

Praise for Learning Cocos2D

“If you're looking to create an iPhone or iPad game, Learning Cocos2D should
be the first book on your shopping list. Rod and Ray do a phenomenal

job of taking you through the entire process from concept to app, clearly
explaining both how to do each step as well as why you’re dong it.”

—Jeff LaMarche, Principal, MartianCraft, LLC, and coauthor of Beginning iPhone
Development (Apress, 2009)

“This book provides an excellent introduction to 1OS 2D game develop-
ment. Beyond that, the book also provides one of the best introductions to
Box2D available. I am truly impressed with the detail and depth of Box2D
coverage.”

—Erin Catto, creator of Box2D

“Warning: reading this book will make you need to write a game! Learning
Cocos2D is a great fast-forward into writing the next hit game for 10S—
definitely a must for the aspiring indie 10S game developer (regardless of
experience level)! Thanks, Rod and Ray, for letting me skip the learning
curve; you've really saved my bacon!”

—Eric Hayes, Principle Engineer, Brewmium LLC (and Indie iOS Developer)

“Learning Cocos2D is an outstanding read, and I highly recommend it to any
10S developer wanting to get into game development with Cocos2D. This
book gave me the knowledge and confidence I needed to write an 1OS game
without having to be a math and OpenGL whiz.”

—Kirby Turner, White Peak Software, Inc.

“Learning Cocos2D is both an entertaining and informative book; it covers
everything you need to know about creating games using Cocos2D.”
—Fahim Farook, RookSoft (rooksoft.co.nz)

“This is the premiere book on Cocos2D! After reading this book you will
have a firm grasp of the framework, and you will be able to create a few
different types of games. Rod and Ray get you quickly up to speed with
the basics in the first group of chapters. The later chapters cover the more
advanced features, such as parallax scrolling, CocosDenshion, Box2D,
Chipmunk, particle systems, and Apple Game Center. The authors’ writing
style is descriptive, concise, and fun to read. This book is a must have!”
—Nick Waynik, iOS Developer

This page intentionally left blank

Learning Cocos2D

Addison-Wesley Learning Series

vvAddison-Wesley

Visit informit.com/learningseries for a complete list of available publications.

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you've learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

vvAddison-Wesley informiTcom | Safari’

ALWAYS LEARNING PEARSON

Learning Cocos2D

A Hands-On Guide to Building i0OS
Games with Cocos2D, Box2D,
and Chipmunk

Rod Strougo
Ray Wenderlich

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis -+ San Francisco
New York - Toronto - Montreal - London +« Munich - Paris - Madrid
Capetown - Sydney - Tokyo - Singapore - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Strougo, Rod, 1976-
Learning Cocos2D : a hands-on guide to building iOS games with
Cocos2D, Box2D, and Chipmunk / Rod Strougo, Ray Wenderlich.
p. cm.

Includes index.

ISBN-13: 978-0-321-73562-1 (pbk. : alk. paper)

ISBN-10: 0-321-73562-5 (pbk. : alk. paper)
1. iPhone (Smartphone)—Programming. 2. iPad (Computer)—Programming.
3. Computer games—Programming. |. Wenderlich, Ray, 1980- II. Title.
QA76.8.164S87 2011

794.8'1526—dc23

2011014419

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-73562-1

ISBN-10: 0-321-73562-5

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2011

Editor-in-Chief
Mark Taub
Acquisitions Editor
Chuck Toporek
Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Carol Lallier

Indexer
Jack Lewis

Proofreader
Lori Newhouse

Editorial Assistant
Olivia Basegio
Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

K7
0’0

Dedicated to my wife, Agata.
—Rod

Dedicated to my wife, Vicki.
—Ray

"0

This page intentionally left blank

Contents at a Glance

Preface xXxi
Acknowledgments xxxiii

About the Authors XXXVii

I Getting Started with Cocos2D 1

1

2
8
4

Hello, Cocos2D 3
Hello, Space Viking 23
Introduction to Cocos2D Animations and Actions

Simple Collision Detection and the First Enemy

Il More Enemies and More Fun 115

5
6

More Actions, Effects, and Cocos2D Scheduler

Text, Fonts, and the Written Word 151

Il From Level to Game 167

7

8
9

Main Menu, Level Completed, and Credits
Scenes 169

Pump Up the Volume! 197

57

83

117

When the World Gets Bigger: Adding Scrolling 231

IV Physics Engines 277

10

11

12

13

Basic Game Physics: Adding Realism with
Box2D 279

Intermediate Game Physics: Modeling, Racing, and
Leaping 333

Advanced Game Physics: Even Better than the Real
Thing 375

The Chipmunk Physics Engine (No Alvin
Required) 419

Contents at a Glance

V Particle Systems, Game Center, and
Performance 479

14 Particle Systems: Creating Fire, Snow, Ice, and
More 481

15 Achievements and Leaderboards with Game
Center 495

16 Performance Optimizations 545
17 Conclusion 565
A Principal Classes of Cocos2D 569

Index 571

Contents

Preface XXi
Acknowledgments XX xiii

About the Authors XXXVii

I Getting Started with Cocos2D 1

1 Hello, Cocos2D 3

Downloading and Installing Cocos2D 4
Downloading Cocos2D 4
Installing the Cocos2D Templates 5

Creating Your First Cocos2D HelloWorld 6
Inspecting the Cocos2D Templates 6
Building the Cocos2D HelloWorld Project 7
Taking HelloWorld Further 9
Adding Movement 10

For the More Curious: Understanding the Cocos2D
HelloWorld 11

Scenes and Nodes 11
From the Beginning 14
Looking Further into the Cocos2D Source Code 18
Getting CCHelloWorld on Your iPhone or iPad 20
Letting Xcode Do Everything for You 20
Building for Your iPhone or iPad 21
Summary 22
Challenges 22

2 Hello, Space Viking 23
Creating the SpaceViking Project 23
Creating the Space Viking Classes 24
Creating the Background Layer 26
The Gameplay Layer: Adding Ole the Viking to the

Game 29
The GameScene Class: Connecting the Layers in a
Scene 31

Creating the GameScene 32

Xii

Contents

Commanding the Cocos2D Director 34
Adding Movement 35

Importing the Joystick Classes 35

Adding the Joystick and Buttons 36

Applying Joystick Movements to Ole the Viking
Texture Atlases 44

Technical Details of Textures and Texture
Atlases 45

Creating the Scene 1 Texture Atlas 48

Adding the Scene 1 Texture Atlas to Space
Viking 51

For the More Curious: Testing Out
CCSpriteBatchNode 52

Fixing Slow Performance on iPhone 3G and
Older Devices 53

Summary 54
Challenges 54

Introduction to Cocos2D Animations and
Actions 57
Animations in Cocos2D 57
Space Viking Design Basics 62
Actions and Animation Basics in Cocos2D 66
Using Property List Files to Store Animation Data
Organization, Constants, and Common Protocols
Creating the Constants File 71
Common Protocols File 72

The GameObject and GameCharacter Classes 74

Creating the GameObject 74

Creating the GameCharacter Class 80
Summary 82
Challenges 82

Simple Collision Detection and the First Enemy
Creating the Radar Dish and Viking Classes 83
Creating the RadarDish Class 83
Creating the Viking Class 90
Final Steps 105
The GameplayLayer Class 105

40

67
69

83

Contents Xiii

Summary 112
Challenges 113

Il More Enemies and More Fun 115

5 More Actions, Effects, and Cocos2D
Scheduler 117
Power-Ups 118
Mallet Power-Up 118
Health Power-Up 120
Space Cargo Ship 122
Enemy Robot 125
Creating the Enemy Robot 126
Adding the PhaserBullet 137
GameplayLayer and Viking Updates 141
Running Space Viking 144
For the More Curious: Effects in Cocos2D 145
Effects for Fun in Space Viking 146
Running the EffectsTest 148
Returning Sprites and Objects Back to Normal 149
Summary 149
Exercises and Challenges 149

6 Text, Fonts, and the Written Word 151
CCLabelTTF 151
Adding a Start Banner to Space Viking 152
Understanding Anchor Points and Alignment 153
CCLabelBMFont 155
Using Glyph Designer 156
Using the Hiero Font Builder Tool 156
Using CCLabelBMFont Class 159
For the More Curious: Live Debugging 160
Updating EnemyRobot 160
Updating GameplayLayer 163
Other Uses for Text Debugging 164
Summary 165
Challenges 165

Xiv Contents

Il From Level to Game 167

7 Main Menu, Level Completed, and Credits

Scenes 169

Scenes in Cocos2D 169

Introducing the GameManager 170
Creating the GameManager 172

Menus in Cocos2D 179

Scene Organization and Images 180
Adding Images and Fonts for the Menus 181

Creating the Main Menu 182
Creating the MainMenuScene 182
MainMenuLayer class 183

Additional Menus and GameplayLayer 190

Importing the Intro, LevelComplete, Credits, and
Options Scenes and Layers 190

GameplayLayer 190
Changes to SpaceVikingAppDelegate 192

For the More Curious: The IntroLayer and LevelComplete
Classes 193

LevelCompleteLayer Class 194
Summary 195
Challenges 195

8 Pump Up the Volume! 197
Introducing CocosDenshion 197
Importing and Setting Up the Audio Filenames 198
Adding the Audio Files to Space Viking 198
Audio Constants 198

Synchronous versus Asynchronous Loading
of Audio 201

Loading Audio Synchronously 201

Loading Audio Asynchronously 203

Adding Audio to GameManager 204
Adding the soundEngine to GameObjects 215

Adding Sounds to RadarDish and
SpaceCargoShip 216

Adding Sounds to EnemyRobot 219

Contents

Adding Sound Effects to Ole the Viking 222

Adding the Sound Method Calls in changeState for
Ole 226

Adding Music to the Menu Screen 228
Adding Music to Gameplay 228
Adding Music to the MainMenu 228

For the More Curious: If You Need More Audio
Control 229

Summary 230
Challenges 230

9 When the World Gets Bigger: Adding
Scrolling 231
Adding the Logic for a Larger World 232
Common Scrolling Problems 234
Creating a Larger World 235
Creating the Second Game Scene 236
Creating the Scrolling Layer 242
Scrolling with Parallax Layers 250
Scrolling to Infinity 252
Creating the Scrolling Layer 254
Creating the Platform Scene 263
Tile Maps 265
Installing the Tiled Tool 266
Creating the Tile Map 267
Cocos2D Compressed TiledMap Class 271
Adding a TileMap to a ParallaxNode 272
Summary 276
Challenges 276

IV Physics Engines 277

10 Basic Game Physics: Adding Realism with
Box2D 279
Getting Started 279
Mad Dreams of the Dead 281
Creating a New Scene 282

XVi Contents

11

Adding Box2D Files to Your Project 284
Box2D Units 288
Hello, Box2D! 289
Creating a Box2D Object 292
Box2D Debug Drawing 295
Putting It All Together 296
Creating Ground 299
Basic Box2D Interaction and Decoration 302
Dragging Objects 304
Mass, Density, Friction, and Restitution 309
Decorating Your Box2D Bodies with Sprites 313
Making a Box2D Puzzle Game 320
Ramping It Up 324
Summary 332
Challenges 332

Intermediate Game Physics: Modeling, Racing, and
Leaping 333
Getting Started 334

Adding the Resource Files 334

Creating a Basic Box2D Scene 335
Creating a Cart with Box2D 346

Creating Custom Shapes with Box2D 346

Using Vertex Helper 348

Adding Wheels with Box2D Revolute Joints 352
Making the Cart Move and Jump 356

Making the Cart Move with the Accelerometer 356

Making It Scrollable 359

Forces and Impulses 368

Fixing the Tipping 368

Making the Cart Jump 369

More Responsive Direction Switching 373
Summary 374
Challenges 374

Contents

12 Advanced Game Physics: Even Better than the Real

13

Thing 375

Joints and Ragdolls: Bringing Ole Back
into Action 376

Restricting Revolute Joints 376
Using Prismatic Joints 378

How to Create Multiple Bodies and Joints at the Right
Spots 378

Adding Ole: The Implementation 380
Adding Obstacles and Bridges 386
Adding a Bridge 386
Adding Spikes 390
An Improved Main Loop 394
The Boss Fight! 396
A Dangerous Digger 405

Finishing Touches: Adding a Cinematic Fight
Sequence 411

Summary 417
Challenges 417

The Chipmunk Physics Engine (No Alvin
Required) 419
What Is Chipmunk? 420
Chipmunk versus Box2D 420
Getting Started with Chipmunk 421
Adding Chipmunk into Your Project 426
Creating a Basic Chipmunk Scene 429
Adding Sprites and Making Them Move 438
Jumping by Directly Setting Velocity 444
Ground Movement by Setting Surface Velocity 445
Detecting Collisions with the Ground 445
Chipmunk Arbiter and Normals 446
Implementation—Collision Detection 446
Implementation—Movement and Jumping 450
Chipmunk and Constraints 455
Revolving Platforms 458
Pivot, Spring, and Normal Platforms 460

Xvii

Xviii Contents

The Great Escape! 467
Following Ole 467
Laying Out the Platforms 468
Animating Ole 469
Music and Sound Effects 473
Adding the Background 474
Adding Win/Lose Conditions 476
Summary 477
Challenges 477

V Particle Systems, Game Center, and
Performance 479

14

15

Particle Systems: Creating Fire, Snow, Ice, and
More 481
Built-In Particle Systems 482
Running the Built-In Particle Systems 482
Making It Snow in the Desert 483
Getting Started with Particle Designer 485
A Quick Tour of Particle Designer 486
Creating and Adding a Particle System to
Space Viking 489
Adding the Engine Exhaust to Space Viking 490
Summary 494
Challenges 494

Achievements and Leaderboards with Game

Center 495

What |Is Game Center? 495
Why Use Game Center? 497

Enabling Game Center for Your App 497
Obtain an i0S Developer Program Account 497
Create an App ID for Your App 498
Register Your App in iTunes Connect 501
Enable Game Center Support 505

Game Center Authentication 506
Make Sure Game Center Is Available 506

16

Contents

Try to Authenticate the Player 507

Keep Informed If Authentication Status
Changes 508

The Implementation 508
Setting Up Achievements 515
Adding Achievements into iTunes Connect 515
How Achievements Work 517
Implementing Achievements 518
Creating a Game State Class 519

Creating Helper Functions to Load and Save
Data 522

Modifying GCHelper to Send Achievements 524

Using GameState and GCHelper in
SpaceViking 530

Displaying Achievements within the App 534
Setting Up and Implementing Leaderboards 536
Setting up Leaderboards in iTunes Connect 536
How Leaderboards Work 538
Implementing Leaderboards 539
Displaying Leaderboards in-Game 540
Summary 543
Challenges 543

Performance Optimizations 545

CCSprite versus CCSpriteBatchNode 545
Testing the Performance Difference 550
Tips for Textures and Texture Atlases 551

Reusing CCSprites 552

Profiling within Cocos2D 554

Using Instruments to Find Performance
Bottlenecks 557

Time Profiler 558

OpenGL Driver Instrument 560
Summary 563
Challenges 563

Xix

XX Contents

17 Conclusion 565
Where to Go from Here 567
Android and Beyond 567
Final Thoughts 568

A Principal Classes of Cocos2D 569

Index 571

Preface

So you want to be a game developer?

Developing games for the iPhone or iPad can be a lot of fun. It is one of the few
things we can do to feel like a kid again. Everyone, it seems, has an idea for a game,
and what better platform to develop for than the iPhone and iPad?

‘What stops most people from actually developing a game, though, is that game devel-
opment covers a wide swath of computer science skills—graphics, audio, networking—
and at times it can seem like you are drinking from a fire hose. When you are first
getting started, becoming comfortable with Objective-C can seem like a huge task,
especially if you start to look at things like OpenGL ES, OpenAL, and other lower-
level APIs for your game.

Writing a game for the iPhone and iPad does not have to be that difficult—and it
isn’t. To help simplify the task of building 2D games, look no further than Cocos2D.

You no longer have to deal with low-level OpenGL programming APIs to make
games for the iPhone, and you don’t need to be a math or physics expert. There’s a
much faster and easier way—use a free and popular open source game programming
framework called Cocos2D. Cocos2D is extremely fun and easy to use, and with it
you can skip the low-level details and focus on what makes your game different and
special!

This book teaches you how to use Cocos2D to make your own games, taking you
step by step through the process of making an actual game that’s on the App Store
right now! The game you build in this book i1s called Space Viking and is the story of a
kick-ass Viking transported to an alien planet. In the process of making the game, you
get hands-on experience with all of the most important elements in Cocos2D and see
how everything fits together to make a complete game.

Download the Game!
You can download Space Vikings from the App Store: http://itunes.apple.com/us/app/

space-vikings/id400657526mt=8. The game is free, so go ahead and download it, start
playing around with it, and see if you're good enough to get all of the achievements!

Think of this book as an epic-length tutorial, showing you how you can make a
real game with Cocos2D from the bottom up. You’ll be coding along with the book,
and we explain things step by step. By the time you’ve finished reading and working

http://itunes.apple.com/us/app/space-vikings/id400657526mt=8
http://itunes.apple.com/us/app/space-vikings/id400657526mt=8

xXii

Preface

through this book, you’ll have made a complete game. Best of all, you’ll have the con-
fidence and knowledge it takes to make your own.

Each chapter describes in detail a specific component within the game along with
the technology required to support it, be it a tile map editor or some effect we're cre-
ating with Cocos2D, Box2D, or Chipmunk. Once an introduction to the functional-
ity and technology is complete, the chapter provides details on how the component
has been implemented within Space Viking. This combination of theory and real-world
implementation helps to fill the void left by other game-development books.

What Is Cocos2D?

Cocos2D (www.cocos2d-iphone.org) is an open source Objective-C framework for mak-
ing 2D games for the iOS and Mac OS X, which includes developing for the iPhone,
iPod touch, the iPad, and the Mac. Cocos2D can either be included as a library to
your project in Xcode or automatically added when you create a new game using the
included Cocos2D templates.

Cocos2D uses OpenGL ES for graphics rendering, giving you all of the speed and
performance of the graphics processor (GPU) on your device. Cocos2D includes a host
of other features and capabilities, which you’ll learn more about as you work through
the tutorial in this book.

Cocos2D started life as a Python framework for doing 2D games. In late 2008, it
was ported to the iPhone and rewritten in Objective-C. There are now additional
ports of Cocos2D to Ruby, Java (Android), and even Mono (C#/.NET).

Note

Cocos2D has an active and vibrant community of contributors and supporters. The
Cocos2D forums (www.cocos2d-iphone.org/forum) are very active and an excellent
resource for learning and troubleshooting as well as keeping up to date on the latest
developments of Cocos2D.

Why You Should Use Cocos2D

Cocos2D lets you focus on your core game instead of on low-level APIs. The App
Store marketplace is very fluid and evolves rapidly. Prototyping and developing your
game quickly is crucial for success in the App Store, and Cocos2D is the best tool for
helping you quickly develop your game without getting bogged down trying to learn
OpenGL ES or OpenAL.

Cocos2D also includes a host of utility classes such as the Text ur eCache, which
automatically caches your graphics, providing for faster and smoother gameplay.
Text ur eCache operates in the background and is one of the many functions of
Cocos2D that you don’t even have to know how to use; it functions transparently to

www.cocos2d-iphone.org
www.cocos2d-iphone.org/forum

Preface

you. Other useful utilities include font rendering, sprite sheets, a robust sound system,
and many more.

Cocos2D is a great prototyping tool. You can quickly make a game in as little as
an hour (or however long it takes you to read Chapter 2). You are reading this book
because you want to make games for the iPhone and iPad, and using Cocos2D is the
quickest way to get there—bar none.

Cocos2D Key Features

Still unsure if Cocos2D is right for you? Well, check out some of these amazing fea-
tures of Cocos2D that can make developing your next game a lot easier.

Actions

Actions are one of the most powerful features in Cocos2D. Actions allow you to
move, scale, and manipulate sprites and other objects with ease. As an example, to
smoothly move a space cargo ship across the screen 400 pixels to the right in 5 sec-
onds, all the code you need is:

CCActi on *noveAction = [CCMoveBy acti onWthDuration: 5. Of
posi ti on: CGPoi nt Make(400. 0f, 0.0f)];
[spaceCar goShi pSprite runAction: noveAction];

That’s it; just two lines of code! Figure P.1 illustrates the noveAct i on on the space
cargo ship.

Figure P.1 lllustrating the effect of the moveAction on the Space
Cargo Ship sprite

There are many kinds of built-in actions in Cocos2D: rotate, scale, jump, blink,
fade, tint, animation, and more. You can also chain actions together and call custom
callbacks for neat effects with very little code.

Built-In Font Support

Cocos2D makes it very easy to deal with text, which is important for games in menu
systems, score displays, debugging, and more. Cocos2D includes support for embedded
TrueType fonts and also a fast bitmap font-rendering system, so you can display text to
the screen with just a few lines of code.

XXiii

XXiv

Preface

An Extensive Effects Library

Cocos2D includes a powerful particle system that makes it easy to add cool effects such
as smoke, fire, rain, and snow to your games. Also, Cocos2D includes built-in effects,
such as flip and fading, to transition between screens in your game.

Great for TileMap Games

Cocos2D includes built-in support for tile-mapped games, which is great when you
have a large game world made up of small reusable images. Cocos2D also makes it
easy to move the camera around to implement scrolling backgrounds or levels. Finally,
there is support for parallax scrolling, which gives your game the illusion of 3D depth
and perspective.

Audio/Sound Support

The sound engine included with Cocos2D allows for easy use of the power of OpenAL
without having to dive into the lower level APIs. With Cocos2D’s sound engine, you
can play background music or sound effects with just a single line of code!

Two Powerful Physics Engines

Also bundled with Cocos2D are two powerful physics engines, Box2D and Chipmunk,
both of which are fantastic for games. You can add a whole new level of realism to
your games and create entire new gameplay types by using game physics—without
having to be a math guru.

Important Concepts

Before we get started, it’s important to make sure you're familiar with some important
concepts about Cocos2D and game programming in general.

Sprite

You will see the term sprite used often in game development. A sprite is an image
that can be moved independently of other images on the screen. A sprite could be
the player character, an enemy, or a larger image used in the background. In practice,
sprites are made from your PNG or PVRTC image files. Once loaded in memory, a
sprite is converted into a texture used by the iPhone GPU to render onscreen.

Singleton

A singleton is a special kind of Objective-C class, which can have only one instance. An
example of this is an iPhone app’s Application Delegate class, or the Director class in
Cocos2D. When you call a singleton instance in your code, you always get back the
one instance of this class, regardless of which class called it.

Preface

OpenGL ES

OpenGL ES is a mobile version (ES stands for Embedded Systems) of the Open Graph-
ics Language (OpenGL). It is the closest you can get on the iPhone or iPad to sending
zeros and ones to the GPU. OpenGL ES is the fastest way to render graphics on the
iPhone or iPad, and due to its origin, it is a low-level APL. If you are new to game
development, OpenGL ES can have a steep learning curve, but luckily you don’t need
to know OpenGL ES to use Cocos2D.

The two versions of OpenGL ES supported on the iPhone and iPad are 1.1 and 2.0.
There are plans in the Cocos2D roadmap to support OpenGL ES 2.0, although cur-
rently only version 1.1 is supported.

Languages and Screen Resolutions

Cocos2D is written in Objective-C, the same language as Cocoa Touch and the
majority of the Apple iOS APIs. In Objective-C it is important to understand some
basic memory-management techniques, as it is a good foundation for you to become
an efficient game developer on the iOS platform. Cocos2D supports all of the native
resolutions on the 10S devices, from the original iPhone to the iPad to the retina dis-
play on the iPhone 4.

2D versus 3D

You first learn to walk before you can run. The same is true for game development;
you have to learn how to make 2D games before diving into the deeper concepts of
3D games. There are some 3D effects and transitions in Cocos2D, such as a 3D wave
effect and an orbit camera move; however, most of the functionality is geared toward
2D games and graphics.

Cocos2D is designed for 2D games (hence the 2D in the name), as are the tutorials
and examples in this book. If you want to make 3D games, you should look into dif-
ferent frameworks, such as Unity, the Unreal Engine, or direct OpenGL.

The Game behind the Book: Space Viking

This book takes you through the process of creating a full-featured Cocos2D-based
game for the iPhone and iPad. The game you build in this book is called Space Viking.
If you want to try Space Viking now, you can download a free version of the game
from the App Store (http://itunes.apple.com/us/app/id400657526) and install it on your
iPhone, iPod touch, or iPad.

Of course, if you are more patient, you can build the game yourself and load it
onto your device after working through the chapters in this book. There is no greater
learning experience than having the ability to test a game as you're building it. Not
only can you learn how to build a game, but you can also go back and tweak the code
a bit to change things around to see what sort of effect something has on the game-
play. Good things come to those who wait.

XXV

http://itunes.apple.com/us/app/id400657526

XXVi

Preface

This book teaches you how to use all of the features and capabilities of Cocos2D,
but more important, how to apply them to a real game. By the time you are done, you
will have the knowledge and experience needed to get your own game in the App
Store. The concepts you learn from building Space Viking apply to a variety of games
from action to puzzle.

Space Viking’s Story
Every game starts in the depths of your imagination, with a character and storyline
that gets transformed into a game. This is the story of Space Viking.

In the future, the descendants of Earth are forced into colonizing planets outside
our own solar system. In order to create hospitable environments, huge interplanetary
machines extract giant chunks of ice from Northern Europe and Greenland and send
it across the galaxy to these planets. Unbeknown to the scientists, one of these chunks
contains Ole the Viking, who eons ago fell into an icy river on his way home from
defeating barbarian tribes. Encased in an icy tomb for centuries, Ole awakens thou-
sands of years later—and light years from home—after being warmed by an alien sun,
as shown in Figure P.2.

Figure P.2 Ole awakens on the alien planet

You get to play as Ole the Viking and battle the aliens on this strange world in
hopes of finding a way to return Ole to his native land and time.

You control Ole’s movement to the right and left by using the thumb joystick on
the left side of the screen. On the right side are buttons for jumping and attacking. Ole
starts out with only his fists. In later levels Ole finds his trusty mallet, and you use the
accelerometer to control him in the physics levels.

Space Viking is an action and adventure game, with the emphasis on action. The goal
was to create a real game from the ground up so you could learn not only Cocos2D
but also how to use it in a real full-featured game. The idea for the game came from

Preface

concept art that Eric Stevens, a graphic artist and fellow game devotee, developed ear-
lier when we were discussing game ideas to make next.

Space Viking consists of a number of levels, each of which demonstrates a specific
area of Cocos2D or gameplay type. For example, the first level is a side-scrolling beat
‘em up, and the fourth level is a mine cart racing level that shows off the game physics
found in Box2D and Chipmunk. Our hope is that you can reuse parts of Space Viking
to make your own game once you've finished this book! That’s right: you can freely
reuse the code in this book to build your own game.

Organization of This Book

The goal of this book is to teach you about game development using Cocos2D as you
build Space Viking (and learn more about the quest and story of Ole the Viking). You
start with a simple level and some basic game mechanics and work your way up to
creating levels with physics and particle systems and finally to a complete game by the
end of the book.

First you learn the basics of Cocos2D and build a small level with basic running
and jumping movements for Ole. Part II shows you how to add animations, actions,
effects, and even text to Space Viking. Part III takes the game further, adding more
levels and scenes, sounds, and scrolling to the gameplay. In Part IV realism is brought
into the game with the Box2D and Chipmunk physics engines. Finally in Part V, you
learn how to add a particle system, add high scores, connect to social networks, and
debug and optimize Space Viking to round out some best practices for the games you
will build in the future.

There are 17 chapters and one appendix in the book, each dealing with a specific
area of creating Space Viking.

= Part I: Getting Started with Cocos2D

Learn how to get Cocos2D installed and start using it to create Space Viking.
Learn how to add animations and movements to Ole and his enemies.

= Chapter 1: Hello, Cocos2D

This chapter covers how to install Cocos2D framework and templates in
Xcode and some companion tools that make developing games easier. These
tools are freely available and facilitate the creation of the elements used by
Cocos2D.

= Chapter 2: Hello, Space Viking

Here you create the basic Space Viking game, which you build upon through-
out the book. You start out with just a basic Cocos2D template and add the
hero (Ole the Viking) to the scene. In the second part of this chapter, you add
the methods to handle the touch inputs, including moving Ole around and
making him jump.

XXVil

XXViii

Preface

Chapter 3: Introduction to Cocos2D Animations and Actions

In this chapter, you learn how to make the game look much more realistic by
adding animations to Ole as he moves around the scene.

Chapter 4: Simple Collision Detection and the First Enemy

In this chapter, you learn how to implement simple collision detection and
add the first enemy to your Space Viking game, so Ole can start to fight his
way off the planet!

= Part II: More Enemies and More Fun

Learn how to create more complex enemies for Ole to battle and in the process
learn about Cocos2D actions and effects. Finish up with a live, onscreen debug-
ging system using Cocos2D text capabilities.

= Chapter 5: More Actions, Effects, and Cocos2D Scheduler

Actions are a key concept in Cocos2D—they are an easy way to move objects
around, make them grow or disappear, and much more. In this chapter, you
put them in practice by adding power-ups and weapons to the level, and you
learn some other important Cocos2D capabilities, such as effects and the
scheduler.

Chapter 6: Text, Fonts, and the Written Word
Most games have text in them at some point, and Space Viking is no exception.

In this chapter, you learn how to add text to your games using the different
methods available in Cocos2D.

= Part III: From Level to Game

Learn how to expand the Space Viking level into a full game by adding menus,
sound, and scrolling.

= Chapter 7: Main Menu, Level Completed, and Credits Scenes

Almost all games have more than one screen (or “scene,” as it’s called in
Cocos2D); there’s usually a main menu, main game scene, level completed,
and credits scene at the very least. In this chapter, you learn how to create
multiple scenes by implementing them in Space Viking!

Chapter 8: Pump Up the Volume!

Adding sound effects and music to a game can make a huge difference.
Cocos2D makes it really easy with the CocosDenshion sound engine, so in
this chapter you give it a try!

Chapter 9: When the World Gets Bigger: Adding Scrolling

A lot of games have a bigger world than can fit on one screen, so the world
needs to scroll as the player moves through it. This can be tricky to get right,
so this chapter shows you how by converting the beat-"em-up into a side-
scroller, using Cocos2D tile maps for improved performance.

Preface

= Part IV: Physics Engines

With the Box2D and Chipmunk physics engines that come with Cocos2D, you
can add some amazing effects to your games, such as gravity, realistic collisions,
and even ragdoll effects! In these chapters you get a chance to add some physics-
based levels to Space Viking, from simple to advanced!

= Chapter 10: Basic Game Physics: Adding Realism with Box2D

Just as Cocos2D makes it easy to make games for the iPhone without know-
ing low-level OpenGL details, Box2D makes it easy to add physics to your
game objects without having to be a math expert. In this chapter, you learn
how to get started with Box2D by making a fun puzzle game where objects
move according to gravity.

Chapter 11: Intermediate Game Physics: Modeling, Racing, and
Leaping

This chapter shows you some of the really neat stuff you can do with Box2D
by making the start of a side-scrolling cart-racing game. In the process, you
learn how to model arbitrary shapes, add joints to restrict movement of phys-
ics bodies, and much more!

Chapter 12: Advanced Game Physics: Even Better than the Real
Thing

In this chapter, you make the cart-racing level even more amazing by adding

spikes to dodge and an epic boss fight at the end. You learn more about joints,
how to detect collisions, and how to add enemy logic as well.

Chapter 13: The Chipmunk Physics Engine (No Alvin Required)
The second physics engine that comes with Cocos2D, called Chipmunk, is

similar to Box2D. This chapter shows you how to use Chipmunk, compares it
to Box2D, and gives you hands-on practice by making a Metroid-style escape
level.

= Part V: Particle Systems, Game Center, and Performance

Learn how to quickly create and add particle systems to your games, how to
integrate with Apple’s Game Center for online leaderboards and achievements,
and some performance tips and tricks to keep your game running fast.

= Chapter 14: Particle Systems: Creating Fire, Snow, Ice, and More

Using Cocos2D’s particle system, you can add some amazing special effects to
your game—extremely easily! In this chapter, you learn how to use particle
systems to add some special effects to Space Viking, such as ship exhaust.

= Chapter 15: Achievements and Leaderboards with Game Center

With Apple’s Game Center, you can easily add achievements and leaderboards
to your games, which makes things more fun for players and also might help
you sell more copies! This chapter covers how to set things up in Space Viking,

step by step.

XXiX

XXX

Preface

= Chapter 16: Performance Optimizations

In this chapter, you learn how to tackle some of the most common chal-
lenges and issues you will face in optimizing and getting the most out of your
Cocos2D game. You get hands-on experience debugging the most common
performance issues and applying solutions.

= Chapter 17: Conclusion

This final chapter recaps what you learned and describes where you can go
next: into 3D, using Cocos2D on other platforms such as Android, and more
advanced game-development topics.

= Appendix: Principal Classes of Cocos2D

The Appendix provides an overview of the main classes you will be using and
interacting with in Cocos2D.

By the time you've finished reading this book, you’ll have practical experience
making an awesome game from scratch! You can then take the concepts you've learned
(and even some of the code!) and use it to turn your own game into a reality.

Audience for This Book

The audience for this book includes developers who are put off by game-making
because they anticipate a long and complex learning curve. Many developers want to
write games but don’t know where to start with game development or the Cocos2D
framework. This book is a hands-on guide, which takes you from the very beginning of
using Cocos2D to applying the advanced physics concepts in Box2D and Chipmunk.

This book is targeted to developers interested in creating games for iOS devices,
including the iPhone, iPad, and iPod touch. The book assumes a basic understanding
of Objective-C, Cocoa Touch, and the Xcode tools. You are not expected to know
any lower-level APIs (Core Audio, OpenGL ES, etc.), as these are used internally by
Cocos2D.

Who This Book Is For

If you are already developing applications for the iPhone of other platform but want to
make a move from utility applications to games, then this book is for you. It builds on
the development knowledge you already have and leads you into game development by
describing the terminology, technology, and tools required as well as providing real-
world implementation examples.

Who This Book Isn’t For

If you already have a grasp of the workflow required to create a game or you have a
firm game idea that you know will require OpenGL ES for 3D graphics, then this is
not the book for you.

Preface

It is expected that before you read this book you are already familiar with
Objective-C, C, Xcode, and Interface Builder. While the implementations described
in this book have been kept as simple as possible, and the use of C is limited, a firm
foundation in these languages is required.

The following books can help provide you with the grounding you need to work
through this book:

s Cocoa Programming for Mac OS X, Third Edition, by Aaron Hillegass (Addison-
Wesley, 2008)

» Learning Objective-C 2.0 by Robert Clair (Addison-Wesley, 2011)
= Programming in Objective-C 2.0 by Stephen G. Kochan (Addison-Wesley, 2009)

s Cocoa Design Patterns by Erik M. Buck and Donald A. Yacktman (Addison-
Wesley, 2009)

= The iPhone Developer’s Cookbook, Second Edition, by Erica Sadun (Addison-Wesley,
2010)

» Core Animation: Simplified Animation Techniques for Mac and iPhone Development by
Marcus Zarra and Matt Long (Addison-Wesley, 2010)

= iPhone Programming: The Big Nerd Ranch Guide by Aaron Hillegass and Joe
Conway (Big Nerd Ranch, Inc., 2010)

» Learning iOS Game Programming: A Hands-On Guide to Building Your First iPhone
Game by Michael Daley (Addison-Wesley, 2011)

These books, along with other resources you’ll find on the web, will help you learn
more about how to program for the Mac and iPhone, giving you a deeper knowledge
about the Objective-C language and the Cocoa frameworks.

Source Code, Tutorial Videos, and Forums

Access to information is not limited only to the book. The complete, fully commented
source code for Space Viking is also included, along with video tutorials (available at
http://cocos2Dbook.com) that take you visually through the concepts of each chapter.

There is plenty of code to review throughout the book, along with exercises for
you to try out, so it is assumed you have access to the Apple developer tools such as
Xcode and the iPhone SDK. Both of these can be downloaded from the Apple iPhone
Dev Center: http://developer.apple.com /iphone.

If you want to work with your fellow students as you work through the book, feel
free to check out the book’s forums at http://cocos2dbook.com /forums/.

XXXi

http://cocos2Dbook.com
http://developer.apple.com/iphone
http://cocos2dbook.com/forums/

This page intentionally left blank

Acknowledgments

This book would not have been possible without the hard work, support, and kindness
of the following people:

= First of all, thanks to our editor, Chuck Toporek, and his assistant, Olivia
Basegio. Chuck patiently helped and encouraged us during the entire process
(even though we are both first-time authors!) and has managed all of the work
it takes to convert a simple Word document into the actual book you're holding
today. Olivia was extremely helpful through the entire process of keeping every-
one coordinated and the tech reviews coming in. Thanks again to both of you in
making this book a reality!

= Another person at Addison-Wesley whom we want to thank is Chuti Prasertsith,
who designed the cover for the book.

= A huge thanks to the lead developer and coordinator of Cocos2D, Ricardo
Quesada (also known as Riq), along with the other Cocos2D contributors,
such as Steve Oldmeadow and many others. Without Riq and his team’s hard
work and dedication to making Cocos2D into the amazing framework and
community that it is today, this book just wouldn’t exist. Also, we believe that
Cocos2D has made a huge positive difference in many people’s lives by enabling
them to accomplish a lifelong dream—to make their own games. Riq maintains
Cocos2D as his full-time job, so if you’d like to make a donation to thank him
for his hard work, you can do so at www.cocos2d-iphone.org/store. Riq also sells
source code for his game Sapus Tongue and a great physics editor called Level-
SVG. You can find out more about both at www.sapusmedia.com.

= Also, thank you to Erin Catto (the lead developer of Box2D) and Scott Lembcke
(the lead developer of Chipmunk) for their work on their amazing physics librar-
ies. Similarly to Riq’s work on Cocos2D, Erin’s and Scott’s work has enabled
countless programmers to create cool physics-based games quickly and easily.
Erin and Scott are extremely dedicated to supporting their libraries and commu-
nity, and even kindly donated their time in reviewing the physics chapters of this
book. If you’d like to donate to Erin or Scott for their hard work on their librar-
ies, you can do so by following the links at www.box2d.org and http://code.google.
com/p/chipmunk-physics.

= A big thanks to Steve Oldmeadow, the lead developer of CocosDenshion, the
sound engine behind Cocos2D. Steve provided assistance and time in reviewing

www.cocos2d-iphone.org/store
www.sapusmedia.com
www.box2d.org
http://code.google.com/p/chipmunk-physics
http://code.google.com/p/chipmunk-physics

XXXiV

Acknowledgments

the chapter on audio. Steve’s work has allowed many game developers to quickly
and easily add music and sound effects to their games.

= Eric Stevens is an American fine artist who moonlights as a game illustrator.
Years of good times and bad music contributed to the initial concept of Space
Viking. Eric worked closely with us to bring Ole and everything you see in
Space Viking to life. Eric maintains an illustration site at http://imagedesk.org, and
you can see his paintings at several galleries in the Southwest and at http://
ericstevensart.com.

= Mike Weiser is the musician who made the rocking soundtrack and sound effects
for Space Viking. We think the music made a huge difference in Space Viking and
really set the tone we were hoping for. A special thanks to Andrew Peplinski for
the Viking grunts and Rulon Brown for conducting the choir that you hear in
the beginning of the game. Mike has made music for lots of popular iOS games,
and you can check him out at www.mikeweisermusic.com.

= A huge thanks to our technical reviewers: Farim Farook, Marc Hebert, Mark
Hurley, Mike Leonardi, and Nick Waynik. These guys did a great job catching
all of our boneheaded mistakes and giving us some great advice on how to make
each chapter the best it could be. Thank you so much, guys!

Each of us also has some personal “thank yous” to make.

From Rod Strougo

I thank my wife and family for being ever patient while I was working on this book.
There were countless evenings when I was hidden away in my office writing, editing,
coding. Without Agata’s support and understanding, there is no way this book could
exist. Our older son, Alexander, was two and a half during the writing of this book,
and he helped beta test Space Viking, while Anton was born as I was finishing the last
chapters. Thank you for all the encouragement, love, and support, Agata.

I would also like to thank Ray for stepping in and writing the Box2D, Chipmunk,
and Game Center chapters. Ray did a fantastic job on in-depth coverage of Box2D
and Chipmunk, while adding some fun levels to Space Viking.

From Ray Wenderlich

First of all, a huge thank you to my wife and best friend, Vicki Wenderlich, for her
constant support, encouragement, and advice throughout this entire process. Without
her, I wouldn’t be making iOS apps today, and they definitely wouldn’t look as good!
Also, thank you to my amazing family. You believed in me through the ups and
downs of being an indie iOS developer and supported me the entire way. Thank you
so much!

www.mikeweisermusic.com
http://imagedesk.org
http://ericstevensart.com
http://ericstevensart.com

Acknowledgments XXXV

Finally, I thank all of the readers and supporters of my iOS tutorial blog at wiwiw.
raywenderlich.com. Without your interest, encouragement, and support, I wouldn’t
have been as motivated to keep writing all the tutorials and might have never had the
opportunity to write this book. Thank you so much for making this possible, and I
hope you enjoy this book!

www.raywenderlich.com
www.raywenderlich.com

This page intentionally left blank

About the Authors

Rod Strougo is the founder and lead developer of the studio Prop Group at
www.prop.gr. Rod’s journey in physics and games started way back with an Apple |[,
writing games in Basic. From the early passion in games, Rod’s career moved to enter-
prise software development, spending 10 years writing software for IBM and recently
for a large telecom company. These days Rod enjoys helping others get started on their
paths to making games. Originally from Rio de Janeiro, Brazil, Rod lives in Atlanta,
Georgia, with his wife and sons.

Ray Wenderlich is an iPhone developer and gamer and the founder of Razeware,
LLC. Ray is passionate about both making apps and teaching others the techniques to
make them. He has written a bunch of tutorials about iOS development, available at
www.raywenderlich.com.

www.prop.gr
www.raywenderlich.com

This page intentionally left blank

Part |

Getting Started with
Cocos2D

Learn how to install Cocos2D and start using it to create Space Viking.
Learn how to add animations and movements to Ole the Viking and his
enemies.

= Chapter 1: “Hello, Cocos2D”

= Chapter 2: “Hello, Space Viking”

= Chapter 3: “Introduction to Cocos2D Animations and Actions”
= Chapter 4: “Simple Collision Detection and the First Enemy”

This page intentionally left blank

1

Hello, Cocos2D

Cocos2D is incredibly fun and easy to use. In this chapter you will learn how to install Cocos2D,
integrate it with Xcode, and make a simple HelloWorld app. You’ll then add a space cargo
ship to the app and have it move around the screen, with just a few lines of code, as shown in

Figure 1.1.

Figure 1.1 The space cargo ship that you will add to your HelloWorld app

After you create this simple app, you will get a chance to go behind the scenes and see how the
Cocos2D template code generated for you works and try running the app on your own iPhone or
iPad.

Note

It is assumed you have already signed up for Apple’s iPhone Developer program and
downloaded and installed Xcode on your Mac. You should also have some knowledge of
Objective-C syntax. For more information and references on how to get started with these,

please see the preface.

Chapter 1 Hello, Cocos2D

This chapter walks you through the process of downloading and installing Cocos2D and inte-
grating it with Xcode. Once Cocos2D is installed, you’ll build a simple HelloWorld app and test
it in the iPhone Simulator. You will learn exactly what each line in the HelloWorld program does
as well as how to get HelloWorld on your iOS device.

Ready? Okay then, let’s get started!

Downloading and Installing Cocos2D

This section walks you through the process of downloading and installing Cocos2D.
Before you can start creating your first Cocos2D game, you need to download
Cocos2D and get the templates installed in Xcode.

Downloading Cocos2D

The official Cocos2D project is hosted on GitHub, but the latest stable and tested
releases are available from the Cocos2D homepage under the download tab at
www.cocos2d-iphone.org/download. Figure 1.2 shows the Cocos2D download page.

Figure 1.2 Cocos2D homepage showing the download section

To get Cocos2D on your Mac:

1. Create a folder called Cocos2D on your Mac and download the latest stable ver-
sion that you see on the wwiw.cocos2d-iphone.org/download site.

2. Double-click on the gzipped tar file, and Finder will automatically extract the file
into a cocos2d-iphone-VERSION subfolder.

www.cocos2d-iphone.org/download
www.cocos2d-iphone.org/download

Downloading and Installing Cocos2D

In this subfolder is where you will find the install_templates.sh script that you
need to run next.

Note

You have two paths to get Cocos2D on your system: you can go with the latest stable
branch at the Cocos2D homepage, shown on the previous page, or with the latest develop
branch by using Git. The newest features always start life in the develop branch, in the
same way as Apple releases the new versions of iOS as beta. Which mechanism you
choose is up to you—all of the 1.x versions of Cocos2D are backward compatible with
Cocos2D 1.0.

Installing the Cocos2D Templates

Installing the Cocos2D templates is the same whether you downloaded a gzipped
archive shown in the previous section or cloned the latest version from the develop
branch using Git. To start:

1. Open Terminal and navigate to the Cocos2D folder that you created in the pre-
vious section. You can use the ed command to change folders.

2. Once inside the Cocos2D folder, use the ed command once more to change fold-
ers so that you are inside the cocos2d-iphone subfolder. You can see a listing of the
cocos2d-iphone subfolder in Figure 1.3.

$ cd cocos2d-iphone

Figure 1.3 Looking inside the cocos2d-iphone subdirectory

3. Run the install-templates.sh script by entering the following command:

$ sudo ./install-templates.sh

4. When prompted, enter your password.

Chapter 1 Hello, Cocos2D

The install-templates.sh script copies the three Cocos2D templates into the Xcode
folder. That is all it takes to install the Cocos2D templates. Restart Xcode if you had
it running while installing the templates, and you will be ready to create a Cocos2D
HelloWorld in the next section.

Creating Your First Cocos2D HelloWorld

No more delays: time to dive in to the code. In this section you will learn to use the
Cocos2D templates that you installed earlier and to build the Cocos2D HelloWorld
sample. No programming introduction is complete without a proper “Hello World.”

Inspecting the Cocos2D Templates

Fire up Xcode, and from Xcode’s menu, select File > New Project and select the
i0S/User Templates section. You should see three Cocos2D templates, as shown in
Figure 1.4, under the User Templates section. The first template is for an application
with just Cocos2D, the second for a Cocos2D with Box2D application, and the third
for a Cocos2D with Chipmunk application.

Figure 1.4 Cocos2D templates in Xcode

Tip
Make sure you select Application under the i0OS and User Templates section.

Creating Your First Cocos2D HelloWorld

The three Cocos2D templates provide three different versions of a simple
HelloWorld application. The Cocos2D Application template has just Cocos2D and is
what you will use to create the HelloWorld app. The Box2D template creates a mini
Box2D HelloWorld where you can drop boxes into the screen with physics simulation.
The Chipmunk template creates a mini Chipmunk project where you can create
multiple bodies and try out collisions.

When you are building your own games, these three templates are key to getting
your game started quickly. The Box2D and Chipmunk projects contain all of the
wiring between Cocos2D and the physics engines. Even the Cocos2D-only template
comes already connected with an application delegate and runs without you having to
type any code.

Building the Cocos2D HelloWorld Project

Let’s build the basic Cocos2D HelloWorld project. Once you’ve built this one, you
should take a stab at building the Cocos2D+Box2D and Cocos2D+Chipmunk exam-
ples, too.

1. Launch Xcode and select File > New Project from the menu.
2. Select the Cocos2D template (without Box2D or Chipmunk).
3. Name this project CCHelloWorld, as shown in Figure 1.5.

Figure 1.5 Creating the Cocos2D HelloWorld sample

8

Chapter 1 Hello, Cocos2D

4. In Xcode on the Scheme dropdown, select CCHelloWorld and the iPhone
Simulator (4.2 or the latest iOS you have installed on your system), as shown in
Figure 1.6.

Figure 1.6 Showing the CCHelloWorld and iPhone Simulator on the
Scheme dropdown

5. In Xcode, click Run.

You now have a fully functional Cocos2D HelloWorld app running in the iPhone
Simulator, as shown in Figure 1.7.

Figure 1.7 The Cocos2D HelloWorld app running in the iPhone Simulator

The Cocos2D CCHelloWorld project is already set up for iPhone and iPad from the
start; there is no need to transition it or do anything else. If you select iPad Simulator
under the Scheme dropdown and click Run, you will see CCHelloIWorld running on
the iPad, as shown in Figure 1.8.

Creating Your First Cocos2D HelloWorld

Figure 1.8 The Cocos2D HelloWorld app running in the iPad Simulator

Taking HelloWorld Further

While displaying “Hello World” on the screen is a good first step, you are learning
about Cocos2D to create games, so why not add a quick space cargo ship here and
make it move?

To start, locate the SpaceCargoShip folder included with the resources for this chap-
ter. The SpaceCargoShip folder contains the SpaceCargoShip.png, which is the image of—
what else?—the alien’s space cargo ship.

In Xcode with the HelloWorld project opened:

1. Drag the SpaceCargoShip folder into the CCHelloWorld project and select
Copy items into destination group’s folder. You are merely adding the
SpaceCargoShip folder and PNG to your CCHelloWorld project so that it is
included with your app.

2. Open the Hel | oworl dScene. mclass and, in the i nit method, add the lines
shown in Listing 1.1.

Listing 1.1 Adding the space cargo ship onscreen

CCSprite *spaceCargoShip = [CCSprite

spriteWthFile: @ SpaceCargoShi p. png"];
[spaceCar goShi p set Position:ccp(size.w dth/2, size.height/2)];
[sel f addChil d: spaceCar goShi p] ;

10

Chapter 1 Hello, Cocos2D

Click Run, and you should see the space cargo ship in the middle of the screen, as
shown in Figure 1.9.

Figure 1.9 Space cargo ship in HelloWorld

Only three lines of code, and you already have a space cargo ship on your iOS
device. You will learn in-depth about the details behind the lines in Listing 1.1 in the
next chapters.

Adding Movement

A ship is supposed to move around, and moving sprites in Cocos2D is really easy. Add
the lines shown in Listing 1.2 right below the lines you added for the space cargo ship.

Listing 1.2 Code to move the spaceCargoShip in HelloWorldScene.m

id moveAction = [CCVbveTo actionWthbDuration:5. 0f
posi tion:ccp(0, size.height/2)];
[spaceCar goShi p runActi on: noveAction];

Click Run and watch your space cargo ship move slowly to the left side of the screen.
How about that—just five short lines of code and you have a moving ship on your iOS
device. It only gets better from here.

Note

If you are having issues with your HelloWorld crashing with an error message saying
cocos2d: Couldn’t add image:SpaceCargoShip.png in CCTextureCache, make sure you have
properly copied the SpaceCargoShip folder to your CCHelloWorld project. You can always
check your work against the completed CCHelloWorld project located with the resources
for this book.

For the More Curious: Understanding the Cocos2D HelloWorld

Hopefully, this has been one of the simplest HellolWorld programs you have tried out:
you only had to type five lines of code. Getting started with Cocos2D is easy, and you
can render some amazing effects and graphics with very little code. In the next chapter
you will start building Space Viking by putting Ole the Viking and the controls on the
screen. You will go from this HelloWorld to a Viking you can move on the screen in
one short chapter.

The rest of this chapter explains in detail what each line in HelloWorld does, as
well as how to generate builds for your iOS device. If you don’t want to learn what
is happening “behind the scenes,” feel free to skip ahead to the next chapter and start
creating your Space Viking game.

For the More Curious: Understanding the
Cocos2D HelloWorld

If you are curious about how the Cocos2D application template works, this section
covers the most important pieces.

Scenes and Nodes

The first step to understanding the Cocos2D template code is to understand the con-
cepts of scenes, layers, and nodes.

Cocos2D games are made up of scenes (CCScenes), and the director (CCDi r ect or)
is responsible for running scenes. The Cocos2D Director runs only one scene at a
time. For example, Figure 1.10 shows how you might have the CCDi r ect or running
a scene with a main menu on it at one point, and switch to another scene with the
gameplay later.

Running Scene: Main Menu Scene Running Scene: Gameplay Scene
CcC CcC
Director Director
Main Menu Gameplay Main Menu Gameplay
Scene Scene Scene Scene

Figure 1.10 Cocos2D Director running Main Menu Scene and then
Gameplay Scene

11

12

Chapter 1 Hello, Cocos2D

Each scene in Cocos2D consists of one or more layers, which are composited on top
of each other. For example, in building Space Viking you will create two layers in the
first scene: one on the bottom to contain the background, and one on the top to con-
tain the moving characters and action.

Each layer (CCLayer) can in turn have sprites (CCSpri t), labels (CCLabel),
and other objects you want to display onscreen. If you remember, when you added
SpaceCar goShi p, you created a new sprite and then added it as a child of the layer.

You can see an example of how the hierarchy of Cocos2D nodes fits together in
Figure 1.11.

cC
Director

Currently running scene

Y
Gameplay
Scene
/ Y \
Background Main Controls
Layer Layer Layer

oA N v N

Sprite Sprite] [Sprite Label | |Sprite

<

Figure 1.11 Cocos2D Scenes, Layers, and Sprites hierarchy

In Xcode, go to the Classes folder and open the CCHelloWorld AppDelegate.m file.

Look inside the appl i cati onDi dFi ni shLaunchi ng method, which is where the
Cocos2D Director (CCDi r ect or) is set up and instantiated. On line 113, you will see
the following, which is where Hel | oWorl d scene is allocated and run:

[[CCDirector sharedDirector] runWthScene: [HelloWwrld scene]];
In the HelloWorld sample, the CCDi r ect or allocates the Hel | oWorl d scene and

then proceeds to run it, calling all of the schedulers and draw calls of the scene and its
children.

For the More Curious: Understanding the Cocos2D HelloWorld

Open up HelloWorldScene.m and find the scene method that creates a new scene, as
shown in Listing 1.3.

Listing 1.3 Inside the HelloWorldScene.m +(id)scene method

+(id) scene

{
/1 'scene' is an autorel ease object.
CCScene *scene = [CCScene node];

/1 'layer' is an autorel ease object.
Hel l oWorl d *layer = [Hell oworl d node];

/1 add layer as a child to scene
[scene addChild: |ayer];

/1 return the scene
return scene;

The first line of code creates a new instance of CCScene by calling [CCScene node],
which is shorthand for [[[CCScene alloc] init] autorelease]. It then creates a
new instance of the Hel | oWbr | d layer, adds it as a child of the CCScene, and returns
the new scene.

When the Hel | oWor| d layer is called, the i nit method is called, which contains
the code shown in Listing 1.4.

Listing 1.4 Inside the HelloWorldScene.m -(id)init method for HelloWorld Layer

/1 Create and initialize a Label

CCLabel TTL* | abel = [CCLabel TTL | abel WthString: @Hel | o Wrl d"
font Nane: @ Marker Felt" fontSize: 64];

/1 Ask CCDirector for the wi ndow size
CGSi ze size = [[CCDirector sharedDirector] w nSize];

/1 Position the |abel at the center of the screen
| abel . position = ccp(size.width /2 , size.height/2);

/1 Add the label as a child to this Layer
[sel f addChild: |abel];

This creates a label saying “Hello World” and sets its position to the center of the
screen. It then adds the label as a child of the Hel | oWor | d layer.

13

14

Chapter 1 Hello, Cocos2D

So in summary, the CCDi r ect or needs to know which scene to run. Inside of
applicationDi dFi ni shLaunchi ng, the template calls the [Hel | oWorl d scene]
method to create a new CCScene with a single layer as a child—the Hel | oWor | d
layer. The i nit function of the Hel | oWbr | d layer creates a label and adds it as a child
of the layer. At that point, you have “Hello World” showing onscreen.

From the Beginning

At this point we’ve covered the most critical parts of the template—how the scene gets
run and how the label gets added to the scene. But if you're still curious, here’s some
additional information about the remaining template code automatically created for
you.

When the HelloWorld app first starts, the i nt mei n(i nt argc, char *argv[])
function inside of the main.m file is executed by the iOS. The main function allocates
the memory pool the HelloWorld application will use and has the Ul Appl i cati on-

Mai n run the CCHel | oWor | dAppDel egat e class. It is in the application delegate class
that HelloWorld comes to life, with the instantiation of the Cocos2D Director. List-
ing 1.5 covers the appl i cationDi dFi ni shLaunchi ng method that is called by the
Ul Appl i cati onMai n when CCHel | oWor | d is loaded and ready to start running.

Listing 1.5 applicationDidFinishLaunching in CCHelloWorldAppDelegate.m class

- (void) applicationD dFini shLaunchi ng: (U Application*)application
{

/1 Init the w ndow

wi ndow = [[U Wndow al | oc] initWthFrane:[

[U Screen mai nScreen] bounds]];

/1 Try to use CAD spl ayLink director

/1 if it fails (SDK < 3.1) use the default director

if(! [CCDrector setDirectorType: kCCDirector TypeD spl ayLi nk])

[CCDirector setDirectorType: KCCDi rector TypeDefault]; // 1

CCDirector *director = [CCDirector sharedDirector]; // 2

/1 Init the View Controller

viewControll er = [[RootViewController alloc]
initWthN bNanme: ni | bundle:nil];

vi ewControl | er.want sFul | ScreenLayout = YES; // 3

/| Create the EAGLVi ew nanual |y

/1 1. Create a RGB565 format. Alternative: RGBA8

/1 2. depth format of O bit. Use 16 or 24 bit for 3d effects,

/1 i ke CCPageTurnTransition

EAGLVi ew *gl Vi ew = [EAGLVi ew vi ewW t hFr ane: [wi ndow bounds]
pi xel For mat : KEAGLCol or For mat RGB565
depthFormat:0]; // 4

For the More Curious: Understanding the Cocos2D HelloWorld

/1 attach the openglView to the director
[director setOpenGLView gl View ;

/1 By default, this tenplate only supports Landscape orientations.
/1 Edit the RootViewController.mfile to edit the supported
/] orientations.
#i f GAME_AUTOROTATI ON == kGaneAut or ot at i onUl Vi enControl | er
[director setDeviceOrientation: kCCDeviceOrientationPortrait];
#el se
[director setDeviceOientation: kCCDeviceOrientati onLandscapelLeft];
#endif // 5

[director setAninmationinterval:1.0/60]; // 6
[director setDisplayFPS: YES]; // 7

/'l make the OpenGLView a child of the view controller
[viewController setViewglView; // 8

/1 make the View Controller a child of the nain w ndow
[wi ndow addSubvi ew. viewController.view;
[w ndow makeKeyAndVisible]; // 9

/1 Default texture format for PNG BMP/ Tl FF/ JPEG G F i mages
/1 1t can be RGBA8888, RGBA4444, RGB5_Al, RGB565
[CCText ure2D set Def aul t Al phaPi xel For mat :

kCCText ur e2DPi xel For mat _RGBA8888]; // 10
/'l Renmoves the startup flicker
[sel f renmoveStartupFlicker]; // 11
/1 Run the intro Scene
[[CCDirector sharedDirector] runWthScene:

[Hel l oWorl d scenell; // 12

The first step is to initialize the UI'Window where the View Controller and EAGLVI ew
will be attached. The UI'Window is set to full screen, and the EAGLVi ew is where all
of the OpenGL ES calls are going to be sent. Next, the Application Delegate:

1. Tries to set up Cocos2D to use the DisplayLink Director available on 10S 3.1
and higher. The DisplayLink Director allows Cocos2D to be called right before
the device needs to display the current image onscreen, so that the updates and
render cycles are in sync with the screen refresh interval.

2. Instantiates the Cocos2D Director singleton.

3. Instantiates the view controller that will contain the EAGLVi ew and will inform
Cocos2D of any orientation changes when the device switches between portrait
and landscape orientations.

15

16

Chapter 1 Hello, Cocos2D

10.

11.

12.

Creates the EAGLVi ew, which is used to render your game. Cocos2D will use
the EAGLVi ew to send the OpenGL ES commands to the OpenGL ES driver.

Sets the orientation to either portrait or landscape. If you are using the View
Controller created by the Cocos2D template, you will need to modify the
shoul dAut or ot at eTol nterfaceQri ent ati on in the RootViewController.m
class to support the orientations you need in your game.

. Sets the animation interval to 60 times per second, which is the default mode for

Cocos2D. Normally, Cocos2D tries to update the screen at the fastest rate (60
times per second).

Sets the Frames Per Second (FPS) display to be on and active. Cocos2D has the
option of calculating the average frames per second that your game is running
at and display it on the bottom left corner of the screen. The FPS display can
be really useful in troubleshooting game performance. The FPS display is off by
default; this line turns it on.

Adds the EAGLVi ew as a child to the Root Vi ewCont rol | er so that it will be
rendered.

Adds the Root Vi ewControl | er to the U W ndow and makes it active, allowing
for the Root Vi ewCont r ol | er and more importantly the EAGLVi ew to start ren-
dering elements on the screen.

Sets the Cocos2D texture format. Note that by default Cocos2D uses the high-
est bit depth for your images. In later chapters you will learn how to use images
with a lower bit depth to save on memory usage.

Removes the startup flicker if your game runs only in landscape orientation.
If your game runs only in a landscape orientation, Cocos2D needs to briefly
load and display the Default.png image to avoid a flicker from the splash screen
(Default.png) to black.

Instantiates the Hel | oWbr | d scene, which in turn instantiates the Hel | oWbr | d
layer, and starts running the Hel | oWor | d scene. At this point, the “Hello World”
label is visible on the screen.

The Cocos2D Director is responsible for running the game loop and rendering

all of the graphics in your game. Since the director is running the game loop, it can

control when the game runs, pauses, or stops. Looking at Listing 1.6, you can see the

methods in the application delegate that call the director in response to events from

the iPhone operating system, including pause and resume.

Listing 1.6 Methods inside of CCHelloWorldAppDelegate.m

- (void)applicationWI I ResignActive: (U Application *)application {

[[CCDirector sharedDirector] pause]; /11

For the More Curious: Understanding the Cocos2D HelloWorld

(voi d)applicationDi dBeconeActi ve: (Ul Application *)application {
[[CCDirector sharedDirector] resune]; Il 2

(voi d)applicationDi dRecei veMenor yWar ni ng: (Ul Application *)application {
[[CCDi rector sharedDirector] purgeCachedDat a] ; /Il 3

(voi d)applicationWI!| Term nate: (U Application *)application {
CCDirector *director = [CCDirector sharedDirector];
[[director openCLView] renoveFronSuperview ;
[viewController rel ease];
[wi ndow rel ease] ;
[director end]; Il 4

(voi d)applicationSignificantTi neChange: (Ul Application *)application {
[[CCDi rector sharedDirector] setNextDeltaTi neZero: YES]; /Il'5

1. Pauses the game and all timers if the application is paused by the operating sys-
tem. This event occurs when the user locks the iPad or iPhone screen while
playing a game or when an incoming call or other similar event forces the game
to the background.

2. Resumes the game and all timers when the application is brought back into the
foreground by the operating system. This event occurs when the user unlocks
the iPad or iPhone screen after locking it with the game running or resumes a
game after the call is complete.

3. Removes from memory any sprite textures that are not being used at the
moment in response to a low-memory warning. This call dumps all of the
cached texture and bitmap fonts data that is not currently in use to render graph-
ics onscreen.

Note

Your image files (PNGs, PVR) are loaded into OpenGL ES textures in a format that the
GPU can understand. The Cocos2D sprites are your link to these textures, which are used
by the Cocos2D Director and OpenGL ES to render your game. Cocos2D includes a texture
cache manager to maintain any textures you use cached in memory. Keeping textures
cached in memory greatly speeds up the creation of new sprites that utilize previously
used textures. The disadvantage of keeping textures cached is the additional memory
overhead. If the application receives a low-memory warning, Cocos2D moves quickly to
remove from memory any textures not actively in use. It is important to always remember
to deallocate your layers and scenes once you have moved from one scene to another,
and remove any unused textures and other assets, to keep your memory footprint as
small as possible.

17

18

Chapter 1 Hello, Cocos2D

4. Ends the director and detaches the EAGLVi ew from the application’s Ul W ndow.
This ends the game loop, removes all textures from memory, and clears all
of the scheduler timers. This command also forces the director to deallocate
the currently running scene, including all of its layers and sprites. The
applicationWI| Ter mi nate event is called when the user quits the game.

5. Sets the delta time between the last event call and the current event call to zero.
This method is called if a significant amount of time has passed between event
calls, usually due to the iPhone readjusting the system time for daylight sav-
ings or varying clocks on mobile phone towers. Physics inside of games and
other calculations are sensitive to large time changes, and it is useful to reset the
amount of time elapsed (delta) to zero if it is too large. If you were to try to run
the update methods with a large delta value (several seconds at once, or several
minutes), it would throw off the calculations and result in strange behavior and
rendering effects. You will learn more about delta times in Part IV of this book.

If you follow the order of execution, the AppDel egat e starts when the applica-
tion is launched. The AppDel egat e starts up the director and in turn calls on the
director to run the Hel | oWor | d scene. The Hel | oWor | d scene has one layer, and that
layer contains a label with the words “Hello World.” The label is added as a child to
the Hel I oWor | d layer, which is a child of the scene. The director starts rendering the
scene and its children, displaying the label (i.e., Hello World) onscreen.

Note

The 60.0 number on the bottom-left corner in Figure 1.9 is the frames per second at
which Cocos2D is rendering the scene. This information is useful for debugging purposes
because it allows you to see the frame rate your game is running. If you wish to disable it
(which you will need to do when you ship your final app), you can go into the AppDelegate
and remove the following line:

[director setDisplayFPS: YES];

Looking Further into the Cocos2D Source Code

One of the great features of Cocos2D is that all of the source code is available and
included in your projects, making it easy to look behind the scenes and see how the
rendering and other tasks are being done. Not only Cocos2D but also the source code
for CocosDenshion, Box2D, and Chipmunk are included in the projects that you cre-
ate from the Cocos2D templates. You can look at any part of the source code if you
ever have a question about what a particular method does or how it is implemented.
To see a method, select the method or variable in Xcode, right-click (or Control-click),
and choose Jump to Definition or press Control-z-D while the method or variable
is selected. Figure 1.12 shows the Jump to Definition selection in the Xcode pop-up
menu.

For the More Curious: Understanding the Cocos2D HelloWorld

Figure 1.12 Jump to Definition option in the Xcode right-click
pop-up menu

To see the Jump to Definition in action:
1. Open the HelloWorldScene.m file.
2. On line 18, select the node method and right-click.

3. In the Xcode pop-up menu, select Jump to Definition. Xcode should open
CCNode.m for you and show you the code in Listing 1.7.

Listing 1.7 The node method inside of CCNode.m

#pragma nark CCNode - Init & cleanup

+(id) node
{

return [[[self alloc] init] autorel ease];

}

Cocos2D has a large collection of utility and helper methods that can save you

time and typing. As an example, in the Cocos2D Director there exist the methods
convert ToG and convert ToUl for converting a point between UIKit and
OpenGL ES coordinate systems. In addition to utility and helper methods, Cocos2D
has a set of macros to shorten some of the repetitive calls your code would contain.

19

20

Chapter 1 Hello, Cocos2D

The ccp macro is one you will use numerous times, and it is just a shortcut to the
CGPoi nt Make method. The following is the code behind the ccp macro.

/** Hel per macro that creates a CGPoi nt
@ eturn CGPoi nt
@ince v0.7.2
*/
#define cep(__X__,__Y__) CGPointMake(__X_,_Y)

If you see an unknown method or macro, do not hesitate to jump to the definition of
that bit of code. The Cocos2D source is well documented and is easy to understand
with some practice. Knowing the helper methods, or at least how to find them, is key
to becoming an efficient Cocos2D game developer.

The next section covers how to get HelloWorld and any other games you create onto
your iPhone, iPad, or iPod touch.

Getting CCHelloWorld on Your iPhone or iPad

The first step to getting CCHelloWorld on your device is to sign up for an iPhone
Developer account with Apple (http://developer.apple.com/iphone). Figure 1.13 shows the
iPhone Developer Portal.

Figure 1.13 Apple iOS Developer Portal

Starting with Xcode 3.2.3, there are two ways to manage your builds for the iOS
devices. You can let Xcode automatically configure the provisioning profile for your
apps, or you can manually create and use an Ad Hoc profile from the iOS Developer
Portal.

Letting Xcode Do Everything for You

Provisioning profiles is one of the biggest hurdles to new developers on the iOS
platform. You spend all your time getting your game code working just right on the

http://developer.apple.com/iphone

Getting CCHelloWorld on Your iPhone or iPad 21

simulator, only to have to deal with code signing in order to get the game on an
actual device. Apple has made this process a lot simpler starting with Xcode 3.2.3. To
let Xcode configure the provisioning profiles on your behalf:

Make sure your iPhone or iPad is connected via USB.
In the Xcode menu, select Window > Organizer.
Select the Devices section.

Press the button marked Use for Development.

ook 2D

‘When prompted, enter your credentials for the iPhone Developer Program.

That’s it! Xcode automatically sends your device UDID to Apple, creates a special
provisioning profile called “Team Provisioning Profile,” and sets everything up for
you. After a minute or so, your Organizer window should look similar to Figure 1.14.

Figure 1.14 Xcode Organizer window with iPad configured for
development

Building for Your iPhone or iPad
Under the Scheme dropdown menu, select CCHelloWorld and your iPhone or iPad
device. You should see your iPad or iPhone listed if it is connected via USB.

If you select Run, Xcode will build a version of CCHelloWorld for the ARM pro-
cessors on the iPad or iPhone and then copy CCHelloWorld to your device.

22

Chapter 1 Hello, Cocos2D

Summary

In this chapter you downloaded the source code for Cocos2D and installed the
Cocos2D templates into Xcode. You quickly created a HelloWorld app and added a
moving Space Cargo Ship in just a few lines of code. Additionally, you covered the
basics of Cocos2D Director, scenes, and layers, and what the Cocos2D templates
provide.

In the next chapter you get a chance to dive deeper into Cocos2D and start build-
ing the Space Viking game. If you are ready, turn the page and start on your journey to
get Ole the Viking moving around and fighting off the alien robots.

Challenges

1. Open the Cocos2D Xcode project included with the Cocos2D source you
downloaded and run some of the included tests, such as the SpriteTest. The
Cocos2D project file is located inside the cocos2d-iphone subfolder where you
cloned or downloaded Cocos2D earlier in this chapter. To run the SpriteTest,
select it under the Scheme dropdown, as shown in Figure 1.15.

Figure 1.15 SpriteTest selected under the Scheme dropdown in Xcode

2. Create a Cocos2D Box2D application and a Cocos2D Chipmunk application
and run them on the simulator or your iOS device. Play around with the physics
engines you will learn about in Part I'V of this book.

2

Hello, Space Viking

In the previous chapter you installed Cocos2D on your system, including the templates that are
used by Xcode. You also learned about some of the companion tools you will be using in later
chapters. Now it is time to start your journey creating Space Viking by putting Ole the Viking
onscreen and moving him around. In this chapter you will deal only with the iPad version of
Space Viking; later in the book you will cover in detail techniques and practices to adapt and
scale a game from iPad down to the iPhone.

You will start by creating the basic Space Viking game project, which you will build upon
throughout the rest of the book. You will begin with a basic Cocos2D template and add two
sprites, one for the background and the other for Ole the Viking. In the second part of this chap-
ter you will learn how to add the methods needed to handle the touch inputs, including moving
your Viking and making him jump. If you are ready, open up Xcode to get started with Space
Viking!/

Creating the SpaceViking Project

Space Viking is your key to learning Cocos2D as you progress through this book. All
games have to start somewhere, and Space Viking starts life as a Cocos2D template
project. The first thing you need to do is create a new Cocos2D project in Xcode, so
go ahead and launch Xcode and create the project:

1. Open Xcode and select Create a New Xcode Project.

2. Choose the Cocos2D template (without Box2D or Chipmunk) under the iOS
section.

3. Enter SpacelViking as the name of the product, and select Next.

4. Select a location to save your Spaceliking project, and click Create.

The location of the Cocos2D templates in Xcode are shown in Figure 2.1. Depend-
ing on what version of Cocos2D you have installed, your templates might have differ-
ent revision numbers.

24 Chapter 2 Hello, Space Viking

Figure 2.1 Cocos2D templates in Xcode

These are the same two steps you performed in Chapter 1, “Hello, Cocos2D,” and
if you press Run in Xcode, you will see the Cocos2D HelloWorld sample. You will be
creating Space Viking specifically for the iPad, and you will learn how to scale it down
for the iPhone in later chapters. The Cocos2D templates are set up to create an iPhone
game by default, requiring you to quickly transition the project in Xcode before get-
ting started with the coding.

Creating the Space Viking Classes

At this point you have a project template game app, running on both the iPhone and
iPad at full-screen resolution. Leaving the HelloWorld files as reference, it is time to
start creating the classes needed for Space Viking. The first step is to add the Images
folder that you downloaded from the book site to the Spaceliking project.

Note

For this chapter you need the Images folder included with the resources for this book.
You must download the resources from the InformIT website (www.informit.com/
title/9780321735621). Once you download the disk image, go to the folder for Chapter 2.

Next you need to make it so Xcode pulls the Immages folder into your project and
copies the files into the Spaceliking project’s directory.

www.informit.com/title/9780321735621
www.informit.com/title/9780321735621

Creating the Space Viking Classes

5. With the Spaceliking project opened in Xcode, drag the Images folder from a
Finder window into your Spaceliking project.

6. On the sheet that drops down, make sure that the Copy items into destina-
tion group’s folder is checked and click Finish, as shown in Figure 2.2.

Figure 2.2 Xcode Add Files dialog with the copy items checkbox
turned ON

Warning

The Copy items into destination group’s folder option is needed when you want to copy
files to your project from another location on your system. If you leave this checkbox
unchecked, the files will only be linked into your project, meaning the files will exist only
in their original folder outside of your project. In Space Viking, you want the Images folder
inside your project folder just in case you decide to move the downloaded Images folder
later on.

If you look in the Images folder, you will see the PNG files that you will use on this
version of the game. These include the background image and the first frame you will
use for Ole the Viking. Now that the images are part of the project, you can move on
and create the background layer and gameplay layers followed by the gameplay scene,
which will contain both layers.

25

26

Chapter 2 Hello, Space Viking

Note

The Images folder you copied into the Space Viking Xcode project contains the various
icon file images used for Space Viking’s app icon. The Cocos2D templates already contain
icon.png, Icon@2x.png, Icon-Small.png, Icon-Small@2x.png, Icon-Small-50.png, Icon-72.png,
and Default.png files in the Resources folder, so you need to delete them from the project
before proceeding.

Creating the Background Layer

As noted earlier, the Cocos2D Director is responsible for running the scene, and each
scene in Cocos2D is made up of layers. As each layer is initialized, an i nit method

is called. The i nit method is the perfect location to create and initialize the sprites
used in each layer. The background of Space Viking will have one sprite containing the
background image centered onscreen. In later versions of Space Viking, you will add
scrolling backgrounds and animations.

1. In Xcode, select the Classes folder and right-click, choosing New File from the
contextual menu.

2. On the dialog that drops down, select the iOS\Cocoa Touch class on the left
panel and Objective-C class, and then click Next, as shown in Figure 2.3.

Figure 2.3 Xcode Add New File dialog

3. For the Subclass field, enter CCLayer and click Next.

4. In the Save As field, type in BackgroundLayer.m and click Save. Figure 2.4 shows
the Add new file window.

Creating the Background Layer

Figure 2.4 Adding the BackgroundLayer.m class to SpaceViking in Xcode

Open the BackgroundLayer.h header file.

Add a #i mport line for Cocos2D, and change the Backgr oundLayer class
to inherit from CCLayer instead of NSObj ect . Listing 2.1 shows the complete
BackgroundLayer.h file.

Listing 2.1 BackgroundLayer.h

#i nport <Foundati on/ Foundati on. h>
#i mport "cocos2d. h"

@nterface BackgroundLayer : CCLayer {
}

@nd

Switch to the BackgroundLayer.m implementation file so you can add the i nit
method and the background sprite.

Tip

Whether you're using a MacBook, MacBook Pro, or Apple’s Magic TrackPad, you can use a
three-finger swipe up or down to switch between the header .h and the implementation .m
files quickly in Xcode. Just swipe up or down to move between the header and implemen-
tation files. You can also use the keyboard combination of Option+Command+Up Arrow to

switch between header and implementation files.

27

28

Chapter 2 Hello, Space Viking

Open the BackgroundLayer.m implementation file and add the —(i d)i ni t method, as
shown in Listing 2.2.

Listing 2.2 BackgroundLayer.m

/1 BackgroundLayer.m
/1 SpaceViking
#i nport " BackgroundLayer. h"

@ npl enent at i on Backgr oundLayer
-(id)init {
self = [super init]; /11
if (self I'=nil) { /12
/13
CCSprite *backgroundl nage;
if (U _USER | NTERFACE_|I DI OM) == Ul User | nterfacel di onPad) {
/1 Indicates gane is running on iPad
backgroundl nage = [CCSprite
spriteWthFile: @background. png"];
} else {
backgroundl nege = [CCSprite
spriteWthFile: @backgroundi Phone. png"];
}

CGSi ze screenSize = [[CCDirector sharedDirector] w nSize]; // 4
[backgroundl nage set Position:

CGPoi nt Make(screenSi ze. wi dt h/ 2, screenSi ze. hei ght/2)]; /15
[sel f addChil d: backgroundl mage z: 0 tag:0]; Il 6
}
return self; 17
}
@nd

The first two lines of this method are standard boilerplate code from Apple’s tem-
plate; it checks that the parent/super class is initialized and not ni | . Now let’s take
a closer look at what’s going on in that i nit method; the following list refers to the
numbered/commented lines in Listing 2.2.

1. Creates an initialized instance of the superclass of the Backgr oundLayer class,
which in this case is CCLayer .

2. Checks to make sure this instance is not ni | .

3. Checks to see if Space Viking is running on the iPad or the iPhone. If the iPad
is selected, then the background.png image is used for the background; otherwise,
when running on the iPhone, the backgroundiPhone.png is selected. If you look

The Gameplay Layer: Adding Ole the Viking to the Game

inside of the Images/Backgrounds folder you copied into your project, you will see
there are two iPhone backgrounds, backgroundliPhone.png and backgroundiPhone-hd.
png. Cocos2D automatically detects the iPhone 4 Retina display and will use the
higher resolution image. The spriteWt hFi | e method call creates a texture
from the image file and associates it with the CCSprit e object. The sprite’s
dimensions and corresponding geometry are set to the image dimensions.

4. Gets the screen size from the Cocos2D Director. On the iPad, this returns
1024 X 768 pixels.

5. Sets the position of the backgr oundl mage sprite to the center of the screen.

The Cocos2D coordinate system has (0,0) at the bottom left of the screen. Cocos2D
positions sprites according to their center points. Make sure to always take into
account the dimensions of your sprite when using the set Posi t i on method.

6. Adds the backgr oundl mage to the backgroundLayer with the z and t ag
values set to zero. The z values are used by Cocos2D to composite the sprites and
layers onscreen. The higher the z value, the closer to the front of the screen an
object is. For sprites, you need to keep track of which layer the sprite is in, as well.
If a sprite has a z value of 100 but is still in the backmost layer (with the lowest z
value), it will be rendered behind other sprites in layers with a higher z value.

7. Returns the newly initialized Backgr oundLayer class.

Tip

The UIKit coordinate system has the origin (0, 0) at the upper left of the screen. How-
ever, Cocos2D uses the OpenGL ES coordinate system, which places the origin (0, 0) at
the lower left of the screen.

To combat this, the Cocos2D utility functions convert ToG. and convert ToUl allow
for easy conversions between points in the UIKit coordinate system and the OpenGL ES
coordinate system. You will use these functions when trying to get the location of a touch
event, converting it from UIKit to OpenGL ES coordinates.

The background layer in this chapter contains just one image; later in the book you
will learn how to add tile maps and scrolling to the Space Viking game. Let’s continue
to the Ganepl ayLayer and GameScene classes, which you will use to wire up the
background layer into the game.

The Gameplay Layer: Adding Ole the Viking to
the Game

You are well on your way to a functional game. Now it is time to add Ole the Viking
to the scene. You use a separate layer to house all of your actors and actions, including
Ole the Viking. In Xcode, you need to create a new Ganepl ayLayer class and the
sprite that will hold the image of Ole. In the next chapter, you add enemies and ani-
mations to the Gamepl ayLayer.

29

30

Chapter 2 Hello, Space Viking

In Xcode, select and right-click on the SpaceViking Classes folder.
Choose New File and select iOS\Cocoa Touch\Objective-C class as the type.
For the Subclass field, enter CCLayer and click Next.

Enter GameplayLayer.m for the filename, and click Save. Xcode automatically

S

creates the header file for you, setting up the basics so that all you need to do is
add any instance variables or properties to the header file.

5. Open the GameplayLayer.h header file and add the #i nport line for Cocos2D
and an instance variable called vi ki ngSprit e, which holds the sprite, as shown
in Listing 2.3.

The changed GameplayLayer.h header is shown in Listing 2.3.

Listing 2.3 GameplayLayer.h

#i nport <Foundat i on/ Foundati on. h>

#i nmport "cocos2d. h"

@nterface Ganepl ayLayer : CCLayer {
CCSprite *vikingSprite;

}

@nd

Move to the implementation (GameplayLayer.m) file and add the i nit method, as
shown in Listing 2.4.

Listing 2.4 GameplayLayer.m

/'l Gamepl ayLayer. m
/1 SpaceViking

#i nport " Ganepl ayLayer. h"

@ npl enent ati on Ganepl ayLayer
-(id)init {
self = [super init];
if (self I'=nil) {
CCSi ze screenSize = [CCDirector sharedDirector].winSize; // 1
/1 enabl e touches
sel f.isTouchEnabl ed = YES; /12
vikingSprite = [CCSprite spriteWthFile: @sv_anim11.png"];// 3
[vikingSprite setPosition:
CGPoi nt Make(screenSi ze. wi dt h/ 2,
screenSi ze. hei ght *0. 17f)] ; /1 4
[sel f addChild:vikingSprite]; Il
Il 6
if (U _USER | NTERFACE_I DI OM) != Ul Userlnterfacel di onPad) {
/1 If NOT on the iPad, scale down Oe

[&)]

The GameScene Class: Connecting the Layers in a Scene

/1 In your ganes, use this to load art sized for the device
[vikingSprite setScal eX: screenSi ze. wi dt h/ 1024. 0f] ;
[vikingSprite setScal eY: screenSi ze. hei ght/768. 0f] ;
}
}
return self;
}
@nd

Now let’s take a look at what’s happening in Listing 2.4:

1. Gets the screen size from the Cocos2D Director. On the iPad, this returns
1024 x 768 pixels.

2. Informs Cocos2D that the gamepl ayLayer will receive touch events.

3. Allocates and initializes the vi Ki ngSprit e instance variable with the image
viking1.png.

4. Sets the position of the vi ki ngSprite onscreen. The screenSi ze.wi dt h/ 2
parameter takes the current screen width (1024 pixels on the iPad) and divides it
by two. This places the Viking 512 pixels to the right of the screen, dead center
on the X-axis. The Y-axis is being set to 130 pixels up from the bottom. Recall
that the OpenGL ES and Cocos2D coordinate system has (0, 0) at the bot-
tom left of the screen. The use of 130. 0f instead of 130 is because this method
expects a float value instead of an integer value. You are skipping a conversion
from integer to float here by providing the value in float format.

5. Adds the vi ki ngSprite to the Ganepl ayLayer. Having the vi ki ngSprite
as a child of the layer enables it to be rendered on the screen by Cocos2D.

6. Scales down the vi ki ngSprit e if Space Viking is not running on the iPad,
resizing it to fit the screen resolution. In your games and in later chapters, you
will want to use this check to load the appropriate iPhone/iPod touch artwork.
In order to keep things simple, this example just scales down the Viking image.

Warning

Please ensure that you copied the Images folder into your project with the background.png
and sv_anim_1.png image files. While Space Viking will compile without those images, you
will get a runtime crash with the error message cocos2d: Couldn’t add image:sv_anim_1.png
in CCTextureCache.

The GameScene Class: Connecting the Layers in
a Scene
You now have the two layers in the Space Viking game: one with the background and

one with Ole the Viking. The next step is to have both of these layers as children of
a Scene object. The Cocos2D Director executes the game run loop and “runs” a

31

32

Chapter 2 Hello, Space Viking

particular scene. At the moment, your game will have just one scene, the GameScene.
You'll see how to add more scenes to Cocos2D and transition between them in Chap-
ter 7, “Main Menu, Level Completed, and Credit Scenes.”

Creating the GameScene

Select and right-click on the Classes folder, and then choose New File.

Select the iOS\Cocoa Touch\Objective-C class and click Next. For the Sub-
class field, enter CCScene and click Next. Type in GameScene.m under the File Name
and click Save.

Open up GameScene.h and add the #i mport lines for Cocos2D, Backgr oundLayer,
and Gamepl ayLayer classes. Listing 2.5 shows the full GameScene.h header file.

Listing 2.5 GameScene.h

#i mport <Foundati on/ Foundati on. h>
#import "cocos2d.h"

#import "BackgroundLayer.h"
#import "GameplayLayer.h"
@nterface GaneScene : CCScene {
}

@nd

Switch to the GameScene.m implementation file. Here you will add the i ni t
method to create and add the Backgr oundLayer and Ganepl ayLayer instances
to the GameScene class. Listing 2.6 shows the i nit method inside the GameScene.m
implementation file.

Listing 2.6 GameScene.m (add between @implementation and @end)

-(id)init {
self = [super init];
if (self I'=nil) {
/' Background Layer
BackgroundLayer *backgroundLayer = [BackgroundLayer node]; // 1

[sel f addChil d: backgroundLayer z:0]; Il 2
/1 Gamepl ay Layer

Ganepl ayLayer *ganepl ayLayer = [Ganepl ayLayer node]; /1 3
[sel f addChil d: ganmepl ayLayer z:5]; /1 4

}

return self;

Here is what is happening in the i ni t method of GameScene:

1. Instantiates the backgr oundLayer object. The node method call is just a short-
cut for the al | oc and i nit methods combined.

The GameScene Class: Connecting the Layers in a Scene

2. Adds the backgroundLayer to the scene with a z value of zero.
3. Instantiates the ganmepl ayLayer object.

4. Adds the ganepl ayLayer object to the scene with a z value of 5. Since the z
value of the gamepl ayLayer is higher than the z value of backgr oundLayer,
it will be composited in front of the backgr oundLayer.

As you can see in Listing 2.6, Cocos2D scenes can be pretty simple, acting as a
container for the CCLayer s in your game. Most of the functionality you will create in
Space Viking will be restricted to the CCLayer s in the game.

In Xcode press z-B or select Build from the Product menu to ensure that you have
not made any typos or errors in entering the code thus far. Space Viking should have a
clean build at this point. In the next section you will add the code to make the direc-
tor run the GameScene instead of Hel | oWorl d.

A Note on z Values

Cocos2D is a 2D game engine, but because it uses OpenGL ES for all rendering,

it knows about the third dimension (depth), otherwise known as the z value. In 3D
engines the z value is used in the compositing stage to specify what objects or sprites
are in front and behind. In Cocos2D the z value determines the order in which your
CCNodes (sprites, layers, etc.) will be drawn. All of the sprites in your layers have z
values, and the layers themselves have z values in the scenes. The z value of O (zero)
denotes the furthest point from the screen, while a positive z value is closer to the
screen. If you have two sprites in the same layer, one with a z value of 10 and another
with a z value of 20, the one with a z value of 20 is in front. Figure 2.5 shows the
background and gameplay layers in Space Viking, with the background layer having the
lower z value.

Figure 2.5 The layers and z values in Space Viking

33

34

Chapter 2 Hello, Space Viking

Commanding the Cocos2D Director

In the Spaceliking project, the Cocos2D Director is set to instantiate and run the
Hel | oWor| d scene. You need to change the director call so that it runs the GameS-
cene instead.

1. Open the SpaceVikingAppDelegate.m implementation file.

2. At the top of the file, add an import for the GameScene class in the
SpaceVikingAppDelegate.m implementation file, as shown in Listing 2.7.

Listing 2.7 SpaceVikingAppDelegate.m

#i nport "cocos2d. h"

#i nport " SpaceVi ki ngsAppDel egat e. h"
#i mport " GanmeConfig. h"

#i mport "Hel | oWorl dScene. h"

#i nport "Root Vi ewController.h"
#import "GameScene.h"

@ npl enent ati on SpaceVi ki ngAppDel egat e

3. Scroll down and uncomment the following lines in order to enable the higher
resolution images in the iPhone 4’s retina display:
/1 Enables H gh Res npde (Retina Display) on iPhone 4 and nuintains
/1 lowres on all other devices
if(! [director enabl eRetinabDi splay: YES])
CCLOG(@ Reti na Di splay Not supported");

When you remove the comments from this line in the Application Delegate,
Cocos2D will always look for files with a - hd suffix. In this chapter this means
that the Backgr oundLayer will use backgroundiPhone-hd.png on the iPhone 4
and backgroundiPhone.png on the older iPhone and iPod touch devices.

4. Scroll down and find the —appl i cat i onDi dFi ni shLaunchi ng method. Then
find and comment out the following line:

/1 [[CCDirector sharedDirector] runWthScene: [Hell owrld scene]];

5. In its place add a line to indicate you want the director to run the GaneScene.
[[CCDirector sharedDirector] runWthScene: [GaneScene node]];

This line instructs the director to allocate and instantiate the GanmeScene class
and then run it. Your GameScene class contains the background and gameplay
layers, and running the scene causes any layers contained in it to render to the

screen.

Adding Movement

If you select the iPad Simulator from the Scheme dropdown and click Run, you
will see the Space Viking game with Ole the Viking in the middle of the alien world
background. Figure 2.6 shows Space Viking running on the iPad Simulator.

Figure 2.6 Space Viking running on the iPad Simulator

Adding Movement

It took only a few pages to get your Viking and background on the iPad screen. Now
you have to work on getting Ole to move around. Luckily, Cocos2D makes the job of
moving and animating sprites easy. In Space Viking, you will use a thumb joystick on
the left side to move Ole and buttons on the right to attack and jump. In Cocos2D,
touch events are sent to the layers that subscribe to those events. You have already set
your Gamepl ayLayer class to receive touch events, and all you have to do now is
implement the methods that will be called when the touch events occur.

Importing the Joystick Classes

In Space Viking you will use an Open Source joystick project called Sneakylnput. It is
included with the resource files for this chapter. Sneakylnput is one of many joystick
projects and options available to use with Cocos2D. To add the Sneakylnput joystick
to your SpacelViking project:

1. In Xcode select your SpaceViking project.

2. Right-click and select Add > Files.

35

36 Chapter 2 Hello, Space Viking

3. Browse to the location of the Resources folder you downloaded for this chapter
and select the JoystickClasses folder.
4. Ensure that Copy items into destination group’s folder is selected, and click

Add.

Now that you have the Sneakyl nput joystick classes in your Spaceliking project,
the next step is to utilize those classes in the Gamepl ayLayer class.

Note

The Sneakyl nput joystick classes are not part of the main Cocos2D distribution at this
time. The appl yJoyst i ck method used in Space Viking borrows some of the code from
the Sneakylnput samples. You can view and check out the latest code for Sneakylnput at
the GitHub repository located at https://github.com/sneakyness/Sneakylnput.

Adding the Joystick and Buttons

Open up the GameplayLayer.h header file and add the #i nport statements for the
Sneakyl nput classes. Along with the import statements, add three instance variables
for the joystick and two buttons, as shown in Listing 2.8.

Listing 2.8 GameplayLayer.h

/1 Ganepl ayLayer. h
/1 SpaceVi ki ng

#i nport <Foundat i on/ Foundati on. h>

#i nport "cocos2d. h"

#import "SneakyJoystick.h"

#import "SneakyButton.h"

#import "SneakyButtonSkinnedBase.h"
#import "SneakyJoystickSkinnedBase.h"

@nterface Ganepl ayLayer : CCLayer {
CCSprite *vikingSprite;
SneakyJoystick *leftJoystick;
SneakyButton *jumpButton;
SneakyButton *attackButton;

}

@nd

The | ef t Joysti ck will be the thumb stick used to move Ole left and right. The
jump and attack buttons will trigger jump and attack actions, respectively.

In the GameplayLayer.m implementation file, add a method called —(voi d)i ni t-
JoystickAndButt ons() above the —(i d)i nit method in order to initialize the
joystick and buttons. This method is called from the i nit method. Listing 2.9 shows
the contents of the i nit Joysti ckAndButt ons method.

https://github.com/sneakyness/SneakyInput

Adding Movement

Listing 2.9 GameplayLayer.m -(void)initJoystickAndButtons()

-(void)initJoysti ckAndButtons {

CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze;
CGRect joystickBaseDi nmensions =

CGRect Make(0, 0, 128.0f, 128.0f);
CGRect j unpButtonDi nensi ons =

CGRect Make(0, 0, 64.0f, 64.0f);
CGRect attackButtonDi nensions =

CGRect Make(0, 0, 64.0f, 64.0f);
CGPoi nt j oysti ckBasePosition;
CGPoi nt j unpButtonPosition;
CGPoi nt attackButtonPosition;

if (U _USER | NTERFACE_ | DI OM) == Ul User | nterfacel di onPad) {
/1 The device is an iPad running i Phone 3.2 or later.
CCLOG(@ Posi tioning Joystick and Buttons for iPad");
joystickBasePosition = ccp(screenSize.w dt h*0. 0625f,
screenSi ze. hei ght *0. 052f) ;

junpBut t onPosi ti on = ccp(screenSi ze. w dt h*0. 946f,
screenSi ze. hei ght *0. 052f) ;

attackButtonPosition = ccp(screenSi ze. w dt h*0. 947f,
screenSi ze. hei ght *0. 169f) ;
} else {
/1 The device is an iPhone or iPod touch.
CCLOG(@ Posi tioning Joystick and Buttons for iPhone");
j oystickBasePosition = ccp(screenSi ze. wi dt h*0. 07f,
screenSi ze. hei ght *0. 11f) ;

junmpBut t onPosi tion = ccp(screenSi ze. wi dt h*0. 93f,
screenSi ze. hei ght *0. 11f) ;

attackButtonPosition = ccp(screenSize.w dt h*0. 93f,
screenSi ze. hei ght *0. 35f) ;
}

SneakyJoysti ckSki nnedBase *joystickBase =

[[[SneakyJoysti ckSki nnedBase alloc] init] autorel ease];

joystickBase. position = joystickBasePosition;

joystickBase. backgroundSprite =

[CCSprite spriteWthFile: @dpadDown. png"];

joystickBase.thumbSprite =

[CCSprite spriteWthFile: @joystickDown. png"];

joystickBase.joystick = [[SneakyJoystick alloc]
initWthRect:joystickBaseDi nmensions];

/1

/1

/1

/1

/1
/1

/1

/1

/1

37

38 Chapter 2 Hello, Space Viking

| eftJoystick = [joystickBase.joystick retain]; /1 10
[sel f addChil d:joystickBase]; /1 11

SneakyBut t onSki nnedBase *j unpButtonBase =

[[[SneakyButtonSki nnedBase alloc] init] autorel ease]; /1 12
j unpBut t onBase. position = junpButtonPosition; /1 13
j unpBut t onBase. defaul t Sprite =

[CCSprite spriteWthFile: @junpUp. png"]; /1 14
j unmpBut t onBase. activatedSprite =

[CCSprite spriteWthFile: @] unmpDown. png"]; /1 15
junmpBut t onBase. pressSprite =

[CCSprite spriteWthFile: @junpDown. png"]; /1 16

j unpBut t onBase. button = [[SneakyButton all oc]
initWthRect:junpButtonDi nensions]; // 17

junpButton = [junpButtonBase. button retain]; /1 18
junmpBut t on. i sToggl eabl e = NO /1 19
[sel f addChil d:j unpButtonBase]; /1 20

SneakyBut t onSki nnedBase *attackButtonBase =

[[[SneakyButtonSki nnedBase alloc] init] autorel ease]; /1 21
att ackButt onBase. posi tion = attackButtonPosition; /1 22
attackButtonBase. defaul t Sprite = [CCSprite

spriteWthFile: @handUp. png"]; /1 23
attackButtonBase. activatedSprite = [CCSprite

spriteWthFile: @handDown. png"]; Il 24
attackButtonBase. pressSprite = [CCSprite

spriteWthFile: @handDown. png"]; /1 25
attackButtonBase. button = [[SneakyButton all oc]

initWthRect: attackButtonDi nensions]; Il 26
attackButton = [attackButtonBase. button retain]; /1 27
attackButton.isToggl eabl e = NG /1 28
[sel f addChil d: attackButtonBase]; /1 29

}

The i nitJoystickAndButtons method gets the SneakyJoysti ck classes all set
up and connected to your Space Viking game. Here is what happens in the method,
line by line:

1. Gets the screenSi ze from the Cocos2D Director. The screenSi ze is used to

calculate the positioning of the joystick and buttons.

2. Sets up the touch dimensions for the joystick and buttons. The joystick touch

dimensions are a rectangle of size 128 X 128 pixels. The jump and attack buttons
dimensions are a rectangle of size 64 X 64 pixels.

3. Creates the three CGPoi nt variables that are used to position the joystick and
buttons.

Adding Movement

4. Determines if Space Viking is running on an iPad or iPhone/iPod touch. In iOS
3.2 and later, this is the best way to determine what device your game is running
on. Depending on whether the iPad or iPhone/iPod touch is detected, the posi-
tions for the joystick and buttons are set up. This if/else block uses a calculation
for the values so that if the iPad dimensions change, the joystick and buttons will
still be in their proper place.

5. Allocates and initializes a joystick base. The joystick base will contain the actual
joystick and the sprites used to show the static joystick directional pad (DPAD)
and the moveable thumb portion of the joystick.

6. Sets the position of the joystick base to the value corresponding to either iPad or
iPhone dimensions.

7. Sets the background image of the joystick to the dpadDown.png image. In Space
Viking this is a Viking rune—styled directional pad.

8. Sets the thumb portion of the joystick to the joystickDown.png image. This is the
image players will move around with their thumbs or fingers.

9. Sets the joystick touch area to be a rectangle of 128 X 128 pixels, based on the
value of j oysti ckBaseDi mensi ons variable.

10. Assigns the joystick component of the joystick base to the Ganepl ayLayer
| ef t Joysti ck instance variable. Later in this chapter you will query the
I eft Joysti ck thumb component position to move Ole the Viking around
the screen.

11. Adds the joystick base to the Ganmepl ayLayer instance, making it visible on the
lower-left portion of the screen.

Lines 5 through 11 set up the thumb joystick to move Ole the Viking around the
screen. Lines 12 through 29 set up the attack and jump buttons.

12. Allocates and initializes the jump button base.
13. Sets the base position onscreen.

14. Sets the up position of the jump button base to the jumpUp.png image. This is
the state of the button if it is not being pressed.

15. Sets the activated position of the jump button base to the jumpDown.png image.
This is the state of the button if it is toggled to on or down.

16. Sets the down position of the jump button base. This is the state of the button
when the player presses it. Cocos2D textures are cached, so having the same
image for the down and activated states of this button loads the jumpDown.png
image only once in memory.

17. Sets the touch area of the button to a rectangle of 64 X 64 pixels.

18. Assigns the button component of the jump button base to the Gamepl ayLayer
j unmpBut t on instance variable. In the appl yJoysti ck method further in this

39

40

Chapter 2 Hello, Space Viking

chapter, you will query the j unpBut t on object to determine if the player is
pressing the button.

19. Sets this button to not act as a toggle. If a button has i sToggl eabl e set to
YES, pressing it alternates the button state from ON to OFF. If the button has
i sToggl eabl e set to NO, it turns OFF as soon as the player lifts his or her
finger from it.

20. Adds the jump button base to the Gamepl ayLayer instance, making it visible
on the lower-right portion of the screen.

Lines 21 through 29 are the same as lines 12 through 20, except they set up the
attack button instead of the jump button. Now that you have the joystick and buttons
initialized, it is time to add code to check them and connect the joystick movements

to Ole the Viking.

Applying Joystick Movements to Ole the Viking

In the GameplayLayer.m implementation file, add a method called appl yJoysti ck
below the i nit Joysti ckAndBut t ons method, as shown in Listing 2.10. This
method is called every time the position of Ole the Viking needs to be adjusted based
on the position of the joystick.

Listing 2.10 The applyJoystick method in gameplayLayer.m

- (voi d) appl yJoysti ck: (SneakyJoystick *)aJoystick toNode: (CCNode
*)tenpNode forTineDelta: (float)deltaTine

{
CGPoi nt scal edVel ocity = ccpMult(aJoystick.velocity, 1024.0f); // 1
CGPoi nt newPosition =
ccp(tenpNode. position.x + scaledVelocity.x * deltaTine,
tenmpNode. position.y + scaledVelocity.y * deltaTine); /Il 2
[tempNode set Posi tion: newPosition]; /1 3
if (junpButton.active == YES) {
CCLOG @ Junp button is pressed."); /Il 4
}
if (attackButton.active == YES) {
CCLOG(@ Attack button is pressed."); /15
}
}

1. Gets the velocity from the joystick object and multiplies it by 1024, which is
used here because it is the size of the iPad screen. The velocity can be multiplied

Adding Movement

by different factors to make Ole the Viking move faster or slower in relation to
the movement of the joystick.

2. Creates a new position based on the current t enpNode position, the joystick
velocity, and how much time has elapsed between the last time this method was
called and now. In Listing 2.11 you will see that t empNode contains a reference
to the vi ki ngSprit e instance variable.

3. Sets the t enpNode position to the newly calculated position. Here t empNode
is really a reference to vi ki ngSprite, so this call is placing Ole the Viking at a
new position.

4. Checks if the jump button is pressed, and if so, prints a message to the Console.

5. Checks if the attack button is pressed, and if so, prints a message to the Console.

In the appl yJoyst i ck method, the jump and attack buttons only cause messages
to be displayed to the Console. In the next chapter you will learn about Cocos2D ani-
mations and add the code to enable Ole the Viking to jump and attack.

Note

CCLOG s a Cocos2D macro for the NSLog method. If Space Viking is being compiled with
an active configuration of Debug, then this line compiles to an NSLog statement; other-
wise, it compiles down, in essence, to an empty line. If you want to have CCLOG active
even on a Distribution configuration, you can set the COCOS2D_DEBUG #defi ne to a
number higher than zero. CCLOG is useful to keep your Console log messages active in
the Debug configuration and inactive for builds you plan to release via Ad Hoc distribution
or to the AppStore.

After the appl yJoysti ck method in GameplayLayer.m, add a method called
updat e, as shown in Listing 2.11.

Listing 2.11 The update method in GameplayLayer.m (after applyJoystick)

#pragma mark -

#pragma nmark Update Met hod

-(voi d) update: (ccTine)deltaTine
{

[sel f applyJoystick:|leftJoystick toNode: vikingSprite
forTineDel t a: del t aTi ne] ;

}

The updat e method is called before every frame of Space Viking is to be rendered.
The Cocos2D Director runs the Space Viking game loop at 60 frames per second, so
the updat e method is called approximately 60 times a second. Here the updat e
method calls the appl yJoyst i ck method shown in Listing 2.10, passing it the
Vi Ki ngSprite object and how much time (del t aTi me) has elapsed between the last
update call and now.

41

42

Chapter 2 Hello, Space Viking

Finally, it is time to add the last bit of code that initializes the buttons and calls the
updat e method before each frame is rendered. In the i nit method of Ganepl ayLayer,
add the following two lines right after [sel f addChi | d: vi ki ngSprite]; asshown
in Listing 2.12.

Listing 2.12 Joystick initialization and update scheduler setup in init inside of
gameplayLayer.m

[sel f initJoystickAndButtons]; /117
[sel f schedul eUpdat e] ; /1 8

Line 7 calls the i ni t Joysti ckAndButt ons method covered in Listing 2.9, set-
ting up the joystick and the two buttons. Line 8 is a call to the Cocos2D scheduler to
call the update method every time this layer is set to be rendered on the screen. The
schedul eUpdat e call is new as of Cocos2D version 0.99.3.

Click Run in Xcode and you should see the Space Viking game with the joystick on
the bottom-left side and the buttons on the right side. Figure 2.7 shows Space Viking
with the controls in place on the iPad Simulator.

Figure 2.7 Space Viking with joystick, jump, and attack buttons

Note

The artwork you are using is designed for the iPad, but the code you entered for the
Viking, background, joystick, and buttons will allow it to work on the iPad or iPhone/iPod
touch.

Adding Movement

A Word on Instance Variables

You may have noticed that you used a vi ki ngSpr it e instance variable to keep track
of Ole’s sprite object. You then kept the instance variable pointing to the vi ki ng-
Sprit e so that you could update his position. Cocos2D automatically retains the
sprites that are added as children to the layers and optionally can mark each sprite
with a unique integer tag. You can use this tag mechanism to avoid having to keep
instance variables of your character sprites. If you set an integer constant of

kVi ki ngSprit e to be 10 and change the addChi | d line as follows:

#define kVikingSprite 10
[sel f addChild:tenpSprite z:0 tag: kVi ki ngSprite];

Then, when you want to access Ole’s sprite object to change the position, you can get
it from the Ganepl ayLayer with the get Chi | dBy Tag method call.

CCSprite *tenpSprite = [self getChildByTag: kVi ki ngSprite];

Using the tag feature of Cocos2D can simplify memory management in your Cocos2D
games. You will explore tags and their use in later chapters.

At this point you hopefully have the first glimpse of the Space Viking game that you
can hold in your hands, with thoughts of what it will become. With your confidence
slowly building, it is time to cover some of the graphics work needed before you can
move on with the coding intricacies. In particular, it is important to understand what
texture atlases are and why you should use them.

Terminology Review

These three terms, covered briefly in Chapter 1, are worth spending a few minutes
reviewing. Understanding these terms is key to building a solid foundation and becom-
ing an efficient Cocos2D game developer.

= |Image Files
Your characters start out as images on the flash storage of the iPhone/iPad.
The format of files is typically PNG or JPEG. Once the images are loaded into
memory, they are stored in an uncompressed texture format. PNG is the pre-
ferred format for images on the iOS devices.

= Texture
The image file of your character has to be decompressed and possibly converted
into a format that the iPhone and iPad GPU can understand and loaded into
RAM before it can be used. The loaded image in RAM is referred to as a texture.
The GPU can natively handle a few compressed formats such as PVRTC; oth-
ers have to be stored as uncompressed image data. This is what OpenGL ES
draws on the screen. The decompression of your images is why a PNG image
may be small in flash storage but in memory takes up much more as it is stored
uncompressed.

43

44

Chapter 2 Hello, Space Viking

= Texture Atlas or Sprite Sheet
In order to save on memory and reduce the amount of wasted empty space in
your textures, you want to combine them into one larger texture, called a texture
atlas. The texture atlas is simply a large texture, containing your images, from
which smaller textures for each of your images can be cut or extracted from.
Imagine a large sheet of paper with photographs glued to it. You can cut out
each of the photographs from the single larger sheet. If you want to hand some-
one all the photos at once, you just hand over the sheet. One of the keys to get-
ting more graphical performance is handing OpenGL ES as few textures as you
can in one pass by having a lot of textures combined into the texture atlas. The
key is in batching the draw calls and reducing the number of textures OpenGL
ES binds to, both accomplished by using a texture atlas in Cocos2D via the
CCSprit eBat chNode.

Texture atlases can seem a hard concept to grasp at first. To better understand why
they are used, continue to the next section, which further explains atlases and walks
you through creating the atlas used in Space Viking.

Texture Atlases

Life is filled with constraints, and game development is no different. In fact, game
development is always pushing to get the most performance out of the limited hard-
ware at hand. A common issue that developers face is slow performance after they get
a large number of sprites on the screen. You create your game in much the same way
you did in this chapter, where all of the graphic elements are individual CCSprites.
Everything is going fine, until you start to have 15 or 20 elements onscreen and you
notice your frame rate plummeting. The more elements you add, the quicker it drops.
Even if you take out game logic, and just move the CCSprites on the screen, your
game keeps slowing down as you add CCSprit es. There can be many reasons for the
performance problems; one of the most common is too many texture context switches
caused by using individual CCSpri t es instead of a CCSpri t eBat chNode. In a nutshell,
you are doing too many OpenGL ES calls, and having all the images as separate tex-
tures is more work and memory than the GPU can handle in the time allotted for a
single frame. One of the easiest solutions to implement is the use of texture atlases.

If you look inside the code for a CCSprit e, you will notice that a —(voi d) dr aw
method gets called on every frame. Inside that draw method are the actual OpenGL ES
calls to draw the sprite on the screen. For each sprite, OpenGL ES has to bind to the
texture for that CCSprit e and then draw (also called rendering) the sprite onscreen.

There is one more layer that occurs before the pixels show up on the screen: an
OpenGL ES driver provided by the iOS that converts the OpenGL ES calls into the
actual hardware assembly code to perform the actions on the GPU. You don’t have
to know the driver details, only that each OpenGL ES call has the cost of a few CPU
cycles for the OpenGL ES driver. Your game will run faster if you do all of your ren-
dering work with the least number of OpenGL ES calls.

Texture Atlases

Here is a way to visualize all of this. Think of yourself in the role of OpenGL ES,
and the game needs you to draw a scene of a typical beach. This scene has the sand,
the water, and some beach umbrellas. If the game is just using CCSpr i t es, then it
has to first give you the image for the sand and ask you to draw it, then give you the
image of the ocean and ask you to draw it. It would continue like this until all of the
images are drawn/rendered onscreen. This quickly becomes very tedious, and you
might begin to wonder why the game cannot give you all of the image files at once.
It turns out you can send all of the textures to OpenGL ES at once, and the way to do
that is with CCSprit eBat chNode and texture atlases.

The CCSpriteBat chNode is a special class in Cocos2D that can act as the parent
to a host of CCSprit es. It sits between the CCLayer and the CCSprit es. Just as the
name states, if you use CCSprit eBat chNode, all of the draw calls for the CCSprites
are batched and done at once. The large performance savings is not from just batching
the calls together but from combining all of the little textures into one large texture
that OpenGL ES has to bind just once.

The last point bears repeating. All of the OpenGL ES bind calls get reduced to one
call. If you have 100 CCSprit es under a CCSprit eBat chNode, you have only one
OpenGL ES bind call instead of 100.

The large texture is called a texture atlas or sprite sheet, and it is simply a texture
big enough to fit all the smaller textures you need inside of it. If you think about the
beach scene example, this would be a large piece of paper from which you could cut
out the sand texture, the ocean texture, and all of the beach umbrella textures.

Technical Details of Textures and Texture Atlases

Memory is a precious resource on the iPhone and iPad. The less memory used, the
better your game performs. The iPhone and iPad utilize a shared memory system,
which means that the GPU does not have its own memory; rather, it uses up some of
the main system memory for storing textures and geometry. The memory limitations
are especially apparent on the older iPhone, iPod touch, and iPhone 3G devices that
were limited to 128MB of memory. Aggravating the memory constraints is the pad-
ding of images to texture with power-of-two sizes in their length and width.

The GPU inside older versions of the iPhone and iPod can store textures internally
only in power-of-two sizes. While the iPhone 3GS, iPhone 4, and iPad can use non—
power-of-two textures, doing so comes with a large performance penalty. Cocos2D is
set up by default to pad all textures to power-of-two sizes for maximum compatibility,
although you can change this in the ccConfig.h file.

To understand what the power-of-two size and texture padding means, here is
a quick hands-on example. Take a piece of paper, or any drawing tool, and draw a
square. Label the height and width as 256, to represent a 256 X 256 pixel texture.
Now draw another square, this time 129 X 129 pixels in size, just slightly over half
the height and half the width. The smaller square will represent your 129 X 129 pixel
image stored as a 256 X 256 texture. Look at your drawing: about three-quarters of
the texture space is wasted! Figure 2.8 illustrates this point, showing a 129 X 129 pixel

45

46

Chapter 2 Hello, Space Viking

sprite inside of a 256 X 256 texture. Regardless of the bit depth of your images, only
about one-quarter of the memory this image is using is actually utilized to display
anything—the rest is wasted. By utilizing tightly packed texture atlases you can avoid
this wasted space.

Every byte of texture memory has to be copied from one location in memory that
the CPU addresses to the area used by the GPU. Using extra texture memory has a
lot of negative effects, and as you can imagine, the effects get worse and worse as you

Figure 2.8 Example of wasted memory: a 129 x 129 pixel image
padded out to 256 x 256

increase the number nonbatched CCSprit es on the screen. Table 2.1 shows the tex-
ture sizes supported by the current Apple mobile hardware.

Table 2.1 The Power-of-Two Sizes Support on the Older Generation

Maximum Maximum
Device Texture Width Texture Height
iPhone, iPhone 3G, iPod touch (first and 1024 pixels 1024 pixels
second generation)
iPhone 3GS, iPhone 4, iPad, iPod touch 2048 pixels 2048 pixels

(third generation and later)

Texture Atlases

The combined wasted memory from using individual textures as well as the indi-
vidual OpenGL ES bind texture calls can really work against you and slow down your
game. Figure 2.9 illustrates how individual Viking and Radar Dish textures are stored
in comparison with a texture atlas combining all of the textures needed for this scene
in Space Viking.

Figure 2.9 Example of wasted memory with individual images versus a
texture atlas

There is one more key advantage of using a texture atlas. Often, a significant part
of your images contains transparent space, and this space contains no pixel color data
but takes up memory just the same. Most texture atlas software, such as Zwoptex
and TexturePacker, can overlap the transparent space between two or more images.
Zwoptex and TexturePacker keep track of your original image size, including the
transparent space, and Cocos2D can automatically adjust your sprites to make up for
the trimmed transparent space.

If all of this does not make complete sense yet, do not worry—it will soon. Keep in
mind these reasons why you want to use a texture atlas:

a7

48 Chapter 2 Hello, Space Viking

Top Reasons to Use a Texture Atlas/Sprite Sheet

1. Reduced OpenGL ES bind calls—the more images contained in the texture
atlas, the greater the reduction.

2. Reduced memory footprint for the images stored as textures in memory.

3. Easy method to trim and save on transparent space in your images, allowing for
more images/texture in the same space.

4. Zwoptex and TexturePacker are fully supported by Cocos2D, so creating and
using texture atlases is painless.

Note

For the texture atlas to be efficient, you will want it to contain as many images as pos-
sible. The scenel texture atlas in this chapter has quite a bit of empty space that we will
fill in with weapons in Chapter 5, “More Actions, Effects, and Cocos2D Scheduler.” Always
try to have the smallest texture atlas possible, with the least empty space, in your games.

In your games, you may have one or more texture atlases depending on what
objects you need for each scene or level. In Space Viking you will have one texture atlas
for this scene and another for the underground mining scene that you will discover in
Chapter 10, “Basic Game Physics: Adding Realism with Box2D.” The next step is to
actually create the texture atlas for the first scene in Space Viking, and then you will be
ready to dive back into the code in Chapter 4, “Simple Collision Detection and the
First Enemy.”

Creating the Scene 1 Texture Atlas

Texture atlases provide significant improvement in game performance with minimal
effort on your part. In the first scene of Space Viking, you will have one texture atlas
containing the Viking, all the enemy characters, and power-ups. There are two great
tools available for quickly creating texture atlases: TexturePacker and Zwoptex. This
book covers how to use TexturePacker or Zwoptex to create the texture atlas for Space
Viking.

Zwoptex can be found at http://zwoptexapp.com.

TexturePacker can be found at http://texturepacker.com.

The next step is to create the scene 1 texture atlas that will be used in Chapter 3,
“Introduction to Cocos2D Animations and Actions,” and beyond.

Texture Packer Instructions
1. Start the Texture Packer Application.

2. For each of the following subfolders in Resources\Images for Texture Atlases for this
chapter, select Add Folder in the top toolbar and choose the folder:

Detrius
EnemyRobot
ImpactEffects

http://zwoptexapp.com
http://texturepacker.com

Texture Atlases

PowerUps

Radar

SpaceCargoShip

Teleport Effects

Viking

Be sure to use the Add Images button and not the Add Folders button, so that
TexturePacker does not include the path as the key to the image coordinates.

In the toolbar to the left, make sure that the Data Format is set to cocos2d.

4. Click Publish, and when prompted for a name, enter scenelatlas. It will save two

files (scenelatlas.png and scenelatlas.plist) to the folder you choose, so note where
you save it for use later (see Figure 2.10).

Figure 2.10 Creating the scenelatlas texture atlas in TexturePacker

Zwoptex Instructions

1.
2.

Start the Zwoptex Application.
Select File > New.

3. Click the Import+ button and select the images from the following folders

inside the Resources\Images for Texture Atlases folder for this chapter:

49

50 Chapter 2 Hello, Space Viking

N A

10.
11.

Detrius

EnemyRobot

ImpactEffects

PowerUps

Radar

SpaceCargoShip

Teleport Effects

Viking

Change the Canvas dimensions to have a width of 2048 pixels and height of
2048 pixels.

Select Max Rect as the algorithm on the left panel.

Set the padding to 1 pixel, by entering 1px on the padding text box.
Click the Apply button so that Zwoptex lays out your images.

Select File > Save and name this Texture Atlas scenelatlas.

Click Publish on the menu, and then click Publish Settings.

Make sure the Coordinates Format is set to cocos2d, and click Save.

Click Publish on the menu again, and then press the Publish button on the pop-
down notification. This will create two files, scenelatlas.png and scenelatlas.plist, in
the same folder where you saved the texture atlas in step 8 (see Figure 2.11).

Figure 2.11 Creating the scenelatlas texture atlas in Zwoptex

That was simple right? With a few clicks, you combined all of the images needed

for this level of Space Viking in one texture atlas and exported the atlas and coordinates
file that will be used by Cocos2D.

Texture Atlases

You will need two more texture atlases for when Space Viking is running on the
iPhone and on the iPhone 4’s retina display. You can create them following the same
steps, except they should be named scenelatlasiPhone and scenelatlasiPhone-hd (png and
plist files). You can find all of the completed texture atlases in the resources folder for
this chapter.

If you are wondering how Cocos2D knows to extract your individual images from
the texture atlas, the coordinates plist file is what provides the key. If you open the
scenelatlas.plist file in Xcode, you will see that it contains the coordinates for each
image you imported as well as each image’s original size before it was trimmed.

Your texture atlas should look similar to the one in Figure 2.10 or 2.11. The order
of the sprites is not important; you just need to ensure that they are all present in the
texture atlas.

Adding the Scene 1 Texture Atlas to Space Viking

1. In Xcode, open the SpacelViking project.
2. Select the Images folder.

3. Right-click and select Add Files.

4

. Browse to the directory where you saved the scenelatlas, select the scenelatlas.png
and scenelatlas.plist files, and click Add.

5. Ensure that the Copy items to destination group’s folder is selected and
click Add.

You should see the scenelatlas.png and scenelatlas.plist files under your Images
folder.

6. Follow the same steps to add the scenelatlasiPhone (png and plist) and scenelatlas-
iPhone-hd (png and plist) texture atlases. These two texture atlases provide the
graphics for Space Viking on the iPhone and iPhone 4.

In Chapter 4, you will use this texture atlas to provide the graphics for all of the
characters in Space Viking. Since you only have Ole onscreen at the moment, the tex-
ture atlas does not buy you much performance. Don’t worry: you will soon add ene-
mies and even a space cargo ship to your Space Viking game.

Warning

Make sure you have the scenelatlas.png, scenelatlas.plist, scenelatlasiPhone.png, scene-
latlasiPhone.plist, scenelatlasiPhone-hd.png, and scenelatlasiPhone-hd.plist files in Xcode;
otherwise, you will not be able to get the SpaceViking project running when you reach the
end of the next chapter.

51

52

Chapter 2 Hello, Space Viking

For the More Curious: Testing Out
CCSpriteBatchNode

While Chapter 4 goes into detail on how to set up and use CCSprit eBat chNode,
you might be interested in getting it working now. It is very simple, and you can do it
with just five lines of code.

In the i nit method of GameplayLayer.m:

1. Comment out the lines marked // 3 and // 5, which previously created the
Viking CCSprit e and added it to the Ganmepl ayLayer.

2. Add the lines shown in Listing 2.13.

Listing 2.13 Using CCSpriteBatchNode in init method of GameplayLayer.m

//vikingSprite = [CCSprite spriteWthFile: @sv_anim11.png"]; // 3

CCSpri t eBat chNode *chapt er 2Sprit eBat chNode;
if (U _USER | NTERFACE | DIOM) == Ul Userlnterfacel di onPad) {
[[CCSpriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @scenelatlas.plist"]; /Il 3.1
chapt er 2Spri t eBat chNode =
[CCSpri t eBat chNode
bat chNodeW t hFi | e: @ scenelat!| as. png"]; /Il 3.2
} else {
[[CCSpriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFil e: @scenelat!| asi Phone.plist"];// 3.1
chapt er 2Spri t eBat chNode =
[CCSpri t eBat chNode

bat chNodeW t hFi | e: @ scenelat| asi Phone. png"]; /Il 3.2
}
vi kingSprite =
[CCSprite spriteWthSpriteFrameNane: @sv_anim 1.png"]; /1 3.3
[chapt er 2Spri t eBat chNode addChi | d: vi ki ngSprite]; /1 3.4
[sel f addChil d: chapt er2SpriteBat chNode] ; /'l 3.5

[vikingSprite setPosition:
CGPoi nt Make(screenSi ze. wi dt h/ 2,
screenSi ze. hei ght *0. 17f)]; Il 4
//[sel f addChild: vikingSprite]; /15

Fixing Slow Performance on iPhone 3G and Older Devices

The new lines you added (3.1 through 3.5) work as follows:

3.1 Loads the CCSpriteFrames into the Cocos2D cache. The frames are the
dimensions and location of all of the images inside of the texture atlas. This plist
is what allows Cocos2D to extract the images from the texture atlas PNG and
render them onscreen. The frames also allow Cocos2D to recreate the trimmed
transparent space that Zwoptex or TexturePacker removed in creating the
texture atlas. Once more, you see the check for U _USER_I NTERFACE_| D OM),
which determines if Space Viking is running on the iPad or the iPhone. If
Cocos2D detects a Retina display on the iPhone, it will automatically load the
-hd versions of the png and plist files (scenelatlasiPhone-hd.png).

3.2 Creates the CCSprit eBat chNode and loads it with the large texture atlas image.

These two steps are all that are needed to create and set up a CCSprit eBat ch-
Node. Next you need only add CCSprites to the CCSpriteBat chNode and
add the CCSprit eBat chNode to the layer, and Cocos2D takes care of the rest.

3.3 Creates the vi ki ngSprite with only the name of the frame that Cocos2D
should use to extract the image from the texture atlas.

3.4 Adds the vi ki ngSprite to the CCSpriteBat chNode so that the vi ki ng-
Sprite will be rendered by the CCSprit eBat chNode and not by itself.

3.5 Adds the CCSprit eBat chNode to the layer so that all of the children (CCSpri t es)
of the CCSprit eBat chNode can be rendered onscreen in one pass.

The steps required to use a texture atlas in Cocos2D are loading the sprite frames
into the cache and creating a CCSpr i t eBat chNode with the texture atlas image.
From then on, the CCSprit eBat chNode will render any sprite you create from the
texture atlas and add to the CCSpr i t eBat chNode in one pass. In this chapter, you
only have the lonely Ole the Viking, so there is no performance advantage to using a
texture atlas. In later chapters with enemies, weapons, and more, the texture atlas and
CCSpri t eBat chNode both are key to maintaining good game performance.

Warning

Remember to comment out the original line adding the vi ki ngSpri t e directly to the
layer, as shown in Listing 2.13. A CCSpr i t e can only be a child to either the CCLayer
or the CCSpr i t eBat chNode, and not both. If you leave the line in there, you will get a
runtime crash with an assert warning you of the problem.

Fixing Slow Performance on iPhone 3G and
Older Devices

As a default Cocos2D uses the Root Vi ewControl [er (U Vi ewController) to
determine the orientation of the device and properly rotate both the Cocos2D
(OpenGL ES) and any UIKit elements you may have onscreen. If you leave it at the

53

54

Chapter 2 Hello, Space Viking

default setting, then Cocos2D will render as if it is in the portrait orientation and leave
it up the U Vi ewControl | er to rotate the rendered content. While not a problem on
newer devices, on the iPhone 3G and older devices, it causes quite a bit of overhead,
capping your maximum frames per second at 40 instead of the full 60fps. You can eas-
ily change this setting so that Cocos2D Director handles the rotation, and have your
game running at 60fps even on the original iPhone. The only caveat is that if you do
overlay UIKit elements, such as a Ul Butt on on top of Cocos2D, you will have to
manually rotate them.

Space Viking does not use any UIKit elements: everything including the menus uses
Cocos2D.

To change the screen rotation control from the Ul Vi ewCont rol | er to the
Cocos2D Director, make the change shown in Listing 2.14 in your GameConfig.h file,
located in the Classes folder.

Listing 2.14 Changes to GameConfig.h file

// For iPhone 3GS and newer, comment out for Space Viking
/I #defi ne GAME_AUTOROTATI ON kGaneAut or ot ati onUl Vi ewControl | er

/1 For iPhone 3G and ol der (runs better)
#define GAME_AUTOROTATION kGameAutorotationCCDirector

Summary

If you have followed all of the steps in this chapter, you now have a very basic version
of Space Viking running on your iPad. You have implemented a joystick and buttons
and connected the game logic to move Ole the Viking around the screen. You have
also learned about texture atlases and created the texture atlas that will be used in the
first level of Space Viking.

In the next chapter, you will add animations to Ole the Viking so that his walking
and jumping are more fluid. You will also learn how to add other characters to Space
Viking and wire up Ole’s attack button so he can fight off the alien hordes.

Challenges

1. Modify the scal edVel ocity calculation in appl yJoysti ck to have a factor
of 10. Of instead of 1024. 0f . What happens when you try to move Ole around
with the joystick? What about with a factor of 10000. Of ?

2. Change the newPosi ti on calculation in appl yJoysti ck to not include
the del t aTi me. What happens when you try to move Ole around using the
joystick?

Challenges

Hint
You need to remove del t aTi me from this line:
CGPoi nt newPosition =

ccp(tenpNode. position.x + scaledVelocity.x * deltaTine,
tenpNode. position.y + scaledVelocity.y * deltaTime); // 2

3. Add left and right limits for Ole the Viking so he does not move offscreen even if

the player moves the joystick left or right continuously. (Hint: vi ki ngSprite’s
X coordinate is the variable you have to limit.)

Bonus

Modify the appl yJoysti ck method in Ganmepl ayLayer so the joystick only changes
Ole’s x coordinates, leaving the y coordinate intact.

55

This page intentionally left blank

3

Introduction to Cocos2D
Animations and Actions

In Chapter 2, “Hello, Space Viking,” you learned the basics of Cocos2D and created a scene
with two layers: background and gameplay. You got a Viking sprite moving around on the screen,
and hopefully, you whet your appetite for continuing on to the full-featured game. In this chapter
you will learn about actions and animations and in the process start to build a flexible framework
for Space Viking. As you read this chapter, keep in mind that you can reuse this framework to
create your own games in the future.

A quick word of warning: this chapter and the next one are very code heavy, but do not be
alarmed—uwe go through it step by step and explain everything along the way. Game develop-
ment covers the gamut of the computer science (CompSci) discipline, and you are going to learn
various facets of CompSci in the writing of Space Viking. Do not hesitate to refer back to this
chapter to make sure all the concepts are firmly entrenched in your mind.

Ready? Let’s begin!

Animations in Cocos2D

Adding animations into your game is easy with Cocos2D. You already learned how to
create and add sprites to your layers and to get those sprites rendered onscreen. Anima-
tions in Cocos2D are just like old flipbook-style paper animations: all animations are
just individual image frames being switched multiple times per second. Technically,
this means your sprites have their display frames changed to different textures with a
set delay between the time each texture is displayed.

There are two steps to animate your sprites:

= Create a CCAni mat i on to specify the set of images/textures in your animation,
called frames.

= Create a CCAni mat e action, and “run” it on a sprite. A CCAni mat e action spec-
ifies the CCANni mat i on to use and the delay to use between its frames.

58 Chapter 3 Introduction to Cocos2D Animations and Actions

To recap, you first create a CCAni mat i on to store the frames or images in your
animation. You then create a CCAni mat e action to run the animation.

The easiest way to understand how this works is to try out two quick examples.
Don’t worry, the first example is short, just a few lines of code.

1. Open the SpaceViking project in Xcode.

2. Drag the anl_anim_1, 2, 3, and 4 png files from the Resources/Eneny Robot
Animation folder for this chapter into your Spacel/iking project.

The anl_anim_1.png through anl_anim_4.png are used in this animation example.
After this chapter, you can remove them, as you will learn to drive the anima-
tions from the texture atlas you created in Chapter 2.

Open the Ganepl ayLayer. mclass and navigate to the i nit method.

4. Add the lines shown in Listing 3.1 to the i ni t method above the line [sel f
i nitJoystickAndButtons]; .

Listing 3.1 Adding an animation to Space Viking

/1 Animation exanple with a Sprite (not a CCSpriteBatchNode)
CCSprite *ani mati ngRobot = [CCSprite

spriteWthFile: @anl_aninl.png"]; // 1

[ani mat i ngRobot set Posi tion: ccp([vikingSprite position].x + 50.0f,
[vikingSprite position].y)]; /1 2
[sel f addChil d: ani mat i ngRobot] ; /Il 3
CCAni mati on *robot Anim = [CCAni mati on ani mation]; Il 4
[robot Ani m addFr aneW t hFi | enanme: @ anl_ani n2. png"]; /Il 5

[robot Ani m addFraneW t hFi | enanme: @ anl_ani n8. png"];
[robot Ani m addFraneW t hFi | enane: @ anl_ani n4. png"];

i d robot Ani mati onAction =
[CCAni nat e acti onW t hDurati on: 0. 5f
ani mati on: robot Ani m

restoreOrigi nal Frane: YES] ; Il 6

id repeat Robot Ani mation =
[CCRepeat Forever actionWthAction: robot Ani mati onAction]; 17
[ani nat i ngRobot runActi on: r epeat Robot Ani mati on] ; /1 8

In Listing 3.1 you are adding an animating enemy robot to the right of Ole. Here is
what is going on in the code step by step:
1. Creates and initializes a CCSpri t e of the animating robot, with the image
anl_anim1.png.
2. Sets the position of the robot to 50 points to the right of Ole. If you wanted the
exact pixel position of the Viking, you would use the call to positionl nPi xel s
instead of position.

8.

Animations in Cocos2D

Adds the ani mat i ngRobot to the Ganmepl ayLayer. Up to this point the steps
in creating and adding a CCSprite to a CCLayer should be familiar, as you
learned it in the previous chapter.

Creates and initializes a new CCAni mat i on named r obot Ani m In this line the
robot Ani mis created but empty.

Adds the animation frames to the r obot Ani manimation. Three frames are
added by passing in the filenames for each.

. Creates the r obot Ani mati onActi on that is responsible for running the anima-

tion. The delay between frames is set to half a second (0. 5f), the animation to
use 1is set to r obot Ani m and the flag is set to restore the original frame. The
restore original frame flag informs the CCAni mat e action to do a bit of work

at the end of the animation and reset the CCSprit e to the display frame it was
showing before the animation started. In other words, when the animation ends,
the CCSprit e reverts back to its original image.

Creates an action to repeat the animation forever. In Chapter 4, “Simple Colli-

sion Detection and the First Enemy,” you will learn how to use actions to drive

behavior in Space Viking. For now, just know that the CCRepeat For ever action
keeps repeating the robot animation.

Informs the ani mat i ngRobot CCSprite to run the animation in an endless loop.

Click Run in Xcode and watch the robot walk in place next to the Viking. Figure 3.1
shows the robot on the iPad Simulator.

Figure 3.1 Animating robot next to Ole

59

60

Chapter 3 Introduction to Cocos2D Animations and Actions

As you can see, creating animations in Cocos2D is easy. The code in Listing 3.1
works with regular CCSpri t es, but if your CCSprit es are being rendered by a
CCSprit eBat chNode, the code requires a couple of modifications. The CCSprit e-
Franes you use for your animation must get their textures from the texture atlas
used by the CCSprit eBat chNode. The best way to understand this is to see it in
action. Copy the contents of Listing 3.2 directly below the code you created earlier
in Listing 3.1.

Listing 3.2 Animations using a CCSprite rendered by CCSpriteBatchNode

/1 Animation exanple with a CCSpriteBatchNode
CCAni mati on *exanpl eAni m = [CCAni nation ani nation];
[exanpl eAni m addFr ane:
[[CCSpriteFrameCache sharedSpriteFranmeCache]
spriteFrameByNanme: @sv_anim 2. png"]];

[exanpl eAni m addFr ane:
[[CCSpriteFrameCache sharedSpriteFranmeCache]
spriteFrameByName: @sv_anim 3. png"]];

[exanpl eAni m addFr ane:
[[CCSpriteFrameCache sharedSpriteFranmeCache]
spriteFrameByNanme: @sv_ani m4.png"]];

id ani mat eAction =
[CCAni mat e acti onWt hDurati on: 0. 5f
ani mati on: exanpl eAni m
restoreOrigi nal Frane: NJ ;
id repeatAction =
[CCRepeat Forever actionWthAction: ani mat eAction];

[vikingSprite runAction:repeatAction];

Recall from Chapter 2 that you used TexturePacker or Zwoptex to create a big
sprite sheet image with all of the images for Space Viking, and a property list contain-
ing the coordinates for each image in the sprite sheet. You then added code to use
the addSpriteFramesWt hFi | e method to load the property list, which makes
Cocos2D cache the coordinates for each individual image so you can look them up
later. Looking them up is simple—you just use the sprit eFrameByNanme method,
which returns a CCSpri t eFr ane object containing the location information.

To set up a CCAni mat i on, you need to specify each CCSprit eFrane in the ani-
mation. So in Listing 3.2, the only difference is that addFr ame is used instead of
addFrameWt hFi | ename. This way, you can specify the CCSprit eFr ames that are
already in the cache from the sprite sheet’s property list.

Animations in Cocos2D

Once the CCAni mat i on object is populated, the rest of the code is the same, set-
ting up an action to play the animation and assigning it to the vi ki ngSprite.

The important takeaway here is that when you are creating animations for sprites
using a texture atlas, the animation frames must come from the same texture atlas. If
you want to animate a sprite, make sure you put all of the frames of the animation in
the same sprite sheet—otherwise it will not work.

Note on EnemyRobot Size

If you ran Listing 3.1 on a device other than the iPad, you may have noticed the
EnenmyRobot 's size was larger then the Viking. The first code you typed in for this
chapter uses just plain CCSpr it es, which are sized for the iPad, without checking for

U _USER | NTERFACE_I DI OM)) to determine if you are running on an iPhone or iPad.
All subsequent code you will write for Space Viking uses the texture atlases you created in
Chapter 2 and will select the correct texture atlas depending on what iOS device you are
running the game on (iPhone, iPhone 4, or iPad).

In Space Viking the frame rate is set to 60 frames per second (fps). By changing the
delay between frames, you can control how long each frame is onscreen. If you need
to keep a set of frames onscreen longer than others, you can add them multiple times
to the CCAni mat i on object. Remember, Cocos2D caches the textures used by each
frame; repeating a frame does not consume much additional memory.

Warning
The code in Listing 3.2 assumes you completed all of the steps in the previous chapter

in setting up the CCSpr it eBat chNode. If you encounter any issues, remember to refer
back to the sample code included with this chapter.

Don’t worry if you don’t completely understand all of this yet: you will have a
chance to see how it all ties together in the code listings in this chapter. Just remember
that in order to play an animation, you must use a CCAni mat e action, and you can
always refer back to this code for a working example.

There are many characters in Space Viking, each with several animations. Typing
out each frame for every animation would quickly become tedious and bloat your code
with line after line of just addFr ame calls. Each CCAni mat i on and CCAni mat e action
has two components: a delay between frames and a list of sprite frames to progress
through. This kind of animation data is best stored in property list (plist) files separate
from your code. This chapter covers the plist files and code you need to set up for the
character animations in Space Viking.

At this point you have made quite a bit of progress. You have the beginnings of a
Cocos2D game and already have animating characters onscreen with joystick control.
The animations in Space Viking will be used to bring characters to life with walking,
jumping, crouching, and attacking moves. The rest of this chapter builds on what you
learned to set the foundations for Space Viking, including a large portion of code you
can reuse in your own games.

61

62 Chapter 3 Introduction to Cocos2D Animations and Actions

Note

Before moving on, be sure to comment out the lines of code you added from Listings 3.1
and 3.2: they are examples only and are not used in the rest of the book.

For the More Curious: CCAnimationCache

Cocos2D comes bundled with a CCAni mat i onCache singleton that can cache all of
your animations. Instead of storing the animations as instance variables, you can store
them in the CCAni mat i onCache and retrieve them as needed. This is really useful
if you have a lot of CCSpri t es in your game all using the same animations. A good
example is a shooting game with similar enemies, such as the classic Space Invaders
or R-Type.
There are two items you should be aware of when using the CCAni mat i onCache:
1. When retrieving the animation, you should check that it is not ni | . The

CCANni mat i onCache can purge animations if asked via the pur geShar ed-

Ani mat i onCache call.

If the animation you ask is no longer cached, it will return ni | .

2. Any animations you wish to keep around should be retained so that if they are
purged from the cache, they will still be available to your objects.

Using CCAni mat i onCache is really easy. You create the animation as you did in the
listings in this chapter and then add them to the CCAni mat i onCache as follows:
[[CCAni mati onCache shar edAni mati onCache]
addAni mat i on: ani mati onToCache
nanme: @ Ani mat i onNane"] ;

The CCAni mat i on called ani mat i onToCache is now stored in the CCAni mat i on-

Cache singleton. When you want to use the cached animation, you can retrieve it by

using:

CCAni mation *myAni mati on = [[CCAni mati onCache shar edAni mati onCache]
ani mat i onByNane: @ Ani mat i onNane"] ;

In SpaceViking the choice was made to store the animations as instance variables
because it was deemed easier to understand and use. In your games do not hesitate
to use the CCAni mat i onCache, especially in cases where you have several objects
using the same animations.

Space Viking Design Basics

In Chapter 2 you had a very simple game with a Viking character and joystick controls
to move him around. You could continue building a game this way, but the Ganepl ay
layer would grow very large and quickly become unmanageable. The goal of this book
is to provide you with the knowledge and skills needed for game development with

Space Viking Design Basics

Cocos2D and also to provide a sample game with code you can reuse in your own
games.

Each game object in Space Viking has some logic behind it, not just the graphical
sprite/image component. Enemies have to have a primitive artificial intelligence (Al)
and be able to patrol the scene, attack Ole the Viking, and react to attacks. In addi-
tion to enemies, there are power-ups for better weapons and health and other objects.
Instead of having all of the logic in one massive file, each object in the game has its
own class to contain the portions of code needed. Game logic used by more than one
object is included once in the classes those objects inherit from, such as GameObj ect
or GameChar act er.

Thinking in Terms of Objects

From this chapter on, you will implement the logic for Space Viking by separating the
functionality of each character or game element into distinct objects. Each object is
implemented in Objective-C by a class, including a header and an implementation file.

One way of thinking about how classes or object-oriented programming works is to
model everyday objects and see how their object/class structure works. Take the
example of modeling a dog such as the golden retriever.

In designing objects, you always want to go from abstract to specific. In the case of
the golden retriever, you might start with a Mammal object.

The Manmmal object would contain all of the basics for all animals, like the nervous
system component, a skeletal system component, and a muscular system component.
From the Mammal object, you could have a Cani ne object, which would be a more
specific type of manmmal . The Cani ne object would have four legs, ability to bark,
and all of the traits that exist across all dogs. Finally, you would have a Gol den-

Ret ri ever object, which would be a more specific type of Cani ne object containing
Col denRet ri ever -specific features.

When converting the objects into classes, the Mammal object would be a class, the
Cani ne object a subclass of Mammal , and Gol denRet ri ever a subclass of
Cani ne. Each component of the objects can be either an instance variable (i var) or
an object itself if it has complex functionality. Hair color could be stored as an i var,
but the skeletal system component would be made up of several objects in order to
model the complex functionality of the bones and joints.

When designing the objects and classes for your games, remember to think from
abstract to specific, with the more abstract classes at the top of your hierarchy. The
methods that are common to your objects and classes should be moved up into their
parent objects or further up the hierarchy. If you have a method that is needed in two
classes, ask yourself if you would not be better off having that method in the parent
object. If you need a refresher on object-oriented programming, take a look at the clas-
sic Object-Oriented Programming, by Peter Coad and Jill Nicola (Prentice-Hall, 1993).

63

64

Chapter 3 Introduction to Cocos2D Animations and Actions

In Space Viking each game object has its own class, which encapsulates the Al
needed by that object. The objects share common methods that they can use to query
each other as to their state, present location, and other attributes. To understand how
all of these objects fit together, it is best to start with the topmost object in the hierar-
chy, the GaneQbj ect :

Gane(bj ect

The GameQbj ect class inherits from CCSprit e and contains methods com-
mon to all GaneQbj ect s, including a method to update the object on every
frame and another to change its state. Since GameQbj ect itself inherits from
CCSpri t e, it already knows how to render textures onscreen. Remember that
CCSprites can render themselves or be rendered by a CCSpri t eBat chNode.
All of the objects in Space Viking inherit directly or indirectly from the
GanmeObj ect class.

GaneChar act er

The GanmeChar act er class inherits from GanmeObj ect and is the foundation
of the “characters” in the game. It contains some additional methods and func-
tionality needed by the characters in Space Viking. The Vi ki ng, EnemyRobot ,
Radar Di sh, and Phaser Bul | et all inherit from GaneChar act er.

Vi ki ng

The Vi ki ng class inherits from GameChar act er and contains the logic and
code needed to move Ole the Viking around according to your joystick input
and to launch attacks and react to attacks from the other enemies in the game.

Radar Di sh

The Radar Di sh is a nonmoving enemy that serves as Ole’s introduction to the
alien world. It sits on the corner, scanning for our Vi ki ng until it detects him.
Think of the radar dish as an easy enemy that does not fight back. It is important
to understand how the Radar Di sh works because all of the other enemies in
Space Viking are more complex versions of it. The Radar Di sh class inherits from
the GameChar act er class.

SpaceCar goShi p

The alien world is actually a large mining planet. The aliens are always moving
cargo on and off the planet. When the alien ship passes near the ground, some
objects always tend to fall off. Maybe some of these objects will be useful to Ole
the Viking? The SpaceCar goShi p inherits from the GameQbj ect class.

Mal | et

Long ago, Ole was separated from his beloved mallet when he fell into the icy
river. If he ever finds it again, he will be armed with a mighty weapon to fend
off the aliens. The Mal | et class inherits from GanmeQbj ect class and is one of
the power-ups in the first scene in Space Viking.

Space Viking Design Basics

= Health

The Heal t h class represents the health power-ups in Space Viking. Even though
Ole is a mighty Viking, he does get hungry after fighting, and the health power-
ups restore Ole’s health. The Heal t h class inherits from the GameQbj ect class.

Note

You will create these classes for Space Viking in this chapter. In Chapter 4, you will add
the enemy robot and phaser beams that the robot fires at Ole. The actions and animation
system in Cocos2D is used extensively by the Game(Cbj ect s in Space Viking, and it is
covered in detail in the next section.

Figure 3.2 shows the inheritance and makeup of the Vi ki ng and Radar Di sh
classes and how they are added to the scene 1 CCSprit eBat chNode, which in turn
is added to the Gamepl ayLayer. Recall that in Cocos2D, the CCScenes contain
CCLayer s, the CCLayer s contain objects, in our case the CCSpr it eBat chNode,
which then contains the Vi ki ng and Radar Di sh classes.

Figure 3.2 Class hierarchy of the Viking and RadarDish classes

A Word on Artificial Intelligence

Depending on the type of game you are creating, the demands of the in-game Al will
vastly differ. If you were making a racing game, the enemy cars only have to make
their way around the track and avoid each other, while a real-time strategy game would
require a more complex Al. In many games the Al is represented as state machines,
with distinct operations at each state. In Space Viking the enemy Al is a very simplis-
tic state machine, going between walking, attacking, and taking damage states. The
complexity of the Al in your games is limited only by your imagination and how much
computing time you want to devote to it in your game.

65

66

Chapter 3 Introduction to Cocos2D Animations and Actions

Actions and Animation Basics in Cocos2D

Actions are a powerful mechanism in Cocos2D to control the movement, transi-
tion, and effects of your objects. All CCNode objects are able to run actions, and since
CCSpri t es inherit from CCNodes, all Cocos2D actions can be run on CCSprites.
The Vi ki ng and Radar Di sh objects inherit from GanmeChar act er, which in turns
inherits from GanmeQbj ect and CCSprit e, allowing your characters to have all of
the built-in logic to run actions. In Chapter 2 you moved Ole the Viking’s sprite by
changing the position variable of the sprite. Suppose you wanted to move Ole from
the left to the right of the screen 200 pixels in 2 seconds. The following move action
would accomplish this for you.

CCAction *noveAction = [CCMoveBy actionWthDuration: 2. Of
posi tion: ccp(200.0f,0.0f)];
[vikingSprite runAction: noveAction];

That’s all it takes to do the animation—just two lines of code! Figure 3.3 illustrates the
noveAct i on effect on the Viking sprite.

Figure 3.3 Effect of the CCMoveBy action on the Viking CCSprite

You don’t have to worry about how many pixels you should move on each update
call because Cocos2D automatically calculates and moves your sprite in the correct
increments. There are many actions in Cocos2D: move, jump, scale, and rotate are
just a few of the most frequently used ones. In Chapter 5, “More Actions, Effects, and
Cocos2D’s Scheduler,” you will learn more details about actions, including complex
callbacks into your code. For now you will use the following actions:

= CCAni mat e

Runs a particular animation with a set delay between each frame. This action is
what you use to play an animation.

= CCJunpBy
Simulates a parabolic jump automatically, given the height of the jump and the

horizontal distance to cover. This action is used to give Ole the Viking a realistic
jump arc.

Using Property List Files to Store Animation Data

= CCRepeat Forever

Repeats the action indefinitely. It has the effect of running an action on an infi-
nite loop until st opAction: or st opAl | Actions is called.

= CCSequence

Sequences two or more actions together so that after the first action completes,
the second action is run.

= CCSpawn

Fires off two or more actions simultaneously. CCSpawn is very useful for com-
bining actions, such as a jump animation with the CCJunpBy action.

In this chapter you will use actions to drive the animations, including Ole the
Viking’s jump and attack movements. The next section covers adding animations via
property lists.

Using Property List Files to Store Animation Data

Property list files (more commonly referred to as “plist files”) contain XML data used
to define a set of properties used by your app or game. In Space Viking you will also
use the plist files to store an NSDi cti onary of the settings you need to create and
load the CCAni mat i ons. Xcode has built-in support for creating and editing plist
files, making it very easy to use plists in your projects.

Of course, you could include all of the information from these plist files directly in
your code, but then every time you want to make an animation change, you would
have to change your code and recompile. Having the animation data in plist files keeps
your code smaller and allows you to have your artist help with the setup and tweak-
ing of the animation frames and delays. I have found that it is not good practice to
hard-code the animation data. Having it separate helps compartmentalize the code and
makes it easier on you when you visit the same code months later.

In Space Viking each object is in its own class, such as Vi ki ng and Radar Di sh.
Each object then points to its own plist file for information on how to set up its ani-
mations. For example, in the case of the Radar Di sh, the RadarDish.plist file contains
data for the t aki ngAHi t, bl owi ngUp, tilting, and transmtti ng animations.

NSDi ctionary objects are just what the class name suggests: a set of key-value
pairs. In Space Viking the plist files contain mini-dictionaries for each animation with
a filename prefix, a delay amount, and the listing of animation frames for a particular
animation. The quickest way to wrap your head around this is to create one, so let’s
get moving (excuse the pun).

Starting with the simplest enemy in Space Viking, the Radar Di sh, open Xcode:

1. Right- or Control-click on the SpaceViking project and select New Group.

2. Click on the new group and change the name to Plists. You will use this group
to organize all of the animation plist files used in Space Viking.

67

68 Chapter 3 Introduction to Cocos2D Animations and Actions

3. Selecting the Plists group, right- or Control-click and select New File.

4. Select the Resource section under iOS on the left, and then select Property

5.

List for the type of file and click Next.
Enter RadarDish.plist for the filename, and then click Finish.

Xcode creates and opens the RadarDish.plist file for you. The next step is to add the

items needed for a particular Radar Di sh animation. Figure 3.4 shows the RadarDish.

plist file you will create in this section.

Figure 3.4 RadarDish.plist file

The first animation is for the tilting movement that the Radar Di sh performs when

it is first created. This animation consists of a series of frames showing the dish tilting
down and then back up. With the RadarDish.plist file open in Xcode, do the following
(the numbers in the list correspond to the numbered callouts in Figure 3.4):

1.

Select the RadarDish.plist file and in the empty editor area, right-click, selecting
Add Row.

. For the Key column, enter tilti ngAni m then change the type to Di cti on-

ary. This step means you have created a subdictionary inside the main root
dictionary to store the data for the tilting animation. After you set the type to
Di ctionary, you'll notice a disclosure triangle next to tilti ngAni min the
Key column.

Click the disclosure triangle next to tilti ngAni mso it faces down; this
opens the dictionary so you can add items to ti | ti ngAni mis dictionary.

Organization, Constants, and Common Protocols

4. Click the + button next to the tilti ngAni mkey to add a row to the
tiltingAni mdictionary.

Click on the Key field and enter ani mati onFr anes.

Leave the type as Stri ng.

In the Value field, enter 1, 2, 3,4,5,5,4,3,2,1, 2,3,4,5.

Add another item under ti | ti ngAni mby clicking the + sign next to the

ani mat i onFranes field, set the key in the new row to del ay, the type to
Number, and the value to 0. 25.

® N

9. Create a final item under ti | ti ngAni m setting the key to fil enamePrefi x,
the type to St ri ng, and the value to radar _.

To verify that you created these items correctly under the tilti ngAni m click
on the disclosure triangle to the right of tilti ngAni mto collapse it. All three items
should disappear from view. If they do not, right-click on the item that did not disap-
pear and select shift item right.

Repeat these steps for t aki ngAHi t Ani m bl owi ngUpAni m and transmtti ng-
Ani mmini-animation dictionaries, entering the values shown in Figure 3.4.

One of the key benefits of having the animation data in plists is that it frees you
up from having to go into your code to change the animation data. In fact, if you are
working with an artist or animator in your games, they can often build these files as
they create the animations for you. Later in this chapter you will see how to read the
animation plists using a method included in the GameQbj ect class and called by each
object in Space Viking.

Note

While it is important to understand how the plist files are used in Space Viking, it's not
worth your time to type them in by hand for the purposes of learning how to make this
game. So before you continue, download the plist files along with the source code for this
chapter at the InformIT website (www.informit.com/title/9780321735621).

Once you've downloaded the files, add the plist files to your project inside the Plists group
(EnemyRobot.plist, Health.plist, Mallet.plist, RadarDish.plist, and Viking.plist).

Be sure to remember to add these files to your project, because without them, the rest of
this code won’t work!

Organization, Constants, and Common Protocols

In the next sections you will create a host of classes for use in Space Viking. In each
subsequent chapter you will add more functionality and more classes. In order to keep
your sanity, it is best to start organizing the source code inside of Xcode.

To start, create some groups in Xcode to help keep the new classes you are going to
create organized.

69

www.informit.com/title/9780321735621

70 Chapter 3 Introduction to Cocos2D Animations and Actions

1. Open Xcode, and under the Groups and Files section, select the Classes folder.

2. With the Classes folder selected, you can either press Option-z-N or right-click
on the Classes folder and select New Group from the contextual menu. Create

the following groups:

Constants
Scenes

Layers
GameObjects
EnemyObjects
PowerUps

Singletons

3. Drag the GameScene.h and GameScene.m files into the Scenes group.

4. Drag the BackgroundLayer and GameplayLayer .h and .m files into the Layers group.

5. Finally, drag the SpaceVikingAppDelegate .h and .m files into the Singletons group.

At this point your SpaceViking project layout should be similar to the one shown in
Figure 3.5. The order of the groups is not important, only that they exist under Classes
to keep your code organized. If you still have your HelloWorldScene .m and .h files
inside your SpaceViking project, you can safely delete them.

Figure 3.5 Xcode Groups and File panel showing the groups created
under the Classes folder in Space Viking

Organization, Constants, and Common Protocols

Creating the Constants File

Space Viking has some static values that you will want to use in more than one class.

For this purpose, you create a Constants.h header file, which contains all of the

#defi ne statements and other constants used by more than one class in Space Viking.
Now that you have the groups in place to keep Space Viking organized, it is time to

add the Const ant's and ConmonPr ot ocol classes.

1. In Xcode, select the Constants group (Classes > Constants).

2. Select File > New File (z-N, or right-click on the Constants folder and select
New File from the contextual menu), and then select C and C++ category
under i0S, and choose the Header File option.

3. Enter Constants.h for the filename and click Finish.

4. Select the Constants.h file and enter the text shown in Listing 3.3.

Listing 3.3 Constants.h header file

/1 Constants.h
/1 Constants used in SpaceViking

#define kVi ki ngSpritezVal ue 100
#define kVi ki ngSpriteTagVal ue 0
#define kVi ki ngldl eTi ner 3. 0f
#defi ne kVi ki ngFi st Danage 10
#defi ne kVi ki nghal | et Danage 40
#defi ne kRadar Di shTagVal ue 10

When you add a sprite to your layer, you can give it a z-order. In Space Viking, we
give a unique z-order to each of the sprites to make it very clear which sprites are on
the top and which are behind. The kVi ki ngSprit eZVal ue is used to keep Ole the
Viking in front of the other game characters. The number 100 is arbitrary, and it only
has to be larger than the number of objects added to the same CCSpr i t eBat chNode.
In other words, a z value of 0 is the backmost object, while positive numbers are in
front, with the highest number being the object rendered in front of all of the others.
If there were 500 enemy objects in Space Viking, you would want to make this number
higher, such as 501 or 600.

Each CCNode object can hold an optional tag value: a unique integer value that
other nodes can use to retrieve it. The enemy objects in Space Viking will use the
kVi ki ngSpriteTagVal ue to get the Viking object from the CCSpr it eBat chNode
and query the Viking’s position and state. The default value of the tag is kCCNode-
Tagl nval i d (-1), so 0 is a valid tag to use. Similarly, kRadar Di shTagVal ue will be
used in Chapter 5 to get a reference to the Radar Di sh class from the CCBat chNode.

Finally, there is a setting for the idle timer for the Vi ki ng, currently set to 3
seconds (as noted by 3. 0f). If Ole is idle for 3 seconds, the Vi ki ng will perform a

71

72

Chapter 3 Introduction to Cocos2D Animations and Actions

breathing action to entice the player to keep going. The tags are just unique integer
values you can assign to any CCNode and use the values to retrieve a reference to the
CCNode from their parent class.

Common Protocols File

Protocols in Objective-C are similar to interfaces in other languages such as Java.
To put it simply, protocols allow you to specify the methods that a class will respond
to, without knowing how those methods are implemented. Think of protocols as a
contract stating that the class adhering to the protocol will respond to the methods
defined in that protocol.

In Space Viking the EnemyRobot class has to ask the Gamepl ayLayer to create a
phaserBul | et when the robot is attacking Ole the Viking. It does not make sense
for EnemyRobot to just import Ganepl ayLayer because of all of the other classes
that Ganepl ayLayer itself imports. By creating a Ganmepl ayLayer delegate protocol,
the EnemyRobot class can access just the method it needs in Ganmepl ayLayer. To
EnenyRobot , Ganepl ayLayer only has the three methods shown in the Ganmepl ay-
Layer Del egat e protocol in Listing 3.4.

To create the CommonProtocols.h file:

1. In Xcode, select the Constants group.

2. Select File > New File (z-N, or right-click on the Constants folder and select
New File from the contextual menu), and then select C and C++ category and
the Header File option.

3. Enter CommonProtocols.h for the filename, and click Finish.

4. Select the CommonProtocols.h file and enter the text shown in Listing 3.4.

Listing 3.4 CommonProtocols.h header file

/1 ComonProt ocol s. h
/1 SpaceVi ki ng

typedef enum {
kDi rectionLeft,
kDi recti onRi ght
} PhaserDirection;

typedef enum {
kSt at eSpawni ng,
kStateldle,
kSt at eCr ouchi ng,
kSt at eSt andi ngUp,
kSt at eVal ki ng,
kSt at eAt t acki ng,
kSt at eJunpi ng,
kSt at eBr eat hi ng,

Organization, Constants, and Common Protocols

kSt at eTaki ngDanmage,

kSt at eDead,

kSt at eTravel i ng,

kSt at eRot at i ng,

kStateDrilling,

kSt at eAf t er Junpi ng
} CharacterStates; // 1

typedef enum {
kOnj ect TypeNone,
kPower UpTypeHeal t h,
kPower UpTypeMal | et
kEnenyTypeRadar Di sh,
kEnenyTypeSpaceCar goShi p,
kEnenyTypeAl i enRobot ,
kEnenyTypePhaser,
kVi ki ngType,
kSkul | Type,
kRockType,
kMet eor Type,
kFrozenVi ki ngType,
kl ceType,
kLongBl ockType,
kCart Type,
kSpi kesType,
kDi gger Type,
kG oundType

} Ganmebj ect Type;

@r ot ocol Ganepl ayLayer Del egat e

-(voi d) creat e(hj ect O Type: (Ganeoj ect Type) obj ect Type
wi thHeal th: (int)initialHealth
at Locat i on: (CGPoi nt) spawnLocati on
wi t hZzVal ue: (i nt) ZVal ue;

-(voi d)createPhaserWthDirection: (PhaserDirection)phaserDirection
andPosi ti on: (CGPoi nt) spawnPosi ti on;

@nd

The t ypedef enumlines simply ask the compiler to create a special variable
type that can have only the values defined for that particular type, as shown in List-
ing 3.4. Instead of keeping a numeric value for each possible state for the characters
in Space Viking and trying to remember that a value of 1 represents idle and 4 repre-
sents walking, you can just reference meaningful identifiers such as kSt at el dl e or
kSt at eVal ki ng. It makes the code in Space Viking much more readable and easier to
understand.

73

74

Chapter 3 Introduction to Cocos2D Animations and Actions

The Ganepl ayLayer Del egat e protocol defines two methods that the characters
in Space Viking will use. In particular, the SpaceCar goShi p and the EnenyRobot
use these methods to have the Ganepl ayLayer create the power-ups and the phaser
bullets. The SpaceCar goShi p does not have to know anything further about the
Gamepl ayLayer, only that it responds to these two methods. Using protocols can
hide the complexity of the implementation and allow your game code to be more
modular and reusable. If you want to later replace the Ganepl ayLayer with another
class, all you need to do is ensure that the new class adheres to the Ganepl ayLayer -
Del egat e protocol.

With these two header files out of the way, it is time to create the GaneQbj ect
and GameChar act er classes.

The GameObject and GameCharacter Classes

The GaneObj ect and GaneChar act er classes are the foundations of the in-game
elements in Space Viking. The Vi ki ng, Radar Di sh, and EnenmyRobot classes all
inherit functionality from GaneQbj ect and GaneChar act er. These base classes can
serve as a model that you can use when building your own games. The GameChbj ect
class contains the functionality need to read the property list files you created earlier
in this chapter, allowing all of the Space Viking objects to set up their animations based
on these files.

Creating the GameObject

The GanmeQbj ect class is the starting point for all of the objects in Space Viking. The
GameQbj ect class inherits from the CCSpri t e class, allowing it the ability to run
actions and know how to render its texture. The GameQbj ect class adds some specific
methods and instance variables used by your Space Viking game.

Follow these steps to create the GameCbj ect header and implementation files:

1. In Xcode, select the GameObjects group and right-click.

2. From the contextual menu, select New File, and choose the Cocoa Touch cat-
egory under 1OS and Objective-C class as the file type, and click Next.

3. For the Subclass field, enter CCSprite and click Next.

4. Enter GameObject for the filename and click Save.

Open the GameObject.h header file and change the contents to match the code in
Listing 3.5.

Listing 3.5 GameObject.h header file

/1 GameQpbject.h
/1 SpaceVi ki ng
/1

The GameObject and GameCharacter Classes

#i mport <Foundati on/ Foundati on. h>
#i mport "cocos2d. h"

#i mport "Constants.h"

#i mport " CommonPr ot ocol s. h"

@nterface GaneCbject : CCSprite {
BOOL i sActi ve;
BOOL reactsToScreenBoundari es;
CGSi ze screenSi ze;
Ganme(bj ect Type ganeObj ect Type;
}
@roperty (readwite) BOOL isActive;
@roperty (readwite) BOOL reactsToScreenBoundari es;
@roperty (readwite) CGSize screenSize;
@roperty (readwite) GaneObject Type ganeObj ect Type;
- (voi d) changesSt at e: (Char act er St at es) newsSt at e;

- (voi d)updat eSt at eW t hDel t aTi ne: (ccTi ne) del t aTi e
andLi st Of Ganehj ects: (CCArray*) | i st Of GameObj ect s;

- (CGRect) adj ust edBoundi ngBox;

- (CCANni mati on*) | oadPl i st For Ani mati onW t hNane: (NSSt ri ng*) ani mat i onNane
andd assNane: (NSSt ri ng*) cl assNane;

@nd

Take a close look at the @ nt er f ace declaration line. The GameObj ect
CCSprite code is what sets up the GameCbj ect class as a subclass of CCSprite. All
of the methods available to the CCSprit e are now part of GaneCbj ect . You can see
defined in Listing 3.5 some of the instance variables you will use in Space Viking that
are not part of the base CCSprit e class. In addition to the instance variables, there are
the changeSt at e, updat eSt at eWt hDel t aTi me, adj ust edBoundi ngBox, and
| oadP i st For Ani mat i onWt hNanme methods. To see what these methods do, open
the Gane(bj ect. mimplementation file and replace the content with the code shown
in Listings 3.6 and 3.7.

Listing 3.6 GameObject.m implementation file (part 1 of 2)

/1 GaneCbj ect. m

/1 SpaceVi ki ng

/1

#i nport " CGanme(pbj ect . h"

@ nmpl enent ati on GameObj ect

@ynt hesi ze reactsToScr eenBoundari es;
@ynt hesi ze screenSi ze;

@ynt hesi ze i sActive;

@ynt hesi ze ganeoj ect Type;

75

Chapter 3 Introduction to Cocos2D Animations and Actions

-(id) init {
if((self=[super init])){
CCLOG @ Gane(oj ect init");
screenSi ze = [CCDi rector sharedDirector].w nSize;
i sActive = TRUE;
ganeObj ect Type = kObj ect TypeNone;
}

return self;

}

- (voi d) changeSt at e: (Char act er St at es) newSt ate {
CCLOG @ Ganehj ect - >changeSt at e net hod shoul d be overridden");
}

-(voi d)updat eSt at eWt hDel t aTi me: (ccTi ne) del t aTi e
andLi st O GaneObj ects: (CCArray*) | i st Of GameObj ects {

CCLOG @ updat eSt at eW t hDel t aTi me et hod shoul d be overridden");
}

- (CCGRect) adj ust edBoundi ngBox {
CCLOG @ GaneOhect adj ust edBoundi ngBox shoul d be overridden");
return [sel f boundi ngBox];

The first part of GameObject.m in Listing 3.6 has the i nit method that sets up the
default values for the instance variables and calls the superclass initializer; in this case,
CCSprite. Looking at these three methods, you can see that updat eSt at eW't h-
Del t aTi me and adj ust edBoundi ngBox are stubs and do nothing more than call
CCLOG to warn that they should be overridden. This is because you will not be using
the GameQbj ect class directly; instead, you will use it as the base for the other object
classes in Space Viking. This means that the Vi ki ng, SpaceCar goShi p, and other
classes should have methods with the same name, essentially overriding these three
default methods.

The updat eSt at eWt hDel t aTi me method is what the Ganepl ayLayer class
calls to update game objects on every frame. This method also contains the Al for
the objects and i1s where the objects perform the actions that define their individual
behavior.

The changeSt at e method is used by the objects to transition from one state to
another. The state change often triggers custom animations that represent each state.

Finally, the adj ust edBoundi ngBox method does exactly what the name implies.
In your game objects, this method adjusts the default sprite’s bounding box to com-
pensate for the transparent space. Figure 3.6 shows the transparent space around
the Vi ki ng sprite with a padding of 26 pixels behind and 66 pixels in front of the
Vi ki ng. If you were to just take the default CCSprit e boundi ngBox, it would

The GameObject and GameCharacter Classes

include these transparent pixels, and your collision detection would be inaccurate.
Objects in your game would come into contact before the meaningful/nontranparent
part of the graphics ever touched.

Figure 3.6 Transparent space around the Viking sprite/image

A Word on Bounding Boxes

The bounding boxes in Cocos2D are actually what are referred to as axis-aligned bound-
ing boxes, or AABB for short. This is simply a box around your sprite texture (your image),
with the axis of the box lined up with the axis of the coordinate system being used. The
bounding box is really useful in determining when two or more objects are overlapping or
colliding, without having to resort to a physics engine.

In Listing 3.7 you can see the | oadP i st For Ani mat i onWt hNane method, which
is responsible for setting up the animations based on the data stored in the plist files.
This method is declared and implemented in GaneObj ect , but it is actually called
and used by the individual classes such as the Radar Di sh and Vi ki ng. This method is
passed the animation name as well as the class name. The class name is used to find the
plist file, since the files are named after the classes they belong to, such as RadarDish.
plist for the Radar Di sh class. Each plist file dictionary may contain several mini-
dictionaries for each animation, and the animation name is used to extract the specific
dictionary for the animation name passed in. Add the contents of Listing 3.7 below the
code you just entered in GameObject.m.

Listing 3.7 GameObject.m implementation file (part 2 of 2)

- (CCANni mati on*) | oadPl i st For Ani mati onW t hNane: (NSSt ri ng*) ani mat i onNane
andCl assNane: (NSStri ng*) cl assNane {

CCAni mati on *ani mati onToReturn = nil;

NSString *full Fil eNane =

[NSString stringWthFormat: @%@ plist", cl assNane] ;
NSString *plistPath;

/1 1. CGet the Path to the plist file
NSString *rootPath =
[NSSear chPat hFor Di r ect ori esl nDonai ns(NSDocunent Di rect ory,

7

78 Chapter 3 Introduction to Cocos2D Animations and Actions

NSUser Domai nMask, YES) obj ect At | ndex: 0] ;
plistPath = [rootPath stringByAppendi ngPat hConponent: ful |l Fil eNane];
if ('[[NSFileManager defaultManager] fileExistsAtPath:plistPath]) {
plistPath = [[NSBundl e mai nBundl e]
pat hFor Resour ce: cl assNanme of Type: @plist"];
}

/1 2: Read in the plist file
NSDi ctionary *plistDictionary =
[NSDi ctionary dictionaryWthContentsOf File:plistPath];

/1 3: If the plistDictionary was null, the file was not found.
if (plistDictionary == nil) {
CCLOG @Error reading plist: %@plist", classNanme);
return nil; // No Plist Dictionary or file found

}

/'l 4: Get just the mni-dictionary for this anination
NSDi cti onary *ani mationSettings =
[plistDictionary objectForKey: ani mati onNane] ;

if (animationSettings == nil) {
CCLOG @ Coul d not | ocate AninationWthName: %@, ani mati onNane) ;
return nil;

}

/1 5: Get the delay value for the animation

float ani mati onDel ay =

[[ani mationSettings obj ect ForKey: @del ay"] fl oat Val ue];
ani mati onToReturn = [CCAni nation ani mation];

[ani mati onToRet urn set Del ay: ani nati onDel ay] ;

/1 6: Add the franes to the anination

NSString *ani mati onFranmePrefix =

[ani nationSettings objectForKey: @fil enamePrefix"];
NSString *ani mati onFranmes =

[ani mati onSettings object For Key: @ ani nati onFranes"];
NSArray *ani mati onFraneNunbers =

[ani nat i onFrames conponent sSeparatedByString: @, "];

for (NSString *frameNunber in ani nationFrameNunbers) {
NSString *franeName =
[NSString stringWthFornmat: @ %@ png",
ani mat i onFramePrefi x, f raneNunber] ;
[ani mati onToRet urn addFr ane:
[[CCSpriteFraneCache sharedSpriteFraneCache]
spriteFraneByNane: f rameNane]] ;

The GameObject and GameCharacter Classes

return ani mati onToRet urn;

}
@nd

Now let’s examine the sections in Listing 3.7, as noted by the numbered comment
lines in the code:

= Sections 1 and 2 are from the standard Apple templates on reading property list
files:

= Section 1 tries to get the actual file system path to the property list file. This
is where the cl assName that was passed into the method is used to try to
determine the path from the application bundle.

= Section 2 uses built-in methods to read and parse the property list file,
returning a dictionary with the entire contents of the plist file. This is an
NSDi ctionary containing all of the animation mini-dictionaries in this
single file.

= Section 3 is just a quick check to make sure the NSDi cti onar y was not empty.

= Section 4 is where the mini-dictionary for the particular animation passed in
as ani mat i onNane is extracted. The mini-dictionary (named ani mati on-
Settings in the code) contains the filename prefix, delay, and list of animation
frames. After extracting the ani mationSetti ngs dictionary, a quick check is
made to ensure it is not empty.

= In Section 5, the del ay value is retrieved from ani mati onSetti ngs, and the
CCANi mat i on object is created with the delay. Since the delay is often frac-
tions of a second, this is stored as a float value. You can have the delay in the
CCANi mat e action as you learned, or as part of the CCAni mat i on object itself.

= Section 6 is where all of the animation frames are loaded into the animation.
The first step is to get the prefix for the filename for each of the frames. (For
example, the Radar Di sh animations use the r adar _ prefix.) The next step is
to break apart the string of frame numbers into an NSAr r ay of just the number
themselves. A convenient NSSt ri ng method called conponent sSepar at ed-
By St ri ng allows you to split up the string into comma-separated values in one
line of code. The for loop iterates through the NSAr r ay of frame numbers and
adds the CCSprit eFr anme to the animation. Each frame number becomes a call
to add a CCSpri t eFr ane where the name consists of the prefix, the frame num-
ber, and .png. Finally, the newly created and loaded animation is returned.

The key point to understand about the code in Listing 3.7 is that by using the
| oadHM i st For Ani mati onWt hName method, you can load the animation settings for
all of the game objects in Space Viking. If you look closely at section 7, you will see the
key names fi |l enamePrefi x and ani mati onFranmes, which you set up in the plist
files at the beginning of this chapter. Make sure your GameObject.m implementation
file contains the code from both Listings 3.6 and 3.7.

79

80

Chapter 3 Introduction to Cocos2D Animations and Actions

At the end of each section in this chapter, it is good practice for you to build the
project and ensure you have not introduced any typos or errors. Use 36-B or select
Build from the Product menu to build the project.

Creating the GameCharacter Class
In Space Viking, power-ups and the SpaceCar goShi p inherit directly from
Game(pj ect, as their behavior is very simple. The other objects in Space Viking
inherit from the GameChar act er class, providing these objects with a state machine
brain. The GaneChar act er class provides instance variables for holding the current
state as well as the character’s health. The class also provides a handy method to ensure
that all of the game elements remain within the boundaries of the screen. To create
the GaneChar act er header and implementation files:

1. In Xcode, right-click on the GameObjects group.

2. Select New File, and choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

3. For the Subclass field, enter GameObject and click Next.

4. Enter GameCharacter for the filename and click Finish.

Open the GameCharacter.h header file and change the contents to match the code in
Listing 3.8.

Listing 3.8 GameCharacter.h header file

/'l GanmeCharacter. h
/1 SpaceVi ki ng

#i nport <Foundati on/ Foundati on. h>
#i nport " Ganme(bj ect. h"

@nterface GaneCharacter : GaneObject {
int characterHealth;
Character States character State;

}

- (voi d) checkAndC anpSpritePosition;
- (i nt)get WeaponDanage;

@roperty (readwite) int characterHealth;
@roperty (readwite) CharacterStates characterState;
@nd

In Listing 3.8, you can see that two new instance variables and methods are added
to all objects inheriting from GameChar act er. Open the GaneChar act er. mimple-
mentation file and replace the template code with the contents of Listing 3.9.

The GameObject and GameCharacter Classes 81

Listing 3.9 GameCharacter.m implementation file

/1 GaneCharacter.m
/1 SpaceVi ki ng

#i mport " GaneCharacter. h"

@ npl enent ati on GaneChar act er
@ynt hesi ze characterHeal t h;
@ynt hesi ze character State;

-(void) dealloc {
[super deall oc];

}

-(int)get WaponDamage {
/1 Default to zero danage
CCLOG @ get WeaponDanage shoul d be overridden");
return O;

}

-(voi d) checkAndd anpSpritePosition {
CGPoint currentSpritePosition = [self position];

if (U _USER | NTERFACE I DIOM) == Ul Userlnterfacel di onPad) {
/1 Clanp for the iPad
if (currentSpritePosition.x < 30.0f) {
[sel f setPosition:ccp(30.0f, currentSpritePosition.y)];
} else if (currentSpritePosition.x > 1000.0f) {
[sel f setPosition:ccp(1000.0f, currentSpritePosition.y)];
}
} else {
/1 Cdanp for iPhone, iPhone 4, or iPod touch
if (currentSpritePosition.x < 24.0f) {
[sel f setPosition:ccp(24.0f, currentSpritePosition.y)];
} else if (currentSpritePosition.x > 456.0f) {
[sel f setPosition:ccp(456.0f, currentSpritePosition.y)];

}
@nd

The get WeaponDamage method provides a quick method to determine how much
damage to inflict when an enemy or the Vi ki ng attacks. In the Vi ki ng this value
will change if Ole is using his fists or the Mal | et .

The checkAndd anmpSpritePosition is used to ensure that an object stays
in the confines of the screen. It checks the current object’s position and repositions

82

Chapter 3 Introduction to Cocos2D Animations and Actions

the object if it is too far to the left or right of the screen. This is useful for keeping
Ole the Viking and his enemies onscreen at all times. By having this method in the
GanmeChar act er class, you can avoid typing redundant code in each of your game
character classes.

Tip on Points Versus Pixels

Remember that Cocos2D uses a point system to help position objects on the
normal iPhone display (480 x 320 pixels) and the retina display (960 x 640 pix-
els). In the nonretina display a point equals a pixel, but in the retina display a
point equals two pixels. When you set Ole’s position to 24 points, on an iPhone
3G or 3GS it equates to exactly 24 pixels from the left side. On an iPhone 4 with
the retina display it is 48 pixels from the left side. In both cases, to the player
Ole will look like he is in the exact same position onscreen. You can read more
about the points system in Cocos2D at www.cocos2d-iphone.org/wiki/doku.php/
prog_guide:how_to_develop_retinadisplay_games_in_cocos2d.

Once more, hit 38-B or select Build from the Product menu to make sure your code
is free of typos and errors. Having created the GanmeCbj ect and the GaneChar act er
classes, in the next chapter you will dive in a little deeper and get into the first enemy
Ole the Viking will encounter.

Summary

In this chapter you learned about Cocos2D animations, the CCAni mat i onCache, and
the game design that you will use for Space Viking. Although you cannot see tangible
results yet, it was necessary to set up the groundwork in order to add enemies and
more to the game. When you are ready, flip over to Chapter 4 and learn how to add
the menacing Radar Di sh enemy to SpaceViking.

Challenges

1. Think about your own game: How would you design the classes and hierarchy
of your objects?

2. How would you modify the method | oadP i st For Ani mat i onWt hNane
inside of GameQbj ect so that the CCAni mati ons are added to the
CCAni mat i onCache?

Hint
If you are stumped, look at the commented-out solution inside the source code for this
chapter.

www.cocos2d-iphone.org/wiki/doku.php/prog_guide:how_to_develop_retinadisplay_games_in_cocos2d
www.cocos2d-iphone.org/wiki/doku.php/prog_guide:how_to_develop_retinadisplay_games_in_cocos2d

A

Simple Collision Detection and
the First Enemy

In the previous chapter you learned the basics of Cocos2D animations and actions. You also
started building a flexible framework for Space Viking. In this chapter you go further and create
the first enemy for Ole to do battle with. In the process you learn how to implement a simple sys-
tem for collision detection and the artificial intelligence brain of the enemies in Space Viking.

There is a significant amount of code necessary in this chapter to drive the behavior of Ole and
the RadarDish. Take your time understanding how these classes work, as they are the foundation
and models for the rest of the classes in Space Viking.

Ready to defeat the aliens?

Creating the Radar Dish and Viking Classes

From just a CCSprite to a fully animated character, Ole the Viking takes the plunge
from simple to advanced from here on out. In this section you create the Radar Di sh
and Vi ki ng classes to encapsulate the logic needed by each, including all of the ani-
mations. The Radar Di sh class is worth a close look, as all of the enemy characters in
Space Viking are modeled after it.

Creating the RadarDish Class

In this first scene, there is a suspicious radar dish on the right side of the screen. It
scans for foreign creatures such as Ole. Ole needs to find a way to destroy the radar
dish before it alerts the enemy robots of his presence. Fortunately, Ole knows two
ways to deal with such problems: his left and right fists. Create the new Radar Di sh
class in Xcode by following these steps:

1. In Xcode, right-click on the EnemyObjects group.

2. Select New File, choose the Cocoa Touch category under 10S and
Objective-C class as the file type, and click Next.

84

Chapter 4 Simple Collision Detection and the First Enemy

3. For the Subclass field, enter GameCharacter and click Next.
4. Enter RadarDish for the filename and click Finish.

Open the RadarDish.h header file and change the contents to match the code in
Listing 4.1.

Listing 4.1 RadarDish.h header file

/1 RadarDi sh. h

/1 SpaceViking

/1

#i nport <Foundat i on/ Foundati on. h>
#i nport " GanmeCharacter. h"

@nterface RadarDi sh : GaneCharacter {
CCAni mation *tiltingAnim
CCAni mation *transm tti ngAni m
CCAni mati on *taki ngAH t Ani m
CCAni mati on *bl owi ngUpAni m
GaneChar act er *vi ki ngChar acter;

}

@roperty (nonatomic, retain) CCAnimation *tiltingAnim
@roperty (nonatomic, retain) CCAninmation *transm ttingAni m
@roperty (nonatomc, retain) CCAnination *taki ngAHi t Ani m
@roperty (nonatomc, retain) CCAnination *bl owi ngUpAni m

@nd

Looking at Listing 4.1 you can see that the Radar Di sh class inherits from the
GameChar act er class and that it defines four CCAni mat i on instance variables. There
is also an instance variable to hold a pointer back to the Vi ki ng character.

Why the vikingCharacter Variable Is of Type GameCharacter and Not of Type
Viking Class

If you look carefully at Listing 4.1, you will notice that the vi ki ngChar act er
instance variable is of type GameChar act er and not of type Vi ki ng. This is
because the Radar Di sh class needs access only to the methods defined in
GaneChar act er and not to the full Vi ki ng class.

Having an instance variable of type GameChar act er here allows for the

Radar Di sh class to not have to know anything further about the Vi ki ng object
except that it is a GameChar act er. You are free to add features to the Vi ki ng
class without fear that it will break any functionality in Radar Di sh. If you were to
change the main character in a future version of Space Viking, the code would still

Creating the Radar Dish and Viking Classes

function fine, since that new main character class too would, presumably, be derived
from the GaneChar act er class.

Listings 4.2, 4.3, and 4.4 show the contents of the RadarDish.m implementation file.
The changeSt at e and updat eSt at eWt hDel t a time methods are crucial to under-
stand, as they are the most basic versions of what you will find in all of the characters
in Space Viking. While reading this code, keep in mind that the Radar Di sh is a simple
enemy that never moves or attacks the Vi ki ng. The Radar Di sh does take damage
from the Vi ki ng, eventually blowing up by moving to a dead state. Listing 4.2 covers
the top portion of the RadarDish.m implementation file, including the changeSt at e
method. Open the RadarDish.m implementation file and replace the code so that it
matches the contents in Listings 4.2, 4.3, and 4.4.

Listing 4.2 RadarDish.m implementation file (top portion)

/1 Radar Di sh. m
/'l SpaceVi ki ng
#i nport "Radar Di sh. h"

@ npl enent ati on Radar Di sh
@ynt hesi ze tiltingAnim
@ynt hesi ze transm tti ngAnim
@ynt hesi ze taki ngAHi t Ani m
@ynt hesi ze bl owi ngUpAni m

- (void) deall oc{
[tiltingAnimrel ease];
[transm ttingAni mrel ease];
[taki ngAHi t Ani m r el ease] ;

[bl owi ngUpAni m rel ease];
[super deall oc];

-(voi d) changeSt at e: (Char act er St at es) newSt ate {
[sel f stopAllActions];
idaction = nil;
[sel f setCharacterState: newSt at e] ;

switch (newState) {
case kStat eSpawni ng:
CCLOG @ Radar Di sh->Starting the Spawni ng Ani mation");
action = [CCAni mate actionWthAni mation:tiltingAnim
restoreOriginal Frane: NJ ;
br eak;

85

86 Chapter 4 Simple Collision Detection and the First Enemy

case kStateldle:
CCLOG @ Radar Di sh->Changing State to Idle");
action = [CCAni mate acti onWthAni mation:transmttingAnim
restoreOrigi nal Frane: NJ ;
br eak;

case kSt ateTaki ngDanage:
CCLOG @ Radar Di sh->Changi ng State to Taki ngDanmage");
characterHealth =
characterHeal th - [vikingCharacter getWaponDanmage] ;
if (characterHealth <= 0.0f) {
[sel f changeSt at e: kSt at eDead] ;
} else {
action = [CCAni mate acti onW thAni mati on:taki ngAH t Ani m
restoreOriginal Frane: NJ ;
}

br eak;

case kSt at eDead:
CCLOG @ Radar Di sh->Changi ng State to Dead");
action = [CCAni mate acti onWthAni mati on: bl owi ngUpAni m
restoreOrigi nal Frane: NJ ;

br eak;
defaul t:
CCLOG @ Unhandl ed state % in RadarDi sh", newState);
br eak;
}
if (action !=nil) {
[sel f runAction:action];
}

The changesSt at e method is called when the Radar Di sh needs to transition
between states. In the beginning of this chapter you were introduced to state
machines, and the changeSt at e method is what allows for transitions to different
states in the miniscule “brain” of the Radar Di sh. The Radar Di sh brain can exist in
one of four states: spawning, idle, taking damage, or dead. In the listings that follow,
you will see that the Radar Di sh is initialized in the spawning state when it is created,
and then through the updat eSt at eWt hDel t aTi ne method it will move through
the four states.

When the updat eSt at eWt hDel t aTi me determines that the Radar Di sh needs to
change its state, the changesSt at e method is called. Looking at Listing 4.2, you can
recap what the switch state is doing as follows:

Creating the Radar Dish and Viking Classes 87

= Spawning (kSt at eSpawni ng)
Starts up the Radar Di sh with the tilting animation, which is the dish moving
up and down.

= Idle (kSt at el dl e)
Runs the transmitting animation, which is the Radar Di sh blinking.

= Taking Damage (kSt at eTaki ngDanmage)

Runs the taking damage animation, showing a hit to the Radar Di sh. The
Radar Di sh health is reduced according to the type of weapon being used
against it.

= Dead (kSt at eDead)

The Radar Di sh plays a death animation of it blowing up. This state occurs once
the Radar Di sh health is at or below zero.
The next section of the Radar Di sh implementation file is covered in Listing 4.3,
showing the updat eSt at eWt hDel t aTi me method.

Listing 4.3 RadarDish.m implementation file (middle portion)

-(voi d)updat eSt at eW t hDel t aTi me: (ccTi me) del t aTi me
andLi st Of GaneQbj ects: (CCArray*) | i st Of GameObj ects {

if (characterState == kSt at eDead)
return; /111

vi ki ngChar acter =

(GaneCharacter*)[[sel f parent]
get Chi | dByTag: kVi ki ngSpri t eTagVal ue] ; Il 2

CGRect vi ki ngBoudi ngBox =

[vi ki ngChar act er adj ust edBoundi ngBox] ; Il 3
CharacterStates vikingState = [vi ki ngCharacter
characterState]; Il 4

/1 Calculate if the Viking is attacking and nearby
if ((vikingState == kStateAttacking) &%
(CCRect I ntersectsRect ([sel f adj ust edBoundi ngBox],
vi ki ngBoudi ngBox))) { /Il'5
if (characterState != kStateTaki ngDanage) {
/1 1f RadarDish is NOT al ready taking Danage
[sel f changeSt at e: kSt at eTaki ngDanage] ;
return;

88 Chapter 4 Simple Collision Detection and the First Enemy

if (([self nunber O Runni ngActions] == 0) &&
(characterState != kStateDead)) {
CCLOG(@ Going to ldle");
[sel f changeState: kStateldle]; /Il 6
return;

Now let’s examine the numbered lines of the code:

1.

Checks if the Radar Di sh is already dead. If it is, this method is short-circuited
and returned. If the Radar Di sh is dead, there is nothing to update.

. Gets the Vi ki ng character object from the Radar Di sh parent. All of Space

Viking’s objects are children of the scene Sprit eBat chNode, referred to here
as the parent . The Vi ki ng in particular was added to the Sprit eBat chNode
with a particular t ag, referred to by the constant kVi ki ngSpriteTagVal ue.
By obtaining a reference to the Vi ki ng object, the Radar Di sh can determine
if the Vi ki ng is nearby and attacking the Radar Di sh. (Listing 4.3 contains the
code that sets up the kVi ki ngSprit eTagVal ue constant.)

3. Gets the Vi ki ng character’s adjusted bounding box.

4. Gets the Vi ki ng character’s state.

5. Determines if the Vi ki ng is nearby and attacking. If the adjusted bounding

boxes for the Vi ki ng and the Radar Di sh overlap, and the Vi ki ng is in his
attack phase, the Radar Di sh can be certain that the Vi ki ng is attacking it. The
call to changeSt at e: kSt at eTaki ngDamage will alter the Radar Di sh anima-
tion to reflect the attack and reduce the Radar Di sh character’s health.

. Resets the transmission animation on the Radar Di sh. If the Radar Di sh is not

currently playing an animation, and it is not dead, it is reset to idle so that the
transmission animation can restart.

The last part of the RadarDish.m implementation file is the longest but least com-
plicated. There is an i ni t Ani mat i ons method, which sets up all of the Radar Di sh
animations, and an i nit method that initializes the Radar Di sh and sets up the
starting values for the instance variables. Add the contents of Listing 4.4 to your
RadarDish.m implementation file.

Listing 4.4 RadarDish.m implementation file (bottom portion)

-(void)initAni mations {

[sel f setTiltingAnim
[sel f | oadPlistForAni mati onWthName: @tiltingAnint
andC assNane: NSStri ngFronCl ass([sel f class])]];

Creating the Radar Dish and Viking Classes

[sel f setTransm ttingAnim
[sel f | oadPlistForAni mati onWthNane: @transm tti ngAni nf
andCl assName: NSSt ri ngFronCl ass([sel f class])]];

[sel f set Taki ngAHi t Ani m
[sel f | oadPli st ForAni mati onW t hNane: @t aki ngAHi t Ani nf
andd assNane: NSStri ngFronCl ass([sel f class])]];

[sel f set Bl owi ngUpAni m
[sel f | oadPlistForAni mati onW t hNanme: @ bl owi ngUpAni ni
andC assNane: NSSt ri ngFronCl ass([sel f class])]];

}
-(id) init {
if((self=[super init])) {
CCLOG @ ### RadarDi sh initialized");
[sel f initAnimtions]; /11
characterHeal th = 100. Of; Il 2
gameoj ect Type = kEnenyTypeRadar Di sh; /Il 3
[sel f changeSt at e: kSt at eSpawni ng] ; Il 4
}
return self;
}
@nd

The i nit Ani mat i ons method calls the | oadM i st For Ani mat i onWt hNamne
method you declared in the GameQbj ect class. The name of the animation to load
is passed along with the class name. Note the convenience method NSSt ri ngFr om
d ass is used to get an NSSt ri ng from the class name, in this case Radar Di sh. The
class name is used to find the correct plist file for the object, since the plist files have a
name corresponding to the class. The following occurs in the i ni t method:

1. Calls the i ni t Ani mati ons method, which sets up all of the animations for
the Radar Di sh. The frame’s coordinates and textures were already loaded and
cached by Cocos2D when the texture atlas files (scenelatlas.png and scenelatlas.
plist) were loaded by the Ganmepl ayLayer class.

2. Sets the initial health of the Radar Di sh to a value of 100.
3. Sets the Radar Di sh to be a Ganme Obj ect of type kEneny Ty peRadar Di sh.
4. Initializes the state of the Radar Di sh to spawning. Looking back at Listing 4.2,

you can see that this starts the tilting animation, which is followed by the trans-
mitting animation when the Radar Di sh moves from spawning to an idle state.

There i1s a little more work left before you can have this chapter’s game running
on your device. You need to add the Vi ki ng class and make some changes to the
Ganepl ayLayer class. It is important to understand how the updat eSt at eW't h-
Del t aTi me and the changeSt at e methods in Radar Di sh control the state of the

89

90

Chapter 4 Simple Collision Detection and the First Enemy

Al brain. These same two methods are used to drive the brain of all of the other game
characters, including Ole the Viking.

Creating the Viking Class

In the previous chapter, Ole the Viking was nothing more than a CCSprite. In this
chapter you pull him out into his own class complete with animations and a state
machine to transition him through his various states. If the Vi ki ng class code starts to
look daunting, refer back to the Radar Di sh class: the Viking is simply a game charac-
ter like the Radar Di sh, albeit with more functionality. Create the new Vi ki ng class
in Xcode by:

1. In Xcode, right-click on the GameObjects group.

2. Select Add > New File, choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter Viking for the filename and click Save.

Open the Viking.h header file and change the contents to match the code in
Listing 4.5.

Listing 4.5 Viking.h header file

/1 Viking.h
/1 SpaceVi ki ng
#i nport <Foundat i on/ Foundati on. h>
#i nport "GaneCharacter. h"
#i nport " SneakyButton. h"
#i nport " SneakyJoystick. h"
typedef enum {
kLef t Hook,
kRi ght Hook
} Last PunchType;

@nterface Viking : GaneCharacter {
Last PunchType mnyLast Punch;
BOOL isCarryingMallet;
CCSpriteFrame *standi ngFrane;

/1 Standing, breathing, and wal ki ng
CCAni mati on *breat hi ngAni m

CCAni mati on *breat hi nghal | et Ani m
CCAni mati on *wal ki ngAni m

CCAni mati on *wal ki ngMal | et Ani m

/1 Crouching, standing up,
CCAni mati on *crouchi ngAni m
CCAni mat i on *crouchi nghal | et Ani m
CCAni mati on *standi ngUpAni m

CCAni mat i on *standi ngUpMal | et Ani m
CCAni mati on *j unpi ngAni m

CCAni mati on *j unpi ngMal | et Ani m
CCAni mati on *afterJunpi ngAni m

CCAni mat i on *afterJunpi ngMal | et Ani m

and Junpi ng

/'l Punchi ng

CCAni mati on *ri ght PunchAni m
CCAni mati on *| ef t PunchAni m
CCAni mati on *mal | et PunchAni m

/1 Taking Danmage and Death
CCAni mat i on *phaser ShockAni m
CCAni mati on *deat hAni m

SneakyJoystick *joystick;
SneakyButton *junpButton ;

SneakyButton *attackButton;

float mllisecondsStayingldle;

}

/1 Standing, Breathing, Walking

@roperty (nonatomic, retain) CCAni mation
@roperty (nonatomic, retain) CCAni mation
@roperty (nonatomic, retain) CCAni mation
@roperty (nonatomic, retain) CCAnination
/1 Crouching, Standing Up, Junping
@roperty (nonatomic, retain) CCAni mation
@roperty (nonatomic, retain) CCAni mation

@roperty (nonatomc
@roperty (nonatomc
@roperty (nonatomc
@roperty (nonatomc, retain)
@roperty (nonatomc

c

CCAni mat i on
CCAni mati on
CCAni mat i on
CCAni mat i on
CCAni mat i on

, retain)
, retain)
, retain)

, retain)

@roperty (nonatomic, retain) CCAni mation
/1 Punchi ng

@roperty (nonatomic, retain) CCAnination
@roperty (nonatomic, retain) CCAnination

@roperty (nonatomc, retain)

CCAni mat i on

Creating the Viking Class

*br eat hi ngAni m

*br eat hi nghal | et Ani m
*wal ki ngAni m

*wal ki ngMal | et Ani m

*crouchi ngAni m

*crouchi nghal | et Ani m
*st andi ngUpAni m

*st andi ngUpMal | et Ani m
*j unpi ngAni m

*j unmpi ngMal | et Ani m

*af t er Junpi ngAni m

*af t er Junpi ngMal | et Ani m

*ri ght PunchAni m
*| ef t PunchAni m
*mal | et PunchAni m

91

92

Chapter 4 Simple Collision Detection and the First Enemy

/| Taki ng Damage and Death
@roperty (nonatomc, retain) CCAnimation *phaser ShockAni m
@roperty (nonatomc, retain) CCAnimation *deat hAni m

@roperty (nonatonic, assign) SneakyJoystick *joystick;
@roperty (nonatonic,assign) SneakyButton *junpButton;
@roperty (nonaton c,assign) SneakyButton *attackButton;

@nd

Listing 4.5 shows the large number of animations that are possible with the Vi ki ng
character as well as instance variables to point to the onscreen joystick and button
controls.

The key items to note are the t ypedef enumerat or for the left and right
punches, an instance variable to store what the last punch thrown was, and a f | oat
to keep track of how long the player has been idle. The code for the Vi ki ng imple-
mentation file is a bit on the lengthy side, hence it is broken up into four Listings, 4.6
through 4.9. Open the Viking.m implementation file and replace the code so that it
matches the contents in Listings 4.6, 4.7, 4.8, and 4.9.

Listing 4.6 Viking.m implementation file (part 1 of 4)

/1 Viking.m
/1 SpaceVi ki ng
#i mport " Vi ki ng. h"

@ npl enent ati on Vi ki ng
@ynt hesi ze joystick;
@ynt hesi ze junpButton ;
@ynt hesi ze attackButton;

/] Standing, Breathing, Wlking
@ynt hesi ze breat hi ngAni m

@ynt hesi ze breat hi ngMal | et Ani m
@ynt hesi ze wal ki ngAni m

@ynt hesi ze wal ki nghval | et Ani m

/1 Crouching, Standing Up, Junping
@ynt hesi ze crouchi ngAni m

@ynt hesi ze crouchi nghal | et Ani m
@ynt hesi ze st andi ngUpAni m

@ynt hesi ze st andi ngUpMal | et Ani m
@ynt hesi ze junpi ngAni m

@ynt hesi ze junpi nghal | et Ani m
@ynt hesi ze afterJunpi ngAni m

@ynt hesi ze afterJunpi nghal | et Ani m
/1 Punchi ng

@ynt hesi ze ri ght PunchAni m

@ynt hesi ze | ef t PunchAni m
@ynt hesi ze mal | et PunchAni m
/| Taking Danage and Deat h
@ynt hesi ze phaser ShockAni m
@ynt hesi ze deat hAni m

}

(void) dealloc {

joystick = nil;

jumpButton = nil;

attackButton = nil;

[breat hi ngAni m rel ease] ;

[breat hi ngMal | et Ani m r el ease] ;
[wal ki ngAni m r el ease] ;

[wal ki ngMal | et Ani m r el ease] ;

[crouchi ngAni m r el ease] ;

[crouchi ngMal | et Ani m r el ease] ;
[st andi ngUpAni m rel ease] ;

[st andi ngUpMal | et Ani m r el ease] ;

[j unpi ngAni m r el ease] ;
[j unpi ngMal | et Ani m r el ease] ;
[after Junpi ngAni m r el ease] ;

[af t er Junmpi ngMal | et Ani m r el ease] ;

[right PunchAni mrel ease];
[I ef t PunchAni m rel ease] ;

[mal | et PunchAni mrel ease] ;
[phaser ShockAni m r el ease] ;
[deat hAni m r el ease] ;

[super deal | oc];

-(BOQL) i sCarryi ngWeapon {

}

return isCarryi ngvall et;

- (int)get WeaponDanmage {

if (isCarryingMallet) {

return kVi ki ngMal | et Danmege;

Creating the Viking Class

- (voi d)appl yJoysti ck: (SneakyJoystick *)aJoystick forTineDelta: (float)

}

return kVi ki ngFi st Damage;
}
del taTi me
{

CGPoi nt scal edVel ocity = ccpMult(aJoystick.velocity, 128.0f);

CGPoi nt ol dPosition = [self position];

CGPoi nt newPosi tion

93

94 Chapter 4 Simple Collision Detection and the First Enemy

ccp(ol dPosition.x +

scal edVel ocity. x * del taTine,

ol dPosition.y); /11
[sel f setPosition: newPosition]; /1 2

if (oldPosition.x > newPosition.x) {
sel f.flipX = YES; /Il 3
} else {
self.flipX = NG
}
}

- (voi d)checkAndd ampSpritePosition {
if (self.characterState != kStateJunping) {
if ([self position].y > 110.0f)
[sel f setPosition:ccp([self position].x,110.0f)];

}
[super checkAndC anpSpritePosition];

At the beginning of the Viking.m implementation file is the deal | oc method. Far
wiser Objective-C developers than this author have commented on the benefits of
having your deal | oc method up top and near your synt hesi ze statements. The idea
behind this move is to make sure you are deallocating any and all instance variables,
therefore avoiding one of the main causes of memory leaks in Objective-C code.

Following the deal | oc method, you have the i sCar r yi ng\Weapon method, but
since it is self-explanatory, move on to the appl yJoysti ck method. This method is
similar to the one back in Chapter 2, “Hello, Space Viking,” Listing 2.10, but it has
been modified to deal only with Ole’s movement and removes the handling for the
jump or attack buttons. The first change to appl yJoysti ck is the creation of the
ol dPosi ti on variable to track the Vi ki ng’s position before it is moved. Looking at
the appl yJoyst i ck method in Listing 4.6, take a note of the following key lines:

1. Sets the new position based on the velocity of the joystick, but only in the
x-axis. The y position stays constant, making it so Ole only walks to the left or
right, and not up or down.

2. Moves the Vi ki ng to the new position.

3. Compares the old position with the new position, flipping the Vi ki ng horizon-
tally if needed. If you look closely at the Vi ki ng images, he is facing to the right
by default. If this method determines that the old position is to the right of the
new position, Ole is moving to the left, and his pixels have to be flipped hori-
zontally. If you don’t flip Ole horizontally, he will look like he is trying to do
the moonwalk when you move him to the left. It is a cool effect but not useful
for your Vi ki ng.

Creating the Viking Class

Cocos2D has two built-in functions you will make use of frequently: f1i pX and
f1ipY. These functions flip the pixels of a texture along the x- or y-axis, allowing
you to display a mirror image of your graphics without having to have left- and right-
facing copies of each image for each character. Figure 4.1 shows the effect of f I i pX
on the Vi ki ng texture. This is a really handy feature to have, since it helps reduce the
size of your application, and it keeps you from having to create images for every pos-
sible state.

Figure 4.1 Effects of the flipX function on the Viking texture or graphic

The next section of the Viking.m implementation file covers the changeSt at e
method. As you learned with the Radar Di sh class, the changeSt at e method is used
to transition the character from one state to another and to start the appropriate ani-
mations for each state. Copy the contents of Listing 4.7 into your Viking.m class.

Listing 4.7 Viking.m implementation file (part 2 of 4)

#pragma mark -
- (voi d) changeSt at e: (Character St at es) newSt ate {
[sel f stopAll Actions];
idaction = nil;
id novenent Action = nil;
CGPoi nt newPosi tion;
[sel f setCharacterState: newState];

switch (newState) {
case kStateldle:
if (isCarryingMallet) {

[sel f setDisplayFrane: [[CCSpriteFranmeCache
sharedSprit eFraneCache]
spriteFraneByNane: @sv_mal l et _1.png"]];

} else {

[sel f setDisplayFrame: [[CCSprit eFranmeCache
shar edSpri t eFrameCache]
spriteFraneByNane: @sv_anim 1. png"]];

br eak;

95

96 Chapter 4 Simple Collision Detection and the First Enemy

case kStatewal ki ng:
if (isCarryingMallet) {
action =
[CCAni nat e acti onWt hAni mati on: wal ki nghal | et Ani m
restoreOrigi nal Frane: NJ ;
} else {
action =
[CCAni mat e acti onW t hAni mati on: wal ki ngAni m
restoreOrigi nal Frane: NJ ;

}

br eak;

case kStateCrouching:
if (isCarryingMallet) {
action =
[CCAni nat e acti onW t hAni mati on: crouchi nghal | et Ani m
restoreOriginal Frane: NJ ;
} else {
action =
[CCAni mat e acti onWt hAni nati on: cr ouchi ngAni m
restoreOrigi nal Frane: NJ ;
}

br eak;

case kStateStandi ngUp:
if (isCarryingMallet) {
action =
[CCAni nat e acti onWt hAni nati on: st andi ngUpMal | et Ani m
restoreOrigi nal Frane: NJ ;

} else {
action =
[CCAni nat e acti onWt hAni mati on: st andi ngUpAni m
restoreOrigi nal Frane: NJ ;

}

br eak;

case kSt at eBreat hing:
if (isCarryingMallet) {
action =
[CCAni mat e acti onWt hAni nati on: br eat hi nghal | et Ani m
restoreOrigi nal Frane: YES];
} else {
action =
[CCAni nat e acti onW t hAni mati on: br eat hi ngAni m
restoreQOriginal Frane: YES];

br eak;

Creating the Viking Class

case kStateJunping:
newPosition = ccp(screenSize.width * 0.2f, 0.0f);
if ([self flipX == YES) {
newPosition = ccp(newPosition.x * -1.0f, 0.0f);
}
novenent Acti on = [CCJunpBy acti onW t hDurati on: 0. 5f
posi tion: newPosi tion
hei ght: 160. Of

junps: 1] ;

if (isCarryingMallet) {
/1 Viking Junping aninmation with the Mall et
action = [CCSequence actions:
[CCAni nat e
actionW thAni mation: crouchi ngMal | et Ani m
restoreOriginal Frane: N,
[CCSpawn acti ons:
[CCAni mat e
acti onW t hAni mati on: j unpi nghal | et Ani m
restoreOigi nal Frane: YES],
novenent Act i on,
nill,
[CCAni mat e
actionW thAni mati on: af t er Junpi ngMal | et Ani m
restoreOriginal Frane: N,
nill;
} else {
/1 Viking Junping animation w thout the Mall et
action = [CCSequence acti ons:
[CCAni mat e
acti onW t hAni mat i on: cr ouchi ngAni m
restoreOriginal Frane: N,
[CCSpawn acti ons:
[CCAni mat e
acti onW t hAni mati on: j unpi ngAni m
restoreOrigi nal Frane: YES],
novemnent Acti on,
nill,
[CCAni mat e
acti onWt hAni mati on: af t er Junpi ngAni m
restoreOriginal Franme: NO| ,
nill;
}

br eak;

case kStateAttacking:
if (isCarryingMallet == YES) {

97

98 Chapter 4 Simple Collision Detection and the First Enemy

action = [CCAni nat e
actionWthAni mati on: mal | et PunchAni m
restoreOriginal Frane: YES] ;
} else {
i f (kLeftHook == nyLastPunch) ({
/'l Execute a right hook
nyLast Punch = kRi ght Hook;
action = [CCAni mat e
actionWthAni mation: ri ght PunchAni m
restoreOrigi nal Frane: NJ ;
} else {
/'l Execute a left hook
nyLast Punch = kLeft Hook;
action = [CCAni mat e
actionWt hAni mation: | eftPunchAni m
restoreOrigi nal Frane: NJ ;

}

br eak;

case kSt at eTaki ngDanmage:
sel f.characterHealth = self.characterHealth - 10.0f;
action = [CCAni nmat e
acti onW t hAni mati on: phaser ShockAni m
restoreQrigi nal Frane: YES] ;
br eak;

case kStat eDead:
action = [CCAni nmat e
acti onW t hAni mat i on: deat hAni m
restoreOrigi nal Frane: NJ ;

br eak;
defaul t:
br eak;
}
if (action !=nil) {
[sel f runAction:action];
}

The first part of the changeSt at e method stops any running actions, including
animations. Any running actions would be a part of a previous state of the Vi ki ng
and would no longer be valid. Following the first line, the Vi ki ng state is set to the
new state value, and a swi t ch statement is used to carry out the animations for the
new state. A few items are important to note:

Creating the Viking Class

1. Method variables cannot be declared inside a swi t ch statement, as they would
be out of scope as soon as the code exited the swi t ch statement. Your i d
act i on variable is declared above the swi t ch statement but initialized inside
the swi t ch branches.

2. Most of the states have two animations: one for the Vi ki ng with the Mal | et
and one without. The i sCarryi ngMal | et Boolean instance variable is key in
determining which animation to play.

3. An action in Cocos2D can be made up of other actions in that it can be a com-
pound action. The swi t ch branch taken when the Vi ki ng state is kSt at e-
Junpi ng has a compound action made up of CCSequence, CCAni nat e,
CCSpawn, and CCJunpByY actions. The CCJunpBy action provides the parabolic
movement for Ole the Viking, while the CCAni mat e actions play the crouching,
jumping, and landing animations. The CCSpawn action allows for more than one
action to be started at the same time, in this case the CCJunpBy and CCAni mat e
animation action of Ole jumping. The CCSequence action ties it all together by
making Ole crouch down, then jump, and finally land on his feet in sequence.

4. Taking a closer look at the kSt at eTaki ngDamage swit ch branch, you can see
that after the animation completes, Ole reverts back to the frame that was display-
ing before the animation started. In this state transition, the CCAni mat e action
has the rest oreOri gi nal Frane set to YES. The end effect of r est or e-

Origi nal Frane is that Ole will animate receiving a hit, and then return to
looking as he did before the hit took place.

The first line of Listing 4.7 might be rather odd-looking: #pragma mark. The
pragma mark serves as a formatting guide to Xcode and is not seen by the compiler.
After the words #pragma mark you can place any text you would like displayed in
the Xcode pulldown for this file. If you have just a hyphen (-), Xcode will create a
separate section for that portion of the file. Using pragma mar k can make your code
easier to navigate. Figure 4.2 shows the effects of the pragma mark statements in the
completed Viking.m file.

Figure 4.2 The effect of the pragma mark statements in the Xcode
pulldown menus

99

100 Chapter 4 Simple Collision Detection and the First Enemy

The next section of the Viking.m file covers the updat eSt at eWt hDel t aTi me
and the adj ust edBoundi ngBox methods. Copy the contents of Listing 4.8 into your
Viking.m file immediately following the changeSt at e method.

Listing 4.8 Viking.m implementation file (part 3 of 4)

#pragma mark -
- (voi d)updat eSt at eW t hDel t aTi me: (ccTi ne) del t aTi e
andLi st O GaneObj ects: (CCArray*) | i st Of GaneObj ects {
if (self.characterState == kSt at eDead)
return; // Nothing to do if the Viking is dead

if ((self.characterState == kStateTaki ngDanage) &&
([sel f nunber Of Runni ngActi ons] > 0))
return; // Currently playing the taking danage ani mation

/'l Check for collisions
/1 Change this to keep the object count fromquerying it each tine
CCRect myBoundi ngBox = [sel f adj ust edBoundi ngBox] ;
for (GaneCharacter *character in listO GameQojects) {

/1 This is Oe the Viking hinself

/1 No need to check collision with one's self

if ([character tag] == kVikingSpriteTagVal ue)

continue;

CCRect characterBox = [character adjustedBoundi ngBox];
i f (CGRect | ntersectsRect (nyBoundi ngBox, characterBox)) {
/1 Renove the PhaserBullet fromthe scene
if ([character ganeObject Type] == kEnenyTypePhaser) {
[sel f changeSt at e: kSt at eTaki ngDanage] ;
[character changeStat e: kSt at eDead] ;
} else if ([character ganmeCbjectType] ==
kPower UpTypeMal I et) {
/'l Update the frame to indicate Viking is
/'l carrying the mallet
isCarryingMal I et = YES;
[sel f changeState: kStateldle];
/'l Rermove the Mallet fromthe scene
[character changeSt at e: kSt at eDead] ;
} else if ([character ganeChjectType] ==
kPower UpTypeHeal t h) {
[sel f set CharacterHeal th: 100. 0f];
/'l Renmove the health power-up fromthe scene
[character changeState: kSt at eDead] ;

Creating the Viking Class

[sel f checkAndC anpSpritePosition];

if ((self.characterState == kStateldle) ||
(self.characterState == kSt ateWal ki ng) ||
(sel f.characterState == kStateCrouching) ||
(sel f.characterState == kSt ateStandi ngUp) ||
(self.characterState == kStateBreathing)) {

if (junpButton. active) {
[sel f changeSt at e: kSt at eJunpi ng] ;
} else if (attackButton.active) {
[sel f changeSt at e: kSt at eAt t acki ng] ;
} else if ((joystick.velocity.x == 0.0f) &&
(joystick.velocity.y == 0.0f)) {
if (self.characterState == kStateCrouching)
[sel f changeSt at e: kSt at eSt andi ngUp] ;
} else if (joystick.velocity.y < -0.45f) {
if (self.characterState != kStateCrouching)
[sel f changeSt at e: kSt at eCr ouchi ng] ;
} else if (joystick.velocity.x !=0.0f) { // dpad noving
if (self.characterState != kStateWal ki ng)
[sel f changeSt at e: kSt at eVl ki ng] ;
[sel f appl yJoystick:joystick
forTimeDel ta: del taTi ne] ;

if ([self nunberOf Runni ngActions] == 0) {
/1 Not playing an ani mation
if (self.characterHealth <= 0.0f) {
[sel f changeSt at e: kSt at eDead] ;

} else if (self.characterState == kStateldle) {
m | lisecondsStayingldle = nmllisecondsStayingldle +
del t aTi ne;

if (mllisecondsStayingldl e > kVikingldleTiner) {
[sel f changeSt at e: kSt at eBr eat hi ng] ;
}
} else if ((self.characterState != kStateCrouching) &&
(self.characterState != kStateldle)){
m | lisecondsStayingldl e = 0.0f;
[sel f changeState: kStateldle];

#pragma mark -

- (CGRect) adj ust edBoundi ngBox {
/1 Adjust the bouding box to the size of the sprite
/1 without the transparent space

101

102 Chapter 4 Simple Collision Detection and the First Enemy

CCGRect vi ki ngBoundi ngBox = [sel f boundi ngBox] ;

float xOffset;

fl oat xCropAmount = vi ki ngBoundi ngBox. si ze.wi dth * 0.5482f;
fl oat yCropAmount = vi ki ngBoundi ngBox. si ze. hei ght * 0. 095f;

if ([self flipX] == NO {
/1 Viking is facing to the rigth, back is on the left
xOf f set = vi ki ngBoundi ngBox. si ze.wi dth * 0. 1566f;
} else {
/1 Viking is facing to the left; back is facing right
xOf f set = vi ki ngBoundi ngBox. si ze.wi dth * 0.4217f;
}
vi ki ngBoundi ngBox =
CCRect Make(vi ki ngBoundi ngBox. ori gi n.x + xOf f set,
vi ki ngBoundi ngBox. origin.y,
vi ki ngBoundi ngBox. si ze. wi dth - xCr opAnount,
vi ki ngBoundi ngBox. si ze. hei ght - yCropAnmount);

if (characterState == kStateCrouching) {
/1 Shrink the bounding box to 56% of height
/1 88 pixels on top on iPad
vi ki ngBoundi ngBox = CGRect Make(vi ki ngBoundi ngBox. ori gi n. X,
vi ki ngBoundi ngBox. origin.y,
vi ki ngBoundi ngBox. si ze. wi dt h,
vi ki ngBoundi ngBox. si ze. hei ght * 0. 56f);

}

return vi ki ngBoundi ngBox;

In the same manner as the Radar Di sh updat eSt at eWt hDel t aMet hod worked,
this method also returns immediately if the Vi ki ng is dead. There is no need to
update a dead Vi ki ng because he won’t be going anywhere.

If the Vi ki ng is in the middle of playing, the taking damage animation is played.
This method again short-circuits and returns. The taking damage animation is block-
ing in that the player cannot do anything else while Ole the Viking is being shocked.

If the Vi ki ng is not taking damage or is dead, then the next step is to check what
objects are coming in contact with the Vi ki ng. If there are objects in contact with the
Vi ki ng, he checks to see if they are:

= Phaser: Changes the Viking state to taking damage.
= Mallet power-up: Gives Ole the Viking the mallet, a fearsome weapon.

= Health power-up: Ole’s health is restored back to 100.

After checking for contacts, often called collisions, a quick call is made to the
checkAndd anpSpritePosition method to ensure that the Vi ki ng sprite stays
within the boundaries of the screen.

Creating the Viking Class

The next i f statement block checks the state of the joystick, jump, and attack but-
tons and changes the state of the Vi ki ng to reflect which controls are being pressed.
The i f statement executes only if the Vi ki ng is not currently carrying out a blocking
animation, such as jumping.

Lastly the Vi ki ng class reaches a section of the updat eSt at eWt hDel t aTi ne
method that handles what happens when there are no animations currently running.
Cocos2D has a convenience method on CCNodes that reports back the number of
actions running against a particular CCNode object. If you recall from the beginning
of this chapter, all animations have to be run by a CCAni mat e action. Once the ani-
mation for a state completes, the number & Runni ngAct i ons will return zero for the
Vi ki ng, and this block of code will reset the Vi ki ng’s state.

If the health is zero or less, the Vi ki ng will move into the dead state. Otherwise, if
Vi ki ng is idle, a counter is incremented indicating how many seconds the player has
been idle. Once that counter reaches a set limit, the Vi ki ng will play a heavy breath-
ing animation. Finally, if the Viking is not already idle or crouching, he will move
back into the idle state.

Note
The breathing animation is just a little bonus move to try to get the player to focus back

on the game. If the joystick has been idle for more than 3 seconds, the Vi ki ng will let
out a few deep breaths as if to say “Come on! | have aliens to fight here, let’s get going!”

After the updat eSt at eWt hDel t aTi me method, there is the adj ust edBoundi ng-
Box method you declared inside the GameQObj ect class. In Chapter 3, “Introduction
to Cocos2D Animations and Actions,” Figure 3.6 illustrated the transparent space in
the Vi ki ng texture between the actual Vi ki ng and the edges of the image/texture.
This method compensates for the transparent pixels by returning an adjusted bound-
ing box that does not include the transparent pixels. The f| i pX parameter is used to
determine which side the Vi Ki ng is facing, as fewer pixels are trimmed oft the back of
the Vi ki ng image than the front.

The last part of the Viking.m implementation file sets up the animations inside the
i nit Ani mati ons method and the instance variables inside the i nit method. Once
more, copy the contents of Listing 4.9 into your Viking.m implementation file immedi-
ately following the end of the adj ust edBoundi ngBox method.

Listing 4.9 Viking.m implementation file (part 4 of 4)

#pragma mark -
-(void)initAni mations {

[sel f setBreathingAnim[self |oadPlistForAnimati onWt hNane:
@ br eat hi ngAni ni' andd assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setBreathingMalletAnim[self |oadPlistForAnimati onWthNane:
@ br eat hi ngMal | et Ani nf' andd assNane: NSStri ngFronCl ass([sel f class])]];

103

104

Chapter 4 Simple Collision Detection and the First Enemy

[sel f setWal ki ngAni m [sel f | oadPlistForAni mati onW t hNane:
@ wal ki ngAni nt andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setWal ki ngMal | et Ani m[sel f | oadPlistForAni mati onW t hNane:
@wal ki ngMal | et Ani i andd assNane: NSStri ngFronCl ass([sel f class])]];

[sel f set Crouchi ngAni m [sel f | oadPli st For Ani mati onW t hNane:
@ crouchi ngAni nf* andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setCrouchinghal |l et Ani m[self |oadPlistForAninmati onWthNane:
@ crouchi nghal | et Ani i andCl assName: NSSt ri ngFronC ass([sel f class])]];

[sel f set Standi ngUpAni m [sel f | oadPli st For Ani mati onW t hNane:
@ st andi ngUpAni M andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f set Standi ngUpMal | et Ani m[sel f | oadPli st ForAni mati onW t hNane:
@ st andi ngUpMal | et Ani nf* andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setJunpi ngAni m[self | oadPlistForAni mati onW t hNane:
@ j unpi ngAni nt andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setJunpingMal | et Ani m[sel f | oadPlistForAni mati onW t hNane:
@) unpi ngMal | et Ani i andd assNane: NSStri ngFronCl ass([sel f class])]];

[sel f set AfterJunpi ngAni m[sel f | oadPli st ForAni mati onW t hNane:
@ af t er Junpi ngAni nf* andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setAfterJunpingMal | et Anim[self |oadPlistForAni mati onW thNane:
@ af t er Junpi nghal | et Ani M andd assName: NSSt ri ngFronCl ass([sel f class])]];

/'l Punches

[sel f setRi ght PunchAni m[self |oadPli stForAninati onWt hNane:
@right PunchAni M andC assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setlLeftPunchAni m[self |oadPlistForAnimati onWthNane:
@1 ef t PunchAni m" andCl assNane: NSSt ri ngFronC ass([sel f class])]];

[sel f setMalletPunchAni m[sel f |oadPlistForAni mati onW t hNane:
@ nal | et PunchAni nf andC assNane: NSSt ri ngFronCl ass([sel f class])]];

/| Taki ng Damage and Death

[sel f set Phaser ShockAni m [sel f | oadPli st For Ani mati onW t hNane:
@ phaser ShockAni nf andC assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setDeathAnim[self |oadPlistForAni mati onW thNane:
@ vi ki ngDeat hAni nt* andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

}

Final Steps

#pragma mark -
-(id) init {
if((self=[super init])) {
joystick = nil;
jumpButton = nil;
attackButton = nil;
sel f. ganebj ect Type = kVi ki ngType;
nmyLast Punch = kRi ght Hook;
m | lisecondsStayingldl e = 0.0f;
isCarryinghval l et = NO
[sel f initAnimtions];

}

return self;

}
@nd

The i nit Ani mat i on method, while quite long, is very basic in that it only initial-
izes all of the Vi ki ng animations based on the display frames already loaded from the
scenelatlas.plist file in the Ganepl ayLayer class. The i nit method sets up the instance
variables to their starting values.

Final Steps

The final step for this chapter is to make some changes to the Ganmepl ayLayer class
so it loads the Radar Di sh and Vi ki ng onto the layer. Once these changes are made
to the Gamepl ayLayer files, you will have a working and playable version of Space
Viking in your hands.

The GameplayLayer Class

The Ganepl ayLayer class has a few changes to the header file. There is an additional
i mport for the CommonProtocols.h file and the vi ki ngSprit e has been removed;
instead there is a CCSprit eBat chNode called sceneSprit eBat chNode. Move your
GameplayLayer.h and GameplayLayer.m files into the Layers Group folder in Xcode and
ensure that your GameplayLayer.h header file has the same contents as Listing 4.10.

Listing 4.10 GameplayLayer.h header file

/'l Ganepl ayLayer. h
/1 SpaceVi ki ng

#i mport <Foundat i on/ Foundati on. h>
#i mport "cocos2d. h"
#i mport " SneakyJoysti ck. h"

105

106 Chapter 4 Simple Collision Detection and the First Enemy

#i nport " SneakyButton.h"

#i nport " SneakyButt onSki nnedBase. h"
#i mport " SneakyJoysti ckSki nnedBase. h"
#i nport "Constants. h"

#i nport " ConmonPr ot ocol s. h"

#i nport "Radar Di sh. h"

#i mport " Vi ki ng. h"

@nterface Ganepl ayLayer : CClLayer <Ganepl aylLayerDel egate> {
CCSprite *vikingSprite;
SneakyJoystick *leftJoystick;
SneakyBut ton *j unpButt on;
SneakyButton *attackButton;
CCSpri t eBat chNode *sceneSpriteBat chNode;

@nd

The i nitJoystickAndButtons method of Ganepl ayLayer stays the same as
in Chapter 3. The rest of the Ganepl ayLayer class requires changes to use the new
CCSprit eBat chNode instance. Listings 4.11, 4.12, 4.13, and 4.14 cover the code for
GameplayLayer.m. Replace the code in your GameplayLayer.m implementation file with
the code in the next four listings.

Listing 4.11 GameplayLayer.m implementation file (part 1 of 4)

/'l Gamepl ayLayer. m
/1 SpaceVi ki ng

#i nport " Ganepl ayLayer. h"
@ npl enent ati on Ganepl ayLayer
- (void) dealloc {
[l eftJoystick rel ease];
[junmpButton rel ease];
[attackButton rel ease];
[super deal | oc];

}

-(void)initJoystickAndButtons {
CCSi ze screenSize = [CCDirector sharedDirector].w nSize; /11
/12

CGRect joystickBaseDi nensi ons = CGRect Make(0, 0, 128.0f, 128.0f);
CCGRect junpButtonDi nensions = CGRect Make(0, 0, 64.0f, 64.0f);
CGRect attackButtonDi mensi ons = CGRect Make(0, 0, 64.0f, 64.0f);
/13

CGPoi nt j oysti ckBasePosition;

Final Steps

CGPoi nt j unpButtonPosi tion;

CGPoi nt attackButtonPosition;

/1 4

if (U _USER | NTERFACE | DIOM) == Ul Userlnterfacel di onPad) {
/1l The device is an iPad running i Phone 3.2 or later.
CCLOG(@ Posi tioning Joystick and Buttons for iPad");
j oystickBasePosition = ccp(screenSi ze. wi dt h*0. 0625f,

screenSi ze. hei ght *0. 052f) ;

junmpBut t onPosi tion = ccp(screenSi ze. wi dt h*0. 946f,
screenSi ze. hei ght *0. 052f) ;

attackButtonPosition = ccp(screenSize.w dt h*0. 947f,
screenSi ze. hei ght *0. 169f) ;
} else {
/1 The device is an iPhone or iPod touch.
CCLOG @ Posi tioning Joystick and Buttons for iPhone");

j oystickBasePosition = ccp(screenSi ze. wi dt h*0. 07f,
screenSi ze. hei ght *0. 11f) ;

junmpBut t onPosi tion = ccp(screenSi ze. wi dt h*0. 93f,
screenSi ze. hei ght *0. 11f) ;

attackButtonPosition = ccp(screenSize.w dt h*0. 93f,
screenSi ze. hei ght *0. 35f) ;

SneakyJoyst i ckSki nnedBase *j oystickBase =

[[[SneakyJoysti ckSki nnedBase al loc] init] autorel ease];

joystickBase. position = joystickBasePosition;

j oystickBase. backgroundSprite =

[CCSprite spriteWthFile: @dpadDown. png"];

joystickBase.thunmbSprite =

[CCSprite spriteWthFile: @joystickDown. png"];

joystickBase.joystick = [[SneakyJoystick alloc]
initWthRect:joystickBaseDi nmensions];

| eftJoystick = [joystickBase.joystick retain];

[sel f addChil d:joystickBase];

SneakyBut t onSki nnedBase *j unpButtonBase =

[[[SneakyButtonSki nnedBase al loc] init] autorel ease];
j unpBut t onBase. position = junpButtonPosition;

j unmpBut t onBase. defaul t Sprite =

[CCSprite spriteWthFile: @junpUp. png"];

j umpBut t onBase. activatedSprite =

[CCSprite spriteWthFile: @junmpDown. png"];

107

108 Chapter 4 Simple Collision Detection and the First Enemy

j unpBut t onBase. pressSprite =

[CCSprite spriteWthFile: @junmpDown. png"];

j unpBut t onBase. button = [[SneakyButton all oc]
initWthRect:junpButtonDi nensions];

jumpButton = [junpButtonBase. button retain];

jumpBut t on. i sToggl eabl e = NG

[sel f addChil d:junpButtonBase];

SneakyBut t onSki nnedBase *attackButtonBase = [[[SneakyButtonSki nnedBase
alloc] init] autorel ease];
at t ackBut t onBase. posi tion = attackButtonPosition;
attackButtonBase. defaul tSprite = [CCSprite spriteWthFile:
@ handUp. png"];
attackButtonBase. activatedSprite = [CCSprite
spriteWthFile: @handDown. png"];
attackButtonBase. pressSprite = [CCSprite spriteWthFile:
@ handDown. png"];
att ackBut t onBase. button = [[SneakyButton alloc] initWthRect:
at t ackBut t onDi mensi ons] ;
attackButton = [attackButtonBase. button retain];
attackButton.isToggl eabl e = NG
[sel f addChil d: attackButtonBase];

The i nit Joysti ck method remains unchanged from previous chapters. The
directional pad (DPad) as well as the jump and attack buttons are set up and added to
the Gamepl ayLayer. The high z values ensure that the joystick controls appear on
top of all the other graphical elements in the Ganepl ayLayer.

Listing 4.12 GameplayLayer.m implementation file (part 2 of 4)

#pragma mark —

#pragme mark Update Met hod

-(void) update: (ccTine)deltaTime {
CCArray *listOf GameQhj ects =

[sceneSpriteBat chNode children]; /11

for (GaneCharacter *tenpChar in |istO Gameojects) { Il 2
[tempChar updat eStat eWthDel taTi ne: del taTi me andLi st Of GaneObj ect s:

I'istOf Gameoj ects]; /1 3

The updat e method is the run loop for the entire Ganmepl ayLayer. The
CCSprit eBat chNode object contains a list of all of the CCSpr it es for which it will
handle the rendering, batching their OpenGL ES draw calls. The updat e method
does the following:

Final Steps

1. Gets the list of all of the children CCSprit es rendered by the CCSprit eBat ch-
Node. In Space Viking this is a list of all of the GameChar act er s, including the
Vi ki ng and his enemies.

2. Iterates through each of the Game Char act er s, calls their updat eSt at eW't h-
Del t aTi me method, and passes a pointer to the list of all Game Char acters. If
you look back at the updat eSt at eWt hDel t aTi me code in Viking.m, you can
see the list of Game Char act er s used to check for power-ups and phaser blasts.
Power-ups and aliens with phaser beams are covered in the next chapter.

3. Calls the updat eSt at eWt hDel t aTi me method on each of the Gane
Char act er s. This call allows for all of the characters to update their individual
states to determine if they are colliding with any other objects in the game.

The next section of code in GameplayLayer.m (Listing 4.13) contains the methods
for creating the enemies and a placeholder for creating the phaser blast.

Listing 4.13 GameplayLayer.m implementation file (part 3 of 4)

#pragma mark -

-(voi d)createj ect O Type: (Ganme(hoj ect Type) obj ect Type
withHeal th: (int)initial Halth
at Locati on: (CGPoi nt) spawnLocati on
wi t hZzVal ue: (i nt)zZVal ue {

if (objectType == kEnenyTypeRadarDi sh) {
CCLOG(@ Creating the Radar Eneny");
Radar Di sh *radarDi sh = [[RadarDi sh alloc] initWthSpriteFraneNane:
@radar _1. png"];
[radarDi sh set CharacterHeal th:initial Halth];
[radar Di sh set Position: spawnLocati on];
[sceneSpri t eBat chNode addChil d: radar Di sh
z: ZVal ue
t ag: kRadar Di shTagVal ue] ;
[radarDi sh rel ease];

}

-(voi d) creat ePhaser Wt hDi recti on: (PhaserDi recti on) phaserDirection
andPosi ti on: (CGPoi nt) spawnPosi tion {

CCLOG(@ Pl acehol der for Chapter 5, see bel ow');
return;

The creat eObj ect O Ty pe method sets up the Radar Di sh object using the
CCsprit eBat chNode and adds it to the layer. This method is expanded upon in

109

110 Chapter 4 Simple Collision Detection and the First Enemy

Chapter 5, “More Actions, Effects, and Cocos2D Scheduler,” to include the other
enemies in the Space Viking world.

The last code listing for GameplayLayer.m covers the i nit method. Copy the con-
tents of Listing 4.14 into your GameplayLayer.m file.

Listing 4.14 GameplayLayer.m implementation file (part 4 of 4)

-(id)init {
self = [super init];
if (self I'=nil) {
CCSi ze screenSize = [CCDirector sharedDirector].w nSize;
/1 enabl e touches
sel f.isTouchEnabl ed = YES;

srandon(time(NULL)); // Seeds the random nunmber generator

if (U _USER | NTERFACE | DIOM) == U Userlnterfaceldi onPad) {
[[CCspriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @scenelatlas.plist"]; /11
sceneSprit eBat chNode =
[CCSprit eBat chNode bat chNodeW't hFile: @scenelatl as. png"]; // 2

} else {
[[CCSpriteFrameCache sharedSpriteFranmeCache]
addSpriteFramesWthFil e: @scenelat!| asi Phone. plist"]; /11

sceneSpriteBat chNode =
[CCSpri t eBat chNode

bat chNodeW t hFi | e: @ scenelat| asi Phone. png"]; /12

}
[sel f addChil d: sceneSpriteBat chNode z:0]; /13
[sel f initJoystickAndButtons]; Il 4

Viking *viking = [[Viking alloc]
initWthSpriteFranme: [[CCSpriteFraneCache

sharedSprit eFraneCache]

spriteFrameByNanme: @sv_ani m 1. png"]]; /15
[viking setJoystick:|eftJoystick];
[viking setJunpButton:junpButton];
[viking setAttackButton: attackButton];
[viking setPosition:ccp(screenSize.wi dth * 0.35f,

screenSi ze. hei ght * 0.14f)];

[vi ki ng set CharacterHeal t h: 100] ;

[sceneSpri t eBat chNode
addChi | d: vi ki ng
z: kVi ki ngSpritezVal ue
tag: kVi ki ngSpriteTagVal ue]; /1 6

}

@nd

Final Steps
[sel f createObject O Type: kEnenyTypeRadar Di sh
wi t hHeal t h: 100
at Locati on: ccp(screenSize.wi dth * 0.878f,
screenSi ze. hei ght * 0. 13f)
wi t hZVval ue: 10] ; 17
[sel f schedul eUpdat e] ; /Il 8

}

return self;

Some key lines have been added since Chapter 2; they support the use of the
CCSpri t eBat chNode class and texture atlas:

1.

Adds all of the frame dimensions specified in scenelatlas.plist to the Cocos2D
Sprite Frame Cache. This will allow any CCSprit e to be created by referencing
one of the frames/images in the texture atlas. This line is also key in loading up
the animations, since they reference spriteFranmes loaded by the CCSprit e-
FraneCache here.

. Initializes the CCSprit eBat chNode with the texture atlas image. The image

scenelatlas.png becomes the master texture used by all of the CCSprit es under
the CCSprit eBat chNode. In Space Viking these are all of the GaneCbj ect s in
the game, from the Vi ki ng to the Mal | et power-up and the enemies.

Adds the CCSprit eBat chNode to the layer so it and all of its children (the
Gamebj ect s) are rendered onscreen.

4. Initializes the Joystick DPad and buttons.

5. Creates the Vi ki ng character using the already cached sprite frame of the

Vi ki ng standing.

Adds the Vi ki ng to the CCSprit eBat chNode. The CCSprit eBat chNode
does all of the rendering for the GameQbj ect s. Therefore, the objects have

to be added to the CCSprit eBat chNode and not to the layer. It is important

to remember that the objects drawn from the texture atlas are added to the
CCSpri t eBat chNode and only the CCSprit eBat chNode is added to the
CCLayer.

Adds the Radar D sh to the CCSprit eBat chNode. The Radar Di sh health is
set to 100 and the location as 87% of the screen width to the right (900 pixels
from the left of the screen on the iPad) and 13% of the screen height (100 pixels
from the bottom).

The percentages are used instead of hard point values so that the same game will
work on the iPhone, iPhone 4, and iPad. Although the screen width and height

111

112 Chapter 4 Simple Collision Detection and the First Enemy

ratios between the iPhones and iPad are a little different, they are close enough
to work for the placement of objects in Space Viking.

8. Sets up a scheduler call that will fire the updat e method in GameplayLayer.m on
every frame.

Now that you have added code to handle the Radar Di sh, the Vi ki ng, and the
texture atlas, it is time to test out Space Viking. If you select Run from Xcode, you
should see the Space Viking game in the iPad Simulator, as shown in Figure 4.3.

Figure 4.3 Space Viking with the RadarDish in place

Summary

If you made it through, great work—you’ve gotten a simple Cocos2D game working,
and you’ve learned a lot in the process! You learned about texture atlases, actions, and
animations. You utilized the texture atlas you created in the previous chapter to ren-
der all of the GameQbj ect s in Space Viking. You created the enemy Radar Di sh and
gave Ole the power to go over there and destroy it to bits. In the process you learned
how to implement a simple state machine brain (AI) for the Radar Di sh and for the
Vi ki ng. You have also set up the groundwork for Space Viking to have multiple ene-
mies onscreen at once, each with its own Al state machines. The CCArray of objects
you pass in Ganmepl ayLayer to each character on the updat eSt at eWt hDel t aTi me

Challenges

call will allow for the enemy objects to send messages to each other and even coordi-
nate attacks against the Vi ki ng.
Since you just wrote so much code, you might want to take a few moments
to examine the code in more detail and make sure you understand how it all fits
together. It’s important to make sure you understand how things work so far, since
you’ll be building more on top of what you’ve built here in the rest of the chapters.
In the next chapter, you will dive deeper into Cocos2D actions, learn to use some
of the built-in effects, and add more enemies to Space Viking. When you are ready,
turn the page and learn how to add a mean alien robot that shoots phaser beams.

Challenges

1. Try changing the Radar Di sh animation delay on the t aki ngAHi t Ani mto
1. 0f seconds instead of 0. 2f in the RadarDish.plist file. What happens when you
click Run and Ole attacks the Radar Di sh?

2. How would you add another instance of the Radar Di sh on the left side of the
screen facing in the opposite direction?

Hint
You can use the CCH i pX action to flip the Radar Di sh pixels horizontally.

3. How would you detect when the Radar Di sh object is destroyed and alert the
player that the level is complete?

Hint
You can extract the Radar Di sh object from the sceneSprit eBat chNode by using
the unique t ag assigned to the Radar Di sh.

113

This page intentionally left blank

Part I

More Enemies and
More Fun

Learn how to create more complex enemies for Ole to battle and in the
process learn about Cocos2D actions and effects. Finish up with a live,
onscreen debugging system using Cocos2D text capabilities.

= Chapter 5: “More Actions, Effects, and Cocos2D Scheduler”
= Chapter 6: “Text, Fonts, and the Written Word”

This page intentionally left blank

5

More Actions, Effects, and
Cocos2D Scheduler

In Chapters 3 and 4 you created the foundation for the Space Viking game, added Ole the
Viking and a radar dish to the scene, and wired up all of the controls. In this chapter you will add
an enemy robot, the massive space cargo ship, and several power-ups to help Ole. You will learn
how to create a complex enemy that can chase after and attack the player. You will also learn
about the Cocos2D scheduler and how to use the Cocos2D built-in effects.

Terminology Review
Before you begin with Chapter 5, there are a few terms worth reviewing.

= Protocols in Objective-C
Protocols in Objective-C are a way to declare methods, which are implemented
by any class conforming to the protocol. Using protocols can help you have a
loose coupling between your classes, where they know as little about each
other as possible, allowing them to be interchanged more easily. If you are com-
ing from another language such as Java, protocols are similar to interfaces. In
SpaceVi ki ng the Ganepl ayLayer adheres to the Gamepl ayLayer Del -
egat e protocol, which defines two methods. The EnenmyRobot uses one of
these methods to create a Phaser Bul | et, and the SpaceCar goShi p uses
the other method to create the power-ups. By using a protocol, the only thing
that the SpaceCar goShi p and the EnemyRobot need to know about the
Gamepl ayLayer is that it conforms to the protocol, and not all of the other
classes that Ganepl ayLayer imports.

= Loose Coupling
Loose coupling is when two classes only know what public methods each other
respond to and not the internal details or actual instance of the classes. Two
classes that are loosely coupled can be replaced as long as the methods they
expect to call on each other exist in the new classes. In SpaceVi ki ng you
will use loose coupling between the EnemyRobot and the Garmepl ayLayer.
If at a later point you were to replace the Ganepl ayLayer class with another

118 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

CCLayer, you would just need to ensure that it too responds to the one method
required by the EnemyRobot , defined in the Ganepl ayLayer Del egat e
protocol.

= Delegates
Delegates are classes that carry out specific functionality on behalf of other
classes. In SpaceVi ki ng the Ganepl ayLayer will act as a delegate for
the SpaceCar goShi p and EnenmyRobot . The Ganmepl ayLayer will cre-
ate power-ups and Phaser Bul | et s on behalf of the SpaceCar goShi p and
EnenyRobot classes.

Power-Ups

When Ole first appears in Space Viking, he is armed only with his fists. While he does
pack a powerful punch, Ole will still need the help of his trusty mallet to inflict dam-
age more quickly on the enemy Radar Di sh and robot. As you might have guessed,
the mallet is a power-up. The power-ups are dropped from the SpaceCar goShi p, but
before you can code the ship, you have to add the power-ups and their logic to your
Space Viking game. With the Spacel/iking project opened in Xcode, you can start by
creating the Mal | et and Heal t h power-up classes.

Mallet Power-Up

It is good practice to continue the organization in your Spacel/iking Xcode project that
you started in Chapter 4, “Simple Collision Detection and First Enemy.” You will
create the Mal | et and Heal t h classes inside of the PowerUps group you previously
created.

To create the Mal | et class, first select the PowerUps group.

1. Right-click and select New File.

2. Select the Cocoa Touch category under iOS and the Objective-C class type
and click Next.

3. For the Subclass field, enter GameObject and click Next.

4. Enter Mallet.m for the filename and click Save.

After Xcode creates the header and implementation files for you, replace the con-
tents of the Mallet.h file with the code in Listing 5.1.

Listing 5.1 Mallet.h header file

/1 Mallet.h
/'l SpaceVi ki ng
/1

#i mport <Foundati on/ Foundati on. h>
#i nport " Ganme(bj ect. h"

Power-Ups

@nterface Mallet : GanmeQhject {
CCAni mation *mal | et Ani m
}
@roperty (nonatomic, retain) CCAnimation *mall et Anim
@nd

The power-up objects in Space Viking are very simple, consisting of nothing more
than a simple animation. As you can see in Listing 5.1, the Mal | et object inher-
its from GameQbj ect and contains a single animation stored in the mal | et Ani m
instance variable. The Mal | et implementation is equally short: switch to the Mallet.m
implementation file and replace the contents with the code in Listing 5.2.

Listing 5.2 Mallet.m implementation file

/1 Mallet.m
/1 SpaceVi ki ng
/1

#inport "Mallet.h"
@ npl enent ation Mall et
@ynt hesi ze mal | et Ani m

- (void) dealloc {
[mal | et Ani mrel ease];
[super deal | oc];

- (voi d) changeSt at e: (Charact er St at es) newSt ate {
if (newState == kStateSpawni ng) {
id action = [CCRepeat Forever acti onWthAction:
[CCAni mat e acti onWthAni mati on: mal | et Ani m
restoreOriginal Frane: NO];
[sel f runAction:action];
} else {
[self setVisible:NJ; // Picked up
[sel f renmoveFronPar ent AndCl eanup: YES] ;

-(voi d)updat eSt at eW t hDel t aTi ne: (ccTi ne) del t aTi ne
andLi st Of Ganebj ects: (CCArray*) | i st Of GameObj ects {

fl oat groundHei ght = screenSi ze. hei ght * 0. 065f;

if ([self position].y > groundHei ght)
[sel f setPosition:ccp([self position].x,
[self position].y - 5.0f)];

119

120 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

-(void)initAnimtions {

[sel f setMalletAnim
[sel f | oadPlistForAni mati onW t hNanme: @ nal | et Ani nt'
andC assNane: NSStri ngFronCl ass([sel f class])]];

}
-(id) init
{
if((self=[super init]))
{
screenSi ze = [CCDi rector sharedDirector].w nSize;
ganeObj ect Type = kPower UpTypeMal | et ;
[sel f initAninations];
[sel f changeSt at e: kSt at eSpawni ng] ;
}
return self;
}
@nd

The Mal | et is initialized by first calling i nit Ani mations and then setting its
state to kSt at eSpawni ng. The i ni t Ani mat i ons method loads the mal | et Ani m
animation based on the animation frames listed in Mallet.plist. The changeSt at e
method then sets up a CCRepeat For ever animation of the mallet spinning around.

If look closely in the else block in the changeSt at e method, you can see that
transitioning to any other state will cause the Mal | et object to remove itself from
the game. The Viking character will use this to signal to the Mal | et that it has been
picked up and that it should disappear.

Tip
If you have any animations you need to repeat, the CCRepeat and CCRepeat For ever

actions are what you should use. It frees you from having to restart those animations
each time they finish.

The other power-up in this scene is the Heal t h power-up. The next section covers
the steps needed to add it to Space Viking.

Health Power-Up

The Heal t h power-up comes in the form of a sandwich, which Ole can consume,
restoring his health to 100%. It may seem odd to have a sandwich fall from a space
cargo ship on an alien planet, but hey, aliens have to eat, too. So go ahead and create a
new class to represent the Heal t h power-up using the following steps:

In Xcode, right-click on the PowerUps folder and select New File.

1. Select the Cocoa Touch category under 10S and the Objective-C class type
and click Next.

2. For the Subclass field, enter GameObject and click Next.

Power-Ups

3. Enter Health.m for the filename and ensure that the “Also create Health.h”
checkbox is selected. Click Finish.

Replace the contents of the Health.h header file with the code in Listing 5.3.

Listing 5.3 Health.h header file

/1 Health.h

/'l SpaceViki ng

/1

#i nport <Foundati on/ Foundati on. h>
#i mport " GanmeObj ect . h"

@nterface Health : Game(bj ect {
CCAni mati on *heal t hAni m
}
@roperty (nonatomc, retain) CCAni mation *heal t hAnim
@nd

Open the Health.m implementation file and replace the code with the contents of
Listing 5.4.

Listing 5.4 Health.m implementation file

/1 Health.m

/'l SpaceVi ki ng

/1

#i mport "Heal th. h"

@ npl enentation Health
@ynt hesi ze heal t hAni m

-(void) dealloc {
[heal thAni m rel ease] ;
[super deall oc];

}

-(voi d) changeSt at e: (Character St ates) newSt ate {
if (newState == kStateSpawni ng) {
id action = [CCRepeat Forever actionWthAction:
[CCAni mat e acti onWt hAni mati on: heal t hAni m
restoreOriginal Frame: NO];
[sel f runAction:action];
} else {
[self setVisible:NJQ;// Picked up
[sel f renmoveFronPar ent AndCl eanup: YES] ;

121

122

Chapter 5 More Actions, Effects, and Cocos2D Scheduler

-(voi d)updateSt at eW t hDel t aTi ne: (ccTi ne) del t aTi e
andLi st Of GaneObj ects: (CCArray*) i st Of GameChj ects {

float groundHei ght = screenSize. height * 0.065f;

if ([self position].y > groundHei ght)
[sel f setPosition:ccp([self position].x,
[self position].y - 5.0f)];
}

-(void)initAni mations {
[sel f setHealthAnim
[sel f | oadPlistForAni mati onW t hNanme: @ heal t hAni nt'
andd assNane: NSStri ngFronCl ass([sel f class])]];

}
-(id) init
{
if((self=[super init]))
{
screenSi ze = [CCDirector sharedDirector].w nSi ze;
[sel f initAnimtions];
[sel f changeSt at e: kSt at eSpawni ng] ;
ganmeObj ect Type = kPower UpTypeHeal t h;
}
return self;
}
@nd

The Heal t h power-up is identical to the Mal | et power-up except for the anima-
tion that is repeated while the power-up is onscreen. The gameCbj ect Ty pe is set in
the i nit method of both power-ups and is the variable the Viking will use to detect
and pick up the power-ups. Now that you have both power-ups created, you need to
add a way to get them in the game, which brings you to the SpaceCar goShi p.

Space Cargo Ship

The SpaceCar goShi p is a massive freight vehicle that travels to and from the alien

planet. The SpaceCar goShi p travels back and forth on the screen, getting closer on
each pass. When it is closest to the Vi ki ng, it drops a power-up. The SpaceCar go-
Shi p is an example of how you can add a background animation that interacts with

the game. To create the SpaceCar goShi p:

1. In Xcode, right-click on the GameObjects folder and select New File.

2. Select the Cocoa Touch category under 1OS and the Objective-C class type
and click Next.

3. For the Subclass field, enter GameObject and click Next.
4. Enter SpaceCargoShip.m for the filename and click Save.

Power-Ups

Replace the contents of the SpaceCargoShip.h header file with the code in
Listing 5.5.

Listing 5.5 SpaceCargoShip.h header file

/1 SpaceCar goShip. h

/'l SpaceVi ki ng

/1

#i mport <Foundat i on/ Foundati on. h>
#i nport " GanmeObj ect. h"

@nterface SpaceCargoShip : GaneObject {
BOOL hasDr oppedMal | et ;
id <Ganepl ayLayer Del egat e> del egat e;
}
@roperty (nonatomic,assign) id <Ganepl ayLayer Del egat e> del egat €;

@nd

The SpaceCar goShi p does not contain any animations; instead it uses a set of
CCMoves and CCScal e actions to achieve the motion effects. The SpaceCar goShi p
has an instance variable to keep track if it has already dropped the Mal | et and an
object reference back to the Gamepl ayLayer Del egat e. The delegate instance vari-
able is the link from the SpaceCar goShi p back to the ganepl ayLayer, allowing the
ship to ask the Ganmepl ayLayer to create a power-up.

Having the SpaceCar goShi p only know about the delegate frees it from having a tight
coupling with the Ganepl ayLayer class. In fact, you could replace the Ganepl ayLayer
class with any other class that implements the Gamepl ayLayer Del egat e protocol.

The next step is to set up the SpaceCar goShi p implementation file. Open the
SpaceCargoShip.m implementation file and replace the code with the contents of
Listing 5.6.

Listing 5.6 SpaceCargoShip.m implementation file

/'l SpaceCar goShi p. m

/'l SpaceVi ki ng

/1

#i nport " SpaceCar goShi p. h"

@ npl enent ati on SpaceCar goShi p
@ynt hesi ze del egat e;

-(voi d)dropCargo {
CGPoi nt cargoDropPosition = ccp(screenSi ze. wi dth/ 2,
screenSi ze. hei ght) ;
if (hasDroppedMal l et == NO {
CCLOGY @ SpaceCargoShip --> Mall et Powerup was created!");

123

124 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

hasDr oppedMal | et = YES;
[del egate createject Of Type: kPower UpTypeMal | et w t hHeal t h: 0. Of
at Locati on: car goDr opPosi ti on w thzVal ue: 50] ;
} else {
CCLOY @ SpaceCargoShip --> Health Powerup was created!");
[del egat e creat eObj ect O Type: kPower UpTypeHeal t h wi t hHeal t h: 0. Of
at Locati on: car goDr opPosi ti on withzVal ue: 50];

-(id) init
{
if((self=[super init]))
{
CCLOG @ SpaceCargosShip init");
hasDr oppedMal | et = NO
float shipHeight = screenSize. hei ght * 0. 71f;
CGPoi nt positionl = ccp(screenSize.wi dth * -0.48f, shipHeight);
CGPoi nt position2 = ccp(screenSi ze.width * 2.0f, shipHeight);
CGPoi nt position3 = ccp(position2.x * -1.0f, shipHeight);
CGPoi nt of f Screen = ccp(screenSi ze.wi dth * -1.0f,
screenSi ze. hei ght * -1.0f);

id action = [CCRepeat Forever acti onWthAction:
[CCSequence acti ons:
[CCDel ayTi me acti onWthbDuration:2.0f],
[CCVvbveTo actionWthDuration: 0. 01f
posi tion: positionl],
[CCScal eTo acti onWthDuration:0.01f scal e:0.5f],
[CCFli pX actionWthFlipX: YES],
[CCMoveTo actionWthDuration: 8. 5f
position: position2],
[CCScal eTo actionWthbDuration:0.1f scale:1.0f],
[CCFli pX actionWthFlipX NJ,
[CCMbveTo actionWthDuration:7.5
position: position3],
[CCScal eTo acti onWthDuration:0.1f scale:2.0f],
[CCFIi pX actionWthFlipX: YES],
[CCVvbveTo actionWthDuration: 6. 5f
posi tion: position2],
[CCFli pX actionWthFlipX NJ,
[CCScal eTo actionWthDuration:0.1f scale:2.0f],
[CCMoveTo actionWthDuration:5.5
posi tion: position3],
[CCFlI'i pX actionWthFlipX: YES],
[CCScal eTo actionWthDuration:0.1f scale:4.0f],
[CCMbveTo actionWthDuration: 4. 5f
position: position2],

Enemy Robot

[CCCal | Func actionWthTarget:
sel f sel ector: @el ector(dropCargo)],
[CCVbveTo actionWthDuration: 0. Of
posi tion: of f Screen],
nilj
I

[sel f runAction:action];

}

return self;

}

@nd

The dr opCar go method of the space cargo ship gets called when the ship is clos-
est to the viewer. This method checks to see if the Mal | et has been dropped; if not,
it calls on the Ganepl ayDel egat e to drop the Mal | et . If the Mal | et has been
dropped, it asks for the Heal t h power-up to be dropped. This one method call is
what sets in motion the code in Gamepl ayLayer to create and add the power-ups to
the game.

The i nit method consists of a long chain of actions wrapped around a CCRepeat -
For ever. If you take a close look at the actions, you can see that there are CCMoveTo,
CCH i pX, and CCScal eTo actions wrapped inside a CCSequence action. The
CCSequence action is in turn wrapped inside a CCRepeat For ever.

You can use this same setup for background animations in your games, where you
script the animations as a series of nested CCAct i ons. To keep the ship from appear-
ing too often, a CCDel ayAct i on is called on the beginning of the sequence, pausing
the action sequence before it starts, and on every repeat.

At this point you have added the power-ups and the SpaceCar goShi p to drop
those power-ups on the screen. The next step is to create the EnemyRobot , and then
add the final bits of code to Gamepl ayLayer and Vi ki ng so that Ole can fight off’
the EnenmyRobot .

Enemy Robot

The enemy robot is Ole’s main opponent in the first scene of Space Viking. While the
Radar Di sh will sit quietly in the corner, the enemy robot doesn’t mess around—he
pulls out a phaser and shoots to kill!

However, the enemy robot has a weak point. Modeled after the 1960s Ultraman
TV shows, the enemy robot is a humanoid with poor vision. Maybe Ole can figure a
way to sneak behind the robot and take him out?

125

126

Chapter 5 More Actions, Effects, and Cocos2D Scheduler

Creating the Enemy Robot

The EnenyRobot is set up just like the Radar Di sh enemy you created in the previ-
ous chapter. It has all of the Al included in a single EnemyRobot class that inherits
from GameChar act er.

1. Right-click on the EnemyObjects folder and select New File.

2. Select the Cocoa Touch category under iOS and the Objective-C class type
and click Next.

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter EnemyRobot.m for the filename and click Save.

Open the EnemyRobot.h header file and replace the template code with the contents
for Listing 5.7.

Listing 5.7 EnemyRobot.h header file

/1 EnenyRobot . h

/'l SpaceVi ki ng

/1

#i nport <Foundati on/ Foundati on. h>

#i mport " GanmeCharacter. h"

@nterface EnemyRobot : GaneCharacter {
CCAni mati on *r obot Wl ki ngAni m

CCAni mati on *rai sePhaser Ani m
CCAni mat i on *shoot Phaser Ani m
CCAni mati on *| ower Phaser Ani m

CCAni mati on *torsoH t Ani m
CCAni mati on *headH t Ani m
CCAni mati on *robot Deat hAni m

BOOL i sVi ki ngW t hi nBoundi ngBox;
BOOL i sVi ki ngW t hi nSi ght ;

GaneChar act er *vi ki ngChar acter;
i d <Ganepl ayLayer Del egat e> del egat e;

}

@roperty (nonatonic,assign) id <Gamepl ayLayer Del egat e> del egat e;
@roperty (nonatomc, retain) CCAnination *robot\Wal ki ngAni m
@roperty (nonatomc, retain) CCAnination *rai sePhaserAni m
@roperty (nonatomc, retain) CCAnimation *shoot Phaser Ani m
@roperty (nonatonmc, retain) CCAninmation *|owerPhaserAni m
@roperty (nonatomc, retain) CCAnimation *torsoH tAnim

Enemy Robot

@roperty (nonatomc, retain) CCAnination *headH tAnim
@roperty (nonatomc, retain) CCAnination *robotDeat hAni m
-(void)initAni mations;

@nd

The first part of Listing 5.7 is very similar to what you saw on Radar Di sh, as
the EnemyRobot class inherits from GanmeChar act er class and has a set of instance
variables for the animations. Toward the end of Listing 5.7 is the <Ganepl ayLayer-
Del egat e> instance variable of type i d. In the previous chapter in Listing 4.2, you
created a ComnonPr ot ocol s file that defined the Ganepl ayLayer Del egat e pro-
tocol. This protocol defines what methods a class conforming to the protocol can
be expected to implement. In the case of the EnenyRobot , the Ganepl ayLayer-

Del egat e is what will allow the EnemyRobot to ask the Ganepl ayLayer to create a
Phaser Bul | et object. By using a protocol here, the EnenmyRobot class does not have
to know any further details about the Gamepl ayLayer, only that it responds to the
creat ePhaser Wt hDi recti on method.

The Space Viking game in this book is designed not only to provide a sample of a
full working game but also to give you the components you can reuse in your own
games. The idea is to not reinvent the wheel but rather spend your time on making
your games better. An issue that comes up frequently during game development is
how to alert the CCLayer or CCScene in a game that some event has occurred. For
instance, maybe the player has died and the game over animation needs to play. Space
Viking has two actions the CCLayer (Ganepl ayLayer) must perform for the char-
acters: creating a phaser beam and dropping a power-up. Using protocols allows the
game objects to be loosely coupled with the CCLayer and therefore gives you the most
flexibility when it comes to changing the CCLayer or game objects at a later date.
When you encounter the same condition in your games, refer back to this design and
chapter.

The EnenyRobot implementation file is lengthy, as the robot has a significant
amount of logic. The implementation details are split into the next four sections. So
be sure to include all of the code in Listings 5.8 through 5.11 in your EnemyRobot.m
implementation file.

Listing 5.8 EnemyRobot.m implementation file (part 1 of 4)

/1 EnenyRobot.m

/1 SpaceVi ki ng

I

#i mport " EnenyRobot . h"

@ npl enent ati on EnenyRobot
@ynt hesi ze del egat e;

@ynt hesi ze robot Wal ki ngAni m
@ynt hesi ze rai sePhaser Ani m
@ynt hesi ze shoot Phaser Ani m

127

128

Chapter 5 More Actions, Effects, and Cocos2D Scheduler

@ynt hesi ze | ower Phaser Ani m
@ynt hesi ze torsoH t Anim
@ynt hesi ze headHi t Ani m
@ynt hesi ze robot Deat hAni m
-(void) dealloc {

del egate =

nil;

[r obot Wl ki ngAni m r el ease] ;
[rai sePhaser Ani m rel ease] ;
[shoot Phaser Ani m rel ease] ;
[ower Phaser Ani m rel ease] ;
[torsoHi t Ani mrel ease];

[headHi t Ani m rel ease] ;

[robot Deat hAni m r el ease] ;

[super deall oc];

}

- (voi d) shoot Phaser {
CGPoi nt phaser FiringPosition;
Phaser Di rection phaserDir;
CGRect boundi ngBox = [sel f boundi ngBox] ;
CGPoi nt position = [self position];

float xPosition = position.x + boundi ngBox.size.w dth * 0.542f;
float yPosition = position.y + boundi ngBox. si ze. hei ght * 0.25f;

if ([self flipX]) {
CCLOG @ Facing right, Firing to the right");
phaserDir = kDirectionRight;

} else {

CCLOG @ Facing left, Firing to the left");
xPosition = xPosition * -1.0f; // Reverse direction
phaserDir = kDirectionLeft;

}

phaser Fi ri ngPosi tion = ccp(xPosition, yPosition);
[del egat e creat ePhaser Wt hDirection: phaserDir
andPosi ti on: phaser Fi ri ngPosi tion];

- (CCGRect) eyesi ght Boundi ngBox {

/'l Eyesi ght

is 3 robot widths in the direction the robot

CGRect robot Si ght Boundi ngBox;
CCRect robot Boundi ngBox = [sel f adj ust edBoundi ngBox] ;

if ([self flipX]) {
robot Si ght Boundi ngBox = CGRect Make(r obot Boundi ngBox. ori gi n. X,

r obot Boundi ngBox. ori gi n.vy,

is facing.

Enemy Robot

r obot Boundi ngBox. si ze. wi dt h* 3. 0Of ,
r obot Boundi ngBox. si ze. hei ght);
} else {
robot Si ght Boundi ngBox =
CGRect Make(r obot Boundi ngBox. ori gi n. x -
(robot Boundi ngBox. si ze. wi dt h*2. 0f),
r obot Boundi ngBox. ori gin.y,
r obot Boundi ngBox. si ze. wi dt h* 3. Of ,
r obot Boundi ngBox. si ze. hei ght);
}
return robot Si ght Boundi ngBox;

The EnenyRobot implementation file starts with the @ynt hesi ze statement
for the delegate variable, which is the link to the gamepl ayLayer. The first method
immediately following it is the deal | oc method, which takes care to set the delegate
to Nni |, releasing any references to it.

The shoot Phaser method takes the current direction the EnenmyRobot is fac-
ing and asks the delegate (the Gamepl ayLayer) to create a phaser bullet moving in
that direction. The cr eat ePhaser Wt hDi r ecti on method was declared in the
Ganepl ayLayer Del egat e protocol, and you will add the implementation details
later in this chapter.

Following the shoot Phaser is the eyesi ght Boundi ngBox method, which cal-
culates how far the EnemyRobot can see. This method creates an eyesight box three
times the width of the enemy. This method is used by the EnemyRobot to figure out
if it can “see” the Viking and change state so that it can attack Ole. The EnenmyRobot
uses bounding boxes to approximate the vision; later on you can see how to use ray
casting to simulate an enemy’s line of sight.

The next listing has the contents of the changeSt at e method that is used by the
EnenmyRobot to alternate states and animations. Copy the contents of Listing 5.9 into
the EnemyRobot.m implementation file below the eyesi ght Boundi ngBox method.

Listing 5.9 EnemyRobot.m implementation file (part 2 of 4)

-(voi d) changeSt at e: (Char act er St at es) newSt ate {
if (characterState == kSt at eDead)
return; // No need to change state further once | am dead

[sel f stopAll Actions];
idaction = nil;
characterState = newsSt at e;

switch (newState) {
case kStat eSpawni ng:
[sel f runAction: [CCradeCut actionWthDuration:0.0f]];

129

130 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

/| Fades out the sprite if it was visible before
[sel f setDisplayFrane:
[[CCSpriteFrameCache sharedSpriteFraneCache]
spriteFraneByNane: @t el eport.png"]];

action = [CCSpawn actions:
[CCRot at eBy acti onWthDuration: 1. 5f angle: 360],
[CCFadel n actionWthDuration:1.5f],
nilj;
br eak;

case kStateldle:
CCLOG @ EnenyRobot - >Changi ng State to Idle");
[sel f setDi splayFrane:
[[CCSpriteFrameCache sharedSpriteFranmeCache]
spriteFraneByNane: @anl_ani ml. png"]];
br eak;

case kStatewal ki ng:
CCLOE @ EnenyRobot - >Changi ng State to Wal ki ng");
if (isVikingWthinBoundi ngBox)
break; // Al will change to Attacking on next frame

float xPositionOfSet = 150. 0f;
if (isVikingWthinSight) {
if ([vikingCharacter position].x < [self position].x)
xPositionOff Set = xPositionOffSet * -1;
/1 Invert to -150
} else {
if (CCRANDOM 0_1() > 0.5f)
xPositionOrf Set = xPositionOffSet * -1;

if (xPositionOffSet > 0.0f) {
[sel f setFlipX YES];
} else {
[sel f setFlipX NJ;
}
}
action = [CCSpawn acti ons:
[CCAni mat e acti onWt hAni nati on: r obot WAl ki ngAni m
restoreOrigi nal Frane: NJ ,
[CCvbveTo actionWthDuration: 2. 4f
posi tion:ccp([self position].x +
xPosi tionOf f Set,
[sel f position].y)],
nilj;
br eak;

Enemy Robot

case kStateAttacking:
CCLOG(@ EnenyRobot - >Changi ng State to Attacking");
action = [CCSequence actions:
[CCAni mat e acti onWt hAni mati on: rai sePhaser Ani m
restoreOrigi nal Frane: NO| ,
[CCDel ayTi ne acti onWthDuration:1.0f],
[CCAni mat e acti onW t hAni mati on: shoot Phaser Ani m
restoreOriginal Frane: N,
[CCCal | Func actionWthTarget: sel f
sel ector: @el ect or (shoot Phaser)],
[CCAni mat e acti onWt hAni mati on: | ower Phaser Ani m
restoreOrigi nal Frane: NJO ,
[CCDel ayTi ne actionWthbDuration:2.0f],
nill;
br eak;

case kSt ateTaki ngDamage:
CCLOG @ EnenyRobot - >Changi ng State to Taki ngDanage");
if ([vikingCharacter getWaponDanage] > kVi ki ngFi st Damage) {
/1 1f the viking has the nallet, then
action =
[CCAni mat e acti onWt hAni mati on: headH t Ani m
restoreOrigi nal Frane: YES] ;
} else {
/'l Viking does not have weapon, body bl ow
action = [CCAni nate acti onWthAni mation:torsoH t Ani m
restoreQrigi nal Frane: YES];
}

br eak;

case kSt at eDead:

CCLOG @ EnenyRobot -> Going to Dead State");

action = [CCSequence actions:
[CCAni mat e acti onW t hAni mati on: r obot Deat hAni m

restoreOrigi nal Frane: NO| ,

[CCDel ayTi ne acti onWthDuration: 2. 0f],
[CCFadeQut actionWthDuration:2.0f],
nill;

br eak;

defaul t:
CCLOG(@ Eneny Robot -> Unknown Char State %d",
characterState);
br eak;

131

132

Chapter 5 More Actions, Effects, and Cocos2D Scheduler

if (action !=nil)
[sel f runAction:action];

The first part of the changeSt at e method checks to make sure the EnenyRobot
is not dead. If the robot is dead, the method does nothing. Otherwise, any currently
running actions are also stopped, since the EnemyRobot is about to transition to a
new state.

After these setup lines, the method drops into a switch statement that carries out
the particular logic depending on which state the EnemyRobot is transitioning to. The
first state listed is the kSt at eSpawni ng, which is how the EnemyRobot first appears
onscreen. Here you can see an action consisting of a fade-in and a rotation, along with
the EnemyRobot ’s display frame being set to the teleport graphic.

The teleport graphic is a round swirl graphic, and this action makes it rotate around
the screen. You can see the teleport graphic in Figure 5.1; remember that this image is
included in the texture atlas for this scene.

Figure 5.1 EnemyRobot teleport graphic

The next state is the idle state, which simply sets the display frame of the Eneny-
Robot to a standing pose.

The walking state contains more logic: first it checks to see if the Viking is near
the EnemyRobot . If so, it returns knowing that the updat eSt at eWt hDel t a time
method will automatically transition the state of the EnemyRobot to “attacking.”

If the Viking is not within the adjusted bounding box of the EnenyRobot , it then
checks to see if the Viking is within the eyesight of the robot. If the robot can “see”
the Viking, it moves toward it; otherwise, it just moves in a random direction. If the
direction of travel is to the right, the EnemyRobot ’s f | i pX flag is turned to YES, flip-
ping all of the pixels horizontally. As with the Viking, this makes the EnemyRobot
appear to be moving to the left or right instead of left and backwards.

The attacking state is next on the changesSt at e method, and it sets up the raise,
fire, and then lower animations for the EnenmyRobot . As with the SpaceCar goShi p,
there are a series of compound actions to perform the full attack. The EnenyRobot
first raises the gun, then delays, and then runs a CCCal | Func action. The CCCal | Func
action calls the shoot Phaser method that you created in Listing 5.8. This method

Enemy Robot

tells the gamepl ayLayer to create a phaser beam and send it off toward the Vi ki ng.
After firing, the EnemyRobot lowers the gun and pauses for another 2 seconds.

Note

CCCal | Func is a special action that can call a method in any object. It is useful when
you want to call some portion of your code before, during, or after an action sequence.
Along with CCCal | Func are CCCal | FuncN, which passes along the CCNode as a
parameter, and CCCal | FuncND, which passes along the CCNode and a pointer to some
data element you define.

Following the attacking state, there is the taking damage state in the switch block.
The taking damage state determines if the Vi ki ng is carrying a weapon or not and
plays the corresponding animation. If the Vi ki ng is carrying a weapon, the Enemny-
Robot takes on damage to the head; otherwise, it shows the torso taking a hit. The
difference here is purely for effects, as the Mal | et weapon attack animation has the
Vi ki ng swinging the mallet over the top of the EnemyRobot , while a punch is
straight on at about chest height.

Finally there is a dead state, which plays an animation of the EnemyRobot explod-
ing followed by a fade-out. These are all of the various states that the EnemyRobot
transitions between, depending on what is happening in the game play.

The changeSt at e method is called from within the updat eSt at eWt hDel t a-
Ti me method, which is shown in Listing 5.10.

Listing 5.10 EnemyRobot.m implementation file (part 3 of 4)

-(voi d)updat eSt at eW t hDel t aTi me: (ccTi nme) del t aTi me
andLi st Of GanmeQbj ects: (CCArray*) | i st Of GameCbj ects {

[sel f checkAndC anpSpritePosition];

if ((characterState != kStateDead) && (characterHealth <= 0)) {
[sel f changeSt at e: kSt at eDead] ;
return;

}

vi ki ngCharacter = (GaneCharacter*)[[sel f parent]
get Chi | dByTag: kVi ki ngSpri t eTagVal ue] ;
CGRect vi ki ngBoundi ngBox = [vi ki ngChar act er adj ust edBoundi ngBox] ;
CGRect robot Boundi ngBox = [sel f adj ust edBoundi ngBox] ;
CGRect robot Si ght Boundi ngBox = [sel f eyesi ght Boundi ngBox] ;

i sVi ki ngW t hi nBoundi ngBox =
CGRect I nt er sect sRect (vi ki ngBoundi ngBox, robot Boundi ngBox) ?
YES : NG
i sVi ki ngWt hi nSi ght =
CGRect | nt er sect sRect (vi ki ngBoundi ngBox, robot Si ght Boundi ngBox) ?
YES : NO

133

134 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

if ((isVikingWthinBoundi ngBox) &&
([vikingCharacter characterState] == kStateAttacking)) {
/1 Viking is attacking this robot
if ((characterState != kStateTaki ngDanage) &&
(characterState != kStateDead)) {
[sel f setCharacterHealth:
[sel f characterHealth] —
[vi ki ngChar acter get WeaponDanege]] ;
if (characterHealth > 0) {
[sel f changeSt at e: kSt at eTaki ngDanage] ;
} else {
[sel f changeSt at e: kSt at eDead] ;
}

return; // Nothing to update further, stop and show damage

}
if ([self nunber O Runni ngActions] == 0) {

if (characterState == kStateDead) {
/1 Robot is dead, renove
[sel f setVisible:NJ;
[sel f removeFronPar ent AndCl eanup: YES] ;
} else if ([vikingCharacter characterState] == kStateDead) {
/1 Viking is dead, wal k around the scene
[sel f changeSt at e: kSt at eWal ki ng] ;
} else if (isVikingWthinSight) {
[sel f changeSt at e: kSt at eAt t acki ng] ;
} else {
/1 Viking alive and out of sight, resunme wal king
[sel f changeSt at e: kSt at eWal ki ng] ;

The updat eSt at eWt hDel t aTi me method starts with a quick call to the check-
Andd anpPosi t i on method inherited from GameChar act er. This method ensures
the EnemyRobot remains within the boundaries of the screen. The following i f
statement then checks that the EnenyRobot is not already dead and that the health is
greater than zero. If the EnemyRobot ’s health is zero or less, the robot is transitioned
to a dead state.

The next set of lines gets the Vi ki ng from the CCSprit eSheet, which is the
parent to all of the characters on this scene. The Vi ki ng is retrieved by using the
get Chi | dByTag and passing the unique tag used by the Viking character. Recall
from earlier chapters that any CCNode can maintain a unique integer tag for each of its

Enemy Robot

children. By having the kVi ki ngSprit eTagVal ue as a constant, each of the children
of the CCSpriteSheet can call it and retrieve a pointer to the Viking character. The

next three lines create three CGRect s that are used to determine where the Viking is

in relation to the EnemyRobot and if the EnenyRobot can see the Viking.

If Statement Shortcuts

The two lines with the ternary “?” operator in EnemyRobot.m are a simple shortcut way
to combine an i f statement and an assignment operator. You should read the follow-
ing line as:

i sVi ki ngWthinSight = CGRect| ntersectsRect (vi ki ngBoundi ngBox,
robot Si ght Boundi ngBox) ? YES : NG

If CGRect | nt er sect sRect returns true, seti sVi ki ngWt hi nSi ght to YES;
otherwise, set it to NO You could rewrite this one line of code as:
if (CGRectlntersectsRect (viki ngBoundi ngBox, robot Si ght Boundi ngBox)) {
i sVi ki ngWt hi nSi ght = YES;
} else {
i sVi ki ngWthinSight = NG
}

This simple shortcut can save you some tedious typing on simple compares and
assignments. Keep in mind that CGRect | nt er sect sRect evaluates to either TRUE
or FALSE, so you can leave out the == TRUE in the i f statement.

There are two more critical sections in this method. The first is an i f block that
checks to see if the Viking is attacking the EnenyRobot and if the Viking is attack-
ing with a weapon or just his bare fists. The health of the EnemyRobot is reduced and
then checked to see if it is greater than zero. If the EnemyRobot still has a health level
of greater than zero, he is transitioned to a taking damage state; otherwise, he is tran-
sitioned to the dead state. Both of those transitions were covered in the earlier listing
of the changeSt at e method.

The next critical section of this method is the i f block once the number O -

Runni ngAct i ons is zero for the EnemyRobot . As you learned with the Radar Di sh,
if the EnemyRobot is currently executing an action such as an animation, the num
ber O Runni ngAct i ons will be greater than zero. This i f block first checks to see
if the EnemyRobot is dead and finished the dead animation. If so, the EnemyRobot

is removed from the CCLayer. The next check is if the Viking is dead, and if so,

then the robot is just transitioned to a walking state, where he will wander around
the screen. The next check is to see if the Viking is within sight, and if so, then the
robot moves to attack the Viking. Lastly, if the Viking is not within the sight box of
the EnenyRobot , the robot will change to a walking state and patrol the scene. The
next listing details the remaining three methods in EnenyRobot used to calculate the

135

136 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

adjusted bounding box and initialize the animations. Copy the contents of Listing 5.11
and paste it below the updat eSt at eWt hDel t a time in EnemyRobot.m.

Listing 5.11 EnemyRobot.m implementation file (part 4 of 4)

- (CGRect) Adj ust edBoundi ngBox {
/1 Shrink the bounding box by 18% on the X axis, and nove it to the
/1 right by 18% and crop it by 5%on the Y Axis.
/1 On the iPad this is 30 pixels on the X axis and
/1 10 pixels fromthe top (Y Axis)
CCGRect enenyRobot Boundi ngBox = [sel f boundi ngBox] ;
float xOf fset Anbunt = enenyRobot Boundi ngBox. si ze.wi dth * 0. 18f;
float yCropAmount = enenyRobot Boundi ngBox. si ze. hei ght * 0. 05f;
enenyRobot Boundi ngBox =
CCRect Make(enemyRobot Boundi ngBox. ori gi n. x + xOf f set Amount ,
enenyRobot Boundi ngBox. ori gin.y,
enenyRobot Boundi ngBox. si ze. wi dt h - xOf f set Anbunt,
enenyRobot Boundi ngBox. si ze. hei ght - yCropAnount);
return enenyRobot Boundi ngBox;
}

#pragma mark -
#pragnme mark initAninmations
-(void)initAni mations {

[sel f set Robot Wl ki ngAni m
[sel f | oadPlistForAni mati onW t hNanme: @ r obot WAl ki ngAni nt'
andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f set Rai sePhaser Ani m
[sel f | oadPlistForAni mati onWthNanme: @r ai sePhaser Ani nf'
andCl assName: NSSt ri ngFronCl ass([sel f class])]];

[sel f set Shoot Phaser Ani m
[sel f | oadPlistForAni mati onW t hNanme: @ shoot Phaser Ani nf'
andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setLowerPhaser Ani m
[sel f | oadPlistForAni mati onWthNanme: @ | ower Phaser Ani nf'
andC assNane: NSSt ri ngFronCl ass([sel f class])]];

[sel f setTorsoH t Anim
[sel f | oadPlistForAni mati onWthNanme: @t or soHi t Ani ni'
andCl assName: NSSt ri ngFronCl ass([sel f class])]];

[sel f setHeadHi t Ani m
[sel f | oadPlistForAni mati onW t hNane: @ headH t Ani nt'
andC assNane: NSSt ri ngFronCl ass([sel f class])]];

Adding the PhaserBullet

[sel f set Robot Deat hAni m
[sel f 1 oadPlistForAni mati onW t hName: @ r obot Deat hAni ni'
andCl assNane: NSSt ri ngFronCl ass([sel f class])]];

}
-(id) init
{
if((self=[super init]))
{
i sVi ki ngW t hi nBoundi ngBox = NG,
i sVi ki ngWt hi nSi ght = NG,
ganeOhj ect Type = kEnenyTypeAl i enRobot ;
[self initAnimations];
srandon(ti me(NULL));
}
return self;
}
@nd

The Adj ust edBoundi ngBox method does exactly what the name implies: it takes
the EnenyRobot ’s bounding box and adjusts it to compensate for the transparent
space. The i nit Ani mati ons method just calls the | oadM i st For Ani mati onW't h-
Nane to load the many animations used by the robot. Lastly, the i nit method sets up
the initial states of the instance variables and calls the i ni t Ani mat i on method.

Adding the PhaserBullet

The EnenyRobot will be using his gun to fire an electrifying phaser bullet at Ole.
The Phaser Bul | et itself is an object that will travel left or right on the screen. Before
creating the code behind the Phaser Bul | et, take a moment and create a new anima-
tion plist file called PhaserBullet.plist under the Plists group, as shown in Figure 5.2.
You can also drag over this file from the resource folder for this chapter.

Figure 5.2 PhaserBullet.plist containing the animations for the
PhaserBullet

137

138 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

The Phaser Bul | et is a simple class; to create it in your SpaceViking project:
1. Right-click on EnemyObjects group and click New File.

2. Select Cocoa Touch category under iOS and Objective-C class as the file
type and click Next.

3. For the Subclass field, enter GameCharacter.

4. Enter PhaserBullet.m for the filename and click Save.

Open the PhaserBullet.h header file and replace it with the contents of Listing 5.12.

Listing 5.12 PhaserBullet.h header file

/'l PhaserBul |l et.h
/'l SpaceVi ki ng

#i mport <Foundati on/ Foundati on. h>
#i nport "GaneCharacter. h"

@nterface PhaserBullet : GanmeCharacter {
CCAni mation *firingAnim
CCAni mation *travel i ngAni m

Phaser Di rection nyDirection;

}

@roperty PhaserDirection nyDirection;

@roperty (nonatomc,retain) CCAnimation *firingAnim
@roperty (nonatomc,retain) CCAnimation *travelingAnim
@nd

Switch over to the PhaserBullet.m implementation file and replace the contents with
Listing 5.13.

Listing 5.13 PhaserBullet.m implementation file

/1 PhaserBullet. m
/1 SpaceViking
#i nport "PhaserBull et.h"

@ npl enent ati on PhaserBul | et
@ynt hesi ze nyDirection;
@ynt hesi ze travel i ngAni m
@ynt hesi ze firingAnim
- (void) dealloc {
[travel i ngAni m rel ease];
[firingAnimrel ease];

Adding the PhaserBullet

[super deal | oc];

- (voi d) changeSt at e: (Char act er St at es) newSt ate {
[sel f stopAll Actions];
idaction = nil;
characterState = newState;
switch (newState) {
case kSt at eSpawni ng:
CCLOG @ Phaser - >Changed state to Spawni ng");
action =
[CCAni mat e acti onWthAni mation:firingAnim
restoreOriginal Frane: NJ ;
br eak;
case kStateTraveling:
CCLOE @ Phaser - >Changed state to Traveling");
CGPoi nt endLocat i on;
if (nyDirection == kDirectionLeft) {
CCLOG @ Phaser direction LEFT");
endLocation = ccp(-10.0f,
[self position].y);
} else {
CCLOY @ Phaser direction Rl GHT");
endLocation = ccp(screenSi ze. w dt h+24. 0f ,
[sel f position].y);
}
[sel f runAction:
[CCMbveTo actionWthDuration: 2. 0f position:endLocation]];
action = [CCRepeat Forever actionWthAction:
[CCAni mat e acti onWthAni mation:travel i ngAni m
restoreOriginal Frane: NO];

br eak;
case kStateDead:
CCLOG @ Phaser - >Changed state to dead");
/1 Renove from parent
[sel f setVisible:NJ;
[sel f renmoveFronPar ent AndC eanup: YES] ;
defaul t:
br eak;
}
if (action !'=nil)
[sel f runAction:action];

-(BOOL) i sCQutsideOrScreen { // 5
CGPoint currentSpritePosition = [self position];

139

140 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

if ((currentSpritePosition.x < 0.0f) || (
current SpritePosition.x > screenSi ze.width)) {
[sel f changeSt at e: kSt at eDead] ;
return YES;

}
return NG

-(voi d)updat eSt at eWt hDel t aTi me: (ccTi ne) del t aTi e
andLi st O GaneObj ects: (CCArray*) | i st Of GameObj ects {

if ([self isCutsideO Screen])
return;

if ([self nunber O Runni ngActions] == 0) {

if (characterState == kStateSpawni ng) {
[sel f changeSt at e: kSt at eTravel i ng];
return;

} else {
[sel f changeSt at e: kSt at eDead] ;
return;
/1 Should not do anything else fromtraveling

-(void)initAni mations {
[sel f setFiringAnim
[sel f | oadPli st ForAni nati onWthNane: @firi ngAni ni
andd assNane: NSStri ngFronCl ass([sel f class])]];

[sel f setTravel i ngAni m
[sel f | oadPlistForAni mati onWthNanme: @travel i ngAni ni
andC assNane: NSStri ngFronCl ass([sel f class])]];

}
-(id) init
{
if((self=[super init]))
{
CCLOG(@ ### PhaserBullet initialized");
[sel f initAnimtions];
ganeObj ect Type = kEnenyTypePhaser;
}
return self;
}

@nd

GameplayLayer and Viking Updates

The Phaser Bul | et is a simple character that moves from the firing location to
either the left or right side of the screen. If it comes in contact with Ole, the Viking
will change the Phaser Bul | et ’s state to dead, as it absorbs the hit. If the Phaser-
Bul | et travels outside of the screen boundaries, it removes itself from the game. This
wraps up what you need to do to create the EnemyRobot . The next step is to add a
little bit of code in Ganmepl ayLayer to create the EnemyRobot and in the Vi ki ng
class to enable the Viking to pick up the power-ups.

GameplayLayer and Viking Updates

The ganepl ayLayer class has to know about the power-ups, the space cargo ship,
and the enemy robot in order to be able to add them on the screen.

The first step is to include the i mport s for the new classes you have added in this
chapter. Open up the GameplayLayer.m implementation file and add the i nport state-
ments in Listing 5.14 to the import for RadarDish.h.

Listing 5.14 GameplayLayer.m imports

#i nport " SpaceCar goShi p. h"
#i nport "EnenyRobot. h"

#i nport "PhaserBul | et.h"
#i nport "Mallet.h"

#i nport "Heal th. h"

The next step is to enhance the cr eat eObj ect O Ty pe method so that it can cre-
ate the power-ups, the SpaceCar goShi p, the Phaser Bul | et, and the EnemyRobot .
Move to the cr eat eCbj ect Of Type method and replace it with the contents of List-
ing 5.15.

Listing 5.15 GameplayLayer.m createObjectOfType method

-(voi d) creat e(hj ect O Type: (Ganeoj ect Type) obj ect Type
wi thHeal th: (int)initial Health
at Locat i on: (CGPoi nt) spawnLocat i on
wi t hZzVal ue: (i nt)zVal ue {

if (kEnenyTypeRadar Di sh == obj ect Type) {
CCLOG(@ Creating the Radar Eneny");
Radar Di sh *radar Di sh =
[[RadarDi sh alloc] initWthSpriteFraneNanme: @radar _1. png"];
[radarDi sh set CharacterHeal th:initial Hal th];
[radar Di sh set Position: spawnLocati on];
[sceneSpriteBat chNode addChil d: radar Di sh z: ZVal ue
t ag: kRadar Di shTagVal ue] ;
[radarDi sh rel ease];

141

142 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

} else if (kEnenyTypeAl i enRobot == object Type) {

} e

} e

CCLOG(@ Creating the Alien Robot");
EnenyRobot *enenyRobot =

[[EnenyRobot alloc] initWthSpriteFraneNanme: @anl_ani ml. png"];
[enenyRobot set CharacterHeal th:initial Halth];
[enenyRobot set Positi on: spawnLocati on];
[enenyRobot changeSt at e: kSt at eSpawni ng] ;
[sceneSpriteBat chNode addChil d: enenyRobot z: ZVal ue] ;
[enenyRobot set Del egate: sel f];
[enenyRobot rel ease];
se if (kEnenyTypeSpaceCargoShi p == object Type) {
CCLOG @ Creating the Cargo Ship Eneny");
SpaceCar goShi p *spaceCargoShip =

[[SpaceCar goShi p al | oc]

initWthSpriteFraneNane: @shi p_2. png"];

[spaceCar goShi p setDel egate: sel f];
[spaceCar goShi p set Posi tion: spawnLocation];
[sceneSprit eBat chNode addChi | d: spaceCar goShi p z: ZVal ue] ;
[spaceCar goShi p rel ease];
se if (kPowerUpTypeMal | et == obj ect Type) {
CCLOE @ Ganepl ayLayer -> Creating mallet powerup");
Mal et *mallet =

[[Mallet alloc] initWthSpriteFrameNane: @nellet_1.png"];
[mal | et setPosition: spawnLocation];
[sceneSpriteBat chNode addChild: mallet];
[mall et rel ease];
se if (kPowerUpTypeHeal th == obj ect Type) {
CCLOG @ Ganepl ayLayer-> Creating Heal th Powerup");
Heal th *health =

[[Health alloc] initWthSpriteFraneNane: @sandwi ch_1.png"];
[heal th setPosition: spawnLocation];
[sceneSpriteBat chNode addChil d: heal t h];
[heal th rel ease];

The beginning of this method has the same i f statement you wrote in Chapter 4,
creating the Radar Di sh enemy. The next i f el se blocks create the SpaceCar go-
Shi p, the power-ups, and the EnemyRobot . Note how the Radar Di sh is given a
unique tag: this tag will be used later so that the Gamepl ayLayer can get a reference
back to the Radar Di sh object to determine its state.

The next method to replace is cr eat ePhaser Wt hDi recti on. In Chapter 4 this
method was just a stub with a CCLOG statement inside. You now need to add the logic
so that a Phaser Bul | et can be created by the Gamepl ayLayer with a particular
direction. Replace the contents of the cr eat ePhaser Wt hDi r ect i on method with
the code in Listing 5.16.

GameplayLayer and Viking Updates

Listing 5.16 GameplayLayer.m createPhaserWithDirection method

-(voi d)createPhaserWthDirection: (PhaserDirection)phaserDirection
andPosi ti on: (CGPoi nt) spawnPosi tion {

Phaser Bul | et *phaserBull et = [[PhaserBullet alloc] initWthSpriteFrame
Name: @ beam 1. png"];

[phaserBul | et set Position: spawnPosition];

[phaserBul | et set MyDi rection: phaserDirection];

[phaserBul | et set Charact er St at e: kSt at eSpawni ng] ;

[sceneSprit eBat chNode addChil d: phaserBul | et];

[phaserBul | et rel ease];

The creat ePhaser Wt hDi recti on method has the Gamepl ayLayer create a
new PhaserBul | et object and set its direction. Once the PhaserBul | et is added
as a child to sceneSprit eBat chNode, it will be rendered onscreen and its update
method will be called on every frame by the Gamepl ayLayer.

There is a final method to add to the Ganmepl ayLayer class, which will con-
tinue adding EnenyRobot s as long as the Radar Di sh is still not destroyed. Add
the contents of Listing 5.17 below the cr eat ePhaser Wt hDi recti onMet hod in
GameplayLayer.m.

Listing 5.17 GameplayLayer.m addEnemy method

- (voi d) addEneny {
CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze;
Radar Di sh *radar Di sh = (Radar Di sh*)
[sceneSprit eBat chNode get Chi | dByTag: kRadar Di shTagVal ue] ;
if (radarDish !'=nil) {
if ([radarDi sh characterState] != kStateDead) {
[sel f createObjectOf Type: kEnenyTypeAl i enRobot
wi t hHeal t h: 100
at Locati on: ccp(screenSize.wi dth * 0. 195f,
screenSi ze. hei ght * 0.1432f)
wi t hZzval ue: 2] ;
} else {
[sel f unschedul e: @el ect or (addEneny)];

}

As you will see shortly, the addEneny method will be called by the Cocos2D
Scheduler. The first line retrieves the reference to the Radar Di sh object from the
sceneSpriteBat chNode via the unique tag that was given to the Radar Di sh object
when it was added as a child to the sceneSprit eBat chNode. If the Radar Di sh is
not nil and not in a kSt at eDead, then the Ganepl ayLayer will spawn off a new

143

144

Chapter 5 More Actions, Effects, and Cocos2D Scheduler

EnenyRobot . If the Radar Di sh is dead, the Gamepl ayLayer will unschedule the
timer calling this method.

The final glue in Ganmepl ayLayer are a few lines to add in the i nit method. Add
the lines shown in Listing 5.18 immediately after the [sel f schedul eUpdat e] call.

Listing 5.18 GameplayLayer.m init method additions

[sel f schedul e: @el ect or (addEneny) interval:10.0f];
[sel f createObject Of Type: kEnenyTypeSpaceCar goShi p
wi t hHeal t h: 0
at Locati on: ccp(screenSize.wi dth * -0.5f,
screenSi ze. hei ght * 0. 74f)
wi t hZVal ue: 50] ;

With the last two lines in place, the Ganepl ayLayer will create the SpaceCar go-
Shi p and add another EnemyRobot every 10 seconds until the Viking destroys the
Radar Di sh.

Running Space Viking

Now that you have all of the elements in place, you should be able to just click Run
and play Space Viking on your iPad Simulator. Even better, you can connect your iPad
and play Space Viking on the real thing. Figure 5.3 shows the Space Viking game with
the Radar Di sh, EnenyRobot , and SpaceCar goShi p.

Figure 5.3 Space Viking running on the iPad Simulator

For the More Curious: Effects in Cocos2D

If you have any trouble running Space Viking, go back and check your code against
the listings in this chapter. Make sure you have included all of the classes and code in
your copy of Space Viking. While playing the game, be sure to try out the crouching
move to avoid those pesky phaser bullets.

A Word on Cocos2D’s Scheduler

The Cocos2D Scheduler provides your game with timed events and calls. All CCNode
objects know how to schedule and unschedule events, and using the Cocos2D Sched-
uler has several distinct advantages over just using NSTi mer . The first advantage is
that the scheduler calls get deactivated whenever the CCNode is no longer visible or
is removed from the scene. The scheduler calls are also deactivated when Cocos2D is
paused and are rescheduled when Cocos2D is resumed. If you were using NSTi mer
directly, you would have to keep track of when any object you had a timer set against
was deallocated and deactivate that timer or risk a crash when the NSTi nmer fired.
Another advantage of the Cocos2D Scheduler is that it delivers a del t aTi me of the
milliseconds that have passed since the last call. This del t aTi ne is useful in mov-
ing objects and in modeling objects in physics engines, as you will see in Chapter 10,
“Basic Game Physics: Adding Realism with Box2D.”

Lastly, using the Cocos2D Scheduler with the [sel f schedul eUpdat €] call
ensures that your update function will be called before each frame needs to be ren-
dered, not after or, even worse, midframe.

You can schedule the timers via the [sel f schedul e:] call on any CCNode or

by calling the CCSchedul er singleton directly with [[CCSchedul er shar ed-
Schedul er] ...].Having Cocos2D automatically manage your timers via the
CCSchedul er can save you a lot of time over NSTi mer and let you focus on the
mechanics of your game.

For the More Curious: Effects in Cocos2D

Cocos2D has a powerful, built-in effects system that you can use to create dramatic
visual effects in your games. Effects in Cocos2D are packaged as actions, and you
already know how to use those: they are the basis for all of the behaviors and anima-
tions in Space Viking.

The Cocos2D effects act on the OpenGL ES frame buffer object (FBO), and it is
important to understand a little bit about the FBO to know how the actions work.

Each object that needs to be rendered onscreen is first rendered on the frame buf-
fer object and then sent to the GPU for processing and to be displayed onscreen.
The images are present in the FBO as an array of vertex data. The scope of the
effect depends on what object you apply it to. If you apply an effect action to just a
CCSprit e, only that particular CCSprit e is affected. If you apply it to a CCSpri t e-
Bat chNode, all CCSprites being rendered under that node will have the effect.

145

146

Chapter 5 More Actions, Effects, and Cocos2D Scheduler

Finally, if you apply the effect to the CCLayer, everything in the layer will have the
effect applied.

You don’t have to know exactly how the vertex array is stored in the FBO,
although you are free to see the implementation details in the Cocos2D source code.
The important points to remember are that there is a grid of image data in the FBO,
and the effect actions act on this grid.

Within the Cocos2D effects there are two subtypes: a tiled and a nontiled version.
The tiled version breaks down the contents of the frame buffer object into individual
tiles, which can be manipulated separately, whereas the nontiled version has the entire
frame as a large tile.

Effects for Fun in Space Viking

To get a better feel for the Cocos2D effects, you will take one effects line and apply it
first to a background tile and then to the CCSprit eBat chNode.

To start, open the BackgroundLayer.m implementation file and add these two lines
at the bottom of the i nit method directly following the lines where you created the
background CCSprit e, as shown in Listing 5.19.

Listing 5.19 BackgroundLayer.m waves action

id wavesAction = [CCWaves actionWthWaves: 5 anplitude: 20
hori zontal : NO vertical : YES
grid:ccg(15,10) duration:20];

[backgr oundl nage runActi on:

[CCRepeat Forever acti onWthAction: wavesAction]];

The first line sets up the wavesAct i on variable as an CCWAve action, while the
second line applies it to the background image. The CCWAves action has several
parameters to control the amplitude of the waves, whether it is to “wave” in the hori-
zontal or vertical axis, and the size of the grid along with the wave durations. The
grid size determines how to break up the image in order to apply the effect. Larger
grid sizes result in better effects at the cost of larger CPU time to generate each
frame. Effects can take a lot of processing power, especially on older devices such as
the iPhone 3G; do remember this when setting up effects in your system. If you click
Run, you can see only the top left background image is experiencing the waves effect,
as shown in Figure 5.4.

On the last step, you had an effect applied to only a background image; all of the
other graphical elements in Space Viking are untouched. For the next example, com-
ment out the two lines you just added so that the background is back to normal and
open up the GameplayLayer.m implementation file. On the i nit method, add these
two lines before the Cocos2D Scheduler calls, as shown in Listing 5.20.

For the More Curious: Effects in Cocos2D

Figure 5.4 Top left background; CCSprite with waves effect applied

Listing 5.20 GameplayLayer.m waves action

id wavesAction = [CCWaves acti onWthWaves: 5 anplitude: 20 hori zont al : NO
vertical: YES grid:ccg(15,10) duration:20];

[sceneSpriteBat chNode runAction: [CCRepeat Forever
actionWthAction: wavesAction]];

This is setting up a CCWAves action against the CCSpr i t eBat chNode that is used
to render the Viking and all of the enemies onscreen. If you click Run, you should see
an image similar to Figure 5.5. Pay close attention to the joystick and the attack and
jump buttons. Note how the joystick and buttons are not impacted by the CCWaves
action, since they are not part of the CCSprit eBat chNode.

Note

If you are using a CCSpr i t eBat chNode, then you need to apply the effects to the
entire CCSpr i t eBat chNode instead of the individual sprites. Since the CCSpri t e-
Bat chNode is doing all of the rendering, it must have the effects applied to the
CCSprit eBat chNode itself; otherwise, you will not see any of the effects onscreen.

Be sure to comment out the two lines you added to GameplayLayer.m and return
Space Viking back to normal. If you want to check out all of the effect actions included
with Cocos2D, you can run the Ef fect sTest and Ef f ect sTest Advanced samples

included with Cocos2D.

147

148 Chapter 5 More Actions, Effects, and Cocos2D Scheduler

Figure 5.5 CCWaves action applied to the CCSpriteBatchNode in
Space Viking

Running the EffectsTest

Navigate to the directory where you downloaded Cocos2D back in Chapter 1, “Hello,
Cocos2D,” and open the cocos2d-iphone project. With the cocos2d-iphone project opened,
set the Scheme dropdown to Ef f ect sTest, as shown in Figure 5.6.

Figure 5.6 EffectsTest selected under the Scheme dropdown in Xcode

Select Run in Xcode, and you should see the Ef f ect sTest running in the simula-
tor. You can see the various effects that are possible with Cocos2D. You can also try
out the Ef f ect sAdvancedTest target for more examples of Cocos2D effects.

Exercises and Challenges

Returning Sprites and Objects Back to Normal

Once you start playing with effects, you will notice that they stay applied to the
CCSprit es and other objects even after you stop the action. To return your CCSprite
to its normal, nonaltered state, you need to call the special St opGri d action. For
example, if you wanted to stop the CCWAves action applied to the CCSprit eBat ch-
Node in Space Viking, you would need:

[sceneSpriteBat chNode runAction:[CCStopGid action]];

Summary

In this chapter you built on the Cocos2D actions and animations you created previously
to add more characters to your Space Viking game. You added a SpaceCar goShi p,
power-ups, and an enemy robot that can pursue and attack Ole the Viking. In the later
part of this chapter, you learned about the Cocos2D Scheduler and the built-in effects
in Cocos2D. Hopefully, you are beginning to think about how you can reuse the
techniques shown here in your own games. In the next chapter, you will learn about
the Cocos2D text subsystem and will add health meters and an interactive debugger

to Space Viking. Some quick challenges await before you can proceed in creating your
Viking adventure.

Exercises and Challenges

1. What happens when you turn off the [sel f flipX true]; statement in the
EnemyRobot ? How does it affect the animation?

2. The EnenmyRobot has a long delay after he raises his phaser and before he fires
it at Ole. What would happen if you made that delay very small, such as 0.015
seconds?

3. The Ganepl ayLayer spawns a new EnenyRobot every 10 seconds for as long
as the Radar Di sh is still alive. What happens if you change this to 1 second?

4. How does changing the grid size change the quality of the waves effects?

149

This page intentionally left blank

0

Text, Fonts, and the
Written Word

In the last two chapters, you learned how to add artificial intelligence, animations, and enemies to
your game. In this chapter you get to have a reprieve from the complexities of game mechanics and
Sfocus on the text rendering available in Cocos2D. Cocos2D has extensive support for all of the
built-in iOS fonts as well as embedded True'Type fonts. The text system allows you to add labels
and text to your game with ease.

The font-rendering system in Cocos2D is split into two portions or classes: the CCLabel TTF
and the CCLabel BMFont classes. This chapter covers both classes and how to use them in
Space Viking.

CCLabelTTF

The CCLabel TTF class is meant as a quick and easy way to get text into your game
with a minimal amount of setup or code. You already used the CCLabel TTF class way
back in Chapter 1 as part of the HelloWorld sample. In the HelloWorld code you had the
following lines:

CCLabel TTF *l abel = [CCLabel TTF | abel WthString: @Hell o Worl d"
font Name: @ Marker Felt" fontSize: 64];

To create a CCLabel TTF, all that is required is that you specify the text, the font,
and the font size. The CCLabel TTF object will use the CCText ur e2D class to create
an image texture from your text and display that texture onscreen. After the initializa-
tion code above, you can use the CCLabel TTF like any other CCNode, add it to your
layer, position it, and so forth. The CCLabel TTF class is great for text that is static or
that you do not want to change often. Each time you call the set Text method, a new
texture is created, and this can have a significant performance impact if you are creat-
ing or changing the text on every frame.

152

Chapter 6 Text, Fonts, and the Written Word

Adding a Start Banner to Space Viking

To better understand how to use a CCLabel TTF, you will create a quick “Game Start”
banner when the Space Viking game play first starts. This banner will be centered on
the screen and will zoom and fade out over the course of 2 seconds. To get started,
open the Spaceliking project and the GameplayLayer.m implementation file.

In the i nit method add the lines shown in Listing 6.1 before the [sel f
schedul eUpdat e] call.

Listing 6.1 Game start label in GameplayLayer.m init method

CClLabel TTF *ganeBegi nLabel =
[CCLabel TTF | abel WthString: @ Gane Start" font Nanme: @ Hel vetica"
fontSi ze: 64] ; /11

[gameBegi nLabel setPosition: ccp(screenSize. wi dth/2,screenSize. height/2)];
/12

[sel f addChi | d: ganeBegi nLabel]; /13
id label Action = [CCSpawn acti ons:
[CCScal eBy acti onWthDuration:2.0f scale:4],
[CCFadeCut actionWthDuration:2.0f],
nill; Il 4
[gameBegi nLabel runAction: | abel Action]; /15

The code segment in Listing 6.1 accomplishes the following:

1. A new CCLabel TTF is created with the text “Game Start” using the Helvetica
font with a size of 64. From this line forward, the CCLabel TTF acts just like any
other CCNode, such as a CCSpri t e: you can position it and apply actions to it.

2. Sets the position of the label to the center of the screen by halving the screen
width and height.
3. Adds the label to the Ganmepl ayLayer so that it will be rendered onscreen.

4. Creates an action called | abel Acti on, which consists of two actions running
simultaneously. The first action is a CCScal eBy, which zooms in the text to four
times the original size. The second action is a CCFadeQut that fades out the text
over the course of 2 seconds.

5. The CCLabel TTF runs the actions that you created in the previous line.

If you click Run on Space Viking on your iPad Simulator, you should see the
“Game Start” text banner, as shown in Figure 6.1.

Understanding Anchor Points and Alignment

Figure 6.1 Space Viking with Game Start banner

Understanding Anchor Points and Alighment

All CCNodes from CCSprites to CCLabel TTF have anchor points to allow them

to be positioned onscreen. Anchor points are useful in positioning and aligning your
objects onscreen, especially labels. The anchor point is an offset into an object tex-
ture—in other words, what point in the texture to use to place it onscreen. Cocos2D
defaults to an anchor point in the middle of your texture, so by default your objects
are always placed according to their center points. For example, if you set the position
of the sprite to (100,100), the center of the sprite would be at (100,100) by default.

If you set the anchor point to the bottom left corner of a sprite, and set the posi-
tion of the sprite to (100,100), then the bottom left corner of the sprite would be at
(100,100) instead of the center of the sprite being at that location.

Take a close look at Figure 6.2, showing the anchor point values for a “Game Start”
CCLabel TTF.

153

154 Chapter 6 Text, Fonts, and the Written Word

(0,1) (1,1)

Gamq Start

/

0,0) ~

(0.5,0.5) (1,0)

Figure 6.2 Game Start CCLabelTTF anchor points

Looking at Figure 6.2, you can see the default anchor point at the middle of the
texture would have a value of (0.5, 0.5). Look at anchor point values as percentages,
with 1 being 100%, or all the way to the end of the texture. Take a close look at the
bottom right of Figure 6.2, at the value (1,0). This anchor point (1,0) is all the way
over on the x-axis of the texture, but at the start of the y-axis, so bottom right.

On the top right you can see the anchor point value of (1, 1), meaning it is all the
way on the x- and y-axes of the texture, therefore upper right.

Remember, anchor points range between zero and one, with (0,0) on the bottom
left and (1,1) on the top right.

Normally, you will not need to change the anchor point in your objects; an excep-
tion is when you are trying to align labels.

If you wanted the CCLabel TTF to be aligned to the left, you would set the anchor
point to (0,0.5). This translates to zero on the x-axis (left) and halfway up on the
y-axis, which means a left alignment but centered vertically. If you had it at (0, 0)
instead, it would be aligned to the left but also to the bottom. Here are some examples
of common CCLabel TTF alignments:

//Left Alignnment
[gameBegi nLabel set AnchorPoint: ccp(0, 0.5f)];

/1 Right Alignnent
[ganeBegi nLabel set Anchor Point: ccp(1l, 0.5f)];

/1 Top Alignnent
[gameBegi nLabel set Anchor Point: ccp(0.5f, 0)];

/1 Bottom Alignnent
[ganeBegi nLabel set Anchor Point: ccp(0.5f, 1.0f)];

/'l Center - Default
[gameBegi nLabel set Anchor Point: ccp(0.5f, 0.5f)];

Anchor Points and Rotation

Anchor points are used in rotation and with other effects in addition to being used to
position a CCSpr it e. Keep in mind that if you change the CCSpr i t e default anchor
point (center of image), any rotations you apply to the CCSpri t e will happen at the new
anchor point location.

CCLabelBMFont

Listing the Fonts Available in iOS
The CCLabel TTF class relies on the fonts available in the i0S, and Apple is always
adding to the available fonts with each iOS release. The best way to know what fonts
you can use is to query the iOS for available fonts under the Ul Font class. Jonathan
Saggau wrote an excellent bit of compact code to list out the fonts. A modified version
of it is given here and can be dropped in the i nit method of GameScene.m to print
out the available fonts to your console.
NSMut abl eArray *font Names = [[NSMut abl eArray alloc] init];
NSArray *fontFam | yNames = [U Font fam | yNanmes];
for (NSString *fam |yNanme in fontFam |yNanmes) {
NSLog(@ Font Family Nanme = %@, fam|yNane);
NSArray *names = [U Font fontNanmesFor Fam | yNane: fam | yNane] ;
NSLog(@ Font Nanes = %@, fontNanes);
[f ont Names addObj ect sFronmArray: nanmes] ;
}

[font Nanes rel ease] ;

Fonts are part of a font family, and the Ul Font class returns a list of all of the font
families available in iOS as well as the fonts under each font family. The code above
first gets a list of all the font families, and then a list of all the fonts under each fam-
ily, printing those font names out to the console.

CCLabelBMFont

CCLabel TTFs are great for when you just need the standard 1OS fonts and do not
have to change the text of the labels very often. In the situations where you need to
use a custom font or change the text on each frame, the CCLabel BMFont class is what
you will want to use.

A bitmapped font atlas is an image containing all of the characters you want to dis-
play along with coordinates data that allows the characters to be cut out of the master
image. The bitmap font atlas works in exactly the same way as the texture atlas you
created in Chapter 2, “Hello, Space Viking,” but in this case each of the images in the
atlas represents a character. Since the characters are already stored as images, you can-
not alter their size without using a different font atlas. If your game will have the same
characters in two or more sizes, you need to create several font atlases for each of the
sizes you need.

Cocos2D has support for any bitmapped fonts that use the fnt file format. While
Cocos2D itself does not have a bundled tool to create the font atlases, there are plenty
of great tools that can help you create them. This chapter covers Hiero (free) and the
excellent Glyph Designer (available in the Mac App Store).

155

156

Chapter 6 Text, Fonts, and the Written Word

Using Glyph Designer

Glyph Designer is a Mac OS X-based application for design font atlases developed by
71Squared. Unlike Hiero, it is a native Mac OS X application, offering better perfor-
mance and compatibility with Mac OS X. In order to use Glyph Designer, you need
to purchase it in the Mac App Store or at http://glyphdesigner.71squared.com /.

To create the font texture atlas:

1. Start up Glyph Designer, or select File > New if it is already running.
2. In the top left search box, enter Helvetica and select it as the font.

3. Move the size slider so that the font size is set to 32.
4

. By default, Glyph Designer automatically resizes the texture atlas to the smallest
possible size that would fit all of the glyphs.

5. On the right, click on the Gradient Bar and select a yellow tone from the
color wheel that pops up.

The color you choose is not important; yellow was chosen because it is more vis-
ible against the Space Viking background.

6. On the bottom right, in the Included Glyphs section, click on the NEHE
button.

This area is where you enter the characters you need in your font atlas. The
NEHE is a small subset of the full ASCII character set. Be sure to always include
any characters you will need in your game inside of the font texture atlas. If in
your game you try to render a character in a label without that glyph being pres-
ent in the font texture atlas, Cocos2D will leave a blank space for it.

7. Under the file menu, select Export and enter SpacelVikingFont for the Save As
field.

This step creates two files: a PNG of all the glyphs in one font texture atlas and
a plist file that will allow Cocos2D to extract each glyph from the font texture
atlas. Figure 6.3 shows Glyph Designer with Helvetica selected.

Lastly, you need to import the newly created font texture atlas and plist files into
Xcode. Drag both the SpaceVikingFont.png and SpaceVikingFont.fnt files into your
SpaceViking project under the Images folder.

Using the Hiero Font Builder Tool

If you are looking for a free alternative to Glyph Designer, the Hiero Font Builder
Tool is a Java application that you can run in your browser. It is a free tool that you
can use to create a font texture atlas for Cocos2D. First point your browser to wwuw.
n4te.com/hiero/hiero.jnlp.

www.n4te.com/hiero/hiero.jnlp
www.n4te.com/hiero/hiero.jnlp
http://glyphdesigner.71squared.com/

Using the Hiero Font Builder Tool 157

Figure 6.3 Glyph Designer

Warning
Safari’s default behavior is to just download the Hiero.jnpl file. You will need to double-
click it in the Downloads window to launch Hiero.

If prompted, accept the warning shown in Figure 6.4.

Figure 6.4 Warning upon running Hiero

158 Chapter 6 Text, Fonts, and the Written Word

Once Hiero is up and running, you will see a list of the fonts available in your sys-
tem in the top left text box. To create the font atlas needed for Space Viking, follow
these steps:

1.
2.

In the top left font selection box, scroll down and pick Helvetica.

In the Sample Text area, click on NEHE to have some sample characters entered
in for you. If the text you need consists only of a few characters, you can type
them here.

3. Under the Color, click on the white box and select a yellow color.

4. In the Rendering section, switch to glyph cache and set the page width and

height to 256. As with image texture atlases, you want the smallest power-of-
two sized image that will contain all of the characters you need. This setting
indicates that Hiero will create a 256 X 256 texture with all of the characters in
the sample text. At this point, Hiero should look like Figure 6.5.

From the File menu, select Save BMFont Files and name the saved file
SpaceVikingFont. fut. Hiero will create both a .fut and a .png file.

Figure 6.5 Hiero running/screen

Using the Hiero Font Builder Tool 159

If you created your font texture atlas with Hiero, you will need to import the PNG
and plist files into Xcode. Drag both the SpaceVikingFont.png and SpaceVikingFont.fnt
files into your SpaceViking project under the Images folder.

Note

All the characters you want to display have to be present in this font atlas. If you are
using lowercase and uppercase versions of the characters, both need to be included. If
you try to set the text to a character that is not in your font atlas, it will show up as blank
onscreen. You can use Hiero or any other bitmap font utility that can generate both the
PNG and FNT files for Cocos2D to use. If you wish to skip the font atlas creation, you can
use the FNT and PNG files included with the source code for the book.

Using CCLabelBMFont Class
After you have created and imported the SpaceVikingFont.fut and SpaceVikingFont.png
files into Space Viking, you need to add the code to use the CCLabel BMFont class. To
start, you will replace the Game Start CCLabel TTF with a CCLabel BMFont .

Open the GameplayLayer.m to the i nit method and replace the line creating the
CCLabel TTF with the contents of Listing 6.2.

Listing 6.2 GameplayLayer.m init method, CCLabelBMFont instead of CCLabelTTF

/1l Wth CCLabel BMFont
CCLabel BMront *ganeBegi nLabel =
[CCLabel BMFont | abel WthString: @ Gane Start"”
fntFile: @SpaceVi ki ngFont. fnt"];

The remaining lines that you created in the previous section setting the posi-
tion and the two actions to the gameBegi nLabel can remain in place. If you click
Run, you should see the “Game Start” banner, although this time it should be yellow
instead of white and in size 32 instead of 64.

Using CCLabel BMFont restricts you to having the fonts only in the original size
saved to the font texture atlas via the external tool. Because the CCLabel BMFont is
really just a texture, you can scale it and apply any other actions and effects to it as you
would to any other CCNode. In the Game Start banner, the font size is 32 but the ban-
ner is scaled to four times its size as part of the CCScal eBy action.

Note

You should be careful not to scale your fonts too large, as they will lose clarity. In general,
if you know you will need your fonts in several sizes, you can create font texture atlases
for each of the needed sizes.

A good way to put the CCLabel BMFont to use is in setting up a live debugging
system in Space Viking. The next section walks you through creating a live debugging
text for the EnenmyRobot .

160

Chapter 6 Text, Fonts, and the Written Word

For the More Curious: Live Debugging

At this point you know how to add text labels into your games, so if you just are inter-
ested in the basics, feel free to skip to the next chapter. But if you want to learn a cool
way to use text labels to make debugging and developing your game easier, check out
this section!

In your games it is often useful to know what state each of the characters is in dur-
ing game play. One way you can do this is to overlay above the objects small text
labels showing their state and other relevant data. In this section you set up a system to
show the position and the current state of the enemy robots. To accomplish this, you
need to set up an instance variable in EnemyRobot to point to the debug label and a
method to update the label with the latest position and status. To start, open up the
EnemyRobot.h header file.

Updating EnemyRobot

In the EnemyRobot.h header file, in the @ nt er f ace section, add an instance variable
to hold a pointer to the label object called myDebugLabel . The myDebugLabel vari-
able can be added directly below the i d <Gamepl ayLayer Del egat e> del egat e
declaration.

CClLabel BMFont *nmyDebuglLabel ;

Below the @ nt er f ace section, add the property definition so that this pointer
variable can be set by the Ganmepl ayLayer as follows:

@roperty (nonatom c, assi gn) CCLabel BMFont *nyDebuglLabel ;

Listing 6.3 shows the full contents of the EnemyRobot.h header file with the two
lines added for the myDebuglLabel variable in bold.

Listing 6.3 EnemyRobot.h header file

/1 EnenyRobot. h
/1 SpaceViking

#i nport <Foundati on/ Foundati on. h>

#i nport "GaneCharacter. h"

@nterface EnenyRobot : GaneCharacter {
CCAni mati on *r obot Wl ki ngAni m

CCAni mati on *rai sePhaser Ani m
CCAni mat i on *shoot Phaser Ani m
CCAni mati on *| ower Phaser Ani m

CCAni mation *torsoHi t Ani m
CCAni mati on *headHi t Ani m
CCAni mat i on *robot Deat hAni m

For the More Curious: Live Debugging

BOOL i sVi ki ngW t hi nBoundi ngBox;
BOOL i sVi ki ngW't hi nSi ght ;

GanmeChar act er *vi ki ngChar acter;
id <Ganmepl ayLayer Del egat e> del egat e;
CCLabelBMFont *myDebugLabel;

}

@roperty (nonatomic,assign) id <Ganepl ayLayer Del egat e> del egat e;
@roperty (nonatom c, retain) CCAni mation *robot Wal ki ngAni m
@roperty (nonatomc, retain) CCAnination *rai sePhaser Ani m
@roperty (nonatomic, retain) CCAnination *shoot Phaser Ani m
@roperty (nonatomc, retain) CCAni mation *| ower Phaser Ani m
@roperty (nonatomc, retain) CCAnination *torsoHitAnim
@roperty (nonatom c, retain) CCAni mation *headHi t Ani m
@roperty (nonatom c, retain) CCAni mation *robot Deat hAni m
@property (nonatomic,assign) CCLabelBMFont *myDebugLabel;
-(void)initAnimtions;

@nd

Switch over to the EnemyRobot.m implementation file. Immediately below the
@ynt hesi ze del egat e statement, add the following line:

@ynt hesi ze nyDebugLabel ;

These three lines take care of making the myDebuglLabel variable accessible from
outside EnenyRobot so that it can be set by the Gamepl ayLayer.

Next, you need a small method so that each EnemyRobot can update its debug
label to show the current position and state. Move to above the updat eSt at eWt h-
Del t aTi me method in EnemyRobot and add the set DebugLabel AndText And-
Posi tion method, as shown in Listing 6.4.

Listing 6.4 setDebugLabelTextAndPosition method

- (voi d) set DebuglLabel Text AndPosi tion {
CGPoi nt newPosition = [self position];
NSString *label String =
[NSString stringWthFormat: @ X: % 2f \n Y:% 2f \n",
newPosi tion. x, newPosition.y];

switch (characterState) {
case kStateSpawni ng:
[myDebugLabel setString:
[1 abel String stringByAppendingString: @ Spawning"]];
br eak;

161

162 Chapter 6 Text, Fonts, and the Written Word

case kStateldle:
[myDebugLabel setString:
[l abel String stringByAppendingString: @ Idle"]];
br eak;

case kSt at eWal ki ng:
[myDebugLabel setString:
[l abel String stringByAppendi ngString: @ Wl king"]];
br eak;

case kStateAttacking:
[nyDebuglLabel set String:
[l abel String stringByAppendi ngString: @ Attacking"]];
br eak;

case kSt at eTaki ngDanmage:
[myDebugLabel setString:
[I abel String stringByAppendi ngString: @ Taki ng Danage"]];
br eak;

case kSt at eDead:
[myDebugLabel setString:
[label String stringByAppendi ngString: @ Dead"]];
br eak;

defaul t:
[nyDebuglLabel set String:
[label String stringByAppendi ngString: @ Unknown State"]];
br eak;

}

float yOfset = screenSize. height * 0.195f;
newPosi ti on = ccp(newPosition. x, newPosition.y+yOffset);
[myDebugLabel set Position: newPosition];

}

The set DebugLabel Text AndPosi ti on method creates a string with the Enemny-
Robot ’s current position and state. The . 2f you see is just a formatting parameter to
limit the decimal positions to two places. The \ n adds a carriage return to keep the
debug label tidy. Lastly, the debug label’s position is set to directly above the Enenmny-
Robot ’s center point by 150 pixels.

Move to the updat eSt at eWt hDel t aTi me method and add this line directly
below the check Andd anpSpritePosition call:

[sel f set DebugLabel Text AndPosi tion];

For the More Curious: Live Debugging 163

This one line will call the set DebugLabel Text AndPosi ti on method and update
the debug label on every frame. If you recall from Chapter 5, “More Actions, Effects,
and Cocos2D Scheduler,” the EnemyRobot removes itself from the CCSprit eBat ch-
Node once it is done playing the death animation. When the EnemyRobot is removed
from the CCSprit eBat chNode, it needs to inform the debug label to remove itself
from the Gamepl ayLayer. Open the deal | oc method in the EnenmyRobot and add
the following two lines above the [super deal | oc] call:

myDebuglLabel = nil;

The first line asks for the debug label to remove itself from the parent Ganepl ay-
Layer. The second line sets the debug label pointer to nil, since the object reference is
no longer valid.

Updating GameplayLayer
Now that the EnenyRobot is set up to update the debug label, the label itself needs to
be created and associated with the EnenyRobot . Open the GameplayLayer.m imple-
mentation file and move to the cr eat eObj ect O Ty peMet hod.

In the i f block that defines the steps needed to spawn an EnemyRobot , add the
following three lines before the line [enemyRobot rel ease].

CCLabel BMFont *debuglLabel =
[CCLabel BMFont
| abel WthString: @NoneNone"
fntFile: @SpaceVikingFont.fnt"];
[sel f addChi | d: debuglLabel];
[enenyRobot set MyDebugLabel : debuglLabel] ;

The first line creates the CCLabel BMFont debuglLabel with a temporary
"NoneNone" string and the font file you created earlier in this chapter. The
debuglLabel is then added to the Ganepl ayLayer, allowing it to be rendered
onscreen. Lastly, a pointer to it is passed to the newly created EnemyRobot , allowing
the EnenyRobot to update the label. Your i f block for creating EnemyRobot should
be identical to Listing 6.5.

Listing 6.5 GameplayLayer.m createObjectOfTypeMethod for EnemyRobot objects

} else if (kEnenyTypeAl i enRobot == object Type) {
CCLOG(@ Creating the Alien Robot");
EnenmyRobot *enemyRobot = [[EnenyRobot all oc]
initWthSpriteFraneName: @anl_ani ml. png"]; //teleport_2
[enenyRobot set CharacterHeal th:initial Heal th];
[enenyRobot set Posi tion: spawnLocati on];
[enenyRobot changeSt at e: kSt at eSpawni ng] ;
[sceneSpriteBat chNode addChil d: enemyRobot z: ZVal ue] ;
[enenyRobot set Del egate: sel f];

164 Chapter 6 Text, Fonts, and the Written Word

CCLabel BMFont *debuglLabel =
[CCLabel BMFont
| abel Wt hString: @NoneNone"
fntFile: @SpaceVi ki ngFont.fnt"];
[sel f addChil d: debuglLabel];
[enenyRobot set MyDebuglLabel : debuglLabel];
[enenyRobot rel ease];

If you click Run now, you will see that the EnemyRobot characters have three
lines of debug text above their heads indicating state and their current position.
Figure 6.6 shows Space Viking on the iPad Simulator with the debug labels. Notice
how the position coordinates update on every frame while the EnemyRobot is walk-
ing without impacting the game’s performance.

Figure 6.6 Space Viking with debug labels showing on top of the
EnemyRobot characters

Other Uses for Text Debugging

You can use the text debugging in your games to get a real-time view of the states of
various entities or game objects while playing. This technique can be really useful to

find hard-to-diagnose bugs in your logic or when you are left scratching your head as
to why that enemy does not attack even though the player is nearby. Some developers

Challenges

have even gone even further to show how much memory is free on the device as the
game is being played to tip them off when they are about to encounter a low-memory
condition or if they have memory leaks.

Summary

You have learned about the font-rendering system in Cocos2D and the differences
between using CCLabel TTF and CCLabel BMFont . You also learned about using text
labels as a live debugging system for your games and implemented a debugging system
for the EnemyRobot . In the next chapter you will work to create the main menu and
the foundation needed to allow Ole to explore more than just one level in the Space
Viking universe.

Challenges

1. Try making the debug labels appear only in debug builds of Space Viking or
enabling it to be toggled on and off by a #def i ne statement.

Hint
You could define a #def i ne around the COCOS2D _DEBUG flag.

2. Replace the y-axis indicator from the EnemyRobot with the robot’s current
health level.

3. Try adding a debug label to the Viking so you can see what state and position
Ole is in.

165

This page intentionally left blank

Part |l

From Level to Game

Learn how to expand the Space Viking level you have built into a full
game by adding menus, using sound, and scrolling.

= Chapter 7: “Main Menu, Level Completed, and Credits Scenes”
= Chapter 8: “Pump Up the Volume!”
= Chapter 9: “When the World Gets Bigger: Adding Scrolling”

This page intentionally left blank

v

Main Menu, Level Completed,
and Credits Scenes

So far in this book you have built a full working scene for Ole the Viking to explore. He has

to battle evil robots and figure out a way to stop them from spawning. In this chapter you learn
about Cocos2D menus and how to create and link multiple scenes. By the end of this chapter
you will have Space Viking set up to start on a main menu, show three different levels for Ole
to explore, and show a level complete screen once Ole has killed all the enemies or died trying. If
you are ready, read on.

Scenes in Cocos2D

In Chapter 1, “Hello, Cocos2D,” you learned that each distinct level or view is stored
inside of a CCScene and that the Cocos2D Director is in charge of running one scene
at a time. Up to this point, you had one CCScene, the GanmeScene where all the
action takes place. While one scene has been great to get Space Viking started, Ole
needs more levels to explore. There are menus, scrolling, and physics to discover and
implement before you reach the end of this book. This chapter covers how to create
and link menus and levels in your games.

In Space Viking each level is represented by a CCScene. In your own games, you can
split levels in whichever way suits you: you could have a CCScene that handles all lev-
els or a set of levels that share the same graphics. Remember that a CCScene is just a
subclass of CCNode with the anchor Poi nt set to the middle of the screen. It is has no
further logic and is just a container for all the objects you will have in a particular part
of your game. In Space Viking you will have the following scenes:

= Main Menu

First screen displayed when Space Viking launches. It shows Ole spinning around
and gives the player the option to play, set options, or see the website for this
book.

170 Chapter 7 Main Menu, Level Completed, and Credits Scenes

= Options Menu

A menu screen that allows the user to turn music on/off and sound effects on/
off, as well as an option to view the Space Viking credits.

= Credits

A list of the people involved in bringing Space Viking to life.
= Level Completed

Shown when the player completes a level or dies, indicating the player’s progress.
= GameplayScenes

A scene for each of the levels in Space Viking. You have already created the first
gameplay scene, when Ole awakens in the alien world.

In order to bring these scenes to life, you need to create a Mai nMenuScene,
Level Conpl et eScene, Opti onsScene, and Cr edi t sScene. The next section walks
you through the process of creating the code needed to power these scenes. Figure 7.1
shows the navigation hierarchy of these scenes from the Main Menu.

Figure 7.1 Menu screen flow in Space Viking

Before you can start creating these scenes, you need to set up the GameManager
singleton, which informs the director which scene to display.

Introducing the GameManager

In the previous chapters you had the game starting out with the first scene, where
Ole fights off the Radar Di sh and EnenmyRobot . In order to make it easy to switch

Introducing the GameManager

between scenes, you create a GameManager class to handle the task of asking the
Cocos2D Director to switch CCScenes. The GaneManager class will be a singleton
class, so there will be only one instance of it during the lifetime of the Space Viking
game, and it will be accessible from all the scenes. All of the scenes will know about
the GaneManager, and the GameManager will know about them, but the individual
scenes will not know about each other. This way, each scene is self-contained and you
can add more scenes or change them at will without worrying about interdependencies
between scenes. The Singleton pattern is a powerful design pattern used throughout
Cocos2D for the CCDi r ect or, CCText ur eCache, and other classes.

Note

For more information on the Singleton design pattern as well as other useful patterns in
Cocoa programming, take a look at Cocoa Design Patterns, by Erik M. Buck and Donald A.
Yacktman (Addison-Wesley, 2009).

The game manager needs to know what scenes to switch between, so before coding
up the GameManager, open the Constants.h file and add the lines shown in Listing 7.1

to the bottom of it.

Listing 7.1 Constants.h SceneType enumeration type

#defi ne kMai nMenuTagVal ue 10
#defi ne kSceneMenuTagVal ue 20

typedef enum {
kNoSceneUni ni ti al i zed=0,
kMai nMenuScene=1,
kOpt i onsScene=2,
kCr edi t sScene=3,
kl ntroScene=4,
kLevel Conpl et eScene=5,
kGanelLevel 1=101,
kGanelLevel 2=102,
kGanelLevel 3=103,
kGanelLevel 4=104,
kGanelLevel 5=105,
kCut SceneFor Level 2=201
} SceneTypes;

typedef enum {
kLi nkTypeBookSi t e,
kLi nkTypeDevel oper Si t eRod,
kLi nkTypeDevel oper Si t eRay,
kLi nkTypeArtistSite,
kLi nkTypeMusi ci anSite

} LinkTypes;

171

172

Chapter 7 Main Menu, Level Completed, and Credits Scenes

/| Debug Eneny States with Labels
/1 0 for OFF, 1 for ON
#defi ne ENEMY_STATE_DEBUG 0

The SceneTypes is just an enumeration type that defines the scenes the Gane-
Manager will support switching between. You can see there are placeholders for game
levels 2 through 5 that you have yet to create.

The Li nkTypes is a set of types that are used to determine what URL to open.

In the Main Menu the user will have the choice to open this book’s site, and in the
Credits scene the player can visit Ray’s and my development site as well as the artist
and musician sites.

Lastly, the ENEMY_STATE_DEBUG flag is used to answer the first challenge question
from Chapter 6, “Text, Fonts, and the Written Word.” You will use this flag to turn
the Enemy Debug labels on and off. You will notice that this flag answers the chal-
lenge question from Chapter 6.

Creating the GameManager

To start creating the GameManager, select the Singletons folder you created in Chapter 3,
“Introduction to Cocos2D Animations and Actions’:

1. Right-click and, from the contextual menu, select New File. Choose the
Cocoa Touch category under 10OS and Objective-C class as the file type,
and click Next.

2. For the Subclass field, enter NSObject and click Next.

3. Enter GameManager.m for the filename and click Save.

Open the GameManager.h header file and replace the code with the contents of List-
ing 7.2.

Listing 7.2 GameManager.h header file

/1 GanmeManager. h

/1 SpaceViking

/1

#i nport <Foundat i on/ Foundati on. h>
#i nport "Constants. h"

@nterface GaneManager : NSObject {
BOOL i sMusi cON;
BOOL i sSoundEf f ect sON;
BOOL hasPl ayer Di ed;
SceneTypes current Scene;

Introducing the GameManager

@roperty (readwite) BOOL isMisicON,
@roperty (readwite) BOOL isSoundEffectsON,
@roperty (readwite) BOOL hasPl ayerDi ed;

+(GaneManager *) shar edGaneManager ; /11
-(void)runSceneWt hl D: (SceneTypes) scenel D; Il 2
-(voi d) openSi t eWt hLi nkType: (Li nkTypes) | i nkTypeToOpen ; Il 3
@nd

In Listing 7.2 pay close attention to the +H GameManager *) shar edManager
method. The plus sign is key here—it indicates that the shar edManager method is
a class method and not an instance method. This method is available at the class level,
without your code having to have an allocated and initialized GanmeManager instance
before calling it. In fact, this class method will allocate and initialize an instance of the
GameManager class if there is not one already created for your game.

1. Sets up a class method called shar edGameManager. This class method returns
the one and only instance of the GameManager . The full details are in the
implementation file for GaneManager in Listing 7.3.

2. Declares a r unSceneWt hl D method that takes a scenel D of type SceneTy pes.
This method is called by various scenes when they need to have the director (via
the GaneManager) switch the scene that is currently running. An example is
when the player finishes a level and the Gamepl ay scene has to be replaced by
the Level Conpl et e scene.

3. Opens a URL based on the | i nkType sent. This method closes Space Viking
and opens Mobile Safari to one of the predefined links in the game. You can use
this same code if you want to send players to your site in your own games.

Note

As you will see in the GameManager.m implementation, the openSit eWt hLi nkType
closes the Space Viking game and launches Mobi | eSaf ari . If you wanted to keep your
game running and open a web page with Mobi | eSaf ari from within your game, you
could create a Ul WebVi ew and add it to the view hierarchy, as doing so would let you
display a website while keeping your game running.

The implementation of the GaneManager can be thought of in two logical parts.
In the first part are the methods needed to make the GanmeManager a singleton. The
second part covers the runSceneWt hl D and openSit eWt hLi nkTy pe methods and
contains the GameManager -specific functionality. When you are creating your own
singletons, copy the first part, and replace the second with your own game code.

Switch to the GameManager.m implementation file and replace the code with the
contents of Listing 7.3.

173

174 Chapter 7 Main Menu, Level Completed, and Credits Scenes

Listing 7.3 GameManager.m implementation—singleton portion

/1 GanmeManager.m

/1 SpaceVi ki ng

11

#i nport " GaneManager. h"

#i nport "GaneScene. h"

#i nport " Mai nMenuScene. h"

#i mport " OptionsScene. h"

#i nport "CreditsScene. h"
#import "IntroScene. h"

#i nport "Level Conpl et eScene. h"

@ npl enent ati on GaneManager

stati c GanmeManager* _sharedGaneManager = nil; /111
@ynt hesi ze i sMusi cON,
@ynt hesi ze i sSoundEf f ect sON;
@ynt hesi ze hasPl ayer D ed;
+(GaneManager *) shar edGaneManager {
@ynchroni zed([GaneManager cl ass]) Il 2
{
i f(!_sharedGaneManager) /13
[[self alloc] init];
return _sharedGaneManager ; /1 4
}
return nil;
}
+(id)alloc
{
@ynchroni zed ([GaneManager cl ass]) /15
{
NSAssert (_sharedGneManager == nil,
@Attenpted to allocate a second instance of the Gane
Manager singl eton"); /Il 6
_sharedGaneManager = [super alloc];
return _sharedGaneManager ; 17
}
return nil;
}
-(id)init { /18

self = [super init];
if (self '=nil) {
/1 Game Manager initialized

Introducing the GameManager

CCLOG(@ Gane Manager Singleton, init");
i sMusi cON = YES;

i sSoundEf f ect sON = YES;

hasPl ayer Di ed = NG,

current Scene = kNoSceneUninitialized;

}

return self;

The singleton code has one purpose, to ensure that there is only one instance of

GanmeManager allocated and running in your game at any time; hence the “single”

part of the name. The code lines in Listing 7.3 carry out the following:

1.

Declares a static object of type GameManager and initializes it to ni | . This is
the object that gets sent back to calling classes once GameManager is initialized.

Defines a synchronized block. This ensures that even if two class instances call
this method at the same time, only one will go through at a time. This code
becomes really important when you have a multithreaded app or game and you
have the risk of executing the same code block by two different class instances
(such as a scene and another object).

. If the shar edManager is ni |, this line allocates and initializes it. The

shar edManager is the GameManager instance that gets returned by the Gane-
Manager class. If this sounds confusing, just remember that this code simply
ensures that the GameManager class creates and returns only one instance of the
GameManager, much the same way 1OS creates only one instance of your Appli-
cation Delegate.

Returns the newly allocated and initialized GameManager instance.

5. Allocates the memory needed for an instance of GaneManager . This method is

called by the shar edManager method in step 3. This method is surrounded by
the @ynchroni zed directive so that it can be executed by only one thread at a
time.

An NSAssert to ensure that the GameManager instance is nil or nonexistent
before an attempt is made to allocate it. As the message indicates, the NSAsser t
will stop execution if a second instance of GameManager is being allocated, as it
would no longer be a singleton.

7. Returns the newly allocated instance of GameManager .

Initializes the instance variables of GaneManager, including the default for the
Music and Sound Effects options. The i nit method is the same as the other
classes you have written for Space Viking; hopefully, by this point you can spot
and repeat the i ni t method pattern from memory.

175

176 Chapter 7 Main Menu, Level Completed, and Credits Scenes

When looking over Listing 7.3, keep in mind that a singleton is just like other
classes, except that within your game there can be only one instance of the class. With
the singleton portion out of the way, copy the contents of Listing 7.4 into GaneManager ’s
i nit method.

Listing 7.4 GameManager.m implementation—runSceneWithID

-(void)runSceneWt hl D: (SceneTypes) scenel D {
SceneTypes ol dScene = current Scene;
current Scene = scenel D;

id sceneToRun = nil;
switch (scenel D) {

case kMai nMenuScene:
sceneToRun = [Mai nMenuScene node] ;
br eak;

case kOptionsScene:
sceneToRun = [OptionsScene node];
br eak;

case kCreditsScene:
sceneToRun = [Credi tsScene node];
br eak;

case klntroScene:
sceneToRun = [l ntroScene node];
br eak;

case kLevel Conpl et eScene:
sceneToRun = [Level Conpl et eScene node] ;
br eak;

case kGaneLevel 1:
sceneToRun = [GaneScene node];
br eak;

case kGaneLevel 2:
/'l Placehol der for Level 2
br eak;

case kGanelLevel 3:
/'l Placehol der for Level 3
br eak;

case kGaneLevel 4:
/'l Placehol der for Level 4
br eak;

case kGaneLevel 5:
/'l Placehol der for Level 5
br eak;

case kCut SceneFor Level 2:
/1 Placehol der for Platform Level
br eak;

Introducing the GameManager

defaul t:
CCLOG(@ Unknown | D, cannot sw tch scenes");
return;
br eak;

}

if (sceneToRun == nil) {
/'l Revert back, since no new scene was found
current Scene = ol dScene;
return;

}

/1 Menu Scenes have a val ue of < 100
if (scenelD < 100) {
if (U _USER | NTERFACE_ | DI OM) = Ul Userlnterfacel di onPad) {
CGSi ze screenSi ze =
[CCDi rector sharedDirector].w nSi zel nPi xel s;

if (screenSize.wi dth == 960.0f) {
/1 iPhone 4 Retina
[sceneToRun set Scal eX: 0. 9375f] ;
[sceneToRun set Scal eY: 0. 8333f];
CCLOG @ GM Scal ing for iPhone 4 (retina)");

} else {
[sceneToRun set Scal eX: 0. 4688f] ;
[sceneToRun set Scal eY: 0. 4166f];
CCLOG(@ GMt Scal i ng for iPhone 3G non-retina)");

}

}
}
if ([[CCDirector sharedDirector] runningScene] == nil) {

[[CCDi rector sharedDirector] runWthScene: sceneToRun];
} else {

[[CCDirector sharedDirector] replaceScene: sceneToRun];
}

The GameManager singleton asks the Cocos2D Director to switch between
different scenes, from the Mai nMenu, to Level Conpl et e, to Ganepl ay. The
runSceneWt hl D method is what controls the scene to switch to, and it can be
called from any scene. The swi t ch statement initializes the new scene to be displayed.
The i f block at the end of the function checks to see if the director is already run-
ning a scene, and if so, it calls r epl aceScene with the new scene. The check for

177

178

Chapter 7 Main Menu, Level Completed, and Credits Scenes

Ul _USER | NTERFACE_I Dl OM) determines if Space Viking is not running on the iPad
and then applies a scaling down to the entire scene. Since the scene contains the layer
and the sprites, everything gets scaled down in one call. The menu scenes contain very
few images, so scaling down iPad-sized images provides a savings on the size of Space
Viking. Unlike the other checks for Ul _USER_| NTERFACE_| Dl OM), here you are
scaling if the game detects it is nof running on the iPad. If you have a lot of images for
your menus, you may decide to use iPhone and iPhone4 (-hd)-sized images, just as is
done in the gameplay scenes.

Warning

The issue of when to use r unScene and r epl aceScene is a common source of frus-
tration to developers starting out with Cocos2D. r unScene can be called only if the
director is not currently running a scene, while r epl aceScene is called when there is
already a scene being displayed. The i f statement at the end of r unSceneWt hl D
takes care of calling the proper director method by checking to see if the director is cur-
rently running a scene.

The last part of the GaneManager implementation deals with opening Mobi | e-
Saf ari to one of the links from the Mai nMenu or other menus. Paste the contents of

Listing 7.5 into the r unSceneWt hl D method in GameManager.m.

Listing 7.5 GameManager.m openSiteWithLinkType method

-(voi d)openSi teWt hLi nkType: (Li nkTypes) | i nkTypeToOpen {
NSURL *url ToOpen = nil;
if (linkTypeToOpen == kLi nkTypeBookSite) {
CCLOE @ Openi ng Book Site");
url ToOpen =
[NSURL URLWt hStri ng:
@http://ww.informt.comtitle/9780321735621"];
} else if (linkTypeToOpen == kLi nkTypeDevel oper SiteRod) {
CCLOG @ Openi ng Devel oper Site for Rod");
url ToOpen = [NSURL URLW thString: @http://ww.prop.gr"];
} else if (linkTypeToOpen == kLi nkTypeDevel oper Si teRay) {
CCLOE @ Openi ng Devel oper Site for Ray");
url ToOpen =
[NSURL URLWthString: @http://ww. raywenderlich.com "];
} else if (linkTypeToOpen == kLi nkTypeArtistSite) {
CCLOG @ Opening Artist Site");
url ToOpen = [NSURL URLWthString: @http://EricStevensArt.conl'];
} else if (linkTypeToOpen == kLi nkTypeMusicianSite) {
CCLOG @ Openi ng Musician Site");
url ToOpen =
[NSURL URLWthString: @http://ww. m kewei sernusi c. conl "] ;

Menus in Cocos2D

} else {
CCLOG(@ Def aul ting to Cocos2DBook.com Blog Site");
url ToOpen =
[NSURL URLW thString: @http://ww. cocos2dbook. con'];
}

if (![[U Application sharedApplication] openURL:url ToOpen]) {

CCLOG @ %@ , @ Fai |l ed to open url:",[url ToOpen description]);
[sel f runSceneWt hl D: kMai nMenuScene] ;

}

@nd

The openSiteWt hLi nkType method determines which URL to open via the
I'i nkTypeToOpen variable and makes a call to Ul Appl i cation to open the URL.
The call to Ul Application closes Space Viking and opens Mobi | eSaf ari , navigating
to the URL sent via the openURL call. If this call fails, the game is returned to the
Mai nMenu.

Warning
The code you have entered so far will not compile because you have yet to create the

classes for the Mai nMenu, Options, Credits, and Level Conpl et e scenes. The
error dialogs in Xcode should disappear as soon as you create these classes.

The next section covers the basics for the different CCMenu classes that make up the
menu system in Cocos2D. You will use the CCMenu classes to create the Mai nMenu,
Options, Credits, and Level Conpl et e scenes.

Menus in Cocos2D

Cocos2D has a built-in menu system that you can use to create the menus for your
game, and that is what you will use to create the Main Menu and Credits screens for
Space Viking. A similar hierarchy to how CCLayer s are children of CCScenes exists in
CCMenu. The classes are as follows:

= CCMenu

The main class driving a menu, it contains the menu list items that represent
your text, buttons, and toggles. The CCMenu is what you create last and add to
your CCLayer.

= CCMenuAtlasFont

A bitmapped font atlas class, used to create a text string to act as a text button
onscreen.

179

180 Chapter 7 Main Menu, Level Completed, and Credits Scenes

= CCMenultemFont

A menu item class that can display a text string you want to display onscreen to
act as a text button.

= CCMenultemImage

An image button composed of a normal and active/pressed-down image.
= CCMenultemLabel

A button that uses a CCLabel TTF to display the text.
= CCMenultemSprite

Similar to the CCMenul t el mage class except it uses already created
CCSprites for the normal and active/pressed-down images.

= CCMenultemToggle

A toggle switch made of text or a label. When pressed, it switches between the
two text options or toggles. The Music and Sound Effects On/Off menu items
in the Options scene are examples of CCMenul t eniToggl e.

CCMenul t ems act as buttons by calling a selector for methods in your code. If this
sounds confusing, do not worry: you will see it in action in the next section. In a nut-
shell, it means that for each CCMenul t empress, one of your methods will get called.
In that method you will then carry out the necessary action, such as switching the
scene.

Scene Organization and Images

In the next section you create several scenes and layers to support all of the menus in
Space Viking. In order to avoid a jumbled mess of scenes and layers, you should set up
groups in Xcode to keep the new scenes and layers organized.

In your SpaceViking project

1. Select the Scenes group and right-click, selecting Add > New Group.
2. Label the new group Intro inside of the Scenes group.

3. Repeat the steps to create the groups MainMenu, Options, Credits, Level Complete,
and Scenel.

4. Move the GameScene.h and GameScene.m files into the Scenel group.

5. Move the Layers group you created previously inside of the Scenel group.

Your newly created groups should look like Figure 7.2.

Scene Organization and Images 181

Figure 7.2 Scenes groups in Xcode

Adding Images and Fonts for the Menus

The various menus in Space Viking require a new set of images in addition to what you
have used up to now. In the resources file you downloaded for this chapter, you will
find two new folders: Menus and Fonts. Use the following steps to add the new images
and new font atlas needed into your Spaceliking project.

1. In Xcode, select the Images group, right-click, and select Add Files.

2. Navigate to the directory where you downloaded the resources for this chapter
and select the Menus folder and click Add.

3. Repeat Step 2 for the Fonts folder.

4. Move the SpaceVikingFont.fnt and SpaceVikingFont.png files you created in
Chapter 6 inside of the Fonts group in Xcode.

Figure 7.3 shows the Images group in Xcode with the Menus and Fonts subfolders
added.

With your SpaceViking project organized, you are ready to move on to creating the
Main Menu classes.

182 Chapter 7 Main Menu, Level Completed, and Credits Scenes

Figure 7.3 Menu and fonts images in Xcode Images group

Creating the Main Menu

The Main Menu serves as the model for the menus in Space Viking. Once you under-
stand how it works, you can have confidence in adding menus to your own games.
You will first create the CCMenul t ens, and then a CCMenu object that represents the
entire menu that will be created and added to your scenes.

Creating the MainMenuScene
To start, select the MainMenu group in the Groups and Files tab.
1. Right-click and select New File.

2. Right-click and, from the contextual menu, select New File. Choose the
Cocoa Touch category under iOS and Objective-C class as the file type,
and click Next.

3. For the Subclass field, enter CCScene and click Next.
4. Enter MainMenuScene.m for the filename and click Save.

5. Create the MainMenuLayer.m class by following steps 1 to 3 but entering
CCLayer for the Subclass field and MainMenuLayer.m for the filename.

Open the MainMenuScene.h header file and replace the template code with the con-
tents of Listing 7.6.

Listing 7.6 MainMenuScene.h header file

/1 NMai nMenuScene. h

/1 SpaceVi ki ng

I

#i nport <Foundati on/ Foundati on. h>
#i nport "cocos2d. h"

#i nport " Mai nMenuLayer. h"

Creating the Main Menu

@nterface Mai nMenuScene : CCScene {
Mai nMenuLayer *mai nMenulLayer ;

}

@nd

The Mai nMenu scene is just a container object to hold the Mai nMenuLayer
class. In the header file you can see the declaration for the Mai nMenuLayer instance
variable.

Switch to the MainMenu.m implementation file and copy the code in Listing 7.7 in
place of the template-generated code.

Listing 7.7 MainMenuScene.m implementation file

/1 Mai nMenuScene. m

/'l SpaceVi ki ng

/1

#i mport " Mai nMenuScene. h"

@ npl enent ati on Mai nMenuScene
-(id)init {
self = [super init];
if (self I'=nil) {
mai nMenuLayer = [Mai nMenuLayer node];
[sel f addChi | d: mai nMenuLayer];
}
return self;
}
@nd

The Mai nMenuScene implementation file is just an i ni t method that sets up the
Mai nMenuLayer and adds it to the Mai nMenuScene as a child. All of the actual
menu buttons and background images and animations are in the Mai nMenuLayer .

MainMenuLayer class

The Mai nMenuLayer is the class that contains the logic to power the Main Menu
buttons, scene selections, and a background animation of Ole floating in space. To
start, open the MainMenuLayer.h header file and replace the code with the contents of
Listing 7.8.

Listing 7.8 MainMenulLayer.h header file

/1 Mai nMenuLayer . h

/1 SpaceVi ki ng

/1

#i mport <Foundat i on/ Foundati on. h>
#i mport "cocos2d. h"

183

184

Chapter 7 Main Menu, Level Completed, and Credits Scenes

#i nport "Constants. h"
#i nport " GaneManager. h"

@nterface Mai nMenuLayer : CClLayer {
CCMenu *mai nMenu;
CCMenu *sceneSel ect Menu;

}

@nd

In the header file of Mai nMenuLayer are two instance variables to cover the Main
Menu and the scene selection menu. There is also an include of the GameManager.h
header file so that the Mai nMenuLayer can call GaneManager directly. In the imple-
mentation file is where everything comes together. Listing 7.9 shows the beginning
portion of the MainMenuLayer.m class file. Make sure you copy the contents of Listings
7.9 through 7.13 into the MainMenuLayer.m class file.

Listing 7.9 MainMenuLayer.m (part 1: private methods)

/1 Mai nMenuLayer. m

/1 SpaceVi ki ng

11

#i nport " Mai nMenuLayer. h"
@nterface M nMenuLayer ()

- (voi d) di spl ayMai nMenu;

- (voi d)di spl aySceneSel ecti on;

@nd

@ npl enent ati on Mai nMenuLayer

The first thing you may notice in Listing 7.9 is the @ nt er f ace declaration inside
of the implementation file. If you are thinking that @ nt er f ace declarations normally
belong in the header files, you are correct. Objective-C does not have explicit support
for private class methods: any methods you declare in your header file are considered
public methods. In order to have private methods, you need to include their declara-
tions in the .m implementation file in an @ nt er f ace section before the @ npl emen-
tation section.

In some of the previous code in Space Viking you have not had to add explicit pri-
vate declarations for your methods; they have always preceded the calls to them in
the class source code files. The private method—style declaration is really useful if you
have method calls that may precede the implementation of those methods. An example
would be if you had a call to [sel f di spl ayMai nMenu] before you defined the
implementation of the di spl ayMai nMenu method in your code.

The next section of Mai nMenuLayer covers the calls to show the Options Menu,
open the book site, and play the first scene in the game. Add the contents of Listing
7.10 to your MainMenuLayer.m class.

Creating the Main Menu

Listing 7.10 MainMenulLayer.m (part 2: buyBook, showOptions, playScene)

- (voi d) buyBook {
[[GaneManager shar edGaneManager]
openSi t eWt hLi nkType: kLi nkTypeBookSi t e] ;

}

- (voi d) showOpti ons {
CCLOG(@ Show t he Options screen");
[[GaneManager shar edGaneManager] runSceneWthl D: kOpti onsScene];

}

-(voi d) pl ayScene: (CCMenul t enfont *) i t enPassedl n {
if ([itemPassedln tag] == 1) {
CCLOG(@ Tag 1 found, Scene 1");
[[GaneManager shar edGaneManager] runSceneWt hl D: kl ntroScene] ;
} else {
CCLOG @ Tag was: %", [itenPassedln tag]);
CCLOG @ Pl acehol der for next chapters");

The buyBook method is just a call to the openSit eWt hLi nk method you
declared in GameManager, which exits Space Viking and launches Mobi | eSaf ari .
The showOpt i ons method places a call to GameManager to swap the Mai nMenu
scene with the Opti ons scene. The GameManager will initialize the Opti ons scene
and load it in place of the currently running Mai nMenu scene.

The pl ayScene method launches the Ganmepl ayScene depending on which of
the three levels the player has selected. In Listing 7.10 you can see the code for the first
level you already created and placeholders for the next two scenes you will be creating
later in this book. To understand exactly how pl ayScene is called from the Mai nMenu
scene, you need to refer to the code in Listings 7.11, 7.12, and 7.13.

Listing 7.11 MainMenuLayer.m (part 3: displayMainMenu)

- (voi d) di spl ayMai nMenu {
CGSi ze screenSi ze = [CCDirector sharedDirector].w nSi ze;
if (sceneSelectMenu !'=nil) {
[sceneSel ect Menu renpveFr onPar ent Andd eanup: YES] ;

}
/1 Main Menu
CCMenul t em nage *pl ayGaneButton = [CCMenul t enl mage

i t enfr omNor mal | mage: @ Pl ayGanmeBut t onNor mal . png"

sel ect edl mage: @ Pl ayGaneBut t onSel ect ed. png"

di sabl edl nage: ni |

target:self

sel ector: @el ect or (di spl aySceneSel ection)];

185

186 Chapter 7 Main Menu, Level Completed, and Credits Scenes

CCMenul t em mage *buyBookButton = [CCMenul t eml mage
i t enfr omNor nal | nage: @ BuyBookBut t onNor nal . png"
sel ect edl mage: @ BuyBookBut t onSel ect ed. png"

di sabl edl nage: ni |
target:self
sel ector: @el ect or (buyBook)];

CCMenul t em mage *optionsButton = [CCMenul tem mage
i t enfromNor nal | nage: @ Opt i onsBut t onNor nal . png"
sel ect edl nage: @ Opt i onsBut t onSel ect ed. png"

di sabl edl nmage: ni |
target:self
sel ector: @el ect or (showOptions)];

mai nMenu = [CCMenu
menuW't hl t ens: pl ayGaneBut t on, buyBookBut t on, opti onsButton, nil];
[mai nMenu alignltensVertical | yWthPaddi ng:
screenSi ze. hei ght * 0. 059f];
[mai nMenu set Posi tion:
ccp(screenSize.width * 2,
screenSi ze. height / 2)];

id noveAction =

[CCMbveTo actionWthDuration: 1. 2f

position:ccp(screenSize.w dth * 0.85f,
screenSi ze. hei ght/2)];

id moveEffect = [CCEaseln acti onWthAction: noveAction rate:1.0f];
[mai nMenu runActi on: noveEf fect];
[sel f addChil d: mai nMenu z: 0 tag: kMai nMenuTagVal ue] ;

The di spl ayMai nMenu method creates the CCMenul t ems and the CCMenu
needed for the Main Menu and adds the menu to the Mai nMenulLayer itself. It also
adds an animation at the end to slide the menu buttons from right to left.

The key to remember is that a CCMenu is just a collection of CCMenul t ens, and
those menu items are what define the various buttons or text labels you will have as
part of your menu. Since the CCMenu contains all of the menu items, it controls the
alignment and position of those items. By default, all of the menu items are placed at
the center of the CCMenu. The line [mai nMenu alignltensVertical | yWthPad
di ng: 60.0f]; aligns all of the CCMenul t ens vertically with a padding of 60 pixels
between each of them. There is an equivalent method for aligning the menu items
horizontally if your menu is left to right instead of top to bottom.

There are two more methods you need to include in MainMenuLayer.m: the di s-
pl aySceneSel ection and i nit methods. Be sure to copy the entire contents of
those two methods into your MainMenuLayer.m file from Listings 7.12 and 7.13.

Creating the Main Menu 187

Listing 7.12 MainMenuLayer (part 4: displaySceneSelection)

- (voi d)di spl aySceneSel ection {
CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze;
if (mainMenu !'=nil) {
[mai nMenu r enoveFr onPar ent Andd eanup: YES] ;
}

CCLabel BMFont *pl ayScenellLabel =
[CCLabel BMFont | abel Wt hString: @O e Awakes!™"
fntFile: @VikingSpeechFont64. fnt"];
CCMenul t emLabel *pl ayScenel =
[CCMenul t enlabel itemNthLabel : pl ayScenellLabel target:self
sel ector: @el ector (pl ayScene:)];
[pl ayScenel set Tag: 1];

CCLabel BMFont *pl ayScene2Label =
[CCLabel BMFont | abel Wt hString: @Dogs of Loki!"
fntFile: @Vi ki ngSpeechFont 64.fnt"];
CCMenul t emLabel *pl ayScene2 =
[CCMenul t enlLabel itenAthLabel : pl ayScene2Label target:self
sel ector: @el ector (pl ayScene:)];
[pl ayScene2 set Tag: 2] ;

CCLabel BMront *pl ayScene3Label =
[CCLabel BMFont | abel WthString: @Descent Into Hades!"
fntFile: @Viki ngSpeechFont64. fnt"];

CCMenul t enLabel *pl ayScene3 = [CCMenul t enlLabel
i temAN' t hLabel : pl ayScene3Label target:self

sel ector: @el ector (pl ayScene:)];
[pl ayScene3 set Tag: 3] ;

CCLabel BMFont *pl ayScene4lLabel =
[CCLabel BMFont | abel Wt hString: @Descent Into Hades!"
fntFile: @Vi ki ngSpeechFont 64.fnt"];
CCMenul t emLabel *pl ayScene4 = [CCMenul t emLabel
itenN t hLabel : pl ayScene4lLabel target:self
sel ector: @el ector (pl ayScene:)];
[pl ayScene4 set Tag: 4] ;

CCLabel BMront *pl ayScene5Label =

[CCLabel BMFont | abel Wt hString: @Escape! "
fntFile: @VikingSpeechFont64. fnt"];

CCMenul t enLabel *pl ayScene5 = [CCMenul t enlLabel
i temWN t hLabel : pl ayScene5Label target:self
sel ector: @el ector (pl ayScene:)];

[pl ayScene5 set Tag: 5] ;

188 Chapter 7 Main Menu, Level Completed, and Credits Scenes

CCLabel BMFont *backButt onLabel =
[CCLabel BMFont | abel Wt hString: @ Back"
fntFile: @VikingSpeechFont64.fnt"];
CCMenul t emLabel *backButton =
[CCMenul t emLabel itemA t hLabel : backButtonLabel target:self
sel ector: @el ect or (di spl ayMai nMenu)] ;

CClLabel BMFont *backButt onLabel =
[CCLabel BMFont | abel Wt hString: @ Back"
fntFile: @VikingSpeechFont64.fnt"];
CCMenul t enlLabel *backButton =
[CCVenul t enlabel itemAthLabel : backButtonLabel target:self
sel ector: @el ector (di spl ayMai nMenu)] ;

sceneSel ect Menu = [CCMenu nmenuW t hl t ens: pl ayScenel,
pl ayScene2, pl ayScene3, pl ayScene4,
pl ayScene5, backButton, nil];
[sceneSel ect Menu alignltensVertical | yWthPaddi ng:
screenSi ze. hei ght * 0.059f];
[sceneSel ect Menu set Posi tion: ccp(screenSi ze.wi dth * 2,
screenSi ze. height / 2)];

id moveAction = [CCVbveTo actionWthDuration: 0. 5f
position:ccp(screenSize.w dth * 0.75f,
screenSi ze. hei ght/2)];
id moveEffect = [CCEaseln acti onWthAction: noveAction rate:1.0f];
[sceneSel ect Menu runActi on: noveEf fect];
[sel f addChil d: sceneSel ect Menu z: 1 tag: kSceneMenuTagVal ue] ;

In the beginning of the di spl aySceneSel ecti on, the code checks to see if
mai nMenu is initialized (it should be), and if so, removes it from the layer.

The next few lines deal with creating the text labels for each of the level selection
tags. In Space Viking you will be using the free Vinland font for the text labels. In the
book’s resource files for this chapter, you will find the font map and bitmap texture
files for the Vinland font at size 64 and with a red color. The pl ayScenellLabel uses
these font files to create a bitmapped font label of the “Ole Awakes!” text in Vinland
size 64. These lines are identical to the debug fonts you created in the previous chapter
for the EnemyRobot . Once the bitmap font label (pl ayScenellLabel) is created, it is
added to a CCMenul t emLabel , which has a selector set to the pl ayScene method.

The next line is important: it sets the tag value for the CCMenul t emLabel , 1
for this scene, 2 for the second scene, and so on. Toward the end of the di spl ay-
SceneSel ect i on method, the CCMenu is instantiated with the three scene selection
CCMenul t emLabel s. Listing 7.13 shows the i nit method.

Creating the Main Menu

Listing 7.13 MainMenuLayer (part 5: init method)

-(id)init {
self = [super init];
if (self !'=mnil) {
CGSi ze screenSize = [CCDirector sharedDirector].w nSize;

CCSprite *background =
[CCSprite spriteWthFile: @Mai nMenuBackgr ound. png"];
[background set Position:ccp(screenSize.w dth/ 2,
screenSi ze. hei ght/2)];
[sel f addChi | d: background] ;
[sel f displayMai nMenu] ;

CCSprite *viking =
[CCSprite spriteWthFile: @VikingFl oating. png"];
[viking setPosition:ccp(screenSize.w dth * 0. 35f,
screenSi ze. hei ght * 0.45f)];
[sel f addChil d: vi ki ng] ;

idrotateAction = [CCEaseEl asticlnCQut acti onWthAction:
[CCRot at eBy acti onW t hDur ati on: 5. 5f
angl e: 360]];

id scaleUp = [CCScal eTo acti onWthDuration:2.0f scale:1.5f];
id scal eDown = [CCScal eTo acti onWthbDuration:2.0f scale:0.5f];

[viking runAction: [CCRepeat Forever acti onWthAction:
[CCSequence
actions: scal eUp, scal eDown, nil]]];

[viking runAction:
[CCRepeat Forever acti onWthAction:rotateAction]];
}
return self;
}
@nd

The first key part of the i nit method is the call to [sel f di spl ayMai nMenu],
which creates the Main Menu buttons and places them onscreen. The rest of Listing
7.13 creates a sprite of the Viking floating in space and adds some repeating actions
to him. The Viking will rotate and at the same time scale up and then down. In
previous chapters you saw actions created in compound or nested sets, such as the
actions for the space cargo ship. One thing to observe here is that CCNodes, includ-
ing CCSprites, can run more than one action at a time. In the floating Viking, he is

189

190

Chapter 7 Main Menu, Level Completed, and Credits Scenes

running a CCSequenceAct i on, scaling up and then down, and at the same time run-
ning a CCRot at eBy action to cause him to spin around.

Additional Menus and GameplayLayer

The Intro, Credits, Level Conpl et e, and Opt i ons menus are set up in the

same way as the Mai nMenu, each with its own CCScene and CCLayer classes. The
Credi t s menu consists of just three links to the people who had a part in creating the
Space Viking game. The Level Conpl et e and | nt r 0 have two key points worth not-
ing in detail. In addition to these three menu scenes, there is a minor change to your
existing Gamepl ayLayer. mclass for it to call GameManager and transition to the
Level Conpl et e scene.

Importing the Intro, LevelComplete, Credits, and Options Scenes
and Layers

The remaining menu scenes and layers are very similar to the Mai nMenu that you cre-
ated earlier in this chapter. To save you some time typing in similar code, these classes
are included as part of the resources for this chapter.

Locate the folder to which you downloaded the resources for this chapter and:

1. Drag the IntroScene.h, IntroScene.m, IntroLayer.h, and IntroLayer.m files into Xcode
under the Intro subfolder inside of the Scenes group.

2. Drag the LevelCompleteScene.h, Level CompleteScene.m, Level CompleteLayer.h, and
LevelCompleteLayer.m files into Xcode under the Level Complete subfolder inside of
the Scenes group.

3. Drag the CreditsScene.h, CreditsScene.m, CreditsLayer.h, and CreditsLater.m files into
Xcode under the Credits subfolder inside of the Scenes group.

4. Drag the OptionsScene.h, OptionsScene.m, OptionsLayer.h, and OptionsLayer.m files
into Xcode under the Options subfolder inside of the Scenes group.

Your SpaceViking project should look like Figure 7.4. Feel free to look through these
classes. At this point you should have a good understanding of how they work based
on what you've learned in previous chapters.

If you press #6-B, your SpaceViking project should now compile with no errors. If
you encounter any errors or warnings, check that you have imported all of the files.
The next step is to make changes to the Gamepl ay layer and to the SpaceVi ki ng-
AppDel egat e so they can support the new scenes.

GameplayLayer

There is a small addition to the Ganepl ayLayer class in order to support the new
GaneManager and to transition to the Level Conpl et e scene once the Vi ki ng or
Radar Di sh object is dead. In the Ganepl ayer you wrote in the previous chapters,

Additional Menus and GameplayLayer

Figure 7.4 Space Viking after all of the menu classes have been added

there was no code to transition out of game play if the Vi ki ng died or the Radar D sh
was destroyed. To add these changes, start by opening the GameplayLayer.h header file.

In the import section, add an import for the GameManager.h header file, so that you
have this line among the other import statements:

#i mport " GameManager . h"

The i mport statement allows the Gamepl ayLayer to call upon the GameManager
singleton and transition Space Viking from Gameplay to Level Complete.

Open the GameplayLayer.m implementation file and add the code shown in Listing
7.14 to the updat e: (ccTi ne) del t aTi me method so that it can call the GameMan-
ager singleton when the Vi ki ng dies or the Radar Di sh is destroyed.

Listing 7.14 GameplayLayer.m update:(ccTime)deltaTime method

-(voi d) update: (ccTine)del taTine
{
/Il ...(See source for previous |ines)
/1 Chapter 7 Additions
/1 Check to see if the Viking is dead
GanmeChar acter *tenpChar = (GaneCharacter?*)
[sceneSprit eBat chNode
get Chi | dByTag: kVi ki ngSpri t eTagVal ue] ;
if (([tempChar characterState] == kStateDead) &&
([tenpChar nunber O Runni ngActions] == 0)) {

191

192

Chapter 7 Main Menu, Level Completed, and Credits Scenes

[[GaneManager shar edGaneManager] set HasPl ayer Di ed: YES] ;
[[GaneManager shar edGaneManager]
runSceneWt hl D: kLevel Conpl et eScene] ;
}

/'l Check to see if the RadarDish is dead
tenpChar = (GaneCharacter*)[sceneSpriteBatchNode
get Chi | dByTag: kRadar Di shTagVal ue] ;
if (([tenpChar characterState] == kStateDead) &&
([tenpChar nunber Of Runni ngActions] == 0)) {
[[GaneManager shar edGaneManager]
runSceneWt hl D: kLevel Conpl et eScene] ;

If the code in Listing 7.14 looks long and convoluted, it is only because the
Gamepl ayLayer does not have a direct link to the Vi ki ng or Radar Di sh, since they
are both children of the CCSprit eBachNode called sceneSpriteBat chNode. The
Gamepl ayLayer pulls the two objects from the sceneSprit eBat chNode using the
unique integer t ags you assigned to the Vi ki ng and Radar Di sh when they were
created.

First the Vi ki ng is checked to see if he is in a dead state and is not currently run-
ning any actions. If you are wondering what dead actions a Vi ki ng would be doing, it
is the death animation of the Vi ki ng turning to smoke and just a helmet falling to the
ground. You don’t want the Ganepl ayLayer to transition to Level Conpl et e until
the Vi ki ng death animation is complete.

The next check is to see if the Radar Di sh is dead and not currently playing the
blowing up animation.

If either the Vi ki ng or Radar Di sh are dead, the GameManager is called and
asked to replace the GameScene with the Level Conpl et eScene.

In your games you may have a similar setup, with your gameplay transitioning to a
game over or level complete when the player dies.

Changes to SpaceVikingAppDelegate

Finally, there is one more change to the SpaceVi ki ngAppDel egat e to support hav-
ing the GameManager, not the Application Delegate, control the Cocos2D Director.

Open the SpaceVikingAppDelegate.m implementation file and add the import state-
ment for the GameManager class:

#i mport " GameManager. h"
In the appl i cationDi dFi ni shLaunchi ng method, replace the runWt hScene
call with the following line:

[[GaneManager shar edGaneManager] runSceneWt hl D: kMai nMenuScene] ;

For the More Curious: The IntroLayer and LevelComplete Classes

While you are in the SpaceVi ki ngAppDel egat e, you can remove the imports for
Hel | oWor| dScene and GaneScene, as they are no longer called from the Application
Delegate directly.

With all of the changes in this chapter in place, click Run and test your SpaceViking
project. It should start with the Main Menu with the Viking rotating around the logo.
If you play the first level and destroy the Radar Di sh or Ole dies, you will see the
Level Conpl et e scene, and touching anywhere on Level Conpl et e will take you
back to the Mai nMenu.

For the More Curious: The IntroLayer and
LevelComplete Classes

The I nt roLayer class has some specific functionality that differs from just driving a
menu. The | ntrolLayer pages through several images before starting the gameplay,
while the Level Conpl et e class displays different images depending on whether Ole
beat a level or died trying.

Looking in the i nit method of the IntroLayer.m class, you will see the following
line:

sel f.i sTouchEnabl ed = YES;

This line alerts Cocos2D that you want to receive touch events on the | nt r oLayer.
In I ntroLayer you are only concerned with a touch began notification, as it means
the player wants to skip ahead of the introduction animation. Since Cocos2D already
knows that the I nt roLayer is to receive touch events, all you need to implement is
the following method:

- (voi d) ccTouchesBegan: (NSSet *)touches w thEvent: (U Event *)event {
CCLOG(@ Touches received, skipping intro");
[sel f startGanePl ay];

All that st art GaneP ay does is call [[GaneManager sharedGaneManager]
runSceneWt hl D kGaneLevel 1]; . There is an animation that plays in the intro
scene, and when it finishes, there is a CCCal | Func action that calls the st art Gane-
P ay method. If you followed the logic so far, the | nt roLayer just plays an intro
animation, and if the animation finishes or the player touches the screen, the start-
GameM ay method is called, calling the GameManager to swap the intro scene out
and start the GaneP ayScene.

If you wanted to know when a player moves a touch or lifts a finger off the screen,
you can add the ccTouchesMoved, ccTouchesEnded, and ccTouchesCancel | ed
methods to your layers. Be sure to copy the full IntroScene.h, IntroScene.m, IntroLayer.h,
and IntroLayer.m files into the Intro groups in your SpacelViking project.

193

194

Chapter 7 Main Menu, Level Completed, and Credits Scenes

LevelCompleteLayer Class

The Level Conpl et eLayer is set up similarly to the | ntroLayer. It also responds
to touches by asking the GanmeManager to swap the Mai nMenu in place of Level -
Conpl et e. There is one benefit to having the GaneManager singleton that has not
yet been discussed, and that is to have it act as a single place to store what’s happen-
ing in the game. Read that last line again: the GameManager singleton is the one
place where you will store the Viking’s score, what happened on the last level, and
any other data you may want to access in various scenes. If you recall Listing 7.2 when
you set up GameManager.m, it had the hasP ayer Di ed. In a moment, you will see
how the Gamepl ayLayer sets that variable. Listing 7.15 shows how it is used in the
Level Conpl et eLayer.

Listing 7.15 LevelCompleteLayer.m—how hasPlayerDied is used

BOOL di dPl ayerDi e = [[GaneManager shar edGaneManager] hasPl ayer Di ed] ;
CCSprite *background = nil;
if (didPlayerDie) {
background =
[CCSprite spriteWthFile: @Level Conpl et eDead. png"];
} else {
background =
[CCSprite spriteWthFile: @Level Conpl eteAlive.png"];

If the GameManager hasP ayer Di ed indicates that the Viking has died on the
game right before Level Conpl et e was shown, then the Level Conpl et eDead image
is used as the background; otherwise, the Level Conpl et eAl i ve image is shown.
Figure 7.5 shows these two images.

Figure 7.5 LevelComplete background image when the Viking lives and dies

Challenges

The use of the Singleton pattern for a game manager can be greatly beneficial in
keeping your game data in one place and at the same time accessible by any class in
your game. If you want to save the player’s progress or create a new level based on how
the player did on the previous level, you can do that with a singleton game manager.

Note

While the Cr edi t sScene and Layer classes are not covered in this chapter, they con-
tain the same basic Cocos2D objects and calls you have already seen in Mai nMenu.

Summary

In this chapter you learned about the CCMenu and CCMenul t emclasses and how to
wire menus together in Space Viking. More important, you learned about creating a
GameManager singleton and how to talk to it from any scene in your game. While
writing your own games, feel free to refer back to this chapter for code and techniques
you can reuse in your game singleton and how to connect scenes together. In the next
chapter you learn how to add music and sound to Space Viking. To turn up the volume,
turn the page.

Challenges

1. Add a counter to the Level Conpl et e scene to show how many EnenmyRobot s
Ole has disposed off.

Hint
Add a variable to track it in GameManager, and call it from Gamepl ayLayer and
Level Conpl et eLayer.

2. Add a label showing a “Level Cleared” message when Ole destroys the
Radar Di sh.

Hint
Look at the game start CCLabel TTF that comes onscreen when gameplay begins. Could
it be changed and reused?

195

This page intentionally left blank

3

Pump Up the Volume!

In the last chapter you learned how to create menus and link scenes together in your games. Now
it is time to head back into the gameplay and add music and sound effects to Space Viking. In
this chapter you will learn how to use the audio engine included with Cocos2D and how you can
add audio to your own games. Read on to hear what Ole the Viking sounds like, and find out
what sounds break the silence of the alien planet.

Introducing CocosDenshion

Apple provides two great frameworks to play audio on iOS devices, AVAudi oM ayer
and OpenAL. AVAudi oP ayer is a quick and simple way to play audio but gives you
only limited control, while OpenAL is a lower-level API with more features.

Cocos2D comes bundled with the CocosDenshion sound engine, which is an
easy-to-use wrapper for both frameworks. CocosDenshion was created by Steve
Oldmeadow and has been included with Cocos2D since the early days. Recently
CocosDenshion has incorporated a new, simpler API called Si npl eAudi oEngi ne,
which you use in this chapter. CocosDenshion leverages the power of AVAudi oP ayer
and OpenAL for you, so you don’t have to dive down into the lower-level sound APIs
unless you want to.

Just like the rest of the Cocos2D source code, the source for CocosDenshion is
included with Cocos2D and you are encouraged to look through it. While Cocos2D
uses the CC namespace for all of its classes, CocosDenshion uses the CD namespace
except for Si npl eAudi oEngi ne, which is not preceded by the letters CD.

What Is in a Name

Si npl eAudi oEngi ne was originally designed by Joao Caxaria as an interface into
CocosDenshion, and the name has remained the same to indicate the origins of the API.
Since you will just be using Si npl e Audi 0Engi ne, all you need to know is that this is
the easiest way to leverage CocosDenshion.

There are some great examples included with CocosDenshion that you might want
to check out, including a game called “Tom the Turret” created by Ray Wenderlich

198

Chapter 8 Pump Up the Volume!

and Steve Oldmeadow. The code for Space Viking borrows heavily from the Tom the
Turret sample.

Importing and Setting Up the Audio Filenames

Before you can dive into coding the audio playback in Space Viking, you need to add
the audio files to your project. In this section you also set up a series of #def i ne con-
stants for the audio filenames, as you have done with other constants in Space Viking.

Adding the Audio Files to Space Viking

To add background music and sound effects to Space Viking, you start by adding the
Sounds folder to your Spaceliking Xcode project. Grab the Sounds folder from the
resources file for this chapter and drag it into your SpaceViking project, selecting to
copy the items into your destination folder (into your project). Your Xcode navigator
should resemble Figure 8.1.

Figure 8.1 Sounds folder added to SpaceViking project

Warning
If you do not add the Sounds folder to your project and select copy items to destination

folder, the audio files will not be copied into your project. Not having the audio files in
your project will result in a silent Space Viking and a sad Ole.

Audio Constants

Si npl eAudi 0Engi ne uses filenames as the identifier for the audio. In order not to
have to list the filenames for the audio assets in multiple places, you use a SoundEffects.
plist file to contain all of the filenames. Keeping the sound eftfects in a plist file makes
it easy to swap out audio files later on, while only having to make the change in one
place. In addition, there are just four background music tracks in Space Viking, and
those filenames are in a set of #def i nes in Constants.h.

Importing and Setting Up the Audio Filenames

Open Constants.h and add the lines in Listing 8.1. The audio filenames are set up
as #def i ne statements to make it easy to switch filenames without having to find
every reference to them in the code. Do not worry about hand-typing all of these
#defi nes; in the resources folder for this chapter is a file called AddtionsToConstants-
HeaderFile.rtf that includes all of them.

Listing 8.1 #defines for audio filenames in Constants.h

/1 Audio ltens
#define AUDI O MAX_WAI TTI ME 150

typedef enum {
kAudi oManager Uni niti al i zed=0,
kAudi oManager Fai | ed=1,
kAudi oManager | nitializi ng=2,
kAudi oManager | nitial i zed=100,
kAudi oManager Loadi ng=200,
kAudi oManager Ready=300

} GaneManager SoundSt at e;

/1 Audi o Constants
#def i ne SFX_NOTLOADED NO
#define SFX_LOADED YES

#def i ne PLAYSOUNDEFFECT(...) \
[[GaneManager shar edGaneManager] pl aySoundEffect: @ VA ARGS]

#def i ne STOPSOUNDEFFECT(...) \
[[GaneManager shar edGaneManager] stopSoundEffect: VA ARGS]

/1 Background Misic
/1 Menu Scenes
#def i ne BACKGROUND_TRACK_MAI N_MENU @ Vi ki ngPr el udeV1. np3"

/'l GaneLevel 1 (O e Awakens)
#defi ne BACKGROUND_TRACK _OLE_AWAKES @ SpaceDesert V2. np3"

/'l Physics Puzzle Level
#def i ne BACKGROUND_TRACK_PUZZLE @ Vi ki ngPr el udeV1. np3"

/'l Physics M neCart Level
#def i ne BACKGROUND_TRACK_M NECART @Dri || Bi t V2. np3"

/'l Physics Escape Level
#def i ne BACKGROUND_TRACK_ESCAPE @ EscapeTheFut ureV3. np3"

199

200

Chapter 8 Pump Up the Volume!

At this point, the #defi nes and t ypedef enumdeclarations should be pretty
familiar to you. The GaneManager SoundsSt at e type definition makes it easier to
track what state the audio engine is in. In this enumeration you also declare the value
of each choice. Notice how the states before “initialized” are less than 100 in value.
That makes it easier later on to check whether the engine is still initializing or loading
audio. The #defi nes serves as reference for background music filenames.

The #defi ne PLAYSOUNDEFFECT (...) line is a macro definition that expands
into a call for the pl aySoundEf f ect method in GaneManager . In Space Viking you
use the GaneManager to handle the initialization of the CocosDenshion engine and
to start and stop the playback of sound effects. The macro is nothing more than a
shortcut to keep you from having to type out the [[[GameManager shar edGane-
Manager] playSoundEffect: SFX_NAME] over and over.

The STOPSOUNDEFFECT(...) macro is a shortcut to the st opSoundEf f ect
method in GanmeManager that takes the ALui nt identifier of the audio effect you
want to stop. You will learn more about the audio effects identifier when adding the
walking sounds to the EnemyRobot and Vi ki ng later in this chapter.

If your games have a long list of filenames, you may also choose to keep them in a
plist file similar to the animation frames you did in earlier chapters instead of a long
list of #defi nes. In Space Viking you do just that, adding a set of methods to Gane-
Manager to load and unload sound effect files as you move between scenes.

Before going any further, copy the SoundEffects.plist file from the resources folder
for this chapter into your SpacelViking Xcode project. Figure 8.2 shows the contents of
the SoundEffects.plist file.

Figure 8.2 SoundEffects.plist added to the SpaceViking project

Synchronous versus Asynchronous Loading of Audio

Warning

Be sure to copy the SoundEffects.plist file into your Xcode project; otherwise, Space Viking
will not work when you reach the end of this chapter.

The code that utilizes the SoundEffects.plist is inside GameManager . Before learning
about those methods, it is important to understand the two ways that audio files can
be loaded into CocosDenshion.

Synchronous versus Asynchronous Loading
of Audio

Music and sound files are usually the second biggest items in your games after the
images. Loading them into memory for your game can take time, and the last thing
you want to do is have the player encounter an unresponsive game while the sound
files are being loaded. Luckily, it is easy to load sounds asynchronously in a back-
ground thread with the help of NSOper at i onQueues. This chapter covers both
methods of loading audio in your games. First you learn the simpler synchronous
method, and then you learn how to create an asynchronous loader method that runs
in a separate thread.

Loading Audio Synchronously

Open the GameplayLayer.h file and add this single import for the
Si npl eAudi oEngi ne:

#i mport " Si npl eAudi oEngi ne. h"

In the @ nt er f ace definition, add this variable declaration:

Si npl eAudi oEngi ne *soundEngi ne;

CocosDenshion is already included with Cocos2D, and importing Si npl eAudi o-
Engi ne is all you need to do in order to start using it in your projects.

The next step is to create a method to handle the sound initialization in Gamepl ay-
Layer. Above the i nit method in GameplayLayer.m, create a method called | oadAudi o,
as shown in Listing 8.2.

Listing 8.2 The loadAudio method in the GameplayLayer.m implementation file

-(voi d) |l oadAudi o {
/1 Loadi ng Sounds Synchronously
[CDSoundEngi ne set M xer Sanpl eRat e: CD_SAMPLE_RATE_M D] ; /11

[[CDAudi oManager sharedManager] set Resi gnBehavi or: kAVRBSt opPl ay
aut oHandl e: YES] ; Il 2

201

202

Chapter 8 Pump Up the Volume!

soundEngi ne = [Si npl eAudi oEngi ne shar edEngi nej ; /13

/14
[soundEngi ne prel oadBackgr oundMusi ¢: BACKGROUND TRACK _OLE_AWAKES] ;

/15
[soundEngi ne pl ayBackgr oundMusi ¢c: BACKGROUND_ TRACK _OLE_AWAKES] ;

The | oadAudi 0 method here is very simple, since it loads the music synchronously

and plays it immediately after loading. The method works as follows:

1.

The audio mixing rate is set up for the CocosDenshion SoundEngi ne.

The iPhone and iPad audio hardware has the best performance when all of

the audio has the same sample rate. In Space Viking all of the audio is set to the
middle bit rate of 22,050Hz, but in your games you may want a lower bit rate
to save on memory. The bit rate depends on the type of sound you need in your
games.

Xcode comes with af convert, a handy utility to convert and modify the bit
rate for your audio files called. You can learn more about it by typing afconvert -h
in a terminal window. You can read more about audio converting and playback
on 108 here: http://developer.apple.com/library /ios/#codinghowtos/AudioAndVideo /.

The CocosDenshion Audi oManager is set up and instructed to automatically
handle events such as the player locking the screen. If the application receives a
Resign Active event from iOS, it stops playing the audio. If you do not include
this line, it is up to your code to stop and restart playback when your game is
interrupted or sent to the background and resumed.

. Grab a reference to the Simple Audio Engine so that you can ask it to load and

play audio.

Preload the background music track. This method call loads the mp3 file into
the buffer and gets it ready to start playing. No sound is played yet, but it is
loaded in memory and ready to go.

Starts playing the background music. This method call also has the option to
loop the background music. By default, CocosDenshion continuously loops your
background track.

Inside the i ni t method of GameplayLayer.m, add a call to the | oadAudi 0 method:
[sel f | oadAudi o] ;

If you click Run now and select the Ole Awakens level, you will start to hear the

background track coming in. If you run Space Viking on your iPad, you will notice

a delay of a second or two before the level starts. That delay is caused by loading the

music synchronously instead of in a background thread.

http://developer.apple.com/library/ios/#codinghowtos/AudioAndVideo/

Synchronous versus Asynchronous Loading of Audio

Before we get to asynchronous loading, let’s quickly cover how to play sound
effects. In the start of the level, let’s have Ole speak a quick curse to show his frustra-
tion with his situation. You can imagine how irritated you would be, waking up in an
alien world surrounded by robots. Don’t worry—the curse is PG-rated and spoken in
words only a Viking would know.

Add the lines shown in Listing 8.3 to your | oadAudi 0 method in order to play the
Viking cursing sound effect.

Listing 8.3 Additions to loadAudio method showing how to play a sound effect

[soundEngi ne prel oadEffect: @ 22k_viking_cursingVl. wav"];
[soundEngi ne playEffect: @ 22k_vi ki ng_cursingV1l. wav"];

Just like the background music track, the effect sound is first preloaded into mem-
ory and set up for playing. The second line actually plays the sound effect. If you click
Run and select the Ole Awakens level, you will hear the Viking mumble a curse at the
same time the background music is playing.

At this point, you have seen how easy it is to add music and sound effects to
your game with just a few simple lines. The next section deals with loading audio
asynchronously. Then you will add sound effects for the Vi ki ng, Radar Di sh, and
EnenyRobot .

Before moving any further, comment out the call to [sel f | oadAudi 0] in the
GameplayLayer.m i nit method. You will be handling the CocosDenshion initializa-
tion and effect playback from the GanmeManager singleton.

Loading Audio Asynchronously

In your games, you do not want the whole game to pause because you are loading
audio assets from flash and into memory. Even though flash memory is fast, it is much
slower than the CPU can execute code. You do not want the CPU to sit idle while

it is waiting for the flash memory to return the next few bytes from your audio files.
The best way to get around the freeze during loading times is to load the audio assets
asynchronously in another thread.

In Space Viking you use an asynchronous approach to initializing CocosDenshion
and loading the sound effect audio files. The CocosDenshion audio engine is initial-
ized asynchronously, and the sound effects are loaded asynchronously as a scene starts
to run. The GameManager controls the loading and unloading of sound effects to
keep the memory footprint as small as possible. Any calls to try to play effects before
they are loaded are just ignored by the GaneManager .

You can reuse the code from this chapter if in your game you know you will be
using only certain sound effects in specific parts of your game. You can set up the
preloading to happen right before you need the audio, in a loading scene, or as you see
here during gameplay. If you know you are not going to need a sound asset anymore,
you can also unload it from memory.

203

204

Chapter 8 Pump Up the Volume!

Remember to remove or comment out the code you just added to GameplayLayer.m.
You are going to have the audio set up and preloaded in the GaneManager, and the
individual GameQbj ect s, such as the Vi ki ng and EnemyRobot , will take care of
calling GameManager to play their audio.

Adding Audio to GameManager

For the next step you need to move the audio initialization and preloading code to
GameManager. You will use NSOper at i onQueue to manage the background threads
for you, setting up and preloading the audio in the background in just a few easy steps.

To get started, open the GameManager.h header file and add the bold lines shown in
Listing 8.4.

Listing 8.4 Additions to GameManager.h

/1 CGameManager. h

#i nport <Foundati on/ Foundati on. h>
#i nport "Constants. h"
#import "SimpleAudioEngine.h"

@nterface GaneManager : NSObject {
BOOL i sMusi cON,
BOOL i sSoundEf f ect sON,
BOOL hasPl ayer Di ed;

// Added for audio
BOOL hasAudioBeenInitialized;
GameManagerSoundState managerSoundState;
SimpleAudioEngine *soundEngine;
NSMutableDictionary *listOfSoundEffectFiles;
NSMutableDictionary *soundEffectsState;
}
@roperty (readwite) BOOL isMusicON;
@roperty (readwite) BOOL isSoundEffectsON;
@roperty (readwite) BOOL hasPl ayerDi ed;
@property (readwrite) GameManagerSoundState managerSoundState;
@property (nonatomic, retain) NSMutableDictionary
*1istOfSoundEffectFiles;
@property (nonatomic, retain) NSMutableDictionary *soundEffectsState;
+(GaneManager *) shar edGaneManager; // 1
-(void)runSceneWthl D: (SceneTypes)scenel D; // 2
-(voi d)openSi teWt hLi nkType: (Li nkTypes) | i nkTypeToOpen ;// 3
- (void) setupAudioEngine;
- (ALuint)playSoundEffect: (NSString*) soundEffectKey;
- (void) stopSoundEffect: (ALuint) soundEffectID;
- (void)playBackgroundTrack: (NSString*)trackFileName;

@nd

Synchronous versus Asynchronous Loading of Audio

The first line is the import of the Si npl eAudi oEngi ne, which brings the Cocos-
Denshion classes into GameManager . In the @ nt er f ace block add two instance
variables, one to keep track of the GaneManager SoundSt at e and another to be
a pointer to the soundEngi ne. Lastly, add two @r operty statements for the
manager SoundSt at e and the soundEngi ne. Note also the NSMut abl eDi ctionary
variables that keep track of the sound effect filenames and whether or not they are
loaded in memory.

Switching over to the GameManager.m implementation file, first add the three lines
shown in Listing 8.5 next to the other @y nt hesi ze statements at the top of the class.

Listing 8.5 Addition to the top of GameManager.m class file

@ynt hesi ze nanager SoundSt at e;
@ynt hesi ze |ist O SoundEf fect Fi |l es;
@ynt hesi ze soundEf fectsState;

Next, add the two lines shown in Listing 8.6 to the i ni t method.

Listing 8.6 Additions to the init method of GameManager

hasAudi oBeenl nitialized = NG
soundEngi ne = nil;
manager SoundSt at e = kAudi oManager Uni niti al i zed;

The first line sets the bool ean variable indicating whether the audio engine is
initialized to NO, since no initialization has been done yet. The second line sets the
soundEngi ne to ni |, since it too has not been initialized yet.

Next you need to set up the audio engine. This method is called from the Space-
Vi ki ngAppDel egat e. The set upAudi oEngi ne method kicks off the background
thread to set up the audio engine and preload the audio. Add the contents of Listing 8.7
to GameManager.m above the i nit method.

Listing 8.7 setupAudioEngine method in GameManager.m

- (voi d) set upAudi oEngi ne {
if (hasAudi oBeenlnitialized == YES) {
return;
} else {
hasAudi oBeenlnitialized = YES;
NSOper at i onQueue *queue = [[NSOper ati onQueue new] autorel ease];
NSI nvocat i onOper ati on *asyncSet upOperation =
[[NSI nvocationQperation alloc] initWthTarget:self
sel ector: @el ector (i nitAudi oAsync)
object:nil];

205

206

Chapter 8 Pump Up the Volume!

[queue addOperati on: asyncSet upOper ation];
[asyncSet upOper ati on autorel ease];

The first part of set upAudi oEngi ne checks to make sure the audio engine has not
yet been initialized. If the engine is already initialized, there is no need to do anything
else, so the method just returns. If the engine is not initialized, the process to get it set
up is started.

The next few lines set up NSOper at i onQueue and NSI nvocat i onOper ati on to
run the contents of the i ni t Audi c0Async method in another thread. This means that
as soon as asynchSet upOper ati on is added to the queue, it starts running in the
background and this method returns. This allows the game logic to continue while the
audio engine is being initialized and the audio preloaded in the background.

The next step is, of course, the actual i ni t Audi 0Async method that is added to
the NSOper at i onQueue. Add the contents of Listing 8.8 above the set upAudi o-
Engi ne method in GaneManager .

Listing 8.8 initAudioAsync method in GameManager

- (void)initAudi oAsync {
/1 Initializes the audi o engi ne asynchronously
manager SoundSt at e = kAudi oManager | nitiali zi ng;
/1 Indicate that we are trying to start up the Audi o Manager
[CDSoundEngi ne set M xer Sanpl eRat e: CD_SAMPLE_RATE_M D ;

//1nit audi o manager asynchronously as it can take a few seconds
/1 The EXPl usMusicl f NoOt her Audi o node will check if the user is

/1 playing nusic and di sabl e background nusic playback if

/1 that is the case.

[CDAudi oManager i nit Asynchr onousl y: kKAMM FxPl usMusi cl f NoCt her Audi o] ;

//Wait for the audio nanager to initialize
whi | e ([CDAudi oManager sharedManager State] != kAMstatelnitialised)
{

[NSThread sl eepForTi mel nterval : 0. 1] ;

}

/1At this point the CocosDenshi on should be initialized

/'l Grab the CDAudi oManager and check the state

CDAudi oManager *audi oManager = [CDAudi oManager sharedManager];

i f (audi oManager. soundEngine == nil ||
audi oManager . soundEngi ne. functioning == NO) {
CCLOG @ CocosDenshion failed to init, no audio will play.");
nmanager SoundSt at e = kAudi oManager Fai | ed;

Synchronous versus Asynchronous Loading of Audio

} else {
[audi oManager set Resi gnBehavi or: KAVRBSt opPl ay aut oHandl e: YES] ;
soundEngi ne = [Si npl eAudi oEngi ne shar edEngi ne] ;
manager SoundSt at e = kAudi oManager Ready;
CCLOY @ CocosDenshi on is Ready");

The first part of the i ni t Audi 0Sync method sets the manager Soundst at e to
initializing and sets the CocosDenshion sample rate. The sample rate should match the
sample rate in your audio files. Usually you want this to be set to CD_SAMPLE_RATE_
M D. In Space Viking the audio files were exported at 22050Hz, so the CD_SAMPLE_
RATE_M D is used here. It 1s really important to have your audio files at the same
sample rate for best performance. When playing audio with different sample rates, the
iPhone and iPad audio hardware automatically pads and extrapolates your lower sam-
ple audio clips to the highest sample rate you are currently playing.

The next set of lines kick off the initialization of the CocosDenshion Audio Man-
ager. The audio manager can be started in a variety of states.

The CDAudi oManager can be initialized to the following states:

1. KAMM_FxOnly
Plays sound effects only; other applications can continue playing audio.
2. KAMM _FxP usMusi c
Only this game will play audio.
3. KAMM_FxP usMusi cl f NoOt her Audi o
If another application is already playing audio when the game starts, play effects
only; otherwise, play music and effects. This is the option you will most likely

want to use for your games. This way, for instance, your players can listen to
their own music while playing your game.

4. KAMM_Medi aP ayback

This setting forces the game to completely take over the audio hardware and act
just like a music player application.

5. KAMM P ayAndRecor d
Same as KAMM_Medi aF ayback except that it adds access to the microphone.

After kicking off CocosDenshion initialization, the next lines wait for the Cocos-
Denshion Audio Manager to start and then set the state of the manager SoundSt at e
in GameManager . This state is used to determine if it is safe to load audio. In other
words, it determines if the CocosDenshion is initialized and the audio files can be
loaded into memory.

207

208 Chapter 8 Pump Up the Volume!

Caveat about Multiple Threads

Although asynchronous loading of audio is recommended and encouraged, CocosDenshion
is not designed to be thread safe, meaning that you should not attempt to load and play
audio at the same time or load audio from a number of separate threads. When loading
audio asynchronously, you should always have one worker thread, as shown here. The
background music and sound effects engines are separate, though, so it is perfectly safe
to play background music while loading sound effects, and vice versa.

After the i nit Audi 0Async method returns, the manager SoundsSt at e is set to
kAudi oManager Ready. There are two steps to load the sound effects. First, you need
to get a list of the sound effects for the current scene from the SoundEffects.plist file.
After you have the list (as a NSDi ctionary) of what files to load, you have to call
CocosDenshion to load them in memory and prepare them to be played. As before,
copy the contents of Listing 8.9 to GameManager.m right above the i ni t Audi oAsync
method.

Listing 8.9 formatSceneTypeToString and getSoundEffectsListForSceneWithlD methods
in GameManager.m

- (NsString*)fornmat SceneTypeToString: (SceneTypes) scenel D {
NSString *result = nil;
swi tch(scenel D) {

case kNoSceneUninitialized:
result = @kNoSceneUninitialized";
br eak;

case kMai nMenuScene:
result = @ kMai nMenuScene";
br eak;

case kOptionsScene:
result = @kOpti onsScene";
br eak;

case kCreditsScene:
result = @KkCreditsScene";
br eak;

case klntroScene:
result = @klntroScene";
br eak;

case kLevel Conpl et eScene:
result = @kLevel Conpl et eScene";
br eak;

case kGaneLevel 1:
result = @kGaneLevel 1";
br eak;

case kGaneLevel 2:
result = @kGanelLevel 2";
br eak;

Synchronous versus Asynchronous Loading of Audio 209

case kGanelLevel 3:
result = @kGaneLevel 3";
br eak;
case kGaneLevel 4:
result = @kGanelLevel 4";
br eak;
case kGanelLevel 5:
result = @kGaneLevel 5";
br eak;
case kCut SceneFor Level 2:
result = @ kCut SceneFor Level 2";
br eak;
defaul t:
[NSException rai se: NSGeneri cException format: @ Unexpect ed
SceneType. "];

}

return result;

-(NSDi ctionary *)get SoundEf f ect sLi st For SceneW t hl D: (SceneTypes) scenel D {
NSString *ful |l Fil eNane = @ SoundEffects. plist”;
NSString *pli stPath;

/1 1. CGet the Path to the plist file
NSString *rootPath =
[NSSear chPat hFor Di r ect ori esl nDonmai ns(NSDocunent Di rect ory,
NSUser Domai nMask, YES)
obj ect At | ndex: 0] ;
plistPath = [rootPath stringByAppendi ngPat hConponent: ful |l Fi |l eNane];
if (![[NSFileManager defaultManager] fil eExistsAtPath:plistPath]) {
plistPath = [[NSBundl e mai nBundl e]
pat hFor Resour ce: @ SoundEf fects" of Type: @plist"];

}

/1 2: Read in the plist file
NSDi ctionary *plistDictionary =
[NSDi ctionary dictionaryWthContentsO File:plistPath];

/1 3: If the plistDictionary was null, the file was not found.
if (plistDictionary == nil) {

CCLOG(@Error reading SoundEffects.plist");

return nil; // No Plist Dictionary or file found

/1l 4. If the list of soundEffectFiles is enpty, load it
if ((listOSoundEffectFiles == nil) ||
([l'istO SoundEffectFiles count] < 1)) {

210 Chapter 8 Pump Up the Volume!

NSLog(@ Bef ore");
[sel f setListO SoundEffectFiles:
[[NSwut abl eDi ctionary alloc] init]];
NSLog(@ after");
for (NSString *sceneSoundDictionary in plistDictionary) {
[1'i st Of SoundEf fectFiles

addEntri esFronDi ctionary:

[plistDictionary objectForKey: sceneSoundDi ctionary]];
}
CCLOG @ Nunber of SFX fil enanes: %",

[l stOf SoundEffectFiles count]);

}

/1 5. Load the list of sound effects state, mark them as unl oaded
if ((soundEffectsState == nil) ||
([soundEf fectsState count] < 1)) {
[sel f setSoundEffectsState: [[NSMutabl eDi ctionary alloc] init]];
for (NSString *SoundEffectKey in |istO SoundEffectFiles) {
[soundEf fectsState set bj ect: [NSNunber
nunber Wt hBool : SFX_NOTLOADED] f or Key: SoundEf f ect Key] ;

/1 6. Return just the mni SFX list for this scene

NSString *scenel DNane = [sel f format SceneTypeToString: scenel D] ;
NSDi cti onary *soundEffectsList =

[plistDictionary objectForKey: scenel DNane] ;

return soundEffectsList;

The beginning of Listing 8.9 has the f or mat SceneTypeToSt ri ng method,
which may look a bit odd to you at first. Earlier in the book, you set up a t ypedef
enumer at i on for various scenes in Space Viking. Internally, t ypedef s are stored as
integers, unbeknownst to you. Here is the problem you have:

1. The list of sound effects to load are in the SoundEffects.plist, each as an entry in
an NSDi ctionary. There are NSDi cti onary entries for each scene in Space
Viking.

2. You want to reference each scene by the t ypedef enum name, not the integer
value. For example, you want to reference the Main Menu scene by getting the
NSDi cti onary named kMai nMenuScene and not have to remember it has an
actual value of 1.

3. How do you get an NSSt ri ng out of an integer constant (t ypedef enum?
That is where f or mat SceneTypeToSt ri ng comes in. It has just a switch

Synchronous versus Asynchronous Loading of Audio

branch to create and return an NSSt ri ng based on the SceneTypes typedef
enumyou send it.

The get SoundEf f ect sLi st For SceneWt hl D method loads the SoundEffects.plist
file and returns just the NSDi cti onary for the scene that was requested. This should
be familiar to you by now, as this method contains the same logic you used to load the
animation plist files.

Pay close attention to step 4 in the get SoundEf f ect sLi st For SceneWt hi D
method. The | i st Of SoundEf f ect Fi | es is an instance variable in GameManager
that keeps the list of all sound files you load. Not the files themselves, just the filenames,
which are used as the unique key in CocosDenshion to load and unload audio. As each
scene is loaded, the list of audio filenames is added to | i st Of SoundEf f ect Fi | es.

Step 5 in get SoundEf f ect sLi st For SceneWt hl D loads the state of each of
the audio files, marking them as unloaded. This NSDi cti onary is used by the
GameManager to determine if a sound effects file has been loaded into memory and
is safe to play. As you move from scene to scene, the status of each sound effect is
updated to reflect whether or not it is currently loading in memory.

Now that you have the methods in place to retrieve the filenames of the audio
files to use for each scene, you need two methods to call CocosDenshion and carry
out the loading and unloading. Copy the contents of Listing 8.10 at the end of the
get SoundEf f ect sLi st For SceneWt hl D method.

Listing 8.10 loadAudioForSceneWithID and unloadAudioForSceneWithID methods in
GameManager.m

- (voi d) | oadAudi oFor SceneW t hl D: (NSNunber *) scenel DNunber {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

SceneTypes scenel D = (SceneTypes)[scenel DNunber i ntVal ue];
/11
i f (manager SoundSt at e == kAudi oManager|nitializing) {
int waitCycles = 0;
while (waitCycles < AUDI O MAX_WAI TTI ME) {
[NSThr ead sl eepFor Ti nel nterval : 0. 1f];
if ((nmanager SoundSt at e == kAudi oManager Ready) | |
(manager SoundSt at e == kAudi oManager Fai | ed)) {
br eak;

}

wai t Cycles = waitCycles + 1;

i f (manager SoundSt at e == kAudi oManager Fai | ed) {
return; // Nothing to | oad, CocosDenshi on not ready
}

211

212 Chapter 8 Pump Up the Volume!

NSDi cti onary *soundEffectsToLoad =

[sel f get SoundEf f ect sLi st For SceneW t hl D: scenel D ;

i f (soundEffectsToLoad == nil) { // 2
CCLOG(@Error readi ng SoundEffects.plist");
return;

}

/'l Get all of the entries and PreLoad // 3

for(NSString *keyString in soundEffectsToLoad)

{
CCLOG @\ nLoadi ng Audi o Key: %@ Fi | e: %@ ,
keyString, [soundEf f ect sToLoad obj ect For Key: keyString]);
[soundEngi ne prel oadEf f ect:
[soundEf f ect sToLoad obj ect For Key: keyString]]; // 3
Il 4
[soundEf fect sState set Obj ect:
[NSNunber nunber Wt hBool : SFX_LOADED] f or Key: keyString];
}

[pool rel ease];

- (voi d) unl oadAudi oFor SceneW t hl D: (NSNunber *) scenel DNunber {
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
SceneTypes scenel D = (SceneTypes) [scenel DNunber intVal ue];
if (scenel D == kNoSceneUninitialized) {

return; // Nothing to unload

NSDi cti onary *soundEffectsToUnl oad =
[sel f get SoundEf f ect sLi st For SceneW t hl D: scenel D] ;
if (soundEffectsToUnload == nil) {
CCLOG @Error reading SoundEffects.plist");
return;
}
i f (nmanager SoundSt at e == kAudi oManager Ready) {
/'l Get all of the entries and unl oad
for(NSString *keyString in soundEffectsToUnl oad)
{
[soundEffectsState set bj ect:
[NSNunber nunber Wt hBool : SFX_NOTLOADED] forKey: keyString];
[soundEngi ne unl oadEf f ect: keyString];
CCLOE @\ nUnl oadi ng Audi o Key: %@ Fi | e: %@,
keyString,
[soundEf f ect sToUnl oad obj ect For Key: keyString]);

Synchronous versus Asynchronous Loading of Audio

[pool rel ease];

The | oadAudi oFor SceneWt hl D and unl oadAudi oFor SceneWt hl D methods
work in the same way: they both grab an NSDi cti onary from the SoundEffects.plist
file and call on CocosDenshion to either load or unload the audio files from memory.

You are almost there. Next you need to add three more small methods to Gamne-
Manager to finish the setup. The pl ayBackgr oundTr ack method preloads and starts
playing a background music track. The pl aySoundEf f ect method checks to see if a
sound effect has been loaded in memory and plays it. Finally, the st opSoundEf f ect
method calls on CocosDenshion to halt the playback of a sound effect using that
sound’s ALui nt identifier. Copy the code in Listing 8.11 to GameManager directly
above the f or mat SceneTypeToSt ri ng method.

Listing 8.11 playBackgroundTrack, stopSoundEffect, and playSoundEffect methods in
GameManager.m

-(voi d) pl ayBackgroundTrack: (NSStri ng*)trackFi | eName {
/1 Wait to nake sure soundEngine is initialized
if ((manager SoundSt ate ! = kAudi oManager Ready) &&

(manager SoundSt at e ! = kAudi oManager Fai l ed)) {

int waitCycles = 0;
whil e (waitCycles < AUDI O MAX WAI TTI ME) {

[NSThread sl eepFor Ti nel nterval : 0. 1f];

i f ((nmanager SoundSt at e == kAudi oManager Ready) | |
(manager SoundSt at e == kAudi oManager Fai | ed)) {
br eak;

}

wai t Cycles = waitCycles + 1;

}
}
i f (manager SoundSt at e == kAudi oManager Ready) {

i f ([soundEngi ne isBackgroundMusi cPl ayi ng]) {

[soundEngi ne st opBackgroundMuisi c];

}

[soundEngi ne prel oadBackgr oundMusi c: trackFi | eNane] ;

[soundEngi ne pl ayBackgroundMusi c: trackFi | eNane | oop: YES] ;
}

- (voi d) st opSoundEf f ect: (ALui nt) soundEf fect!| D {
i f (manager SoundSt at e == kAudi ovanager Ready) {
[soundEngi ne st opEffect:soundEffect|D;
}

213

214 Chapter 8 Pump Up the Volume!

- (ALui nt) pl aySoundEf f ect : (NSStri ng*) soundEf f ect Key {
ALui nt soundl D = O;
i f (nmanager SoundSt at e == kAudi ovanager Ready) {
NSNunmber *i sSFXLoaded =
[soundEf f ect sSt at e obj ect For Key: soundEf f ect Key] ;
if ([isSFXLoaded bool Val ue] == SFX_LOADED) ({
soundl D =
[soundEngi ne pl ayEffect:
[11stOf SoundEf fectFil es objectForKey: soundEf f ect Key]];
} else {
CCLOG @ GaneMygr: SoundEffect %@is not |oaded.",
soundEf f ect Key) ;
}
} else {
CCLOG @ GaneMgr: Sound Manager is not ready, cannot play %@,
soundEf f ect Key) ;
}

return soundl D;

The methods in Listing 8.11 wait for the CocosDenshion audio manager to be
initialized and for the sound audio files to have been preloaded into memory before
attempting to play any of them. If for any reason the CocosDenshion audio manager
fails to initialize or the audio effect is not loaded, these methods simply return without
playing.

You are done with adding methods, but there are two steps left before you can have
GameManager fully functional. The first step is to add calls to the load and unload
audio methods.

In GameManager.m locate the r unSceneWt hl D method and add the lines shown in
bold in Listing 8.12.

Listing 8.12 Additional lines in runSceneWithID method in GameManager.m

/'l ... runSceneWthlD nethod ...
defaul t:
CCLOE @ Unknown | D, cannot switch scenes");
return;
br eak;

}

if (sceneToRun == nil) {
/'l Revert back, since no new scene was found
current Scene = ol dScene;
return;

Adding the soundEngine to GameObjects

/1 Load audio for new scene based on scenel D
[self performSelectorInBackground:
@selector (loadAudioForSceneWithID:)
withObject : [NSNumber
numberWithInt: currentScenell;

if ([[CCDrector sharedDirector] runningScene] == nil) {
[[CCDi rector sharedDirector] runWthScene: sceneToRun];

} else {
[[CCDirector sharedDirector]
repl aceScene:
[CCTransi tionFlipAngul ar transitionWthDuration: 0. 5f
scene: sceneToRun]] ;

[self performSelectorInBackground:
@selector (unloadAudioForSceneWithID:)
withObject : [NSNumber
numberWithInt: oldScenell;

currentScene = scenelD;

As you can see in Listing 8.12, both the loading and unloading of audio files is done
in a background thread via the per f or nSel ect orl nBackgr ound call. There is one
final step to having the GameManager handle the audio setup and preloading. The
set upAudi oEngi ne method must be called when Space Viking starts. For that, open
the SpaceVikingAppDelegate.m file and add the line shown in Listing 8.13 right above
the runSceneWt hl D call in the appl i cati onDi dFi ni shLaunchi ng method.

Listing 8.13 setupAudioEngine call in SpaceVikingAppDelegate

[[GaneManager shar edGaneManager] set upAudi oEngi nej;

You should do a quick build of your Spacel/iking project to make sure you have not
made any typos. The next section covers adding audio to the GameCbj ect s so that
Ole the Viking and the enemies will have voices.

Adding the soundEngine to GameObjects

Now that you have the GameManager initializing the sound engine and preloading
the audio, it is time to give Ole and the other characters their voices. Since all of the
objects in Space Viking inherit from GameQbj ect, we can add properties and methods
in GaneObj ect that are used by all.

215

216

Chapter 8 Pump Up the Volume!

First, open GameObject.h and add an import for the GameManager.h class.
#i nport " GanmeManager. h"

This is all that is needed to make the GameManager available in the GameObj ect
and therefore in the Vi ki ng, EnenyRobot , and other objects in Space Viking. The
GameManager will handle the playing of sound effects and the background music.
The next section covers how to play the sound effects in time with the actions and
animations.

Adding Sounds to RadarDish and SpaceCargoShip

The Radar Di sh and SpaceCar goShi p are ideal objects to start with when adding
sound effects. The Radar Di sh has only one sound effect when it is hit by Ole, while
the SpaceCar goShi p has four, representing the different sounds of the engines as it
gets closer to Ole the Viking.

Adding Audio to RadarDish

Open the RadarDish.m file and go to the changeSt at e method. In the kSt at e-
Taki ngDamage branch, add a call to the soundEngi neLi nk, as shown in bold in
Listing 8.14.

Listing 8.14 RadarDish changeState method showing call to soundEngineLink

- (voi d) changeSt at e: (Char act er St at es) newSt ate {
[sel f stopAll Actions];
idaction = nil;
[sel f setCharacterState: newSt at e] ;

switch (newState) {
case kSt at eSpawni ng:
CCLOG @ Radar Di sh->Starting the Spawni ng Ani mation");
action = [CCAninate actionWthAni mation:tiltingAnim
restoreQriginal Frane: NJ ;
br eak;

case kStateldle:
CCLOG @ Radar Di sh->Changing State to ldle");
action = [CCAni nate actionWthAni mation:transm ttingAni m
restoreQriginal Frane: NJ ;
br eak;

case kSt at eTaki ngDanmage:
CCLOG @ Radar Di sh->Changi ng State to Taki ngDanmage");
characterHealth =
characterHeal th - [vikingCharacter getWaponDanmage];
if (characterHealth <= 0.0f) {

Adding the soundEngine to GameObjects

[sel f changeSt at e: kSt at eDead] ;
} else {
PLAYSOUNDEFFECT(VI KI NG_HAMVERHI T1) ;
action = [CCAni nate acti onWthAni mati on: taki ngAHi t Ani m
restoreOrigi nal Frane: NJ ;

}
br eak;
case kSt at eDead:
CCLOG @ Radar Di sh->Changing State to Dead");
PLAYSOUNDEFFECT(VI KI NG_HAMVERHI T2) ;
PLAYSOUNDEFFECT(ENEMYROBOT_DYI NG) ;
action = [CCAni mate actionW t hAni mati on: bl owi ngUpAni m
restoreOriginal Frane: NJ ;
br eak;
defaul t:
CCLOG(@ Unhandl ed state % in RadarDi sh", newState);
br eak;
}
if (action !=nil) {
[sel f runAction:action];
}
}

In the previous section you added the GameManager import to GaneObj ect .
Since Radar Di sh inherits from GameChar act er, which in turn inherits from
Gamebj ect , Radar Di sh has access to GaneManager and can call it via the
PLAYSOUNDEFFECT macro. The PLAYSOUNDEFFECT macro expands into a call to the
pl aySoundEf f ect in GanmeManager, playing the sound effect for the Radar Di sh.
The GaneManager already took care of loading the sound effects when the Game-
pl ay scene was loaded, so it is just a quick call to CocosDenshion and you can hear
the sound effects.

After adding this line, click Run. You should be able to have Ole strike the
Radar Di sh and hear a crashing/clunking sound. Can you hear the explosion sound
when Ole destroys the Radar Di sh?

Adding Audio to SpaceCargoShip
The SpaceCar goShi p inherits directly from GameQbj ect, so it too has access to the
GaneManager. The SpaceCar goShi p plays four sounds. During the first two and
most distant passes, the faraway engine sound is played. On the next three passes, a
louder and closer sound is played to give the player the illusion that the ship is getting
closer.

In SpaceCar goShi p you need a method to play the four sounds in sequence
with the animations and actions you previously created in the i nit method. Before

217

218

Chapter 8 Pump Up the Volume!

creating this method, open the SpaceCargoShip.h header file and add the following
instance variable inside the @ nt er f ace declaration block.

i nt soundNunber ToPl ay;

This is a number you will increment to indicate which engine sound the Space-
Car goShi p should play. Open the SpaceCargoShip.m file and add the contents of List-
ing 8.15 into the i nit method.

Listing 8.15 SpaceCargoShip.m playSpaceCargoShipSound

#pragma mark -
#pragme mar k SoundMet hods
- (voi d) pl aySpaceCar goShi pSound {
i f (soundNunber ToPlay < 2) {
PLAYSOUNDEFFECT(SPACECARGOSHI P_FAR) ;
} else if (soundNumber ToPlay == 2) {
PLAYSOUNDEFFECT(SPACECARGOSHI P_CLOSE_1) ;
} else if (soundNumber ToPlay == 3) {
PLAYSOUNDEFFECT(SPACECARGOSHI P_CLOSE_2) ;
} else if (soundNunmber ToPlay == 4) {
PLAYSOUNDEFFECT(SPACECARGOSHI P_CLOSE_3) ;
}
soundNunber ToPl ay = soundNunber ToPl ay + 1;
i f (soundNunber ToPl ay > 4) {
soundNunber ToPl ay = 0;
}

Listing 8.15 shows the soundNumnber ToP ay variable being incremented each time
the pl aySpaceCar goShi p method is called. When the soundNumber ToP ay is
greater than four, it is reset to zero.

The i nit method for SpaceCar goShi p ties it all together. Go to the i nit
method in SpaceCar goShi p and locate the i d acti on declaration. In this nested set
of actions, add the CCCal | Func action shown in Listing 8.16 before each CCMbveTo
action, starting with the second one.

Listing 8.16 SpaceCargoShip init method—adding CCCallFunc

[CCCal | Func actionWthTarget:self
sel ector: @el ect or (pl aySpaceCar goshi pSound)],
/1 Exanple:
id action = [CCRepeat Forever actionWthAction:
[CCSequence acti ons:
[CCDel ayTi ne acti onWthDuration: 2. 0f],
[CCMoveTo actionWthDuration: 0. 01f
posi tion: ccp(-500.0f, 550.0f)],

Adding Sounds to EnemyRobot

[CCScal eTo actionWthDuration:0.01f scale:0.5f],
[CCFli pX actionWthFlipX: YES],
[cCCallFunc actionWithTarget:self
selector:@selector (playSpaceCargoShipSound)],
[CCMbveTo acti onWt hDurati on: 8. 5f
posi tion: ccp(screenSi ze. w dt h+1000. 0f , 550. 0f)],

In the resources folder for this chapter, the changes to the i nit method in the
SpaceCar goShi p class are included in the UpdatedSpace CargoShipInit.rtf file. All of the
changes are included as well with the source code for this chapter.

There is one line of code left to complete the SpaceCar goShi p. In the beginning
of the i nit method, be sure to initialize the soundNunmber ToM ay variable by add-
ing the following line in the i nit method.

soundNunber ToPl ay = O;

That wraps it up for SpaceCar goShi p. If you click Run, you will hear the
SpaceCar goShi p as it makes its way across the screen. In the next section, you work
on adding sounds to the EnenyRobot and finally to Ole the Viking.

Adding Sounds to EnemyRobot

The EnenyRobot is a bit more complex than the Radar Di sh or SpaceCar goShi p.
The robot patrols the level, looking for Ole, and attacks Ole when he is spotted. So
this time, there are several more sounds to add!

To start, you need to add an instance variable to EnemyRobot . Open the
EnemyRobot.h file and in the @ nt er f ace declaration section add the following line:

ALui nt wal ki ngSound,;

Unlike the rest of the sounds in EnemyRobot , the walking sound effect may need
to be cut short if the EnenmyRobot suddenly spots Ole. To stop an effect that is cur-
rently playing, you need to know the audio layer identifier for that sound. The audio
layer identifier is a type of unsigned integer called ALui nt . You can get the ALui nt
by setting it when you call pl ayEf f ect , as you will see later in the pl ayWal ki ng-
Sound method.

Before creating the walking sounds, you will want to add and understand the sim-
pler pl ayPhaser Fi r eSound method shown in Listing 8.17. Open EnemyRobot.m and
add the contents of Listing 8.17 right above the changeSt at e method.

Listing 8.17 EnemyRobot.m playPhaserFireSound method

#pragma mark -
#pragma mar k SoundMet hods
- (voi d) pl ayPhaser Fi reSound {
int soundToPlay = randon() % 2;

219

220

Chapter 8 Pump Up the Volume!

if (soundToPlay == 0) {

PLAYSOUNDEFFECT(ENEMYROBOT _PHASERFI RE_1) ;
} else {

PLAYSOUNDEFFECT(ENEMYROBOT _PHASERFI RE_2) ;

}

In the pl ayPhaser Fi r eSound method the modulus (% operator is used to get the
remainder of a random number divided by two. The two possible outcomes are 0 and
1, and they are used to select one of the two enemy phaser sounds to play.

Next you need to create a similar method to alternate between the two walking
sounds for the EnemyRobot . Once more, copy the contents of Listing 8.18 below the
newly created pl ayPhaser Fi r eSound method.

Listing 8.18 EnemyRobot.m playWalkingSound method

- (voi d) pl ayVval ki ngSound {
int soundToPlay = randonm() % 2;
if (soundToPlay == 0) {
wal ki ngSound = PLAYSOUNDEFFECT(ENEMYROBOT_WALKI NG 1) ;
} else {
wal ki ngSound = PLAYSOUNDEFFECT(ENEMYROBOT_WALKI NG _2) ;
}

The main difference between pl ayWal ki ngSound and pl ayPhaser Fi r eSound
is that you are keeping a reference to the audio layer identifier of the walking sound
effect being played, via the wal ki ngSound variable. This identifier is used to stop the
walking sound anytime the EnemyRobot transitions state, so if he stops walking sud-
denly, the sound will not keep playing.

On Stopping Sounds before They Finish

Stopping a sound effect during playback is a common occurrence in games. Often your

animations or actions may be stopped due to an event in the game, and you will want to
stop your sound effects, too. The easiest way to do this with CocosDenshion is to keep

a reference to the audio layer identifier when you call pl ayEf f ect and then use itin a
st opEf f ect method call.

The bulk of the changes to EnemyRobot are in the changeSt at e method, where
a call is added to play a sound effect on several of the state changes. Listing 8.19 shows
an excerpt of the changeSt at e method with the added lines shown. The rest of the
code in the changeSt at e method remains unchanged and is not shown here.

Adding Sounds to EnemyRobot

Listing 8.19 EnemyRobot.m changeState method (partial)

[sel f stopAllActions];
STOPSOUNDEFFECT (walkingSound) ;
idaction = nil;
characterState = newsSt at e;

switch (newState) {
case kSt at eSpawni ng:
[soundEngi neLi nk
PLAYSOUNDEFFECT (ENEMYROBOT TELEPORT) ;
[sel f runAction: [CCFadeCQut actionWthDuration:0.0f]];
br eak;

case kStatewal ki ng:
CCLOG @ EnenyRobot - >Changi ng State to Wl ki ng");
if (isVikingWthinBoundi ngBox)
br eak;
[self playWalkingSound];

case kStateAttacking:
CCLOG @ EnenyRobot - >Changi ng State to Attacking");
action = [CCSequence actions:
[CCAni mat e acti onWt hAni mati on: rai sePhaser Ani m
restoreOrigi nal Frane: N,
[CCDel ayTi ne acti onWthDuration:1.0f],
[CCAni mat e acti onW t hAni mati on: shoot Phaser Ani m
restoreOriginal Frane: NQ ,
[CCCal | Func actionWthTarget: sel f
sel ector: @el ect or (shoot Phaser)],
[CCCallFunc actionWithTarget:self
selector:@selector (playPhaserFireSound)],
[CCAni mat e acti onW t hAni mati on: | ower Phaser Ani m
restoreOriginal Frane: NQ ,
[CCDel ayTi ne actionWthDuration: 2. 0f],
nilj;
br eak;

case kSt ateTaki ngDanmage:
CCLOG @ EnenyRobot - >Changi ng State to Taki ngDanmage");
PLAYSOUNDEFFECT (ENEMYROBOT_DAMAGE) ;
if ([vikingCharacter getWaponDamage] > 10){
/1 1f the viking has the nallet, then
action =
[CCAni mat e acti onW t hAni mati on: headH t Ani m
restoreQigi nal Frane: YES] ;

221

222

Chapter 8 Pump Up the Volume!

} else {
/'l Viking does not have weapon, body bl ow
action =
[CCAni mat e acti onWt hAni nati on:torsoHit Ani m
restoreOrigi nal Frane: YES] ;

}

br eak;

case kSt at eDead:
CCLOG @ EnenyRobot -> Going to Dead State");
PLAYSOUNDEFFECT (ENEMYROBOT_DYING) ;

The first addition to the changeSt at e method is the line [soundEngi neLi nk
st opEf f ect: wal ki ngSound] , which stops the walking sound if it is playing. This
line ensures that if the EnenmyRobot transitions out of the walking state, the walking
sound will not continue playing. The next sets of changes are in the kSt at eSpawni ng,
kSt at eWal ki ng, kSt at eAtt acki ng, kSt at eTaki ngDamage, and kSt at eDead
branches.

In the kSt at eSpawni ng, kSt at eTaki ngDamage, and kSt at eDead transitions,

a single call to PLAYSOUNDEFFECT is all that is needed to play the teleport sound and
the hit sound effect.

In the kSt at eWal ki ng transition, the pl ayWal ki ngSound method is called to
play one of the two walking sounds.

Lastly, in the kSt at eAt t acki ng transition, the call to pl ayPhaser Fi r eSound
is included in the CCSequence action as a CCCal | Func action so that it starts to play
exactly when the phaser bolt shoots out of the gun.

That wraps up the EnemyRobot sound effects. If you click Run, you should hear
the EnenyRobot teleporting in and the sound effects when he fires at Ole or gets
whacked in the head by the Viking mallet.

In the next section you the give Ole full audio treatment by adding sound effects to
his actions.

Adding Sound Effects to Ole the Viking

The Viking character is the main protagonist in Space Viking, and as such he has the
largest set of sound effects. Earlier in the EnenyRobot class, any sounds involving two
or more effects that could be played were wrapped in a method to make the code clear
and easier to understand. Feel free to reference back and use this code when adding
sound effects to your own game.

First open the Viking.h file and add the following line in the @ nt er f ace declara-
tion section.

ALui nt wal ki ngSound;

Adding Sound Effects to Ole the Viking

Just as with EnenyRobot , the wal ki ngSound instance variable allows the Viking
to stop the walking sound anytime he transitions out of that state.

Now move to the Viking.m implementation file to create a set of methods to play
the sounds. Be sure to copy the code in Listings 8.20 to 8.22 into Viking.m into the
changeSt at e method.

Listing 8.20 Viking.m playJumpingSound

#pragma mark -
#pragma mark SoundEf f ect sMet hods
- (voi d) pl ayJunpi ngSound {
int soundToPlay = randon() % 4;
if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_1) ;
} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_2) ;
} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_3) ;
} else {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_4) ;
}

The soundToP ay variable is set to one of four possible values randomly, and then
based on that value (0-3), one of the four jumping sounds is played.

Copy the contents of Listing 8.21 into the pl ayJunpi ngSound method in order to
add the methods to play the swinging mallet sound and the breathing sounds.

Listing 8.21 Viking.m playSwingingSound and playBreathingSound methods

- (voi d) pl aySwi ngi ngSound {
int soundToPlay = randon() % 8;
switch (soundToPl ay) {
case 0:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG _1) ;
br eak;
case 1:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG 2) ;
br eak;
case 2:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG _3) ;
br eak;
case 3:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG 4) ;
br eak;

223

224 Chapter 8 Pump Up the Volume!

case 4:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG 5) ;
br eak;
case 5:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG 6) ;
br eak;
case 6:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG _7) ;
br eak;
case 7:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG _8) ;
br eak;
defaul t:
PLAYSOUNDEFFECT(VI KI NG_SW NG NG 9) ;
br eak;
}
}
- (voi d) pl ayBr eat hi ngSound {
int soundToPl ay = random() % 4;
if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KI NG_GRUMBLI NG 1) ;
} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KI NG_GRUMBLI NG _2) ;
} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KI NG_CURSI NG_1) ;
} else {
PLAYSOUNDEFFECT(VI KI NG_CURSI NG _2) ;
}

As with the pl ayJunpi ngSound method, the pl aySwi ngi ngSound and pl ay-
Br eat hi ngSound methods randomly select between the sound effect options for
swinging and breathing. The breathing sound (grumbling) is played when the player
has not touched any of the controls for a period of time in an attempt to direct the
player’s attention back to the game. After all, there are aliens to bash!

Two more methods remain to round out the sound effects for Ole the Viking.
Copy the contents of Listing 8.22 into the pl ayBr eat hi ngSound method in the
Viking.m implementation file.

Listing 8.22 playTakingDamagSound, playDyingSound, and playCrouchingSound
methods in Viking.m

- (voi d) pl ayTaki ngDamageSound {
int soundToPlay = random() % 5;
if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KI NG HI T_1);

Adding Sound Effects to Ole the Viking 225

} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KING HI T_2) ;
} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KING H T_3) ;
} else if (soundToPlay == 3) {
PLAYSOUNDEFFECT(VI KING HI T_4);
} else {
PLAYSOUNDEFFECT(VI KING HI T_5);

}

- (voi d) pl ayDyi ngSound {
int soundToPlay = randonm() %5;
if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KI NG _DYI NG 1) ;
} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KI NG DYI NG 2) ;
} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KI NG_DYI NG _3) ;
} else if (soundToPlay == 3) {
PLAYSOUNDEFFECT(VI KI NG_DYI NG _4) ;
} else {
PLAYSOUNDEFFECT(VI KI NG_DYI NG 5) ;

}

- (voi d) pl ayCrouchi ngSound {
int soundToPlay = randon() % 4;
if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KI NG_CROUCHI NG _1) ;
} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KI NG_CROUCHI NG _2) ;
} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KI NG_CROUCHI NG _3) ;
} else {
PLAYSOUNDEFFECT(VI KI NG_CROUCHI NG _4) ;
}

The pl ay Taki ngDamage and pl ayDyi ngSound methods choose randomly
between the five available sound effects for Ole taking a hit and Ole dying. The
pl ay Cr ouchi ngSound method plays four different crouching movement sounds. The
multiple sound effects for each event prevent the game from being too repetitive and
the player from having to hear the sounds played over and over.

226 Chapter 8 Pump Up the Volume!

Adding the Sound Method Calls in changeState for Ole

The last step in making Ole speak is to add the calls to the methods you just created.
The calls are inside of the changeSt at e method. Listing 8.23 shows the lines added
to the changeSt at e method. Look closely at Listing 8.23 and add these lines in your
Viking.m implementation file.

Listing 8.23 Viking.m changeState method (partial)

STOPSOUNDEFFECT (walkingSound) ;
[sel f set CharacterState: newSt ate];
switch (newState) {
case kStat eWal ki ng:
PLAYSOUNDEFFECT (VIKING_WALKING 1) ;
br eak;

case kStateCrouching:
[self playCrouchingSound];

br eak;

case kSt ateBreat hing:
[self playBreathingSound];

br eak;

case kStateJunping:
[self playJumpingSound];

br eak;

case kStateAttacking:
if (isCarryinghallet == YES) {
action = [CCAni nat e
actionWthAni mati on: mal | et PunchAni m
restoreOriginal Frane: YES] ;
[self playSwingingSound];
} else {
PLAYSOUNDEFFECT (VIKING_ PUNCHING) ;

br eak;

Adding Sound Effects to Ole the Viking 227

case kSt ateTaki ngDanmage:
[self playTakingDamageSound];

br eak;

case kSt ateDead:
[self playDyingSound];

br eak;

defaul t:
br eak;

In the changeSt at e method, the first line added is a call to stop playing the walk-
ing sound effect. This call does nothing if the walking sound is not currently playing.
In the switch block for the states, the following occurs.

If the state is switching to:

1. kSt at ewal ki ng

The walking sound effect is played and the audio layer identifier for this sound
effect is stored in the instance variable. This audio layer identifier is used to stop
playing the walking sound when Ole changes state.

2. kSt at eCrouchi ng
There are four crouching sounds, and the pl ay Cr ouchi ngSound method
chooses among them at random.
3. kSt at eBreat hi ng
Calls the pl ayBr eat hi ngSound method, which randomly chooses one of the
four mumbling sound effects to try to entice the player to return to the game.
4. kSt ateJunpi ng

Calls the pl ayJunpi ngSound method to randomly play one of Ole’s jumping
sound effects.

5. kSt at eAtt acki ng

If Ole is carrying the mallet, the pl aySwi ngi ngSound is called to randomly
play one of Ole’s mallet-swinging sound effects. If Ole’s just got his bare fists to
rely on, it calls soundEngi neLi nk directly and plays the Viking punch sound
effect.

6. kSt at eTaki ngDanage

Calls the pl ay Taki ngDamageSound to randomly play one of the five sound
effects of Ole being hit by one of the enemies.

228

Chapter 8 Pump Up the Volume!

7. kSt at eDead
Calls the pl ayDyi ngSound to randomly play one of the five sound effects of

Ole dying and turning to dust. Let’s hope you don’t hear this sound effect very
often.

This concludes all the setup you need to give Ole the Viking a voice and a full
complement of sound effects. If you click Run, you should be able to hear Ole making
the various sound effects as you play Space Viking.

Adding Music to the Menu Screen

All of the scenes in Space Viking have background music to go along with them. You
have already carried out most of the work needed to play background music in the
GameManager class. All you need to do is call it from the various scenes. While you
could add the next call at the scene level, you will be adding it to the layer, as that is
where you have most of the code.

Adding Music to Gameplay
Open the GameplayLayer.h file and add an import for the GameManager class:
#i mport " GameManager. h"

Switch over to the GameplayLayer.m file and in the i nit method, add the following
line:
[[GaneManager shar edGaneManager] pl ayBackgroundTrack: BACKGROUND TRACK_
OLE_AWAKES] ;

If you click Run and play the Ole Awakes level, you should hear the background
music starting.

Adding Music to the MainMenu

To add music to the Mai nMenu, follow the same steps as for adding it to the Gamepl ay.
Start by opening the MainMenuLayer.h file and add an import for the GaneManager
class:

#i nport " GanmeManager. h"

Switch over to the MainMenuLayer.m file and in the i nit method, add the follow-
ing line:
[[GaneManager shar edGaneManager] pl ayBackgroundTrack: BACKGROUND TRACK
MAI N_VENU] ;

In addition to playing the new background music, the GameManager will stop
any currently playing background music when the player returns to it from one of the
levels.

For the More Curious: If You Need More Audio Control 229

Once more, click Run, and you should now hear music in the Mai n Menu along
with the Ganepl ay layer. Since the other menus in Space Viking do not have their
own music, the main menu background track will continue playing when you transi-
tion to them.

For the More Curious: If You Need More Audio
Control

Si npl eAudi OEngi ne is an excellent interface for getting sounds into your
games with a minimal amount of code and setup. Even though you used the short
pl ayEf fect call, there is a fuller version available with Si npl eAudi oEngi ne.

[soundEngi ne pl ayEffect:
pitch:
pan:
gain:]

Pi t ch is a multiplier that can change the octave of the sound being played: 1.0 is
unchanged, 0.5 is an octave lower.

Pan controls the left and right stereo position of the sound: -1 is all the way on the
left, while 1 is all the way on the right. Zero is in the center, with the sound coming
out of both the left and right speakers equally.

Gai n controls the audio gain: 1.0 is unchanged, 0.5 is half the audio gain.

Although Si npl eAudi 0Engi ne provides quite a bit of power, sometimes you
need more control over how the audio is played. For greater control over audio play-
back, there are two additional APIs for CocosDenshion, CDAudi oManager and
CDSoundEngi ne.

In Space Viking you used the ALU nt identifier to stop audio playback. The
CDSoundSour ce objects in CocosDenshion provide better control when you need to
stop sounds, even allowing you to fade your sounds. It is recommended that you use
CDSoundSour ce when you need to stop sound effects or loop them, as it provides
finer-grained control over your audio effects.

Additionally, there is a limit of 32 sounds that can be played simultaneously on the
10S devices. Si npl eAudi 0Engi ne always attempts to honor a play request, and if you
attempt to play more than 32 sounds at once, your earlier sounds may be prematurely
cut off.

CDAudi oManager provides a mechanism to identify sounds by their unique
numerical IDs instead of filenames and is the underlying CocosDenshion module
Si npl eAudi oEngi ne uses.

CDSoundEngi ne provides full access to the OpenAL layer, allowing you to group
your sounds into interruptible and noninterruptible channels, and provides you with
precise control over the audio buffers and playback. CDSoundEngi ne also provides an
easy way to loop any audio, not just the background track.

230

Chapter 8 Pump Up the Volume!

Covering these two portions of CocosDenshion is beyond the scope of this book,
but there are several example projects included with Cocos2D to help you get started
with these two APIs.

The DrumPad, Fade to Grey, and FancyRat Metering targets included in the
Cocos2D Xcode project are a great starting point for delving deeper into the Cocos-
Denshion framework.

There are also additional examples included with the source files of this book,
found at the InformIT website (wiww.informit.com/title/9780321735621) and at the
Cocos2DBook website (wivi.cocos2dbook.com).

Summary

In this chapter you learned about CocosDenshion, the sound engine included with
Cocos2D. You learned how to preload audio and initialize the sound engine. You also
learned how to play a music track and sound effects for the characters in Space Viking
and how to load the music via a background thread. When you create your own
games, you can reuse the code from this book to help you on your way. In the next
chapter you take Ole even further on the alien planet by adding scrolling to

Space Viking.

Challenges

1. Add code in GaneManager to avoid playing music or special effect sounds if
the player has selected to turn the music or the sound effects off in the Options
Menu screen.

Hint
Take a look at GameManager 's i sMusi cONand i sSoundEf f ect sON variables.

2. Add the ability to pan the sounds so that the engine noise from the Space-
Car goShi p pans from the left when the ship comes from the left side and from
the right when the ship comes from the right side of the screen.

www.informit.com/title/9780321735621
www.cocos2dbook.com

9

When the World Gets Bigger:
Adding Scrolling

In the last chapter you learned how to add sound effects and music to Space Viking, giving

Ole a heavy metal soundtrack as inspiration to beat the aliens. In this chapter you learn how to
make Ole’s world even larger by adding scrolling and creating a second game level and a cut-scene.
Scrolling is an easy and powerful technique that can be used to make your levels larger and to add
depth to your games.

Let’s take a moment to cover the basics. Up to now the levels have been set to the dimensions
of the iOS device screen. On the iPad the alien world is only 1024 X 768 pixels in size. Ole and
his enemies cannot move beyond the screen to the left or right. For the background, you are using
one large image (1024 X 768 pixels on the iPad) on top of which the Ganmepl ayLayer and all
the characters are composited. If you made the level twice as wide, you would need a larger back-
ground image to cover the new space, and larger levels would quickly cause you to run out of mem-
ory. There is a better way, using TileMaps, as you will learn in the third section of this chapter.

Terminology Review

Before jumping into the scrolling functionality, it is useful to cover some of the termi-
nology used in this chapter.

= Parallax Scrolling
A technique used in 2D games to create depth by scrolling separate layers of
the background at different rates. Having the layers closest to the player move
faster than layers further away gives the player the illusion of depth. To visual-
ize this, think about the scenery as you ride in a car or train. The road or track
moves really fast, the items farther away move slower. By replicating the same
movement on a 2D scene, the game can fool the player’s brain into seeing
depth were there is none.

= Tiles
Image or texture used in a TileMap. These are usually PNG images combined in
a texture atlas. Tile images are usually squared, and the common sizes are
32 X 32 and 64 X 64 pixels.

232

Chapter 9 When the World Gets Bigger: Adding Scrolling

= TileMap
A large image made up of tiles of a standard size. The tile images/textures
can repeat so that a large TileMap needs only a small amount of unique tiles.
TileMaps can contain multiple TileSets and can contain image and other custom
data for each tile.

= TileSet
A set of tiles stored as one image. Consider how texture atlases are used to
combine multiple sprites images into a single larger image: the TileSet is the
texture atlas of tiles.

Don’t worry if you do not understand the TileMap terminology just yet. It will become
clear by the time you reach the last section of this chapter. With the definitions out of
the way, it is time to get into the code.

First you learn how to scroll with one large image. Then you can learn how to
add multiple layers and scroll them at different speeds with parallax. Finally you learn
about using TileMaps and develop a scrolling background using Ti | eMap layers.

Adding the Logic for a Larger World

Until now you have been working with a single game level. You will leave this first
level unchanged and instead create a new level for use in this chapter and beyond.

In Chapter 3, “Introduction to Cocos2D Animations and Actions,” you created
code in GaneChar act er to automatically clamp the character’s position to 1OS device
dimensions. If you recall, before the GameChar act er class can clamp the position, it
needs to know the size of the level. Since the first level was the size of the screen, you
simply used the screen dimensions for the level size. However, this will not work if the
level size varies from level to level. Since you already have the GameManager control-
ling the transition from one level to another, it makes sense to create a method there
to provide the size of the level.

Open the GameManager.h header file and add the line shown in Listing 9.1 immedi-
ately below the @r operty declarations.

Listing 9.1 GameManager.h declaration for getDimensionsOfCurrentScene method

- (CGsi ze) get Di mensi onsOf Cur r ent Scene;

Just as the name implies, this method returns the dimensions of the current scene.
Since this method bases the dimension on the CCDi r ect or’s wi nSi ze, it automati-
cally has the proper dimensions for iPhone, iPhone 4, and 1Pad screen sizes. Remem-
ber that Wi nSi ze returns the size in points, while the Wi nSi zel nPi xel s call returns
the actual pixel size of the display.

Move to the GameManager.m implementation file and add the get Di mensi onsCf -
Cur r ent Scene right above the @nd declaration, as shown in Listing 9.2.

Adding the Logic for a Larger World

Listing 9.2 GameManager.m getDimensionsOfCurrentScene method

- (CGsi ze) get Di mensi onsOf Current Scene {
CGSi ze screenSize = [[CCDirector sharedDirector] w nSize];
CGSi ze | evel Si ze;
switch (currentScene) {
case kMai nMenuScene:
case kOptionsScene:
case kCreditsScene:
case klntroScene:
case kLevel Conpl et eScene:
case kGaneLevel 1:
| evel Si ze = screenSi ze;
br eak;
case kGaneLevel 2:
| evel Si ze = CGSi zeMake(screenSi ze.w dth * 2. 0f,
screenSi ze. hei ght) ;
br eak;

defaul t:
CCLOG(@ Unknown Scene | D, returning default size");
| evel Si ze = screenSi ze;
br eak;

}

return | evel Size;

The get Di mensi onsO Cur r ent Scene method takes a look at what the cur-
rent Scenel Dis set to and returns the appropriate level dimensions as a CGSi ze. The
screen dimensions on the devices are always constant, such as 1024 X 768 on the iPad,
but the sizes of the levels will vary. As you can see in Listing 9.2, the menus and the
first game level are the same size as the screen, while on the second level, identified by
the kGaneLevel 2 ID that you will be building, they are actually twice as wide.

With the level size out of the way, the next step is to modify the check And-

C anpSpritePosition method in GanmeChar act er to take into account the
| evel Di mensions.

Open the GameCharacter.m implementation file and replace the check Andd anp-
SpritePosition method with the contents of Listing 9.3.

Listing 9.3 GameCharacter.m checkAndClampSpritePosition method

- (voi d) checkAndCl ampSpri tePosition {
CGPoint currentSpritePosition = [self position];

CGSi ze | evel Si ze = [[GaneManager sharedGaneManager]
get Di nensi onsCf Cur r ent Scene] ;

233

234 Chapter 9 When the World Gets Bigger: Adding Scrolling

float xOffset;
if (U _USER | NTERFACE_I DI OM) == Ul User | nterfacel di onPad) {
/1 Clanmp for the iPad
xOf fset = 30.0f;
} else {
/1 Canp for iPhone, iPhone 4, or iPod touch
xOf fset = 24.0f;
}

if (currentSpritePosition.x < xOffset) {
[self setPosition:ccp(xOfifset, currentSpritePosition.y)];
} else if (currentSpritePosition.x > (level Size.width - xOfset)) {
[sel f setPosition:ccp((levelSize.width - xCOffset),
currentSpritePosition.y)];

The checkAndC anpSprit ePositi on method now takes into account the
level width and keeps game characters such as Ole and the EnemyRobot 30 pix-
els away from the left and right sides. The level dimensions are retrieved from the
GaneManager.

To ensure you have typed everything correctly up to this point, click Run and try
out the first level. Ole and the alien robots should remain within the screen.

Common Scrolling Problems

Before you begin learning about scrolling, it is worthwhile taking a quick detour to
see what happens if you widen the level without taking care to reposition Ole and the
joystick controls.

Open GaneManager and modify the lines for the | evel Si ze so that they
match Listing 9.4. Note how the level width is larger than what it should be for
kGaneLevel 1.

Listing 9.4 Level width change for kGameLevell in GameManager.m

case kGanelLevel 1:
| evel Si ze = CGSi zeMake(screenSi ze.wi dth * 2.0f,
screenSi ze. hei ght);
br eak;

All you have changed here is the width of the first game level to twice the screen
size; on the iPad this means the width went from 1024 to 2048 pixels. The first level
is not designed for scrolling. Take a minute to run the game, and play the first level.
Figure 9.1 shows what happens when you move Ole to the right.

Creating a Larger World

Figure 9.1 Ole scrolls past the screen and is nowhere to be seen.

The first game level scene was not set for scrolling, so when Ole moves to the
right, the scene does not follow him, and he quickly disappears offscreen. This was an
exercise to illustrate how you need to track Ole’s position in order to scroll the entire
layer properly to match his position. Keep this in mind as you work through the next
section.

Make sure to return the kGanelLevel 1 to just be the width of the screenSi ze
before moving on.

case kGameLevell:
levelSize = screenSize;

Creating a Larger World

Instead of just creating a scrolling layer, you will create a whole new level for Ole to
play in. In the process you will learn several techniques to achieve scrolling in your
games.

The first step is to import the ParallaxBackgrounds folder located with the resources
for this chapter into your SpaceViking project. You can drag the ParallaxBackgrounds
folder as a subfolder to the Images folder in Xcode.

Warning

Be sure to import all of the images in the ParallaxBackgrounds folder or your SpaceViking
project will not run when you reach the end of this chapter.

235

236 Chapter 9 When the World Gets Bigger: Adding Scrolling

Next create a new group under Scenes called Scene2, as shown in Figure 9.2. All
of the classes for this scene and level will be created under this group to keep your
SpaceViking project organized.

Figure 9.2 Scene2 group in Xcode

Creating the Second Game Scene

In order to keep things simple and compartmentalized, you will create a new scene
class instead of adding code to the existing GameScene.

Right-click on the Scene2 group in Xcode and create a new Objective-C class called
GameScene2.m as subclass of CCScene. If you are unsure about the steps in creating
a new class, refer back to the previous chapters in this book, in particular Chapter 2,
“Hello, Space Viking.”

Open the GameScene2.h header file and replace it with the contents of Listing 9.5.

Listing 9.5 GameScene2.h header file

/'l GaneScene2. h

/1 SpaceVi ki ng

11

#i nport <Foundati on/ Foundati on. h>

Creating a Larger World

#i nmport "cocos2d. h"

#i mport "Constants. h"

#i nport "GanmeControl Layer. h"

#i mport " Ganepl ayScrol | i ngLayer. h"
#i mport " StaticBackgroundLayer. h"

@nterface GaneScene2 : CCScene {
GanmeControl Layer *control Layer;

}

@nd

In the import statements, the GaneCont r ol Layer Gamepl ayScrol | i ngLayer,
and St ati cBackgr oundLayer are three classes you have not created yet. Do not
worry if Xcode starts displaying warnings for the missing classes; you will add them in
the next few listings.

The St ati cBackgroundLayer is a simple class, which contains the farthest back-
ground image that will not be scrolled.

In the previous scene, the Gamepl ayLayer contained both the controls and the
gameplay action. Since you are going to have the gameplay scroll, it is useful to move
the joystick controls to their own layer. Having the joystick and buttons in their own
layer means you do not have to move or adjust them when the gameplay layer scrolls.
The joystick will always be on top of the gameplay regardless of what scroll position
the other layers are in.

You are going to split the background into two layers: a static backmost layer that
does not scroll, and a Ganmepl ayScrol | i ngLayer where the action and scrolling
takes place.

Move on to the implementation of GameScene2.m and replace the code with the
content of Listing 9.6.

Listing 9.6 GameScene2.m implementation file

/1 GameScene2.m

/1 SpaceVi ki ng

/1

#i mport " GanmeScene2. h"

@ npl enent ati on GaneScene2
-(id)init {
self = [super init];
if (self I=nil) {
/'l Background Layer
St ati cBackgroundLayer *backgroundLayer =
[Stati cBackgroundLayer node];
[sel f addChil d: backgroundLayer z:0];

237

238 Chapter 9 When the World Gets Bigger: Adding Scrolling

/1 Initialize the Control Layer
control Layer = [GaneControl Layer node];
[sel f addChild:control Layer z:2 tag:2];

/| Ganepl ay Layer
Ganepl ayScrol | i ngLayer *scrollinglLayer =
[Ganepl ayScrol | i ngLayer node];
[scrollingLayer connectControl sWthJoystick:[control Layer |eftJoystick]
andJunmpBut t on: [control Layer junpButton]
andAtt ackButton: [control Layer attackButton]];
[sel f addChild:scrollingLayer z:1 tag:1];
}
return self;
}
@nd

The GaneScene?2 i nit method starts by initializing the static background layer
and adding it to the scene. Next it initializes the control layer, which contains the
joystick and buttons. Lastly, it creates the Gamepl ayScr ol | i ngLayer where all
the action is going to take place. The connect Cont r ol sWt hJoysti ck method
links the joystick and buttons from the Cont r ol Layer to the Vi ki ng inside of
Ganepl ayScrol | i ngLayer. Take care to notice the z values of the three layers; even
though the Cont rol Layer is initialized first, it is actually composited on top of the
Ganepl ayScrol | i ngLayer.

Note on z Values

You learned how z values affect the compositing of objects in Cocos2D. The Ganme-
Scene2 i nit method provides a clear example of times when this can be really useful.
In Space Viking, you need to initialize the controls before you initialize the Ganmepl ay-
Scrol | i ngLayer. Even though the Cont r ol Layer is initialized first, it is composited
on top of the scrolling Ganmepl ayScr ol | i ngLayer due to its z value. Keep this in
mind when writing your own games and when you find that you need to initialize objects
and add objects to a scene in a different way than their compositing order.

Next create the St at i cBackgroundLayer class inside the Scene2 folder as a sub-
class of CCLayer. Open the header file and replace the template-created code with the
contents of Listing 9.7.

Listing 9.7 StaticBackgroundLayer.h header file

/1 StaticBackgroundLayer. h

/1 SpaceVi ki ng

Il

#i nport <Foundati on/ Foundati on. h>
#i nport "cocos2d. h"

Creating a Larger World

@nterface StaticBackgroundLayer : CCLayer {

}
@nd

The header file is as simple as possible, containing just an import for Cocos2D and
declaring St at i cBackgroundLayer as a subclass to CCLayer. Move to the imple-
mentation file and replace the code with the contents of Listing 9.8.

Listing 9.8 StaticBackgroundLayer.m implementation file

/1 StaticBackgroundLayer.m
/1 SpaceVi ki ng
#i nmport " StaticBackgroundLayer. h"

@ npl enent ati on StaticBackgroundLayer
-(id)init {
self = [super init];
if (self I'=nil) {
CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze
CCSprite *backgroundl mage
if (U _USER | NTERFACE | DIOM) == Ul Userlnterfacel di onPad) {
/1 Indicates gane is running on i Pad
backgroundl nage =
[CCSprite spriteWthFile: @chap9_scrollingl.png"];
} else {
backgroundl nage =
[CCSprite spriteWthFile: @chap9_scrollingli Phone. png"];
}

[backgr oundl nage set Position:ccp(screenSize.w dth/2.0f,
screenSi ze. hei ght/2.0f)];
[sel f addChil d: backgr oundl mage] ;
}
return self;
}
@nd

The St ati cBackgroundLayer implementation file contains only the i nit
method, creating the background CCSprit e and adding it to the layer. This is the
same logic that you implemented for the Backgr oundLayer in the first level of Space
Viking back in Chapter 2.

The next step is to create the GameCont r ol Layer class as a subclass of CCLayer .
Create it in the Scene2 group, and open the header file. Copy the contents of Listing 9.9
into the GameControlLayer.h file.

239

240

Chapter 9 When the World Gets Bigger: Adding Scrolling

Listing 9.9 GameControlLayer.h header file

/1 GanmeControl Layer. h

/1 SpaceVi ki ng

11

#i nport <Foundati on/ Foundati on. h>

#i nport "cocos2d. h"

#i nport " SneakyJoystick. h"

#i mport " SneakyJoysti ckSki nnedBase. h"
#i nport " SneakyButton. h"

#i mport " SneakyButt onSki nnedBase. h"

@nterface GaneControl Layer : CCLayer ({
SneakyJoystick *leftJoystick;
SneakyButt on *j unpButt on;
SneakyButton *attackButton;

}

@roperty (nonatomic, readonly) SneakyJoystick *leftJoystick;
@roperty (nonatomic, readonly) SneakyButton *junpButton;
@roperty (nonatomc, readonly) SneakyButton *attackButton;

@nd

The GaneCont r ol Layer imports the SneakyJoystick and SneakyButton
classes. It also contains the instance variables for the | ef t Joysti ck, the jump, and
the attack buttons. Note the property declarations for the instance variables to allow
access to them from outside the GameCont r ol Layer class. They are set to r eadonly
because the SneakyJoysti ck and buttons should only be read from and not changed.

Next move to the GameCont r ol Layer implementation file and replace the
template-generated code with the contents of Listing 9.10.

Listing 9.10 GameControlLayer.m

/1 GanmeControl Layer. m

/'l SpaceVi ki ng

/1

#i mport " GanmeControl Layer. h"

@ npl enent ati on GaneControl Layer
@ynt hesi ze | eftJoysti ck;

@ynt hesi ze junpButton;

@ynt hesi ze attackButton;

-(void)initJoystickAndButtons {
CCSi ze screenSize = [CCDirector sharedDirector].w nSize;
CCRect j oystickBaseDi nensi ons = CCRect Make(0, 0, 128.0f, 128.0f);
CGRect junpButtonDi nensi ons = CGRect Make(0, 0, 64.0f, 64.0f);

Creating a Larger World

CGRect attackButtonDi nmensi ons = CGRect Make(0, 0, 64.0f, 64.0f);
CGPoi nt j oysti ckBasePosition;
CGPoi nt j unpButt onPosi ti on;
CGPoi nt attackButtonPosition;
if (U _USER | NTERFACE I DIOM) == Ul Userlnterfacel di onPad) {
/1 The device is an iPad running i Phone 3.2 or later.
CCLOG(@ Posi tioning Joystick and Buttons for iPad");
j oystickBasePosition = ccp(screenSi ze. wi dt h*0. 0625f,
screenSi ze. hei ght *0. 052f) ;

junmpBut t onPosi tion = ccp(screenSi ze. wi dt h*0. 946f,
screenSi ze. hei ght *0. 052f) ;

attackButtonPosition = ccp(screenSize.w dt h*0. 947f,
screenSi ze. hei ght *0. 169f) ;
} else {
/'l The device is an iPhone or iPod touch.
CCLOG(@ Posi tioning Joystick and Buttons for iPhone");

j oystickBasePosition = ccp(screenSi ze. wi dt h*0. 07f,
screenSi ze. hei ght *0. 11f) ;

junmpBut t onPosi tion = ccp(screenSi ze. wi dt h*0. 93f,
screenSi ze. hei ght *0. 11f) ;

attackButtonPosition = ccp(screenSize. w dt h*0. 93f,
screenSi ze. hei ght *0. 35f) ;
}

SneakyJoyst i ckSki nnedBase *joystickBase =

[[[SneakyJoysti ckSki nnedBase alloc] init] autorel ease];

joystickBase. position = joystickBasePosition;

joystickBase. backgroundSprite =

[CCSprite spriteWthFile: @dpadDown. png"];

joystickBase.thumbSprite =

[CCSprite spriteWthFile: @joystickDown. png"];

joystickBase.joystick = [[SneakyJoystick alloc]
initWthRect:joystickBaseDi nmensions];

leftJoystick = [joystickBase.joystick retain];

[sel f addChil d:joystickBase];

SneakyBut t onSki nnedBase *j unpButtonBase =

[[[SneakyButt onSki nnedBase al l oc] init] autorel ease];
j unpBut t onBase. position = junpButtonPosition;

j umpBut t onBase. defaul t Sprite =

[CCSprite spriteWthFile: @junmpUp. png"];

j unpBut t onBase. activatedSprite =

[CCSprite spriteWthFile: @junpDown. png"];

241

242

Chapter 9 When the World Gets Bigger: Adding Scrolling

j unpBut t onBase. pressSprite =

[CCSprite spriteWthFile: @junmpDown. png"];

j unpBut t onBase. button = [[SneakyButton all oc]
initWthRect:junpButtonDi nensions];

jumpButton = [junpButtonBase. button retain];

jumpBut t on. i sToggl eabl e = NG

[sel f addChil d:junpButtonBase];

SneakyBut t onSki nnedBase *attackButtonBase = [[[SneakyButtonSki nnedBase
alloc] init] autorel ease];

at t ackBut t onBase. posi tion = attackButtonPosition;

attackButtonBase. defaul tSprite = [CCSprite spriteWthFile: @handUp. png
"1

attackButtonBase. activatedSprite = [CCSprite
spriteWthFile: @handDown. png"];

attackButtonBase. pressSprite = [CCSprite spriteWthFile: @handDown. png
"1

attackButtonBase. button = [[SneakyButton alloc] initWthRect:attackBut
tonDi mensi ons] ;

attackButton = [attackButtonBase. button retain];

attackButton.isToggl eabl e = NG

[sel f addChil d: attackButtonBase];

}
-(id)init {
self = [super init];
if (self !'=nil) {
/1 enabl e touches
sel f.i sTouchEnabl ed = YES;
[sel f initJoystickAndButtons]; // 4
CCLOG @ GaneControl Layer initialized");
}
return self;
}
@nd

The i nitJoystick method is the same as you wrote back in Chapter 2. It creates
the SneakyJoyst i ck, jump, and attack buttons. The i nit method marks this layer
as receiving touch events and adds the joystick and buttons to itself. This is all that is
needed for the player to control the game and move Ole the Viking around.

Creating the Scrolling Layer

You are going to create three kinds of scrolling layers in this chapter. First you start
with a simple scrolling layer with a large background image twice as wide as the
screen. Next you add a parallax node and scroll the background in layers, where each
layer has a different scroll speed. Lastly, you scroll with a Ti | eMap layer, learning how

Creating a Larger World

to save on memory while creating much larger levels. Along the way you also learn
how to create infinite scrolling for a cut-scene.

To start, create the Ganmepl ayScrol | i ngLayer class as a subclass of CCLayer
inside of the Scene2 group. Open the header file and replace the code with the con-
tents of Listing 9.11.

Listing 9.11 GameplayScrollingLayer.h

/1 Ganepl ayScrol |l i ngLayer. h

/'l SpaceVi ki ng

/1

#i mport <Foundat i on/ Foundati on. h>
#i nport "cocos2d. h"

#i nport "Viking. h"

#i nport "GaneControl Layer. h"

@nterface Ganepl ayScrollingLayer : CCLayer {
CCSpri t eBat chNode *sceneSpriteBat chNode;

CCTMXTi | edvap *ti | eMapNode;
CCPar al | axNode *par al | axNode;
}
- (voi d) connect Cont rol sWthJoystick: (SneakyJoystick*)l eftJoystick
andJunpBut t on: (SneakyButt on*)j unpButt on
andAt t ackBut t on: (SneakyBut t on*) at t ackBut t on;
@nd

The Ganepl ayScrol | i ngLayer contains the imports for Cocos2D, the Vi ki ng,
and the GanmeCont r ol Layer class, which contains the joystick and buttons. In the
interface declaration, you can see instance variables for the CCTMXTi | edMap and
CCPar al | axNode, which you will use later in this chapter. Lastly, there is a method
called connect Cont r ol sWt hJoysti ck, which wires up the joystick and buttons to
the Viking character.

Move to the Ganepl ayScrol | i ngLayer implementation file and replace the tem-
plate code with the contents of Listings 9.12, 9.13, and 9.14.

Listing 9.12 GameplayScrollingLayer.m (part 1 of 3)

/'l Ganepl ayScrol | i ngLayer. m

/'l SpaceVi ki ng

/1

#i mport " Ganepl ayScrol | i ngLayer. h"

@ npl enent ati on Ganepl ayScrol | i ngLayer
- (voi d) connect Cont rol sWthJoystick: (SneakyJoystick*) | eftJoystick
andJunpBut t on: (SneakyBut t on*) j unpBut t on
andAt t ackBut t on: (SneakyButt on*) att ackButton {

243

244 Chapter 9 When the World Gets Bigger: Adding Scrolling

Vi king *viking = (Viking*)[sceneSpriteBatchNode
get Chi | dByTag: kVi ki ngSpri t eTagVal ue] ;
[viking setJoystick:|eftJoystick];
[viking setJunpButton:junpButton];
[viking setAttackButton:attackButton];

/1 Scrolling with just a large width *2 background
- (voi d)addScrol I 'i ngBackground {
CCSi ze screenSize = [[CCDirector sharedDirector] wi nSize];
CGSi ze | evel Si ze = [[GaneManager shar edGaneManager]
get Di mensi onsOf Cur r ent Scene] ;

CCSprite *scrollingBackground;
if (U _USER | NTERFACE | DIOM) == Ul Userlnterfacel di onPad) {
/1 Indicates gane is running on iPad
scrol I i ngBackground =
[CCSprite spriteWthFile: @Fl at Scrol | i ngLayer. png"];
} else {
scrol | i ngBackground =
[CCSprite spriteWthFile: @Fl at Scrol | i ngLayeri Phone. png"];
}
[scrol I'i ngBackground set Position:ccp(level Size.w dth/2.0f,
screenSi ze. hei ght/2.0f)];
[sel f addChild: scrollingBackground];
}

-(id)init {
self = [super init];
if (self '=nil) {
CGSi ze screenSize = [[CCDirector sharedDirector] w nSize];

if (U _USER | NTERFACE | DIOM() == Ul Userlnterfacel di onPad) {
[[CCSpriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @scenelatlas.plist"];
sceneSprit eBat chNode =
[CCSpri t eBat chNode
bat chNodeW t hFi | e: @ scenelat!| as. png"];
} else {
[[CCspriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFil e: @scenelat| asi Phone. plist"];
sceneSprit eBat chNode =
[CCSpri t eBat chNode
bat chNodeW t hFi | e: @ scenelat| asi Phone. png"];

Creating a Larger World

[sel f addChil d: sceneSpriteBat chNode z: 20];

Viking *viking = [[Viking alloc]
initWthSpriteFrane:
[[CCSpriteFrameCache sharedSpriteFraneCache]
spriteFrameByNanme: @sv_anim 1. png"]];
[viking setJoystick:nil];
[viking setJunpButton:nil];
[viking setAttackButton:nil];
[viking setPosition:ccp(screenSize.w dth * 0.35f,
screenSi ze. hei ght * 0.14f)];
[vi ki ng set Charact er Heal t h: 100] ;
[sceneSpri t eBat chNode addChi |l d: vi ki ng
z: 1000 tag: kVi ki ngSpri t eTagVal ue] ;

[sel f addScrol | i ngBackground];
[sel f schedul eUpdat e] ;

}

return self;

The connect Cont r ol sWt hJoysti ck method wires up the Vi ki ng with refer-
ences to the joystick and button controls residing in the Cont r ol Layer. The Gane-
Scene?2 class has access to both layers and uses this method to connect the joystick
from the Cont rol Layer to the Viking in the Ganepl ayScrol | i ngLayer.

The addScr ol | i ngBackgr ound method is where you set up the scrolling back-
ground for use in this level. In Listing 9.12 this method starts out with just a large
2048-pixel-wide background image. In the next section of this chapter, you will
change out the contents of this method to use a parallax layer.

The i nit method starts in much the same way as the Gamepl ayLayer init in the
first SpaceVi ki ng scene. The screenSi ze is determined from the Cocos2D Direc-
tor, and the Sprit eBat chNode is set up.

Next the Vi ki ng object is created and added to the layer. Note how the joystick
and buttons are set to ni | at this point. They will be connected when the connect -
Cont rol sWt hJoysti ck method is called. Finally, the scrolling background is added.

Before you can test out this game, you have to add the updat e method and a little
bit of the scrolling logic to the Gamepl ayScrol | i ngLayer class. Add the contents of
Listing 9.13 directly below the i nit method.

Listing 9.13 GameplayScrollingLayer.m adjustLayer method (part 2 of 3)

#pragma mar k SCROLLI NG_CALCULATI ON
- (voi d) adj ust Layer {
Vi king *viking = (Viking*)[sceneSpriteBatchNode
get Chi | dByTag: kVi ki ngSprit eTagVal ue] ; /11

245

246 Chapter 9 When the World Gets Bigger: Adding Scrolling

float vikingXPosition = viking.position.x; /1 2
CGSi ze screenSize = [[CCDirector sharedDirector] w nSize]; /13
float hal fOf TheScreen = screenSize. wi dth/ 2. 0f; Il 4
CCSi ze |l evel Si ze = [[GaneManager shar edGaneManager]

get Di mensi onsOf Cur r ent Scene] ; /15
/16

if ((vikingXPosition > hal fO TheScreen) &&
(vikingXPosition < (level Size.width - hal fOf TheScreen))) {
/| Background shoul d scroll
float newXPosition = hal fOf TheScreen - viki ngXPosition; /117
[sel f setPosition:ccp(newXPosition,self.position.y)]; /1 8

The adj ust Layer method is responsible for moving the ganepl ayScrol | i ng-
Layer so that it scrolls left and right as Ole moves around the level. The first few lines
in this method get the size of the screen and then the size of the level. If Ole is more
than halfway across the screen and less than half a screen from the end of the level, the
layer is scrolled. Otherwise the layer is not moved, and Ole remains and moves around
the screen. Line by line, here is what happens:

1. Retrieves the Vi ki ng object from the Sprit eBat chNode using the unique
Vi ki ng Tag Const ant

2. Retrieves the X coordinate of the Vi ki ng and saves it as a f | oat . The level is
designed to scroll only horizontally, so the y coordinate is ignored. The X coor-
dinate is stored as a f | oat just to make the code clearer; in your own games feel
free to combine lines and shorten this method.

3. Retrieves the screen size from the Cocos2D Director. This is the screen size
(1024 x 768 on the iPad) and not the level size. It is used to figure out if Ole is
more than halfway across the screen.

4. Gets half of the screen size and stores it as a f | oat . Once more, each computation
is given on an individual line for clarity. Feel free to combine these in your own code.

5. Gets the size of the level in pixels. Only the width is used in deciding when to
scroll the level.

6. Determines if the layer needs to be scrolled or not. The first part of this i f state-
ment checks to see if Ole’s position is more than halfway across the screen. If
Ole is not, then there is no need to scroll: Ole can move around the scene with
the background remaining static. The second part of the i f statement checks to
see if Ole’s position is less than the level width minus half of the screen. In other
words, if Ole is all the way to the right, there is no need to scroll the layer.

To put it another way, if the screen size is a normal iPad, the width will be 1024
pixels. The level here is double that size at 2048 pixels. If Ole is in the first 512
pixels or in the last (1536—-2048 pixels), there is no need to scroll the level. If he
is anywhere in between, the layer needs to scroll.

Creating a Larger World

7. Calculates how much to move the layer. The layer needs to move in relation
to the Vi ki ng minus the half of the screen in which it will not scroll. If this
seems confusing, don’t worry: you will get to see how it works shortly. Since the
Vi ki ng is already moved to the new position, the layer needs to be moved so
that it stays onscreen and has the appearance of scrolling.

8. Changes the position of the layer in the X coordinate. The y coordinate remains

the same.

There is one more method to add, and then you can test out scrolling. Copy the

contents of Listing 9.14 directly below adj ust Layer in GameplayScrollingLayer.m.

Listing 9.14 GameplayScrollingLayer.m update method (part 3 of 3)

#pragma mark -
-(voi d) update: (ccTine)deltaTine

{

CCArray *listOf GaneQbj ects =
[sceneSpriteBat chNode children];
for (GaneCharacter *tenpChar in |istO GaneObjects) {
[tenpChar updat eStateWthDel t aTi ne: del t aTi ne
andLi st Of Ganme(bj ects: | i st Of Ganeoj ect s] ;

}
[sel f adjustLayer];

/1 Check to see if the Viking is dead
GanmeChar acter *tenpChar =
(GaneChar act er*) [sceneSpri t eBat chNode
get Chi | dByTag: kVi ki ngSpri t eTagVal ue] ;
if (([tenpChar characterState] == kStateDead) &&
([tenpChar nunber O Runni ngActions] == 0)) {
[[GaneManager shar edGaneManager] set HasPl ayer Di ed: YES] ;
[[GaneManager shar edGaneManager]
runSceneW t hl D: kLevel Conpl et eScene] ;

}

/Il Check to see if the RadarDi sh is dead
tenpChar = (GaneCharacter*)[sceneSpriteBatchNode
get Chi | dByTag: kRadar Di shTagVal ue] ;
if (([tempChar characterState] == kStateDead) &&
([tenpChar nunber O Runni ngActions] == 0)) {
[[GaneManager shar edGaneManager]
runSceneW t hl D: kLevel Conpl et eScene] ;

@nd

247

248

Chapter 9 When the World Gets Bigger: Adding Scrolling

The updat e method is the same as you have written before except for the call to
adj ust Layer. The for loop updates all of the GameQbj ect s in the layer, and then
the layer is adjusted, followed by a check to see if the Vi ki ng or Radar Di sh are dead.
Since the layer is adjusted according to the Vi ki ng’s position, it is important to do it
after the Vi ki ng has had a chance to update inside of the f or loop.

Two quick steps remain before you can try out this level. You have to set up the
GanmeManager to be able to load and run the GanmeScene2 and the Mai nMenuLayer
to call the GameManager when you press on the “Dogs of Loki!” button.

Open the GameManager.m class and add an import for the GaneScene2 class:

#i nport "GameScene?2. h"

Next scroll down to the r unSceneWt hl D method and update the swi t ch block
so that for kGaneLevel 2, the GaneScene? is instantiated and set as the sceneToRun
variable.

case kGaneLevel 2:

sceneToRun = [GaneScene2 node];
br eak;

Warning

Be sure to remove the r et ur n statement that was previously inside of the kGane-
Level 2 switch branch. You want the GaneScene2 scene to be initialized and for the
method to continue so that the audio is loaded and the director can transition to the new
scene.

Open the MainMenuLayer.m class and add the i f el se branches shown in
Listing 9.15.

Listing 9.15 Updated playScene method in MainMenuLayer.m

- (void)pl ayScene: (CCMenul t enfont *) i t enPassedl n {

if ([itemPassedln tag] == 1) {

[[GaneManager shar edGaneManager] runSceneW t hl D: kl nt roScene] ;
} else if ([itemPassedIn tagl == 2) {

[[GameManager sharedGameManager] runSceneWithID:kGameLevel2];
} else if ([itemPassedIn tag] == 3) {

[[GameManager sharedGameManager] runSceneWithID:kGameLevel3];
} else if ([itemPassedIn tag] == 4) {

[[GameManager sharedGameManager] runSceneWithID:kGameLeveld4];
} else if ([itemPassedIn tag] == 5) {

[[GameManager sharedGameManager] runSceneWithID:kGameLevel5];
} else {
CCLOG(@ Unexpected item Tag was: %", [itenmPassedln tag]);

Creating a Larger World 249

The kGanelLevel 2 branch is called for the Dogs of Loki; the others are for later
chapters. If you click Run and select the Dogs of Loki level, you should be able to
move Ole to the right. Once he crosses over half of the screen, you should start to see
the background scrolling. Figure 9.3 shows the level as Ole scrolls from left to right.

Figure 9.3 Space Viking level 2 showing scrolling

A Note on CCFollow

There is a built-in action in Cocos2D to move a layer or the camera around any
CCNode called CCFol | ow. The CCFol | ow action makes the object running it follow
one of your characters (or any CCNode) and scroll in the opposite direction. To use it
in your games, you just need the lines:

id followAction = [CCFol | ow actionWthTarget: pl ayer Character];
[l ayer runAction:followAction];

This action runs continuously and adjusts the layer to the position of the player charac-
ter. You can even provide the CCFol | ow action with boundaries so that the scrolling
or movement of the layer is limited. Unfortunately, it moves the layer in both the x- and
y-axes, so when the pl ayer Char act er jumps, the ground layer falls away. In Space
Viking the scrolling needs to happen only in the x-axis; therefore, the CCFol | ow action
is not used. It is mentioned here in case you find it helpful in your own games.

While this scrolling is a good start, it lacks depth, and you don’t really get the illu-
sion that Ole is in a big alien landscape. The next section covers adding a parallax
node to this layer in order to have multiple levels of scrolling backgrounds for a faux-
3D scrolling effect.

250

Chapter 9 When the World Gets Bigger: Adding Scrolling

Scrolling with Parallax Layers

In the previous section you created a scrolling scene consisting of a background with
two layers. One was the static backdrop of the alien desert, the other the ground along
with the boulders and mountains in the background that moved with Ole. In order to
give your games more depth, it is useful to have multiple background layers all scroll-
ing at different rates. To visualize this effect, think of a time you were looking out
the side window of a car or train. The grass or the side of the road scrolled by quickly,
the trees beyond that slower, and the mountains or faraway items in the background
scrolled the slowest of all. In your Cocos2D games there is no real depth to these lay-
ers, but by scrolling various layers at different speeds from the player, you can have
the same effect. A little bit of work is needed on your part, and the player’s brain will
automatically do the rest.

You do not have to scroll the items manually; there is a handy class in Cocos2D
called CCPar al | axNode that takes care of the scrolling for you. A parallax node is a
special Cocos2D parent node that has the logic to scroll its children at different ratios
than the ratios at which the parent itself is scrolled. The best way to understand this is
with a simple code change.

Start by opening the Gamepl ayScr ol | i ngLayer. mclass and creating a new
method called addScr ol | i ngBackgr oundWt hPar al | ax directly above the i ni t
method. Copy the lines in Listing 9.16 into the new addScr ol | i ngBackgr ound-
Wt hParal | ax method.

Listing 9.16 GameplayScrollingLayer.m addScrollingBackgroundWithParallax

/1 Scrolling with 3 Parallax backgrounds
-(voi d)addScrol | i ngBackgroundW thParal | ax {
CGSi ze screenSize = [[CCDirector sharedDirector] w nSize];
CGSi ze |l evel Si ze = [[GaneManager shar edGaneManager]
get Di mensi onsOf Cur r ent Scene] ;

CCSprite *BGLayer1;
CCSprite *BG.ayer 2;
CCSprite *BGayer 3;

if (U _USER | NTERFACE I DIOM) == U Userlnterfacel di onPad) {
/1 Indicates gane is running on iPad
BGLayer1l = [CCSprite spriteWthFile: @chap9_scrolling4.png"];
BGLayer2 = [CCSprite spriteWthFile: @chap9_scrol ling2.png"];
BGLayer3 = [CCSprite spriteWthFile: @chap9_scrolling3.png"];
} else {
BGLayer1l = [CCSprite
spriteWthFile: @chap9_scrol |i ng4i Phone. png"];
BGLayer2 = [CCSprite
spriteWthFile: @chap9_scrol | ing2i Phone. png"];

Scrolling with Parallax Layers

BGLayer3 = [CCSprite
spriteWthFile: @chap9_scrol ling3i Phone. png"];
}
/'l chap9_scrolling4 is the ground
/'l chap9_scrolling2 are the |arge nountains
/'l chap9_scrolling3 are the small rocks

paral | axNode = [CCParal | axNode node];
[paral | axNode

set Posi tion: ccp(l evel Si ze. wi dth/2.0f, screenSi ze. hei ght/2.0f)];
float xOfset = 0;

/1 Ground noves at ratio 1,1
[paral | axNode addChi | d: BGLayer1 z: 40 paral |l axRati o: ccp(1.0f, 1. 0f)
positionCOffset: ccp(0.0f,0.0f)];

xOffset = (level Size.w dth/2) * 0.3f;
[paral | axNode addChi | d: BGLayer2 z: 20 paral | axRati o: ccp(0. 2f, 1. 0f)
positionOfset: ccp(xOfset, 0)];

xOf fset = (level Size.width/2) * 0.8f;

[paral | axNode addChi | d: BGLayer3 z: 30 paral | axRati o: ccp(0. 7f, 1. 0f)
positionOfset:ccp(xOfset, 0)];

[sel f addChil d: paral | axNode z: 10];

The first part of the addScr ol | i ngBackgr oundWt hPar al | ax method cre-
ates three CCSpri t es to be used as the layers in the parallax background. Next the
CCPar al | ax node is instantiated. The three background elements are added along
with a paral | axRati o and positionCO fset. Note how even though you add the
ground first, then the mountains, and then the small rocks layer, they are kept in the
correct order due to the z values. The ground has a z value of 40, the rocks 30, and
the mountains 20.

The positions of the three CCSprit es are based on the position of the CCPar al | ax-
Node. To understand how the position of a CCPar al | axNode child is calculated, look
at the code inside of Par al | axNode addChi | d, shown in Listing 9.17.

Listing 9.17 CCParallaxNode addChild method

CGPoi nt pos = sel f.position;
float x = pos.x * ratio.x + offset.x;
float y = pos.y * ratio.y + offset.y;
child.position = ccp(x,y);

251

252

Chapter 9 When the World Gets Bigger: Adding Scrolling

The child layer position is based on the CCPar al | axNode position times the ratio
plus the offset.

In the second layer of this scrolling background, the ratio on the x-axis is 0.7. Since
you already set the position of the CCPar al | axNode to be 1024 on the x-axis, this
means the second layer would be placed at 716.8 pixels (1024 times 0.7). That would
skew the position of the layer to the left, so the offset is needed to put in the correct
initial position.

The offset helps put the layer in the correct position to compensate for the ratio if
needed. In the case of Space Viking you can see the offset being the remainder needed
to add the initial X coordinate to the middle of the scene. In your games, you may
want the offset to be different, for instance, if a particular background starts later in a
level.

As you can see in Listing 9.15, the topmost background layer (BGLayer 3) is moved
0.7 pixels for every pixel the CCPar al | axNode is moved in the x-axis, while the back-
most layer (BGLayer 2) is moved only 0.3 pixels for every pixel the CCPar r al axNode
is moved.

To see how the parallax scrolling works, comment out the call to addScr ol | i ng-
Backgr ound and add in a call to the addScr ol | i ngBackgr oundWt hPar al | ax in
the i nit method, as shown in Listing 9.18.

Listing 9.18 GameplayScrollingLayer init method changes

//[sel f addScrol |i ngBackground];
[sel f addScrol | i ngBackgroundW t hPar al | ax] ;

If you click Run, you will see the new level with four layers in the background,
three scrolling as part of the CCPar al | axNode and one static background element.
Move Ole to the right of the screen and pay close attention to the scrolling layers. Fig-
ure 9.4 shows Ole with the four layers of background: the ground, the rock piles, the
mountains, and the alien sky.

You have taken the first steps in creating a scrolling level. Hopefully, your mind is
already full of ideas on how to bring scrolling into your own games. In the next sec-
tion you learn how to create an infinitely scrolling level as a cut-scene for this second
level. After that, you will learn about TileMaps and how to create even larger levels
while using less memory at the same time.

Scrolling to Infinity

Scrolling left and right a few screen widths is very useful, and there are many games
that go only that far. But perhaps your game requires an endlessly scrolling back-
ground, and if so, this section teaches you how to do that.

To learn how to implement infinite scrolling, you create a cut-scene to play
before the second level you created earlier in this chapter. This scene features Ole in

Scrolling to Infinity

Figure 9.4 Ole with the four background layers

a floating platform flying through the alien landscape with clouds zooming by in the
background. The clouds keep zooming by until the player touches the screen. In this
example the clouds scroll from right to left, but there is nothing mandating that it has
to be that way. You can scroll left to right, top to bottom, or bottom to top in your
own games.

To start, create a new group in Xcode called Cut SceneFor Level 2 under the
Scenes group. You will have the infinite scrolling cut-scene separate from the second
alien desert level, so that it is easier to understand the scrolling logic and reuse it in
your games.

To accomplish infinite scrolling, you are going to have a set of 25 clouds that move
from right to left at random speeds. Once the clouds go offscreen on the left, they are
moved to a new position on the right side, offscreen. They are once more moved from
right to left. The whole time, Ole remains in the middle of the screen but seems as if
he is flying by. That’s because our brains are wired to interpret background movement
as if we were moving, so you “feel” like Ole is moving, even though he is always in
the exact same position. If you are making a 2D flying game or the next shooter, you
can use this technique to make it look as though your character is flying through the
air or over the terrain.

Enough with the theory: time to get into the code and see how it is actually done.
You start with the scrolling background to understand the logic in there. Following
that, you build the scene in order to be able to have Cocos2D play the cut-scene.

253

254 Chapter 9 When the World Gets Bigger: Adding Scrolling

Creating the Scrolling Layer

The scrolling layer in the cut-scene is a set of clouds that scrolls from right to left
at varying speeds. Figure 9.5 shows how the clouds look along with Ole and the
platform.

Figure 9.5 Cut-scene for level 2 showing Ole on a platform in front of
scrolling clouds

To make this scene as efficient as possible, you use a texture atlas to hold both the
cloud images and the Viking and Platform graphics. In the beginning of this chapter,
you imported the ParallaxBackgrounds folder into your Spacel/iking project. Inside that
folder are subfolders called ScrollingCloudsBackgrounds and Scrolling CloudsTexture Atlases
for the static background and the texture atlases, respectively. There are iPhone-,
iPhone 4-, and iPad-sized backgrounds and texture atlases, just as you created and used
previously in Space Viking.

Create a new Objective-C class inside of the CutSceneForLevel2 group and name it
PlatformScrollingLayer.m, setting it as a subclass of CCLayer . Open the PlatformScrolling-
Layer.h header file and replace the contents with the code from Listing 9.19.

Listing 9.19 PlatformScrollingLayer.h header file

/1 PlatfornScrollingLayer.h
/1 SpaceViking
/1

Scrolling to Infinity

#i mport <Foundati on/ Foundati on. h>
#i mport "cocos2d. h"
#i nport "Constants. h"

@nterface PlatforntcrollingLayer : CCLayer {
CCSpri t eBat chNode *scrol | i ngBat chNode;

}

@nd

The PlatformScrollingLayer header file has only imports for Cocos2D and the
Constants.h file, along with an instance variable to hold the CCSprit eBat chNode used
in this scene.

Note on CCSprit eBat chNode

Since the scrolling layer is made up of many clouds using the same six textures, it

is much more efficient to have those textures inside of a texture atlas and rendered
onscreen in a CCSpr i t eBat chNode. As you will see in this chapter, there are 25
clouds, Ole, and the platform (27 sprites). Using the CCSpr i t eBat chNode reduces the
OpenGL ES bind calls from 27 to 1 and batches the draw calls for better performance.

Switch over to the PlatformScrollingLayer.m implementation file and add the contents
of Listing 9.20.

Listing 9.20 PlatformScrollingLayer.m (declarations and init method) (part 1 of 6)

/1 Platforntcrol li ngLayer. m

/1 SpaceVi ki ng

/1

#i mport "PlatfornScrollingLayer.h"
#i mport " GameManager . h"

@nterface Platforntcrol l'i ngLayer (PrivateMethods)
-(voi d)reset C oudW t hNode: (i d) node;

-(voi d) creat ed oud;

- (voi d)creat eVi ki ngAndPl at f orm

-(voi d)createStati cBackground;

@nd

@ npl enentation PlatfornScrollinglLayer

-(id)init {
self = [super init];
if (self '=nil) {
srandon(time(NULL));
sel f.isTouchEnabl ed = YES;
[sel f createStaticBackground];

255

256 Chapter 9 When the World Gets Bigger: Adding Scrolling

if (U _USER | NTERFACE_| DI OM) == Ul User | nterfacel di onPad) {
/1 Indicates ganme is running on iPad
[[CCSpriteFrameCache sharedSpriteFranmeCache]
addSpriteFramesWthFil e:
@ sScrol lingd oudsTextureAtlas. plist"];
scrol | i ngBat chNode = [CCSpri t eBat chNode
bat chNodeW t hFi | e: @ Scrol | i ngCl oudsText ur eAt| as. png"];
} else {
[[CCSpriteFrameCache sharedSpriteFraneCache]
addSpriteFramesWthFil e:
@ Scrol |1 ngd oudsText ur eAt | asi Phone. plist"];
scrol | i ngBat chNode = [CCSprit eBat chNode
bat chNodeW t hFi | e: @ Scr ol | i ngCl oudsText ur eAt | asi Phone. png"];

}

[sel f addChil d: scrollingBatchNode];

for (int x=0; x < 25; x++) {
[self createC oud];

}

[sel f createVi ki ngAndPl at forni;
}

return self;

The second @ nt er f ace declaration becomes a Cat egor y to the P at f or m
Scrol l'i ngLayer, enabling these methods to be called anywhere within the class. In
the previous classes you wrote for Space Viking, the i nit method is at the bottom of
the file because the methods it called had to be defined above.

@ nt er f ace Declaration inside Implementation Files
Remember, if you want to easily move the order of your methods inside of your implemen-

tation file, you can declare your methods in the header file or in a separate @ nt er f ace
declaration inside of your implementation (.m or .mm) file.

The second @ nt er f ace declaration defines the four methods used internally by
P atformScrol lingLayer to create and reset the clouds and create the Viking, the
platform, and the static background image. In the i nit method the CCSprit eFr ane-
Cache is asked to load the sprite frames from the ScrollingCloudsTextureAtlas.plist. These
are the coordinates of the clouds, Ole, and the platform inside of the texture atlas.
The scrol | i ngBat chNode is initialized with the texture atlas PNG and added to the
layer.

If you follow the code in the i nit method, you will see a call to create the static
background followed by a f or loop initializing 25 clouds via the cr eat eCl oud

Scrolling to Infinity

method. After the for loop, the cr eat eVi ki ngAndHA at f or mmethod is called to add
Ole and the platform, as you probably already guessed, by the method name.

Add the code in Listing 9.21 to PlatformScrollingLayer.m in order to create the static
background in the scrolling scene.

Listing 9.21 createStaticBackground in PlatformScrollingLayer.m (part 2 of 6)

-(voi d)createStaticBackground {
CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze;
CCSprite *background;
if (U _USER | NTERFACE I DIOM) == Ul Userlnterfacel di onPad) {
/'l Indicates gane is running on iPad
background =
[CCSprite spriteWthFile: @tiles_grad_bkgrnd. png"];
} else {
background =
[CCSprite spriteWthFile: @tiles_grad_bkgrndi Phone. png"];
}

[background set Position:
ccp(screenSi ze.wi dth/ 2. 0f, screenSi ze. hei ght/2.0f)];
[sel f addChil d: background] ;

The creat eSt ati cBackgr ound method sets up a new CCSprite to act as the
moon and sky background for this level and adds it to the layer. Since the background
is the full size of the iPad screen, it is centered in the middle of the screen. Because
it is being added first to the layer, it will have a lower z value than the CCSprite-
Bat chNode, causing the background image to be composited behind the clouds.

Next add the code in Listing 9.22 to your PlatformScrollingLayer.m implementa-
tion file below the cr eat eSt at i cBackgr ound method, to add the cr eat ed oud
method.

Listing 9.22 createCloud method in PlatformScrollingLayer.m (part 3 of 6)

-(voi d)created oud {

int cloudToDraw = randon() %6; // 0 to 5

NSString *cl oudFi |l eName = [NSString
stringWthFormat: @tiles_cl oud%l. png", cl oudToDr aw ;

CCSprite *cloudSprite = [CCSprite
spriteWthSpriteFranmeNane: cl oudFi | eNane] ;

[scrollingBatchNode addChil d: cl oudSprite];

[sel f resetd oudWthNode: cl oudSprite];

257

258

Chapter 9 When the World Gets Bigger: Adding Scrolling

The cloud filenames are files_cloud0.png through tiles_cloud5.png. A random number
between zero and five is used to create a cloud using one of the six images. The cloud
PNG files are inside of the texture atlas PNG, and they can be retrieved via the sprite
frame with the same name as the original filename. Remember when the texture atlas
was created with TexturePacker, how the filenames of the original images were set as
the image frame names? A cl oudSprite is created, set to one of the six cloud images,
and added to the CCSprit eBat chNode called scrol | i ngBat chNode. The cl oud-
Sprite is then passed to the reset O oudWt hNode method, which sets it into place
and starts moving it from right to left. Add the reset 0 oudWt hNode method shown
in Listing 9.23 to your PlatformScrollingLayer.m class file.

Listing 9.23 resetCloudWithNode method in PlatformScrollingLayer.m (part 4 of 6)

-(void)reset d oudWt hNode: (i d)node {
CGSi ze screenSize = [CCDi rector sharedDirector].wi nSize; // 1
CCNode *cloud = (CCNode*)node; // 2
float xOFfSet = [cloud boundi ngBox].size.width /2; // 3

int xPosition = screenSize.width + 1 + xOfSet; // 4
int yPosition = randon() % (int)screenSize.height; // 5

[cl oud setPosition:ccp(xPosition,yPosition)]; // 6

int noveDuration randon{) % kMaxCl oudMbveDuration; // 7
if (noveDuration < kM nC oudMoveDuration) {
noveDur ati on kM nCl oudMbveDuration; // 8

float offScreenXPosition = (xOffSet * -1) - 1; // 9

/1 10
id noveAction = [CCVbveTo actionWthDuration: noveDuration
posi tion:

ccp(of fScreenXPosition,[cloud position].y)];
id resetAction = [CCCal | FuncN

actionWthTarget: sel f

sel ector: @el ector (reset Cl oudWthNode:)];
i d sequenceAction = [CCSequence

actions: moveAction, resetAction, nil];

[cl oud runAction: sequenceAction]; // 11
int newZOrder = kMaxCl oudMoveDuration - noveDuration; // 12

[scrol I'i ngBat chNode reorderChild:cloud z:newZOrder]; // 13

Scrolling to Infinity

At a high level, the r eset d oud method positions the cloud offscreen on the
right side and setups a CCMbve action to move the cloud at a random speed across
the screen from right to left. The z composition ordering of the cloud is based on its
speed with the faster clouds closer to the foreground and the slower clouds toward the
background. At the end of the move, the r eset d oud method is called on the cloud’s
behalf to reset it back offscreen to the right at a random position to start the right-to-
left move again. The code in r eset G oud works as follows:

1. Gets the screen size from the CCDi r ect or. The screen size is used to figure out
how far to the right and left would be offscreen and not visible to the player.

2. Casts the i d type to a CCNode. The reset d oud method is called from both the
creat el oud method and a CCCal | FuncN action. The CCCal | FuncN action
passes back a more generic i d type even though you know it is a CCSprite, a
subclass of CCNode. The cast to CCNode pointer is purely for code clarity; you
can omit it in your code if you are comfortable with the generic i d type.

3. Sets the x-axis offset to half the width of the cloud image. Recall from earlier
chapters that the anchor point for Cocos2D objects is in the center of the image
by default. When you move an image around, it is always moved and positioned
relative to its center point. Since the anchor point is in the middle, you need to
know half of the image’s width so that you know how far it needs to be to the
right or left to be offscreen.

This point bears repeating because it is important to understand it. The cloud
image is moved around its center point. If its position is half of the width of the
image and the screen width, it is offscreen to the right. Likewise, if it is at zero
minus half of the cloud width on the x-axis, it is just about offscreen on the left
side. Remember zero on the x-axis is the left-most side of the screen. Figure 9.6
illustrates the cloud, its anchor point, and position.

Figure 9.6 Cloud anchor point, width, and position

259

260 Chapter 9 When the World Gets Bigger: Adding Scrolling

4.

Sets the X position variable to offscreen on the right. By adding the screen width
to half of the cloud width (xOF f Set) and one more pixel, the cloud is placed
directly to the right of the visible area of the screen.

5. Sets the y position variable to a random value along the screen height.

6. Sets the cloud position to the new x and y values calculated in steps 4 and 5.

10.

11.
12.

13.

Sets the move duration to a random value between zero and the maximum
move duration. The maxMoveDur at i on and m nMoveDur at i on #defi nes are
added in Listing 9.26.

Checks to ensure that the move duration is at least as long as the minimum
value. If not, it is set to the minimum value. The move duration is in seconds.

Calculates the x position that the cloud will be at when it is offscreen on the left.
The clouds start on the right and move left; this value is when they go offscreen
on the left side. Figure 9.6 illustrates when the cloud is offscreen on the left side.

Creates the actions to move and then reset the cloud. The move action moves
the cloud from its current position offscreen on the right, across the screen, end-
ing offscreen on the left side. The CCCal | FuncN resets the cloud by calling the
reset d oud method once the cloud has finished moving. The CCSequence
action creates a simple move and reset sequence.

Runs the CCSequence action, starting the move from right to left.

Calculates the new z compositing value. If you recall back to Chapter 2, the
z values in Cocos2D determine how to composite the CCSpri t es, with
the higher values being in the foreground and lower values being closer to
the background. In other words, a CCSprit e with a higher z value will be
composited in front of one with a lower z value within the same layer or
CCSpriteBat chNode.

In this line the current move duration is subtracted from the maximum duration.
Suppose the maximum duration is 10 seconds and the move duration is 2 seconds.
This means that the new z value would be 8 (10 — 2). If a cloud had a longer
duration, such as 6 seconds, this means the new z value would be 4 (10 — 6).
The cloud with a z value of 8 would be in front of the cloud with a z value of 4.
Calculating and changing the z values allows for the clouds with the fastest
speeds (shortest move durations) to be in front of the slower clouds. This is the
key line that gives the impression of depth by having the faster items in the front
and the slower ones in the back.

Asks the CCSprit eBat chNode to reorder the composite position of the cloud
to the new z value, moving it to the front of slower clouds and behind faster
clouds.

Scrolling to Infinity 261

Tips and Tricks

| have often heard more experienced game developers say that most of game develop-
ment was done with tricks, and the key was learning what tricks to use to get the effect
you need. You don’t have to replicate real life in your game in order for scrolling to feel
real. One clear example is keeping Ole centered on this screen and how he was moved in
the second level you built previously. Playing the game, you feel like Ole is moving through
the level when in reality he is centered in the middle of the screen.

There are two more methods to add to P at f or mScrol | i ngLayer before it can
be complete. The first is the cr eat eVi ki ngPl at f or mmethod, shown in Listing 9.24.
Copy the contents into your PlatformScrollingLayer.m class file.

Listing 9.24 createVikingAndPlatform in PlatformScrollingLayer.m (part 5 of 6)

-(voi d)createVi ki ngAndPI at f orm {
CGSi ze screenSize = [CCDirector sharedDirector].w nSize; // 1
int nextzZValue = [scrollingBatchNode children].count + 1, // 2

/13
CCSprite *platform= [CCSprite
spriteWthSpriteFranmeNane: @pl atform png"];
[pl atform set Posi tion:
ccp(screenSi ze. w dth/ 2,
screenSi ze. hei ght * 0.09f)];
[scrol lingBat chNode addChil d: pl atform z: next ZVal ue] ;

next ZVal ue = nextZValue + 1; // 4

/15
CCSprite *viking = [CCSprite
spriteWthSpriteFrameNane: @sv_ani m 1. png"];
[viking setPosition:
ccp(screenSi ze. wi dth/ 2,
screenSi ze. hei ght * 0.23f)];
[scrol I'ingBat chNode addChi | d: vi ki ng z: next ZVal ue] ;

The creat eVi ki ngAndHA at f or mmethod works as follows:

1. Gets the size of the screen, which is used as a reference point to position Ole and
the platform.

2. Calculates the next z value available in order to place the platform and Ole in
front of all of the clouds. The scrol | i ngBat chNode is asked for the CCAr r ay
of all its children, and the count of the number of elements in the CCArr ay is
returned. The logic here is that no matter how many clouds have been added, if
you set the platform and Viking to a z value greater than the clouds, they will

262 Chapter 9 When the World Gets Bigger: Adding Scrolling

be composited in front of them. If you knew you were only going to have 50 or
100 clouds, you could always set the z value to a larger amount, such as 101, or
even 2000, just as long as it is larger than any of the clouds’ z values.

3. Creates a new CCSprit e for the platform and sets it on the bottom center of
the screen. The screen size is used to determine the bottom center position. The
new CCSprit e is added to the CCSprit eBat chNode scrol | i ngBat chNode.

4. Increments the z value by one so that Ole will be composited in front of the
platform.

5. Creates a new CCSpri t e for Ole and sets it on top of the platform on the bot-
tom center of the screen. The new CCSprite of Ole is added to the CCSpri t e-
Bat chNode scrol | i ngBat chNode.

The previous code listings set up the cloud, the platform, and Ole and got them
rendered onscreen. This would be all that is needed except that you need a way
to transition out of the cut-scene and into the second level of the game. Since the
P at for mScrol | i ngLayer already listens for touch events, all you need to do is add
a ccTouchesBegan method, as shown in Listing 9.25. Add the contents of Listing 9.25
to your PlatformScrollingLayer.m class.

Listing 9.25 ccTouchesBegan method in PlatformScrollingLayer (part 6 of 6)

- (voi d) ccTouchesBegan: (NSSet *)touches w thEvent: (U Event *)event {
[[GaneManager shar edGanmeManager] runSceneWt hl D: kGaneLevel 2] ;

}

@nd

The ccTouchesBegan method just places a call to the GaneManager to switch
from the cut-scene to the game level 2 scene.

There is one more quick addition you need to make to Constants.h file to support
the new cut-scene. Open the Constants.h file and add the #defi nes, as shown in List-
ing 9.26.

Listing 9.26 Constants.h #define used in PlatformScrollingLayer.m

/| Defines for Coud Scrolling Scene
#defi ne kMaxCl oudMoveDur ation 10
#defi ne kM nCl oudMoveDuration 1

At this point you should build your project to make sure you did not make any
typos or other mistakes. If the project compiles fine, you can move on to creating the
scene and adding the logic to the GanmeManager class to be able to play the cut-scene
in Space Viking.

Scrolling to Infinity

Creating the Platform Scene

The cut-scene will be a new Cocos2D scene with just a single scrolling layer. Create a
new Objective-C class inside of the CutSceneForLevel2 group called PlatformScene.m as
a subclass of CCScene. Open the PlatformScene.h header file and replace the template
contents with Listing 9.27.

Listing 9.27 PlatformScene.h header file

/1 PlatfornfScene. h

/'l SpaceVi ki ng

/1

#i mport <Foundat i on/ Foundati on. h>
#i nport "cocos2d. h"

#inport "PlatfornScrollinglLayer.h"

@nterface PlatfornScene : CCScene {

}
@nd

The header file format should be very familiar to you by now; the P at f or mScene
inherits from CCScene, and it imports the scrolling background class.

Switch over to the PlatformScene.m implementation file and replace it with the con-
tents of Listing 9.28.

Listing 9.28 PlatformScene.m implementation file

/1 PlatfornBScene. m

/1 SpaceVi ki ng

/1

#i nport "Pl atfornScene. h"

@ npl enent ati on Pl at f or nScene
-(id)init {
self = [super init];
if (self !'=nil) {
/1 Platform d oud Scrolling
Pl atforntScrol | i ngLayer *scrollingLayer =
[Pl atfornScrol lingLayer node];
[sel f addChil d: scrollingLayer];
}
return self;
}
@nd

263

264

Chapter 9 When the World Gets Bigger: Adding Scrolling

The A at f or nScene implementation is straightforward, just a simple boilerplate
i nit method that creates the scrolling layer and adds it to the scene.

There are two more steps, and then you can run the cut-scene in Space Viking. First,
let’s add the necessary code to the MainMenuLayer.m so that it plays the cut-scene when
the second level is selected.

Open the MainMenuLayer.m and find the pl ayScene method. Modify the i f el se
branch for the 2 tag so that the pl ayScene method looks like the bold code in List-
ing 9.29.

Listing 9.29 playScene method in MainMenuLayer.m

- (void)pl ayScene: (CCMenul t enfont *) i t enPassedl n {

if ([itemPassedln tag] == 1) {
[[GaneManager sharedGanmeManager] runSceneWthl D: kl nt roScene] ;
} else if ([itenPassedln tag] == 2) {

[[GameManager sharedGameManager]
runSceneWithID:kCutSceneForLevel2];

} else if ([itenPassedln tag] == 3) {

[[GaneManager shar edGanmeManager] runSceneWt hl D: kGaneLevel 3] ;
} else if ([itenPassedln tag] == 4) {

[[GaneManager shar edGaneManager] runSceneWt hl D: kGaneLevel 4] ;
} else if ([itenPassedln tag] == 5) {

[[GaneManager shar edGaneManager] runSceneW t hl D: kGaneLevel 5] ;
} else {

CCLOG @ Unexpected item Tag was: %", [itenPassedln tag]);

When the second level menu item is selected on the Main Menu screen, the Ganme-
Manager will be called and asked to run the kCut SceneFor Level 2, which is the
cut-scene you just wrote.

Open the GameManager.m class and the import for the P at f or nfScene next to the
other #i nmport statements as follows:

#i nport " Pl atfornScene. h"
Next move to the r unSceneWt hl D method. In the swi t ch block add the code
shown in Listing 9.30.

Listing 9.30 Switch branch for cut-scene and level 2 in GameManager.m runSceneWithID
method

case kCut SceneFor Level 2:
sceneToRun = [Pl at f or nScene node] ;
br eak;

Lastly,

Tile Maps

You should now be able to click Run and select the second level from the Main
Menu. The scrolling clouds scene should show up, playing in an endless loop. If you
touch anywhere, the game should transition to the second level you built earlier in this
chapter.

Now that you have learned how to add parallax scrolling and infinite scrolling, the
next step is to learn about TileMaps. You can use TileMaps to create large scrolling
worlds of almost infinite size while keeping your game’s memory footprint small.

Tile Maps

In building the parallax levels, you used a series of double screen-width images to cre-
ate the scrolling background strips. While this was easy to code, it was not efficient as
far as memory is concerned. You can imagine that making a large level of, say, 10,000
or 20,000 pixels in width would use up all the available memory on an iPad or iPhone 4,
saying nothing of the older iPhone and iPhone 3G.

There is a simpler way to create large worlds and levels without the use of large
amounts of memory for your textures. The key is in using tiles, or unique textures
that you can repeat over and over to create your landscape. Take a close look at Figure
9.7. It shows how the new ground layer will be made up of just four unique tiles. Like-
wise, the rock formation that you will add as a repeating background will be made of
only two unique tiles each. If you are careful with how your tiles are designed, you
can use them over and over while still making the player believe he or she is seeing a
unique landscape.

Figure 9.7 Ground and rock formation and the tiles that make them up

265

266

Chapter 9 When the World Gets Bigger: Adding Scrolling

In Space Viking you are going to use tiles that are 64 X 64 pixels in size. It is impor-
tant that your tiles all be the same size, and preferably a size that is a power of two.
Most games can get away with 32 X 32 pixel tiles. Looking at Figure 9.7, imagine that
you use the four ground tiles to re-create the entire ground layer on the second level
you created in this chapter. In other words, by using various combinations of these
tiles, you can create a background to stretch out as long as you need. No matter how
large the background you design, it never takes any more graphic memory than the
unique tiles you have here.

Tiles take very little memory, as they themselves are very small images. Even if a
tile is drawn on 20 places onscreen, it is stored only once in texture memory. If you
can get creative and build your backgrounds from tiles, you can have really wide or
tall backgrounds while using very little memory.

Tiles in Space Viking

The artwork for Space Viking was not designed with tiles in mind, so it does not break
apart into tiles as easily as if it were designed to fit in those tiles. If you design your
game and artwork to fit into tiles from the start, you can achieve even greater memory
savings.

In the next section you create the TileMap and learn how to incorporate it inside of
the second-level code you have already built.

Installing the Tiled Tool

To create the tile map that Cocos2D will use, you need to use the free Tiled tool. The
Tiled tool allows you to create tile maps and set up multiple layers in your tile maps.
In Space Viking you use Tiled only to set up the layout of the tiles. In your games you
can use it for setting up the locations of the walls, enemies, and a host of other ele-
ments. In fact, some people design complete games using Tiled where quite a bit of the
game logic is centered around the features offered by tiled maps. Given that you can
visually lay out a level to see how it looks before you code the functionality, this offers
an easy way for developers to set up games like puzzles and platforms where you need
to create a variety of large and intricate levels.

Download the Tiles Texture Atlas before Proceeding

The tiles have already been added to a texture atlas that you can download along with
the source code for this chapter. The instructions in this section assume that you already
have the TilesTextureAtlas.png that is located with the resources for this chapter saved on
your Mac.

To Install Tiled on Your Mac

1. Open a browser to http://mapeditor.org.

2. Click the Tiled Qt for Mac OS X link on the right. This will download a
DMG file to your Mac.

http://mapeditor.org

Tile Maps 267

3. Double-click on the DMG to open it if it is not opened automatically by your
browser.

4. Drag the Tiled application into your Applications folder.

That’s it. Tiled is installed on your system. Figure 9.8 shows the mapeditor.org
website and the contents of the Tiled DMG.

Figure 9.8 Mapeditor.org website and contents of Tiled DMG

Now that you have Tiled installed, the next step is to create the TileMap that you
are going to use in Space Viking.

Creating the Tile Map

You are going to create a TileMap for the iPad that is 4096 pixels wide by 768 pixels tall.
This map will be twice as wide as the scrolling map you created earlier in the chapter.
Start up the Tiled tool, and

1. Select File > New.
2. In the dialog box, under Map Size:
Enter 64 for the width.
Enter 12 for the height.
3. Under Tile Size:
Enter 64 for the width and height.
Your dialog box should look like Figure 9.9.

268 Chapter 9 When the World Gets Bigger: Adding Scrolling

Figure 9.9 Tiled showing the new TileMap window

4. Click OK to create the empty TileMap.
5. From the Map menu, select New Tileset.

6. Click Browse and select the TilesTextureAtlas.png file you downloaded previously
from the book’s site. Set the tile width and height to 64 and the margins to 1.
The Tiled New Tileset window should look like Figure 9.10.

Figure 9.10 Tiled New Tileset window

7. Click OK to add the new TileSet to your TileMap.

Now you have a blank TileMap along with a set of tiles in a TileSet that you can
use to paint the TileMap. By clicking on the tiles and then on the TileMap, you can
set a particular tile in the TileMap to be a specific tile texture.

The next step is to create the Tile layers you will need to store the ground, the rock
column, and the rock boulder.

Creating the Three TileMap Layers
1. Click on the Layers tab in the right panel of Tiled.
2. Select Layer > Add Tiled Layer from the menu to add each layer.

Tile Maps

3. Add two tile layers, one called RockCol utmsLayer and one called
RockBoul der Layer.

4. Rename the first layer to G- oundLayer.

5. Uncheck both the RockCol unnsLayer and the RockBoul der Layer so that
only GroundLayer is checked and selected.

If you switch over to the Tilesets tab, you can select a tile and place it on the
TileMap. Create a ground layer on the bottom row of tiles, similar to the one shown
in Figure 9.11.

Figure 9.11 GroundLayer populated on TileMap

Next, deselect the GroundLayer and select the RockCol umnLayer. Add the rock
columns above the ground at random intervals. Your TileMap should now look like
Figure 9.12.

Figure 9.12 RockColumnsLayer populated on TileMap

269

270 Chapter 9 When the World Gets Bigger: Adding Scrolling

There is one more layer to create, the rock boulders, which will scroll the slowest:

1. Ensure that both the GroundLayer and the RockCol unmsLayer s are
unchecked.

2. Select and check the RockBoul der Layer.

3. Create rock boulders randomly across the TileMap, starting with the second tile
from the bottom. Your TileMap should look similar to Figure 9.13.

Figure 9.13 RockBoulderLayer populated on TileMap

The RockBoul der Layer and the RockCol unmmsLayer overlap, but in the code
you will see how to pull the layers apart and assign them to a CCPar al | axNode. This
is all the work you need to do in Tiled. Make sure all three layers are selected (check-
box to the left side of the layer name), then save the TileMap as Level2TimeMap.tmx
and:

1. Add the Level2TileMap.tmx to your SpaceViking Xcode project.
2. Add the TilesTextureAtlas.png to your SpacelViking Xcode project.

You need both the TMX and the PNG files for the TileMap to work. If you had
any trouble creating these files, they are available in the resources folder for this
chapter.

What'’s in a TMX File?

If you open the Level2TileMap.tmx file in Xcode, you will see it is just an XML file with

a reference back to the TilesTextureAtlas.png and a compressed section for the tiles in
each of the layers. The compressed data is just a listing of what texture occupies each
tile in the TileMap. If you were to make the TileMap larger, say 8192 pixels, only this
compressed TileMap data would increase, and then only by a few kilobytes. Since you are
using the same tiles, the texture memory stays the same. In other words, you can make a
huge level without using up all of the available memory on your iPhone or iPad.

Tile Maps

Cocos2D Compressed TileMap Class

Cocos2D has a built-in class to read TileMap files from Tiled both in a compressed
and noncompressed format. Since Tiled exports the TileMaps in a compressed (TMX)
format by default, this book covers only this one. If you are using uncompressed tiled
maps, the Cocos2D class is different, but the process and code are the same. The class
you are going to use is CCTMXTi | edMap, and it makes loading and using TileMaps a
breeze.

You are first going to add a TileMap to the Scene2 Ganepl ayScrol | i ngLayer
and then learn how to add the individual layers to a CCPar al | axNode in order to
have them scroll at different speeds.

Adding CCTMXTiledMap to the Second Level
Open the GameplayScrollingLayer.m implementation file and above the i nit method
add the contents of Listing 9.31.

Listing 9.31 addScrollingBackgroundWithTileMap in GameplayScrollingLayer.m

/1 Scrolling with all TileMap Layers together
- (voi d)addScrol | i ngBackgroundW t hTi | eMap {
if (U _USER I NTERFACE IDIOM) == Ul Userlnterfacel di onPad) {
til eMapNode = [CCTMXTi | edMvap
tiledMapWt hTMXFi | e: @ Level 2Ti | eMap. t nx"];
} else {
til eMapNode = [CCTMXTi | edMap
til edMapW t hTMXFi | e: @ Level 2Ti | eMapi Phone. t nx"];

}
[sel f addChild:tileMapNode] ;

Adding a TileMap to your Cocos2D game takes nothing more than a single call
to initialize a CCTMXTi | edMap object and then adding that object to your layer. The
TileSet file is specified inside of the TMX file, and Cocos2D automatically loads when
you are creating your TileMap.

There is one more change to the i nit method to replace the parallax back-
ground with the new TileMap. Open the i nit method, comment out the call to
addScrol I i ngBackgr oundWt hPar al | ax, and add the call to addScrol | i ng-
BackgroundWt hTi | eMap as shown in Listing 9.32.

Listing 9.32 new call to addScrollingBackgroundWithTileMap in init method

//[self addScrollingBackgroundW thParall ax];
[sel f addScrol lingBackgroundWthTil eMap];

271

272

Chapter 9 When the World Gets Bigger: Adding Scrolling

While you created the Level2TileMap.tmx file in the previous section, you need the
Level2TileMapiPhone.tmx and Level2TileMapiPhone-hd.tmx files if you are testing on the
iPhone. Take a moment and copy them into Xcode from the resources folder for this
chapter.

If you click Run and select the second level in Space Viking, you should see the new
TileMap background that you created. You should see it scrolling when you move Ole
to the right and left of the level. Figure 9.14 shows what Space Viking looks like with
the TileMap level when all the layers are in the same position.

Figure 9.14 Space Viking showing TileMap level, with all layers in the
same position

Did you notice anything strange about the TileMap background? You can see that
the RockCol utmsLayer and the RockBoul der Layer overlap each other. You also
should have noticed that the entire TileMap moves as one element, so the illusion of
depth is lost.

Adding a TileMap to a ParallaxNode

The solution to adding the illusion of depth when using a TileMap as a scrolling
background is to take the individual layers and move them from the TileMap to a
CCPar al | axNode.

Open the Ganepl ayScrol | i ngLayer and add the method addScr ol I i ng-
BackgroundWt hTi | eMapl nsi dePar al | ax above the i nit method, as shown in
Listing 9.33.

Tile Maps 273

Listing 9.33 addScrollingBackgroundWithTileMaplnsideParallax

/1 Scrolling with TileMap Layers inside of a Parallax Node
-(voi d)addScrol | i ngBackgroundW t hTi | eMapl nsi deParal | ax {
CGSi ze screenSize = [[CCDirector sharedDirector] w nSize];
CGSi ze | evel Si ze = [[GaneManager sharedGaneManager]
get Di mensi onsCOf Cur r ent Scene] ;
/111
if (U _USER | NTERFACE | DI OM) == Ul User | nterfacel di onPad) {
til eMapNode = [CCTMXTi | edMvap
tiledMapWt hTMXFi | e: @ Level 2Ti | eMap. t nx"];
} else {
til eMapNode = [CCTMXTi | edMap
til edMapW t hTMXFi | e: @ Level 2Ti | eMapi Phone. t mx"];
}

CCTMXLayer *groundLayer = [tileMapNode | ayer Named: @ G oundLayer "] ;
CCTMXLayer *rockCol utmsLayer = [til eMapNode

| ayer Nanmed: @ RockCol unmsLayer"];
CCTMXLayer *rockBoul derLayer = [til eMapNode

| ayer Naned: @ RockBoul der Layer"];

Il 2
paral | axNode = [CCPar al | axNode node];
[paral | axNode set Positi on:
ccp(l evel Si ze.wi dth/ 2, screenSi ze. hei ght/2)];
float xOffset = 0.0f;

/13

xOffset = (level Size.w dth/2);

[groundLayer retain];

[groundLayer renmoveFronPar ent AndCl eanup: NJ ;

[groundLayer set Anchor Poi nt: CGPoi nt Make(0. 5f, 0.5f)];

[paral | axNode addChi |l d: groundLayer z:30 parallaxRatio:ccp(1,1)
positionOifset:ccp(0,0)];

[groundLayer rel ease];

/1 4

xOffset = (level Size.w dth/2) * 0.8f;

[rockCol umsLayer retain];

[rockCol utmsLayer renoveFronPar ent AndCl eanup: NJ ;

[rockCol utmsLayer set Anchor Poi nt : CGPoi nt Make(0. 5f, 0.5f)];

[paral | axNode addChi | d: rockCol ummsLayer z: 20
paral | axRati o: ccp(0. 2, 1)
positionOfset:ccp(xOifset, 0.0f)];

[rockCol umsLayer rel ease];

274 Chapter 9 When the World Gets Bigger: Adding Scrolling

/15

xOffset = (level Size.width/2) * 0.3f;

[rockBoul der Layer retain];

[rockBoul der Layer renmpveFronPar ent AndCl eanup: NO| ;

[rockBoul der Layer set Anchor Poi nt: CGPoi nt Make(0. 5f, 0.5f)];

[paral I axNode addChi | d: rockBoul der Layer z: 30
paral | axRati o: ccp(0.7,1)
positionOfset:ccp(xOfset, 0.0f)];

[rockBoul der Layer rel ease];

/16
[sel f addChil d: paral | axNode z:1];

While the method in Listing 9.33 has a long and descriptive name, the logic inside
is similar to what you have created previously. The CCTMXTi | edMap is initialized
first, and then the layers are pulled from the CCTMXTi | edMap and added to a new
Par al | axNode. Finally, the Par al | axNode is added to the Ganepl ayScr ol | i ng-
Layer. The CCTMXTi | edMap is not added to the layer because it is without children
at this point and is no longer needed. The code sections are as follows:

1.

Initializes the Ti | eMapNode with the contents of the Level2TileMap.tmx file.
This section also retrieves the three tile layers from the TileMap by name. These
are the names you set your layers to in the Tiled application.

Initializes the Par al | axNode, which will be the scrolling background, and then
adds the Par al | axNode to the center of the level and sets up the x-axis offset to
be used when adding in the layers.

Adds the ground layer to the Paral | axNode. The groundLayer is first
retained so that it is not deal | ocat ed. It is then removed from the TileMap
and added to the Paral | axNode. A CCNode cannot have two parents at once,
and this is why you have to retain, reassign, and then release each of the three
layers. The anchor point of the tile layers are set to the leftmost side by default;
this is changed to the center to make positioning easier.

Adds the rock columns layer to the Par al | axNode using a ratio of 0.2 on the
x-axis. This means the rock columns will move 2 pixels for every 10 pixels the
Par al | axNode is moved on the x-axis.

. Adds the rock boulder layer to the Par al | axNode using a ratio of 0.7 on

the x-axis. The rock boulder layer will move 7 pixels for every 10 pixels the
Par al | axNode is moved on the x-axis.

Adds the Par al | axNode to the layer, causing the scrolling background to
appear.

Tile Maps

Add the call to addScr ol | i ngBackgr oundWt hTi | eMapl nsi dePar al | ax and
comment out the line calling addScr ol | i ngBackgroundWt hTi | eMap, as shown in
Listing 9.34.

Listing 9.34 Changes to init method in GameplayScrollingLayer

//[sel f addScrol |ingBackgroundWthTil eMap];
[sel f addScrol | ingBackgroundWthTil eMapl nsi deParal | ax] ;

The last change you need to make is to increase the level size in the GameManager,
since the TileMap background is now 4096 pixels wide instead of 2048. Open the
GameManager.m implementation file and locate the get Di mensi onsOf Cur r ent Scene
method. Change the width of the kGameLevel 2 branch to 4096, as shown in
Listing 9.35.

Listing 9.35 getDimensionsOfCurrentScene changes in GameManager.m

case kGanelLevel 2:
| evel Si ze = CGSi zeMake(4096. 0f , screenSi ze. hei ght);
br eak;

If you click Run and select the second level from the Main Menu, you can move
Ole left and right on the screen. You will see how much farther you can get Ole to
scroll if you move him to the right.

Note

Remember that you need to import the Level2TileMapiPhone.tmx and Level2TileMapiPhone-
hd.tmx files into your Xcode project in order to test out the TileMap scrolling on the iPhone
or iPhone 4. The two tiles are set up with a width of four times the screen size of each
iOS device: 3840 pixels wide for the iPhone 4 and 1920 pixels wide for the iPhone.

There 1s a lot more you can do with TileMaps than what you have learned here.
You can use layers in Tiled to specify walls, enemies, and even game characters in
your games. TileMaps are often used for top-down games, but as you learned in Space
Viking, they can be used in games with other viewpoints as well.

Note

If you want to learn more about TileMaps, including building a whole game based on
them, check out Mike Daley’s book, Learning iOS Game Programming, at http://
www.informit.com/store/product.aspx?isbn=0321699424.

275

http://www.informit.com/store/product.aspx?isbn=0321699424
http://www.informit.com/store/product.aspx?isbn=0321699424

276

Chapter 9 When the World Gets Bigger: Adding Scrolling

Summary

In this chapter you learned three different techniques to add scrolling to your games.
You learned how to use the CCPar al | axNode in Cocos2D, how to move sprites
endlessly, and how to use TileMaps to create large levels. Whether you are making a
role-playing game (RPG) or the next flying shooter, you now have the concepts and
techniques needed to make it happen.

In the next few chapters, you will learn about physics and how to implement both
the Box2D and Chipmunk physics engines. There is a whole new level of fun and
realism you can add to your games with physics engines, and Cocos2D comes bundled
with two of the best 2D physics engines out there, Box2D and Chipmunk, for free.

Challenges

1. Change Ole and the platform’s z values so that Ole is in the middle of the clouds
instead of in front of them during the cut-scene.

2. Change the cut-scene so that the clouds scroll from the top of the screen to the
bottom instead of right to left.

3. Add the Radar D sh to the Gamepl ayScr ol | i ngLayer. Position it so that it is
at the far right side of the level.

4. Create a new TileMap and use it instead of the Level2TileMap.tmx file. Can you
set it up to have more than three parallax layers?

Part IV

Physics Engines

With the Box2D and Chipmunk physics engines that come with Cocos2D,
you can add some amazing effects to your games, such as gravity, real-
istic collisions, and even ragdoll effects. In these chapters you get a
chance to add some physics-based levels to Space Viking, from simple to
advanced.

= Chapter 10: “Basic Game Physics: Adding Realism with Box2D”

= Chapter 11: “Intermediate Game Physics: Modeling, Racing, and
Leaping”

= Chapter 12: “Advanced Game Physics: Even Better than the Real
Thing”

= Chapter 13: “The Chipmunk Physics Engine (No Alvin Required)”

This page intentionally left blank

10

Basic Game Physics: Adding
Realism with Box2D

So far Space Viking has been an action-packed game complete with aliens blasting, cargo ships
Sflying, and fists bashing. Up until this point, any time you wanted to move an object in Space
Viking, it was up to you. You would use Cocos2D actions or update the positions of objects
manually.

But what if you wanted to add more realistic physics behavior in your game? Maybe you want
more realistic collisions between objects, objects flying through the air under the influence of grav-
ity, vehicles bouncing off terrain, or enemies collapsing like ragdolls when they are defeated.

Well, you could always crack open a physics textbook, start plugging away at some complex
equations, and start developing your own game physics library.

But if you’re not a math guru, don’t worry: there’s a much easier way. You can save yourself a
lot of time, energy, and hair pulling by using the power of Box2D!

Getting Started

Box2D is a popular and easy-to-use, full-featured game physics library integrated with
Cocos2D that can help you make your game objects move in realistic ways.

When you create objects you want Box2D to simulate, you tell Box2D where to
initially place them and then let Box2D handle the rest of the simulation and calculate
the new positions of the objects over time. The high-level workflow can be seen in
Figure 10.1.

As Figure 10.1 illustrates, there are four main steps to using Box2D:

1. The first time you add an object to your scene (but only the first time!), you tell
Box2D where it is and what shape it has.

2. In your game updat e loop, you tell Box2D if you want to apply any forces to
the game objects, such as gravity or movement.

280

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Figure 10.1 High-level workflow for Box2D

3. In your game updat e loop, you tell Box2D to simulate the world for a certain
amount of time. Box2D then calculates the new positions for each object based
on forces and collisions.

4. Also in your game updat e loop, you get the new positions of the objects from
Box2D and update your sprites to match those positions.

In summary, Box2D controls the positions of your objects and where they move,
and you just update your sprites to where Box2D says your objects are. Instead of
moving your objects by setting their position or using CCMoveTo, you should influ-
ence your objects’ positions by applying forces and impulses to Box2D objects. You’ll
see how this works in detail as you work through these next few chapters!

Box2D and C++

Box2D is written in C++ rather than in Objective-C like Cocos2D. This is because Box2D
has a long history. Box2D was developed by Erin Catto as a simple game physics library in
2006, before Cocos2D even existed! Box2D has since been ported for several platforms,
including Flash, Java, and Python, and has been made to work seamlessly with Cocos2D.

With Xcode you can use both Objective-C and C++ code within the same file, so you
can use C++ libraries with no problems. However, if you're new to C++, some of the
syntax will look unfamiliar to you.

You can work through the code samples in this and the next two chapters without hav-
ing any C++ knowledge, but it's still a good idea to learn C++ if you plan to use Box2D
in your own projects. Here’s a quick cheat sheet for some of the most common new
syntax elements that you'll see in this chapter:

= Creating New Objects
Rather than using the [[obj ect al l oc] i nit] methods you are familiar
with in Objective-C to allocate objects, in C++ you use the new keyword like this:

MyC ass *nyC assPointer = new MyCl ass();

Getting Started

= Pointers
In the previous example, you see that the variable is prefixed with a star (*).
This indicates that the variable is a pointer to an object somewhere in memory.
Later, when you want to call a method on a pointer to an object, you use the
arrow (- >). For example:

myCl assPoi nt er - >doSonet hi ng() ;

= For More Information
For more information on C++, a great reference is The C++ Programming Lan-
guage by Bjarne Stroustrup (Addison-Wesley Professional, 2000).

Mad Dreams of the Dead

The easiest way to understand Box2D is to see it in action for yourself, so it’s time to
continue the story of Ole the Viking!

In this chapter, you create a scene that represents a strange dream Ole had while
frozen in his block of ice after he landed on the planet. It takes the form of a mini-
puzzle game in which you try to figure out how to move frozen Ole to a spot that can
thaw him back to action—with the aid of Box2D physics. You can see what the fin-
ished level looks like in Figure 10.2.

Making this level teaches you how to create objects with Box2D, how to move
them with touches or the accelerometer, how to skin them with your own sprites, how
to do simple collision detection with sensors, and much more!

Figure 10.2 The Box2D-enabled puzzle game you make in this chapter

281

282

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Creating a New Scene

The first thing to do is create a new scene for the puzzle level. Open your Spaceliking
project if you don’t have it open already, expand Classes\Scenes, click New Group,
then rename the new folder that was created to Scene3. Then with the Scene3 group
selected, go to File > New > New File..., choose iOS > Cocoa Touch >
Objective-C class, and click Next. Enter CCLayer as the Subclass of, click Next,
name the file PuzzleLayer.m, and click Save.

Then replace the contents of PuzzleLayer.h with the contents of Listing 10.1.

Listing 10.1 PuzzleLayer.h

#i nport <Foundati on/ Foundati on. h>
#i mport "cocos2d. h"

@nterface Puzzl eLayer : CCLayer {
}

+ (id)scene;

@nd

This should look familiar; you're creating a Cocos2D layer to be added to the scene
called Puzzl eLayer. However, you may be wondering where the scene class went.
Until this point, you have been creating subclasses of CCScene in addition to subclass-
ing CCLayer.

Well, for times when you know your scene is going to have only one layer, a short-
cut is to create a static method that creates a plain CCScene and add the given layer
as the only child of that scene. It’s a bit simpler, and since that’s all you’ll need in this
scene, let’s give it a try.

Next, replace the contents of PuzzleLayer.m with the contents of Listing 10.2.

Listing 10.2 PuzzleLayer.m

#i mport "Puzzl eLayer. h"
@ npl enent ati on Puzzl eLayer

+ (id)scene {
CCScene *scene = [CCScene node];
Puzzl eLayer *layer = [self node];
[scene addChild:|ayer];
return scene;

- (id)init {
if ((self = [super init])) {

Getting Started

CGSize winSize = [CCDirector sharedDirector].w nSi ze;
CCLabel TTF *| abel = [CCLabel TTF
|l abel WthString: @Hell o, Mad Dreans of the Dead!"
font Nane: @ Hel vetica" fontSize:24.0];
| abel . position = ccp(w nSize.w dth/2, wi nSize.height/2);
[sel f addChild: | abel];
}

return self;

@nd

There should be no surprises here. The i nit method simply puts a label in the
middle of the screen so you can verify it’s working.

Finally, you need to modify GameManager.m to load your scene when it gets called
with kGanmeLevel 3. First, add a line to import PuzzleLayer.h at the top of the file, as
shown in Listing 10.3.

Listing 10.3 GameManager.m (at top of file)

#i nport "Puzzl eLayer. h"

Then inside r unSceneW't hl D, modify the entry in the case statement for level 3
to create the new scene, as shown in Listing 10.4.

Listing 10.4 GameManager.m (inside runSceneWithID’s case statement)

case kGanelLevel 3:
sceneToRun = [Puzzl eLayer scene];
br eak;

That’s it! Compile and run your project, select Mad Dreams of the Dead from
the Main Menu, and you should see your new scene with the placeholder text, as
shown in Figure 10.3.

Tip

You are going to be modifying this scene quite a bit in this chapter. To avoid having to
select the Main Menu option every time you want to test this level, there’s a shortcut to
run your new scene right away. Simply open Classes\Singletons\SpaceVikingAppDelegate.m,
navigate to the bottom of appl i cati onDi dFi ni shLaunchi ng, and replace the
CCDi rector:runSceneWt hl D call at the bottom to:

[[GaneManager shar edGaneManager]
runSceneW t hl D: kGanelLevel 3] ;

Compile and run your project, and now it should start running your new scene right away!

283

284

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Figure 10.3 Placeholder scene for Mad Dreams of the Dead

Adding Box2D Files to Your Project

Now you have a scene ready to try out Box2D—except you don’t have the required
Box2D files in your project! This is because you created the project with the plain
Cocos2D Application template (i.e., you didn’t pick the Cocos2D Box2D Application
template). The plain Cocos2D Application template doesn’t come with the Box2D files
included by default.

Luckily, this is quite easy to fix. Just perform the following steps:

1. Open a Finder window and navigate to where you downloaded the Cocos2D
source.

2. Open the folder and navigate to external\Box2d\Box2D.

3. Open a second Finder window, navigate to your Spacel/iking project, and navi-
gate to libs.

4. Copy the Box2D folder to the libs folder.

Once you're done, your directory structure should look as shown in Figure 10.4.

The next step is adding these files to your Xcode project. Expand the cocos2d Sources
group, then drag the Box2D folder from your SpacelViking\libs directory to the group.
When the dialog appears, make sure Copy items into destination group’s folder
(if needed) is not checked, Create groups for any added folders is selected, and
then click Finish, as shown in Figure 10.5.

Getting Started 285

Figure 10.4 Where to place the Box2D files in the SpaceViking project

Figure 10.5 Adding the Box2D directory to your Xcode project

286

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Next you need to set up the project so it knows where the Box2D header files are.
Click on your SpacelViking project in the Project Navigator to bring up your project
settings, select the Build Settings tab, make sure the All and Combined buttons
are selected, and look for the entry for Search Paths > Header Search Paths.
Double-click the entry to bring up an editor, click the plus button to add a new entry,
double-click the entry for path, set it to libs if you are using Xcode 3 or SpacelViking/
libs if you are using Xcode 4, and click OK. When you are done, the settings should
look like Figure 10.6.

Figure 10.6 Adding libs folder to header search paths

Now you've copied over the main Box2D files, but there are two more impor-
tant files that you should copy over as well: the ones responsible for drawing Box2D
objects to the screen for debug purposes.

In Xcode, make a new group to put these files inside the Classes group, and name
it Box2D. Then open up a Finder window, navigate to your Cocos2D directory, and
navigate to templates\cocos2d_box2d_app\Classes. Inside you’ll find the files GLES-
Render.h and GLES-Render.mm. Select those two files and drag them to your new
Box2D group in Xcode. Make sure Copy items into destination group’s folder (if
needed) is checked, and click Finish.

Getting Started 287

Now, let’s test if it’s working. In Xcode, expand the Classes\Scenes\Scene3 group, and
open PuzzleLayer.h. Import the Box2D header at the top of the file, as shown in List-
ing 10.5.

Listing 10.5 PuzzleLayer.h (at top of file)

#i nport " Box2D. h"

Now try to compile your project. Yowza! You will notice a huge list of errors, as
shown in Figure 10.7.

Figure 10.7 Errors you'll see if you don’t use the .mm extension when
using C++ code

This is happening because you are importing the Box2D header file (which uses
C++) in files that are set up to use only Objective-C. How do you instruct the
compiler to allow both C++ and Objective-C? Simply rename the files with a .mm
extension!

Give this a shot: rename PuzzleLayer.m to PuzzleLayer.mm. Then repeat this for
Classes\Singletons\GameManager.m—rename it GameManager.mm. The reason you have

288 Chapter 10 Basic Game Physics: Adding Realism with Box2D

to do this for GameManager.m is because GameManager.m imports PuzzleLayer.h, which
imports Box2D.h.
Ok! Compile and run again, and this time it should compile with no errors.

Tip

As you've seen, if you're working with Box2D and you see hundreds of strange errors

like we demonstrated here, chances are that you're trying to use C++ code in a file that
doesn’t end with .mm. Just remember, when you see a huge list of errors like that, double
check to make sure that all files using Box2D have the .mm extension!

Congratulations! You have successfully imported the Box2D code into your proj-
ect. But before you proceed, you should learn about one of the most important con-
cepts when working with Box2D in Cocos2D projects: units.

Box2D Units

When making a game with Cocos2D, you usually think in terms of points. Ole, for
example, is about a 100 X 180-point sprite on the iPad (and a good looking one at
that)!

However, Box2D does not deal with points. Box2D is optimized to work with
meters (m), kilograms (kg), and seconds(s). So, Box2D considers an object “x meters”
wide instead of “x points” wide.

You may think to yourself, Why not just define 1 point = 1 meter, and make it easy?
Unfortunately, this does not work too well. Box2D works best with objects between
0.1 and 10 meters, so you want to make most of your objects fit within that length—
and ideally have your most common object types be about 1 meter in length.

Luckily, this is quite easy to do by applying a conversion factor. For example, if
you wanted Ole to be 1 meter wide, you could just set the conversion factor to be 1
width of Ole per 1 meter, or 100 points/meter if Ole is 100 points wide. Figure 10.8
illustrates how you can use this conversion factor to convert any number of points to
meters.

Figure 10.8 Converting points to meters

Hello, Box2D! 289

In code, the conversion looks something like this:

#def i ne PTM_RATI O 100.0

/1 When converting from Cocos2D coord to Box2D coord:
float x_box2D = x_cocos2D / PTM RATI G

float y_box2D = y_cocos2D / PTM RATI G

/1 When converting from Box2D coord to Cocos2D coord:
float x_cocos2D = x_box2D * PTM RATI G

float y_cocos2D = y_box2D * PTM_RATI G

Tip

If you look at Box2D samples, you’ll see that a common value for the PTM_RATI Ois 32.
Why is this number commonly chosen? Well, the size of the iPhone screen is 480 points
wide, so a normal sprite would commonly be about 1/15 of that size (32 points). So if the
PTM_RATI Ois set to 32, that common sprite would be equal to 1 meter, which is great
because Box2D is optimized for objects between 0.1 and 10 meters.

But since your game’s sprites may be larger or smaller, don’t use this value blindly—
choose it according to the actual sizes of your sprites!

If you forget to set your PTM_RATI O properly, the sizes of your objects might be very
small or very large in Box2D terms. This could cause some strange behavior in your game,
such as objects bouncing and colliding in unexpected ways. So if you see odd behavior
and are wondering why, double check that your objects aren’t too big or too small when
converted to meters under Box2D!

In the puzzle level you’re about to create, on the iPad the most common objects
will be 100 points in width and the largest 800 points, so you’ll set the PTM_RATI O to
be 100 (so most common objects are 1 meter and the largest still less than 10 meters).
On the iPhone, the objects will be half the size in points.

So define the PTM_RATI O to be 100 points per meter at the bottom of Constants.h
(and half that on the iPhone), as shown in Listing 10.6.

Listing 10.6 Constants.h (at the bottom of the file)

#define PTM RATI O ((U _USER | NTERFACE | DIOV) ==
U UserInterfacel dionPad) ? 100.0 : 50.0)

With that done, you’ve got your project completely ready to use Box2D, so you can
proceed with creating and populating your Box2D world!

Hello, Box2D!

The first step to using Box2D is to create a Box2D world. Think of a Box2D world as
Box2D’s view of the objects it simulates (in units of meters). If you recall Figure 10.1,

you’ll populate this world with objects, let Box2D handle the simulation for you, then
update your sprites according to the positions of the Box2D objects.

290

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Let’s see how to create a Box2D world. First open up PuzzleLayer.h and import the
Box2D debug drawing header that you added earlier and the constants file containing
the PTM_RATI O, as shown in Listing 10.7.

Listing 10.7 PuzzleLayer.h (at the top of the file)

#i mport " CGLES- Render. h"
#i mport "Constants. h"

Next add a few member variables inside the @ nt er f ace declaration, as shown in
Listing 10.8.

Listing 10.8 PuzzleLayer.h (inside @interface declaration)

b2World * worl d;
GLESDebugDr aw * debugDr aw,

These are two instance variables stored in the Box2D world and debug draw classes.
You'll learn exactly what these mean shortly in this chapter. Now, open up Puzzle-
Layer.mm, and add a method to create your Box2D world above the i nit method, as
shown in Listing 10.9.

Listing 10.9 PuzzleLayer.mm (above init method)

- (void)setupWrld {
b2Vec2 gravity = b2Vec2(0.0f, -10.0f);
bool doSl eep = true;
worl d = new b2Worl d(gravity, doSleep);

This function initializes the Box2D world. The first thing it does is set up the grav-
ity force that will affect all objects in the world—a b2Vec2 initialized with an X value
of 0 and a'y value of —10. A b2Vec2 is a Box2D class used to represent vectors, so this
vector is facing down along the y-axis with a magnitude of 10.

You may be wondering why you should use this as your value. Well, gravity is in m/s?,
and 10 m/s? down the y-axis is pretty close to the actual gravity of earth (9.8 m/s?)!

Note

As you work with Box2D, you’ll be using a lot of vectors, so if you're not familiar with how
they work, here’s a quick explanation.

Vectors are simply a pair of X and y values that can be used to represent either a posi-
tion or a direction and magnitude.

For example, Figure 10.9 shows what the vector (3, 4) looks like. This same vector could
be used to indicate the position (3, 4) or to indicate the direction of 53° with a magnitude
of 5.

Hello, Box2D! 291

Whether the vector is used as a position or direction/magnitude depends on the context.
In the case of gravity, you know that the vector is being used to indicate a direction and
magnitude.

Don’t worry if you're still confused by this. You'll be using vectors a lot as you go through
this chapter, and it will start to make more sense as you proceed!

4 | (3, 4)

3 —

o | o

1 —
53°
1]
123

Figure 10.9 Diagram of a vector, which can represent either a point or a
magnitude/angle

In summary, the first line sets up a gravity vector pointing down, much like Earth’s
gravity. The second and third lines create a new b2Wor| d object, passing in the grav-
ity vector and t r ue for doSl eep.

Note that the doSl eep parameter is set to t r ue. This tells the b2Wor | d that when
objects have settled in to their positions and aren’t moving anymore, it can stop per-
forming calculations on those objects until something causes them to move again.
Usually you want this to be on by default, but if you don’t, you can disable this for all
objects here.

One more thing . . . since you created a new world, you need to create a deal | oc
method to delete it once your layer is deallocated, as shown in Listing 10.10.

Listing 10.10 PuzzleLayer.mm (at the bottom of the file)

- (void)dealloc {
if (world) {
del ete worl d;
world = NULL;
}

[super deall oc];

Deleting a world also deletes anything you have added into that world (such as bod-
ies, joints, or fixtures, all of which we cover later on).

292

Chapter 10 Basic Game Physics: Adding Realism with Box2D

That’s it—you have created a Box2D world! However, there’s currently nothing in
it. So let’s fix this by adding a simple box into the world.

Creating a Box2D Object

Before you create a Box2D object, it’s important to understand the terminology that
Box2D uses when setting up objects.

Each individual object in a Box2D world is called a body. Box2D is a rigid body
physics simulation, which just means that when two bodies collide, they don’t squish—
instead they bounce off each other rigidly.

Each body can be made up of several different pieces, or fixtures. In Figure 10.10,
you can see that if you wanted to create a baseball cap, you might make a single body
with two fixtures: one for the cap and one for the brim. The reason you might want
to create a body from two fixtures rather than one is because it may be simpler, and
for reasons you’ll learn about in the next chapter, you need to do this in order to cre-
ate certain shapes with Box2D.

Body
(Viking helmet)

Fixture
(horns)

Fixture
(helmet)

Figure 10.10 A Box2D body is composed of one or more fixtures.

Note

Since Box2D is a rigid physics simulation, any fixtures that are in the same body will

not move relative to each other, which works great for fixtures that are permanently con-
nected like the Viking helmet in Figure 10.10. But if you wanted to model an arm (made
up of a lower arm and an upper arm), you wouldn’t want to model it as two fixtures on the
same body, because then the arm wouldn’t be able to rotate at the elbow.

For cases like an arm where you want two pieces to be able to move relative to each
other, you create two bodies (one for the lower arm and one for the upper arm) and con-
nect them with a joint. You will learn how to use joints in detail in the next chapter. In this
chapter, you work with just simple bodies, usually with just one fixture, and not connected
to any other bodies with joints.

Hello, Box2D!

Figure 10.11 illustrates the steps you take to create a body with Box2D. As you can
see in the figure, first you create a body definition. A body definition specifies some
properties of the body, such as its position and movement type. There are three differ-
ent movement types: a dynamic body (Box2D handles the movement), a kinematic body
(the game code handles the movement), or a static body (the body doesn’t move at all).

Body
Definition

World Body

Figure 10.11 Creating a body with Box2D

‘When youre done, you pass the body definition to the world, which creates a body
object for you.

Let’s see what this looks like in code. Inside PuzzleLayer.mm above the i nit
method, add the beginning of a method that will create a box in the Box2D world at a
particular location, as shown in Listing 10.11.

Listing 10.11 PuzzleLayer.mm (above init method)

- (voi d)creat eBoxAt Location: (CGPoi nt) | ocation wi thSize: (CGSi ze) si ze {
b2BodyDef bodyDef;
bodyDef.type = b2_dynam cBody;
bodyDef . position =
b2Vec2(| ocati on. x/ PTM_RATI O, | ocation.y/ PTM RATI O ;
b2Body *body = worl d->Cr eat eBody(&odyDef) ;

This function creates a box at a specified location with a specified size. It sets the
body as a dynamic body (which means its movement should be handled by Box2D),
sets its initial position, and then calls the Cr eat eBody method on the world to create
a body object.

Note that since this function takes a location in points, it needs to convert the loca-
tion from points to meters by using the PTM_RATI O, as discussed earlier.

Once you create the body, you can create one or more fixtures to attach to the
body. To create a fixture, you follow a process much like you did while creating a

293

294

Chapter 10 Basic Game Physics: Adding Realism with Box2D

body, as Figure 10.12 illustrates. Basically, first you create a shape, which can be a cir-
cle, a square, or an arbitrary shape made up of connected vertices. You pass that shape
to a fixture definition, where you can set other properties such as bounciness or density.
You then pass the fixture definition to the body, which returns to you a fixture object.

Shape

Fixture
Definition

Body Fixture

Figure 10.12 Creating a fixture with Box2D

To try this out, continue the cr eat eBoxAt Locat i on method by adding the code
shown in Listing 10.12 to add a fixture to the body.

Listing 10.12 PuzzleLayer.mm (at bottom of createBoxAtLocation method)

b2Pol ygonShape shape;
shape. Set AsBox(si ze. wi dt h/ 2/ PTM_RATI O, si ze. hei ght/2/ PTM_RATI O) ;

b2Fi xt ureDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.density = 1.0;

body- >Cr eat eFi xt ure(&f i xt ur eDef);

This function defines a shape object and uses a helper method to set the vertices
up so that it is a box of the specified size. Note that it has to divide the width and
height by 2, since this helper method takes a half width and half height of the box as
parameters. Again note that this uses the PTM_RATI Oto convert the size from points
to meters.

Hello, Box2D! 295

Warning

Note that when using the Set AsBox method, it’s easy to forget that you have to pro-
vide a half width and half height and to instead pass in the full height and width. If your
objects seem to be double the size you expect, double check that you've passed in the
half width and half height correctly in this method.

Note that this function sets the density of the box to 1.0. The higher the fixture’s
density, the “heavier” it is, but for now don’t worry too much about it. We discuss
density in detail later in this chapter.

At this point you have written methods to create the world and add an object to
the world. However, if you called these methods in your i nit method right now,
you wouldn’t see anything, because there is no code that draws representations of the
Box2D bodies in your scene.

This is where Box2D debug drawing comes to the rescue!

Box2D Debug Drawing

Box2D debug drawing is already implemented for you by the GLES-Render files
you copied into your project earlier. You just need to add a bit of code to create an
instance of the debug drawing class, connect it to your world, and call it in your draw
method.

So add a method to set up a debug drawing above your i nit method, as shown in
Listing 10.13.

Listing 10.13 PuzzleLayer.mm (above init method)

- (voi d)set upbDebugDraw {

debugDraw = new GLESDebugDr aw(PTM RATI O *[[CCDi rect or sharedDirector]
cont ent Scal eFactor]);

wor | d- >Set DebugDr aw(debugDr aw) ;

debugDr aw >Set Fl ags(b2DebugDr aw. : e_shapeBi t);

Here you create a new instance of the GLESDebugDr aw class and pass it to the
world with the Set DebugDr aw method. You then set some flags on the debug draw
telling it what specifically to draw. For this level, you're just interested in shapes.

Note

You have to multiply the PTM_RATI Oby the cont ent Scal eFact or because GLES-
Debut Dr aw deals with pixels, not points. Without this, debug drawing will not be sized
correctly on the retina display.

Also, you can use the Box2D debug draw class to render other interesting things, such as
joints, axis-aligned bounding boxes, or center of mass. Check out b2WorldCallbacks.h in
the Box2D source for the full list!

296 Chapter 10 Basic Game Physics: Adding Realism with Box2D

Next you need to make sure that the debug draw class gets a chance to draw. Add a
draw method to your layer, as shown in Listing 10.14.

Listing 10.14 PuzzleLayer.mm (below init method)

-(void) draw {
gl Di sabl e(GL_TEXTURE_2D) ;
gl Di sabl ed i ent St at e(GL_COLOR_ARRAY) ;
gl Di sabl ed i ent St at e(GL_TEXTURE_COCORD_ARRAY) ;

wor | d- >Dr awDebugDat a() ;
gl Enabl e(GL_TEXTURE_2D) ;

gl Enabl ed i ent St at e(GL_COLOR_ARRAY) ;
gl Enabl eCl i ent St at e(GL_TEXTURE_COORD_ARRAY) ;

Here you're overriding the layer’s draw method so you can perform the debug
drawing in every frame. Inside, it sets the OpenGL states to handle debug drawing and
tells the world to go ahead and draw each object with the specified debug draw class.
Don’t worry if you don’t understand this—this is boilerplate code that you can use as is.

One last step . . . since you created a debug draw object, you need to delete it in
your deal | oc routine. Add the code to delete your debug draw object inside your
deal | oc routine, as shown in Listing 10.15.

Listing 10.15 PuzzleLayer.mm (inside dealloc routine)

if (debugDraw) {
del et e debugDr aw;
debugDraw = nil;

Okay, you now have almost all of the pieces in place, so it’s almost time to see
something on the screen!

Putting It All Together

First delete your current i ni t method, and replace it with the contents of Listing 10.16.

Listing 10.16 PuzzleLayer.mm (init method)

- (id)init {
if ((self = [super init])) {
[sel f setupWorld];
[sel f setupDebugDraw] ;

Hello, Box2D! 297

[sel f schedul eUpdat e] ;
sel f.isTouchEnabl ed = YES;
}

return self;

- (void)regi sterWthTouchDi spat cher {
[[CCTouchDi spat cher sharedDi spatcher] addTar get edDel egat e: sel f
priority: 0 swall owsTouches: YES];

The first two lines call the methods you added earlier to set up the world and debug
drawing. It then schedules an updat e method to be called every tick, which you’ll
write in a second. It also sets up the layer to accept touches by setting i sTouchEnabl ed
to YES and implementing r egi st er Wt hTouchDi spat cher —further down, you’ll
add a touch handler to create a box wherever the user taps.

Next add the implementation of the updat e method that will be called every tick,
as shown in Listing 10.17.

Listing 10.17 PuzzleLayer.mm (below init method)

-(voi d)update: (ccTine)dt {

int32 velocitylterations = 3;
int32 positionlterations = 2;
wor | d->Step(dt, velocitylterations, positionlterations);

By calling schedul eUpdat e in the i nit method earlier, Cocos2D will automati-
cally look for a routine named updat e in your layer and call it every frame. Inside this
method, you need to give Box2D time to perform its simulation, and you do that by
calling the St ep method on the world.

When calling the St ep method, you pass it a parameter for the number of veloc-
ity iterations to perform and the number of position iterations to perform. The higher
these values, the better the simulation will be—but the tradeoff is performance.
Hence, you generally want to set these numbers as low as you can while still getting
acceptable behavior for your game. In other words, you need to tweak these and see
what works best for your situation!

Note

The game loop shown in Listing 10.17 uses a variable-based timestep, meaning it is
called with a variable amount of delta time (dt) each tick. However, Box2D works best
with a fixed timestep—that is, when it is called with the same amount of time every step.

298

Chapter 10 Basic Game Physics: Adding Realism with Box2D

If you don’t use a fixed timestep, as your simulations get more complicated, you may
see some strange behavior, such as joints disconnecting or bodies bouncing strangely.
We’ll come back to the game loop in Chapter 11, “Intermediate Game Physics,” with an
improved version, but for this level you can get away fine with this simple implementation
without any noticeable problems.

One last step: you need to add the code to create the box! To make things inter-
esting, you’ll add a routine to create a box wherever the user taps. Implement the

ccTouchBegan method to do this, as shown in Listing 10.18.

Listing 10.18 PuzzleLayer.mm (below init method)

-(BOOL) ccTouchBegan: (U Touch *)touch w t hEvent: (U Event *)event {

CGPoi nt touchLocation = [touch | ocationlnView [touch view];
touchLocation = [[CCDi rector sharedDirector]
convert ToG.: t ouchLocation] ;
touchLocation = [sel f convert ToNodeSpace: t ouchLocati on];
b2Vec2 | ocationWrld =
b2Vec2(touchLocati on. x/ PTM_RATI O, touchLocati on.y/ PTM RATI O);

[sel f createBoxAtLocation:touchLocation
wi t hSi ze: CGSi zeMake(50, 50)];
return TRUE;

This gets called whenever there is a touch in your layer. It first converts the touch
from Ul Vi ew coordinates to OpenGL coordinates with convert ToG.. Then it con-
verts the coordinates to the node space for the current layer. Finally, it converts the
coordinates to Box2D coordinates by applying the PTM_RATI O. Note that it is divid-
ing by the PTM_RATI O this time, since it is moving from meters to points.

Finally, with the resulting touch location, it calls the method you wrote earlier to
create a box at the location.

That’s it—you’re finally ready to check it out! Compile and run your project, and
you’ll be able to tap the screen to have objects created into the Box2D world. The
boxes will fall down as though affected by gravity, as shown in Figure 10.13.

However, you’ll notice an immediate problem: there’s nothing stopping these
objects from falling off the screen! So let’s fix that by adding some ground.

Hello, Box2D! 299

Figure 10.13 Box2D objects falling with gravity

Creating Ground
The goal here is to create a boundary that lines up with the edges of the screen so that
the falling objects don’t fall out of view.

Note

You don’t have to set up the boundaries of the Box2D world to line up exactly to the
screen. It's typical to want to have worlds that extend many screen widths so players can
scroll from side to side. If you want to do that, you simply make the ground boundaries
wider and move the position of the layer as the user scrolls from side to side. You learn
exactly how to do that in the next chapter, in fact!

But for this mini-game, you don’t need scrolling, so you want the boundaries to line up
with the width and height of one screen.

First open PuzzleLayer.h and add a new instance variable that will keep a handy ref-
erence to the ground body you're about to create, as shown in Listing 10.19.

Listing 10.19 PuzzleLayer.h (inside @interface declaration)

b2Body *groundBody;

Next open PuzzleLayer.mm and add the method to create the ground body above
your i ni t method, as shown in Listing 10.20.

300 Chapter 10 Basic Game Physics: Adding Realism with Box2D

Listing 10.20 PuzzleLayer.mm (above init method)

- (void)createGound {
CGSi ze winSize = [[CCDirector sharedDirector] w nSize];
float32 margin = 10. 0f;
b2Vec2 | owerLeft = b2Vec2(margi n/ PTM_RATI O, margi n/ PTM_RATI O) ;
b2Vec2 | ower Ri ght = b2Vec2((w nSi ze. wi dt h- mar gi n) / PTM_RATI G,
mar gi n/ PTM_RATI O) ;
b2Vec2 upper Ri ght = b2Vec2((wi nSi ze. wi dt h- mar gi n) / PTM_RATI G,
(wi nSi ze. hei ght -margi n)/ PTM_RATI O) ;
b2Vec2 upperlLeft = b2Vec2(nmargi n/ PTM_RATI G,
(wi nSi ze. hei ght - mar gi n) / PTM_RATI O) ;

b2BodyDef groundBodyDef ;

groundBodyDef . type = b2_stati cBody;

gr oundBodyDef . position. Set(0, 0);

groundBody = wor | d->Cr eat eBody(&gr oundBodyDef) ;

b2Pol ygonShape groundShape;

b2Fi xt ur eDef groundFi xt ur eDef ;
groundFi xt ur eDef . shape = &groundShape;
groundFi xt ur eDef . density = 0.0;

groundShape. Set AsEdge(| ower Left, | owerRi ght);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;
gr oundShape. Set AsEdge(| ower Ri ght, upper R ght);
groundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;
gr oundShape. Set AsEdge(upper Ri ght, upperLeft);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;
groundShape. Set AsEdge(upper Left, | owerlLeft);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;

The beginning of this method sets up the Box2D coordinates that correspond to
the four corners of the ground boundary you’re about to make. Note that it uses a
margin to pad the edges a bit and that it uses PTM_RATI O to convert from points to
meters as usual.

Next the method creates a body following the usual process. The only differences
are that the body is set up as a static body (i.e., it does not move) and the position of
the body is set to (0, 0).

Note

After setting the position of a body, the coordinates you use to create fixtures are local
coordinates (i.e., relative to the body). In this case, the position of the body is (0,0), so if
you specified a vertex for a fixture of (10,10), the world coordinates for the fixture would
also be (10,10).

Hello, Box2D!

However, if the position of the body was at (5, 5) and you specified a vertex for a fixture
at (10,10), the world coordinates for the fixture would be at (15,15).

This is a handy property of Box2D, since it allows you to create fixtures relative to a body,
then easily change where you place a body without having to redo the fixture coordinates.
It doesn’t matter very much in this particular example, but it becomes useful when making
complicated objects (such as vehicles) that you want to place in a scene multiple times.

After creating the body, the method sets up a fixture definition. It sets the shape to
the gr oundShape (which isn’t filled in yet) and the density to 0. When the density
for an object is 0, this is a special case that means that the object is static (not moving).

Warning

Be careful of this! If you ever create a Box2D fixture and forget to set its density, it will
default to O and the body will become static and not move. So if you ever notice that a fix-
ture isn’t moving at all, double check that you set the density to a nonzero value!

Finally, the method adds four fixtures to the body, one for each side of the box. To
do this, it uses the Set AsEdge helper method to create a fixture with just two vertices
and then adds it to the body. Remember from the earlier discussion that you can have
multiple fixtures attached to the same body (like modeling a ball cap); this is the first
example of doing this.

Next, you just need to call your new method at the bottom of'i ni t, as shown in
Listing 10.21.

Listing 10.21 PuzzleLayer.mm (at bottom of init method)

[sel f createG ound];

And that’s it! Compile and run to try it out, and you should now see a green
boundary along the edges of the screen—that’s the ground you just created. Now
when you create the objects, they will fall until they hit the ground, then they will
stop, as shown in Figure 10.14. You can also see some cool physics effects by making

objects fall on top of other objects!

Note

If you’re wondering why some bodies are pink and some are gray, it's because Box2D
colors bodies gray when they aren’t currently moving and are asleep. As mentioned ear-
lier, when bodies are asleep, Box2D can stop performing calculations on the bodies until
something causes them to move again, which is a performance optimization.

At this point, you've gotten a basic “Hello, World” Box2D scene functioning from
scratch—you’ve added Box2D bodies, set up gravity, and set up a ground box to
contain the objects! Let’s take this to the next level by adding more interactivity and

decoration.

301

302 Chapter 10 Basic Game Physics: Adding Realism with Box2D

Figure 10.14 Box2D bodies landing on the ground

Basic Box2D Interaction and Decoration

This scene is starting to be a little bit fun, watching boxes fall off each other and the
like, but you know what would make it even more fun? The ability to move your
device around and modify your Box2D world’s gravity based on how you hold it!
This is ridiculously easy to do, so let’s give it a shot. First enable accelerometer sup-
port in your scene by adding a line to your i nit method as shown in Listing 10.22.

Listing 10.22 PuzzleLayer.mm (at the bottom of the init method)

sel f.isAccel er onet er Enabl ed = TRUE;

This tells Cocos2D that you want to receive a callback for accelerometer events in
your layer. When the accelerometer gets data, it calls a method in your layer called
accel eronet er: di dAccel er at e. Go ahead and write that now, as shown in
Listing 10.23.

Listing 10.23 PuzzleLayer.mm (after init method)

- (void)accel eroneter: (U Accel eroneter *)accel eroneter
di dAccel erate: (Ul Accel eration *)accel eration {

b2Vec2 gravity(-acceleration.y * 15, acceleration.x *15);
wor | d->Set Gravity(gravity);

Basic Box2D Interaction and Decoration

This simply converts the accelerometer input to a gravity vector. It multiplies the
accelerometer result (which typically ranges between —1 and 1) by 15, in order to get a
nice feel for gravity in the level. Since Space Viking is set up to run in landscape mode
(and accelerometer data is given in portrait orientation), it reverses the X and y coordi-
nates and flips the sign of the y coordinate to get the proper vector.

Then it simply calls Set Gravity on the world to update the gravity vector!

Compile and run your project (on your device, since accelerometer input is not
supported on the simulator), add a bunch of boxes, and rotate your device to see them
all fly around, as shown in Figure 10.15; it’s actually pretty fun!

Figure 10.15 Making Box2D bodies move with gravity and the
accelerometer

As you play with it, you may notice that if the bodies settle down, they turn gray
(which means the objects are asleep). If you try to rotate the device again, they won’t
move.

There are a couple of ways to fix this (such as running a high-pass filter over the
accelerometer input to detect if the orientation has changed enough to warrant waken-
ing the sleeping bodies), but there’s an even simpler way that works for the purposes of
this app: set the bodies as unable to sleep.

To do this, all you need to do is add one line inside your cr eat eBox At Locat i on
routine before you call Cr eat eBody, as shown in Listing 10.24.

303

304

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Listing 10.24 PuzzleLayer.mm (in createBoxAtLocation, before call to CreateBody)

bodyDef . al | owSl eep = fal se;

Now compile and run your project again, and note that the bodies no longer go to
sleep, so they will no longer get stuck.

Note

If you're interested in the high-pass filter option, check out Apple’s Event Handling Guide
for iOS (inside the Motion Events section), which does a great job explaining the topic in
further detail. Implementing this would be more efficient than simply waking all bodies,
since allowing bodies to sleep saves processing time.

Dragging Objects
Now that the scene has accelerometer input, it’s getting kind of fun, since you can see
the impact of physics on the various bodies. But it would be even cooler if you could
move objects just by dragging them!

The good news is that you can do so easily in Box2D using a special kind of joint
called a mouse joint.

Joints are a way to tell Box2D that two bodies are connected in some way and
to enforce some kind of rule about their relative motion. For example, you can tell
Box2D that two objects are connected by a distance joint, which sets them up so that
they are always the same distance apart. Or you could tell Box2D that two objects are
connected by a revolute joint, which sets them up so that they can rotate only along the
same shared axis.

You’ll learn more about joints in the next chapter, but for now you’re going to use
a specific kind of joint designed for user input: the mouse joint. The mouse joint is
meant to connect the location the user touches with an object the user wants to move
and have the object move toward the desired location as quickly as possible.

There are several steps required to use a mouse joint, so let’s go through them step
by step. First open up PuzzleLayer.h and add a new instance variable for the mouse
joint, as shown in Listing 10.25.

Listing 10.25 PuzzleLayer.h (inside @interface declaration)

b2MouseJoi nt *nmpuseJoi nt;

Then switch back to PuzzleLayer.mm and find the ccTouchBegan method. Delete
the cr eat eBox At Locat i on line and add the contents of Listing 10.26 in its place.

Listing 10.26 PuzzleLayer.mm (inside ccTouchBegan, replaces call to createBoxAtLocation)

b2AABB aabb;
b2Vec2 delta = b2Vec2(1l.0/ PTM RATI O, 1.0/ PTM RATIO);

Basic Box2D Interaction and Decoration

aabb. | ower Bound = | ocationWrld - delta;
aabb. upper Bound = |l ocationWrld + delta;

Si mpl eQueryCal | back cal | back(!l ocati onWorl d);
wor | d- >Quer yAABB(&cal | back, aabb);

To set up a mouse joint, the first thing you need to do is figure out what object
the user wants to move. You can do this by asking Box2D what object is at a certain
location.

To search for an object in the Box2D world, you need to use a method called
AABB Testing, which stands for axis-aligned bounding box testing. This is a highly
optimized method that can quickly return to you all of the objects whose bound-
ing boxes intersect a given rectangle. Then it’s up to you to figure out if any of the
returned objects actually intersect.

To see how it works, consider Figure 10.16. Here you want to test if the touch
point (represented by the small rectangle in the lower right) intersects the polygon
shape. To be able to quickly return a list of possible objects that the point could hit,
Box2D first performs an AABB test to see if the point is within the bounding box of
any of the shapes (which it is, for this polygon). You then need to perform a second
test to see if the point is actually within the bounds of the polygon itself by calling
Test Poi nt (which it isn’t, for this polygon).

Figure 10.16 AABB testing vs. actual shape intersection

The code you wrote in Listing 10.26 sets up a lower bound and an upper bound for
the AABB test, which is the equivalent of a 1-point box around the touch location,
converted to meters. It then calls the Quer yAABB function to perform the test. As a
parameter, the Quer yAABB function takes a pointer to a class as an argument. The
Quer yAABB method calls a method on this class for all of the possible intersections,
and it’s the job of the class to perform a secondary test to see whether or not there was
actually an intersection.

This Si nmpl eQuer yCal | back class doesn’t come with Box2D—you have to write
it yourself. So select your Classes\Box2D folder, go to File > New > New File...,

305

306

Chapter 10 Basic Game Physics: Adding Realism with Box2D

choose iOS > C and C++ > Header File, and click Next. Name the file
SimpleQueryCallback.h, and click Save.
Then replace SimpleQueryCallback.h with the contents of Listing 10.27.

Listing 10.27 SimpleQueryCallback.h

#i mport " Box2D. h"

class SinpleQueryCall back : public b2QueryCal | back

{
public:
b2Vec2 poi nt ToTest;
b2Fi xture * fi xtureFound;
Si npl eQueryCal | back(const b2Vec2& point) {
poi nt ToTest = point;
fixtureFound = NULL;
}
bool ReportFixture(b2Fi xture* fixture) {
b2Body* body = fi xture->Cet Body();
i f (body->Cet Type() == b2_dynani cBody) {
if (fixture->Test Point(pointToTest)) {
fixtureFound = fixture;
return fal se;
}
}
return true;
}
b

This is a very simple C++ class that derives from b2Quer yCal | back. It has
a constructor that takes the original point to test as a parameter and saves it in an
instance variable. It then overrides the virtual method Report Fi xt ur e, which is
called on every possible intersection. Inside this method, it checks to see if the body is
a dynamic body (those are the only types of objects you’ll want to move with mouse
joints) and uses Test Poi nt to see if the point actually intersects. If it does, it saves a
pointer to the fixture in an instance variable and returns f al se (which tells Box2D it
can stop looking for matches); otherwise, it returns t r ue (which tells Box2D to keep
searching).

Note that this returns only the first object found at the given point. If multiple
objects are at the current point, it just returns the first one found, but that is sufficient
for this level.

Switch back to PuzzleLayer.mm. Go ahead and add the import for this new class at
the top of your file, as shown in Listing 10.28.

Basic Box2D Interaction and Decoration 307

Listing 10.28 PuzzleLayer.mm (at the top of the file)

#i nport " Si npl eQuerycCal | back. h"

Looking back to your ccTouchBegan method, you see that your last line calls
Quer yAABB. After this method returns, the world will have called the Si npl eQuer y-
Cal | back object for each potential intersection, and the class will have figured out if
the point actually intersects anything or not. Now it’s time to make use of that infor-
mation! Continue your ccTouchBegan method by adding the lines shown in Listing
10.29 at the end of the method (but before the return statement).

Listing 10.29 PuzzleLayer.mm (at end of ccTouchBegan but before return):

if (callback.fixtureFound) {
b2Body *body = cal | back. fi xt ur eFound- >Get Body() ;

b2MouseJoi nt Def nouseJoi nt Def;

nmouseJoi nt Def . bodyA = groundBody;

nmouseJoi nt Def . bodyB = body;

mouseJoi nt Def . target = | ocati onWrl d;

nouseJoi nt Def . maxForce = 100 * body- >Get Mass();
nouseJoi nt Def . col | i deConnected = true;

nmouseJoi nt = (b2MouseJoint *) worl d->Creat eJoi nt (&museJoi nt Def) ;
body- >Set Awake(true);
return YES;

} else {
[sel f creat eBoxAtLocation:touchLocation
wi t hSi ze: CGSi zeMake(50, 50)];

This code first checks to see if a fixture was found by the Si npl eQuer yCal | back
class, and if so it gets a pointer to the body from the fixture. It then creates a mouse
joint definition, setting the parameters on the mouse joint definition as follows:

bodyA: When you specify a joint, you usually specify two bodies. For mouse joints,
you usually want the first body to be a nonmoving body, so you can specify a fixed
target location and have the target move to that location. So for bodyA, you set it
to the gr oundBody you saved away earlier.

bodyB: The body you want to move. In this case, it’s the body that was detected by
the AABB test and Si npl eQuer yCal | back.

target: Where you want the object to move to. In this case, it’s the location

tapped by the user.

308 Chapter 10 Basic Game Physics: Adding Realism with Box2D

maxForce: The maximum amount of force to apply to move the body. In this case,
you want to be able to move an object of any mass, so you give it a multiple of the
body’s mass. The larger the multiple, the faster objects will move to their target
locations.

collideConnected: Whether or not bodyA and bodyB should collide. In this
case, you still want the chosen body to collide with the ground, so you set it to
true.

Warning

It's a common mistake to forget to set col | i deConnect ed to t r ue when setting up
joints connected with ground bodies. If you forget to set this, it defaults to false, which
means that your body will no longer collide with the ground. So if you see your objects
going through your world boundaries, double check that you don’t have any joints set up
that would prevent the objects from colliding with the ground!

After creating the mouse joint definition, it passes it to the world with the
Cr eat eJoi nt method, which actually creates the joint. It also sets the body to awake
in case it was sleeping.

Note that if a fixture was not found, it runs the old method to create a new box at
that touch point.

You're almost done! Just add the methods to handle touch movement and ending, as
shown in Listing 10.30.

Listing 10.30 PuzzleLayer.mm (after ccTouchBegan)

-(void) ccTouchMved: (U Touch *)touch w thEvent: (U Event *)event {
CGPoi nt touchLocation = [touch | ocationlnView [touch view];
touchLocation =

[[CCDirector sharedDirector] convertToGL:touchLocation];
touchLocation = [sel f convert ToNodeSpace: t ouchLocati on];
b2Vec2 | ocationWrld = b2Vec2(touchLocati on. x/ PTM RATI O,

touchLocati on.y/ PTM RATI O ;
i f (nousedoint) {
nouseJoi nt - >Set Target (| ocati onWorl d);

}

-(void) ccTouchEnded: (U Touch *)touch w thEvent: (U Event *)event {
if (nousedoint) {
wor | d- >Dest r oyJoi nt (nouseJoint) ;
mouseJoi nt = NULL;

Basic Box2D Interaction and Decoration

The ccTouchMoved method simply updates the t ar get of the existing mouse
joint based on the new touch location, and the ccTouchEnded method destroys the
joint, since the movement is complete.

That’s it! Compile and run your app, and you should now be able to drag the
objects all around the screen and flick them around in fun and amusing ways!

Mass, Density, Friction, and Restitution

So far, the bodies you've added to your Box2D world have used mostly default values.
But sometimes you want some bodies to be heavier than others, or to slide along
objects more (or less), or to be more (or less) bouncy.

You can set this behavior on each fixture you create in Box2D by setting three
properties: density, friction, andrestitution. How to use these properties can
be confusing to beginners of Box2D, so we’ll run a few experiments so that you can
fully understand how they work.

Begin by opening PuzzleLayer.mm and modifying your cr eat eBoxAt Locat i on
method so it looks like Listing 10.31.

Listing 10.31 PuzzleLayer.mm (modify createBoxAtLocation to this)

- (voi d)creat eBoxAt Locati on: (CGPoi nt) | ocati on
wi t hSi ze: (CCSi ze) si ze friction: (float32)friction
restitution: (float32)restitution density: (float32)density {

b2BodyDef bodyDef ;

bodyDef . type = b2_dynam cBody;

bodyDef . position = b2Vec2(l ocati on. x/ PTM_RATI O,
| ocation.y/ PTM RATI O ;

bodyDef . al | owSl eep = fal se;

b2Body *body = worl d->Cr eat eBody(&odyDef);

b2Pol ygonShape shape;
shape. Set AsBox(si ze. wi dt h/ 2/ PTM_RATI O, si ze. hei ght/ 2/ PTM_RATI O) ;

b2Fi xt ur eDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.density = density;
fixtureDef.friction = friction;
fixtureDef.restitution = restitution;

body->Cr eat eFi xture(&f i xt ureDef);

This is almost exactly like the previous routine, except that it adds in a few extra
parameters, allowing us to specify three properties on the fixture: the density, the

309

310

Chapter 10 Basic Game Physics: Adding Realism with Box2D

friction,and the restitution. If you don’t know what these mean, don’t worry—
you’re about to learn what they mean through hands-on experimentation!

Next add some calls to the bottom of your i nit method to add three boxes to your
scene when it first loads, as shown in Listing 10.32.

Listing 10.32 PuzzleLayer.mm (at the bottom of the init method)

CGPoi nt | ocationl, location2, |ocation3;
CGCSi ze snul | Si ze, nmedSize, |argeSize;
if (U _USER | NTERFACE I DIOM) == U Userlnterfacel di onPad) {
| ocationl = ccp(200, 400);
| ocation2 = ccp(500, 400);
| ocation3 = ccp(800, 400);
smal | Si ze = CGSi zeMake(50, 50);
medSi ze = CGSi zeMake(100, 100);
| argeSi ze = CGSi zeMake(200, 200);
} else {
| ocationl = ccp(100, 200);
| ocation2 = ccp(250, 200);
| ocation3 = ccp(400, 200);
smal | Si ze = CGSi zeMake(25, 25);
medSi ze = CGSi zeMake(50, 50);
| argeSi ze = CGSi zeMake(100, 100);
}
[sel f createBoxAtLocation:locationl withSize: medSi ze
friction:0.2 restitution:0.0 density:1.0];
[sel f creat eBoxAt Location:|ocation2 withSize: medSi ze
friction:0.2 restitution:0.0 density:1.0];
[sel f createBoxAtLocation:|ocation3 withSize: medSi ze
friction:0.2 restitution:0.0 density:1.0];

This creates three boxes in the middle of your scene to play around with; each
has the same values for friction, restitution, and density as the default values
would be. Note that it sets up some locations and sizes for the boxes, which need to be
different depending on whether you’re running on the iPhone or iPad.

Now that youre creating objects when the scene starts up, you no longer want
to create boxes on touches. So comment out the line in ccTouchBegan that creates
boxes where you touch, as shown in Listing 10.33.

Listing 10.33 PuzzleLayer.mm (comment out the following line in ccTouchBegan)

//[self createBoxAtLocation:touchLocation w thSize: CGSi zeMake(50, 50)];

Compile and run, and throw the boxes around a little bit so you get an idea how
they work. Pay particular attention to how they slide along the ground, what happens

Basic Box2D Interaction and Decoration

when you throw one object into another, and how bouncy it is when it collides on the
ground.

Next replace the three cr eat eBox At Locat i on lines with the contents of Listing
10.34.

Listing 10.34 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[sel f creat eBoxAtLocation:locationl withSize:smallSize
friction:0.2 restitution:0.0 density:1.0];

[sel f createBoxAtLocation:|ocation2 withSize: medSize
friction:0.2 restitution:0.0 density:1.0];

[sel f createBoxAtLocation:|ocation3 wthSize:largeSi ze
friction:0.2 restitution:0.0 density:1.0];

This time you're creating boxes of three different sizes: a small, medium, and large
box. They still all have the default parameters though. Compile and run, and try
throwing the small box at the large box. Notice how it barely moves? Now throw the
large box at the small box. Yowza!

So this tells you something cool and interesting: Box2D computes the mass of an
object for you automatically based (in part) on the size of an object. The larger the
object, the higher the mass will be and the harder it will be to move around.

Let’s try another experiment: seeing what density does. Replace the three cr eat e-
BoxAt Locat i on lines with the contents of Listing 10.35.

Listing 10.35 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[sel f createBoxAtLocation:|ocationl withSize:smallSize
friction:0.2 restitution:0.0 density: 10.0];

[sel f createBoxAtLocation:location2 withSize: nedSi ze
friction:0.2 restitution:0.0 density:1.0];

[sel f createBoxAtLocation:|ocation3 withSize:largeSi ze
friction:0.2 restitution:0.0 density:1.0];

Note that there are still three different sizes of boxes, but the small box now has
a much higher density than the other boxes. This time when you try throwing the
small box at the large box, you’ll see it moves quite a bit, while the small box is not
impacted as much by the other boxes.

This reveals the other component that affects the mass: density. The higher the
density, the higher the mass will be, and the harder it will be to move around. Which
makes perfect sense, because as you may have learned in physics, mass = volume X
density!

Okay, next let’s play around with friction. Replace the three cr eat eBox At Locat i on
lines with the contents of Listing 10.36.

311

312

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Listing 10.36 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[sel f creat eBoxAt Location:|ocationl withSize: nedSi ze
friction:0.0 restitution: 0.0 density:1.0];

[sel f createBoxAtLocation:location2 withSize: nedSi ze
friction:1.0 restitution: 0.0 density:1.0];

[sel f createBoxAtLocation:|ocation3 withSize: medSi ze
friction:10.0 restitution: 0.0 density:1.0];

The boxes are back to being all the same size now, but the first one is set to be
extremely slippery, the second to be somewhat slippery, and the third to be not slip-
pery at all. Play around with them and see how they act.

Note

When two fixtures slide along each other, each with different friction values, Box2D
computes the friction to apply based on the geometric mean of the two fixture’s friction
values.

One final test: restitution! Replace the three cr eat eBox At Locat i on lines with
the contents of Listing 10.37.

Listing 10.37 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[sel f createBoxAtLocation:locationl withSize: nedSi ze
friction:1.0 restitution:0.0 density:1.0];

[sel f createBoxAtLocation:|location2 withSize: nedSi ze
friction:1.0 restitution:0.5 density:1.0];

[sel f createBoxAtLocation:|ocation3 withSize: medSize
friction:1.0 restitution:1.0 density:1.0];

Compile and run, and you’ll see the third box is extremely bouncy, while the sec-
ond bounces just a little, and the first not at all.

Note

When two bodies collide with each other with different restitution values, Box2D applies
the restitution value to use by choosing the maximum of the two fixtures’ restitution
values.

That about covers the tests of mass, density, friction, and restitution. In summary,
you’ve seen that

= Mass 1s automatically calculated by the volume of the shape (automatically com-
puted by Box2D based on the size of the shape) times the density.

= The more mass an object has, the more force it will take to move the object.
s The less friction an object has, the more it will slide along other objects.

= The more restitution an object has, the bouncier it will be.

Basic Box2D Interaction and Decoration

By thinking about the bodies in your game and how heavy/slippery/bouncy they
should be, you can tweak these properties and get much nicer (and more realistic, if
that’s what youre aiming for) behavior!

Decorating Your Box2D Bodies with Sprites

You're getting close to being able to have all the tools necessary to make a simple
game using Box2D, except you're missing one major piece: the ability to associate
sprites with Box2D bodies! Obviously, shipping a game with Box2D debug drawing
as your art layer wouldn’t win you any Apple Design Awards.

Now you’ll learn how to decorate Box2D bodies by decorating your objects with
some artwork for this level: a frozen Ole, blocks of ice, rocks, meteors, and even a few
deranged skulls!

The downloadable files associated with this chapter include the sprite sheets and
background files you’ll need for this scene (scene3atlas.plist,scene3atlas.png, scene3atlas-hd.
plist, scene3atlas-hd.png, puzzle_level _bkgrnd.png, puzzle_level _bkgrnd-hd.png, and puzzle_
level _bkgrnd-ipad.png). Find these files in Finder, and drag them into your Images group.
Make sure Copy items into destination group’s folder (if needed) is checked,
and click Finish.

Note

For this level, we use the hd sprite sheet for the iPad and retina display, and the non-hd
sprite sheet for the iPhone. Although the aspect ratio is different on the iPhone and iPad,
they’ll still look good as long as we place the objects in the correct spot for each device.
The background is a special case, however. It’s critical it matches up to the exact size of
each screen so we have a separate image for each case.

Note that the sprite sheets are premade for you in the resources for this chapter. How-
ever, if you'd like, you can make them yourself with TexturePacker or Zwoptex, using the
instructions from Chapter 2. You can find the sprites used in the sprite sheets in the Raw
Art folder.

The next step is to create a new subclass of GameChar act er that sprites associ-
ated with Box2D bodies will derive from so that they have a place to keep track of
the associated Box2D body. Choose the Classes\Game Objects group, and make a new
subgroup named Box2D. With the new Box2D subgroup selected, go to File > New
> New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter GameCharacter as the Subclass of, click Next, name the file Box2DSprite.mm, and
click Save.

With that done, replace the contents of Box2DSprite.h, as shown in Listing 10.38.

Listing 10.38 Box2DSprite.h

#i nport " GanmeCharacter. h"
#i nport " Box2D. h"

313

314

Chapter 10 Basic Game Physics: Adding Realism with Box2D

@nterface Box2DSprite : GaneCharacter {
b2Body *body;

}

@roperty (assign) b2Body *body;

/! Return TRUE to accept the npuse joint
// Return FALSE to reject the nouse joint

- (BOOL) nouseJoi nt Began;

@nd

This class derives from GanmeChar act er, since subclasses will need the ability to
store their current character state. It contains a single instance variable and property
for the associated Box2D body. It also defines a method that you will use to check if
the Box2D body accepts mouse joint input or not.

Next replace the contents of Box2DSprite.m, as shown in Listing 10.39.

Listing 10.39 Box2DSprite.mm

#i mport "Box2DSprite.h"

@ npl enent ati on Box2DSprite
@ynt hesi ze body;

/1 Cverride if necessary

- (BOOL) mouselJoi nt Began {
return TRUE;

}

@nd

This simply synthesizes the variable, and returns TRUE as the default behavior
for nouseJoi nt Began (which means objects should be able to be moved by mouse
joints).

Now switch back to PuzzleLayer.h and add a few instance variables inside the inter-
face, as shown in Listing 10.40.

Listing 10.40 PuzzleLayer.h (inside @interface declaration)

CCSpri t eBat chNode *sceneSprit eBat chNode;
b2Body *frozenVi ki ngBody;

This keeps track of your sprite batch node and is a handy reference to your frozen
Viking.

Basic Box2D Interaction and Decoration

Next, switch to PuzzleLayer.mm and import the header for Box2DSprite at the top of
the file, as shown in Listing 10.41.

Listing 10.41 PuzzleLayer.mm (at top of file)

#i nport "Box2DSprite.h"

Then modify your cr eat eBoxAt Locat i on one more time, as shown in Listing
10.42. The bold lines indicate the changes since last time.

Listing 10.42 PuzzleLayer.mm (modify createBoxAtLocation to this)

- (void)creat eBodyAt Locati on: (CGPoi nt) | ocati on
forSprite: (Box2DSprite *)sprite friction: (float32)friction
restitution: (float32)restitution density: (float32)density
isBox: (BOOL)isBox {

b2BodyDef bodyDef ;

bodyDef.type = b2_dynani cBody;

bodyDef . position = b2Vec2(l ocati on. x/ PTM _RATI G,
I ocation.y/ PTM RATI O ;

bodyDef . al | owSl eep = fal se;

b2Body *body = worl d->Creat eBody(&odyDef) ;

body->SetUserData(sprite);

sprite.body = body;

b2Fi xt ureDef fi xtureDef;

if (isBox) {
b2PolygonShape shape;
shape.SetAsBox(sprite.contentSize.width/2/PTM_RATIO,

sprite.contentSize.height/2/PTM_RATIO);

fixtureDef.shape = &shape;

} else {
b2CircleShape shape;
shape.m radius = sprite.contentSize.width/2/PTM_RATIO;
fixtureDef.shape = &shape;

fixtureDef.density = density;
fixtureDef.friction = friction;
fixtureDef.restitution = restitution;

body->Cr eat eFi xt ure(&f i xt ur eDef);

315

316

Chapter 10 Basic Game Physics: Adding Realism with Box2D

There are a few interesting differences this time. First, the routine takes a parameter
of a Box2DSprit e (our new subclass of GameChar act er), and sets this as the user
data of the Box2D body. It also uses the content size of the sprite to figure out the size
of the box to create.

Note

The content size of a sprite includes any transparent space that may be in the sprite
image. This isn’t a problem for the puzzle level, as the sprites don’t have any extra trans-
parent space, but if you're making a game where your images do, you will have to modify
the Box2D body to map to the actual image more closely. You'll learn how to do this with
Vertex Helper in the next chapter!

The routine also has a new parameter specifying whether to create a box (as before)
or, if not, a circle. Why would we want to make a circle? Well, for some of the shapes
in this level, a circle is a better match than a box for the sprite. Creating a circle is sim-
ply a matter of creating a b2Gi r cl eShape instead of a b2Pol ygonShape and setting
the radius of the circle.

Note that the method also has a name change (cr eat eBodyAt Locat i on rather
than cr eat eBox At Locat i on), since it now can make circles as well as boxes.

Next create several routines, which will use this method to create Box2D objects
associated with sprites, as shown in Listing 10.43.

Listing 10.43 PuzzleLayer.mm (above init method)

- (void)createMet eor At Locati on: (CGPoint)l ocation {

Box2DSprite *sprite = [Box2DSprite spriteWthSpriteFranmeNane: @ net eor.
png”];

sprite. ganeObj ect Type = kMet eor Type;

[sel f createBodyAt Location:|ocation forSprite:sprite friction:0.1
restitution:0.3 density: 1.0 isBox: FALSE];

[sceneSpriteBat chNode addChild:sprite];

}

- (void)createSkul | At Location: (CGPoint)l ocation {

Box2DSprite *sprite = [Box2DSprite spriteWthSpriteFranmeNane: @ skul | .
png"];

sprite. ganeObj ect Type = kSkul | Type;

[sel f createBodyAtLocation:location forSprite:sprite friction:0.5
restitution:0.5 density:0.25 isBox: FALSE];

[sceneSpriteBat chNode addChild:sprite];

}

- (void)createlLongBl ockAt Locati on: (CGPoi nt)l ocation {

Box2DSprite *sprite = [Box2DSprite spriteWthSpriteFrameNane: @I ong_
bl ock. png"];

sprite. ganeObj ect Type = kLongBl ockType;

Basic Box2D Interaction and Decoration

[sel f createBodyAt Location:location forSprite:sprite friction:0.2
restitution: 0.0 density: 1.0 isBox: TRUE];

[sceneSpriteBat chNode addChild:sprite];
}

- (void)createl ceBl ockAt Locati on: (CGPoi nt)l ocation {

Box2DSprite *sprite = [Box2DSprite spriteWthSpriteFraneNane: @ice_
bl ock. png"];

sprite. ganeOoj ect Type = kl ceType;

[sel f createBodyAtLocation:|location forSprite:sprite friction:0.2
restitution: 0.2 density: 1.0 isBox: TRUE];

[sceneSpriteBat chNode addChil d:sprite];

}

- (voi d)createFrozenQ eAt Locati on: (CGPoi nt)l ocation {

Box2DSprite *sprite = [Box2DSprite spriteWthSpriteFrameNane: @frozen_
ol e.png"];

sprite. ganeObj ect Type = kFrozenVi ki ngType;

[sel f createBodyAtLocation:location forSprite:sprite friction:0.1
restitution:0.2 density:1.0 i sBox: TRUE];

[sceneSpriteBat chNode addChil d:sprite];

frozenVi ki ngBody = sprite. body;

- (voi d)creat eRockAt Locati on: (CGPoi nt) | ocation {

Box2DSprite *sprite = [Box2DSprite spriteWthSpriteFraneNane: @rock.
png"];

sprite. ganeObj ect Type = kRockType;

[sel f createBodyAt Location:location forSprite:sprite friction:3.0
restitution: 0.0 density: 1.0 isBox: TRUE];

[sceneSpriteBat chNode addChild:sprite];

This is pretty straightforward: each routine simply creates a Box2DSpri t e, passing
in the appropriate sprite frame name from the sprite sheet, sets the game object type
and friction/restitution/density/i sBox parameters appropriately, and adds the
new sprite to the sprite batch node.

Now delete the calls to cr eat eBox At Locati on in your i nit method and replace
them with the contents of Listing 10.44.

Listing 10.44 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

if (U _USER | NTERFACE_| DI OM) == Ul User | nterfacel di onPad) {
[[CCSpriteFranmeCache sharedSpriteFranmeCache]
addSpriteFramesWthFil e: @scene3at!| as-hd. plist"];
sceneSpriteBat chNode = [CCSprit eBat chNode
bat chNodeW t hFi | e: @ scene3at | as- hd. png"];

317

318

Chapter 10 Basic Game Physics: Adding Realism with Box2D

[sel f addChil d: sceneSpriteBat chNode z:0];
[sel f createMeteorAtLocation: ccp(200, 600)];
[sel f createSkull At Location: ccp(200, 500)];
[sel f createRockAtLocation: ccp(400, 100)];
[sel f createl ceBl ockAtLocati on: ccp(400, 400)];
[sel f createLongBl ockAt Locati on: ccp(400, 300)];
[sel f createFrozend eAt Location: ccp(100, 400)];
[sel f createRockAtLocation: ccp(300, 400)];
[CCText ure2D
set Def aul t Al phaPi xel For mat : KCCText ur e2DPi xel For mat _RGB565] ;
CCSprite *background = [CCSprite
spriteWthFile: @puzzl e_| evel _bkgrnd-ipad. png"];
backgr ound. anchor Poi nt = ccp(0,0);
[CCText ure2D
set Def aul t Al phaPi xel For mat : KCCText ur e2DPi xel For mat _Def aul t];
[sel f addChil d: background z:-1];
} else {
[[CCSpriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @scene3atlas. plist"];
sceneSpriteBat chNode = [CCSprit eBat chNode
bat chNodeW t hFi | e: @ scene3at | as. png"];
[sel f addChil d: sceneSpriteBat chNode z:0];
[sel f createMeteorAtLocation: ccp(100, 300)];
[sel f createSkull At Location: ccp(100, 250)];
[sel f createRockAtLocation: ccp(200, 50)];
[sel f createl ceBl ockAt Locati on: ccp(200, 200)];
[sel f createlLongBl ockAt Location: ccp(200, 150)];
[sel f createFrozend eAtLocation: ccp(40, 200)];
[sel f createRockAtLocation: ccp(150, 200)];
[CCText ur e2D
set Def aul t Al phaPi xel For mat : KCCText ur e2DPi xel For mat _RGB565] ;
CCSprite *background = [CCSprite
spriteWthFile: @puzzle_|l evel _bkgrnd. png"];
backgr ound. anchor Poi nt = ccp(0, 0);
[CCText ure2D
set Def aul t Al phaPi xel For mat : kCCText ur e2DPi xel For mat _Def aul t];
[sel f addChil d: background z:-1];

Listing 10.44 adds some bodies to the scene at particular locations. Note there is
one case for the 1Pad and one case for the iPhone, so the appropriate sprite sheets are
loaded and the sprites are put at the correct positions for each device.

It also sets up a background image of the level. Note that it sets the pixel format to
RGB565 before loading the background image—it’s good practice to use a lower qual-
ity pixel format when loading large images (such as background images) to conserve
memory usage, which is quite limited on 1OS devices.

Basic Box2D Interaction and Decoration

Warning

If you don’t make wise use of setting pixel formats and load a lot of massive images,
eventually you will run out of memory and the OS will shut down your app. To learn
more about pixel formats, check out this great post written by Ricardo Quesada on the
Cocos2D site:

http://www.cocos2d-iphone.org/archives/61

To review, at this point you've created a sprite sheet and then created several Box2D
bodies with the same dimensions as each sprite. But you're missing a key piece: some-
how, you need to connect the locations of the sprites to the locations of the Box2D
bodies.

For each animation frame of your game, you should update your sprites based
on the locations of the Box2D bodies—hence you need to add some code to your
updat e method. Find your updat e method and add the contents of Listing 10.45 to
the bottom of the method.

Listing 10.45 PuzzleLayer.mm (add at end of update method)

for(b2Body *b = world->GetBodyList(); b !'= NULL; b = b->CGetNext()) {
if (b->GetUserData() != NULL) {
Box2DSprite *sprite = (Box2DSprite *) b->GetUserData();
sprite.position = ccp(b->GetPosition().x * PTM RATI O
b->CGet Position().y * PTM RATIO;
sprite.rotation = CC_RADI ANS_TO DEGREES(b->Cet Angl e() * -1);

This simply loops through all of the bodies in the world and checks to see if their
user data isn’t null. Remember how in cr eat eBodyAt Locat i on it now sets the user
data for the Box2D body to be the sprite? This is where it’s used.

It then sets the position and rotation of the sprite based on the Box2D body’s posi-
tion. Note that it has to apply the PTM_RATI Oand also convert from the Box2D angle
(radians) to the Cocos2D angle (degrees). There’s also a difference between clockwise
and counterclockwise angles that is corrected by the —1.

One last thing: you've been experimenting with the accelerometer, but for the final
puzzle level, you don’t want the accelerometer enabled for the style of puzzle you're
going to build. So comment out the i sAccel er onet er Enabl ed line in your i nit
routine, as shown in Listing 10.46.

Listing 10.46 PuzzleLayer.mm (in init method, comment out the following line)

/1 sel f.isAccel eroneterEnabl ed = TRUE;

319

http://www.cocos2d-iphone.org/archives/61

320

Chapter 10 Basic Game Physics: Adding Realism with Box2D

Compile and run your code, and you should now see a bunch of Box2D objects
decorated with sprites, as shown in Figure 10.17. You can try moving the various
objects around and check out their various density/restitution/friction properties!

Figure 10.17 Box2D objects decorated with sprites

At this point you've learned a ton about Box2D—how to create bodies of square
and circle shapes, how to move them around the screen with mouse joints, and even
how to decorate them with sprites. You now have enough knowledge about Box2D to
make a simple puzzle game out of this, so let’s add in some game logic and polish next!

Making a Box2D Puzzle Game

The goal of this puzzle game is to get Ole into the spot where the sun is shining so
his ice block can melt. But of course, in order for this to work, you need some code to
detect when Ole reaches that spot.

One way to accomplish this is to simply check the position of Ole each update and
check if he is within a set position. This would work, but there’s another way that
leverages the power of Box2D.

Since Box2D is a physics engine that models what happens when objects col-
lide into each other, it already has code to detect when objects collide so that it can
respond appropriately. You can make use of this by registering for notifications from
Box2D when collisions occur or by asking Box2D for a list of the currently active col-
lisions for an object.

For this mini-game, you want to know when Ole collides with the bottom right
corner of the scene. One way of doing this is to make a very thin object at that posi-
tion and check to see when Ole collides with that dummy object.

Making a Box2D Puzzle Game

But this isn’t ideal, because you might want to detect if Ole hits near, but not
exactly on, the bottom right corner. Luckily, Box2D provides a very nice solution to
this: sensors!

Sensors are just Box2D objects that don’t cause any collision responses. So you can
have an “imaginary box” in the lower right corner that Ole and other objects can just
pass through as if it weren’t there. However, Box2D will still report when objects col-
lide with the imaginary box object, so you can look for that and mark the level as won
when Ole reaches that spot!

Let’s see this in action. First add two instance variables in PuzzleLayer.h, as shown
in Listing 10.47.

Listing 10.47 PuzzleLayer.h (inside @interface declaration)

b2Body *sensor Body;
BOOL hasWn;

These instance variables keep track of the sensor body and whether or not the user
has won the level.

Then switch over to PuzzleLayer.mm and import GameManager. h at the top of the
file, as shown in Listing 10.48.

Listing 10.48 PuzzleLayer.mm (at top of file)

#i nport " GaneManager. h"

You had to import GameManager. h because you’ll need to use GameManager later
on to go to the level completed scene. Next add a new method to create the sensor
that represents the spot where the sun is shining, as shown in Listing 10.49.

Listing 10.49 PuzzleLayer.mm (before init method)

- (void)createSensor {
CGSi ze wi nSize = [[CCDirector sharedDirector] w nSize];
CGSi ze sensor Si ze = CGSi zeMake(100, 50);
if (U _USER | NTERFACE_| DI OM) == Ul User | nterfacel di onPhone) {
sensor Si ze = CGSi zeMake(50, 25);

}

b2BodyDef bodyDef;
bodyDef.type = b2_staticBody;
bodyDef . position =
b2Vec2((w nSi ze. wi dt h- sensor Si ze. wi dt h/ 2) / PTM_RATI O,
(sensor Si ze. hei ght/ 2)/ PTM_RATI O) ;
sensor Body = wor | d->Cr eat eBody(&odyDef);

321

322 Chapter 10 Basic Game Physics: Adding Realism with Box2D

b2Pol ygonShape shape;
shape. Set AsBox(sensor Si ze. wi dt h/ PTM_RATI O,
sensor Si ze. hei ght/ PTM_RATI O) ;

b2Fi xt ureDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.isSensor = true;

sensor Body- >Cr eat eFi xt ure(&f i xt ureDef);

This sets up a body and attaches a box-shaped fixture to it in the usual manner.
However, there is one difference—it sets i sSSensor to t r ue on the fixture. This
makes the object detect collisions but still allows anything to pass through.

Next add the code to call your new cr eat eSensor method and a method to dis-
play the instructions for the level (which you will write soon), as shown in Listing 10.50.

Listing 10.50 PuzzleLayer.mm (inside init method)

[sel f createSensor];
[sel f instructions];

If you implemented a stub for the instructions method you’re about to write, you
could compile and run your project now and you’d see a strange green box in the
lower right corner representing the sensor. However, it wouldn’t do anything, since
you haven’t added any code to look for the collision yet. So let’s add that now by add-
ing the contents of Listing 10.51 to the bottom of your update method.

Listing 10.51 PuzzleLayer.mm (at the bottom of the update method)

if (!haswon) {
b2Cont act Edge* edge = frozenVi ki ngBody- >Get Cont act Li st ();
whi | e (edge)
{
b2Cont act* contact = edge->contact;
b2Fi xture* fixtureA = contact->Cet Fi xtureA();
b2Fi xture* fixtureB = contact->GetFi xtureB();
b2Body *bodyA = fi xtureA >Get Body();
b2Body *bodyB = fi xt ureB->Get Body();
i f (bodyA == sensorBody || bodyB == sensorBody) {
hasWwn = true;
[self win];
br eak;

}

edge = edge->next;

Making a Box2D Puzzle Game

This code checks if the user has won, and if not, it checks if Ole is colliding with
the sensor.

How does this work? Well, Box2D maintains a list of all of the contacts that one
body makes to other bodies. Each contact contains information on exactly what points
are touching as well as references to the fixtures that are touching (from which you
can get the bodies). So this simply looks through Ole’s current contacts and checks if
any of them are the sensor body. If so, it sets the level as won and calls a method you’ll
write in a second to perform the winning animations.

Note

This way of doing things has a small problem. It uses only the current state of Ole’s con-
tacts. If Ole was moving very quickly and moved through the sensor area within a single
Box2D step, this would not pick up the collision. Next chapter, we show a more robust
way of detecting collisions with Box2D (at the cost of extra complexity), but for this level,
this manner of checking collisions works quite fine!

The last step is to add the code to display the instructions at the beginning of the
level and display an effect when the player wins (see Figure 10.18). Add the code in
Listing 10.52 above your i ni t method.

Listing 10.52 PuzzleLayer.mm (above init method)

- (void)instructions {

CGSi ze winSize = [[CCDirector sharedDirector] w nSize];

CCLabel TTF *l abel = [CCLabel TTF | abel WthString: @Melt the Viking!"
font Nane: @ Hel vetica" fontSize: 48.0];

| abel . position = ccp(w nSi ze.w dth/2, wi nSize.height/2);

| abel . scal e = 0. 25;

[sel f addChil d: | abel];

CCScal eTo *scal eUp = [CCScal eTo acti onWthDuration: 1.0 scale:1.2];

CCScal eTo *scal eBack = [CCScal eTo acti onWthDuration: 1.0 scale:1.0];

CCDel ayTi ne *delay = [CCDel ayTi ne acti onWthDuration:5.0];

CCFadeQut *fade = [CCFadeQut actionWthDuration:2.0];

CCSequence *sequence = [CCSequence actions:scal eUp, scal eBack, del ay,
fade, nil];

[l abel runAction:sequence];

}
- (voi d)wi nConpl ete: (id)sender {
[[GaneManager sharedGaneManager] setHasPl ayer Di ed: NJ ;
[[GaneManager shar edGaneManager]
runSceneWt hl D: kLevel Conpl et eScene] ;
}

- (void)win {
CGSi ze wi nSize = [[CCDirector sharedDirector] w nSize];

323

324 Chapter 10 Basic Game Physics: Adding Realism with Box2D

CCLabel TTF *1 abel = [CCLabel TTF | abel WthString: @ You Wn!"
font Name: @ Hel vetica" fontSize: 48.0];

| abel . position = ccp(w nSize.w dth/2, wi nSize. height/2);
| abel . scal e = 0. 25;
[sel f addChild: | abel];

CCScal eTo *scal eUp = [CCScal eTo actionWthDuration:1.0 scale:1.2];
CCScal eTo *scal eBack = [CCScal eTo actionWthDuration:1.0 scale:1.0];
CCDel ayTi ne *delay = [CCDel ayTi me actionWthDuration:2.0];
CCCal | FuncN *w nConpl ete = [CCCal | FuncN acti onWt hTarget: sel f
sel ector: @el ector (wi nConplete:)];
CCSequence *sequence = [CCSequence actions: scal eUp, scal eBack, delay,
wi nConpl ete, nil];
[l abel runAction: sequence];

This uses a set of CCActi ons (which you learned about in Chapter 5) to animate
a label (which you learned about in Chapter 6) to zoom in and out, wait a bit, then
transition to the level complete scene.

Compile and run the code, and if everything works well, you should be able to
drag Ole to the bottom right corner of the scene and win the level!

Figure 10.18 Sensor detecting Ole reaching target location

Ramping It Up
You may notice one major problem with the level at this point: it’s just way too easy!
As it stands, you can simply pick up frozen Ole and drag him over to the finish zone.

Making a Box2D Puzzle Game 325

To make things more challenging, you’ll set things up so that you can’t move cer-
tain objects directly, such as Ole or the long stone block, and you’ll also add a bunch
of extra objects to clutter up the space. While you’re at it, you’ll add a little extra
interactivity by adding sound effects and making skulls “pop” and disappear when you
tap them.

Up to this point, you’ve been using the same subclass of CCSpri t e for all of the
sprites (Box2DSprit e) because they all had the same behavior and it was easy to do.
But now you want different behavior for each object, so to keep your code nice and
organized, you’ll subclass Box2DSpri t e for each one.

Note that you're about to embark upon writing a bunch of code for this! But don’t
worry—most of the code that follows is pretty straightforward, and if you don’t want
to type it all, you can copy/paste it from the sample project (or copy/paste the relevant
bits from file to file).

So take a big stretch, maybe grab some munchies and a soda, and get ready for some
coding!

Start by adding a new file for the first subclass of Box2DSprit e. Select the Classes\
GameObjects\Box2D group, go to File > New > New File..., choose iOS > Cocoa
Touch > Objective-C class, and click Next. Enter Box2DSprite as the Subclass of,
click Next, name the file Meteor.mm (note the .mm extension, since it imports Box2D),
and click Save.

Now repeat this for the other objects in this scene: Skull.mm, Rock.mm, IceBlock.mm,
LongBlock.mm, and FrozenOle.mm.

Next, replace the contents of Meteor.h with the contents of Listing 10.53.

Listing 10.53 Meteor.h

#i nport "Box2DSprite.h"
@nterface Meteor : Box2DSprite {

}

@nd

There’s nothing fancy here—it’s just a subclassing of Box2DSprit e. Repeat
the above for the rest of the headers: Skull.h, Rock.h, IceBlock.h, LongBlock.h, and
FrozenOle.h, replacing Meteor with the appropriate class name for each file.

Next onto the implementations for each of these classes. Start by replacing the con-
tents of FrozenOle.mm with the contents of Listing 10.54.

Listing 10.54 FrozenOle.mm

#i nport "Frozend e. h"

@ npl enentation Frozend e

326 Chapter 10 Basic Game Physics: Adding Realism with Box2D

-(id) init {
if((self = [super init])) {
[sel f setDi splayFrane: [
[CCSpriteFraneCache sharedSpriteFranmeCache]
spriteFraneByNane: @frozen_ol e. png"]];
ganeObj ect Type = kFrozenVi ki ngType;
}

return self;

- (BOOL) nouseJoi nt Began {
return FALSE;

}

@nd

This simply sets the display frame to be the frozen Ole image and sets up the game
object type appropriately. It’s nice to encapsulate this logic inside the Fr ozend e class
itself so the main game level doesn’t have to contain knowledge about what sprite
frame to use or the object type for this sprite.

Note

You could keep the organization even cleaner by refactoring the logic to construct the
Box2D body for this object into the i ni t method for this class as well. However, in the
interest of clarity and time in this chapter, you will keep things as they are.

Note that the nopuseJoi nt Began method returns false when the user tries to start
a mouse joint on the body (meaning you cannot move Ole by dragging directly).
Next replace LongBlock.mm with a similar implementation, as shown in Listing 10.55.

Listing 10.55 LongBlock.mm

#i nport "LongBl ock. h"
@ npl enent ati on LongBl ock

-(id) init {
if((self = [super init])) {
[sel f setDi splayFrane: [
[CCSprit eFraneCache sharedSpriteFraneCache]
spriteFraneByNane: @I ong_bl ock. png"]1];
ganeObj ect Type = kLongBl ockType;
}

return self;

Making a Box2D Puzzle Game

- (BOOL) nouseJoi nt Began {
return FALSE;

}

@nd

This is very similar in behavior to the Frozend e class, so there’s not much to dis-
cuss here. Next replace IceBlock.mm, as shown in Listing 10.56.

Listing 10.56 IceBlock.mm

#i nport "I ceBl ock. h"
@ nmpl enent ati on | ceBl ock

-(id) init {
if((self = [super init])) {
[sel f setDisplayFrane: [
[CCSpriteFraneCache sharedSpriteFrameCache]
spriteFraneByNane: @i ce_bl ock. png"]1];
gameoj ect Type = kil ceType;
}

return self;

}

@nd

Again, similar implementation, except this time it doesn’t override nouseJoi nt -
Began, so it accepts the default behavior (to allow the mouse joint).
Next up, replace Rock.mm with the contents of Listing 10.57.

Listing 10.57 Rock.mm

#i nport " Rock. h"
#i mport " Si npl eAudi oEngi ne. h"

@ npl enent ati on Rock

-(id) init {
if((self=[super init])) {
ganeObj ect Type = kRockType;
[sel f setDisplayFrane: [
[CCSpriteFraneCache sharedSpriteFraneCache]
spriteFraneByNane: @rock. png"]];
}

return self;

327

328 Chapter 10 Basic Game Physics: Adding Realism with Box2D

- (BOOL) nouseJoi nt Began {
PLAYSOUNDEFFECT(PUZZLE _ROCK1) ;
return TRUE;

}

@nd

Similar implementation, except here we spice things up a bit by playing a sound
effect when the user begins to move the rock.

Next replace Meteor.mm with the contents of Listing 10.58, which is similar but
plays a different sound effect.

Listing 10.58 Meteor.mm

#i nport "Meteor.h"
#i nport " Si npl eAudi oEngi ne. h"

@ npl enent ati on Met eor

-(id) init {
if((self=[super init])) {
ganeObj ect Type = kMet eor Type;
[sel f setDisplayFrane: [
[CCSpriteFraneCache sharedSpriteFraneCache]
spriteFraneByNane: @ net eor. png"]];
}

return self;

- (BOOL) nouseJoi nt Began {
PLAYSOUNDEFFECT(PUZZLE_METEOR) ;
return TRUE;

}

@nd

Finally, replace Skull.mm with the contents of Listing 10.59.

Listing 10.59 Skull.mm

#i nport "Skul|.h"
#i nport " Si npl eAudi oEngi ne. h"

@ npl enent ati on Skul |

S(id) init {
if((self=[super init])) {

Making a Box2D Puzzle Game

ganeObj ect Type = kSkul | Type;
[sel f setDisplayFrane: [
[CCSpriteFraneCache sharedSpriteFranmeCache]
spriteFraneByNane: @skul | . png"]];

return self;

- (voi d)shrinkDone: (i d)sender {
[sel f renmoveFronPar ent AndCl eanup: YES] ;

}

-(voi d) changeSt at e: (Character St at es) newSt ate {
[sel f setCharacterState: newState];

switch (newState) {
case kSt at eDead:

{
CCLOG @ Skul | ->Changing State to Dead");
PLAYSOUNDEFFECT(PUZZLE_SKULL) ;
body->Get Wor | d() - >Dest r oyBody(body) ;
body = NULL;
CCScal eTo *growAction = [
CCScal eTo actionWthbDuration: 0.1 scale:1.2];
CCsScal eTo *shrinkAction =
[CCScal eTo actionWthDuration: 0.1 scale:0.1];
CCCal | FuncN *doneAction = [CCCal | FuncN acti onWthTarget: sel f
sel ector: @el ector (shrinkDone:)];
CCSequence *sequence = [CCSequence acti ons:
growActi on, shrinkAction, doneAction, nil];
[sel f runAction: sequence];
br eak;
}
defaul t:
CCLOG(@ Unhandl ed state % in Skull", newState);
br eak;
}

- (BOOL) npbuseJoi nt Began {
if (self.characterState == kStateDead) return FALSE;
[sel f changeSt at e: kSt at eDead] ;
return FALSE;

@nd

329

330 Chapter 10 Basic Game Physics: Adding Realism with Box2D

In the case of the skull, when the user begins to tap the skull, it sets the state of the
skull to dead and returns false (mouse joint not allowed). When the state is changed to
dead, it performs the following steps:

1. Destroys the Box2D body by calling Dest r oyBody(), passing in the saved away
Box2D body as a parameter.

2. Sets the body pointer to NULL.

3. Runs a little animation showing the skull popping away with Cocos2D actions,
with a scheduled callback upon complete.

4. The callback uses r enpveFr onPar ent Andd eanup to remove the sprite from
the scene.

Okay, time to integrate these new classes. Switch to PuzzleLayer.mm and add some
imports to the top of the file, as shown in Listing 10.60.

Listing 10.60 PuzzleLayer.mm (at the top of the file)

#i nport "Meteor. h"

#i nport "Skull.h"

#i mport "Rock. h"

#i mport "I ceBl ock. h"

#i nport "LongBl ock. h"

#i nport "Frozend e. h"

#i nport " Si npl eAudi oEngi ne. h"

Then go to creat eMet eor At Locat i on, delete the first two lines, and replace

them with a new line to create a meteor with the new Met eor class, as shown in List-
ing 10.61.

Listing 10.61 PuzzleLayer.mm (modify createMeteorAtLocation)

- (void)createMeteorAtLocation: (CGPoint)l ocation {

Met eor *sprite = [Meteor node];

[sel f createBodyAt Location:|ocation forSprite:sprite
friction:0.1 restitution: 0.3 density:1.0 isBox: FALSE];

[sceneSpriteBat chNode addChild:sprite];

Now repeat this for the other methods (cr eat eSkul | At Locat i on, creat eLong-
Bl ock At Locat i on, etc.), using the appropriate class for each method.

Next go to the i nit method and add some code at the bottom to start up the
background music and add some extra objects to make the level more interesting, as
shown in Listing 10.62.

Making a Box2D Puzzle Game

Listing 10.62 PuzzleLayer.mm (at the bottom of the init method)

for(int i =0; i <10; ++i) {
if (U _USER I NTERFACE IDIOM) == Ul Userlnterfacel di onPad) {
[sel f createSkull At Location: ccp(200, 700)];
} else {
[sel f createSkull At Location: ccp(100, 250)];
}
}
for(int i =0; i <2; ++i) {
if (U _USER | NTERFACE_| DI OM) == Ul User|nterfacel di onPad) {
[sel f createMeteorAtlLocation:ccp(300, 600)];
[sel f creat eRockAt Location: ccp(300, 600)];
[sel f createl ceBl ockAt Locati on: ccp(300, 600)];
} else {
[sel f createMeteorAtlLocation:ccp(100, 250)];
[sel f creat eRockAt Location: ccp(100, 250)];
[sel f createl ceBl ockAt Location: ccp(100, 250)];

Note that you're adding all of the bodies at the same locations. That is okay because
Box2D automatically spreads out the bodies when the level starts so they aren’t collid-
ing. You could also modify this to put the bodies at specific locations if you like.

While you’re in the i nit method, also comment out the line to set up debug
drawing, since you don’t need it anymore, as shown in Listing 10.63.

Listing 10.63 PuzzleLayer.mm (comment out this line in the init method)

//[self setupDebugDraw;

One final step! Go to the ccTouchBegan method, right after you call cal | back.
fixtureFound->Get Body(), and add the three lines of code shown in Listing 10.64.

Listing 10.64 PuzzleLayer.mm (inside ccTouchBegan, after callback.fixtureFound->GetBody())

Box2DSprite *sprite = (Box2DSprite *) body->Cet UserData();
if (sprite == NULL) return FALSE;
if(![sprite nouseJointBegan]) return FALSE;

This calls the mouseJoi nt Began method on the objects so they have a chance to
respond to (or cancel) the mouse joint.

Phew—you're done! Compile and run the code, and now you should be able to
hear sound effects when you move a rock or a meteor and see the skulls disappear
when you tap them. And best of all, you've ramped up the difficulty, since you can no

331

332

Chapter 10 Basic Game Physics: Adding Realism with Box2D

longer move Ole or the long ice block directly, and there are more objects blocking
the way, so you’ll have to use a little physics to win! See Figure 10.19.

Figure 10.19 The final puzzle level!

Summary

You have developed a cool mini-puzzle game, using Box2D to handle the game
physics automatically. You should now be familiar with the most important concepts
in Box2D, such as bodies, fixtures, density, restitution, and friction. You also have
hands-on experience adding bodies to the world, skinning them with sprites, and add-
ing simple collision checking and game logic.

In the next level, you take this a step further and see how you can use Box2D to
create a side-scrolling action game, complete with vehicles, bridges, motors, and more!

Challenges

1. Try to modify the level to be a different puzzle by moving the positions of the
Box2D bodies to different locations or adding more bodies or deleting some.
Can you come up with an interesting challenge to stump your friends?

2. Try creating your own sprite (perhaps a snowball?) and add it to the scene, as
you did with the other types of sprites/bodies.

3. To add to the challenge, create a new body type (perhaps an electrified power
generator?) that the Frozen Ole can’t touch without losing the level.

11

Intermediate Game Physics:
Modeling, Racing, and Leaping

In Chapter 10, “Basic Game Physics: Adding Realism with Box2D,” you learned the basics
of using the Box2D physics engine. Specifically, you learned how to create basic shapes, decorate
them with sprites, and use gravity. In the process, you made your own simple puzzle game with
Box2D physics!

Although the level you made is quite cool, it barely scratches the surface of what you can do
with Box2D. You’re not limited to simple shapes such as squares or circles with Box2D—you
can make more complicated shapes and connect multiple bodies together to create objects such as
vehicles. You’re also not limited to using gravity to move your objects—you can also apply forces,
impulses, and motor effects to move your objects through your level in realistic ways.

In this chapter, you create an action-packed level where you move a mine cart with wheels
based on accelerometer input. You race the cart in a side-scrolling level (Figure 11.1) over rocky
terrain, tap to jump through the air, and learn a lot more about using Box2D along the way!

Figure 11.1 The Box2D-enabled side-scrolling action level you make in
this chapter

334

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Getting Started

To get started with this level, you first need to get a basic Box2D scene set up—
then you can build from there, adding features bit by bit. In this section you add the
required resource files for this chapter to your project and create a basic Box2D scene
as a starting point.

You should be familiar with how to do the code in this section based on what you
learned in Chapter 10, but this will be a great refresher to make sure you mastered
everything. And don’t worry—before you know it, you’ll be done with the initial
setup and on to the fun stuft!

Adding the Resource Files

Go ahead and download the resource files for this chapter (if you haven’t already) so
you can add the required images, sounds, and property lists to your project.

Once you download the resource files, you will see several directories of files
(Images\Backgrounds, Images\TextureAtlases, Sounds, and Plists), as shown in Figure 11.2.

Figure 11.2 Resources for Chapter 11

Drag the contents of the Images directory into the similarly named Images group
in Xcode, and drag the contents of the Plists directory into the similarly named Plists
group in Xcode.

Getting Started

Note

You do not need to add the contents of the Raw Art—Do Not Add! folder to your project—
that folder contains the images inside the sprite sheet in case you want to try making the
sprite sheet yourself with TexturePacker or Zwoptex.

Now that you have the files you need for Chapter 11 added, it’s time to create a
basic Box2D scene for the level.

Creating a Basic Box2D Scene

You start simple for the scene for this level and just create a Box2D world and one
sprite-decorated Box2D body for Ole’s cart.

The scene for this level contains two layers: one for the main action of the scene
(the cart racing and jumping) and one to contain the user interface (win/lose text).

Note

The reason you use separate layers for the user interface (Ul) elements and the action
elements in this scene is related to how scrolling is implemented for this scene. As you'll
see later, you implement scrolling by moving the action layer itself left or right to keep the
player centered as he or she moves through the scene.

By keeping the action layer and the Ul layer separate, moving the action layer won't affect
the Ul elements, and they will always stay at the right spots on your screen.

First, make a class for the user interface layer. Control-click on the Classes\Scenes
group in Xcode, select New Group, then rename the new folder that was created
to Scene4. Then with the Scene4 group selected, go to File > New > New File...,
choose i0S > Cocoa Touch > Objective-C class, and click Next. Enter CCLayer
as the Subclass of, click Next, name the file Scene4UILayer.m, and click Save.

Open Scene4UILayer.h and replace it with the contents of Listing 11.1.

Listing 11.1 Scene4UlLayer.h

#i mport "cocos2d. h"

@nterface Scened4Ul Layer : CCLayer {
CCLabel TTF *| abel ;
}

- (BOOL)displayText: (NSString *)text
andOnConpl et eCal | Target: (i d)target sel ector: (SEL)sel ector;

@nd

This is just a standard subclass of CCLayer . It contains a reference to a label that is
used to display text to the user and a function that displays a line of text to the screen

335

336 Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

and runs a callback upon completion. You use this to display text on the screen, such
as when the level begins or when the player wins or loses.
Next switch to Scene4UILayer.m and replace it with the contents of Listing 11.2.

Listing 11.2 Scene4UlLayer.m

#i mport "ScenedUl Layer. h"
@ npl enent ati on Scene4Ul Layer

- (id)yinit {

if ((self = [super init])) {
CGSi ze wi nSi ze = [CCDirector sharedDirector].w nSi ze;
| abel = [CCLabel TTF | abel WthString: @" fontNane: @ Hel vetica"

fontSi ze: 48. 0] ;

| abel . position = ccp(w nSize.w dth/2, wi nSize. height/2);
| abel . visible = NG
[sel f addChild: | abel];

}

return self;

}

- (BOOL)di splayText: (NSString *)text
andOnConpl eteCal | Target: (i d)target selector: (SEL)selector {
[l abel stopAllActions];
[l abel setString:text];
| abel . visible = YES;
| abel . scale = 0.0;
| abel . opacity = 255;

CCScal eTo *scal eUp = [CCScal eTo actionWthDuration:0.5 scale:1.2];
CCsScal eTo *scal eBack =
[CCScal eTo actionWthDuration:0.1 scale:1.0];
CCDel ayTi ne *delay = [CCDel ayTi me actionWthDuration:2.0];
CCradeCQut *fade = [CCFadeQut actionWthDuration:0.5];
CCHi de *hide = [CCHi de action];
CCCal | FuncN *onConpl ete =
[CCCal | FuncN actionWthTarget:target selector:selector];
CCSequence *sequence = [CCSequence actions: scal eUp, scal eBack,
del ay, fade, hide, onConplete, nil];
[I abel runAction: sequence];
return TRUE;

@nd

Getting Started 337

The i nit method adds a blank label to the middle of the screen and sets it to invis-
ible. The di spl ay Text method stops any running actions (in case the label is cur-
rently animating), sets the string to the value passed in, and resets the label to visible,
fully opaque, and very tiny (with a scale of 0.0). Then it scales the label up and slightly
back to make it appear to “pop” into view, waits a few seconds, then fades out and
rehides the label. It then calls whatever callback was passed in (and it’s okay to pass
nil for the parameters there if you don’t have a callback). These are just the standard
Cocos2D actions that you learned about earlier in the book, chained together in a cool
and easy way. Aren’t Cocos2D actions great?

Next, add a class for the game object representing Ole’s cart. Select the Classes\
Game Objects\Box2D group, go to File > New > New File..., choose iOS > Cocoa
Touch > Objective-C class, and click Next. Enter Box2DSprite as the Subclass
of, click Next, name the file Cart.mm (note the .mm extension, since this imports
Box2D), and click Save.

Replace Cart.h with the contents of Listing 11.3.

Listing 11.3 Cart.h

#i nport "Box2DSprite.h"

@nterface Cart : Box2DSprite {
b2Wor 1 d *wor | d;

}

- (id)initWthwrld: (b2Wrld *)worl d atLocati on: (CGPoi nt) | ocati on;

@nd

You've made subclasses of Box2DSpr i t e before, but there’s something new here—
this time it takes the Box2D world as a parameter to the i nit method. This is because
the class will now contain the logic to create its Box2D body in addition to setting up
the sprite.

Let’s see how this works with the implementation. Switch over to Cart.mm and
replace it with the contents of Listing 11.4.

Listing 11.4 Cart.mm

#inport "Cart.h"
@ nmpl enentation Cart

- (void)createBodyAt Locati on: (CGPoi nt)l ocation {
b2BodyDef bodyDef ;
bodyDef . type = b2_dynam cBody;
bodyDef . position =

338 Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

b2Vec2(1 ocation. x/ PTM_RATI O, | ocati on.y/ PTM RATI O ;
body = wor | d- >Cr eat eBody(&odyDef) ;
body->Set User Dat a(sel f);

b2Fi xt ureDef fi xtureDef;

b2Pol ygonShape shape;

shape. Set AsBox(sel f. content Si ze. w dt h/ 2/ PTM_RATI Q,
sel f.content Si ze. hei ght/ 2/ PTM_RATI O) ;

fixtureDef.shape = &shape;

fixtureDef.density = 1.0;
fixtureDef.friction = 0.5;

fixtureDef.restitution = 0.5;

body- >Cr eat eFi xt ur e(& i xt ureDef);

'
—~

id)initWthwrld: (b2Wrld *)thewrld atLocation: (CGPoint)location {
if ((self = [super init])) {
worl d = theWrld;
[sel f setDisplayFrane: [[CCSpriteFraneCache
sharedSpriteFraneCache] spriteFrameByNanme: @ Cart.png"]];
ganeObj ect Type = kCart Type;
characterHeal th = 100. 0f;
[sel f createBodyAtLocation:|ocation];
}
return self;

}

@nd

The code in cr eat eBodyAt Locat i on should be familiar to you—it creates a
Box2D body and fixture in the same way you did in Chapter 10. The i nit method
should look familiar as well, based on the other game objects you have made.

Now you implement the action layer, which uses this Cart object in a basic Box2D
setup that you learned how to create in the previous chapter. It creates a Box2D
world, enables debug drawing, preloads the sound effects you need, and adds a cart.

It also sets up a mouse joint like you learned in Chapter 10, since it will be useful for
debugging purposes as you develop this level (so you can move objects around to test
their behavior).

With the Scene4 group selected, go to File > New > New File..., choose iOS >
Cocoa Touch > Objective-C class, and click Next. Enter CCLayer as the Subclass
of, click Next, name the file Scene4ActionLayer.mm (note the .mm extension, since this
imports Box2D), and click Save.

Then replace Scene4ActionLayer.h with the contents of Listing 11.5.

Getting Started

Listing 11.5 Scene4ActionLayer.h

#i nport "cocos2d. h"

#i mport " Box2D. h"

#i nport " GLES- Render. h"
#i nport "Constants. h"

@l ass Scene4Ul Layer ;
@l ass Cart;

@nterface Scened4ActionLayer : CCLayer {
b2World * worl d;
GLESDebugDr aw * debugDr aw;
CCSpri t eBat chNode * sceneSpriteBat chNode;
b2Body * groundBody;
b2MouseJoi nt * nouseJoint;
Cart * cart;
Scene4Ul Layer * ui Layer;

}

- (id)initWthScened4Ul Layer: (Scened4Ul Layer *)scenedUl Layer;

@nd

This includes the Cocos2D and Box2D headers, the Box2D debug draw class
header, and Constants.h (mainly for the PTM_RATI O). As instance variables, it has
pointers to the Box2D world, debug draw class, sprite batch node, ground body,
mouse joint, and cart object. It also has an instance variable for the Scene4Ul Layer
(and an initializer that takes this as a parameter)—this is because this class needs to call
the Scene4Ul Layer to do things like display text or update Ole’s health status.

Next youre on to the most important part—creating the basic implementation of
the Box2D scene by implementing Scene4ActionLayer.mm. There’s a good bit of code to
write in this section, but don’t worry—most of this should be quite familiar to you by
now, and this is almost the last step before you’ll be ready to compile and run!

Take a deep breath and a swig of caffeine. When you’re ready, replace Scene4Action-
Layer.mm with the contents of Listing 11.6.

Listing 11.6 Scene4ActionLayer.mm

#i nport "Scene4ActionLayer. h"
#i nport "Box2DSprite.h"

#i nport "Scene4Ul Layer. h"
#inmport "Cart.h"

#i mport " Si nmpl eQueryCal | back. h"

@ npl enent ati on Scene4Acti onLayer

339

340

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

- (void)setupWorld {
b2Vec2 gravity = b2Vec2(0.0f, -10.0f);
bool doSleep = true;
world = new b2Worl d(gravity, doSleep);

- (voi d) set upDebugDr aw {
debugDr aw = new GLESDebugDr aw(PTM_RATI O*
[[CCDirector sharedDirector] contentScal eFactor]);
wor | d- >Set DebugDr aw(debugDr aw) ;
debugDr aw >Set Fl ags(b2DebugDr aw: : e_shapeBi t);

- (void)createGound {

CGSi ze winSi ze = [[CCDirector sharedDirector] w nSize];

float32 margin = 10. 0f;

b2Vec2 | owerLeft = b2Vec2(margi n/ PTM_RATI O, nargi n/ PTM_RATI O) ;

b2Vec2 | ower Ri ght = b2Vec2((wi nSi ze. wi dt h- mar gi n) / PTM_RATI G,
mar gi n/ PTM_RATI O) ;

b2Vec2 upperRi ght = b2Vec2((wi nSi ze. wi dt h- mar gi n) / PTM_RATI G,
(wi nSi ze. hei ght - mar gi n) / PTM_RATI O) ;

b2Vec2 upperLeft = b2Vec2(margi n/ PTM_RATI O,
(Wi nSi ze. hei ght - mar gi n)/ PTM_RATI O) ;

b2BodyDef groundBodyDef ;

groundBodyDef . t ype = b2_stati cBody;
groundBodyDef . posi tion. Set (0, 0);

groundBody = wor | d->Cr eat eBody(&r oundBodyDef) ;

b2Pol ygonShape gr oundShape;

b2Fi xt ur eDef groundFi xt ur eDef ;

gr oundFi xt ur eDef . shape = &gr oundShape;
groundFi xt ureDef . density = 0.0;

gr oundShape. Set AsEdge(| ower Left, | owerRi ght);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;
gr oundShape. Set AsEdge(| ower Ri ght, upperRi ght);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;
groundShape. Set AsEdge(upper Ri ght, upperLeft);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;
groundShape. Set AsEdge(upper Left, | owerLeft);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;

- (void)createCartAtLocation: (CGPoint)location {
cart = [[[Cart alloc]
initWthWwrld:world atLocation:|ocation] autorel ease];

Getting Started 341

[sceneSpriteBat chNode addChild:cart z:1 tag: kVikingSpriteTagVal ue];

- (void)regi sterWthTouchDi spat cher {
[[CCTouchDi spat cher sharedDi spat cher]
addTar get edDel egate: sel f priority:0 swal |l owsTouches: YES];

- (id)initWthScened4Ul Layer: (Scened4Ul Layer *)scene4U Layer {
if ((self = [super init])) {
CGSi ze Wi nSize = [CCDirector sharedDirector].w nSi ze;
ui Layer = scene4Ul Layer;

[sel f setupWorld];
[sel f setupDebugDraw ;
[[GaneManager shar edGanmeManager]
pl ayBackgr oundTr ack: BACKGROUND_TRACK_M NECART] ;
[sel f schedul eUpdat e] ;
[sel f createG ound];
sel f.isTouchEnabl ed = YES;

if (U _USER | NTERFACE I DIOM) == Ul Userlnterfacel di onPad) {
[[CCSpriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFil e: @scenedat| as-hd. plist"];
sceneSpriteBat chNode = [CCSprit eBat chNode
bat chNodeW t hFi | e: @ scenedat | as- hd. png"];
[sel f addChil d: sceneSpriteBatchNode z:-1];
} else {
[[CCSpriteFraneCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @scenedatlas. plist"];
sceneSpriteBat chNode = [CCSprit eBat chNode
bat chNodeW t hFi | e: @ scenedat | as. png"];
[sel f addChil d: sceneSpriteBatchNode z:-1];

}

[sel f createCart At Location:
ccp(w nSi ze.wi dth/ 4, wi nSize.w dth*0.3)];

[ui Layer displayText: @Go!" andOnConpl et eCal | Target: ni |
selector:nil];

}
return self;
}
-(voi d)update: (ccTinme)dt {
int32 velocitylterations = 3;
int32 positionlterations = 2;

342 Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

wor | d->Step(dt, velocitylterations, positionlterations);

for(b2Body *b=worl d->Cet BodyList(); b!=NULL; b=b->GetNext()) {
if (b->GetUserData() != NULL) {
Box2DSprite *sprite = (Box2DSprite *) b->GetUserData();
sprite.position = ccp(b->GetPosition().x * PTM RATI O
b->Cet Position().y * PTM RATIO;
sprite.rotation =
CC_RADI ANS_TO DEGREES(b- >Get Angl e() * -1);

}

CCArray *listOf Gane(hj ects = [sceneSpriteBatchNode children];
for (GaneCharacter *tenpChar in |listOGaneObjects) {
[tenmpChar updateStateWthDel taTi ne: dt
andLi st Of GaneObj ect s: | i st Of GaneObj ect s] ;

}

-(void) draw {
gl Di sabl e(GL_TEXTURE_2D) ;
gl Di sabl ed i ent St at e(GL_COLOR_ARRAY) ;
gl Di sabl ed i ent St at e(GL_TEXTURE_COCORD_ARRAY) ;

if (world) {
wor | d- >Dr awDebugDat a() ;

gl Enabl e(GL_TEXTURE_2D) ;
gl Enabl eCl i ent St at e(GL_COLOR_ARRAY) ;
gl Enabl ed i ent St at e(GL_TEXTURE_COORD_ARRAY) ;

-(BOOL) ccTouchBegan: (U Touch *)touch w t hEvent: (U Event *)event {
CGPoi nt touchLocation = [touch | ocationlnView [touch view];
touchLocation = [[CCDirector sharedDirector]

convert ToGL: t ouchLocation];
touchLocation = [self convert ToNodeSpace: t ouchLocation];
b2Vec2 | ocationWrld =
b2Vec2(touchLocati on. x/ PTM_RATI O, touchLocation.y/ PTM RATI O);

b2AABB aabb;

b2Vec2 delta = b2Vec2(1.0/ PTM RATI O, 1.0/ PTM RATIO);
aabb. | oner Bound = | ocationWrld - delta;

aabb. upperBound = | ocationWrld + delta;

Si npl eQueryCal | back cal | back(l ocati onWrl d);
wor | d- >Quer yAABB(&cal | back, aabb);

}

Getting Started

if (callback.fixtureFound) {
b2Body *body = call back. fi xt ureFound->Get Body() ;
b2MouseJoi nt Def nouseJoi nt Def;
nmouseJoi nt Def . bodyA = groundBody;
nmouseJoi nt Def . bodyB = body;
nouseJoi nt Def . target = | ocati onWrl d;
nmouseJoi nt Def . maxForce = 50 * body->Get Mass();
nouseJoi nt Def . col | i deConnected = true;

mouseJoi nt = (b2MuseJoint *)

wor | d- >Cr eat eJoi nt (&museJoi nt Def) ;
body- >Set Awake(true);
return YES;

}
return TRUE;

-(void) ccTouchMoved: (U Touch *)touch w thEvent: (U Event *)event {

CGPoi nt touchLocation = [touch | ocationlnView [touch view];
touchLocation = [[CCDi rector sharedDirector]
convert ToG.: t ouchLocat i on];
touchLocation = [sel f convert ToNodeSpace: touchLocati on];
b2Vec2 | ocationWrld = b2Vec2(touchLocati on. x/ PTM _RATI O
touchLocat i on. y/ PTM RATI O) ;

if (nousedoint) {
mouseJoi nt - >Set Tar get (| ocati onWorl d) ;

-(voi d) ccTouchEnded: (U Touch *)touch w thEvent: (U Event *)event {

}

if (nousedoint) {
wor | d- >Dest r oyJoi nt (npbuseJoint) ;
nmouseJoi nt = NULL;

@nd

Phew! Now that you've got that coded, take a breather and look things over to

make sure you understand how everything works.

You should already be familiar with most of this based on what you learned in

Chapter 10. Here’s a quick reminder of what each method does, but if you're unsure
about anything, refer back to Chapter 10 for full details. This is the foundation for
everything else you’re about to do, so make sure you take the time to understand it

fully!

343

344 Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

setupWorld creates a Box2D world with gravity similar to Earth’s gravity. It stores
a pointer to the worl d object in an instance variable for future reference.

setupDebugDraw creates a Box2D debug dr aw object and tells the wor | d object
to use it. The dr aw method sets up the OpenGL states properly for debug drawing
and tells the worl d to do the debug drawing.

createGround creates a static Box2D body (out of four edge fixtures) around the
boundaries of the screen to act as the “ground” so that any Box2D objects we add
to the scene don’t fall off the edge of the screen.

createCartAtLocation simply creates an instance of the Cart object you made
earlier and adds it as a child of the sprite sheet object.

update gives Box2D time to run the simulation every frame. It then loops through
all of the Box2D bodies, looking for those that have a Box2DSprite in their user
data. For each sprite it finds, it updates the position of the sprite based on where
Box2D says it should be.

ccTouchBegan, ccTouchMoved, and ccTouchEnded contain the mouse joint
code used for testing and debugging, the same as you learned in Chapter 10.

initWithScene4UILayer simply calls the above methods to create the world,
ground, and Box2D body for Ole’s cart. It also preloads the sound effects and calls
di spl ayText on the UI layer to display some text in the middle of the screen.

You're almost ready to try this out! But first, you need to create a Cocos2D scene
that contains these two layers. With the Scene4 group selected, go to File > New >
New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter CCScene as the Subclass of, click Next, name the file Scene4.mm (note the .mm
extension, since this imports Box2D), and click Save.

Replace Scene4.h with the contents of Listing 11.7.

Listing 11.7 Scene4.h

#i nport "cocos2d. h"

@nterface Scened4 : CCScene {
}

@nd

Nothing fancy here—it’s simply a subclass of CCScene. Move on to Scene4.mm and
replace it with the contents of Listing 11.8.

Listing 11.8 Scene4.mm

#i mport "Scene4. h"
#i nport "Scene4U Layer. h"
#i nport "Scene4ActionLayer. h"

Getting Started

@ npl enent ati on Scene4

-(id)init {

if ((self = [super init])) {
Scene4Ul Layer * uilLayer = [Scene4U Layer node];
[sel f addChil d: ui Layer z:1];
Scene4Act i onLayer * actionLayer =
[[[ScenedActi onLayer all oc]

ini t Wt hScene4Ul Layer: ui Layer] autorel ease];

[sel f addChil d: actionLayer z:0];

}

return self;

@nd

This simply creates both of the layers (passing the Ul layer as a parameter to the
action layer) and adds both to the scene. Note that the UI layer is set with a higher z
value than the action layer, so it shows up in front.

The final step is to modify GameManager.mm to run your new scene when the user
chooses Level 4. First import Scene4.h at the top of GameManager.mm, as shown in List-
ing 11.9.

Listing 11.9 GameManager.mm (at top of file)

#i nport "Scene4. h"

Then find r unSceneWt hl d and modify the case for KGameLevel 4 to run
Scene4, as shown in Listing 11.10.

Listing 11.10 GameManager.mm (in the case statement in runSceneWithld)

case kGanelLevel 4:
sceneToRun = [Scene4 node];
br eak;

Tip

As mentioned in the previous chapter, you may wish to set up your app to run this new
scene right away, since you’ll be working with it a lot in this chapter. Again, to do this,
simply open Classes\Singletons\SpaceVikingAppDelegate.m, navigate to the bottom of

appl i cati onDi dFi ni shLaunchi ng, and replace the CCDi r ect or: r unScene-
Wt hl D call at the bottom to:

[[GaneManager shar edGanmeManager]
runSceneW t hl D: kGaneLevel 4] ;

345

346

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

That’s it! If you compile and run the app and choose Descent Into Hades! from
the Main Menu (or have it set up to launch right away), you should see your new
scene appear with a ground body around the edges, and Ole’s cart (well at least part of
it) will drop into your scene, as shown in Figure 11.3.

Figure 11.3 A Basic Box2D scene with a world, ground box, and single
body/sprite

Creating a Cart with Box2D

If Ole saw his cart right now, he wouldn’t be very impressed. First, the Box2D body
doesn’t actually match up with the cart’s shape—the Box2D body is a rectangle, while
the cart’s shape is actually thinner at the bottom than at the top. Second, it doesn’t
have wheels! Even the Flintstones had those.

In this section, you learn how to make the shape of the Box2D body match up to
the shape of the cart, how to create Box2D bodies for the wheels, and how to connect
them with Box2D joints. You’ll have Ole cruising along in no time!

Creating Custom Shapes with Box2D

Until this point, the shapes you’ve made with Box2D have been boxes, circles, or
edges. When making a circle, you set the radius, and when making a rectangle or
edge, you used helper methods such as Set AsBox and Set AsEdge to set up the verti-
ces for you.

But with Box2D you’re not stuck with simple box or circle shapes alone—you can
set the location of each vertex yourself to make more complicated shapes as well. You
use a b2Pol ygonShape as usual, but instead of using Set AsBox or Set AsEdge, you
create a vertex array and then call the Set method, as shown in Figure 11.4.

Creating a Cart with Box2D

Figure 11.4 Defining vertices based on a center point in Box2D

Let’s explain how Figure 11.4 works. When defining vertices for Box2D shapes,
there are four important things to know: vertices are relative to the body’s center,
vertices need to be defined in counterclockwise order, there is a maximum count of
vertices per shape, and vertices cannot define a concave shape. Let’s go through these
one by one.

Vertices are relative to the body’s center: As you can see in the code shown
in Figure 11.4, when you set vertices, you don’t give world coordinates; instead you
give local coordinates relative to the body’s center point. So for the case of the cart,
the upper right corner of the cart is about 78.3 pixels to the right of the center and
38.5 pixels above the center. This is a convenient trait, because it allows you to set
up a shape without having to worry about where the body is in the world.

Vertices need to be defined in counterclockwise order: As you can see in
Figure 11.4, the vertices are defined in counterclockwise order: upper right —
upper left — lower left — lower right. If you forget to do this and define vertices
in a different order, Box2D will likely crash (usually specifying an assertion error
when computing the area).

There is a maximum count of vertices per shape: By default, each shape

can have, at most, only eight vertices. This setting is configurable—it is set in
b2Settings.h with the b2_maxPol ygonVer ti ces setting. Obviously, you want to
keep this as small as possible, since the more vertices your shapes have, the larger
the memory usage and slower the performance. If you try to add more vertices than
the maximum, Box2D will likely crash (usually specifying an assertion error when
checking the vertex count).

Vertices cannot define a concave shape: When you set up your shapes, you
need to make sure that the shapes you define are convex, not concave. A concave
shape is a shape in which one of the interior angles inside the shape is greater than

347

348

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

180 degrees. A good way to think of it is as a shape that has an indentation in it.
Figure 11.5 illustrates the difference between convex and concave polygons.

Angle > 180°
Convex Concave
All internal angles < 180° At least one internal angle > 180°

Figure 11.5 Convex vs. concave polygons

When defining vertices in Box2D, you have several options. First, you could guess-
timate the pixel offsets for the vertices, compile, test, and iterate until you get them
right. This works but is slow and painful. Second, you could load your image into an
image editor and use a tool such as a ruler to measure the pixel offsets. This works
too and is quicker than the first option, but it is still time consuming. Finally, there’s
a third method that can save you a lot of time—use a neat tool written by Johannes
Fahrenkrug called Vertex Helper.

Using Vertex Helper

Vertex Helper is an open source tool that lets you import an image and click points
on the image to represent the vertices you wish to define. When you're done, Vertex
Helper generates Box2D code for you to define the vertices; you can simply cut and
paste this code into your project. Let’s see how this is done.

First, download and compile Vertex Helper (or if you’d rather, you can download
the full version—Vertex Helper Pro—from the Mac App Store).

To grab the code, visit https://github.com/jfahrenkrug/VertexHelper, click Downloads,
and click Download zip, as shown in Figure 11.6.

Once you've downloaded the zip file, extract the file to a folder and open the Ver-
texHelper.xcodeproj file within. Compile and run the project, and you should see the
main Vertex Helper UI appear, as shown in Figure 11.7.

Next find the image for Ole’s cart from the resources folder that comes with this
chapter (Raw Art.. \Scene\cart.png) and drag it to the Vertex Helper window (where it
says Drop Sprite Image).

You should now see the cart image in the center of the window. Now go to the
control panel at the bottom and type 1 for Rows, 1 for Cols, set the Type to Box2D,
and set the Style to Initialization. At this point Vertex Helper should have drawn a
black boundary around your image, and you are ready to start defining vertices.

Creating a Cart with Box2D 349

Figure 11.6 Downloading Vertex Helper

Figure 11.7 Main Vertex Helper screen

350

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Now click on Edit Mode in the upper right corner, and then click on the upper
right corner of the cart, which sets the first vertex at that point. Click on the upper
left corner next, then the lower left corner, and lower right corner (counterclockwise
order). Do not finish the shape off with a line back to the upper right—Box2D closes
the shape automatically.

As you click your vertices, Vertex Helper draws a green line between the points
you click, showing you the shape you are defining. When you’re done, your screen
should look similar to the screenshot shown in Figure 11.8.

If you look at the edit pane to the lower right, you’ll see that Vertex Helper has set
up a Box2D vertex array for you based on the vertices that you defined. It’s a snap to
use, so let’s give it a shot!

Figure 11.8 Cart vertices defined with Vertex Helper

Open up Cart.mm and comment out the line that calls Set AsBox in the cr eat e-
BodyAt Locat i on method. Right below that commented line, paste the code that
Vertex Helper generated for you in the edit pane (but replace all instances of PTM_
RATI O with 100.0—more on why later). After you paste that, use the Set method on
the shape and pass in the vertices and number of vertices, as shown in Listing 11.11.

Creating a Cart with Box2D

Listing 11.11 Cart.mm (in createBodyAtLocation method)

/1 Comment out this line

/I shape. Set AsBox(sel f.content Si ze. wi dt h/ 2/ PTM_RATI O,

I/ sel f. content Si ze. hei ght/ 2/ PTM_RATI O ;

/1 Add your code from Vertex Hel per here, but replace all

/'l instances of PTM RATIO with 100.0

int num = 4;

b2Vec2 verts[] = {
b2Vec2(77.5f / 100.0, 37.0f / 100.0),
b2Vec2(-78.5f / 100.0, 38.0f / 100.0),
b2Vec2(-60.5f / 100.0, -37.0f / 100.0),
b2Vec2(56.5f / 100.0, -38.0f / 100.0)

b

/1 Then call this

shape. Set (verts, num;

Note

You may be wondering why you had to replace all instances of PTM_RATI Owith 100.0.

This is because you traced the large (HD) artwork in Vertex Helper. So to convert the pix-
els to Box2D coordinates, you divide by the HD PTM_RATI O, which is 100.0. For Space

Viking, you can’t just use PTM_RATI O constant, since it's defined to be different on the
iPad than on the iPhone.

Now compile and run your code. Instead of a rectangular shape around the cart,

the Box2D body’s shape should match up much better with your sprite, as shown in
Figure 11.9.

Figure 11.9 A Box2D shape with custom-defined vertices

351

352

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Now you know how to make an arbitrary shape using Box2D and how to use Ver-
tex Helper to make your life a lot easier. But right now our cart has a big problem—it
doesn’t have wheels. So let’s roll on out of the Stone Age and learn about Box2D revo-
lute joints!

Adding Wheels with Box2D Revolute Joints

To add wheels to the cart, you need to make two more bodies—one for each wheel.
Remember from Chapter 10 that they need to be separate bodies (rather than fixtures)
because you want the cart and the wheels to be able to move independently from each
other. For example, the wheels should be able to rotate without having to rotate the
cart body.

However, you do need to set some kind of restriction on the movement of the bod-
ies. You want the wheels and the cart to be fixed together at a particular point—but
still able to rotate about that point independently. And that’s exactly what joints are
for—what we need is a type of joint called a revolute joint in this particular case.

Although there are many kinds of joints in Box2D, all of them work in a similar
way. You set up a joint definition and specify which bodies are involved. Each joint is
a relationship between two bodies—like marriage! You then set up some parameters
on the joint definition, which vary depending on the joint type youre using. For rev-
olute joints, the only parameter required is the common anchor point (i.e., the center
of the wheel).

Let’s give it a shot! First open Cart.h and add a few instance variables you’ll need for
the wheel sprites, bodies, and joints, as shown in Listing 11.12.

Listing 11.12 Cart.h (inside @interface)

Box2DSprite *wheel L;
Box2DSprite *wheel R

b2Body *wheel LBody;

b2Body *wheel RBody;

b2Revol ut eJoi nt *wheel LJoi nt;
b2Revol ut eJoi nt *wheel RJoi nt;

While you're there, add properties for the wheel sprites and bodies so they can be
accessed from the action layer, as shown in Listing 11.13.

Listing 11.13 Cart.h (after @interface)

@roperty (readonly) b2Body * wheel LBody;
@roperty (readonly) b2Body * wheel RBody;
@roperty (readonly) Box2DSprite * wheel L;
@roperty (readonly) Box2DSprite * wheel R

Creating a Cart with Box2D

Then switch to Cart.mm and synthesize the properties right after the @ npl emen-
tation line, as shown in Listing 11.14.

Listing 11.14 Cart.mm (after @implementation)

@ynt hesi ze wheel L;
@ynt hesi ze wheel R;
@ynt hesi ze wheel LBody;
@ynt hesi ze wheel RBody;

Next add a new method to create a wheel before the i ni t Wt hWor |l d method, as
shown in Listing 11.15.

Listing 11.15 Cart.mm (before initWithWorld method)

- (b2Body *)createWieel WthSprite: (Box2DSprite*)sprite
of fset: (b2Vec2)of fset {

b2BodyDef bodyDef;

bodyDef.type = b2_dynam cBody;

bodyDef . position = body->Get Wr | dPoi nt (of f set);
b2Body * wheel Body = worl d- >Cr eat eBody(&odyDef) ;
wheel Body- >Set User Dat a(sprite);

sprite. body = wheel Body;

b2Ci rcl eShape circl eShape;
circl eShape. mradius = sprite.contentSize.w dth/ 2/ PTM RATI O

b2Fi xt ur eDef fi xtureDef;
fixtureDef.shape = &circl eShape;
fixtureDef.friction = 1.0;
fixtureDef.restitution = 0. 2;
fixtureDef.density = 10.0;

wheel Body- >Cr eat eFi xt ur e(& i xt ur eDef) ;

return wheel Body;

Most of this should look quite familiar to you—this method creates a Box2D body
and circle shape/fixture in the usual manner. However, there are three things to point
out.

First, the goal for this method is to create a wheel based on an offset from the main
cart body. This is important so that you can place the body in any initial angle or rota-
tion and still have the wheel be in the right place. To accomplish this, it calls a method
on the main cart body called Get Wor | dPoi nt , to convert a local offset from the cart
body to a world coordinate (which is required when creating a body).

353

354

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Second, the friction for the wheels is quite high (1.0). This is because you will be
using the wheels to drive the cart along the ground, so you want a high friction so
that moving the wheels causes the cart to move responsively (rather than slipping along
the ground too much).

Third, the density of the wheel (10.0) is much larger than the density of the cart
(1.0). This is because the wheels behave best in Box2D when they have equal or more
mass than the body they are supporting. Since the wheels are small and the cart body
is large, we need to make it a much bigger number. If you forget to set this higher,
you may see strange behavior like the wheels falling off the cart or bouncing strangely.

Next add a method to make use of this below cr eat eWheel Wt hSprite, as
shown in Listing 11.16.

Listing 11.16 Cart.mm (below createWheelWithSprite)

- (void)createWeels {
wheel L = [Box2DSprite spriteWthSpriteFraneNanme: @ Weel . png"];
wheel L. ganmeOhj ect Type = kCart Type;
wheel LBody = [sel f createWeel WthSprite:wheelL
of f set: b2Vec2(-63. 0/100.0, -48.0/100.0)];

wheel R = [Box2DSprite spriteWthSpriteFraneNane: @ Weel . png"];
wheel R ganeObj ect Type = kCart Type;
wheel RBody = [sel f createWeel WthSprite:wheel R

of f set: b2Vec2(63. 0/100.0, -48.0/100.0)];

b2Revol ut eJoi nt Def revJoi nt Def;
revJointDef.Initialize(body, wheel LBody,
wheel LBody- >Cet Wor | dCenter());
wheel LJoi nt = (b2Revol uteJoint *) worl d->CreateJoint (& evJoi nt Def);

revJointDef.Initialize(body, wheel RBody,
wheel RBody- >CGet Wor | dCenter());
wheel RJoi nt = (b2Revol uteJoint *) worl d->CreateJoint (& evJoint Def);

This method first creates a sprite for each wheel and then calls the method you just
wrote to create a Box2D object for that sprite.

Afterwards, it sets up a revolute joint for each wheel. As you can see, this is
quite simple. It creates a b2Revol ut eJoi nt Def structure and calls the I niti al -
i ze method, passing in the two bodies that are involved (the wheel and the body)
and the point at which they should be fixed (the center of the wheel). It then passes
the b2Revol ut eJoi nt Def to the world to actually create the joint. This returns a
b2Joi nt object, which it saves away in an instance variable.

Creating a Cart with Box2D

Note

The offsets for the wheels were figured out by using the ruler tool in an image editor to
estimate the number of pixels that each wheel should be offset from the center of the
cart. Since the HD artwork was used for this, it needs to be converted to HD coordinates
by dividing by the HD PTM_RATI O, which is 100.0.

Next call this new method in i ni t Wt hWorl d: at Locat i on, as shown in
Listing 11.17.

Listing 11.17 Cart.mm (at the bottom of initWithWorld:atLocation)

[sel f creat eWeel s];

One last step: you need to add the new sprites for the wheels to the sprite batch
node. Back in Scene4ActionLayer.mm, add the lines to do so the bottom of cr eat eCar t -
At Locat i on, as shown in Listing 11.18.

Listing 11.18 Scene4ActionLayer.mm (at the bottom of createCartAtLocation)

[sceneSprit eBat chNode addChil d: cart.wheel L];
[sceneSprit eBat chNode addChil d: cart.wheel R];

That’s it! Compile and run the app, and now your cart should have wheels, as
shown in Figure 11.10. You can use the mouse joint to roll it around the screen and
see how it works. Note how the wheels and cart are fixed at the center of the wheels,
but the wheels can still spin. That’s revolute joints in action!

Figure 11.10 Cart with wheels connected with Box2D revolute joints

355

356

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Making the Cart Move and Jump

Ole’s cart is pretty cool so far, and it rolls around adhering to real game physics. How-
ever, there’s still a long way to go—the goal is to make this level an action-packed
side-scroller, complete with accelerometer-based movement, interesting obstacles and
ground terrain to ride over, and the ability to tap to launch the cart into the air so Ole
can get some major hangtime!

In this section, you learn how to make the cart move based on accelerometer input,
how to make a side-scrolling level by tracing ground pieces, how to make the cart
jump, and how to fix a few problems that arise along the way.

Making the Cart Move with the Accelerometer

The first step is to add the capability to move the cart based on accelerometer input.
After reading Chapter 10, your first thought might be to just set the gravity based
on the accelerometer input, making the cart move back and forth due to the pull of
gravity. This would work great at first—until the player flips his or her device upside
down, at which time the cart would fly up into the air!

If you take a step back and think about it, what you really want to happen is for the
cart to move in relation to how much the device is currently tilted. If it’s tilted a little
bit, you want the cart to move slowly, and if it’s tilted a lot, you want the cart to move
quickly.

There are several ways you can move the cart in Box2D. You could apply a force
or impulse (which you’ll learn about later) on the cart to push it forward each frame
based on the current accelerometer input. You could set the linear velocity for the
body directly (although this can cause problems with the physics simulation some-
times, so avoid it when possible). But for this level you're going to take an approach
that models the behavior of a real-world cart—you’re going to move the cart by mak-
ing the wheels spin!

Since you set up revolute joints for the cart wheels, rotating the wheels is easy.
Revolute joints have a built-in “motor” that defines how quickly the wheels rotate
in radians per second. You can make use of this to simply set the motor speed of the
wheels based on the accelerometer input!

Let’s see how this looks. First open Cart.mm and add the bolded lines in List-
ing 11.19 to cr eat eVWeel s, right after the first call to I niti al i ze for the
b2Revol ut eJoi nt Def .

Listing 11.19 Cart.mm (add bolded lines inside createWheels, right after first call
to Initialize)

/'l Right after creating wheel RBody. ..
b2Revol ut eJoi nt Def revJoi nt Def;
revJointDef.Initialize(body, wheel LBody,

wheel LBody- >Get Wor | dCenter());

Making the Cart Move and Jump

revJointDef.enableMotor = true;

revJointDef .maxMotorTorque = 1000;

revJointDef .motorSpeed = 0;

wheel LJoi nt = (b2Revol uteJoint *) worl d->Createdoint (& evJoint Def);

revJointDef.Initialize(body, wheel RBody,
wheel RBody- >CGet Wor | dCenter());
wheel RJoi nt = (b2Revol uteJoint *) worl d->CreateJoint (& evJoi nt Def);

These calls enable the motor for the revolute joint and set the initial speed to 0.
Think of a motor as an automatic mechanism that turns the wheels based on the
not or Speed. not or Speed i1s in radians per second, and M_PI radians is equivalent
to half a circle (180 degrees). So a motor speed of M_PI would rotate the wheel half a
circle (M_PI') every second.

max Mot or Tor que is the maximum amount of torque that the motor should apply
to the wheel in order to reach the desired wheel speed. If this number is low and the
wheel hits resistance (such as something stopping its rotation), it will likely “give up”
and stop rotating. If this number is high, the wheel can keep increasing the torque
until it overcomes the resistance. In this case, you set it to a fairly high number so the
wheels can continue spinning despite resistance.

Next add a new method to Cart.mm to set the motor speed on both of the wheel
joints when called, as shown in Listing 11.20.

Listing 11.20 Cart.mm (anywhere inside class)

- (voi d)set Mot or Speed: (f | oat 32) not or Speed {
if (characterState != kStateTaki ngDamage) {
wheel LJoi nt - >Set Mot or Speed(not or Speed) ;
wheel RJoi nt - >Set Mot or Speed(not or Speed) ;
} else {
wheel LJoi nt - >Set Mot or Speed(0. 2 * not or Speed) ;
wheel RJoi nt - >Set Mot or Speed(0. 2 * not or Speed) ;

Note that this usually just passes the motor speed onto the wheel joints, but if the
cart 1s taking damage (which you’ll implement later), it temporarily slows down the
cart.

Then switch to Cart.h and add the declaration for this method in the header, as
shown in Listing 11.21.

Listing 11.21 Cart.h (after @interface)

- (voi d)set Mot or Speed: (f | oat 32) not or Speed;

357

358

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Now that this is set up, open Scene4ActionLayer.mm and add a line in the i ni t
method to enable accelerometer support, as shown in Listing 11.22.

Listing 11.22 Scene4ActionLayer.mm (at the bottom of the initWithScene4UILayer
method)

sel f.isAccel eronet er Enabl ed = YES;

Next write the actual implementation of the accelerometer callback to set the speed
of the wheels based on how much the device is tilted, as shown in Listing 11.23.

Listing 11.23 Scene4ActionLayer.mm (anywhere inside class)

- (void)accel eroneter: (U Accel eroneter *)accel eroneter
di dAccel erate: (U Accel eration *)accel eration {
float 32 nmaxRevsPer Second = 7.0;
float32 accel erati onFraction = accel eration. y*6;
if (accelerationFraction < -1) {
accel erationFraction = -1;
} else if (accelerationFraction > 1) {
accel erationFraction = 1;
}
fl oat 32 not or Speed =
(M_PI*2) * naxRevsPer Second * accel erationFracti on;
[cart set Mot or Speed: npt or Speed] ;

This method first sets up the max speed of the wheels to be 7 revolutions per sec-
ond. This number was determined by simply play testing and seeing what “felt right.”

It then computes the fraction of the max speed to actually set the wheels according
to how much the device is tilted. Acceleration usually ranges from 0 (completely level)
to £ 1 (completely vertical one way or the other). However, you don’t want the user
to have to tilt the device completely vertical to achieve max speed, so you multiply the
current acceleration value by 6 and limit the result to be within the range of —1 to 1,
so that one-sixth of a tilt either way is the “max speed range.”

Remember that motor speed is in radians per second, so if you set it to M_PI *2,
that would be one full rotation a second. It multiplies one full rotation a second times
the max speed and then the current fraction of speed based on how much the device is
tilted.

Compile and run the code (on your device, since accelerometer input does not
work in the simulator), and you should now be able to move your cart back and forth
by tilting the device. Nice, you're making some great progress toward an action level!

Making the Cart Move and Jump

Making It Scrollable

While you could probably make an entire game about moving back and forth within
this box, in this chapter youre going to do even better. You're now going to learn
how to make a scrollable level with Box2D—and have the view stay focused on the
cart as it moves!

Figure 11.11 shows part of Images\groundAtlas-hd.png, which contains the pieces of
ground that you’re about to add to the level. You’ll be adding each of these strips to
the level horizontally like Lego blocks, laying down each piece side by side to con-
struct the entire level.

Figure 11.11 Strips of ground you’ll be adding to this level

Note

The ground images in the sprite sheet appear to be vertical even though the source
images are horizontal. This is because the sprite sheets were created with TexturePacker,
which sometimes rotates your images so they fit in the sprite sheets better. Don’t
worry—this is completely transparent to you as a user—when you retrieve the images in
the code, they will be rotated back to their initial orientation.

Currently you have a Box2D ground body that maps to the size of the screen, but
now you want to create a ground body that extends far offscreen to the right and juts
up and down according to the slopes of the ground artwork.

Your first thought might be to simply load the ground images into Vertex Helper,
click on the points along each of the bodies to figure out their vertices, and then add
them to the scene as different shapes. Well, you're partly right (you will be using Ver-
tex Helper), but it wouldn’t work well in practice because you’ll find two problems:

= The shapes have too many vertices.

= The shapes are concave.

359

360

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Remember back to earlier in this chapter—when defining shapes in Box2D, you
can only have up to eight vertices (by default), and they can’t be concave (i.e., have an
interior angle of greater than 180 degrees). You could split the ground body up into
smaller pieces so that both of these rules would be followed, but that would be a big
pain.

Luckily, there is an easy solution—and you can still use Vertex Helper. The idea is,
instead of creating polygons for each ground piece, you just make edges along the top
of each piece. You can use Vertex Helper to define the list of vertices, and then write a
helper method to create an edge for each vertex pair in the array.

Let’s see what this looks like. First, open Scene4ActionLayer.h and add a few more
instance variables, as shown in Listing 11.24.

Listing 11.24 Scene4ActionLayer.h (inside @interface)

CCSpri t eBat chNode * groundSpriteBat chNode;
float32 groundMaxX;

groundSpr it eBat chNode stores a reference to the sprite sheet that contains
the strips of ground, and gr oundMax X keeps track of the maximum X value for the
ground pieces added to the scene.

Then replace your cr eat eG ound method in Scene4ActionLayer.mm, as shown in
Listing 11.25.

Listing 11.25 Scene4ActionLayer.mm (replace createGround method)

- (void)createGound {
b2BodyDef groundBodyDef ;
groundBodyDef . type = b2_stati cBody;
groundBodyDef . position. Set (0, 0);
groundBody = wor | d->Cr eat eBody(&r oundBodyDef) ;

Note that you've removed all of the code relating to adding the edges mapping to
the boundaries of the screen but are still creating a body (with no fixtures). So next
write a function to create some ground edges based on a passed-in set of vertices, as
shown in Listing 11.26.

Listing 11.26 Scene4ActionLayer.mm (right below the createGround method)

- (void)createGoundeEdgesWthVerts: (b2Vec2 *)verts nunVerts: (int)num
spriteFraneNane: (NSString *)spriteFrameNane {
CCSprite *ground =
[CCSprite spriteWthSpriteFranmeNane: spriteFraneNane];
ground. position = ccp(groundMaxX+ground. cont ent Si ze. w dt h/ 2,
ground. content Si ze. hei ght/ 2);
[groundSprit eBat chNode addChi |l d: ground];

Making the Cart Move and Jump

b2Pol ygonShape groundShape;

b2Fi xt ur eDef groundFi xt ur eDef ;

groundFi xt ur eDef . shape = &gr oundShape;
groundFi xt ur eDef . density = 0.0;

for(int i =0; I <num- 1; ++i) {
b2Vec2 of fset = b2Vec2(groundMaxX/ PTM RATI O +
ground. cont ent Si ze. wi dt h/ 2/ PTM_RATI G,
ground. cont ent Si ze. hei ght/ 2/ PTM_RATI O) ;
b2Vec2 left = verts[i] + offset;
b2Vec2 right = verts[i+1] + offset;
groundShape. Set AsEdge(l eft, right);
gr oundBody- >Cr eat eFi xt ur e(&gr oundFi xt ur eDef) ;

groundMaxX += ground. cont ent Si ze. wi dt h;

Let’s go through this step by step. This method takes an array of vertices, the num-
ber of vertices (that you generate using Vertex Helper), and the name of the sprite that
goes along with this. It then creates a normal CCSprit e with the given sprite frame
name and adds it to the ground sprite batch node.

Note

Notice that the ground sprites are not associated with a Box2D body in any way—the
sprites just happen to be placed at the same position. Since the ground sprites never
move, there’s no need to associate them with a Box2D body to synchronize the position
in the update loop. This also makes things simpler, since you can make the ground edges
on the same Box2D body (gr oundBody) rather than having to create a separate Box2D
body for each sprite.

Remember that you don’t need to make a Box2D body for every sprite you add into your
game unless you want Box2D to handle the movement/physics simulation. You may find
this useful in your games—sometimes, you might just want sprites without Box2D bodies
for decoration or so you can move the sprites yourself with actions such as CCVbveTo.

Next the method loops through the list of vertices and creates an edge for each.
Each vertex is offset by the maximum X value the ground has reached so far and by
half the width and height (since the vertices are centered around the center of the
sprite). At the end of the routine, it simply adds the width of the sprite to the ground
maximum X value. Note that this code makes the assumption that vertices are listed
from left to right and that ground chunks are also placed down left to right.

Now it’s time to get a list of vertices for each piece of ground so that you can call
this routine with the appropriate list of vertices. To do this, open Vertex Helper,
find the resource folder for this chapter, and drag Raw Art.. \ground\ground1.png to

361

362

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

the Vertex Helper window. As usual, type 1 for Rows, 1 for Cols, set the Type
to Box2D, set the Style to Initialization, and click Edit Mode to begin clicking
vertices.

Add the vertices by clicking from left to right across the ground. Since the ground
is quite wide, it will most likely extend beyond the width of your window. To scroll,
you need to toggle the Edit Mode checkbox so you can pan the image, toggle it again
to define a few more vertices, and repeat. When you are done, your window should
look similar to Figure 11.12.

Figure 11.12 Defining vertices for ground edges with Vertex Helper

When you are done, write a method to call cr eat eGr oundEdgesWt hVer t s pass-
ing in the vertex array generated by Vertex Helper, as shown in Listing 11.27. Just like
last time, you’ll also need to replace all instances of PTM_RATI O with 100.0, since you
traced the HD artwork. Note that the vertex coordinates might be slightly different
for you depending on how you clicked using Vertex Helper.

Listing 11.27 Scene4ActionLayer.mm (right below createGroundEdgesWithVerts)

- (void)createG oundl {
/'l Replace with your values from Vertex Hel per, but replace all
/1 instances of PTM RATIO with 100.0
int num= 23;
b2Vec2 verts[] = {
b2Vec2(-1022.5f / 100.0, -20.2f / 100.0),
b2Vec2(-966.6f / 100.0, -18.0f / 100.0),
b2Vec2(-893.8f / 100.0, -10.3f / 100.0),

b

b2Vec2(- 888.
b2Vec?2(- 804.
b2Vec2(-799.
b2Vec2(- 795.
b2Vec2(- 755.
b2Vec?2(- 755.
b2Vec2(-632.
b2Vec2(-603.
b2Vec2(-536.
b2Vec2(-518.
b2Vec2(- 282.
b2Vec?2(- 258.
b2Vec2(-135.

b2Vec2(9. 2f
b2Vec2(483.
b2Vec2(578.
b2Vec2(733.
b2Vec2(827.

8f
of
7f
5f
2f
2f
2f
of
of
3f
1f
1f
1f
/

of

4f

3f

3f

~ e~~~ — — — —— —

/

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

100. 0,
/ 100.0,
/ 100.0,
/ 100.0,
/ 100.0,
b2Vec2(1006. 9f / 100.0,
b2Vec2(1023. 2f / 100.0,

0, 1.1f / 100.0),
0, 10.3f / 100.0),
0, 5.3f / 100.0),
0, 8. 1f / 100.0),
0, -1.8f / 100.0),
0, -9.5f / 100.0),
0, 5.3f / 100.0),
0, 17.3f / 100.0),
0, 18.0f / 100.0),
0, 28.6f / 100.0),
0, 13.1f / 100.0),
0, 27.2f / 100.0),
0, 18.7f / 100.0),
-19.4f / 100.0),
-18.7f / 100.0),
11.0f / 100.0),
-7.4f 1 100.0),
-1.1f / 100.0),

-20.2f / 100.0),
-20.2f / 100.0)

[sel f createG oundEdgesWthVerts:verts
numVerts: num spriteFrameNanme: @ groundl. png"];

Making the Cart Move and Jump

Once you are done, repeat with ground2.png and ground3.png to create two more

methods, cr eat eGround2 and cr eat eG ound3, as shown in Listing 11.28.

Listing 11.28 Scene4ActionLayer.mm (right below createGroundl)

(voi d)createG ound2 {

/'l Replace with your values from Vertex Hel per,

/1

instances of PTM RATIO with 100.0
int num = 24;
b2Vec2 verts[]

b2Vec2(-1022. 0f / 100.0,
b2Vec2(- 963.
b2Vec2(-902.
b2Vec2(-762.
b2Vec2(-674.
b2Vec2(-435.
b2Vec?2(- 258.
b2Vec2(- 242.
b2Vec2(- 170.

={

of
of
of
of
of
of
of
of

~— — — — —~ —~ ~

100.
100.
100.
100.
100.
100.
100.
100.

OCo0o0o00o0o0Oo

-23.0f / 100.0),

-4.0f / 100.0),
-7.0f / 100.0),
26.0f / 100.0),
22.0f / 100.0),
-1.0f / 100.0),
19.0f / 100.0),
43.0f / 100.0),

b2Vec2(-58. 0f / 100.0, 45.0f / 100.0),
-20.0f / 100.0),

b2Vec2(98. 0f / 100.0,

b2Vec2(472.0f / 100.0,

-20.0f / 100.0),

but

-20.0f / 100.0),

repl ace all

363

364 Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

b2Vec2(471.0f / 100.0, -7.0f / 100.0),
b2Vec2(503. 0f / 100.0, 4.0f / 100.0),
b2Vec2(614. 0f / 100.0, 66.0f / 100.0),
b2Vec2(679. 0f / 100.0, 59.0f / 100.0),
b2Vec2(681. 0f / 100.0, 46.0f / 100.0),
b2Vec2(735.0f / 100.0, 31.0f / 100.0),
b2Vec2(822. 0f / 100.0, 24.0f / 100.0),
b2Vec2(827.0f / 100.0, 12.0f / 100.0),
b2Vec2(934. 0f / 100.0, 14.0f / 100.0),
b2Vec2(975. 0f / 100.0, 1.0f / 100.0),
b2Vec2(982. 0f / 100.0, -19.0f / 100.0),

b2Vec2(1023. 0f / 100.0, -20.0f / 100.0)
b
[sel f createG oundEdgesWthVerts:verts nunVerts: num
spriteFrameNanme: @ ground2. png"];
}

- (void)createGound3 {

/'l Replace with your values from Vertex Hel per, but replace all

/1 instances of PTM RATIO with 100.0

int num= 2;

b2Vec2 verts[] = {
b2Vec2(-1021.0f / 100.0, -22.0f / 100.0),
b2Vec2(1021.0f / 100.0, -20.0f / 100.0)

b

[sel f createG oundEdgesWthVerts:verts nunVerts: num
spriteFranmeNanme: @ ground3. png"];

Now that you are making this level scrollable, it would be cool to have a paral-
lax scrolling background. To implement this, add a new method, as shown in Listing
11.29.

Listing 11.29 Scene4ActionLayer.mm (right after createGround3)

- (void)createBackground {
CCPar al | axNode * parallax = [CCParal | axNode node];
[CCText ur e2D set Def aul t Al phaPi xel For mat :
kCCText ur e2DPi xel For mat _RGB565] ;
CCSprite *background;
if (U _USER I NTERFACE IDIOM) == U Userlnterfacel di onPad) {
background =
[CCSprite spriteWthFile: @scene_4_background-i pad. png"];
} else {
background =
[CCSprite spriteWthFile: @scene_4_background. png"];

Making the Cart Move and Jump

backgr ound. anchor Poi nt = ccp(0, 0);

[CCText ure2D set Def aul t Al phaPi xel For mat :
kCCText ur e2DPi xel For mat _Defaul t];

[paral | ax addChil d: background z:-10 paral |l axRati o: ccp(0. 05f, 0.05f)
positionOifset:ccp(0,0)];

[sel f addChild: paral l ax z:-10];

This creates a parallax node to store the background image so that it slowly scrolls
as the player moves through the level. Note that it sets the texture pixel format to
RGB565, which is a 16-bit pixel format (saves memory in comparison to the default
32-bit format with a tradeoff in quality). This format in particular gives the best pos-
sible quality for red, green, and blue channels for 16-bit images, with the tradeoft of
not having any alpha channel (transparency) support at all, but that is okay because this
image doesn’t have any transparent parts.

Next, create a method to create the level by laying these pieces side by side, as
shown in Listing 11.30.

Listing 11.30 Scene4ActionLayer.mm (right after createBackground)

- (void)createLevel {
[sel f createBackground];
[sel f createG ound3];
[sel f createG oundl];
[sel f createG ound3];
[sel f createG ound2];
[sel f createG ound3];

This simply calls the above methods to create a starting level layout by laying down
the pieces of ground one after the other. You’ll be returning to this method to add
more content to the level as this chapter progresses.

Next you need to add some code to follow the cart as it moves through the level.
You can do this by setting the layer’s position based on the position of the cart, as
shown in Listing 11.31.

Listing 11.31 Scene4ActionLayer.mm (right after createLevel)

- (void)followCart {
CGSi ze Wi nSize = [CCDirector sharedDirector].w nSi ze;
float fixedPosition = w nSize.w dth/4;
float newX = fixedPosition - cart.position.x;
newX = M N(newX, fixedPosition);
newX = MAX(newX, -groundMaxX-fixedPosition);
CGPoi nt newPos = ccp(newX, self.position.y);

365

366

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

[sel f setPosition: newPos];

This method moves the layer to keep the cart in a fixed position as the cart moves
through the level. Figure 11.13 illustrates how this works.

Figure 11.13 Moving the layer to keep the cart at a fixed position
onscreen

As Figure 11.13 shows, if the layer did not move, the cart would simply move
offscreen. However, you can keep the cart centered by figuring out the difference
between where you want the cart to be centered (in this case, at one-fourth the screen
width) and the cart’s current position and setting the layer to that position.

This method also bounds the scroll value so that the scrolling stops when you near
the edges of the level, as you can see in the calls to MAX and M N.

Note

There is also a built-in Cocos2D action called CCFol | ow that behaves similarly to the
code you just wrote here. The reason you wrote separate code to do this rather than

using CCFol | ow is twofold. First, CCFol | ow centers the object in the screen, and you
want the cart to be to the left-hand side of the screen so that Ole can see more of what’s
ahead. Second, you need precise control over when the layer’s position is updated so that
it runs at the same rate that your updat e method is called in order to ensure smooth
scrolling.

Next add a call to fol | owCart at the end of your updat e method, as shown in
Listing 11.32.

Listing 11.32 Scene4ActionLayer.mm (at the end of update)

[self followCart];

Making the Cart Move and Jump

One last step: add the code to set up the ground batch sprite node and call cr e-
ateLevel at the end of i nit Wt hScene4Ul Layer, as shown in Listing 11.33.

Listing 11.33 Scene4ActionLayer.mm (at the end of initWithScene4UlLayer)

[CCText ure2D set Def aul t Al phaPi xel For mat :
kCCText ur e2DPi xel For mat _RGB5A1] ;
if (U _USER | NTERFACE I DIOM) == Ul Userlnterfacel di onPad) {
[[CCSpriteFrameCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @groundAtlas-hd. plist"];
groundSpriteBat chNode = [CCSpriteBat chNode
bat chNodeW t hFi | e: @ gr oundAt | as- hd. png"];
} else {
[[CCSpriteFrameCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @groundAtlas. plist"];
groundSprit eBat chNode = [CCSpri t eBat chNode
bat chNodeW t hFi | e: @ gr oundAt | as. png"];
}
[CCText ure2D set Def aul t Al phaPi xel For mat :
kCCText ur e2DPi xel For mat _Def aul t];
[sel f addChil d: groundSpriteBat chNode z:-2];

[sel f createlLevel];

The first section of code loads the ground texture atlas. Note that it sets the texture
pixel format to RGB5AL, which is a 16-bit pixel format (saves memory in comparison
to the default 32-bit format with a tradeoff in quality). This format in particular gives
good quality for red, green, and blue channels but poor quality for alpha channel,
which is okay because for these images, the alpha channel is only used as an on/oft
indicator for transparency.

Compile and run the code, and you should now be able to use your accelerometer
to move and bounce the cart back and forth along a side-scrolling level!

However, as you go through the level, you may find times when you hit an out-
cropping or a strange edge and your cart flips over! Obviously, Ole would not be very
happy about that if he was stuck inside.

There are several ways you can fix this with Box2D, such as making the terrain
smoother to make this less likely to occur, having bigger wheels, modifying the weight
distribution of the cart to discourage this behavior, and so on. But for this level, you
want to keep the current wheel sizes, terrain, and weight distribution, so you’ll fix
this by adding some code to prevent the cart from rotating more than a specified angle
range—and pushing it back within the range if by chance it does exceed it.

But how can you “push” the cart in a certain direction? To understand that, let’s
discuss forces and impulses.

367

368

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Figure 11.14 A side-scrolling Box2D level with a moving cart

Forces and Impulses

An impulse is an instantaneous change in momentum (momentum is mass X velocity).
Think of it as an instant boost that you can apply to an object to make it jump or fly
through the air.

A force is a change in momentum over a period of time. Think of it as a gradual
energy that you can use to make objects float into the air or be pushed toward a wall.

Both impulses and forces affect an object’s velocity (how fast it’s moving), but the
difference is that an impulse affects the velocity immediately while a force is meant to
be applied over a longer period of time. Usually, you would call an impulse at a single
point in time in code (like when the user taps to jump), but you would apply forces in
your updat e method every frame while the force is still active.

There are two kinds of impulses: linear impulses (a push in a certain direction) and
angular impulses (a rotation in a certain direction). To push the cart back to a certain
angle, you want to apply an angular impulse. So let’s give that a shot.

Fixing the Tipping
Open Cart.mm and add the method shown in Listing 11.34.

Listing 11.34 Cart.mm (anywhere in class)

- (void) updateStateWthDeltaTinme: (ccTine)deltaTinme
andLi st Of GameQbj ects: (CCArray *)1istOf Gamebj ects {
float32 m nAngl e = CC_DEGREES_TO RADI ANS(- 20) ;

Making the Cart Move and Jump

fl oat 32 maxAngl e = CC_DEGREES TO RADI ANS(20) ;
doubl e desiredAngl e = sel f. body->CGet Angl e();
if (self.body->CetAngle() > maxAngle) {
desi redAngl e = naxAngl e;
} else if (self.body->GetAngle() < mnAngle) {
desi redAngl e = m nAngl e;
}

float32 diff = desiredAngle - self.body->Get Angle();
if (diff '=0) {
body- >Set Angul ar Vel oci ty(0);
float32 diff = desiredAngle - self.body->CetAngle();
float anginp = self.body->Cetlnertia() * diff;
sel f. body->Appl yAngul ar | npul se(angi np * 2);

This method checks the angle of the cart and compares it to a desired range (=20 to
20 degrees). If the cart is out of range, it first stops the cart from rotating further (by
setting the angular velocity to 0) and then applies a slight angular impulse to push the
cart back toward the center. The more the cart is off center, the stronger the angular
impulse will be.

Now compile and run: your cart should be able to get through the entire level
without flipping!

Making the Cart Jump

To make the cart jump, you apply the other type of impulse—a linear impulse. You
apply a boost to the bottom of the cart to launch it up into the air to give a neat jump
effect.

The first thing you need to do is write a helper function to detect if a Box2D body
is intersecting another body of a given type. This function detects if the cart is touch-
ing the ground, and more later on.

Select the Classes\Box2D group, go to File > New > New File..., choose i0OS >
Cocoa Touch > Objective-C class, and click Next. Enter NSObject as the Subclass
of, click Next, name the file Box2DHelpers.mm (note the .mm extension, since this
imports Box2D), and click Save.

Replace Box2DHelpers.h with the contents of Listing 11.35.

Listing 11.35 Box2DHelpers.h

#i nport " Box2D. h"
#i mport " CommonPr ot ocol s. h"

bool isBodyCol |Iidi ngWthObject Type(b2Body *body,
GaneObj ect Type obj ect Type) ;

369

370

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

This simply predeclares the helper function you’re about to write. Next write the
implementation by replacing Box2DHelpers.mm with the contents of Listing 11.36.

Listing 11.36 Box2DHelpers.mm

#i mport " Box2DHel pers. h"
#i mport "Box2DSprite.h"

bool isBodyCol |idi ngWthQObject Type(b2Body *body, GaneObject Type
obj ect Type) {
b2Cont act Edge* edge = body->GCet Cont act Li st ();
whi | e (edge)
{
b2Cont act * contact = edge->contact;
if (contact->lsTouching()) {
b2Fi xture* fixtureA = contact->Cet Fi xtureA();
b2Fi xture* fixtureB = contact->CGet Fi xtureB();
b2Body *bodyA = fixtureA >Get Body();
b2Body *bodyB = fi xtureB->GCet Body();
Box2DSprite *spriteA =
(Box2DSprite *) bodyA->Cet UserData();
Box2DSprite *spriteB =
(Box2DSprite *) bodyB->GCet User Dat a();
if ((spriteA!= NULL &&
spriteA ganeObj ect Type == obj ect Type) ||
(spriteB !'= NULL &&
spriteB. ganeoj ect Type == obj ect Type)) {
return true;

}

edge = edge->next;

}

return fal se;

This code should look pretty familiar: it’s the same method of looping through the
contacts list to look for collisions that you learned in Chapter 10.

Note

As mentioned in Chapter 10, this method of checking for collisions won’t detect the case
where an object was colliding at one point since the last call but bounced off and is no

longer colliding. However, for the purposes of this level, this doesn’t matter to us, so we’ll

continue to use this simple method.

If this is something you care about, you need to implement a Box2D contact listener. For
more information on how to do this, check out the Box2D manual at www.box2d.org.

www.box2d.org

Making the Cart Move and Jump

Now go to Scene4ActionLayer.mm and import Box2DHelpers.h at the top of the file,
as shown in Listing 11.37.

Listing 11.37 Scene4ActionLayer.mm (at the top of the file)

#i nport " Box2DHel pers. h"

Next delete the ccTouchBegan, ccTouchMoved, and ccTouchEnded methods,
since you won’t need the mouse joint for debugging anymore. Then add the contents
of Listing 11.38 as your new ccTouchBegan method.

Listing 11.38 Scene4ActionLayer.mm (delete ccTouchXX methods and replace with this)

-(BOOL) ccTouchBegan: (U Touch *)touch w thEvent: (U Event *)event {
if (isBodyCollidingWthObjectType(cart.body, kG oundType) ||
i sBodyCol | i di ngW t hObj ect Type(groundBody, kCartType)) {
[cart junp];
}
return TRUE;

This simply checks to see if the ground body is colliding with any object marked as
a cart type, and if so, it instructs the cart to jump.

Now switch to Cart.h and predeclare the jump function you just called as well as
another helper method, as shown in Listing 11.39.

Listing 11.39 Cart.h (after @interface)

- (void)junp;
- (float32)full Mass;

Then switch to Cart.mm and add the support methods to implement jumping, as
shown in Listing 11.40.

Listing 11.40 Cart.mm (anywhere inside class)

- (void)playJunpEffect {

int soundToPlay = randon() % 4;

if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_1) ;

} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG _2) ;

} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_3) ;

} else {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG _4) ;

371

372

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

}
}
- (float32)full Mass {
return body->Get Mass() + wheel LBody->Get Mass() +
wheel RBody- >CGet Mass() ;
}
- (void)junp {
[sel f playJunpEffect];
b2Vec2 impul se = b2Vec2([self fullMass]*1.0, [self fullMss]*5.0);
b2Vec2 i npul sePoint =
body- >Get Wor | dPoi nt (b2Vec2(5. 0/ 100. 0, -15.0/100.0));
body- >Appl yLi near | npul se(i npul se, inpul sePoint);
}

The code first plays a sound effect, then applies a linear impulse to the cart body
to make it jump. When you apply an impulse, you specify the impulse to apply and
the point at which to apply it. The impulse should usually be a multiple of the mass of
the object; the exact numbers depend on how high you want your cart to jump. Here
it is making it jump upward by a good amount and a slight amount to the right. The
impulse point is set slightly to the right and bottom of the cart in order to make the
cart tend to slightly tip backward on a jump to get a nicer effect.

There’s one last thing. When implementing jumping in Box2D, sometimes you
want to let the user jump even if the object isn’t actually hitting the ground, but is
“close enough.” For example, when the user rides over rough terrain, the wheels
might be bouncing off the ground quite often, but the user would perceive that the
cart should be able to jump anyway. To address this, you add a sensor to the bottom of’
the cart so that if the cart is “close enough” to the ground, a jump will be allowed.

Add the code to create a sensor on the bottom of the cart at the bottom of cr e-
at eBodyAt Locat i on, as shown in Listing 11.41.

Listing 11.41 Cart.mm (at the bottom of createBodyAtLocation)

b2Pol ygonShape sensor Shape;

sensor Shape. Set AsBox(sel f.content Si ze.w dt h/ 2/ PTM_RATI O, sel f.contentSi ze.
hei ght/ 2/ PTM_RATI O,

b2Vec2(0, -self.contentSize.height/PTM RATIO, 0);
fixtureDef.shape = &sensor Shape;
fixtureDef.density = 0.0;
fixtureDef.isSensor = true;
body- >Cr eat eFi xt ure(&f i xt ur eDef);

Compile and run the code, and your cart should now jump when you tap the
screen, as you can see in Figure 11.15.

Making the Cart Move and Jump

Figure 11.15 Cart jumping using Box2D impulses

More Responsive Direction Switching

If you experiment with the level, you’ll see that once the cart gets moving, it takes a
bit of time to switch directions. This models what would happen in real life, but in
games, players are used to instant gratification!

So let’s use impulses again to make the direction switching a bit faster for play-
ers. Inside Scene4ActionLayer.mm, add the contents of Listing 11.42 to the bottom of
accel eroneter: di dAccel erate.

Listing 11.42 Scene4ActionLayer.mm (at the bottom of accelerometer:didAccelerate)

if (abs(cart.body->GetLinearVelocity().x) < 5.0) {
b2Vec2 inpul se =
b2Vec2(-1 * acceleration.y * cart.fullMass * 2, 0);
cart. body->Appl yLi near | npul se(i npul se,
cart.body->Get Wrl dCenter());

This simply checks to see if the cart is moving very slowly (less than 5 meters per

second in either direction). If that is the case, it applies a slight impulse to get the body

moving a bit faster in the intended direction. This helps reduce the time switching
directions or starting up.

373

374

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping

Compile and run the code, and now the cart should switch directions more quickly.
Finally, you have a cart worthy of Ole to ride in!

Summary

At this point you have created a side-scrolling action level with Box2D, complete with
vehicles, motors, joints, impulses, and more! You should now be familiar with how

to use Box2D to model arbitrary shapes with Vertex Helper, connect multiple bodies
with joints, and use impulses to move your game objects.

In the next chapter, you pick up where you left off and add Ole into the game, rid-
ing the cart—using Box2D to model his body for a cool effect. You also add bridges
to cross, spikes to avoid, and a dangerous boss for Ole to battle at the end with an epic
cinematic fight intro!

Challenges

1. Make the level longer by adding more ground pieces to the level. Draw your
own piece of ground in an image editor, use Vertex Helper to determine the
vertices for the edges, and then add it to the level. See how cool and fun you can
make the level!

1. Replace the cart with your own vehicle. Maybe instead of racing a mining cart,
you’d like Ole to drive a truck or a sports car? The vehicle you choose may
be slower or faster than a cart, so modify the acceleration and impulse values
accordingly.

2. Add a long platform to the level that has a revolute joint in the middle so that
when Ole is at either end, the platform starts to fall down on that side. This
makes for a fun challenge for Ole to navigate and give you a chance to practice
making your own bodies and joints!

12

Advanced Game Physics: Even
Better than the Real Thing

In Chapter 11, “Intermediate Game Physics,” you made an action-packed level where you can
race a mining cart across interesting terrain and tap to leap through the air. However, there are
two major problems. First, the level is far too easy! There are no dangers to avoid, no enemies to
fight. Second, our hero Ole is nowhere to be seen! It’s time to wake him up from his mad dreams
and bring him back into action.

In this level, you pick up where you left off in Chapter 11 and add Ole into the mine cart
(Figure 12.1) using Box2D so his body reacts to the bumps and jumps using a cool ragdoll effect.
You also add bridges to cross, spikes to avoid, and even a boss fight at the end with a cinematic
intro sequence!

By the time you finish reading this chapter, you’ll have covered the most important aspects
of using Box2D and will be ready to make your own physics-based game including vehicles,
enemies, ragdoll bodies, and more!

Figure 12.1 Adding Ole, spikes, and more to the Box2D side-scrolling
action level!

376

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Joints and Ragdolls: Bringing Ole Back
into Action

Now that you have the cart ready for Ole to ride in, let’s add him into the scene!
One way you could approach this is to draw Ole in as part of the cart sprite—but
where would be the fun in that? In this chapter, you take things to the next level by
adding Ole to the cart using ragdoll physics, so he bounces and moves in realistic and
amusing ways as the cart travels through the level.
You accomplish this by breaking Ole’s body into pieces (poor Ole!), making sepa-
rate bodies for each, and connecting them with joints, as shown in Figure 12.2.

Figure 12.2 Breaking Ole into various Box2D bodies and connecting
them with joints

As you can see in Figure 12.2, you want to create bodies for each piece (the out-
lined boxes) and set things up so that some of the bodies rotate around each other (the
dots) and some of the bodies move up and down in relation to each other (the arrows).

In order to accomplish this, you need to know three things: (1) how to restrict the
rotation of revolute joints, (2) how to use a new type of joint called a prismatic joint,
and (3) how to create multiple bodies and joints at the right spots. Before you begin
coding this up, let’s go over these items one by one.

Restricting Revolute Joints

For most of the body parts, you’ll use revolute joints, which you learned about in
Chapter 11 when you added the wheels to the cart. Remember, revolute joints fix two
bodies together at a certain point but allow each body to rotate around that point.
This is exactly what you want for connecting an arm to the body, except you also
want to restrict the rotations to a certain angle range. For example, if your arm started

Joints and Ragdolls: Bringing Ole Back into Action

spinning around and around 360 degrees without any limits, people would think it
was time to call an exorcist!

Luckily, it is quite easy to restrict revolute joints to a certain angle range with
Box2D. When you set up a b2Revol ut eJoi nt Def , you just set a few extra proper-
ties: enableLimit, lowerAngle, and upperAngle. Listing 12.1 shows an example of
connecting an arm to the main body.

Listing 12.1 Example of limiting revolute joint angles

revJointDef.Initialize(trunkBody, arnBody,
ar nBody- >Get Wor | dPoi nt (b2Vec2(-9. 0/ PTM RATI O, 29.0/ PTM RATIO)));
revJoi nt Def . | ower Angl e = CC_DEGREES_TO_RADI ANS(- 30) ;
revJoi nt Def . upper Angl e = CC_DEGREES_TO_RADI ANS(60) ;
revJoi nt Def . enabl eLimt = true;
wor | d- >Cr eat eJoi nt (& evJoi nt Def) ;

The angles you set for | ower Angl e and upper Angl e are in respect to the initial
placement of the two bodies. Whatever angle the bodies are placed at when you first
add them to the scene is considered “angle 0.”

When you rotate body #2 counterclockwise (the arm in this case), the angle is
positive. So in this example, the arm can rotate at most 60 degrees clockwise from the
initial orientation.

Similarly, when you rotate body #2 clockwise, the angle is negative. So in this exam-
ple, the arm can rotate at most —30 degrees clockwise from the initial orientation.

Figure 12.3 shows the angles each revolute joint in Ole should be restricted to for
planning purposes.

Figure 12.3 Angles to restrict each revolute joint for Ole

377

378

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Using Prismatic Joints

A prismatic joint is a type of joint that restricts two bodies so they can move relative
to each other only along a specified axis. For example, you could connect a garage
door body with a ground body and set the axis to be the y-axis, so the garage door
can only slide up and down. Or you could connect a raft body with a ground body
and set the axis to be the x-axis, so the raft can only slide right and left.

Prismatic joints are useful for connecting Ole’s legs with the cart. You can set up
the axis to be the y-axis, so that when the cart goes over a bump, Ole will “pop” out
of the cart a little bit. Just like you can set up revolute joints to revolve only a certain
amount, you can set up prismatic joints to allow only a limited amount of movement.

You set up prismatic joints in a similar manner to how you set up revolute joints.
Listing 12.2 shows an example of creating a prismatic joint to connect Ole’s legs to the
cart.

Listing 12.2 Example of creating a prismatic joint

b2Pri smati cJoi nt Def prisJoi nt Def;
prisJointDef.Initialize(body, |egsBody,

| egsBody- >CGet Wor | dCenter (), axis);
prisJointDef.enableLimt = true;
pri sJoi nt Def .| ower Transl ati on = 0. 0;
pri sJoi nt Def . upper Transl ati on = 43. 0/ 100. 0;
wor | d- >Cr eat eJoi nt (&pri sJoi nt Def) ;

The I nitial i ze method takes the two bodies in the joint relationship (in this
case, the cart and the legs), the anchor point, and the axis where the objects can move
relative to each other (the y-axis in this case).

Note that you can restrict how much the objects can move along the axis relative to
each other by setting enabl eLi mi t, | ower Transl ati on, and upper Transl ati on,
similar to how you could limit revolute joints. In this case, the legs can’t go down the
y-axis any further than they currently are, but they can move up the y-axis up to 43.0
points (relative to the HD artwork), so Ole can pop out of the cart over a bump.

Figure 12.4 shows the offsets each prismatic joint in Ole should be restricted to for
planning purposes.

How to Create Multiple Bodies and Joints at the Right Spots

To add Ole to the scene, you need to add multiple pieces—legs, trunk, arm, head, and
helmet. When you add these bodies to the scene, you need to give the world coordi-
nates for where to place each. One method to do this is to place all of the bodies in
the configuration you want in an image editor, use ruler tools to measure the world
point for where you want to place each object, and use that for each location.

This approach works if you know the exact points for where you want to place each
body, but it’s rather fragile. What happens if you want to start your body at a different

Joints and Ragdolls: Bringing Ole Back into Action

Figure 12.4 Offsets to restrict each prismatic joint for Ole

location? A second method is to measure the distance of each object relative to a main
body (such as the cart) and then add the main body’s current position to that point.
This is better, but if you try to change the cart’s initial angle, the related bodies will
no longer be in the correct location.

An approach that works well even if you want to place an object in a different spot
or at a different initial angle is to (1) measure the distance between each object and the
object it’s connected to, and (2) use a helper function called Get Wor | dPoi nt on the
body it’s connected to to convert a local offset from that body to a world coordinate.

For example, Listing 12.3 shows the code you should (and shouldn’t) use to place
Ole’s legs in the right position. The first line shows the not-so-good way (adding an
offset to the body’s current position). The second line shows the better way (using the
Get Wor | dPoi nt to convert a local offset to a world coordinate, which correctly fac-
tors in the body’s rotation).

Listing 12.3 Good and bad ways to place bodies relative to each other

/1 Bad way (addi ng body's position manually)
| egsBody = [self createPartAtLocation:
b2Vec2(body->Get Posi ti on().x-10.0/100. 0,
body->Get Posi tion().y+6.0/100.0)
wi thSprite:legs];
/1 Good way (using GetWorl dPoint, which factors in rotation)
| egsBody = [self createPartAtLocation:
body- >Get Wor | dPoi nt (b2Vec2(-10. 0/ 100. 0,
6.0/ 100.0))
withSprite:legs];

379

380

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

In summary, to place multiple bodies and joints at the right spot, it’s a matter of
using Get Wor | dPoi nt to convert local offsets from bodies to world coordinates and
using an image editing tool to measure the offsets to place each body.

In this chapter, you can use the sample code, which has the offsets premeasured, or
you can replace the coordinates with your own measurements to make sure you fully
understand how it works—it’s your choice!

Note

If all of this measuring and tweaking is too much for you, there are some tools you can
purchase to make your life a bit easier.

The first is a tool called Mekanimo (www.mekanimo.net) that helps you visually sketch out
physics bodies, connect them with joints, and even test out how they work inside the tool.
When you’re done, you can export the shapes and joints you defined as Box2D code that
you can cut and paste into your projects (with a few modifications). At the time of writing,
Mekanimo has both Windows and Mac versions and costs $29.95 for noncommercial use
and $199.95 for independent developer use.

The second is a tool/sample project called LevelSVG (www.sapusmedia.com/levelsvg),
written by none other than Ricardo Quesada, the creator of Cocos2D. LevelSVG allows you
to create levels for your games in Inkscape, a free vector editing tool, and read the saved
files in Cocos2D code to create Box2D bodies and objects. LevelSVG works especially
well for platformer games if you want to have an easier time developing your levels and

is also a good example of Cocos2D game programming. At the time of writing, LevelSVG
costs $249 if you buy it alone and $149 if you buy it along with other source code proj-
ects written by Ricardo.

Last but not least, there’s a great tool by the author of TexturePacker called Physics Edi-
tor (www.physicseditor.de). This tool is similar to Vertex Helper but even easier, since it
can automatically trace your shapes for you! You can even set your Box2D object proper-
ties from right within Physics Editor and easily load your objects in code, saving yourself
a lot of time and work. TexturePacker has a free trial version, and the full version costs
$17.95, or $29.99 if you buy it along with TexturePacker.

We didn’t cover using these tools in these chapters because we wanted you to learn how
things work from the ground up, but in practice, they are definitely recommended because
they can save you a lot of time!

Adding Ole: The Implementation

With that background knowledge in mind, let’s give Ole the ride of his life!

First things first: adding some required instance variables and properties. Open up
Cart.h and add the member variables for the body part sprites and Box2D bodies, as
shown in Listing 12.4.

Listing 12.4 Cart.h (inside @interface)

Box2DSprite * |egs;
Box2DSprite * trunk;
Box2DSprite * head;

www.sapusmedia.com/levelsvg
www.physicseditor.de

Joints and Ragdolls: Bringing Ole Back into Action

Box2DSprite * helm
Box2DSprite * arm
b2Body * | egsBody;
b2Body * trunkBody;
b2Body * headBody;
b2Body * hel nBody;
b2Body * ar nBody;

Then underneath, add properties for the sprites, as shown in Listing 12.5.

Listing 12.5 Cart.h (after @interface)

@roperty (readonly) Box2DSprite * |egs;
@roperty (readonly) Box2DSprite * trunk;
@roperty (readonly) Box2DSprite * head;
@roperty (readonly) Box2DSprite * helm
@roperty (readonly) Box2DSprite * arm

At the top of Cart.mm, synthesize your new properties, as shown in Listing 12.6.

Listing 12.6 Cart.mm (right after @implementation)

@ynt hesi ze | egs;
@ynt hesi ze trunk;
@ynt hesi ze head;
@ynt hesi ze hel m
@ynt hesi ze arm

Now on to the fun stuff. First modify both cr eat eBodyAt Locat i on and
creat eWheel Wt hSprite and add the lines in Listing 12.7 as you create your fixture
definition.

Listing 12.7 Cart.mm (in both createBodyAtLocation and createWheelWithSprite, right
after creating the fixtureDef)

fixtureDef.filter.categoryBits = 0x2;
fixtureDef.filter.maskBits = OxFFFF;
fixtureDef.filter.grouplndex = -1;

These three settings set up the collision filters for Box2D. You need to set these up
so that the cart doesn’t collide with any of the body parts youre about to add. Let’s go
through what each setting means.

Every Box2D body can belong to a set of object categories, and by setting
categoryBits, you control which categories the body belongs to. The default cat-
egory is 0x1, so here you set the cart to a different category (mainly to illustrate that
you can do this).

381

382

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

You can set which categories of objects an object will collide with by setting the
maskBits field. This is a 16-bit value, so setting it to OXFFFF means that it collides
with all categories (the same as the default behavior).

The final item, groupIndex, is a special field you can use to override the mask
bits. When two bodies share the same group index, if the number is negative, they
will not collide, and if the number is positive, they will collide. In this case, it’s set to
negative (and the bodies that make up Ole will have the same negative value), so they
will not collide even though they would otherwise.

Tip

In your games, you may find it useful to use #def i nes for the various categories that
your objects might belong to. For example, you could #defi ne kG oundCat egory
Ox1, #defi ne kCart Category 0x2, and so on, and then set the cat egor yBits
and maskBi t s for all of your fixtures using these constants. This makes your code a
little bit easier to work with, especially when your scenes start getting more complex.

Next create a new function to create a part of Ole, as shown in Listing 12.8.

Listing 12.8 Cart.mm (before initWithWorld:atLocation)

- (b2Body *)createPartAtlLocation: (b2Vec2)l ocation
withSprite: (Box2DSprite *)sprite {
b2BodyDef bodyDef ;
bodyDef.type = b2_dynani cBody;
bodyDef . position = |ocation;
bodyDef . angl e = body->CGet Angl e();

b2Body *retval = worl d->Creat eBody(&bodyDef);
retval - >Set User Dat a(sprite);
sprite.body = retval;

b2Pol ygonShape shape;
shape. Set AsBox(sprite.contentSize.w dth/2/PTM RATI O
sprite.contentSize. height/2/ PTM RATI O ;

b2Fi xt ur eDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.density = 0.05;
fixtureDef.filter.categoryBits = 0x2;
fixtureDef.filter.maskBits = OxFFFF;
fixtureDef.filter.grouplndex = -1;

retval - >Cr eat eFi xt ure(& i xt ureDef);
return retval;

Joints and Ragdolls: Bringing Ole Back into Action

Most of this is standard body creation code that you have seen many times. There
are three things in particular to point out though.

First, the density is set to very low so Ole’s bouncing around only affects the cart’s
movement a little bit. Without this, you might see an effect where the force of Ole
bouncing around overwhelms the joint constraints, and Ole could end up under the
cart!

Second, the category filtering is set up so that Ole doesn’t collide with the cart, as
described previously.

Third, each part of Ole is created as a box (rather than tracing it more exactly with
Vertex Helper). Boxes are used because in this level, Ole won’t really be colliding with
much, so the exact shapes don’t matter, and boxes are much simpler.

Next, add a new method to create Ole, as shown in Listing 12.9.

Listing 12.9 Cart.mm (right after createPartAtLocation)

-(void)createde {
I egs = [Box2DSprite spriteWthSpriteFrameNane: @O eCartlLegs. png"];
| egs. gane(hj ect Type = kCart Type;
| egsBody = [self createPartAtLocation:
body- >Get Wor | dPoi nt (b2Vec?2(-10. 0/100. 0, 6.0/100.0))
withSprite:legs];

trunk = [Box2DSprite spriteWthSpriteFraneNane: @ eCart Body. png"];
trunk. ganeQoj ect Type = kCart Type;
trunkBody = [self createPartAtLocation:
| egsBody- >Get Wor | dPoi nt (b2Vec2(0, 45.0/100.0))
withSprite:trunk];

head = [Box2DSprite spriteWthSpriteFranmeNane: @O eCart Head. png"];
head. gane(hj ect Type = kCart Type;
headBody = [self createPartAtLocation:
trunkBody- >Get Wor | dPoi nt (
b2Vec2(18.0/100. 0, 24.0/100.0)) wi thSprite: head];

hel m = [Box2DSprite
spriteWthSpriteFrameNane: @ d eCart Hel met. png"];

hel m ganmeChj ect Type = kCart Type;

hel nBody = [self createPartAtLocation:
headBody- >Get Wr | dPoi nt (b2Vec2(15. 0/ 100. 0, 25.0/100.0))
wi t hSprite: helni;

arm = [Box2DSprite spriteWthSpriteFrameNane: @O eCart Arm png"];
arm ganmeCbj ect Type = kCart Type;
arnmBody = [self createPartAtLocation:
t runkBody- >Get Wor | dPoi nt (
b2Vec2(5.0/100.0, -15.0/100.0)) withSprite:arni;

383

384

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

This simply uses the above method to create a Box2D body for each piece of Ole.
Note that it uses Get Wor | dPoi nt to make each piece relative to the piece it’s connect-
ing to for maximum code reuse. All of the points listed here were simply measured
with a ruler tool in an image-editing program using the HD artwork, so they need to
be divided by the HD PTM_RATI O (100.0) to be converted to the proper Box2D coor-
dinates as usual.

Next, at the bottom of cr eat ed e, add the code to create the necessary joints, as
shown in Listing 12.10.

Listing 12.10 Cart.mm (at bottom of createOle)

b2Tr ansf or m axi sTransform
axi sTransform Set (b2Vec2(0, 0), body->GetAngle());
b2Vec2 axis = b2Muil (axi sTransform R, b2Vec2(0,1));

b2Pri smati cJoi nt Def pri sJoi nt Def;
prisJointDef.Initialize(body, |egsBody,

| egsBody- >CGet Wor | dCenter (), axis);
prisJoint Def.enableLinmt = true;
prisJoi nt Def .| ower Transl ati on = 0.0;
prisJoi nt Def . upper Transl ati on = 43. 0/ 100. 0;
wor | d- >Cr eat eJoi nt (&pri sJoi nt Def) ;

b2Revol ut eJoi nt Def revJoi nt Def;
revJointDef.Initialize(l egsBody, trunkBody,

| egsBody- >CGet Wor | dPoi nt (b2Vec2(0, 20.0/100.0)));
revJoi nt Def . | ower Angl e = CC_DEGREES_TO_RADI ANS(- 15) ;
revJoi nt Def . upper Angl e = CC_DEGREES_TO RADI ANS(15) ;
revJoi nt Def . enabl eLinmit = true;
revJoi nt Def . enabl eMbt or = true;
revJoi nt Def . not or Speed = 0. 5;
revJoi nt Def . maxNMot or Tor que = 50. 0;
wor | d- >Cr eat eJoi nt (& evJoi nt Def) ;
revJoi nt Def . enabl eMbt or = fal se;

revJointDef.Initialize(trunkBody, arnBody,
ar mBody- >Get Wor | dPoi nt (b2Vec2(-9. 0/100.0, 29.0/100.0)));
revJoi nt Def . | ower Angl e = CC_DEGREES_TO_RADI ANS(- 30) ;
revJoi nt Def . upper Angl e = CC_DEGREES_TO_RADI ANS(60) ;
revJoi nt Def . enabl eLimt = true;
wor | d- >Cr eat eJoi nt (& evJoi nt Def) ;

revJointDef.Initialize(trunkBody, headBody,

headBody- >CGet Wr | dPoi nt (b2Vec2(-12. 0/ 100.0, -9.0/100.0)));
revJoi nt Def . | ower Angl e = CC_DEGREES_TO_RADI ANS(- 5) ;
revJoi nt Def . upper Angl e = CC_DEGREES_TO RADI ANS(5) ;

Joints and Ragdolls: Bringing Ole Back into Action

revJoi nt Def . enabl eLimt = true;
wor | d- >Cr eat eJoi nt (& evJoi nt Def) ;

prisJointDef.lnitialize(headBody, hel nBody,
hel mBody- >Get Wor | dCenter (), axis);

prisJointDef.enableLimt = true;

prisJoi nt Def.| ower Transl ati on = 0.0/ 100. 0;

prisJoi nt Def . upper Transl ati on = 5. 0/100. 0;

wor | d->Cr eat eJoi nt (&pri sJoi nt Def) ;

Based on the discussion earlier in this chapter, most of this should be straightfor-
ward. It’s simply creating revolute joints and prismatic joints to connect each body to
another and setting up the limits so the bodies act appropriately.

There are two things of interest to note in this method, however. The first is that
for the first revolute joint (connecting the legs to the trunk), the motor for the joint is
enabled, with a speed of 0.5 and a small max torque. This is to make Ole tend to lean
backward a bit, so he looks upright rather than falling over due to the weight of his
head being in the front.

The second thing of interest is that the axis is rotated according to the body’s angle
rather than just pointing straight up. This is important so that if you rotate the body
when you initially place it into the scene, it will still be connected properly.

Now call your new method at the bottom of i ni t Wt hWor | d: at Locat i on, as
shown in Listing 12.11.

Listing 12.11 Cart.mm (at bottom of initWithWorld:atLocation)

[self created e];

And finally, switch to Scene4ActionLayer.mm and modify cr eat eCart At Locat i on
to add the new sprites to the scene, as shown in Listing 12.12.

Listing 12.12 Scene4ActionLayer.mm (at bottom of createCartAtLocation)

[sceneSpriteBat chNode addChil d:cart. | egs];

[sceneSpriteBat chNode addChild:cart.trunk];

[sceneSprit eBat chNode addChil d: cart. head];

[sceneSprit eBat chNode addChil d:cart. hel ni;

[sceneSpriteBat chNode addChild:cart.arm z:2];

Note that Ole’s arm is added with a higher z value, so it appears to be hanging out-
side the cart.

Compile and run your code (on the device, as the simulator is slower and can have
some oddities), and as you can see in Figure 12.5, Ole should now be back in action,
swaying and bouncing in a really cool manner as your cart jumps through the level!

385

386

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Figure 12.5 Ole leaping through the level with a ragdoll effect

Adding Obstacles and Bridges

So far the level is kind of fun, with a cart that you can move around and jump—-but
there’s absolutely no challenge! So let’s spice things up a bit by adding some simple
spikes along the ground that you have to jump and a neat swaying bridge you can
CTOss.

Adding a Bridge
You start with adding the bridge, since it’s simpler and will reinforce what you just
learned about how to use joints.

As you can see in Figure 12.6, the basic idea is that you create a sequence of small
rectangles for bridge planks end to end, connect each plank to the next with a revolute
joint, and connect the first and last bridge planks to the ground. Then Box2D handles
the simulation, and gravity causes the planks toward the middle to sag a bit, much like
a bridge made out of connected planks would.

Since you know how to create revolute joints and create Box2D bodies, this should
be a snap. First, add two new instance variables to Scene4ActionLayer.h, as shown in
Listing 12.13.

Listing 12.13 Scene4ActionLayer.h (inside @interface)

b2Joint * lastBridgeStartJoint;
b2Joint * |astBridgeEndJoint;

Adding Obstacles and Bridges

Figure 12.6 Adding a bridge using revolute joints

These just hold a reference to the first and last joints in the bridge added to the
scene. They come in handy later in this chapter.

Next add a new method to Scene4ActionLayer.mm to create the bridge, as shown in
Listing 12.14.

Listing 12.14 Scene4ActionLayer.mm (before createlLevel)

- (void)createBridge {
Box2DSprite *| ast Object;
b2Body *| ast Body = groundBody;
for(int i =0; i <15; i++) {
Box2DSprite *plank =
[Box2DSprite spriteWthSpriteFraneNane: @ pl ank. png"];
pl ank. gameObj ect Type = kG oundType;

b2BodyDef bodyDef ;
bodyDef.type = b2_dynam cBody;
bodyDef . position =
b2Vec2(gr oundVaxX/ PTM RATI O +
pl ank. content Si ze. wi dt h/ 2/ PTM_RATI O,
80.0/100.0 -
(pl ank. content Si ze. hei ght/ 2/ PTM_ RATI O)) ;

b2Body *pl ankBody = wor | d- >Cr eat eBody(&odyDef) ;
pl ankBody- >Set User Dat a(pl ank) ;

pl ank. body = pl ankBody;

[groundSpriteBat chNode addChi | d: pl ank] ;

b2Pol ygonShape shape;

float32 diff;

if (U _USER | NTERFACE_ | DI OM) == Ul User | nterfacel di onPad) {
di ff = 40.0-pl ank. content Si ze. hei ght;

} else {
di ff = 20.0-pl ank. content Si ze. hei ght;

}

387

388 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

shape. Set AsBox(
pl ank. cont ent Si ze. wi dt h/ 2/ PTM_RATI O, 40. 0/ 100. 0,
b2Vec2(0, -plank.contentSize. height/2/
PTM RATI O-di f f/ PTM RATI O), 0);

b2Fi xt ureDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.density = 2.0;

pl ankBody- >Cr eat eFi xt ur e(& i xt ureDef) ;

b2Revol ut eJoi nt Def jd;
jd.Initialize(lastBody, plankBody,

pl ankBody- >Get Wor | dPoi nt (

b2Vec2(- pl ank. content Si ze. wi dt h/ 2/ PTM RATI O, 0)));

jd.lower Angl e = CC_DEGREES_TO RADI ANS(- 0. 25);
j d. upper Angl e = CC_DEGREES_TO RADI ANS(0. 25);
jd.enableLinmt = true;
b2Joint *joint = world->CreateJdoint(&d);
if (i ==0) { lastBridgeStartJoint = joint; }

groundMaxX += (plank.contentSi ze.width * 0.8);
| ast Body = pl ankBody;
| ast Cbj ect = pl ank;

}

b2Revol ut eJoi nt Def jd;
jd.Initialize(lastBody, groundBody,
| ast Body- >Get Wor | dPoi nt (
b2Vec2(| ast Obj ect. content Si ze. wi dt h/ 2/ PTM_RATI O, 0)));
| ast Bri dgeEndJoi nt = worl| d->Creat eJoi nt (& d);

This code creates 15 bridge planks and lays them end to end, but slightly overlap-
ping, so there are no gaps in the bridge when it sags due to gravity. It connects each
bridge plank to the next with a revolute joint, setting it up with a very tight restriction
(—0.25 degrees per connection) to get a “tight” feel to the bridge. Also note that the
first and last joints are connected to the ground.

One thing you may be wondering about is the section that begins with a test if
the height of the plank is less than 40 points (relative to the HD artwork). This code
makes sure that the actual Box2D body representing the plank is at least 40 points
tall. This height is needed to prevent the wheels of the cart from falling through the
planks, which could happen in practice if the plank was too thin. The code just lines
up the taller Box2D bodies so that the tops of the bodies align with the tops of the
planks.

Adding Obstacles and Bridges 389

Next, just modify your cr eat eLevel method to call the new creat eBri dge
method between the calls to create the ground, as shown in Listing 12.15.

Listing 12.15 Scene4ActionLayer.mm (replace createLevel with this)

- (void)createLevel {
[sel f createBackground];
[sel f createG ound3];
[sel f createBridge];
[sel f createG oundl];
[sel f createBridge];
[sel f createG ound3];
[sel f createBridge];
[sel f createG ound2];
[sel f createG ound3];
[sel f createBridge];
[sel f createG ound3];

Compile and run your code, and as you can see in Figure 12.7, now you should be
able to ride over cool dynamic bridges!

Figure 12.7 Creating bridges with Box2D revolute joints

390

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Adding Spikes
Now that you have bridges, let’s increase the challenge for the player by scattering
some spikes across the level for the player to avoid.

To start, you create a new subclass of Box2DSpri t e for the spikes. Select the
Classes\Game Objects\Box2D group, go to File > New > New File..., choose iOS >
Cocoa Touch > Objective-C class, and click Next. Enter Box2DSprite as the Sub-
class of, click Next, name the file Spikes.mm (note the .mm extension, since this will
be importing Box2D), and click Save.

Open Spikes.h and replace the file with the contents of Listing 12.16.

Listing 12.16 Spikes.h

#i mport "Box2DSprite.h"

@nterface Spikes : Box2DSprite {
b2Worl d *worl d;

}

- (id)initWthwrld: (b2World *)world atLocati on: (CGPoi nt)l ocati on;

@nd

This creates a subclass of Box2DSprit e and declares an i ni t method. Next open
Spikes.mm and replace the file with the contents of Listing 12.17.

Listing 12.17 Spikes.mm

#i mport " Spi kes. h"
@ npl enent ati on Spi kes

- (void)creat eBodyAt Locati on: (CGPoi nt) | ocation {
b2BodyDef bodyDef ;
bodyDef.type = b2_dynani cBody;
bodyDef . position = b2Vec2(l ocati on. x/ PTM_RATI G,
| ocation.y/ PTM RATI O ;

sel f. body = worl d->Creat eBody(&odyDef) ;
body- >Set User Dat a(sel f);

b2Pol ygonShape shape;

shape. Set AsBox(sel f. content Si ze. w dt h/ 2/ PTM_RATI Q,
sel f.content Si ze. hei ght/ 2/ PTM_RATI O,
b2Vec2(0, +5.0/100.0), 0);

Adding Obstacles and Bridges

b2Fi xt ureDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.density = 1000.0;

body->Cr eat eFi xt ure(&f i xt ureDef);

- (id)initWthWrld: (b2Wrld *)theWrld atLocation: (CGPoi nt)l ocation {
if ((self = [super init])) {
world = theWrl d;
[sel f setDisplayFrame: [[CCSpriteFrameCache
sharedSprit eFranmeCache] spriteFranmeByNanme: @ spi kes. png"]];
ganeObj ect Type = kSpi kesType;
[sel f createBodyAt Location:|ocation];
}

return self;

}

@nd

You should be familiar with this by now; it creates a rectangular Box2D body for
the sprite. Note that you could try to mimic the shape of the spikes more accurately
using Vertex Helper or other methods, but for this level it’s just not worth the time
and effort, as a box approximation is good enough. Note that the box is set up to be
slightly smaller than the actual sprite (so it appears sunken into the ground) and that
spikes are set up with a very high density so that they barely move when hit.

Now switch to Cart.mm and first add an import for Box2DHelpers.h to the top of
the file, as shown in Listing 12.18.

Listing 12.18 Cart.mm (at top of file)

#i nport " Box2DHel pers. h"

Then add a few methods to allow the cart to transition to a damage-taking state, as
shown in Listing 12.19.

Listing 12.19 Cart.mm (anywhere in class)

- (void)playH tEffect {

int soundToPlay = randon() %5;

if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KING H T_1);

} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KING H T_2);

} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KING H T_3);

391

392 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

} else if (soundToPlay == 3) {
PLAYSOUNDEFFECT(VI KI NG HI T_4) ;
} else {
PLAYSOUNDEFFECT(VI KING H T_5) ;
}
}

- (voi d) changeSt at e: (Charact er St at es) newSt ate {
if (characterState == newState) return;

[sel f stopAll Actions];
[sel f setCharacter State: newSt at e] ;

switch (newState) {

case kStateTaki ngDamage: {
[self playHitEffect];
characterHeal th = characterHealth - 10;
CCAction *blink = [CCBlink actionWthDuration:1.0

bl i nks: 3.0];

[sel f runAction: blink];
[wheel L runAction:[blink copy]];
[wheel R runAction: [blink copy]];
[l egs runAction:[blink copy]];
[trunk runAction:[blink copy]];
[head runAction:[blink copy]];
[hel m runAction: [blink copy]];
[arm runAction: [blink copy]];

br eak;
}
defaul t:
br eak;

The first method plays a random sound effect when Ole gets hit. The second
method decreases the character’s health upon a hit and starts a blink animation to indi-
cate that the cart is taking damage. Note that it has to run the animation on all of the
sprites that make up Ole’s cart.

Next add the lines to handle state transitions at the bottom of updat eSt at eW't h-
Del t aTi me, as shown in Listing 12.20.

Listing 12.20 Cart.mm (at the bottom of updateStateWithDeltaTime)

if (characterState == kSt at eDead)
return; // Nothing to do if the Viking is dead

Adding Obstacles and Bridges

if ((characterState == kSt at eTaki ngDanage) &&
([sel f number O Runni ngActions] > 0))
return; // Currently playing the taking danage ani nation

if ([self nunmberOf Runni ngActions] == 0) {
/1 Not playing an ani mation
if (characterHealth <= 0) {
[sel f changeSt at e: kSt at eDead] ;
} else {
[sel f changeState: kStateldle];
}
}

if (isBodyCollidi ngWthQObjectType(wheel LBody, kSpi kesType)) {
[sel f changeSt at e: kSt at eTaki ngDanage] ;

} else if (isBodyCollidingWthCojectType(wheel RBody, kSpikesType)) {
[sel f changeSt at e: kSt at eTaki ngDamage] ;

}

This returns if any action is running on the object (such as the cart blinking as it’s
taking damage—it gets temporary invulnerability). If there are no actions running, it
switches to either dead or idle depending on the cart’s health. Finally, it uses the helper
method you wrote earlier to check if the cart body is colliding with any spikes, and if
so, changes the state to taking damage.

Now switch over to Scene4ActionLayer.mm and add the import for Spikes.h at the top
of the file, as shown in Listing 12.21.

Listing 12.21 Scene4ActionLayer.mm (at the top of the file)

#i nmport " Spi kes. h"

Then add a method to create spikes at a particular offset, as shown in Listing 12.22.

Listing 12.22 Scene4ActionLayer.mm (before createLevel)

- (void)createSpi kesWthO fset: (int)offset {
Spi kes * spi kes;
if (U _USER | NTERFACE I DIOM) == Ul Userlnterfacel di onPad) {
spikes = [[[Spikes alloc] initWthWrld:world
at Locati on: ccp(groundMaxX + of fset, 100)] autorel ease];
} else {
spikes = [[[Spikes alloc] initWthWrld:world
at Locati on: ccp(groundvaxX + offset/2, 100/2)] autorel ease];

}
[sceneSpriteBat chNode addChil d: spi kes];

393

394

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Note that the coordinates are divided by two if it’s not the iPad—this way we can
specify the coordinates once (for the HD artwork) and convert to the other device.

One last step! Modify your cr eat eLevel method to call this new method a couple
times, as shown in Listing 12.23.

Listing 12.23 Scene4ActionLayer.mm (replace createLevel with this)

- (void)createLevel {
[sel f createBackground];
[sel f createG ound3];
[sel f createSpi kesWthO fset:-1200];
[sel f createSpi kesWthO fset:-400];
[sel f createBridge];
[sel f createG oundl];
[sel f createSpi kesWthO fset:-1050];
[sel f createSpi kesWthO fset:-100];
[sel f createBridge];
[sel f createG ound3];
[sel f createSpi kesWthO fset:-1700];
[sel f createSpi kesWthO fset:-900];
[sel f createBridge];
[sel f createG ound2];
[sel f createSpi kesWthO fset:-1300];
[sel f createSpi kesWthO fset:-900];
[sel f createG ound3];
[sel f createSpi kesWthO fset:-1200];
[sel f createSpi kesWthO fset:-400];
[sel f createBridge];
[sel f createG ound3];

Compile and run your code, and as you can see in Figure 12.8, now the level is a
lot more fun and challenging, since Ole has some spikes to avoid!

An Improved Main Loop

As you’ve been experimenting with adding bridges and spikes, you may have
noticed some odd behavior with Box2D along the way. You may have seen the wheels
pop off at times or the bridges sway more than expected.

The root cause of all of this goes back to the way you give Box2D time to run in
your update loop. Currently, you are just using an extremely simplified run loop that
gives Box2D a different amount of time to process each frame (also known as a variable
rate timestep), as shown in Listing 12.24.

Adding Obstacles and Bridges

Figure 12.8 Ole jumping spike obstacles in level

Listing 12.24 Current main loop for Box2D—a variable rate timestep

int32 velocitylterations = 3;
int32 positionlterations = 2;
wor | d->Step(dt, velocitylterations, positionlterations);

As you can see in Listing 12.24, each time the updat e method is called, the St ep
method is called in the world with a different amount of time—whatever the variable
dt happens to be.

As mentioned in Chapter 10, “Basic Game Physics,” Box2D doesn’t work well with
a variable rate timestep; it works much better with a fixed timestep, which means giving
it the same exact amount of time each time you call the St ep method. Although you
can get away with variable rate timesteps with smaller apps or games, the more Box2D
has to do, the more likely this is to cause problems.

So let’s replace this with a fixed timestep implementation. Go to your updat e
method in Scene4ActionLayer.mm, comment out the lines from Listing 12.24, and add
the new implementation shown in Listing 12.25.

Listing 12.25 Scene4ActionLayer.mm (in update method, comment out the code from
Listing 12.24 and replace with this)

static doubl e UPDATE_I NTERVAL = 1. 0f/60. Of;
static doubl e MAX_CYCLES PER FRAME = 5;
static double tineAccunulator = 0;

395

396

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

ti meAccunul ator += dt;

if (tinmeAccumul ator > (MAX_CYCLES PER FRAME * UPDATE_I NTERVAL)) {
timeAccurul at or = UPDATE_I NTERVAL;

}

int32 velocitylterations = 3;
int32 positionlterations 2;
whi | e (timeAccunul ator >= UPDATE_I NTERVAL) {
timeAccunul at or -= UPDATE_I NTERVAL;
wor | d- >St ep(UPDATE_| NTERVAL,
velocitylterations, positionlterations);

Every time the St ep method is called on the world, it’s always called with the same
amount of time (UPDATE_I NTERVAL; i.e., 1/60 of a second). If the time passed in to
the method is greater than this, it divides it by the UPDATE_| NTERVAL and calls St ep
multiple times. It also keeps track of the leftover amount and uses it next time update
is called.

Note

There is one further optimization you can do to your physics loop: interpolate the results
to remove the effects of that tiny extra slice of time in each frame. For more information
on how to do this, check out http.//gafferongames.com/game-physics/fix-your-timestep/ or
search the Cocos2D forums for a good discussion.

The fixed timestep greatly improves the stability of the physics simulation. If you
compile and run your code, you should see a lot less strange behavior.

The Boss Fight!

What better way to end an awesome level than with an amazing boss fight? In this
section we do exactly that: pit Ole against the dangerous Digger Robot!

The idea here is that the Digger Robot paces back and forth on the final platform.
If Ole collides with the Digger, Ole gets hurt. However, if Ole slams into the back of
the Digger, he can push the Digger back a bit and eventually push him off the edge of
the level to win!

Figure 12.9 gives you an idea of what this menacing foe looks like and how you’ll
model him in the Box2D world.

As you can see in Figure 12.9, you model the Digger as a box with two wheels,
which makes it easy to move him left and right. Since the robot will be pacing back
and forth, you also add two sensors for the Digger: one on the left of the robot and
one on the right. You simply use the appropriate sensor depending on which direction
the Digger is facing.

http://gafferongames.com/game-physics/fix-your-timestep/

The Boss Fight!

Figure 12.9 Mapping the Digger sprite to Box2D bodies

To make the Digger Robot, the first thing you need to do is create a new subclass
of Box2DSprit e for the Digger. Select the Classes\Game Objects\Box2D group, go to
File > New > New File..., choose iOS > Cocoa Touch > Objective-C class,
and click Next. Enter Box2DSprite as the Subclass of, click Next, name the file Digger.
mm (note the .mm extension, since this will be importing Box2D), and click Save.

Replace the contents of Digger.h, as shown in Listing 12.26.

Listing 12.26 Digger.h

#i nmport "Box2DSprite.h"

@nterface Digger : Box2DSprite {
b2Body *wheel LBody;
b2Body *wheel RBody;
b2Revol ut eJoi nt *wheel LJoi nt;
b2Revol ut eJoi nt *wheel RJoi nt;
b2Body *dri || LBody;
b2Body *dri || RBody;
b2Fi xture *drillLFixture;
b2Fi xture *drill RFi xture;
Box2DSprite *wheel LSprite;
Box2DSprite *wheel RSprite;

}

@roperty (assign) Box2DSprite *wheel LSprite;
@roperty (assign) Box2DSprite *wheel RSprite;

- (id)initWthwrld: (b2Wrld *)worl d atLocati on: (CGPoi nt) | ocati on;

@nd

397

398

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Here you make a subclass of Box2DSpri t e for the Digger Robot and declare refer-
ences to a few variables you’ll need to keep track of. Specifically, these variables keep

track of the Box2D bodies and joints for the Digger’s wheels and the body and fixture
for the two drill sensor bodies.
Next, switch to Digger.mm and add the method to create a body for the Digger
Robot, as shown in Listing 12.27.

Listing 12.27 Digger.mm (inside @implementation)

@ynt hesi ze wheel LSprite;
@ynt hesi ze wheel RSprite;

(void)creat eBodyWthWorl d: (b2World *)world

at Location: (CGPoi nt) | ocation {
b2BodyDef bodyDef ;
bodyDef.type = b2_dynani cBody;
bodyDef . position =

b2Vec2(1 ocati on. x/ PTM_RATI O, | ocati on.y/ PTM RATI O ;

b2Body *cartBody = worl d->Creat eBody(&odyDef);

cart Body- >Set User Dat a(sel f);
sel f. body = cart Body;

b2Pol ygonShape shape;

int num = 4,

b2Vec2 verts[] = {
b2Vec2(87.0f / 100.0, -32.0f / 100.0),
b2Vec2(81.0f / 100.0, 110.0f / 100.0),
b2Vec2(-87.0f / 100.0, 112.0f / 100.0),
b2Vec2(-84.0f / 100.0, -33.0f / 100.0)

b

shape. Set (verts, num;

b2Fi xt ur eDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.density = 0.5;
fixtureDef.friction = 0.5;
fixtureDef.restitution = 0.5;

cart Body- >Cr eat eFi xt ure(&f i xt ur eDef) ;
car t Body- >Set Angul ar Danpi ng(1000) ;

Most of this should look pretty familiar to you by now. It creates a body for the
Digger with a polygon shape that traces a box around the top of the body. The vertices

The Boss Fight!

for the shape were created with Vertex Helper; you can trace the shape to define your
own vertices if you wish.
As far as the settings go, the robot is set up to have a low density (so that when
Ole collides with it, he gives it a good thwack). It’s also set up to use angular damping.
Angular damping is a value that affects the body’s resistance to rotation, so you set this
to a high value here to prevent the Digger from flipping when Ole collides with it.
Next add a method to create the wheels for the Digger, as shown in Listing 12.28.

Listing 12.28 Digger.mm (after createBodyWithWorld)

- (void)createWheel sWthWorl d: (b2World *)world {
b2BodyDef bodyDef;
bodyDef.type = b2_dynamni cBody;

bodyDef . position =
body- >Get Wor | dPoi nt (b2Vec2(-50. 0/ 100. 0, -80.0/100.0));
wheel LBody = wor | d- >Cr eat eBody(&odyDef) ;

bodyDef . position =
body->Get Wor | dPoi nt (b2Vec2(50. 0/ 100. 0, -80.0/100.0));
wheel RBody = wor | d->Cr eat eBody(&odyDef) ;

b2Ci rcl eShape circl eShape;

b2Fi xt ur eDef fi xtureDef;
fixtureDef.shape = &circl eShape;
fixtureDef.friction = 0.2;
fixtureDef.restitution = 0.5;
fixtureDef.density = 5.0;

circl eShape. mradius = 25.0/100.0;
wheel LBody- >Cr eat eFi xt ur e(& i xt ur eDef) ;
circl eShape. mradi us = 25.0/100. 0;
wheel RBody- >Cr eat eFi xt ur e(& i xt ur eDef) ;

b2Revol ut eJoi nt Def revJoi nt Def;
revJointDef.Initialize(body, wheel LBody,
wheel LBody- >CGet Wor | dCenter());
revJoi nt Def . enabl eMbt or = true;
revJoi nt Def . not or Speed = 0;
revJoi nt Def . nexMot or Tor que = 1000;
wheel LJoi nt = (b2Revol uteJoint *) worl d->Createdoint (& evJoint Def);
revJointDef.Initialize(body, wheel RBody,
wheel RBody- >CGet Wor | dCenter());
wheel RJoi nt = (b2Revol uteJoint *) worl d->Createdoint (& evJoint Def);

wheel LSprite = [Box2DSprite
spriteWthSpriteFranmeNane: @di gger _wheel . png"];

399

400 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

wheel LSprite. body = wheel LBody;
wheel LBody- >Set User Dat a(wheel LSprite);

wheel RSprite = [Box2DSprite
spriteWthSpriteFrameNane: @di gger _wheel . png"];

wheel RSprite. body = wheel RBody;

wheel RBody- >Set User Dat a(wheel RSprite);

This method creates two wheels for the Digger. Even though the Digger doesn’t
appear to have wheels, you still want it to slide around the ground as if it has wheels.
This is a good example of how sometimes it’s convenient to have your Box2D bodies
appear differently than what the user sees in order to get certain effects.

The code in the method should look quite familiar to you at this point; it creates
a body and fixture for each wheel. The numbers for the radius and position of the
wheels in the method were determined by measuring the desired size and distance of
the virtual wheels in an image editor. Feel free to measure it yourself to make sure you
fully understand it.

It also sets the density for the wheels to be higher (since wheels should be close in
mass to the bodies they support in Box2D to act properly) and creates revolute joints
to connect each wheel to the main body.

Finally, it creates a sprite for each wheel and ties the sprites and Box2D bodies
together.

Next add a method to create the drill sensors, as shown in Listing 12.29.

Listing 12.29 Digger.mm (after createWheelsWithWorld)

- (void)createDril IWthWrld: (b2Wrld *)world {
b2BodyDef bodyDef ;
bodyDef.type = b2_dynani cBody;
bodyDef . posi ti on = body->Get Position();
drillLBody = world->Creat eBody(&bodyDef);
drill RBody = worl d->Creat eBody(&bodyDef);

b2Pol ygonShape shape;

int num= 3;

b2Vec2 verts[] = {
b2Vec2(-65.0f / 100.0, 31.0f / 100.0),
b2Vec2(-189.0f / 100.0, -2.0f / 100.0),
b2Vec2(-85.0f / 100.0, -72.0f / 100.0)

b

shape. Set (verts, num;

b2Fi xt ur eDef fi xtureDef;
fixtureDef.density = 0.25;

The Boss Fight!

fixtureDef.shape = &shape;
fixtureDef.isSensor = true;
drill LFi xture = drill LBody->CreateFi xture(&ixturebDef);

int nun = 3;

b2Vec2 verts2[] = {
b2Vec2(85.0f / 100.0, -72.0f / 100.0),
b2Vec2(189.0f / 100.0, -2.0f / 100.0),
b2Vec2(65. 0f / 100.0, 31.0f / 100.0),

s

shape. Set (verts2, nunR);

drill RFi xture = drill RBody->CreateFi xture(&ixtureDef);

b2\l dJoi nt Def wel dJoi nt Def;

wel dJoi ntDef . I nitialize(body, drillLBody, body->CetWrldCenter());
wor | d- >Cr eat eJoi nt (&wel dJoi nt Def) ;

wel dJointDef. I nitialize(body, drill RBody, body->GetWrldCenter());
wor | d- >Cr eat eJoi nt (&wel dJoi nt Def) ;

This method creates two bodies and fixtures for the drill sensors: one for when the
driller is facing left and one for when the driller is facing right. The vertices for the
left drill were determined by tracing the drill shape using Vertex Helper (feel free to
trace them yourself if you’d like). Note that it sets the position of the drills to be the
position of the body, so tracing the drill in Vertex Helper would result in the proper
coordinates.

Once you have vertices for the left drill, you can easily determine the vertices for
the right drill by switching the x offset from negative to positive (i.e., =65.0 would
become 65.0), since the center of the body matches up to the center of the driller
sprite. However, you need to swap the order of the vertices, because vertices must
always be added in counterclockwise order, as you can see in Figure 12.10.

Figure 12.10 Making sure vertex order is counterclockwise for both left
and right drill sensors

401

402 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Next add the i nit method to create a new Digger, as shown in Listing 12.30.

Listing 12.30 Digger.mm (after createDrillWithWorld)

- (id)initWthWrld: (b2Wrld *)world atlLocation: (CGPoint)l ocation {
if ((self = [super init])) {
[sel f setDi splayFrane:
[[CCSpriteFrameCache sharedSpriteFranmeCache]
spriteFrameByNanme: @ di gger _ani nb. png"]];
ganeObj ect Type = kDi gger Type;
characterHeal th = 100. Of ;
[sel f createBodyWthWrld:world atlLocation:|ocation];
[sel f createWeel sWthWrld:world];
[self createDrill WthWrld:world];
}

return self;

This simply sets an initial frame for the Digger and calls the methods you wrote
previously to create the body, wheels, and drill sensors.

Now it’s time to add the Digger to your level! Open Scene4ActionLayer.h and prede-
clare Digger at the top of the file, as shown in Listing 12.31.

Listing 12.31 Scene4ActionLayer.h (at the top of the file)

@l ass Digger;

While you’re there, add a few new instance variables, as shown in Listing 12.32.

Listing 12.32 Scene4ActionLayer.h (inside @interface)

Di gger * digger;
bool gameOver;
b2Body *of f scr eenSensor Body;

These keep track of the Digger, whether the game is over, and a pointer to a body
that will help detect if the cart or the Digger falls off the screen.

Then switch to Scene4ActionLayer.m and add a few imports to the top of the file, as
shown in Listing 12.33.

Listing 12.33 Scene4ActionLayer.mm (at the top of the file)

#i nport "Digger.h"
#i nport " GanmeManager. h"

Then add a method to create a new Digger, as shown in Listing 12.34.

The Boss Fight!

Listing 12.34 Scene4ActionLayer.mm (before createLevel)

- (void)createD gger {
CGSize winSize = [CCDirector sharedDirector].w nSize;
digger = [[[Di gger alloc] initWthWrld:world
at Location: ccp(groundMaxX - wi nSize.width * 0.8,
wi nSi ze. hei ght/2)] autorel ease];
[sceneSpriteBat chNode addChil d: di gger];
[sceneSpriteBat chNode addChi | d: di gger. wheel LSprite];
[sceneSpri t eBat chNode addChi |l d: di gger. wheel RSprite];

This method places the Digger 80 percent of a screen width left of the last ground/
bridge section added to the scene and in the air a bit (he’ll drop down due to gravity).

Next you add a method to create the sensor that helps detect if the cart or the Dig-
ger falls offscreen, as shown in Listing 12.35.

Listing 12.35 Scene4ActionLayer.mm (after createDigger)

- (void)createOfscreenSensorBody {
CGSi ze winSize = [CCDirector sharedDirector].w nSize;
float32 sensorWdth = groundvaxX + wi nSi ze. wi dt h*4;
fl oat 32 sensorHei ght = wi nSi ze. hei ght * 0. 25;
float32 sensorOfsetX = -wi nSi ze. wi dt h*2;
float32 sensorOffsetY = -w nSi ze. hei ght/ 2;

b2BodyDef bodyDef ;
bodyDef.type = b2_staticBody;
bodyDef . posi tion. Set (
sensor O f set Xl PTM_RATI O + sensor W dt h/ 2/ PTM_RATI G,
sensor Of f set Y PTM_RATI O + sensor Hei ght/ 2/ PTM_RATI O) ;
of f screenSensor Body = wor| d- >Cr eat eBody(&odyDef) ;

b2Pol ygonShape shape;
shape. Set AsBox(sensor W dt h/ 2/ PTM_RATI O, sensor Hei ght/ 2/ PTM_RATI O) ;

b2Fi xt ureDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.isSensor = true;
fixtureDef.density = 0.0;

of f scr eenSensor Body- >Cr eat eFi xt ur e(& i xt ureDef) ;

This creates a large rectangular area below the level that can be used to detect if the
cart or Digger falls into that area.

403

404

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Next, add some code to the bottom of your updat e method to check for the win
and lose conditions, as shown in Listing 12.36.

Listing 12.36 Scene4ActionLayer.mm (at the bottom of the update method)

if (!ganeOver) {
i f (isBodyCollidingWthObjectType(offscreenSensorBody, kCartType)) {
gameOver = true;
[ui Layer displayText: @ You Lose"
andOnConpl et eCal | Target: sel f sel ector: @el ect or (ganmeOver:)];
} else if (isBodyCollidingWthObjectType(offscreenSensorBody,
kDi gger Type)) {
gameOver = true;
[ui Layer displayText: @ You Wn!"
andOnConpl et eCal | Target: sel f sel ector: @el ect or (ganeOver:)];

This checks to see if the cart has collided with the offscreen sensor (which causes
the player to lose) or if the Digger has collided with the offscreen sensor (which causes
the player to win).

Next add the gameOver method as shown in Listing 12.37.

Listing 12.37 Scene4ActionLayer.mm (before the update method)

- (voi d) ganeOver: (i d)sender {
[[GaneManager sharedGaneManager] runSceneWt hl D: kMai nMenuScene] ;
}

Almost done! As the final step, add the lines shown in Listing 12.38 at the end of
your cr eat eLevel method.

Listing 12.38 Scene4ActionLayer.mm (at the end of the createLevel method)

[sel f createDigger];

[sel f createG ound3];

[sel f createG ound3];

[sel f createO fscreenSensor Body];

That’s it! Compile and run your code, and as you can see in Figure 12.11, if you
can make it to the end of the level, you’ll see Ole’s menacing foe ready for battle!

Or maybe not so ready. Right now the poor Digger just sits there doing absolutely
nothing. Since Ole deserves a more menacing nemesis than that, let’s start making this
Digger a bit more dangerous.

The Boss Fight!

Figure 12.11 Ole first encountering the Digger robot

A Dangerous Digger

The Digger will move back and forth along the platform, switching directions every
so often, while Ole tries to slam into the Digger from behind. If Ole is successful, he’ll
bump the Digger a bit toward the edge, but if he fails and collides with the drill, Ole
takes some damage.

To implement this action, you add a new updat eSt at eWt hDel t aTi me method
inside the Di gger class to check for collisions and implement game logic and a
changeSt at e method to switch between states such as drilling, walking, rotating,
and taking damage. You also add a few animations to the Digger, for when the Digger
rotates from left to right or successfully drills into Ole.

Start by opening Digger.h and add three new instance variables to keep track of
when the Digger started moving in the current direction and the two animations for
rotating and drilling, as shown in Listing 12.39.

Listing 12.39 Digger.h (inside @interface)

doubl e movingStart Ti me;
CCAni mati on *rotateAnim
CCAni mation *drill Anim

Next, switch to Digger.mm and add the imports listed in Listing 12.40 to the top of
the file.

405

406 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Listing 12.40 Digger.mm (at the top of the file)

#inmport "Cart.h"
#i nport " Box2DHel pers. h"

Then add the first part of the updat eSt at eWt hDel t aTi me method, which con-
tains most of the game logic for the Digger, as shown in Listing 12.41.

Listing 12.41 Digger.mm (anywhere in class)

- (void) updateStateWthDeltaTime: (ccTine)deltaTine
andLi st O GaneObj ects: (CCArray *)listOf GameObj ects {
/11
if ((characterState == kSt at eTaki ngDanage) &&
([sel f number O Runni ngActions] > 0)) {
return;

}

/12

if (characterState == kStateDrilling &
[sel f nunmber O Runni ngActions] == 0) {
[sel f changeSt at e: kSt at eRot ati ng];

}

/13

if (characterState == kStat eTaki ngDamage &&
[sel f nunmber O Runni ngActions] == 0) {
wheel LJoi nt - >Set Mot or Speed(0) ;
wheel RJoi nt - >Set Mot or Speed(0) ;
[sel f changeSt at e: kSt at eRot ati ng] ;

}

Il 4

if (characterState != kStateWl king &&
[sel f number O Runni ngActions] == 0) {
[sel f changeSt at e: kSt at eVl ki ng] ;

}

Let’s go through this method section by section.

1. Check to see if the Digger is in the taking-damage state and has an action run-
ning (which would mean the blinking action is running). If this is the case,
the method immediately returns because it shouldn’t do anything else until the
blinking animation finishes.

The Boss Fight! 407

2. Check to see if the Digger is in the drilling state and has no actions running
(which would mean the drilling animation has finished). If this is the case, it
immediately rotates the Digger (so Ole has a chance to retaliate).

3. Check to see if the Digger is in the taking-damage state and has no actions run-
ning (which would mean the blinking action has finished). If this is the case, it
stops the wheel motors to pause the Digger and switches the state to rotating (to
give the Digger a chance to retaliate this time).

4. Check to see if the Digger is in any state but walking and has no running actions
(which would happen when the rotating animation finishes, etc.). If this is the
case, it changes the Digger to walking.

Next, wrap up the method by adding the remaining logic, shown in Listing 12.42.

Listing 12.42 Digger.mm (at the end of updateStateWithDeltaTime)

/15
if (characterState == kStateWal king) {

Cart *cart = (Cart *)
[[sel f parent] getChil dByTag: kVi ki ngSpriteTagVal ue];
b2Body *cartBody = cart. body;

Il 6

doubl e curTime = CACurrent Medi aTi me() ;

doubl e tineMoving = curTinme - novingStartTi nme;
static double TIME_TO MOVE = 2. 0f;

17
b2Body * drill = drill LBody;
float direction = -1.0;
if ([self flipX) {
drill = drill RBody;
direction = -1 * direction;
}
/Il 8
if (isBodyCollidingWthQObjectType(drill, kCartType)) {

[[Si npl eAudi oEngi ne shar edEngi ne] playEffect: @drill.caf"];
[cart changeSt at e: kSt at eTaki ngDanmage] ;
[sel f changeState: kStateDrilling];
wheel LJoi nt - >Set Mot or Speed(0) ;
wheel RJoi nt - >Set Mot or Speed(0) ;
cart Body- >Appl yLi near | npul se(
b2Vec2(direction * cart.fullMass * 8, -1.0 * cart.full Mass),
cart Body- >Get Wor | dPoi nt (b2Vec2(0, -15.0/100.0)));

408 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

/19
else if (isBodyCollidingWthObjectType(cartBody, kD ggerType)) {
[[Si npl eAudi oEngi ne sharedEngi ne] playEffect: @col lision.caf"];
[sel f changeSt at e: kSt at eTaki ngDanage] ;
car t Body- >Appl yLi near | npul se(
b2Vec2(-direction * cart.fullMass * 8, -1.0 * cart.full Mass),
car t Body- >Get Wor | dPoi nt (b2Vec2(0, -15.0/100.0)));
body- >Appl yLi near | npul se(
b2Vec2(direction * body->Get Mass() * 10, 0),
body- >Get Wor | dPoi nt (b2Vec2(0, -5.0/100.0)));
}

/1 10

else if (tinmeMowving > TIME_TO MOVE) {
wheel LJoi nt - >Set Mot or Speed(0) ;
wheel RJoi nt - >Set Mot or Speed(0) ;
[sel f changeState: kSt at eRot ati ng];

}
/111
el se {
wheel LJoi nt - >Set Mot or Speed(-1 * direction * MPI * 3);
wheel RJoi nt - >Set Mot or Speed(-1 * direction * MPI * 3);
}

Again, let’s explore the rest of this method section by section.

5.

Check to see if the Digger is in the walking state; the rest of the logic applies
only if that is the case. Also grab a reference to Ole’s cart by looking it up using
the kVi ki ngSpriteTagVal ue tag from the Digger’s parent (the sprite batch
node). Remember, when you added the tag to the sprite batch node earlier in
this chapter, you set the tag to kVi ki ngSpriteTagVal ue. This is an easy way
to get a reference to a particular sprite.

. Calculate how long the Digger has been moving in the current direction by sub-

tracting the initial time the Digger started moving from the current time.

Figure out the direction the drill is moving in. Normally it moves left, since that
is the way the sprite faces, but if the sprite is flipped (i.e., f | i pXis set), it moves
right. Based on the direction, we get a reference to the drill sensor that should
be active.

Check to see if the active drill is colliding with the cart. If it is, change the cart
to the taking-damage state, change the drill to the drilling state, and also use an
impulse to slightly “knock back™ the cart.

Check to see if the cart is colliding with the drill. If it is, change the drill to the
taking-damage state and use impulses to apply a slight “knock back™ effect to
both the cart and the Digger.

The Boss Fight!

10. Check to see if the cart has moved in the current direction for a preset period of
time, and if so, switch directions by switching to the rotating state.

11. If none of the above conditions are met, set the wheels of the Digger to move in
the current direction as the default action.

Phew! You've made a lot of progress so far and are well on your way to having a
cool boss fight! Just a few more steps to go.

The next thing you need is a method to change states and supporting methods for
that method, as shown in Listing 12.43.

Listing 12.43 Digger.mm (anywhere in class)

-(void)disableDrills {
drill LFi xture->SetSensor(true);
drill RFi xture->Set Sensor (true);

}

-(void)enableDrills {
if ([self flipX) {
drill RFi xture->Set Sensor (fal se);
} else {
drill LFi xture->Set Sensor (fal se);
}

- (voi d) changeSt at e: (Character St at es) newSt ate {
if (characterState == newState) return;

[sel f stopAllActions];
idaction = nil;
[sel f setCharacterState: newState];

switch (newState) {

case kSt at eTaki ngDamage:
action = [CCBlink actionWthDuration:1.0 blinks:3.0];
br eak;

case kStateDrilling:
action = [CCRepeat actionWthAction:

[CCAni mat e acti onWthAni mation:drill Anim
restoreOrigi nal Franme: YES] tines: 3];

br eak;

case kSt atewal ki ng:
nmovi ngStart Ti me = CACurrent Medi aTi me() ;
br eak;

case kStateRotating:

{

409

410 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

CCCal | Func *di sableDrills =
[CCCal | Func actionWthTarget: sel f
sel ector: @el ector(disableDrills)];
CCAni mate *rot ToCenter =
[CCAni mat e acti onWt hAni nati on: rotateAni m
restoreQriginal Frane: NJ ;
CCFlipX *flip = [CCFlipX actionWthFlipX !self.flipX;
CCAni mate *rot ToSide = (CCAninmate *) [rotToCenter reverse];
CCCal | Func *enableDrills =
[CCCal | Func actionWthTarget: self
sel ector: @el ector(enableDrills)];
action = [CCSequence actions:disableDrills, rotToCenter,
flip, rotToSide, enableDrills, nil];

br eak;
}
defaul t:
br eak;
}
if (action !'=nil) {
[sel f runAction:action];
}

This method runs the appropriate visual effects for each change of state. For tak-
ing damage, the cart runs a blinking action. For drilling, it runs the drill animation.
Rotating launches a sequence of actions: it first disables both drill sensors as the cart
starts rotating, then runs a rotation animation to rotate to the center position, flips
the sprite, runs the rotation animation again to face the other way, and reenables the
appropriate drill.

Next, add a method to load the animations needed in this class, as shown in
Listing 12.44.

Listing 12.44 Digger.mm (before initWithWorld:atLocation)

-(void)initAni mations {
rotateAnim = [sel f | oadPlistForAni mati onWthNane: @r ot at eAni nt'
andC assNane: NSStri ngFronCl ass([sel f class])];

[[CCAni nat i onCache shar edAni nati onCache] addAni nati on:rotateAni m
nanme: @r ot at eAni m'];

drill Anim= [self |oadPlistForAnimationWthName: @dril | Anint
andCl assNane: NSSt ri ngFronCl ass([sel f class])];

[[CCAni mati onCache shar edAni mati onCache] addAni mation:drill Anim
name: @dril | Anin'];

}

The Boss Fight! 411

This uses the same helper methods you’ve used before to create animations based on
a property list. If you would like, you can look at the property list and compare it to
the images in the sprite sheet to see how each animation is put together.

Note

The animations are added to the CCAni mat i onCache so that they are retained some-
where for future use. Alternatively, you could just retain these variables and release them
in deal | oc.

One final step! Just add the following call to the end of i ni t Wt hWr | d:
at Locat i on to load the animations, as shown in Listing 12.45.

Listing 12.45 Digger.mm (at the end of initWithWorld:atLocation)

[self initAni mations];

That’s it! Compile and run your code, and as you can see in Figure 12.12, now Ole
can fight a forbidding foe!

Figure 12.12 Ole getting drilled by the digger

Finishing Touches: Adding a Cinematic Fight Sequence

The level is looking really good now. It has action, danger, cool physics effects, and
even a boss fight! But let’s make this even more awesome by adding a cinematic intro-
duction to the final fight to add some spice and excitement to the level.

412

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

The idea is that when Ole approaches the final boss, action pauses for a moment,
and the camera pans to the left to show the bridge that Ole just crossed go up in
flames and drop to the ground! The camera then pans to reveal the boss menacingly
approach Ole with the drill, and then again to the far side of the screen to reveal the
pit where you can push the Digger off.

Not only does this make the level cooler, but it also explains to the player:

= This is a boss fight,
= This is the boss’s location, and

= The way to defeat him is to push him off the cliff—

all without saying a word.
The good news is, you can do most of this with material that you've already learned
in this book, such as how to move the camera and how to run actions. So let’s dig in.
First, open Scene4ActionLayer.h and add the new instance variables shown in
Listing 12.46.

Listing 12.46 Scene4ActionLayer.h (inside @implementation)

CCParticl eSystem *fireOnBri dge;
b2Body *fi nal Batt| eSensor Body;
bool inFinalBattle;

bool acti onStopped;

These variables are a particle system used for the fire particle effect (more on this
later), a sensor to detect when it’s time to play the final battle animation, a Boolean to
keep track of whether the player is in the final battle, and a Boolean to keep track of
whether the action is temporarily stopped.

Next, switch to Scene4ActionLayer.mm and add a routine to create a sensor to detect
if the player has reached a certain location, which triggers the start of the final battle
sequence, as shown in Listing 12.47.

Listing 12.47 Scene4ActionLayer.mm (before createLevel)

- (void)createFinal Battl eSensor {
CCSi ze Wi nSize = [CCDirector sharedDirector].w nSize;
float32 sensorWdth = winSize.width * 0.03;
fl oat 32 sensorHei ght = wi nSi ze. hei ght;
float32 sensorOffset = winSize.width * 0.15;

b2BodyDef bodyDef;
bodyDef.type = b2_staticBody;
bodyDef . position. Set (
groundMaxX/ PTM_RATI O + sensor O f set/ PTM RATI O
+ sensor W dt h/ 2/ PTM_RATI O,

The Boss Fight!

sensor Hei ght/ 2/ PTM_RATI O) ;
final Battl eSensor Body = worl d->Cr eat eBody(&odyDef) ;

b2Pol ygonShape shape;
shape. Set AsBox(sensor W dt h/ 2/ PTM_RATI O, sensor Hei ght/ 2/ PTM_RATI O) ;

b2Fi xt ureDef fi xtureDef;
fixtureDef.shape = &shape;
fixtureDef.isSensor = true;
fixtureDef.density = 0.0;

final Batt| eSensor Body- >Cr eat eFi xt ur e(& i xt ur eDef) ;

This is just a tall thin box that is placed right after the final bridge leading to the
boss. When the player collides with it, the cinematic fight sequence begins.

Next, add a method to create a particle system that creates a fire effect to show the
bridge burning, as shown in Listing 12.48.

Listing 12.48 Scene4ActionLayer.mm (after createFinalBattleSensor)

- (void)createParticl eSystem {

fireOnBridge = [CCParticl eSyst emQuad
particleWthFile: @fire.plist"];

if (U _USER | NTERFACE_| DI OM) == Ul User | nterfacel di onPad) {
fireOnBridge. position = ccp(groundvaxX - 400.0, 80);

} else {
fireOnBridge. position = ccp(groundvaxX - 200, 40);

}

[fireOnBridge stopSysteni;

[sel f addChild:fireOnBridge z:10];

This method is called right after adding the final bridge, so the particle system is
located in the middle of the bridge. The particle system immediately stops after initial-
ization, but it is started up again later when needed.

The particle system itself was generated with Particle Designer, and its definition is
saved to a property list. You can read more about Particle Designer and creating par-
ticle systems in Chapter 14, “Particle Systems, Game Center, and Performance.”

Next add the “meat” of the cinematic fight sequence code at the bottom of your
updat e method, as shown in Listing 12.49.

413

414 Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Listing 12.49 Scene4ActionLayer.mm (at the end of the update method)

CGSi ze wi nSize = [CCDirector sharedDirector].w nSi ze;
if (linFinalBattle &&
i sBodyCol |'i di ngW t hObj ect Type(fi nal Battl eSensor Body, kCartType)) {

inFinal Battle = true;

actionStopped = true;

[cart set Mot or Speed: 0] ;

cart. body->Set Li near Vel oci ty(b2Vec2(0, 0));

[sel f runAction:
[CCSequence acti ons:
[CCDel ayTi me acti onWthbDuration:1.0],
[CCVvbveBy actionWthDuration:0.5
posi tion:ccp(winSize.width * 0.6, 0)],
[CCCal | Func actionWthTarget: sel f
sel ector: @el ector(startFire)],
[CCDel ayTi me acti onWthbDuration:2.0],
[CCCal | Func actionWthTarget: self
sel ector: @el ector (destroyBridge)],
[CCDel ayTi me acti onWthbDuration:1.0],
[CCMoveBy actionWthDuration:2.0
position:ccp(-1 * winSize.width * 1.3, 0)],
[CCDel ayTi me acti onWthbDuration:1.0],
[CCCal | Func acti onWthTarget: self
sel ector: @el ector (pl ayRoar)],
[CCDel ayTi me actionWthbDuration:1.0],
[CCMoveBy actionWthDuration:2.0
position:ccp(-1 * (w nSize.w dt h*6-w nSi ze.wi dth*0.7), 0)],
[CCDel ayTi me acti onWthbDuration:1.0],
[CCWbveBy actionWthDuration: 2.0
position:ccp(w nSize.w dth*6, 0)],
[CCCal | Func actionWthTarget: self
sel ector: @el ect or (backToAction)],
niltll;

This first checks to see if the player collided with the final battle sensor. If the
player has, it marks that the player is in the final battle and that the game action is
stopped. Next, it sets the motor speed on the cart’s wheels to 0, stops the layer from
following the player, and also uses Set Li near Vel oci ty on the cart body to immedi-
ately stop the cart.

The Boss Fight!

Note

Set Li near Vel oci ty is a function that immediately sets the velocity of a Box2D body
to a specified value. Usually, it is better to use impulses or forces to indirectly influ-
ence the velocity of an object rather than using Set Li near Vel oci ty, because Set -
Li near Vel oci ty can cause strange behavior with the physics engine. However, it’s
okay in cases in which you just want to immediately stop a body.

Once everything is stopped, it runs a sequence of actions. Specifically, the scene
pans to the left, starts a fire on the bridge, destroys the bridge, pans back over to the
boss and plays an evil roar sound effect, pans to the far side of the screen to reveal the
pit, then pans back and starts the action back up. These are all done with Cocos2D
actions, as you learned in Chapter 4, “Simple Collision Detection and the First
Enemy.”

Next, add the helper functions referenced earlier to start the fire, destroy the
bridge, play the laugh, and return to action, as shown in Listing 12.50.

Listing 12.50 Scene4ActionLayer.mm (above the update method)

- (void)startFire {
PLAYSOUNDEFFECT(FLAMVE_SOUND) ;
[fireOnBridge reset Systeni;

- (voi d)destroyBridge {
[fireOnBridge stopSysteni;
wor | d- >DestroyJoi nt (|l astBridgeStartJoint);
| ast Bri dgeStartJoint = NULL;
wor | d- >Dest royJoi nt (| ast Bri dgeEndJoi nt) ;
| ast Bri dgeEndJoi nt = NULL;

- (void)playRoar {
PLAYSOUNDEFFECT(ENEMYDRI LL_ROAR1) ;

- (voi d) backToAction {
actionStopped = fal se;
[self followCart];

These are pretty simple. The st art Fi r e method plays a fire sound effect and
restarts the fire particle system; the dest r oyBri dge method calls Dest r oyJoi nt to
remove the two joints connecting the bridge to the ground (so it falls); pl ayLaugh
plays a sound; and backToAct i on disables the acti onSt opped flag and refollows
the cart.

415

416

Chapter 12 Advanced Game Physics: Even Better than the Real Thing

Next, you need to add some code to check for the acti onSt opped variable. If
the variable is set, the layer shouldn’t follow the cart and the cart shouldn’t be able to
move. So add a check to the top of both the accel eronet er: di dAccel erat e and
fol | owCart methods, as shown in Listing 12.51.

Listing 12.51 Scene4ActionLayer.mm (at the top of both accelerometer:didAccelerate
and followCart)

if (actionStopped) return;

One last step. Inside your cr eat eLevel method, immediately after the last call to
creat eBridge, add two lines to create the particle system and add the final battle

sensor—important—immediately after the last call to cr eat eBri dge, as shown in
Listing 12.52.

Listing 12.52 Scene4ActionLayer.mm (in the createLevel method, immediately after the
last call to createBridge)

[sel f createParticleSysten;
[sel f createFinal Battl eSensor];

Comment out the set upDebugDr aw method if you like, and compile and run the
code. As you can see in Figure 12.13, you should now have an action-packed, physics-
enabled, side-scrolling level, complete with a cinematic boss fight!

Figure 12.13 The burning bridge in the cinematic boss fight

Challenges

Summary

At this point you have created a side-scrolling action level with Box2D, complete
with vehicles, motors, joints, collisions, enemy logic, cinematic effects, and more! You
should now be familiar with how to use Box2D in real games and how to use the
most important capabilities of the engine.

To learn more about Box2D, check out the Box2D manual available on the offi-
cial Box2D site (http://www.box2d.org). It contains a full reference to some additional
features of Box2D that may be useful in your games, such as additional joint types,
raycasting, and more. The Box2D forums are also a great source of knowledge and a
good place to ask Box2D-related questions.

Hopefully these three chapters have gotten you excited about the possibilities of
using Box2D in your games, and we look forward to seeing your Box2D-enabled
games available at the App Store!

Challenges

1. Add some additional artificial intelligence to the boss enemy. For example, have
him charge at Ole when Ole is nearby or stop moving to the right once he nears
the edge of the level.

2. Due to space and time constraints, this chapter didn’t implement an indicator of
Ole’s health in the Ul layer or create a lose condition if Ole’s health hits zero.
Go ahead and implement these features to reinforce the material you've learned
in earlier chapters.

3. Make another type of enemy and add it to the level. For example, maybe add a
long pole of spikes connected to a revolute joint on the ground that tries to slam
into the ground when Ole draws near.

417

http://www.box2d.org

This page intentionally left blank

13

The Chipmunk Physics Engine
(No Alvin Required)

Now that you have experienced using Box2D to make a cart-racing-and-jumping level, you can
see how using a game physics library allows you to add some amazing effects to your game.

One of the nice things about Cocos2D is that it comes with not one but two different 2D
game physics libraries. You’ve tried Box2D already in Chapters 10, 11, and 12, so now it’s time
to try the other library: Chipmunk.

In this chapter, you use Chipmunk to create a Metroid-style platform jumping level (Figure 13.1),
where Ole has to leap from platform to platform to escape the planet before it explodes. In the
process, you learn how to use Chipmunk, how it differs from Box2D, and you’ll be ready to use
whichever library you prefer in your games.

If you haven’t read Chapters 10, 11, and 12 yet, you should go through those chapters first,
as this chapter builds on some of the concepts covered there.

So let’s get to it—the clock is ticking!

Figure 13.1 The Chipmunk Metroid-style platform jumping level you'll
make in this chapter

420

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

What Is Chipmunk?

Chipmunk is an open source 2D game physics library originally written by Scott
Lembcke. Like Box2D, Chipmunk comes integrated with Cocos2D by default, so it is
quite easy to use in your Cocos2D games. Its feature set is very similar to Box2D, and
even works in the same way but has slightly different terminology:

= You start by creating a physics world (but it’s called a “space” in Chipmunk) to
place your physics bodies. You give Chipmunk time to simulate the space in
each frame. Chipmunk then moves the bodies in the space with physics, and you
update the positions of your sprites afterward based on the body locations.

= You add bodies and fixtures into the space (but fixtures are called “shapes” in
Chipmunk). Just like in Box2D, you can have multiple shapes on a body if you
have a particularly complicated object to model, and bodies and shapes do not
have to match exactly to sprites.

= You add joints to restrict the movement of bodies (but joints are called “con-
straints” in Chipmunk, as they are a bit more generic in Chipmunk). Chipmunk
has similar types of constraints to those in Box2D, but there are some important
differences, which you learn about in this chapter.

The good news is that since youre already familiar with using Box2D, Chipmunk
will be much easier to pick up! The engines are so similar that it’s mostly a matter
of learning the slightly different APIs to call in Chipmunk to accomplish the same
effects.

In this chapter, you dive right into using Chipmunk and get hands-on experience
with the most important concepts: creating a space, adding bodies and shapes to the
space, adding constraints, and more.

Chipmunk versus Box2D

Considering that you have a choice between using either Chipmunk or Box2D as
the physics engine in your Cocos2D game, you might wonder which you should use.
It really comes down to a personal preference, so it’s best to play around with both
engines and then see which you prefer, which you can do by completing these chap-
ters! However, here are a few differences between Chipmunk and Box2D to keep in
mind:
= Chipmunk is written in C, while Box2D is written in C++. Some program-
mers are more comfortable with C than with C++ (or vice versa), so they may
prefer working with one engine over another. In addition, Chipmunk has some
helper Objective-C wrapper classes you can use if you want to avoid C and C++
entirely.

= Chipmunk does not require you to convert points to meters. Therefore, you
don’t need to use the point-to-meter ratio (PTM_RATI O) to convert your

Getting Started with Chipmunk 421

coordinates in Chipmunk, which can make your code less error prone and easier
to read.

= Chipmunk code is often more terse. The code to create the same effect in Chip-
munk is often fewer lines of boilerplate than it is in Box2D, which can be nice
when you want to quickly prototype your game.

= Box2D joints and Chipmunk constraints have some differences. For example,
when you create a revolute joint in Box2D, you can also set limits on how much
the joint can move and set a motor on the joint. In Chipmunk, to accomplish
the same effect, you have to use three different constraints. Some effects are
more difficult to accomplish in Chipmunk than they are in Box2D because of
the additional options that Box2D joints have. However, Chipmunk has a few
joints (such as a damped rotary spring or ratchet joint effects) that have no direct
equivalent in Box2D.

= Box2D has a continuous collision detection feature that prevents objects from
penetrating static objects such as the ground. In certain cases, your objects in
Chipmunk might get stuck in static objects or even go through.

= Box2D seems more stable/weather torn. Take this with a grain of salt, as this is
just my personal opinion/experience, but after working with both engines, I've
encountered fewer oddities that I've had to work around with Box2D than I
have with Chipmunk.

But no matter which engine you choose, you can’t go wrong! You can accomplish
most of the things you might want to do with either engine, both offer an amazing
feature set and are easy to use, and both have a wealth of knowledge available on their
forums as you begin to use them.

In this chapter, you get a chance to try out Chipmunk, and when you’re done,
you’ll have experience using both Box2D and Chipmunk in a nontrivial level. That
way you can pick which you like best for your game, and have fun!

Getting Started with Chipmunk

Before you can get started writing Chipmunk code, you need to make a placeholder
scene for the level and hook it up to the Main Menu.

Much as you did in Chapter 11, “Intermediate Game Physics,” you create two lay-
ers in this scene: a user interface (UI) layer and an action layer. For this level, the Ul
level contains the countdown timer until the planet explodes, and the action layer con-
tains just about everything else.

First, make a class for the user interface layer. Control-click on the Scenes group in
Xcode, select New Group, then rename the new folder that was created to Scene5.
Then with the new Scene5 group selected, go to File > New > New File..., choose
iOS > Cocoa Touch > Objective-C class, and click Next. Enter CCLayer as the
Subclass of, click Next, name the file Scene5UILayer.m, and click Save.

422 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Replace Scene5UILayer.h with contents of Listing 13.1.

Listing 13.1 Scene5UlLayer.h

#i nport "cocos2d. h"

@nterface Scene5Ul Layer : CClLayer {
CCLabel TTF *| abel ;

}
- (voi d)di spl aySecs: (doubl e) secs;

@nd

Note that the UI layer contains a single label used for the countdown timer, and a
method that the action layer uses to display the number of seconds remaining.
Next switch to Scene5UILayer.m and replace it with the contents of Listing 13.2.

Listing 13.2 Sceneb5UlLayer.m

#i nport "Scene5Ul Layer. h"
@ npl enent ati on Scene5Ul Layer

- (void)displ aySecs: (doubl e) secs {
/11
secs = MAX(0, secs);

/12

double intPart = 0;

doubl e fractPart = nodf(secs, & ntPart);

int isecs = (int)intPart;

int mn = isecs / 60;

int sec = isecs % 60;

int hund = (int) (fractPart * 100);

[label setString:[NSString stringWthFormat: @%02d: 992d: %92d",
mn, sec, hund]];

'
—

id)init {
if ((self = [super init])) {
/13
CGSi ze wi nSize = [CCDirector sharedDirector].w nSi ze;
float fontSize = 40.0;
if (U _USER | NTERFACE_|I DI OM) == Ul User | nterfacel di onPad) {
fontSize *= 2;

}

Getting Started with Chipmunk

| abel = [CCLabel TTF | abel WthString: @"
font Nane: @ Aneri canTypew i ter-Bol d" fontSize: fontSize];
| abel . anchor Point = ccp(1, 1);
| abel . position = ccp(w nSi ze.width - 20, w nSize. height - 20);
[sel f addChil d: | abel];
}
return self;
}
@nd

Let’s go through this section by section.

1. This makes the minimum number of seconds zero, because it wouldn’t make
sense to display a negative number of seconds in this scene. After all, when the
time hits zero, it’s explosion time!

2. This converts the seconds into three parts: minutes, seconds, and hundredths of
seconds, and shows the results in the label as a formatted string. If you haven’t
seen the modf function before, it is a handy C-library function that breaks a
double value into an integral part and a fractional part.

3. This creates the label (which is blank to start) and positions it near the upper
right. Note that it sets the anchor point to ccp(1, 1), which is the top right.
That way when it sets the position of the label later, that sets where the top right
corner of the label is.

That’s it for the UI layer, so now make a class for the action layer. With the Scenes
group selected, go to File > New > New File..., choose iOS > Cocoa Touch >
Objective-C class, and click Next. Enter CCLayer as the Subclass of, click Next,
name the file Scene5ActionLayer.m, and click Save.

Replace Scene5ActionLayer.h with the contents of Listing 13.3.

Listing 13.3 ScenebActionLayer.h

#i mport "cocos2d. h"

@l ass Scene5Ul Layer ;

@nterface SceneS5ActionLayer : CCLayer {
Scene5Ul Layer * ui Layer;
doubl e startTime;

- (id)initWthScene5Ul Layer: (Scene5Ul Layer *)scene5Ul Layer;

@nd

423

424

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

This layer contains a reference to the UI layer and the time the layer started. It also
contains an initializer that takes the UI layer as a parameter.
Now switch to Scene5ActionLayer.m and replace it with the contents of Listing 13.4.

Listing 13.4 ScenebActionLayer.m

#i mport "Scene5Acti onLayer. h"
#i nport "Scene5Ul Layer. h"

@ npl enent ati on Sceneb5Acti onLayer

- (id)initWthScene5Ul Layer: (Scene5Ul Layer *)scene5Ul Layer {
if ((self = [super init])) {
ui Layer = scene5Ul Layer;
startTime = CACurrent Medi aTi ne();
[sel f schedul eUpdat e] ;
}

return self;

- (void)update: (ccTinme)dt {
static double MAX_TIME = 60;
doubl e timeSoFar = CACurrent Medi aTinme() - startTine;
doubl e renmi ni ngTi me = MAX_TIME - tineSoFar;
[ui Layer displ aySecs:renai ni ngTi ne];

}

@nd

i nit Wt hScene5Ul Layer stores the reference to the UI layer and the current
time and schedules the updat e method to be called in each frame.

updat e first defines that Ole has 1 minute (60 seconds) to escape the planet. It figures
out how much time Ole has been in the scene so far (by subtracting the start time from
the current time), then figures out how much time is remaining and displays that value.

Next make use of these two new layers by creating a class for the scene. With
the Scene5 group selected, go to File > New > New File..., choose iOS > Cocoa
Touch > Objective-C class, and click Next. Enter CCScene as the Subclass of, click
Next, name the file Scene5.m, and click Save.

Replace Scene5.h with the contents of Listing 13.5.

Listing 13.5 Sceneb.h

#i nport "cocos2d. h"

@nterface Scene5 : CCScene {

}
@nd

Getting Started with Chipmunk

So far this is nothing but a subclass of CCScene. Now switch to Scene5.m and
replace it with the contents of Listing 13.6.

Listing 13.6 Scene5.m

#i nport " Scene5. h"
#i nport " Scene5Ul Layer. h"
#i nmport " Scene5Acti onLayer. h"

@ npl enent ati on Sceneb

-(id)init {
if ((self = [super init])) {
Scene5Ul Layer * uiLayer = [Scene5Ul Layer node];
[sel f addChil d: ui Layer z:1];

ScenebActi onLayer * actionLayer =
[[[Scene5Acti onLayer all oc]
initWthScene5Ul Layer: ui Layer] autorel ease];
[sel f addChil d: actionLayer z:0];
}
return self;

}

@nd

This creates the Ul layer and the action layer and passes the Ul layer as a parameter
to the action layer.

You're almost done. The last step is to hook the new scene into the GameManager .
Switch to GameManager.mm and import Scene5.h at the top of the file, as shown in
Listing 13.7.

Listing 13.7 GameManager.mm (at top of file)

#i nport "Sceneb. h"

Then go to the runSceneWt hl D method and modify the case for kGaneLevel 5
to run your new scene, as shown in Listing 13.8.

Listing 13.8 GameManager.mm (inside runSceneWithID’s switch statement)

case kGanelLevel 5:
sceneToRun = [Scene5 node];
br eak;

425

426 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Tip
As mentioned in the previous chapters, you may wish to set up your app to run this new
scene right away, since you’ll be working with it a lot in this chapter. Again, to do this
simply open Classes\Singletons\SpaceVikingAppDelegate.m, navigate to the bottom of
appl i cationDi dFi ni shLaunchi ng, and replace the CCDi r ect or: r unScene-
Wt hl D call at the bottom to:
[[GaneManager shar edGaneManager]

runSceneW t hl D: kGanelLevel 5] ;

That’s it. Compile and run your code, and select Escape! from the main menu
(unless you’ve set it up to run right away). You should see a countdown timer appear
in the upper right (Figure 13.2), proving that you’re making progress and that it’s only
a matter of time before everything goes boom.

Figure 13.2 The placeholder scene with the countdown timer
for the level

It’s also just a matter of time before you start writing some Chipmunk code. But
before you can do that, you need to add the Chipmunk files to your project.

Adding Chipmunk into Your Project

With Finder, navigate to the folder where you downloaded Cocos2D and navigate to
the external\Chipmunk subdirectory. Control-click the Chipmunk directory and select
Copy Chipmunk.

Then navigate to your Spacel/iking project folder and navigate to the libs subdirectory.
Control-click the libs directory and select Paste Item. At this point, you should have
the Chipmunk directory as a subdirectory of SpacelViking\libs, as shown in Figure 13.3.

Getting Started with Chipmunk 427

Figure 13.3 Copying the Chipmunk files to your project directory

The next step is adding these files to your Xcode project. Expand the cocos2d Sources
group, then drag the Chipmunk folder from your Spaceliking\libs directory to the
group. When the dialog appears, make sure Copy items into destination group’s
folder (if needed) is not checked, Create groups for any added folders is selected,
and click Finish, as shown in Figure 13.4.

Figure 13.4 Adding the Chipmunk files to your Xcode project

428

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Although you just added the entire Chipmunk directory, you actually only need
the include and src subdirectories, so let’s remove the references for the rest. To do
this, expand your new Chipmunk group in Xcode and select all of the subfolders and
files except for include and src. Control-click and choose delete, then choose Remove
References Only, as shown in Figure 13.5.

Figure 13.5 Removing all subfolders except for include and src

When youre done, your group tree in Xcode should look similar to Figure 13.6.

Figure 13.6 Your Chipmunk group in Xcode after adding the
Chipmunk files

Getting Started with Chipmunk

One last step. Click on your Space Viking project in the Project Navigator to
bring up your project settings, select the Build Settings tab, make sure the All and
Combined buttons are selected, and look for the entry for Search Paths > Header
Search Paths. Double-click the entry to bring up an editor, click the Plus button
to add a new entry, double-click the entry for path, set it to libs/Chipmunk /include/
chipmunk if you are using Xcode 3 or SpaceViking/libs/Chipmunk /include/chipmunk if you
are using Xcode 4, and click Done. When you are done, the settings should look like
Figure 13.7.

Figure 13.7 Adding the Chipmunk include directory to the cocos2d
libraries target

Now compile your project; if it compiles, you've successfully integrated Chipmunk
into your project. Now let’s try it out and see how it works.

Creating a Basic Chipmunk Scene

Let’s start simple by creating a basic Chipmunk scene. Here we create a Chipmunk
space, add a simple box object to it, turn on debug drawing, and add a border at the
bottom to prevent the box from falling off the screen.

Before you can use any Chipmunk functions, you need to call a method called ¢pIn-
itChipmunk to initialize Chipmunk. This function needs to be called only once for the
entire game, so a good place to put this is inside the i nit method for GameManager .

429

430 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Switch to GameManager.mm and import chipmunk.h at the top of the file, as shown in
Listing 13.9.

Listing 13.9 GameManager.mm (at top of file)

#i nport "chi pmunk. h"

Then call cpl nit Chi prunk inside the i nit method, as shown in Listing 13.10.

Listing 13.10 GameManager.mm (inside init method)

cpl ni t Chi pmunk() ;

Note
cpl nit Chi pmunk allocates some global data necessary for Chipmunk to run properly.

If you forget to call cpl ni t Chi pnunk, your game will most likely crash with an EXC _
BAD_ACCESS error the first time two objects collide.

Now that you’ve initialized Chipmunk, the next step is to create a Chipmunk
space. A Chipmunk space is a “Chipmunk’s view” of the physics objects it simulates,
the equivalent of a Box2D world. You populate the space with Chipmunk bodies, let
Chipmunk handle the simulation for you, then update your sprites according to the
positions of the Chipmunk bodies.

As mentioned earlier, one difference between a Chipmunk space and a Box2D
world is units. In Box2D, units are optimized for meters, so you have to convert
points to meters with a point-to-meter ratio (PFTM_RATI O). In Chipmunk, units can
be whatever you want, so it’s often simpler to use points directly as units rather than
applying a conversion.

Note

Even though you can use points directly with Chipmunk, you still need to make sure the
points you use are relative to the size of the current artwork. As in previous chapters,
sometimes we’ll be measuring offsets using the HD artwork, so we’ll need to use differ-
ent values for iPad and the iPhone.

Note that things won’t compile yet because you still need to add some code; don’t
worry, you'll be able to compile again soon (when you get to Listing 13.16).

Next, switch to Scene5ActionLayer.m and add a method to create the space, as shown
in Listing 13.11.

Listing 13.11 Sceneb5ActionLayer.m (before initWithScene5UlLayer)

- (voi d)createSpace {
space = cpSpaceNew(); /11

Getting Started with Chipmunk

if (U _USER | NTERFACE_ | DI OM) == Ul User | nterfacel di onPad) {
space->gravity = ccp(0, -1500); Il 2
} else {
space->gravity = ccp(0, -750);
}
cpSpaceResi zeSt ati cHash(space, 400, 200); Il 3
cpSpaceResi zeAct i veHash(space, 200, 200);
}
It’s important to understand everything that’s going on here, so let’s review it line
by line:
1. This creates a new Chipmunk space by calling cpSpaceNew and stores the result
in the space instance variable that you’ll use later on.
2. Initializes the gravity for the Chipmunk space to a certain amount downward on
the y-axis. The exact number here was chosen by play-testing and choosing what
“felt right.” Note that the gravity needs to be different on the iPad than on the
iPhone due to the gravity being relative to the number of points on the screen.
3. To optimize collision detection, Chipmunk divides the space into a grid; that

way if two objects are in different grid cells, Chipmunk can quickly determine
that they don’t collide. You can (and should) use cpSpaceResi zeSt ati cHash
and cpSpaceResi zeAct i veHash to tweak how large the grid sizes should be.
It’s best to have the size of the grid cells (the second parameter) be a little larger
than the average size of an object you’ll add to the scene and the number of grid
cells (the third parameter) to be about 10 times the number of objects you’ll

add to the scene. Note that there is both a static hash (for static objects that do
not move) and an active hash (for active objects that do move) that you can set
separately.

Now that you have created a Chipmunk space, you write a method to add a simple

box to the space at a particular location. To add an object to a Chipmunk space:

1.
2.

Create a Chipmunk body for the object and add it to the space.
Create one or more shapes for the Chipmunk body and add them to the space.

Let’s see how this works. Write a new method to create a box, as shown in
Listing 13.12.

Listing 13.12 ScenebActionLayer.m (after createSpace)

- (voi d)creat eBoxAt Location: (CGPoi nt)l ocation {

float boxSize = 60.0;
float mass = 1.0;
cpBody *body = cpBodyNew mass,
cpMonent For Box(mass, boxSi ze, boxSize)); /11
body->p = locati on; Il 2

431

432

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

cpSpaceAddBody(space, body); /Il 3

cpShape *shape =

cpBoxShapeNew(body, boxSi ze, boxSize); Il 4
shape->e = 0.0; /15
shape->u = 0.5; Il 6
cpSpaceAddShape(space, shape); 7

Again, this is foundational knowledge that 1s important to understand, so let’s step
through this line by line:

1. Creates a new Chipmunk body for the box. It sets the mass of the box (how hard
the box is to move) to 1.0 and uses a helper function to compute the moment of
inertia for the box (how hard the box is to rotate). You should always use helper
functions to compute the moment of inertia, as it’s tricky to estimate by hand.

2. Sets the position of the body to be the passed-in location. Note that there is no
need to convert units: you can just use points.
3. Adds the body to the Chipmunk space.

4. Creates a new shape for the box, associating it with the body. It uses a helper
function to create the vertices for a rectangle shape. You can also use helper
functions to create circle shapes (cpG r cl eShapeNew) or polygon shapes with
arbitrary vertices (cpPol yShapeNew).

5. The e member variable on the body stands for elasticity (how bouncy the box
is). Here it is set to 0.0 (no bounciness).

6. The f member variable on the body stands for friction (how much resistance
the body gives when sliding across another). Here it is set to 0.5 for a medium
amount of resistance.

7. Adds the shape to the Chipmunk space.

Now that you have a method to create a box, add a method to create the “level,”
which right now is just a single instance of that box, as shown in Listing 13.13.

Listing 13.13 ScenebActionLayer.m (after createBoxAtLocation)

- (void)createLevel {
CGSi ze winSize = [CCDirector sharedDirector].w nSize;

[sel f createBoxAtLocation:ccp(wi nSize.width * 0.5, wi nSize.height *
0.15)];

}

Next add a method to create a “ground” border along the bottom to prevent the
box from falling off the screen due to gravity, as shown in Listing 13.14.

Getting Started with Chipmunk

Listing 13.14 ScenebActionLayer.m (after createLevel)

- (void)createGound {

/111

CGSi ze winSize = [CCDirector sharedDirector].w nSi ze;
CGPoi nt | owerLeft = ccp(0, 0);

CGPoi nt | owerRi ght = ccp(wi nSize.w dth, 0);

groundBody = cpBodyNewSt atic(); I 2

float radius = 10.0f;
cpShape * shape = cpSegnent ShapeNew(gr oundBody,

| ower Left, |owerRight, radius); Il 3
shape->e = 1.0f; 14
shape->u = 1.0f; 115
shape->l ayers ~= GRABABLE_MASK BI T; Il 6
cpSpaceAddShape(space, shape); 7

There’s a lot of interesting new stuff here, so let’s go through it section by section:

1.

Computes the coordinates for the lower left and lower right of the screen based
on the screen size.

This creates a Chipmunk body for the ground body by calling cpBody New-

St ati ¢ and stores the result in an instance variable you’ll use later on.
cpBodyNewsSt at i ¢ is used instead of cpBodyNew because this is a static object
that should not move. Note that the body isn’t actually added to the space,
which is okay for static bodies like the ground that never need to move.

. Creates a line segment shape from the lower left to the lower right by calling

cpSegnent ShapeNew, attaching it to the ground body created earlier. The last
parameter is the radius of how wide to make the line segment; it’s given a thick-
ness of 10.0. This is a convenient feature in Chipmunk that is not present in
Box2D (the ability to give an edge shape a thickness).

Sets the elasticity (how bouncy the ground is) to 1.0 (perfect bounciness).

5. Sets the friction of the ground to 1.0.

7.

Removes the GRABABLE_MASK_BI T from the layers that this shape is in. This
effectively prevents you from trying to move the ground with a mouse con-
straint, which you will learn more about later. If you forget to do this and are
using mouse constraints, you may see Chipmunk crash with an unsolvable con-
straint error, since it is impossible to move a body with infinite mass.

Adds the shape to the Chipmunk space.

Next you need to give Chipmunk time to run each frame. To do so, add the con-
tents of Listing 13.15 to the end of your update method.

433

434

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Listing 13.15 Scene5ActionLayer.m (at end of the update method)

static doubl e UPDATE | NTERVAL = 1. 0f/60. 0f;
static doubl e MAX_CYCLES PER FRAME = 5;
static double tineAccunulator = 0;

ti meAccunul ator += dt;
if (tineAccunul ator > (MAX_CYCLES PER FRAME * UPDATE_I NTERVAL)) {
ti meAccunul at or = UPDATE_| NTERVAL;

}

while (timeAccunul ator >= UPDATE | NTERVAL) {
ti meAccunul at or - = UPDATE_I NTERVAL;
cpSpacesSt ep(space, UPDATE_| NTERVAL) ;

This game loop is the fixed timestep game loop, similar to the game loop you
added in Chapter 12, “Advanced Game Physics,” but it calls cpSpaceSt ep in each
frame rather than worl d->St ep. Just as with Box2D, it is usually best to use a fixed
timestep game loop like this in order to have a stable physics simulation.

Next you need to add debug draw support into the scene, so you can see the new
shapes you're adding, and mouse support so you can move the objects by dragging.
Most of the code you need for this is already contained in some handy support classes;
you just need to add them to your project.

In Xcode, Control-click your Classes group, select New Group, and then rename
the new folder to Chipmunk. Then open the folder for the resource files for this chap-
ter and drag cpMouse.c, cpMouse.h, drawSpace.c, and drawSpace.h to the new Chipmunk
group. Verify Copy items into destination group’s folder (if needed) is checked,
that only the SpaceViking target is checked, and click Finish, as shown in Figure 13.8.

Figure 13.8 Adding cpMouse.c/h and drawSpace.c/h from the resources
files for this chapter

Getting Started with Chipmunk

After you add the files, there’s an important step to take to make sure they compile
correctly. In Xcode, select cpMouse.c, and go to View > Utilities > File Inspector.
Click on the File Type dropdown, and set it to Objective-C source, as you can see
in Figure 13.9. Repeat the process with drawSpace.c.

Figure 13.9 Setting file type of cpMouse.c and drawSpace.c to
Objective-C source

Switch to Scene5ActionLayer.h and import chipmunk.h, cpMouse.h, and drawSpace.h at
the top of the file, as shown in Listing 13.16.

Listing 13.16 ScenebActionLayer.h (at top of file)

#i nport "chi pnunk. h"
#i mport "cpMouse. h"
#i mport "drawSpace. h"

Still inside Scene5ActionLayer.h, add the instance variables you need inside the inter-
face declaration, as shown in Listing 13.17.

Listing 13.17 ScenebActionLayer.h (inside interface declaration)

cpSpace *space;
cpBody *groundBody;
cpMouse *nouse;

435

436

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Switch back to Scene5ActionLayer.m and implement your dr aw method to call Chip-
munk’s debug draw code in drawSpace.c/h, as shown in Listing 13.18.

Listing 13.18 ScenebActionLayer.m (after update method)

- (void)draw {
drawSpaceOptions options = {

0, /1 drawHash

0, /1 dr awBBs

1, /'l drawShapes

4. 0f , /1 collisionPointSize
0. Of , /'l bodyPoi nt Si ze

1. 5f, /'l 1ineThi ckness

b
dr awSpace(space, &options);

This method calls the helper code contained in debugDraw.c/h to draw representa-
tions of the Chipmunk physics objects to the screen so you can visualize what’s going
on in the physics simulation. You can configure what to show in the dr awSpace-

Opt i ons structure. In this example, it turns on drawing of the shapes, sets the point
that is drawn to indicate collisions to have a size of 4 points, and sets the general line
thickness to be 1.5 points.

Next, add some touch-handling code that uses some helper functions in ¢pMouse.c/h
to enable you to move objects by dragging, as shown in Listing 13.19.

Listing 13.19 ScenebActionLayer.m (after draw method)

- (void)regi sterWthTouchDi spat cher {
[[CCTouchDi spat cher sharedDi spatcher] addTarget edDel egat e: sel f
priority:0 swal |l owsTouches: YES];

- (BOOL) ccTouchBegan: (U Touch *)touch wi thEvent: (U Event *)event {
CGPoi nt touchLocation = [self convert TouchToNodeSpace: t ouch];
cpMouseG ab(nmouse, touchLocation, false);
return YES;

- (void)ccTouchMved: (U Touch *)touch wi thEvent: (U Event *)event {
CGPoi nt touchLocation = [self convert TouchToNodeSpace: t ouch];
cpMouseMove(nmouse, touchLocation);

- (void)ccTouchEnded: (U Touch *)touch w thEvent: (U Event *)event {
cpMuseRel ease(nouse) ;

Getting Started with Chipmunk

This registers the node with the touch dispatcher to receive the callbacks, then for
each callback, it calls the appropriate helper routine in ¢pMouse.c/h to enable mouse
movement for this scene. Note how you have to convert the touches to node coordi-
nates as usual before passing them on to the helper routines.

You're almost done! To wrap things up, add the code to call the new methods you
wrote at the end of i ni t Wt hScene5Ul Layer, as shown in Listing 13.20.

Listing 13.20 ScenebActionLayer.m (at end of initWithScene5UlLayer)

[sel f createSpace];

[sel f createG ound];

nmouse = cpMouseNew(space);
sel f.isTouchEnabl ed = YES;
[sel f createlLevel];

This calls the functions you wrote to create the space and ground, initializes the
mouse joint, sets the layer as accepting touches, and calls the method to create the level
(which right now contains just a single box).

Compile and run your code, and you should be able to see a box fall down into
your scene. You should also be able to move the box around by dragging it with your
finger, as you can see in Figure 13.10.

Figure 13.10 A basic Chipmunk scene with a space, body, shape,
mouse joint movement, and debug drawing

Believe it or not, now you already know how to use some of the most important
features of Chipmunk:

= How to create a Space

= How to add a body and shape to the space

437

438

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

= How to enable debug drawing

= How to use mouse joint support

Based on this knowledge, you could use Chipmunk to make the puzzle level you
created with Box2D in Chapter 10, “Basic Game Physics,” except for one piece: how
to map a sprite to the Chipmunk body. So let’s learn this by bringing our hero back
into action and enabling him to run and leap to safety.

Adding Sprites and Making Them Move

It’s time to add a sprite for Ole into this level, but before you do, let’s review the
approach.

In Chapters 10, 11, and 12, you made the Box2D bodies line up very closely to
the shapes of the sprites. You then looped through each Box2D body in the scene and
updated the associated sprite to be in the same position as the body.

In this chapter, you take a different approach. You make the shape representing
Ole just a small box toward his feet, since you don’t really care about the collisions
with the rest of his body, and that shape is simple to work with. Also, instead of loop-
ing through all of the physics bodies, you go the other way around: you loop through
each of the sprites and their position based on the appropriate physics body. This is a
preferred method of working, since it doesn’t make the assumption that a sprite maps
one-to-one to a physics body.

Much as you did in Chapter 11, you create a base class for all sprites that are related
to Chipmunk bodies in order to contain some of the common code.

So let’s get started by creating this class! Control-click on the Classes\GameObjects
group in Xcode, select New Group, then rename the new folder Chipmunk. Then
with the new Chipmunk group selected, go to File > New > New File..., choose
iOS > Cocoa Touch > Objective-C class, and click Next. Enter GameCharacter as
the Subclass of, click Next, name the file CPSprite.m, and click Save.

Replace CPSprite.h with the contents of Listing 13.21.

Listing 13.21 CPSprite.h

#i nport "cocos2d. h"
#i nport "chi pmunk. h"
#i nport " GanmeCharacter. h"

@nterface CPSprite : GaneCharacter {
cpBody * body;
cpShape * shape;
cpSpace * space;

Adding Sprites and Making Them Move

- (voi d) addBoxBodyAndShapeW t hLocat i on: (CGPoi nt) | ocati on
si ze: (CGSi ze) si ze
space: (cpSpace *)theSpace
mass: (cpFl oat) mass
e: (cpFloat)e
u: (cpFloat)u
col l'i sionType: (cpCol | i si onType)col |isi onType
canRot at e: (BOOL) canRot at e;

@nd

Note the base class defines a single body and shape for the sprite and keeps a refer-
ence to the Chipmunk space. It also has a superlong helper method to create a box
body and shape based on several passed in values.

Next replace CPSprite.m with the contents of Listing 13.22.

Listing 13.22 CPSprite.m

#i nmport "CPSprite.h"
@ nmpl enentation CPSprite

-(voi d)updat eSt at eW t hDel t aTi me: (ccTi ne) del t aTi me
andLi st Of Ganehj ects: (CCArray*) | i st Of Gamebj ects {
sel f.position = ccp(body->p.x, body->p.y);
self.rotation = CC_RADI ANS_TO DEGREES(-body->a);

}

- (voi d) addBoxBodyAndShapeW t hLocat i on: (CGPoi nt) | ocati on
si ze: (CGSi ze) si ze
space: (cpSpace *)theSpace
mass: (cpFl oat) mass
e: (cpFloat)e
u: (cpFloat)u
col l'isionType: (cpCol | isionType)col lisionType
canRot at e: (BOOL) canRot ate {

space = theSpace;

float moment = I NFINITY;
if (canRotate) {
nonent = cpMonent For Box(mass, size.w dth, size.height);

}

body = cpBodyNew(nass, nonent);
body->p = | ocati on;

439

440 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

cpSpaceAddBody(space, body);

shape = cpBoxShapeNew(body, size.w dth, size.height);
shape->e = e;
shape->u = u;
shape->col | i sion_type = collisionType;
shape->data = sel f;
cpSpaceAddShape(space, shape);
}

@nd

This first implements updat eSt at eWt hDel t aTi nme to update the position of the
sprite based on the position of the Chipmunk body.

Then addBoxBodyAndShapeWt hLocat i on creates a Chipmunk body and shape
based on the passed in values, in the way you created the box shape earlier in this
chapter. Note that if canRot at e is false, the body is given an infinite moment of
inertia, which makes the body unable to rotate.

Note that the dat a variable on the shape is set to sel f, so that a pointer to the
class can be found if you just have the shape (which you’ll need later on). Also note
that the col | i si onType of the body is set to a passed in value. You’'ll be learning
more about collision types and what they mean later in this chapter.

Now that you have your handy new CPSprit e class, you create a subclass to rep-
resent Ole. With the Classes\GameObjects\Chipmunk group selected, go to File > New
> New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter CPSprite as the Subclass of, click Next, name the file CPViking.m, and click
Save.

Replace CPViking.h with the contents of Listing 13.23.

Listing 13.23 CPViking.h

#i mport "CPSprite.h"

@nterface CPViking : CPSprite {
}

- (id)initWthLocation: (CGPoint)l ocation space: (cpSpace *)space
groundBody: (cpBody *)groundBody;

@nd

Not much to see here: this just subclasses CPSpri t e and defines an initializer for
the class. Next switch to CPViking.m and replace it with the contents of Listing 13.24.

Adding Sprites and Making Them Move

Listing 13.24 CPViking.m

#i nport " CPVi ki ng. h"
@ npl enent ati on CPVi ki ng

- (id)initWthLocation: (CGPoint)l ocation space: (cpSpace *)theSpace
groundBody: (cpBody *)groundBody {
if ((self = [super initWthSpriteFraneNane: @sv_anim1l.png"])) {
CGSi ze si ze;
if (U _USER | NTERFACE_| DI OM) == Ul User | nterfacel di onPad) {
size = CGSi zeMake(60, 60);
sel f.anchorPoi nt = ccp(0.5, 30/self.contentSize. height);
} else {
size = CGSi zeMake(30, 30);
sel f.anchor Poi nt = ccp(0.5, 15/self.contentSize. height);
}
[sel f addBoxBodyAndShapeW t hLocati on: | ocation
si ze: si ze space:theSpace mass: 1.0 e:0.0 u:0.5
col l'i sionType: 0 canRot at e: TRUE] ;
}

return self;

}

@nd

This class represents Ole’s sprite and will eventually contain the game logic for
Ole’s movement and behavior. In this level, the Chipmunk body does not match up
exactly to Ole’s size for this level. Instead, the Chipmunk body is just a smallish box
toward the bottom of Ole’s feet. This is because you don’t really care about what the
top of Ole’s body collides with in this level, and it makes for nicer game behavior, as a
short box is less likely to tip over than a long rectangular box.

Note

If you do care about the collisions with the top half of Ole, one good solution is to add a
second shape to the same Chipmunk body for his upper half. This way, you can still use
the box shape on the bottom for setting surface velocity for more stable player move-
ment, as you’ll see later on in this chapter.

The first thing the i ni t Wt hLocat i on method does is set the sprite frame to Ole’s
“standing still” position. It then sets the anchor point to be in the middle of the sprite
along the x-axis and 30 (or 15 for the iPhone) points from the bottom along the y-axis
(since the goal is to match the anchor point with the center of the Chipmunk body).
Finally, it calls the addBoxBodyAndShapeWt hLocat i on method you wrote earlier
in CPSprite to create a 60 X 60 (or 30 X 30 for the iPhone) box representing Ole.

441

442 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Note

If you're still confused about why the anchor point was set, remember that the anchor
point is the offset within the sprite that represents its position. For this sprite, you are
creating a 60 x 60 box toward the bottom of the sprite, so you want the sprite’s position
to match up with the center of the box (i.e., the Chipmunk body’s position). Since anchor
point’s values range from O to 1 (a percentage of the sprite’s width/height), you divide 30
points by the height of the sprite to get the percentage.

Now, let’s integrate this new class into the level. Switch to Scene5ActionLayer.h and
add the declaration for CPVi ki ng above the interface declaration, as shown in

Listing 13.25.

Listing 13.25 ScenebActionLayer.h (above interface declaration)

@ ass CPVi ki ng;

Then add two new instance variables you’ll need for the vi ki ng sprite and the
scene’s sprite batch node, as shown in Listing 13.26.

Listing 13.26 ScenebActionLayer.h (inside interface declaration)

CPVi ki ng *vi ki ng;
CCSpri t eBat chNode *sceneSprit eBat chNode;

Switch to Scene5ActionLayer.m and import CPViking.h at the top of the file, as
shown in Listing 13.27.

Listing 13.27 ScenebActionLayer.m (at top of file)

#i nport " CPVi ki ng. h"

Next go to the i nit Wt hScene5Ul Layer method and add the contents of Listing
13.28 right before the call to cr eat eLevel . Note that it is important to add it before
createlevel, because later on creat eLevel will assume the sprite sheet was cre-
ated beforehand.

Listing 13.28 Scene5ActionLayer.m (in initWithScene5UILayer, right before call to
createLevel)

if (U _USER | NTERFACE I DIOM) == U Userlnterfacel di onPad) {
[[CCSpriteFrameCache sharedSpriteFranmeCache]
addSpriteFramesWthFil e: @scenebat| as-hd. plist"];
sceneSprit eBat chNode = [CCSprit eBat chNode
bat chNodeW t hFi | e: @ scenebat | as- hd. png"];

Adding Sprites and Making Them Move

viking = [[[CPViking alloc] initWthLocation:ccp(200, 200)
space: space groundBody: groundBody] autorel ease];
} else {
[[CCSpriteFrameCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @scenebatlas. plist"];
sceneSpriteBat chNode = [CCSprit eBat chNode
bat chNodeW t hFi | e: @ scenebat| as. png"];
viking = [[[CPViking alloc] initWthLocation:ccp(100,100)
space: space groundBody: gr oundBody] aut orel ease];
}
[sel f addChil d: sceneSpriteBat chNode z:0];
[sceneSpriteBat chNode addChil d:viking z:2];

This creates the sprite batch node for this level and stores it in an instance variable.
It then creates a CPVi ki ng object, using the initializer you just wrote, and adds it to
the sprite batch node.

Speaking of the sprite batch node, go ahead and drag sceneSatlas.png, scenesatlas.
plist, scenedatlas-hd.png, and sceneSatlas-hd.plist from the resources files for this chapter
into the Images group. Make sure Copy items into destination group’s folder (if
needed) is checked when you do so.

One last step. You need to call the update method on each of the GaneCbj ect s in
your scene, so add the code to your updat e method, as shown in Listing 13.29.

Listing 13.29 Sceneb5ActionLayer.m (at bottom of update method)

CCArray *listOf GaneObj ects = [sceneSpriteBatchNode children];
for (GanmeCharacter *tenpChar in |istO GaneQbjects) {
[tenmpChar updateStateWthDel taTi ne: dt
andLi st Of Ganehj ects: | i st Of Ganeoj ect s] ;

Compile and run, and you should see Ole in your scene with a small box tied to
the bottom of his feet, as shown in Figure 13.11.

He acts a little weird if right now you move him around with the mouse joint, but
that’s okay because you're about to enable Ole to run and jump his way off this planet.
For this level, you move Ole by tilting the device left and right and make him jump
by tapping the screen.

But before you dive into code, let’s take a moment to discuss some Chipmunk con-
cepts you need to know to implement his movement.

443

444

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Figure 13.11 Ole sprite added to scene, mapped to a (smaller)
Chipmunk object

Jumping by Directly Setting Velocity
In the mine cart level you made in Chapters 11 and 12, you implemented jumping by
applying an impulse to the Box2D body. You can apply forces and impulses in Chip-
munk as well, but for this level you take a different approach: you implement jumping
by setting the velocity of the sprite directly.

One of the nice things about Chipmunk is that it works well with directly setting
the velocity of bodies, which can be really convenient for player controls like this.

Setting the velocity of a body is easy: you just call a function like the one in
Listing 13.30.

Listing 13.30 Example of directly setting velocity

cpBodySet Vel (body, newel);

For the y velocity of Ole, this function is set to a hardcoded value as long as Ole is
jumping. For this level, the longer the player’s finger is held down, the higher Ole will
jump. So basically, the y velocity is set to the hardcoded value as long as the finger is
held down, up until a maximum number of seconds. This makes it a little more fun
for the player, as he or she can make both short jumps and longer jumps.

For the X velocity of Ole, this function is set based on the amount the device is
currently tilted while Ole is in the air. This is a nice trait to have, so the player can
reverse Ole’s direction in midjump.

Adding Sprites and Making Them Move

Ground Movement by Setting Surface Velocity

Chipmunk has a neat property you can set on objects called surface velocity that works
nicely for conveyor belt effects or for character controls such as this.

Basically, the surface velocity for an object represents the speed at which the surface
of the object itself is moving. You can set it to make an object slide along the ground
or move across a conveyor belt.

For this level, when Ole is on the ground, you will set the surface velocity to move
Ole based on accelerometer input. This is more convenient than modifying Ole’s
velocity directly, so that his velocity does not affect the speed of moving platforms and
so on. Setting the surface velocity is quite easy, as you can see in Listing 13.31.

Listing 13.31 Example of setting surface velocity

shape- >surface_v = newSurfaceVel;

Detecting Collisions with the Ground

Since you’re going to move Ole in different ways based on whether he’s in the air or
on the ground, you need to know when Ole is colliding with the ground.

Detecting collisions is very easy with Chipmunk. You first set the col | i si onType
of each shape to a number representing the type of shape it is, so you can refer to it
later. For this level, you set the ground and platforms as one number (KCol | i si on-
TypeG ound) and Ole as another number (kCol | i si onTypeVi ki ng).

The next step is to tell Chipmunk what collision-related events you are interested
in by specifying one or more callback functions. The events you can register for are:

= Begin: Called when two objects start colliding. In your handler for this event,
you can return false to make Chipmunk permanently ignore the collision. This
can be handy to have fine-grained control of which objects collide with each
other, as Chipmunk’s built-in collision filtering is somewhat limited.

= PreSolve: Called each frame while two objects are touching, immediately
before Chipmunk calculates the collision response for the two objects. In your
handler for this event, you can return false to make Chipmunk ignore this colli-
sion for the current frame only. This can be useful to implement if you want the
collisions ignored sometimes but not always (such as you’ll be doing in this level
for one-way platforms!). It is also a good spot where you can modify collision-
related values such as elasticity or friction.

= PostSolve: Called each frame while two objects are touching, immediately after
Chipmunk calculates the collision response for the two objects. This is a good
place to put code that relies on how hard two objects collide against each other,
such as playing a sound effect with its volume based on the collision force.

= Separate: Called when two objects separate and are no longer colliding.

445

446

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

In this level, you use collision detection callbacks for two reasons: (1) to detect if
the player is currently on the ground, by implementing the Begi n and Separ at e
callbacks, and (2) to allow the player to jump through the bottom of a one-way plat-
form, by implementing the Pr eSol ve callback.

Note

The callback functions you write are C functions, so you can’t access member variables
from your class in these functions. A common workaround is to pass your game object as
a parameter, and then access properties on your object or call a method on it.

Also note that you cannot delete Chipmunk objects directly from these callback functions
(or Chipmunk will likely crash). Instead, you should use the cpSpaceAddPost St ep-
Cal | back function to schedule a callback to be called when it's safe to delete Chip-
munk objects, passing in parameters for the objects you wish to delete. This is useful
when you want to delete objects in the case of a collision (such as bullets intersecting a
monster).

Chipmunk Arbiter and Normals

When you receive callbacks from Chipmunk for collision events, you get passed a data
structure called cpAr bi t er that contains useful information on the collision.

The cpArbiter structure contains a list of all of the points where the two objects
are colliding, and each collision point has a useful value called a normal, which is a
vector perpendicular to the contact point, in the direction of the collision.

This is quite useful to detect if Ole is colliding with the top of a platform or the
bottom of the platform. As you will see in the following code, we use this structure to
allow Ole to jump through the bottom of a platform but still collide with the top.

Implementation—Collision Detection

Now that you are armed with some background knowledge, let’s try this out and get
Ole moving.

The first step is to add the code to detect when Ole is hitting the ground and when
he isn’t and to allow Ole to jump through the bottom of platforms. Open Classes\
Constants\Constants.h and add a new enumfor the collision types you need for this
level, as shown in Listing 13.32.

Listing 13.32 Constants.h (add to bottom of file)

typedef enum {
kCol l'i si onTypeG ound = 0x1,
kCol |'i si onTypeVi ki ng

} CollisionType;

Then, switch to CPViking.m and modify your call to addBoxBodyAndShapeW't h-
Locat i on to specify the new collision type for Ole instead of 0, as shown in Listing
13.33.

Adding Sprites and Making Them Move

Listing 13.33 CPViking.m (modify call to addBoxBodyAndShapeWithLocation in
initWithLocation)

[sel f addBoxBodyAndShapeW t hLocati on: | ocation
si ze: si ze space:theSpace mass: 1.0 e:0.0 u:1.0
col I'i si onType: kCol |i si onTypeVi ki ng canRot at e: TRUE] ;

Similarly, switch to Scene5ActionLayer.m and set the collision type for the ground
shape created in cr eat eGr ound, as shown in Listing 13.34.

Listing 13.34 Sceneb5ActionLayer.m (before calling cpSpaceAddShape in createGround)

shape->col li sion_type = kCol | i si onTypeG ound;

Next let’s convert the dynamic shape you added to the level into a static platform so
you can test that the one-way platform code you’re about to add works. Replace cr e-
at eBox At Locat i on with the contents of Listing 13.35.

Listing 13.35 Sceneb5ActionLayer.m (replace createBoxAtLocation)

- (voi d)creat eBoxAt Locati on: (CGPoi nt) | ocation {

cpFl oat hw, hh;

if (U _USER I NTERFACE IDIOM) == Ul Userlnterfacel di onPad) {
hw = 100. 0/ 2. 0f ;
hh 10. 0/ 2. Of ;

} else
hw = 50. 0/ 2. Of ;
hh = 5.0/2. 0f;

I =1

}

cpVect verts[] = {
cpv(-hw, - hh),
cpv(-hw, hh),
cpv(hw, hh),
cpv(hw, -hh),
s

cpShape *shape = cpPol yShapeNew(gr oundBody, 4, verts, |ocation);
shape->e = 1.0;

shape->u = 1.0;

shape->col li sion_type = kCol |i si onTypeG ound;
cpSpaceAddShape(space, shape);

447

448

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Note

This method is a good example of how to create shapes with arbitrary vertices by using
cpPol yShapeNew, passing in an array of vertices. If you wanted to, you could use Ver-
tex Helper to trace exact shapes and create bodies based on those shapes, just as you
did in Chapter 11. However, note that for Chipmunk, vertices must be defined in clockwise
order (rather than counterclockwise as with Box2D).

Now that each of the shapes in the scene has the correct collision type set, you can
set up some callback functions to be called when Ole hits or separates from the ground
shapes.

The callbacks keep track of which ground shapes Ole is currently colliding with
at any given time. Open CPViking.h and add an instance variable to store the array of
ground shapes, as shown in Listing 13.36.

Listing 13.36 CPViking.h (inside interface declaration)

cpArray *groundShapes;

While you’re there, also add a property for the ground shapes array, since you need
to access it from outside the class (in the C-function callbacks), as shown in Listing
13.37.

Listing 13.37 CPViking.h (after interface declaration)

@roperty (readonly) cpArray *groundShapes;

Switch to CPViking.m and synthesize your new property, as shown in Listing 13.38.

Listing 13.38 CPViking.m (right after @implementation)

@ynt hesi ze groundShapes;

Then add the code to initialize the gr oundShapes array and register for the colli-
sion callbacks inside your i ni t Wt hLocat i on method, as shown in Listing 13.39.

Listing 13.39 CPViking.m (at end of initWithLocation)

groundShapes = cpArrayNew 0);
cpSpaceAddCol | i si onHandl er (space, kCol |lisionTypeViki ng,
kCol i si onTypeG ound, begin, preSolve, NULL, separate, NULL);

This registers for three of the four possible collision-related events for Ole colliding
with the ground: the begi n, preSol ve, and separ at e events. Go ahead and write
these methods next, as shown in Listing 13.40.

Adding Sprites and Making Them Move

Listing 13.40 CPViking.m (before initWithLocation)

static cpBool begin(cpArbiter *arb, cpSpace *space, void *ignore) {
CP_ARBI TER_GET_SHAPES(ar b, vi ki ngShape, groundShape) ; /11

CPVi ki ng *vi king = (CPVi king *)vi ki ngShape- >dat a; Il 2
cpVect n = cpArbiterGetNormal (arb, 0); Il 3
if (n.y <0.0f) { /1 4

cpArray *groundShapes = vi ki ng. groundShapes; I'l'5

cpArrayPush(groundShapes, groundShape);
}
return cpTrue;

}

static cpBool preSolve(cpArbiter *arb, cpSpace *space, void *ignore) {
i f (cpvdot (cpArbiterGet Nornal (arb, 0), ccp(0,-1)) < 0){ Il 6
return cpFal se;
}

return cpTrue;

}

static void separate(cpArbiter *arb, cpSpace *space, void *ignore) {
CP_ARBI TER_GET_SHAPES(ar b, vi ki ngShape, groundShape) ; 17
CPVi ki ng *vi king = (CPVi king *)vi ki ngShape- >dat a;
cpArrayDel et eQoj (vi ki ng. groundShapes, groundShape) ;

Overall, the begi n method detects when Ole is colliding with the top of a plat-
form (and adds it to an array if so), and the separ at € method removes the platform
from the array. The pr eSol ve method is responsible for ignoring any collisions Ole
has with the bottom of platforms.

There’s a good bit of new material here, so let’s go over it step by step:

1. This is a helper macro that declares variables for the two shapes involved in the
collision, naming them vi ki ngSprite and gr oundShape. Note that the order
of the shapes is the same as the order of the collision types that you passed into
cpSpaceAddCol | i si onHandl er.

2. Retrieves the pointer to the CPMi ki ng object from the data pointer in the shape.

Remember that you set the data pointer of the shape to sel f when you created
the shape in CPSpri t e’s addBoxBodyAndShapeWt hLocat i on method. Also

remember that this is a C function, so it doesn’t have access to the instance vari-
ables of the CPVi ki ng class, which is why you need to do this.

3. Gets the normal vector for the first contact point. Remember that a normal is a
vector perpendicular to the contact point, in the direction of the collision.

4. If the y component of the normal vector is less than 0, Ole is colliding with the
top of the platform.

449

450 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

5. Any time Ole is colliding with the top of the platform, this adds it to the list of
shapes Ole is currently colliding with.

6. This tests to see if Ole is jumping through the bottom of the platform and, if
so, cancels the collision response by returning false. Otherwise it returns true to
have Chipmunk continue to process the collision response.

7. The separate method removes the ground shape from the array of shapes cur-
rently in contact if it is present.

At this point, the Vi ki ng class has a list of all of the ground shapes that Ole is cur-
rently in contact with, and it allows Ole to jump through the bottom of platforms.
Well, if he could jump, that is! So let’s add this capability next.

Note

This is just one of several ways to detect if an object is colliding with the ground. | chose
to cover this method in this chapter because | thought it was a good introduction to the
various callback methods available in Chipmunk.

Another method suggested by Scott Lembcke, the creator of Chipmunk, is to keep a Bool-
ean flag on the object and set it to false before stepping the Chipmunk space (as long as
the body isn’t sleeping). Then, register a presolve callback on the object and the ground,
and set it back to true if the collision normal is pointing upward. The advantage of this
method is only one callback is necessary rather than three like in the example.

Implementation—Movement and Jumping

The first thing you need to do to implement movement and jumping is add a few new
instance variables to CPViking.h, as shown in Listing 13.41.

Listing 13.41 CPViking.h (inside interface declaration)

doubl e junpStartTinme;
fl oat accel erationFracti on;

These variables keep track of the most recent time Ole began jumping and the frac-
tion Ole should accelerate based on accelerometer input (between —1 and 1).
While you’re there, also predeclare a few methods, as shown in Listing 13.42.

Listing 13.42 CPViking.h (after interface declaration)

- (void)accel eronmeter: (U Accel eronet er*)accel er onet er

di dAccel erate: (U Accel erati on*)accel erati on;
- (BOOL) ccTouchBegan: (U Touch *)touch w t hEvent: (U Event *)event;
- (voi d)ccTouchEnded: (U Touch *)touch w t hEvent: (U Event *)event;

Adding Sprites and Making Them Move

Note that these are the methods that accept accelerometer and touch input; you
need to forward the accelerometer and touch input from the action layer straight to the
CPVi ki ng class for processing. Now switch to CPViking.m and implement those meth-
ods, as shown in Listing 13.43.

Listing 13.43 CPViking.m (after initWithLocation)

- (BOOL) ccTouchBegan: (U Touch *)touch w thEvent: (U Event *)event {
i f (groundShapes->num > 0) {
jumpStart Ti ne = CACurrent Medi aTi ne() ;

}
return TRUE;
}
- (voi d)ccTouchEnded: (U Touch *)touch w thEvent: (U Event *)event {
jumpStartTine = O;
}
- (void)accel eroneter: (U Accel eronet er*)accel eronet er
di dAccel erate: (Ul Accel erati on*)accel eration {
accel erationFraction = accel eration.y*2;
if (accelerationFraction < -1) {
accel erationFraction = -1;
} else if (accelerationFraction > 1) {
accel erationFraction = 1,
}
if ([[CCDrector sharedDirector] deviceOientation] ==
Ul Devi ceOri ent ati onLandscapelLeft) {
accel erationFraction *= -1;
}
}

ccTouchBegan checks to see if Ole is currently colliding with any ground shapes
and, if so, sets the jump start time to the current time. This has the effect of beginning
the jump, as you’ll see later on. ccTouchEnded effectively ends the jump by setting
the jump start time to 0.

accel eronet er: di dAccel er at e computes the fraction to accelerate the player. It
multiplies the y value of the acceleration by 2 so that you only have to tilt the device
about halfway to get Ole to move at max speed, and it clamps the range to between
—1 and 1. Also note that it flips the acceleration values if the screen is the opposite ori-
entation than expected.

451

452 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Next override the updat eSt at eWt hDel t aTi ne method to add the jumping
code, as shown in Listing 13.44.

Listing 13.44 CPViking.m (before initWithLocation)

-(voi d)updat eSt at eW t hDel t aTi ne: (ccTi ne) dt

andLi st Of GaneQbj ects: (CCArray*) i st Of GaneCbj ects {

[super updateStateWthDeltaTi me: dt
andLi st O GaneObj ects: | i st Of Ganebj ect s] ; /11

float junpFactor;

if (U _USER | NTERFACE_I DI OM') == Ul User | nterfacel di onPad) {
jumpFact or = 300. 0;

} else {
j unpFact or = 150. 0;

}

CGPoi nt newMel = body->v; /Il 2

i f (groundShapes->num == 0) { /13
newel = ccp(junpFactor*accel erationFraction, body->v.y); [/ 4

}

doubl e tinmeJunpi ng = CACurrent Medi aTi ne()-junpStartTi ne; /15

if (junpStartTinme !'= 0 && tinmeJunping < 0.25) { /1 6
newel .y = junpFactor*2;

}

cpBodySet Vel (body, newel); 17

There’s a good bit to cover here, so let’s go over it line by line:

1.

Starts by calling the superclass’s implementation of updat eSt at eWt hDel t a-
Ti me, which is the code in CPSprit e that updates the position and rotation of
the sprite based on the position and rotation of the Chipmunk body.

. Sets a jump factor based on whether the device is an iPad or iPhone. It’s more on

the iPad because there are about double the points on the screen. Also gets the
current velocity of the body as a vector.

Tests to see if Ole is in the air (i.e., Ole is not currently colliding with any
ground shapes).

If so, sets the new X velocity to be the current acceleration fraction multiplied by
—300, effectively making the X velocity range from —300 to 300.

Tests to see how long Ole has been jumping by subtracting the jump start time
from the current time.

Adding Sprites and Making Them Move

6. If the jump start time isn’t O (i.e., Ole is currently trying to jump) and Ole hasn’t

been jumping for more than a quarter second, it sets the y component of the
velocity to a straight 600.0 to make Ole leap into the air. After a quarter second,
gravity starts to gradually lower the y component so Ole returns to earth.

7. Sets the velocity of the Chipmunk body to the newly calculated velocity.

That covers the movement of Ole while he’s in the air, but to move Ole while he’s

on the ground, you use surface velocity instead. So add the code to handle ground
movement to the bottom of the updat eSt at eWt hDel t aTi me method next, as
shown in Listing 13.45.

Listing 13.45 CPViking.m (at bottom of updateStateWithDeltaTime)

i f (groundShapes->num > 0) { /11

if (ABS(accel erationFraction) < 0.05) { Il 2
accel erationFraction = 0;
shape- >surface_v = ccp(0, 0);

} else { /Il 3
float maxSpeed = 200. Of;
shape- >surface_v = ccp(-nmaxSpeed*accel erationFraction, 0);
cpBodyAct i vat e(body) ;

}

} else {

}

shape- >surface_v = cpvzero; Il 4

Again, several things to point out, so let’s go over it line by line.

1. Checks to see if Ole is on the ground (i.e., Ole is currently colliding with at least

one ground shape).

. Tests if the acceleration fraction is very small. In this case, it halts Ole to prevent

him from constantly moving when the player is trying to make him be still.
Note that you should use the capital case ABS method so that it works properly
with float values.

. Otherwise, sets the x component of the surface velocity based on the current

acceleration fraction multiplied by —200, effectively making the X component
of the surface velocity range from —200 to 200. It also activates the body, which
wakes it up if it was sleeping.

4. If Ole is not colliding with the ground, resets the surface velocity to 0.

There’s one more bit of code to add to the bottom of the updat € method. Add the

contents of Listing 13.46 to the end of the method next.

453

454

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Listing 13.46 CPViking.m (at bottom of updateStateWithDeltaTime)

float margin = 70;
CGSi ze winSize = [CCDirector sharedDirector].w nSi ze;
if (body->p.x < nmargin) {
cpBodySet Pos(body, ccp(margin, body->p.y));
}
if (body->p.x > w nSize.width - margin) {
cpBodySet Pos(body, ccp(w nSize.w dth - margin, body->p.y));
}

This code prevents Ole from going off the sides of the screen by clamping the x
coordinate to min/max values.

You're almost done: now you just need to call these methods. Switch to
Scene5ActionLayer.m, comment out your current implementations of ccTouchBegan,
ccTouchMbved, and ccTouchEnded, and replace them with the contents of
Listing 13.47.

Listing 13.47 Sceneb5ActionLayer.m (replace ccTouchBegan, ccTouchMoved, and
ccTouchEnded with these, effectively deleting ccTouchMoved)

- (BOOL) ccTouchBegan: (U Touch *)touch wi thEvent: (U Event *)event {
[vi king ccTouchBegan: touch w t hEvent:event];

return YES;

}

- (voi d)ccTouchEnded: (U Touch *)touch w t hEvent: (U Event *)event {
[vi ki ng ccTouchEnded: t ouch withEvent: event];

}

- (void)accel eronmeter: (U Accel eroneter *)accel eroneter
di dAccel erate: (U Accel eration *)accel eration {

[viking accel eroneter: accel eroneter di dAccel erate: accel eration];

}

These simply forward the accelerometer and touch input on to the new code you
added in the CPVi ki ng class.

One last step: add a line inside your i ni t Wt hScene5Ul Layer method to enable
accelerometer input, as shown in Listing 13.48.

Listing 13.48 ScenebActionLayer.m (at bottom of initWithScene5UlLayer)

sel f.isAccel eronet er Enabl ed = YES;

Chipmunk and Constraints 455

That’s it. Compile and run, and now you should be able to use the accelerometer to
move Ole back and forth, tap to jump in the air, and land on top of the platform (but
still be able to jump through the bottom of the platform). See Figure 13.12.

Figure 13.12 A moving and jumping Viking with a platform

It’s starting to work nicely, except you may notice that Ole sometimes gets flipped
over, landing unheroically on his behind. Momma always told me to avoid angry
Vikings, so we’re going to fix this next by using Chipmunk’s constraints.

Chipmunk and Constraints

Constraints in Chipmunk are special objects you can create to restrict how objects can
move—similar to joints in Box2D but more fine-grained and specialized.

You can use a variety of constraints in Chipmunk. Let’s take a quick tour of some
of the most useful constraints available.

Pivot joint: Restricts two bodies so that they can only rotate around a particular
point, similar to revolute joints in Box2D (Figure 13.13).

Figure 13.13 Pivot joint: Rotate around a point

456 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Rotary limit joint: Unlike in Box2D, when you make pivot joints you cannot
restrict the rotation to a certain degree range. Instead, you need to create a second
constraint: a rotary limit joint. With this, you can specify the minimum and maxi-
mum rotation range for two objects (Figure 13.14).

Initial

+15° maximum
angle

rotation

Figure 13.14 Rotary limit joint: Restrict rotation

Simple motor: Unlike Box2D, Chipmunk does not allow you to set motors
directly on joints. An alternative method is an additional constraint called a simple
motor. It lets you rotate an object at a desired speed (Figure 13.15).

Rotate 15° per second

®

Figure 13.15 Simple motor: Rotate at a set speed

Pin joint: You can think of this as pinning two points together with a large metal
rod, so that as you move one body, the rod keeps the two points always the same
distance apart. This is similar to a distance joint in Box2D (Figure 13.16).

G 4

Figure 13.16 Pin joint: Keep objects at set distance

Groove joint: Allows one body to slide (and rotate) up and down a “groove” on the
first body. This is somewhat similar to prismatic joints in Box2D (Figure 13.17).

s [e

Figure 13.17 Groove joint: Object B moves and rotates along a groove
on object A

Chipmunk and Constraints

Damped spring: Creates a “spring effect” between two objects that should be a
specified distance apart. If you push the objects together, the constraint pushes them
apart. If you pull them too far apart, the constraint pulls them together. This is
similar to a soft distance joint in Box2D (with f requencyHz and danpi ngRati o

set) (Figure 13.18).

Figure 13.18 Damped spring: Creates a spring effect for the distance
between objects

Damped rotary spring: This works similarly to a damped spring, but instead of
attempting to keep bodies a particular distance from each other, it attempts to keep
two bodies at the same relative angle (Figure 13.19).

LR IR

When one object rotates . . . the other also rotates

Figure 13.19 Damped rotary spring: Creates a spring effect for the
angle between objects

Note

This is just a sample of the most useful Chipmunk constraints. There are several more,
including slide, ratchet, and gear joints. If you're interested in checking out the others,

Scott Lembcke made a great demonstration video you can watch on YouTube at http;//
www.youtube.com/watch?v=2gJJZTSOaMM.

Now that you have an idea of the types of constraints that are available, let’s try
them out by adding a constraint to prevent Ole from tipping over. Based on the list of
useful constraints, you can see that an easy way to solve this problem is to use a rotary
limit joint—you can use it to restrict Ole from rotating more than 30 degrees in either
direction.

There are two steps to use a constraint in Chipmunk: create and initialize the con-
straint, then add it to the scene. Just as in Box2D, every constraint acts on two bodies.
In this case, the bodies are the ground body and Ole.

457

http://www.youtube.com/watch?v=ZgJJZTS0aMM
http://www.youtube.com/watch?v=ZgJJZTS0aMM

458

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

So let’s see this in code. Switch to CPViking.m and add two lines of code to the
bottom of your i nit Wt hLocat i on method, as shown in Listing 13.49.

Listing 13.49 CPViking.m (at bottom of initWithLocation)

cpConstraint *constraint = cpRotaryLim tJoint New(groundBody, body,
CC_DEGREES_TO RADI ANS(-30), CC_DEGREES_TO RADI ANS(30));
cpSpaceAddConstrai nt (space, constraint);

That’s how easy constraints are to use! Compile and run your code, and now Ole
should be able to leap around without falling over anymore. It’s good to have a happy
Viking again.

Revolving Platforms

Now that you have Ole moving and jumping, you can create platforms for him to
jump on to escape the level. For this level, you create a variety of different platform
types, such as revolving platforms, spring platforms, and pivoting platforms. Creating
them will help you learn more about Chipmunk constraints and see how useful they
are.

You start by making a revolving platform, and for that you need to create a new
subclass of CPSpri t e. Select the Classes\GameObjects\Chipmunk group, go to File >
New > New File..., choose iOS > Cocoa Touch > Objective-C class, and click
Next. Enter CPSprite as the Subclass of, click Next, name the file CPRevolvePlatform.m,
and click Save.

Replace CPRevolvePlatform.h with the contents of Listing 13.50.

Listing 13.50 CPRevolvePlatform.h

#i nport "CPSprite.h"

@nterface CPRevol vePlatform: CPSprite {
}

@nd

As you can see, this is just a subclass of CPSprit e with no extra instance variables.
Next switch to CPRevolvePlatform.m and replace it with the contents of Listing 13.51.

Listing 13.51 CPRevolvePlatform.m

#i nport " CPRevol vePl atform h"

@ npl enent ati on CPRevol vePl atform

Chipmunk and Constraints

- (id)initWthLocation: (CGPoint)l ocation space: (cpSpace *)theSpace
groundBody: (cpBody *)groundBody {
if ((self = [super
initWthSpriteFraneNanme: @pl atform revol ve. png"])) {
[sel f addBoxBodyAndShapeW t hLocati on: | ocation
si ze:sel f.content Si ze space:theSpace mass: 1.0 e:0.2 u:1.0
col I'i si onType: kCol |i si onTypeG ound canRot at e: TRUE] ;

/11
cpConstraint *cl = cpPivotJoi nt New(gr oundBody, body, body->p);
cpSpaceAddConstrai nt (space, cl);

Il 2

cpConstraint *c2 = cpSi npl eMot or New(gr oundBody, body,
CC_DEGREES_TO_RADI ANS(45)) ;

cpSpaceAddConstrai nt (space, c2);
}

return self;

@nd

This creates a body using the helper method you wrote earlier in CPSprite and
then sets up two constraints:

1. Creates a pivot joint connecting the body with the gr oundBody so that the
body can rotate around its center point (its position).

2. Creates a simple motor so that the body rotates at a rate of 45 degrees a second
with respect to the fixed gr oundBody.

To test this out, switch to Scene5ActionLayer.m and import the class at the top of the
file, as shown in Listing 13.52.

Listing 13.52 ScenebActionLayer.m (at top of file)

#i nport " CPRevol vePl atform h"

Then add a helper method to create a revolving platform, as shown in Listing 13.53.

Listing 13.53 Sceneb5ActionLayer.m (before createLevel)

- (voi d)createRevol vePl at f or mAt Locat i on: (CGPoi nt) | ocation {
CPRevol vePl atform *revol vePl atform =
[[[CPRevol vePl atformalloc] initWthLocation:|ocation
space: space groundBody: gr oundBody] autorel ease];
[sceneSprit eBat chNode addChil d:revol vePl atforni;

459

460

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Finally, inside your cr eat eLevel method, comment out the call to cr eat eBox-
At Locat i on and call your new method, as shown in Listing 13.54.

Listing 13.54 Scene5ActionLayer.m (replace createBoxAtLocation inside createLevel
with this)

[sel f createRevol vePl at f or mAt Locat i on:
ccp(winSize.width * 0.5, wi nSize.height * 0.25)];

Compile and run your code, and you should now be able to jump on top of a
revolving platform (Figure 13.20)!

Figure 13.20 A revolving platform made pivot and simple
motor constraints

Pivot, Spring, and Normal Platforms

Let’s create three more platform types to spice it up: a platform that pivots around a
center point, a platform that gets pushed down when you jump on it, and a normal
(static) platform.

Start by creating files for each of these. Select the Classes\GameObjects\Chipmunk
group, go to File > New > New File..., choose iOS > Cocoa Touch >
Objective-C class, and click Next. Enter CPSprite as the Subclass of, click Next,
name the file CPPivotPlatform.m, and click Save. Repeat this process for
CPSpringPlatform.m and CPNormalPlatform.m.

Replace CPPivotPlatform.h with the contents of Listing 13.55.

Chipmunk and Constraints

Listing 13.55 CPPivotPlatform.h

#inport "CPSprite.h"

@nterface CPPivotPlatform: CPSprite {
}

@nd

This is just a subclass of CPSpri t e, with nothing extra added. Next replace
CPPivotPlatform.m with the contents of Listing 13.56.

Listing 13.56 CPPivotPlatform.m

#i nport " CPPi vot Pl at form h"
@ nmpl enent ati on CPPi vot Pl at f orm

- (id)initWthLocation: (CGPoint)l ocation space: (cpSpace *)theSpace
groundBody: (cpBody *)groundBody {
if ((self = [super
initWthSpriteFraneName: @ pl at f or m_pi vot. png"])) {
[sel f addBoxBodyAndShapeW t hLocati on: | ocation
size:sel f.content Si ze space:theSpace mass:10.0 e: 0.2 u:1.0
col I'i si onType: kCol | i si onTypeG ound canRot at e: TRUE] ;

/11
cpConstraint *cl = cpPivotJoi nt New(gr oundBody, body, body->p);
cpSpaceAddConstrai nt (space, cl);

I 2

cpConstraint *c2 = cpDanpedRot arySpri ngNew(gr oundBody, body, O,
60000. 0, 100.0);

cpSpaceAddConstrai nt (space, c2);

/1 3
cpConstraint *c3 = cpRotaryLi m tJoi nt New(gr oundBody, body,
CC_DEGREES_TO _RADI ANS(- 30), CC _DEGREES_TO _RADI ANS(30));
cpSpaceAddConstrai nt (space, c¢3);
}

return self;

@nd

461

462 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

This creates a body for the pivot platform using the helper method you wrote ear-
lier (but notice how it uses a large mass for this body to make it a bit harder to move).
It then sets up three constraints:

1. Creates a pivot joint connecting the platform body with the ground body so that
the platform body can rotate around its center point (its position).

2. Creates a damped rotary spring between the platform body and the ground
body. The third parameter to cpDanpedRot ar ySpri ngNew is the desired rela-
tive angle and is set to 0 to encourage the platform to return to its original hori-
zontal position when the player is not on it. The fourth parameter is the stiffness.
The larger the stiffness parameter, the more force is applied to rotate the plat-
form, so a large value is added here to make the platform reset at a decent speed.
The fifth parameter is the damping. The larger the damping parameter, the more
the spring will resist motion in general, so a medium-sized value is added here to
provide a degree of resistance when Ole jumps on the platform.

3. Creates a rotary limit joint between the ground body and the platform body,
restricting the platform so it can’t rotate more than 30 degrees in either
direction.

That’s it for the pivot platform; on to the spring platform. Replace
CPSpringPlatform.h with the contents of Listing 13.57.

Listing 13.57 CPSpringPlatform.h

#inmport "CPSprite.h"

@nterface CPSpringPlatform: CPSprite {
}

@nd

Again, just a subclass of CPSprite. Next replace CPSpringPlatform.m with the con-
tents of Listing 13.58.

Listing 13.58 CPSpringPlatform.m

#i nport " CPSpringPl at f orm h"
@ npl enent ati on CPSpringPl atform

- (id)initWthLocation: (CGPoi nt)l ocati on space: (cpSpace *)theSpace
groundBody: (cpBody *)groundBody {
if ((self = [super
initWthSpriteFraneNane: @pl at form spring. png"])) {
[sel f addBoxBodyAndShapeW t hLocati on: | ocation

Chipmunk and Constraints

size:self.contentSi ze space:theSpace mass: 1.0 e:0.2 u:1.0
col I'i si onType: kCol |'i si onTypeG ound canRot at e: FALSE] ;

/11

float springLength = 200;

if (U _USER | NTERFACE | DI OM) == U User | nterfacel di onPhone) {
springLength /= 2;

}

cpConstraint * constraint = cpDanpedSpri ngNew(gr oundBody, body,
ccp(body->p. x, body->p.y-springLength), ccp(0,0),
springLength, 25.0, 0.5);

cpSpaceAddConstrai nt (space, constraint);

Il 2
cpConstraint * c2 = cpG ooveJoi nt New(gr oundBody, body,
ccp(body->p. x, body->p.y-springLength),
ccp(body->p. x, body->p.y+springLength), ccp(0,0));
cpSpaceAddConstrai nt (space, c2);
}

return self;

}

@nd

This creates a body for the platform using the helper method you wrote earlier (but
notice how it sets canRot at e to FALSE, which makes the platform have an infinite
moment of inertia and hence unable to rotate). It then sets up two constraints:

1. Creates a damped spring constraint between the platform body and the ground
body. This makes it so the platform “wants to be” a certain distance from the
ground and resists movement more and more the further away it gets from the
desired point. The third parameter to cpDanpedSpri ngNew is the anchor
point on the first body (the ground body) in local coordinates, which is set as
200 points (or half that for iPhone) below the platform’s current position. The
fourth parameter is the anchor point on the second body (the platform body)
in local coordinates, which is set to the exact center of the platform body. The
fifth parameter is the desired length of the platform, and the fourth and fifth
values are the stiffness and damping, which act the same way as discussed in the
damped rotary spring example.

2. Without another joint, there would be nothing stopping the platform from mov-
ing left and right, but for this platform, you want it to only move up and down.
So the call to cpGr ooveJoi nt New creates a second constraint that restricts the
platform body to only move up and down a “groove” on the ground body. The
third and fourth parameters are the start and end points of the groove that the
platform body can move in, in ground body coordinates. They are set here to a

463

464 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

little bit above and below the platform body’s current position. The fifth param-
eter is the platform body-local coordinate that slides up and down the groove—
set here to be the center position of the platform body.

Just one more platform type to add, and then you’ll get to test them out. This time
you add a normal platform. This platform is a special case because it doesn’t move at
all, so you can add it as a static shape attached to the existing ground body. Start by
replacing CPNormalPlatform.h with the contents of Listing 13.59.

Listing 13.59 CPNormalPlatform.h

#i nport "CPSprite.h"

@nterface CPNormal Platform: CPSprite {
}

@nd

Next replace CPNormalPlatform.m with the contents of Listing 13.60.

Listing 13.60 CPNormalPlatform.m

#i nport " CPNor nal Pl at f orm h"
@ npl enent ati on CPNormal Pl at f orm

-(voi d)updateStateWthDel t aTi me: (ccTi ne)dt andLi st Of GaneObj ects: (CCArray*)
I'i st Of Game(bj ects {

/1 Do nothing...
}

- (id)initWthLocation: (CGPoint)l ocation space: (cpSpace *)theSpace
groundBody: (cpBody *)groundBody {
if ((self = [super
initWthSpriteFraneNanme: @pl atf orm nornmal . png"])) {
space = theSpace;

sel f.position = location;
cpFl oat hw = sel f.contentSi ze.w dth/ (cpFl oat) 2. 0;
cpFl oat hh = self.contentSi ze. hei ght/(cpFl oat) 2. 0;

cpVect verts[] = {
cpv(-hw, - hh),
cpv(-hw, hh),
cpv(hw, hh),
cpv(hw, - hh),

Chipmunk and Constraints

shape = cpPol yShapeNew(gr oundBody, 4, verts, |ocation);
shape->e = 1. 0f;
shape->u = 1. 0f;
shape->col li sion_type = kCol | i si onTypeG ound;
cpSpaceAddsSt at i cShape(space, shape);

}

return self;

}

@nd

This first overrides updat eSt at eWt hDel t aTi me to do nothing, since there is
no need to update the position of the sprite based on the body, since the body never
moves!

It then creates a new static shape for the sprite based on the size of the sprite.
Note that it uses cpPol yShapeNew, passing in the vertices for the shape rather than
calling cpBoxShapeNew. This is because you need to place the shape at a speci-
fied offset relative to the ground body, and you can’t specify an offset when you call
cpBoxShapeNew.

Okay, now you can test the new platforms. First import the headers at the top of
Scene5ActionLayer.m, as shown in Listing 13.61.

Listing 13.61 ScenebActionLayer.m (at top of file)

#i nmport " CPPi vot Pl at form h"
#i mport " CPSpringPl atform h"
#i mport " CPNor mal Pl at f orm h"

Then add the helper methods to create the platforms, as shown in Listing 13.62.

Listing 13.62 ScenebActionLayer.m (before createLevel)

- (void)createPivot Pl at f or mAt Locat i on: (CGPoi nt) | ocation {

CPPi vot Pl atform *pivotPlatform = [[[CPPi vot Pl at f orm al | oc]
initWthLocation: | ocation space: space groundBody: gr oundBody]
aut or el ease] ;

[sceneSpriteBat chNode addChi | d: pi vot Pl atforni;

- (void)createSpringPl atformAtLocation: (CGPoi nt)l ocation {
CPSpringPl atform *springPlatform= [[[CPSpringPl atform al | oc]
initWthLocation: | ocation space: space groundBody: gr oundBody]
aut or el ease] ;
[sceneSprit eBat chNode addChil d: springPlatforni;

465

466

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

- (voi d)createNornal Pl at f or mAt Locat i on: (CGPoi nt) | ocati on {

CPNor mal Pl atform *nornPl atform = [[[CPNor mal Pl at f orm al | oc]
initWthLocation:|ocation space: space groundBody: gr oundBody]
aut or el ease] ;

[sceneSpriteBat chNode addChil d: nornPl atforni;

Finally, comment out the call to cr eat eRevol veM at f or mAt Locat i on in your
creat eLevel method and replace it with the contents of Listing 13.63.

Listing 13.63 ScenebActionLayer.m (replace contents of createLevel with the following)

[sel f createPivotPlatformAtLocation:
ccp(winSize.width * 0.7, winSize.height * 0.45)];
[sel f createSpringPl atformAtLocati on:
ccp(winSize.width * 0.4, w nSize.height * 0.25)];
[sel f createNornul Pl at f or mAt Locat i on:
ccp(wi nSi ze.width * 0.2, winSize. height * 0.35)];

Compile and run your code, and you can jump Ole around to try out the new plat-
form types (Figure 13.21)!

Figure 13.21 Pivot, spring, and normal platforms made with
Chipmunk joints

The Great Escape!

The Great Escape!

At this point, you have enough building blocks to make this into a complete level, so
let’s put things together and add in a bit of polish and excitement along the way.

Following Ole

Since Ole will be moving vertically up this level, you need to set the layer to follow
Ole as he moves up and down the scene. While you're at it, you'll apply a neat “screen
shake” effect to the layer to make it seem like the planet is about to explode and add
some tension to the scene.

Inside Scene5ActionLayer.m, add a new method to update the layer’s position that
will be called in each frame, as shown in Listing 13.64.

Listing 13.64 Scene5ActionLayer.m (above update method)

- (void)foll owPl ayer: (ccTine)dt {
/11
static double total Tinme = O;
total Tinme += dt;

Il 2
doubl e shakesPer Second = 5;
doubl e shakeOrfset = 3;
doubl e shakeX =
sin(total Ti me*M Pl *2*shakesPer Second) * shakeOf fset;

/13

CGSize winSize = [CCDirector sharedDirector].w nSi ze;

float fixedPosition = wi nSize. height/4;

float newY = fixedPosition - viking.position.y;

float groundMaxY = 2048;

newY = M N(newY, 50);

if (U _USER | NTERFACE_ | DI OM) == U User | nterfacel di onPhone) {
groundMaxY = 900;
newY = M N(newY, 25);

}

newY = MAX(newY, -groundMaxY-fixedPosition);

CGPoi nt newPos = ccp(shakeX, newy);

[sel f setPosition: newPos] ;

There are three things to point out about this method:

1. This first part keeps track of the total time elapsed in the scene, which is needed
in order to calculate how much to shake the screen.

467

468

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

2. To shake the screen, you need to move the layer a little bit to the right for a
short period of time, then a little bit to the left, then repeat. Whenever you find
yourself needing to do something on a periodic basis like this, a good trick is
to use the si n function. The si n function gives a periodic wave that cycles
between —1 and 1 every 2*M_Pl (6.28), so if you pass in seconds, it cycles
between —1 and 1 every 6.28 seconds. However, if you multiply the seconds by
2*M_PI, it cycles between —1 and 1 every second. It multiplies that by the num-
ber of times you want to shake per second to get a nice jittery effect. Finally, it
converts the result from the range of (—1,1) to (=3,3) by multiplying by 3.

3. The rest of this code is the same method of moving the layer with respect to the
player’s current position that you learned about in earlier chapters.

Now that you have this new method, add a line to call it at the bottom of your
updat e method, as shown in Listing 13.65.

Listing 13.65 ScenebActionLayer.m (at bottom of update method)

[sel f followPlayer:dt];

Compile and run your code to see the layer follow Ole with a neat shake effect.

Laying Out the Platforms

Now that the layer follows Ole around, replace the cr eat eLevel method to add
some platforms in an interesting and challenging layout. Listing 13.66 shows one pos-
sible implementation; see if you can come up with your own.

Listing 13.66 Sceneb5ActionLayer.m (replace createLevel with this, or your own layout)

- (void)createLevel {
CGSi ze wi nSi ze = [CCDirector sharedDirector].w nSi ze;
[sel f createNornal Pl at f or mAt Locati on: ccp(200, 100)];
[sel f createNornal Pl atf or mAt Locat i on:
ccp(winSize.width * 0.2, wi nSize.height * 0.15)];
[sel f createNornal Pl at f or mAt Locat i on:
ccp(winSize.width * 0.4, w nSize.height * 0.30)];
[sel f createNornal Pl at f or mAt Locat i on:
ccp(winSize.width * 0.6, w nSize.height * 0.45)];
[sel f createNornal Pl atf or mAt Locat i on:
ccp(winSize.width * 0.8, winSize.height * 0.75)];
[sel f createNornal Pl at f or mAt Locat i on:
ccp(winSize.width * 0.6, w nSize.height * 0.90)];
[sel f createNornal Pl at f or mAt Locat i on:
ccp(winSize.width * 0.4, winSize.height * 1.15)];
[sel f createNornal Pl atf or mAt Locat i on:
ccp(winSize.width * 0.2, winSize.height * 1.30)];

The Great Escape!

[sel f createPivotPlatformAtLocation:

ccp(winSize.width * 0.4, winSize.height * 1.60)];
[sel f createNormal Pl atformAt Locati on:

ccp(winSize.width * 0.7, winSize.height * 1.90)];
[sel f createNormal Pl at f or mAt Locat i on:

ccp(wi nSize.wi dth * 0.4, w nSize.height * 2.15)];
[sel f createSpringPl atformAtLocation:

ccp(winSize.width * 0.45, w nSize.height * 2.60)];
[sel f createSpringPl atformAtLocation:

ccp(wi nSize.width * 0.75, w nSize.height * 2.80)];
[sel f createSpringPl atformAtLocati on:

ccp(wi nSi ze.wi dth * 0.55, w nSize.height * 3.05)];
[sel f createNormal Pl at f or mAt Locat i on:

ccp(winSize.width * 0.4, wnSize.height * 3.15)];
[sel f createNornmal Pl atformAt Locati on:

ccp(winSize.width * 0.2, w nSize.height * 3.35)];
[sel f createRevol vePl at f or mAt Locat i on:

ccp(winSize.wi dth * 0.5, w nSize.height * 3.50)];
[sel f createNormal Pl at f or mAt Locat i on:

ccp(winSize.width * 0.8, wi nSize.height * 3.65)];

Once you've implemented this platform, compile and run your project, and try out
your new level.

Animating Ole

Right now Ole is just a nonanimated sprite, which isn’t very entertaining for such an
action-packed level. Let’s fix that by integrating Ole’s movement and jump animations
into this level.

The first step is to add the property list file that defines the animations you’ll need
for Ole in this level. From the resources folder for this chapter, drag CPViking.plist to
the Plists group in Xcode. Verify Copy items into destination group’s folder (if
needed) is checked, and click Finish.

Once you've added the file, open CPViking.h and add some new instance variables
you’ll need for the animations and to keep track of the last time Ole changed direc-
tions, as seen in Listing 13.67.

Listing 13.67 CPViking.h (inside interface declaration)

CCAni mation * wal ki ngAni m
CCAni mation * junpi ngAni m
CCAni mation * afterJunpi ngAni m
float lastFlip;

469

470 Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Now switch to CPViking.m and add a method to load the animations from the
property list, as shown in Listing 13.68.

Listing 13.68 CPViking.m (before initWithLocation)

-(void)initAni mations {
wal ki ngAni m = [sel f | oadPl i st For Ani mati onW t hNane: @ wal ki ngAni nt'
andC assNane: NSStri ngFronCl ass([sel f class])];
[[CCAni mati onCache shar edAni mati onCache]
addAni mat i on: wal ki ngAni m nanme: @ wal ki ngAni '] ;

junmpi ngAnim = [sel f | oadPlistForAni mati onWt hNanme: @ j unpi ngAni ni
andd assNane: NSStri ngFronCl ass([sel f class])];

[[CCAni mati onCache shar edAni mati onCache]
addAni mat i on: j unpi ngAni m name: @ | unpi ngAni ni'];

af t er Junpi ngAni m = [sel f
| oadPl i st For Ani nat i onW t hNane: @ af t er Junpi ngAni ni
andd assNane: NSStri ngFronCl ass([sel f class])];
[[CCAni mati onCache shar edAni mati onCache]
addAni mat i on: af t er Junpi ngAni m nane: @ af t er Junpi ngAni '] ;

This method loads the three animations you need for this level from the CPViking.
plist file that you just added to the project, using the helper method in GameObj ect .

Now it’s time to add the code to manage Ole’s states and play the correct anima-
tions for each state, as shown in Listing 13.69.

Listing 13.69 CPViking.m (before initWithLocation)

- (voi d) changeSt at e: (Char act er St at es) newSt ate {
[sel f stopAll Actions];
idaction = nil;
[sel f setCharacterState: newSt ate];

switch (newState) {
case kStateldle:
[sel f setDi spl ayFrane:
[[CCspriteFraneCache sharedSpriteFraneCache]
spriteFraneByNane: @sv_anim 1. png"]];
br eak;

case kStateWal ki ng:
action = [CCAni nate actionWthAni mation: wal ki ngAni m
restoreQriginal Frane: NJ ;
br eak;

The Great Escape!

case kStateJunping:
action = [CCAni mate acti onW thAni mati on:j unpi ngAni m
restoreOriginal Frane: NJ ;
br eak;

case kStat eAfterJunpi ng:
action = [CCAni nate acti onWthAni mati on: af t er Junpi ngAni m
restoreOriginal Frane: NJ ;

br eak;
defaul t:
br eak;
}
if (action !'=nil) {
[sel f runAction:action];
}

You should be familiar with how this works by now, based on what you learned
starting back in Chapter 4, “Simple Collision Detection and the First Enemy.”

You're almost done; you just need to add the code to handle state management.
First add a line to the top of updat eSt at eWt hDel t aTi ne to record the position of
the object before you call the superclass’s updat eSt at eWt hDel t aTi me, as shown in
Listing 13.70.

Listing 13.70 CPViking.m (at very top of updateStateWithDeltaTime)

CGPoi nt ol dPosition = self.position;

Then at the bottom of updat eSt at eWt hDel t aTi e, add the code to handle
transitioning Ole’s states and flipping his sprite, as shown in Listing 13.71.

Listing 13.71 CPViking.m (at bottom of updateStateWithDeltaTime)

/111
i f (ABS(accel erationFraction) > 0.05) {
doubl e diff = CACurrentMedi aTinme() - lastFlip;
if (diff >0.1) {
lastFlip = CACurrent Medi aTi me();
if (oldPosition.x > self.position.x) {
sel f.flipX = YES;
} else {
sel f.flipX = NG
}

471

472

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

/12

if (characterState != kStateJunping && junpStartTine !'= 0) {
[sel f changeSt at e: kSt at eJunpi ng] ;

}

Il 3

if (characterState == kStateldle & accel erationFraction != 0) {
[sel f changeSt at e: kSt at eWal ki ng] ;

}

/13
if ([self nunber O Runni ngActions] == 0) {
if (characterState == kStateJunping) {
i f (groundShapes->num > 0) {
[sel f changeSt at e: kSt at eAf t er Junpi ng] ;
}
} else if (characterState != kStateldle) {
[sel f changeState: kStateldle];
}

There’s a good bit of code here, so let’s go through this section by section:

1. Checks to see if Ole is moving left or right compared to his last position, and
flips the sprite accordingly. It also adds a check to prevent the sprite from flip-
ping too often. Note that you should use the capital case ABS method so that it
works properly with float values.

2. If the sprite isn’t in the jumping state but yet it’s jumping (the j unpSt ar t Ti ne
isn’t 0), it changes the sprite to the jumping state.

3. If the state is idle but yet the accel erati onFraction isn’t 0, it changes the
state to walking.

4. If no actions (i.e., animations) are running, it looks to see if it should change the
state. If it just finished jumping, it changes the state to after jumping. Otherwise,
if the sprite 1sn’t idle, it switches to the idle state.

As the last step, add the call to initialize the animations at the end of i ni t Wt h-
Locat i on, as seen in Listing 13.72.

Listing 13.72 CPViking.m (at end of initWithLocation)

[sel f initAninmations];

Compile and run your code, and now Ole should be able to leap around in style
(Figure 13.22)!

The Great Escape! 473

Figure 13.22 Adding jumping and moving animations to Ole’s sprite

Music and Sound Effects

Now let’s add some music and sound effects to make it even cooler. Add the line to
start the background music playing in i ni t Wt hScene5Ul Layer, as shown in
Listing 13.73.

Listing 13.73 Sceneb5ActionLayer.m (at bottom of initWithScene5UILayer)

GaneManager shar edGaneManager
h d
pl ayBackgr oundTr ack: BACKGROUND_TRACK_ESCAPE] ;

Similarly, switch to CPViking.m and add a method to play a random jump sound
effect, as shown in Listing 13.74.

Listing 13.74 CPViking.m (before updateStateWithDeltaTime)

- (void)playJunmpEffect {

int soundToPlay = randon() % 4;

if (soundToPlay == 0) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_1) ;

} else if (soundToPlay == 1) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG _2) ;

} else if (soundToPlay == 2) {
PLAYSOUNDEFFECT(VI KI NG_JUWPI NG_3) ;

474

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

} else {
PLAYSOUNDEFFECT(VI KI NG_JUMPI NG _4) ;
}

Finally, inside the changeSt at e method in the case for kSt at eJunpi ng, call the
pl ayJunpEf f ect method, as shown in Listing 13.75.

Listing 13.75 CPViking.m (inside changeState method’s kStateJumping case)

[sel f playJunpEffect];

Compile and run your code, and enjoy the grooves and grunts!

Adding the Background

The black background is getting kind of boring, so let’s add a real background to the
scene. In the resources files for this chapter, drag all of the files beginning with chip-
munk_background and chipmunk_ground to the Images group in your project, make sure
Copy items into destination group’s folder (if needed) is checked, and click
Add.

Next, write a method to add these two images to the scene, as shown in Listing
13.76.

Listing 13.76 ScenebActionLayer.m (before initWithScene5UILayer method)

- (void)createBackground {
/11
CCPar al | axNode * parallax = [CCParal | axNode node];
[CCText ure2D
set Def aul t Al phaPi xel For mat : KCCText ur e2DPi xel For mat _RGB565] ;
CCSprite *background;
if (U _USER | NTERFACE IDIOM) == U Userlnterfacel di onPad) {
background =
[CCSprite spriteWthFile: @chi pnunk_background-i pad. png"];
} else {
background =
[CCSprite spriteWthFile: @chi pnunk_background. png"];
}
background. anchor Poi nt = ccp(0, 0);
[CCText ure2D
set Def aul t Al phaPi xel For mat : KCCText ur e2DPi xel Format _Def aul t];
[paral | ax addChil d: background z:-10 paral | axRati o: ccp(0. 1f, 0.1f)
positionCffset:ccp(0,0)];
[sel f addChil d: parallax z:-10];

The Great Escape!

Il 2
CCSprite *groundSprite;
if (U _USER | NTERFACE_| DI OM) == Ul User | nterfacel di onPad) {
groundSprite =
[CCSprite spriteWthFile: @ chi pnunk_ground-hd. png"];
} else {
groundSprite =
[CCSprite spriteWthFile: @chi pnunk_ground. png"];
}
groundSprite. anchorPoint = ccp(0,0);
groundSprite.position = ccp(0,0);
[sel f addChil d: groundSprite z:-10];

/13
[background runActi on:
[CCRepeat Forever acti onWthActi on:
[CCSequence acti ons:
[CCTint To acti onWthDuration: 0.5 red: 200 green: 0 bl ue: 0],
[CCTintTo acti onWthDuration:0.5 red: 255 green: 255 bl ue: 255],
nil11l;

This method has three parts:

1. Adds the background to the scene, contained within a parallax node so that it
scrolls at a slower rate than the foreground.

2. Adds a sprite to the bottom of the scene for the ground and positions the bottom
left corner to start at the bottom left corner of the screen.

3. Runs an action on the background to make it pulse slightly for a subtle neat
effect.

Now that you have this method, all you need to do is call it from i ni t Wt h-
ScenebUl Layer, as you can see in Listing 13.77.

Listing 13.77 Sceneb5ActionLayer.m (at bottom of initWithScene5UILayer)

[sel f createBackground];

Compile and run the code (and comment out the debug draw code if you’d like),
and you should now have a neat rocky background in your scene (Figure 13.23).

475

476

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)

Figure 13.23 A background added to the almost complete level!

Adding Win/Lose Conditions

One last thing to add: a check to see if Ole has escaped the planet or if he’s run out of
time. You're going to do a real simple check for this here, and just check if the y posi-
tion of Ole is greater than a certain amount.

You'll need to use GanmeManager to switch to the win/lose scene, so import that at
the top of the file, as you can see in Listing 13.78.

Listing 13.78 ScenebActionLayer.m (at top of file)

#i nport " GaneManager . h"

Next, add the checking for the win/lose conditions at the bottom of your updat e
method, as you can see in Listing 13.79.

Listing 13.79 ScenebActionLayer.m (at bottom of the update method)

if (renmminingTine <= 0) {
[[GaneManager shar edGaneManager] set HasPl ayer Di ed: YES] ;
[[GaneManager shar edGaneManager]
runSceneW't hl D: kLevel Conpl et eScene] ;
} else if (viking.position.y > 2900) {
[[GaneManager shar edGaneManager] setHasPl ayer Di ed: NJ ;
[[GaneManager shar edGaneManager]
runSceneW t hl D: kLevel Conpl et eScene] ;

Challenges

Compile and run your level—see if you can help Ole escape from the planet before
it’s too late!

Summary

At this point, you have created a complete Metroid-style platformer escape level with
Chipmunk. In the process, you gained hands-on experience using the most important
aspects of Chipmunk: creating a space, adding bodies and shapes, moving the bodies,
and restricting their movement with constraints.

Now that you know the basics of using Chipmunk, you should check out the
official reference documentation for Chipmunk, available at http://files.slembcke.net/
chipmunk /release/ ChipmunkLatest-Docs/. It contains a handy reference of the API calls
you’ll need and is good to keep on hand as you program your games.

In addition, you may wish to consider using one of the Objective-C wrappers for
Chipmunk, which can make the APIs a bit easier to work with. Scott Lembcke has
written an official Objective-C binding for Chipmunk called Objective-Chipmunk
(http://howlingmoonsoftware.com/objectiveChipmunk.php), and there is also an (older)
Objective-C binding for Chipmunk called SpaceManager (http://code.google.com/p/
chipmunk-spacemanager/) available as well. Remember if you decide to use Chipmunk
in your games, you might consider donating to Scott, as he makes his living off Chip-
munk donations and consulting.

Congratulations! You've learned what many consider one of the trickiest (and also
the most fun) parts of Cocos2D: how to use the physics libraries. Now that you have
practical experience using both Chipmunk and Box2D, you can make an educated
decision which you prefer most for your future games.

Challenges

1. Add a new platform type of your own design, using some of Chipmunk’s
constraints.

2. Create a platform that is a different shape than a rectangle, using Vertex Helper
and Chipmunk’s polygon shapes.

3. Add a jet pack item to the level. When Ole collides with it, apply a one-shot
impulse to Ole to boost him quickly up into the air!

477

http://files.slembcke.net/chipmunk/release/ChipmunkLatest-Docs/
http://files.slembcke.net/chipmunk/release/ChipmunkLatest-Docs/
http://howlingmoonsoftware.com/objectiveChipmunk.php
http://code.google.com/p/chipmunk-spacemanager/
http://code.google.com/p/chipmunk-spacemanager/

This page intentionally left blank

Part V

Particle Systems,
Game Center, and
Performance

Learn how to quickly create and add particle systems to your games,
how to integrate with Apple’s Game Center for online leaderboards and
achievements, and some performance tips and tricks to keep your game
running fast.

= Chapter 14: “Particle Systems: Creating Fire, Snow, Ice, and More”
= Chapter 15: “Achievements and Leaderboards with Game Center”
= Chapter 16: “Performance Optimizations”

= Chapter 17: “Conclusion”

This page intentionally left blank

14

Particle Systems: Creating Fire,
Snow, Ice, and More

In the previous chapters you learned about the Box2D and Chipmunk physics engines and how
to incorporate them into Space Viking and your games. In this chapter you will learn about par-
ticle systems and how easily you can add realistic fire, smoke, snow, rain, and other effects to your
games. Particle system is just a name for a technique to generate certain graphical effects, such as
explosions, flames, and of course fire, smoke, or even rain. Instead of trying to model those effects,
a large set of tiny images, or particles, is used to fool the player into seeing the desired effect.

Terminology Review

Before moving on to creating and coding particle systems, it is important to under-
stand a few key terms.

= Particle System
A technique and object that you use to add and render a set of particles on
the screen. The particle system contains an emitter as well as a configuration
for how the particles should behave. In Cocos2D the particle systems classes
(CCParticl eSystenmPoi nt and CCParti cl eSyst enQuad) are responsible
for rendering the particle systems, and both inherit from CCNode.

= Particle
The image (as a texture) that is used to create your particle system. Varying the
transparency and design of the particle image can create soft edge effects such
as smoke.

= Emitter
The brains behind the particle system. The emitter is what creates, moves, and
eventually removes the particles in a particle system. The emitter controls the
spawning and movement of particles based on the configuration you specify.

= CCParticleSystemPoint
Cocos2D particle system that renders the particles using GL_PQ NT_SPRI TE.
It stores only one vertex coordinate for the each particle, the center point of the
image. This particle system can have a maximum particle image size of only
64 x 64 pixels. The CCPar ti cl eSyst enPoi nt cannot be rotated or scaled.

482 Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More

= CCParticleSystemQuad
Cocos2D particle system that renders the particles using quads (two triangles).
The CCPar ti cl eSyst emQuad can have particle images of any size, and it
allows for rotating and scaling of the entire particle system as a whole.

Do not worry if it is not clear to you how the emitter works or is configured. This chap-
ter guides you through several examples of setting up and adding particle systems to
Space Viking.

About ARCH_OPTIMAL_PARTICLE_SYSTEM

CCParticl eSyst emPoi nt is slightly faster than CCPar ti cl eSyst emQuad on

the older iPhone 3G and iPod touch (first and second generation). CCPar ti cl e-

Syst emQuad is faster on the newer iPhone 3GS, iPhone 4, and iPad. There is an easy
way to choose between the two of them during compile time. Cocos2D has a handy macro
to choose the fastest particle system for you to use during compile time based on the
architecture you are compiling for (armv6 or armv7).

To use it, simply declare your particle system as inheriting from the ARCH_OPTI MAL _
PARTI CLE_SYSTEMmacro instead of CCPar ti cl eSyst emPoi nt or CCPar ti cl e-
Syst emQuad directly:

Instead of:

@nterface MyParticleSystem CCParticl eSystenPoint

use:

@nterface MyParticleSystem ARCH OPTI MAL_PARTI CLE_SYSTEM

The best way to understand particle systems is to create one firsthand. First you learn about
the built-in particle systems bundled with Cocos2D, and then you learn about Particle Designer,
a tool you can use to create and customize your own particle systems.

Built-In Particle Systems

Cocos2D comes with 11 particle systems set up and ready for you to use inside of the
Cocos2D source code, in the CCParticleExamples.m class. All it takes to use these par-
ticle systems is to initialize the emitter and add them to your CCLayer. The 11 built-
in particle systems include fire, fireworks, smoke, rain, and even a flower emitter that
generates a steady stream of sparkles.

Running the Built-In Particle Systems

To check out the built-in particle systems, open the cocos2d-ios Xcode project located in
the folder you downloaded and extracted from the Cocos2D source in the beginning
of this book.

Select ParticleTest under the Scheme dropdown menu in Xcode and click Run,
as shown in Figure 14.1.

Built-In Particle Systems

Figure 14.1 ParticleTest in the Scheme dropdown menu in Xcode

Pay close attention to the Particl eSnoke and Parti cl eSnow examples, as you
will be incorporating those into Space Viking.

To see how the example particle systems are added to the scene, open the
ParticleTest.m class in the cocos2d-ios Xcode project, located inside the Tests group. Move
to the DenpSnow implementation and observe the lines shown on Listing 14.1.

Listing 14.1 ParticleSnow being created in the ParticleTest demo

self.emtter = [CCParticl eSnow node];
[background addChild: emtter z:10];

The particle system settings are actually in the CCPar ti cl eSnow class; if you click
on it and select Jump to Definition, you can see the details. In Cocos2D you can
declare your particle systems programmatically, as shown with CCPar ti cl eSnow, or
via a plist file produced by other tools, such as Particle Designer.

Making It Snow in the Desert

To get your feet wet on using particle systems, you are going to add the CCParti cl e-
Snow to the Space Viking Ole Awakes level. It is an alien planet—who says it can’t
snow a little bit. To add the snow:

1. Open the SpaceViking Xcode project.

2. Drag the Particles folder available with the resources for this chapter into your
SpaceViking project, under the Images group.

This step is key, as the CCPar t i cl eSnow system relies on the snow.png texture to
create the snowflakes. Figure 14.2 shows the Particles folder added to Spaceliking.

3. Open the GameplayLayer.m file and add the lines shown in Listing 14.2 to the
end of the i nit method.

Listing 14.2 GameplayLayer.m init method additions

/1 Add Snow Particle System
CCParticl eSystem *snowParticl eSystem = [CCParti cl eSnow node] ;
[sel f addChil d: snowParticl eSysteni;

483

484 Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More

Figure 14.2 Particles image folder added to SpaceViking Xcode project

If you are using the built-in particle systems, it just takes these two lines of code to
get it into your game. If you click Run and select the Ole Awakes level, you will see
Ole the Viking on the familiar alien desert, this time with snow. Figure 14.3 shows
the Space Viking first level with the snow particle system.

Figure 14.3 Space Viking with the snow particle system

At some point in your game development, you may want to create your own
particle systems in addition to using the built-in ones. While you can make your par-
ticles by hand, and Cocos2D already comes with some great definitions for particle
systems, the best way to understand each of the variables you have to play with is by
using a tool like Particle Designer. The Particle Designer Mac application created by

Getting Started with Particle Designer

Mike Daley and Tom Bradley provides a great way to create and see your particle sys-
tems in real time. It also exports any particle systems you create in a plist format that
Cocos2D can read and use natively.

The next section takes you through installing Particle Designer and creating the
engine exhaust for the space cargo ship.

Getting Started with Particle Designer

Although Particle Designer is a tool you must pay for, you can try it out for free before
buying it. To get Particle Designer on your Mac, download it from the 71Squared
website at http://particledesigner.71squared.com/.
You can try out all of the particle systems settings in the free trial version, but you
will not be able to save or export your particle systems until you purchase a license.
After you have downloaded Particle Designer:

1. Unzip the downloaded zip file and drag the Particle Designer app into your
Applications folder.

2. If you want to save or export the particles you design, be sure to obtain a license
from the Particle Designer website.

When you first start Particle Designer, it opens an iPhone simulator showing the
particle system in action and a gallery of some of the user-submitted particle systems.
Figure 14.4 shows Particle Designer’s initial screen.

Figure 14.4 Particle Designer showing iPhone simulator and particle systems gallery

485

http://particledesigner.71squared.com/

486

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More

The iPhone and iPad simulators in Particle Designer are not the Xcode iPhone/iPad
simulator but a window running the OpenGL code to render the particle system. The
next version of Particle Designer includes a live export to iOS devices, so you can see
your particle systems directly on your iPhone or iPad. Keep in mind that just because
a particle system runs fast on your Mac does not mean it will run as fast on your iOS
device. There is no substitute for testing it in your game on real hardware.

A Quick Tour of Particle Designer

Particle Designer contains the ability to pull particle system configurations from the
71Squared online gallery, and this list is always updated with new particle designs.
Particle Designer’s toolbar allows you to quickly view your particle system in iPhone
and iPad mode as well as get into the configuration for each particle system. Figure 14.5
shows the available toolbar buttons.

Figure 14.5 Particle Designer toolbar

The toolbar shown in Figure 14.5 has the Load, Save, and Save As buttons as well
as the following options:

1. Switches between iPhone- and iPad-sized preview display. Click on this button
to see how your particle system would look on an iPhone or an iPad.

2. Toggles between portrait and landscape orientations for the preview display.

3. Randomly sets all of the particle emitter’s values, so you can try a new combina-
tion at random.

4. Pauses or starts the particle emitter. If you want to pause or restart the preview
display, use this button to do it.

5. Opens the emitter configuration panel. This is the heart of Particle Designer and
contains all of the settings for the particle system.

The configuration panel is where you will spend most of your time in Particle
Designer, as it contains the settings that Cocos2D will use to render your particle sys-
tem. Figure 14.6 shows the configuration panel.

Getting Started with Particle Designer 487

Figure 14.6 Particle Designer’s emitter configuration panel

Particle Designer Controls

As you can see from Figure 14.6, there are quite a lot of options behind creating a
particle system. Don’t be overwhelmed if this looks like the control panel for a nuclear
reactor: it is much simpler than it looks at first glance. Here is what each section sets
up in the particle system:

= Background Color Section
The background color is not exported to Cocos2D plist files. It is only used so
that you can better see your particle system against a color similar to the back-
ground in your game. The default is a black background.

= Particle Configuration Section
This section sets up how many particles are going to be used within the particle
effect as well as how long they will live, known as the lifespan of a particle. This
section also sets up the starting size of the particles and the variance and angle
at which they are emitted. The size at which the particles will finish is also con-
figured in this section.

488

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More

= The variance determines how much each of the settings will vary from particle
to particle. Having a good amount of variance in your particle system can make
it seem more realistic. Having no variance will have each of the particles act
exactly as the previous ones.

= Emitter Type Section
The emitter type section lets you choose between a gravity or radial style par-
ticle system. Gravity has the particles flowing in one direction defined for both
the x- and y-axes. This can create an effect similar to water flowing out of the
tap. The radial type of emitter has particles emitting from a ring and usually col-
lapsing inward. The best way to understand the difference between these two
options is to try them out on Particle Designer by toggling the value in the Emit-
ter Type dropdown.

= Gravity/Radial Configuration Section
This section contains the configuration options for both the gravity and the radial
emitters. If you have the gravity emitter selected, then you have the option to
configure radial and tangential acceleration values. Radial acceleration occurs in
all directions from the emitter, while tangential acceleration takes the particles
on a curved path from the center point out. Text descriptions of these effects
are hard to visualize, so be sure to play with these values to see for yourself
what effect these settings have. If you select a radial emitter in the Emitter Type
section, you can set the radius and rotation (in degrees) of the emitter.

= Emitter Location Section
This section controls the location of the emitter itself. You can change the look
of a particle system just by increasing the variance of the emitter location.
Keep in mind you can also change the emitter location later in code via the
set Position call.

= Particle Texture Section
This is the texture used to render each particle. Drag and drop your PNG texture
into this section to have Particle Designer use it for your particle system. When
you export the Cocos2D plist from Particle Designer, the texture is automatically
embedded in the plist file.

= Particle Color Section
This section controls the start and finish color values for the particles. These
settings can turn a snowy particle system into a rain of fiery meteors.

= Blend Function Section
This section sets the OpenGL ES parameters for the rendering of the particle
system. While OpenGL is beyond the scope of this book, you can see how some
of the settings work here by playing around in Particle Designer.

Remember, the best way to learn about particle systems is to play around with the set-
tings and see what impact the changes have. When you are done creating your next
particle system, a quick export will get it into the plist file that Coco2D can use to bring
it into your iOS game. If you are using the trial version and cannot export, you will find
the EngineExhaust.plist in the resources folder for this chapter. The next section covers
how to create the engine exhaust for the space cargo ship and add it to Space Viking.

Creating and Adding a Particle System to Space Viking

Creating and Adding a Particle System to
Space Viking

To create the space cargo ship exhaust plume, you take one of the existing Particle
Designer systems and modify it. To start:

1. Open Particle Designer and look at the Shared Emitters Gallery.
2. Select the Plasma Exhaust Particle System.

In the Particle Configuration section:
1. Change the Max Particles to 100 (from 1000).
2. Change the Particle Lifespan to 1.5 (from 10).

3. Change the Lifespan Variance to 0 (from 10), indicating that all particles will
live for the same amount of time.

You can leave the Emitter Type and Gravity Configuration settings exactly as they
are. In the Emitter Location section:

1. Change the Source Pos Y variance to 30 (from 0). This allows the plume to be
wider in the vertical direction.

2. Change the Source Pos Y to 240.
3. Change the Source Pos X position to 363.
4. Change the Source Pos X variance to 68.

Finally, you have to modify the Particle Color section so that the exhaust plume
will have a yellow color instead of a blue plasma look.

1. Change the Start Particle Color Red amount to 0.86.
2. Change the Start Particle Color Green amount to 0.14.
3. Change the Start Particle Color Blue amount to 0.

Your configuration panel should look as shown in Figure 14.7. You can test to see
how the particle system looks by clicking the play button.

Before you can use the new particle system in Space Viking, you have to save it as a
plist and import it into your Space Viking project.

1. Click Save As, and label the file EngineExhaust.plist.

2. Set the File Format to cocos2d (plist).

3. After saving the EngineExhaust.plist file, import it into your Spaceliking project
under the Images group.

The last step is to add the code to instantiate the particle system inside of
SpaceViking.

489

490

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More

Figure 14.7 Engine exhaust particle system in Particle Designer

Adding the Engine Exhaust to Space Viking

What could be cooler than a fire and smoke exhaust trail on the space cargo ship? In
this section you add the fire plume particle system (EngineExhaust.plist) you created as
well as a smoke particle system.

To start, open the GameplayLayer.h header file and add the lines shown in Listing
14.3 inside the @ nt er f ace declaration.

Listing 14.3 Engine exhaust particle systems in GameplayLayer.h header file

CCParticl eSystem *emtter;
CCParticl eSystem *snokeEnmitter;

Move to the GameplayLayer.m implementation file and locate the cr eat eObj ect -
O Type method. In the cr eat eObj ect OF Ty peMet hod add the lines shown in bold
in Listing 14.4 inside the i f el se branch for the SpaceCar goShi p.

Creating and Adding a Particle System to Space Viking 491

Listing 14.4 creatObjectofType method in GameplayLayer.m implementation file

} else if (kEnenyTypeSpaceCargoShi p == obj ect Type) {
CCLOG(@ Creating the Cargo Ship Eneny");
SpaceCar goShi p *spaceCargoShip =

[[SpaceCar goShi p all oc]
initWthSpriteFraneName: @shi p_2. png"];

[spaceCar goShi p set Del egate: sel f];

[spaceCar goShi p set Posi ti on: spawnLocati on];

[sceneSpriteBatchNode addChild:spaceCargoShip
z:ZValue
tag:kEnemyTypeSpaceCargoShip] ;

[spaceCar goShi p rel ease];

/'l Chapter 14
/1 Add the flanming particle system
emitter = [ARCH_OPTIMAL_PARTICLE_SYSTEM

particleWithFile:@"EngineExhaust.plist"]; // 1
smokeEmitter = [CCParticleSmoke node]; // 2
[self addChild:emitter]; // 3
[self addChild:smokeEmitter]; // 4

} else if (kPowerUpTypeMal | et == object Type) {

The first step is to replace the addChi | d call so that the SpaceCar goShi p can
have its t ag set to the kEnenmy Ty peSpaceCar goShi p value. With the t ag value
in place, you can retrieve the SpaceCar goShi p from the list of children objects
rendered by the sceneSprit eBat chNode and update the position of the particle
systems.
As with the built-in particle systems, creating a particle system takes just a few
steps:
1. Initializes the emitter with the EngineExhaust.plist file you created in Particle
Designer.
The particle image/texture is actually embedded inside of the plist file, so it does
not have to be included. The ARCH_CPTI OMAL_PARTI CLE_SYSTEMmacro is
used here so that the best-performing particle system is selected depending on
the architecture being compiled (armv6 or armv7).
2. Initializes the snokeEmi tter to the built-in smoke particle system.
Along with the Engi neExhaust fire plume, the smokeEmi tt er adds a second
particle system to create the trailing smoke.

3. Adds the Engi neExhaust particle system to the Ganepl ayLayer.
4. Adds the smokeEm tter particle system to the Gamepl ayLayer.

492 Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More

Now that the particle systems are added to the Ganepl ay layer, the last step is to
position both particle systems behind the SpaceCar goShi p so that they follow it left
and right.

Move to the updat e method inside GameplayLayer.m and add the lines shown in
bold in Listing 14.5.

Listing 14.5 update method in GameplayLayer.m implementation file

#pragme mark Update Met hod
-(void) update: (ccTine)deltaTime {
CCArray *listOf GameQhj ects =

[sceneSpriteBat chNode children]; /11
for (GanmeCharacter *tenpChar in |istO Gameojects) { /1
[tenmpChar updat eStateWthDel taTi ne: del taTi e
andLi st Of GaneQbj ect s: | i st Of Ganebj ect s] ; /Il 3
}

/| Chapter 7 Additions
/1 Check to see if the Viking is dead
GaneCharacter *tenpChar = (GaneCharacter?*)
[sceneSprit eBat chNode
get Chi | dByTag: kVi ki ngSpri t eTagVal ue];
if (([tenpChar characterState] == kStateDead) &&
([tenpChar nunber O Runni ngActions] == 0)) {
[[GaneManager shar edGaneManager] set HasPl ayer Di ed: YES] ;
[[GaneManager shar edGaneManager]
runSceneW t hl D: kLevel Conpl et eScene] ;

}

/'l Check to see if the RadarDish is dead
tenpChar = (GaneCharacter*)[sceneSpriteBatchNode
get Chi | dByTag: kRadar Di shTagVal ue] ;
if (([tempChar characterState] == kStateDead) &&
([tenpChar nunber Of Runni ngActions] == 0)) {
[[GaneManager shar edGaneManager]
runSceneW t hl D: kLevel Conpl et eScene] ;

/] Chapter 14 Updates for Particle System
GameCharacter *spaceCargoShip = (GameCharacter¥*)
[sceneSpriteBatchNode getChildByTag:kEnemyTypeSpaceCargosShipl];
if (spaceCargosShip != nil) {
CGRect cargoShipBoundingBox = [spaceCargoShip boundingBox];
float xOffset = 0.0f;

Creating and Adding a Particle System to Space Viking 493

if ([spaceCargoShip flipX] == NO) {
// Ship facing to the left
x0Offset = cargoShipBoundingBox.size.width;
}
CGPoint newPosition =
ccp (cargoShipBoundingBox.origin.x + xOffset,
cargoShipBoundingBox.origin.y +
(cargoShipBoundingBox.size.height*0.6£));
[emitter setPosition:newPosition];
[smokeEmitter setPosition:newPosition];

After the for loop has iterated through all of the GaneCbj ect s and updated their
positions, the SpaceCar goShi p is retrieved from the Sprit eBat chNode via the
kEnemyt ypeCar goShi p t ag value.

The logic to update the particle systems position works as follows:

1. Retrieve the bounding box so that the screen location and size of the Space-
Car gosShi p are known (its size indicates how scaled up it currently is).

2. If the ship is currently facing to the left, the xOf f set is set to the ship’s width.
Since the SpaceCar goShi p is facing left, you want the particle systems to be
behind it, which means they should be set to the position of the SpaceCar go-
Shi p plus the wi dt h.

3. The newPosi tion for the particle system is set to the SpaceCar goShi p
ori gi n plus the xOf f set in the x-axis and the SpaceCar goShi p ori gi n and
to 60 percent of its height on the y-axis.

Recall that sprites have their bounding box origin at the bottom left unless you
change the anchor point.

If the SpaceCar goShi p is facing to the left side of the screen, the newPosi ti on
is set to be on the rightmost edge of the bounding box. If the SpaceCar goShi p
is facing to the left, it is moving in the left direction, and the exhaust is posi-
tioned on the right side.

4. Both the Engi neExhaust and Snoke particle systems are set to the new
position.

If you click Run you should see the Space Cargo Ship move with the engine
exhaust and smoke trails following it. Figure 14.8 shows the SpaceCar goShi p mov-
ing across the screen with the engine exhaust and smoke trails following it.

494

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More

Figure 14.8 Space cargo ship showing the engine exhaust and smoke
particle systems

Summary

Particle systems can add a great deal of realism to your games and help pull the player
into the game world. In this chapter you learned about particle systems and how to
easily add them to your own Cocos2D games. You also learned about the Particle
Designer tool and how to experiment with the various settings for particle systems
quickly and easily from your Mac. In the next chapter you learn about Apple’s Game
Center API and how to add achievements and leaderboards to Space Viking.

Challenges

1. Change the CCParti cl eSnow class to increase the number of particles being
used, simulating a large snowstorm on the alien planet.
Hint: Look at the [sel f initWthTotal Particles:700]; call for
CCPar ticl eSnow.

2. Change the snokeEni tter so that it is positioned behind the engine exhaust
instead of on top of it.

15

Achievements and Leaderboards
with Game Center

Space Viking is quickly becoming a pretty cool game. It uses a lot of different aspects of
Cocos2D, including actions, animation, scrolling, sound, and game physics. It has multiple levels
with different styles and has a kick-butt main character.

But when you make a game like this, you want to keep your players coming back for more.
One good way to do that is by adding achievements and leaderboards into your game using
Apple’s new social gaming network: Game Center.

In this chapter, you add achievements into Space Viking for completing each level to give
players a sense of accomplishment and drive them to complete the game. You also add leaderboards
for the Escape level, so players can compete for the fastest escapes.

In the process, you learn a lot about Game Center, how to set up your leaderboards and
achievements, and how to integrate them into your games. You learn about some pitfalls you
might run into along the way and how to navigate through them successfully.

So let’s take this game to the next level and integrate Game Center.

What Is Game Center?

When users think of Game Center, they often think of the app that comes preinstalled
with 10S (4.1+). In the Game Center app, you can view your list of friends, see what
kinds of games they’ve been playing, and see how far they’ve gotten in their games, as
you can see in Figure 15.1.

You can also check out your own progress with Game Center. You can look
through your list of Game Center games and compare your scores to those of your
friends and the world, as you can see in Figure 15.2.

However, Game Center is more than just the app. It’s also a set of APIs you can use
in your apps that make it easy for you to add leaderboards, achievements, and multi-
player capabilities to your games. The APIs integrate with back-end services provided
by Apple to store your leaderboards and achievements in a central spot online.

496 Chapter 15 Achievements and Leaderboards with Game Center

Figure 15.1 Friends list in Game Center and viewing friend’s games

Figure 15.2 Viewing your progress in a game in Game Center

Enabling Game Center for Your App

In this chapter, you get some hands-on experience using Game Center, by adding
leaderboards and achievements into Space Viking. But before we get started, let’s talk
about why you’d want to use Game Center in the first place.

Why Use Game Center?

Using Game Center is a great idea for many reasons:

First, it’s easy to do. Adding networked leaderboards or achievements to your game
used to be a difficult task involving writing networking code and a server-side app—
but now it’s just a few simple API calls.

Second, it’s fun for your players and keeps them coming back to your game. Many
players feel an unstoppable urge to get all of their games 100 percent completed, so
you can reward them for their dedication with achievements. Leaderboards are great as
well, because they encourage users to keep replaying your game in order to get high
scores or to beat their friends!

Third, Game Center can help you sell more apps. Game Center games are listed in
a special section in the App Store, which you can get to straight from the Game Cen-
ter app by tapping Find Game Center Games on the Games tab. You can also see
what games your friends have, which might lead to more people downloading your
game. Finally, the more features of Game Center you implement, the more players
will enjoy your game and want to share it with others!

Now that you know that Game Center can give your app a lot of cool advantages
with a minimal amount of effort, let’s try it out in Space Viking.

Enabling Game Center for Your App

Unlike the other APIs that you've used in this book so far, your app requires a few
configuration steps so it can use Game Center:

1. Obtain an iOS Developer Program account.
2. Create an App ID for your app.

3. Register your app in iTunes Connect.

The next three sections walk you through this process in detail so you can get back
to code as quickly as possible.

If you've already created an entry for your app in iTunes Connect, you can skip
straight to the last step in this section (Enable Game Center) and continue from there.

Obtain an iOS Developer Program Account

In order to use Game Center in your apps, you need to be able to register your app in
iTunes Connect and the iPhone Developer Portal, both of which require you to be a
registered member of the 1OS Developer Program.

497

498

Chapter 15 Achievements and Leaderboards with Game Center

In order to complete this chapter and try out Game Center, you need to sign up for
this program first and pay your $99 if you haven’t already. At the time of writing this
book, you can sign up at http://developer.apple.com /programs /ios /.

Note that it usually takes a couple weeks for the application to go through, so it’s a
good idea to register as soon as you can!

Create an App ID for Your App

Once you've created your iOS Developer Program account, the next step is to create
an App ID for your app. An App ID is a unique identifier for an app that enables the
OS to know if two apps are the same or different. App IDs are split into two parts, as
you can see in Figure 15.3.

Bundle Seed ID Bundle Identifer App ID

FTXQ92UGJZ + .com.prop-group.spaceviking FTXQ92UGJZ.com.prop-group.spaceviking

Figure 15.3 The two parts of an App ID

The first part (the Bundle Seed ID) is a random string of 10 characters generated
by Apple. In the example in Figure 15.3, you can see that this was randomly set to
FTXQ92UGJZ. If you have two different apps with the same App ID, they can share
keychain access (a secure way to store information on iOS). If you aren’t sure whether
you’ll ever need this or not, a safe bet is to use the same Bundle Seed ID for all of your
apps, just in case you want keychain access in the future.

The second part (the Bundle Identifier) is a string you make up. It can be anything
you want, but usually the best thing to do is start the name with a reverse DNS name
to avoid any conflicts with something other developers might put. At the end, it’s usu-
ally best to put something related to the name of your app to keep it straight. In the
example in Figure 15.3, you can see that we set to com.prop-group.spaceviking (but you’ll
have to make up your own).

For the reverse DNS name, you can use a domain name you own as the start. If you
don’t have a domain name, don’t worry: just use something fairly unique, such as your
full name (e.g., com.joeschmoe.spaceviking).

Now that you know what App IDs are, let’s create one for Space Viking. Here are
the steps to do so at the time of writing, but note that this process changes from time
to time. If it does, check the book forums or check the official documentation for
more information.

1. Visit the 1OS Dev Center (http://developer.apple.com/devcenter/ios/), click the Log
in button, as shown in Figure 15.4, and sign in with your account.

http://developer.apple.com/programs/ios/
http://developer.apple.com/devcenter/ios/

Enabling Game Center for Your App 499

Figure 15.4 Click Log in

2. Click the link for iOS Provisioning Portal on the right-hand side, as shown in
Figure 15.5. The 10S Provisioning Portal is a service that helps you set up your
devices, App IDs, and provisioning/distribution/ad-hoc profiles.

Figure 15.5 Click iOS Provisioning Portal

3. Right now, you just need an App ID, so click the link for App IDs on the left-
hand side, then click the New App ID button in the upper right. Create a new
App ID for your app according to the following instructions:

= For the Description, choose something to help you remember what this App
ID is later, such as Space Viking.

500 Chapter 15 Achievements and Leaderboards with Game Center

= For the Bundle Seed ID, choose the same Bundle ID as your other apps if
you want to share keychain access; otherwise choose Generate New.

= For the Bundle Identifier, enter in a unique name based on a DNS name
you own, such as com.prop-group.spaceviking. If you do not own a domain name,
you can make one up based on your full name or something else unique.

When you're done, click Submit, as shown in Figure 15.6.

Figure 15.6 Create new App ID (but replace this with your own)

4. Now that you've created an App ID for your app, you need to go back to
Xcode and set the Bundle Identifier in the info.plist file for SpaceViking. Go back
to SpaceViking in Xcode, and select Resources\Info.plist. Edit the Bundle
Identifier to be the second part of your App ID (the part after the 10 random
characters). For our App ID, it is com.prop-group.spaceviking, as you can see in
Figure 15.7.

Enabling Game Center for Your App

Figure 15.7 Set Bundle identifier in info.plist

Congratulations! You've successfully set up your app with a unique identifier,
which is the first step toward enabling Game Center in your app. The next thing you
need to do is register your app in iTunes Connect.

Register Your App in iTunes Connect

If you've developed other apps on the App Store before, you may be used to writing
the app first, then registering the app in iTunes Connect and uploading it. If you want
to use Game Center, however, you have to register your app early, even before you've
written any Game Center code. But don’t worry: you can just enter placeholder infor-
mation to start and then fix it up later when you're ready to release.

Here are the steps to register your app on iTunes Connect. These steps also change
from time to time, so if something is different, check the book forums or oftficial doc-
umentation for more information.

1. Visit iTunes Connect (https://itunesconnect.apple.com) and log in with your
account, as shown in Figure 15.8.

Figure 15.8 Log in to iTunes Connect

2. Click Manage Your Applications in the main menu, as shown in Figure 15.9.

501

https://itunesconnect.apple.com

502 Chapter 15 Achievements and Leaderboards with Game Center

Figure 15.9 Click Manage Your Applications

3. From your list of apps, click Add New App to register a new app, and choose
iOS App for the App type, as shown in Figure 15.10. Note that this screen may
not appear if you are an i1OS-only developer (if so, just continue to the next
step). Also note that you may get a screen that asks you for your company name
and language.

Figure 15.10 Click Add New App, then select iOS App as the App Type

Enabling Game Center for Your App 503

4. Next you enter in the basic information for your app, according to the following
instructions:

= For the App Name, choose a unique app name. We chose Space Viking here,
but you must choose a different name, as this name is already taken.

= For SKU Number, you can put in some kind of abbreviation to keep track
of your app; we just use SPACEVIKINGO0O01.

= For Bundle ID, choose the Bundle Identifier you just made as part of your
App ID; ours is com.prop-group.spaceviking.

When you're done, click Continue, as shown in Figure 15.11.

Figure 15.11 Enter basic information for your app

5. You now advance to the Rights and Pricing screen, as shown in Figure 10.12.
Here you can set your availability date, pricing, and educational discounts if
you’d like. If you aren’t sure, just select anything for now; you can go back and
change this later.

6. The final screen is the Version Information screen, as shown in Figure 10.13.
Just fill out this information the best you can. If you don’t know what to put for
a field yet, just put a few placeholder characters in there so you can get past this
field. Don’t worry; you can change all of this before you upload your final ver-
sion. Note that Apple requires a large icon and a screenshot in order to accept
your app; you can just upload temporary images of the right size there and
replace them later as well. When you're done, click Save.

504 Chapter 15 Achievements and Leaderboards with Game Center

Figure 15.12 Entering rights and pricing

Figure 15.13 Enter placeholder information in Version Information
screen

Enabling Game Center for Your App 505

At this point you should see a page for your app in the Prepare for Upload state, as
shown in Figure 15.14. You won'’t be uploading the app yet (since you're still working
on it), but at this point it’s ready for you to enable Game Center support!

Figure 15.14 Your placeholder app entry in iTunes Connect

Enable Game Center Support
Now that you've gotten this far, enabling Game Center in your app is really easy. Just
click on the Manage Game Center button, as shown in Figure 15.14, and then click
the big blue Enable button as shown in Figure 15.15.

That’s it; you're done. It gives you options to set up leaderboards and achievements,
but you won’t be setting those up until later in this chapter. For now, let’s start some
coding by integrating authentication into your app.

506 Chapter 15 Achievements and Leaderboards with Game Center

Figure 15.15 Click Enable to enable Game Center.

Game Center Authentication

Before you can do anything with Game Center, you must take three steps:
1. Make sure Game Center is available on the current device.
2. Try to authenticate the player with Game Center.

3. Keep informed if authentication status ever changes.

You'll start by learning what all of this means and how to implement it, then you’ll
try it out yourself by adding the code into Space Viking. So let’s get authenticating!

Make Sure Game Center Is Available

Game Center is only available on iOS 4.1 and above, so if you want to use Game Cen-
ter in your app, one option is to prevent your app from running on OS versions older
than 4.1. You can do this by setting the Deployment Target of your app to iOS 4.1+ in
the build settings. This is a simple fix, but the problem with this approach is that you
might lose potential customers who are running on older versions of 1OS.

In this chapter, you take a second approach: weak-link to Game Center and check
if Game Center is available before you try to use it. This way, your code can still run
on pre-i0OS4 devices (but just not be able to use Game Center features).

To get this to work, you need to add some code to check if Game Center is avail-
able. Listing 15.1 shows Apple’s recommended way to check.

Listing 15.1 Recommended way to check if Game Center is available

- (BOOL)i sGanmeCent er Avai | abl e

{
/'l Check for presence of CKLocal Pl ayer API

Class gcC ass = (NSC assFronString(@ G<Local Pl ayer"));

Game Center Authentication

/1 Check if the device is running i0CS 4.1 or |ater

NSString *reqSysVer = @4.1";

NSString *currSysVer = [[Ul Device currentDevice] systenVersion];

BOOL osVersi onSupported = ([currSysVer conpare:reqSysVer
options: NSNurreri cSearch] ! = NSO deredAscendi ng);

return (gcd ass && osVersi onSupported);

The method in Listing 15.1 checks if the GKLocal P ayer class exists (one of the
Game Center API classes), and then checks that the OS is 4.1 or later (since the class
existed in an earlier OS but not in a fully complete state). If both of these are true, it’s
safe to use Game Center!

Try to Authenticate the Player

Once you’ve made sure that Game Center is available, the next thing you need to do is
authenticate your user. The Game Center API makes this very easy: you just call a sin-
gle line of code to authenticate players (which prompts them to enter their usernames/
passwords if they’re not logged in already), as shown in Listing 15.2.

Listing 15.2 Example of authenticating the player

[[CKLocal Pl ayer | ocal Pl ayer]
aut henti cat eW t hConpl eti onHandl er: A(NSError *error) {
/1 Do sonething if necessary...

Ik

Note that this method takes a completion handler, which is a block of code that
should be executed after the user successfully logs in or when there is an error.

Note

If you’re unfamiliar with blocks, don’t panic! The syntax looks weird, but once you get
used to it, you'll start to like blocks because they keep related code close together. The
best way to learn about blocks and how to use them is to read Apple’s “A Short Practical
Guide to Blocks,” available at: http://developer.apple.com/library/ios/#featuredarticles/
Short_Practical_Guide_Blocks/.

Apple’s guidance is to call aut henti cat eWt hConpl eti onHandl er once when
your app starts up, as early in the launch sequence as possible. This causes one of three
things to happen:

= If the user is already logged in, it will display a Welcome Back dialog at the top
of the app.

= If the user isn’t logged in (and hasn’t opted out), it will prompt the user to log in
with an existing account or to create a new account.

507

http://developer.apple.com/library/ios/#featuredarticles/Short_Practical_Guide_Blocks/
http://developer.apple.com/library/ios/#featuredarticles/Short_Practical_Guide_Blocks/

508 Chapter 15 Achievements and Leaderboards with Game Center

= If the user isn’t logged in (and has opted out by pressing cancel three times in a
row), no dialog will be presented to the user—ever! The user will have to go to
Game Center to log in again. This behavior is by design, as Game Center should
be treated as systemwide login behavior.

Note

Note that you shouldn’t try to add a Game Center button that calls aut henti cat e-

Wt hConpl et i onHandl er again. If the user wants to log in to Game Center again, he
or she should switch to the Game Center app to do so.

For more information on the reasoning behind this, there is a good discussion on Apple’s
developer forums here: https://devforums.apple.com/thread,/71830.

Keep Informed If Authentication Status Changes

There is one trick to authenticating users, and it has to do with multitasking on

10S 4+. With multitasking, the user can switch away from your app at any time,
switch over to the Game Center app, and log out. Your app needs to know when this
has happened so you can disable Game Center features until the user logs back in.
Luckily, you can get notice of this by using the NSNot i fi cati onCenter to set

a method to be called when the user’s authentication status changes, as shown in List-
ing 15.3.

Listing 15.3 Example of registering for authentication status change callbacks

NSNot i fi cationCenter *nc = [NSNotificationCenter defaultCenter];
[nc addObserver:sel f sel ector: @el ector (aut henti cati onChanged)
nane: GKPI ayer Aut hent i cat i onDi dChangeNoti fi cati onNane object:nil];

This code registers for the GKPl ayer Aut henti cati onDi dChangeNot i fi ca-
ti onName notification, so every time the user logs in or logs out, the aut henti ca-
ti onChanged method is called.

Note that this method is called even when the user initially logs in (after calling
aut henticat eWt hConpl eti onHandl er), so it’s a good central place to put code
related to the authentication status changing.

The Implementation

Enough talk; time to try it out. The first step is to add the Game Kit framework to
your project. Game Kit is the library that contains the Game Center API code.

To add Game Kit, select your SpacelViking project in the groups and files tree to
bring up the project settings. Click on the Build Phases tab and expand the Link
Binary with Libraries section. Click the + button at the bottom of the dialog, select
iOS SDK\GameKit.framework, and click Add. Then in the Link Binary with
Libraries section, find the entry for GameKit.framework, and set the Type to
Optional (instead of Required), as shown in Figure 15.16.

https://devforums.apple.com/thread/71830

Game Center Authentication 509

Figure 15.16 Weak-linking to the GameKit framework

Now it’s time to add some code. You’ll be putting all of the Game Center—related
code in a helper class to keep your code clean and reusable in future projects.

To add the helper class, select the Singletons group in Xcode, go to File > New >
New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter NSObject as the Subclass of, click Next, name the file GCHelper.m, and click
Save.

Once you've created the class, replace GCHelper.h with the contents of Listing 15.4.

Listing 15.4 GCHelper.h

#i nport <Foundati on/ Foundati on. h>
#i nport <GaneKit/ GanmeKit. h>

@nterface CCHel per : NSOhj ect {
BOOL ganeCent er Avai | abl e;
BOOL user Aut henti cat ed;

}

+ (CGCHel per *) sharedl nstance;
- (voi d)aut henti cati onChanged;
- (void)authenticatelLocal User;

@nd

This method first imports the GameKit header, then creates a simple object with
two member variables: one to keep track if the Game Center API is available on this

510

Chapter 15 Achievements and Leaderboards with Game Center

device and one to keep track if the user is currently authenticated. It also defines a
static method to get the single instance of the GCHel per for the application, prede-
clares the callback for authentication status changes, and defines a method that will
authenticate the local user.

Next, switch to GCHelper.m and replace it with the contents of Listing 15.5.

Listing 15.5 GCHelper.m

#i mport " GCHel per. h"

@ npl enent ati on GCHel per

#pragme mar k Loadi ng/ Savi ng

static GCHel per *sharedHel per = nil;

+ (GCHel per *) sharedl nstance {
@ynchroni zed([GCHel per cl ass])

{ if (!sharedHel per) {
[[self alloc] init];
}
return sharedHel per;
}
return nil;
}
+(id)alloc
{
@ynchroni zed ([GCHel per cl ass])
{ NSAssert (sharedHel per == nil, @Attenpted to allocated a \
second i nstance of the GCHel per singleton");
shar edHel per = [super alloc];
return sharedHel per;
}
return nil;
}
@nd

This is just the beginning of GCHelper.m; you’ll add the rest soon. This is the
implementation of the Singleton design pattern to make sure there is only one instance
of the GCHel per class in memory, just like you used to create the GaneManager
singleton in Chapter 7, “Main Menu, Level Completed, and Credits Scenes.” If you're
confused about how this code works, refer back to Chapter 7 for more details.

Game Center Authentication

Now that you've added the code to create a singleton instance of GCHel per, add
the code to initialize the object and keep track of authentication status changes, as
shown in Listing 15.6.

Listing 15.6 GCHelper.m (after alloc method)

- (BOOL)i sGanmeCent er Avai | abl e {
/'l check for presence of GKLocal Pl ayer API
Class gcC ass = (NSC assFronttring(@ G<Local Pl ayer™"));

/1 check if the device is running iOS 4.1 or |ater

NSString *reqSysVer = @4. 1";

NSString *currSysVer = [[U Device currentDevice] systenVersion];

BOOL osVersi onSupported = ([currSysVer conpare:reqSysVer
options: NSNureri cSearch] != NSO deredAscendi ng) ;

return (gcC ass && osVersi onSupported);

}
- (id)init {
if ((self = [super init])) {
ganeCenter Avai | abl e = [sel f i sGanmeCent er Avai |l abl e] ;
if (ganeCenterAvail able) {
NSNot i fi cati onCenter *nc =
[NSNoti ficationCenter defaultCenter];
[nc addObserver: sel f
sel ector: @el ect or (aut henti cati onChanged)
nane: GKPl ayer Aut hent i cati onDi dChangeNot i fi cati onNanme
object:nil];
}
}
return self;
}

#pragma mark I nternal functions

- (void)authenticati onChanged {
di spat ch_async(di spatch_get _mai n_queue(), "(void)

{
if ([GKLocal Pl ayer |ocal Player].isAuthenticated &
l'user Aut henti cated) {
NSLog(@ Aut henti cati on changed: player authenticated.");
user Aut henti cated = TRUE;
} else if (![CGKLocal Pl ayer |ocal Pl ayer].isAuthenticated &&
user Aut henti cated) {
NSLog(@ Aut hent i cati on changed: player not authenticated");
user Aut henti cated = FALSE;
}
IOF

511

512

Chapter 15 Achievements and Leaderboards with Game Center

i sGaneCent er Avai | abl e is the same code shown earlier in this chapter that
checks to see if this version of the OS has the Game Center code on it.

i nit first checks to see if Game Center is available. If it is, it registers
aut henti cati onChanged to be called whenever the authentication status changes.

aut henti cati onChanged keeps a flag of whether or not the user is currently
authenticated and logs when there is a change in status.

Note

You may be wondering why the call to di spat ch_async is in this function. That line of
code runs the contained block on the main thread. This is necessary because when you
register for a callback for a notification, it’s not guaranteed to run on the main thread.
Since this method needs to modify variables on the object, it should run in the main
thread to avoid multithreading access issues. di spat ch_async is an easy way

to do this. Note that it only works on iOS 3.2+, though. If you want your code to run

on an earlier version of i0S, you should use an alternative method such as [sel f

per for mSel ect or OnMai nThr ead: wi t hCbj ect: waitUntil Done].

The next step is to add the method to authenticate the local user, as shown in List-
ing 15.7.

Listing 15.7 GCHelper.m (after authenticationChanged)

#pragme mark User functions
- (voi d)aut henticatelLocal User {
if (!ganeCenterAvail able) return;

NSLog(@ Aut henti cating | ocal user...");
if ([KLocal Pl ayer |ocal Pl ayer].authenticated == NO) {
[[GKLocal Pl ayer | ocal Pl ayer]
aut henti cat eWt hConpl eti onHandl er:nil];
} else {
NSLog(@ Al ready aut henticated!");
}

You'll be adding some code to call aut henti cat eLocal User when Space Viking
first starts up. Notice it immediately quits if Game Center isn’t available or if the user
is already authenticated. Otherwise, it calls aut henti cat eWt hConpl et i onHandl er
on the GKLocal P ayer singleton to start the authentication process, as described ear-
lier in this chapter.

Note that there is no need to set a completion handler, since this class has already
registered for the authentication changed notification.

Game Center Authentication

Now that youre done with the implementation, it’s time to try it out! Switch to
SpaceVikingAppDelegate.m and import the GCHel per class at the top of your file, as
shown in Listing 15.8.

Listing 15.8 SpaceVikingAppDelegate.m (at top of file)

#i nport " CGCHel per. h"

Then at the beginning of appl i cati onDi dFi ni shLaunchi ng, add a call to
authenticate the user, as shown in Listing 15.9.

Listing 15.9 SpaceVikingAppDelegate.m (at beginning of applicationDidFinishLaunching)

[[GCHel per sharedl nstance] authenticatelLocal User];

That’s it! But before you run, open the Game Center app on your simulator or
device, and sign out if you're logged in (by tapping on your Account banner and
choosing Sign Out). That way, you are in a known state (logged out of Game Center)
at this point.

Compile and run, and you should see a dialog prompting you to log in, as you can
see in Figure 15.17.

Figure 15.17 Authenticating the player against the Sandbox Game
Center environment

513

514 Chapter 15 Achievements and Leaderboards with Game Center

Note

Note that the dialog has the label “Sandbox” on it. This is because there are two differ-
ent Game Center environments: a development “sandbox” environment for testing and a
production environment that is used when your app has launched. You can tell which one
you're on because the dialog boxes and Game Center app itself make it clear by contain-
ing Sandbox labels if you're on the sandbox.

Each environment has its own set of accounts, leaderboards, and achievements. So you
can test happily away on the sandbox environment without worrying that it will affect the
production leaderboards or achievements.

When your app authenticates with Game Center, it automatically uses the Sandbox envi-
ronment if you are building with a development provisioning profile.

If you don’t already have a Sandbox account, go ahead and create one. Then log in,
shut down your app, and run it again. This time, you should see a “Welcome Back”
message, since you're already logged in, as shown in Figure 15.18.

Figure 15.18 Welcome Back user interface

Congratulations: you now have an app that is Game Center enabled. You could
actually publish your app at this point and get many of the advantages of having a
Game Center app, such as making your app easier to find. However, adding achieve-
ments and leaderboards is pretty easy, too, so let’s continue by adding those next.

Setting Up Achievements

Setting Up Achievements

Achievements are a way that you can set a challenge for users (such as “Get 1000
coins,” “Kill 20 monsters,” or “Beat this level”) and then reward users for reaching
that goal by keeping track of their achievements and giving them points. Users can see
at a quick glance what achievements they’ve fulfilled and which are yet to be done.

In this section, you add achievements to Space Viking. To keep things simple, you
just add an achievement for beating each level in the game. You also add a special
“hidden” achievement for if the user dies three or more times in the mine cart level,
just for fun.

First, you add achievements into iTunes Connect, then you learn a bit about how
achievements work, and finally you add the implementation into the game.

Adding Achievements into iTunes Connect

Before you can implement achievements in your game, you need to set them up in
iTunes Connect. Set these up for Space Viking now by taking the following steps:

1. Log on to iTunes Connect at https://itunesconnect.apple.com.

2. Click Manage Your Applications, select your application, click Manage
Game Center, and then click Set up under Achievements. At this point, you
should see a window similar to Figure 15.19.

Figure 15.19 Empty Achievements List

Note that the screen says “1000 Points Remaining.” When you set up your
achievements, you give each one a number of points. No matter how many
achievements you add, your achievements can’t sum to over 1000 points.

515

https://itunesconnect.apple.com

516 Chapter 15 Achievements and Leaderboards with Game Center

Note

Be careful with how you allocate points, because if you start out with achievements sum-
ming to 1000 points and you want to add another achievement later, there will be no
more points left to give out. Therefore, it’s a good idea to start with giving out a smaller
number of points if you aren’t sure how many you might add later.

3. Click Add New Achievement to bring up the Add Achievement screen, as
shown in Figure 15.20.

Figure 15.20 The Add Achievement screen

Let’s go over each field on this screen in turn.

= The Achievement Reference Name is a string you use internally to keep
track of the achievement—the player will never see this. Note that this name
needs to be unique across all of your apps, however.

= Achievement ID is a unique ID to keep track of the achievement. You can use
anything here, but again, it’s a good idea to use reverse DNS notation so you're
sure your names are unique.

= Hidden indicates whether users should see the achievement before they unlock
it. This can be useful if you want to surprise users for accomplishing something
rather than having them know it’s there in advance.

= Point value is the number of points that this achievement is worth once it is
completed, as discussed earlier.

Setting Up Achievements

There are several more values that are set on a per-language basis; you can see them
by clicking Add Language. They are self-explanatory: the title of the achievement,
the descriptions for before and after the user accomplishes the achievement, and a
512 X 512 image for the achievement.

Note

Note that achievement images in Game Center are circular to look a bit like coins. You

can either make your icons circular as well or just upload a square image with transpar-
ency and Game Center will automatically add a circular border and background color (if
your icon has transparency).

The resources folder for this chapter contains icons for each of the six achievements
you’ll be adding to Space Viking. Use them and the table in Figure 15.21 to set up six
achievements for Space Viking. Remember to replace the Achievement ID with your
own unique name!

Figure 15.21 Space Viking achievement reference

How Achievements Work

When a user makes some progress on an achievement (i.e., kills 10 of the 20 mon-
sters she needs to kill) or completes an achievement (i.e., completely finishes level 1),
reporting that progress to Game Center is quite simple. You create a GKAchi evenent
object with the Achievement ID you set up in iTunes Connect, set the per cent Com
pl et e property, and call report Achi evenent Wt hConpl et i onHandl er, as shown
in Listing 15.10.

Listing 15.10 Example of reporting an achievement

GKAchi evenent * achi evenent = [[[GKAchi evenent al | oc]
initWthldentifier:identifier] autorel ease];
achi evenent . per cent Conpl et e = percent Conpl et e;

517

518

Chapter 15 Achievements and Leaderboards with Game Center

[achi evenent reportAchi evenent Wt hConpl eti onHandl er: ~(NSError *error) {
/1 Do sonething...

s

Pretty simple, eh? But there’s one big problem: there is a chance that r eport-
Achi evemrent Wt hConpl et i onHandl er could fail, such as if the Internet connec-
tion goes down or if Game Center itself is having troubles. If that happens, you don’t
want the player to lose the achievement, especially since some achievements entail a lot
of work and are a big deal for your player!

Luckily, Apple makes this situation easy to deal with by making it easy to save
GKAchi evenment objects to disk. This way, if any achievements can’t be successfully
sent to Game Center’s servers, you can save them to disk and send them to Game
Center again at a later time.

There are different approaches you can take to using Game Center. You can take
the “Game Center knows best” approach, where you read the achievements the user
has recorded in Game Center and use that as a baseline. Another option is the “game
knows best” approach, where the game keeps its own storage of the user’s achieve-
ments and just sends a copy to Game Center.

For Space Viking, you use the “game knows best” approach, which has the advan-
tage that you can report achievements immediately as they happen without having to
worry about Game Center’s status, and just keep Game Center up to date when you
can. You keep track of the user’s progress internally and call a method on GCHel per
to report achievements when the player makes progress. If GCHel per fails to send
them, it saves them to disk until the next time the user authenticates, at which time
the achievements are sent again.

So let’s see what this looks like and move on to the implementation.

Implementing Achievements

Right now Space Viking doesn’t save any game state, so before you can implement

achievements, you need to add that capability. Then you can add the code to send the

achievements to Game Center and save them to disk if they fail to send. Finally, you

can update Space Viking to use the new Game State and achievement-sending classes.
There are four steps to implementing achievements in Space Viking:

1. Add a class to keep track of the game’s state.
2. Add helper functions to make it easier to load/save data from disk.

3. Update GCHel per to support sending achievements (and saving unsent achieve-
ments to disk).

4. Update Space Viking to make use of these new classes.

This is all simple stuff, but there’s a good chunk of code to write to get everything
sorted, so grab a tasty snack and some caffeine, and let’s get to work!

Implementing Achievements

Creating a Game State Class

First, you create a new object called GanmeSt at e, which the game will use to keep
track of the user’s progress. Select the Singletons group in Xcode, go to go to File >
New > New File..., choose iOS > Cocoa Touch > Objective-C class, and click
Next. Enter NSObject as the Subclass of, click Next, name the file GameState.m, and
click Save.

Once you've created the class, replace GameState.h with the contents of Listing 15.11.

Listing 15.11 GameState.h

#i nport <Foundati on/ Foundati on. h>

@nterface GaneState : NSObj ect <NSCodi ng> {
BOOL conpl et edLevel 1;
BOOL conpl et edLevel 2;
BOOL conpl et edLevel 3;
BOOL conpl et edLevel 4;
BOOL conpl et edLevel 5;
int timesFell;

}

+ (GaneState *) sharedl nstance;
- (voi d)save;

@roperty (assign) BOOL conpl etedLevel 1;
@roperty (assign) BOOL conpl etedLevel 2;
@roperty (assign) BOOL conpl et edLevel 3;
@roperty (assign) BOOL conpl etedLevel 4;
@roperty (assign) BOOL conpl et edLevel 5;
@roperty (assign) int tinesFell;

@nd

This is just a simple object that keeps track of the players’ progress in the game:
what levels they’ve completed and how many times they’ve fallen off the screen in
Descent into Hades. You could extend this class to contain additional instance vari-
ables and properties for other data you’d like to save from game session to game session
if you'd like.

Note that the class implements the NSCodi ng protocol, which is an easy way to
encode/decode the data of a class to or from a data buffer. Also note that the class is
a singleton (with a static method shar edl nst ance to get the single instance of the
object) and has a method to save the data to disk.

Next add the implementation of GameState.m, as shown in Listing 15.12.

519

520

Chapter 15 Achievements and Leaderboards with Game Center

Listing 15.12 GameState.m

#inmport "GaneState. h"
#i nport " GCDat abase. h"

@ npl enent ati on GaneState
conpl et edLevel 1;
conpl et edLevel 2;
conpl et edLevel 3;
conpl et edLevel 4;
conpl et edLevel 5;
timesFell;

@ynt hesi
@ynt hesi
@ynt hesi
@ynt hesi
@ynt hesi
@ynt hesi

ze
ze
ze
ze
ze
ze

static GaneState *sharedl nstance = nil;

+(GanesSt at e*) shar edl nst ance {
@ynchroni zed([GaneSt ate cl ass])

i f(!sharedl nstance) {
sharedl nstance = [| oadData(@ GaneState") retain];
if (!sharedlnstance) {

}

[[self alloc] init];

return sharedl nstance;

@ynchroni zed ([GaneState cl ass])

NSAssert (sharedl nstance == nil, @Attenpted to allocate a \

second instance of the GaneState singleton");

shar edl nstance = [super alloc];
return sharedl nstance;

{
}

}

return nil;
}
+(id)alloc
{

{

}

return nil;
}

- (void)save {
saveDat a(sel f, @GaneState");

- (voi d) encodeW t hCoder : (NSCoder *)encoder {
[encoder encodeBool : conpl et edLevel 1 forKey: @ Conpl et edLevel 1"];

Implementing Achievements

[encoder encodeBool : conpl et edLevel 2 for Key: @ Conpl et edLevel 2"];
[encoder encodeBool : conpl et edLevel 3 forKey: @ Conpl et edLevel 3"];
[encoder encodeBool : conpl et edLevel 4 forKey: @ Conpl et edLevel 4"];
[encoder encodeBool : conpl et edLevel 5 for Key: @ Conpl et edLevel 5"];
[encoder encodelnt:tinmesFell forKey: @TimesFell"];

- (id)initWthCoder: (NSCoder *)decoder {
if ((self = [super init])) {
conpl et edLevel 1 = [decoder
decodeBool For Key: @ Conpl et edLevel 1"];
conpl et edLevel 2 = [decoder
decodeBool For Key: @ Conpl et edLevel 2"];
conpl et edLevel 3 = [decoder
decodeBool For Key: @ Conpl et edLevel 3"];
conpl et edLevel 4 = [decoder
decodeBool For Key: @ Conpl et edLevel 4"];
conpl et edLevel 5 = [decoder
decodeBool For Key: @ Conpl et edLevel 5"];
tinesFell = [decoder decodel nt ForKey: @ Ti nesFel | "];
}

return self;

}

@nd

This first synthesizes the variable and has the static method to get the singleton
instance of this class.

Note that when creating the singleton instance of this class, it first tries to load the
data off the disk, with a function called | oadDat a() that you’ll write next. If the data
doesn’t exist, it creates an empty object. By default, when initializing an object, all
instance variables are set to false or 0, so all the levels are marked as uncompleted and
the ti mesFel | is initialized to 0.

The save routine calls a function named saveDat a() that you’ll also write next,
passing the current instance of the object (sel f) as a parameter.

encodeWt hCoder is the method that saves the object’s data out to a data buf-
fer. This 1s similar to the concept of serialization in other languages. Basically, it goes
through each of the instance variables and calls a method to write it out, such as
encodeBool for the booleans and encodel nt for the integers. There is also encode-
Obj ect for strings, arrays, and other types of objects, but that isn’t needed here. Each
time you call encodeWt hCoder, you give it a key to save the data out to, and you
use that key when reading the data back in.

i nit Wt hCoder is the opposite of encodeWt hCoder : it reads an object back off
disk. Here it simply calls the decode methods for each instance variable, passing in the
appropriate key.

521

522

Chapter 15 Achievements and Leaderboards with Game Center

Creating Helper Functions to Load and Save Data

Now you implement the | oadDat a() and saveDat a() methods referenced above
in a new file: GCDatabase. Select the Singletons group in Xcode, go to go to File >
New > New File..., choose iOS > Cocoa Touch > Objective-C class, and click
Next. Enter NSObject as the Subclass of, click Next, name the file GCDatabase.m, and
click Save.

Replace GCDatabase.h with the contents of Listing 15.13.

Listing 15.13 GCDatabase.h

#i nport <Foundati on/ Foundati on. h>

idloadData(NSstring * fil enane);
voi d saveData(id theData, NSString *fil enane);

These are two helper functions to save and load an object to a file, assuming the
object implements the NSCodi ng protocol. These two functions are regular C func-
tions (i.e., not Objective-C), since they need no object state.

The nice thing about these functions is you’ll be writing them in a way so that they
can be reused to load or save any object that implements NSCodi ng to a file, so you
can reuse these in future projects if you’d like.

Implement these functions in GCDatabase.m, as shown in Listing 15.14.

Listing 15.14 GCDatabase.m

#i mport " CCDat abase. h"

NSString * pathForFile(NSString *fil ename) {

/11

NSArray *paths =

NSSear chPat hFor Di r ect ori esl nDonai ns(NSDocunent Di r ect ory,
NSUser Donai nMask,
YES) ;

/12

NSString *docunentsDirectory = [paths objectAtlndex: 0];

/13

return [docunentsDirectory

st ringByAppendi ngPat hConponent : fil enane] ;

}

id|oadData(NsSString * filenane) {
Il 4
NSString *filePath = pathForFile(filenane);
/15
if ([[NSFileManager defaultManager] fileExi stsAtPath:filePath]) ({

Implementing Achievements 523

Il 6

NSDat a *data = [[[NSData al | oc]
initWthContentsOf File:fil ePath] autorel ease];

17

NSKeyedUnar chi ver *unarchi ver = [[[NSKeyedUnarchiver all oc]
i ni t For Readi ngW t hDat a: dat a] aut or el ease] ;

/1 8

idretval = [unarchiver decodeObject ForKey: @Data"];

[unarchiver finishDecoding];

return retval;

}
return nil;
}
voi d saveData(id theData, NSString *fil enane) {
Il 9
NSMut abl eData *data = [[[NSMut abl eData al loc] init] autorel ease];
/1 10

NSKeyedAr chi ver *archiver = [[[NSKeyedArchiver all oc]
initForWitingWthMtabl eDat a: dat a] aut or el ease] ;

/11

[archiver encodebject:theData forKey: @Data"];

[archi ver finishEncoding];

/Il 12

[data writeToFile:pathForFile(filenane) atomcally: YES];

If you're not familiar with saving data or NSCodi ng, much of this may be new to
you, so let’s go over it line by line:

1. pat hForFi | e takes a filename and returns a string for the full path of the file.
In iOS, you can call the NSSear chPat hFor Di r ect ori esl nDomai ns function
to get standard system directories in which you can save files. One good place to
save files for your apps is the NSDocument Di r ect or y, so it calls that function
to get a path to that here.

2. NSSear chPat hFor Di r ect ori esl nDomai ns actually returns a list of match-
ing directories, but youre only interested in the first match, so you get the first
entry in the array.

3. Now that you have the directory where the file should reside, you can get the
full path by combining the two with a slash. NSSt ri ng has a helper method that
does this for you, called st ri ngByAppendi ngPat hConponent .

4. 1 oadDat a tries to load the data from the disk (or return nil if there is no data
saved to the disk yet). It starts by calling the pat hFor Fi | e method to get a full
path for where the file should be.

524 Chapter 15 Achievements and Leaderboards with Game Center

5. To check if a file exists on the disk, it uses the NSFi | eManager singleton’s
fileExi st sAt Pat h method. NSFi | eManager is a useful class that can check if
files exist, delete files, enumerate directories, and more.

6. To read an entire file off the disk and put it into a data buffer, there is a handy
helper method on NSDat a called i nit Wt hCont ent sO Fi | e. This returns an
NSDat a, which is a helper class that represents a buffer of bytes and a length.

7. Now that you have a buffer of data read from the disk, you need to unarchive
any object encoded in the data with the NSCodi ng protocol. The first step for
this is to create a NSKeyedUnar chi ver and pass it the buffer of data, which is
done here.

8. Finally it gets a reference to the object by calling decodeObj ect For Key and
then fi ni shDecodi ng on the unarchiver, which decodes the object from the
buffer using the NSCodi ng protocol, and returns the result. In effect, this calls
i nit Wt hCoder on the object contained within.

9. To save an object, the first step is to create an empty data buffer. The data buffer
is marked as mutable, since it will need to be modified after it is created.

10. The next step to encode the object is to create an NSKeyedUnar chiver and
pass in an empty mutable data buffer to write to, which is done here.

11. The object is then written to the buffer by calling encodeObj ect: f or Key and
fi ni shEncodi ng, which has the effect of calling encodeWt hCoder on the
object to write it to the buffer.

12. Now that the data buffer is full of archived data, it can be written to the disk
with a helper method on NSDat a called writ eToFi | e: at omi cal | y.

Modifying GCHelper to Send Achievements

At this point, you have written a class to store the game’s state that implements
NSCodi ng and a helper class that helps save objects that implement NSCodi ng out to
a file. The next step is to make some modifications to your Game Center helper class
to support saving achievements to Game Center, to keep track of achievements not yet
confirmed as received by Game Center, and to save its data to disk.

You start by making some modifications to GCHelper.h, so open it up and modify
the contents of the file so it looks like Listing 15.15.

Listing 15.15 GCHelper.h

#i nport <Foundati on/ Foundati on. h>
#i nport <GaneKit/ GaneKit.h>

/1 Make sure these #defines are on one line each to avoid errors
#define kAchievementLevell
@"com.prop-group.spaceviking.achievement.levell"”

Implementing Achievements

#define kAchievementLevel2
@"com.prop-group.spaceviking.achievement.level2"
#define kAchievementLevel3
@"com.prop-group.spaceviking.achievement.level3"
#define kAchievementLevel4
@"com.prop-group.spaceviking.achievement.leveld"
#define kAchievementLevel5
@"com.prop-group.spaceviking.achievement.level5"
#define kAchievementBadDream
@"com.prop-group.spaceviking.achievement .baddream"
#define kLeaderboardEscape
@"com.prop-group.spaceviking.leaderboard.escape"

@nterface GCHel per : NSOhj ect <NSCoding> {
BOOL ganeCent er Avai | abl e;
BOOL user Aut henti cat ed;
NSMutableArray *scoresToReport;
NSMutableArray *achievementsToReport;

@property (retain) NSMutableArray *scoresToReport;
@property (retain) NSMutableArray *achievementsToReport;

+ (GCHel per *) sharedl nst ance;
- (voi d)aut henticati onChanged,;
- (voi d)authenticatelLocal User;

- (void)save;

- (id)initwithScoresToReport: (NSMutableArray *)scoresToReport
achievementsToReport: (NSMutableArray *)achievementsToReport;

- (void)reportAchievement: (NSString *)identifier
percentComplete: (double)percentComplete;

- (wvoid)reportScore: (NSString *)identifier score: (int)score;

@nd

The first change is the #defi nes up top for the Achievement IDs. You should
replace these with whatever values you set up in Game Center when creating your
achievements. Note that there’s a leaderboard ID you haven’t created yet; you’ll use
this later on.

The second change is to mark the GCHel per class as implementing NSCodi ng. The
GCHel per class needs to know how to save itself out to disk, so any achievements (or
scores, later on) that haven’t been confirmed as received by Game Center can be sent
out again later.

525

526

Chapter 15 Achievements and Leaderboards with Game Center

The third change is to add new arrays to store the scores and achievements that still
need to be sent to Game Center. Note that youre adding the scores array now (even
though you won’t use it until later) just to avoid backtracking here later.

The final change is to add several new methods: one to save the GCHel per class to
disk, an updated initializer, and methods to report achievements and scores (although
right now, only the achievement method will be implemented).

Now, switch to GCHelper.m and import GCDatabase.h at the top of the file, which
you’ll need to use to help save this class to disk, as shown in Listing 15.16.

Listing 15.16 GCHelper.m (at top of file)

#i nport " GCDat abase. h"

Next synthesize your two arrays, as shown in Listing 15.17.

Listing 15.17 GCHelper.m (right after @implementation)

@ynt hesi ze scoresToReport;
@ynt hesi ze achi evenent sToReport;

Then modify the shar edl nst ance method, as shown in Listing 15.18.

Listing 15.18 GCHelper.m (modify sharedInstance)

+ (GCHel per *) sharedl nstance {
@ynchroni zed([GCHel per cl ass])

{
if (!sharedHelper) {
sharedHelper = [loadData(@"GameCenterData") retain];
if (!sharedHelper) {
[[self alloc]
initWithScoresToReport: [NSMutableArray array]
achievementsToReport: [NSMutableArray arrayll;
}
}
return sharedHel per;
}
return nil;

The difference is that instead of always creating a new instance, it first tries to
load the class from disk, and if that fails, it creates a new instance (using the new
initializer).

Next implement the method to save the class to disk using the GCDat abase helper
code, as shown in Listing 15.19.

Implementing Achievements

Listing 15.19 GCHelper.m (below alloc method)

- (void)save {
saveDat a(sel f, @ GaneCenterData");

Then modify the i nit method to take arrays as parameters, as shown in Listing 15.20.

Listing 15.20 GCHelper.m (modify init method)

- (id)ini twithScoresToReport: (NSMutableArray *)theScoresToReport
achievementsToReport: (NSMutableArray *)theAchievementsToReport {
if ((self = [super init])) {

self.scoresToReport = theScoresToReport;
self.achievementsToReport = theAchievementsToReport;
ganeCent er Avai | abl e = [sel f isGanmeCenterAvai |l abl e] ;
if (ganeCenterAvail able) {
NSNot i fi cati onCenter *nc =
[NSNot i ficati onCenter defaultCenter];
[nc addOoserver: sel f
sel ector: @el ect or (aut henti cati onChanged)
name: GKPl ayer Aut hent i cati onDi dChangeNot i fi cati onNane
object:nil];

}

return self;

The only difference here is that the i ni t method now takes the arrays of scores and
achievements to send as parameters and saves them to the instance variables. This way,
the class can be initialized with any saved scores/achievements that failed to send and
were saved to the disk in a previous session.

Next, go to the Internal functions section and add a method to send a single achieve-
ment, as shown in Listing 15.21.

Listing 15.21 GCHelper.m (after authenticationChanged)

- (voi d)sendAchi evenent : (GKAchi evenent *)achi evenent {
[achi evenent reportAchi evenent Wt hConpl eti onHandl er:
A(NSError *error) {
di spat ch_async(di spat ch_get _nai n_queue(), ~(void)
{
if (error == NULL) {
NSLog(@ Successful |y sent achi evenent!");
[achi evenent sToReport renpveObj ect: achi evenent];

527

528 Chapter 15 Achievements and Leaderboards with Game Center

} else {
NSLog(@ Achi evenent failed to send... will try again\
|ater. Reason: %@, error.localizedDescription);
}
1)
o

This uses the report Achi evenment Wt hConpl et i onHandl er method to attempt
to send an achievement to Game Center. Note that the handler isn’t guaranteed to run
on the main thread, so this uses di spat ch_async to run the inner code on the main
thread. If the achievement is successfully sent, it removes it from the array of achieve-
ments to report.

After the sendAchi evenent method, add a method to resend any unsent achieve-
ments, as shown in Listing 15.22.

Listing 15.22 GCHelper.m (after sendAchievement)

- (void)resendData {
for (GKAchi evenent *achi evement in achi evenmentsToReport) {
[sel f sendAchi evenent: achi evenent];

}

This loops through each of the achievements that haven’t been confirmed by Game
Center and resends each one by calling sendAchi evenent .

Now call this method inside the “player now authenticated” case of aut henti ca-
tionChanged, as shown in Listing 15.23.

Listing 15.23 GCHelper.m (in authenticationChanged, right after userAuthenticated =
TRUE)

[sel f resendData];

This way, if any data fails to send, the next time the app starts up, it will resend any
leftover data. This is just one way of doing things; if you’d like, you could take a dif-
ferent strategy in your apps (such as try resending any leftover data on a periodic basis).

In the User functions section, add the implementation for r epor t Achi everent :
per cent Conpl et e and r eport Scor e: scor e, as shown in Listing 15.24.

Listing 15.24 GCHelper.m (after authenticateLocalUser)

- (void)reportScore: (NSString *)identifier score:(int)rawScore {
/1 TODO. ..

Implementing Achievements

- (void)reportAchi evenent: (NSString *)identifier
per cent Conpl et e: (doubl e) per cent Conpl ete {

GKAchi evenent * achi evenment = [[[GKAchi evenent al | oc]
initWthldentifier:identifier] autorel ease];

achi evenent . per cent Conpl et e = percent Conpl et e;

[achi evenent sToReport addObj ect: achi evenent];

[sel f save];

if (!gameCenterAvailable || !userAuthenticated) return;
[sel f sendAchi evenent: achi evenent];

The report Scor e method is just a stub to be filled in later. The r eport-

Achi evenment method creates a new achievement based on the passed-in identifier
(such as com.prop-group.spaceviking.achievement.levell) and sets the per cent Conpl et e. It
then adds it to the array of achi evenent sToReport.

At this point, it immediately saves itself to disk so that the achievements to send are
saved away for safekeeping. If Game Center isn’t available or the user isn’t authenti-
cated, it then quits. This has the advantage of being able to queue up the achievements
for sending later, even if the user isn’t logged in or is running on an older version of
the OS.

Finally, if the user is online and Game Center is available, it calls the send-

Achi evenment method to attempt to send the achievement to Game Center.
Next add the implementation of NSCodi ng for this object, as shown in Listing 15.25.

Listing 15.25 GCHelper.m (after reportAchievement)

#pragma mar k NSCodi ng

- (voi d)encodeW t hCoder: (NSCoder *)encoder {
[encoder encode(hj ect: scoresToReport forKey: @ ScoresToReport"];
[encoder encodeObj ect: achi evenent sToReport
f or Key: @ Achi evenent sToReport"];

- (id)initWthCoder: (NSCoder *)decoder {
NSMut abl eArray * theScoresToReport =
[decoder decodeOhj ect For Key: @ Scor esToReport"];
NSMut abl eArray * theAchi evenent sToReport =
[decoder decode(bj ect For Key: @ Achi evenent sToReport"];
return [self initWthScoresToReport:theScoresToReport
achi evenent sToReport: t heAchi evenent sToReport];

529

530 Chapter 15 Achievements and Leaderboards with Game Center

This encodes the two arrays of scores and achievements to report to disk in
encodeWt hDecoder, decodes them in i nit Wt hCoder, and calls the initializer.

Phew! That was a lot of code, but the good news is most of it is reusable for future
projects and for the leaderboard implementation as well. There’s only one part left: to
make use of these new classes in Space Viking.

Using GameState and GCHelper in SpaceViking

Now you're ready to make use of your new objects to keep track of the user’s progress
locally and report the progress to Game Center when necessary.

In Space Viking, you'll be giving the users achievements after they win or lose a level,
so most of the fun code will be in Scenes\Level Complete\Level CompleteLayer.m. First
import GameState.h and GCHelper.h at the top of the file, as shown in Listing 15.26.

Listing 15.26 LevelCompleteLayer.m (at top of file)

#i nport "GanmeState. h"
#i nport " GCHel per. h"

Then add the code to keep track of achievements at the bottom of your i ni t
method, as shown in Listing 15.27.

Listing 15.27 LevelCompleteLayer.m (at bottom of init method)

CClLabel BMFont *achi evenent Label Text = [CCLabel BM~ont

bi t mapFont At asWthString: @" fntFile: @Vi ki ngSpeechFont 64.fnt"];
[achi evenent Label Text set Position:

ccp(screenSi ze. wi dth/ 2, screenSize. height * 0.7f)];
[sel f addChil d: achi evenent Label Text];

if ([GaneManager sharedGaneManager].| astlLevel == kGaneLevel 1 &&
I [GaneManager shar edGaneManager] . hasPl ayer Di ed) {
CCLOG @ Fi ni shed | evel 1");
if (![GaneState sharedl nstance].conpl etedLevel 1) {
[GaneSt at e sharedl nst ance] . conpl et edLevel 1 = true;
[[GaneSt at e sharedl nstance] save];
[[GCHel per sharedl nstance] reportAchi evenent: kAchi evenent Level 1
per cent Conpl et e: 100. 0] ;
achi evenent Label Text.string =
@ Achi everrent Unl ocked: Sinple Ganer!";
}
} else if ([GneManager sharedGaneManager].|astlLevel == kGanelLevel 2 &&
I [GareManager shar edGaneManager]. hasPl ayer Di ed) {
CCLOG @ Fi ni shed | evel 2");
if (![GaneState sharedl nstance].conpl etedLevel 2) {
[GaneSt at e sharedl nstance] . conpl et edLevel 2 = true;

Implementing Achievements

[[GaneSt at e sharedl nstance] save];
[[GCHel per sharedl nstance] reportAchi evenent: kAchi evenent Level 2
per cent Conpl et e: 100. 0] ;
achi evenent Label Text.string =
@ Achi evenrent Unl ocked: Side Scroller!™”;
}
} else if ([GaneManager sharedGaneManager].| astlLevel == kGaneLevel 3 &&
| [GanreManager shar edGaneManager] . hasPl ayer Di ed) {
CCLOG(@ Fi ni shed | evel 3");
if (![GaneState sharedl nstance].conpl etedLevel 3) {
[GaneSt at e shar edl nstance] . conpl et edLevel 3 = true;
[[GaneSt at e sharedl nstance] save];
[[GCHel per sharedl nstance] reportAchi evenent: kAchi evenent Level 3
per cent Conpl et e: 100. 0] ;
achi evenent Label Text.string =
@ Achi evenent Unl ocked: Physics Puzzler!";
}
} else if ([GneManager sharedGaneManager]. | astLevel == kGaneLevel 4 &&
| [GanreManager shar edGaneManager] . hasPl ayer Di ed) {
CCLOG @ Fi ni shed | evel 4");
if (![GaneState sharedl nstance].conpl etedLevel 4) {
[GaneSt at e shar edl nstance] . conpl et edLevel 4 = true;
[[GaneSt at e sharedl nstance] save];
[[GCHel per sharedl nstance] reportAchi evenent: kAchi evenent Level 4
per cent Conpl et e: 100. 0] ;
achi evenment Label Text.string =
@ Achi evenent Unl ocked: Box2D Master!";

}

} else if ([GaneManager sharedGaneManager].| astlLevel == kGaneLevel5 &&
| [GanreManager shar edGaneManager] . hasPl ayer Di ed) {

CCLOG(@ Fi ni shed | evel 5");
if (![GaneState sharedl nstance].conpl et edLevel 5) {
[GaneSt at e shar edl nstance] . conpl et edLevel 5 = true;
[[GaneSt at e sharedl nstance] save];
[[GCHel per sharedl nstance] reportAchi evenent: kAchi evenent Level 5
per cent Conpl et e: 100. 0] ;
achi evenent Label Text.string =
@ Achi evenent Unl ocked: Chi pmunk Master!";

}
} else if ([GneManager sharedGaneManager]. | astLevel == kGaneLevel 4 &&
[GaneManager shar edGaneManager] . hasPl ayer Di ed) {

CCLOG @Died on level 4. Fell % tines...", [GaneState
sharedl nstance] . ti nmesFel |);

int maxTi mesToFall = 3;

if ([GaneState sharedlnstance].tinmesFell < naxTinmesToFall) {
[GaneSt at e sharedl nstance] . ti nesFel | ++;
[[GaneSt at e sharedl nstance] save];

531

532

Chapter 15 Achievements and Leaderboards with Game Center

doubl e pct Conpl ete = ((doubl e)
[GaneSt at e sharedl nstance].ti mesFel | /
(int)maxTi mesToFall) * 100.0;

[[GCHel per sharedl nst ance]

report Achi evenent : kAchi evenment BadDr eam

per cent Conpl et e: pct Conpl et e] ;
if ([GaneState sharedlnstance].tinesFell >= naxTinesToFall) {

achi evenent Label Text.string =

@ Achi evenent Unl ocked: Bad Dreaml";

There’s a lot of code here, but it’s pretty straightforward. For each level, it checks
to see if the player won, and if so, it checks to see whether or not the player already
completed that level. If this is the first time the player completed the level, it marks the
game’s state as having completed the level and saves the updated state to disk. It then
calls the repor t Achi evenent : per cent Conpl et e method on the GCHel per to also
try to send the achievement to Game Center and displays a label to the user.

The only different case is the “player died” achievement. In this case, the player has
to die three times before the achievement will be unlocked. Each time the player dies,
it updates the counter and updates the current progress on the achievement, but the
achievement is only displayed to the user once it is 100 percent complete.

However, there’s one problem with the above. Right now, there is no | ast Level
property on GameManager! So let’s add this next.

Start by adding a new instance variable for the current level and the last level inside
Classes\Singletons\GameManager.h, as shown in Listing 15.28.

Listing 15.28 GameManager.h (inside @interface)

SceneTypes curlLevel ;
SceneTypes | astLevel ;

Then add their properties right below the interface declaration, as shown in
Listing 15.29.

Listing 15.29 GameManager.h (after @interface)

@roperty (assign) SceneTypes curlevel;
@roperty (assign) SceneTypes | astlLevel;

In GameManager.m, synthesize these variables, as shown in Listing 15.30.

Implementing Achievements

Listing 15.30 GameManager.m (after @implementation)

@ynt hesi ze curLevel ;
@ynt hesi ze | ast Level ;

Finally, add the contents of Listing 15.31 to the beginning of r unSceneW't hl D.

Listing 15.31 GameManager.m (at top of runSceneWithID)

| ast Level = curlevel;
curLevel = scenel D

Now GanmeManager keeps track of the last level played, so the Level Conpl et e-
Layer code can work properly.

That’s it! Compile and run your code, and beat a level in the game. Then exit out
of the app, go to Game Center, and look to find the entry for your app. You should
see the icon for the achievement you unlocked!

Figure 15.22 An unlocked achievement from your game!

You might also like to test what happens if the network connection is down and an
achievement fails to send. To do this, you can start the game, then unplug the Ethernet
cable from your computer (or disable your Ethernet adapter). Beat the level, and verify
that the game records your achievement but fails to send it in the logs. Then plug your
Ethernet cable back in and restart the game. When the user is authenticated, the game

533

534 Chapter 15 Achievements and Leaderboards with Game Center

should resend your achievement data to Game Center, and you won’t have lost your
progress!

Displaying Achievements within the App

It’s extremely easy to display achievements within your game by using a built-in view
controller provided by Apple. Let’s try it out!

In Space Viking, you display the achievements when the user selects the option in
the Options menu. There’s already an entry there: you just have to implement it!
Switch to Scenes\Options\OptionsLayer.m and start by importing a few headers at the top
of the file, as shown in Listing 15.32.

Listing 15.32 OptionsLayer.m (at top of file)

#i mport <GaneKit/ GaneKit. h>
#i nport " SpaceVi ki ngAppDel egat e. h"

You need to import GameKit.h to use the achievement view controller, and you
need to import SpacelVikingAppDelegate.h to access the root view controller of the app
so that you can present the achievement view controller from it.

Next, add some new methods to show the achievements, as shown in Listing 15.33.

Listing 15.33 OptionsLayer.m (above init)

- (voi d)showAchi evenents {
CCLOG @ Show achi evenents! ") ;

SpaceVi ki ngAppDel egat e *del egate =

[U Application sharedApplication].del egate;
GKAchi evenent Vi ewControl | er *achi evenents =

[[GKAchi evenent Vi ewControl l er alloc] init];
if (achievenments != NULL)

{
achi evenent s. achi evenent Del egate = sel f;
[del egat e. vi ewControl | er
present Modal Vi ewControl | er: achi evenents ani nated: YES];
}

- (voi d)achi evenent Vi enControl | er Di dFi ni sh:
(GKAchi evenent Vi ewControl l er *)viewControl ler {
SpaceVi ki ngAppDel egat e *del egate =
[U Application sharedApplication].del egate;
[del egat e. vi ewControl | er di sm ssWbdal Vi enControll erAni mated: YES];
[viewControl I er rel ease];

Implementing Achievements

You also need to modify i nit to add new menu options for achievements, as
shown in Listing 15.34.

Listing 15.34 OptionsLayer.m (in init, replace CCMenu * optionsMenu... and
[optionsMenu alignltems... lines with the following)

CCLabel BMFont *achi evenent sButt onLabel = [CCLabel BMFont

| abel WthString: @Achi evenents” fntFile: @ Vi ki ngSpeechFont 64.fnt"];
CCMenul t enLabel *achi evenent sButton = [CCMenul t enLabel

i tenW t hLabel : achi evenent sButtonLabel target:self

sel ector: @el ect or (showAchi evenents)];

CCMenu *optionsMenu = [CCMenu nenuW t hltens: achi evenent sButt on,
musi cToggl e,
SFXToggl e,
credi tsButton,
backButton, nil];
[optionsMenu alignltensVertical |l yWthPaddi ng: 40. 0f];

Now we need to add a property for the vi ewCont r ol | er to the SpaceVi ki ngApp-
Del egat e. First add a property declaration, as shown in Listing 15.35.

Listing 15.35 SpaceVikingAppDelegate.h (after @interface)

@roperty (nonatom c, assign) RootViewController *viewController;

Then switch to SpaceVikingAppDelegate.m and synthesize the variable, as shown in
Listing 15.36.

Listing 15.36 SpaceVikingAppDelegate.m (after @implementation)

@ynt hesi ze viewController;

One final step: since this code uses UIKit to display a view controller, it’s best
to set Cocos2D to use Ul Vi ewCont rol | er rotation (otherwise the view controller
might display sideways!). So go to GameConfig.h, comment out the current define for
GAME_AUTOROTATI ON, and set it up as shown in Listing 15.37.

Listing 15.37 GameConfig.h (comment out current GAME_AUTOROTATION define and
replace with this)

#defi ne GAME_AUTOROTATI ON kGaneAut or ot at i onUl Vi ewControl | er

That’s it! Compile and run your app, and now you should be able to see the
achievement in the app by selecting the line for achievements in the Options menu
(Figure 15.23).

535

536

Chapter 15 Achievements and Leaderboards with Game Center

Figure 15.23 Viewing achievements in-game

Note

Displaying achievements with the built-in view controller like this is definitely the easiest
way and will suffice for many apps, but you may want to make the achievement display
look different (and more like the rest of your app). This is possible with Game Center: you
just need to load the achievements and descriptions yourself and create a custom view.
For more information, check the Creating a Custom Achievement User Interface section in
the Game Kit Programming Guide.

Setting Up and Implementing Leaderboards

The good news is, after all of the work you did to track game state and implement
achievements, adding leaderboards will be a breeze. For Space Viking, you’ll just add a
single leaderboard—the time to complete the Escape level.

To do this, you follow a process similar to (but shorter than) the process for adding
achievements. You set up a leaderboard in iTunes Connect, learn how leaderboards
work, and finally implement the code.

Setting up Leaderboards in iTunes Connect

Setting up leaderboards in iTunes Connect follows a similar process to setting up
achievements. You’ll just be adding a single leaderboard this time, so it will go quickly.
Take the following steps:

Setting Up and Implementing Leaderboards

1. Log on to iTunes Connect at https://itunesconnect.apple.com.

2. Click Manage Your Applications, select your application, click Manage
Game Center, and then click Set up under Leaderboards. At this point, you
should see a window similar to Figure 15.24.

Figure 15.24 Empty leaderboards screen

3. Click Add Leaderboard to add a new leaderboard. It gives you a choice
between a Single Leaderboard or Combined Leaderboard; choose Single
Leaderboard. Then enter the settings as follows:

Leaderboard Reference Name is just an internal name used to keep track
of the leaderboard, similar to the achievement reference name. Set this to
SVEscapeLeaderboard.

Leaderboard ID is similar to an achievement ID, a unique name for your
leaderboard. Set this to something similar to com.prop-group.spaceviking.leader-
board.escape, but change the DNS name to one of your own (or your name
if you don’t have a DNS name), and make sure it matches to the line for
kLeader boar dEscape in Classes\Singletons\GCHelper.h.

Leaderboard values are always integers, but Score Format Type lets you for-
mat the integers in different ways. For the Escape level, we store the num-
ber of seconds it took to escape but display them like seconds by choosing
Elapsed Time - To the Second as the Score Format Type.

For Sort Order, pick ascending so the fastest escapes (least time) are at the top.

Click Add Language to set the remaining options. For Name, choose
Escape from Robot Planet. For Score Format Suffix, you could set a string
to appear after the time, but that isn’t necessary here, so leave it blank.

When you're done, click Save to save your leaderboard, as shown in Figure 15.25.

537

https://itunesconnect.apple.com

538

Chapter 15 Achievements and Leaderboards with Game Center

Figure 15.25 Adding a leaderboard

How Leaderboards Work

A leaderboard is simply an ordered collection of best scores. When the user has
reached a score, you create a GKScor e object and call a method to send the score to
Game Center. Game Center keeps track of the max score for each user, and it is okay
if you submit a lower score or send a score more than once; it silently discards it. The
process looks similar to Listing 15.38.

Listing 15.38 Example of sending a score to Game Center

GKScore *score = [[[GKScore all oc]
initWthCategory:identifier] autorel ease];

score.val ue = rawScore;

[score report ScoreWthConpl eti onHandl er: ~(NSError *error) {
/1 Do sonething...

o

Of course, sending scores suffers from the same potential pitfall as sending achieve-
ments: the score might not make it to Game Center, so you need to add the code to
save it to disk and resend later if necessary.

Also, note that although you create only a single leaderboard in this chapter, you
can create multiple leaderboards if you want. Perhaps you’d like to make different
leaderboards for different levels or difficulty levels in your game.

Setting Up and Implementing Leaderboards

Implementing Leaderboards

Since you've already added the code to persist an array of scores to disk in GCHel per
and added a placeholder method, implementing leaderboards will be easy.

Start by adding a new method called sendScor e right above sendAchi evenent
in GCHelper.m, as shown in Listing 15.39.

Listing 15.39 GCHelper.m (above sendAchievement)

- (voi d)sendScore: (CKScore *)score {
[score report ScoreWthConpl eti onHandl er: ~(NSError *error) {
di spat ch_async(di spat ch_get _nai n_queue(), ~(void)
{
if (error == NULL) {
NSLog(@ Successful |y sent score!");
[scoresToReport renpve(hject: score];
} else {

NSLog(@ Score failed to send... will try again later.
Reason: %@, error.localizedDescription);

}
1)
Ik

This is very similar to the sendAchi evenent method. It tries to send the score
and runs a completion block on the main thread; if the score is successfully sent, it
removes the score from the scor esToReport array.

Next add a few lines to resendDat a to have it resend any leftover scores as well, as
shown in Listing 15.40.

Listing 15.40 GCHelper.m (at end of resendData)

for (GKScore *score in scoresToReport) {
[sel f sendScore: score];

By adding this code to r esendDat a, if any scores fail to send, they’ll be resent the
next time the user connects to Game Center.
Finally, implement the r epor t Scor e method, as shown in Listing 15.41.

Listing 15.41 GCHelper.m (replace reportScore)

- (void)reportScore: (NSString *)identifier score:(int)rawscore {

GKScore *score = [[[GKScore all oc]
initWthCategory:identifier] autorel ease];

539

540 Chapter 15 Achievements and Leaderboards with Game Center

score. val ue = rawScor e;
[scoresToReport addObj ect: score];
[sel f save];

if (!gameCenterAvailable || !userAuthenticated) return;
[sel f sendScore: score];

This is similar to the r epor t Achi evermrent method. It sets up the GKScor e object,
adds it to the array of scores to report, and saves the array. It bails if game center isn’t
available or the user isn’t authenticated; otherwise, it calls the sendScor e method to
attempt to send the score.

Now all you have to do is report the score when the user completes the level.
Switch to Classes\Scenes\Scene5\Scene5ActionLayer.m, and start by importing GCHelper.h
at the top of the file, as shown in Listing 15.42.

Listing 15.42 Sceneb5ActionLayer.m (at top of file)

#i nport " GCHel per. h"

Then find the updat e method, and right before you call set HasH ayer Di ed: NO,
add a line to report the user’s score, as shown in Listing 15.43.

Listing 15.43 ScenebActionLayer.m (in update method, right before call to
setHasPlayerDied:NO)

[[GCHel per sharedl nstance] report Score: kLeader boar dEscape score: (int)
ti meSoFar];

Compile and run your code, and beat the Escape level. When you’re done, switch
to the Game Center app, and you should see your best time in the leaderboard.

Displaying Leaderboards in-Game

Thanks to a built-in view controller provided by Apple, displaying leaderboards in-
game is as simple as displaying achievements. Let’s see how this works by displaying
the leaderboards after the user taps the screen in the Level Complete scene for the
Escape level.

Open LevelCompleteLayer.m and import SpaceVikingAppDelegate.h at the top of the
file, as shown in Listing 15.44.

Listing 15.44 LevelCompleteLayer.m (at top of file)

#i nport " SpaceVi ki ngAppDel egat e. h"

Setting Up and Implementing Leaderboards 541

Figure 15.26 Viewing leaderboards in Game Center

Then replace ccTouchesBegan with some new code to display a view controller,
and add a method underneath, as shown in Listing 15.45.

Listing 15.45 LevelCompleteLayer.m (replace ccTouchesBegan and add new method)

-(voi d) ccTouchesBegan: (NSSet *)touches w t hEvent: (U Event *)event {
if ([GaneManager sharedGaneManager].| astLevel == kGanelLevel 5) {
GKLeader boar dVi ewControl | er *| eaderboardControl ler =
[[GKLeader boar dVi ewControl l er alloc] init];
if (1eaderboardController != NULL)
{
| eader boardControl | er. category = kLeader boar dEscape;
| eader boardControl |l er.ti neScope =
GKLeader boar dTi meScopeAl | Ti ne;
| eader boardControl | er. | eader boardDel egate = sel f;
SpaceVi ki ngAppDel egat e *del egate =
[Ul Appl i cation sharedApplication].del egate;
[del egat e. vi enControl | er
present Mbdal Vi ewControl | er: | eader boardControl | er
ani mat ed: YES] ;
}
} else {
[[GaneManager shar edGaneManager] setHasPl ayerDi ed: NJ ;
[[GaneManager shar edGanmeManager]

542

Chapter 15 Achievements and Leaderboards with Game Center

runSceneW t hl D: kMai nMenuScene] ;

- (voi d) | eaderboardVi ewControl | er Di dFi ni sh: (GKLeader boar dVi ewControl | er *)
vi ewControl | er

{
SpaceVi ki ngAppDel egat e *del egate =
[U Application sharedApplication].del egate;
[del egat e. vi ewControl | er di sm ssMbdal Vi ewControl | er Ani mat ed: YES];
[viewControll er rel ease];
[[GaneManager shar edGanmeManager] set HasPl ayer Di ed: NJ ;
[[GaneManager sharedGaneManager] runSceneWthl D: kMai nMenuScene] ;
}

ccTouchesBegan checks to see if the last level was level 5 (the Escape level) and,
if so, creates a GKLeader boar dVi ewCont r ol | er. When you create a GKLeader -
boar dVi ewCont rol | er, you can select the leaderboard to display by setting the cat-
egory, and the time scope to display by setting the ti meScope property. Just as when
displaying achievements, you need to set the delegate to your view controller and call
present Modal Vi ewControl | er to display it.

When the user closes the leaderboard view controller, | eader boar dVi ew
Control | er Di dFi ni sh is called. This routine simply goes back to the main menu.

Compile and run your code, beat the Escape level, and after the Level Complete
scene appears, tap to see the leaderboards in-game!

Figure 15.27 Leaderboard display in-game

Challenges

Summary

At this point you have had hands-on experience integrating Game Center player
authentication, achievements, and leaderboards into a Cocos2D game. And you’ve
learned how to send achievements and leaderboards in a safe way, so that the player’s
hard-earned achievements get sent even if the network connection is temporarily
down.

Now that you know how to implement Game Center in your games, you can enjoy
the many benefits, including making your game easier to find and download, keeping
players coming back to enjoy your game, and making the game more fun and memo-
rable for players!

Now that you've gotten this far, you might be interested in learning more about
some of Game Center’s additional features. Along with achievements and leaderboards,
Game Center also makes it easy to add multiplayer matchmaking into your games and
to add voice chat support. These features are beyond the scope of this book, but to
learn more, a good place to start is the Game Kit Programming Guide.

Challenges

1. Add a new achievement to Space Viking—perhaps for dying three times in level 1.

2. Add a new leaderboard to Space Viking—perhaps for the fastest time to complete
Descent into Hades.

3. So far, you only display when achievements are unlocked in the Level Complete
scene. But what if you want to display achievement unlocks while inside in a
level? Add the ability to display achievement unlocks in your level by scrolling a
sprite down from the top of the window that says “Achievement Unlocked: Your
Achievement Name.” You may find it helpful to put this code in a helper class so
it can be reused from level to level.

543

This page intentionally left blank

16

Performance Optimizations

Throughout this book, you learned how to create a game using Cocos2D, Box2D, and Chip-
munk. You learned the basics of Cocos2D and advanced concepts from scrolling to physics engines
to particle systems. This chapter takes you through some of the optimizations tips and tricks you
may need in bringing that last bit of polish to your game now that you have a foundation of
knowledge in Cocos2D game development.

In this chapter you learn how to tackle some of the common challenges and issues you will face
in optimizing and getting the most of your Cocos2D game. This chapter uses a test bed sample
game called PerformanceTestGame, which is included with the resources of this chapter.

CCSprite versus CCSpriteBatchNode

In Chapter 2, “Hello, Space Viking,” you learned about CCSpr it eBat chNode and
how it is used in Space Viking. The CCSprit eBat chNode reduces the OpenGL texture
binds to one call and batches all of the OpenGL draw calls together. If you do nothing
else in your game, this one change has the largest benefit in terms of performance.

Note
The rest of this chapter requires the source code for the PerformanceTestGame project

provided in the resource folder for this chapter. Please ensure you have downloaded the
source code and built the project before proceeding.

The PerformanceTestGame project consists of the Space Viking alien desert background
with Ole standing in the middle of it. From the sky are falling hundreds of little items,
debris from the SpaceCar goShi p. There are 500 items falling from the sky at ran-
dom locations and at random speeds. This project is meant as an example of common
performance issues you may encounter in your Cocos2D games.

To start, open the PerformanceTestGame project and click Run. Figure 16.1 illustrates
what the game example looks like.

546 Chapter 16 Performance Optimizations

Figure 16.1 PerformanceTestGame project running on the iPad

Run this game on your actual iPad device. Right away you should notice that the
performance is not very good: the frame rate is around 30 to 40 frames per second
(fps), with occasional drops to 22 fps.

From the PerformanceTestGame project and the Ganmepl ayLayer class. Take a close
look at the top of the implementation file and the #defi ne shown in Listing 16.1.

Listing 16.1 #define in GameplayLayer.m in the PerformanceTestGame

#i mport " Gamepl ayLayer. h"

#def i ne USE_CCSPRI TEBATCHNODE 0
#defi ne REUSE_CCSPRI TES 0

#def i ne NUMBER_OF | TEMS 500

The USE_CCSPRI TEBATCHNODE #def i ne determines if the CCSprit eBat chNode
class is used or if just plain CCSpri t es are attached to the layer for all of the items
falling from the sky. The REUSE_CCSPRI TES directive allows this game to reuse the
falling item CCSpr it es instead of creating new CCSprit es every time a new item
needs to be dropped. Setting USE_CCSPRI TEBATCHNCDE or REUSE_CCSPRI TES to 1
turns them on.

Scroll to the bottom of the GameplayLayer.m implementation file and take a look at
the i nit method shown in Listing 16.2.

CCSprite versus CCSpriteBatchNode 547

Listing 16.2 Init method in GameplayLayer.m in the PerformanceTestGame

-(id)init {
self = [super init];
if (self !'=mnil) {
srandon(ti me(NULL));
CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze;

/11

CCSprite *background;

if (U _USER | NTERFACE_| DI OM) == Ul User | nterfacel di onPad) {
background = [CCSprite spriteWthFile: @background. png"];

} else {
background =
[CCSprite spriteWthFile: @backgroundi Phone. png"];

}

[background set Position:ccp(screenSize.w dth/ 2. 0f,
screenSi ze. hei ght/2.0f)];
[sel f addChil d: background z: 0 tag:0];

Il 2

CCSprite *viking;

if (U _USER | NTERFACE | DIOM) == Ul Userlnterfacel di onPad) {
viking = [CCSprite spriteWthFile: @sv_anim1.png"];

} else {
viking = [CCSprite spriteWthFile: @sv_ani m 1i Phone. png"];

}

[viking setPosition:ccp(screenSize.w dth/2.0f,
screenSi ze. hei ght * 0.15f)];
[sel f addChild:viking z:1 tag:1];

currentltenitag = 2; // 3

Il 4

#i f (USE_CCSPRI TEBATCHNODE == 1)

[[CCSpriteFrameCache sharedSpriteFraneCache]
addSpriteFramesWthFile: @Fal lingltemsAtlas.plist"];

sceneSpriteBat chNode = [CCSprit eBat chNode
bat chNodeWthFil e: @Fal | i ngltensAtl as. png"];

[sel f addChil d: sceneSpriteBat chNode] ;

#endi f

548

Chapter 16 Performance Optimizations

/15
dr opEl ement sArray =

[CCArray arrayWthCapacity: NUVBER OF_| TENS] ;
[dr opEl ement sArray retain];

/16
for (int x =0; x < NUVBER_OF | TEMS; x++) {
CCSprite *dropSprite = [self createlteni;
[dropEl enent sArray insertObject:dropSprite atlndex:x];

17
#i f (USE_CCSPRI TEBATCHNCDE == 1)
[sceneSpriteBat chNode addChil d: dropSprite
z:currentltenlag tag: currentltenirag];
#el se
[sel f addChild:dropSprite
z:currentltenmlrag
tag: currentlteniag];
#endi f

/1 8
currentltenfag = currentltenilag + 1;

}
[sel f schedul eUpdat e] ;

}

return self;

The i nit method sets up the important components of this test game as follows:

1. Creates the background image used for this game and adds it to the layer. Noth-

ing special here: this is the same as you did in Space Viking. A differently sized
background image is used depending on if you are running on the iPhone,
iPhone 4, or iPad displays. The background has a Z- Or der and Tag value of
zero.

. Creates the Viking CCSprit e and adds it to the layer. The Viking has a

Z- Order and Tag value of 1. All of the items that will drop have Z- Or der and
Tag values larger then 1.

. Sets the currentltenifag to 2. The current|temrag is an instance variable

used to keep track of the next tag number to assign to the falling items. The
background has a Tag value of zero, and the Viking a Tag value of 1, leaving a
value of 2 and higher for the falling items.

. Creates the CCSprit eBat chNode if the USE_CCSPRI TEBATCHNODE #def i ne

is set to 1 (on). The USE_CCSPRI TEBATCHNCDE is used throughout this
class to have the falling items as independent CCSpri t es or under a single
CCSpri t eBat chNode.

CCSprite versus CCSpriteBatchNode

5. Initializes and retains a CCAr r ay to hold all of the falling items. The CCAr r ay
is used for another optimization in this game, reusing the CCSpri t es (fall-
ing items) instead of creating new ones. CCAr r ay is a Cocos2D fast array
implementation.

Memory allocation and deallocation is an expensive operation that you want to
avoid and minimize if you can. By storing the CCSprit es inside of a CCAr r ay,
they can be reused by simply moving them back to the top of the screen and
restarting the CCMove action. The optimization section of this chapter covers
how to reuse CCSprit es.

6. Creates all of the falling objects, adding them to the CCAr r ay. First the
CCSprit e is created in the cr eat el t emmethod and added to the CCAr r ay.
Note how the index on the CCArray is based on the loop counter (x) and not
on the CCSprite’s tag, since the tag value starts at 2 and not zero.

7. Adds the newly created CCSprite to either the Layer or the CCSprit eBat ch-
Node depending on the value of the USE_CCSPRI TEBATCHNCDE #defi ne.
The z- Or der and Tag values are set to the cur rent |t emlrag variable, which is
incremented on each pass of the f or loop.

8. Increments the current|tenifag value so that each falling item has a higher
z- Order and Tag value than the previous item.

The point to keep in mind from this method is that the falling items CCSpri t es
are all stored in a CCAr r ay as well as in either the Layer or CCSprit eBat chNode.
Before turning on the optimizations in the PerformanceTestGame, take a close look at
the updat e method shown in Listing 16.3.

Listing 16.3 update method in GameplayLayer

-(voi d) update: (ccTine)deltaTi me {
CCNode *node;
CCARRAY_FOREACH(dr opEl enent sArray, node)
{
if ([node tag] > 1) {
if ([node position].y < 10.0f) {
int arrayl D = [node tag]-2;
#i f (REUSE_CCSPRI TES == 1)
[sel f dropWthH ghPerformanceltemNthl D:arrayl D] ;
#el se
[sel f dropWthLowPerformanceltenmN'thl D:arrayl D] ;
#endi f

549

550 Chapter 16 Performance Optimizations

The updat e method cycles through each of the falling items stored in the CCAr-
ray, checking to see if their position is less than 10 on the y-axis. If so, they are reset.
The dr opWt h methods work as follows:

dr opWt hLowPer f or mancel t emWt hl D: Method removes the CCSprit e item

from the layer or CCSpr i t eBat chNode, creates a new CCSprit e, and adds it back

in the old one’s place.

dropWt hHi ghPer f or mancel t emWt hl D: Method simply moves the CCSprite

back to the top, slightly offscreen, and restarts the CCMove animation to move the

falling item down. The CCSprit e is not removed from memory, just repositioned.

Testing the Performance Difference

Locate the #defi ne USE_CCSPRI TEBATCHNCDE on the top of the GameplayLayer.m
class and set it to 1.

#defi ne USE_CCSPRI TEBATCHNCDE 1

Click Run and try out the PerformanceTestGame on your iPad. You should see the
performance jump back to 60 fps on an iPhone4 or an iPad. On the iPhone 3G, you
will not see 60 fps but an improvement over running this project without using the
CCSpriteBat chNode.

Reducing the OpenGL bind calls from many textures down to one texture and
batching the OpenGL draw calls greatly improves performance. Even a small texture
atlas can make a big difference in your performance. The texture atlas for the falling
items was small, only 256 X 256 pixels. The reduction in texture binds from individ-
ual CCSpri t es to using the CCSprit eBat chNode are what provided the performance
improvements. Figure 16.2 shows the texture atlas used for the falling items.

Figure 16.2 Fallingltems texture atlas

CCSprite versus CCSpriteBatchNode

Tips for Textures and Texture Atlases

In order to get the most performance out of using textures, texture atlases, and the
CCSpri t eBat chNode class, you should follow these simple rules.

Minimize the Empty Space in the Texture Atlas

Having a large, empty texture atlas is just as wasteful as having individual sprites. You
want the smallest-sized texture atlas that you can use for your images with the least
amount of empty space.

Use the Smallest Bit Depth Possible for Your Game

In Space Viking you had the bit depth of the PNGs at maximum RGBAS8888. If you
can use smaller bit depth in your images, do so, and make sure you save the texture
atlas using the smaller bit depth (in Zwoptex or TexturePacker). In Cocos2D you can
set the bit depth/texture format used by CCText ure 2D anytime by using the call:

/1 Default texture format for PNG BMP/ Tl FF/ JPEG G F i mages
/1 1t can be RGBA8888, RGBA4444, RGB5_Al, RGB565
/1 You can change anyti ne.
[CCText ur e2D
set Def aul t Al phaPi xel For mat : KCCText ur e2DPi xel For nat _RGBA8888] ;

Use PVR Images if Possible

Use the Imagination Technologies PVRTC format if possible, as PVRTC textures can
be stored in their compressed format directly in the iPhone and iPad GPU memory.
PNG, JPG, and other image formats have to be uncompressed before they are stored in
memory. PVRTC images using the PVRTC protocol work well for real-world images
and photorealistic images, but not as well for pixel art and cartoon drawings. While
PVRTC images generally take up more space on disk (flash memory), they can save
you a significant amount of RAM in the form of texture memory, as they generally
occupy less space than a PNG or JPG image. The PVRTC texture has either 4 bits or
2 bits of color data per pixel. Cocos2D also supports a special format of PVR images
called PVR.CCZ, which is a PVR image that is has been gzip compressed so that it
takes up less space on disk. It is decompressed by Cocos2D when it is loaded, before
being passed to the GPU.

Use Smaller Images and Scale Up

Another trick is to use smaller images and scale them up. Depending on the images in
your game, you can use half-sized images and scale them up.

CCSprite *sprite = [CCSprite spriteWthFile: @i mage. png"];

/1 Setting the Scale as a property

[sprite setScale:2.0f];

/] Setting the Scale via an Action
[sprite runAction:[CCScal eBy acti onWthDuration: 1. 5f scale:2. 0f]];

551

552

Chapter 16 Performance Optimizations

Use the FlipX and FlipY for Reverse Images

If you need the reverse of an image either horizontally or vertically, use the H i pX or
H i pY parameter instead of storing two images of your character facing left and right.
You used the H i pX setting in Space Viking to make Ole face left or right depending
on his direction of movement.

[sprite setFlipX YES]; // Flip the image Horizontally
[sprite setFlipY:YES]; // Flip the image Vertically

Allocate your CCSprites When a Layer Is Initialized

If you have a significant number of CCSpr it es being used in your game, it is benefi-
cial to allocate them when the layer/scene or level is first initialized. This way, most
of the memory allocation activity is done before gameplay begins and not during. In
the PerformanceTestGame, all 500 falling items are initialized in the i nit method of the
Gamepl ayLayer. Preallocating your CCSpr i t es or other game elements is always a
balance between performance and trying to keep your memory footprint as small as
possible. Do not read this tip as a free pass to allocate thousands of elements on the

i nit method of your layers.

Flush Unused Textures

When writing your games, you may have different textures and texture atlases for the
various scenes and levels. Cocos2D maintains a texture cache of every image/texture
you load so that if you want to reuse it, it will not have to waste time loading it from
flash storage. While this can save on loading time, it can consume a significant portion
of the available memory.

The Cocos2D texture cache (CCText ur eCache) is a singleton that can be called
from anywhere in your game. After you have deallocated a scene and are no longer
using those textures, a call to r emoveUnusedText ur es will remove them from
memory.

[[CCText ureCache sharedText ureCache] renpveUnusedText ures];

Reusing CCSprites

Another optimization you can make in your game is to reuse CCSpr it es that you
allocate for your enemies or bullets. Any image in your game that you are going to be
using repeatedly is a good candidate for reuse.

In the PerformanceTestGame the CCSprit es are all stored in a CCArr ay so that
they can be easily reused. The REUSE_CCSPRI TES #defi ne determines if the low-
performance or high-performance reuse method is called.

Open the GameplayLayer.m class and navigate to the dr opWt hLowPer f or mance-
It emWt hl D method shown in Listing 16.4.

Reusing CCSprites 553

Listing 16.4 What not to do: dropWithLowPerformanceltemWithiD method

-(voi d)dropWthLowPerformancel temNthlD: (int)arraylD {
CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze;
CCSprite *item = [dropEl enentsArray object Atlndex:arrayl D] ;
[dr opEl ement sArray renmoveObj ect At | ndex: arrayl D] ;
[item stopAll Actions];
[item renmoveFronPar ent AndCl eanup: YES] ;
item= nil;

item= [CCSprite spriteWthFile:[self getNextltenFileNane]];

#i f (USE_CCSPRI TEBATCHNODE == 1)
item= [CCSprite spriteWthSpriteFranmeNane:
[sel f getNextltenFil eNane]];
[sceneSpri t eBat chNode addChild:item
z:arrayl D+2
tag: arrayl D+2] ;
#el se
item= [CCSprite spriteWthFile:[self getNextltenFileNane]];
[sel f addChild:item z:arrayl D+2 tag: arrayl D+2];
#endi f

[dropEl enentsArray insertObject:itematlndex:arraylD;

int randomX = randon() % 1024;

[item set Position:ccp(randomX, screenSi ze. hei ght)];

fl oat randonDurati on = CCRANDOM 0_1() * 5.0f;

id nmoveAction = [CCMoveTo actionW thDuration: randonDuration
posi tion: ccp(randonX, 0)];

[item runAction: noveAction];

The dropWt hLowPer f or mancel t emWt hl D method illustrates an incorrect way to
use CCSprit es in your games. In this method, as each falling item reaches the bottom of
the screen, it is deallocated and a new CCSprit e is created to take its place. There are a
lot of memory copy operations in removing, deallocating, then allocating and readding a
new CCSprit e to the CCArray and the CCSprit eBat chNode or CCLayer.

The better way to reuse CCSpri t es is shown on the dr opWt hHi ghPer f or mance-
I'temWt hl D method shown in Listing 16.5.

Listing 16.5 Reusing CCSprites dropWithHighPerformanceltemWithID method

-(voi d)dropWthH ghPerformanceltemNthlD: (int)arrayl D {
CGSi ze screenSize = [CCDirector sharedDirector].w nSize;

CCSprite *item = [dropEl enentsArray objectAtlndex:arraylD];
[item stopAll Actions];

554

Chapter 16 Performance Optimizations

int randonX = randon{) % 1024,

[item set Position: ccp(randonX, screenSi ze. hei ght)];

float randonmDuration = CCRANDOM O_1() * 5.0f;

id moveAction = [CCVvbveTo actionWthDuration: randonDuration
posi tion: ccp(randonX, 0)];

[item runAction: noveAction];

The dr opWt hHi ghPer f or mance method shows the correct way to reuse a
CCSprite. In this case the CCSpri t e is just moved back to the top of the screen
and the CCMbve action is added to it once more. In your game you may have the
CCSpr it es fading out or even carrying out an animation. You can easily reset them to
the original frame, stop all of the actions, and reuse them.

The falling items are just meant as an example; in your game you may have a lot of
bullets or laser beams or little enemies moving around the screen. Check to see if you
can reuse those elements instead of creating new ones.

To turn on the dropWt hHi ghPer for mancelt emWt hl D method, set the
REUSE_CCSPRI TES to 1 (on).

#def i ne REUSE_CCSPRI TES 1

If you click Run, you can execute the PerformanceTestGame running with the
CCSpri t es being reused. The next two sections contain some tips on using the
Cocos2D Profiler and the Instruments tool to diagnose which parts of your code are
causing performance issues.

Profiling within Cocos2D

Cocos2D comes with a built-in mini-profiling tool that can help you determine how
much time is being spent in your methods. Perhaps you need an easy way to see if that
enemy artificial intelligence method is taking too long or if the path-finding algo-
rithm you used is causing the sluggishness. In this section you learn how to turn on
time profiling in Cocos2D by adding it to the PerformanceTestGame project.

The Cocos2D Profiler is a set of classes that provide millisecond-level timers for
you to wrap around methods or any parts of your code that you want to easily mea-
sure. Once a second, the results of all the profiler timers are displayed to the console.

To start, open the Cocos2D folder in the PerformancelestGame and locate the
ccConfig.h file. Inside the ccConfig.h file, change the CC_ENABLE_PROFI LERS to 1 so
that the required classes are compiled into Cocos2D. Save the change to the «Config.h
file. Your CC_ENABLE_PRCFI LERS line in c«cConfig.h should look as follows:

#define CC_ENABLE_PROFI LERS 1

Next, open up the GameplayLayer.h header file and add the following two instance
variables bracketed by a #i f as shown in Listing 16.6.

Profiling within Cocos2D

Listing 16.6 Profiling variables in GameplayLayer.h header file

/'l Ganepl ayLayer. h
/1 PerformanceTest Game
/1
#i mport <Foundati on/ Foundati on. h>
#i mport "cocos2d. h"
@nterface Ganepl ayLayer : CClLayer {
CCSprite *Viking;
int currentltenirag;
CCArray *dropEl enent sArray;
CCSpri t eBat chNode *sceneSpriteBat chNode;

#if CC_ENABLE_PROFILERS
CCProfilingTimer *resetSpriteProfiler;
CCProfilingTimer *updateLoopProfiler;
#tendif
}
@nd

All of the profiling code you add should always be bracketed by the #i f CC_
ENABLE_PROFI LERS block so that it is compiled in only when the profilers are
included via the change to c«cConfig.h and not compiled when the CC_ENABLE_PRO
FI LERS is turned off. In the next four listings are the definitions for a profiler to track
the time in the updat e loop and another to track the time in the CCSpri t e reset
methods.

Switch over to the GameplayLayer.m file and scroll down to the i nit method. Add
the lines shown in Listing 16.7 to the top of the i nit method directly below the
screenSi ze declaration.

Listing 16.7 Profiling setup inside of init method in GameplayLayer.m

CGSi ze screenSize = [CCDirector sharedDirector].w nSi ze;
#i f CC_ENABLE_PROFI LERS
resetSpriteProfiler = [[CCProfiler
timerWthName: @reset Sprite”
andl nstance: sel f] retain];
updat eLoopProfiler = [[CCProfiler
timer Wt hNane: @ updat eProfiler”
andl nstance: sel f] retain];
#endi f

The reset SpriteProfiler and updat eLoopProfil er are initialized and given
a unique name. The next step is to add the begi nTi m ng and endTi m ng profiler
calls in the dr opWt hLowPer f or mancel t emWt hl D and the dr opWt hHi gh-
PerfltemNt hl D methods.

555

556

Chapter 16 Performance Optimizations

In the GameplayLayer.m class, locate the dr opWt hLowPer f or mancel t emWt hi D
and dr opWt hHi ghPer f or mancel t emWt hl D methods. In the beginning of these
two methods, add the lines shown in Listing 16.8. Then, at the end of both methods,
add the lines shown in Listing 16.9.

Listing 16.8 Profiler BeginTiming bracket in GameplayLayer.m

#i f CC_ENABLE_PROFI LERS
CCProfilingBegi nTi m ngBl ock(resetSpriteProfiler);
#endi f

Listing 16.9 Profiler EndTiming bracket in GameplayLayer.m

#i f CC_ENABLE_PROFI LERS
CCProf i |l i ngEndTi m ngBl ock(resetSpriteProfiler);
#endi f

The final step to set up the profilers is to add the beginning and end blocks to
the updat e method. Add the begi nTi m ng and endTi m ng blocks to the updat e
method inside of GameplayLayer.m, as shown in Listing 16.10.

Listing 16.10 BeginTiming and EndTiming blocks in update method inside of
GameplayLayer.m

-(void) update: (ccTine)deltaTime {
#if CC_ENABLE PROFILERS
CCProfilingBeginTimingBlock (updateLoopProfiler);
#endif
CCNode *node;
CCARRAY_FOREACH(dr opEl enent sArray, node)

{
if ([node tag] > 1) {
if ([node position].y < 10.0f) {
int arraylD = [node tag]-2;
#i f (REUSE_CCSPRI TES == 1)
[sel f dropWthH ghPerfltemNthlD: arrayl D] ;
#el se
[sel f dropWthLowPerformanceltemWthlD: arrayl D] ;
#endi f
}
}
}

#if CC_ENABLE_PROFILERS
CCProfilingEndTimingBlock (updateLoopProfiler) ;
#endif

Using Instruments to Find Performance Bottlenecks

If you click Run, you will see timing results on the Xcode console. Figure 16.3
shows the PerformanceTestGame console messages for the updat eLoop and reset Sprite
profilers.

Figure 16.3 Console showing output from updateLoop and
resetSprite profilers

You can use the built-in Cocos2D profilers to quickly see how long sections of
your game are taking to execute without having to write the timing code yourself. If
you use the #i f brackets shown in this section, you can easily turn all the profiling
code on or off via the ccConfig.h file.

The next section takes your profiling skills further by covering a portion of Apple’s
Instruments tool.

Using Instruments to Find Performance
Bottlenecks

Apple provides an excellent profiling tool along with Xcode called Instruments.
Instruments is capable of a variety of performance and analysis methods, and it is a
much larger topic than can be covered in one chapter. This section offers an overview
and some pointers in using Instruments with your Cocos2D games.

Note

If you are not familiar with Instruments, Apple provides a detailed Instruments User’s
Guide at https://developer.apple.com/library/prerelease/ios/#documentation/Developer-
Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/
uid/TP40004652.

A great set of WWDC 2010 Videos on Instruments is available for free to any registered
Apple iPhone Developer.

557

https://developer.apple.com/library/prerelease/ios/#documentation/Developer-Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652
https://developer.apple.com/library/prerelease/ios/#documentation/Developer-Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652
https://developer.apple.com/library/prerelease/ios/#documentation/Developer-Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652

558

Chapter 16 Performance Optimizations

It is important that you run any performance metrics on the actual iPhone, iPad,
or iPod touch you are targeting. Performance measurements on your Mac are mean-
ingless, as the architecture and underlying hardware are vastly different from the iOS
devices. Running the Leaks instrument to catch memory leaks is useful on the iPhone
simulator; for everything else, run Instruments against a build on the device.

Warning

When profiling your code, make sure you are not running a Debug build. The Debug build
adds a significant number of checks and is slower due to the CCLOG calls. In Xcode make
sure you can always select Build for Profiling under the Product menu and use Profile
instead of the Run command.

Xcode contains a couple of very handy templates for launching instruments precon-
figured with what you would want to look at. The next sections cover some of these
built-in templates.

Time Profiler

The Time Profiler template captures the CPU utilization of the device and how

much time each portion of code spends on the CPU. It tracks both your code and any

frameworks or system libraries called by your code. By default, the information is dis-

played in an inverted call tree, showing the called code on top and the caller below it.

With Invert Call Tree selected, if method A calls method B, you will see B on top and
A below it.

Make sure you have the USE_CCSPRI TEBATCHNCDE set to zero so that it is off. In
Xcode select Profile and then pick the Time Profiler. After you have collected data
for a few seconds, you should have in Instruments something similar to Figure 16.4.

If you look closely at Figure 16.4, you can see that the iPad is spending a lot of the
CPU time running gl eUpdat eDef er r edSt at e. In fact, there are quite a few gl e
entries on the top of the Call Tree Samples list. This is an indication that the OpenGL
ES driver is doing a lot of work, maybe more than it should. If you look further down,
you can see that nodeToPar ent Tr ansf or mis the method taking quite a bit of time,
and you can see that it is called by the CCDi r ect or | OS dr awScene method. All of
those separate sprites have to be drawn one at time, causing a lot of work for the CPU
and GPU. The CPU utilization is between 65 and 75 percent on the iPad.

Change the USE_CCSPRI TEBATCHNCDE #defi ne to 1 (on) and select Profile
under the Products menu. You will now have on the iPad a version of the Performance-
TestGame that uses the CCSpri t eBat chNode.

Once more in Xcode, select Profile and then pick the Time Profiler. You should
have a trace that looks like Figure 16.5.

In Figure 16.5 the Time Profiler shows a completely different picture. Most of the
time is spent in the CCSprit eBat chNode, and in particular in the dr aw method,
which is drawing all of the CCSpri t es. The next item on the list is the gl eRun-

Ver t exSubm t ARM, which is submitting the draw data to the GPU. Note how the
CPU utilization is also much lower at around 24 percent.

Using Instruments to Find Performance Bottlenecks 559

Figure 16.4 Time Profiler on PerformanceTestGame running at 40 fps

Figure 16.5 Time Profiler on PerformanceTestGame running at 60 fps

560

Chapter 16 Performance Optimizations

As you can see, by using the CCSpr i t eBat chNode, you are utilizing the GPU on
the device much more efficiently, the CPU utilization is down, and the frames per
seconds are up.

OpenGL Driver Instrument

To get a better feel for what the GPU is doing, there is an excellent OpenGL Instru-
ment that can record what the utilization is on the renderer and til er units in the
GPU.

The OpenGL Driver Instrument is easily available from within Instruments. To use it:

1. First, change the PerformanceTestGame back to not using CCSpr it eBat ch nodes
and close Instruments if it is running.

1. In Xcode, select Profile and then choose the OpenGL ES Driver
Instrument.

2. Click on info on the OpenGL ES Driver and click Configure. Select the fol-
lowing attributes to track:

Device Utilization %

Renderer Utilization %

Tiler Utilization %

Keep ResourceBytes and CoreAnimationFramesPerSecond selected.

3. Click done and check that all of the selected parameters from step 3 are checked
(turned on) in the OpenGL ES Driver.

Figure 16.6 shows the parameters selected in the OpenGL ES Driver Instrument.

Figure 16.6 OpenGL ES Driver Instrument configuration

Using Instruments to Find Performance Bottlenecks 561

If PerformanceTestGame is not already running, click the Record button and cap-
ture about a minute or so of the PerformanceTestGame running without CCSpri t e-
Bat chNode on your iOS device. Figure 16.7 shows what the instruments trace for the
OpenGL ES Driver looks like for the iPad.

Figure 16.7 OpenGL ES Instrument on PerformanceTestGame with
CCSpriteBatchNode turned off

You can see Device Utilization is around 72 percent, but Renderer Utilization is
only at 66 percent. To risk oversimplifying, the Renderer Utilization represents the
fragment shader portion of the GPU, and the Tiler Utilization represents the vertex
processing section of the GPU. The Device Utilization represents how busy the GPU
is doing the rendering and tiling work combined. The Render er is affected by the
amount of texture data the GPU is processing. The important thing to note here is
that neither the Device Utilization nor the Renderer Utilization are close to 100 per-
cent, and the frames per second are stalled at around 44 fps. It is an indication that
perhaps PerformanceTestGame is not sending data between the CPU and GPU in an
efficient manner, so the GPU could be waiting for memory access or instructions from
the OpenGL Driver.

562

Chapter 16 Performance Optimizations

Change the PerformanceTestGame to use the CCSpr it eBat chNode and select
Profile once more in Xcode under the Product menu. Xcode automatically builds the
Per f or manceTest Pr oj ect and starts another OpenGL ES Driver Instrument cap-
ture inside of the Instruments tool. Record for about a minute to see the changes. Fig-
ure 16.8 shows what the OpenGL ES Driver Instrument result looks like on the iPad.

Figure 16.8 OpenGL ES Instrument on PerformanceTestGame with
CCSpriteBatchNode turned on

Figure 16.8 shows quite a different picture: the Device Utilization and Renderer
Utilization are much closer to 100 percent, and the frames per second have jumped
back up to 60. Since Cocos2D games are 2D, they contain a small amount of vertex
data, meaning that the Ti | er (vertex processing) section of the GPU is not going to
get much work sent its way. Lowering the bit depth of the images used in the game
would improve your performance further, as less texture data would need to be moved
between the CPU and GPU. You can see that the GPU in the iPad is working at full
capacity.

Challenges

If you need even more detailed data than Instruments can provide, there is another
tool included with Xcode called Shark. Apple has a User’s Guide to Shark at https://
developer.apple.com/library /ios /#documentation/DeveloperTools/Conceptual /SharkUserGuide/
Introduction/Introduction.html.

This section was a small sample of what kinds of profiling data you can access with
the Instruments tool. There is a great set of information available to you in the Instru-
ments tool, and even the ability to create your own instruments. Do not hesitate to
read Apple’s documentation so you can get the most out of this performance analysis
tool.

Summary

In this chapter you learned a few of the performance tricks and tips you can use to
keep your Cocos2D game running smoothly at 60 fps. You built a quick example of
using the built-in Cocos2D Profiler and learned about Apple’s Instruments tool. From
the beginning of the book until now, you have learned the basics of Cocos2D and
how to use every part of the framework in making Space Viking.

Your learning does not have to stop here: game development is a deep and rich
field. You can learn more about artificial intelligence for your enemies, path finding,
physics, and a whole lot more when it comes to rendering and effects. You can even
start learning about OpenGL and mix in your own OpenGL rendering code inside of
Cocos2D. Simply override the dr aw method in your CCNode or CCSprit es to add
your own OpenGL code alongside Cocos2D.

Challenges

1. Further optimize PerformanceTestGame so that the CCMbve actions are reused and
not allocated and deallocated each time that the CCSpri t es need to restart their
motion.

2. The last challenge left for you is to create your own game using the knowledge
and skills you learned and publish your game to the iOS or Mac AppStore. Ray
and I look forward to seeing what games you create, and we wish you the best of
luck. Your idea could be the next top AppStore game!

563

https://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/SharkUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/SharkUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/SharkUserGuide/Introduction/Introduction.html

This page intentionally left blank

17

Conclusion

Throughout this book you have learned how to create a full game using Cocos2D,
Box2D, and Chipmunk. You started out by learning the basics of the Cocos2D frame-
work, and about scenes, layers, sprites, and sprite sheets. You then moved on to putting
Space Viking together, getting Ole the Viking on the screen, and adding a set of joy-
stick controls.

From this humble beginning, you learned how to add animations and enemies to
Space Viking. You dived into a small sampling of how to configure an enemy’s brain
by designing a simple artificial intelligence (AI) system out of a state machine. You
moved on from static enemies like the Radar Di sh to the EnemyRobot that patrols
and seeks out Ole, and if it spots Ole, fires a shot off his phaser. You covered anima-
tions and actions in detail, even building a complex action sequence to drive the
SpaceCar goShi p around the level. Figure 17.1 shows the progression of Space Viking.

Figure 17.1 Progression of Space Viking

566

Chapter 17 Conclusion

After learning about actions and animations, you worked on building some of the
non-gameplay elements, by creating the menus used in Space Viking and a live text
debug system. Along the way you discovered how Cocos2D renders fonts and how to
use Font texture atlases for lightning-fast text labels.

Beyond the menus and labels, you moved on to CocosDenshi on, the full-featured
sound engine included with Cocos2D. You added a set of background music tracks to
Space Viking and sound effects for every part of the game, from the menu click to the
explosions when Ole smashes the EnemyRobot .

The next step for you was to make the alien world larger by learning how to imple-
ment scrolling in Cocos2D. You learned about parallax scrolling, infinite scrolling,
and even using tile maps to have large scrolling backgrounds that take just a little bit
of memory.

Scrolling added a whole new dimension to the Space Viking game, but to bring in
the realism, the next chapters took you through an introduction and a complete guide
in using the Box2D physics engine included with Cocos2D. You created a mine cart
layer with an evil enemy drill robot Ole had to defeat. Not only did you learn and
incorporate physics, but you even picked up tips on how to create a boss scene at the
end of a level. After discovering the intricacies of Box2D, you worked on the Chip-
munk physics engine and created a frantic escape level for Ole to try to make it out of
the cave before it exploded. Figure 17.2 shows the two physics levels you created.

Figure 17.2 Physics levels in Space Viking

Having built several levels with and without physics, and even a puzzle level, you
learned about Apple’s GameCenter API and how to add achievements and leaderboards
to your own games.

The last topic on Cocos2D was on particle systems. You learned how to use Particle
Designer to design and create your own particle systems and how to incorporate them
into your own games using Cocos2D. You added three different particle systems to
Space Viking to give the SpaceCar goShi p an exhaust plume and make it snow on the
alien desert.

To round off your game development knowledge, you learned how to optimize
your code and some of the common pitfalls that can hamper performance in your own
games. You even saw how to use the Cocos2D profiler and Apple’s Instruments tool.

Android and Beyond

Where to Go from Here

Cocos2D is a 2D game engine even though the OpenGL and OpenGL ES API it relies
on to render the graphics supports 3D. If you want to take your games into the third
dimension, you have at least three options: using the Cocos3D extension, learning
OpenGL, or using a middleware tool such as Unity3D.

The Cocos3D extension allows you load and use 3D models in a special layer
within Cocos2D. You can mix and match 2D and 3D objects and connect them
together. Cocos3D is written in Objective-C and works alongside Cocos2D to create
the OpenGL calls to render your game. It is brand new as of this writing and looks to
be a really great addition to the Cocos2D family. You can find out more about it here:
http://brenwill.com /cocos3d.

You can also learn how to program the OpenGL and OpenGL ES API directly.
You could start by looking inside the CCNode class for what OpenGL calls relate to
that node being rendered.

If you want to learn more about OpenGL ES, I strongly recommend Mike Daley’s
book Learning iOS Game Programming, as it covers making a full TileMap game using
OpenGL ES. OpenGL and OpenGL ES are complex topics, and depending on what
you are looking to do, there is a bit of math behind it. Don’t be alarmed: you already
picked up Cocos2D—this is simply the next step in becoming an even better game
developer.

Unity3D provides a whole platform for you to develop on, from asset manage-
ment to game logic. The rendering engine is 3D and creates the OpenGL calls for
you behind the scenes. It is free to use if developing for the Mac, but there is a license
required to deploy on the iOS devices. You can learn more about Unity3D here:
http://www.unity3d.com.

Android and Beyond

There are now additional ports of Cocos2D to other platforms beyond Objective-C.
While the language and syntax used in these ports is different from Objective-C, all of
the Cocos2D fundamentals and techniques you learned would apply to these and other
frameworks based on Cocos2D. Three ports getting a lot of attention are Cocos2D-
Android-1, Cocos2D-X, and Cocos2D-JavaScript.

Cocos2D-Android-1

Port of Cocos2D to Java for the Android operating system. At the time of this writ-
ing, it is based on Cocos2D 0.99.4. More information can be found at http://code.
google.com/p/cocos2d-android-1/.

Cocos2D-X

Cocos2D port written in C++. This port of Cocos2D runs on the iOS devices,
just like Cocos2D, and also on Windows and Bada (Samsung), and there is work to

567

http://www.unity3d.com
http://brenwill.com/cocos3d
http://code.google.com/p/cocos2d-android-1/
http://code.google.com/p/cocos2d-android-1/

568

Chapter 17 Conclusion

bring it to Android. Many other portable game consoles, such as the Sony PlaySta-
tion Portable (PSP) and Nintendo DS, have compilers for C++, so it is not too far

off to think that this port could be used there. In other areas of game development,
C++ is a much more common language then Objective-C. More information can

be found at www.cocos2d-x.org/.

Cocos2D-JavaScript

If you are interested in building web-based games, there is a port of Cocos2D to
the JavaScript language. It is an excellent framework for bringing your Cocos2D
games to any device with a modern browser. More information can be found at
www.cocos2d-javascript.org/.

Cocos2D now offers native support for the Mac, so you can start making Mac OS
X games as well as 1OS ones. In fact, you can port your i1OS games to Mac OS X with
little effort if you have used Cocos2D.

Final Thoughts

We hope to have done a good job teaching you both the fundamentals and the in-
depth usage of the Cocos2D framework to make games. We joke that the trials of Ole
the Viking may have provided some comic relief as you made your way through the
book and source code. With the knowledge and confidence you learned in this book,
you are ready to create your own games with Cocos2D and get them in the AppStore.
Remember that you can reuse any of the code in this book in your games for free. It is
our hope you will find some of the classes, methods, or techniques useful.

You can keep up to date with this book and the Space Viking sample code at http://
cocos2dbook.com. We wish you success in your games and look forward to playing them!

www.cocos2d-x.org/
www.cocos2d-javascript.org/
http://cocos2dbook.com
http://cocos2dbook.com

Appendix

Principal Classes of Cocos2D

In order to use Cocos2D, it is important to understand a few key classes in the
Cocos2D framework. To avoid conflicts with your classes or other libraries and frame-
works, all of the Cocos2D classes start with CC. When you see Di r ect or, Scene,
Layer, Sprite, and other Cocos2D classes in this book, they are referred to by their
class name, such as CCDi r ect or, CCScene, CCLayer, and so forth. Knowing these
classes wilsl make it easier for you to work through the tutorials in this book:

= CCDirector

The director design in Cocos2D is similar to a director’s role in movies. The
director controls when a scene starts and ends and the transitions between each
scene. Do not fret; you are still in full control over the director in your role

as the game producer. In addition, the director is responsible for maintaining
and running the game loop. The CCDi r ect or class is responsible for setting
up the OpenGL ES context into which the CCNodes (sprites and other classes)
will draw. The director also sets up the orientation and projection settings in
OpenGL ES. You will learn how to use the director throughout this book as
well as when to use each of the four types of directors included in Cocos2D.

The four types of directors in Cocos2D are:
= CCDirector TypeNSTi ner
This is the director to use if you plan on mixing Ul Ki t views or objects with

Cocos2D and you are targeting an iOS version prior to 3.1. It is the slowest
director, and the update interval is customizable from 1 to 60 frames per second.

= CCDi rector TypeMai nLoop
The main loop director is slightly faster than the NSTi mer director and is
fired off from a custom main loop on the main thread. It does not integrate
well with Ul Kit objects, and the update interval cannot be customized.

= CCDi rector TypeThreadMai nLoop
This director has the timer on a separate thread that triggers the main loop on

the main thread. It is also faster than NSTi ner director. It does not integrate
well with Ul Kit objects, and the update interval cannot be customized.

570

Appendix Principal Classes of Cocos2D

= CCDirectorTypeDi spl ayLi nk
This director utilizes CAD spl ayLi nk to synchronize the run loop timer
and drawing with the refresh of the screen. It is available only on 1OS 3.1 and
higher. It integrates well with UIKit objects, and the update interval can be
set to 60, 30, or 15 frames per second.

CCNode

The Cocos2D node is the main class used in Cocos2D. CCNode contains all of
the necessary code to render itself using OpenGL ES. CCNode also contains the
logic to enable it to schedule and unschedule events on itself as well as to per-
form Cocos2D actions. Everything that is rendered by the Cocos2D Director is
a CCNode or a subclass of it.

CCSprite

A Cocos2D sprite is a subclass of CCNode and contains the necessary logic to
hold and manipulate your image. The CCSprit e works in parallel with other
Cocos2D classes, such as the Text ur eCache, to display your images onscreen.
CCSprit eBat chNode

A sprite batch node is a combined collection of CCSprit es. The sprite batch
node also goes by the name of sprite sheet in older Cocos2D releases. Sprite
batch nodes are used to reduce memory usage and increase OpenGL ES perfor-
mance. You can combine many sprites into a single sprite batch node, greatly
reducing the OpenGL ES CPU overhead required to render the sprites individu-
ally. The CCSprit eBat chNode requires a texture atlas, covered in Chapter 3.

CCLayer

A Cocos2D layer is a subclass of CCNode with the extra ability to receive touch
and accelerometer events. All of the sprites and other elements in your game

are contained within layers. In the beginning of the book, the game has only
two layers: a background and a gameplay layer. The gameplay layer is where the
sprites for your player and enemy characters reside.

CCScene

The scenes in Cocos2D hold all that is visible onscreen. The scene is a container
of CCLayer s and other graphical objects that you want to display or interact
with on the screen. The director is responsible for loading, running, and then
unloading the scenes. The game you develop in this book starts with a game-
play scene, followed by a menu, and then level-completed and credits scenes.
CCScenes are simple container classes to hold your CCLayer s and other elements
of your game.

Symbols and Numbers

? (Ternary operator), 134-135
3D
2D vs., XXV
extensions to Cocos2D, 567
z values in, 33

A

AABB (axis-aligned bounding boxes)
avoiding object overlap, 77
searching for objects in Box2D world,
305-307
Accelerometer
cart movement example, 355-358
commenting out, 319
enabling support for, 302-303
implementing movement in Box2D, 281
implementing movement in Chipmunk,
451, 454-455
Accounts
iOS Developer Program account, 497-498
iPhone Developer account, 20
Sandbox accounts, 514
Achievements
adding to iTunes Connect, 515-517
displaying within apps, 534-536
GanmesSt at e class and, 519-521
helper function for sending achievement
data, 524-530
helper functions for loading/saving
achievement data, 522-524
how they work, 517-518
implementing, 518
overview of, 515
using GanesSt at e and GCHel per classes
in Space Viking, 530-534
Action layer, getting started with Chipmunk,
423-425

Index

Actions. See also Animation (CCAni mat i on)
CCMbves and CCScal e actions in Space
Cargo ship, 123
compound, 99
effects packaged as, 145
Ganepl ayLayer class and, 127
key features in Cocos 2D, xxiii
number O Runni ngAct i ons method, 135
overview of, 66—67
space cargo ship and, 125
addChi | d method, CCPar al | axNode,
251-252
addEneny method, 143-144
addScrol | i ngBackgr ound method, 245
addScrol | i ngBackgroundWt hPar al | ax
method, 250-252
addScrol | i ngBackgr ound-
wi t hTi | eMapl nsi dePar al | ax
method, 272-275
adj ust edBoundi ngBox method
enemy robot, 137
Ole the Viking, 100-103
adj ust Layer method, 245247
Al (artificial intelligence)
design basics, 65
game logic and, 63
Anchor points
for Game Start banner, 153—154
overview of, 153
for rotation and other effects, 154
Android, Coscos2D-Android, 567
Angular impulses, Box2D
controlling flipping of cart, 368369
overview of, 368
Animation (CCAni mat e)
actions and, 66
approaches to animation, 57
creating actions, 58
delays between frames and frame list, 61

Index

Animation (CCAni mat i on)
actions and, 66—67
animating sprites generally, 57-60
animating sprites rendered by
CCSprit eBat chNode, 60—-61
caching, 62
delays between frames and frame list, 61
frame rate in, 61
overview of, 57
storing animation data in plist files, 61,
67—69
Animation, generally
adding background animation that inter-
acts with game, 122
of breathing, 103
changesSt at e method for starting, 95-98
helper methods for, 411
initiating for Radar Di sh class, 88—89
initiating for Vi ki ng class, 103—105
of Ole the Viking in Chipmunk, 469-473
repeating, 67, 120
App ID, creating, 498-501
App Store, 497
Application Delegate (AppDel egat e)
ApplicationD dFi ni shLaunchi ng
method, 14-15
commanding director to run game scene,
34-35
in HelloWorld app, 15-18
ApplicationD dFi ni shLaunchi ng
method, AppDel egat e class, 14—15
appl yJoystick method, Vi ki ng class, 94
Apps
creating App 1D, 498-501
displaying achievements in, 534-536
enabling support in Game Center,
505-506
registering in iTunes Connect, 501-505
Arbiters, collision events and, 446
ARCH_OPTIMAL_PARTICLE_SYSTEM,
482
artificial intelligence (AI)
design basics, 65
game logic and, 63
Assignment operator, combining i f state-
ment with, 134-135

Attack buttons, added to Ganepl ayLayer
class, 108
Attack phase, Radar Di sh class and Vi ki ng
class and, 88
Attack state, enemy robot and, 132—133
Audio
adding audio files, 198
additions to game manager header and
implementation files, 204-205
audio constants, 198-201
CocosDenshion sound engine, 197-198
getting list of sound effects, 208211
i ni t Audi oAsync method, 206207
initializing audio manager (CDAudi o-
Manager), 207-208
loading asynchronously, 203-204
loading sound effects, 211-213
loading synchronously, 201-203
loading/unloading audio files, 214-215
music added to Ganmepl ayLayer, 228
music added to Mai nMenu, 228-229
music and sound eftects in Chipmunk,
473474
pl aybackgroundTr ack, st opSound-
Ef f ect, and pl aySoundEf f ect
methods, 213-214
setting up audio engine, 205-206
Si npl eAudi oEngi ne, 229-230
sound engine in Cocos2D, xxiv
sounds added to EnenmyRobot , 219-222
sounds added to game objects, 215-216
sounds added to Ole the Viking, 222-228
sounds added to Radar Di sh, 216-217
sounds added to SpaceCar goShi p,
217-219
Audio constants, 198—201
Audio engines
setting up, 205-206
Si npl eAudi oEngi ne, 229-230
Audio files
adding to Space Viking project, 198
loading/unloading, 214-215
Authentication
notification of changes to authentication
status, 508—514
of players in Game Center, 507-508

AVAudi oPF ay, audio framework for iOS
devices, 197
Axis-aligned bounding boxes (AABB)
avoiding object overlap, 77

searching for objects in Box2D world,
305-307

Background color, Particle Designer controls,
487
Background layer
adding background music in Chipmunk,
473—474
adding in Chipmunk, 474-476
addScrol | i ngBackground method,
245
connecting background and game layers
to a scene, 31-32
creating for Space Viking project, 26-29
creating wave action in, 146—148
splitting into static and scrolling layers,
237-239
Background threads
adding audio asynchronously in, 201
managing, 204
begi n events, collision-related events in
Chipmunk, 445, 448—-449
Bind calls, OpenGL ES, 45, 48
Bit depth, performance tips and, 551
Bitmapped fonts, 155, 179
Bodies, Box2D
cr eat eBodyAt Locat i on method, 338
creating, 292-295
creating drill sensor for Digger Robot,
401-402
creating for Ole and connecting with
joints, 376
creating ground body in Puzzl eLayer,
299-302
creating multiple bodies and joints,
378-380
decorating, 313-320
good and bad ways for placing, 379-380
set Li near Vel oci ty method, 415
Bodies, Chipmunk
adding, 420
adding box to Chipmunk space, 431-433

Index

constraints acting on, 457—458
creating revolving platform, 459-460
directly setting velocity, 444
Bottlenecks, finding, 557-558
Bounding boxes
for avoiding object overlap, 77
Eyesi ght Boundi ngBox method, for
enemy robot, 129
Box2D
bodies. See bodies, Box2D
Chipmunk compared with, 420—421
source code, 18
template, 7
Box2D, advanced physics
adding dangerous methods to Digger,
405—-411
bridges in, 386-389
creating cinematic fight sequence,
411-416
creating multiple bodies and joints,
378-380
joints in, 376
Ole leaping with ragdoll effect, 381-386
overview of, 375
pitting Ole against Digger in fight,
396—405
prismatic joints, 378
restricting revolute joints, 376—377
spike obstacle in, 390-394
summary and challenges, 417
variable and fixed rate timestamps in,
394-396
Box2D, basic physics
adding files to project, 284-288
creating ground body in Puzzl eLayer,
299-302
creating new scene in Puzzl eLayer,
282-284
creating objects, 292-295
creating world, 289-292
debug drawing, 295-296
decorating using sprites, 313-320
dragging objects, 304-309
getting started with, 279-281
interaction and decoration in, 302-304
mass, density, friction, and restitution in,
309-313
overview of, 279

573

Index

Box2D, basic physics (continued)
puzzle game example, 320-324
ramping up puzzle game, 324-332
units in, 288-289
viewing Puzzl eLayer, 296298
Box2D, intermediate physics
adding resource files, 334-335
adding wheels to cart using revolute
joints, 352-355
controlling flipping of cart, 368-369
creating cart scene for, 335-346
creating custom shapes, 346348
forces and impulses, 368
getting started with, 334
making cart jump, 369-373
making cart move using accelerometer,
355-358
making cart scene scrollable, 358-368
overview of, 333
responsive direction switching, 373-374
Vertex Helper, 348-352
Box2DSprit e class, subclasses for Digger
Robot, 398
Bridges, creating in Box2D, 386-389
Build (z-B), testing build of Space Viking, 33
Buttons
adding to Space Viking, 36—40
connecting button controls to Ole the
Viking, 245

Cc

C++, Box2D written in, 280, 420
C language, Chipmunk written in, 420
Caching
animations, 62, 411
textures, 17
Callback functions, collision detection and,
446
Cargo ship. See Space cargo ship
Cart
adding wheels using revolute joints,
352-355
controlling flipping, 368-369
creating cart scene, 335-346
creating custom shapes, 346348
header and implementation files, 337-338

making cart jump, 369-373
making cart scene scrollable, 358-368
moving using accelerometer, 355-358
cat egor yBi t s, setting object categories,
381-382
CCAni mat e. See Animation (CCAni mat e)
CCAni mat i on. See Animation
(CCANni mat i on)
CCAni mat i onCache, 62, 411
CCCal | Func action, 132-133
CCDi rect or. See Director (CCDi r ect or)
CCFol | ow action, 249
CCJunpBy action, 66
CCLabel class. See Labels (CCLabel)
CCLabel | BMFont class
overview of, 155
using, 159
CCLabel TTF class
adding Game Start banner, 152-153
anchor points for Game Start banner,
153-154
fonts, 155
overview of, 151
CCLayer class. See Layers (CCLayer)
CCLOG macro, for NSLOG method, 41
CCMenu class. See also Menus, 179
CCMenuAt | asFont , 179
CCMenul t enFont , 180
CCMenul t em mage, 180
CCMenul t emLabel , 180
CCMenultentSprite, 180
CCMenul t enfoggl e, 180
CCMoves action, 123
CCNode class. See Nodes (CCNode)
ccp macro, shortcut to CGPoi nt Make
method, 20
CCPar al | axNode
addChi | d method, 251-252
adding TileMap to, 272-275
addScrol |'i ngBackgroundWt hPar al -
| ax method, 250-251
CCParticl eSyst enPoi nt , 481-482
CCParticl eSyst emQuad, 482
CCRepeat, 120
CCRepeat For ever, 67, 120
CCScal e action, 123
CCScenes. See Scenes (CCScenes)

CCSequence, 67
CCSpawn, 67
CCSprite (Sprites). See Sprites (CCSprite)
CCSpri t eBat chNode
animating sprites rendered by, 60—61
Ganepl ayLayer class and, 111
performance benefits of, 255, 545-550
testing use in game layer, 52—53
using texture atlases and, 44—45
CCSpriteFrame, 60
CCSprit eSheet, 134-135
CCTMXTi | edMap, 271
ccTouchBegan method, 304308, 344
ccTouchEnded method, 344
ccTouchesBegan method, 262
ccTouchMoved method, 308-309, 344
CCWaves action, creating wave action in
background, 146—148
CDAudi oManager, initializing, 207-208
CGSi ze, 232-233
changeSt at e method
enemy robot, 129-133
Ole the Viking, 95-98
radar dish, 85-86
Characters. See Game characters
(GameChar act er)
checkAndd anpSpritePosition method
ensuring enemy robot remains within
screen boundaries, 134
ensuring Viking sprite remains within
screen boundaries, 102
ganmeChar act er class and, 233-234
Chipmunk
adding backgrounds, 474-476
adding music and sound eftects, 473—474
adding sprites, 438—444
adding to Xcode project, 426—429
adding win/lose conditions, 476—477
animating Ole, 469-473
Box2D compared with, 420-421
collision detection in, 445—450
constraints in, 455—458
creating a scene, 430—438
following Ole, 467-468
getting started with, 421-426
implementing velocity of sprite, 444
initializing, 429—-430

Index

laying out platforms, 468—469
movement and jumping, 450—-455
overview of, 419—420
pivot, spring, and normal platforms in,
460-466
revolving platform in, 458—460
summary and challenges, 477
surface velocity for ground movement,
445
template, 7
viewing source code, 18
Cinematic fight sequence, creating, 411-416
Classes
converting objects into, 63
creating for Space Viking project, 24-26
creating GanmeChar act er class, 80—-82
creating GameQbj ect class, 74-80
of game objects, 64—65
grouping as organization technique, 70
importing joystick class for Space Viking,
35-36
loose coupling, 117-118
principal classes in Cocos2D, 569-570
Cocos2D-Android, 567
Cocos2D Application template, 7, 284
Cocos2D Box2D Application template, 284
Cocos2D Director. See Director
(CCDi rect or)
Cocos2D, introduction to
important concept, Xiv—xxv
key features, xxiii—xiv
what it is, xxii
why you should use it, xxii—xxiii
Cocos2D-JavaScript, 568
Cocos2D-X, 567-568
CocosDenshion
importing Si mpl eAudi oEngi ne, 205
initializing audio manager (CDAudi oMan-
ager), 207-208
loading audio asynchronously, 203—-204
loading sound effects, 211-213
sound engine, 197-198
viewing source code, 18
Collision filters, Box2D, 381-382
Collisions
checking for, 102
comparing Box2D with Chipmunk, 421

575

576

Index

Collisions (continued)
detecting in Chipmunk, 445450
Digger Robot and, 408
optimizing collision detection in Chip-
munk, 431
Common protocols. See Protocols
Compression formats, 43
Constants
audio, 198-201
for static values used in more than one
class, 71-72
Constraints, in Chipmunk
compared with joints, 420-421
creating pivot platforms and, 462
creating spring platforms and, 463—464
steps in use of, 456—458
types of, 455—456
Control Layer, connecting joystick and but-
ton controls to Viking, 245
Coordinate systems, converting UIKIT to/
from OpenGL ES, 29
cpArbi ter, collision events and, 446
cpPol yShapeNew, 448
CPRevol veP at f or m subclass for revolving
platform, 458—460
CPSprite (Sprites). See Sprites (CPSprite)
CPU utilization, Time Profiler capturing
data related to, 558—560
CPVi ki ng, animating Ole in Chipmunk,
469-473
creat eBodyAt Locati on method, Box2D,
338
createCart At Locat i on method, Box2D,
344
creat ed oud method, pl at for nScrol | -
i ngLayer class, 257-258
creat eGr ound method, carts, 344
createbj ect Type net hod, adding
objects to ganmepl ayLayer class,
141-142
creat ePhaser Wt hDi rection net hod,
142-143
createStati cBackground method, in
pl at for mScrol | i ngLayer, 257
creat eVi ki ngAndPA at f or m method, in
pl atfor nScrol | i ngLayer, 261-262
creat eWheel Wt hSprite, 354

Credits
scene types and, 170
setting up menus, 190
Ctrl-z-D (Jump to Definition), for viewing
source code, 18—19
Cut-scene
creating group for, 252—253
creating scrolling layer in, 254-262

D

Damage taking state
(kSt at eTaki ngDamage)
Digger Robot and, 407-408
for enemy robot, 133
spike obstacle and, 391-392
taking a hit and being restored to previ-
ous state, 99
Damped rotary spring
constraints in Chipmunk, 457
creating pivot platform, 462
Damped spring
constraints in Chipmunk, 457
creating spring platform, 463
Database, loading/saving achievement data to
GCDat abase, 522-524
Dead state (kSt at eDead)
for enemy robot, 133
health at zero level, 103
state transition in Radar Di sh class, 87
deal | oc method, Vi ki ng class, 94
Debug draw
in Box2D, 295-296
in Chipmunk, 434-436
Debugging, creating debug label, 160-165
Decoration, Box2D, 302-304
#def i ne statement
setting object categories, 382
setting up audio filenames as, 199-200
Delegate classes, 118
del t aTi me, scheduler and, 145
density property
for cart wheels, 354
for fixtures, 309-313
Design basics
artificial intelligence and, 65
caching and, 62

classes of game objects, 64—65
object-orientation in, 63
overview of, 62—63
Devices, older
fixing slow performance, 53—-54
power-of-two support, 46
Digger robot
adding dangerous methods to, 405—411
creating cinematic fight sequence,
411-416
pitting Ole against, 396—405
Direction switching, in Box2D, 373-374
Directional pad (DPad)
added to Ganepl ayLayer class, 108
initializing, 111
Director (CCDi r ect or)
running loops and rendering graphics,
1618
running scenes, 11, 34-35
types of, 569
Directory, adding Chipmunk files to Xcode
project, 426—429
Distance joints
in Box2D, 304
Chipmunk damped spring compared
with, 457
Chipmunk pin joint compared with, 456
Downloading Cocos2D, 4-5
DPad (directional pad)
added to Ganepl ayLayer class, 108
initializing, 111
Dragging objects, in Box2D, 304-309
Drill sensors, creating for Digger Robot,
401-402
dr opCar go method, space cargo ship, 125
dropWt hLowPer f or mancel t emWt hl D
method, reusing sprites and, 553—-554
Dynamic bodies, Box2D, 293

EAGLVi ew, rendering game with, 16
Effects, 145-149
anchor points for, 154
comparing Box2D with Chipmunk, 421
creating wave action in background,
146148

Index

packaged as actions, 145
returning sprites and objects to nonaltered
state, 149
running Ef fect sTest, 148
screen shake, 467—468
subtypes of, 146
Eftects library, key features in Cocos 2D, xxiv
Elasticity, setting for ground in Chipmunk
space, 433
Emitters
adding engine exhaust to space cargo
ship, 490494
Particle Designer controls for, 487-488
in particle systems, 481
enabl eLi mi t, restricting revolute joints
and, 377
Enemy characters
Digger Robot. See Enemy robot
enemy robot. See Enemy robot
methods for creating in Ganepl ayLayer
class, 109
Radar Di sh class. See Radar Di sh class
Enemy robot
adding as long as radar dish is not dead,
143144
adding sounds to, 219222
animating, 58-59
changeSt at e method and, 129-133
checking if Viking is attacking, 135
header file, 126—127
implementation file, 127-137
overview of, 125
setting up to update debug label, 160-163
steps in creation of, 126
teleport graphic for, 132
texture atlases and robot size, 61
updat eSt at eWt hDel t aTi me method
for, 133-135
Engine exhaust effect, adding to space cargo
ship, 490-494
Eyesi ght Boundi ngBox method, for enemy
robot, 129

F

FBO (frame buffer object), 145146
Fight sequence, creating, 411-416

577

Index

Files
Add New File dialog, 26

adding Box2D files to project, 334-335

adding Chipmunk files to project,
426—429

audio files, 198, 214-215

constants file for static values used in
more than one class, 71-72

format for fonts, 155

formats for images, 43

GLES-Render files, 295-296

header. See Header files

implementation. See Implementation files

PNG files, 43, 270
property list. See plist files
TMX files, 270-271
Fixed rate timestamps
game loops and, 434
improving main loop and, 394-396
Fixtures
of Box2D bodies, 292-294
compared with Chipmunk shapes, 420
creating drill sensor for Digger Robot,
401-402
properties, 309-313
flipXflipY functions
for mirroring graphic views, 95
reversing images, 552
fnt file format, 155
Fonts
adding for menus, 181-182
built-in support for, xxiii
CCLabel | BMFont class, 155, 159
CCLabel TTF class, 155
CCMenuAt | asFont , 179
CCMenul t emFont , 180
Hiero Font Builder Tool, 156—159
Forces, Box2D, 368

FPS (Frames Per Second), managing frame

rate in animation, 16, 61
Frame buffer object (FBO), 145-146
friction property

fixtures, 309-313
setting for cart wheels, 354
setting for ground, 433

G

Game Center
achievements. See Achievements
authenticating players, 507-508
checking availability of, 506-507
creating App 1D, 498-501
enabling support for apps, 505-506
leaderboards. See Leaderboards
notification of changes to authentication
status, 508—514
obtaining iOS Developer Program
account, 497—498
overview of, 495-497
reasons for using, 497
registering apps in iTunes Connect,
501-505
sending scores to, 538
summary and challenges, 543
Game characters (GameChar act er)
checkAndd ampSpritePosition
method, 233-234
in class hierarchy, 64
creating, 80—82
enemy robot inheriting from, 126-127
Radar Di sh class inheriting from, 84-85
Vi ki ng class inheriting from, 90
Game layers. See Layers (CCLayer)
Game logic, behind game objects, 63
Game manager (GameManager)
adding last level completed property to,
532-534
adding support to Gamepl ayLayer class
for, 190-192
additions for audio to header and imple-
mentation files, 204-205
changing level width, 234-235
connecting to Chipmunk scene with,
425-426
creating, 172-179
get Di mensi onsOf Cur r ent Scene
method, 232-233
getting list of sound effects, 208-211
header file, 172-173
implementation file, 174-177
i ni t Audi oAsync method, 206-207

initializing audio manager (CDAudi o-

Manager), 207-208
I ntroLayer class and, 193
Level Conpl et eLayer class and, 194-195
loading audio asynchronously, 203204
loading sound effects, 211-213
loading/unloading audio files, 214-215
overview of, 170-172
pl aybackgr oundTr ack, st opSound-

Ef fect, and pl aySoundEf f ect

methods, 213-214
running new cart scene, 345
setting up audio engine, 205-206
SpaceVi ki ngAppDel egat e supporting,

192-193
switching to win/lose conditions,

476-477

Game objects (GameQbj ect) . See also Objects
adding sound to game objects, 215-216
in class hierarchy, 64—65
creating, 74-80
Mal | et class inheriting from, 119
Game physics. See Physics engines
Game Start banner
adding, 152-153
anchor points for, 153-154
GanmeCont rol Layer, as subclass of CCLayer,
239-242
GanmeManager class. See Game manager
(GameManager)
Gameplay scenes, 170
Ganepl ayLayer class
adding music to, 228
adding support for game manager,

190-192
addScrol | i ngBackgr oundWt h-

Par al | ax method, 250-252
associating debug label with, 163-165
header file, 105-106
implementation file, 106-111, 138-140
importing updates for Viking, 141-144
| oadAudi 0 method, 201-203
overview of, 105

Ganepl ayScrol | i ngLayer class
adj ust Layer method, 245-247
connecting joystick and button controls to

Viking, 245

Index

subclass of CCLayer, 243-245
updat e method, 247-248
GanmeSt at e class
adding to Space Viking project, 530-534
creating to track user achievements,
519-521
GCDat abase, loading/saving achievement
data to, 522-524
GCHel per. See also Helper methods
adding to Space Viking project, 530-534
creating helper class for Game Center,
508-510
implementing leaderboards, 539-540
keeping track of player authentication
status, 511-512
modifying for sending achievements,
524-530
Get Wor |l dPoi nt helper method, 379-380
GKScor e object, creating, 538
GLES-Render files, 295-296
Glyph Designer, creating font texture atlas,
156
GPU, checking performance of, 560-563
Gravity property
initializing in Chipmunk space, 431
Particle Designer controlling, 488
Groove joint
constraints in Chipmunk, 456
creating spring platforms and, 463—464
Ground
creating for Chipmunk space, 432—433
detecting collisions with, 445-450
setting collision type for, 447-448
surface velocity, 445
G oundLayer, of TileMap, 269
groupl ndex field, 382
Groups
creating for scenes, 236
organizing classes by, 70
organizing scenes, 180-181

H

Header files
additions for audio to, 204-205
cart, 337-338
enemy robot, 126-127

579

Index

Header files (continued)

game manager, 172-173

Ganepl ayLayer class, 105-106
health, 121

Main Menu, 182-183

mallet, 118

Ole the Viking, 90-92

phaser, 138

A at f or nScene, 263-264

A atfornScrol |'i ngLayer, 254-255
radar dish, 84

space cargo ship, 123

Health (Heal t h class)

in class hierarchy, 65
enemy robot, 134

moving into dead state, 103
power-up, 120-122
restoring Ole's health, 102

HelloWorld apps

adding movement to cargo ship, 10-11

adding space cargo ship to app, 9-10

adding to iPhone or iPad, 2021

appl i cationDi dFi ni shLaunchi ng
method in, 14-15

building, 7-9

Director's role in running game loop and
rendering graphics, 16—18

Hello, Box2D, 289-292

initializing U W ndow, 15-16

inspecting Cocos2D templates, 67

scenes and nodes in application template,
11-14

Helper methods

for creating animations, 411

for loading/saving achievement data,
522-524

overview of, 19-20

for sending achievement data, 524-530

Hiero Font Builder Tool, 156—159

Idle state (kSt at el dl e)

for enemy robot, 132
for radar dish, 87

if statement, combining with assignment

operator, 134-135

Images
adding for menus, 181-182
adding to Space Viking project, 24-26
advantages of texture atlases for, 47
loading image files, 43
performance tips and, 551
Implementation files
additions to for audio, 204205
enemy robot, 127-137

game manager (GameManager), 174-177

Ganepl ayLayer class, 106—111

ganmepl ayLayer class, 138—140

health, 121

@ nt er f ace declaration in, 256

mallet, 119-120

phaser, 138-140

P at f or nScene, 263-264

radar dish, 85—-89

space cargo ship, 123-125

Implementation files, Vi ki ng class

changeSt at e method for animation,
95-98

deal | oc method, 94

effect of pragma mark statements in
Xcode pulldown menus, 99

flipping graphic views, 95

i nit Ani mati ons method, 103-105

joystick methods, 94-95

updat eSt at eWt hDel t aTi me and
adj ust edBoundi ngBox methods,
100-103

Importing updates, for Space Viking project,

141-144
Impulses
Box2D, 368
controlling flipping of cart, 368-369
making cart jump, 369-373
for responsive direction switching,
373-374
Infinite scrolling
creating group for cut-scene, 252253
creating platform scene, 263-265
creating scrolling layer in cut-scene,
254-262
creating texture atlas for cloud images,
254
overview of, 252-253

Inheritance, class hierarchy and, 64-65
i nit method
for Chipmunk, 429-430
in game layer of Space Viking, 4142
for HelloWorld app, 13
for PerformanceTestGame, 546549
of platfornScrollinglLayer, 255-256
i nit Ani mations method
Mal | et class, 120
Radar Di sh class, 88—89
Vi ki ng class, 103—-105
I ni t Audi oAsync method, GaneManager
class, 206207
initJoystick method, 108
I nit Wt hScene4Ul Layer method, carts,
344
Installing Cocos2D templates, 5—6
Instance variables
adding to CPMi ki ng, 450—451
for sprite positions, 43
Instruments tool
for checking GPU, 560-563
for finding bottlenecks, 557-558
Interaction, in Box2D, 302-304
@ nt er f ace declaration, inside implementa-
tion files, 256
Intro class, setting up menus, 190
I ntroLayer class, images displayed before
game play, 193
i0S
audio framework for, 197
fonts available in, 155
Game Center app, 495
making games in, xxii
iOS Developer Program account, 497—498
iPad
adding HelloWorld app to, 20-21
power-of-two support on older devices,
46
running performance test game on, 546,
550
running Space Viking on iPad Simulator,
144-145
simulator in Particle Designer, 485-486
iPhone
adding HelloWorld app to, 20-21

Index

fixing slow performance on older devices,
53-54
power-of-two support on older devices, 46
simulator in Particle Designer, 485—486
iPhone Developer account, 20
iPhone Developer Portal, 497
iPod, power-of-two support on older
devices, 46
i sCarryi ngWeapon method, Vi ki ng class,
94
iTunes Connect
adding achievements to, 515517
registering apps in, 497, 501-505
setting up leaderboards in, 536538

J

JavaScript, Coscos2D-JavaScript, 568
Joints
adding wheels using revolute joints,
352-355
breaking Ole's body into pieces, 376
compared with Chipmunk constraints,
420-421
creating multiple bodies and joints,
378-380
dragging objects in Box2D, 304
motor settings for revolute joint, 385
prismatic, 378
restricting revolute joints, 376-377
Joysticks
adding, 36—40
applying joystick movement, 40—44
connecting to Space Viking, 245
importing joystick class, 35-36
initializing, 111
initJoystick method, 108
Vi ki ng class methods, 94-95
JPEG files, 43
Jump buttons, adding Gamepl ayLayer class,
108
Jump to Definition (Ctrl-z-D), for viewing
source code, 18—19
Jumping, in Chipmunk
implementing, 450—455
by setting velocity, 444

581

582

Index

K

Kinematic bodies, Box2D, 293
kSt at eDead. See Dead state (kSt at eDead)
kSt at el dl e (idle state)
for enemy robot, 132
for radar dish, 87
kSt at eSpawni ng (Spawning state)
for enemy robot, 132
for radar dish, 87
kSt at eTaki ng Damege (Taking damage
state) , 87
kSt at eTaki ngDamage. See Damage taking
state (kSt at eTaki ngDamage)

L

Labels (CCLabel)
adding to scenes, 13—14
CCLabel | BMFont class, 155, 159
CCLabel TTF cl ass, 151-155
in layers, 12
Layers (CCLayer)
adding, 29-31
allocating sprites when layer is initialized,
552
connecting background and game layers
to a scene, 31-32
creating background layer, 2629
GanmeCont rol Layer as subclass of,
239-242
Ganepl ayScrol | i ngLayer as subclass
of, 243-245
principal classes in Cocos2D, 570
Scene4Ul Layer as subclass of, 335
scenes as container for, 12, 33
z values and, 33
Leaderboards
displaying, 540-542
how they work, 538
implementing, 539-540
overview of, 536
setting up in iTunes Connect, 536-538
Level Conpl et e class
scene types and, 170
setting up menus, 190

Level Conpl et eLayer class
achievements and, 530—534
displaying leaderboards, 540-542
scenes and, 194-195
Levels
accounting for level width when scrolling,
233-234
creating in Chipmunk, 432-433
creating with LevelSVG tool, 380
getting dimension of current level,
232-233
LevelSVG tool, 380
Linear impulses, Box2D
making cart jump, 369-373
overview of, 368
Li nkTypes, URLs and, 172
| oadAudi 0 method, Ganepl ayLayer class,
201-203
Loops
Director running, 16—18
updat e | oop, 279-280, 394-396
variable and fixed rate timestamps and,
394-396, 434
Loosely coupled classes, 117-118
| ower Angl e method, restricting revolute
joints, 377

Mac OS X
Cocos2D native support for, 568
downloading particle system to, 485
making games in, xxii
Macros, 20
Main Menu (Mai nMenu)
adding music to, 228-229
creating, 182-190
header file for, 182—183
Mai nMenulLayer class, 183—-190
scene types and, 169
Mallet (Mal | et class)
dropping from space cargo ship, 125
powering up, 102, 118-120
Manager. See Game manager
(GameManager)
mass property, fixtures, 309-313

Mekanimo tool, for working with bodies, 380
Member variables, for body part sprites,
380-381
Memory
benefits of texture atlases, 48
managing memory footprint, 17
textures and, 45—47
Menus
adding images and fonts for, 181-182
in addition to Main Menu, 190
classes in, 179—-180
Main Menu. See Main Menu
(Mai nMenu)
Options Menu, 170
Meters, converting points to, 420—421, 430
Methods, declaring in Objective-C, 117
Metroid-style platform. See Platforms, in
Chipmunk
Motors
in Chipmunk, 456
settings for revolute joint, 385
Mouse joint
dragging objects in Box2D, 304-309
supporting in Chipmunk, 436—437
Movement
adding movement to cargo ship, 10-11
adding to Space Viking project, 35
implementing n Chipmunk, 450—455
jumping, 444
surface velocity, 445
Music. See also Audio
adding in Chipmunk, 473—-474
adding to Gamepl ayLayer, 228

New Group (Option-z-N), 70
Nodes (CCNode)
in application templates, 11-14
in Cocos2D hierarchy, 12
principal classes in Cocos2D, 570
tags, 71-72
Normal platform, creating in Chipmunk,
464-466
NSCodi ng protocol, loading/saving achieve-
ment data to GCDat abase, 522-524

Index

NSDi cti onary objects, storing animation
settings in, 67
NSOper at i onQueues
adding audio asynchronously in back-
ground thread, 201
managing background threads, 204
NSTi ner, scheduler compared with, 145
number O Runni ngActi ons, 135

0

Object-Oriented Programming (Coad and Nic-
ola), 63
Objective-C framework
Cocos2D and, xxii, xxv
protocols in, 117
Objects. See also Game objects
(GameOhj ect)
adding sound to, 215-216
converting into classes, 63
creating Box2D, 292-295
creating C++, 280
creating game objects, 74—80
Ganmebj ect in class hierarchy, 64—65
GKScor e object, 538
Mal | et class inheriting from GameGb-
ject class, 119
plist files and, 67
positioning using anchor points, 153
positioning using point system, 82
returning to nonaltered state after effects,
146-148
updat e method added to, 443
use in design, 63
Obstacles, creating spikes in Box2D,
390-394
Offsets, restricting prismatic joints, 379-380
Ole the Viking. See also Vi ki ng class
adding sounds to, 222-228
adding subclass for, 440—443
adj ust edBoundi ngBox method,
100-103
animating in Chipmunk, 469—-473
breaking body into pieces using joints,
376
changeSt at e method, 95-98

583

584

Index

Ole the Viking (continued)
connecting button controls to, 245
creating cinematic fight sequence, 411-416
following in Chipmunk, 467—-468
Header files, 90-92
leaping with ragdoll effect, 381-386
pitting against Digger in fight, 396405
restoring health of, 102
OpenAL audio framework, for 10S devices,
197
OpenGL Driver Instrument, for checking
GPU, 560-563
OpenGL ES
benefits of batching bind calls, 45
converting UIKIT to OpenGL ES coor-
dinate system, 29
EAGLVi ew and, 16
FBO (frame buffer object), 145-146
for graphics rendering in Cocos2D, xxii
references for, 567
support in Cocos2D, xxv
Option-z-N (New Group), 70
Options Menu
scene types and, 170
setting up menus, 190
OptionsLayer, displaying achievements
within apps, 534-536
Organizing source code
constants file for static values used in
more than one class, 71-72
grouping classes, 70
protocols in implementation of class
methods, 72-74

P

Parallax scrolling
adding background to cart layer, 364-368
defined, 231
overview of, 250252
ParallaxBackgrounds folder, importing,
235-236
Particle Designer
application in cinematic fight sequence,
413
controls, 487488
creating particle system, 489—490

downloading to Mac, 485
engine exhaust effect, 490-494
features of, 486—488
toolbar, 486
Particle systems
creating, 489—-490
engine exhaust added to space cargo ship,
490-494
running built-in system, 482—483
snow effect, 483—485
summary and challenges, 494
terminology related to, 481-482
tour of Particle Designer, 486—488
Particles
controls for, 487—488
defined, 481
Performance optimization
bottlenecks and, 557-558
capturing CPU utilization data, 558-560
CCSprite vs. CCSpriteBat chNode,
545-550
checking GPU, 560-563
on older devices, 53—54
overview of, 545
profiling tool for, 554557
reusing sprites, 552-554
running performance test game, 550
summary and challenges, 563
textures and texture atlases and, 551-552
PerformanceTestGame
adding profiling tool to, 554-557
capturing CPU utilization data, 558-560
checking GPU, 560-563
i nit method, 546-549
opening and running on iPad, 545-546
reusing sprites, 552-554
running, 550
updat e method for, 549-550
Phaser (Phaser class)
adding phaser bullet, 137-141
creat ePhaser Wt hDi recti on method,
142-143
header file, 138
implementation file, 138-140
placeholder for creating phaser blast, 109
protocols for creating in Gamepl ayLayer
class, 127

shoot Phaser method, 129, 132-133
taking damage from, 102
Physics Editor, 380
Physics engines
advanced. See Box2D, advanced physics
basic. See Box2D, basic physics
bundled with Cocos2D, xxiv
Chipmunk. See Chipmunk
intermediate. See Box2D, intermediate
physics
Pin joint, constraints in Chipmunk, 456
Pivot joint
constraints in Chipmunk, 455
creating pivot platform, 462
Pixels, in object positioning, 82
Platforms, in Chipmunk
laying out, 468—469
normal platform, 464—466
pivot platform, 460—462
revolving platform, 458—460
spring platform, 463—464
Pl at f or nScene
header and implementation files, 263—264
pl ayScene method, 264
A atfornScrol i ngLayer
ccTouchesBegan method, 262
creat ed oud method, 257-258
createStaticBackground method,
257
creat eVi ki ngAndP at f or m method,
261-262
declarations and i nit method, 255-256
header file, 254-255
reset d oudWt hNode method, 258-261
pl aybackgr oundTr ack method, audio,
213-214
pl ayScene method, platform scene, 264
pl aySoundEf f ect method, audio, 213-214
plist files
phaser bullet effect, 137
sound effects in, 198-201
storing animation data in, 61, 67-69
PNG files
file formats for images, 43
using in TileMap, 270
Point-to-meter (PTM) ratio, 420—421, 430
Pointers, C++, 281

Index

Points
converting to meters, 420—421, 430
in object positioning, 82
post Sol ve events, collision events in Chip-
munk, 445
Power-of-two, textures and, 45—47
Power-up objects
Heal t h class, 120-122
Mal | et class, 118—120
overview of, 118
protocols for creating in GameplayLayer
class, 127
Pragma mark statements, in Xcode pulldown
menus, 99
preSol ve events, collision events in Chip-
munk, 445, 448-449
Prismatic joints
Chipmunk groove joint compared with,
456
offsets for restricting, 379
overview of, 378
Profiling
capturing CPU utilization data, 558—560
finding bottlenecks, 557-558
for performance optimization, 554-557
Project setup
background and game layers connected to
a scene, 31-32
background layer created, 2629
CCSpriteBat chNode in, 52-53
classes for, 24-26
creating new project, 23-24
director running game scene, 34-35
fixing slow performance on older devices,
53-54
game layer added, 29-31
game scene for, 32—33
joystick class imported for, 35-36
joystick movement in, 40—44
joysticks and buttons added, 36—40
movement added, 35
summary and challenges, 54-55
texture atlas added to scene, 48-51
Property list files. See plist files
Protocols
common protocol class, 72-74
in implementation of class methods, 72-74

585

586

Index

Protocols (continued)
in Objective-C, 117
use with enemy robot, 127
PTM (point-to-meter) ratio, 420—421, 430
Puzzle game example, in Box2D, 320-324
Puzzl eLayer
box created for, 293
creat eBoxAt Locat i on method,
294-295
debug drawing, 295-296
decorating bodies using sprites, 313320
dragging objects in Box2D, 304-309
ground body created for, 299-302
interaction and decoration in, 302-304
mass, density, friction, and restitution
properties, 309-313
puzzle game example, 320-324
scene created for, 282-284
viewing on screen, 296-298
world created for, 290—292
PVR TC
compression format, 43
performance tips for textures, 551

Q

Queries, searching for objects in Box2D
world, 305-307

R

Radar Di sh class
adding sounds to, 216-217
changeSt at e method, 86
in class hierarchy, 64
header file, 84
implementation file, 85-89
inheriting from GameChar acter class,
84-85
i nit Ani mati ons method, 88—89
plist files for, 68—69
steps in creation of, 83—84
updat eSt at eWt hDel t aTi me method,
86
Ragdoll effect
adding action to Ole, 376
leaping effect and, 381-386

reset C oudWt hNode method, pl atfor m
Scrol I'i ngLayer, 258-261
Responsive direction switching, Box2D,
373-374
restitution property, fixtures, 309-313
Revolute joints
in Box2D, 304
for bridge, 386389
for cart wheels, 352-355
Chipmunk pivot joint compared with,
455
for Digger Robot wheels, 400
motor settings for, 385
restricting, 376-377
Revolving platform, creating in Chipmunk,
458-460
Rigid body physics simulation, 292
Robots
Digger Robot. See Digger Robot
enemy robot. See Enemy robot
RockBoul der Layer, of TileMap, 270
RockCol umsLayer, of TileMap, 269
Root Vi ewCont rol | er, for device orienta-
tion, 53—-54
Rotary limit joint
constraints in Chipmunk, 456
creating pivot platform, 462
Rotation, anchor points for, 154
Running state, Digger Robot, 407

S

Sandbox accounts, in Game Center, 514
Scaling images, performance tips and, 551
Scenes (CCScenes)
ActionLayer of Scene4, 339-343
adding images and fonts, 181-182
additional menu types, 190
in application template, 11-14
background and game layers connected
to, 31-32
basic Box2D scene, 335-346
basic Chipmunk scene, 429-438
CCScenes as principal class in Cocos2D,
570
changing SpaceVi ki ngAppDel egat e to
support game manager, 192-193

classes in menu system, 179-180
creating for Space Viking, 32-33
creating new Chipmunk scene, 421-425
creating new scene (Puzzl eLayer),
282-284
creating second game scene, 236242
director running game scene, 34-35
game manager connected to Chipmunk
scene, 425—426
game manager for switching between,
170-172
Ganmepl ayLayer class and, 190-192
group for cut-scene, 253
group for scene2, 236
I ntroLayer class and, 193
Level Conpl et eLayer class, 194-195
Main Menu, 182-190
organizing, 180181
texture atlases for, 48—51
types of, 169170
UlLayer of Scene4, 335-336
SceneTypes, 172
Scheduler, for timed events and call, 145
Scores, sending to Game Center, 538
Screen resolution, support in Cocos2D, xxv
Screen shake effect, 467-468
Scrolling. See also Tile maps
accounting for level width, 233-234
background, 271-272
common problems in, 234-235
creating scrolling layer, 242-249
in cut-scene, 254262
getting dimension of current level,
232-233
to infinity, 252-253
new scene for, 236-242
overview of, 231
parallax layers and, 250-252
in platform scene, 263-265
ScrollingCloudsBackground folder, 254
ScrollingCloudsTextureAtlases folder, 254
Selection techniques, three-finger swipe, 27
separat e events, collision events in Chip-
munk, 445, 448-449
Set Li near Vel oci ty function, for Box2D
bodies, 415
set upDebugDr aw method, cart, 344

Index 587

set upWorl d method, cart, 344
Shapes, Chipmunk
adding, 420
box shaped added, 431-433
converting dynamic shape into static plat-
form, 447—448
Shapes, custom shapes with Box2D, 346348
Shoot Phaser method, 129
Simple motor, constraints in Chipmunk, 456
Si npl eAudi oEngi ne, in CocosDenshion,
197, 229-230
Singletons
for game manager, 195
important concepts in Cocos2D, xxiv
Sneakylnput joystick project, 35-36
Snow effect, creating with particle system,
483—-485
Social gaming network. See Game Center
Sound effects. See also Audio
adding in Chipmunk, 473—474
getting list of, 208-211
loading, 211-213
in plist files, 198
Sounds folder, 198
Source code
availability of, 18-20
constants file and, 71-72
grouping classes and, 70
protocols in implementation of class
methods, 72-74
Space cargo ship (SpaceCar goShi p class)
adding sounds to, 217-219
in class hierarchy, 64
creating, 122
engine exhaust effect for, 490-494
header file, 123
implementation file, 123-125
Space Viking
basic setup. See Project setup
downloading, xxi
introduction to, XxXv—xxvi
storyline in, xxvi—xxvii
Spaces, Chipmunk
box added to, 431-432
creating, 429-431
creating a physics world, 420
creating the level and ground, 432—433

588

Index

SpaceVi ki ngAppDel egat e, 192-193
Spawning state (kSt at eSpawni ng)
for enemy robot, 132
for radar dish, 87

Spikes, creating obstacles in Box2D, 390-394

Spring platform, creating in Chipmunk,
462—463
Sprite Frame Cache, 111
SpriteBat chNode, 88
Sprites (CCSprite)
allocating during layer initialization, 552

animating sprites rendered by CCSpri t e-

Bat chNode, 60-61
basic animation, 57—60

batching (CCSpriteBat chNode), 44—45

Box2D bodies, 380-381

CCSprit e as principal classes in
Cocos2D, 570

CCSprite vs. CCSpriteBat chNode,
545-550

containing within screen boundaries, 102

decorating bodies, 313-320

important concepts in Cocos2D, xxiv

in layers, 12

listed in CCSpri t eBat chNode object,
108

returning to nonaltered state after effects,

146-148
reusing, 552-554
Sprite Frame Cache, 111
Sprites (CPSprite)
adding, 438
defining body and shape for, 438—440
implementing velocity of, 444
subclass for Ole, 440—443
subclass for revolving platform, 458—460
start Fi re method, 415
State transitions. See also Animation
Ole the Viking, 471-473
radar dish, 86—87
spike obstacle and, 392-393
Vi ki ng class and, 95-98
visual effects and, 410
Static bodies, Box2D, 293
St ati cBackgr oundLayer, splitting back-

ground into static and scrolling layers,

237-239

st opSoundEf f ect method, audio, 213214
Surface velocity, for ground movement in
Chipmunk, 445
switch statement
method variables not declared in, 99
state transitions and, 98

T

Taking damage state. See Damage taking
state (kSt at eTaki ngDamage)
Teleport graphic, for enemy robot, 132
Templates
inspecting, 6—7
installing, 5-6
SpaceViking based on, 23-24
working of scenes and nodes in applica-
tion template, 11-14
Ternary operator (?), combining i f state-
ment with assignment operator,
134-135
Text. See also Labels (CCLabel)
adding Game Start banner, 152-153
anchor points for Game Start banner,
153—154
CCLabel | BMFont class, 155, 159
CCLabel TTF class, 151
creating debug label, 160-165
font texture atlas for, 156—159
fonts, 155
Texture atlases
CCSprit eBat chNode initialized with
image from, 111
for cloud images, 254
combining textures into, 44
downloading tiles texture atlas, 266
for fonts, 156-159
overview of, 44—45
performance optimization and, 551-552
reasons for using, 48
for Space Viking Scene 1, 48-51
steps in use of, 53
technical details of, 45—47
Texture padding, 45—47
TexturePacker
creating texture atlas for Space Viking
Scene 1, 49-51

texture atlas software, 47
trial version, 380
Textures
caching, 17
combining into texture atlases, 43
flushing unused, 552
loading images into RAM and, 43
performance optimization and, 551-552
Tile maps. See also Scrolling
adding to Par al axNode, 272-275
built-in support for, xxiv
compressed TiledMap class, 271-272
creating, 267-268
defined, 232
installing Tiled tool on Mac, 266267
overview of, 265-266
three-layered, 268-270
Tiled tool
creating three-layered tile map, 268-270
creating TileMap for iPad, 267-268
Installing on Mac, 266267
Tiles
defined, 231
of repeating images, 265266
TileSets, 232
Time Profiler, for capturing CPU utilization
data, 558-560
TMX files, 270271
Touch-handling code, helper methods for,
436-437
typedef enunerator
getting list of sound effects, 210211
for left and right punches, 92

U

Ul Font class, 155
Ul Kit, converting to OpenGL ES coordinate
system, 29
UlLayer, in Chipmunk, 421-423
Ul Vi ewCont rol | er, for device orientation,
53-54
U W ndow, initialization of, 15—-16
Units
Box2D, 288-289
converting points to meters in Chipmunk,
430

Index

Unity3D, 567
Update functions, scheduler and, 145
update | oop
Box2D, 279-280
improving main loop, 394-396
updat e method
adding to game objects, 443
cart methods, 344
in game layer of Space Viking, 41-42
Gamepl ayScrol | i ngLayer, 247-248
for PerformanceTestGame, 549-550
updat eSt at eWt hDel t aTi me method
animating Ole, 471-473
for Chipmunk sprite, 452—454
Digger Robot and, 406
enemy robot and, 133—-137
radar dish and, 85-86
Vi ki ng class, 100-103
upper Angl e, restricting revolute joints,
377
URLs, 172
Utilities, 19-20

'}

Variable rate timestamps, 394-396
Variables, method variables not declared in
switch statement, 99
Vectors, for direction and magnitude, 291
Velocity
of ground movement in Chipmunk, 445
of sprite in Chipmunk, 444
Vertex Helper
creating vertices for Digger Robot,
399-401
creating vertices with, 348352
making cart scene scrollable, 359-362
Vertices
for Box2D shapes, 347-348
creating shapes with arbitrary vertices,
448
for Digger Robot, 399-401
making cart scene scrollable, 359-362
Vertex Helper and, 348-352
View controller
displaying achievements, 534-536
displaying leaderboards, 540-542

589

Index

Vi ki ng class. See also Ole the Viking

adding sounds to, 222228

applying joystick movement to, 40—44

changeSt at e method for animations in,
95-98

checking to see if attacking enemy robot,
135

in class hierarchy, 64

deal | oc method, 94

effect of pragma mark statements in
Xcode pulldown menus, 99

flipping graphic views, 95

header file, 90-92

i nit Ani mations method, 103-105

joystick methods, 94-95

pitting Digger against Ole, 396405

referencing from Sprit eBat chNode, 88

retrieving from CCSpri t eSheet,
134-135

subclass for in Chipmunk, 440-443

updat eSt at eWt hDel t aTi me and
adj ust edBoundi ngBox methods,
100-103

in Xcode, 90

Visual effects, state transitions and, 410

w

Walking state
Digger Robot, 407-408
enemy robot, 132

Wheels
adding to cart, 352-355
creating for Digger Robot, 399-400
Win/lose conditions, adding in Chipmunk,
476-477
World, Box2D
Chipmunk space compared with, 430
creating, 289-292
searching for objects in, 305-307

X

Xcode

Add New File dialog, 26

build management for iOS devices, 20-21

Chipmunk files added to Xcode project,
426—-429

classes as organization technique in, 70

HelloWorld app, 7-9

inspecting Cocos2D templates, 67

Instruments tool, 557-558

location of Cocos2D templates in, 23-24

pragma mark statements in pull down
menus, 99

Radar Di sh class created with, 83—84

texture atlases added to, 51

Z

z values, in 3D engines, 33
Zwoptex, 47—-49

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

Registering your products can unlock
the following benefits:

e Access to supplemental content,
including bonus chapters,
source code, or project files.

e A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

informiT.com

THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

>

“I'orm -cnm THE TRUSTED TECHNOLOGY LEARNING SOURCE

PEARSON InformlIT is a brand of Pearson and the online presence
e for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

vAddison-Wesley Cisco Press ExAMyCcRAM IBM @ 33 PRENTICE g4ME | Safari’

Press. ~ ¢¢ HALL SRS T i onine

LearniT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

e | earn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

e Access FREE podcasts from experts at informit.com/podcasts.

e Read the latest author articles and sample chapters at
informit.com/articles.

e Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

e Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

In'ormll‘-c“m THE TRUSTED TECHNOLOGY LEARNING SOURCE

AAddison-Wesley Cisco Press ExavyCRAM IBM e 33 FRENTICE g4MS | Safari”

Press. * — ee HALL SIS S e

Safari

Books Online

Try Safari Books Online FREE

Get online access to 5,000+ Books and Videos

FREE TRIAL—GET STARTED TODAY!
www.informit.com/safaritrial

Find trusted answers, fast

Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O'Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques

In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

www.informit.com/safaritrial

FREE Online
Edition

Your purchase of Learning Cocos2D includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with more
than 5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O'Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: EPLUQGA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition, Sa fa rl
please e-mail customer-service@safaribooksonline.com N

Books Online

. sas @WILEY

www.informit.com/safarifree

	Contents
	Preface
	Acknowledgments
	About the Authors
	I: Getting Started with Cocos2D
	1 Hello, Cocos2D
	Downloading and Installing Cocos2D
	Creating Your First Cocos2D HelloWorld
	For the More Curious: Understanding the Cocos2D HelloWorld
	Getting CCHelloWorld on Your iPhone or iPad
	Summary
	Challenges

	2 Hello, Space Viking
	Creating the SpaceViking Project
	Creating the Space Viking Classes
	Creating the Background Layer
	The Gameplay Layer: Adding Ole the Viking to the Game
	The GameScene Class: Connecting the Layers in a Scene
	Commanding the Cocos2D Director
	Adding Movement
	Texture Atlases
	For the More Curious: Testing Out CCSpriteBatchNode
	Fixing Slow Performance on iPhone 3G and Older Devices
	Summary
	Challenges

	3 Introduction to Cocos2D Animations and Actions
	Animations in Cocos2D
	Space Viking Design Basics
	Actions and Animation Basics in Cocos2D
	Using Property List Files to Store Animation Data
	Organization, Constants, and Common Protocols
	The GameObject and GameCharacter Classes
	Summary
	Challenges

	4 Simple Collision Detection and the First Enemy
	Creating the Radar Dish and Viking Classes
	Creating the Viking Class
	Final Steps
	Summary
	Challenges

	II: More Enemies and More Fun
	5 More Actions, Effects, and Cocos2D Scheduler
	Power-Ups
	Enemy Robot
	Adding the PhaserBullet
	GameplayLayer and Viking Updates
	For the More Curious: Effects in Cocos2D
	Summary
	Exercises and Challenges

	6 Text, Fonts, and the Written Word
	CCLabelTTF
	Understanding Anchor Points and Alignment
	CCLabelBMFont
	Using Glyph Designer
	Using the Hiero Font Builder Tool
	For the More Curious: Live Debugging
	Summary
	Challenges

	III: From Level to Game
	7 Main Menu, Level Completed, and Credits Scenes
	Scenes in Cocos2D
	Introducing the GameManager
	Menus in Cocos2D
	Scene Organization and Images
	Creating the Main Menu
	Additional Menus and GameplayLayer
	For the More Curious: The IntroLayer and LevelComplete Classes
	Summary
	Challenges

	8 Pump Up the Volume!
	Introducing CocosDenshion
	Importing and Setting Up the Audio Filenames
	Synchronous versus Asynchronous Loading of Audio
	Adding the soundEngine to GameObjects
	Adding Sounds to EnemyRobot
	Adding Sound Effects to Ole the Viking
	Adding Music to the Menu Screen
	For the More Curious: If You Need More Audio Control
	Summary
	Challenges

	9 When the World Gets Bigger: Adding Scrolling
	Adding the Logic for a Larger World
	Creating a Larger World
	Scrolling with Parallax Layers
	Scrolling to Infinity
	Tile Maps
	Summary
	Challenges

	IV: Physics Engines
	10 Basic Game Physics: Adding Realism with Box2D
	Getting Started
	Hello, Box2D!
	Basic Box2D Interaction and Decoration
	Making a Box2D Puzzle Game
	Summary
	Challenges

	11 Intermediate Game Physics: Modeling, Racing, and Leaping
	Getting Started
	Creating a Cart with Box2D
	Making the Cart Move and Jump
	Summary
	Challenges

	12 Advanced Game Physics: Even Better than the Real Thing
	Joints and Ragdolls: Bringing Ole Back into Action
	Adding Obstacles and Bridges
	The Boss Fight!
	Summary
	Challenges

	13 The Chipmunk Physics Engine (No Alvin Required)
	What Is Chipmunk?
	Getting Started with Chipmunk
	Adding Sprites and Making Them Move
	Chipmunk and Constraints
	The Great Escape!
	Summary
	Challenges

	V: Particle Systems, Game Center, and Performance
	14 Particle Systems: Creating Fire, Snow, Ice, and More
	Built-In Particle Systems
	Getting Started with Particle Designer
	Creating and Adding a Particle System to Space Viking
	Summary
	Challenges

	15 Achievements and Leaderboards with Game Center
	What Is Game Center?
	Enabling Game Center for Your App
	Game Center Authentication
	Setting Up Achievements
	Implementing Achievements
	Setting Up and Implementing Leaderboards
	Summary
	Challenges

	16 Performance Optimizations
	CCSprite versus CCSpriteBatchNode
	Reusing CCSprites
	Profiling within Cocos2D
	Using Instruments to Find Performance Bottlenecks
	Summary
	Challenges

	17 Conclusion
	Where to Go from Here
	Android and Beyond
	Final Thoughts

	A: Principal Classes of Cocos2D
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

