Figure 17.8 would
be 01.00.00.000.

A release should represent a completely new build and integration of the product.
Achieving this goal involves removing all old files from the build environment and replac-
ing them with the files that you have slated for inclusion in the new release. Even if you
have no prior releases, you must confirm that you are not including files that you have not
scheduled formally for inclusion in the release build. In the team’s work with Ankh, exam-
ples of problems resulting from neglect of such activities included failed builds due to
outdated Boost files and deterioration of performance due to sloppiness in the use of the
debug version of DirectX. A clean build area would have eliminated these problems.

Version
Probably one of the best uses of the version number is to designate when you create a
baseline of the product during the development phase. Configuration managers some-
times call a baseline a snapshot of the product during its development history. Effectively
capturing a snapshot requires ensuring that it includes all files that compose the product.
To facilitate the documentation of this activity, the Ankh Software Design Specification
provides a section that documents the components of the game using UML package and
component diagrams. Likewise, the Ankh Software Configuration Management Plan pro-
vides similar diagrams, along with a directory specification and a build schedule, to trace
versions during the development process.

Version numbers in the numbering system presented here follow the first dot (or period).
Figure 17.9 illustrates how you can trace the builds representing the stripes in the design
of Ankh using version numbers. Each successive version shows that you have added the
functionality of a given stripe. Stored in this way, the mapping is not as direct as it might
have been had the development team numbered all stripes with whole numbers, but it is
still clear that each version of the game software created during the prerelease phase
included an additional stripe of functionality.

Chapter 17 ■ Release Planning and Management634

Update (or Upgrade) Level
An update is something you add to an existing release. An upgrade does not obligate you
to rebuild or recompile the product. Examples of how to accomplish this arise if you
replace defective music or graphics files. In other cases, you might replace dynamic link
libraries. In the numbering scheme documented in this chapter, the information that
identifies update levels follows the second dot (or period). Two digits allow for 100 possi-
ble fixes, but this number can increase if you use the test-level information to augment the
fix level.

Good practice suggests that you not change the release and version numbers unless you
extensively altered the product, such as when you add a component and the result is
changed functionality that is visible to the user. On the other hand, whenever you make a
change in the product that the customers receive, you should be able to trace the change.
You should know precisely how you have changed the product since its first release. This
is where the information supplied by the fix level is most useful. You should identify every
fix uniquely. The numbering template shown in Figure 17.8 allows you to increment the
Update field for every fix you issue.

Numbering Products 635

Figure 17.9
You can identify builds by using version numbers.

Test Level
Again referring to Figure 17.8, the most straightforward use of the test level field is to
assign A for alpha and B for beta, and then to follow the letters with whatever number
properly designates the level of the test being performed.

A further use awaits the field, however. This use might start with a problem with the
update field. It might be difficult to know where a version ends and an update begins. For
example, suppose that you release 01.00.00.000. Within a month, you have begun work on
another major release. You finish work on the fourth stripe and create a baseline,
01.01.00.000.

However, at the same time, you find problems with the first release and have to create a
patch. The patch is to the first release, so you retrieve 01.00.00.000 from the configuration
management system and work with the code until you have a patch, which consists of a
few lines of code. At this point, how can you designate that you have created a patch rather
than work you want to apply toward version 01.01.00.00?

One solution is to apply a U (for updated) to the final field. In this way, the number of the
patch becomes 01.00.00.U01. With a little tweaking, use of alphanumerical combinations
in the last field allows you to identify specifically the item you are dealing with. For exam-
ple, you might determine that 01.00.00.U01 designates only the applied patch and not a
complete build of the product. If you completely rebuild, you might use another letter,
such as I for integrated.

Tracking Information for Release Activities
A release should be something that you deliver as a result of a planned effort. To examine
how a planned effort leads to a release, consider two scenarios:

■ Scenario 1, unplanned. You are working on a game. The development activity pro-
ceeds in a random way for a few months. As you go, you create this feature and
that. You eventually reach a point at which you think it is fun to play the game you
have developed. You play the game for several days until you no longer run into
defects that you find particularly troublesome. At this point, you decide you can
release the game.

■ Scenario 2, planned. You develop a game according to a software engineering
process that involves creating a set of requirement, creating a design, coding
according to a design, testing according to a test plan, and delivering the game
according to a release plan. To arrive at the decision to release the game, you test
the product against its requirements to determine that you have implemented the
functionality that you have specified. You also test the product until you have elim-
inated all defects discovered during testing. Finally, you determine that with each
day’s testing, you detect fewer defects. At this point, you release the game.

Chapter 17 ■ Release Planning and Management636

The first, unplanned approach involves finding the product after it has been created. The
release effort involves playing the game for a few days and then, when the feeling is right,
passing the game to the customer. The planned approach involves testing the game against
specified requirements and tracking defect numbers to the point that you can determine
that a definite trend toward fewer defects accompanies the fact that you have reached a
point at which you have fixed all detected defects.

The planned approach requires data. The unplanned approach requires something along
the lines of a holistic sense of the game’s suitability for release. There is nothing wrong
with the second criterion. Indeed, a holistic sense of the game’s suitability for release
should be an important part of the development effort. However, at the same time, the
holistic approach alone possesses flaws. It lacks positive, empirical evidence that the game
is ready for release.

Gathering evidence to verify the suitability of a game for release involves collecting infor-
mation through two tracking tools characteristic of many software engineering efforts.
The first is a tracking tool that records defects that testers have detected during the devel-
opment effort. The second is a tracking tool that records changes or proposed changes to
the software as specified and released. The first generally is known as bug tracking. The
second generally is known as change management.

Tracking Build Information
Chapter 10 addresses product builds and the intricacies of managing them, but in this
chapter, it remains important to point out that you cannot expect to manage the release
of your game consciously and rationally unless you have information about its build his-
tory. The reason for this is that if you introduce release management processes into your
software development activities, determining when a product is ready for release requires
that you be able to discern patterns in the occurrences of defects in the development and
testing activities following completion of your code. Unless you have a tracking system in
place, you have no way to collect the right information.

Versions of Builds

To control builds during the prerelease phase of the software development cycle, you use
a version control system. With the Ankh project, the team decided to use TortoiseCVS,
which is a Windows version of Concurrent Versions System (CVS). This system is not a
Change Management (CM) system. In other words, it does not require the use of change
requests to make changes. Instead, it stores files and maintains a database of changes that
have been made to them.

A CM system is good for maintaining code after it has been released. It is not the
best choice for a situation in which frequent changes occur, and frequent changes occur
during the prerelease development phase. A CM system is good for storing complete

Tracking Information for Release Activities 637

configurations of software. At the release phase of a software product’s life, for example,
the software release, as a complete entity, becomes an excellent candidate for CM. The
same applies to points during the prerelease phase when you want to create baseline ver-
sions of the software.

One of the underlying purposes of a CM system is to regulate change closely. If you apply
a CM system with even a marginal degree of formality, those wanting to make changes to
the code must, at a minimum, submit a request to make the change. A change board then
approves the request, and upon approval, you can make the change.

During the prerelease phase of development, when developers are asked to submit
requests to make changes each time they check out code, they tend to check out code less
frequently. The problem with this is that the less often developers check out code, the
more changes they make to the code without merging and building (or requesting per-
mission). The result is that more defects plague each comprehensive build, and develop-
ment progress slows.

CVS expedites development because although it tracks files and prevents the loss of work,
it does not impose a strict change control system on developers. Change control must be
accomplished through policies. For more discussion on policies and the use of CVS, see
Chapter 10.

Integration

Builds offer opportunities for baselines, but this is true only if you have created a design,
or architecture, for your software that supports baselines. A baseline is a significant point
in a development effort. The term applies to anything that has been developed extensive-
ly enough that it can be used as a basis for developing something else. For example, upon
completion of the requirements specification for Ankh, the team reviewed the document
and then determined that it was suitable for baselining. At this point, the document
became a candidate for placement in a CM system. The team no longer wanted a situa-
tion to arise in which some individual on the team could take the document, alter it arbi-
trarily, and then make no indication to others that changes had been made.

Although no strict rules govern what counts as a baseline or how to manage code accord-
ing to baselines, a general, flexible strategy can be laid out. The Ankh development team
used such a strategy. It created Ankh in a series of stripes (which might be called modules
or components). Each stripe addressed one or more of the requirements stated in the soft-
ware requirements specification for Ankh. During the development of the stripe, the team
used TorqueCVS to manage versions. After the team baselined a stripe, it imposed CM
policies on it, thus making it improper to change it without formal proceedings. The team
archived this stripe and could begin work on the next stripe. Figure 17.10 shows the pro-
gression of activity leading from build to baseline.

Chapter 17 ■ Release Planning and Management638

Tracking Release Information
Different rates of change among different components characterize the development
process. As a programmer works on a segment of code to implement functionality stated
in the software requirements specification, changes occur rapidly. Given a development
environment like Microsoft Visual Studio .NET, for example, a programmer can compile
and build code several times during a day’s work. As the effort moves forward, the pro-
grammer experiences frustration if the build activity requires a long time. In fact, the
number of included files and the number of dependencies become a significant factor. To
expedite the development effort, the programmer seeks to reduce these numbers.

Moving quickly is the primary concern of the development build process. The picture
changes during release. Expeditious builds remain important, but for builds that take
place after the code is completed, the focus changes to release management.

Tracking Information for Release Activities 639

Figure 17.10
Build activity caters to shorter cycles, whereas change management caters to
longer cycles.

Version control occurs throughout the life of the product, but at the release stage, the team
asserts version control with greater formality. Each stripe presents a different snapshot of
the product during its development life. You can place each stripe, as a baselined version
of the product, under version control. Together, when integrated into a complete product,
the stripes represent a release version of the product.

After you baseline a stripe, you can still work on it through testing and integration. Testing a
stripe can proceed with greater ease and effectiveness if developers isolate it from its succes-
sors. Further, work on the next stripe can proceed with greater assurance if the next stripe
is integrated into the product at the point of stability that the baseline designates. Figure
17.11 illustrates how each stripe exists as a separate unit and yet contributes to the complete
game. The final system encompasses the functionality of all the contributing stripes.

Chapter 17 ■ Release Planning and Management640

Figure 17.11
Stripe 3.1 of Ankh is baselined as a coherent body of implemented
functionality.

As the product nears final release, developers integrate all of its components (or stripes)
into a completed product. At this point, developers must control carefully the changes that
they make to the product, because any change affects the entire product. The complexity
of the product has grown to its greatest extent. At this point, then, the developers must
assert change management. Change management requires that before developers make any
change, some process must be in place that allows an individual or a group with a gener-
al view of the product to determine whether specific changes are advisable. A change con-
trol board consists of one or more individuals who formally determine whether to allow
changes.

Release activity should be characterized by gradual, deliberate change. Although it is
important to continue to track changes using an established numbering system, it is also
imperative to document changes using change requests. In this respect, the way that devel-
opers treat the product after code completion differs significantly from the way they treat
it before code completion.

Tracking Defects
CM and defect tracking are services that a single software application can provide. Both
operate in the same general way, except that commercial makers of defect tracking systems
for software developers often refer to their products as “bug tracking” systems. In other
contexts, they sometimes are called “problem reporting” or “trouble ticketing” systems.
Whatever the name, such systems store information about product (or service) problems
so that those who develop or maintain the product (or provide the service) can address
the problems efficiently.

Problem tracking allows you to gather summary data. Consider that during the develop-
ment phase of a software product’s life, a typical course of events proceeds as follows:

1. Programmers create code and submit it for testing.

2. Testers test code and find defects.

3. Testers submit reports of the defects to the defect reporting system.

4. Programmers view reports from the defect tracking system and fix the defects.

5. Programmers report their activity to the defect tracking system.

6. Testers view the report and test the code once again to verify the fix.

7. If testers find the fix has been successful, they close the defect report.

Summary Data

A defect tracking system allows you to create summary data. Summary data enables you
to detect general patterns in such things as your development practices, the behavior of
the product, and your ability to respond to the needs of your customers. Figure 17.12

Tracking Information for Release Activities 641

shows a pattern of activity that you can discern from data provided by a defect tracking
system. The data concerns the number of problems developers encountered after they
began testing baselined stripes. The patterns track how long it took the developers to elim-
inate integration problems after a stripe had been scheduled to be baselined. (Stripes were
scheduled to be baselined after developers reported they had completely implemented the
functionality designated for the stripe.)

The method you use to track defects depends on the data that you gather, the way that
you set up your reports, and the criteria for evaluation of the data. One of the most well-
established approaches to tracking defects involves counting the number of defects that
occur per given number of Lines of Code (LOC). Testers sometimes refer to LOCs as
KLOCs (Thousands of Lines of Code). If you test 1,000 lines of code and find 2 errors in
that body of code, you can summarize the quantitative representation of the quality of the
code by saying that the defect rate was 2 errors per KLOC.

Another approach to tracking is to put aside the concern with the number of lines of code
and concentrate instead on design components. With Ankh, the primary design compo-
nent was the stripe. When the team began system testing for Stripe 2.3, for example, defects
became evident after installation of the executable on the slowest of the test hardware

Chapter 17 ■ Release Planning and Management642

Figure 17.12
You can establish rates of defect by using data that you collect
in the defect tracking system.

configurations. The team detected six distinct defects. You can summarize the quantitative
representation of the quality of the code by saying that the defect rate was “six errors per
stripe” for this system test.

Patterns emerge from summary data. As Figure 17.12 shows, according to the metrics col-
lected over a seven-week period of testing, the defect rate in the software development
effort increased until the end of the fourth week and then began to decrease. At first, defects
increased with each weekly test session. Then, the trend peaked and the defects declined
with each weekly test session. When you examine the seven-week test cycle as a whole, the
pattern that emerges generally reflects positively on the development effort. Viewing the
pattern, an analyst might safely conclude that the overall quality of the code improved.

Using Summary Data as Release Criteria

Figure 17.13 provides a view of the development effort that Chapter 11 discusses in detail.
It serves here as a starting point for establishing how a release manager can begin to deter-
mine whether a product is nearing a state at which it might become a candidate for an
alpha, beta, or production release. Planned release management can involve using data
gathered from defect tracking activity that takes place during the prerelease development
phase to substantiate decisions made during the release phase.

One important way in which this can happen is with the use of data that shows how long,
on the average, programmers require to fix defects. For example, if your data allows you to
conclude that four days are required to fix the defects in a stripe after you have submitted
the stripe for configuration management, it is probably reasonable to conclude that your
team will require at least four days after the product is integrated completely to test and
debug the product to the point that it is suitable for an alpha release. Figure 17.13 shows a
pattern in the time required for programmers and testers to reduce defects to zero per stripe.

Tracking Information for Release Activities 643

Figure 17.13
Viewing the pat-
tern in the number
of days needed to
debug stripes
establishes metrics
you can use to esti-
mate how long sys-
tem integration in
preparation for a
release will require.

Based on the data provided by the graph in Figure 17.13, the release manager might decide
that a team should allow at least four weeks from code completion until the anticipated
first (alpha or beta) release of the product. Although guesswork might be involved in this
decision, the decision is deliberate because it is based on a pattern that is detected clearly
in the development history. The graph shows that the developers and testers require a
minimum of three days and a maximum of around six days to integrate a stripe fully. On
the other hand, the graph also shows that this time decreases with each successive stripe
after 2.2, so the release manager might be justified in concluding that at best the product
can be readied for alpha release in two days.

Making the Decision
To release a game in a planned fashion, you structure your activities in several ways. First,
you establish a set of summary development criteria to use as the basis of the decision to
release your game. Second, you designate someone to manage release activities. Third, you
establish a procedure for arriving at a decision. Finally, you create a checklist that must be
satisfied before you approve the release. Many other activities might characterize the
release phase of a game’s life, but this short list provides what many release managers con-
sider essential. The items you choose depend on the culture of your company and the type
of game you are releasing.

Summary Development Data
Determining when to release a game involves having a suitable body of data that supports
the decision to make the release. As was discussed previously, you can use summary infor-
mation from the tracking system to detect patterns or confirm generalizations. Consider
the following:

■ You can see a definitive pattern in the defect reports. You see that as time goes on,
the number of defects decreases. The testing effort remains consistent.

■ You see from the defect reports that the team has fixed all reported defects. No
defect report remains open.

■ You see from the problem resolution report that the team has accounted for all
changes to the specified functionality.

■ You see from the testing reports that the team has verified all functionality.

■ You have verified that the team has gathered the documentation for the release.

The Release Manager
When you create a release management system, you should assign responsibility for it to
one person. The person who works as the configuration manager might seem like the most
logical candidate, but this is not always so. The reason for this is that release management

Chapter 17 ■ Release Planning and Management644

can be extremely involved work. In addition to keeping track of everything that goes into
building the product, the release manager might have to communicate with third-party
vendors, customers, and marketing and sales representatives. Such wide-ranging responsi-
bilities are often a burden for the configuration manager, whose main responsibility might
focus on the management of files and assets.

One approach is to choose a person who has strong administrative and communication
skills to serve either temporarily or permanently as a release manager. The release man-
ager must undertake tasks along the following lines:

■ Call together a release management board. This board might consist of individu-
als from testing, development, marketing, sales, the legal department, the customer
group, and vendor management. The release manager must be empowered to con-
vene and lead this group to a full evaluation of the readiness of the software for
release.

■ Control of the software. The release manager must be able to dictate whether fur-
ther changes in the software can occur. Such dictation will probably occur through
some sort of previously established procedure, such as a change control board.
Whatever the process, the release manager must have the final word over what the
team releases.

■ Authority to demand services. The release manager must also have a fair amount
of authority to request and receive services from everyone who is involved in the
release process. If the release manager does not have this authority, whether the
product will be released will remain a question. Release managers should be able to
arrange with the packaging manager, for example, that a prototype for the packag-
ing shall be ready by a given date.

The release manager has just a few job responsibilities. You should assign these responsi-
bilities to a single individual. You can view the individual who possesses these responsi-
bilities in terms of seamanship, in which the pilot, although not captain of the ship,
assumes control of the ship as it is being towed from port to open sea.

Release Signoff
Do not take lightly securing of approval for release of a game. Each member of the release
management board should approve the release formally. Do not leave anyone out.
Everyone on the release board should represent an essential part of the release effort.
Given this premise, you can image if everyone except the person who takes care of pack-
aging shows up for the meeting in which you approve the release. You have 10,000 copies
of the game printed, but you have no boxes for them.

The conclusion of signoff ceremony can be an occasion for getting everyone together for
a debriefing/pizza party. This is generally a good idea because it provides everyone with

Making the Decision 645

closure on the product and allows anyone who might have objections to have a final
chance to say something.

Following are some criteria for release:

■ The project manager and the lead tester say that the team has implemented all
requirements stated in the requirements document or properly set them aside.

■ The project manger says that the team has addressed adequately all tasks in the
project plan.

■ The person in charge of testing says that the team has eliminated each known
defect.

■ The person responsible for software configuration management says that the team
has obtained formal permission or licensing for all external components or
libraries that require such approval. The team has obtained all the permissions for
assets and libraries.

■ Whoever is responsible for packaging confirms that the packaging and documen-
tation are ready and that the team has tested the delivery package and shown it to
be flawless.

■ The configuration manager has placed the code, an executable, and all documenta-
tion in an archive, and the team has duplicated the archive as needed for security
purposes.

Experienced release managers testify consistently that the team should conduct a full
walkthrough of the release steps before the release. Stories abound about shipments of
empty shrink-wrapped boxes, misspelled product names, well-written manuals for the
wrong product, obvious and catastrophic software defects, test code and assets that have
not been removed, and other failings that have led to embarrassments, profit losses, law-
suits, and other problems.

Establishing Software Support
A powerful, well-received set of library components or a game that appeals to a large pub-
lic is only a start. You can extend the life of a successful software product through many
profitable releases if you know how to listen to customers.

Obtaining Information
Creation of any type of software, game or otherwise, brings with it the responsibility of
supporting customers. Some publishers require that your development group show the
ability to provide support. Support means any number of things. The following list pro-
vides a few of the options:

Chapter 17 ■ Release Planning and Management646

■ E-mail collection. This is the minimal support level. You provide an e-mail
address and tell your customers to send you an e-mail if they experience problems.
Usually, you have to have your own server to do this, because many e-mail pro-
viders do not like you to use their services for commercial purposes. Collection of
the reports involves opening each e-mail and filtering its content. This is usually a
great deal of work if you have any customer base at all, but such an approach at
least forces you to look at each report.

■ Internet form support. This is the preferred approach for many companies. Using
this approach, you program the Web page so that it contains fields such as those
featured in Table 17.2. In addition, you ask for customer information, such as
e-mail address and phone number. If the form connects with a database, you then
can immediately store the information in the database and print daily or other
summary reports. The summary reports allow you to respond to customer needs.

■ Phone support. This is the most costly form of support, because you must pay to
have a support specialist attend the telephone. The support specialist must know
the product well enough to be able to support it. For console and PC games, it is
unlikely that a telephone support specialist would attend to problems other than
those involving installation.

■ Total support. Total product support consists of all of the above. Any company
that issues an online game should consider providing total support. Even with full
support, you should protect yourself against overloaded circuits. You can do this
by using automated screening software. You can inform callers up front of their
support options and whether they need to pay. Callers can make choices using the
number pad of their telephone rather than waiting while a support representative
redirects their call.

Categories of Information
A central aspect of release management is the activity of gathering and tracking informa-
tion that users provide. To gather and record information, you must have some type of
tracking system in place.

Some of the information that you gather and track through a defect reporting system is
required. In other words, if you fail to gather a minimum set of information on defects,
you waste both your time and the time of the software user. This essential set of informa-
tion enables you to identify the defect uniquely, know when the defect occurred, and
briefly describe the defect.

The required information you gather through a defect tracking system varies according to
the priorities that your organization sets. Table 17.2 provides a provisional starter set.

Establishing Software Support 647

Chapter 17 ■ Release Planning and Management648

Table 17.2 Defect Tracking Information Profile

Datum Description

Tracking ID Regardless of all else, you should assign a unique tracking identification
number to each defect. Assign the tracking number when the user reports
the defect, not later. An automated number or ID generator should create
this number. If you must assign an ID manually, write a program that
creates IDs incrementally. This is the easiest way to avoid duplication of
numbers.

Product If your group has created only one game, this might seem odd. But then
plan for success. Create a unique product code and store it as a separate
datum that you can combine with the tracking ID when needed.

Version Identify the build or release version of the product. The most obvious
versions are alpha, beta, and production, but if you have issued updates,
track the update numbers in relation to the release numbers.

Description A description of a defect should help the tester or maintenance pro-
grammer re-create the defect. To obtain information for a description, try
to work with the person who reports the problem and perform the action
that results in the problem. Often, unless you identify the context of the
problem, you will not be able to isolate the problem. Consider, for example,
a message that states, “System crashes.” This information is next to useless
unless you know when it crashes. A game that crashes when the player
tries to start it is different from one that crashes after six hours of
continuous play.

Platform In a personal computing environment, the platform extends to identi-
fication of the version of Windows that the player has installed. Consider,
for example, that Windows 95 does not support DirectX 9. You might think
that no one runs Windows 95 today, but never take it for granted.

Severity The severity of a problem report designates when and how much attention
you should give to the defect. Defect severities usually fall into three
categories. You can designate statuses numerically, from 1 for most severe
to 3 for least severe. Likewise, you can have other status designations. The
most severe category is one in which the game crashes. If a defect causes
the system to crash, you should deal with it immediately. The middle cat-
egory is a defect that you can deal with through a workaround solution.
The least severe problem is one that usually designates user preferences
concerning functionally sound features. Someone might object to the GUI
for the character designer. You should note the comment, but it is not
realistic to prepare an update or in some other way try to change a work-
ing feature of the game because someone does not like it. However, noting
such information for future releases is important.

The screen shot shown in Figure 17.14 illustrates one approach to developing a defect
tracking system. Using an Internet-based reporting system provides a convenient way to
link distributed support groups.

Establishing Software Support 649

Datum Description

Status The state of a defect report designates the extent to which you have
completed any work on it. Status codes fall into five basic categories:
open—no action; open—work being performed; closed—problem fixed;
closed—problem referred for update; and closed—resolved.

Assigned To A change manager should assign every defect to someone. One way to
handle this is to have all newly open defect reports automatically assigned
to the person who is responsible for change management. This person then
can assign work at regular intervals. If your organization is large enough,
rather than designating individuals, you could make assignments to depart-
ments, such as development, documentation, or testing. You have several
options even if you do not use a change coordinator. For example, defect
reports might go automatically to testing. Testing can then determine the
severity of the problem and assign the work to the appropriate individual
or group.

History Information on history refers to a set of fields that you should populate
automatically but that system users should be able to update manually. It
is essential to track when you open the defect report, when you assign it,
when you perform work, and when you close the defect report. If you can
track the number of hours that someone who is working in a maintenance
capacity dedicates to resolving the defect, you are better off than if you
have only dates to work with. At a minimum, however, you should be able
to track the number of days between the opening and the closing of a
defect report.

Contact Information You should track defects both generically and specifically. Tracking a defect
generically implies that you can identify the platform on which the problem
occurred. Tracking a defect specifically implies that you can identify the
person who reported the defect and contact this person for information
about the defect as you try to fix it.

Reporting
For release management, internal reporting refers to the information you maintain that
tracks how an organization processes defects or other issues. The purpose for maintaining
such data relates to process improvement. Process improvement activities can encompass
a variety of concerns. The following sections review a few of these activities: verification,
time required, identification, assignments, and problem areas. If you have set up a com-
prehensive database for defect tracking, adding new reports or user interfaces for the input
of different types of information is relatively easy.

c a u t i o n

If you use an Internet-based tracking system, you develop dependencies. If you store data on a
server that resides outside your organization, you should have a contract that provides some type
of guarantee that care will be taken to prevent loss of data. Generally, it is not wise to use an exter-
nal system unless you have taken such precautions.

Chapter 17 ■ Release Planning and Management650

Figure 17.14
Features of a defect tracking system depend on the priorities you set as
an organization.

Time Required

The most elementary metric is the amount of time between when you open the problem
report and when you close it. Depending on the precision you target, you might want to
maintain both date and time fields in the reporting system. If you support a game that
hosts online users who can receive real-time assistance, it makes sense to be precise to the
minute. Tracking fix times increases the capacity of your organization to demonstrate
competence and maturity. The Capability Maturity Model (CMM) and other standards
mandate that your organization can respond to problems that users of your product
might encounter. To demonstrate this capability, you must have a process in place that
creates a record of successful responses.

Verification

Whether you verify defect reports depends on how sophisticated you want to make the
defect tracking system. From a reporting perspective, verification provides a way to test
your primary response activity against a record of final actions. If you support numerous
users on a real-time basis, being able to identify generic types of problems that you can
deal with quickly can reduce expenses. Through examination of verification reports, you
can update keywords and standard response scenarios so that the first-line support peo-
ple possess information that they need to take care of problems without having to move
to second lines of support.

Fixes

Time required to fix a defect relates mainly to the time that the maintenance programmer
works on the problem, but it might also cover testing time. This metric becomes more
complicated to estimate as you add more people and tasks to the process of fixing the
defect. For example, you can deal with defects that have a severity code of 3 differently
from defects that have a severity code of 1. A severity code of 3 might mean that the defect
does not cause the game to crash. Such a defect might be characterized more as a state-
ment concerning the inconvenience of a given feature or functionality that a loyal cus-
tomer desires in the next release of the product. With defects of this severity, the most
important thing might be to log the player’s statements carefully, provide as ready a
response as possible, and then submit the action taken for verification. Verification might
mean that the release management lead or supervisor will examine the defect report and
provide a second opinion that the action taken was correct.

Defect Identification

When you appropriately identify a problem, you do several things. At the most rudimen-
tary level, you accurately determine a problem’s severity. At another level, if several cus-
tomers contact you with the same problem, identifying the problems as resulting from the

Establishing Software Support 651

same defect reduces the overall maintenance load. The Problem Summary field provides
a ready way to collect problems under common headings. Reports can then provide sum-
mary lists of problems that have the same keywords in their summary fields. Figure 17.15
shows a summary report for logged problem reports received through e-mail.

For customized reporting systems, you can set up a summary-detail system in which you
can open extended or subordinate reports from a primary report. This approach has the
advantage of grouping related problems from the first. The disadvantage is that those who
are working in a support capacity might sort reports into the wrong categories. Unless you
have a verification layer in place in the support group, programmers must place reports
in the correct categories.

Assignments

As is discussed later in this chapter under “The Maintenance Process and Tiers,” failing to
assign developers specifically to revolving or permanent maintenance work creates prob-
lems. If your organization has a general maintenance group, this group might receive
referred problems from the support group. If this is the case, the maintenance group can
refine the procedure used to sort out reports.

From another perspective, problems with a product can fall into general categories:

■ Installation. Covers from the time the user takes the software out of the box until
the user can begin to play the game.

■ Documentation. Includes packaging problems, which encompass items such as
missing CDs, missing manuals, or communications that create misunderstandings
or present liabilities.

■ Software defects. Involves situations in which the user has installed the game and
it works to some extent but then presents a problem.

Chapter 17 ■ Release Planning and Management652

Figure 17.15
Summary keys group reports.

■ Aesthetics. Designates problems that relate to the appearance of the game features
ranging from the way the console works, to sounds, to graphical features.

■ Upgrading. Encompasses the distribution of patches for the software. This might
include a large customer database that logs monthly payments or levels of user
permissions.

■ Use. Goes in many directions. Obviously, having references to user groups at hand
provides a ready way to respond to user issues, but at times users really do need
individualized attention and are willing to pay for it.

If you have a process in which a first-line support person directs problems to others, it is
important to provide those to whom calls are directed with resources that enable them to
respond adequately to problems. For an installation issue, for example, someone who
works in the test lab might be the best person to handle problems. Because the test lab
usually provides test configurations for all supported systems, the tester might be able to
walk a customer through an installation using the same machine that the customer is
using. A problem with documentation requires information from someone who is
involved with composing documentation for or packaging the product. In both instances,
being able to help depends on having the best resources.

Software Problem Areas

Realistic attempts to improve processes almost always involve setting priorities. If your
primary business involves software issues, you should develop a set of categories that
describe the system you have developed. With Ankh, the development team created the
game in a set of stripes. The stripes represent design decisions, and the design decisions
represent groupings of functionality. For this reason, most software problem summaries
might consist of a keyword that associates the defect report with a component area of the
game. Using this way of classifying problems, developers might find it easier to verify and
identify a reported problem.

The Maintenance Process and Tiers
After you have released a product, change control takes on a new role. This role governs
the maintenance of a product. For most software products, nearly 70 percent of its life
passes as a maintained product. During the maintenance part of a software product’s life,
tracking defects involves, once again, using the defect tracking system. The procedure is
similar to the procedure employed during the development phase, but significant restric-
tions apply to the scope of changes that maintenance programmers can address.

Establishing Software Support 653

You can characterize most maintenance processes that have achieved some degree of matu-
rity by three levels of support. Table 17.3 provides a summary of these different levels.

As Figure 17.16 shows, the person who works in the first line of support either inspects
e-mails or answers the phone. This person is the first to see or hear a user’s problem. At
this point, two things usually happen. The first-line support person knows the solution
and passes it to the users, or he does not know the solution and passes the problem to
someone else. Often, this second person is a developer.

Chapter 17 ■ Release Planning and Management654

Table 17.3 Support Roles

Role Description

First line This is also called “primary support.” The first-line support person
answers the phone or reads e-mails. This person’s responsibility is to
log problems that customers report and either respond directly to the
problem or refer the problem to a higher level for more extensive
response actions.

Testing The activity of testing falls into the second line of support. The testers
might be responsible for filtering problems that the first-line support
people have reported. They verify the problems and refer them to the
maintenance programmers for fixes. Likewise, they can verify that the
work maintenance programmers have performed is ready for release
to the customer.

Maintenance Programmers who work as maintenance programmers work in two
capacities. The first is that they back up the first-line people and pro-
vide deeper insight into problems that cannot be dealt with from a
store of information in a database. Maintenance programmers provide
updates to the product. They also can work in a more fundamental
capacity, responding to clear failings of the design of the product. In
this respect, they work to develop the product further.

Development The activity of development falls into a third line of support. This line
of support is characterized by the development or redevelopment of
functionality that usually comprises a new version or release of a
product.

Release management Releases managers continue to work with the product even after it is
in the hands of the customer. Throughout the life of the product, re-
lease managers must determine when and how to make updates to
the product.

Establishing Software Support 655

Figure 17.16
Release management involves several levels of support.

The way in which the problem reaches the developer can vary. In one scenario, a tester
might filter the problem to define it more clearly before referring it to a programmer. In
another scenario, the problem goes directly to the maintenance programmer, but a tester
is also called into the picture to ensure that work done on the problem is tested before
being released to the customer.

If problems are so extensive that a patch will not cover the needed repairs, new develop-
ment might be called for. When this happens, you need to schedule work over a longer
period of time. A project manager might take over the task of managing the development
of the version, and someone who is working as a release manager must coordinate the
needed activity. You would need, for example, to specify the requirements for the work to
be done. Design work follows. Before you forward the new version to the customer, you
must test it. Many people end up being involved.

Organizations that achieve a substantial level of maturity create separate product support
departments. The product support department works with the development group when
needed. At other times, the product support department might create an extensive data-
base to record information about problems and to store updates that the development
group provides.

Likewise, with products that have extensive histories, you might need to develop a database
that associates customers and releases. Your company might release several versions of a
given product. It also might create several releases. You might bill customers according to
both release and version levels. To make such activity possible, you must know what cus-
tomers have paid for. Release management in this respect begins to involve marketing and
sales efforts, so the release manager must be prepared to work closely with these two groups.

Conclusion
This chapter has emphasized how to manage software after you have finished creating its
basic functionality. Managing releases involves keeping track of a great deal of informa-
tion and using this information effectively. A release management process usually involves
tracking data in a way that differs from what applies during the development build
process. During development, programmers focus on quickly building and compiling the
product as they add functionality. At the release phase, release managers concentrate on
controlling and documenting changes. The motivation for this change of priorities is that
after the product is scheduled for release, the release manager must be able to know pre-
cisely what the product includes.

Chapter 17 ■ Release Planning and Management656

Release management involves coordinating the efforts of people from the marketing, pack-
aging, sales, development, and other groups. To ensure that a release manager can do the
job, the organization should assign a single individual to the responsibility and provide this
person with the authority needed to reach deadlines and demand services. Likewise, the
release manager should work according to a set process and toward a set of goals that are
documented in a checklist.

Release management also encompasses work performed during the maintenance part of
a product’s life. More mature organizations usually create support groups, but it’s the
responsibility of the person who has release management responsibilities to continue to
exert tight control over how to plan, assemble, and deliver updates, versions, and new
releases.

Generally, release management is tied closely with configuration management. Good texts
on release management are available, and a few of these are listed next. In addition, refer
to Chapter 10.

Bays, Michael E. Software Release Methodology. Upper Saddle River, New Jersey: Prentice
Hall PTR, 1999.

Mette Jonassen Hass, Anne. Configuration Management Principles and Practices. Boston:
Addison-Wesley, 2003.

Conclusion 657

659

Documentation—Learning
How to Learn

Chapter 18

T
his chapter explores how you can supplement your development effort with docu-
mentation. Documentation is a way to formalize the information that characterizes
your development effort. Documents that are created using templates enable you

to organize and define the information that you use during the development process. To
effectively use documentation, you need to make certain that it plays an active, continu-
ing role in the development effort. One of the most reliable ways to accomplish this is to
conduct regular reviews. A review is a way to ensure that everyone on your team is
exposed to the central flows of information that guide your project. Documentation
should always be viewed as a way of gathering and refining information about the current
vision of the product you are developing. It is a medium of understanding, not an end in
itself. It should address the current vision of the product and should not bog everyone
down in the tracking of historical details. Given this beginning, many topics present
themselves under the heading of documentation. Among these are the following:

■ Understanding that documentation is more than a collection of documents

■ How documentation becomes a way that an organization teaches itself its own
culture

■ How collecting and storing information can end up being more of a loss than
a gain

■ Techniques and technologies that supplement documentation efforts

■ Providing easy ways that people who are not technical writers can create good
documents

■ Assigning roles and responsibilities for documentation

■ Creating contexts in which developers use and benefit from documentation

The Concept of Information Management
The information that developers manage gives purpose and cohesion to the development
effort. Developers capture and develop information using a variety of artifacts, chief
among which are documents and diagrams. Documents and diagrams are valuable
because they allow developers to collect important information and because they allow
developers to screen out excessive information.

Any software project generates an enormous amount of information. The amount of infor-
mation that is generated poses hazards. One hazard falls under the heading of information
overflow. In this case, developers try to assimilate everything under the assumption that if
everyone knows everything, everyone will intuitively understand how the project comes
together for a first release. This seldom happens.
The second hazard, referred to as information
deprivation, occurs when developers isolate
themselves from the activity of the team and
pretend that if they concentrate on a few tasks
that are supposedly independent of other tasks,
they will complete their work, and in some
miraculous way, the resulting system will fall
together for a first release. Once again, this sel-
dom happens.

Information management begins as an intelli-
gent response to the hazards that information
overload and information deprivation present.
When tasks become complex, information about
the tasks does, too. When numerous people work
on complex tasks, the amount of information
tends to increase exponentially with respect to
the number of people working on the tasks and
the number of tasks involved. If developers fail to
control the complexity of the information, com-
munication breaks down. Figure 18.1 summa-
rizes the situation.

Here’s a short list of some of the immediate consequences of information overload and
deprivation summarized in Figure 18.1:

■ Miscommunication. Two key people have a clear understanding of a given issue,
but one says one thing and another says something else. A third person hears both
messages and concludes that the real understanding is a mixture of the two. This is
not the case. The third person communicates the misunderstanding to the rest of

Chapter 18 ■ Documentation—Learning How to Learn660

Figure 18.1
Information can become a hindrance to
clear communication.

the team. To straighten out the misunderstanding, hours of meetings are necessary.
Because someone began work guided by the misunderstanding, the problem led to
the need for rework.

■ Information loss. Two projects occur, one after the other. An audio library is
implemented. The programmer who is working on the audio library has to per-
form hours of research to figure out how to implement functionality that covers
both WAV and MP3 file types. This is one of those tasks that sounds like it should
be easy but ends up being something else when you get down to the details. The
programmer who works on the task makes everything work fine and is ready to
implement functionality for several more file types, but the project manager says
that no time remains and such work needs to be delayed for a later release. Before
that point is reached, the programmer quits. When work on the next release has
progressed far enough that the new programmer revisits the audio code, the new
programmer requires several days to figure out how to implement functionality
that extends the audio capabilities in the way that the first programmer was pre-
pared to extend them.

■ Excess information. People have seen the benefits of preserving communications,
so a project manager has obtained an application that allows everyone to commu-
nicate through an enormous journal that resembles a Web log, or blog. Although
the journal preserves every communication that anyone enters about the project,
team members find it difficult to discover specific information. To find anything,
in fact, team members usually have to start at the beginning and review logged
material on a day-by-day bases. This consumes so much time that it is impractical.

■ Irregular presentation. Your company does a great job of keeping track of projects
using a set of documents that each development group prepares as it progresses
through its development activities. When you inspect the documents for several
projects, however, you find that they differ extensively from project to project, usu-
ally revealing a great deal of eccentricity. In fact, the requirements documents
range from epic poems to personal narratives. The software design documents
range from cryptic rewrites of the requirements documents to elaborate affairs
that incorporate UML diagrams. After a while, you realize that every time you pick
up a new document, you must expect once again to learn a new way that the infor-
mation can be organized and communicated.

n o t e

A blog is basically a journal that is available on the Web. The activity of updating a blog is blog-
ging, and someone who keeps a blog is a blogger. Blogs are typically updated daily using software
that allows people who have little or no technical background to update and maintain the blog.
Postings on a blog are almost always arranged in chronological order with the most recent addi-
tions featured most prominently (source: http://www.blogphiles.com/webring.shtml).

The Concept of Information Management 661

Information management involves refining the way your group communicates so that
everyone in the group communicates effectively. When people communicate effectively,
they make a few things happen:

■ They express themselves consistently.

■ Their messages adhere to and develop central topics.

■ They repeat themselves only as needed or requested.

■ They include important, illustrative details and drop others.

■ They offer information in a way that is suitable for the context in which it is
delivered.

Sharing Knowledge
Ultimately, the best way to remedy the problems that arise with information overflow and
information deprivation involves sharing information. To share information, you must
organize it. When you organize information, knowledge results. (Knowledge is sometimes
called meta-information, which means it is information that organizes information.)
Knowledge can be defined as information that is organized so that it enables those who
possess it to change things in a concerted, decisive, and goal-oriented way.

A few basic activities can provide a framework for organizing information during a game
software development project. Although no one scheme can be comprehensive or final,
Figure 18.2 provides a summary view of a possible set of activities. The following list pro-
vides a few details about these activities:

■ Project management. The project manager produces a schedule that structures
team activities in relation to the creation of the functionality that the require-
ments specification identifies. The project manager organizes the information that
emerges during the life of the project so that it unfolds according to discrete units
of activity. This organization of information establishes what you might view as
the key pathways of information that will define the communication practices of
the team.

■ Development tasks. When a programmer plans a programming task based on an
objective that the project plan states, the programmer is using communication
about the overall structure of the project to place a specific set of activities into a
coherent context.

■ Pathways through documentation. You can develop a document using a template.
A template is a guide to organizing information, a conceptual map. When team
members use an established set of templates to create the documentation for a
project, they use a set of conceptual pathways that others have created. These path-
ways help them shape how information about their project will emerge and flow.

Chapter 18 ■ Documentation—Learning How to Learn662

These pathways help them limit, organize, track, and prevent the loss of informa-
tion that is central to their undertaking.

■ Reviews. When developers
subject a body of information
to review, they force the infor-
mation into a public view.
Under public scrutiny, two
things happen. First, the devel-
opers refine the information.
Second, those who participate
in the review learn the mater-
ial reviewed. Reviews draw
participants together and pro-
vide a context in which every-
one can acquire and confirm
knowledge.

Overcoming Limitations
Sharing knowledge is difficult for a variety of reasons. Many people tend to be defensive
about sharing knowledge. They fear that if they give away knowledge, they will imperil
their jobs or reveal their incompetence. Others might not have such fears but simply do
not possess good communication practices and do not feel up to confronting the some-
times trying situations that arise when people try to communicate about difficult techni-
cal topics. Consider the following:

■ People do not automatically understand the same material in the same way.

■ Communicating effectively takes time and patience.

■ Communicating effectively requires persistence and practice.

The next few sections review these points in detail.

Establishing Practices

Two people can witness the same event in broad daylight and provide contrary accounts.
Given this starting situation, consider that most programmers seek uninterrupted trance
sessions during which they can work through coding problems. Most other people who
are involved in game development tasks seek a similar form of isolation. If you are in a
trance, you often spend hours immersed in a frame of mind in which you are sustaining
a delicate balance of ideas. To sustain this balance, you shield yourself as much as possi-
ble from intrusive information. Your assessment of the situation is that you have as much
information as you need.

The Concept of Information Management 663

Figure 18.2
Information management builds pathways through
which members of the team can acquire and confirm a
common understanding of the development effort.

Although shielding yourself from new information is what makes you good at what you do
and is a sign of professional discipline, it can also be counterproductive to good commu-
nication practices. The problem arises if the project you are working on does not provide
contexts in which communication between team members can occur. For this reason, it’s
important to establish a set of commonly shared communication practices for the project.

A document that is subjected to a review provides an occasion for communication. You
can use a template to give initial structure and focus to the document. This document can
help people organize information and develop sound communication practices. When
members of a team organize information and then work to refine the information they
have organized, they establish a common way to understand the information that the pro-
ject generates.

Creating Occasions

Often when a dilemma arises between completing work and communicating about work,
people choose to work without communicating. Such practices can be catastrophic.
Among the many things that can go wrong when people work without communicating is
that they do not maintain a common vision of what they are working on. When this hap-
pens, they are unable to effectively integrate their work, and the product they create fails.

Effective information management requires a strong effort on the part of the team to cre-
ate occasions for exchanging information. Reviews provide such occasions. At the start of
a project, for example, the work of developing requirements and creating a software
design can involve many successive reviews. These reviews allow the team to work togeth-
er to establish common modes of communication. Although it might be possible for a
senior developer to work exclusively with the project manager to create these documents,
if this approach is used, the occasion for developing and practicing team communication
is lost. Making time requires communicating about project details during the normal
course of development activity. Making communication happen forms part of everyone’s
work. Documents can represent the central flows of information, and creating and refin-
ing documents can serve as occasions for developing team communications.

Promoting Incentives

Imagine that you are the project lead and are addressing the development team. You have
distributed a bar chart that clearly shows everyone’s tasks and when things need to be
done, and you are reviewing details that you have been up late into the night determining
with as much accuracy as you possibly can. At some point, you look up and find that
almost everyone is occupied doing something other than listening to you. You might reach
the conclusion that you are a boring person, but this would be premature. It is probably
more accurate to say that the information you are presenting represents an abstraction,
and when you are speaking with a group of people who have been absorbed for hours on
end with minute details of implementation, abstractions seem superfluous.

Chapter 18 ■ Documentation—Learning How to Learn664

Overcoming the chasm that separates detail from abstraction involves putting in place
conceptual patterns that allow people to view abstract statements in terms of detail. When
everyone possesses a standard set of conceptual patterns that they build on and refine
from the start to the end of the project, they can more easily assimilate information that
is presented abstractly. That’s because they are not so much listening to as working with
the person who is delivering the abstract or summary information.

Learning Through Documentation
Almost every chapter in this book introduces one or another template from one or anoth-
er standard set of templates. Developers can use templates to help them construct docu-
ments. Documents provide occasions for gathering together and refining the information
that guides the development effort. At the same time, a document is not an end in itself;
it is a means to an end. The end that everyone seeks is a product embodying the func-
tionality that the requirements specify. Documents become a way to progressively learn
more about how to understand and build the product.

A document that is created using a standard software engineering template establishes a
reliable pathway for information management. It is a tested, flexible, and largely neutral
way to manage information. If a development team does not organize information
through documents, it is likely to organize information according to the preferences and
idiosyncrasies of individual team members. This is not the best approach. Even if every-
one agrees to play along with one person’s approach to information management, such
uniformity does not guarantee a good result and is not generally considered a good engi-
neering practice. Generally, the best approach is to seek the wisdom derived from cumu-
lative experience. A standard software engineering template embodies such wisdom.

n o t e

Some software engineers prefer to speak of documents as artifacts. That’s because a document that
is created with a template is just one among several reliable objects for gathering and refining
information. UML diagrams, for example, represent an unnarrated approach to gathering and refin-
ing information. In this chapter, the term document encompasses all objects that you can use to
gather and refine information about software products.

Pathways of Learning
Templates alone do not guarantee that the development group will effectively gather and
refine information. Templates certainly provide a visible and easily managed way to accumu-
late, organize, and store information, but using them effectively means that the team must
develop pathways of learning that are thoroughly assimilated into the development effort.
Figure 18.3 provides a summary view of some of the activities that help define these path-
ways of learning. The sections that follow elaborate on some of the features of these pathways.

Learning Through Documentation 665

Common Understanding

Members of a development team benefit if they realize that some information is impor-
tant and other information is not. Professionalism often entails a kind of self-imposed
ignorance. It is a willingness to put aside, for instance, personal prejudices for the sake of
what might be viewed as the greater good. With respect to software development projects,
project success often reduces to whether team members can work in a unified, coopera-
tive effort to discover and test information that is restricted to narrowly defined topics.

An example of such an effort arises when members of a team work during a review to
refine a stated requirement. To refine the requirement, participants in the review struggle
with the wording of the requirement until they establish a clear understanding of what it
means. As a result of this effort, members of the team narrow the meaning of the vocab-
ulary items in the statement to the point that they establish a common understanding.
This understanding guides them as they engage in subsequent development tasks. This is
but one of many instances in which the members of the team work to establish common
understanding.

Repetition

Repetition occurs in useful and excessive ways. When repetition is excessive, it involves
examining a body of information even after everyone on the team has understood what it
means and how to use it. Usually, team members do not intentionally waste the time of
others in this way. This happens, however, when what has been covered and what has not
been covered become unclear or are forgotten. To avoid such situations, formally estab-
lishing a review process that results in baselined documents can be helpful.

Chapter 18 ■ Documentation—Learning How to Learn666

Figure 18.3
Information emerges from common pathways for learning.

A baseline review provides an opportunity for everyone to concentrate on thoroughly
establishing a common understanding of what is regarded as the current conceptual view
of the software being developed. Consider, for example, a baseline review of the require-
ments specification. After the review has concluded, it is likely that everyone will be able
to understand the scope of the project. Granted, the team can always change, eliminate, or
add requirements, but after the team works through a baseline review to confirm a ver-
sion of the requirements, everyone on the team is likely to avoid drawing others into
redundant discussions concerning requirements.

Illustration, Symbol, Metaphor

Illustrations have been a fundamental engineering tool since at least the time of the ancient
Egyptian and the first pyramids. Effective use of illustrations involves four key concepts:

■ Standard symbols. UML diagrams offer a standard set of symbols that greatly facil-
itate conceptualization of software systems. Likewise, Gantt, Pert, or Venn charts
symbolically organize the activities involved in developing a software product. Use
cases and use case diagrams symbolically render scenarios that illustrate software
functionality. Storyboards symbolically organize the story that underlies the play of
a game. Such symbolic renderings organize, summarize, or replace words.

■ Illustrations as approximations. When refuting attempts by mathematical philo-
sophers to derive mathematics from physical nature, the philosopher Bertrand
Russell said something to the effect that “The thing mapped is not the thing itself.”
Remembering this observation in the context of an engineering project can be
extremely helpful. Illustrations provide a way to summarize ideas. They can be
used to simplify notions. At the same time, attempting to use an illustration or a
symbolic representation to reach an exacting degree of verisimilitude is a lost
cause. The thing that represents is not the thing represented.

■ Illustrations as working tools. As a working tool, an illustration allows you to rep-
resent an object for purposes of understanding and refinement before you try to
construct it. In an idealized corporate setting, a CASE tool might be designed so
that a software designer can use illustration tools to completely specify a software
product and then, with the click of a mouse, set to work a program that generates
the completed product. In the context of small-team, craft-oriented software engi-
neering, the development team first works to create a vision of the software and
then to use that vision—which is captured in a set of illustrations—to implement
the software. As the developers progress, they constantly rework the illustrations so
that they more clearly understand the product they seek to create.

■ Illustrations as metaphors. Broadly defined, a metaphor is a symbolic activity that
involves combining two ideas to create a third. The third idea communicates a mes-
sage that offers meaning that is not easily reduced to the sum of the two source ideas.

Learning Through Documentation 667

As a simple illustration of metaphor, consider the notion of an eagle scout. Within
many traditional contexts, an eagle is a bird that flies high and sees much. It is also
a powerful bird, one that proves a formidable hunter and adversary. Finally, an
eagle is a bird that lives long and seems to stay aloof from many of the petty con-
cerns of the average open field. A scout might be viewed as a person who explores
natural settings, has an interest in the environment, learns elementary survival
skills, and knows how to read terrain maps. Combining the two terms creates an
image of a scout with the qualities of an eagle.

Obviously, you can elicit better examples of metaphors, but the merging of scout
and eagle is analogous to what happens when documented or symbolic representa-
tions of software are merged with the activity of developing software. The activity
of conceptualizing the software and creating the software create a dynamic. The
dynamic is not ultimately reducible to work with code, documents, illustrations, or
symbols. As one observer has said, the relationship between the artist and his
workshop results in an irreducible form of creative activity.

Shared Resources

Everyone who is assigned to a project should have access to the core documentation from
start to finish. For this to happen, everyone should understand what documentation is
available and what questions the documentation can answer. Table 18.1 provides a sum-
mary of names and purposes of what might be viewed as a core set of documents.

Chapter 18 ■ Documentation—Learning How to Learn668

Learning Through Documentation 669

Table 18.1 Documents and Document Purposes

Document Purpose

Game Design Provides the overall creative view of the game. Consult it to
understand the features that the software functional spec-
ifications must support.

Software Requirements Specification A list of requirements or a set of use cases that designate
the functionality that the software needs to provide to sup-
port the features of the game. Consult it to discover the
scope of the software and the specific functionality that you
must develop.

Software Design Specification A set of technical illustrations, combined with brief narratives
and use cases, that shows how the functionality of the soft-
ware is to be implemented. Consult this document to
discover the order in which to implement functionality and
how to group it during the implementation effort.

Software Test Plan A set of test cases, usually grouped according to test suites,
that you can use to verify and validate the functionality
named in the software requirements specification. Consult
this document as a guide to testing the functionality of the
software.

Software Configuration Plan A map of how the files and other assets involved in the
development process are to be stored and managed. Consult
this document to learn how to create and name files, obtain
them to work on them, and place them back into storage
after you have finished working on them.

Software Coding Standards A list of conventions to be used when you are writing code.
Consult this document if you need help with naming ele-
ments in your code or formatting your code.

Software Release Plan A check list and plan for what needs to be completed before
the game can be shipped to the publisher or customers. Con-
ult this document after you have completed work on the
code and want to release the game.

Software Quality Assurance Plan A set of procedures to guide you through activities such as
specifying and designing the product, creating and reviewing
documents, inspecting code, and delivering the product. Con-
sult this document to see a full list of the actions the team
should perform on a regular basis as it works toward its
development goals.

Software Project Plan A schedule of activities based on the design of the product
that tells how the product is to be developed and who is
responsible for the specific tasks of the development effort.
Consult this document if you need information about when to
start or complete a task or who should work on a given task.

Common Vocabulary

Most of the organizations—such as the Institute of Electronics and Electrical Engineers
(IEEE)—that supply templates suggest inclusion of a list of terms. This suggestion results
from the extraordinary extent to which most projects tend to engender distinct sets of
vocabulary items. Most conspicuous among these are acronyms and abbreviations. In addi-
tion to acronyms and abbreviations, new words and words that are used in ways that rename
large sets of functionality as specific operations come into play. The list of terms helps every-
one on the project understand the project-specific uses of such vocabulary items.

Reviews

Review provides a way for members of the development team to study documents, which
embody core information. A review is a way for an individual who has worked on a specif-
ic task to communicate his findings to the rest of the team. All team members should under-
stand this. A review is an act of communication. Along the same lines, a review is a way for
all members of a team to test their understanding of a specific body of core information. In
testing their understanding, they can help refine this information. (Later in this chapter,
under “Document Reviews,” you can find extended discussion of how to manage reviews.)

Participation
To participate effectively in information development, you need to know how to partici-
pate. To help you meet this objective, at the beginning of the project, the project manag-
er, the team lead, or the quality assurance specialist (among others) should call the team
together to discuss how each member of the team can participate in information man-
agement for the project. A good starting point is to have everyone become familiar with
the types of documents that are to be created and the areas of responsibility that each
member of the team has with respect to the documents. Table 18.1 names a set of docu-
ments that are common to many development efforts. Using these documents as focal
points, the team should take time to discuss the following:

■ Document ownership. Each document should have an owner. The owner is the
person who oversees the first draft of the document, its distribution for review,
and any changes made to it during its life. The owner also coordinates and moder-
ates reviews.

■ Information development responsibilities. A group of team members should be
responsible for developing the information that each document contains. Each of
these group members, for example, might write the contents of a specific docu-
ment division.

Chapter 18 ■ Documentation—Learning How to Learn670

■ Review of information. The team should set deadlines for first drafts of each doc-
ument. Discuss procedures for reviewing and baselining documents. If a document
is to be baselined, the team should review it, and the owner of the document
should fold the changes that the reviewers suggest into the document.

■ Storage of information. Store the document in a location that every team member
can access.

■ Retrieval of information. At any point in history—especially following its baseline
review—a document should be stored, named, and numbered so that members of
the team can identify and access the most current version. If the document is to be
changed, you should implement some type of change control structure.

Nondocumentation-Centered Information Management
Historically, software engineering processes have been centered on a set of documents.
Some development methodologies, such as that supported by the Agile group, justifiably
contend that traditional approaches to software development involve too much docu-
mentation. The objection arises largely from the extent to which documentation mainte-
nance can create an enormous overhead for software developers. If you do not properly
manage documentation from the first, it can take on a life of its own, and the resulting
mountains of online or printed documentation can endanger the success of the develop-
ment effort.

The approach that the Ankh team used for development falls into the documented-
project category. The team used approximately 300 pages of documentation to create
a project that involved approximately 30,000 lines of code. The ratio of code to project
documentation was around 100 to 1.

The documentation did not create a maintenance problem, however, because the team
created the documentation in a way that resulted in little narrative. Roughly 80 percent of
the printed pages for the documentation contained UML, tabular, or use case diagrams.
In this light, then, the documentation for the project consisted more of a set of working
symbolic representations of the project than extensive written descriptions.

Objections to documentation usually arise when documentation plays no immediate role
in the development effort. As Figure 18.4 illustrates, determining which documentation to
maintain can involve considering which documentation receives use.

Learning Through Documentation 671

Teaching Culture
A project generally creates a culture that represents the combined qualities of the people
who participate in the development effort. An important facet of this culture is that it
equips or empowers people who share in the culture to use and shape information in a
cooperative, effective way. With a successful development project, each day’s work allows
those who participate in the project to more clearly understand and communicate about
the product. One result of this positive, progressive movement is that in many ways, as
time goes on, members of the team say less and yet communicate more.

Team members can speak less but communicate more if ideas have become well enough
established among members of the team that relatively few words during any given con-
versation are required to bring a great deal of cultural information into play. Given the
complex nature of the culturally shaped information, the only time anyone needs to resort
to explicit descriptions of details is when problems of unusual severity arise.

That a strong and rich communication culture characterizes a successful development
project is all the more reason to maintain good project documentation. Touching base
with document reviews allows the team to subject its understanding of the project to peri-
odic tests. Add to this that when someone new joins the team, documentation can explain
the system under development and provide information about the schedule of develop-
ment activities. With such supplements, it is much easier for this person to get up to speed
on the development effort.

Chapter 18 ■ Documentation—Learning How to Learn672

Figure 18.4
Exclude documentation that does not contribute to the development
effort.

Technical Versus Customer Documentation
Strategy guides are the most visible form of user documentation. Such guides usually pro-
vide a description of the user interface accompanied by detailed descriptions of the inven-
tory and other features of the game. A typical guide might cover the following items:

■ Skills

■ Key combinations

■ Options

■ Characters

■ Character powers

■ Effects

■ Spells

■ Help

■ Healing

■ Maps of levels

Most of this information is drawn from the game design document and experiences that
the writer has playing the game. The technical or creative writers who work on strategy
guides or other user-oriented documentation usually must be thoroughly familiar with
the game. To meet production deadlines, such writers might begin to participate in the
development effort long before the game is ready for release.

Writers who write strategy guides are sometimes excellent testers. If they have played the
game to the extent that they can write a guide that thousands of players might use to learn
how to play the game, chances are they will know the overall game better than even those
who have developed it. That’s because they synthesize their knowledge of the features of
the game.

Facilitating the efforts of people who write about your game is good business. If you
become arrogant or defensive about describing the features of the game when writers ask
for help, you should remember that they are the first line of a group of people who will
ultimately determine whether your organization stays in business. A policy might be,
then, that those who write for external customers receive the attention they deserve.

As a representative of the external customer group, a writer of a strategy guide probably
has little interest in hearing about how you implemented functionality. Nor is this person
interested in the design of the software and the elegance of the engineering. This person
is interested only in what the player of the game experiences. When you provide informa-
tion about game features, try to answer the question that the writer poses. Try to avoid
providing explanations. Consider the following segment of dialogue:

Technical Versus Customer Documentation 673

WRITER: Okay, so they open the shopping window, and then they click
on the Buy option in the upper-left corner?

PROGRAMMER [Answer A, wrong answer]: Right. You see, we had this
problem with our GUI class, so we had to position the window so that it
could fold to the left. Real pain. That left the button up there. Letters kept
getting truncated. We kept getting this distortion that no one could fig-
ure out when we tried make it fold in other ways. Jack thought. . .

PROGRAMMER [Answer B, right answer]: Right. First click the Buy
button. You can also use Ctrl and B, for Buy. You can then click on the
item to select it. If you do not use the mouse, you can press the Tab key
until the item is highlighted. After you highlight the item using the Tab
key, you press Enter to select it. . .

The problem with Answer A, the wrong answer, is that everything after the first word pro-
vides no useful information to the writer, who is a nontechnical person with probably
only a vague idea of what GUI means. In other words, you are not making good use of this
person’s time, and you are wasting your own time. Answer B is much better, because it fol-
lows the question with a useful answer. The question concerned how to use the Buy but-
ton, and the information that Answer B provides carefully details this operation.

Different Approaches
Although the emphasis of this chapter is on documents and diagrams, you can use differ-
ent approaches to gather and refine information throughout a project. The following few
sections detail some of these approaches.

Journaling
Journaling is the process of creating one long narrative of the exchanges developed during
the life of the project. You can store such information in a database or as a massive file to
which lines are added each time someone exchanges information. You can insert tags
bearing information about the time and date of each exchange. The result is either a blog
or something like a blog.

The advantage of journaling is that everyone can participate in a long conversation that
begins with the inception of the project and, presumably, ends when the game is released
and the development team is dissolved.

Indexed Journaling
Indexed journaling involves placing an interface between the user of the journal and the
items that are stored in the journal. The interface forces the user to select or add an index

Chapter 18 ■ Documentation—Learning How to Learn674

item before making a journal entry. Entries are then stored in relation to indexes, not
according to their order or time of entry. If the index already exists, the added journal
entry is appended to the existing index. If the index does not already exist, the journal user
can add it to the general index list. Figure 18.5 illustrates a possible interface for an
indexed journal.

Content Management Systems
Several expensive, capable content management systems are available if you need and can
afford such an application. It might seem silly for a game developer to think about such
things, but consider what happens when you are part of an organization that must track
thousands of documents relating to business, art, and engineering.

At some point, depending on the culture of your company and the product you release,
the inability to manage information formally can become an obstacle to growth. At that
point, you begin considering whether you can use a content management system.

A content management system is designed to control any type of content, be it text or
graphics, sound or videos.

Following is a list of items that might go into the evaluation of a content management
system:

■ Store and retrieve all types of documents (video, sound, text, graphical, and so on).

■ Maintain an index relating to content of documents.

Different Approaches 675

Figure 18.5
Indexed journals force users to categorize information when they
add it to the journal.

■ Maintain biographical and contact information on document authors.

■ Control access to documents.

■ Provide history of document revisions.

■ Link key terms in documents.

■ Provide a notation system.

■ Create ad hoc and standard reports on document use and content.

Generally, such a system resembles a version control system, has features that are charac-
teristic of a trouble ticketing system, and requires a powerful database. The system is prob-
ably an Internet application. Among notable examples of content management systems
are Lotus Notes (from IBM), Livelink (Open Text), and WorkSite (Interwoven).

E-Mail Exchanges
The least formal way that teams can communicate involves e-mail exchanges. E-mail gen-
erally forms a bedrock of communication among the members of development teams. For
small development organizations, e-mail is the preferred means of communication.
Project managers can broadcast messages as needed. Important issues can be forwarded.
Documents can be attached. Members of the team can engage in isolated conversations
and include others as needed by forwarding accumulated exchanges. The only real draw-
back of e-mail is that it can easily lead to situations in which developers possess too much
or too little information. People tend to either delete e-mails too quickly or store every
e-mail they receive.

As you probably know from your experiences, the effort required in deciding which
e-mails to save or delete can be beneficial. When you make this decision, you filter issues,
recognizing and preserving those that are important while putting aside and deleting
those that are trivial. E-mail exchanges that have led to especially fruitful ideas are some-
times transferred and edited for inclusion in a formal document. The flexibility of e-mail
makes it a valuable tool for managing information.

n o t e

People do not read long e-mails. If you have a long list of technical issues, include them in an
attachment. One hundred words (roughly the length of the first paragraph in this section) is a long
e-mail.

Templates
Templates provide ways to organize information, but they can become a problem if you use
them in a mindlessly formal way. To make the best use of templates, start by identifying

Chapter 18 ■ Documentation—Learning How to Learn676

ones that professional and standards organizations pro-
vide (IEEE, ISO, SEI). Draw from these the topic lists
and organizational patterns that best suit the scope and
complexity of your project and the culture of your
organization. Using what you need and nothing more is
key to avoiding needless information management
activities.

What Is a Template?
A template outlines a document or provides a pattern
for information management. If it outlines a docu-
ment, it consists of headings under which you can
place information that is relative to the headings.
Figure 18.6 represents a template for a project manage-
ment plan. This template is derived from the IEEE
standard 1058.

Even if it can be described as an outline for a docu-
ment, a template is more than an outline. For starters,
a template is commonly accompanied by a commen-
tary of some type that tells you how to use it. Typically,
the commentary provides instructions for how to fill in
each section. A glossary of terms might also accompa-
ny the template. (This is the usual practice with IEEE
templates.)

Where to Find Templates
The best sources for templates are standards organiza-
tions. Among such organizations are the following:

■ The Software Engineering Institute (SEI). The
Web page provides a search field. Enter the type
of activity you want to document. From this
point, you will find a great deal of free information, and with a little work, you will
find a template. The site is at http://www.sei.cmu.edu/.

■ The Institute of Electrical and Electronics Engineers (IEEE). To access a given
IEEE template for a document, use the standard number for the document you are
seeking. To make this a little easier, Table 18.2 provides a list of IEEE standards.
You can use these to access templates for documents.

Templates 677

Figure 18.6
A template is an outline that is sup-
plemented with a commentary that
tells you how to use it.

You can also access the site for the IEEE Software Engineering Standards Zone
(http://standards.ieee.org/software), where you can obtain a CD that contains the
IEEE templates.

■ Software Engineering Body of Knowledge (SWEBOK). This is more a directive to
topics than a reference for templates. The site is at http://www.swebok.org.

■ International Standards Organization (ISO). To obtain the numbers of ISO stan-
dards, access the ISO site and use the search field to locate standards relating to the
topic for which you require a template. The site location is http://www.iso.org/iso/
en/CatalogueListPage.CatalogueList. After you obtain the document number, you
can search the Web.

■ Game Design Document. For game design documents, standardized templates do
not yet exist. One starting point is http://members.shaw.ca/ bsimser/webdesign/
default.htm.

n o t e

A distinction exists between a standard and a template. A standard is a conceptual guide to a topic.
It usually includes a template for a document that helps users of the standard organize information
that relates to work involving the standard.

Chapter 18 ■ Documentation—Learning How to Learn678

Table 18.2 IEEE Standards and Numbers

Standard Name Access Number*

IEEE Standard for Software Quality Assurance Plans 730-1989
IEEE Standard for Software Configuration Management Plans 828-1990
IEEE Standard for Software Test Documentation 829-1983
IEEE Guide for Software Requirements Specifications 830-1984
IEEE Standard Dictionary of Measures to Produce Reliable Software 982.1-1988
IEEE Guide for the Use of IEEE Standard Dictionary of Measures 982.2-1988

to Produce Reliable Software
IEEE Standard for Software Unit Testing 1008-1987
IEEE Standard for Software Verification and Validation Plans 1012-1986
IEEE Recommended Practice for Software Design Descriptions 1016-1987
IEEE Standard for Software Reviews and Audits 1028-1988
IEEE Guide to Software Configuration Management 1042-1987
IEEE Standard for Software Productivity Metrics 1045-1992
IEEE Standard for Software Project Management Plans 1058.1-1987
IEEE Standard for Software User Documentation 1063-1987
IEEE Standard for Developing Software Life Cycle Processes 1074-1991

*To search for a standard online, try entering IEEE standard nnnn-nnnn. This usually retrieves a link to the version of the
template you are looking for.

How to Use Templates
Many developers who are given
documentation responsibilities
misuse templates. They do so
because they forget that a template
is a recommended pattern or guide
for developing information. The
most visible sign of this problem
is that the resulting documents
contain sections that display com-
pletely useless, redundant head-
ings. Figure 18.7 provides an
example.

A template is best used as a guide.
As a guide, it does not impose
strict demands on its users.
Instead, it suggests ideas and
ways to organize information. To
use a template effectively, you
should first draw from it a con-
ceptual framework for your
undertaking. Then use only those
features of the framework that
you require to capture for your
project. Don’t use headings you
don’t need. Filling in headings
only because the template pro-
vides them creates useless infor-
mation.

You can improve the outline shown in Figure 18.7 if you cut it back to the four primary
topics:

■ Introduction

■ System Description

■ Process Parameters

■ Test Parameters

After the development team has the essential parts of the template, it should begin insert-
ing information. If the template helps the team identify useful types of information and
offers a way to organize this information, it serves its purpose. The team can determine

Templates 679

Figure 18.7
Needless duplication of empty content constitutes an inef-
fective use of a template.

for itself the document divisions that best express the culture and objectives of the team
and how much information it needs to gather for each division.

Document Maintenance
You can establish a few maintenance practices from the beginning to enable everyone on
the team to derive maximum benefit from the creation and use of the documents that
define the flow of information for the project. Maintenance involves knowing which doc-
ument is current, who owns a document, how to make changes in a document, and where
to place documents so that everyone can find them. The best approach to ensuring that
these operations are performed effectively is to simplify them as much as possible. One of
the best approaches to simplification is to try to make document maintenance activities
center on the current document rather than expending energy managing the history of
changes in the document.

Tracking
Microsoft Word allows you to track every change you make to a document. Although this
feature can be useful if you are editing a book or preparing a legal contract, when it’s used
for software documentation development, it can create some problems. One problem is
that the information that the tracking utility generates is not very useful. Although it pro-
vides an excellent record of changes to the text, it provides almost no information about
conceptual or design changes to the
software. For this reason, rather
than relying on such automated
change tracking capabilities, it is
better to insert a change table (usu-
ally at the start of the document).
You can use this table to create a
summary record of important
changes to the software. Figure 18.8
shows a table that guides a reader to
substantial changes in a require-
ments document. Using this table,
the reader can readily identify how
requirements have changed as a
result of reviews that have taken
place on the indicted dates.

Chapter 18 ■ Documentation—Learning How to Learn680

Figure 18.8
Use tables to guide readers to changes and reviews
instead of having them read through minute textual
records of change.

Numbering Systems and Baselines
It’s best approach is to use the simplest possible numbering system you can find when you
number documents. Note, for example, a list of the versions of the requirements specifi-
cation for Ankh:

■ AnkhSRS1_0.doc

■ AnkhSRS2_0.doc

■ AnkhSRS2_1.doc

■ AnkhSRS3_0.doc

■ AnkhSRS3_1.doc

■ AnkhSRS4_0.doc

■ AnkhSRS5_0.doc

Each of these versions of the Ankh
Software Requirements Specification rep-
resents the state of the document after a
team review. If the number following
the underscore is a zero, the version
number designates a baselined docu-
ment. With the Ankh development
effort, each time the team created a
baseline of a stripe, it reviewed the pro-
ject documents. If the team made sig-
nificant changes, it incremented the
document numbers. If the team made
no significant changes, it made no
change in numbering. Figure 18.9 illus-
trates how each baseline of the software
product included a list of documents.

Ownership Responsibilities
You own a document if the team or team lead assigns it to you. When you own a docu-
ment, you are responsible for ensuring that the document is created, revised, distributed
to the team, and archived as needed.

If you are the document owner, your responsibility is to oversee or perform for yourself
the development of the document. It is also your responsibility to say when a revision
number can be changed. Among your tasks are the following:

■ Creating. Creating a document means finding a suitable template and using that
to gather and refine the appropriate information. To accomplish this, you can use

Document Maintenance 681

Figure 18.9
Relating document version levels to design stripes
simplified storage and retrieval.

several approaches. One is to provide as much information as you can and then to
find others on the team to confirm what you have written or supply new informa-
tion. You can meet with the project lead to find out who might be best qualified to
provide information on specific topics. The people who supply information for the
document should be included in the development team for the document. You
should list their names on the document cover.

■ Revising. Revision takes place in several ways. If you are working with a few others
to create the first draft of a document, revision amounts to adding information or
repeatedly revising material you have written. Revision during this phase of com-
position is informal, which means it is not subject to revision control. After a time,
however, you can baseline the document and then begin changing it through for-
mal reviews. Such reviews involve noting revision levels before and after the
changes. The revision levels show that changes have taken place.

■ Distributing. You usually distribute a document to people whose names are on a
distribution list. The distribution list includes people who are centrally concerned
with the content of the document. You should invite these people to reviews and
give them a copy of the document each time you release it at a new level.

■ Identifying. It is important to track version numbers of documents. To track the
history of the document, you can insert a table of reviews at the beginning of the
document. You can note the review dates and release numbers assigned to the doc-
ument following the reviews.

■ Storing. You should know the location
of the document you own. It is impor-
tant to store the official version of the
document in the project archives, not
on the disk of your own workstation. A
document in this respect is the same as
source code.

Document Reviews
Effective documentation reviews result in
increased team cohesion, confirmed concep-
tualization of the software product, and
enhanced communication among team
members. A parallel result is that a paper or
online document formalizes the information
that is exchanged, tested, or gathered during
the review. (See Figure 18.10.)

Chapter 18 ■ Documentation—Learning How to Learn682

Figure 18.10
The development of ideas can center on
reviews.

Anticipating Reviews
Successful reviews require preparation. The document owner prepares a document for
review. Preparation involves the following items:

■ Document. Clear the document of change markings from the previous review.

■ Version. Check the document to make certain it displays the right version level.

■ Reviewers. Create a list of the team members who are to participate in the review.

■ Schedule. Confirm with the project lead a time for a document review. Generally,
it is not a good idea to ask people to spend more than an hour at a review.

■ Notification. Notify the team of the review. (The project lead is the best person to
do this.) In the notification, tell reviewers to examine the document and note
items they think should be changed.

■ Copies. If you work with paper, distribute copies of the document. Otherwise, dis-
tribute electronic copies. (It does no good to tell people they can access the docu-
ment in the project archives.)

■ Priorities. If you are looking for serious input, visit each team member from
whom you would like to have specific input and point out which portion of the
document you would like them to review.

With respect to soliciting input, team members who feel they have no stake in a document
are often reluctant to spend time working with it. For this reason, if you are assigned own-
ership of a document, share ownership as much as possible.

Conducting Reviews
When you conduct a document review, the best approach is to project the document onto
a large screen and then have everyone, section by section, review the document as a group.
If you are working with Microsoft Word, you can turn on the Track Changes option and
insert changes as you go. In this way, everyone can see their changes immediately insert-
ed, which promotes participation.

To conduct a review, consider the following points:

■ Set the agenda. Tell everyone at the start how long the review is to last, what is
expected, and how things will proceed.

■ Lead the review. Start with the first page of the document and guide the team
through to the end. If the document is displayed on a screen that all members can
see, guide them to each pertinent section. Name the section. Solicit responses. For
example, say, “Okay, here’s Requirement 44. Any comments? Let’s go around the
room. . .”

Document Reviews 683

■ Confirm changes. Whenever someone suggests a change, type the change so that
everyone can see it and then read the change so that everyone can hear it. Then ask
if anyone feels the change is not appropriate. Alter the change until you have con-
sensus. Consensus means that everyone agrees to the change.

■ Table disputes. If everyone cannot agree to the change, table the change for resolu-
tion. Resolution will involve having the disputing parties meet with you and the
project manager and discussing the difficulty in detail. After you find a resolution
and fold it into the document, you can distribute the document (or a portion of it)
to those who participated in the review and confirm with them that they are in
agreement with the change.

■ Track time. During the review, remind everyone every quarter hour how much
time you have used up and how much time remains. In this way, you keep the
review moving along. On the other hand, if the review results in a great deal of
discussion, you have to face the fact that things cannot be rushed and you are
probably going to have to schedule another time to continue the review. If this
happens, save all the changes. Do not redistribute the changed document unless
members of the team request you to do so. Schedule the continued review to take
place within the next few days.

■ Conclude the review. State that the review is over. Tell everyone when you will
have the document updated. Tell everyone where to find the document and when
you will distribute it. If you want people to look at the changed document, it is not
enough to tell them where they can find it in the archives.

Team Focus
Maintaining information involves working in the interests of the team. For this reason, if
you are given ownership of a document, view yourself as providing a service to others.
When you maintain the document, for instance, insert changes during the review or as
soon as possible after the review. The best time to insert changes is during the review,
when you can obtain immediate feedback and verification. Likewise, immediately after
the review, put in the time necessary to check spelling, syntax, and the correctness of dia-
grams, and then place a new version of the document in the project archives. Delays in
updating a document can lead to undesirable results. Among the worst of these is that you
forget or lose the changes that others have suggested.

Probably one of the most important aspects of any development effort is that when things
are done in isolation, they are likely to contain a greater number of defects than if they are
done with the aid of a team review. This is largely how the Cartesian approach to science
works. Scientific knowledge is predicated on the notion that when you present experi-
mental results, you do so in such a manner that others can check your work. Answers are

Chapter 18 ■ Documentation—Learning How to Learn684

not so much wrong or right as confirmed or unconfirmed. With software documents, you
can use the same general approach. A software design document is not so much right or
wrong as it is reviewed or unreviewed.

Approaches to Storage and Display
After you have baselined documents, store them along with all other project files. If you
are using a configuration management scheme, you might store a version of the docu-
ment as part of a baseline of the current software. In this way, you comprehensively cap-
ture a snapshot of the software you are developing, complete with its documentation.

Linking HTML versions of technical documents to a project Web page provides the devel-
opment team with ready access to core project documentation. If you place documents on
a project Web site, the best approach to maintenance is for the document owner to use a
word processing application to convert the document to HTML. Preserve the Word doc-
ument as primary. In addition, allow each document owner to access the project page for
updates to reduce maintenance complexity.

Tools for Documentation
The tools you use for documentation and engineering depend on how much your orga-
nization can spend on tools and the scope of the project you are working on. The tools
can range from freeware to costly, comprehensive IDEs like IBM’s Rational suite. Such
tools automatically link code, diagrams, requirements, test scenarios, and supplemental
documentation, among other items.

Many game developers contend that game development efforts are not likely to benefit if
they incorporate this level of automation. Several reasons justify such statements. One is
that game creation combines creative and engineering activities in ways that current
CASE tools cannot accommodate. On the other hand, the situation changes with compa-
nies that specialize in the development of high-end graphical components or game
engines. Such systems are marketed to game developers or publishers, and they tend to be
consistent from release to release. They also tend to fetch a high price. Using tools for
reverse engineering and automated documentation generation to develop such products
might be extremely cost effective.

Word Processing
In almost any software development environment, you can accomplish word processing
using Microsoft Word or Adobe FrameMaker. There are also other word processors, such
as Corel WordPerfect. As long as a word processor can create tables, import graphics, and
convert documents to PDF, HTML, and RTF formats, you can probably safely purchase it.

Tools for Documentation 685

Each major word processor has its detractors and defenders. The Ankh development team
used Microsoft Word because everyone on the team owned it and knew how to use it. One
person’s personal preference was Adobe FrameMaker, but no one else on the team owned
a copy. That settled that.

Graphics
The Ankh team’s favorite graphics tools were Adobe Photoshop and Microsoft Paint. Paint
is good for simple tasks, such as saving screenshots in bitmap or jpeg formats. Photoshop
is good for everything that needs to be done to prepare screen shots for publication.
Likewise, Photoshop is good for almost any kind of work you want to do with textures or
bitmaps. The team used Maya to process most of the meshes. It was necessary to compile
an add-in to convert the meshes from the Maya format to the x format used by DirectX.
For cottage industry game developers, Maya is expensive and difficult to use, but after you
have gotten over these two bumps, it is a reliable, effective tool for creating assets for PC
games.

Technical Drawings and UML
The team’s preferred tool for technical and every other type of drawing was SmartDraw.
This application is a cost-effective asset for a small software development team. It is inex-
pensive, versatile, and easy to use. The team used SmartDraw projects to create illustra-
tions for the design of the software. The projects packaged drawings so that they were easy
to work. One pallet could hold dozens of UML diagrams. One particularly important
benefit of this arose after the team installed SmartDraw onto a laptop and hooked the lap-
top to a projector. The team could develop and review design illustrations as a group.

If the team imported objects from SmartDraw into Word documents, it could open a
UML drawing in SmartDraw that was embedded in a Word document. This approach
made it easy to edit UML diagrams during document reviews.

Display
Some mention has already been made of how to set up a home page for a project. Small-
team efforts can use the Internet as a way to conduct code and other reviews. The Ankh
team set up Microsoft .NET IDE on the same laptop on which it installed SmartDraw. It
then used TortoiseCVS to access code and documents, which it could check out and pro-
jected to a large screen for group review. As primitive as this procedure might seem, it
effectively established a reliable, consistent way to conduct code and documentation
reviews. The most expensive part of the setup was the projector.

Chapter 18 ■ Documentation—Learning How to Learn686

Preventing Excesses
Taking precautions to prevent excess is necessary because documentation is both a solu-
tion and a problem. It is a solution because it is the only effective way that a team can for-
malize its communications to the extent necessary to guide a complex development
process. It is a problem because information, in general, tends to create entropy. The more
information you generate during a project, the more likely it is that miscommunication is
going to occur. In the end, you are left with a dilemma. If you do not communicate, the
project fails. If you communicate in a sloppy, random way, the project fails.

Using a Standard Process
One way to reduce miscommunication is to create a core communication process.
Previous sections discussed much of this process, but it will not hurt to summarize it here:

■ Determine at the outside of the project which documents you want to use to trace
the central information flows of your project.

■ Assign each of these documents to an owner, and have the owner obtain a stan-
dard template for the document. Develop the information in the document by
using the template.

■ Maintain several simultaneous, complementary flows of information using docu-
mentation and review. Everyone on the team should know why this information is
being maintained.

■ Review primary documents at regular intervals. Use the reviews as much to force
everyone to concentrate on the documents as to have everyone review and refine
the information in the project. The purpose of a review is to allow everyone to
learn about a given information content.

■ Control documents. Store and update information that is collected in documents
by using a formal document control routine.

■ Use documents. In other words, track work using the design document and the
project management plan. Perform testing of the product by using the test plan.
The storage of the files for the project should take place using the file and directory
specifications that were given in the configuration plan. The release of the product
should proceed according to the criteria that is set up in the release plan.

Relating Documents to Each Other
Relating documents means that each document should contain references to other docu-
ments. To relate documents to each other, create a section heading called “Related
Documents.” Under this heading, list the related documents. An explanation of why a
related document is useful often benefits the reader. Table 18.3 provides a sketch of how
you can relate documents to each other.

Preventing Excesses 687

Reducing Maintenance
The best approach to reducing maintenance is to provide each key document with an
owner and to have the owner preside and edit at reviews. As noted previously, the Ankh
team tended to do a great deal of its work with documentation using a laptop plugged into
a projector. Using this approach, when a document is updated, a whole team participates
in the updating activity, but one person, the person who knows the document best, is at
the keyboard doing the work of the scribe. This approach might sound crude, but as
pointed out before, unless documentation serves to involve people in the development
process, it is largely worthless. Combining activities of reviewing and editing saves an
enormous amount of work and allows everyone to help refine project information.

Keeping Only Essential Material
As mentioned previously, making an extensive change record visible to the members of the
development team accomplishes little that is useful. It is almost never the case that some-
one wants to see something more than the current working conception of the software. For
this reason, documentation should capture what the team has currently accepted as the
vision of the software and suppress other visions, visions that have been superseded. To
ensure that a record exists of the evolution of the software, the team can create baselines at
specific moments during the development process. For the Ankh development effort, the
team used the completion of each stripe as an occasion for baselines of code, assets, and
documentation.

Conclusion
Documentation is a way to formalize the information that allows you to define the scope,
create the design, verify the functionality of, and plan how to develop your product. The
documents that guide the development effort can be relatively few in number, but they

Chapter 18 ■ Documentation—Learning How to Learn688

Table 18.3 References Between Documents

Source Document Target(s)

Requirements Specification Software Design Specification, Game Design Document
Software Design Specification Requirements Specification, Game Design Document,

Project Plan
Test Plan Software Design Specification, Test Plan
Configuration Management Plan Software Design Specification
Project Plan Requirements Specification, Software Design

Specification, Game Design Document, Test Plan,
Configuration Management Plan, Coding Standards

Coding Standards Design Specification

still should be created and maintained only if they play an active role in the development
of the product. If a document is not used, there is little sense in creating or maintaining it.
To effectively use documentation as part of a development effort, reviews are necessary. A
review should be carefully arranged and directed by the person who is the owner of the
document being reviewed. The owner has a responsibility to conduct the review so that
everyone who attends the review learns from the document and contributes to its refine-
ment. Following the review, the owner should finalize changes to the document, update its
version number as needed, and store the document for access by all members of the team.

To create good documentation for a software development effort, relatively few tools are
needed. The most important tools are a word processor and an application for technical
illustrations. For the Ankh project, Word and SmartDraw served these needs. Word allowed
the team to create documents and convert them to HTML for display. SmartDraw provid-
ed a ready way of creating UML diagrams that could be embedded in Word documents.

To be effective, all members of the team should understand each document’s purpose. The
requirements document defines the scope of the product. The software design document
shows how to build the software. The test plan shows how to verify and validate the func-
tionality that supports each of the requirements. The configuration plan allows everyone
to know how to name files and where to store them. The coding conventions serve as a
guide to how to deal with matters of syntax and naming within program files. The project
plan allows everyone to know the assignment of tasks and their due dates.

You can create most documents by using templates. Templates represent accumulated wis-
dom, but you should not follow them in a mechanical, thoughtless way. They are guides
to organizing information, so you are at liberty to shape them so that they accommodate
the culture and scope of your development effort. Trim templates if they provide too
many topics. Empty headings that are retained purely for the sake of formality indicate
that the template has not been effectively refined.

For further reading on the topics presented in this chapter, see the following resources:

Bransfor, John D. and Barry S. Stein. The Ideal Problem Solver: A Guide for Improving
Thinking, Learning, and Creativity. Second Edition. New York: W. H. Freeman and
Company, 1993.

Cockburn, Alistair. Agile Software Development. Boston: Addison-Wesley, 2002.

Humphrey, Watts S. Managing the Software Process. Boston: Addison-Wesley, 1989.

Johnson, Mark and George Lakoff. Metaphors We Live By. Chicago: University of Chicago
Press, 1980.

Pirsig, Robert. Zen and the Art of Motorcycle Maintenance. New York: Bantam Books, 1974.

Conclusion 689

Sides, Charles. How to Write and Present Technical Information. Phoenix: Oryx Press, 1991.

Wiegers, Karl E. Peer Reviews in Software: A Practical Guide. Boston: Addison-Wesley,
2002.

Chapter 18 ■ Documentation—Learning How to Learn690

691

Philosophy of Software
Engineering and Game
Development

Chapter 19

Y
ou can think of software engineering as a craft or a profession. It does not matter
which emphasis you choose to give it. What is important is that you recognize that
the satisfaction you derive from your work as a software engineer involved in game

development depends on a number of factors related to your vision of your career path as
a game developer, the companies you work for, and the state of the industry. This chapter
examines several topics in an effort to establish some criteria you can use to evaluate the
many forces that affect your professional development as a software engineer. A rough
sketch follows:

■ A few points on the history of software engineering

■ Why software engineering is considered a profession

■ Why software engineering is a craft

■ Good and bad methodologies

■ Companies and individual styles of development

■ Ways to learn valuable lessons from your work

■ Ethical issues

The New Undertaking
Philosophy can begin with history. This section begins with some reflections on the his-
tory of software engineering. Generally, the trends that have prevailed over the decades
during which software engineering has emerged now exert strong influences over the
game development industry.

Defining the Domain
The expression software engineering was first used in 1968 at a NATO conference. Before
that time, software was considered more or less an extension of computer hardware.
Things began to change when large-scale software development efforts required that the
programmers who were involved in them begin studying their programs as engineered
systems. The need for the formal development of knowledge about engineered software
became evident. The primary drive to create engineered software systems became known
as the software crisis. The basis of this crisis was that the complexity of software systems
had become so great that it was nearly impossible for programmers to repair or extend
them. Ways to study software complexity in an organized way and to coordinate the
efforts of many people toward specific software engineering objectives required systemat-
ic research. This, then, marked the beginning of software engineering as an academic and
professional pursuit.

n o t e

One of the milestones of the development of software engineering was the publication of The
Mythical Man-Month, by Frederick P. Brooks, Jr. (See the reference at the end of this chapter.) The
first edition appeared in 1975. The book contains a chapter entitled “No Silver Bullet,” based on a
paper first published in an IEEE publication. Writes Brooks, “The complexity of software is an essen-
tial property, not an accidental one. Hence, descriptions of a software entity that abstract away its
complexity often abstract away its essence” (Brooks, 183).

Formal Engineering
In 1976, the Institute of Electronics and Electrical Engineers (IEEE) formed a committee
to oversee software engineering standards. You can find a continuing record of the actions
leading to the formation of this committee and the results of its activities since its forma-
tion in IEEE Transactions on Software Engineering (http://www.computer.org/tse). This is
a highly technical publication geared toward professional and academic circles.

A much friendlier route to reading about software engineering is IEEE Software
(http://www.computer.org/software). The articles featured in this magazine represent
current discussions of almost anything that is relevant to developing software.

Formal studies of software engineering have identified, documented, and refined activi-
ties that software engineers perform during the lifecycle of a software engineering project.
They also have identified the areas of knowledge that form the basis of industrial and aca-
demic training and educational efforts. Later in this chapter, these areas of knowledge are
reviewed.

The great benefit that you derive from the IEEE approach to studying software engineer-
ing is that the information available to you is devoid of commercial and ideological hype.

Chapter 19 ■ Philosophy of Software Engineering and Game Development692

Consulting organizations tend to market engineering expertise clothed in needlessly com-
plex languages and processes. The IEEE tends to provide information that represents
essential, unbiased perspectives on engineering.

To gain access to the IEEE publications, you must join the IEEE Computer Society. Routes
to this destination differ. If you are a student, the membership fee is fairly minimal. If you
are a working professional, the cost is comparable to what you pay for a trade magazine
subscription. To obtain more information about signing up with the IEEE, go to
http://www.computer.org/join.

Software Engineering Areas of Knowledge
To learn about the areas of knowledge that the IEEE identifies as central to software engi-
neering, read Guide to the Software Engineering Body of Knowledge (SWEBOK), which the
IEEE has placed online. This document does not officially establish categories of knowl-
edge. Instead, it is intended as a guide. In addition to a chapter on each of the areas of
knowledge, this document provides several hundred references to sources of information
that allow you to research the topics independently. Figure 19.1 shows you the key areas.

The New Undertaking 693

Figure 19.1
The SWEBOK defines 10 key areas of software engineering knowledge.

Science and Engineering
Before there was software engineering, there was computer science. The first academic
departments of computer science were established during the 1950s. Among these was the
computer science department at the Massachusetts Institute of Technology. A few decades
later, academic departments offering courses on software engineering began to emerge.
One of the first widely recognized academic departments devoted to software engineering
was established at Carnegie Mellon University. This department enjoyed great recognition
because it became associated with the Software Engineering Institute (SEI). The SEI was
one of the first organizations to promote industry-wide standards for the development
of software.

Although many computer scientists work as software engineers or software developers,
software engineering differs from computer science. Software engineering tends to use
established knowledge to solve specific, practical problems that usually have a fairly high
degree of public visibility. Computer science concentrates on theoretical and mathemati-
cal questions that might receive little public attention. Research and exploration that are
not focused on immediate applications characterize computer science as an academic dis-
cipline. Computer scientists work to extend the knowledge fostered by computer studies.
Software engineers apply their knowledge to the creation of products that have fairly
immediate utility.

According D. L. Parnas (IEEE Software, November/December, 1999, p. 23), software engi-
neers tend to engage in the following general types of work:

■ Determination and documentation of software requirements

■ Configuration of computer system hardware and software components

■ Creation of software designs that accurately reflect requirements

■ Design of the architecture of software—its division into modules

■ Examination of the architecture for completeness, suitability, and consistency

■ Implementation of software as well-documented and well-structured programs

■ Determination of whether Commercial-Off-The-Shelf (COTS) software is appro-
priate for a given software solution

■ Testing of software systems

■ Revision and enhancement of software systems

This list is somewhat incomplete because it does not discuss such topics as team dynam-
ics or project management. However, it does tend to show the practical direction that soft-
ware engineering takes. Later, this chapter examines the core areas of software knowledge
to see how this list expands into a fairly solid set of core skills and knowledge areas.

Chapter 19 ■ Philosophy of Software Engineering and Game Development694

Complex Products
Software engineering has exerted greater influence over game development efforts during
the past few years because game development has, like older application technologies,
grown to the point that the resulting products require the participation of large teams and
extended, expensive development efforts.

As games grow larger and more sophisticated, they become just like any other complex
system of software, and those who develop such games must implement the same engi-
neering practices that apply in other fields of software development. In other words, with
the increase in complexity comes the need to control complexity.

To examine how complexity has bearing on current trends, consider that it is becoming
fairly common for a game to involve a budget comparable to what Hollywood producers
require to make a motion picture. Those who work on the game can number in the hun-
dreds, and the complexity of design and construction tasks in which the programmers are
involved rivals anything that any other industry currently offers. Figure 19.2 represents
some components that contribute to the complexity of game development.

Complex Products 695

Figure 19.2
Game development moves in multiple directions.

Figure 19.2 attempts to simplify an enormous number of situations that might arise in
which game software development activities become complex to the point that adopting
software engineering practices becomes either necessary or advisable.

Because the content of games is becoming more complex by the day, the developers of
game software must interact with domain experts on an increasingly dependent basis. In
other words, game developers must use the techniques of software engineering to capture
and refine requirements for games. The number of requirements is becoming so great that
project managers must employ advanced design and construction strategies to coordinate
the efforts of fairly large development teams. Consider the following scenarios:

■ Representation. Game worlds increasingly mirror reality, to the point that geopo-
litical and geographical data are modeled on a vast scale. You can add to this the
modeling of interpersonal and psychological interactions.

■ Operation. A game is a real-time system—or it can be. Creation of games
extended over the Internet requires the implementation of databases and other
fault-tolerant technologies.

■ Simulation. Simulation of physical systems requires intense engineering. If you
design intelligence that must deliver simulation realistically, performance and test-
ing will require fairly strict attention to software engineering practices.

■ Extension. Development companies almost always extend successful games across
multiple releases. To ensure consistency across releases, engineering principles
must be put in place.

■ Recreation. The billions of dollars spent on the game industry each year have
made it into a highly competitive realm. To ensure continuing profits, products
must be designed and constructed according to exacting standards. Recreation is
not always a walk in the park.

Game development companies produce software games that buyers expect to function
according to complex patterns and to provide satisfying player experiences. Given these
demands, many principles and practices of software engineering prove useful, if not
essential, in the design, construction, testing, deployment, and maintenance of games. As
will become evident later in this chapter, you can apply all the areas of software engineer-
ing that are mentioned in the SWEBOK scheme to game development. You can apply soft-
ware engineering’s vast store of knowledge to game development in ways that allow you
to produce much better products than would otherwise be possible.

Professional Licensing
The same trends that led to the development of such organizations as the software branch
of the IEEE have also led to the development of the notion that anyone who works with

Chapter 19 ■ Philosophy of Software Engineering and Game Development696

software should be licensed. This tends to be a sobering thought for most people who have
taken up programming at home using a personal computer and who consider that what
they do as a hobby might someday lead to a career. It is also disturbing to those people
currently working as software developers or software engineers in the gaming and other
software industries.

Why Licensing?
An extensive debate over making software development a licensed profession arose during
the early 1990s and raged for more than a decade. The debate continues. Many people con-
sider programming to be something that only qualified professionals should be paid to do.
This includes developing games. Many people think that if licensed professionals create
software products, the products that result will be of greater quality and cost less to pro-
duce than is currently the case. The arguments go on. Products will be safer to use because
licensed engineers will design them so they do not fail in critical situations. Products will
bring greater satisfaction to the consumer. The benefits are said to be endless.

If only licensed professionals will be able to perform software development, software engi-
neering will move in the same direction that medicine, law, and civil engineering have
moved. Hardly anyone takes exception to the idea that before they can practice their occu-
pations, doctors must go to medical school and pass an examination and lawyers must
graduate from law school and likewise pass a bar examination. The same applies to civil
engineers, who must graduate from an engineering school and pass a certification exam-
ination before they can, for example, design buildings or bridges. Why should the situa-
tion differ for software developers—even those involved in game development?

If you are a game programmer who has learned everything you know in an informal way
and has participated in successful and profitable development efforts, the idea that you
might suddenly find yourself unqualified to do what you do because you lack a license
might strike you as ridiculous.

On the other hand, if you have ever participated in a development effort that has gone
wrong due to technical mismanagement or incompetent design and coding efforts, you
might view as justified some of the calls for some standard of professionalism in the game
and other software industries.

Back a Step
A software engineer is someone who consciously works not only to develop software but
also to find improve the ways software is developed. Generally, if you are a programmer
who programs games, you end up doing all sorts of work that falls under the headings list-
ed in the SWEBOK scheme. Among these are requirements analysis, design, programming

Professional Licensing 697

(also sometimes called construction, or implementation), testing, configuration manage-
ment, and quality assurance. A person who works in all these areas of development ends
up as a software engineering generalist.

If you fall into this category of software engineer or developer, you can go on for years
acquiring and refining your skills. You might have good games to show for your work. But
at the same time, your skills might transcend what any one game shows. And suppose you
do superior work on a game that the critics decide is a flop? Isn’t there a standard other
than the products you work on? How is it possible for you to say, for example, that you
deserve greater responsibility or more pay than another person if you do not have some
way of judging your skills?

Even if the solution is not licensing, the core knowledge of software engineering comes
into play here. As a generalist, you can still be in a position to say that you possess a solid
set of specialized skills as a programmer if you have at hand a clearly defined set of stan-
dards and practices that you can learn, use, and extend as you work and that you can share
with others through a common understanding of your profession or craft. Developers can
be better than the games they produce. This has been proven time and time again.

Practice, Not Licensing
The vast majority of companies do not require licensing. They are interested in demon-
strated skills only. They might ask for a degree in computer science or some other area,
but they also ask for evidence of your skills. That is why demo games are such a standard
feature of the job search process. Even then, some background features come into pay.

What does the game show? When you answer this question, you end up moving down the
list of core knowledge areas named in the SWEBOK table. This chapter will examine this
list in greater depth later, but the point for now is that when you consider how people
judge your work, even if they have never heard of the SWEBOK, they tend to begin ask-
ing questions about things like whether the game was developed from an idea you had
before you began coding, how the game was designed, whether it is thoroughly docu-
mented, how many bugs are evident, and how easy it is to use (not to be confused with
play). In other words, they attend to the skills you show in the areas of requirements,
design, testing, and maintenance.

As Figure 19.3 shows, employers demand skills that software engineering fosters. If you
develop games, you end up dealing with questions that reflect the formal categories that
software engineering has developed and captured in its core areas of knowledge.

Chapter 19 ■ Philosophy of Software Engineering and Game Development698

Companies might someday look for licensed software engineers who are specialists in
game development, just as certain hospitals look for doctors who are specialized in heart
surgery or skin diseases. For now, however, it remains that those who evaluate your game
look for evidence that you know about and apply knowledge that software engineering
has formally established. Even as a software generalist, you stand to gain if you can think
about the skills you possess in terms of the body of knowledge that such standards as the
SWEBOK present.

n o t e

As a compromise between licensing and nonlicensing, Microsoft, IBM, and Sun offer programs that
enable you to earn certificates that verify you can develop products using their technologies.

Professional Licensing 699

Figure 19.3
The core areas of software knowledge generalize the standard ways that
games are evaluated.

A Challenge
Develop your skills as a software engineer involved in game development. If people want
to talk about making software development (whether for games or otherwise) a privileged
profession, let them. The reality is that game development has much more in common
with art, craftsmanship, and best practices than it does with licensing. The industry rests
on development teams that create winning products because they undertake their devel-
opment effort as craftsmen, artists, engineers, and professionals.

Professionals as Craftsmen and Artists
There is much to be said for the argument that programming and the skills and practices
associated with software engineering fall much more under the heading of craft than they
do of profession. This argument has much merit, but at the same time, it should not be
taken up as a battle cry against software engineering as a profession. Every profession is a
formalized craft. A craft is a tradition that is characterized by people who manufacture a
specific type of product and evolve and pass on a set of skills relating to this manufacture.
Figure 19.4 shows how craft and profession tend to merge into a common understanding
of how something is made.

Professional software engineering and craftsmanship involve knowing a core body of
practices and using them effectively to create a given type of product. What you find at the
center is a style of creation. How do you tell a sloppy hacker from an engineer or a crafts-
man? You look at the person’s style of work.

Chapter 19 ■ Philosophy of Software Engineering and Game Development700

Figure 19.4
Craft and profession share common concepts.

Why software engineering and game development remain activities that can have both
professional and craft characteristics might be better understood if a tentative analogy is
drawn between the game and recording industries.

One route to the recording market might be said to follow the path of professionalism.
Someone studies music for years in a conservatory or university. Eventually you find this
person performing in an orchestra. Auditioning and landing a job for the orchestra
requires the background that the conservatory provides. Still, every member of the
orchestra, regardless of how rigorously trained, has a unique performance style.

Consider what happens when a new rock ‘n’ roll band or rap group forms. From the first,
the musicians’ activity centers on experimenting with and finding new ways to express
lyrics, harmonies, and rhythms. Many successful rock and rap musicians do not learn to
read music. It is unlikely that they have studied theory. They have learned largely by lis-
tening and playing. This can also be said of whole bands. Talented people begin making
music together and discover their own style.

Style is the key. It is a discovery that allows all musicians—those trained classically and
those not trained at all—to meet in a common place and produce something that record-
ing studios readily buy from them.

This view of what makes a recording artist or orchestral musician lacks depth in many
ways, but it still provides a model for what might be viewed as the typical ways that many
software developers find their way to game companies. Formally trained, for example, as
computer scientists, they might be hired to develop audio or graphical engines. On the
other hand, entrepreneurs who have developed their own games might end up being what
might be called technical folk artists.

Inertia and Innovation
Small groups of game developers begin developing games together. They discover a theme
and a style. They might produce several games together and then find one so appealing
that they want to try to market it to a mass audience. They go in search of a game pub-
lishing company. If a representative of the company finds their game appealing, the devel-
opment group might be able to sell its game.

This is one business scenario among many, but it is one that might become much more
common tomorrow than it is today. There are several reasons for anticipating such a
future. One argument is based on large-scale economics (macroeconomics). It is much
cheaper for a large company to allow smaller companies to undertake the risk of devel-
oping innovative products. Small companies can change or innovate much more readily
than large companies.

Inertia and Innovation 701

A large company tends to be unable to do anything without involving a large number of
people. This is referred to as organizational inertia. Large organizations do not change eas-
ily because when they change, they must do so in a multitude of ways. Small companies
do not suffer from this problem. If a company has only five employees, for example, it is
fairly easy for them to share knowledge and arrive at a common understanding of how to
do things. The situation changes in an organization that consists of hundreds of people.

As Steve McConnell points out, large companies have learned the lesson that it is easier to
buy than to internally generate innovation (McConnell, 108). They purchase companies
that create innovative products and then merge the products with their existing product
line. They absorb the innovative cultures of smaller, creative companies.

This business pattern is common to the film, recording, publishing, and game industries.
In these industries, innovation is left to relatively small groups who can undertake the
risks of innovation and creativity. Marketing and distribution responsibilities are assumed
by the large organizations, which profit most when they invest substantial revenues in
fixed, reliable techniques for selling and distributing new products. Figure 19.5 illustrates
the flow of innovation from small to large.

Chapter 19 ■ Philosophy of Software Engineering and Game Development702

Figure 19.5
Small companies undertake the risk of innovation.

Two primary factors emerge as large organizations seek the products of small organiza-
tions. The first is whether the product really is an innovation. This is something you can
worry about if you are a creative artist. The second is whether the product has been engi-
neered or crafted so that the company that agrees to buy and market it does not find itself
fighting consumer complaints and legal actions.

Finding Your Development Style
If large organizations purchase the products of small organizations, they are ultimately
purchasing the product of the small organization’s development style. Style is something
that is a combination of creative innovation and established approaches to development.
As was emphasized in the instance of the rock band, music is a product of a band’s estab-
lished way of making music. This style of making music is something that is attained only
after endless practice and experimentation.

The same applies to the creation of a software product. On the one hand, a game that sells
must be appealing to consumers. On the other hand, it must be designed and developed
so that it performs well. The first part has to do with creativity. The second part has to do
with engineering. One thing is clear—as with the construction of a bridge, without the
engineering, the beauty of the creation means nothing. A beautiful bridge that collapses
is not a beautiful bridge. It is a catastrophe. The same goes for anything that must be engi-
neered, even a song. If the technique of the recording effort does not possess quality, the
song will be destroyed. What applies to music and bridges applies to computer games.

Craft, Engineering, and Style
Software engineering involves putting in place the best practices for creating a software
product. When you combine this with a culture that fosters the development of a specif-
ic type of product, what emerges is a style of development that can produce products that
sell. A style of development refined through the inclusion and cultivation of the best prac-
tices that a craft or profession has to offer is more likely to render consistently superior
products than one that does not. When people perform the same type of work over and
over again and take time to reflect on what they are dong, they are almost always able to
find ways to improve on what they do. Both craft and technology have their roots in this
fundamental way of doing things.

Evolving Style
When you form a team that can develop innovative, attractive products, you lose every-
thing you gain unless you have in place practices that allow you to understand, document,
and improve your style of development. For this reason, putting in place the best practices
of software engineering becomes essential to the success of your undertaking.

Finding Your Development Style 703

Best practices in software engineering fall into the 10 categories given in the SWEBOK
scheme (see Figure 19.1). Most of this book is dedicated to a discussion of these cate-
gories. This book brings these practices into a context that allows you to understand that
they are not so much rules or methods as they are conceptual guidelines for organizing or
grouping what you discover as you engage in your development efforts.

Following best practices also provides a way that you can find for yourself how it is that
you want to specialize your own skills. If you want to remain a software generalist—a
craftsperson—all the better. Even then, when you test the code in a game, you will find it
beneficial to be able to draw on the accumulated knowledge of testing that is available
through the experiences that specialized software engineers have recorded. The same
applies to other tasks. Commenting your code or setting up the file structure for your
game classes benefits from the tools that specialists provide. An engineer, like a craftsper-
son, adopts tools to accord with the task to be completed. Style is characterized by the
refinement of both the tools and the skills that apply to the tools. When these are in place,
the quality of the product that results is much enhanced. Figure 19.6 shows how the spe-
cialized areas of knowledge associated with software engineering combine through skills
and tools to become a comprehensive basis of craft or engineering style.

Chapter 19 ■ Philosophy of Software Engineering and Game Development704

Figure 19.6
Craft or engineering style emerges from the establishment and refinement of tools and skills.

Large Companies Versus Small Companies
In a recent survey of the web, approximately 400 game development companies were
advertising positions of employment. Some were small companies with a single product;
others were large companies with many products and production budgets for single
games that involved millions of U.S. dollars. Among the larger companies were the
following:

■ Blizzard Entertainment. Known for WarCraft, Diablo, BlackThorne, and StarCraft.
Tends to advertise jobs with names like web designer, senior game master, game
master, and technical support representative.

■ Id Software, Inc. Known for DOOM, Heretic, Hexen, and Quake. Tends to advertise
jobs with names like designer and programmer.

■ Electronic Arts (EA). Known for The Lord of the Rings: The Return of the King,
NHL, Rugby, Tiger Woods PGA TOUR, Madden NFL. Tends to advertise jobs with
names like animation software engineer, game designer associate I, tester, and SW
engineer II.

■ Sierra. Known for Empire Earth, Hobbit, Casino, and Metal Arms. Tends to adver-
tise jobs with names like software engineer, principal software engineer, and senior
software engineer.

■ Activision. Known for Tony Hawk, Spider-Man, and True Crime. Tends to advertise
jobs with names like console tech programmer, gameplay programmer, and QA
tester.

■ Rockstar. Known for Grand Theft Auto, Vice City, Midnight Club, and Max Payne.
Tends to advertise jobs with names like AL programmer, optimization program-
mer, animation programmer, serial PS2 programmer, and PS2 graphics program-
mer.

■ THQ. Known for Jimmy Neutron, Sonic, and Red Faction. Tends to advertise jobs
with names like quality assurance, testing, and customer service.

Group Specialization
A large game company can employ many hundreds of people grouped into specialized
departments. The departments are organized into a hierarchy. Each department provides
specialized services to other departments or directly to customers. The makeup of inter-
nal hierarchies varies greatly.

Large development or distribution companies usually support a grid or matrix structure in
which departments or offices coordinate phases of development activity. Specialization
within the grid is more pronounced than is possible with the fairly generalized structure of
a small company. At a small company, each employee is likely to do a little of everything.

Large Companies Versus Small Companies 705

Project Orientation
In large companies, you are likely to be grouped with others who possess specializations
that are similar to your own. For instance, as a programmer, you might be in the pro-
gramming group. As a tester, you might be in the testing group. Each of these groups is
likely to have a line manager, who is responsible for maintaining the group as a concen-
trated source of expertise for the organization.

When management decides to develop a new product, specialists from the various groups
are assigned to a development team for the product. If the company simultaneously devel-
ops several products, several project teams will exist simultaneously, each under a separate
project manager. Members of the team work on the product until they complete it. Upon
completion of the product, the team members return to their respective line groups to
wait for another assignment to another product. Figure 19.7 illustrates a limited matrix.
In reality, an organizational matrix for a large game company includes representatives
from many more groups.

Working Within the Large Organizational Structure
Large companies require specialists. The larger the product group, the more you are like-
ly to find specialized roles. Companies that are oriented toward marketing and distribu-
tion emphasize specialization in software testing and quality assurance. Companies that
are oriented toward development specialize along most of the standard lines of software
engineering, ranging from generic software engineer to tester and project manager. These
divisions of labor are only a few among what might be dozens. Figure 19.8 shows a more
extended organization chart. Each group consists of members who are specialized both
within the general organization and within the group.

Chapter 19 ■ Philosophy of Software Engineering and Game Development706

Figure 19.7
A limited view of a matrix organization shows how teams contribute experts to projects.

The point of this discussion of specialization is not to leave you with the impression that
what you do as a professional ultimately reduces to a narrow, boring set of repetitious
tasks. Where interactive entertainment software is concerned, the current state of the
industry is so dynamic that it is almost impossible that the work you do will be so reduced
by specialization that it becomes repetitious or monotonous. Instead, the problem is that
what you do can change so fast that you will be unable to keep up. For this reason, it is
necessary to limit your activity to a realm that allows you to responsibly keep pace with
changing techniques and technologies.

Seeking Core Knowledge
Chapter 15, “Team Work,” covers team and individual job descriptions, so turn to those
pages for further reading on such topics. With respect to generalized approaches to spe-
cialization, one thing offered here is the notion that even if you are careful to research the
field and fully identify, for example, the types of knowledge that your work encompasses,
you still have a great deal of searching to do within yourself.

The search begins with an understanding of the goals you have as an engineer or crafts-
man. Your ability to understand the product as a product is a good starting place.
Developers sometimes immerse themselves in a technology that brings them no pleasure
after a time. They discover they have invested their time and effort, not in learning how to
create a product, but in using a tool. They have mistaken the means for the end.

Large Companies Versus Small Companies 707

Figure 19.8
The organization fosters specialization within specializations.

Not mistaking the means for the end involves trying to make your newfound knowledge
an extension of the core knowledge area that you have decided to develop as your spe-
cialization. Core knowledge is knowledge that is not wholly dependent on a particular
application or technology. It is often necessary to retreat from the fascination you feel
toward a given technology to reflect that any given tool manifests only a temporary appli-
cation of technology. Knowledge that can be transferred from one tool, programming lan-
guage, or application to another is more valuable to you than knowledge that lives and
dies with the context in which it is discovered.

How to Learn
Learning can be characterized as a pattern of assimilating knowledge in a progressive,
incremental way. The result is that things are known in greater detail and greater general-
ity. Inductively, people collect details until they discern a general pattern. Deductively,
people start with a general pattern and use it to discern details. The two tendencies are
brought together through analysis and synthesis. Analysis takes things apart, and synthe-
sis puts them together (see Figure 19.9).

Chapter 19 ■ Philosophy of Software Engineering and Game Development708

Figure 19.9
Information flows in from general to specific and from specific to general.

The flow of information that is characterized by synthesis and analysis provides the basis
for a discussion of an activity that goes under the headings of process improvement, qual-
ity improvement, or craft perfection. The activity name matters little. What is designated is
the activity of learning how to learn. Every time you learn something, two things happen:
You acquire a bit of knowledge or a new skill, and you equip yourself to learn something
beyond what you have just learned.

The practical manifestation of all of this discussion is that individuals and organizations
tend to grow or decline according to whether they sustain both the capacity to learn and
the capacity to learn how to learn. The two capacities go hand in hand. General rules must
influence specific events, and specific events must give shape to general rules.

Learning Paths
Software engineering brings with it what might be viewed as a prescribed path of devel-
opment. On the level of the individual software engineer, this is a career path. On an orga-
nizational level, this is sometimes called an organizational maturity level.

Career Paths

A career path is something that most people associate with promotion and increased
responsibility. In the software engineering industry, two models prevail. One is based on
professional development, and the other is based on a model established over the cen-
turies through craft guilds. Despite long debates over which is best, both offer the same
general characteristics. People begin working in a given situation that fosters a given style
of work. They must observe the style and develop their own at the same time. As their
style of work matures, they are entrusted with greater responsibilities. Eventually, they are
entrusted with sustaining and applying the style. After still more time, they are entrusted
with the power to actually change the style. Table 19.1 shows the stages of development in
professional and craft settings.

How to Learn 709

Table 19.1 Career Paths

Professional/ Description
Craft Careers

Intern/ Apprentice Entering the profession. Minimal responsibilities. Expected to perform spe-
cific tasks under the direction of a staff developer. Learn how to learn.

Staff/Journeyman Entrusted with the use of tools and the development of products within the
framework provided by the style or framework of the organization.

Senior/Master Sets the standard for how work is to be done and how products are to be
created.

Sources: Steve McConnell, Professional Software Development (New York: Addison-Wesley, 2004), pp. 148–149; Pete
McBreen, Software Craftsmanship (New York: Addison-Wesley, 2004), pp. 81–83.

Table 19.1 reveals that, whereas an apprentice is generally taught how to learn, a journeyman
or staff engineer is assumed to know how to learn. The journeyman or staff engineer is
assumed to be self-directed and competent to perform standard engineering tasks. On the
other hand, the journeyman or staff engineer does not ultimately determine the style of what
is to be learned. It is assumed that he or she works within the style of the organization—
in addition to working within a tradition or culture of knowledge. At the most mature level,
the senior engineer or master developer exerts the strongest influence, for this person can, to
an extent, decide what counts as knowledge and how the tradition is defined. This person is
a model for others. The senior engineer or master developer tends to be recognized as some-
one who knows how to spot, approach, and solve problems. This person can also render judg-
ments concerning who receives recognition for superior work. At the most mature level, the
culture or craft is created.

n o t e

Job titles reflect a company’s organizational style. You might see jobs titles such as junior software
engineer, software engineer I, software engineer II, staff engineer, and principal engineer. You might
also see fun titles, such as game apprentice, game crafter, game master, and game wizard. The vari-
ety reflects sensitivity to the growth of individual capabilities that the culture of the company fos-
ters. The three levels shown in Table 19.1 represent a general model into which these other rankings
readily fit.

Both the professional and craft models enable you to follow a path of personal develop-
ment and set no absolute criteria for who can develop software. Roughly 40 percent of
those who work in software development either do not possess college degrees or possess
degrees in areas other than computer science or software engineering. Generally, howev-
er, most people who become computer programmers or software engineers obtain college
degrees before they start their careers. After that, although they might move from organi-
zation to organization, they carry their strengths and experiences with them. What is
important is that regardless of where you start, as you move along your career path, your
skills continuously increase through work and study. Figure 19.10 illustrates some of the
growth possibilities that are open to game software developers. (For game developer roles,
see Marc Mencher, Get in the Game! (Boston: New Riders, 2003), pp. 63–92.)

Chapter 19 ■ Philosophy of Software Engineering and Game Development710

Maturity Levels in Organizations

Chapter 16, “Process Improvement,” provides a detailed discussion of how you can create
a maturity model within your organization; therefore, this chapter does not dwell on that
topic. Instead, this chapter concentrates on how the maturity level of the game develop-
ment company you work for can affect your career as a software engineer.

Quality assurance specialists usually judge organizational maturity according to the
Capability Maturity Model (CMM), which was developed during the late 1980s in
response to a U.S. Defense Department initiative that required U.S. government defense
contractors to demonstrate that they applied consistent quality assurance measures to
their software engineering processes. Like so many things that originate with military con-
tracts (such as the first digital computer), software development processes characterize
companies other than defense contractors. Experts use the CMM as a standard for deter-
mining the extent to which any software company can engineer a product. Central to this
determination is whether a company can apply the same engineering processes to all
products that it creates.

Subjective Views—Immature

Figure 19.11 illustrates what might be viewed as a subjective perspective on what the
CMM means to you as a developer. At the lowest level, Level 1, the work you do is com-
pletely individualized and informal. Such a company is likely to be small, having less than

How to Learn 711

Figure 19.10
A career path exists for those who are willing to learn.

30 employees. You might find the work either exceptionally rewarding or extremely try-
ing, depending on how enlightened the lead developers are about the sensitivities of oth-
ers. If the company is mismanaged, it will be little more than a sweatshop.

Even if Level 1 managers manage their organization competently, you stand little chance
of professional or craft development unless the managers possess a vision that includes
helping you to advance your skills and understanding. Chances are, you will work long
hours, the product you create might be of questionable quality, and the company might
abandon the project you work on due to lateness or cost overruns. On the other hand, if

Chapter 19 ■ Philosophy of Software Engineering and Game Development712

Figure 19.11
You can evaluate the CMM levels of maturity subjectively.

an exceptional master craftsman or senior engineer drives the development style of the
company, you might find that such a company brings you the most rewarding experiences
of your professional life.

Subjective Views—Mature

You can see in Figure 19.11 that the Level 3 company provides what might be called con-
sistent, across-the-board project management. The U.S. Defense Department requires that
the companies with which it does business possess Level 3 maturity. Such a company might
not be very large, but it will have a process in place that allows it to show its customers how
it produces products. In other words, it will have a documented style of software engineer-
ing or craftsmanship. (Again, Chapter 16 examines this topic in greater detail.)

A Level 3 company is likely to provide what is known as a technical ladder of advancement
for its software engineers. This is good for you. Such a company recognizes that its
employees can grow as professionals. The company might pay you to attend classes. It
might compensate you when you buy books related to your work. It rewards you through
bonuses for writing papers or participating in professional activities in other ways.

Finding a Place to Learn
Figure 19.11 shows that a company you work for can hinder or foster your development
as a software engineer. Level 1 maturity has characterized the majority of companies in
the game industry. The results have been fairly striking. Consider, for example, that in a
given year, approximately 3,000 commercially viable games might be produced. Of these,
less than 300 are likely to make it to the market. Even when games are successful, the com-
panies that produce them often face bankruptcy due to mismanagement of the resulting
profits and the inability to sustain consistent game development efforts.

When companies fail to put in place a style of development that involves learning how to
learn, they usually fail. On the other hand, when software engineers do not adopt a career
trajectory that involves continuous professional growth, they, also, face a dead end.

In light of this reality, the concept of core knowledge is important. As a game developer,
you might find it easy to view yourself as a generalist. In most cases, your first job is like-
ly to be for a small company where you are forced to be a generalist. But at the same time,
you can examine whatever task you are given according to how it fits into the core set of
skills in the SWEBOK documents. You can then find formalized knowledge about what
you are doing and incorporate it into your work so that you improve your skills. Finding
a way to do something differs from finding an informed way to do things. Using the latter
approach, you produce a better product because you build on the expertise that others
provide. Your capacity and willingness to derive and share knowledge with others forms
the basis of your advancement as a software engineer or software craftsman.

How to Learn 713

Specialization
If you look again at Figure 19.10, you can see that a distinction exists between a job
description and an area of formalized knowledge. Figure 19.6 illustrates areas of knowl-
edge, and Figure 19.10 lists job titles, such as AI programmer, graphics programmer, and
so on. The two representations reveal that the knowledge you acquire represents a subset
of the knowledge that characterizes a given area of knowledge. Your knowledge is special-
ized.

Specialization has different flavors. On the one hand, your skills are always specialized to
some extent because you necessarily have to concentrate your energies on the project at
hand, which involves completing a specific and limited set of tasks. At a harsh extreme,
this form of specialization can reduce your life to a set of mind-numbing tasks. On the
other hand, when you repeatedly perform the same type of work and take time to inform
yourself about the best practices that apply to work you perform, you specialize your skills
because you perfect them. Less redundancy and fewer errors characterize your work, and
generally your work represents the application of not simply knowledge of how to do
something but knowledge of the best practices pertaining to what you do. This form of
specialization can be highly rewarding.

If you go to work for a company that is immature, you might find few people who pos-
sess specialization. The chance for individuals to develop specialization might not exist.
Tasks might be distributed randomly. Styles of development differ from project to project.
Things are done in a relatively unrefined, inefficient way, and no standard exists to show
how things might be improved. In contrast, other companies might move in the direction
of imposing too much rigidity, so that even though you perfect your skills, you are forced
into a narrow corridor in which you cannot work creatively. It becomes important, then,
to discover the settings and conditions that foster creative specialization.

Methodology
In the word methodology, the root ology implies a type of study, and the implication is that
methodology is the study of methods people use to accomplish tasks. The purpose of
methodological studies is to reduce random work routines to efficient procedures. The
result is that people are supposedly able to pick up a manual, follow the procedure that
the manual provides, and finish their work with less stress and greater efficiency than
would be possible otherwise.

Good Methodology

In some cases, the type of work performed might justify the use of methodological stud-
ies and manuals containing procedures. One example is aircraft maintenance. For aircraft
mechanics, thick manuals contain the procedures for performing almost any imaginable
task that the maintenance of an aircraft requires. Unless you have repaired aircraft for a

Chapter 19 ■ Philosophy of Software Engineering and Game Development714

living, you might not realize just how intensively procedure-oriented such work tends to
be. Such manuals prescribe, for instance, precisely how much a screw must be tightened
and the order in which screws holding a wing panel on are to be removed. Failure to
observe the procedures precisely results in dire consequences.

The fact that stringent methodological studies and their resulting tombs of procedures
govern aircraft maintenance might bring you a degree of comfort the next time you sit
aboard a jet waiting for takeoff. Clearly, certain areas of human activity call for strict pro-
cedural control.

Bad Methodology

If the mechanics who maintain aircraft follow strict procedures and the entire industry of
aircraft maintenance is predicated on uncompromising methodological accuracy, it
remains that all types of work do not follow the same pattern. Software engineering relat-
ed to game development, for example, involves a different type of work and a different set
of objectives. If an aircraft mechanic does not tighten a screw properly, the plane might
crash an hour later. There is no room for flexibility or experimentation. This is not the
case with game development.

Flexible, individualized development styles typify game software craft and engineering.
The software developer who is involved in creating a game is creating or engineering a
unique product. The game is likely to be a boring clone of some other game unless the
development style of the developer and the company that employs the developer foster
flexibility. Flexibility on individualized and organizational levels involves freedom to
explore options, to challenge assumptions, and to reject or adapt old techniques. Bad
methodology stifles flexibility.

A famous indictment of bad methodology appears in a book by Tom DeMarco and
Timothy Lister, Peopleware. (See the reference to this book at the end of the chapter.)
DeMarco and Lister argue that bad methodology in software development is authoritari-
an. Authoritarian methodology is spelled with a large m—Methodology. Authoritarian
methodologies prescribe and dictate. Rather than a guide to performing work, such a
methodology discourages individualized and organizational flexibility and instead
demands that everyone does everything according to the book, even if it makes no sense
to do so.

This is a type of impractical, unjustifiable methodology that probably even aircraft
mechanics would object to. The justification for objecting is fairly easy to understand.
Software engineering, for one thing, solves problems. To solve a problem is to apply orig-
inal thinking to a problem. The kind of original thinking needed to solve software engi-
neering problems cannot be found in a Methodology.

Specialization 715

What Goes Wrong

Methodologies go wrong under a number of conditions. Consider the following scenarios:

■ Fake Methodologies. A development company wants to lure venture capital. The
executive group looks at the software and the software developers and decides that
the venture capitalists will be much more likely to increase their investments if it
looks like the company has a methodology. The executive group contracts the ser-
vices of a company that specializes in creating Methodologies. The Methodology
contractors arrive, lay out a Methodology, train everyone in the company to use
some words that make it sound as though the company does, indeed, follow the
Methodology, and depart before the venture capitalists arrive. Of course, the soft-
ware developers consider it all a joke, but in the name of keeping their jobs, they
act as though they have a methodology.

■ Authoritarian Methodologies. Some smart, articulate software development or
software engineering specialists decide that they have studied all the existing meth-
odologies and find them all authoritarian, ineffective, and generally objectionable.
To remedy the situation, they create a methodology of their own, one that is just as
authoritarian, ineffective, and generally objectionable as those they reject. The dif-
ference is that the one they offer is new and their own.

■ Misdirected Methodologies. A group of managers and senior engineers who have
the best of intentions writes a process guide. They do this in a responsible way.
They contact the senior people in the engineering or development groups and ask
them to write or describe how best to accomplish common tasks. They try to find
only things that are proven to be effective. After a year or so, the resulting process
guide takes on a life of its own, and instead of consulting it to find out how others
have done things, people begin using it to enforce ways of doing things.

Workable Methods
Methods that work are, as Demarco and Lister point out, suggested and proven ways of
doing things. You might be aware of a set of books generically known as problem solvers.
Such books provide hundreds of standard, solved problems. You find a problem similar to
the one you seek to solve. You use the solved problem as a pattern. The authors of the
problem solver assume that you will creatively alter their solution to arrive at the solution
you require. This is a workable method.

The key point is that you alter the recommended method to accord with your needs, and
if you find no method that accords with your needs, you are free to search for a solution
on your own. No set solution is enforced. Figure 19.12 illustrates a workable approach to
using methodologies.

Chapter 19 ■ Philosophy of Software Engineering and Game Development716

Growth Patterns
The terms iterative and incremental can be applied to both product and professional devel-
opment. The item of most importance is the primary pattern—the spiral. As a software engi-
neering model of development, the spiral model goes back several decades to an article writ-
ten by B. W. Boehm (see the citation
for Figure 19.13). As a model for
personal growth, the spiral goes
back much further, probably well
into antiquity. Figure 19.13 shows a
rough spiral with the labels that
Boehm applied. (See B. W. Boehm,
“A Spiral Model of Software
Development and Enhancement,”
IEEE Computer 21 [May 1988], pp.
61–72; Stephen R. Schach, Object-
Oriented and Classical Software
Engineering, 5th Edition [New York:
McGraw-Hill, 2002], p. 81.)

Growth Patterns 717

Figure 19.12
Workable methods are suggested best practices—flexible but
proven approaches to solving problems.

Figure 19.13
A spiral provides a pattern for development.

Working Metaphors
The spiral has long been used as a way to illustrate one version of how software engineer-
ing happens. At the same time, it can be used to illustrate a path to professional growth if
you are a software engineer involved in game development. The spiral serves so well to
illustrate processes of growth because it provides a rich visual metaphor for how people
often negotiate the stress that change presents. Divided into quadrants, the spiral illus-
trates two things. The spiral itself illustrates iteration—repeated, gradually more encom-
passing revisions of a product. The quadrants illustrate incremental development, which
involves planning iterations after evaluating the risks that each iterative effort poses.

When you view the development process as iterative and incremental, you place yourself
in a position to select goals that you are most likely to achieve. When you plan iterations
as incremental parts of a whole, you are in a much better position than otherwise to antic-
ipate complexity and take measures to ensure that it does not become overwhelming.

As odd as it might sound, developing your own career in an incremental and iterative
fashion makes a great deal of sense. In an industry in which products are often produced
one after another and schedules tend to be characterized by long hours that often make it
nearly impossible to learn new things, it is important to structure change so that it is con-
tinuous and yet not so demanding as to be counterproductive. To improve your knowl-
edge of new technology, for instance, you might have to attend a conference or acquire
and explore a new class library. If your company pays the costs, all the better. But it might
be that you will have to attend to these costs on your own.

Incremental development implies that you put some things aside. Time allows only so
much effort. You must select what is most important. Iteration implies that you do some-
thing over and over again. Leaning is just this type of activity. You do it over and over
again, but you change and expand the areas you seek to know. Some areas are transient.
Others endure for decades. Whether an area of interest persists, grows, or diminishes
depends on what you view as important.

To perform an activity incrementally implies that rather than doing something from start
to finish in a grand way, you start out in a careful way, take time to determine what you
can and cannot do, plan your activity, and then execute your plan. What you determine
you want to learn can be drawn from your work experiences in light of what you know
about the core areas of knowledge that define your field. What you put aside can be
regarded as material that is tentatively scheduled for future learning. Figure 19.14 illus-
trates the basic cycle of decisions.

Chapter 19 ■ Philosophy of Software Engineering and Game Development718

Taking It Seriously
The game industry’s down side is the number of situations in which companies that pos-
sess minimal organizational maturity produce products on a last-minute, fix-and-compile
basis. Those who are involved in such products, although energetic and dedicated, end up
working long hours. They become good at their jobs, but they are often afforded few
opportunities to expand and enrich their basic skills set.

This pattern characterizes many areas of the software industry. The game development
industry is relatively young and immature. Only within the past few years have “game
studies” become visible in academic circles. If the typical pattern emerges, specialization
will prevail more and more, and those who remain software generalists in game studies
will then be at a disadvantage to those who have taken matters seriously and become
experts in a limited, well-focused body of knowledge and practice.

Growth Patterns 719

Figure 19.14
You can incrementally and iteratively plan growth in your basic skill profile.

Ethics
Ethics is not so much a set of procedures, methods, laws, dictates, or rules as it is a capac-
ity to think about right and wrong. One reward of placing game development in the con-
text of software engineering is that you can then draw upon a well-established body of
ethical literature relating to software technology as you consider the ethical implications
of what you do.

The IEEE/ACM Code of Ethics
In conjunction with the IEEE, the ACM publishes on the web the Software Engineering
Code of Ethics and Professional Practice (http://www.acm.org/serving/se/code.htm). The
complete text of the Code is too extensive to reproduce here, but the Preamble can be pre-
sented readily and offers an excellent summary of the main topics:

Software engineers shall commit themselves to making the analysis,
specification, design, development, testing, and maintenance of software a
beneficial and respected profession. In accordance with their commitment to
the health, safety, and welfare of the public, software engineers shall adhere
to the following eight principles:

1. PUBLIC. Software engineers shall act consistently with the public
interest.

2. CLIENT AND EMPLOYER. Software engineers shall act in a
manner that is in the best interests of their client and employer
consistent with the public interest.

3. PRODUCT. Software engineers shall ensure that their products and
related modifications meet the highest professional standards possible.

4. JUDGMENT. Software engineers shall maintain integrity and
independence in their professional judgment.

5. MANAGEMENT. Software engineering managers and leaders shall
subscribe to and promote an ethical approach to the management of
software development and maintenance.

6. PROFESSION. Software engineers shall advance the integrity and
reputation of the profession consistent with the public interest.

7. COLLEAGUES. Software engineers shall be fair to and supportive of
their colleagues.

8. SELF. Software engineers shall participate in lifelong learning
regarding the practice of their profession and shall promote an ethical
approach to the practice of the profession.

Chapter 19 ■ Philosophy of Software Engineering and Game Development720

Applied Ethics
In the game industry, nothing quite as formalized as the ACM/IEEE Code has been published
yet. Discussions over ethics usually tend to drift toward topics such as violence, sexism, and
intellectual property rights. With respect to the development of a general perspective on the
game industry, such discussions are fruitful. On the other hand, developing a perspective on
a set of ethical perspectives that can guide you as you go to work each day requires a focus
more along the lines of the ACM/IEEE Code. Figure 19.15 illustrates how the general ethical
categories laid out in the Code can provide a fairly straightforward guide for orienting your-
self in the workplace. The categories enable you to be conscious of yourself, your society, and
your profession. Note the following:

■ Public. The obligation here is not to the buyer of your products or services but
rather to the general public, which in so many words, you serve, as a craftsman and
professional, whether paid or not.

■ Client and Employer. Here you are paid for your work, and you have an ethical
obligation to ensure that those who pay you receive quality work.

■ Product. Consider that as a craftsman or a professional, your work always results
in a product. You have an obligation to know what counts as a quality product.
You have an obligation to know what tools and skills result in quality products.

■ Judgment. The notion here is that you are able to make decisions in light of what
you know about engineering or craft. The implication is that not everything is for-
malized. Because you possess expertise, you can in essence determine for yourself
when something is not right.

■ Management. You do, after all, have a career path, one that might eventually lead
you to a leadership position.

■ Profession. The profession is the collection of essential skills, core knowledge, and
associations with others that allows you to understand and perform your work.

■ Colleagues. You have responsibilities toward those with whom you work to help
them do the best job they can.

■ Self. The notion of “lifetime learning” is central. As a craftsman or professional,
you impose upon yourself the obligation to acquire new knowledge on a continu-
ing basis.

Ethics 721

Social Implications
You can acquire software engineering knowledge from any number of sources. Because
game development has fairly extensive social consequences, you might want to keep cur-
rent on the debates that define what software engineers think about the use and abuse of
software. An excellent source for such information is an association titled Computer
Professionals for Social Responsibility (CPSR). Experts say that game development as an
industry will soon rival movies and records. The social implications are enormous.
Despite the fruitful and frequent debates to be found on the IGDA and other industry
sites, it does not hurt to explore sources outside the specific industry contexts. The CPSP
is one such option. (For more information, go to http://www.cpsr.org/.)

Satisfaction with Work
The topic of ethics has both personal and public dimensions. Generally, when people talk
about the “work ethic,” they refer to a person’s ability to commit to a task and to take pride

Chapter 19 ■ Philosophy of Software Engineering and Game Development722

Figure 19.15
The IEEE/ACM categories of ethical concerns encourage you to view all implications of what
you do as a software developer.

in the product of work. It might seem almost absurd to think about anyone working in
the game development industry who does not have a strong commitment to the work, but
like any other area of the software industry, it happens. In fact, the number of derailed and
failed projects in game development is at par with the rest of the software industry. People
become embroiled in conflicts, professionalism goes out the window, craft tumbles into
the gutter, and reputations and profits diminish.

The bearing of such concerns on career and craft potentials is enormous. Chapter 15
examines the importance of team dynamics in software engineering. Here the topic cen-
ters on how you regard your own work and what goals you might include in an ethical
profile of what you expect to encounter as a working professional.

You tend to find what you look for. If you go to work with a strong sense of purpose, you
are likely to derive more satisfaction from your work than if you simply expect to put in
time and pick up a check. The work ethic plays a role in this game.

Workflows
A workflow is a technical diagram that shows how a series of tasks unified by a single goal
are connected. This section, however, derives its heading in part from a book by Mihaly
Csikszentmihalyi (pronounced chick-sent-me-high-ee) entitled Flow. Flow is both the title
of the book and another word for what Csikszentmihalyi calls “optimal experience.”
Csikszentmihalyi describes optimal experience as “a deep sense of enjoyment that is long
cherished and that is a landmark in memory for what life should be like”
(Csikszentmihalyi , 3). The relevance of this concept to the work of software engineering
cannot be stressed enough. Consider the following passage from Flow:

The optimal state of inner experience is one in which there is order in
consciousness. This happens when psychic energy—or attention—is
invested in realistic goals, and when skills match the opportunities for
action. The pursuit of a goal brings order in awareness because a person
must concentrate attention on the task at hand and momentarily forget
everything else. These periods of struggling to overcome challenges are
what people find to be the most enjoyable times of their lives. . .
(Csikszentmihalyi, 6)

The relevance of such discussion to software engineering becomes clear when a list of
what might be called the conditions of optimal experience is considered. Table 19.2 pro-
vides a summary of the conditions as interpreted in the context of work.

Satisfaction with Work 723

Parallel Paths
The objective here is not to insist that it is important to follow any specific psychological
formula for achieving satisfaction with work. Rather, the goal is to emphasize that, given
a model of the type that Csikszentmihalyi has created, it becomes possible to understand
why following a professional career path within the context of a body of knowledge sim-
ilar to what, for example, the SWEBOK provides, offers a means of continual growth and
satisfaction for a software engineer, a software craftsperson, or a software developer. Even
if visions of what professionalism means differ, a community that is characterized by an
applied technology has been created, and from this arises the opportunity for you to enjoy
a life-long opportunity to build a unified set of skills that can bring you ongoing satisfac-
tion with your work. Crucial in this undertaking is the effort you make to create the con-
ditions of your own success. To a great degree, this depends not so much on where you
work as how. Table 19.3 recasts the topics that Csikszentmihalyi offers as objectives that
you might establish for yourself as you seek work as a game developer.

Chapter 19 ■ Philosophy of Software Engineering and Game Development724

Table 19.2 Optimal Experience in Work*

Quality Description

Ability The tasks you face are tasks that you have the ability to complete.
Concentration You are allowed to concentrate without disturbance on the task or

work that you are involved in.
Understanding The task has goals that you clearly understand.
Feedback The task provides you with immediate feedback.
Lack of pressures You are able to perform your work without having to worry at the

same time about problems or pressures that exist in other areas of
your life.

Control You have a sense that you are in control of your actions.
Selfless While you are at work, you are not involved in thoughts about your-

self. Your work absorbs your attention.
Timelessness The sense of time vanishes.

*See Csikszentmihalyi, p. 49.

Information and Publications
Game development is an application of software engineering. As in the development of
telecommunications, banking, or stock portfolio management software, the domain of
game development has become complex and specialized. Specialization leads to the need
to customize generic processes. This section is intended as a starting place if you want to
begin examining some of the more visible sources of information on software engineering.

IEEE and Software Engineering Publications

Even if your work concentrates specifically on games, you can still find an abundance of
valuable information in IEEE publications.

Satisfaction with Work 725

Table 19.3 Software Work Recast

Quality Work Optimization Objective

Ability Seek work for which you are properly prepared. In other words, to
paraphrase Socrates, do not contend to know what you do not know,
and do not assume that getting the job qualifies you to do it.

Concentration Find an employer who allows you to do what you can do in a focused,
concerted effort that leads to a visible and valued contribution to the
product.

Understanding If you do not possess a job description, understand for yourself what you
are seeking to derive from your work. Know, likewise, what specific
contribution you are expected to make.

Feedback Learn to give and accept constructive criticism. It is probably safe to say
that anything done in an engineering environment either requires or
benefits from review.

Lack of pressures Obviously, if external factors are disrupting your ability to work, you
need to do something to free your mind. At the very least, if your prob-
lems are endangering the project, seek out your manager and make
some explanations.

Control Find roles in which you are respected as a professional. As a profes-
sional, your employer knows you can be expected to perform work on
your own initiative and produce products that accord with industry
standards.

Selfless When you work as a professional, the service you provide or the product
you develop is something that stands apart from you and on its own.
Find work that allows you to feel as though you are part of something
that possesses value beyond whatever it represents to you as a means to
a paycheck, greater prestige, or organizational advancement.

Timelessness When it seems like work, something is wrong. When you like your work,
you do not watch the clock.

*See Csikszentmihalyi, p. 49.

For example, you might want to subscribe to IEEE Computer Graphics and Applications
(http://computers.org/cga). This publication addresses hardware, software, and systems
relating to graphics.

For the generalist, the IEEE publishes Computer. This magazine features articles on almost
any topic related to computer science or software engineering. The articles often focus on
the state of the industry and feature perspectives provided by prominent panelists
(http://computer.org/computer).

An organization that caters to research in animation and interactive software is the
Association for Computing Machinery (ACM) SIGGRAPH (go to http://
www.siggraph.org).

For reading that relates specifically to software engineering, you can acquire IEEE Software
(http://computer.org/software).

A commercial publication that provides information that is often of value to software
engineers is Software Development (http://www.sdmagazine.com). Unlike the IEEE publi-
cations, this magazine tends to reflect the perspective of the editor. This might be consid-
ered the publication’s strong point.

Game Development Information

Although software engineering practices tend to receive limited formal discussion on
commercial sites that focus specifically on game development, it is still possible to find
information that supplements your study and practice of software engineering. The fol-
lowing list provides a few of the many sites currently in existence:

■ The International Game Development Association (IGDA). The IGDA is the
closest thing to the IEEE in the game development world. It has a heavy academic
streak, but at the same time, it represents the core community of industrial game
developers (http://www.igda.org).

■ Game Development Search Engine. This site provides you with links to all the
basics, such as code, jobs, and industry trends (http://www.gdse.com).

■ Gamasutra. This site offers information on all areas of game development. It is
more reserved and focused than other commercially oriented sites. It is definitely
geared toward professional game developers (http://www.gamasutra.com).

■ GameDev. A tremendous store of reading is available on this site. The site is heavily
commercialized, but it provides solid, current information (http://www.gamedev.net).

■ Game Developer’s Market Guide. One last mention in this list is a text by Bob
Bates. This is a general guide to all the major forces in the industry.

Chapter 19 ■ Philosophy of Software Engineering and Game Development726

There are, of course, hundreds of excellent sources of information in print and on the web
that you can establish as your own data store for facts and ideas.

Academic Publications

Two academic publications exclusively address game development topics.

The first is Game Studies. The articles don’t always focus on engineering issues, but they
are well researched and sometimes cover development topics (http://www.
gamestudies.org/).

The Journal of Game Development is a recent addition and promises to be more oriented
than Game Studies toward technical implementation issues (http://www.jogd.com/).

Conclusion
Such philosophy as this chapter presents it focuses on how you orient yourself as a soft-
ware engineer in relation to the forces that shape your career. The main points can be
summarized as follows:

■ Seek companies that have in place a plan of development. Standards exist that define
organizational maturity. You can use the general picture that these standards paint to
evaluate for yourself whether an organization provides the best setting for you.

■ Develop an understanding of how game development fits into existing traditions
of craft and profession. Although the industry might be characterized in many
ways by big egos and chaotic development efforts, those companies that have
proven most successful do have clear job descriptions, mature styles of develop-
ment, and an understanding of craft and profession.

■ Identify the areas of knowledge that define your work. The SWEBOK is a good
place to begin. Although it does not stand as an official definition of what software
engineering is about, it is an excellent encapsulation of the knowledge that many
people consider essential to software engineering.

■ Establish an awareness of where you can find information about game develop-
ment and software engineering. As a professional or craftsperson, you are expected
to carry your own store of knowledge. Develop your resources.

■ Seek to increase your knowledge in a controlled way, so that even if you work as a
generalist, you possess some specialized skills.

■ Relate to the work you perform as a craftsperson or software engineer. The code of
ethics that the IEEE publishes establishes general categories of ethical concern for
software engineers.

Conclusion 727

■ Learn how to learn. It is easy to pound away on project after project and end up
being mesmerized by the excitement the game offers while forgetting the impor-
tance of the basic skills you possess. Technology is a brutal taskmaster. Grow or
perish.

■ Attend to how you regard your work. Find a way to understand your work as
something beyond making money. If you work for a living, work is living.

This chapter referenced a relatively limited set of books, but it is important to remember
that an immense store of books is available on software engineering (more than 400 at last
count on Amazon.com). As a craftsperson or software engineering professional, it is a
good idea to build continuously your book collection. If you read only one book a year on
what you do, you are not reading enough. In addition to books on software engineering,
a few books that specifically address game development topics are provided:

Abran, Alain, James W. Moore, Pierre Bourque, et. al., eds. Guide to the Software
Engineering Body of Knowledge Trial Version (SWEBOK). Washington, D.C.: IEEE
Computer Society, 2001.

Bates, Bob, editor. Game Developer’s Market Guide. Boston: Premier Press, 2003.

Brooks, Jr., Frederick P. The Mythical Man-Month: Essays on Software Engineering
Anniversary Edition. Boston: Addison-Wesley, 1995.

Csikszentmihalyi, Mihaly. Flow: The Psychology of Optimal Experience. New York: Harper
& Row, 1990.

Demarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams. New York:
Dorset House Publishing Co., 1987.

Hallford, Neal with Jana Hallford. Swords & Circuitry: A Designer’s Guide to Computer
Role-Playing Games. Roseville, California: Prima Publishing, 2001.

IEEE/ACM, Software Engineering Code of Ethics and Professional Practice. 27 Aug 2003.
http://www.acm.org/serving/se/code.htm.

LaMothe, André. Tricks of the Windows Game Programming Gurus. Second Edition.
Indianapolis: Sams Publishing, 2002.

McBreen, Pete. Software Craftsmanship: The New Imperative. New York: Addison-Wesley,
2004.

McConnell, Steve. Professional Software Development: Shorter Schedules, Higher Quality
Products, More Successful Projects, Enhanced Careers. New York: Addison-Wesley, 2004.

Chapter 19 ■ Philosophy of Software Engineering and Game Development728

Mencher, Marc. Get in the Game! Careers in the Game Industry. Boston: New Riders, 2003.

Rucker, Rudy. Software Engineering and Computer Games. Boston: Addison-Wesley, 2003.

Salisbury, Ashley. Game Development Business and Legal Guide. Boston: Premier Press,
2003.

Saltzman, Marc. Game Creation and Careers: Insider Secrets from Industry Experts.
Indianapolis: New Riders Publishing, 2004.

Sheldon, Lee. Character Development and Storytelling for Games. Boston: Thomson
Course Technology PTR, 2004.

References 729

Installation and Setup

Appendix A

T
o get started with the projects in this book, you need to have Microsoft Studio 6.0
or Microsoft Studio .NET. You do not need to do anything other than install the
files that are provided on the CD. All of the configuration headaches have been

taken care of for you.

To install the Ankh projects and documentation:

1. Place the CD in the drive. If you have Autorun enabled on your system, a multime-
dia interface launches. The interface tells you what is on the disc and how to
launch the instal-
lation program.
(If this interface
does not auto-
matically run
after you put the
disc in your drive,
you can manually
locate the file
named
AnkhSetup.exe.
The file is clearly
visible on the CD.
(See Figure A.1.)

Figure A.1
The installation program is all that you see. 731

2. Click on AhkhSetup.exe. The Ankh Setup Wizard window appears. (See Figure
A.2.) Click Next.

3. The installer displays the Select Destination Location window. (See Figure A.3.)
This window tells where it will place all of the files associated with Ahkh. Use the
default directory setting. Click Next.

Appendix A ■ Installation and Setup732

Figure A.2
The installation program installs everything you need.

Figure A.3
Leave the default settings.

4. The Select Components window appears. (See Figure A.4). For a first-time installa-
tion, select Full Installation. Leave all of the items in the scroll pane checked,
including the DirectX 9.0 SDK. Click Next.

5. The Select Start Menu Folder window is displayed. (See Figure A.5.) The start
menu is set by default to the Ankh folder. Leave it where it is for now. You can
change things later. Click Next.

Installation and Setup 733

Figure A.4
Select Full Installation and leave all of the items checked.

Figure A.5
The shortcut is placed in the Start Menu folder.

6. The system displays the Ready to Install window. (See Figure A.6.) The scroll pane
in this window tells you what will be installed. Click Install.

7. The system displays a progress bar in the Installing window. (See Figure A.7.) The
installation can take up to a few minutes, depending on the speed of your system.

Appendix A ■ Installation and Setup734

Figure A.6
The installation program confirms the files to be installed.

Figure A.7
The installation might require several minutes.

8. When the installation is complete, you see the Welcome to Setup for DirectX win-
dow. (See Figure A.8.) Click I Accept the Agreement. Then click Next.

n o t e

Please install the version of DirectX
included on the CD. It’s completely
safe. This installation of DirectX will
not affect any other version of
DirectX you have on your computer.
This small version of DirectX is
included in the Ankh directory. It
uninstalls automatically when you
uninstall the Ankh files. All the pro-
ject files are configured to access this
version of DirectX.

9. The system then displays the DirectX 9.0 Runtime Install window. (See Figure
A.9.) Click Next.

Installation and Setup 735

Figure A.8
Click I Accept the Agreement and Next even if you already
have DirectX on your computer.

Figure A.9
Click Next to proceed with the installation.

10. The DirectX 9.0 confirmation window appears. (See Figure A.10.) Click Finish.

11. The final Ankh installation window appears. (See Figure A.11.) Click Finish.

12. The Ankh project and documentation files are now installed, ready for viewing.

Appendix A ■ Installation and Setup736

Figure A.10
The run-time version of DirectX is installed.

Figure A.11
Click Finish to proceed with the installation.

Viewing the Files
Assuming that you have installed the files for this book, it helps to familiarize yourself
with them. (If you have not yet installed the files, see the section titled “Installing the Ankh
Projects and Documentation.”)

To view the book files and the Ankh projects, navigate to the Ankh folder. By default, this
folder is installed under Program Files. (See Figure A.12.)

The Ankh Directory
Click the Ankh directory to view the Ankh files. Figure A.13 shows the contents of the
Ankh directory.

The Ankh Directory 737

Figure A.12
The source code and documentation are in the Ankh directory
under Program Files.

Figure A.13
The game, code, and documentation files are installed in the Ankh directory.

Given that you have installed all the files on the CD, you’ll see the set of files shown in
Figure A.13. Note the following:

■ The AnkhDX directory contains the version of DirectX that was used to develop
Ankh. This version of DirectX will not interfere with other versions of DirectX that
you might have on your computer. All the projects are configured to access this
version of DirectX, which makes things a lot easier. This version of DirectX is
Summer 2003b. This version of DirectX was used because it supports Microsoft
C++ 6.0. (If you want to reconfigure the project to link to a later version, you can,
for example, use the Summer 2004 version of DirectX, but then you will not be
able to compile using Microsoft C++ 6.0.)

■ The Boost library has also been included in the installation to save you trouble.
Again, this will not interfere with any other versions of Boost you might have
installed. This version has been trimmed down so that it will not require as much
disk space as the full Boost library.

■ The contents of the stripe folders are documented in the next section of this
appendix, “The Stripe Directories.”

The Stripe Directories
Each of the folders is titled Stripe 1, Stripe 2.1, and so on. Each of these folders contains
the project files for a stripe. (See Figure A.14.) In each stripe directory are two project files:

■ Ankh.dsw (for Microsoft Studio 6.0). If you have Microsoft Studio 6.0, click
this file.

■ Ankh.sln (for Microsoft Studio .NET). If you have any version of Microsoft
Studio .NET, click this file.

After you open a project file with Microsoft Studio, you can select the Compile option to
compile the project. Note that the first compilation might take several minutes, especial-
ly if you select one of the later stripes. Also, note that the executable file (Ahkh.exe) for the
project is always named Ahkh.exe and writes to the Bin directory. If you want to preserve
the executable file, change the name.

Appendix A ■ Installation and Setup738

Figure A.14
You see project files for
both Visual Studio 6.0 and
Visual Studio .NET.

The Bin Directory
The Bin directory contains the resource files for all the stripes. (See Figure A.15.) It is also
where your Ankh.exe files are placed when you compile a project. You also see a set of exe-
cutables that have been created for you. There is one for each of the stripes. You can use
these executables as points of reference that you can compare with the executables you
compile.

The Documentation Directory
The Documentation directory contains all the documents for the project. (See Figure A.16.)

The Ankh Directory 739

Figure A.16
The Documentation direc-
tory contains Word and
SmartDraw files for the
software.

Figure A.15
The Bin directory contains executables and resources.

Note the following:

■ All the document files are Microsoft Word files. These files are discussed in the
text. See Appendix D, “Software Engineering and Game Design Documentation.”

■ The User’s Guide shows you features of the game and reviews the code and docu-
mentation. There are Word and PDF versions. You can view the User’s Guide by
selecting the Help icon from the Ankh Programs listing.

■ To open the SmartDraw projects, first install SmartDraw from the CD. To accom-
plish this, click the SmartDraw option in CD installation program. You can obtain
resources and information on upgrading SmartDraw from http://www.smart-
draw.com/.

Playing the Game
An Ankh option is placed in your Windows Start menu. To play the complete game, select
this option. This executable is in the Bin directory, and it is called AnkhFinal.exe.

Uninstall
To uninstall the files, use one of the following options:

■ Windows Control Panel. Select this option from the Start menu and proceed as
prompted. The program uninstalls everything except the files you have generated.
You will have to remove these files manually.

■ Start menu. Select the Uninstall option in the Ankh program option. The program
uninstalls everything except the files you have generated. You will have to remove
these files manually.

Installing SmartDraw
To install SmartDraw from the CD, click on the SmartDraw installation icon on the CD.
A trial version of SmartDraw is then installed. If you want to upgrade, you can easily do
so by contacting SmartDraw at SmartDraw.com. You can obtain a demonstration copy at
http://www.smartdraw.com/.

Appendix A ■ Installation and Setup740

Working with Files

Appendix B

T
his appendix discusses specifics of locating and using the Microsoft Visual Studio
and SmartDraw files that the installation program installs for you. For information
on how to install the files, see Appendix A, “Installation and Setup.”

The Ankh Source Files
You can find all the source files for the stripes in the directory for Ankh that the installa-
tion program creates for you. By default, this directory is C:/Program Files/Ankh.

The project files for all the stripes appear in the Ankh directory. To view the Microsoft
Visual Studio files for the first stripe, for example, open the file titled Stripe 1. You will find
project files for both Visual Studio 6.0 and Visual Studio .NET.

When the install program installs the game and the source files, it also installs the version
of DirectX that the team used to develop the program. The installed version will not inter-
fere with other versions of DirectX that are on your computer. This version of DirectX is
in the Ankh directory. The projects are linked to this version of DirectX that is included
in the Ankh directory.

Each stripe folder contains two Microsoft Visual studio project files. One project has been
created with Microsoft Visual Studio 6.0 projects. (This is identified with the *.dsw exten-
sion.) A second project has been created with the first release of Microsoft Visual Studio
.NET. Both of these projects should readily convert to 2003 and 2004 versions of
Microsoft Visual Studio.

The src directory, which is in the Ankh directory for each stripe, contains several directo-
ries. Among these are Boost, Game, Graphics, Input, Sound, and State. These directories
reflect the divisions that the team developed for configuration purposes.

741

The assets (graphics and sound) for the game are stored in the Bin directory. The Bin
directory is located in the Ankh directory. All the stripes use the same Bin directory.

The SmartDraw Files
You will install some SmartDraw files that contain UML diagrams used in the Ankh
Software Design Description. To open these files, you must first install SmartDraw from the
CD. The installation program allows you to do this. The CD provides you with a trial ver-
sion of SmartDraw. If you want to upgrade, you can easily do so by contacting SmartDraw
at http://SmartDraw.com.

The demonstration version of SmartDraw that is included on the CD has the basic tools
you need to view the files and modify them. See Chapter 14, “Practice, Practice, Practice,”
for specific discussion of SmartDraw. Keep in mind that almost all of the UML artifacts
for the documentation were created with SmartDraw. You can find additional discussion
of SmartDraw in many chapters. See, for example, Chapter 18, “Documentation—
Learning How to Learn” and Chapter 9, “Iterating Design.” If you combine SmartDraw
with a word processor, such as Word, WordPerfect, or FrameMaker, you can cover all the
primary needs for technical documentation of the type of game project that this book dis-
cusses. This book combined SmartDraw with Microsoft Word and Microsoft Excel.

Appendix B ■ Working with Files742

Source Control

Appendix C

W
hen you track the changes to your source code, documentation, and resources,
you perform what is more generally known as version control. Version control
allows you to administer changes to source and files over time. Because a ver-

sion control system eliminates the need to back up files, it simplifies the work involved in
managing a software project’s configuration. The version control system stores changed
files so that they can be uniquely identified.

Many version control applications are freely distributed. One of the most popular is the
Concurrent Versions System (CVS). The Ankh team used CVS to manage Ankh’s source
code, resources, and documentation.

Obtaining TortoiseCVS
You can download the TortoiseCVS system free of charge from http://www.tortoisecvs.org.

Locking and Simultaneous File Access
Some version control systems use a file-locking mechanism. The developer invokes this
mechanism and obtains exclusive editing access to a file (locks it). After the developer
changes the file, he then unlocks it. At this point, others can access the file.

In contrast, CVS supports simultaneous editing of one file by multiple developers. The
Ankh development team decided to use CVS because it needed a version control system
that allows several developers to work on one file simultaneously.

743

Repositories
CVS manages files by maintaining change information in a repository. Typically set up on
a server, a repository is a central location where files are managed. Files are localized into
modules for sensible software configurations. Every CVS-administered project must have
a repository.

Developers who want to access the files might check out their own copy of a module from
the repository and edit the files within. These checked-out modules are known as sand-
boxes. After developers have changed their files, they commit them back to the repository.
When other developers update their files to the current version, these changes will have
been applied and stored.

File Management
CVS provides operations for managing, viewing, and changing files. Only a few of these
operations are necessary to maintain a version-controlled project:

■ New module. This is the first operation for any CVS-versioned project. This
option creates a new module to contain files. The location of the newly created
module is the CVS repository. Because files are checked out at the module level,
similar files should be grouped into modules. For example, Ankh’s source code
resided in the AnkhSource module, whereas documentation files were stored in the
AnkhDocs module.

■ Add. This operation adds files to CVS versioning control. By adding a file, CVS
begins to track changes to it.

■ Checkout. Checking out a module from the repository creates a copy of the files
within it, generating a new sandbox. After a module has been created in the reposi-
tory, that module is available for developers to check out for editing. For example,
developers checked out the AnkhSource module into their own AnkhSource sand-
box, enabling them to edit the source code within it.

■ Update. Updating a file in a sandbox revises it to match the repository’s version.
When a developer wants to see the current version of a file, he updates the file in
his sandbox. A developer can update a file to its current version or any previous
version. For example, to view the first draft of Ankh’s source files, a developer
would update his AnkhSource sandbox to the first version.

■ Commit. Committing a file revises the repository’s current version of it. After you
add a file to the repository, committing the file sets its first version in the reposi-
tory. After you edit a checked-out file in a sandbox, the repository’s version then
matches that file. Committing a file signifies to the repository that the file should
be changed for future updates. Developers can commit single files, multiple files,
or entire modules at one time. For example, after editing a source file in his

Appendix C ■ Source Control744

AnkhSource sandbox, a developer would commit it to the repository. Subsequent
checkouts and updates of that file then show these changes.

■ Tag. Adding CVS tags to a file is a convenient way to mark a particular version.
After creating a file and adding it to CVS, a developer could tag that version as
“First Draft.” Several versions later, the developer could view that version again by
updating the file and selecting its “First Draft” tag.

■ Branch. Branching a file in CVS disassociates it from the current version. For
example, after a developer completes a project’s first stripe, it might be branched
as “Stripe 1.” Further changes for the second stripe are not applied to the first,
allowing developers to check out different “Stripe 1” and “Stripe 2” versions of
the project.

■ History. Viewing a file’s history displays the CVS versions that the file has gone
through. Any tags or branches are visible in the history, providing a useful log of
changes and the associated developers.

Setting Up a Repository
The first requirement for any CVS-versioned project is a repository. To set up a reposito-
ry, begin by creating a folder to include the new project’s files. You create this folder the
same way that you create any other Windows folder. After you have created the folder,
right-click on it and view the context menu. From the context menu, select Make New
Module. (See Figure C.1.)

Setting Up a Repository 745

Figure C.1
Select Make New Module in the TortoiseCVS context menu.

After you select Make New Module, you see the Make New Module dialog box. (See
Figure C.2.)

Adding Files
After you create a module and repository, you can add files to the project by right-clicking
on the file and selecting CVS Add from the CVS context menu. This tells CVS to manage
the file’s changes and versions. (See Figure C.3.)

Appendix C ■ Source Control746

Figure C.2
Create a new CVS module.

Checking Out Files
Assume that another developer has created
a repository and added a module to it. The
module contains version-controlled files.
Then assume that you want access to the
version-controlled files. To accomplish this,
you begin by checking out your own copies
of these files. (See Figure C.4.) Specifically,
you right-click in your sandbox directory
and select CVS Checkout.

After you select CVS Checkout, you enter
the location and name of the appropriate
repository in the Checkout Module dialog
box. (See Figure C.5) Then you select the
module name to complete the checkout.
This provides you with your own version of
the files in the repository. You can now safe-
ly edit them. When you complete your
edits, you can commit them.

Checking Out Files 747

Figure C.3
Adding a file to CVS with the TortoiseCVS context menu.

Figure C.4
Use the TortoiseCVS context menu to check out a
module.

Updating Files
After you have checked out a module to your sandbox, you can update your sandbox to
obtain the current version of the module from the repository. To do this, select the file or
directory to update. Then select CVS Update from the context menu. (See Figure C.6.)

Updated files are green, whereas conflicted files and files that are ready to be committed
are red.

If you simultaneously change and commit files with another developer, you will have to
merge your files manually.

Appendix C ■ Source Control748

Figure C.5
The TortoiseCVS Checkout Module dialog box displays
available items.

Updating Files 749

Figure C.6
Update files using the TortoiseCVS context menu.

Software Engineering and
Game Design Documentation

Appendix D

T
his appendix guides you to the documentation that is mentioned in the text. Note
the following specifics:

■ References only. Some of the documents referred to in this appendix and else-
where in the book are only on the CD. Among these documents are the Ankh Soft-
ware Configuration Management Plan and the Ankh Software Project Test Plan. All
these documents have been created using Microsoft Word, and you can find them
in the Documents directory.

■ Selections from documents. This appendix contains part of the document. With
access to selected portions, you have a convenient way to examine a sample docu-
ment as you read. On the CD, you will find the complete Microsoft Word versions
of the documents.

List
Following is an inventory of the documents that you will have access to after you install
the programs and files from the CD:

1. Ankh Game Design. Selected sections appear in this appendix. For the complete
document, go to the Documents directory.

751

2. Ankh Software Requirements Specification. Selected sections appear in this
appendix. For the complete document, go to the Documents directory.

3. Ankh Software Design Description. Selected sections appear in this appendix. For
the complete document, go to the Documents directory.

4. Ankh Configuration Management Plan. Reference to the CD only. To see the doc-
ument, go to the Documents directory.

5. Ankh Project Test Plans. Reference to the CD only. To see the documents, go to
the CD and the Documents directory. You can find four test plans on the CD:
Ankh Software Integration Test Plan, Ankh Software System Test Plan, Ankh Software
Project Test Plan, and Ankh Software Component Test Plan. To see the document, go
to the Documents directory.

6. Ankh Coding Standards. Reference to the CD only. This is included in a section in
the Ankh Software Configuration Management Plan. To see the document, go to the
CD, Documents/Software.

n o t e

The documents as they appear in this appendix have been edited so that they are consistent with
the rest of the book. For this reason, they differ slightly from those you install from the CD.

When you install the software for this book, the complete documents are installed as a part of the
documentation set in the Documentation directory. Refer to Appendix A for information about how
to install and locate the documents.

SmartDraw projects that are included with the installation contain the technical illustrations for the
Ankh Software Design Description.

Ankh Game Design Document
The primary author of the Ankh design document was John Rose. Paul Whitehead con-
tributed graphics. Ben Vinson and Carlos Villar contributed the paragraph detailing 60
seconds of play. John Flynt was the producer.

Appendix D ■ Software Engineering and Game Design Documentation752

Introduction
Ankh follows the quest of vengeance undertaken by Sekhem, an Egyptian-Greek warrior
who is determined to destroy those who defaced and killed his father. The game focuses
on the battles fought by Sekhem and his party of rebel warriors on their journey to the
Egyptian capital of Thebes. These conflicts escalate from skirmishes to bloody clashes as
the band of adventurers cross the desert sands of ancient Egypt. Along the way, addition-
al characters join the band and new enemies attempt to stop Sekhem’s advance.
Interaction involves tactical control of the small army during Ankh’s many mêlées, includ-
ing strategic maneuvers, hand-to-hand combat, and spell casting.

The player is faced with winning battle after glorious battle, driving Sekhem toward his
final confrontation with Uheset, the bloodthirsty Queen of Egypt. Conflicts take place
turn by turn, stressing the tactical and chaotic aspect of warfare. Each level possesses its
own ambiance and strategy, from the alleys of inner Alexandria to the shadowed halls of
the Underworld.

The graphics of Ankh illustrate the varied and stylish architecture and landscapes of
ancient Egypt. The game’s music varies from haunting chants to blood-quickening battle
drums. All aspects of the game’s art and sound immerse the player in the primal rage of
ancient warfare.

Lead Game Line
“Revenge Burns.”

Control
The player interacts with Ankh from a 3/4 top-down view of the battlefield. The player
controls Sekhem and his party with the mouse and the optional keyboard. The Graphical
User Interface (GUI) consists of the main battlefield window, a smaller unit detail win-
dow, and buttons for issuing commands to characters.

Every turn, the player can issue commands to one of his characters. These turns are
ordered so that each of the player’s characters has its own turn in sequence. These com-
mands include movements, attacks, item use, and spell casting. By maneuvering the char-
acters about the battleground and attacking the enemy in a tactical fashion, the player can
defeat each opposing force and move closer toward the final confrontation.

Ankh Game Design Document 753

Units and Characters
Ankh is a battle-based game in which the player maneuvers characters to destroy the
opposing force. Units can refer to anything that has a dynamic role in a game. If you have
morphing rocks and talking trees, you can consider them units. This game has only char-
acter units, so this document refers to units as characters.

Characters possess items, weapons, skill, and attributes that are specific to themselves.
Characters are given turns to move, attack, and use skills during combat, and they are con-
trolled by either a human or computer player. Characters are either generic representatives
of their class, such as random guards, or specific characters who are central to the game,
such as Sekhem and Queen Uheset. Each character possesses the following attributes:

■ Name

■ Class

■ Strength

■ Speed

■ Spirituality

■ Resilience

■ Condition

■ Experience

■ Skills

■ Attacks

■ Items

■ Mesh

■ Skin

Classes
Each character of Ankh belongs to a character class. A class is a set of defining character-
istics for characters. The classes are as follows:

■ Slave

■ Soldier

■ Bodyguard

■ Guard

■ Archer

■ Mummy

■ Priest of Isis

Appendix D ■ Software Engineering and Game Design Documentation754

■ Priest of Ra

■ Priest of Osiris

Characters cannot change classes. The class acts as a guide to how characters improve over
time. For example, bodyguards will never possess much spirituality, but most of a priest’s
improvement is centered on spirituality and spells. Because classes define much of a char-
acter’s ability, Sekhem’s party and enemy forces consist of warriors with complementary
classes. Every member of a class is represented by that class’ character mesh and portrait,
making identification simple.

Characters
The story of Ankh unfolds battle after battle with the addition of new allies and enemies.
The game’s individual characters are represented as warriors of differing classes, but each
special character has a special character mesh and portrait. (See Table D.1)

Attributes, Skills, and Experience
Each character has individual attributes, skills, and experience. These are values that
change during the game, influencing how capably each character attacks, how much dam-
age the character can take, what spells the character can cast, and so on. Attributes include
the following list of personal values: strength, speed, spirituality, resilience, condition, and
experience.

A character’s strength value influences how much damage the character can deliver in
combat. Characters such as bodyguards and mummies have high strength attributes.

Ankh Game Design Document 755

Table D.1 Class Identities

Name Class Personal Information

Sekhem Soldier Son of Meseru, vengeful warrior determined to kill Uheset
Sati Priest of Osiris Betrayer of Meseru, Sekhem’s repentant guide
Uheset Priest of Osiris Queen of Egypt, destroyer of Meseru
Khefta Soldier Bloodthirsty general, betrayer of Meseru
Neru Bodyguard Former guard of foreign chief, freed by Sekhem and now

his loyal protector
Emaui Archer Angry young woman who shares Sekhem’s hate for

Uheset
Suten-Heh Mummy Ancient and powerful king revived by Anubis and willing

to help Sekhem

Speed indicates how far a character can move around the battlefield. Smaller characters
like slaves possess great speed.

Spirituality reflects a character’s spell-casting abilities. Priests, who have low strength and
speed, are strong due to their enchantments. Some characters attain spirituality through-
out the battles, thereby gaining spells.

Resilience influences how much damage a character can take. When a character has taken
too much damage, it is incapacitated until it’s healed. Big, tough characters, such as body-
guards, are defined mostly through their large resilience.

Condition describes a character’s current state of being. Healthy, diseased, unconscious,
poisoned, and alive are several possible conditions that might describe a character during
a battle. Condition affects how characters react to specific attacks and what moves they
can make.

Experience is the character’s most telling statistic, reflecting how much the character has
learned and seen throughout its trials. A character’s experience immediately increases
when he or she damages or casts a spell that affects an enemy. The attributes of characters
increase between battles. Their level of increase depends on the amount of experience
gained by the character during combat.

Skills are individual abilities gained throughout the game and influenced by attributes.
Spells and special attacks are two kinds of skills earned through experience on the battle-
field. As characters progress, the player has the option of granting these skills and upgrad-
ing the character.

Health Points and Spell Points

Health points and spell points fluctuate within a battle. A character’s resilience attribute
determines its starting health points. Health points reflect how much damage a character
can receive before being incapacitated. They can be restored up to the starting value by the
healing skill. If characters survive a battle, all of their health points are fully restored at the
start of the next battle.

A character’s spirituality attribute determines his or her starting spell points. Each spell
has a corresponding spell points cost, which is depleted as the character casts more spells.
Spell points slowly regenerate up to their starting value with time. Like the healing skill
for health points, the meditation skill is useful for increasing character’s spell points.

Items

Items are objects found in the world (on the battlefield, in shops, and on the black mar-
ket) that characters can manipulate and carry in the game. Each character possesses an
inventory, or collection, of these items. A character might equip a weapon item, such as a
sword or bow, and use it in combat. A character might also invoke an item during the skill

Appendix D ■ Software Engineering and Game Design Documentation756

use portion of the character’s turn. Players can buy or sell items at relevant establishments,
and the versatility that is inherent in these items can add great advantages in combat, such
as spells and healing abilities. (See Table D.2)

Inventory

The player manages character inventories through the Inventory window, which he can
view at any time. The player simply selects a unit and clicks the Inventory button in the
main GUI. The Inventory window displays the current character’s items, including
weapons, armor, healing items, and magic articles. The player can swap items between
characters who are within range of one another, in addition to equipping, removing, and
dropping items.

Weapons

Characters can hold up to four weapons each in their weapon inventories. At any point,
only one of these weapons can be equipped. The weapon that a character carries deter-
mines the amount of damage that the character can inflict during combat and the char-
acter’s attack range. At any time during battle, the player can re-equip a character with a
different weapon from the character’s inventory by bringing up the Inventory window,
removing the first weapon, and equipping the second. Some weapons are ranged, others
are only used in melee situations, and some can be used as both. Character classes limit
the types of weapons their characters can use. When characters die, their weapons become
available to scavenging by other characters. The available weapon types are as follows:

■ Broadsword

■ Khopesh

■ Axe

■ Spear

■ Bow (and arrows)

■ Dagger

Ankh Game Design Document 757

Table D.2 Item Inventory

Name Cost Power Effect

Golden Ankh 1000 10 Replenish
Sun Wadjet 400 4 Blinding Eye
Flame Wadjet 700 6 Burning Eye
Cloud Wadjet 900 8 Touch of Osiris

Weapons are derived from these types, and character classes limit weapon equipment to
certain types. For example, the Archer Emaui can use the Ebony Bow or the Alabaster
Starshower Bow, but he cannot use melee weapons. Characters cannot equip weapon
types that are forbidden to their Classes, but they can trade weapons to other characters
for use. (See Figure D.1.)

Spells

Spells are skills possessed by certain characters. The spells can be used during the charac-
ters’ turns during gameplay.

New Characters
In each of the five levels of Ankh, at least one new special character is introduced. When
these characters enter the game, they begin with characteristics that gradually improve.
(See Figures D.2 and D.3) The starting characteristics for these are as follows:

Appendix D ■ Software Engineering and Game Design Documentation758

Figure D.1
Weapons.

Level Dynamics
Ankh progresses as a series of levels in which many battles are fought between Sekhem’s
band and enemy forces. To pass through a level, the player must successfully win all of that
level’s battles while making sure that Sekhem survives. These battles vary in size, types of
characters, setting, and difficulty. Play is simple: The battle begins with Sekhem and his
adventurers at one end and hostile forces on the other. The player navigates toward the
opposition, and warriors clash in a harrowing battle to the death. The battle ends when all
enemies are dead.

Ankh Game Design Document 759

Figure D.2
Starting characteristics.

Figure D.3
Starting attributes.

Battles

Each level is composed of a series of battles. The first level contains only a few battles,
whereas later levels are made up of many. Battles are obstacles to the player’s band of
adventurers. The player must win each battle to continue gameplay. The player’s charac-
ters and enemy characters take turns moving, attacking, and using special combat skills.
The battle ends when all enemies are dead or Sekhem is killed.

Rounds and Turns

Battles take place in rounds. A round is the timeframe it takes for every character in a bat-
tle to take a turn. At the end of every round, every character has had the opportunity to
move, attack, and use skills. When it comes time for a character to act, it becomes that
character’s turn. The character is encircled at the base by a blue circle denoting its turn,
and its portrait and stats are displayed in the character section of the GUI. During a char-
acter’s turn, the player (or computer) chooses that character’s actions for the round, which
include moving, attacking, and using a skill. Each character can move once, initiate an
attack (including combos) once, and use one skill (including spells, healing potions,
items, and so on). After the character has performed/declined all three actions, that char-
acter’s turn is over, and play moves to the next character. The player can determine the
order in which his characters take their turns before combat, and this order is automati-
cally merged with that of the opposing force to create a satisfactory battle order.

Action Points

After it becomes a character’s turn, the player (or computer) must choose which actions
that character will perform. A character can move, attack, and use a skill once per turn.
The variety of actions that the character can perform is based on its action points. Every
character’s action points are restored at the beginning of its turn. Because a character can
choose from a selection of different movement distances, attacks, combos, spells, and so
on, the more effective actions cost more to perform. This cost is paid in the character’s
action points for the turn, and they help to balance the battle. Action points are shared
among movement, attacking, and skill use. For example, a character might move a great
distance in one turn but won’t be able to strike for much damage or cast a devastating
spell. If a character heals another from unconsciousness to complete health, that charac-
ter won’t be running circles around the battlefield until its next turn. The number of
action points that characters possess is determined by their attributes, most importantly
experience and endurance.

Actions

As mentioned earlier, a character can move, attack, and use a skill during its turn if the
character has enough action points. A character can perform these actions in any order.
When one of the player’s characters assumes its turn, the character becomes encircled at

Appendix D ■ Software Engineering and Game Design Documentation760

its base by a blue circle. The action menu listing move-
ment, attacks, and skills is displayed at the right side of
the GUI. After the character has performed an action,
that option is disabled in the menu. The player can end a
character’s turn early by clicking the End Turn button in
the same menu. If the character performs all three
actions, that character’s turn is ended and play moves to
another character’s turn. (See Figure D.4.)

Movement

A character’s move costs a number of action points rela-
tive to the distance moved. When the player clicks the
Move option on the Action menu, he must manipulate a
new movement icon on the battlefield to the character’s
destination. The distance and consequent cost in action
points are displayed above the destination icon. After the
player clicks on the destination, the character moves to it.
Its action points are adjusted accordingly, and the Move
option is disabled in the Action menu. A character will
maneuver around obstacles and impassible ground, and
the action point cost will reflect the necessary circumven-
tion. The maximum speed that a character can move and
the cost of movement are determined by the character’s attributes.

Attacking

A character can attack another character by selecting Attack from the Action menu. Then
a list of possible attacks are displayed in the Action menu. Units can execute certain
attacks depending on their character class and current weapons. For example, a guard
can’t rain down a volley of Fire Arrows, and an archer can’t perform the Sandstone Skull-
Crusher. Each attack costs a unique amount of action points. Attacks that cost more
action points than the character possesses are disabled in the Action menu.

After a player has selected an attack from the Action menu, he must select the attack’s tar-
get on the battlefield. This involves clicking on the enemy character. Defending characters
must be in range of the attacker. The Targeting window in the player’s GUI displays the
portraits of the attacking and defending characters, with an attack icon between them.
This visually represents the attack and aids the player in confirming it. The player must
then click the OK button in the Targeting window, which commences the attack onscreen
and disables the Attack button in the player’s Action menu. (See Figure D.5.)

Ankh Game Design Document 761

Figure D.4
Action menu.

For example, the player might want to perform Sekhem’s Thoth thrust attack on an
Imperial Bodyguard. On Sekhem’s turn, the player would click Attack in the Action menu,
which would then display all of Sekhem’s attacks, including the Thoth thrust. The
Targeting window then displays Sekhem’s portrait in the attacking character’s position,
with an empty slot for the not-yet-chosen defender, with a broadsword icon (represent-
ing the Thoth thrust) in between. If the player clicks on the enemy character to receive the
attack, the Bodyguard’s portrait appears in the targeting window’s defending character
position. The targeting window’s OK button is enabled. The player clicks it to commence
the attack. The attack is animated on the battlefield, and the player’s Attack button is dis-
abled in the Action menu.

Combo Attacks

A combo attack involves more than one attacker. Although a character might initiate only
one attack per turn, he or she might participate in other characters’ combo attacks. Single-
character attacks and combo attacks work the same way: The targeting window displays
slots for attackers and defenders, and the player fills these slots by clicking on them and
the appropriate character on the battlefield. Combo attacks use up action points from all
involved attackers. Therefore, characters must have extra action points to participate in
another character’s combo. All accomplice characters must also be within range, which is
determined by the individual combos.

For example, a player might choose to perform a Crocodile Snap combo attack with
Sekhem and Suten-Heh on Suten-Heh’s turn against an Archer. On Suten-Heh’s turn, the
player selects Attack and then Crocodile Snap from the Action menu. Because Suten-Heh
is capable of initiating the Crocodile Snap combo and Sekhem is capable of a melee attack
(which is all that this particular combo requires), this is a valid attack. The Targeting win-
dow displays Suten-Heh’s portrait in the first attacking slot, with empty slots for the accom-
plice and the defending character and the Crocodile Snap icon separating the attackers and

Appendix D ■ Software Engineering and Game Design Documentation762

Figure D.5
Targeting window.

defender. The player then clicks the first empty slot and selects Sekhem on the battlefield,
whose portrait is displayed there. Sekhem must have enough action points remaining to
participate. Now that the attacking characters are defined, the player clicks the defending
character’s empty slot and selects the Archer on the battlefield. With both participating
attackers and the target selected, the OK button is enabled in the Targeting window, and the
player can click it to commence the attack. Both characters perform their function in the
combo, and Suten-Heh can continue his turn, still free to move and use a skill.

Skill Use

The third action that a character can perform is skill use. Skills are special actions acquired
by characters throughout the game. Healing, spells, and the invocation of special items are
all examples of skills. For example, Priests of Isis and Priests of Osiris are imbued with dif-
ferent spells. Characters gain skills with experience and by collecting special items.
Healing can also be “learned” by characters, whose proficiency at curing other characters
increases throughout the game. (See Figure D.6.)

Ankh Game Design Document 763

Figure D.6
Skills.

Spells

Spells are diverse skills that select characters in the game perform. Spells cost characters
in magic points, which act much like action points. However, a character’s magic points
are restored every battle, not every turn. The amount of magic points restored to a char-
acter depends on the character’s spirituality, experience, and class. Special actions, such as
meditation or the use of certain potions, can be used to restore magic points more quick-
ly, but these, too, involve the use of skills. Of course, more powerful spells cost more magic
points. Therefore, classes that are able to cast spells, such as priests and mummies, must
budget their magic points throughout battle.

Spells can be untargeted, targeted, or zoned. Untargeted spells occur without direction
and don’t require the player’s choice of a target. For example, the Blinding Eye spell cre-
ates a shearing beacon of light above the caster; therefore, it requires no target. Targeted
spells are aimed at one or more characters and are directed by the player via the Targeting
window. For example, the Sunstroke spell burns a single character, which the player selects
with the Targeting window. Zoned spells occur within an area of effect, which the player
selects with a movable icon on the battlefield. After the player moves the icon to the
desired location and clicks, the spell is triggered in the selected zone. For example, the
Desert’s Breath spell creates a small sandstorm somewhere on the battlefield, and all char-
acters within its range are torn up.

Depending on a character’s attributes, the learning of spells occurs at different points in the
game. A character might suddenly gain the ability to cast a spell after a successful battle or
after finding a mystical and potent artifact. In any case, the capability of casting a spell is per-
manent and, once learned, relies only on the character’s current amount of magic points.

Healing

Throughout battles, characters are beaten, burned, crushed, shot, frozen, and stabbed.
Health points are restored when a battle is completed, so characters might become uncon-
scious or die. After a character reaches a low enough threshold (determined by the char-
acter’s class and resilience), he is rendered unconscious and falls to the ground, unable to
perform actions. The character then requires healing by another character before it can do
anything else. If a character is badly hurt, he begins to die. In this case, the character’s
Statistics panel displays the number of rounds left to be healed before the character dies.
If a character is unconscious and hit by an enemy, the result will probably be death.
Characters can also be killed from a conscious state if the attack is sufficiently powerful.
If characters die, they do not progress further in the game unless they are resurrected later.

Appendix D ■ Software Engineering and Game Design Documentation764

Healing is a skill much like spells, but it does not require spell points. Almost any charac-
ter can heal another, with various degrees of proficiency. For example, Priests of Isis are
potent at healing and can cast powerful healing spells. However, a Guard has almost no
healing ability and can only use healing in the most desperate situations.

Meditation

Meditation is a skill possessed only by magic users. Requiring no magic points, the use of
this skill increases the character’s magic points for its next turn. The amount of increase
depends on the character’s spirituality, class, and experience.

Item Use

The use of items represents a diverse set of possibilities for characters. Some items possess
special skills, including healing or spell powers that are available to characters regardless
of their classes, healing capabilities, or magic points. Special items (items that can invoke
their skills) come in various types, from weapons to treasure. The abilities of all special
items are plainly displayed with the item’s other information in the Inventory window.

The use of items’ skills is special because it provides flexibility in what the player can do.
For example, a slave can’t cast even the most rudimentary of spells, but if the slave has a
Sun Wadjet, the player can choose to use the item’s Blinding Eye skill. Because of this, the
slave can move, attack, and cast a spell in one turn.

Inventory

The player can view the Inventory window at any point during battle by pressing the
Inventory button beneath the Action menu. The inventory displays the current character’s
items and relevant information such as which weapons are equipped and that character’s
amount of gold. The player can also view the inventories of the other team members by
clicking on their names in the Inventory window. During battle, the player can equip
or unequip weapons or remove items. After battle, the player can trade items between
characters.

Level Descriptions
The player guides Sekhem and his band through several levels. These levels begin at
Alexandria in northern Egypt and wind south toward Queen Uheset’s capital of Thebes.
(See Table D.3.)

Ankh Game Design Document 765

Level 1: Streets of Alexandria
The first level that the player encounters depicts the streets of Alexandria. The level lacks
complexity to make it easier for the player to become used to playing the game.

Intro

Alone and with a purpose, a young man reached the shores of Alexandria. A foreigner to
this land, he still knew much about it. His father had spun stories of the Pharaoh and the
gods, desert dunes, and eternal river. Those tales had become one with his anger, an anger
that would carry him from a distant land to the home of his father.

The warrior was Sekhem, son of the warlord Meseru. A mirror of his father’s might and
command, Sekhem had disguised himself as a simple pilgrim. He had sailed for weeks to
reach the port, and he was eager to begin his journey down the Nile. With nothing but a
dagger and his late father’s golden ankh, Sekhem began his quest for retribution.

Description

The first level begins in the tight streets of Alexandria, where Sekhem lands after his jour-
ney from Greece. (See Figure D.7.) He faces several small groups of abusive city guards
who want to rob him. Sekhem’s only items are a simple dagger and his father’s golden
ankh.

The level is built up of stucco walls and curving alleyways. Its battles take place in the city’s
common square, a garden, and the fountain plaza. The enemies consist of annoying
guards.

Layout

The layout of the level lacks detail so that the player of the game can concentrate on learn-
ing the controls. On the other hand, there is enough detail to interest the player in the
game features.

Appendix D ■ Software Engineering and Game Design Documentation766

Table D.3 Class Descriptions

Name Class Description

Sekhem Soldier Son of Meseru, vengeful warrior determined to kill Uheset
Sati Priest of Osiris Betrayer of Meseru, Sekhem’s repentant guide
Uheset Priest of Osiris Queen of Egypt, destroyer of Meseru
Khefta Soldier Bloodthirsty general, betrayer of Meseru
Neru Bodyguard Former guard of foreign chief, freed by Sekhem and now

his loyal protector
Emaui Archer Angry young woman who shares Sekhem’s hate for Uheset

Ankh Game Design Document 767

Figure D.7
File-level layout.

Battles
Refer to the layout for Level 1 (Figure D.7) to locate the scenes of the battles.

Common Square

The common square appears right after the front gate. Lighting should be brighter
because the day is beginning.

Scene

This vacant area is surrounded by plastered houses. Its only exit is an alley at the far end.
A set of obelisks adorns the cobbled ground, and palm trees grow on either side. The
square acts as an introduction to actions, as the player must navigate it to reach the other
side and the alley beyond. The level’s first enemy, a guard, attempts to rob Sekhem of his
scant riches. Sekhem must defeat the guard to pass. This is the game’s first battle. Sekhem,
initially equipped with a simple dagger, acquires the guard’s broadsword and gold. The
common square’s sides are made up of plastered buildings.

Beginning Dialogue

Guard: “Welcome to Alexandria, urchin. My name is Tuthmek, and I’ll be your. . . Well,
what have we here? That’s quite a pendant, urchin! I could fetch a tidy amount for that
ankh around your neck. I’ll tell you what. You can keep your worthless life for that lovely
little ornament. I’d hate to redden the trinket. What do you say?”

Sekhem: “I’d sooner deliver up my heart to a beast such as you.”

Guard: “I was hoping you’d say that!”

Garden

The garden provides plants, hanging if possible. The setting is still bright but has deepen-
ing shadows.

Scene

Sekhem finds his way into a small garden area, decorated with potted plants and trees. The
edge of the garden is made up of houses and a stone wall. Two weak guards threaten
Sekhem here, and the player must defeat them to advance. The garden’s overall look is that
of a deeply urban space with an unusual amount of greenery. The plants are organized in
such a way as not to interfere with the ensuing battle. Sekhem acquires the guards’
broadswords and gold and a Sun Wadjet, which contains the Blinding Eye skill.

Appendix D ■ Software Engineering and Game Design Documentation768

Beginning Dialogue

First Guard: “How did filth like you find your way here? On second thought, don’t answer.
It doesn’t matter. Tuthmek must be off with those Phoenician wenches again. Do I know
you? You look familiar. . . Ah well, no matter. We’ll take care of this.”

Fountain Plaza

Open and bright. The fountain contrasts the sinister approach of the guard.

Scene

The fountain plaza is the final showdown between Sekhem and the corrupt Alexandrian
city guard. Here the player has to defeat four guards. Sekhem’s experience will have
increased by this time to make such a defeat possible. The plaza is surrounded by stone
walls and a colonnade. One end opens to an exit gate that stands on the opposite side. A
fountain and statues of Anubis decorate the plaza’s pavement. The three guards have
heard of Sekhem’s defeat of their peers and are anxious to kill him. This climactic battle
of the first level will be difficult to win but will hinge on the outmaneuvering of Sekhem’s
slow enemies and use of the Sun Wadjet’s Blinding Eye spell and the restorative powers of
the golden ankh. After defeating the guards, the sage Sati joins Sekhem and explains part
of their interconnected history.

Beginning Dialogue

First Guard: “Nice sword, urchin. Looks an awful lot like my friend Tuthmek’s.”

Sekhem: “I’m sure he’d agree with you, if he could.”

First Guard: “You lie, filth, and that’s a capital offense around here! Get him!”

Ending Dialogue

Sati: “Greetings, warrior. Until now, I hadn’t dared to hope. But the young man I see
before me proves the impossible. Stand assured, for I know why you have come.”

Sekhem: “You confuse me with another, sir. I’m a common stranger to this city, looking
only to pass through. Please step aside, for I’d hate to repeat the insistence I showed these
guards.”

Ankh Game Design Document 769

Sati: “Lecture me not, boy, for it is you who must learn. Old I may be, but these eyes know
your own. In you I see the greatest leader ever to command these lands, a man whom I
counted my greatest friend. Even that bauble around your neck is proof enough. You may
be a stranger, son, but not common. In you I see salvation from dark powers. In you I see
the legacy of Meseru. To your father, I was known as Sati.”

Sekhem: “Sati? The man my father called Sati is long dead. How do you know me?”

Sati: “I told you, young man. I was closest to your father, and much of me died when he
was betrayed to the western sands. I find it hard to depart this life in these wicked days.
But come, I will tell you all. I owe it both to you and myself. I owe it to your father.”

Resources
This section provides a list of models, sounds, effects, and other items needed for this
level. Most of the resources named appear in several levels.

Models

The specific way that models are laid out can be determined during the construction of
the level. The following features appear in the level:

■ Sekhem

■ Guard

■ House

■ Obelisk

■ Palm tree

■ Potted plant

■ Stone wall and buttress

■ Column

■ Statue of Anubis

■ Fountain

■ Gate

Appendix D ■ Software Engineering and Game Design Documentation770

Sounds

The following sounds can be used during the action that takes place at this level:

■ Background song

■ Weapon clashes

■ Unit sounds

Effects

The following effects should be available at this level:

■ Blinding Eye spell

■ Healing skill

Items

The characters should have access to the following weapons or other items:

■ Dagger

■ Ankh

■ Broadsword

■ Gold

■ Sun Wadjet

n o t e

For the complete Ankh Game Design, refer to the version of the document installed from the CD.
See Appendix A for more information.

Ankh Software Requirements Specification
The requirements document was a team effort from the start. The team revised it almost
daily using the laptop and the overhead projector.

Ankh Game Design Document 771

Description
The Ankh Software Requirements Specification provides a list and description of the func-
tional and nonfunctional specifications for the software components of Ankh. It is derived
in part from the Ankh Game Design Document and is supplemented by the Ankh Software
Design Specification and the Ankh Project Software Test Plan.

The Ankh Software Requirements Specification provides the following views of the require-
ments:

■ A list of the requirements presented numerically

■ A preliminary component grouping of the requirements

■ Use case explorations of the requirements

■ A preliminary mapping of the requirements against proposed objects and their
responsibilities

The document is intended to establish the initial scope of the development effort.

Perspective
This is a single-player turn-based strategy game. It is intended to illustrate the processes
and technical items contained by a textbook on software engineering and game develop-
ment. The game incorporates features that are common to PC games, but it also intro-
duces a variety of innovations that are not usually offered in beginning game books.
Among these features are the following:

■ Advanced resource management

■ A state machine

■ Event handling through the binding of member functions

■ The use of the Boost library

■ The use of map and character editors

■ Saving and loading of game states

Product Functions System Decomposition View
Preliminary functional components of the product are as follows (see the Ankh Software
Design Specification for greater detail):

Appendix D ■ Software Engineering and Game Design Documentation772

Stripe 1: Game Opening

Stripe 2.a: Tile Map

Stripe 2.b: GUI Elements

Stripe 2.c: Map Editor

Stripe 2.d: Save Level

Stripe 3: Level Template (modeled on first level)

Stripe 4: Character Editor

Stripe 5: Game Physics

Stripe 6: Inventory

Stripe 7: Combat

Stripe 8: Skills

Stripe 9: Outside World Management

Stripe 10: Skills Interface

Stripe 11: AI

Stripe 12: Remaining Levels

Stripe 13: Saving and Loading

Stripe 14: Options

Stripe 15: Revisions

These components are explored more fully later, under the heading “Functional
Requirements Component View.”

User Characteristics
This game is designed for players of all ages. However, its features offer points of interest
for people who are learning how to develop games using C++ and DirectX.

The game offers the ability to save level and character configurations. Other features
enable students of the game to see what they can do with a relatively advanced develop-
ment effort.

Constraints
Ankh serves largely to illustrate development activities. Although it includes a wide range
of interesting features, such as map editing, character editing, and other things, it is not
intended to offer a level of complexity that corresponds to a commercial game. Code is
intentionally simplified so that readers of the book can make easy use of it.

Ankh Software Requirements Specification 773

Assumptions and Dependencies
An executable is included on the CD, but users of the text can compile the game at differ-
ent stripe levels. The user should have versions 6.0 or 7.0 of Microsoft Visual C++. An
installation package accompanies the software.

Take care to package the game so that users of the text that the game accompanies can load
it in stripes.

External Resource Requirements
This section of the document pertains to user and system requirements that affect the
operation of the game within a given system or within a network context.

User Interface
The user interface is based on components created using Direct3D and DirectInput.
Standard Windows message is used for key events. The game runs on a personal comput-
er. At a minimum, the interface should support 16-bit and 32-bit resolution. The prima-
ry resolution should be 640�480, but higher resolutions should be supported.

Hardware Interface
Ankh executes on a PC that is equipped with a Pentium III or equivalent, a Direct3D-
compatible graphics cards, and an appropriate sound card.

Software Interface
DirectX 9.b (Summer Update 2003) or later is required for the game.

Communications Interface
The user interacts with the game using the mouse and the keyboard.

Functional Requirements Views
This section provides the first of three views of the functional requirements for Ankh:

■ The first view provides a primary, sequential list of the functional requirements.

■ The second view provides a list of the functional requirements as grouped accord-
ing to component. A component is also called a stripe. Each stripe represents a
coherent grouping of functionality.

■ The third view provides a set of use cases that offer proofs-of-concept for the require-
ments. The use cases supplement the master requirements list. See Appendix A,
“Installation and Setup,” for a use-case view of the requirements listed in this section.

Appendix D ■ Software Engineering and Game Design Documentation774

Primary List of Functional Requirements
<Req_1>—Software shall have the capability to save the game state from a menu.

<Req_2>—Software shall have the capability to return to a saved state by loading a file.

<Req_3>—Software shall have the capability to associate user profiles with saved game
files.

<Req_4>—Software shall allow the player to choose file names.

<Req_5>—Software shall have an auto-save feature that automatically saves the game
constantly to memory.

<Req_6>—Software shall have a timer mechanism that will flush memory to disk peri-
odically (every 20 seconds).

<Req_7>—Software shall provide the player the option to save a Replay after a battle.

<Req_8>—Software shall have a Main menu that will have a Load Replay option.

<Req_9>—Software shall save Replays to a default directory where the profile informa-
tion is stored.

<Req_10>—Software shall prompt the user to create a profile that is stored in the Profiles
directory.

<Req_11>—Software shall allow the player to play back at variable speeds.

<Req_12>—Software shall have a Pause/Resume feature to facilitate Replays.

<Req_13>—Software shall implement terrains, characters, and buildings—any 3D
objects as meshes.

<Req_14>—Software shall run only in full screen mode.

<Req_15>—Software shall have the capability to handle Alt+Tab key combination.

<Req_16>—Software shall support a custom mouse pointer.

<Req_17>—Software shall have support for alpha channels.

<Req_18>—Software shall support panels, menus, buttons, sliders, text boxes, and
pictures.

<Req_19>—Characters shall have at a minimum these attributes: strength, health, agili-
ty, vitality, and intelligence.

<Req_20>—Characters shall have skills that are appropriate to their class.

<Req_21>—Each character shall belong to a social class that is identifiable based on
unique attributes.

Ankh Software Requirements Specification 775

<Req_22>—Customization shall be based on tools rather than be hard coded.

<Req_23>—Software shall have a logging capability that will track errors and log trace
statements.

<Req_24>—Software shall not support multiplayer and should be player against the AI.

<Req_25>—The AI shall have the capability to use units and play the game.

<Req_26>—The AI shall be able to play any unit based on modes.

<Req_27>—Software shall support at least five levels based on a simple story.

<Req_28>—Software shall have the capability to play the game using only a mouse.

<Req_29>—Software shall support MP3 playback and allow the player to select his own
music.

<Req_30>—Software shall include default music that the player can replace.

<Req_31>—Software shall operate correctly in the absence of music files.

<Req_32>—Software shall support DirectSound and a variety of sound formats, partic-
ularly .wav and .mp3 extensions.

<Req_33>—Software shall support 16 channels and allow the user to disable the sound
effects.

<Req_34>—Software shall support a particle generator for special effects.

<Req_35>—Software shall support the dot X mesh format.

<Req_36>—Software shall allow the player to control at least 6 units.

<Req_37>—Software shall have a game mode where it can play against itself.

<Req_38>—Software shall support a main menu with these entries:

New Game

Continue

Change Profile

Options

Exit

Editor

Load game

<Req_39>—Software shall support the following options:

Change Resolution

Sound

Appendix D ■ Software Engineering and Game Design Documentation776

Volume

Game Speed

<Req_40>—Software shall support the capability for characters to acquire various armor,
weapons, and inventory.

<Req_41>—Software shall support different kinds of terrain that will affect the perfor-
mance of the characters.

<Req_42>—Software shall support the capability that given two points, it will be able to
navigate and find a sensible path.

<Req_43>—Software shall support a Map Editor.

<Req_44>—Software shall support an intuitive Character Editor.

<Req_45>—Software shall support the capability for characters to move based on armor,
speed, terrain, and so on.

<Req_46>—Software shall load in no more than 20 seconds and display a progress bar or
some other indicator that loading is in progress.

<Req_47>—Software shall allow a player to select units with the mouse and use a differ-
ent button to perform actions.

<Req_48>—Software shall have a fixed camera angle of _.

<Req_49>—Each character shall have an inventory.

<Req_50>—The shareware program INNO shall be used to install the CD that accom-
panies the book.

<Req_51>—Software shall fit on a single disk including support tools.

<Req_52>—Software shall support a ToolTip to provide information to the player of the
game.

<Req_53>—Software shall include a user’s guide.

<Req_54>—Units that die and that you do not revive within a specific period never come
back.

<Req_55>—Units can be restored back to health using magic (and items).

<Req_56>—Units gain experience and enhance their skills through combat.

<Req_57>—When a user starts the game, he is provided with configuration options, such
as playing a previous game. (The game starts with a profile selection screen, followed by
a main menu screen.)

Ankh Software Requirements Specification 777

<Req_58>—Software shall support the following software/hardware:

Windows 98 or higher

500-MHz CPU

128 MB

16-MB 3D Accelerator (TNT2)

CD-ROM

DirectX 9

<Req_59>—During the installation of the product, the user shall have a choice of which
tools to install.

<Req_60>—Documentation for the editor and tools shall be provided in separate HTML
files.

<Req_61>—Software shall be implemented in C++/Win32.

<Req_62>—Software shall include a batch file for compiling the program.

<Req_63>—Software shall support automatic source code documentation.

<Req 64>—Software shall support a global system clock to synchronize events in the
game.

Functional Requirements Component View
The Ankh Software Design Description deals with this view of the requirements in much
greater detail. It provides a componential view of the classes that implement the func-
tionality. The breakdown here is meant only as a preliminary exploration of the scope of
the game.

Stripe 1—Opening

Requirements 8, 14, 15, 16, 17, 18, 23, 28, 38, 46, 57

Stripe 2.1—GUI Objects

Requirement 18, 52

Stripe 2.2—Floor Tiling

Requirement 43

Stripe 2.3—Mesh Placement

Requirements 13, 43

Stripe 2.4—Save and Load

Requirement 4

Appendix D ■ Software Engineering and Game Design Documentation778

Stripe 3.1—Navigate Alexandria

Requirement 13, 14, 15, 16, 17, 36, 61

Stripe 3.2—Sound

Requirements 29, 30, 31, 32, 33

Stripe 4—Character Editor

Requirements 18, 19, 20, 21, 22, 35, 44

Stripe 5—Unit Physics

Requirements 13, 14, 15, 16, 17, 35, 41, 47, 42, 45, 48, 64

Stripe 6—Inventory Items

Requirements 40, 49, 55

Stripe 7—Combat

Requirements 54, 56

Stripe 8—Acquire Skills

Requirements 20, 34, 47, 55, 56

Stripe 9—Acquire Weapon

Requirements 14, 15, 16, 17, 40, 49

Stripe 10—View Statistics

Requirements 14, 15, 16, 17, 18, 19, 20, 21

Stripe 11—AI

Requirements 24, 25, 26, 37

Stripe 12—Remaining Levels

Requirement 27

Stripe 13—Saving and Loading

Requirements 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Stripe 14—Options

Requirement 39

Nonfunctional Requirements

Requirements 50, 51, 53, 58, 59, 60, 61, 62, 63

Ankh Software Requirements Specification 779

Use Case View of the Requirements
Appendix A presents a full set of use cases for the functional requirements of Ankh. Each use
case tests the validity of a requirement or set of requirements and collects information that
is useful in the development of a test plan. The use cases also provide a start on the design
work. See the Ankh Software Test Plan for specific information on testing. See the Ankh
Software Design Specification for information on the generalized design scenarios for Ankh.

Design Constraints
This section lists design constraints. Design constraints pertain to any development fac-
tors that relate to the scope of the project or that can impact the development schedule
for the product.

Availability
Ankh is available for play after installation. A single installation package allows you to
install the game. Take care to develop “stripes” of the game so that readers of the game text
can view it at different stages of construction.

Security
There are no security issues.

Maintainability
You can modify the game using the map and character editors. If a patch or expansion is
issued, you can overwrite the executable. The maintenance elements are available for
download from the Web site. The editors create data files, which must not be overwritten
during updates.

Other Requirements
Some nonfunctional requirements, enumerated earlier in both the component decompo-
sition and the consecutive, apply to the game. These requirements are as follows: 50, 51,
53, 58, 59, 60, 61, 62, and 63.

Use Cases
Following are use case scenarios that explore the requirements listed in Section 3 of the
SRS. You can find the complete set of use cases in Appendix A of the Ankh Software
Requirements Specification in the Documents directory.

The CD contains all of the use cases.

Appendix D ■ Software Engineering and Game Design Documentation780

Use Case 1

Ankh Software Requirements Specification 781

Use Case 2

Appendix D ■ Software Engineering and Game Design Documentation782

Use Case 3

Ankh Software Requirements Specification 783

Use Case 4

Appendix D ■ Software Engineering and Game Design Documentation784

Use Case 5

n o t e

For the complete Ankh Software Requirements Specification, refer to the version of the document
installed from the CD.

Ankh Software Requirements Specification 785

Ankh Software Design Specification
The design document replaced the requirements document as the primary working doc-
ument after the first quarter of the project. Everyone on the team worked on it through
group review sessions. Its diagrams were almost always viewed as proofs of concepts
rather than detailed plans.

Purpose and Layout of the Document
This document depicts the design of software. The layout of the document provides you
with a way to envision how the software is created in terms of its development cycle and
its component construction. Each component is referred to as a stripe. That’s because the
term stripe implies both the component parts (classes, global functions, COM objects, and
so on) and the position that the development of the components occupy in the develop-
ment cycle.

The system is presented in up to five ways. These are referred to as views. In some cases,
the views are created using UML diagrams. In other cases, lists or generic UML object dia-
grams are used. The views are as follows:

■ Requirements (list and CRC)

■ Conceptual (freeform object diagram)

■ Behavioral (sequence and collaboration)

■ Logical (class)

■ Component (implementation and deployment)

Figure D.8 represents the views featured in this document.

Source Documentation
This section contains a list of the documents from which information has been drawn to
for the design effort.

CRC Views
CRC cards are found in the Ankh Software Requirements Specification.

A separate document archives the CRC cards: RequirementsCRCView_V_0105.doc. This
document is included in the Ankh Software Requirements Specification.

Appendix D ■ Software Engineering and Game Design Documentation786

Requirements
The requirements for the Ankh software, in list form, are contained in the Ankh Software
Requirements Specification.

Use Cases
Use cases for specific requirements appear in the Ankh Software Requirements
Specification. The use cases for the requirements establish and verify the context and scope
of the requirements. In this document, another set of use cases is employed. These are
design use cases. A design use is presented for each of the stripes and establishes the inte-
grated functionality that should be evident with the completion of each stripe. A design
use case represents but does not include all of the functionality that is embodied in a sin-
gle stripe. A design use case is a proof of concept for the stripe.

You can find references to the Class-Responsibility-Collaboration (CRC) cards in the later
section titled “Sample CRC Cards.”

Ankh Software Design Specification 787

Figure D.8
Ankh Software Design Description views, UML, and other representations.

TOR Chart
You can find the TOR chart in an appendix to the Ankh Software Requirements
Specification.

Glossary and Definitions
This section contains a list defining the terms and acronyms used in this document.

Appendix D ■ Software Engineering and Game Design Documentation788

Behavioral view The behavioral view tries to show how the objects that comprise the
system interact through messages or operations. Behavioral views can
be presented using UML sequence and collaboration diagrams.

Component A component is a collection of classes, global operations, or other items
that share the same general set of responsibilities. One stripe might
have dependencies distributed among several components, but each
stripe tends to be centered on the development of a given component.
Components usually represent the focus of a single build. Component
views take two forms: internal and external. The internal component
view represents a subset of the system that can be compiled or tested
as an isolated entity. The external component view represents the entire
system at a given phase of its development.

Conceptual view This is a representation of the system using either a use case or a gen-
eral object diagram. If the general object diagram is used, the boxes
depict class objects, global functions, COM objects, database tables, and
other items. A conceptual view is optional. It is recommended for use
during early phases of the design or at points in the project at which it
is important to show some of the preliminary work that led to given
design decisions. It is intended as a way that those who are trying to
understand the design from a historical perspective can re-create the
conceptual framework in which design decisions arrive.

External component view The external component view represents the entire system built at a
given point in the development life of the system. Ultimately, it repre-
sents how the system is deployed. Because it is intended to represent
an overall system build effected during the software development
effort, as stripes are developed, the external component view becomes
more involved.

Internal component view The internal component view is intended as a way to show an isolated
view of the system. It might or might not represent an entire system
build, but for the stripe it represents, all system dependencies that are
relevant to the stripe should be included. This view is intended to repre-
sent a portion of the overall system that can stand alone and compile
as a separate entity. A component represents the classes, functions, and
other software items that are designed for a given phase of develop-
ment, together with a description of the point at which these elements
were implemented during the development process. This representation
of the system is intended to expose the features of the system that are
specific to a given stripe, not to represent the system as a whole.

Component Descriptions
This section contains descriptions and diagrams of each of the software components of
the system. Generally, each component is presented as a stripe. A stripe is a representation
of the system that encompasses both the functionality of the system and the place in the
development process at which the functionality is implemented. See the Glossary for
more complete definitions.

If you are effecting an upgrade of modification of the system, the stripe representation of
the system allows you to understand the order in which components were developed and
the types of dependencies that unfold during the development process.

Ankh Software Design Specification 789

Logical view A representation of the system that shows the classes that compose the
system and their static relationships. The logical view of the system is
represented using class diagrams. Included in the class diagrams are
selected attributes and operations of classes. The use cases are created
both inductively and deductively. Inductively, the use cases are derived
from the sequence and collaboration diagrams. Deductively, they are
drawn directly from analysis of the system’s functional requirements.

Stage Stripes might have stages, which are reflected in the build history of the
system. The stripe stages have bearing on the design because they
imply that the complexity of a given stripe is great enough that its
implementation should not be attempted all at once. At the same time,
the reduction of a stripe to stages implies that the stages make the
most sense when they are developed in a single design unit.

Stripe A stripe is a set of functionality embodied in a single component of the
system, together with a description of the point in the development
process in which the component comprising the stripe is implemented.
Stripes are represented using up to five views of the system. Each stripe
should represent a complete system build, but within the stripe docu-
mentation is a component view from which you can identify the specific
functionality that is implanted with the stripe. Such a description might
prove useful during redevelopment or upgrade efforts.

Use case view A use case view of each stripe is shown. Each use case for this docu-
ment represents a proof of concept for the stripe. Use cases for the
design effort are attempts to show how the implementation of a given
design element manifests itself in the operation of the system. It can
also serve as a starting point for the decomposition or isolation of sys-
tem functionality for testing efforts.

View A view is a way of looking at the system. The views shown in this docu-
ment are requirements, conceptual, behavioral (sequence and collabora-
tion), logical (class diagrams), and component (internal and system).

List of System Stripes
The components are represented as stripes, and the order in which the stripes are pre-
sented represent the recommended order in which the system can be built.

Table D.4 provides a summary of the stripes that comprise the game.

Stripe 1: Start of Game
This stripe is the first implementation stripe of the game. It provides a basic framework
in which to test the game window and the GUI features that are applicable to user inter-
actions at the game level.

Stripe 1: Requirements View

This section identifies the requirements and use cases derived from the Ankh SRS that
apply to this stripe.

Appendix D ■ Software Engineering and Game Design Documentation790

Table D.4 System Stripes

Stripe Number Summary

Stripe 1 Opening, Requirements 8, 14, 15, 16, 17, 18, 23, 28, 38, 46, 57
Stripe 2.1 GUI Objects, Requirements 18, 52
Stripe 2.2 Floor Tiling, Requirement 43
Stripe 2.3 Mesh Placement, Requirements 13, 43
Stripe 2.4 Save and Load, Requirement 4
Stripe 3.1 Navigate Alexandria, Requirement 13, 14, 15, 16, 17, 36, 61
Stripe 3.2 Sound, Requirements 29, 30, 31, 32, 33
Stripe 4 Character Editor, Requirements 18, 19, 20, 21, 22, 35, 44
Stripe 5 Unit Physics, Requirements 13, 14, 15, 16, 17, 35, 41, 42, 45, 47, 48, 64
Stripe 6 Inventory Items, Requirements 40, 49, 55
Stripe 7 Combat, Requirements 54, 56
Stripe 8 Acquire Skills, Requirements 20, 34, 47, 55, 56
Stripe 9 Acquire Weapon, Requirements 14, 15, 16, 17, 40, 49
Stripe 10 View Statistics, Requirements 14, 15, 16, 17, 18, 19, 20, 21
Stripe 11 AI, Requirements 24, 25, 26, 37
Stripe 12 Remaining Levels, Requirement 27
Stripe 13 Saving and Loading, Requirements 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Stripe 14 Options, Requirement 39
Stripe 15 Revisions
Nonfunctional Requirements 50, 51, 53, 58, 59, 60, 61, 62, 63

Stripe 1: Applicable Requirements

The following list identifies the requirements that are addressed in this stripe:

Requirements 8, 14, 15, 16, 17, 18, 38, 46

Stripe 1: Use Case View

The following use case(s) provides a narrative of a sequence of actions that you can use to
place the behavior depicted in this stripe in context. The requirements use case from
which this design use case is derived appears in the Ankh SRS.

Ankh Software Design Specification 791

Stripe 1: Generalized Conceptual View

This section provides a conceptual view of this stripe. The components that are repre-
sented in the context diagram are not necessarily included in the context diagram. The
diagram is most useful for early iterations of the development cycle, as a means by which
team members can conceptualize the system.

The diagram is based on the interactions derived from the use case, the requirements, and
an initial conceptualization of the system. See the refinement provided in the Component
section of this stripe for implementation-level details.

Note that this view is used only in this stripe for purposes of general analysis. In subse-
quent stripes, the dimensions of the system take on a gravity that makes this supplemen-
tal view unnecessary.

Appendix D ■ Software Engineering and Game Design Documentation792

Stripe 1: Behavioral View—Interactions

This section depicts the interactions that are evident in the behavior of this stripe.

Stripe 1: Sequence View

The sequence view shows the basic interactions that are evident in the stripe, along with
the generic identity of the interacting classes.

Stripe 1: Collaboration View

This section provides a collaborative view of this stripe.

Stripe 1: Logical View—Class Diagram

This section depicts the classes that are used in this stripe. The operations that are defined
in the classes shown reflect the behavior that occurs in this and other stripes but might
not represent the complete definition of the class.

Note that in subsequent stripes, this document does not consistently list operations. This
is for convenience only. Operations should be listed as needed. If the document is linked
to the output of a CASE tool, the operations can be easily included or excluded.

Ankh Software Design Specification 793

Stripe 1: Component Views

This section represents the component view of this stripe. There are two representations.
The first is of the classes that compose the stripe (in object form). The second is a high-
level component diagram in which the stripe is shown in conjunction with all other cur-
rently active components of the system.

Note that in subsequent sections, one or the other of the views might be excluded. The
purpose of the component views is to show the stripes’ dependencies on each other.

Appendix D ■ Software Engineering and Game Design Documentation794

Stripe 1: Component Internals View

This section provides an internal view of objects that should be implemented for this
stripe. Other components or classes in components appear only if dependencies exist.

Stripe 1: Component System View

This section provides a view of the components that are currently active. This represents
all currently active components of the system. Although space holders are shown, no
dependencies with other stripes exist at this point.

Stripe 2.1: GUI Objects

This section covers the design of Stripe 2.1, GUI Objects.

Stripe 2.1: Requirements View

This section identifies the requirements and use cases derived from the Ankh SRS that
apply to this stripe.

Stripe 2.1: Applicable Requirements

The following list identifies the requirements that are addressed in this stripe:

Requirements 18, 52

Stripe 2.1: Use Case View

The following use case(s) provides a narrative of a sequence of actions that you can use to
place the behavior that is depicted in this stripe in context. The requirements use cases
from which this design use case is derived appear in the Ankh SRS.

Ankh Software Design Specification 795

Stripe 2.1: Generalized Conceptual View

This section provides an optional generalized conceptual view of this stripe. The compo-
nents that are represented in the context diagram are not necessarily included in the con-
text diagram. The diagram is based on the interactions derived from the use case, the
requirements, and an initial conceptualization of the system. See the refinement provided
in the “Component” section of this stripe for implementation-level details.

The diagram is not included.

Stripe 2.1: Behavioral Views

This section depicts the interactions that are evident in the behavior of the first stripe.

Stripe 2.1: Sequence View

The sequence view shows the basic interactions that are evident in the stripe, along with
the generic identity of the interacting classes.

Appendix D ■ Software Engineering and Game Design Documentation796

Stripe 2.1: Collaboration View

This section provides a collaborative view.

The diagram is not included.

Stripe 2.1: Logical View—Class Diagram

This section depicts the classes that are used in this stripe. The operations that are defined
in the class reflect the behavior that occurs in this and other stripes but might not repre-
sent the complete definition of the class.

Ankh Software Design Specification 797

Stripe 2.1: Component Views

This section represents the component view of this stripe. There are two representations.
The first is of the classes that compose the stripe (in object form). The second is a high-
level component diagram in which this stripe is shown in conjunction with all other cur-
rently active components of the system.

Stripe 2.1: Component Internals View

This section provides an internal view of objects that should be implemented for this
stripe. Other components or classes in components appear only if dependencies exist.

The diagram is not included.

Stripe 2.1: Component System View

This represents all currently active components of the system.

Stripe 2.2: Floor Tiling
This section describes the design of Stripe 2.2, Floor Tiling.

Stripe 2.2: Requirements View

This section identifies the requirements and use cases derived from the Ankh SRS that
apply to this stripe.

Stripe 2.2: Applicable Requirements

The following list identifies the requirements addressed in this stripe:

Requirement 43

Stripe 2.2: Use Case View

The following use case(s) provides a narrative of a sequence of actions that you can use to
place the behavior depicted in this stripe in context. The requirements use cases from
which this design use case are derived appear in the Ankh SRS.

Appendix D ■ Software Engineering and Game Design Documentation798

Stripe 2.2: Behavioral Views

This section depicts the interactions that are evident in the behavior of the first stripe.

Stripe 2.2: Sequence View

The sequence view shows the basic interactions that are evident in the stripe, along with
the generic identity of the interacting classes.

Ankh Software Design Specification 799

Stripe 2.2: Collaboration View

This section provides a collaborative view.

The diagram is not included.

Stripe 2.2: Logical View—Class Diagram

This section depicts the classes that are used in this stripe. The operations that are defined
in the class reflect the behavior that occurs in this and other stripes but might not repre-
sent the complete definition of the class.

Appendix D ■ Software Engineering and Game Design Documentation800

Stripe 2.2: Component Views

This section represents the component view of this stripe. There are two representations.
The first is of the classes that compose the stripe (in object form). The second is a high-
level component diagram in which this stripe is shown in conjunction with all other cur-
rently active components of the system.

Stripe 2.2: Component Internals View

This section provides an internal view of objects that should be implemented for this
stripe. Other components or classes in components appear only if dependencies exist.

The diagram is not included.

Stripe 2.2: Component System View

This represents all currently active components of the system.

Stripe 2.3: Mesh Placement
This section describes the design of Stripe 2.3, Mesh Placement.

Stripe 2.3: Requirements View

This section identifies the requirements and use cases derived from the Ankh SRS that
apply to this stripe.

Stripe 2.3: Applicable Requirements

The following list identifies the requirements that are addressed in this stripe:

Requirements 13, 43

Ankh Software Design Specification 801

Stripe 2.3: Use Case View

The following use case(s) provides a narrative of a sequence of actions that you can use to
place the behavior depicted in this stripe in context. The requirements use cases from
which this design use case are derived appear in the Ankh SRS.

Stripe 2.3: Behavioral Views

This section depicts the interactions that are evident in the behavior of the first stripe.

Stripe 2.3: Sequence View

The sequence view shows the basic interactions that are evident in the stripe, along with
the generic identity of the interacting classes.

Appendix D ■ Software Engineering and Game Design Documentation802

Stripe 2.3: Collaboration View

This section provides a collaborative view.

The diagram is not included.

Stripe 2.3: Logical View—Class Diagram

This section depicts the classes that are used in this stripe. The operations defined in the
class reflect the behavior that occurs in this and other stripes but might not represent the
complete definition of the class.

Ankh Software Design Specification 803

Stripe 2.3: Component Views

This section represents the component view of this stripe. There are two representations.
The first is of the classes that compose the stripe (in object form). The second is a high-
level component diagram in which this stripe is shown in conjunction with all other cur-
rently active components of the system.

Stripe 2.3: Component Internals View

This section provides an internal view of objects that you should implement for this
stripe. Other components or classes in components appear only if dependencies exist.

The diagram is not included.

Stripe 2.3: Component System View

This represents all currently active components of the system.

Stripe 2.4: Save and Load
This section provides information on the Save and Load stripe.

Stripe 2.4: Requirements View

This section identifies the requirements and use cases derived from the Ankh SRS that
apply to this stripe.

Stripe 2.4: Applicable Requirements

The following list identifies the requirements addressed in this stripe:

Requirement 4

Appendix D ■ Software Engineering and Game Design Documentation804

Stripe 2.4: Use Case View

The following use case view provides a narrative of a sequence of actions that you can use
to place the behavior that is depicted in this stripe in context. The requirements use cases
from which this design use case are derived appear in the Ankh SRS.

Stripe 2.4: Behavioral Views

This section depicts the interactions that are evident in the behavior of the first stripe.

Stripe 2.4: Sequence View

The sequence view shows the basic interactions that are evident in the stripe, along with
the generic identity of the interacting classes.

Ankh Software Design Specification 805

Stripe 2.4: Collaboration View

This section provides a collaborative view.

The diagram is not included.

Stripe 2.4: Logical View—Class Diagram

This section depicts the classes that are used in this stripe. The operations that are defined
in the class reflect the behavior that occurs in this and other stripes but might not repre-
sent the complete definition of the class.

Appendix D ■ Software Engineering and Game Design Documentation806

Stripe 2.4: Component Views

This section represents the component view of this stripe. There are two representations.
The first is of the classes that compose the stripe (in object form). The second is a high-
level component diagram in which this stripe is shown in conjunction with all other cur-
rently active components of the system.

Stripe 2.4: Component Internals View

This section provides an internal view of objects that should be implemented for this
stripe. Other components or classes in components appear only if dependencies exist.

The diagram is not included.

Stripe 2.4: Component System View

This represents all currently active components of the system.

n o t e

The full Ankh Software Design Description includes documentation of all the stripes. To save room,
documentation for only a few stripes is included in this appendix. The full document is installed as
a part of the documentation set in the Documentation directory. See Appendix A of this book for
more information on how to access the full document.

Sample CRC Cards
This section provides a sample of the CRC cards included in Appendix A of the Ankh
Software Design Description.

Sample CRC Cards 807

Appendix D ■ Software Engineering and Game Design Documentation808

See the Appendix of the Ankh Software Design Specification on the CD for other CRC cards.

Sample CRC Cards 809

Resources

Appendix E

I
t is easy to browse the Web and find hundreds of sites that feature information on soft-
ware engineering, programming games, and related topics. No single list adequately
summarizes the information available.

Software Engineering Glossaries and Topics
The following sites maintain among the best glossaries for software engineering terms.

Design patterns http://c2.com/cgi/wiki?DesignPatterns
developer.com http://www.developer.com/net/net/article.php/1756291
Elucidata http://www.elucidata.com/refs/seglossary.pdf
IEEE http://www.computer.org/certification/csdpprep/Glossary.htm
Object-oriented programming http://www.oopweb.com/
SEI http://www.sei.cmu.edu/str/indexes/glossary/
Software Engineering Body of Knowledge http://www.swebok.org/

Code Help
Following are a few sites from which you can obtain code samples:

Andy Pike http://www.andypike.com/tutorials/
Andy Pike’s Direct X 8 Tutorial http://www.andypike.com/tutorials/directx8/
flipCode http://www.flipcode.com/
Game Tutorials http://www.gametutorials.com/
GameDev.net http://www.gamedev.net/
Gamedev.org http://www.gamedev.org/yabbse/
MSDN Library http://msdn.microsoft.com/library/default.asp
NeHe Production http://nehe.gamedev.net

811

NeXe http://nexe.gamedev.net/News/News.asp
Programming Tutorials http://www.gametutorials.com
Snarkpit http://www.snarkpit.com
SourceForge http://sourceforge.net/index.php
Two Kings Game Development http://www.riaz.de/index.html

Topical Sites
Following are some sites that provide discussion of games and topics related to games:

Battle.NET http://www.battle.net
Computer Gamers http://www.computergamers.com
Daily Game http://www.dailygame.net
Drunken Hyena http://www.drunkenhyena.com/
Firingsquad http://www.firingsquad.com
Game Culture http://www.game-culture.com
Game Developer http://www.gdmag.com
Game Over Online Mag http://www.game-over.net
Game Spy http://www.gamespy.com
GameFAQs http://www.gamefaqs.com
GameRevolution http://wwwgamerevolution.com
GameSpot http://www.gamespot.com/
GameTab http://www.gametab.com
Games Fusion http://www.games-fusion.net
IGN.com http://www.ign.com/
Polycount http://www.planetquake.com/polycount/
RPG News http://www.rpgnews.com
The Magic Box http://www.the-magicbox.com
Tom Miller’s blog http://blogs.msdn.com/tmiller/
Total Video Games http://www.totalvideogames.com
Video Game News http://www.videogamenews.com
Video Game Pro http://www.Vgpro.com
Voodoo Extreme http://www.voodooextreme.com
Warcry http://www.warcry.com/
Wireless Gaming Review http://www.wgamer.com

Commercial
The following sites represent a mixture of commercial information on games:

3D Action Planet http://www.3dactionplanet.com/
3D Forums http://www.3dforums.com/
3D Gamer http://www.3dgamer.org/
3D Retreat Tech/hardware http://www.3dretreat.com/

Appendix E ■ Resources812

Game Score http://www.gamescore.com/
Gamestats http://www.gamestats.com/
GamesXtreme http://www.gamesxtreme.net/
GameTalk http://www.gametalk.com/
Gaming Entertainment Monthly http://www.gemonthly.com/
Gaming to the Maxx http://www.gamingmaxx.com/
GoneGold http://www.gonegold.com/
Multi-Player Gaming Online http://www.mpog.com/
Multiplayer.com http://multiplayer.com/
PC Game Review http://www.videogamereview.com/pccrx.aspx
PC.IGN http://pc.ign.com/

History and Analysis
The following sites provide industry, cultural, and historical information:

Abandonware Ring http://www.abandonwarering.com/
Cabrinety Collection http://www-sul.stanford.edu/depts/hasrg/histsci/index.htm
Computerspiele Museum http://www.computerspielemuseum.de/
Digital Game Archive http://www.digitalgamearchive.org/home.php
Digiplay Initiative Game Studies http://www.gamestudies.org/
Entertainment Software Association http://www.theesa.com/
Eurogamer http://www.eurogamer.net/
Evil Avatar http://www.evilavatar.com/
Gamasutra http://www.gamasutra.com/
Game Developers Association of Australia http://www.gdaa.asn.au/
Game Industry News http://www.gameindustry.com/
Game Manufacturers Association http://www.gama.org/
Game Research http://www.game-research.com/
GameDev.net http://www.gamedev.net/
GameGirlz http://www.gamegirlz.com/
GameProWorld http://www.gamepro.com/
Gamespot UK News http://www.gamespot.com/
GameSpy http://www.gamespy.com/
Gamez.com http://gamez.com/
IGDA http://www.igda.org/
Killer List of Arcade Games http://www.klov.com/
Ludology Ludology.orghttp://www.ludology.org/
MCV UK http://www.mcvuk.com/
Moby Games http://www.mobygames.com/
SlashDot http://slashdot.org/
Sumea Launchpad http://www.sumea.com.au/
The Oxygen Tank http://www.theoxygentank.com/

History and Analysis 813

Videogames History http://pers www.kuleuven.ac.be/~u0008708/
Videotopia http://www.videotopia.com/
Women Gamers http://www.womengamers.com/

Reviews
The following sites provide commercial and academic reviews of games:

3D Gaming World 3D Gaming World http://www.3dgw.com/
Gamespy Reviews http://www.gamespy.com/reviews
PC Gameworld http://www.pcgameworld.com/
Quake Women’s Forum http://www.planetquake.com/qwf/qwf.html
ZDNET Gamespot http://www.gamespot.com/

Appendix E ■ Resources814

Glossary

abstract—Applied to a class when the class can have no instances.

aggregation—One type of association. In this case, the one object contains another, but
an instance of the contained object is not necessarily always constructed.

analysis—A process of discovering what is not obvious. Usually, you create a model to
capture the findings of analysis.

artifact—Anything that is associated with the documentation of a software system.

association—A relationship between two classes or objects. Composition and aggregation
are said to be types of association. In general, however, an association is any relationship
that exists between two objects. If a class data type serves only to define a function para-
meter in an operation in another class, it illustrates the most general type of association.

asynchronous—Refers to messages between objects. An asynchronous message is not
necessary acknowledged. In other words, it probably does not return a value. This means
that it does not restrict the flow of control.

attribute—An entity that stores a value that defines the state of a class.

baseline—A point of departure for further development.

behavioral testing—Same as black-box testing. To evaluate the correctness of functional-
ity without examining the means by which the functionality is achieved.

Behavioral view—A Behavioral view of the system shows how the objects that comprise
the system interact through messages or operations. Behavioral views can be presented
using UML sequence and collaboration diagrams.

815

black-box—Applied to testing of a behavioral type. Black-box testing usually tests only
for the presence of a given type of functionality rather than investigating specifically how
the functionality is implemented.

capability—The capacity to improve a practice and to implement a procedure.

checklist—Simple approach to regulating and confirming the performance of a sequence
of tasks.

class—A data type that encapsulates attributes and operations.

CMM—Capability Maturity Model. The model developed by the Software Engineering
Institute to evaluate the extent to which an organization can replicate and improve its
development processes.

cohesion—The extent to which a class, module, or other element of design focuses on
providing a single service. Good design provides loosely coupled, tightly cohesive classes.

collaboration—A relationship between two or more objects in which the objects com-
bine to provide a single service to the system of which they are a part.

complexity—A qualitative or quantitative evaluation of the extent to which a system is
difficult to understand, develop, or maintain.

component—A component can be a class or a collection of classes, a global operation, or
some other distinct design entity. One stripe might have dependencies distributed among
several components, but each stripe tends to be centered on the development of a given
component.

Component view—A representation of a portion of the overall system that can stand
alone and compile as a separate entity. This representation of the system is intended to
expose the features of the system that are specific to a given stripe, not to represent the
system as a whole.

composition—One type of association. In this instance, one object contains an instance
of another that is almost always constructed.

Conceptual view—This is a representation of the system using either a use case or a gen-
eral object diagram. If the general object diagram is used, the boxes depict class objects,
global functions, COM objects, database tables, and other items.

coupling—The extent to which two or more classes depend on each other.

craft—A form of work based on tradition and practice.

defect—Failure of software to conform to requirements or to perform according to
requirements.

design—The activity of figuring out how to implement functionality.

Glossary816

duration—The period of time over which an effort is exerted.

effort—The time taken to complete a task.

encapsulation—Hiding complexity from public view.

factor—See refactor.

function—Synonymous with operation.

generalization—The collection and abstraction of the operations of two or more classes
into a generalized class.

IEEE—Institute of Electrical and Electronics Engineers. This organization oversees the
standards that pertain to almost all electrical or computational technology to be found
anywhere in the world.

implementation—Constructing the software product as specified and designed.

hack—To develop software without the guidance of requirements or design.

hierarchy—A relationship between classes in which one class inherits behavior from
another.

implement—Construction of software as guided by requirements and design. The design
is implemented.

incremental—Applied to iteration. Purposely restricting the scope of change to reduce
risk and ensure quality.

interface—In C++, the public operations of a class.

integration—Any effort to combine components or modules into a single system.

iteration—Intentional repetition of an act for purposes of refinement.

Logical view—A representation of the system that shows the classes that compose the sys-
tem and their static relationships.

maintenance—Removal of defects from a software product after its general release.

metric—A quantitative measurement of a specific type of industrial or engineering activ-
ity or product.

model—A representation of any process or entity that facilitates analysis and design prior
to implementation.

module—A collection of functionality, usually in the form of associated objects. Used
synonymously with stripe. Sometimes used synonymously with component.

node—A juncture in a logical system at which a decision can be made.

History and Analysis 817

object—An instance of a class.

operation—Synonymous with function. A behavioral element that can change the state
of an object.

pattern—An architectural feature that lends elegance to design.

practice—An acknowledged approach to accomplishing a task.

procedure—A formal, stipulated approach to accomplishing a task.

process—A formalized context of activity in which given tasks are performed.

productivity—A measure of work accomplished during a given effort.

profession—A form of work based on accreditation and recognition.

refactor—To refine the logic and syntax or logic of a class or operation, sometimes result-
ing in breaking it into multiple operations or classes.

requirement—A statement that stipulates the functionality of a system. Also, a statement
that stipulates a nonfunctional property of a system.

risk—Any neglect that endangers the success of a project or deceases the quality of a
product.

risk analysis—Gathering and using information with which to assess dangers that apply
to the successful development of a software product.

SEI—Software Engineering Institute. The SEI was fostered in part by the U.S. Defense
Department to promote the standardization of software development processes. It is best
known as the creator for the Capability Maturity Model (CMM).

simple—Applies to the identification of messages. When you illustrate a simple message,
you do not need to be concerned about whether it is asynchronous or synchronous. You
are concerned just with showing the flow of the message.

specialization—Deriving behavior from a general class and refining it for specific use.

stage—A point in the development of a stripe.

standard—A recommended practice. Organizations such as the ISO, IEEE, and SEI pro-
vide sets of standards.

state—The set of values that define an object at any point in its life.

stripe—A set of functionality embodied in a single module (or component) of the sys-
tem. Each stripe should represent a build of the system and address a design goal.

structural testing—Same as white-box testing. To test functionality for the purpose of dis-
covering the means by which it is achieved.

Glossary818

SWEBOK—Software Engineering Body of Knowledge. A summary of the roles that soft-
ware engineers assume.

synchronous—Applies to messages that are passed between objects. A message is
synchronous when it impacts the flow of control. It returns a value to signal when it is
complete.

test case—A specific instance of testing. Also, a set of specific testing instances.

test procedure—A sequence of test cases.

testing—Examining the software product to determine its conformity to requirements
and design and to discover defects.

transition—A change of state. Applies to an object, usually. If the values that are assigned
to the attributes of an object change, the state changes. The object goes through a state
transition.

unit test—Often synonymous with component test. A test of the smallest functional units
of code, such as classes or global operations.

use case—A scenario or sequence of steps in the behavior or use of the system.

validate—To discover whether something has been done correctly. If you examine how a
requirement has been implemented and find that its logic renders the correct result, you
validate the requirement.

verify—To discover whether something has been done. If you check off the requirements
on a list and find they have all been implemented, you verify them.

view—A view is a way of looking at the system. Examples of system views are those that
depict requirements, conceptual overview, system behavior (sequence and collaboration),
logic (class diagrams), and component (internal and system).

white-box—A term applied to testing. It specifies structural testing, which is testing that
investigates the way that the functionality has been implemented rather than seeking to
establish only that functionality exists (which is the role of black-box testing).

Glossary 819

INDEX

A
A Guide to the Project Management Body of

Knowledge (Project Management Insti-
tute), 575

A Practical Guide to Testing Object-Oriented Soft-
ware (John McGregor and David Sykes),
428, 508

abandonment, project failure reasons, 572
abbreviations, specification document, 49
ability, work optimization objectives, 725
Aßmann, Uwe (Invasive Software Composition),

537
abstract classes

defined, 97–98
generalization, 100–101
object-oriented programming and, 215–216
virtual operations, 215

abstract data types, 202
abstract factory patterns, 241
abstraction

abstract behavior, 205–206
abstract states, 205
design principles, 128
objects, 92

academic reviews, resources for, 814
acceptance

beta release planning, 630
organizational change stages, 606
test plans, 398

accessor operations, 204
accessors, object state, 93
Acquire Skills use case, 328–329
Acquire Weapon use case, 330–331

acronyms, specification document, 49
action points, 760
activations, 113
Activision, 705
activity diagrams

analysis phase, requirements engineering
phase, 68

uses for, 34
workflows, 89–90

actors, use case diagram example, 84
ad hoc development, 9
adapter patterns, 241
AddReference() operation, 181, 261
Adobe FrameMaker, 685
adornments, 77, 80
Advanced C++ Programming Styles and Idioms

(James O. Coplien), 231
Advanced Statistics Demystified (Larry J.

Stephens), 472
agendas, reviews, 683
aggregation

associations, 105–106, 213–214
defined, 97
hierarchies versus, 213

Agile methodology, 220
Agile Software Development: Principles, Patterns,

and Practices (Robert C. Martin), 163, 231,
268, 340

Agile Software Development (Alistair Cockburn),
379, 689

Ahern, Dennis A., 615
Albin, Stephan T. (The Art of Software Architec-

ture: Design Methods and Techniques), 163

Alexander, Christopher, 234
Algol, 236
alpha testing

discussed, 23, 505–506
quality assurance, 370
release plans, 618, 625–627

alternate paths, analysis phase, 65
alternative classes, refactoring prompts, 227
ambiguity, good requirement specification, 43
Ambler, Scott W. (The Elements of UML

Style), 119
analysis

learning paths, 708–709
requirements engineering phases

activity diagrams, 68
alternate paths, 65
basic course of events, 65
description, 45
discussed, 64
exceptional paths, 65
happy path, 65
sequence of events, 66–68
use case scenarios, 65

requirements results, 33
resources for, 813–814
software design, 135–139
testing approach

application knowledge, 388
architectural components, 388–389
general domain, 387–388
maintenance, 389–390
V model, 390

analysts
software requirements analyst, 31–32
team roles, 552

Ankh
aggregation use, 213
Ankh Software Design Description, 304
applied patterns, 248
black-box testing, 415
chain of responsibility patterns, 252
class testing, 392
command patterns, 260
composite patterns, 251
concept formation, 485–486
configuration management plan, 356
CRC list, 306

design assessment, 18
design rules, 125–127
development activity, 14–15
development improvements, 488
discussed, 4
documentation

display tools, 686
documented-project category, 671
essential material only, 688
graphics tools for, 686
word processing tools, 686

free-form styles, 132
game design documents

attributes, 755–756
characters, 755
classes, 754–755
control, 753
experience, 755–756
introduction, 753
lead game line, 753
skills, 755–756
units and characters, 754

game design specification, 338–339
game summary document example, 53
integration testing, 393
memento patterns, 258
metrics

collaboration, 469–470
function points, 470–471
lines of code and stripes, 466–468

modularity components, 220–224
module testing harnesses, 419
observer patterns, 255
play narrative example, 54
QA plans, 503
reference counting, 180
release plans

code complete, 622
testing activities, 621
version numbers, 634

revisions
class and operation evaluation, 524–530
designing, 532
difficulty and priority ranks, 523–524
implementation, 533–534
optimization candidates, 519–520
risk assessment, 520–521
testing, 534–535

Index822

risk assessment
example, 12
scope gaps, 284

scope statements, 36–37
Sekhem, 8
software architecture, 16–17
software configuration plan, 358
software design specification, 358
source files, 741–742
STL library, 194
strategy patterns, 254
stripe design, 14–15, 151, 153–155, 157

floor tiling, 312–314
mesh placement, 315–316
stage identification, 309–310
unit physics, 322–323

summation, 453
system stripe development, 151
team formation, 475
test case templates, 404
test plans, 19–20
TortoiseCVS software, 348
UML diagrams, 478

appendixes, specification document, 52
Appleton, Brad, 268, 379
application framework, libraries, 166
application knowledge, analysis approach to

testing, 388
applied design, 305–306
applied ethics, 721
applied patterns, 248
applied risk analysis, 271–274
Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design, 163
apprentice, as learning path, 709
appropriateness, technique, 7
approval and startup teams, 542–543
approximations

approximation operator, 456
illustrations as, 667

archetype (Carl Jung), 234
architecting branching, 364–367
architectural components, analysis approach to

testing, 388–389
architectural patterns, 241

Index 823

architecture
Ankh, 16–17
integrity, achieving, 10
software design and, 125

Aristotle, 54
arithmetic average, 455–456
ArmCharacter() operation, 102
arrows, messages, 110–111
The Art of Software Architecture: Design Methods

and Techniques (Stephan T. Albin), 163
artifacts

defined, 77
documentation, 660

artistic versus technical design, 13–14
artists, professionals as, 700–701
associations

aggregation, 105–106, 213–214
asymmetrical, 104
composition, 105–106, 214
coupled, 104
defined, 97, 102
dependency, 103
generalization and, 97–98, 102–103
links and, 102, 109
needless, 212
qualified, 104
recursive, 105
reflexive, 105
symmetrical, 104
types, 106–107
visibility and multiplicity, 103–104

assumptions, specification document, 50
asymmetrical associations, 104
asynchronous messages, 109
attacks

characters, 761–762
combo, 762

attributes
Ankh game design documentation, 755–756
classes

defined, 92, 96
private, 93, 95
public, 93, 95

defined, 202

audit trails
program states, 354–355
risk analysis, 275–276
SCM template topics, 353

auditors, process improvement, 582
authoritarian methodologies, 716
automated builds, 375
availability, specification document, 51
awareness

organizational change stages, 606
risk analysis, 277–278, 280

B
bad methodology, specialization, 715
Baker, F. Terry, 164
bankruptcy, risk analysis and, 270
bar charts, 447
baselines

documentation, 681
formalized, QA plans, 504
verification and validation, 69
versions and releases, 357–358

basic course of events, analysis phase, 65
Bates, Bob (Game Developer’s Market Guide),

508, 726, 728
Battle Guard use case, 326–327
battles, 760
Bays, Michael E. (Software Release

Methodology), 657
begin() operation, 195
behavioral patterns, 240
behavioral view

description of, 304
software design, 150

behavioral (white-box) testing, 19, 389, 393, 415
Beizer, Boris (Software Testing Techniques), 428
benchmarking

documenting practices, 21
metrics, 436
static models, 463

Benedict, Ruth (Patterns of Culture), 234
Bennatan, E. M., 575
Bentley, Lonnie D., 575
Berczuk, Stephen P., 379
best practices, risk analysis, 281

beta testing
discussed, 23, 505–506
release plans, 618, 628–630
software configuration management,

promotion, 371
binaries, branching practices, 368
Black, Rex (Critical Testing Process: Plan, Prepare,

Perform, Perfect), 428
black-box testing, 393, 415
BlackThorne (Blizzard Entertainment), 705
Blizzard Entertainment, 705
blogs, 661
Blunden, Bill (Software Exorcism: A Handbook for

Debugging and Optimizing Legacy Code),
537

Boost libraries, 193, 195
Borland, John, 236
boss patterns

features, 261
implementation, 262–267

boundary condition tables, 410
bounding boxes, use case diagrams and, 84
branching

architecting, 364–367
branching to release, 367
code lines, 359–360
conflicting files, 363
deltas, 359–360
merging, 359–361
practices, list of, 367–369
software configuration management, develop-

ment activities, 359
stale code, 362
trunks, 359–360
version control tool evaluation criteria, 348
version label, 364

Bransfor, John D., 689
Braude, Eric (Software Design: From Program-

ming to Architecture), 231, 340
bridge patterns, 131, 241
Brooks, Frederick P. Jr. (The Mythical Man-

Month), 26, 567, 575, 692, 728
budgets

control measures, risk analysis, 300
maintenance and revision phase, 23

bugs, schedule risk estimation, 291–293
builder patterns, 241

Index824

builds
automated, 375
software configuration management, develop-

ment activities, 355
BuildWorldMatrix() operation, 176
Business Statistics (Lawrence L. Lapin), 472

C
C++ for Game Programmers (Noel Llopis), 200
C++ Programming Style (Tom Cargill), 200
CAction class, 259–260, 325, 327
CActor class, 211, 322
calibration, metrics, 432
camera navigation, CCamera class, 319
capabilities and learning, 21–22
Capability Maturity Model (CMM)

discussed, 21
ISO and, 587–589
maturity levels, process improvement and, 597–600

Capability Maturity Model Integration (CMMI), 431
The Capability Maturity Model: Guidelines for

Improving the Software Process, 588, 615
Caputo, Kim, 605, 607, 615
career paths, as learning path, 709–710
Cargill, Tom (C++ Programming Style), 200
Carroll, Martin D. (Designing and Coding

Reusable C++), 200
Cartesian coordinate plane, 436
CASE (Computer-Aided Software Engineering),

119, 132, 478
Casino (Sierra), 705
catch blocks, 183–184
causality, metric relationships, 438
cause-and-effect models, 438
CCamera class, 319
CDialog class, 333
Center for Software Engineering (University of

Southern California), 431
CEntity class, 174–176, 260, 325
certifications, 25
CException class, 184
CFileDialog class, 317
CFileSystem class, 318
CGame class, 249
CGraphics class, 158, 257
CGuiMgr class, 194, 255
CGuiObject class, 194–195, 256
chain of responsibility patterns, 242, 252–253

Index 825

chairman, team formation roles, 554
champions, team formation, 542
change boards, 638
change control

core information pathways, team work, 557
flexible, 344
policy issues, configuration management,

344–345
process improvement, 612
requirements

discussed, 44
document control, 72
procedures and review, 71–72

strict, 344
ChangeValue() function, 217
Character Development and Storytelling for

Games (Lee Sheldon), 729
character editor stripe, 320–322
characters

Ankh game design documentation, 754–755
attacks, 761–762
Create Character Profile use case, 320–321
movement, 761
skill use, 763
skills, 328–330
spells, 764

Charette, Robert N. (Software Engineering Risk
Analysis and Management), 281, 302

charts
bar charts, 447
Gantt, 570
PERT, 569
pie charts, 446
radar, 448
run, 447

checking in, branching practices, 368
checking out, branching practices, 367
CHistory class, 258–260, 335
Christopher, Alexander (The Timeless Way of

Building), 238–239
CImage class, 180, 214, 262
CImageButton class, 195
CImageMgr class, 180–181, 214
CItem class, 211
ClanLib Game SDK, 169
class diagrams

example of, 76
features, 96–98

low-level design tools, 143–144
object diagrams versus, 107
UML, 17

class inheritance, 97
Class-Responsibility-Collaboration (CRC) cards

applied design, 306
classes, deriving from use cases, 91
concept formation, 483
discussed, 16
software design considerations, 137–138

class test harnesses, 417–418
class testing, 392–393
classes

abstract
defined, 97–98
generalization, 100–101

aggregation, 97
Ankh game design documentation, 754–755
associations

aggregation, 105–106
asymmetrical, 104
composition, 105–106
coupled, 104
defined, 97, 102
dependency, 103
generalization and, 97–98, 102–103
links, 102, 109
qualified, 104
recursive, 105
reflexive, 105
symmetrical, 104
types, 106–107
visibility and multiplicity, 103–104

attributes
defined, 92
private, 93, 95
public, 93, 95

CAction, 259–260, 325, 327
CActor, 211, 322
CCamera, 319
CDialog, 333
CEntity, 174–176, 260, 325
CException, 184
CFileDialog, 317
CFileSystem, 318
CGame, 249
CGraphics, 158, 257

CGuiMgr, 194, 255
CGuiObject, 194–195, 256
CHistory, 258–260, 335
CImage, 180–181, 214, 262
CImageButton, 195
CImageMgr, 180, 214
CItem, 211
CMapEditorState, 254
CMenuState, 214, 254
CMesh, 93–96
CNextA, 216
CNextB, 216
cohesion, 93–94
composition, 97
concrete

defined, 97–98
generalization, 99–100

consistency in, 173–174
CPlayState, 254, 329
CProp, 211
CResourceMgr, 261–262
CShopDialog, 330
CSlider, 190
CStateDialog, 333
CTileMap, 313–314
CTop, 215–216
CWorld, 258–259
CWorldState, 330
defined, 202
deriving from use cases, 91
development requirements, 9
encapsulation, 93
GUIObject, 311
has keyword, 97
highly cohesive, 93–94
identity, 92
implementation, 175–177
information hiding, 93
interface, 92, 102, 203
is keyword, 97
name considerations, 63
nice versus practical, 174–175
object-oriented programming and, 92
object-oriented project metrics, 434
overview, 92
private scope, 202
public scope, 202

Index826

pure virtual, 97
relationships between, 16–17
scope of, 202–203
standard interfaces, 174
structure of, 94
test plans, 396–397

clients
applied ethics, 721
defined, 96

Clouds to Code (Jesse Liberty), 340
Clouse, Aaron, 615
CMapEditorState class, 254
CMenuState class, 214, 254
CMesh class, 93–96
CMM (Capability Maturity Model)

discussed, 21
ISO and, 587–589
maturity levels, process improvement and,

597–600
CMM Implementation Guide: Choreographing

Software Process Improvement (Kim
Caputo), 615

CMMI (Capability Maturity Model Integration),
431

CMMI Distilled: A Practical Introduction to Inte-
grated Process Improvement, 615

CNextA class, 216
CNextB class, 216
Cockburn, Alistair

Agile Software Development, 379, 508, 689
Writing Effective Use Cases, 72

code
code complete, release plans

after code complete, 623
debugging, 623
discussed, 618–619
moving toward, 622–623
testing activities, 620–621

coding standards
core information pathways, team work, 558
development strategies, 491–492
document purposes, 669
documents, references between, 688
software configuration management, 353
specifications and planning, 499–500, 502,

510
documentation, 21, 196–198
efficient, 178–181

Index 827

inline, 175–176
resources for, 166
reuse

compatibility and maintainability, 188–191
criteria, 169–172
cut-and-paste code problems, 196
premature optimization dangers, 191
problems of creating, 171–172
redundancy, reducing, 188–191

samples, resources for, 811–812
self-documenting, 198–199

Code Complete: A Practical Handbook of Software
Construction (Steve McConnell), 200

code lines, branching, 359–360
cognitive dissonance, risk analysis and, 271
cohesion

design principles, 128
discussed, 93–94
encapsulation, 207–208

ColDet 3D, 169
collaboration

Ankh, 469–470
collaborative tools, branching practices, 368
design rules, 127
diagrams

defined, 109
overview, 113–114
software design considerations, 142–143
stripes, 160

UML, 17
colleagues, applied ethics, 721
combat, 326–328
combo attacks, 762
command patterns, 242, 259–260
comments

branching practices, 369
refactoring prompts, 227

commercial and academic reviews, resources
for, 814

commercial information Web sites, 812
Commercial-Off-The-Shelf (COTS), 694
commitment, team building qualities, 563
common coupling, 219
communications

communications interfaces, specification docu-
ment, 51

documentation, learning through, 672

project management skills, 566
risk analysis, 280
team building qualities, 563

companies, large versus small
group specialization, 705–706
knowledge, seeking new, 707–708
project orientation, 706
specialization, 706–707

competence issues, resource risk estimation, 294
Compile Setup option (ISTool), 377–378
complexity

complex products, 695–696
cyclomatic, 421
development improvements, 489
object-oriented project metrics, 434
risk assessment, 11–13
software revisions, 513–514

component diagrams
discussed, 116–117
low-level design tools, 146
software design considerations, 162

component test plans, 392
component view

description of, 304
Mesh Placement, 315–316
software design, 150
stripes, 310

componential design styles, 132
components

description of, 304
specific gravity of, 306
test plans, 396–397

composite patterns, 242, 251–252
composition

associations, 105–106, 214
defined, 97

Compton, Stephen B. (Configuration Manage-
ment for Software), 379

Computer-Aided Software Engineering (CASE),
119, 132, 478

Computer Professionals for Social Responsibility
(CPSR), 722

concentration, work optimization objectives, 725
concept formation, development strategies

conceptual tools, 482–484
discussed, 481
project planning, 487

requirements, 482
software design, 485–486
testability criteria, 486–487

conceptual patterns, 241
conceptual view

description of, 304
software design, 150

concrete classes
defined, 97–98
generalization, 99–100

Concurrent Version Systems (CVS)
CVS Checkout option, 747
CVS Update option, 748–749
discussed, 480–481
file management, 744–745
repositories, 744–746

conditions, preconditions and postconditions,
146

configuration formalities
development strategies, 490–491
document purposes, 669
documents, references between, 688
planning, 498–499

configuration management. See SCM
Configuration Management for Software (Stephen

B. Compton), 379
Configuration Management Principles and Prac-

tices, 379, 657
conflicting files, 363
consistency, in classes, 173–174
consolidation, design principles, 129
constant regression, 440
constraints, specification document, 50
construction, map editor use, 337
constructors, 203
content management systems, documentation,

675–676
context use cases, 59
contracts

beta release planning, 629
resource risk identification, 289–290
team formation, 474–475

control measures
risk analysis, 299–300
SCM template topics, 352
work optimization objectives, 725

controller patterns, 130

Index828

cooperation, team formation, 540
Coplien, James O.

Advanced C++ Programming Styles and
Idioms, 231

Software Patterns, 268
copying, needless, 179–180
CopySurfaceToSurface() operation, 199
core metrics, 464
Corel WordPerfect, 685
corporations and cottage industries, 3–4
correction and prevention, process improvement,

ISO 9000 areas of concern, 584
costs

cost-benefit analysis, code reuse, 171
installation creation tool evaluation criteria, 350
requirements, reasons for, 33
resource risk identification, 287–288
risk factors, 39
version control tool evaluation criteria, 347

COTS (Commercial-Off-The-Shelf), 694
cottage industries and formalized disciplines, 3–4
cottage industry programming, 478
coupled associations, 104
coupling

avoiding, 128–129
common, 219
data, 209
discussed, 217–218
inheritance, 213
object-oriented programming, 208–209
tightly coupled classes, 209

coverage, risk analysis, 420
CPlayState class, 254, 329
CPP-home.com Web site, 166
CProp class, 211
CPSR (Computer Professionals for Social Respon-

sibility), 722
craft perfection, as learning path, 709
craftsmen, professionals as, 700–701
CRC (Class-Responsibility-Collaboration) cards

applied design, 306
classes, deriving from use cases, 91
concept formation, 483
discussed, 16
software design considerations, 137–138

Create Character Profile use case, 320–321
create() function, 130

Index 829

creational patterns, 240
creative input, internal risks, 274
creative support, external risks, 273
creativity, software engineering and game

development, 1–2
CResourceMgr class, 261–262
critical path

Gantt chart results, 570
requirement priorities, 43

Critical Testing Process: Plan, Prepare, Perform,
Perfect (Rex Black), 428

cross reference tables, tables for testing, 410
Crystal Space 3D engine, 169
CShopDialog class, 330
Csikszentmihalyi, Mihaly (Flow: The Psychology

of Optimal Experience), 728
CSlider class, 190
CStateDialog class, 333
CStateMachine() operation, 203
CStdString value, 178–179
CTileMap class, 313–314
CTop class, 215–216
culture and awareness, strategy goals, risk analy-

sis, 280
Curtis, Bill, 615
curves, statistical

bar charts, 447
distribution, 443
frequency polygons, 449
histograms, 449
pie charts, 446
radar charts, 448
run charts, 447
scatter plots, 449
six sigma, 444–445
Weibull curves, 443–444

customer awareness, risk analysis, 278
customer identification, requirements difficulties,

avoiding, 38
customer support, external risks, 273
customer understanding, beta release

planning, 629
customer versus technical documentation,

673–674
customization

installation creation tool evaluation criteria, 350
version control tool evaluation criteria, 347

customized data types, 202

cut-and-paste code problems, code reuse, 196
CVS (Concurrent Version Systems)

CVS Checkout option, 747
CVS Update option, 748–749
discussed, 480–481
file management, 744–745
repositories, 744–746

CWorld class, 258–259
CWorldState class, 330
cyclomatic complexity, 421

D
damage control, risk analysis, 271, 286
dashed lines, 118
data class, refactoring prompts, 227
data clumps, refactoring prompts, 226
data collection, 22
data coupling, 209
data types, abstract and customized, 202
Death March, The Complete Software Developer’s

Guide to Surviving “Mission Impossible,”
575

debugging
code complete, 623
engineering issues, 624
game feature issues, 625
performance problems, 624–625

decision tables, 410
declarations

exception classes, 184
forward, 204
needless, 178–179
semicolon use, 202

decomposition, design principles, 129
decorator patterns, 242
decoupling, 209–210
defects

defect rate, 433
density, 433
identification, release plans, 651
production release concerns, 631
schedule risk estimation, 291–293
tracking, 641–644

defensive play, strategy patterns, 254
definitions

SCM template topics, 352
specification document, 49

Delphi approach, schedule risk evaluation, 295
deltas, branching, 359–360
DeMarco, Tom (Peopleware: Productive Projects

and Teams), 575, 728
demo applications, game engines, 168
dependencies

defined, 103
specification document, 50
version control tool evaluation criteria, 347

deployment diagrams, 118–119
deployment view, software design, 151
descriptive statistics, 450–451
descriptive uncertainty, risk identification, 282
design. See also development

analysis, 135–139
applied, 305–306
architecture and, 125
behavioral view, 150
code documentation, 21
collaborations, 127, 142–143
component diagrams, 146, 162
component view, 150
conceptual view, 150
constraints, specification document, 51
CRC cards, 137–138
data collection, 22
deployment view, 151
design feature plans, 545
design paradigm, 237
design patterns, 241
functions, 126
implementation view, 150
inspections, 391
iterative

applied design, 305–306
concepts, 307–308
discussed, 303
glossary and definitions, 304–305
software systems and gravity, 307

learning and capabilities, 21–22
logical view, 150
low-level, 488–490
low-level design tools, 143–146
operation specification, 145–146
operations, generating, 140–143
package diagrams, 146
patterns, 130–131

Index830

principles, 123, 127–130
quality considerations, 132–135
randomization, 122–123
reasons for, 122–123
refactoring and patterns, 17–18
relationships, 126–127
requirements lists, 135
responsibilities, 127
risk assessment, 18
rules, 123, 125
state machines, 126
stripes, 151–154
styles, 131–132
system design, 146–151
technical versus artistic, 13–14
TOR charts, 136, 138–139
use case view, 150
use cases, 135
verification, 162–163

Design Patterns: Elements of Reusable Object-
Oriented Software, 234, 239

Design Patterns Explained: A New Perspective on
Object-Oriented Design, 268

designers, team roles, 552
Designing and Coding Reusable C++ (Martin D.

Carroll and Margaret A. Ellis), 200
Designing Flexible Object-Oriented Systems with

UML (Charles Richter), 104, 163, 231, 268
destructors, 203
developers

resource risk identification, 288–289
team roles, 552

development. See also design
ad hoc, 9
artistic versus technical design, 13–14
code documentation, 21
coding conventions, 491–492
concept formation

conceptual tools, 482–484
discussed, 481
project planning, 487
requirements, 482
software designs, 485–486
testability criteria, 486–487

configuration formalities, 490–491
data collection, 22
development cycles, requirements, 45–46
disputes, settling, 504–505

Index 831

improvements to, 487–490
integrity, 10
learning and capabilities, 21–22
path considerations, 7–9
practices, documentation, 21–22
refactoring and patterns, 17–18
risk assessment, 11–13, 18
software configuration management

baseline versions and releases, 357–358
branching models, 359
builds, 355
domains, controlling, 357
program files and components, 355–356
program states, auditing, 354–355
promotion, 370

software engineering and game development,
1–3

starting points, 473–477
styles of, 703–704
testing and, 19–20
tools, setting up, 477–481
use cases, 19–20

deviation, summation, 459–460
Diablo (Blizzard Entertainment), 705
diagrams

activity diagrams
uses for, 34
workflows, 89–90

class diagrams
example of, 76
features, 96–98
low-level design tools, 143–144
object diagrams versus, 107

collaboration
defined, 109
overview, 113–114
software design considerations, 142–143
stripes, 160

component
low-level design tools, 146
overview, 116–117
software design considerations, 162

defined, 80
deployment, 118–119
interaction, 102, 109
object, 102, 107–112
package, 118, 146

planning, 493
sequence

discussed, 109
objects and lifelines, 112–113
software design considerations, 140–141

state chart, 114–116
state transition, 114–116
system context, 37
types of, 81
use case

bounding boxes, 84
example of, 83
extensions, 87–88
generalization, 89
include relationships, 88
modeling elements, 84
roles, 85–86
scenarios, 86
storytelling and, 84–85

difficulties
ranks, software revisions, 523–524
with requirements, avoiding

customer identification, 38
discussed, 35
feasibility, 38–39
feature creep, 39–40
goldplating, 40
growth, uncontrolled, 39
project scope, 36–37

Digital Games Research Association Web site, 166
disaster recovery issues, software configuration

management issues, 374–375
discussions, planning, 493
display tools, for documentation, 686
disputes

anticipating, 684
settling, 504–505

disruptions, lack of, team building qualities, 563
distributed design styles, 132
distributed risk, schedule risk estimation, 293
distribution

documentation, 682
skewed, 458
statistical curves, 443

Dittman, Keven C., 575
divergent change, refactoring prompts, 226

documentation
Ankh game design documents

attributes, 755–756
characters, 755
classes, 754–755
control, 753
experience, 755–756
introduction, 753
lead game line, 753
skills, 755–756
units and characters, 754

artifacts, 660
baselines, 681
beta release planning, 629
change control, 72
code, 21, 196–199
content management systems, 675–676
core information pathways, team work, 557
creating, 681–682
data collection, 22
display tools for, 686
distribution, 682
e-mail exchanges, 676
essential material only, 688
excess, preventing, 687–688
game design documents, 52–55, 751–752
game engines, 168
graphics tools for, 686
HTML versions, 685
identification, 682
indexed journaling, 674–675
information deprivation, 660–661
information management concept, 660–665
information overflow, 660–661
inspections, 392
journaling, 674–675
learning through

common understanding, 666
common vocabulary, 670
communication, 672
illustrations, 667–668
metaphors, 667
nondocumentation-centered information

management, 671
participation, 670–671
pathways of learning, 665–668
repetition, 666–667

Index832

reviews, 670
shared resources, 668
symbols, 667
teaching cultures, 672

maintenance, 680–682, 688
meta-information, 662–663
miscommunication in, 687
numbering systems and baselines, 681
ownership responsibilities, 681–682
patterns, 244–248
practices, 21–22
process improvement, ISO 9000 areas of con-

cern, 584
production releases, 631
purposes, 669
references between, 687–688
resources for, 689, 699
reviews, 22

anticipating, 683
conducting, 683–684
discussed, 682

revising, 682
shared knowledge, 662–663
startup phase, 479–480
storage, 682
technical drawings for, 686
technical versus customer, 673–674
templates for, 22, 676–680
test plans, 399
tracking information, 680
word processing tools for, 685–686

DoFrame() operation, 203–204
domain control

analysis approach to testing, 387–388
software configuration management, develop-

ment activities, 357
DoneWithImage() operation, 181
DOOM (Id Software, Inc.), 705
Dulak, Daryl (Use Cases: Requirements in Con-

text), 508
Dungeons and Dreamers, 236
duplicate code, refactoring prompts, 226
duration

core metrics, 435
product development, internal risks, 274
schedule risks identification, 286

dynamic models, metrics, 463–464
dynamic objects, 109

Index 833

E
e-mail

exchanges, documenting, 676
software support establishment, release plans, 647

EA (Electronics Art), 705
Effective C++: 50 Specific Ways to Improve Your

Programs and Designs (Scott Meyers),
200, 231

effectiveness, quality improvement, 580
efficiency considerations

design quality, 134–135
technique, 6

effort
core metrics, 435
schedule risks identification, 286

Electronics Art (EA), 705
elements, defined, 77, 80
The Elements of C++ Style, 200
The Elements of UML Style (Scott W. Ambler), 119
elicitation

approaches to, 46
description, 45
game design document, 52–55
mod requirements, 55
requirements results, 33
SRS (Software Requirements Specification),

47–52
use case options, 55–58

Ellis, Margaret A. (Designing and Coding Reusable
C++), 200

Ellul, Jacques, 6, 21, 26
emotional fit factors, team formation, 548–549
emotional stability issues, resource risk estima-

tion, 293
Empire Earth (Sierra), 705
employers, applied ethics, 721
encapsulation

classes, 93
cohesion, 207–208
design principles, 128
overview, 206

end() operation, 195
energy considerations, technique, 6
engineering requirements

analysis phase
activity diagrams, 68
description, 45

discussed, 64
use case scenarios, 65

development cycles, 45–46
discussed, 59
elicitation phase

approaches to, 46
description, 45
game design document, 52–55
mod requirements, 55
SRS (Software Requirements Specification),

47–48, 50–52
use case options, 55–58

exploration phase
class name considerations, 63
description, 45
TOR charts, 63–64

formal engineering, 692–693
interactive increments, 44
refinement phase

description, 45–46
verification and validation, 68–71

SRS (Software Requirements Specification),
61–63

EnterState() operation, 204
equipment

internal risks, 273
lack of, project failure reasons, 573

erase() operation, 194
errors

code complete, 623
external, 182
internal, 182
margin of error, 568
reduction in, risk analysis, 279
schedule risk estimation, 291–293

estimation
poor, project failure reasons, 573
risk analysis

resource risk, 293–294
schedule risk, 291–293
scope risk, 290–291

ethics
applied, 721
IEEE/ACM code of ethics, 720
social implications, 722

evaluation, risk analysis
Delphi approach, 295

model use, 295
resource risks, 286
schedule risks, 295
scope associated risk, 294–295

event uncertainty, risk identification, 282
events

OnClicked, 195–196
OnMouseDown, 195–196
OnMouseUp, 195–196
state transition diagrams, 114
transitions, 115

Exceptional C++: 47 Engineering Puzzles, Pro-
gramming Problems, and Solutions (Herb
Sutter), 200, 231

exceptional paths, analysis phase, 65
exceptions

catch blocks, 183–184
exception classes, declaring, 184
fatal, 185, 187
throwing, 187–188
try blocks, 183–184

excess information, information overflow, 661
exclusively locked files, branching practices, 368
experimentation, risk analysis, 279
expert patterns, 130–131
explanations, use cases and, 58
exploration

metric relationships, 437
requirements engineering

class name considerations, 63
description, 45
discussed, 59
SRS (Software Requirements Specification),

61–63
TOR charts, 63–64

testing approaches, 385
exponential relationships, 440
extensible design styles, 131–132
extensions

complex projects, 696
defined, 80
requirements, reasons for, 33
stereotypes, 80
use case diagrams, 87–88

external component view, 304
external errors, 182
external risks, 272–273
external systems, 28

Index834

F
façade patterns, 242, 257
factory method patterns, 242
failures

failed products, risk analysis, 269
failed reports, tables for testing, 411
failure rates, design quality, 135
reasons for, team projects, 571–574

fake methodologies, 716
fatal exceptions, 185, 187
feasibility

development improvements, 489
project, 42
requirements difficulties, avoiding, 38–39, 42
technical, 42
validation and verification, 43

feature creep
avoiding, 39–40
discussed, 20
scope risk identification, 283–284
uncontrolled growth, risk factors, 39

feature envy, refactoring prompts, 226
features

designers and design documents, 31
number of, risk factors, 38

feedback, work optimization objectives, 725
File List view option (ISTool), 376
files

adding to projects, 746
between branches, change control

parameters, 345
file management, 744–745
file-naming systems, 490–491
and folder structure, GUI objects, 310
histories, branching practices, 369
SmartDraw, 742
status, branching practices, 369
updating, 748–749
viewing, 747

final release, 618, 631
financing, external risks, 272
find-and-fix testing, 385
find() function, 195
Five Core Metrics: The Intelligence Behind Suc-

cessful Software Management, 472
flat code, 367
flexible change control, policy changes, 344

Index 835

flipcode Web site, 166
floor tiling, 312–314
Flow: The Psychology of Optimal Experience

(Mihaly Csikszentmihalyi), 728
flow charts, patterns and, 235–236
flyweight patterns, 242
folder and file structures, GUI objects, 310
for loop, 178
formal engineering, 692–693
formal review practices, 561
formalized disciplines and cottage industries, 3–4
formalized procedures, testing, 19–20
formalized testing approach, 385–386
forums, 168
forward declarations, 204
fractiles, statistics, 462–463
FrameMaker (Adobe), 685
free-form styles, 132
frequency polygons, 449
FullFileName() function, 192–193
function points, metrics, 433, 470–471
functional requirements

defined, 28
specification document, 51

functions. See also operations
ChangeValue(), 217
create(), 130
design rules, 126
find(), 195
FullFileName(), 192–193
GetAddPath(), 192–193
GetName(), 195
libraries, 126
member, 109, 202
OnClick(), 195, 253
OnKeyPress(), 195

G
Gamasutra Web site, 726
Game Architecture and Design, A New Edition

(Andrew Rollings and Dave Morris), 509
Game Coding Complete (Mike McShaffry),

389–390, 508
Game Creation and Careers: Insider Secrets from

Industry Experts (Mark Saltzman), 729
game design documents

discussed, 52, 669
game summary, 53–54

list of, 751–752
play narrative, 54–55

Game Developer’s Market Guide (Bob Bates), 508,
726, 728

Game Development Business and Legal Guide
(Ashley Salisbury), 729

Game Development Search Engine Web site, 166
game engine libraries, 167–168
game feature issues, debugging, 625
Game Foundry.Source Forge Web site, 167
game overview, inner and outer scope boundaries, 37
game production plan, 545
Game Studies Web site, 727
Game Tutorials Web site, 166
GameDev Web site, 166, 726
games

development activity, 14–15
modularity components, 220–224
multiplayer, optimization considerations, 520
real-time capabilities, optimization considera-

tions, 520
RPGs (role-playing games), 36

Gamma, Eric, 234, 239
Gang of Four (GoF), 239–240
Gantt charts, 570
Garriott, Richard, 236
generalization. See also inheritance

abstract classes, 100–101
association and, 97–98, 102–103
concrete classes, 99–100
defined, 87, 96
inheritance, 210–211
interfaces and polymorphic activities, 101–102
use case diagrams and, 89

Get in the Game! (Marc Mencher), 710, 729
Get() operation, 181, 261
GetAddPath() function, 192–193
GetIndex() operation, 204
GetName() function, 195
GetPos() operation, 173
GetStatus() operation, 101
GetVal() operation, 216
goals

goal alignment, team work, 555–557
setting, process improvement, 611–612
team building qualities, 564

GoF (Gang of Four), 239–240
goldplating

avoiding, 40
discussed, 20
uncontrolled growth, risk factors, 39

good methodology, specialization, 714
Good Work (E. F. Shumacher), 26
Grand Theft Auto (Activision), 705
granularity, metrics, 432
graphics tools, for documentation, 686
Griss, Martin, 537
group specialization, large versus small compa-

nies, 705–706
groupings, statistics, 462–463
growth, uncontrolled, 39
growth patterns, 717–719
GUI objects, 310–311
A Guide to the Project Management Body of

Knowledge (Project Management Insti-
tute), 575

Guiney, Eamonn (Use Cases: Requirements in
Context), 508

GUIObject class, 311

H
Hallford, Jana (Swords & Circuitry: A Designer’s

Guide to Computer Role Playing Games),
508, 728

Hallford, Neal (Swords & Circuitry: A Designer’s
Guide to Computer Role Playing Games),
508, 728

HandleGUIEvent() operation, 204
happy path, analysis phase, 65
hardware interfaces, specification document,

50–51
harnesses, test

class test harnesses, 417–418
module testing harnesses, 418–419
with static class operations, 415–417

has keyword, class diagrams, 97
Hawkins, Brian (Preventative Programming Tech-

niques: Avoid and Correct Common Mis-
takes), 200

health issues, resource risk estimation, 293–294
health points, 756, 764
Helm, Richard, 234, 239
Henderson, Peter (Object-Oriented Specification

and Design with C++), 508

Index836

Heretic (Id Software, Inc.), 169, 705
Hexen (Id Software, Inc.), 169, 705
hierarchies

aggregation versus, 213
hierarchy depth, reducing, 130

high risk
schedule risk estimation, 293
scope risk estimation, 291

highly cohesive classes, 93–94
histograms, 449
historical information, resources for, 813–814
history, branching practices, 369
Hobbit (Sierra), 705
horizontal axes, message paths, 112
Horstmann, Cay (Object-Oriented Design & Pat-

terns), 268
How to Write and Present Technical Information

(Charles Sides), 689
HTML versions, documentation, 685
Hughes, Cameron (Mastering the Standard C++

Classes: An Essential Reference), 200
Hughes, Tracey (Mastering the Standard C++

Classes: An Essential Reference), 200
Humphrey, Watts S.

Introduction to the Personal Software Process, 26,
430, 472, 615

Managing the Software Process, 615, 689
hypotheses, 451

I
Id Software, Inc., 169, 705
The Ideal Problem Solver: A Guide to Improving

Thinking, Learning, and Creativity, 689
identification

classes, 92
documentation, 682
problems, coupling, 218
risk analysis

conditions, 282
resources, 287–290
scheduling, 286–287
scope risk, 283–286

SCM template topics, 352
Identifying and Managing Project Risk (Tom

Kendrick), 302
idiomatic patterns, 241

Index 837

IEEE (Institute of Electrical and Electronics Engi-
neering)

code of ethics, 720
formal engineering, 692–693
IEEE 730, 589–594
IEEE 1471, 146
organization templates, 35
Standard 830, 47–52

IGDA (International Game Development Associa-
tion), 726

illustrations
as approximations, 667
learning through documentation, 667–668
as methaphors, 667–668
as working tool, 667

impact considerations, test cases, 425–426
implementation

classes, 175–177
integrity, achieving, 10
requirements, 28
software design, 150
software revisions, 533–534

include relationships, 88
increased profits, process improvement

reasons, 578
incremented iteration, 21
increments, in stripes, 151–152
index of variation, 461
indexed journaling, documentation, 674–675
indexes, specification document, 52
industries, specialization, 23–24
inertia and innovation, 701–703
inferential statistics, 451–452
informal review practices, 561
information deprivation, 660–661
information flow, team work, 559, 660
information hiding, 93, 219–220
information loss, information deprivation, 661
information management concept, documenta-

tion, 660–665
information overflow, 660–661
inheritance. See also generalization

defined, 96
discussed, 98
generalization, 210–211
inheritance coupling, 213
object-oriented project metrics, 434
specialization, 211–212

inline code, 175–176
inner scope, 37
Inno Setup (ISTool)

Compile Setup option, 377–378
discussed, 350, 375
File List view option, 376
licensing, 376
Script view, 376–377

innovation and inertia, 701–703
Inside the C++ Object Model (Stanley B.

Lippman), 231
inspection

process improvement, ISO 9000 areas of con-
cern, 584

testing approaches, 391–392
installation

installation packages, software configuration
management, 375–378

SmartDraw, 740
version control tool evaluation criteria, 348

installer creation application, system setup, soft-
ware configuration management, 349–350

instances, defined, 97
Institute of Electrical and Electronics Engineering

(IEEE)
code of ethics, 720
formal engineering, 692–693
IEEE 730, 589–594
IEEE 1471, 146
organization templates, 35

integration
test plans, 393–394, 397–398
testing roles, 427
versions and, 364

integrity, software engineering, 10
interaction diagrams, 102, 109
interactive increments, engineering requirements, 44
interfaces

classes, 92, 102, 203
interface control, SCM template topics, 352
polymorphic activities and, 101–102
requirements, specification document, 50
services, 203–204
standard, 174

internal component view, 305
internal errors, 182
internal risks, 273–274

International Game Development Association
(IGDA), 726

International Society of Parametric Analysis
(ISPA), 431

International Standards Organization (ISO)
discussed, 133, 430, 587–589
ISO 9000 standards, 583–585
process improvement approaches, 582–587
Web site, 582

Internet-based systems, release plans, 618
Internet form support, release plans, 647
interns, as learning path, 709
interpreter patterns, 242
Introducing Software Testing (Louise Tamres),

410, 428
introduction

SCM template topics, 351
specification document, 49

Introduction to the Personal Software Process
(Watts S. Humphrey), 26, 430, 472, 615

Invasive Software Composition (Uwe Aßmann), 537
inventory items, 324–326
inversion problems, coupling, 218
investigators, team formation roles, 554
invoking operations, 115
irregular presentation, information

deprivation, 661
is keyword, class diagrams, 97
IsLoaded() operation, 261
ISO (International Standards Organization)

CMM and, 587–589
discussed, 133, 430
ISO 9000 standards, 583–585
process improvement approaches, 582–587
Web site, 582

ISPA (International Society of Parametric Analy-
sis), 431

issue ratings, beta release planning, 629
ISTool (Inno Setup)

Compile Setup option, 377–378
discussed, 350, 375
File List view option, 376
licensing, 376
Script view, 376–377

iteration, in stripes, 151–152
iterative design

applied design, 305–306
concepts, 307–308

Index838

discussed, 303
glossary and definitions, 304–305
software systems and gravity, 307

iterator patterns, 242

J
Jacobson, Ivan, 537
Jimmy Neutron (THQ), 705
Johnson, Mark (Metaphors We Live By), 689
Johnson, Ralph, 234, 239
Jonsson, Patrick, 537
Journal of Game Development, 727
journaling, documentation, 674–675
journeyman, as learning path, 709
judgment, applied ethics, 721
Jung, Carl (archetype), 234

K
Kan, Stephen H. (Metrics and Models in Software

Quality Engineering), 465, 472
Karloak, Dale Walter (Software Engineering Risk

Management), 302
Kendrick, Tom (Identifying and Managing Project

Risk), 302
Kenefick, Sean (Real World Software Management

Configuration), 379
key practices, process improvement, 600
keys

branching practices, 369
qualified association and, 104

keystrokes/mouse action tables, tables for testing,
410

Kidd, Jeff (Object-Oriented Software Metrics), 472
King, Brad, 236
KLOC (thousand lines of code), 432
knowledge sharing, documentation, 662–663

L
labels

links and, 114
version, 364

lack of equipment, project failure reasons, 573
lack of resources, project failure reasons, 573
Lakoff, George (Metaphors We Live By), 689
LaMothe, André (Tricks of the Windows Game

Programming Gurus, 2nd Edition), 728

Index 839

Lapin, Lawrence L. (Business Statistics), 472
large classes, refactoring prompts, 226
large versus small companies

group specialization, 705–706
knowledge, seeking new, 707–708
project orientation, 706
specialization, 706–707

lawsuits, risk analysis, 269
lazy classes, refactoring prompts, 227
leadership styles

project management skills, 566
team building qualities, 564

learning
capabilities, 21–22
how to learn

analysis, 708–709
career paths, 709–710
craft perfection, 709
maturity levels, 711–713
process improvement, 709
quality improvement, 709
where to learn, 713

through documentation
common understanding, 666
common vocabulary, 670
communication, 672
illustrations, 667–668
metaphors, 667
nondocumentation-centered information

management, 671
participation, 670–671
pathways of learning, 665–668
repetition, 666–667
reviews, 670
shared resources, 668
symbols, 667
teaching cultures, 672

legality issues, libraries, 172
Liberty, Jesse (Clouds to Code), 340
libraries

application framework, 166
Boost, 193, 195
development strategies and, 492
functions, 126
game engines, 167–168
legality issues, 172
Open C++, 167

profiled engines, 168–169
reuse and, 165–166
STL (Standard Template Library), 167, 193–194

licensing, 696–700
lifetime of objects, 109
limitations, engineering, 8
linear growth in complexity, software revisions,

517–518
linear regression, 440
lines of code (LOC), 432, 466
links

associations and, 109
defined, 102, 107
labels, 114

Lippman, Stanley B. (Inside the C++ Object
Model), 231

Lister, Timothy (Peopleware: Productive Projects
and Teams), 575, 728

lists, planning, 493
Llopis, Noel (C++ for Game Programmers), 200
load and save functionality, 316–318
LOC (lines of code), 432, 466
local directories, branching practices, 367
locked files, branching practices, 368
logarithmic relationships, 440–441
logging activities, process improvement, 612–613
logical branch points, 421
logical view

description of, 305
software design, 150

long operations, refactoring prompts, 226
loops, 178
The Lord of the Rings: The Return of the King (Id

Software, Inc.), 705
Lorenz, Mark (Object-Oriented Software

Metrics), 472
low-level design, 143–146, 488–490
low risk

schedule risk estimation, 293
scope risk estimation, 291

M
Madden NFL (Id Software, Inc.), 705
magical play, strategy patterns, 254
maintainability

design quality, 133
requirements, reasons for, 33

specification document, 52
technique, 7

maintenance
aggregation versus hierarchy, 213
analysis approach to testing, 389–390
documentation, 680–682
revision phase and, 23
software support establishment, release plans,

653–656
management

applied ethics, 721
Gantt charts, 570
PERT (Project Evaluation and Review Tech-

nique) charts, 569
release management system, 644–645
requirements results, 33
responsibilities, 427
risk management, 297–299
SCM template topics, 352
software configuration management

disaster recovery issues, 374–375
individual practices, 371–374
test coordination issues, 374

WBS (Work Breakdown Structure), 567–569
managers, team roles, 552
Managing the Software Process (Watts S.

Humphrey), 615, 689
map editor

construction using, 337
as development tool, 337
resources, 335

margin of error, WBS, 568
marketed characteristics, production releases, 631
marketing

cottage industries and, 3–4
plans, team formation considerations, 545

Martin, Robert C. (Agile Software Development:
Principles, Patterns, and Practices), 163,
231, 268, 340

Mastering the Standard C++ Classes: An Essential
Reference (Cameron and Tracey Hughes),
200

matrix, requirements, 44
maturity levels

learning paths, 711–713
requirements, reasons for, 33

Max Payne (Activision), 705

Index840

McBreen, Pete (Software Craftsmanship: The New
Imperative), 728

McConnell, Steve, 200, 556, 575, 702, 728
McGregor, John D. (A Practical Guide to Testing

Object-Oriented Software), 428, 508
McMannus, John (Risk Management in Software

Development Project), 302
McShaffry, Mike (Game Coding Complete),

389–390, 508
mean, summation, 455–456
Mean Time to Failure (MTTF), 451–452
measurement

numerical data, 23
uncertainty, risk identification, 282

median, summation, 456
mediator patterns, 242
meditation, 765
medium risk

schedule risk estimation, 293
scope risk estimation, 291

member functions, 109, 202
memento patterns, 242, 258–259
memory

internal risks, 273
memory leak, 180
stress tests, 394

Mencher, Marc (Get in the Game!), 710, 729
mergers, process improvement reasons, 578
merging

branching practices, 359–361, 368
version control tool evaluation criteria, 348

Merritt, Everett W., 164
Mesh Placement component view, 315–316
message chains, refactoring prompts, 227
message exchanges, class test harnesses, 417–418
messages

arrows, 110–111
asynchronous, 109
parameters, 111–112
reading, 113
receiver, 109
return, 109
sender of, 109
simple, 109
synchronous, 109

meta-information, 662–663
Metal Arms (Sierra), 705

Index 841

metaphors, illustrations as, 667–668
Metaphors We Live By (Mark Johnson and George

Lakoff), 689
metrics

benchmarking practices, 436
cause-and-effect models, 438
collection justification, 430
core, 464
discussed, 429
function points, 470–471
information sources, 431
LOC (lines of code), 466
measurement, 23
models

dynamic, 463–464
Rayleigh model, 464–466
static, 463
synchronic, 463

object-oriented product efforts, 433–434
organizational objectives, 430
personal, 430
process, 430
product, 431
project, 431
relationships

Cartesian coordinate plane, 436
exploration, 437
ordered pair, 436
Pareto analysis, 442–443
predication and causality, 438
regression analysis, 438–441
trend lines, 441
visualization, 438

resources, 472
statistical curves

bar charts, 447
distribution, 443
frequency polygons, 449
histograms, 449
pie charts, 446
radar charts, 448
run charts, 447
scatter plots, 449
sigmas, 444
six sigma, 444–445

statistics
descriptive, 450–451
fractiles, 462–463
groupings, 462–463
index of variation, 461
inferential, 451–452
percentiles, 462–463
proportion, 462
standard deviation, 460
summation, 453–460
validity and reliability, 461–463

terminology, 432–433
Metrics and Models in Software Quality Engineer-

ing (Stephen H. Kan), 465, 472
Mette Jonassen Hass, Anne (Configuration Man-

agement Principles and Practices), 657
Meyers, Scott

Effective C++: 50 Specific Ways to Improve Your
Programs and Designs, 200, 231

More Effective C++: 35 New Ways to Improve
Your Programs and Designs, 231

Microsoft Windows Installer (MIS), 350
Microsoft Word, 685
Midnight Club (Activision), 705
midrange, summation, 457
military numbering, 114
MIS (Microsoft Windows Installer), 350
miscommunication

in documentation, 687
information deprivation, 660–661

misdirected methodologies, 716
mode, summation, 457–458
modeling

artifacts, 77
program examples, 77–78
static, 91

models, metrics
dynamic models, 463–464
Rayleigh model, 464–466
static models, 463
synchronic models, 463

modifications, software revision, 512–513
mods (modified games)

advantages/disadvantages, 31
precautions, 55

modularity
branching practices, 369
object-oriented programming and, 220–224

modularity, object-oriented programming and,
220–224

module testing harnesses, 418–419
modules, components and, 116
monitoring risks, risk analysis, 301–302
Moore, Michael, 26
More Effective C++: 35 New Ways to Improve Your

Programs and Designs (Scott Meyers), 231
Morris, Dave (Game Architecture and Design, A

New Edition), 509
movement

characters, 761
unit physics, 322–323

MSI support, installation creation tool evaluation
criteria, 350

MTTF (Mean Time to Failure), 451–452
multiplayer games, optimization considerations,

520
multiplicity, 77, 80, 104
mutator operations, 93, 204
Myers, Ware, 472
The Mythical Man-Month (Frederick P. Brooks

Jr.), 26, 567, 575, 692, 728

N
name considerations

classes, 63
objects, 108
patterns, 245

name releases, change control parameters, 345
narratives

inner and outer scope boundaries, 37
templates, for use cases, 56
use cases and, 34

needless association, 212
negotiation, project management skills, 566
NHL (Id Software, Inc.), 705
nice versus practical classes, 174–175
nonfunctional requirements, 28
notes, defined, 77, 80
null hypothesis, 451
numbered lists, 498
numbered releases, 631
numbering systems

documentation, 681
military, 114
release plans, 632–636

numerical data, measurement, 23

Index842

O
object diagrams, 102, 107–112
Object Management Group (OMG), 75–76
Object-Oriented and Classical Software Engineer-

ing, 5th Edition (Stephen Schach), 717
Object-Oriented Design & Patterns (Cay

Horstmann), 268
object-oriented product efforts, metrics, 433–434
object-oriented programming

abstract classes, 215–216
abstraction, 205–206
associations, 213–214
class beginnings, 201–204
classes and, 92
coupling, 208–209
decoupling, 209–210
encapsulation, 206–208
inheritance, 210–212
modularity, 220–224
patterns, 236–237
polymorphism, 216–217
refactoring, 220, 224–230

Object-Oriented Software Metrics (Mark Lorenz
and Jeff Kidd), 472

Object-Oriented Specification and Design with
C++ (Peter Henderson), 508

objects
abstraction, 92
dynamic, 109
lifetime of, 109
message types, 109–110
naming, 108
operations, 92, 115
overview, 92
patterns and, 237
sequence diagrams, 112–113
state, 93
underlined, 108

observer patterns, 243, 255–256
offensive play, strategy patterns, 254
OMG (Object Management Group), 75–76
On Time Within Budget: Software Project Man-

agement Practices and Techniques, 3rd
Ed., 575

OnClick() function, 195, 253
OnClicked event, 195–196
one-dimensional code, 367

Index 843

OnKeyPress() function, 195
OnMouseDown event, 195–196
OnMouseUp event, 195–196
Open C++ libraries, 167
operating systems

installation creation tool evaluation criteria, 350
version control tool evaluation criteria, 347

operations. See also functions
accessor, 204
AddReference(), 181, 261
ArmCharacter(), 102
begin(), 195
BuildWorldMatrix(), 176
complex projects, 696
CopySurfaceToSurface(), 199
CStateMachine(), 203
defined, 96, 202
DoFrame(), 203–204
DoneWithImage(), 181
end(), 195
EnterState(), 204
erase(), 194
Get(), 181, 261
GetIndex(), 204
GetPos(), 173
GetStatus(), 101
GetVal(), 216
HandleGUIEvent(), 204
invoking, 115
IsLoaded(), 261
mutator, 204
object-oriented project metrics, 434
polymorphism, 98
pure virtual, 215
Release(), 261
RemoveReference(), 181, 261
Run(), 250
SetActive(), 100–101
SetCurrentState(), 204
SetHeight(), 206
SetLookAt(), 179
SetMesh(), 175
SetPos(), 173, 179
SetVal(), 216
specification, software design considerations,

145–146

startAction(), 111
Unload(), 261
Update(), 189
utility, 204
virtual

abstract classes and, 215
defined, 97

WinMain(), 187
operators, approximation, 456
optimization

code reuse, premature, 191
software revisions, 519–520

ordered pair, 436
organization

metrics, 430
SCM template topics, 352
templates, IEEE, 35
test plans, 399

organizational change, process improvement,
604–609

organizational inertia, 702
organizational support, risk analysis, 272
orthogonal defect categories, test cases, 422–425
outer scope, 37
outlines, test outlines, 414
overall description, specification document, 49
ownership responsibilities, documentation,

681–683

P
package diagrams, 15, 118, 146
packaged releases, 631
Page-Jones, Meilir, 508
Pandian, Ravindranath (Software Metrics: A

Guide to Planning, Analysis, and Applica-
tion), 472

parallel development, architecting branching,
364–366

parameters, messages, 111–112
Pareto analysis, 442–443
Parnas, D. L., 694
participation, learning through documentation,

670–671
Parts per Million (PPM), 444
passed reports, tables for testing, 411
patches, release plans and, 632

path considerations, software engineering and
game development, 7–9

Pathlib library, 169
Pattern Hatching: Design Patterns Applied (John

Vlissides), 268
patterns

abstract factory, 241
adapter, 241
applied, 248
architectural, 241
behavioral, 240
boss

features, 261
implementation, 262–267

bridge, 131, 241
builder, 241
chain of responsibility, 242, 252–253
command, 242, 259–260
composite, 242, 251–252
conceptual, 241
controller, 130
creational, 240
decorator, 242
design, 241
documenting, 244–248
expert, 130–131
façade, 242, 257
factory method, 242
flow charts and, 235–236
flyweight, 242
GoF (Gang of Four), 239–240
history of, 234
idiomatic, 241
intent considerations, 246
interpreter, 242
iterator, 242
mediator, 242
memento, 242, 258–259
naming, 245
object-oriented programming and, 236–237
objects and, 237
observer, 243, 255–256
origins, 238–239
problem statements, 246
programming, 241
prototype, 243

Index844

proxy, 243
refactoring and, 17–18
resources, 268
scope, 240
singleton, 130, 243, 249
state, 243, 253–254
strategy, 243, 254–255
structural, 240
structured programming, 236
template method, 243
visitor, 243

Patterns and Software: Essential Concepts and
Terminology (Brad Appleton), 268

Patterns of Culture (Ruth Benedict), 234
Paulk, Mark C., 588, 615
peak frequency, 457
Peer Reviews in Software, A Practical Guide (Karl

E. Wiegers), 509, 689
Peopleware: Productive Projects and Teams (Tom

DeMarco and Timothy Lister), 575, 728
percentiles, statistics, 462–463
perfection, repetition and, 4–5
performance

aggregation versus hierarchy, 213
design quality, 134
performance problems, debugging, 624–625
requirements, specification document, 51

permissions, change control parameters, 345
personal metrics, 430
personal processes, process improvement, 613
Personal Software Process (PSP), 596
personalities

conflicts, risk analysis, 300
team building qualities, 564

PERT charts
evaluation schedule risks, 295
team management, 569

Petroski, Henry
To Engineer Is Human: The Role of Failure in Suc-

cessful Design, 26, 135
The Role of Failure in Successful Design, 472

phases, requirements development cycles, 45–46
phone support, release plans, 647
pie charts, 446
Pirsig, Robert (Zen and the Art of Motorcycle

Maintenance), 26, 689
planned measures, risk analysis, 275

Index 845

planning
coding conventions, 499–500, 502, 510
concept formation, 487
configuration management, 498–499
design feature plans, 545
diagrams, 493
discussions, 493
documentation, 493
game production, 545
integrity, achieving, 10
lists, 493
marketing plans, 545
numbered lists, 498
process improvement, 614
project planning, 497–498
Quality Assurance (QA) plans, 503–504
release plans, 502
requirements, reasons for, 32
risk management, 297–299
software configuration management

coding standards, 353
template use, 351–353

software project development plans, 545
team definitions, 476
test plans, 502

acceptance, 398
component/class, 396–397
discussed, 394
integration, 397–398
organizing, 399
project test plans, 395–396
system, 398

version control, 498–499
play narrative, game design documents, 54–55
playability, eliciting requirements, 30
players

eliciting requirements, 30
roles, testing, 427

policies, software configuration management,
343–345

polymorphism, 98, 101–102
poor quality, process improvement reasons, 578
population variance, 460
portability, design quality, 133
positive motions, risk analysis, 275
postconditions, 146
postproduction phase, team formation, 541–542

postrelease phase, 619
PPM (Parts per Million), 444
A Practical Guide to Testing Object-Oriented Soft-

ware (John McGregor and David Sykes),
428, 508

Practical Project Management: Restoring Quality
to DP Project and Systems, 508

practical versus nice classes, 174–175
practices

documenting, 21–22
software revisions

class and operation evaluation, 524–530
designing, 532
difficulty and priority ranks, 523–524
discussed, 511
implementation, 533–534
linear growth in complexity, 517–518
modifications, 512–513
optimization considerations, 519–520
requirements impacts, gauging, 515–517
resources, 537
risk assessment, 520–521
scope and complexity, 513–514
scope of revisions, determining, 518–519
specifications for, 530–531
technical symmetry, 514–515

use cases, 58
preconditions, 146
prediction

metric relationships, 438
quality improvement, 579

premature optimization, code reuse, 191
preproduction phase, team formation, 541
prerelease phase, 619
Preventative Programming Techniques: Avoid and

Correct Common Mistakes (Brian
Hawkins), 200

prevention, risk analysis, 271, 286
previous experiences, eliciting requirements, 30
primitive obsession, refactoring prompts, 226
principles, software design, 123, 127–130
priorities

project test plans, 396
requirements, 43

private attributes, 93, 95
private scope, 202

problems
problem reporting applications, system setup,

software configuration management, 350
problem solving

project management skills, 566
risk analysis, 278

problem statements, patterns, 246
problem-tracking systems, 23
requirements, reasons for, 32
risk analysis, 276
software support establishment, release plans,

653
procedures

change control, 71–72
QA plans, 503
tables for testing, 411
test procedures, 413–414

process improvement
auditors, 582
basics of, 578–581
change control, 612
contrasting approaches, 581–582
discussed, 577
engineering, 3
existing process assessment, 610–611
goal setting, 611–612
increased profits, 578
ISO approaches, 582–587
key practices, 600
as learning path, 709
logging activities, 612–613
mergers, 578
organizational change, 604–609
personal processes, 613
plans, 614
poor quality, 578
process areas, 600
quality improvement, 578–580
regulatory requirements, 583
resources for, 615
reviews, 614
script control, 612–613
SEPG approaches, 609–610
SPICE (Software Process Improvement and

Capability dEtermination), 588
statistical techniques, 585

Index846

templates
IEEE Standard 730, 589–594
SEI Key Process Area, 594–595

training, 585
process information, project reviews, 507
process metrics, 430
processes, core metrics, 464
product function, specification document, 50
product metrics, 431
production phase, team formation, 541
production release, 618, 631
productivity

core metrics, 435
increases, risk analysis, 279
loss, risk analysis, 279

products
applied ethics, 721
development duration, internal risks, 274
perspective, specification document, 49
quality, risk analysis, 39, 280
size, core metrics, 435
update, release plans, 618, 632

professional competence, resource risk
estimation, 294

professional licensing, 696–700
professionals, as artists and craftsmen, 700–701
profiled game engines, 168–169
profits, increased, process improvement reasons, 578
program files and components, software

configuration management,
development activities, 355–356

program states, auditing, 354–355
programmers, team roles, 552
programming patterns, 241
programs, examples of, 77–78
progress assessment

QA plans, 503
team building qualities, 564

Project Management Institute (A Guide to
the Project Management Body of
Knowledge), 575

projects
core metrics, 464
critical path, 570
failure reasons, 571–574
feasibility, 42

Index 847

files
adding, 746
updating, 748–749
viewing, 747

leadership, team work, 565
management skills, 566
orientation, large versus small companies, 706
project management, shared knowledge,

662–663
project metrics, 431
project planning

concept formation, 487, 497–498
document purposes, 669
documents, references between, 688

scope, requirement difficulties, avoiding, 36–37
test plans, 395–396

promotion
schedules, release plans, 619
software configuration management

beta testing, 371
development, 370
discussed, 369

version control evaluation criteria, 348
properties, defined, 77, 80
proportion, statistics, 462
proposals, core information pathways, team

work, 557
protocols, QA plans, 503
prototypes

eliciting requirements, 30
patterns, 243

provisional statements, 42
proxy patterns, 243
PSP (Personal Software Process), 596
public attributes, 93, 95
public categories, applied ethics, 721
public scope, 202
publications, satisfaction with work, 725–727
purchasing, process improvement considerations,

584
pure virtual class, 97
pure virtual operations, 215
purpose, team building qualities, 563
Putnam, Lawrence H., 472

Q
QA (Quality Assurance) plans

document purposes, 669
specifications and planning, 503–504

QSM (Quantitative Software Management), 431
Quake, 168–169
Quake II, 169
Quake III Arena, 169
qualified association, 104
quality

of product, risk factors, 39
quality improvement

as learning path, 709
process improvement, 578–580

software design considerations, 132–135
Quality Assurance (QA) plans

document purposes, 669
specifications and planning, 503–504

quantitative information, as measurement, 23
Quantitative Software Management (QSM), 431

R
radar charts, 448
randomization, software design, 122–123
range, summation, 457
Rayleigh model, metrics, 464–466
reactionary testing, 385
reading messages, 113
real-time game capabilities, optimization consid-

erations, 520
Real World Software Management Configuration

(Sean Kenefick), 379
receiver, messages, 109
recreation, complex projects, 696
recursive associations, 105
Red Faction (THQ), 705
Redford, Robert, 26
reduction, risk analysis, 271, 286
redundancy

elimination, design principles, 129
reducing, 188–191

refactoring
object-oriented programming and, 220
occasions for, 226–227
patterns and, 17–18
practices, 224–225
techniques, 228–230

reference counting, 180–182
references

SCM template topics, 352
specification document, 49

refinement phase, requirements engineering
description, 45–46
verification and validation, 68–71

reflexive association, 105
regression

branching practices, 368
constant, 440
linear, 440
regression analysis, metric relationships,

438–441
regulatory requirements, process improvement,

583
relationships

Cartesian coordinate plane, 436
defined, 77, 79
design rules, 126–127
include, 88
metrics

exploration, 437
ordered pair, 436
Pareto analysis, 442–443
prediction and causality, 438
regression analysis, 438–441
trend lines, 441
visualization, 438

Release() operation, 261
release plans

alpha release, 618, 625–627
beta release, 618, 628–630
code complete

after code completion, 623
debugging, 623
discussed, 618–619
moving toward, 622–623
testing activities, 620–621

defect concerns, 631
document purposes, 669
final release, 618, 631
Internet-based systems, 618
numbered releases, 631
numbering systems, 632–636
packaged releases, 631
patches and, 632

Index848

postrelease phase, 619
prerelease phase, 619
product update, 618, 632
production release, 618, 631
promotion schedules, 619
release basics, 617–618
release management system, 644–645
release phase, 619
resources, 657
signoffs, 645–646
software support establishment

defect identification, 651
e-mail collection, 647
Internet form support, 647
maintenance processes, 653–656
phone support, 647
problem areas, 653

specifications and planning, 502
structuring releases, 618–619
summary development data, 644
tracking information

change boards, 638
defects, 641–644
planned scenarios, 636
unplanned scenarios, 636
version control systems, 637–638

releases, baseline, 357–358
reliability

core metrics, 435
design quality, 135
statistics, 461–463

RemoveReference() operation, 181, 261
repetition

documentation, learning through, 666–667
perfection and, 4–5

replay, Save Replay use case, 334–336
reports, test report templates, 407–410
repositories

discussed, 744
setting up, 745–746

representation
complex projects, 696
problems, coupling, 218

requirements
analysis phase

activity diagrams, 68
description, 45

Index 849

discussed, 64
use case scenarios, 65

change control
discussed, 44
document control, 72
procedures and reviews, 71–72

completion of, 41
concept formation, development strategies, 482
correctness, 41–42
defined, 28
development cycles, 45–46
difficulties with, avoiding

customer identification, 38
discussed, 35
feasibility, 38–39
feature creep, 39–40
goldplating, 40
growth, uncontrolled, 39
project scope, 36–37

discussed, 8
elicitation phase

approaches to, 46
description, 45
game design document, 52–55
mod requirements, 55
SRS (Software Requirements Specification),

47–52
use case options, 55–58

engineering, 44–46
exploration phase

class name considerations, 63
description, 45
discussed, 59
SRS (Software Requirements Specification),

61–63
TOR charts, 63–64

feasibility considerations, 42–43
functional, 28
good specification efforts, 40, 42–44
implementation, 28
inspections, 391
matrix, 44
nonfunctional, 28
priorities, 43
provisional statements, 42
reasons for, 32–33

refinement phase
description, 45
verification and validation, 68–71

requirements analyst, 31
requirements engineering, 31
results from, 33–35
secondary, 43
software requirements analyst, 31–32
software revision impacts, 515–517
SRS (Software Requirements Specification),

34–35
stripe development, 152–153
tools aiding in, 33
TOR (Task-Object-Remarks) charts, 35
traceability matrix, 35
unnecessary, 42
verification and validation, 43, 620

requirements lists, 135
resolution

optimization considerations, 519
risk assessment, 522

resources
code help, 811–812
commercial and academic reviews, 814
commercial information, 812
development strategies and, 492
documentation, 689, 699
external risks, 272–273
game code, 166
history and analysis, 813–814
lack of, project failure reasons, 573
map editor, 335
metric information sources, 431, 472
patterns, 268
process improvement, 615
release plans, 657
resource risk estimation, 293–294
resource risk evaluation, 286
resource risk identification, 287–290
risk analysis, 302
sharing, 129
software engineering glossaries and topics, 811
software revisions, 537
team work, 575
topical sites, 812
tracking, 261

response plans, risk analysis, 276
responsibilities

design rules, 127
SCM template topics, 352
strategy goals, risk analysis, 280

return messages, 109
returned products, risk analysis, 269
reuse, code

compatibility and maintainability, 188–191
criteria for, 169–172
cut-and-paste problems, 196
libraries and, 165–166
premature optimization dangers, 191
problems of creating, 171–172
redundancy, reducing, 188–191

reverting, branching practices, 368
reviews

anticipating, 683
change control, 71–72
conducting, 683–684
discussed, 682
disputes, anticipating, 684
documentation, learning through, 670
formal practices, 561
information practices, 561
practices, 22
process improvement, 584, 614
process improvement, ISO 9000 areas of con-

cern, 584
QA plans, 503
resources for, 814
schedule information, 507
SCM template topics, 353

revisions
class and operation evaluation, 524–530
revision control, branching practices, 367
software revisions

designing, 532
difficulty and priority ranks, 523–524
discussed, 511
implementation, 533–534
linear growth in complexity, 517–518
modifications, 512–513
optimization considerations, 519–520
requirements impacts, gauging, 515–517
resources, 537

Index850

risk assessment, 520–521
scope and complexity, 513–514
scope of, determining, 518–519
specifications for, 530–531
technical symmetry, 514–515
testing, 534–535

Richter, Charles (Designing Flexible Object-
Oriented Systems with UML), 104, 163,
231, 268

risk analysis
applied, 271–274
audit trails, 276
awareness, 277–278
best practices, 281
cognitive dissonance, 271
communications, 280
control measures, 299–300
coverage, 420
damage control, 271
design phases, 18
discussed, 11–13, 269
errors, reduction in, 279
estimation

resource risk, 293–294
schedule risk, 291–293
scope risk, 290–291

evaluation
Delphi approach, 295
model use, 295
resource risks, 286
schedule risks, 295
scope associated risk, 294–295

experimentation, 279
external risks, 272–273
identification

conditions, 282
resources, 287–290
scheduling, 286–287
scope creep, 283–284
scope gap, 284–285
scope risk, 283–286

internal risks, 273–274
management plans, 297–299
monitoring risks, 301–302
prevention, 271
problem areas, 276
problem solving, 278

Index 851

product quality, 280
project test plans, 395
receptivity to, 276
reduction, 271
requirement feasibility, 42
resources, 302
response plans, 276
risk factors

attitudes toward risks, 274–276
cost factors, 39
feature numbers, 38
goals for, 279–280
product quality, 39
requirements difficulties, avoiding, 38–39

self-assessment, 301–302
software revisions, 520–521
standards, 280
strategy goals, 280
testability

complexity, 421–422
coverage, 420
discussed, 419
impact considerations, 425–426
orthogonal defect categories, 422–425

Risk Management in Software Development Pro-
ject (John McMannus), 302

Rockstar, 705
The Role of Failure in Successful Design (Henry

Petroski), 472
Role-Playing Games (RPGs), 36
roles, defining, software configuration manage-

ment, 343
Rollings, Andrew (Game Architecture and Design,

A New Edition), 509
Rose, John, 53, 338–339
rounds and turns, 760
RPGs (Role-Playing Games), 36
Rucker, Rudy (Software Engineering and Com-

puter Games), 729
Rugby (Id Software, Inc.), 705
rules, design, 123, 125
run charts, 447
Run() operation, 250
Russell, Jordon, 350

S
Salisbury, Ashley (Game Development Business

and Legal Guide), 729

Saltzman, Marc (Game Creation and Careers:
Insider Secrets from Industry Experts), 729

satisfaction with work
discussed, 722
information and publications, 725–727
parallel paths, 724
work optimization objective, 725
workflows, 723

Save a Map use case, 316–317
save and load functionality, 316–318
Save Replay use case, 334–335
scatter plots, 449
scenarios

sixty-seconds-of-play, inner and outer scope
boundaries, 37

use cases and, 34, 57, 86
Schach, Stephen (Object-Oriented and Classical

Software Engineering, 5th Edition), 717
Schaum’s Outline of UML, 119
schedule risk estimation, 291–293
schedule risk evaluation, 295
schedules

core information pathways, team work, 558
project reviews, 507
project test plans, 396
risk identification, 286–287
unrealistic, project failure reasons, 572

science and engineering, 694
SCM (Software Configuration Management)

automated builds, 375
development activities

baseline versions and releases, 358
branching models, 359
builds, 355
domains, controlling, 357
program files and components, 355–356
program states, auditing, 354–355

installation packages, 375–378
management issues

disaster recovery issues, 374–375
individual practices, 371–374
test coordination issues, 374

overview, 341–342
planning techniques

coding standards, 353
reviews, 353
template use, 351–353

policies, 343–345
promotion

beta testing, 371
development, 370
discussed, 369
quality assurance, 370

system setup
installer creation applications, 349–350
problem reporting applications, 350
tool selection, 346
TortoiseCVS, 348–349
version control applications, 347–348

scope
class, 202–203
development improvements, 489
inner, 37
integrity, achieving, 10
loss of, project failure reasons, 572
outer, 37
patterns, 240
private, 202
project test plans, 396
public, 202
requirement difficulties, avoiding, 36–37
risk control, 300
risk identification, 283–286
risk management, 298
SCM template topics, 351
scope associated risk, evaluation, 294–295
scope risk estimation, 290–291
scope statements, 36–37
software engineering, 9
software revisions, 513–514
specification document, 49

script control, process improvement, 612–613
Script view (ISTool), 376–377
scripting

installation creation tool evaluation criteria, 350
test scripts, 413

SDD (Software Design Description)
discussed, 122
template options, 147

secondary requirements, priorities and, 43
security, specification document, 51
SEI Key Process Area template, process improve-

ment, 594–595
SEI (Software Engineering Institute), 430, 694

Index852

Sekhem, Ankh, 8
Select Inventory Items use case, 324
Select Tile use case, 312–313
self-assessment, monitoring risks, 301–302
self-documenting code, 198–199
self ethics, 721
selfless qualities, work optimization

objectives, 725
semicolon (;), 202
senders, messages, 109
sense of worth, team building qualities, 563
sentence structure considerations, 62
SEPG approaches, process improvement, 609–610
sequence diagrams

defined, 109
objects and lifelines, 112–113
software design considerations, 140–141

sequence of events, analysis phase, 66–68
sequences

summation, 453
UML, 17

serial development, architecting branching,
366–367

series, summation, 453
service providers, 96
services, interfaces, 203–204
SetActive() operation, 100–101
SetCurrentState() operation, 204
SetHeight() operation, 206
SetLookAt() operation, 179
SetMesh() operation, 175
SetPos() operation, 173, 179
SetVal() operation, 216
Shalloway, Alan, 268
shapers, team formation roles, 554
shared directories, branching practices, 367
shared knowledge, documentation, 662–663
shared resources

discussed, 129
documentation, learning through, 668

Sheldon, Lee (Character Development and Story-
telling for Games), 729

Shelley, Mary, 7
shortcuts, project failure reasons, 572
shotgun surgery, refactoring prompts, 226
Shumacher, E. F. (Good Work), 26

Index 853

Sides, Charles (How to Write and Present Techni-
cal Information), 689

Siearra Studio, 169, 705
sigmas

six sigma, 444–445
summation, 454

signoffs, release planning, 645–646
simple messages, 109
Simula, 236
simulation, complex projects, 696
singleton patterns, 130, 243, 249
sites. See Web sites
six sigma, 444–445
Six Sigma Forum, 431
sixty-seconds-of-play scenario

inner and outer scope boundaries, 37
use case diagrams, 60–61

size
metrics, 433
version control tool evaluation criteria, 347

skewed distribution, 458
skill use, 763
skills

Acquire Skills use case, 328–329
Ankh game design documentation, 755–756

SLIM (Software Lifecycle Management), 431
small versus large companies

group specialization, 705–706
knowledge, seeking new, 707–708
project orientation, 706
specialization, 706–707

SmartDraw tool, 477–479, 686, 740, 742
Smith, Adam (Wealth of Nations), 540
social implications, ethics, 722
software

revisions
class and operation evaluation, 524–530
designing, 532
difficulty and priority ranks, 523–524
discussed, 511
implementation, 533–534
linear growth in complexity, 517–518
modifications, 512–513
optimization considerations, 519–520
requirements impacts, gauging, 515–517
resources for, 537

risk assessment, 520–521
scope and complexity, 513–514
scope of, determining, 518–519
specifications for, 530–531
technical symmetry, 514–515
testing, 534–535

software crisis, 692
software design

analysis, 135–139
architecture, 125
behavioral view, 150
collaboration diagrams, 142–143
collaborations, 127
component diagrams, 146, 162
component view, 150
concept formation, 485–486
conceptual view, 150
CRC cards, 137–138
deployment view, 151
functions, 126
implementation view, 150
logical view, 150
low-level design tools, 143–146
operation specification, 145–146
operations, generating, 140–143
package diagrams, 146
patterns, 130–131
principles, 123, 127–130
quality considerations, 132–135
randomization, 122–123
reasons for, 122–123
relationships, 126–127
requirements lists, 135
responsibilities, 127
rules, 123, 125
state machines, 126
stripes, 151–152, 154
styles, 131–132
system design, 146–151
TOR charts, 136, 138–139
use case view, 150
use cases, 135
verification, 162–163

software engineering
formalized disciplines, 3–4
glossaries and topics, resources, 811
integrity, 10

limitations, 8
path considerations, 7–9
process improvements to, 3
repetition and perfection, 4–5
requirements, 8
scope, 9
software engineering and game development,

1–3
technique and, 5–7

support establishment, release plans
defect identification, 651
e-mail collection, 647
Internet form, 647
maintenance processes, 653–656
phone support, 647
problem areas, 653

Software Architecture and Design: Principles,
Models, and Methods, 164

Software Configuration Management
Patterns: Effective Teamwork, Practical
Integration, 379

Software Configuration Management (SCM)
automated builds, 375
development activities

baseline versions and releases, 357–358
branching models, 359
builds, 355
domains, controlling, 357
program files and components, 355–356
program states, auditing, 354–355

installation packages, 375–378
management issues

disaster recovery issues, 374–375
individual practices, 371–374
test coordination issues, 374

overview, 341–342
planning techniques

coding standards, 353
reviews, 353
template use, 351–353

policies, 343–345
promotion

beta testing, 371
development, 370
discussed, 369
quality assurance, 370

Index854

system setup
installer creation applications, 349–350
problem reporting applications, 350
tool selection, 346
TortoiseCVS, 348–349
version control applications, 347–348

Software Craftsmanship: The New Imperative
(Pete McBreen), 728

Software Design: From Programming to Architec-
ture (Eric Braude), 231, 340

Software Design Description (SDD)
discussed, 122
template options, 147

Software Engineering and Computer Games (Rudy
Rucker), 729

Software Engineering Body of Knowledge
(SWEBOK), 24–25, 430, 692–693

Software Engineering Code of Ethics and Profes-
sional Practice, 728

Software Engineering Institute (SEI), 430, 694
Software Engineering Risk Analysis and Manage-

ment (Robert N. Charette), 281, 302
Software Engineering Risk Management (Dale

Walter Karolak), 302
Software Exorcism: A Handbook for Debugging and

Optimizing Legacy Code (Bill Blunden), 537
software interfaces, specification document, 50
Software Lifecycle Management (SLIM), 431
Software Metrics: A Guide to Planning, Analysis,

and Application (Ravindranath Pandian),
472

Software Patterns (James O. Coplien), 268
Software Process Improvement and Capability

dEtermination (SPICE), 588
software project development plans, 545
Software Project Survival Guide (Steve

McConnell), 556, 575
Software Release Methodology (Michael E. Bays),

657
Software Requirements, Second Edition (Karl E.

Wiegers), 73, 509
Software Requirements Specification (SRS),

34–35, 47–52, 61–63
Software Reuse: Architecture, Process, and Organi-

zation for Business Success, 537
software systems, iterative design, 307
Software Testing Techniques (Boris Beizer), 428

Index 855

Sonic (THQ), 705
source cleanup, change control parameters, 345
source code, core information pathways, team

work, 559
source files, Ankh, 741–742
specialists, team roles, 552
specialization

bad methodology, 715
defined, 96
good methodology, 714
industries, 23–24
inheritance, 211–212
large versus small companies, 706–707
team formation, 540

specific gravity of components, applied design, 306
specification

core information pathways, team work, 558
documents, references between, 688
requirements results, 33
software revisions, 530–531

spell points, 756
spells, 758, 764
SPICE (Software Process Improvement and Capa-

bility dEtermination), 588
Spider-Man (Activision), 705
sponsors, team formation, 542
SRS (Software Requirements Specification),

34–35, 47–52, 61–63
stable release, branching practices, 369
stages

description of, 305
stripes and, 309–310

stakeholders, requirements difficulties, avoiding, 38
stale code, 362
Standard 830, IEEE, 47–52
standard deviation, 460
standard interfaces, 174
Standard Template Library (STL), 167, 193–194
standards, risk analysis, 280
StarCraft (Blizzard Entertainment), 705
startAction() operation, 111
starting points, development strategies

discussed, 473
team formation, 474–475
theme formation, 475–476

startup input, team formation, 542–544
state chart diagrams, 114–116

State machines, design rules, 126
state of objects, 93
state patterns, 243, 253–254
state transition diagrams, 114–116, 411, 415
statements, sentence structure considerations, 62
static class operations, harnesses with, 415–417
static modeling, 91, 463
statistics

descriptive, 450–451
fractiles, 462–463
groupings, 462–463
index of variation, 461
inferential, 451–452
percentiles, 462–463
proportion, 462
standard deviation, 460
statistical curves

bar charts, 447
distribution, 443
frequency polygons, 449
histograms, 449
pie charts, 446
radar charts, 448
run charts, 447
scatter plots, 449
sigmas, 444
six sigma, 444–445
Weibull curves, 443–444

statistical hypothesis, 451
statistical techniques, process improvement, 585
summation

deviation, 459–460
mean, 455–456
median, 456
midrange, 457
mode, 457–458
peak frequency, 457
range, 457
sequences and series, 453
sigma, 454
tabular data, 455
variability, 457
variance, 459–460

validity and reliability, 461–463
View Strengths use case, 332–333

status, branching practices, 369
status accounting, SCM template topics, 353

Stein, Barry S., 689
Stephens, Larry J. (Advanced Statistics Demysti-

fied), 472
stereotypes, extensions, 80
STL (Standard Template Library), 167, 193–194
storage, documents, 682
storytelling, use case diagrams and, 84–85
strategies

goals, risk analysis, 280
risk management, 298–299
strategy patterns, 243, 254–255

stress tests, 394
strict change control, policy changes, 344
stripes

acquire skills, 328–330
acquire weapon, 330–332
beginning, 155–156
character editor, 320–322
collaboration diagram, 160
combat, 326–328
component view, 310
context, 156–157
description of, 305
floor tiling, 312–314
GUI objects, 310–311
inventory items, 324–326
load and save functionality, 316–318
mesh placement, 315–316
replay saves, 334–336
requirements, 152–153
stages, 309–310
unit physics, 322–323
use cases for, 156, 310
view statistics, 332–334
views for, 157

Stroustrup, Bjarne, 236–237
structural patterns, 240
structural roles, testing, 427
structural testing, 415
structural uncertainty, risk identification, 282
structured programming, patterns and, 236
styles

componential design, 132
of development, 703–704
distributed design, 132
extensible design, 131–132
free-form design, 132

Index856

subsystems
components and, 116
names, specification document, 51

summary, game design documents, 53–54
summary data, defect tracking systems, 641–644
summary development data, release plans, 644
summation

deviation, 459–460
mean, 455–456
median, 456
midrange, 457
mode, 457–458
peak frequency, 457
range, 457
sequences and series, 453
sigma, 454
tabular data, 455
variability, 457
variance, 459–460

supplier control, SCM template topics, 353
support, external risks, 272–273
Sutter, Herb (Exceptional C++: 47 Engineering

Puzzles, Programming Problems, and
Solutions, 231

SWEBOK (Software Engineering Body of Knowl-
edge), 24–25, 430, 692–693

switch statements, refactoring prompts, 226
Swords & Circuitry: A Designer’s Guide to Com-

puter Role Playing Games, 508, 728
Sykes, David A. (A Practical Guide to Testing

Object-Oriented Software), 428, 508
symbols, learning through documentation, 667
symmetrical associations, 104
synchronic models, 463
synchronous messages, 109
synchronous workflow, 90
system context diagrams, 37
system context use cases, 37
system design, 146–151
system limitation, internal risks, 273
system setup, software configuration

management
installer creation applications, 349–350
problem reporting applications, 350
tool selection, 346
TortoiseCVS, 348–349
version control applications, 347–348

Index 857

system testing, 394, 398
system testing roles, 427
systems

external, 28
user-oriented, 28

Systems Analysis and Design Methods, 5th Ed., 575

T
table of contents, specification document, 49
tables, testing, 410–413
tabular data, summation, 455
tags, branching practices, 369
Tamres, Louise (Introducing Software Testing),

410, 428
targets

production releases, 631
project test plans, 395

Task-Object-Remarks (TOR) table
applied design topics, 306
class name considerations, 63–64
concept formation, 483
exploration phase, engineering requirements,

63–64
overview, 16
software design and, 136, 138–139
uses for, 35

tasks, shared knowledge, 662–663
teaching cultures, learning through documenta-

tion, 672
team members, internal risks and, 273–274
team work

core information pathways, 557–559
dissolved members, 547
failure reasons, 571–574
formal and personal roles, combining, 554–562
formation

champions, 542
discussed, 474–475
emotional fit factors, 548–549
finding a fit, 549–554
formal development role factors, 550–551
game production plan considerations, 545
personal project role, 552–553
postproduction phase, 541–542
preproduction phase, 541
production phase, 541
sponsors, 542

startup and approval teams, 542–543
startup input, 543–544
team-building qualities, 562–564
technical fit factors, 548

goal alignment, 555–557
head count estimations, 546
information flow, participating in, 559, 660
management techniques, 567–571
project leadership, 565
project management skills, 566
resources, 575
responsibilities, 546–547
review strategies, 560–562
roles, 552
specialization and cooperation, balance between,

540
tasks, 546–547
tendencies of, 539–541
themes, 475–476
WBS (Work Breakdown Structure), 567–568

technical expertise factors, team formation, 548
technical feasibility

discussed, 42
team formation, startup input, 543–544

technical symmetry, software revisions, 514–515
technical versus artistic design, 13–14
technical versus customer documentation,

673–674
technical writers, team roles, 552
technique, software engineering and, 5–7
The Technological Society (Jacques Ellul), 26
technology, internal risks, 274
templates

documentation, 676–680
documentation practices, 22
process improvement

IEEE Standard 730, 589–594
SEI Key Process Area, 594–595

recommended patterns, 679
software configuration planning techniques,

351–353
template method patterns, 243
for testing

discussed, 399
IEEE 829 standard, 400–403
test case templates, 404–407
test report templates, 407–410

temporary fields, refactoring prompts, 227
testing

alpha, 505–506
discussed, 23
quality assurance, 370
release plans, 618, 625–627

analysis approach
application knowledge, 388
architectural components, 388–389
general domain, 387–388
maintenance, 389–390
V model, 390

basics of, 381–382
behavioral (white-box), 19
beta, 505–506

discussed, 23
release plans, 618, 628–630
software configuration management, promo-

tion, 371
black-box, 393, 415
class, 392–393
code complete, 620–621
component test plans, 392
concept formation, 486–487
core information pathways, team work, 558
design quality, 134
development and, 19–20
documents, references between, 688
exploration approach, 385
find-and-fix, 385
formalized approach to, 19–20, 385–386
harnesses

class test harnesses, 417–418
modules, 418–419
with static class operations, 415–417

inspection, 391–392
integration, 393–394, 427
integrity, achieving, 10
management roles, 427
outlines, 414
player roles, 427
process improvement, ISO 9000 areas of con-

cern, 584
reactionary, 385
requirements, reasons for, 32
revisions, 534–535

Index858

risk assessment
complexity, 421–422
coverage, 420
discussed, 419
impact considerations, 425–426
orthogonal defect categories, 422–425

specifications and planning, 502
stress tests, 394
structural roles, 415, 427
system, 394
system roles, 427
tables for, 410–413
templates for

discussed, 399
IEEE 829 standard, 399–403
test case templates, 404–407
test report templates, 407–410

test cases and procedures, 413–414
test coordination issues, software configuration

management issues, 374
test plans

acceptance, 398
component/class, 396–397
discussed, 394
integration, 397–398
organizing, 399
project test plans, 395–396
system, 398

test scenarios, 413
test scripts, 413
test suites, 414
testers, eliciting requirements, 30
unit, 370, 392–393
use cases, 19–20, 69
verification and validation, 43, 69, 384
white-box, 389, 393, 415

The Art of Software Architecture: Design Methods
and Techniques (Stephan T. Albin), 163

The Capability Maturity Model: Guidelines for
Improving the Software Process, 588, 615

The Elements of C++ Style, 200
The Elements of UML Style (Scott W. Ambler), 119
The Ideal Problem Solver: A Guide to Improving

Thinking, Learning, and Creativity, 689
The Lord of the Rings: The Return of the King (Id

Software, Inc.), 705

Index 859

The Mythical Man-Month (Frederick P. Brooks
Jr.), 26, 567, 575, 692, 728

The Role of Failure in Successful Design (Henry
Petroski), 472

The Technological Society (Jacques Ellul), 26
The Timeless Way of Building (TWB), Alexander,

Christopher, 238–239
The Unified Modeling Language User Guide, 119
thefreecountry Web site, 166
themes, team formation, 475–476
thousand lines of code (KLOC), 432
THQ, 705
throwing exceptions, 187–188
Tiger Woods PGA Tour (Id Software, Inc.), 705
tightly coupled classes, 209
tiling, 312–313
The Timeless Way of Building (TWB), Alexander,

Christopher, 238–239
timelessness, work optimization objectives, 725
timing considerations, technique, 6
To Engineer Is Human: The Role of Failure in Suc-

cessful Design (Henry Petroski), 26, 135
Tony Hawk (Activision), 705
tool selection, system setup, software configura-

tion management, 346
tools

document applications, 479–480
SCM template topics, 353

TOR (Task-Objects-Remarks) table
applied design topics, 306
class name considerations, 63–64
concept formation, 483
discussed, 16
exploration phase, engineering requirements,

63–64
software design and, 136, 138–139
uses for, 35

TortoiseCVS software, 348–349, 480–481
tracability matrix, requirements and, 35
tracking information

documentation, 680
release plans

change boards, 638
defects, 641–644
planned scenarios, 636
unplanned scenarios, 636
version control systems, 637–638

resources, 261
tracking systems, beta release planning, 629

training, process improvement, 585
transitions

events, 115
state transition diagrams, 114–116, 415

trend lines, 441, 447
Tricks of the Windows Game Programming Gurus,

2nd Edition (André LaMothe), 728
triggers, 56
Trott, James R., 268
True Crime (Activision), 705
trunks, branching, 359–360
try blocks, 183–184
Turner, Richard, 615

U
UML (Unified Modeling Language)

activity diagrams, 89–91
class diagrams, 17, 76–77
collaboration, 17, 113–114
component diagrams, 116–117
deployment diagrams, 118–119
diagram types, 81
discussed, 8
history, 75–76
object diagrams, 107–112
OMG (Object Management Group), 75–76
package diagrams, 118
sequence, 17, 112–113
state chart diagrams, 114–116
state transition diagrams, 114–116
use cases and, 34, 83–84

uncontrolled growth, 39
underlined objects, 108
understanding

organizational change stages, 606
work optimization objectives, 725

Unified Modeling Language. See UML
The Unified Modeling Language User Guide, 119
unit physics, 322–323
unit testing, 370, 392–393
units, Ankh game design documents, 754
unknown results, risk identification, 282
Unload() operation, 261
unstable release, branching practices, 369

Update() operation, 189
updating files, 748–749
usability, design quality, 134
use case diagrams. See also use cases

bounding boxes, 84
deriving classes from, 91
example of, 83
extensions, 87–88
generalization, 89
include relationships, 88
modeling elements, 84
roles, 85–86
scenarios, 86
storytelling and, 84–85

Use Cases: Requirements in Context (Daryl Dulak
and Eamonn Guiney), 508

use cases. See also use case diagrams
Acquire Skills, 328-329
Acquire Weapon, 330–331
advantages of, 34
approaches to, 58
Battle Guard, 326–327
context, 59
converting to test cases, 414
core information pathways, team work, 558
Create Character Profile, 320–321
design considerations, 135
diagrams, 34
inspections, 391
narrative templates, 56
narratives, 34
practices and explanations, 58
requirements, results from, 34
Save a Map, 316–317
Save Replay, 334–335
scenario templates for, 57
scenarios, 34
Select Inventory Items, 324
Select Tile, 312–313
sixty-seconds-of-play diagrams, 60–61
for stripes, 156
stripes and, 310
system context, 37
for testing, 69
Use Slider, 311
View Strengths, 332–333
Walk Character, 322–323

Index860

user characteristics, specification document, 50
user groups, 168
user-oriented systems, 28
Use Slider use case, 311
users, eliciting requirements, 30
utility operations, 191–193, 204

V
V model, analysis approach to testing, 390
validation

baselines, 69
good requirement specification, 43
refinement phase, 68–71
testing approaches, 384
validity and reliability, statistics, 461–463

variability, summation, 457
variance, summation, 459–460
verification

baselines, 69
good requirement specification, 43
refinement phase, 68–71
requirements results, 33
software design, 162–163
testing approaches, 384

versions
baseline, 357–358
integration and, 364
numbering systems, release plans, 634
version control systems

specifications and planning, 498–499
system setup, software configuration manage-

ment, 347–348
tracking information, 637–638

version numbers, change control parameters,
344–345

vertical axes, message paths, 112
vertical boxes, activations, 113
Vice City (Activision), 705
View Strengths use case, 332–333
views, descriptions, 80, 305
Villar, Carlos, 54
Vinson, Ben, 54, 337
virtual operations

abstract classes and, 215
defined, 97

Index 861

vision statements, core information pathways,
557

visitor patterns, 243
visualization, metric relationships, 438
Vlissides, John, 234, 239, 268

W–X
Walk Character use case, 322–323
WarCraft (Blizzard Entertainment), 705
WBS (Work Breakdown Structure), 567–569
Wealth of Nations (Adam Smith), 540
weapons

Acquire Weapon use case, 330–331
inventories, 757–758

Web sites
code help, 811–812
commercial and academic reviews, 814
commercial information, 812
CPP-home.com, 166
CPSP (Computer Professionals for Social

Responsibility), 722
Digital Games Research Association, 166
flipcode, 166
Gamasutra, 726
Game Development Search Engine, 166
Game Foundry.Source Forge, 167
Game Studies, 727
Game Tutorials, 166
GameDev, 166, 726
history and analysis, 813–814
IGDA, 726
ISO, 582
software engineering glossaries and topics, 811
thefreecountry, 166
topical sites, 812

Weber, Charles V., 615
Weibull curves, 443–444
white-box (behavioral) testing, 19, 389, 393, 415
Whitehead, Paul, 336
Whitehead, Richard, 560–561, 575
Whitten, Jeffrey L., 575
Wiegers, Karl E.

Peer Reviews in Software: A Practical Guide, 509,
689

Software Requirements, Second Edition, 73, 509
WinMain() operation, 187
wisdom, reliability efforts, 7

Witt, Bernard I., 164
word processing tools, for documentation,

685–686
WordPerfect (Corel), 685
workflows

activity diagrams, 89–90
satisfaction with work, 723
synchronous, 90

writers, team roles, 552
Writing Effective Use Cases (Alistair Cockburn),

72, 508

Y–Z
Yourdan, Edward, 575
Zen and the Art of Motorcycle Maintenance

(Robert Pirsig), 26, 689

Index862

Take Your
Game to the

XTREME!

Xtreme Games LLC was founded to help small game developers
around the world create and publish their games on the commercial
market. Xtreme Games helps younger developers break into the field
of game programming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of developers around
the world. If you’re interested in becoming one of them, visit us at
www.xgamestation.com.

www.xgamestation.com

Professional ■ Trade ■ Reference

GOT GAME?

Call 1.800.354.9706 to order
Order online at www.courseptr.comA division of Course Technology

™

Game Programming All in One,
2nd Edition

1-59200-383-4 ■ $49.99

3D Game Engine Programming

1-59200-351-6 ■ $59.99

Mathematics
for Game Developers

1-59200-038-X ■ $49.99

3D Game Programming
All in One

1-59200-136-X ■ $49.99

	Cover
	Acknowledgments
	About the Author
	About the Series Editor
	Letter from the Series Editor for Software Engineering for Game Developers
	Contents at a Glance
	Contents
	Introduction
	Chapter 1 Getting into the Game
	Chapter 2 Requirements—Getting the Picture
	Chapter 3 A Tutorial: UML and Object-Oriented Programming
	Chapter 4 Software Design—Much Ado About Something
	Chapter 5 Old Is Good—The Library Approach
	Chapter 6 Object-Oriented Fantasies and Realities
	Chapter 7 P Is for Pattern
	Chapter 8 Risk Analysis
	Chapter 9 Iterating Design
	Chapter 10 Control Freaks and Configuration Management
	Chapter 11 Evident Evil—The Art of Testing
	Chapter 12 Numbers for Nabobs
	Chapter 13 What People Do—Development Strategies
	Chapter 14 Practice, Practice,Practice
	Chapter 15 Team Work
	Chapter 16 Process Improvement
	Chapter 17 Release Planning and Management
	Chapter 18 Documentation—Learning How to Learn
	Chapter 19 Philosophy of Software Engineering and Game Development
	Appendix A Installation and Setup
	Appendix B Working with Files
	Appendix C Source Control
	Appendix D Software Engineering and Game Design Documentation
	Appendix E Resources
	Index

