

Praise for Learning Cocos2D

“If you’re looking to create an iPhone or iPad game, Learning Cocos2D should
be the first book on your shopping list. Rod and Ray do a phenomenal
job of taking you through the entire process from concept to app, clearly
explaining both how to do each step as well as why you’re dong it.”
—Jeff LaMarche, Principal, MartianCraft, LLC, and coauthor of Beginning iPhone
Development (Apress, 2009)

“This book provides an excellent introduction to iOS 2D game develop-
ment. Beyond that, the book also provides one of the best introductions to
Box2D available. I am truly impressed with the detail and depth of Box2D
coverage.”
—Erin Catto, creator of Box2D

“Warning: reading this book will make you need to write a game! Learning
Cocos2D is a great fast-forward into writing the next hit game for iOS—
definitely a must for the aspiring indie iOS game developer (regardless of
experience level)! Thanks, Rod and Ray, for letting me skip the learning
curve; you’ve really saved my bacon!”
—Eric Hayes, Principle Engineer, Brewmium LLC (and Indie iOS Developer)

“Learning Cocos2D is an outstanding read, and I highly recommend it to any
iOS developer wanting to get into game development with Cocos2D. This
book gave me the knowledge and confidence I needed to write an iOS game
without having to be a math and OpenGL whiz.”
—Kirby Turner, White Peak Software, Inc.

“Learning Cocos2D is both an entertaining and informative book; it covers
everything you need to know about creating games using Cocos2D.”
—Fahim Farook, RookSoft (rooksoft.co.nz)

“This is the premiere book on Cocos2D! After reading this book you will
have a firm grasp of the framework, and you will be able to create a few
different types of games. Rod and Ray get you quickly up to speed with
the basics in the first group of chapters. The later chapters cover the more
advanced features, such as parallax scrolling, CocosDenshion, Box2D,
Chipmunk, particle systems, and Apple Game Center. The authors’ writing
style is descriptive, concise, and fun to read. This book is a must have!”
—Nick Waynik, iOS Developer

This page intentionally left blank

Learning Cocos2D

Learning Cocos2D

A Hands-On Guide to Building iOS
Games with Cocos2D, Box2D,

and Chipmunk

Rod Strougo

Ray Wenderlich

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Strougo, Rod, 1976-
 Learning Cocos2D : a hands-on guide to building iOS games with
Cocos2D, Box2D, and Chipmunk / Rod Strougo, Ray Wenderlich.
 p. cm.
 Includes index.
 ISBN-13: 978-0-321-73562-1 (pbk. : alk. paper)
 ISBN-10: 0-321-73562-5 (pbk. : alk. paper)
1. iPhone (Smartphone)—Programming. 2. iPad (Computer)—Programming.
3. Computer games—Programming. I. Wenderlich, Ray, 1980- II. Title.
 QA76.8.I64S87 2011
 794.8’1526—dc23
 2011014419

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-73562-1
ISBN-10: 0-321-73562-5
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Chuck Toporek

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Carol Lallier

Indexer
Jack Lewis

Proofreader
Lori Newhouse

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

❖

Dedicated to my wife, Agata.
—Rod

Dedicated to my wife, Vicki.
—Ray

❖

This page intentionally left blank

Contents at a Glance

 Preface xxi

 Acknowledgments xxxiii

 About the Authors xxxvii

I Getting Started with Cocos2D 1

 1 Hello, Cocos2D 3

 2 Hello, Space Viking 23

 3 Introduction to Cocos2D Animations and Actions 57

 4 Simple Collision Detection and the First Enemy 83

II More Enemies and More Fun 115

 5 More Actions, Effects, and Cocos2D Scheduler 117

 6 Text, Fonts, and the Written Word 151

III From Level to Game 167

 7 Main Menu, Level Completed, and Credits
Scenes 169

 8 Pump Up the Volume! 197

 9 When the World Gets Bigger: Adding Scrolling 231

IV Physics Engines 277

 10 Basic Game Physics: Adding Realism with
Box2D 279

 11 Intermediate Game Physics: Modeling, Racing, and
Leaping 333

 12 Advanced Game Physics: Even Better than the Real
Thing 375

 13 The Chipmunk Physics Engine (No Alvin
Required) 419

Contents at a Glancex

V Particle Systems, Game Center, and
Performance 479

 14 Particle Systems: Creating Fire, Snow, Ice, and
More 481

 15 Achievements and Leaderboards with Game
Center 495

 16 Performance Optimizations 545

 17 Conclusion 565

 A Principal Classes of Cocos2D 569

 Index 571

Contents

 Preface xxi

 Acknowledgments xxxiii

 About the Authors xxxvii

I Getting Started with Cocos2D 1

 1 Hello, Cocos2D 3

Downloading and Installing Cocos2D 4

Downloading Cocos2D 4

Installing the Cocos2D Templates 5

Creating Your First Cocos2D HelloWorld 6

Inspecting the Cocos2D Templates 6

Building the Cocos2D HelloWorld Project 7

Taking HelloWorld Further 9

Adding Movement 10

For the More Curious: Understanding the Cocos2D
HelloWorld 11

Scenes and Nodes 11

From the Beginning 14

Looking Further into the Cocos2D Source Code 18

Getting CCHelloWorld on Your iPhone or iPad 20

Letting Xcode Do Everything for You 20

Building for Your iPhone or iPad 21

Summary 22

Challenges 22

 2 Hello, Space Viking 23

Creating the SpaceViking Project 23

Creating the Space Viking Classes 24

Creating the Background Layer 26

The Gameplay Layer: Adding Ole the Viking to the
Game 29

The GameScene Class: Connecting the Layers in a
Scene 31

Creating the GameScene 32

Contentsxii

Commanding the Cocos2D Director 34

Adding Movement 35

Importing the Joystick Classes 35

Adding the Joystick and Buttons 36

Applying Joystick Movements to Ole the Viking 40

Texture Atlases 44

Technical Details of Textures and Texture
Atlases 45

Creating the Scene 1 Texture Atlas 48

Adding the Scene 1 Texture Atlas to Space
Viking 51

For the More Curious: Testing Out
CCSpriteBatchNode 52

Fixing Slow Performance on iPhone 3G and
Older Devices 53

Summary 54

Challenges 54

 3 Introduction to Cocos2D Animations and
Actions 57

Animations in Cocos2D 57

Space Viking Design Basics 62

Actions and Animation Basics in Cocos2D 66

Using Property List Files to Store Animation Data 67

Organization, Constants, and Common Protocols 69

Creating the Constants File 71

Common Protocols File 72

The GameObject and GameCharacter Classes 74

Creating the GameObject 74

Creating the GameCharacter Class 80

Summary 82

Challenges 82

 4 Simple Collision Detection and the First Enemy 83

Creating the Radar Dish and Viking Classes 83

Creating the RadarDish Class 83

Creating the Viking Class 90

Final Steps 105

The GameplayLayer Class 105

Contents xiii

Summary 112

Challenges 113

II More Enemies and More Fun 115

 5 More Actions, Effects, and Cocos2D
Scheduler 117

Power-Ups 118

Mallet Power-Up 118

Health Power-Up 120

Space Cargo Ship 122

Enemy Robot 125

Creating the Enemy Robot 126

Adding the PhaserBullet 137

GameplayLayer and Viking Updates 141

Running Space Viking 144

For the More Curious: Effects in Cocos2D 145

Effects for Fun in Space Viking 146

Running the EffectsTest 148

Returning Sprites and Objects Back to Normal 149

Summary 149

Exercises and Challenges 149

 6 Text, Fonts, and the Written Word 151

CCLabelTTF 151

Adding a Start Banner to Space Viking 152

Understanding Anchor Points and Alignment 153

CCLabelBMFont 155

Using Glyph Designer 156

Using the Hiero Font Builder Tool 156

Using CCLabelBMFont Class 159

For the More Curious: Live Debugging 160

Updating EnemyRobot 160

Updating GameplayLayer 163

Other Uses for Text Debugging 164

Summary 165

Challenges 165

Contentsxiv

III From Level to Game 167

 7 Main Menu, Level Completed, and Credits
Scenes 169

Scenes in Cocos2D 169

Introducing the GameManager 170

Creating the GameManager 172

Menus in Cocos2D 179

Scene Organization and Images 180

Adding Images and Fonts for the Menus 181

Creating the Main Menu 182

Creating the MainMenuScene 182

MainMenuLayer class 183

Additional Menus and GameplayLayer 190

Importing the Intro, LevelComplete, Credits, and
Options Scenes and Layers 190

GameplayLayer 190

Changes to SpaceVikingAppDelegate 192

For the More Curious: The IntroLayer and LevelComplete
Classes 193

LevelCompleteLayer Class 194

Summary 195

Challenges 195

 8 Pump Up the Volume! 197

Introducing CocosDenshion 197

Importing and Setting Up the Audio Filenames 198

Adding the Audio Files to Space Viking 198

Audio Constants 198

Synchronous versus Asynchronous Loading
of Audio 201

Loading Audio Synchronously 201

Loading Audio Asynchronously 203

Adding Audio to GameManager 204

Adding the soundEngine to GameObjects 215

Adding Sounds to RadarDish and
SpaceCargoShip 216

Adding Sounds to EnemyRobot 219

Contents xv

Adding Sound Effects to Ole the Viking 222

Adding the Sound Method Calls in changeState for
Ole 226

Adding Music to the Menu Screen 228

Adding Music to Gameplay 228

Adding Music to the MainMenu 228

For the More Curious: If You Need More Audio
Control 229

Summary 230

Challenges 230

 9 When the World Gets Bigger: Adding
Scrolling 231

Adding the Logic for a Larger World 232

Common Scrolling Problems 234

Creating a Larger World 235

Creating the Second Game Scene 236

Creating the Scrolling Layer 242

Scrolling with Parallax Layers 250

Scrolling to Infinity 252

Creating the Scrolling Layer 254

Creating the Platform Scene 263

Tile Maps 265

Installing the Tiled Tool 266

Creating the Tile Map 267

Cocos2D Compressed TiledMap Class 271

Adding a TileMap to a ParallaxNode 272

Summary 276

Challenges 276

IV Physics Engines 277

 10 Basic Game Physics: Adding Realism with
Box2D 279

Getting Started 279

Mad Dreams of the Dead 281

Creating a New Scene 282

Contentsxvi

Adding Box2D Files to Your Project 284

Box2D Units 288

Hello, Box2D! 289

Creating a Box2D Object 292

Box2D Debug Drawing 295

Putting It All Together 296

Creating Ground 299

Basic Box2D Interaction and Decoration 302

Dragging Objects 304

Mass, Density, Friction, and Restitution 309

Decorating Your Box2D Bodies with Sprites 313

Making a Box2D Puzzle Game 320

Ramping It Up 324

Summary 332

Challenges 332

 11 Intermediate Game Physics: Modeling, Racing, and
Leaping 333

Getting Started 334

Adding the Resource Files 334

Creating a Basic Box2D Scene 335

Creating a Cart with Box2D 346

Creating Custom Shapes with Box2D 346

Using Vertex Helper 348

Adding Wheels with Box2D Revolute Joints 352

Making the Cart Move and Jump 356

Making the Cart Move with the Accelerometer 356

Making It Scrollable 359

Forces and Impulses 368

Fixing the Tipping 368

Making the Cart Jump 369

More Responsive Direction Switching 373

Summary 374

Challenges 374

Contents xvii

 12 Advanced Game Physics: Even Better than the Real
Thing 375

Joints and Ragdolls: Bringing Ole Back
into Action 376

Restricting Revolute Joints 376

Using Prismatic Joints 378

How to Create Multiple Bodies and Joints at the Right
Spots 378

Adding Ole: The Implementation 380

Adding Obstacles and Bridges 386

Adding a Bridge 386

Adding Spikes 390

An Improved Main Loop 394

The Boss Fight! 396

A Dangerous Digger 405

Finishing Touches: Adding a Cinematic Fight
Sequence 411

Summary 417

Challenges 417

 13 The Chipmunk Physics Engine (No Alvin
Required) 419

What Is Chipmunk? 420

Chipmunk versus Box2D 420

Getting Started with Chipmunk 421

Adding Chipmunk into Your Project 426

Creating a Basic Chipmunk Scene 429

Adding Sprites and Making Them Move 438

Jumping by Directly Setting Velocity 444

Ground Movement by Setting Surface Velocity 445

Detecting Collisions with the Ground 445

Chipmunk Arbiter and Normals 446

Implementation—Collision Detection 446

Implementation—Movement and Jumping 450

Chipmunk and Constraints 455

Revolving Platforms 458

Pivot, Spring, and Normal Platforms 460

Contentsxviii

The Great Escape! 467

Following Ole 467

Laying Out the Platforms 468

Animating Ole 469

Music and Sound Effects 473

Adding the Background 474

Adding Win/Lose Conditions 476

Summary 477

Challenges 477

V Particle Systems, Game Center, and
Performance 479

 14 Particle Systems: Creating Fire, Snow, Ice, and
More 481

Built-In Particle Systems 482

Running the Built-In Particle Systems 482

Making It Snow in the Desert 483

Getting Started with Particle Designer 485

A Quick Tour of Particle Designer 486

Creating and Adding a Particle System to
Space Viking 489

Adding the Engine Exhaust to Space Viking 490

Summary 494

Challenges 494

 15 Achievements and Leaderboards with Game
Center 495

What Is Game Center? 495

Why Use Game Center? 497

Enabling Game Center for Your App 497

Obtain an iOS Developer Program Account 497

Create an App ID for Your App 498

Register Your App in iTunes Connect 501

Enable Game Center Support 505

Game Center Authentication 506

Make Sure Game Center Is Available 506

Contents xix

Try to Authenticate the Player 507

Keep Informed If Authentication Status
Changes 508

The Implementation 508

Setting Up Achievements 515

Adding Achievements into iTunes Connect 515

How Achievements Work 517

Implementing Achievements 518

Creating a Game State Class 519

Creating Helper Functions to Load and Save
Data 522

Modifying GCHelper to Send Achievements 524

Using GameState and GCHelper in
SpaceViking 530

Displaying Achievements within the App 534

Setting Up and Implementing Leaderboards 536

Setting up Leaderboards in iTunes Connect 536

How Leaderboards Work 538

Implementing Leaderboards 539

Displaying Leaderboards in-Game 540

Summary 543

Challenges 543

 16 Performance Optimizations 545

CCSprite versus CCSpriteBatchNode 545

Testing the Performance Difference 550

Tips for Textures and Texture Atlases 551

Reusing CCSprites 552

Profiling within Cocos2D 554

Using Instruments to Find Performance
Bottlenecks 557

Time Profiler 558

OpenGL Driver Instrument 560

Summary 563

Challenges 563

Contentsxx

 17 Conclusion 565

Where to Go from Here 567

Android and Beyond 567

Final Thoughts 568

 A Principal Classes of Cocos2D 569

 Index 571

Preface

So you want to be a game developer?
Developing games for the iPhone or iPad can be a lot of fun. It is one of the few

things we can do to feel like a kid again. Everyone, it seems, has an idea for a game,
and what better platform to develop for than the iPhone and iPad?

What stops most people from actually developing a game, though, is that game devel-
opment covers a wide swath of computer science skills—graphics, audio, networking—
and at times it can seem like you are drinking from a fire hose. When you are first
getting started, becoming comfortable with Objective-C can seem like a huge task,
especially if you start to look at things like OpenGL ES, OpenAL, and other lower-
level APIs for your game.

Writing a game for the iPhone and iPad does not have to be that difficult—and it
isn’t. To help simplify the task of building 2D games, look no further than Cocos2D.

You no longer have to deal with low-level OpenGL programming APIs to make
games for the iPhone, and you don’t need to be a math or physics expert. There’s a
much faster and easier way—use a free and popular open source game programming
framework called Cocos2D. Cocos2D is extremely fun and easy to use, and with it
you can skip the low-level details and focus on what makes your game different and
special!

This book teaches you how to use Cocos2D to make your own games, taking you
step by step through the process of making an actual game that’s on the App Store
right now! The game you build in this book is called Space Viking and is the story of a
kick-ass Viking transported to an alien planet. In the process of making the game, you
get hands-on experience with all of the most important elements in Cocos2D and see
how everything fits together to make a complete game.

Download the Game!
You can download Space Vikings from the App Store: http://itunes.apple.com/us/app/
space-vikings/id400657526mt=8. The game is free, so go ahead and download it, start
playing around with it, and see if you’re good enough to get all of the achievements!

Think of this book as an epic-length tutorial, showing you how you can make a
real game with Cocos2D from the bottom up. You’ll be coding along with the book,
and we explain things step by step. By the time you’ve finished reading and working

http://itunes.apple.com/us/app/space-vikings/id400657526mt=8
http://itunes.apple.com/us/app/space-vikings/id400657526mt=8

Prefacexxii

through this book, you’ll have made a complete game. Best of all, you’ll have the con-
fidence and knowledge it takes to make your own.

Each chapter describes in detail a specific component within the game along with
the technology required to support it, be it a tile map editor or some effect we’re cre-
ating with Cocos2D, Box2D, or Chipmunk. Once an introduction to the functional-
ity and technology is complete, the chapter provides details on how the component
has been implemented within Space Viking. This combination of theory and real-world
implementation helps to fill the void left by other game-development books.

What Is Cocos2D?
Cocos2D (www.cocos2d-iphone.org) is an open source Objective-C framework for mak-
ing 2D games for the iOS and Mac OS X, which includes developing for the iPhone,
iPod touch, the iPad, and the Mac. Cocos2D can either be included as a library to
your project in Xcode or automatically added when you create a new game using the
included Cocos2D templates.

Cocos2D uses OpenGL ES for graphics rendering, giving you all of the speed and
performance of the graphics processor (GPU) on your device. Cocos2D includes a host
of other features and capabilities, which you’ll learn more about as you work through
the tutorial in this book.

Cocos2D started life as a Python framework for doing 2D games. In late 2008, it
was ported to the iPhone and rewritten in Objective-C. There are now additional
ports of Cocos2D to Ruby, Java (Android), and even Mono (C#/.NET).

Note
Cocos2D has an active and vibrant community of contributors and supporters. The
Cocos2D forums (www.cocos2d-iphone.org/forum) are very active and an excellent
resource for learning and troubleshooting as well as keeping up to date on the latest
developments of Cocos2D.

Why You Should Use Cocos2D
Cocos2D lets you focus on your core game instead of on low-level APIs. The App
Store marketplace is very f luid and evolves rapidly. Prototyping and developing your
game quickly is crucial for success in the App Store, and Cocos2D is the best tool for
helping you quickly develop your game without getting bogged down trying to learn
OpenGL ES or OpenAL.

Cocos2D also includes a host of utility classes such as the TextureCache, which
automatically caches your graphics, providing for faster and smoother gameplay.
TextureCache operates in the background and is one of the many functions of
Cocos2D that you don’t even have to know how to use; it functions transparently to

www.cocos2d-iphone.org
www.cocos2d-iphone.org/forum

Preface xxiii

you. Other useful utilities include font rendering, sprite sheets, a robust sound system,
and many more.

Cocos2D is a great prototyping tool. You can quickly make a game in as little as
an hour (or however long it takes you to read Chapter 2). You are reading this book
because you want to make games for the iPhone and iPad, and using Cocos2D is the
quickest way to get there—bar none.

Cocos2D Key Features
Still unsure if Cocos2D is right for you? Well, check out some of these amazing fea-
tures of Cocos2D that can make developing your next game a lot easier.

Actions
Actions are one of the most powerful features in Cocos2D. Actions allow you to
move, scale, and manipulate sprites and other objects with ease. As an example, to
smoothly move a space cargo ship across the screen 400 pixels to the right in 5 sec-
onds, all the code you need is:

CCAction *moveAction = [CCMoveBy actionWithDuration:5.0f

 position:CGPointMake(400.0f,0.0f)];

[spaceCargoShipSprite runAction:moveAction];

That’s it; just two lines of code! Figure P.1 illustrates the moveAction on the space
cargo ship.

Figure P.1 Illustrating the effect of the moveAction on the Space
Cargo Ship sprite

There are many kinds of built-in actions in Cocos2D: rotate, scale, jump, blink,
fade, tint, animation, and more. You can also chain actions together and call custom
callbacks for neat effects with very little code.

Built-In Font Support
Cocos2D makes it very easy to deal with text, which is important for games in menu
systems, score displays, debugging, and more. Cocos2D includes support for embedded
TrueType fonts and also a fast bitmap font-rendering system, so you can display text to
the screen with just a few lines of code.

Prefacexxiv

An Extensive Effects Library
Cocos2D includes a powerful particle system that makes it easy to add cool effects such
as smoke, fire, rain, and snow to your games. Also, Cocos2D includes built-in effects,
such as f lip and fading, to transition between screens in your game.

Great for TileMap Games
Cocos2D includes built-in support for tile-mapped games, which is great when you
have a large game world made up of small reusable images. Cocos2D also makes it
easy to move the camera around to implement scrolling backgrounds or levels. Finally,
there is support for parallax scrolling, which gives your game the illusion of 3D depth
and perspective.

Audio/Sound Support
The sound engine included with Cocos2D allows for easy use of the power of OpenAL
without having to dive into the lower level APIs. With Cocos2D’s sound engine, you
can play background music or sound effects with just a single line of code!

Two Powerful Physics Engines
Also bundled with Cocos2D are two powerful physics engines, Box2D and Chipmunk,
both of which are fantastic for games. You can add a whole new level of realism to
your games and create entire new gameplay types by using game physics—without
having to be a math guru.

Important Concepts
Before we get started, it’s important to make sure you’re familiar with some important
concepts about Cocos2D and game programming in general.

Sprite
You will see the term sprite used often in game development. A sprite is an image
that can be moved independently of other images on the screen. A sprite could be
the player character, an enemy, or a larger image used in the background. In practice,
sprites are made from your PNG or PVRTC image files. Once loaded in memory, a
sprite is converted into a texture used by the iPhone GPU to render onscreen.

Singleton
A singleton is a special kind of Objective-C class, which can have only one instance. An
example of this is an iPhone app’s Application Delegate class, or the Director class in
Cocos2D. When you call a singleton instance in your code, you always get back the
one instance of this class, regardless of which class called it.

Preface xxv

OpenGL ES
OpenGL ES is a mobile version (ES stands for Embedded Systems) of the Open Graph-
ics Language (OpenGL). It is the closest you can get on the iPhone or iPad to sending
zeros and ones to the GPU. OpenGL ES is the fastest way to render graphics on the
iPhone or iPad, and due to its origin, it is a low-level API. If you are new to game
development, OpenGL ES can have a steep learning curve, but luckily you don’t need
to know OpenGL ES to use Cocos2D.

The two versions of OpenGL ES supported on the iPhone and iPad are 1.1 and 2.0.
There are plans in the Cocos2D roadmap to support OpenGL ES 2.0, although cur-
rently only version 1.1 is supported.

Languages and Screen Resolutions
Cocos2D is written in Objective-C, the same language as Cocoa Touch and the
majority of the Apple iOS APIs. In Objective-C it is important to understand some
basic memory-management techniques, as it is a good foundation for you to become
an efficient game developer on the iOS platform. Cocos2D supports all of the native
resolutions on the iOS devices, from the original iPhone to the iPad to the retina dis-
play on the iPhone 4.

2D versus 3D
You first learn to walk before you can run. The same is true for game development;
you have to learn how to make 2D games before diving into the deeper concepts of
3D games. There are some 3D effects and transitions in Cocos2D, such as a 3D wave
effect and an orbit camera move; however, most of the functionality is geared toward
2D games and graphics.

Cocos2D is designed for 2D games (hence the 2D in the name), as are the tutorials
and examples in this book. If you want to make 3D games, you should look into dif-
ferent frameworks, such as Unity, the Unreal Engine, or direct OpenGL.

The Game behind the Book: Space Viking
This book takes you through the process of creating a full-featured Cocos2D-based
game for the iPhone and iPad. The game you build in this book is called Space Viking.
If you want to try Space Viking now, you can download a free version of the game
from the App Store (http://itunes.apple.com/us/app/id400657526) and install it on your
iPhone, iPod touch, or iPad.

Of course, if you are more patient, you can build the game yourself and load it
onto your device after working through the chapters in this book. There is no greater
learning experience than having the ability to test a game as you’re building it. Not
only can you learn how to build a game, but you can also go back and tweak the code
a bit to change things around to see what sort of effect something has on the game-
play. Good things come to those who wait.

http://itunes.apple.com/us/app/id400657526

Prefacexxvi

This book teaches you how to use all of the features and capabilities of Cocos2D,
but more important, how to apply them to a real game. By the time you are done, you
will have the knowledge and experience needed to get your own game in the App
Store. The concepts you learn from building Space Viking apply to a variety of games
from action to puzzle.

Space Viking’s Story
Every game starts in the depths of your imagination, with a character and storyline
that gets transformed into a game. This is the story of Space Viking.

In the future, the descendants of Earth are forced into colonizing planets outside
our own solar system. In order to create hospitable environments, huge interplanetary
machines extract giant chunks of ice from Northern Europe and Greenland and send
it across the galaxy to these planets. Unbeknown to the scientists, one of these chunks
contains Ole the Viking, who eons ago fell into an icy river on his way home from
defeating barbarian tribes. Encased in an icy tomb for centuries, Ole awakens thou-
sands of years later—and light years from home—after being warmed by an alien sun,
as shown in Figure P.2.

Figure P.2 Ole awakens on the alien planet

You get to play as Ole the Viking and battle the aliens on this strange world in
hopes of finding a way to return Ole to his native land and time.

You control Ole’s movement to the right and left by using the thumb joystick on
the left side of the screen. On the right side are buttons for jumping and attacking. Ole
starts out with only his fists. In later levels Ole finds his trusty mallet, and you use the
accelerometer to control him in the physics levels.

Space Viking is an action and adventure game, with the emphasis on action. The goal
was to create a real game from the ground up so you could learn not only Cocos2D
but also how to use it in a real full-featured game. The idea for the game came from

Preface xxvii

concept art that Eric Stevens, a graphic artist and fellow game devotee, developed ear-
lier when we were discussing game ideas to make next.

Space Viking consists of a number of levels, each of which demonstrates a specific
area of Cocos2D or gameplay type. For example, the first level is a side-scrolling beat
’em up, and the fourth level is a mine cart racing level that shows off the game physics
found in Box2D and Chipmunk. Our hope is that you can reuse parts of Space Viking
to make your own game once you’ve finished this book! That’s right: you can freely
reuse the code in this book to build your own game.

Organization of This Book
The goal of this book is to teach you about game development using Cocos2D as you
build Space Viking (and learn more about the quest and story of Ole the Viking). You
start with a simple level and some basic game mechanics and work your way up to
creating levels with physics and particle systems and finally to a complete game by the
end of the book.

First you learn the basics of Cocos2D and build a small level with basic running
and jumping movements for Ole. Part II shows you how to add animations, actions,
effects, and even text to Space Viking. Part III takes the game further, adding more
levels and scenes, sounds, and scrolling to the gameplay. In Part IV realism is brought
into the game with the Box2D and Chipmunk physics engines. Finally in Part V, you
learn how to add a particle system, add high scores, connect to social networks, and
debug and optimize Space Viking to round out some best practices for the games you
will build in the future.

There are 17 chapters and one appendix in the book, each dealing with a specific
area of creating Space Viking.

n Part I: Getting Started with Cocos2D

Learn how to get Cocos2D installed and start using it to create Space Viking.
Learn how to add animations and movements to Ole and his enemies.
n Chapter 1: Hello, Cocos2D

This chapter covers how to install Cocos2D framework and templates in
Xcode and some companion tools that make developing games easier. These
tools are freely available and facilitate the creation of the elements used by
Cocos2D.

n Chapter 2: Hello, Space Viking

Here you create the basic Space Viking game, which you build upon through-
out the book. You start out with just a basic Cocos2D template and add the
hero (Ole the Viking) to the scene. In the second part of this chapter, you add
the methods to handle the touch inputs, including moving Ole around and
making him jump.

Prefacexxviii

n Chapter 3: Introduction to Cocos2D Animations and Actions

In this chapter, you learn how to make the game look much more realistic by
adding animations to Ole as he moves around the scene.

n Chapter 4: Simple Collision Detection and the First Enemy

In this chapter, you learn how to implement simple collision detection and
add the first enemy to your Space Viking game, so Ole can start to fight his
way off the planet!

n Part II: More Enemies and More Fun

Learn how to create more complex enemies for Ole to battle and in the process
learn about Cocos2D actions and effects. Finish up with a live, onscreen debug-
ging system using Cocos2D text capabilities.
n Chapter 5: More Actions, Effects, and Cocos2D Scheduler

Actions are a key concept in Cocos2D—they are an easy way to move objects
around, make them grow or disappear, and much more. In this chapter, you
put them in practice by adding power-ups and weapons to the level, and you
learn some other important Cocos2D capabilities, such as effects and the
scheduler.

n Chapter 6: Text, Fonts, and the Written Word

Most games have text in them at some point, and Space Viking is no exception.
In this chapter, you learn how to add text to your games using the different
methods available in Cocos2D.

n Part III: From Level to Game

Learn how to expand the Space Viking level into a full game by adding menus,
sound, and scrolling.
n Chapter 7: Main Menu, Level Completed, and Credits Scenes

Almost all games have more than one screen (or “scene,” as it’s called in
Cocos2D); there’s usually a main menu, main game scene, level completed,
and credits scene at the very least. In this chapter, you learn how to create
multiple scenes by implementing them in Space Viking!

n Chapter 8: Pump Up the Volume!

Adding sound effects and music to a game can make a huge difference.
Cocos2D makes it really easy with the CocosDenshion sound engine, so in
this chapter you give it a try!

n Chapter 9: When the World Gets Bigger: Adding Scrolling

A lot of games have a bigger world than can fit on one screen, so the world
needs to scroll as the player moves through it. This can be tricky to get right,
so this chapter shows you how by converting the beat-’em-up into a side-
scroller, using Cocos2D tile maps for improved performance.

Preface xxix

n Part IV: Physics Engines

With the Box2D and Chipmunk physics engines that come with Cocos2D, you
can add some amazing effects to your games, such as gravity, realistic collisions,
and even ragdoll effects! In these chapters you get a chance to add some physics-
based levels to Space Viking, from simple to advanced!
n Chapter 10: Basic Game Physics: Adding Realism with Box2D

Just as Cocos2D makes it easy to make games for the iPhone without know-
ing low-level OpenGL details, Box2D makes it easy to add physics to your
game objects without having to be a math expert. In this chapter, you learn
how to get started with Box2D by making a fun puzzle game where objects
move according to gravity.

n Chapter 11: Intermediate Game Physics: Modeling, Racing, and
Leaping

This chapter shows you some of the really neat stuff you can do with Box2D
by making the start of a side-scrolling cart-racing game. In the process, you
learn how to model arbitrary shapes, add joints to restrict movement of phys-
ics bodies, and much more!

n Chapter 12: Advanced Game Physics: Even Better than the Real
Thing

In this chapter, you make the cart-racing level even more amazing by adding
spikes to dodge and an epic boss fight at the end. You learn more about joints,
how to detect collisions, and how to add enemy logic as well.

n Chapter 13: The Chipmunk Physics Engine (No Alvin Required)

The second physics engine that comes with Cocos2D, called Chipmunk, is
similar to Box2D. This chapter shows you how to use Chipmunk, compares it
to Box2D, and gives you hands-on practice by making a Metroid-style escape
level.

n Part V: Particle Systems, Game Center, and Performance

Learn how to quickly create and add particle systems to your games, how to
integrate with Apple’s Game Center for online leaderboards and achievements,
and some performance tips and tricks to keep your game running fast.
n Chapter 14: Particle Systems: Creating Fire, Snow, Ice, and More

Using Cocos2D’s particle system, you can add some amazing special effects to
your game—extremely easily! In this chapter, you learn how to use particle
systems to add some special effects to Space Viking, such as ship exhaust.

n Chapter 15: Achievements and Leaderboards with Game Center

With Apple’s Game Center, you can easily add achievements and leaderboards
to your games, which makes things more fun for players and also might help
you sell more copies! This chapter covers how to set things up in Space Viking,
step by step.

Prefacexxx

n Chapter 16: Performance Optimizations

In this chapter, you learn how to tackle some of the most common chal-
lenges and issues you will face in optimizing and getting the most out of your
Cocos2D game. You get hands-on experience debugging the most common
performance issues and applying solutions.

n Chapter 17: Conclusion

This final chapter recaps what you learned and describes where you can go
next: into 3D, using Cocos2D on other platforms such as Android, and more
advanced game-development topics.

n Appendix: Principal Classes of Cocos2D

The Appendix provides an overview of the main classes you will be using and
interacting with in Cocos2D.

By the time you’ve finished reading this book, you’ll have practical experience
making an awesome game from scratch! You can then take the concepts you’ve learned
(and even some of the code!) and use it to turn your own game into a reality.

Audience for This Book
The audience for this book includes developers who are put off by game-making
because they anticipate a long and complex learning curve. Many developers want to
write games but don’t know where to start with game development or the Cocos2D
framework. This book is a hands-on guide, which takes you from the very beginning of
using Cocos2D to applying the advanced physics concepts in Box2D and Chipmunk.

This book is targeted to developers interested in creating games for iOS devices,
including the iPhone, iPad, and iPod touch. The book assumes a basic understanding
of Objective-C, Cocoa Touch, and the Xcode tools. You are not expected to know
any lower-level APIs (Core Audio, OpenGL ES, etc.), as these are used internally by
Cocos2D.

Who This Book Is For
If you are already developing applications for the iPhone of other platform but want to
make a move from utility applications to games, then this book is for you. It builds on
the development knowledge you already have and leads you into game development by
describing the terminology, technology, and tools required as well as providing real-
world implementation examples.

Who This Book Isn’t For
If you already have a grasp of the workf low required to create a game or you have a
firm game idea that you know will require OpenGL ES for 3D graphics, then this is
not the book for you.

Preface xxxi

It is expected that before you read this book you are already familiar with
Objective-C, C, Xcode, and Interface Builder. While the implementations described
in this book have been kept as simple as possible, and the use of C is limited, a firm
foundation in these languages is required.

The following books can help provide you with the grounding you need to work
through this book:

n Cocoa Programming for Mac OS X, Third Edition, by Aaron Hillegass (Addison-
Wesley, 2008)

n Learning Objective-C 2.0 by Robert Clair (Addison-Wesley, 2011)
n Programming in Objective-C 2.0 by Stephen G. Kochan (Addison-Wesley, 2009)
n Cocoa Design Patterns by Erik M. Buck and Donald A. Yacktman (Addison-

Wesley, 2009)
n The iPhone Developer’s Cookbook, Second Edition, by Erica Sadun (Addison-Wesley,

2010)
n Core Animation: Simplified Animation Techniques for Mac and iPhone Development by

Marcus Zarra and Matt Long (Addison-Wesley, 2010)
n iPhone Programming: The Big Nerd Ranch Guide by Aaron Hillegass and Joe

Conway (Big Nerd Ranch, Inc., 2010)
n Learning iOS Game Programming: A Hands-On Guide to Building Your First iPhone

Game by Michael Daley (Addison-Wesley, 2011)

These books, along with other resources you’ll find on the web, will help you learn
more about how to program for the Mac and iPhone, giving you a deeper knowledge
about the Objective-C language and the Cocoa frameworks.

Source Code, Tutorial Videos, and Forums
Access to information is not limited only to the book. The complete, fully commented
source code for Space Viking is also included, along with video tutorials (available at
http://cocos2Dbook.com) that take you visually through the concepts of each chapter.

There is plenty of code to review throughout the book, along with exercises for
you to try out, so it is assumed you have access to the Apple developer tools such as
Xcode and the iPhone SDK. Both of these can be downloaded from the Apple iPhone
Dev Center: http://developer.apple.com/iphone.

If you want to work with your fellow students as you work through the book, feel
free to check out the book’s forums at http://cocos2dbook.com/forums/.

http://cocos2Dbook.com
http://developer.apple.com/iphone
http://cocos2dbook.com/forums/

This page intentionally left blank

Acknowledgments

This book would not have been possible without the hard work, support, and kindness
of the following people:

n First of all, thanks to our editor, Chuck Toporek, and his assistant, Olivia
Basegio. Chuck patiently helped and encouraged us during the entire process
(even though we are both first-time authors!) and has managed all of the work
it takes to convert a simple Word document into the actual book you’re holding
today. Olivia was extremely helpful through the entire process of keeping every-
one coordinated and the tech reviews coming in. Thanks again to both of you in
making this book a reality!

n Another person at Addison-Wesley whom we want to thank is Chuti Prasertsith,
who designed the cover for the book.

n A huge thanks to the lead developer and coordinator of Cocos2D, Ricardo
Quesada (also known as Riq), along with the other Cocos2D contributors,
such as Steve Oldmeadow and many others. Without Riq and his team’s hard
work and dedication to making Cocos2D into the amazing framework and
community that it is today, this book just wouldn’t exist. Also, we believe that
Cocos2D has made a huge positive difference in many people’s lives by enabling
them to accomplish a lifelong dream—to make their own games. Riq maintains
Cocos2D as his full-time job, so if you’d like to make a donation to thank him
for his hard work, you can do so at www.cocos2d-iphone.org/store. Riq also sells
source code for his game Sapus Tongue and a great physics editor called Level-
SVG. You can find out more about both at www.sapusmedia.com.

n Also, thank you to Erin Catto (the lead developer of Box2D) and Scott Lembcke
(the lead developer of Chipmunk) for their work on their amazing physics librar-
ies. Similarly to Riq’s work on Cocos2D, Erin’s and Scott’s work has enabled
countless programmers to create cool physics-based games quickly and easily.
Erin and Scott are extremely dedicated to supporting their libraries and commu-
nity, and even kindly donated their time in reviewing the physics chapters of this
book. If you’d like to donate to Erin or Scott for their hard work on their librar-
ies, you can do so by following the links at www.box2d.org and http://code.google.
com/p/chipmunk-physics.

n A big thanks to Steve Oldmeadow, the lead developer of CocosDenshion, the
sound engine behind Cocos2D. Steve provided assistance and time in reviewing

www.cocos2d-iphone.org/store
www.sapusmedia.com
www.box2d.org
http://code.google.com/p/chipmunk-physics
http://code.google.com/p/chipmunk-physics

Acknowledgmentsxxxiv

the chapter on audio. Steve’s work has allowed many game developers to quickly
and easily add music and sound effects to their games.

n Eric Stevens is an American fine artist who moonlights as a game illustrator.
Years of good times and bad music contributed to the initial concept of Space
Viking. Eric worked closely with us to bring Ole and everything you see in
Space Viking to life. Eric maintains an illustration site at http://imagedesk.org, and
you can see his paintings at several galleries in the Southwest and at http://
ericstevensart.com.

n Mike Weiser is the musician who made the rocking soundtrack and sound effects
for Space Viking. We think the music made a huge difference in Space Viking and
really set the tone we were hoping for. A special thanks to Andrew Peplinski for
the Viking grunts and Rulon Brown for conducting the choir that you hear in
the beginning of the game. Mike has made music for lots of popular iOS games,
and you can check him out at www.mikeweisermusic.com.

n A huge thanks to our technical reviewers: Farim Farook, Marc Hebert, Mark
Hurley, Mike Leonardi, and Nick Waynik. These guys did a great job catching
all of our boneheaded mistakes and giving us some great advice on how to make
each chapter the best it could be. Thank you so much, guys!

Each of us also has some personal “thank yous” to make.

From Rod Strougo
I thank my wife and family for being ever patient while I was working on this book.
There were countless evenings when I was hidden away in my office writing, editing,
coding. Without Agata’s support and understanding, there is no way this book could
exist. Our older son, Alexander, was two and a half during the writing of this book,
and he helped beta test Space Viking, while Anton was born as I was finishing the last
chapters. Thank you for all the encouragement, love, and support, Agata.

I would also like to thank Ray for stepping in and writing the Box2D, Chipmunk,
and Game Center chapters. Ray did a fantastic job on in-depth coverage of Box2D
and Chipmunk, while adding some fun levels to Space Viking.

From Ray Wenderlich
First of all, a huge thank you to my wife and best friend, Vicki Wenderlich, for her
constant support, encouragement, and advice throughout this entire process. Without
her, I wouldn’t be making iOS apps today, and they definitely wouldn’t look as good!
Also, thank you to my amazing family. You believed in me through the ups and
downs of being an indie iOS developer and supported me the entire way. Thank you
so much!

www.mikeweisermusic.com
http://imagedesk.org
http://ericstevensart.com
http://ericstevensart.com

Acknowledgments xxxv

Finally, I thank all of the readers and supporters of my iOS tutorial blog at www.
raywenderlich.com. Without your interest, encouragement, and support, I wouldn’t
have been as motivated to keep writing all the tutorials and might have never had the
opportunity to write this book. Thank you so much for making this possible, and I
hope you enjoy this book!

www.raywenderlich.com
www.raywenderlich.com

This page intentionally left blank

About the Authors

Rod Strougo is the founder and lead developer of the studio Prop Group at
www.prop.gr. Rod’s journey in physics and games started way back with an Apple][,
writing games in Basic. From the early passion in games, Rod’s career moved to enter-
prise software development, spending 10 years writing software for IBM and recently
for a large telecom company. These days Rod enjoys helping others get started on their
paths to making games. Originally from Rio de Janeiro, Brazil, Rod lives in Atlanta,
Georgia, with his wife and sons.

Ray Wenderlich is an iPhone developer and gamer and the founder of Razeware,
LLC. Ray is passionate about both making apps and teaching others the techniques to
make them. He has written a bunch of tutorials about iOS development, available at
www.raywenderlich.com.

www.prop.gr
www.raywenderlich.com

This page intentionally left blank

Part I
Getting Started with

Cocos2D

Learn how to install Cocos2D and start using it to create Space Viking.
Learn how to add animations and movements to Ole the Viking and his
enemies.

n Chapter 1: “Hello, Cocos2D”

n Chapter 2: “Hello, Space Viking”

n Chapter 3: “Introduction to Cocos2D Animations and Actions”

n Chapter 4: “Simple Collision Detection and the First Enemy”

This page intentionally left blank

1
Hello, Cocos2D

Cocos2D is incredibly fun and easy to use. In this chapter you will learn how to install Cocos2D,
integrate it with Xcode, and make a simple HelloWorld app. You’ll then add a space cargo
ship to the app and have it move around the screen, with just a few lines of code, as shown in
Figure 1.1.

Figure 1.1 The space cargo ship that you will add to your HelloWorld app

After you create this simple app, you will get a chance to go behind the scenes and see how the
Cocos2D template code generated for you works and try running the app on your own iPhone or
iPad.

Note
It is assumed you have already signed up for Apple’s iPhone Developer program and
downloaded and installed Xcode on your Mac. You should also have some knowledge of
Objective-C syntax. For more information and references on how to get started with these,
please see the preface.

Chapter 1 Hello, Cocos2D4

This chapter walks you through the process of downloading and installing Cocos2D and inte-
grating it with Xcode. Once Cocos2D is installed, you’ll build a simple HelloWorld app and test
it in the iPhone Simulator. You will learn exactly what each line in the HelloWorld program does
as well as how to get HelloWorld on your iOS device.

Ready? Okay then, let’s get started!

Downloading and Installing Cocos2D
This section walks you through the process of downloading and installing Cocos2D.
Before you can start creating your first Cocos2D game, you need to download
Cocos2D and get the templates installed in Xcode.

Downloading Cocos2D
The official Cocos2D project is hosted on GitHub, but the latest stable and tested
releases are available from the Cocos2D homepage under the download tab at
www.cocos2d-iphone.org/download. Figure 1.2 shows the Cocos2D download page.

Figure 1.2 Cocos2D homepage showing the download section

To get Cocos2D on your Mac:

1. Create a folder called Cocos2D on your Mac and download the latest stable ver-
sion that you see on the www.cocos2d-iphone.org/download site.

2. Double-click on the gzipped tar file, and Finder will automatically extract the file
into a cocos2d-iphone-VERSION subfolder.

www.cocos2d-iphone.org/download
www.cocos2d-iphone.org/download

Downloading and Installing Cocos2D 5

In this subfolder is where you will find the install_templates.sh script that you
need to run next.

Note
You have two paths to get Cocos2D on your system: you can go with the latest stable
branch at the Cocos2D homepage, shown on the previous page, or with the latest develop
branch by using Git. The newest features always start life in the develop branch, in the
same way as Apple releases the new versions of iOS as beta. Which mechanism you
choose is up to you—all of the 1.x versions of Cocos2D are backward compatible with
Cocos2D 1.0.

Installing the Cocos2D Templates
Installing the Cocos2D templates is the same whether you downloaded a gzipped
archive shown in the previous section or cloned the latest version from the develop
branch using Git. To start:

1. Open Terminal and navigate to the Cocos2D folder that you created in the pre-
vious section. You can use the cd command to change folders.

2. Once inside the Cocos2D folder, use the cd command once more to change fold-
ers so that you are inside the cocos2d-iphone subfolder. You can see a listing of the
cocos2d-iphone subfolder in Figure 1.3.

$ cd cocos2d-iphone

Figure 1.3 Looking inside the cocos2d-iphone subdirectory

3. Run the install-templates.sh script by entering the following command:

$ sudo ./install-templates.sh

4. When prompted, enter your password.

Chapter 1 Hello, Cocos2D6

The install-templates.sh script copies the three Cocos2D templates into the Xcode
folder. That is all it takes to install the Cocos2D templates. Restart Xcode if you had
it running while installing the templates, and you will be ready to create a Cocos2D
HelloWorld in the next section.

Creating Your First Cocos2D HelloWorld
No more delays: time to dive in to the code. In this section you will learn to use the
Cocos2D templates that you installed earlier and to build the Cocos2D HelloWorld
sample. No programming introduction is complete without a proper “Hello World.”

Inspecting the Cocos2D Templates
Fire up Xcode, and from Xcode’s menu, select File > New Project and select the
iOS/User Templates section. You should see three Cocos2D templates, as shown in
Figure 1.4, under the User Templates section. The first template is for an application
with just Cocos2D, the second for a Cocos2D with Box2D application, and the third
for a Cocos2D with Chipmunk application.

Figure 1.4 Cocos2D templates in Xcode

Tip
Make sure you select Application under the iOS and User Templates section.

Creating Your First Cocos2D HelloWorld 7

The three Cocos2D templates provide three different versions of a simple
HelloWorld application. The Cocos2D Application template has just Cocos2D and is
what you will use to create the HelloWorld app. The Box2D template creates a mini
Box2D HelloWorld where you can drop boxes into the screen with physics simulation.
The Chipmunk template creates a mini Chipmunk project where you can create
multiple bodies and try out collisions.

When you are building your own games, these three templates are key to getting
your game started quickly. The Box2D and Chipmunk projects contain all of the
wiring between Cocos2D and the physics engines. Even the Cocos2D-only template
comes already connected with an application delegate and runs without you having to
type any code.

Building the Cocos2D HelloWorld Project
Let’s build the basic Cocos2D HelloWorld project. Once you’ve built this one, you
should take a stab at building the Cocos2D+Box2D and Cocos2D+Chipmunk exam-
ples, too.

1. Launch Xcode and select File > New Project from the menu.

2. Select the Cocos2D template (without Box2D or Chipmunk).

3. Name this project CCHelloWorld, as shown in Figure 1.5.

Figure 1.5 Creating the Cocos2D HelloWorld sample

Chapter 1 Hello, Cocos2D8

Figure 1.6 Showing the CCHelloWorld and iPhone Simulator on the
Scheme dropdown

4. In Xcode on the Scheme dropdown, select CCHelloWorld and the iPhone
Simulator (4.2 or the latest iOS you have installed on your system), as shown in
Figure 1.6.

Figure 1.7 The Cocos2D HelloWorld app running in the iPhone Simulator

5. In Xcode, click Run.

You now have a fully functional Cocos2D HelloWorld app running in the iPhone
Simulator, as shown in Figure 1.7.

The Cocos2D CCHelloWorld project is already set up for iPhone and iPad from the
start; there is no need to transition it or do anything else. If you select iPad Simulator
under the Scheme dropdown and click Run, you will see CCHelloWorld running on
the iPad, as shown in Figure 1.8.

Creating Your First Cocos2D HelloWorld 9

Taking HelloWorld Further
While displaying “Hello World” on the screen is a good first step, you are learning
about Cocos2D to create games, so why not add a quick space cargo ship here and
make it move?

To start, locate the SpaceCargoShip folder included with the resources for this chap-
ter. The SpaceCargoShip folder contains the SpaceCargoShip.png, which is the image of—
what else?—the alien’s space cargo ship.

In Xcode with the HelloWorld project opened:

1. Drag the SpaceCargoShip folder into the CCHelloWorld project and select
Copy items into destination group’s folder. You are merely adding the
Space CargoShip folder and PNG to your CCHelloWorld project so that it is
included with your app.

2. Open the HelloWorldScene.m class and, in the init method, add the lines
shown in Listing 1.1.

Listing 1.1 Adding the space cargo ship onscreen

CCSprite *spaceCargoShip = [CCSprite

 spriteWithFile:@"SpaceCargoShip.png"];

[spaceCargoShip setPosition:ccp(size.width/2, size.height/2)];

[self addChild:spaceCargoShip];

Figure 1.8 The Cocos2D HelloWorld app running in the iPad Simulator

Chapter 1 Hello, Cocos2D10

Click Run, and you should see the space cargo ship in the middle of the screen, as
shown in Figure 1.9.

Figure 1.9 Space cargo ship in HelloWorld

Only three lines of code, and you already have a space cargo ship on your iOS
device. You will learn in-depth about the details behind the lines in Listing 1.1 in the
next chapters.

Adding Movement
A ship is supposed to move around, and moving sprites in Cocos2D is really easy. Add
the lines shown in Listing 1.2 right below the lines you added for the space cargo ship.

Listing 1.2 Code to move the spaceCargoShip in HelloWorldScene.m

id moveAction = [CCMoveTo actionWithDuration:5.0f

 position:ccp(0, size.height/2)];

[spaceCargoShip runAction:moveAction];

Click Run and watch your space cargo ship move slowly to the left side of the screen.
How about that—just five short lines of code and you have a moving ship on your iOS
device. It only gets better from here.

Note
If you are having issues with your HelloWorld crashing with an error message saying
cocos2d: Couldn’t add image:SpaceCargoShip.png in CCTextureCache, make sure you have
properly copied the SpaceCargoShip folder to your CCHelloWorld project. You can always
check your work against the completed CCHelloWorld project located with the resources
for this book.

For the More Curious: Understanding the Cocos2D HelloWorld 11

Hopefully, this has been one of the simplest HelloWorld programs you have tried out:
you only had to type five lines of code. Getting started with Cocos2D is easy, and you
can render some amazing effects and graphics with very little code. In the next chapter
you will start building Space Viking by putting Ole the Viking and the controls on the
screen. You will go from this HelloWorld to a Viking you can move on the screen in
one short chapter.

The rest of this chapter explains in detail what each line in HelloWorld does, as
well as how to generate builds for your iOS device. If you don’t want to learn what
is happening “behind the scenes,” feel free to skip ahead to the next chapter and start
creating your Space Viking game.

For the More Curious: Understanding the
Cocos2D HelloWorld
If you are curious about how the Cocos2D application template works, this section
covers the most important pieces.

Scenes and Nodes
The first step to understanding the Cocos2D template code is to understand the con-
cepts of scenes, layers, and nodes.

Cocos2D games are made up of scenes (CCScenes), and the director (CCDirector)
is responsible for running scenes. The Cocos2D Director runs only one scene at a
time. For example, Figure 1.10 shows how you might have the CCDirector running
a scene with a main menu on it at one point, and switch to another scene with the
gameplay later.

CC
Director

Gameplay
Scene

Main Menu
Scene

CC
Director

Gameplay
Scene

Main Menu
Scene

Running Scene: Main Menu Scene Running Scene: Gameplay Scene

Figure 1.10 Cocos2D Director running Main Menu Scene and then
Gameplay Scene

Chapter 1 Hello, Cocos2D12

Each scene in Cocos2D consists of one or more layers, which are composited on top
of each other. For example, in building Space Viking you will create two layers in the
first scene: one on the bottom to contain the background, and one on the top to con-
tain the moving characters and action.

Each layer (CCLayer) can in turn have sprites (CCSprite), labels (CCLabel),
and other objects you want to display onscreen. If you remember, when you added
SpaceCargoShip, you created a new sprite and then added it as a child of the layer.

You can see an example of how the hierarchy of Cocos2D nodes fits together in
Figure 1.11.

CC
Director

LabelSprite Sprite Sprite Sprite

Background
Layer

Main
Layer

Controls
Layer

Gameplay
Scene

Currently running scene

Figure 1.11 Cocos2D Scenes, Layers, and Sprites hierarchy

In Xcode, go to the Classes folder and open the CCHelloWorldAppDelegate.m file.
Look inside the applicationDidFinishLaunching method, which is where the

Cocos2D Director (CCDirector) is set up and instantiated. On line 113, you will see
the following, which is where HelloWorld scene is allocated and run:

[[CCDirector sharedDirector] runWithScene: [HelloWorld scene]];

In the HelloWorld sample, the CCDirector allocates the HelloWorld scene and
then proceeds to run it, calling all of the schedulers and draw calls of the scene and its
children.

For the More Curious: Understanding the Cocos2D HelloWorld 13

Open up HelloWorldScene.m and find the scene method that creates a new scene, as
shown in Listing 1.3.

Listing 1.3 Inside the HelloWorldScene.m +(id)scene method

+(id) scene

{

// 'scene' is an autorelease object.

CCScene *scene = [CCScene node];

// 'layer' is an autorelease object.

HelloWorld *layer = [HelloWorld node];

// add layer as a child to scene

 [scene addChild: layer];

// return the scene

return scene;

}

The first line of code creates a new instance of CCScene by calling [CCScene node],
which is shorthand for [[[CCScene alloc] init] autorelease]. It then creates a
new instance of the HelloWorld layer, adds it as a child of the CCScene, and returns
the new scene.

When the HelloWorld layer is called, the init method is called, which contains
the code shown in Listing 1.4.

Listing 1.4 Inside the HelloWorldScene.m –(id)init method for HelloWorld Layer

// Create and initialize a Label

CCLabelTTL* label = [CCLabelTTL labelWithString:@"Hello World"
fontName:@"Marker Felt" fontSize:64];

// Ask CCDirector for the window size

CGSize size = [[CCDirector sharedDirector] winSize];

// Position the label at the center of the screen

label.position = ccp(size.width /2 , size.height/2);

// Add the label as a child to this Layer

[self addChild: label];

This creates a label saying “Hello World” and sets its position to the center of the
screen. It then adds the label as a child of the HelloWorld layer.

Chapter 1 Hello, Cocos2D14

So in summary, the CCDirector needs to know which scene to run. Inside of
applicationDidFinishLaunching, the template calls the [HelloWorld scene]
method to create a new CCScene with a single layer as a child—the HelloWorld
layer. The init function of the HelloWorld layer creates a label and adds it as a child
of the layer. At that point, you have “Hello World” showing onscreen.

From the Beginning
At this point we’ve covered the most critical parts of the template—how the scene gets
run and how the label gets added to the scene. But if you’re still curious, here’s some
additional information about the remaining template code automatically created for
you.

When the HelloWorld app first starts, the int main(int argc, char *argv[])
function inside of the main.m file is executed by the iOS. The main function allocates
the memory pool the HelloWorld application will use and has the UIApplication-
Main run the CCHelloWorldAppDelegate class. It is in the application delegate class
that HelloWorld comes to life, with the instantiation of the Cocos2D Director. List-
ing 1.5 covers the applicationDidFinishLaunching method that is called by the
UIApplicationMain when CCHelloWorld is loaded and ready to start running.

Listing 1.5 applicationDidFinishLaunching in CCHelloWorldAppDelegate.m class

- (void) applicationDidFinishLaunching:(UIApplication*)application

{

// Init the window

window = [[UIWindow alloc] initWithFrame:[

 [UIScreen mainScreen] bounds]];

 // Try to use CADisplayLink director

// if it fails (SDK < 3.1) use the default director

if(! [CCDirector setDirectorType:kCCDirectorTypeDisplayLink])

 [CCDirector setDirectorType:kCCDirectorTypeDefault]; // 1

CCDirector *director = [CCDirector sharedDirector]; // 2

// Init the View Controller

viewController = [[RootViewController alloc]

initWithNibName:nil bundle:nil];

viewController.wantsFullScreenLayout = YES; // 3

 // Create the EAGLView manually

// 1. Create a RGB565 format. Alternative: RGBA8

// 2. depth format of 0 bit. Use 16 or 24 bit for 3d effects,

 // like CCPageTurnTransition

 EAGLView *glView = [EAGLView viewWithFrame:[window bounds]

 pixelFormat:kEAGLColorFormatRGB565

 depthFormat:0]; // 4

For the More Curious: Understanding the Cocos2D HelloWorld 15

// attach the openglView to the director

 [director setOpenGLView:glView];

 // By default, this template only supports Landscape orientations.

// Edit the RootViewController.m file to edit the supported

 // orientations.

 #if GAME_AUTOROTATION == kGameAutorotationUIViewController

 [director setDeviceOrientation:kCCDeviceOrientationPortrait];

 #else

 [director setDeviceOrientation:kCCDeviceOrientationLandscapeLeft];

 #endif // 5

 [director setAnimationInterval:1.0/60]; // 6

 [director setDisplayFPS:YES]; // 7

// make the OpenGLView a child of the view controller

 [viewController setView:glView]; // 8

// make the View Controller a child of the main window

 [window addSubview: viewController.view];

 [window makeKeyAndVisible]; // 9

// Default texture format for PNG/BMP/TIFF/JPEG/GIF images

// It can be RGBA8888, RGBA4444, RGB5_A1, RGB565

 [CCTexture2D setDefaultAlphaPixelFormat:

kCCTexture2DPixelFormat_RGBA8888]; // 10

 // Removes the startup flicker

 [self removeStartupFlicker]; // 11

// Run the intro Scene

 [[CCDirector sharedDirector] runWithScene:

 [HelloWorld scene]]; // 12

}

The first step is to initialize the UIWindow where the View Controller and EAGLView
will be attached. The UIWindow is set to full screen, and the EAGLView is where all
of the OpenGL ES calls are going to be sent. Next, the Application Delegate:

1. Tries to set up Cocos2D to use the DisplayLink Director available on iOS 3.1
and higher. The DisplayLink Director allows Cocos2D to be called right before
the device needs to display the current image onscreen, so that the updates and
render cycles are in sync with the screen refresh interval.

2. Instantiates the Cocos2D Director singleton.

3. Instantiates the view controller that will contain the EAGLView and will inform
Cocos2D of any orientation changes when the device switches between portrait
and landscape orientations.

Chapter 1 Hello, Cocos2D16

4. Creates the EAGLView, which is used to render your game. Cocos2D will use
the EAGLView to send the OpenGL ES commands to the OpenGL ES driver.

5. Sets the orientation to either portrait or landscape. If you are using the View
Controller created by the Cocos2D template, you will need to modify the
shouldAutorotateToInterfaceOrientation in the RootViewController.m
class to support the orientations you need in your game.

6. Sets the animation interval to 60 times per second, which is the default mode for
Cocos2D. Normally, Cocos2D tries to update the screen at the fastest rate (60
times per second).

7. Sets the Frames Per Second (FPS) display to be on and active. Cocos2D has the
option of calculating the average frames per second that your game is running
at and display it on the bottom left corner of the screen. The FPS display can
be really useful in troubleshooting game performance. The FPS display is off by
default; this line turns it on.

8. Adds the EAGLView as a child to the RootViewController so that it will be
rendered.

9. Adds the RootViewController to the UIWindow and makes it active, allowing
for the RootViewController and more importantly the EAGLView to start ren-
dering elements on the screen.

10. Sets the Cocos2D texture format. Note that by default Cocos2D uses the high-
est bit depth for your images. In later chapters you will learn how to use images
with a lower bit depth to save on memory usage.

11. Removes the startup f licker if your game runs only in landscape orientation.
If your game runs only in a landscape orientation, Cocos2D needs to brief ly
load and display the Default.png image to avoid a f licker from the splash screen
(Default.png) to black.

12. Instantiates the HelloWorld scene, which in turn instantiates the HelloWorld
layer, and starts running the HelloWorld scene. At this point, the “Hello World”
label is visible on the screen.

The Cocos2D Director is responsible for running the game loop and rendering
all of the graphics in your game. Since the director is running the game loop, it can
control when the game runs, pauses, or stops. Looking at Listing 1.6, you can see the
methods in the application delegate that call the director in response to events from
the iPhone operating system, including pause and resume.

Listing 1.6 Methods inside of CCHelloWorldAppDelegate.m

- (void)applicationWillResignActive:(UIApplication *)application {

 [[CCDirector sharedDirector] pause]; // 1

}

For the More Curious: Understanding the Cocos2D HelloWorld 17

- (void)applicationDidBecomeActive:(UIApplication *)application {

 [[CCDirector sharedDirector] resume]; // 2

}

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application {

 [[CCDirector sharedDirector] purgeCachedData]; // 3

}

- (void)applicationWillTerminate:(UIApplication *)application {

CCDirector *director = [CCDirector sharedDirector];

 [[director openGLView] removeFromSuperview];

 [viewController release];

 [window release];

 [director end]; // 4

}

- (void)applicationSignificantTimeChange:(UIApplication *)application {

 [[CCDirector sharedDirector] setNextDeltaTimeZero:YES]; // 5

}

1. Pauses the game and all timers if the application is paused by the operating sys-
tem. This event occurs when the user locks the iPad or iPhone screen while
playing a game or when an incoming call or other similar event forces the game
to the background.

2. Resumes the game and all timers when the application is brought back into the
foreground by the operating system. This event occurs when the user unlocks
the iPad or iPhone screen after locking it with the game running or resumes a
game after the call is complete.

3. Removes from memory any sprite textures that are not being used at the
moment in response to a low-memory warning. This call dumps all of the
cached texture and bitmap fonts data that is not currently in use to render graph-
ics onscreen.

Note
Your image files (PNGs, PVR) are loaded into OpenGL ES textures in a format that the
GPU can understand. The Cocos2D sprites are your link to these textures, which are used
by the Cocos2D Director and OpenGL ES to render your game. Cocos2D includes a texture
cache manager to maintain any textures you use cached in memory. Keeping textures
cached in memory greatly speeds up the creation of new sprites that utilize previously
used textures. The disadvantage of keeping textures cached is the additional memory
overhead. If the application receives a low-memory warning, Cocos2D moves quickly to
remove from memory any textures not actively in use. It is important to always remember
to deallocate your layers and scenes once you have moved from one scene to another,
and remove any unused textures and other assets, to keep your memory footprint as
small as possible.

Chapter 1 Hello, Cocos2D18

4. Ends the director and detaches the EAGLView from the application’s UIWindow.
This ends the game loop, removes all textures from memory, and clears all
of the scheduler timers. This command also forces the director to deallocate
the currently running scene, including all of its layers and sprites. The
applicationWillTerminate event is called when the user quits the game.

5. Sets the delta time between the last event call and the current event call to zero.
This method is called if a significant amount of time has passed between event
calls, usually due to the iPhone readjusting the system time for daylight sav-
ings or varying clocks on mobile phone towers. Physics inside of games and
other calculations are sensitive to large time changes, and it is useful to reset the
amount of time elapsed (delta) to zero if it is too large. If you were to try to run
the update methods with a large delta value (several seconds at once, or several
minutes), it would throw off the calculations and result in strange behavior and
rendering effects. You will learn more about delta times in Part IV of this book.

If you follow the order of execution, the AppDelegate starts when the applica-
tion is launched. The AppDelegate starts up the director and in turn calls on the
director to run the HelloWorld scene. The HelloWorld scene has one layer, and that
layer contains a label with the words “Hello World.” The label is added as a child to
the HelloWorld layer, which is a child of the scene. The director starts rendering the
scene and its children, displaying the label (i.e., Hello World) onscreen.

Note
The 60.0 number on the bottom-left corner in Figure 1.9 is the frames per second at
which Cocos2D is rendering the scene. This information is useful for debugging purposes
because it allows you to see the frame rate your game is running. If you wish to disable it
(which you will need to do when you ship your final app), you can go into the AppDelegate
and remove the following line:

[director setDisplayFPS:YES];

Looking Further into the Cocos2D Source Code
One of the great features of Cocos2D is that all of the source code is available and
included in your projects, making it easy to look behind the scenes and see how the
rendering and other tasks are being done. Not only Cocos2D but also the source code
for CocosDenshion, Box2D, and Chipmunk are included in the projects that you cre-
ate from the Cocos2D templates. You can look at any part of the source code if you
ever have a question about what a particular method does or how it is implemented.
To see a method, select the method or variable in Xcode, right-click (or Control-click),
and choose Jump to Definition or press Control-z-D while the method or variable
is selected. Figure 1.12 shows the Jump to Definition selection in the Xcode pop-up
menu.

For the More Curious: Understanding the Cocos2D HelloWorld 19

To see the Jump to Definition in action:

1. Open the HelloWorldScene.m file.

2. On line 18, select the node method and right-click.

3. In the Xcode pop-up menu, select Jump to Definition. Xcode should open
CCNode.m for you and show you the code in Listing 1.7.

Listing 1.7 The node method inside of CCNode.m

#pragma mark CCNode - Init & cleanup

+(id) node

{

return [[[self alloc] init] autorelease];

}

Cocos2D has a large collection of utility and helper methods that can save you
time and typing. As an example, in the Cocos2D Director there exist the methods
convertToGL and convertToUI for converting a point between UIKit and
OpenGL ES coordinate systems. In addition to utility and helper methods, Cocos2D
has a set of macros to shorten some of the repetitive calls your code would contain.

Figure 1.12 Jump to Definition option in the Xcode right-click
pop-up menu

Chapter 1 Hello, Cocos2D20

The ccp macro is one you will use numerous times, and it is just a shortcut to the
CGPointMake method. The following is the code behind the ccp macro.

/** Helper macro that creates a CGPoint

 @return CGPoint

 @since v0.7.2

 */

#define ccp(__X__,__Y__) CGPointMake(__X__,__Y__)

If you see an unknown method or macro, do not hesitate to jump to the definition of
that bit of code. The Cocos2D source is well documented and is easy to understand
with some practice. Knowing the helper methods, or at least how to find them, is key
to becoming an efficient Cocos2D game developer.

The next section covers how to get HelloWorld and any other games you create onto
your iPhone, iPad, or iPod touch.

Getting CCHelloWorld on Your iPhone or iPad
The first step to getting CCHelloWorld on your device is to sign up for an iPhone
Developer account with Apple (http://developer.apple.com/iphone). Figure 1.13 shows the
iPhone Developer Portal.

Figure 1.13 Apple iOS Developer Portal

Starting with Xcode 3.2.3, there are two ways to manage your builds for the iOS
devices. You can let Xcode automatically configure the provisioning profile for your
apps, or you can manually create and use an Ad Hoc profile from the iOS Developer
Portal.

Letting Xcode Do Everything for You
Provisioning profiles is one of the biggest hurdles to new developers on the iOS
platform. You spend all your time getting your game code working just right on the

http://developer.apple.com/iphone

Getting CCHelloWorld on Your iPhone or iPad 21

simulator, only to have to deal with code signing in order to get the game on an
actual device. Apple has made this process a lot simpler starting with Xcode 3.2.3. To
let Xcode configure the provisioning profiles on your behalf:

1. Make sure your iPhone or iPad is connected via USB.

2. In the Xcode menu, select Window > Organizer.

3. Select the Devices section.

4. Press the button marked Use for Development.

5. When prompted, enter your credentials for the iPhone Developer Program.

That’s it! Xcode automatically sends your device UDID to Apple, creates a special
provisioning profile called “Team Provisioning Profile,” and sets everything up for
you. After a minute or so, your Organizer window should look similar to Figure 1.14.

Figure 1.14 Xcode Organizer window with iPad configured for
development

Building for Your iPhone or iPad
Under the Scheme dropdown menu, select CCHelloWorld and your iPhone or iPad
device. You should see your iPad or iPhone listed if it is connected via USB.

If you select Run, Xcode will build a version of CCHelloWorld for the ARM pro-
cessors on the iPad or iPhone and then copy CCHelloWorld to your device.

Chapter 1 Hello, Cocos2D22

Summary
In this chapter you downloaded the source code for Cocos2D and installed the
Cocos2D templates into Xcode. You quickly created a HelloWorld app and added a
moving Space Cargo Ship in just a few lines of code. Additionally, you covered the
basics of Cocos2D Director, scenes, and layers, and what the Cocos2D templates
provide.

In the next chapter you get a chance to dive deeper into Cocos2D and start build-
ing the Space Viking game. If you are ready, turn the page and start on your journey to
get Ole the Viking moving around and fighting off the alien robots.

Challenges
1. Open the Cocos2D Xcode project included with the Cocos2D source you

downloaded and run some of the included tests, such as the SpriteTest. The
Cocos2D project file is located inside the cocos2d-iphone subfolder where you
cloned or downloaded Cocos2D earlier in this chapter. To run the SpriteTest,
select it under the Scheme dropdown, as shown in Figure 1.15.

Figure 1.15 SpriteTest selected under the Scheme dropdown in Xcode

2. Create a Cocos2D Box2D application and a Cocos2D Chipmunk application
and run them on the simulator or your iOS device. Play around with the physics
engines you will learn about in Part IV of this book.

2
Hello, Space Viking

In the previous chapter you installed Cocos2D on your system, including the templates that are
used by Xcode. You also learned about some of the companion tools you will be using in later
chapters. Now it is time to start your journey creating Space Viking by putting Ole the Viking
onscreen and moving him around. In this chapter you will deal only with the iPad version of
Space Viking; later in the book you will cover in detail techniques and practices to adapt and
scale a game from iPad down to the iPhone.

You will start by creating the basic Space Viking game project, which you will build upon
throughout the rest of the book. You will begin with a basic Cocos2D template and add two
sprites, one for the background and the other for Ole the Viking. In the second part of this chap-
ter you will learn how to add the methods needed to handle the touch inputs, including moving
your Viking and making him jump. If you are ready, open up Xcode to get started with Space
Viking!

Creating the SpaceViking Project
Space Viking is your key to learning Cocos2D as you progress through this book. All
games have to start somewhere, and Space Viking starts life as a Cocos2D template
project. The first thing you need to do is create a new Cocos2D project in Xcode, so
go ahead and launch Xcode and create the project:

1. Open Xcode and select Create a New Xcode Project.

2. Choose the Cocos2D template (without Box2D or Chipmunk) under the iOS
section.

3. Enter SpaceViking as the name of the product, and select Next.

4. Select a location to save your SpaceViking project, and click Create.

The location of the Cocos2D templates in Xcode are shown in Figure 2.1. Depend-
ing on what version of Cocos2D you have installed, your templates might have differ-
ent revision numbers.

Chapter 2 Hello, Space Viking24

These are the same two steps you performed in Chapter 1, “Hello, Cocos2D,” and
if you press Run in Xcode, you will see the Cocos2D HelloWorld sample. You will be
creating Space Viking specifically for the iPad, and you will learn how to scale it down
for the iPhone in later chapters. The Cocos2D templates are set up to create an iPhone
game by default, requiring you to quickly transition the project in Xcode before get-
ting started with the coding.

Creating the Space Viking Classes
At this point you have a project template game app, running on both the iPhone and
iPad at full-screen resolution. Leaving the HelloWorld files as reference, it is time to
start creating the classes needed for Space Viking. The first step is to add the Images
folder that you downloaded from the book site to the SpaceViking project.

Note
For this chapter you need the Images folder included with the resources for this book.
You must download the resources from the InformIT website (www.informit.com/
title/9780321735621). Once you download the disk image, go to the folder for Chapter 2.

Next you need to make it so Xcode pulls the Images folder into your project and
copies the files into the SpaceViking project’s directory.

Figure 2.1 Cocos2D templates in Xcode

www.informit.com/title/9780321735621
www.informit.com/title/9780321735621

Creating the Space Viking Classes 25

5. With the SpaceViking project opened in Xcode, drag the Images folder from a
Finder window into your SpaceViking project.

6. On the sheet that drops down, make sure that the Copy items into destina-
tion group’s folder is checked and click Finish, as shown in Figure 2.2.

Figure 2.2 Xcode Add Files dialog with the copy items checkbox
turned ON

Warning
The Copy items into destination group’s folder option is needed when you want to copy
files to your project from another location on your system. If you leave this checkbox
unchecked, the files will only be linked into your project, meaning the files will exist only
in their original folder outside of your project. In Space Viking, you want the Images folder
inside your project folder just in case you decide to move the downloaded Images folder
later on.

If you look in the Images folder, you will see the PNG files that you will use on this
version of the game. These include the background image and the first frame you will
use for Ole the Viking. Now that the images are part of the project, you can move on
and create the background layer and gameplay layers followed by the gameplay scene,
which will contain both layers.

Chapter 2 Hello, Space Viking26

Note
The Images folder you copied into the Space Viking Xcode project contains the various
icon file images used for Space Viking’s app icon. The Cocos2D templates already contain
icon.png, Icon@2x.png, Icon-Small.png, Icon-Small@2x.png, Icon-Small-50.png, Icon-72.png,
and Default.png files in the Resources folder, so you need to delete them from the project
before proceeding.

Creating the Background Layer
As noted earlier, the Cocos2D Director is responsible for running the scene, and each
scene in Cocos2D is made up of layers. As each layer is initialized, an init method
is called. The init method is the perfect location to create and initialize the sprites
used in each layer. The background of Space Viking will have one sprite containing the
background image centered onscreen. In later versions of Space Viking, you will add
scrolling backgrounds and animations.

1. In Xcode, select the Classes folder and right-click, choosing New File from the
contextual menu.

2. On the dialog that drops down, select the iOS\Cocoa Touch class on the left
panel and Objective-C class, and then click Next, as shown in Figure 2.3.

Figure 2.3 Xcode Add New File dialog

3. For the Subclass field, enter CCLayer and click Next.

4. In the Save As field, type in BackgroundLayer.m and click Save. Figure 2.4 shows
the Add new file window.

Creating the Background Layer 27

Open the BackgroundLayer.h header file.
Add a #import line for Cocos2D, and change the BackgroundLayer class

to inherit from CCLayer instead of NSObject. Listing 2.1 shows the complete
BackgroundLayer.h file.

Listing 2.1 BackgroundLayer.h

#import <Foundation/Foundation.h>

#import "cocos2d.h"

@interface BackgroundLayer : CCLayer {

}

@end

Switch to the BackgroundLayer.m implementation file so you can add the init
method and the background sprite.

Tip
Whether you’re using a MacBook, MacBook Pro, or Apple’s Magic TrackPad, you can use a
three-finger swipe up or down to switch between the header .h and the implementation .m
files quickly in Xcode. Just swipe up or down to move between the header and implemen-
tation files. You can also use the keyboard combination of Option+Command+Up Arrow to
switch between header and implementation files.

Figure 2.4 Adding the BackgroundLayer.m class to SpaceViking in Xcode

Chapter 2 Hello, Space Viking28

Open the BackgroundLayer.m implementation file and add the –(id)init method, as
shown in Listing 2.2.

Listing 2.2 BackgroundLayer.m

// BackgroundLayer.m

// SpaceViking

#import "BackgroundLayer.h"

@implementation BackgroundLayer

-(id)init {

self = [super init]; // 1

if (self != nil) { // 2

// 3

CCSprite *backgroundImage;

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 // Indicates game is running on iPad

 backgroundImage = [CCSprite

spriteWithFile:@"background.png"];

 } else {

 backgroundImage = [CCSprite

spriteWithFile:@"backgroundiPhone.png"];

 }

CGSize screenSize = [[CCDirector sharedDirector] winSize]; // 4

 [backgroundImage setPosition:

CGPointMake(screenSize.width/2, screenSize.height/2)]; // 5

 [self addChild:backgroundImage z:0 tag:0]; // 6

 }

return self; // 7

}

@end

The first two lines of this method are standard boilerplate code from Apple’s tem-
plate; it checks that the parent/super class is initialized and not nil. Now let’s take
a closer look at what’s going on in that init method; the following list refers to the
numbered/commented lines in Listing 2.2.

1. Creates an initialized instance of the superclass of the BackgroundLayer class,
which in this case is CCLayer.

2. Checks to make sure this instance is not nil.

3. Checks to see if Space Viking is running on the iPad or the iPhone. If the iPad
is selected, then the background.png image is used for the background; otherwise,
when running on the iPhone, the backgroundiPhone.png is selected. If you look

The Gameplay Layer: Adding Ole the Viking to the Game 29

inside of the Images/Backgrounds folder you copied into your project, you will see
there are two iPhone backgrounds, backgroundIiPhone.png and backgroundiPhone-hd.
png. Cocos2D automatically detects the iPhone 4 Retina display and will use the
higher resolution image. The spriteWithFile method call creates a texture
from the image file and associates it with the CCSprite object. The sprite’s
dimensions and corresponding geometry are set to the image dimensions.

4. Gets the screen size from the Cocos2D Director. On the iPad, this returns
1024 × 768 pixels.

5. Sets the position of the backgroundImage sprite to the center of the screen.

The Cocos2D coordinate system has (0,0) at the bottom left of the screen. Cocos2D
positions sprites according to their center points. Make sure to always take into
account the dimensions of your sprite when using the setPosition method.

6. Adds the backgroundImage to the backgroundLayer with the z and tag
values set to zero. The z values are used by Cocos2D to composite the sprites and
layers onscreen. The higher the z value, the closer to the front of the screen an
object is. For sprites, you need to keep track of which layer the sprite is in, as well.
If a sprite has a z value of 100 but is still in the backmost layer (with the lowest z
value), it will be rendered behind other sprites in layers with a higher z value.

7. Returns the newly initialized BackgroundLayer class.

Tip
The UIKit coordinate system has the origin (0,0) at the upper left of the screen. How-
ever, Cocos2D uses the OpenGL ES coordinate system, which places the origin (0,0) at
the lower left of the screen.

To combat this, the Cocos2D utility functions convertToGL and convertToUI allow
for easy conversions between points in the UIKit coordinate system and the OpenGL ES
coordinate system. You will use these functions when trying to get the location of a touch
event, converting it from UIKit to OpenGL ES coordinates.

The background layer in this chapter contains just one image; later in the book you
will learn how to add tile maps and scrolling to the Space Viking game. Let’s continue
to the GameplayLayer and GameScene classes, which you will use to wire up the
background layer into the game.

The Gameplay Layer: Adding Ole the Viking to
the Game
You are well on your way to a functional game. Now it is time to add Ole the Viking
to the scene. You use a separate layer to house all of your actors and actions, including
Ole the Viking. In Xcode, you need to create a new GameplayLayer class and the
sprite that will hold the image of Ole. In the next chapter, you add enemies and ani-
mations to the GameplayLayer.

Chapter 2 Hello, Space Viking30

1. In Xcode, select and right-click on the SpaceViking Classes folder.

2. Choose New File and select iOS\Cocoa Touch\Objective-C class as the type.

3. For the Subclass field, enter CCLayer and click Next.

4. Enter GameplayLayer.m for the filename, and click Save. Xcode automatically
creates the header file for you, setting up the basics so that all you need to do is
add any instance variables or properties to the header file.

5. Open the GameplayLayer.h header file and add the #import line for Cocos2D
and an instance variable called vikingSprite, which holds the sprite, as shown
in Listing 2.3.

The changed GameplayLayer.h header is shown in Listing 2.3.

Listing 2.3 GameplayLayer.h

#import <Foundation/Foundation.h>

#import "cocos2d.h"

@interface GameplayLayer : CCLayer {

CCSprite *vikingSprite;

}

@end

Move to the implementation (GameplayLayer.m) file and add the init method, as
shown in Listing 2.4.

Listing 2.4 GameplayLayer.m

// GameplayLayer.m

// SpaceViking

#import "GameplayLayer.h"

@implementation GameplayLayer

-(id)init {

self = [super init];

if (self != nil) {

CGSize screenSize = [CCDirector sharedDirector].winSize; // 1

 // enable touches

self.isTouchEnabled = YES; // 2

 vikingSprite = [CCSprite spriteWithFile:@"sv_anim_1.png"];// 3

 [vikingSprite setPosition:

CGPointMake(screenSize.width/2,

 screenSize.height*0.17f)]; // 4

 [self addChild:vikingSprite]; // 5

 // 6

 if (UI_USER_INTERFACE_IDIOM() != UIUserInterfaceIdiomPad) {

// If NOT on the iPad, scale down Ole

The GameScene Class: Connecting the Layers in a Scene 31

// In your games, use this to load art sized for the device

 [vikingSprite setScaleX:screenSize.width/1024.0f];

 [vikingSprite setScaleY:screenSize.height/768.0f];

 }

 }

return self;

}

@end

Now let’s take a look at what’s happening in Listing 2.4:

1. Gets the screen size from the Cocos2D Director. On the iPad, this returns
1024 × 768 pixels.

2. Informs Cocos2D that the gameplayLayer will receive touch events.

3. Allocates and initializes the vikingSprite instance variable with the image
viking1.png.

4. Sets the position of the vikingSprite onscreen. The screenSize.width/2
parameter takes the current screen width (1024 pixels on the iPad) and divides it
by two. This places the Viking 512 pixels to the right of the screen, dead center
on the X-axis. The Y-axis is being set to 130 pixels up from the bottom. Recall
that the OpenGL ES and Cocos2D coordinate system has (0,0) at the bot-
tom left of the screen. The use of 130.0f instead of 130 is because this method
expects a f loat value instead of an integer value. You are skipping a conversion
from integer to f loat here by providing the value in f loat format.

5. Adds the vikingSprite to the GameplayLayer. Having the vikingSprite
as a child of the layer enables it to be rendered on the screen by Cocos2D.

6. Scales down the vikingSprite if Space Viking is not running on the iPad,
resizing it to fit the screen resolution. In your games and in later chapters, you
will want to use this check to load the appropriate iPhone/iPod touch artwork.
In order to keep things simple, this example just scales down the Viking image.

Warning
Please ensure that you copied the Images folder into your project with the background.png
and sv_anim_1.png image files. While Space Viking will compile without those images, you
will get a runtime crash with the error message cocos2d: Couldn’t add image:sv_anim_1.png
in CCTextureCache.

The GameScene Class: Connecting the Layers in
a Scene
You now have the two layers in the Space Viking game: one with the background and
one with Ole the Viking. The next step is to have both of these layers as children of
a Scene object. The Cocos2D Director executes the game run loop and “runs” a

Chapter 2 Hello, Space Viking32

particular scene. At the moment, your game will have just one scene, the GameScene.
You’ll see how to add more scenes to Cocos2D and transition between them in Chap-
ter 7, “Main Menu, Level Completed, and Credit Scenes.”

Creating the GameScene
Select and right-click on the Classes folder, and then choose New File.

Select the iOS\Cocoa Touch\Objective-C class and click Next. For the Sub-
class field, enter CCScene and click Next. Type in GameScene.m under the File Name
and click Save.

Open up GameScene.h and add the #import lines for Cocos2D, BackgroundLayer,
and GameplayLayer classes. Listing 2.5 shows the full GameScene.h header file.

Listing 2.5 GameScene.h

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "BackgroundLayer.h"

#import "GameplayLayer.h"

@interface GameScene : CCScene {

}

@end

Switch to the GameScene.m implementation file. Here you will add the init
method to create and add the BackgroundLayer and GameplayLayer instances
to the GameScene class. Listing 2.6 shows the init method inside the GameScene.m
implementation file.

Listing 2.6 GameScene.m (add between @implementation and @end)

-(id)init {

self = [super init];

if (self != nil) {

// Background Layer

BackgroundLayer *backgroundLayer = [BackgroundLayer node]; // 1

 [self addChild:backgroundLayer z:0]; // 2

// Gameplay Layer

GameplayLayer *gameplayLayer = [GameplayLayer node]; // 3

 [self addChild:gameplayLayer z:5]; // 4

 }

return self;

}

Here is what is happening in the init method of GameScene:

1. Instantiates the backgroundLayer object. The node method call is just a short-
cut for the alloc and init methods combined.

The GameScene Class: Connecting the Layers in a Scene 33

2. Adds the backgroundLayer to the scene with a z value of zero.

3. Instantiates the gameplayLayer object.

4. Adds the gameplayLayer object to the scene with a z value of 5. Since the z
value of the gameplayLayer is higher than the z value of backgroundLayer,
it will be composited in front of the backgroundLayer.

As you can see in Listing 2.6, Cocos2D scenes can be pretty simple, acting as a
container for the CCLayers in your game. Most of the functionality you will create in
Space Viking will be restricted to the CCLayers in the game.

In Xcode press z-B or select Build from the Product menu to ensure that you have
not made any typos or errors in entering the code thus far. Space Viking should have a
clean build at this point. In the next section you will add the code to make the direc-
tor run the GameScene instead of HelloWorld.

A Note on z Values
Cocos2D is a 2D game engine, but because it uses OpenGL ES for all rendering,
it knows about the third dimension (depth), otherwise known as the z value. In 3D
engines the z value is used in the compositing stage to specify what objects or sprites
are in front and behind. In Cocos2D the z value determines the order in which your
CCNodes (sprites, layers, etc.) will be drawn. All of the sprites in your layers have z
values, and the layers themselves have z values in the scenes. The z value of 0 (zero)
denotes the furthest point from the screen, while a positive z value is closer to the
screen. If you have two sprites in the same layer, one with a z value of 10 and another
with a z value of 20, the one with a z value of 20 is in front. Figure 2.5 shows the
background and gameplay layers in Space Viking, with the background layer having the
lower z value.

Figure 2.5 The layers and z values in Space Viking

Chapter 2 Hello, Space Viking34

Commanding the Cocos2D Director
In the SpaceViking project, the Cocos2D Director is set to instantiate and run the
HelloWorld scene. You need to change the director call so that it runs the GameS-
cene instead.

1. Open the SpaceVikingAppDelegate.m implementation file.

2. At the top of the file, add an import for the GameScene class in the
SpaceVikingAppDelegate.m implementation file, as shown in Listing 2.7.

Listing 2.7 SpaceVikingAppDelegate.m

#import "cocos2d.h"

#import "SpaceVikingsAppDelegate.h"

#import "GameConfig.h"

#import "HelloWorldScene.h"

#import "RootViewController.h"

#import "GameScene.h"

@implementation SpaceVikingAppDelegate

3. Scroll down and uncomment the following lines in order to enable the higher
resolution images in the iPhone 4’s retina display:

// Enables High Res mode (Retina Display) on iPhone 4 and maintains

// low res on all other devices

if(! [director enableRetinaDisplay:YES])

CCLOG(@"Retina Display Not supported");

When you remove the comments from this line in the Application Delegate,
Cocos2D will always look for files with a -hd suffix. In this chapter this means
that the BackgroundLayer will use backgroundiPhone-hd.png on the iPhone 4
and backgroundiPhone.png on the older iPhone and iPod touch devices.

4. Scroll down and find the –applicationDidFinishLaunching method. Then
find and comment out the following line:

// [[CCDirector sharedDirector] runWithScene: [HelloWorld scene]];

5. In its place add a line to indicate you want the director to run the GameScene.

[[CCDirector sharedDirector] runWithScene:[GameScene node]];

This line instructs the director to allocate and instantiate the GameScene class
and then run it. Your GameScene class contains the background and gameplay
layers, and running the scene causes any layers contained in it to render to the
screen.

Adding Movement 35

If you select the iPad Simulator from the Scheme dropdown and click Run, you
will see the Space Viking game with Ole the Viking in the middle of the alien world
background. Figure 2.6 shows Space Viking running on the iPad Simulator.

Figure 2.6 Space Viking running on the iPad Simulator

Adding Movement
It took only a few pages to get your Viking and background on the iPad screen. Now
you have to work on getting Ole to move around. Luckily, Cocos2D makes the job of
moving and animating sprites easy. In Space Viking, you will use a thumb joystick on
the left side to move Ole and buttons on the right to attack and jump. In Cocos2D,
touch events are sent to the layers that subscribe to those events. You have already set
your GameplayLayer class to receive touch events, and all you have to do now is
implement the methods that will be called when the touch events occur.

Importing the Joystick Classes
In Space Viking you will use an Open Source joystick project called SneakyInput. It is
included with the resource files for this chapter. SneakyInput is one of many joystick
projects and options available to use with Cocos2D. To add the SneakyInput joystick
to your SpaceViking project:

1. In Xcode select your SpaceViking project.

2. Right-click and select Add > Files.

Chapter 2 Hello, Space Viking36

3. Browse to the location of the Resources folder you downloaded for this chapter
and select the JoystickClasses folder.

4. Ensure that Copy items into destination group’s folder is selected, and click
Add.

Now that you have the SneakyInput joystick classes in your SpaceViking project,
the next step is to utilize those classes in the GameplayLayer class.

Note
The SneakyInput joystick classes are not part of the main Cocos2D distribution at this
time. The applyJoystick method used in Space Viking borrows some of the code from
the SneakyInput samples. You can view and check out the latest code for SneakyInput at
the GitHub repository located at https://github.com/sneakyness/SneakyInput.

Adding the Joystick and Buttons
Open up the GameplayLayer.h header file and add the #import statements for the
SneakyInput classes. Along with the import statements, add three instance variables
for the joystick and two buttons, as shown in Listing 2.8.

Listing 2.8 GameplayLayer.h

// GameplayLayer.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "SneakyJoystick.h"

#import "SneakyButton.h"

#import "SneakyButtonSkinnedBase.h"

#import "SneakyJoystickSkinnedBase.h"

@interface GameplayLayer : CCLayer {

CCSprite *vikingSprite;

 SneakyJoystick *leftJoystick;

 SneakyButton *jumpButton;

 SneakyButton *attackButton;

}

@end

The leftJoystick will be the thumb stick used to move Ole left and right. The
jump and attack buttons will trigger jump and attack actions, respectively.

In the GameplayLayer.m implementation file, add a method called –(void)init-
JoystickAndButtons() above the –(id)init method in order to initialize the
joystick and buttons. This method is called from the init method. Listing 2.9 shows
the contents of the initJoystickAndButtons method.

https://github.com/sneakyness/SneakyInput

Adding Movement 37

Listing 2.9 GameplayLayer.m –(void)initJoystickAndButtons()

-(void)initJoystickAndButtons {

CGSize screenSize = [CCDirector sharedDirector].winSize; // 1

CGRect joystickBaseDimensions =

 CGRectMake(0, 0, 128.0f, 128.0f); // 2

CGRect jumpButtonDimensions =

CGRectMake(0, 0, 64.0f, 64.0f);

CGRect attackButtonDimensions =

CGRectMake(0, 0, 64.0f, 64.0f);

 CGPoint joystickBasePosition; // 3

CGPoint jumpButtonPosition;

CGPoint attackButtonPosition;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) { // 4

// The device is an iPad running iPhone 3.2 or later.

CCLOG(@"Positioning Joystick and Buttons for iPad");

 joystickBasePosition = ccp(screenSize.width*0.0625f,

 screenSize.height*0.052f);

 jumpButtonPosition = ccp(screenSize.width*0.946f,

 screenSize.height*0.052f);

 attackButtonPosition = ccp(screenSize.width*0.947f,

 screenSize.height*0.169f);

 } else {

// The device is an iPhone or iPod touch.

CCLOG(@"Positioning Joystick and Buttons for iPhone");

 joystickBasePosition = ccp(screenSize.width*0.07f,

 screenSize.height*0.11f);

 jumpButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.11f);

 attackButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.35f);

 }

SneakyJoystickSkinnedBase *joystickBase =

 [[[SneakyJoystickSkinnedBase alloc] init] autorelease]; // 5

 joystickBase.position = joystickBasePosition; // 6

 joystickBase.backgroundSprite =

 [CCSprite spriteWithFile:@"dpadDown.png"]; // 7

 joystickBase.thumbSprite =

 [CCSprite spriteWithFile:@"joystickDown.png"]; // 8

 joystickBase.joystick = [[SneakyJoystick alloc]

initWithRect:joystickBaseDimensions]; // 9

Chapter 2 Hello, Space Viking38

leftJoystick = [joystickBase.joystick retain]; // 10

 [self addChild:joystickBase]; // 11

SneakyButtonSkinnedBase *jumpButtonBase =

 [[[SneakyButtonSkinnedBase alloc] init] autorelease]; // 12

 jumpButtonBase.position = jumpButtonPosition; // 13

 jumpButtonBase.defaultSprite =

 [CCSprite spriteWithFile:@"jumpUp.png"]; // 14

 jumpButtonBase.activatedSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"]; // 15

 jumpButtonBase.pressSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"]; // 16

 jumpButtonBase.button = [[SneakyButton alloc]

initWithRect:jumpButtonDimensions]; // 17

jumpButton = [jumpButtonBase.button retain]; // 18

jumpButton.isToggleable = NO; // 19

 [self addChild:jumpButtonBase]; // 20

SneakyButtonSkinnedBase *attackButtonBase =
[[[SneakyButtonSkinnedBase alloc] init] autorelease]; // 21

 attackButtonBase.position = attackButtonPosition; // 22

 attackButtonBase.defaultSprite = [CCSprite
spriteWithFile:@"handUp.png"]; // 23

 attackButtonBase.activatedSprite = [CCSprite
spriteWithFile:@"handDown.png"]; // 24

 attackButtonBase.pressSprite = [CCSprite
spriteWithFile:@"handDown.png"]; // 25

 attackButtonBase.button = [[SneakyButton alloc]
initWithRect:attackButtonDimensions]; // 26

attackButton = [attackButtonBase.button retain]; // 27

attackButton.isToggleable = NO; // 28

 [self addChild:attackButtonBase]; // 29

}

The initJoystickAndButtons method gets the SneakyJoystick classes all set
up and connected to your Space Viking game. Here is what happens in the method,
line by line:

1. Gets the screenSize from the Cocos2D Director. The screenSize is used to
calculate the positioning of the joystick and buttons.

2. Sets up the touch dimensions for the joystick and buttons. The joystick touch
dimensions are a rectangle of size 128 × 128 pixels. The jump and attack buttons
dimensions are a rectangle of size 64 × 64 pixels.

3. Creates the three CGPoint variables that are used to position the joystick and
buttons.

Adding Movement 39

4. Determines if Space Viking is running on an iPad or iPhone/iPod touch. In iOS
3.2 and later, this is the best way to determine what device your game is running
on. Depending on whether the iPad or iPhone/iPod touch is detected, the posi-
tions for the joystick and buttons are set up. This if/else block uses a calculation
for the values so that if the iPad dimensions change, the joystick and buttons will
still be in their proper place.

5. Allocates and initializes a joystick base. The joystick base will contain the actual
joystick and the sprites used to show the static joystick directional pad (DPAD)
and the moveable thumb portion of the joystick.

6. Sets the position of the joystick base to the value corresponding to either iPad or
iPhone dimensions.

7. Sets the background image of the joystick to the dpadDown.png image. In Space
Viking this is a Viking rune–styled directional pad.

8. Sets the thumb portion of the joystick to the joystickDown.png image. This is the
image players will move around with their thumbs or fingers.

9. Sets the joystick touch area to be a rectangle of 128 × 128 pixels, based on the
value of joystickBaseDimensions variable.

10. Assigns the joystick component of the joystick base to the GameplayLayer
leftJoystick instance variable. Later in this chapter you will query the
leftJoystick thumb component position to move Ole the Viking around
the screen.

11. Adds the joystick base to the GameplayLayer instance, making it visible on the
lower-left portion of the screen.

Lines 5 through 11 set up the thumb joystick to move Ole the Viking around the
screen. Lines 12 through 29 set up the attack and jump buttons.

12. Allocates and initializes the jump button base.

13. Sets the base position onscreen.

14. Sets the up position of the jump button base to the jumpUp.png image. This is
the state of the button if it is not being pressed.

15. Sets the activated position of the jump button base to the jumpDown.png image.
This is the state of the button if it is toggled to on or down.

16. Sets the down position of the jump button base. This is the state of the button
when the player presses it. Cocos2D textures are cached, so having the same
image for the down and activated states of this button loads the jumpDown.png
image only once in memory.

17. Sets the touch area of the button to a rectangle of 64 × 64 pixels.

18. Assigns the button component of the jump button base to the GameplayLayer
jumpButton instance variable. In the applyJoystick method further in this

Chapter 2 Hello, Space Viking40

chapter, you will query the jumpButton object to determine if the player is
pressing the button.

19. Sets this button to not act as a toggle. If a button has isToggleable set to
YES, pressing it alternates the button state from ON to OFF. If the button has
isToggleable set to NO, it turns OFF as soon as the player lifts his or her
finger from it.

20. Adds the jump button base to the GameplayLayer instance, making it visible
on the lower-right portion of the screen.

Lines 21 through 29 are the same as lines 12 through 20, except they set up the
attack button instead of the jump button. Now that you have the joystick and buttons
initialized, it is time to add code to check them and connect the joystick movements
to Ole the Viking.

Applying Joystick Movements to Ole the Viking
In the GameplayLayer.m implementation file, add a method called applyJoystick
below the initJoystickAndButtons method, as shown in Listing 2.10. This
method is called every time the position of Ole the Viking needs to be adjusted based
on the position of the joystick.

Listing 2.10 The applyJoystick method in gameplayLayer.m

-(void)applyJoystick:(SneakyJoystick *)aJoystick toNode:(CCNode
*)tempNode forTimeDelta:(float)deltaTime

{

CGPoint scaledVelocity = ccpMult(aJoystick.velocity, 1024.0f); // 1

CGPoint newPosition =

ccp(tempNode.position.x + scaledVelocity.x * deltaTime,

 tempNode.position.y + scaledVelocity.y * deltaTime); // 2

 [tempNode setPosition:newPosition]; // 3

if (jumpButton.active == YES) {

CCLOG(@"Jump button is pressed."); // 4

 }

if (attackButton.active == YES) {

CCLOG(@"Attack button is pressed."); // 5

 }

}

1. Gets the velocity from the joystick object and multiplies it by 1024, which is
used here because it is the size of the iPad screen. The velocity can be multiplied

Adding Movement 41

by different factors to make Ole the Viking move faster or slower in relation to
the movement of the joystick.

2. Creates a new position based on the current tempNode position, the joystick
velocity, and how much time has elapsed between the last time this method was
called and now. In Listing 2.11 you will see that tempNode contains a reference
to the vikingSprite instance variable.

3. Sets the tempNode position to the newly calculated position. Here tempNode
is really a reference to vikingSprite, so this call is placing Ole the Viking at a
new position.

4. Checks if the jump button is pressed, and if so, prints a message to the Console.

5. Checks if the attack button is pressed, and if so, prints a message to the Console.

In the applyJoystick method, the jump and attack buttons only cause messages
to be displayed to the Console. In the next chapter you will learn about Cocos2D ani-
mations and add the code to enable Ole the Viking to jump and attack.

Note
CCLOG is a Cocos2D macro for the NSLog method. If Space Viking is being compiled with
an active configuration of Debug, then this line compiles to an NSLog statement; other-
wise, it compiles down, in essence, to an empty line. If you want to have CCLOG active
even on a Distribution configuration, you can set the COCOS2D_DEBUG #define to a
number higher than zero. CCLOG is useful to keep your Console log messages active in
the Debug configuration and inactive for builds you plan to release via Ad Hoc distribution
or to the AppStore.

After the applyJoystick method in GameplayLayer.m, add a method called
update, as shown in Listing 2.11.

Listing 2.11 The update method in GameplayLayer.m (after applyJoystick)

#pragma mark -

#pragma mark Update Method

-(void) update:(ccTime)deltaTime

{

 [self applyJoystick:leftJoystick toNode:vikingSprite
forTimeDelta:deltaTime];

}

The update method is called before every frame of Space Viking is to be rendered.
The Cocos2D Director runs the Space Viking game loop at 60 frames per second, so
the update method is called approximately 60 times a second. Here the update
method calls the applyJoystick method shown in Listing 2.10, passing it the
vikingSprite object and how much time (deltaTime) has elapsed between the last
update call and now.

Chapter 2 Hello, Space Viking42

Finally, it is time to add the last bit of code that initializes the buttons and calls the
update method before each frame is rendered. In the init method of GameplayLayer,
add the following two lines right after [self addChild:vikingSprite]; as shown
in Listing 2.12.

Listing 2.12 Joystick initialization and update scheduler setup in init inside of
gameplayLayer.m

 [self initJoystickAndButtons]; // 7

 [self scheduleUpdate]; // 8

Line 7 calls the initJoystickAndButtons method covered in Listing 2.9, set-
ting up the joystick and the two buttons. Line 8 is a call to the Cocos2D scheduler to
call the update method every time this layer is set to be rendered on the screen. The
scheduleUpdate call is new as of Cocos2D version 0.99.3.

Click Run in Xcode and you should see the Space Viking game with the joystick on
the bottom-left side and the buttons on the right side. Figure 2.7 shows Space Viking
with the controls in place on the iPad Simulator.

Figure 2.7 Space Viking with joystick, jump, and attack buttons

Note
The artwork you are using is designed for the iPad, but the code you entered for the
Viking, background, joystick, and buttons will allow it to work on the iPad or iPhone/iPod
touch.

Adding Movement 43

A Word on Instance Variables
You may have noticed that you used a vikingSprite instance variable to keep track
of Ole’s sprite object. You then kept the instance variable pointing to the viking-
Sprite so that you could update his position. Cocos2D automatically retains the
sprites that are added as children to the layers and optionally can mark each sprite
with a unique integer tag. You can use this tag mechanism to avoid having to keep
instance variables of your character sprites. If you set an integer constant of
kVikingSprite to be 10 and change the addChild line as follows:

#define kVikingSprite 10

[self addChild:tempSprite z:0 tag:kVikingSprite];

Then, when you want to access Ole’s sprite object to change the position, you can get
it from the GameplayLayer with the getChildByTag method call.

CCSprite *tempSprite = [self getChildByTag:kVikingSprite];

Using the tag feature of Cocos2D can simplify memory management in your Cocos2D
games. You will explore tags and their use in later chapters.

At this point you hopefully have the first glimpse of the Space Viking game that you
can hold in your hands, with thoughts of what it will become. With your confidence
slowly building, it is time to cover some of the graphics work needed before you can
move on with the coding intricacies. In particular, it is important to understand what
texture atlases are and why you should use them.

Terminology Review
These three terms, covered briefly in Chapter 1, are worth spending a few minutes
reviewing. Understanding these terms is key to building a solid foundation and becom-
ing an efficient Cocos2D game developer.

n Image Files
Your characters start out as images on the flash storage of the iPhone/iPad.
The format of files is typically PNG or JPEG. Once the images are loaded into
memory, they are stored in an uncompressed texture format. PNG is the pre-
ferred format for images on the iOS devices.

n Texture
The image file of your character has to be decompressed and possibly converted
into a format that the iPhone and iPad GPU can understand and loaded into
RAM before it can be used. The loaded image in RAM is referred to as a texture.
The GPU can natively handle a few compressed formats such as PVRTC; oth-
ers have to be stored as uncompressed image data. This is what OpenGL ES
draws on the screen. The decompression of your images is why a PNG image
may be small in flash storage but in memory takes up much more as it is stored
uncompressed.

Chapter 2 Hello, Space Viking44

n Texture Atlas or Sprite Sheet
In order to save on memory and reduce the amount of wasted empty space in
your textures, you want to combine them into one larger texture, called a texture
atlas. The texture atlas is simply a large texture, containing your images, from
which smaller textures for each of your images can be cut or extracted from.
Imagine a large sheet of paper with photographs glued to it. You can cut out
each of the photographs from the single larger sheet. If you want to hand some-
one all the photos at once, you just hand over the sheet. One of the keys to get-
ting more graphical performance is handing OpenGL ES as few textures as you
can in one pass by having a lot of textures combined into the texture atlas. The
key is in batching the draw calls and reducing the number of textures OpenGL
ES binds to, both accomplished by using a texture atlas in Cocos2D via the
CCSpriteBatchNode.

Texture atlases can seem a hard concept to grasp at first. To better understand why
they are used, continue to the next section, which further explains atlases and walks
you through creating the atlas used in Space Viking.

Texture Atlases
Life is filled with constraints, and game development is no different. In fact, game
development is always pushing to get the most performance out of the limited hard-
ware at hand. A common issue that developers face is slow performance after they get
a large number of sprites on the screen. You create your game in much the same way
you did in this chapter, where all of the graphic elements are individual CCSprites.
Everything is going fine, until you start to have 15 or 20 elements onscreen and you
notice your frame rate plummeting. The more elements you add, the quicker it drops.
Even if you take out game logic, and just move the CCSprites on the screen, your
game keeps slowing down as you add CCSprites. There can be many reasons for the
performance problems; one of the most common is too many texture context switches
caused by using individual CCSprites instead of a CCSpriteBatchNode. In a nutshell,
you are doing too many OpenGL ES calls, and having all the images as separate tex-
tures is more work and memory than the GPU can handle in the time allotted for a
single frame. One of the easiest solutions to implement is the use of texture atlases.

If you look inside the code for a CCSprite, you will notice that a –(void)draw
method gets called on every frame. Inside that draw method are the actual OpenGL ES
calls to draw the sprite on the screen. For each sprite, OpenGL ES has to bind to the
texture for that CCSprite and then draw (also called rendering) the sprite onscreen.

There is one more layer that occurs before the pixels show up on the screen: an
OpenGL ES driver provided by the iOS that converts the OpenGL ES calls into the
actual hardware assembly code to perform the actions on the GPU. You don’t have
to know the driver details, only that each OpenGL ES call has the cost of a few CPU
cycles for the OpenGL ES driver. Your game will run faster if you do all of your ren-
dering work with the least number of OpenGL ES calls.

Texture Atlases 45

Here is a way to visualize all of this. Think of yourself in the role of OpenGL ES,
and the game needs you to draw a scene of a typical beach. This scene has the sand,
the water, and some beach umbrellas. If the game is just using CCSprites, then it
has to first give you the image for the sand and ask you to draw it, then give you the
image of the ocean and ask you to draw it. It would continue like this until all of the
images are drawn/rendered onscreen. This quickly becomes very tedious, and you
might begin to wonder why the game cannot give you all of the image files at once.
It turns out you can send all of the textures to OpenGL ES at once, and the way to do
that is with CCSpriteBatchNode and texture atlases.

The CCSpriteBatchNode is a special class in Cocos2D that can act as the parent
to a host of CCSprites. It sits between the CCLayer and the CCSprites. Just as the
name states, if you use CCSpriteBatchNode, all of the draw calls for the CCSprites
are batched and done at once. The large performance savings is not from just batching
the calls together but from combining all of the little textures into one large texture
that OpenGL ES has to bind just once.

The last point bears repeating. All of the OpenGL ES bind calls get reduced to one
call. If you have 100 CCSprites under a CCSpriteBatchNode, you have only one
OpenGL ES bind call instead of 100.

The large texture is called a texture atlas or sprite sheet, and it is simply a texture
big enough to fit all the smaller textures you need inside of it. If you think about the
beach scene example, this would be a large piece of paper from which you could cut
out the sand texture, the ocean texture, and all of the beach umbrella textures.

Technical Details of Textures and Texture Atlases
Memory is a precious resource on the iPhone and iPad. The less memory used, the
better your game performs. The iPhone and iPad utilize a shared memory system,
which means that the GPU does not have its own memory; rather, it uses up some of
the main system memory for storing textures and geometry. The memory limitations
are especially apparent on the older iPhone, iPod touch, and iPhone 3G devices that
were limited to 128MB of memory. Aggravating the memory constraints is the pad-
ding of images to texture with power-of-two sizes in their length and width.

The GPU inside older versions of the iPhone and iPod can store textures internally
only in power-of-two sizes. While the iPhone 3GS, iPhone 4, and iPad can use non–
power-of-two textures, doing so comes with a large performance penalty. Cocos2D is
set up by default to pad all textures to power-of-two sizes for maximum compatibility,
although you can change this in the ccConfig.h file.

To understand what the power-of-two size and texture padding means, here is
a quick hands-on example. Take a piece of paper, or any drawing tool, and draw a
square. Label the height and width as 256, to represent a 256 × 256 pixel texture.
Now draw another square, this time 129 × 129 pixels in size, just slightly over half
the height and half the width. The smaller square will represent your 129 × 129 pixel
image stored as a 256 × 256 texture. Look at your drawing: about three-quarters of
the texture space is wasted! Figure 2.8 illustrates this point, showing a 129 × 129 pixel

Chapter 2 Hello, Space Viking46

sprite inside of a 256 × 256 texture. Regardless of the bit depth of your images, only
about one-quarter of the memory this image is using is actually utilized to display
anything—the rest is wasted. By utilizing tightly packed texture atlases you can avoid
this wasted space.

Every byte of texture memory has to be copied from one location in memory that
the CPU addresses to the area used by the GPU. Using extra texture memory has a
lot of negative effects, and as you can imagine, the effects get worse and worse as you

Figure 2.8 Example of wasted memory: a 129 × 129 pixel image
padded out to 256 × 256

increase the number nonbatched CCSprites on the screen. Table 2.1 shows the tex-
ture sizes supported by the current Apple mobile hardware.

Table 2.1 The Power-of-Two Sizes Support on the Older Generation

Device
Maximum
Texture Width

Maximum
Texture Height

iPhone, iPhone 3G, iPod touch (first and
second generation)

1024 pixels 1024 pixels

iPhone 3GS, iPhone 4, iPad, iPod touch
(third generation and later)

2048 pixels 2048 pixels

Texture Atlases 47

The combined wasted memory from using individual textures as well as the indi-
vidual OpenGL ES bind texture calls can really work against you and slow down your
game. Figure 2.9 illustrates how individual Viking and Radar Dish textures are stored
in comparison with a texture atlas combining all of the textures needed for this scene
in Space Viking.

Figure 2.9 Example of wasted memory with individual images versus a
texture atlas

There is one more key advantage of using a texture atlas. Often, a significant part
of your images contains transparent space, and this space contains no pixel color data
but takes up memory just the same. Most texture atlas software, such as Zwoptex
and TexturePacker, can overlap the transparent space between two or more images.
Zwoptex and TexturePacker keep track of your original image size, including the
transparent space, and Cocos2D can automatically adjust your sprites to make up for
the trimmed transparent space.

If all of this does not make complete sense yet, do not worry—it will soon. Keep in
mind these reasons why you want to use a texture atlas:

Chapter 2 Hello, Space Viking48

Top Reasons to Use a Texture Atlas/Sprite Sheet

1. Reduced OpenGL ES bind calls—the more images contained in the texture
atlas, the greater the reduction.

2. Reduced memory footprint for the images stored as textures in memory.

3. Easy method to trim and save on transparent space in your images, allowing for
more images/texture in the same space.

4. Zwoptex and TexturePacker are fully supported by Cocos2D, so creating and
using texture atlases is painless.

Note
For the texture atlas to be efficient, you will want it to contain as many images as pos-
sible. The scene1 texture atlas in this chapter has quite a bit of empty space that we will
fill in with weapons in Chapter 5, “More Actions, Effects, and Cocos2D Scheduler.” Always
try to have the smallest texture atlas possible, with the least empty space, in your games.

In your games, you may have one or more texture atlases depending on what
objects you need for each scene or level. In Space Viking you will have one texture atlas
for this scene and another for the underground mining scene that you will discover in
Chapter 10, “Basic Game Physics: Adding Realism with Box2D.” The next step is to
actually create the texture atlas for the first scene in Space Viking, and then you will be
ready to dive back into the code in Chapter 4, “Simple Collision Detection and the
First Enemy.”

Creating the Scene 1 Texture Atlas
Texture atlases provide significant improvement in game performance with minimal
effort on your part. In the first scene of Space Viking, you will have one texture atlas
containing the Viking, all the enemy characters, and power-ups. There are two great
tools available for quickly creating texture atlases: TexturePacker and Zwoptex. This
book covers how to use TexturePacker or Zwoptex to create the texture atlas for Space
Viking.

Zwoptex can be found at http://zwoptexapp.com.
TexturePacker can be found at http://texturepacker.com.
The next step is to create the scene 1 texture atlas that will be used in Chapter 3,

“Introduction to Cocos2D Animations and Actions,” and beyond.

Texture Packer Instructions

1. Start the Texture Packer Application.

2. For each of the following subfolders in Resources\Images for Texture Atlases for this
chapter, select Add Folder in the top toolbar and choose the folder:

Detrius
EnemyRobot
ImpactEffects

http://zwoptexapp.com
http://texturepacker.com

Texture Atlases 49

PowerUps
Radar
SpaceCargoShip
Teleport Effects
Viking

Be sure to use the Add Images button and not the Add Folders button, so that
TexturePacker does not include the path as the key to the image coordinates.

3. In the toolbar to the left, make sure that the Data Format is set to cocos2d.

4. Click Publish, and when prompted for a name, enter scene1atlas. It will save two
files (scene1atlas.png and scene1atlas.plist) to the folder you choose, so note where
you save it for use later (see Figure 2.10).

Figure 2.10 Creating the scene1atlas texture atlas in TexturePacker

Zwoptex Instructions

1. Start the Zwoptex Application.

2. Select File > New.

3. Click the Import+ button and select the images from the following folders
inside the Resources\Images for Texture Atlases folder for this chapter:

Chapter 2 Hello, Space Viking50

Detrius
EnemyRobot
ImpactEffects
PowerUps
Radar
SpaceCargoShip
Teleport Effects
Viking

4. Change the Canvas dimensions to have a width of 2048 pixels and height of
2048 pixels.

5. Select Max Rect as the algorithm on the left panel.

6. Set the padding to 1 pixel, by entering 1px on the padding text box.

7. Click the Apply button so that Zwoptex lays out your images.

8. Select File > Save and name this Texture Atlas scene1atlas.

9. Click Publish on the menu, and then click Publish Settings.

10. Make sure the Coordinates Format is set to cocos2d, and click Save.

11. Click Publish on the menu again, and then press the Publish button on the pop-
down notification. This will create two files, scene1atlas.png and scene1atlas.plist, in
the same folder where you saved the texture atlas in step 8 (see Figure 2.11).

Figure 2.11 Creating the scene1atlas texture atlas in Zwoptex

That was simple right? With a few clicks, you combined all of the images needed
for this level of Space Viking in one texture atlas and exported the atlas and coordinates
file that will be used by Cocos2D.

Texture Atlases 51

You will need two more texture atlases for when Space Viking is running on the
iPhone and on the iPhone 4’s retina display. You can create them following the same
steps, except they should be named scene1atlasiPhone and scene1atlasiPhone-hd (png and
plist files). You can find all of the completed texture atlases in the resources folder for
this chapter.

If you are wondering how Cocos2D knows to extract your individual images from
the texture atlas, the coordinates plist file is what provides the key. If you open the
scene1atlas.plist file in Xcode, you will see that it contains the coordinates for each
image you imported as well as each image’s original size before it was trimmed.

Your texture atlas should look similar to the one in Figure 2.10 or 2.11. The order
of the sprites is not important; you just need to ensure that they are all present in the
texture atlas.

Adding the Scene 1 Texture Atlas to Space Viking

1. In Xcode, open the SpaceViking project.

2. Select the Images folder.

3. Right-click and select Add Files.

4. Browse to the directory where you saved the scene1atlas, select the scene1atlas.png
and scene1atlas.plist files, and click Add.

5. Ensure that the Copy items to destination group’s folder is selected and
click Add.

You should see the scene1atlas.png and scene1atlas.plist files under your Images
folder.

6. Follow the same steps to add the scene1atlasiPhone (png and plist) and scene1atlas-
iPhone-hd (png and plist) texture atlases. These two texture atlases provide the
graphics for Space Viking on the iPhone and iPhone 4.

In Chapter 4, you will use this texture atlas to provide the graphics for all of the
characters in Space Viking. Since you only have Ole onscreen at the moment, the tex-
ture atlas does not buy you much performance. Don’t worry: you will soon add ene-
mies and even a space cargo ship to your Space Viking game.

Warning
Make sure you have the scene1atlas.png, scene1atlas.plist, scene1atlasiPhone.png, scene-
1atlasiPhone.plist, scene1atlasiPhone-hd.png, and scene1atlasiPhone-hd.plist files in Xcode;
otherwise, you will not be able to get the SpaceViking project running when you reach the
end of the next chapter.

Chapter 2 Hello, Space Viking52

For the More Curious: Testing Out
CCSpriteBatchNode
While Chapter 4 goes into detail on how to set up and use CCSpriteBatchNode,
you might be interested in getting it working now. It is very simple, and you can do it
with just five lines of code.

In the init method of GameplayLayer.m:

1. Comment out the lines marked //3 and //5, which previously created the
Viking CCSprite and added it to the GameplayLayer.

2. Add the lines shown in Listing 2.13.

Listing 2.13 Using CCSpriteBatchNode in init method of GameplayLayer.m

 //vikingSprite = [CCSprite spriteWithFile:@"sv_anim_1.png"]; // 3

CCSpriteBatchNode *chapter2SpriteBatchNode;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene1atlas.plist"]; // 3.1

chapter2SpriteBatchNode =

 [CCSpriteBatchNode

 batchNodeWithFile:@"scene1atlas.png"]; // 3.2

 } else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene1atlasiPhone.plist"];// 3.1

chapter2SpriteBatchNode =

 [CCSpriteBatchNode

 batchNodeWithFile:@"scene1atlasiPhone.png"]; // 3.2

 }

 vikingSprite =

 [CCSprite spriteWithSpriteFrameName:@"sv_anim_1.png"]; // 3.3

 [chapter2SpriteBatchNode addChild:vikingSprite]; // 3.4

 [self addChild:chapter2SpriteBatchNode]; // 3.5

 [vikingSprite setPosition:

CGPointMake(screenSize.width/2,

 screenSize.height*0.17f)]; // 4

 //[self addChild:vikingSprite]; // 5

Fixing Slow Performance on iPhone 3G and Older Devices 53

The new lines you added (3.1 through 3.5) work as follows:

 3.1 Loads the CCSpriteFrames into the Cocos2D cache. The frames are the
dimensions and location of all of the images inside of the texture atlas. This plist
is what allows Cocos2D to extract the images from the texture atlas PNG and
render them onscreen. The frames also allow Cocos2D to recreate the trimmed
transparent space that Zwoptex or TexturePacker removed in creating the
texture atlas. Once more, you see the check for UI_USER_INTERFACE_IDIOM(),
which determines if Space Viking is running on the iPad or the iPhone. If
Cocos2D detects a Retina display on the iPhone, it will automatically load the
-hd versions of the png and plist files (scene1atlasiPhone-hd.png).

 3.2 Creates the CCSpriteBatchNode and loads it with the large texture atlas image.

These two steps are all that are needed to create and set up a CCSpriteBatch-
Node. Next you need only add CCSprites to the CCSpriteBatchNode and
add the CCSpriteBatchNode to the layer, and Cocos2D takes care of the rest.

 3.3 Creates the vikingSprite with only the name of the frame that Cocos2D
should use to extract the image from the texture atlas.

 3.4 Adds the vikingSprite to the CCSpriteBatchNode so that the viking-
Sprite will be rendered by the CCSpriteBatchNode and not by itself.

 3.5 Adds the CCSpriteBatchNode to the layer so that all of the children (CCSprites)
of the CCSpriteBatchNode can be rendered onscreen in one pass.

The steps required to use a texture atlas in Cocos2D are loading the sprite frames
into the cache and creating a CCSpriteBatchNode with the texture atlas image.
From then on, the CCSpriteBatchNode will render any sprite you create from the
texture atlas and add to the CCSpriteBatchNode in one pass. In this chapter, you
only have the lonely Ole the Viking, so there is no performance advantage to using a
texture atlas. In later chapters with enemies, weapons, and more, the texture atlas and
CCSpriteBatchNode both are key to maintaining good game performance.

Warning
Remember to comment out the original line adding the vikingSprite directly to the
layer, as shown in Listing 2.13. A CCSprite can only be a child to either the CCLayer
or the CCSpriteBatchNode, and not both. If you leave the line in there, you will get a
runtime crash with an assert warning you of the problem.

Fixing Slow Performance on iPhone 3G and
Older Devices
As a default Cocos2D uses the RootViewController (UIViewController) to
determine the orientation of the device and properly rotate both the Cocos2D
(OpenGL ES) and any UIKit elements you may have onscreen. If you leave it at the

Chapter 2 Hello, Space Viking54

default setting, then Cocos2D will render as if it is in the portrait orientation and leave
it up the UIViewController to rotate the rendered content. While not a problem on
newer devices, on the iPhone 3G and older devices, it causes quite a bit of overhead,
capping your maximum frames per second at 40 instead of the full 60fps. You can eas-
ily change this setting so that Cocos2D Director handles the rotation, and have your
game running at 60fps even on the original iPhone. The only caveat is that if you do
overlay UIKit elements, such as a UIButton on top of Cocos2D, you will have to
manually rotate them.

Space Viking does not use any UIKit elements: everything including the menus uses
Cocos2D.

To change the screen rotation control from the UIViewController to the
Cocos2D Director, make the change shown in Listing 2.14 in your GameConfig.h file,
located in the Classes folder.

Listing 2.14 Changes to GameConfig.h file

// For iPhone 3GS and newer, comment out for Space Viking

//#define GAME_AUTOROTATION kGameAutorotationUIViewController

// For iPhone 3G and older (runs better)

#define GAME_AUTOROTATION kGameAutorotationCCDirector

Summary
If you have followed all of the steps in this chapter, you now have a very basic version
of Space Viking running on your iPad. You have implemented a joystick and buttons
and connected the game logic to move Ole the Viking around the screen. You have
also learned about texture atlases and created the texture atlas that will be used in the
first level of Space Viking.

In the next chapter, you will add animations to Ole the Viking so that his walking
and jumping are more f luid. You will also learn how to add other characters to Space
Viking and wire up Ole’s attack button so he can fight off the alien hordes.

Challenges
1. Modify the scaledVelocity calculation in applyJoystick to have a factor

of 10.0f instead of 1024.0f. What happens when you try to move Ole around
with the joystick? What about with a factor of 10000.0f?

2. Change the newPosition calculation in applyJoystick to not include
the deltaTime. What happens when you try to move Ole around using the
joystick?

Challenges 55

Hint
You need to remove deltaTime from this line:

CGPoint newPosition =

ccp(tempNode.position.x + scaledVelocity.x * deltaTime,

 tempNode.position.y + scaledVelocity.y * deltaTime); // 2

3. Add left and right limits for Ole the Viking so he does not move offscreen even if
the player moves the joystick left or right continuously. (Hint: vikingSprite’s
x coordinate is the variable you have to limit.)

Bonus
Modify the applyJoystick method in GameplayLayer so the joystick only changes
Ole’s x coordinates, leaving the y coordinate intact.

This page intentionally left blank

3
Introduction to Cocos2D
Animations and Actions

In Chapter 2, “Hello, Space Viking,” you learned the basics of Cocos2D and created a scene
with two layers: background and gameplay. You got a Viking sprite moving around on the screen,
and hopefully, you whet your appetite for continuing on to the full-featured game. In this chapter
you will learn about actions and animations and in the process start to build a f lexible framework
for Space Viking. As you read this chapter, keep in mind that you can reuse this framework to
create your own games in the future.

A quick word of warning: this chapter and the next one are very code heavy, but do not be
alarmed—we go through it step by step and explain everything along the way. Game develop-
ment covers the gamut of the computer science (CompSci) discipline, and you are going to learn
various facets of CompSci in the writing of Space Viking. Do not hesitate to refer back to this
chapter to make sure all the concepts are firmly entrenched in your mind.

Ready? Let’s begin!

Animations in Cocos2D
Adding animations into your game is easy with Cocos2D. You already learned how to
create and add sprites to your layers and to get those sprites rendered onscreen. Anima-
tions in Cocos2D are just like old f lipbook-style paper animations: all animations are
just individual image frames being switched multiple times per second. Technically,
this means your sprites have their display frames changed to different textures with a
set delay between the time each texture is displayed.

There are two steps to animate your sprites:
n Create a CCAnimation to specify the set of images/textures in your animation,

called frames.
n Create a CCAnimate action, and “run” it on a sprite. A CCAnimate action spec-

ifies the CCAnimation to use and the delay to use between its frames.

Chapter 3 Introduction to Cocos2D Animations and Actions58

To recap, you first create a CCAnimation to store the frames or images in your
animation. You then create a CCAnimate action to run the animation.

The easiest way to understand how this works is to try out two quick examples.
Don’t worry, the first example is short, just a few lines of code.

1. Open the SpaceViking project in Xcode.

2. Drag the an1_anim_1, 2, 3, and 4 png files from the Resources/Enemy Robot
Animation folder for this chapter into your SpaceViking project.

The an1_anim_1.png through an1_anim_4.png are used in this animation example.
After this chapter, you can remove them, as you will learn to drive the anima-
tions from the texture atlas you created in Chapter 2.

3. Open the GameplayLayer.m class and navigate to the init method.

4. Add the lines shown in Listing 3.1 to the init method above the line [self
initJoystickAndButtons];.

Listing 3.1 Adding an animation to Space Viking

// Animation example with a Sprite (not a CCSpriteBatchNode)

CCSprite *animatingRobot = [CCSprite

spriteWithFile:@"an1_anim1.png"]; // 1

[animatingRobot setPosition:ccp([vikingSprite position].x + 50.0f,

 [vikingSprite position].y)]; // 2

[self addChild:animatingRobot]; // 3

CCAnimation *robotAnim = [CCAnimation animation]; // 4

[robotAnim addFrameWithFilename:@"an1_anim2.png"]; // 5

[robotAnim addFrameWithFilename:@"an1_anim3.png"];

[robotAnim addFrameWithFilename:@"an1_anim4.png"];

id robotAnimationAction =

 [CCAnimate actionWithDuration:0.5f

animation:robotAnim

restoreOriginalFrame:YES]; // 6

id repeatRobotAnimation =

 [CCRepeatForever actionWithAction:robotAnimationAction]; // 7

[animatingRobot runAction:repeatRobotAnimation]; // 8

In Listing 3.1 you are adding an animating enemy robot to the right of Ole. Here is
what is going on in the code step by step:

1. Creates and initializes a CCSprite of the animating robot, with the image
an1_anim1.png.

2. Sets the position of the robot to 50 points to the right of Ole. If you wanted the
exact pixel position of the Viking, you would use the call to positionInPixels
instead of position.

Animations in Cocos2D 59

3. Adds the animatingRobot to the GameplayLayer. Up to this point the steps
in creating and adding a CCSprite to a CCLayer should be familiar, as you
learned it in the previous chapter.

4. Creates and initializes a new CCAnimation named robotAnim. In this line the
robotAnim is created but empty.

5. Adds the animation frames to the robotAnim animation. Three frames are
added by passing in the filenames for each.

6. Creates the robotAnimationAction that is responsible for running the anima-
tion. The delay between frames is set to half a second (0.5f), the animation to
use is set to robotAnim, and the f lag is set to restore the original frame. The
restore original frame f lag informs the CCAnimate action to do a bit of work
at the end of the animation and reset the CCSprite to the display frame it was
showing before the animation started. In other words, when the animation ends,
the CCSprite reverts back to its original image.

7. Creates an action to repeat the animation forever. In Chapter 4, “Simple Colli-
sion Detection and the First Enemy,” you will learn how to use actions to drive
behavior in Space Viking. For now, just know that the CCRepeatForever action
keeps repeating the robot animation.

8. Informs the animatingRobot CCSprite to run the animation in an endless loop.

Click Run in Xcode and watch the robot walk in place next to the Viking. Figure 3.1
shows the robot on the iPad Simulator.

Figure 3.1 Animating robot next to Ole

Chapter 3 Introduction to Cocos2D Animations and Actions60

As you can see, creating animations in Cocos2D is easy. The code in Listing 3.1
works with regular CCSprites, but if your CCSprites are being rendered by a
CCSpriteBatchNode, the code requires a couple of modifications. The CCSprite-
Frames you use for your animation must get their textures from the texture atlas
used by the CCSpriteBatchNode. The best way to understand this is to see it in
action. Copy the contents of Listing 3.2 directly below the code you created earlier
in Listing 3.1.

Listing 3.2 Animations using a CCSprite rendered by CCSpriteBatchNode

// Animation example with a CCSpriteBatchNode

CCAnimation *exampleAnim = [CCAnimation animation];

[exampleAnim addFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_2.png"]];

[exampleAnim addFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 spriteFrameByName:@"sv_anim_3.png"]];

[exampleAnim addFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_4.png"]];

id animateAction =

 [CCAnimate actionWithDuration:0.5f

animation:exampleAnim

restoreOriginalFrame:NO];

id repeatAction =

 [CCRepeatForever actionWithAction:animateAction];

[vikingSprite runAction:repeatAction];

Recall from Chapter 2 that you used TexturePacker or Zwoptex to create a big
sprite sheet image with all of the images for Space Viking, and a property list contain-
ing the coordinates for each image in the sprite sheet. You then added code to use
the addSpriteFramesWithFile method to load the property list, which makes
Cocos2D cache the coordinates for each individual image so you can look them up
later. Looking them up is simple—you just use the spriteFrameByName method,
which returns a CCSpriteFrame object containing the location information.

To set up a CCAnimation, you need to specify each CCSpriteFrame in the ani-
mation. So in Listing 3.2, the only difference is that addFrame is used instead of
addFrameWithFilename. This way, you can specify the CCSpriteFrames that are
already in the cache from the sprite sheet’s property list.

Animations in Cocos2D 61

Once the CCAnimation object is populated, the rest of the code is the same, set-
ting up an action to play the animation and assigning it to the vikingSprite.

The important takeaway here is that when you are creating animations for sprites
using a texture atlas, the animation frames must come from the same texture atlas. If
you want to animate a sprite, make sure you put all of the frames of the animation in
the same sprite sheet—otherwise it will not work.

Note on EnemyRobot Size
If you ran Listing 3.1 on a device other than the iPad, you may have noticed the
EnemyRobot’s size was larger then the Viking. The first code you typed in for this
chapter uses just plain CCSprites, which are sized for the iPad, without checking for
UI_USER_INTERFACE_IDIOM() to determine if you are running on an iPhone or iPad.
All subsequent code you will write for Space Viking uses the texture atlases you created in
Chapter 2 and will select the correct texture atlas depending on what iOS device you are
running the game on (iPhone, iPhone 4, or iPad).

In Space Viking the frame rate is set to 60 frames per second (fps). By changing the
delay between frames, you can control how long each frame is onscreen. If you need
to keep a set of frames onscreen longer than others, you can add them multiple times
to the CCAnimation object. Remember, Cocos2D caches the textures used by each
frame; repeating a frame does not consume much additional memory.

Warning
The code in Listing 3.2 assumes you completed all of the steps in the previous chapter
in setting up the CCSpriteBatchNode. If you encounter any issues, remember to refer
back to the sample code included with this chapter.

Don’t worry if you don’t completely understand all of this yet: you will have a
chance to see how it all ties together in the code listings in this chapter. Just remember
that in order to play an animation, you must use a CCAnimate action, and you can
always refer back to this code for a working example.

There are many characters in Space Viking, each with several animations. Typing
out each frame for every animation would quickly become tedious and bloat your code
with line after line of just addFrame calls. Each CCAnimation and CCAnimate action
has two components: a delay between frames and a list of sprite frames to progress
through. This kind of animation data is best stored in property list (plist) files separate
from your code. This chapter covers the plist files and code you need to set up for the
character animations in Space Viking.

At this point you have made quite a bit of progress. You have the beginnings of a
Cocos2D game and already have animating characters onscreen with joystick control.
The animations in Space Viking will be used to bring characters to life with walking,
jumping, crouching, and attacking moves. The rest of this chapter builds on what you
learned to set the foundations for Space Viking, including a large portion of code you
can reuse in your own games.

Chapter 3 Introduction to Cocos2D Animations and Actions62

Note
Before moving on, be sure to comment out the lines of code you added from Listings 3.1
and 3.2: they are examples only and are not used in the rest of the book.

For the More Curious: CCAnimationCache
Cocos2D comes bundled with a CCAnimationCache singleton that can cache all of
your animations. Instead of storing the animations as instance variables, you can store
them in the CCAnimationCache and retrieve them as needed. This is really useful
if you have a lot of CCSprites in your game all using the same animations. A good
example is a shooting game with similar enemies, such as the classic Space Invaders
or R-Type.

There are two items you should be aware of when using the CCAnimationCache:

1. When retrieving the animation, you should check that it is not nil. The
CCAnimationCache can purge animations if asked via the purgeShared-
AnimationCache call.
If the animation you ask is no longer cached, it will return nil.

2. Any animations you wish to keep around should be retained so that if they are
purged from the cache, they will still be available to your objects.

Using CCAnimationCache is really easy. You create the animation as you did in the
listings in this chapter and then add them to the CCAnimationCache as follows:

[[CCAnimationCache sharedAnimationCache]

addAnimation:animationToCache

 name:@"AnimationName"];

The CCAnimation called animationToCache is now stored in the CCAnimation-
Cache singleton. When you want to use the cached animation, you can retrieve it by
using:

CCAnimation *myAnimation = [[CCAnimationCache sharedAnimationCache]

 animationByName:@"AnimationName"];

In SpaceViking the choice was made to store the animations as instance variables
because it was deemed easier to understand and use. In your games do not hesitate
to use the CCAnimationCache, especially in cases where you have several objects
using the same animations.

Space Viking Design Basics
In Chapter 2 you had a very simple game with a Viking character and joystick controls
to move him around. You could continue building a game this way, but the Gameplay
layer would grow very large and quickly become unmanageable. The goal of this book
is to provide you with the knowledge and skills needed for game development with

Space Viking Design Basics 63

Cocos2D and also to provide a sample game with code you can reuse in your own
games.

Each game object in Space Viking has some logic behind it, not just the graphical
sprite/image component. Enemies have to have a primitive artificial intelligence (AI)
and be able to patrol the scene, attack Ole the Viking, and react to attacks. In addi-
tion to enemies, there are power-ups for better weapons and health and other objects.
Instead of having all of the logic in one massive file, each object in the game has its
own class to contain the portions of code needed. Game logic used by more than one
object is included once in the classes those objects inherit from, such as GameObject
or GameCharacter.

Thinking in Terms of Objects
From this chapter on, you will implement the logic for Space Viking by separating the
functionality of each character or game element into distinct objects. Each object is
implemented in Objective-C by a class, including a header and an implementation file.

One way of thinking about how classes or object-oriented programming works is to
model everyday objects and see how their object/class structure works. Take the
example of modeling a dog such as the golden retriever.

In designing objects, you always want to go from abstract to specific. In the case of
the golden retriever, you might start with a Mammal object.

The Mammal object would contain all of the basics for all animals, like the nervous
system component, a skeletal system component, and a muscular system component.
From the Mammal object, you could have a Canine object, which would be a more
specific type of mammal. The Canine object would have four legs, ability to bark,
and all of the traits that exist across all dogs. Finally, you would have a Golden-
Retriever object, which would be a more specific type of Canine object containing
GoldenRetriever-specific features.

When converting the objects into classes, the Mammal object would be a class, the
Canine object a subclass of Mammal, and GoldenRetriever a subclass of
Canine. Each component of the objects can be either an instance variable (ivar) or
an object itself if it has complex functionality. Hair color could be stored as an ivar,
but the skeletal system component would be made up of several objects in order to
model the complex functionality of the bones and joints.

When designing the objects and classes for your games, remember to think from
abstract to specific, with the more abstract classes at the top of your hierarchy. The
methods that are common to your objects and classes should be moved up into their
parent objects or further up the hierarchy. If you have a method that is needed in two
classes, ask yourself if you would not be better off having that method in the parent
object. If you need a refresher on object-oriented programming, take a look at the clas-
sic Object-Oriented Programming, by Peter Coad and Jill Nicola (Prentice-Hall, 1993).

Chapter 3 Introduction to Cocos2D Animations and Actions64

In Space Viking each game object has its own class, which encapsulates the AI
needed by that object. The objects share common methods that they can use to query
each other as to their state, present location, and other attributes. To understand how
all of these objects fit together, it is best to start with the topmost object in the hierar-
chy, the GameObject:

n GameObject

The GameObject class inherits from CCSprite and contains methods com-
mon to all GameObjects, including a method to update the object on every
frame and another to change its state. Since GameObject itself inherits from
CCSprite, it already knows how to render textures onscreen. Remember that
CCSprites can render themselves or be rendered by a CCSpriteBatchNode.
All of the objects in Space Viking inherit directly or indirectly from the
GameObject class.

n GameCharacter

The GameCharacter class inherits from GameObject and is the foundation
of the “characters” in the game. It contains some additional methods and func-
tionality needed by the characters in Space Viking. The Viking, EnemyRobot,
RadarDish, and PhaserBullet all inherit from GameCharacter.

n Viking

The Viking class inherits from GameCharacter and contains the logic and
code needed to move Ole the Viking around according to your joystick input
and to launch attacks and react to attacks from the other enemies in the game.

n RadarDish

The RadarDish is a nonmoving enemy that serves as Ole’s introduction to the
alien world. It sits on the corner, scanning for our Viking until it detects him.
Think of the radar dish as an easy enemy that does not fight back. It is important
to understand how the RadarDish works because all of the other enemies in
Space Viking are more complex versions of it. The RadarDish class inherits from
the GameCharacter class.

n SpaceCargoShip

The alien world is actually a large mining planet. The aliens are always moving
cargo on and off the planet. When the alien ship passes near the ground, some
objects always tend to fall off. Maybe some of these objects will be useful to Ole
the Viking? The SpaceCargoShip inherits from the GameObject class.

n Mallet

Long ago, Ole was separated from his beloved mallet when he fell into the icy
river. If he ever finds it again, he will be armed with a mighty weapon to fend
off the aliens. The Mallet class inherits from GameObject class and is one of
the power-ups in the first scene in Space Viking.

Space Viking Design Basics 65

n Health

The Health class represents the health power-ups in Space Viking. Even though
Ole is a mighty Viking, he does get hungry after fighting, and the health power-
ups restore Ole’s health. The Health class inherits from the GameObject class.

Note
You will create these classes for Space Viking in this chapter. In Chapter 4, you will add
the enemy robot and phaser beams that the robot fires at Ole. The actions and animation
system in Cocos2D is used extensively by the GameObjects in Space Viking, and it is
covered in detail in the next section.

Figure 3.2 shows the inheritance and makeup of the Viking and RadarDish
classes and how they are added to the scene 1 CCSpriteBatchNode, which in turn
is added to the GameplayLayer. Recall that in Cocos2D, the CCScenes contain
CCLayers, the CCLayers contain objects, in our case the CCSpriteBatchNode,
which then contains the Viking and RadarDish classes.

Figure 3.2 Class hierarchy of the Viking and RadarDish classes

A Word on Artificial Intelligence
Depending on the type of game you are creating, the demands of the in-game AI will
vastly differ. If you were making a racing game, the enemy cars only have to make
their way around the track and avoid each other, while a real-time strategy game would
require a more complex AI. In many games the AI is represented as state machines,
with distinct operations at each state. In Space Viking the enemy AI is a very simplis-
tic state machine, going between walking, attacking, and taking damage states. The
complexity of the AI in your games is limited only by your imagination and how much
computing time you want to devote to it in your game.

Chapter 3 Introduction to Cocos2D Animations and Actions66

Actions and Animation Basics in Cocos2D
Actions are a powerful mechanism in Cocos2D to control the movement, transi-
tion, and effects of your objects. All CCNode objects are able to run actions, and since
CCSprites inherit from CCNodes, all Cocos2D actions can be run on CCSprites.
The Viking and RadarDish objects inherit from GameCharacter, which in turns
inherits from GameObject and CCSprite, allowing your characters to have all of
the built-in logic to run actions. In Chapter 2 you moved Ole the Viking’s sprite by
changing the position variable of the sprite. Suppose you wanted to move Ole from
the left to the right of the screen 200 pixels in 2 seconds. The following move action
would accomplish this for you.

CCAction *moveAction = [CCMoveBy actionWithDuration:2.0f

 position:ccp(200.0f,0.0f)];

[vikingSprite runAction:moveAction];

That’s all it takes to do the animation—just two lines of code! Figure 3.3 illustrates the
moveAction effect on the Viking sprite.

Figure 3.3 Effect of the CCMoveBy action on the Viking CCSprite

You don’t have to worry about how many pixels you should move on each update
call because Cocos2D automatically calculates and moves your sprite in the correct
increments. There are many actions in Cocos2D: move, jump, scale, and rotate are
just a few of the most frequently used ones. In Chapter 5, “More Actions, Effects, and
Cocos2D’s Scheduler,” you will learn more details about actions, including complex
callbacks into your code. For now you will use the following actions:

n CCAnimate

Runs a particular animation with a set delay between each frame. This action is
what you use to play an animation.

n CCJumpBy

Simulates a parabolic jump automatically, given the height of the jump and the
horizontal distance to cover. This action is used to give Ole the Viking a realistic
jump arc.

Using Property List Files to Store Animation Data 67

n CCRepeatForever

Repeats the action indefinitely. It has the effect of running an action on an infi-
nite loop until stopAction: or stopAllActions is called.

n CCSequence

Sequences two or more actions together so that after the first action completes,
the second action is run.

n CCSpawn

Fires off two or more actions simultaneously. CCSpawn is very useful for com-
bining actions, such as a jump animation with the CCJumpBy action.

In this chapter you will use actions to drive the animations, including Ole the
Viking’s jump and attack movements. The next section covers adding animations via
property lists.

Using Property List Files to Store Animation Data
Property list files (more commonly referred to as “plist files”) contain XML data used
to define a set of properties used by your app or game. In Space Viking you will also
use the plist files to store an NSDictionary of the settings you need to create and
load the CCAnimations. Xcode has built-in support for creating and editing plist
files, making it very easy to use plists in your projects.

Of course, you could include all of the information from these plist files directly in
your code, but then every time you want to make an animation change, you would
have to change your code and recompile. Having the animation data in plist files keeps
your code smaller and allows you to have your artist help with the setup and tweak-
ing of the animation frames and delays. I have found that it is not good practice to
hard-code the animation data. Having it separate helps compartmentalize the code and
makes it easier on you when you visit the same code months later.

In Space Viking each object is in its own class, such as Viking and RadarDish.
Each object then points to its own plist file for information on how to set up its ani-
mations. For example, in the case of the RadarDish, the RadarDish.plist file contains
data for the takingAHit, blowingUp, tilting, and transmitting animations.

NSDictionary objects are just what the class name suggests: a set of key-value
pairs. In Space Viking the plist files contain mini-dictionaries for each animation with
a filename prefix, a delay amount, and the listing of animation frames for a particular
animation. The quickest way to wrap your head around this is to create one, so let’s
get moving (excuse the pun).

Starting with the simplest enemy in Space Viking, the RadarDish, open Xcode:

1. Right- or Control-click on the SpaceViking project and select New Group.

2. Click on the new group and change the name to Plists. You will use this group
to organize all of the animation plist files used in Space Viking.

Chapter 3 Introduction to Cocos2D Animations and Actions68

3. Selecting the Plists group, right- or Control-click and select New File.

4. Select the Resource section under iOS on the left, and then select Property
List for the type of file and click Next.

5. Enter RadarDish.plist for the filename, and then click Finish.

Xcode creates and opens the RadarDish.plist file for you. The next step is to add the
items needed for a particular RadarDish animation. Figure 3.4 shows the RadarDish.
plist file you will create in this section.

Figure 3.4 RadarDish.plist file

The first animation is for the tilting movement that the RadarDish performs when
it is first created. This animation consists of a series of frames showing the dish tilting
down and then back up. With the RadarDish.plist file open in Xcode, do the following
(the numbers in the list correspond to the numbered callouts in Figure 3.4):

1. Select the RadarDish.plist file and in the empty editor area, right-click, selecting
Add Row.

2. For the Key column, enter tiltingAnim, then change the type to Diction-
ary. This step means you have created a subdictionary inside the main root
dictionary to store the data for the tilting animation. After you set the type to
Dictionary, you’ll notice a disclosure triangle next to tiltingAnim in the
Key column.

3. Click the disclosure triangle next to tiltingAnim so it faces down; this
opens the dictionary so you can add items to tiltingAnim’s dictionary.

Organization, Constants, and Common Protocols 69

4. Click the + button next to the tiltingAnim key to add a row to the
tiltingAnim dictionary.

5. Click on the Key field and enter animationFrames.

6. Leave the type as String.

7. In the Value field, enter 1,2,3,4,5,5,4,3,2,1,2,3,4,5.

8. Add another item under tiltingAnim by clicking the + sign next to the
animationFrames field, set the key in the new row to delay, the type to
Number, and the value to 0.25.

9. Create a final item under tiltingAnim, setting the key to filenamePrefix,
the type to String, and the value to radar_.

To verify that you created these items correctly under the tiltingAnim, click
on the disclosure triangle to the right of tiltingAnim to collapse it. All three items
should disappear from view. If they do not, right-click on the item that did not disap-
pear and select shift item right.

Repeat these steps for takingAHitAnim, blowingUpAnim, and transmitting-
Anim mini-animation dictionaries, entering the values shown in Figure 3.4.

One of the key benefits of having the animation data in plists is that it frees you
up from having to go into your code to change the animation data. In fact, if you are
working with an artist or animator in your games, they can often build these files as
they create the animations for you. Later in this chapter you will see how to read the
animation plists using a method included in the GameObject class and called by each
object in Space Viking.

Note
While it is important to understand how the plist files are used in Space Viking, it’s not
worth your time to type them in by hand for the purposes of learning how to make this
game. So before you continue, download the plist files along with the source code for this
chapter at the InformIT website (www.informit.com/title/9780321735621).

Once you’ve downloaded the files, add the plist files to your project inside the Plists group
(EnemyRobot.plist, Health.plist, Mallet.plist, RadarDish.plist, and Viking.plist).

Be sure to remember to add these files to your project, because without them, the rest of
this code won’t work!

Organization, Constants, and Common Protocols
In the next sections you will create a host of classes for use in Space Viking. In each
subsequent chapter you will add more functionality and more classes. In order to keep
your sanity, it is best to start organizing the source code inside of Xcode.

To start, create some groups in Xcode to help keep the new classes you are going to
create organized.

www.informit.com/title/9780321735621

Chapter 3 Introduction to Cocos2D Animations and Actions70

1. Open Xcode, and under the Groups and Files section, select the Classes folder.

2. With the Classes folder selected, you can either press Option-z-N or right-click
on the Classes folder and select New Group from the contextual menu. Create
the following groups:
n Constants
n Scenes
n Layers
n GameObjects
n EnemyObjects
n PowerUps
n Singletons

3. Drag the GameScene.h and GameScene.m files into the Scenes group.

4. Drag the BackgroundLayer and GameplayLayer .h and .m files into the Layers group.

5. Finally, drag the SpaceVikingAppDelegate .h and .m files into the Singletons group.

At this point your SpaceViking project layout should be similar to the one shown in
Figure 3.5. The order of the groups is not important, only that they exist under Classes
to keep your code organized. If you still have your HelloWorldScene .m and .h files
inside your SpaceViking project, you can safely delete them.

Figure 3.5 Xcode Groups and File panel showing the groups created
under the Classes folder in Space Viking

Organization, Constants, and Common Protocols 71

Creating the Constants File
Space Viking has some static values that you will want to use in more than one class.
For this purpose, you create a Constants.h header file, which contains all of the
#define statements and other constants used by more than one class in Space Viking.

Now that you have the groups in place to keep Space Viking organized, it is time to
add the Constants and CommonProtocol classes.

1. In Xcode, select the Constants group (Classes > Constants).

2. Select File > New File (z-N, or right-click on the Constants folder and select
New File from the contextual menu), and then select C and C++ category
under iOS, and choose the Header File option.

3. Enter Constants.h for the filename and click Finish.

4. Select the Constants.h file and enter the text shown in Listing 3.3.

Listing 3.3 Constants.h header file

// Constants.h

// Constants used in SpaceViking

#define kVikingSpriteZValue 100

#define kVikingSpriteTagValue 0

#define kVikingIdleTimer 3.0f

#define kVikingFistDamage 10

#define kVikingMalletDamage 40

#define kRadarDishTagValue 10

When you add a sprite to your layer, you can give it a z-order. In Space Viking, we
give a unique z-order to each of the sprites to make it very clear which sprites are on
the top and which are behind. The kVikingSpriteZValue is used to keep Ole the
Viking in front of the other game characters. The number 100 is arbitrary, and it only
has to be larger than the number of objects added to the same CCSpriteBatchNode.
In other words, a z value of 0 is the backmost object, while positive numbers are in
front, with the highest number being the object rendered in front of all of the others.
If there were 500 enemy objects in Space Viking, you would want to make this number
higher, such as 501 or 600.

Each CCNode object can hold an optional tag value: a unique integer value that
other nodes can use to retrieve it. The enemy objects in Space Viking will use the
kVikingSpriteTagValue to get the Viking object from the CCSpriteBatchNode
and query the Viking’s position and state. The default value of the tag is kCCNode-
TagInvalid (-1), so 0 is a valid tag to use. Similarly, kRadarDishTagValue will be
used in Chapter 5 to get a reference to the RadarDish class from the CCBatchNode.

Finally, there is a setting for the idle timer for the Viking, currently set to 3
seconds (as noted by 3.0f). If Ole is idle for 3 seconds, the Viking will perform a

Chapter 3 Introduction to Cocos2D Animations and Actions72

breathing action to entice the player to keep going. The tags are just unique integer
values you can assign to any CCNode and use the values to retrieve a reference to the
CCNode from their parent class.

Common Protocols File
Protocols in Objective-C are similar to interfaces in other languages such as Java.
To put it simply, protocols allow you to specify the methods that a class will respond
to, without knowing how those methods are implemented. Think of protocols as a
contract stating that the class adhering to the protocol will respond to the methods
defined in that protocol.

In Space Viking the EnemyRobot class has to ask the GameplayLayer to create a
phaserBullet when the robot is attacking Ole the Viking. It does not make sense
for EnemyRobot to just import GameplayLayer because of all of the other classes
that GameplayLayer itself imports. By creating a GameplayLayer delegate protocol,
the EnemyRobot class can access just the method it needs in GameplayLayer. To
EnemyRobot, GameplayLayer only has the three methods shown in the Gameplay-
LayerDelegate protocol in Listing 3.4.

To create the CommonProtocols.h file:

1. In Xcode, select the Constants group.

2. Select File > New File (z-N, or right-click on the Constants folder and select
New File from the contextual menu), and then select C and C++ category and
the Header File option.

3. Enter CommonProtocols.h for the filename, and click Finish.

4. Select the CommonProtocols.h file and enter the text shown in Listing 3.4.

Listing 3.4 CommonProtocols.h header file

// CommonProtocols.h

// SpaceViking

typedef enum {

 kDirectionLeft,

 kDirectionRight

} PhaserDirection;

typedef enum {

 kStateSpawning,

 kStateIdle,

 kStateCrouching,

 kStateStandingUp,

 kStateWalking,

 kStateAttacking,

 kStateJumping,

 kStateBreathing,

Organization, Constants, and Common Protocols 73

 kStateTakingDamage,

 kStateDead,

 kStateTraveling,

 kStateRotating,

 kStateDrilling,

 kStateAfterJumping

} CharacterStates; // 1

typedef enum {

 kObjectTypeNone,

 kPowerUpTypeHealth,

 kPowerUpTypeMallet,

 kEnemyTypeRadarDish,

 kEnemyTypeSpaceCargoShip,

 kEnemyTypeAlienRobot,

 kEnemyTypePhaser,

 kVikingType,

 kSkullType,

 kRockType,

 kMeteorType,

 kFrozenVikingType,

 kIceType,

 kLongBlockType,

 kCartType,

 kSpikesType,

 kDiggerType,

 kGroundType

} GameObjectType;

@protocol GameplayLayerDelegate

-(void)createObjectOfType:(GameObjectType)objectType

 withHealth:(int)initialHealth

 atLocation:(CGPoint)spawnLocation

 withZValue:(int)ZValue;

-(void)createPhaserWithDirection:(PhaserDirection)phaserDirection

 andPosition:(CGPoint)spawnPosition;

@end

The typedef enum lines simply ask the compiler to create a special variable
type that can have only the values defined for that particular type, as shown in List-
ing 3.4. Instead of keeping a numeric value for each possible state for the characters
in Space Viking and trying to remember that a value of 1 represents idle and 4 repre-
sents walking, you can just reference meaningful identifiers such as kStateIdle or
kStateWalking. It makes the code in Space Viking much more readable and easier to
understand.

Chapter 3 Introduction to Cocos2D Animations and Actions74

The GameplayLayerDelegate protocol defines two methods that the characters
in Space Viking will use. In particular, the SpaceCargoShip and the EnemyRobot
use these methods to have the GameplayLayer create the power-ups and the phaser
bullets. The SpaceCargoShip does not have to know anything further about the
GameplayLayer, only that it responds to these two methods. Using protocols can
hide the complexity of the implementation and allow your game code to be more
modular and reusable. If you want to later replace the GameplayLayer with another
class, all you need to do is ensure that the new class adheres to the GameplayLayer-
Delegate protocol.

With these two header files out of the way, it is time to create the GameObject
and GameCharacter classes.

The GameObject and GameCharacter Classes
The GameObject and GameCharacter classes are the foundations of the in-game
elements in Space Viking. The Viking, RadarDish, and EnemyRobot classes all
inherit functionality from GameObject and GameCharacter. These base classes can
serve as a model that you can use when building your own games. The GameObject
class contains the functionality need to read the property list files you created earlier
in this chapter, allowing all of the Space Viking objects to set up their animations based
on these files.

Creating the GameObject
The GameObject class is the starting point for all of the objects in Space Viking. The
GameObject class inherits from the CCSprite class, allowing it the ability to run
actions and know how to render its texture. The GameObject class adds some specific
methods and instance variables used by your Space Viking game.

Follow these steps to create the GameObject header and implementation files:

1. In Xcode, select the GameObjects group and right-click.

2. From the contextual menu, select New File, and choose the Cocoa Touch cat-
egory under iOS and Objective-C class as the file type, and click Next.

3. For the Subclass field, enter CCSprite and click Next.

4. Enter GameObject for the filename and click Save.

Open the GameObject.h header file and change the contents to match the code in
Listing 3.5.

Listing 3.5 GameObject.h header file

// GameObject.h

// SpaceViking

//

The GameObject and GameCharacter Classes 75

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "Constants.h"

#import "CommonProtocols.h"

@interface GameObject : CCSprite {

BOOL isActive;

BOOL reactsToScreenBoundaries;

CGSize screenSize;

GameObjectType gameObjectType;

}

@property (readwrite) BOOL isActive;

@property (readwrite) BOOL reactsToScreenBoundaries;

@property (readwrite) CGSize screenSize;

@property (readwrite) GameObjectType gameObjectType;

-(void)changeState:(CharacterStates)newState;

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects;

-(CGRect)adjustedBoundingBox;

-(CCAnimation*)loadPlistForAnimationWithName:(NSString*)animationName
andClassName:(NSString*)className;

@end

Take a close look at the @interface declaration line. The GameObject :
CCSprite code is what sets up the GameObject class as a subclass of CCSprite. All
of the methods available to the CCSprite are now part of GameObject. You can see
defined in Listing 3.5 some of the instance variables you will use in Space Viking that
are not part of the base CCSprite class. In addition to the instance variables, there are
the changeState, updateStateWithDeltaTime, adjustedBoundingBox, and
loadPlistForAnimationWithName methods. To see what these methods do, open
the GameObject.m implementation file and replace the content with the code shown
in Listings 3.6 and 3.7.

Listing 3.6 GameObject.m implementation file (part 1 of 2)

// GameObject.m

// SpaceViking

//

#import "GameObject.h"

@implementation GameObject

@synthesize reactsToScreenBoundaries;

@synthesize screenSize;

@synthesize isActive;

@synthesize gameObjectType;

Chapter 3 Introduction to Cocos2D Animations and Actions76

-(id) init {

if((self=[super init])){

CCLOG(@"GameObject init");

screenSize = [CCDirector sharedDirector].winSize;

isActive = TRUE;

gameObjectType = kObjectTypeNone;

 }

return self;

}

-(void)changeState:(CharacterStates)newState {

CCLOG(@"GameObject->changeState method should be overridden");

}

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

 CCLOG(@"updateStateWithDeltaTime method should be overridden");

}

-(CGRect)adjustedBoundingBox {

 CCLOG(@"GameObect adjustedBoundingBox should be overridden");

return [self boundingBox];

}

The first part of GameObject.m in Listing 3.6 has the init method that sets up the
default values for the instance variables and calls the superclass initializer; in this case,
CCSprite. Looking at these three methods, you can see that updateStateWith-
DeltaTime and adjustedBoundingBox are stubs and do nothing more than call
CCLOG to warn that they should be overridden. This is because you will not be using
the GameObject class directly; instead, you will use it as the base for the other object
classes in Space Viking. This means that the Viking, SpaceCargoShip, and other
classes should have methods with the same name, essentially overriding these three
default methods.

The updateStateWithDeltaTime method is what the GameplayLayer class
calls to update game objects on every frame. This method also contains the AI for
the objects and is where the objects perform the actions that define their individual
behavior.

The changeState method is used by the objects to transition from one state to
another. The state change often triggers custom animations that represent each state.

Finally, the adjustedBoundingBox method does exactly what the name implies.
In your game objects, this method adjusts the default sprite’s bounding box to com-
pensate for the transparent space. Figure 3.6 shows the transparent space around
the Viking sprite with a padding of 26 pixels behind and 66 pixels in front of the
Viking. If you were to just take the default CCSprite boundingBox, it would

The GameObject and GameCharacter Classes 77

include these transparent pixels, and your collision detection would be inaccurate.
Objects in your game would come into contact before the meaningful/nontranparent
part of the graphics ever touched.

Figure 3.6 Transparent space around the Viking sprite/image

A Word on Bounding Boxes
The bounding boxes in Cocos2D are actually what are referred to as axis-aligned bound-
ing boxes, or AABB for short. This is simply a box around your sprite texture (your image),
with the axis of the box lined up with the axis of the coordinate system being used. The
bounding box is really useful in determining when two or more objects are overlapping or
colliding, without having to resort to a physics engine.

In Listing 3.7 you can see the loadPlistForAnimationWithName method, which
is responsible for setting up the animations based on the data stored in the plist files.
This method is declared and implemented in GameObject, but it is actually called
and used by the individual classes such as the RadarDish and Viking. This method is
passed the animation name as well as the class name. The class name is used to find the
plist file, since the files are named after the classes they belong to, such as RadarDish.
plist for the RadarDish class. Each plist file dictionary may contain several mini-
dictionaries for each animation, and the animation name is used to extract the specific
dictionary for the animation name passed in. Add the contents of Listing 3.7 below the
code you just entered in GameObject.m.

Listing 3.7 GameObject.m implementation file (part 2 of 2)

-(CCAnimation*)loadPlistForAnimationWithName:(NSString*)animationName
andClassName:(NSString*)className {

CCAnimation *animationToReturn = nil;

NSString *fullFileName =

 [NSString stringWithFormat:@"%@.plist",className];

NSString *plistPath;

// 1: Get the Path to the plist file

NSString *rootPath =

 [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

Chapter 3 Introduction to Cocos2D Animations and Actions78

 NSUserDomainMask, YES) objectAtIndex:0];

 plistPath = [rootPath stringByAppendingPathComponent:fullFileName];

if (![[NSFileManager defaultManager] fileExistsAtPath:plistPath]) {

 plistPath = [[NSBundle mainBundle]

pathForResource:className ofType:@"plist"];

 }

// 2: Read in the plist file

NSDictionary *plistDictionary =

 [NSDictionary dictionaryWithContentsOfFile:plistPath];

// 3: If the plistDictionary was null, the file was not found.

if (plistDictionary == nil) {

CCLOG(@"Error reading plist: %@.plist", className);

return nil; // No Plist Dictionary or file found

 }

// 4: Get just the mini-dictionary for this animation

NSDictionary *animationSettings =

 [plistDictionary objectForKey:animationName];

if (animationSettings == nil) {

CCLOG(@"Could not locate AnimationWithName:%@",animationName);

return nil;

 }

// 5: Get the delay value for the animation

float animationDelay =

 [[animationSettings objectForKey:@"delay"] floatValue];

 animationToReturn = [CCAnimation animation];

 [animationToReturn setDelay:animationDelay];

// 6: Add the frames to the animation

NSString *animationFramePrefix =

 [animationSettings objectForKey:@"filenamePrefix"];

NSString *animationFrames =

 [animationSettings objectForKey:@"animationFrames"];

NSArray *animationFrameNumbers =

 [animationFrames componentsSeparatedByString:@","];

for (NSString *frameNumber in animationFrameNumbers) {

NSString *frameName =

 [NSString stringWithFormat:@"%@%@.png",

 animationFramePrefix,frameNumber];

 [animationToReturn addFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:frameName]];

 }

The GameObject and GameCharacter Classes 79

return animationToReturn;

}

@end

Now let’s examine the sections in Listing 3.7, as noted by the numbered comment
lines in the code:

n Sections 1 and 2 are from the standard Apple templates on reading property list
files:
n Section 1 tries to get the actual file system path to the property list file. This

is where the className that was passed into the method is used to try to
determine the path from the application bundle.

n Section 2 uses built-in methods to read and parse the property list file,
returning a dictionary with the entire contents of the plist file. This is an
NSDictionary containing all of the animation mini-dictionaries in this
single file.

n Section 3 is just a quick check to make sure the NSDictionary was not empty.
n Section 4 is where the mini-dictionary for the particular animation passed in

as animationName is extracted. The mini-dictionary (named animation-
Settings in the code) contains the filename prefix, delay, and list of animation
frames. After extracting the animationSettings dictionary, a quick check is
made to ensure it is not empty.

n In Section 5, the delay value is retrieved from animationSettings, and the
CCAnimation object is created with the delay. Since the delay is often frac-
tions of a second, this is stored as a f loat value. You can have the delay in the
CCAnimate action as you learned, or as part of the CCAnimation object itself.

n Section 6 is where all of the animation frames are loaded into the animation.
The first step is to get the prefix for the filename for each of the frames. (For
example, the RadarDish animations use the radar_ prefix.) The next step is
to break apart the string of frame numbers into an NSArray of just the number
themselves. A convenient NSString method called componentsSeparated-
ByString allows you to split up the string into comma-separated values in one
line of code. The for loop iterates through the NSArray of frame numbers and
adds the CCSpriteFrame to the animation. Each frame number becomes a call
to add a CCSpriteFrame where the name consists of the prefix, the frame num-
ber, and .png. Finally, the newly created and loaded animation is returned.

The key point to understand about the code in Listing 3.7 is that by using the
loadPlistForAnimationWithName method, you can load the animation settings for
all of the game objects in Space Viking. If you look closely at section 7, you will see the
key names filenamePrefix and animationFrames, which you set up in the plist
files at the beginning of this chapter. Make sure your GameObject.m implementation
file contains the code from both Listings 3.6 and 3.7.

Chapter 3 Introduction to Cocos2D Animations and Actions80

At the end of each section in this chapter, it is good practice for you to build the
project and ensure you have not introduced any typos or errors. Use c-B or select
Build from the Product menu to build the project.

Creating the GameCharacter Class
In Space Viking, power-ups and the SpaceCargoShip inherit directly from
GameObject, as their behavior is very simple. The other objects in Space Viking
inherit from the GameCharacter class, providing these objects with a state machine
brain. The GameCharacter class provides instance variables for holding the current
state as well as the character’s health. The class also provides a handy method to ensure
that all of the game elements remain within the boundaries of the screen. To create
the GameCharacter header and implementation files:

1. In Xcode, right-click on the GameObjects group.

2. Select New File, and choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

3. For the Subclass field, enter GameObject and click Next.

4. Enter GameCharacter for the filename and click Finish.

Open the GameCharacter.h header file and change the contents to match the code in
Listing 3.8.

Listing 3.8 GameCharacter.h header file

// GameCharacter.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "GameObject.h"

@interface GameCharacter : GameObject {

int characterHealth;

 CharacterStates characterState;

}

-(void)checkAndClampSpritePosition;

-(int)getWeaponDamage;

@property (readwrite) int characterHealth;

@property (readwrite) CharacterStates characterState;

@end

In Listing 3.8, you can see that two new instance variables and methods are added
to all objects inheriting from GameCharacter. Open the GameCharacter.m imple-
mentation file and replace the template code with the contents of Listing 3.9.

The GameObject and GameCharacter Classes 81

Listing 3.9 GameCharacter.m implementation file

// GameCharacter.m

// SpaceViking

#import "GameCharacter.h"

@implementation GameCharacter

@synthesize characterHealth;

@synthesize characterState;

-(void) dealloc {

 [super dealloc];

}

-(int)getWeaponDamage {

 // Default to zero damage

 CCLOG(@"getWeaponDamage should be overridden");

return 0;

}

-(void)checkAndClampSpritePosition {

CGPoint currentSpritePosition = [self position];

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 // Clamp for the iPad

if (currentSpritePosition.x < 30.0f) {

 [self setPosition:ccp(30.0f, currentSpritePosition.y)];

 } else if (currentSpritePosition.x > 1000.0f) {

 [self setPosition:ccp(1000.0f, currentSpritePosition.y)];

 }

 } else {

 // Clamp for iPhone, iPhone 4, or iPod touch

if (currentSpritePosition.x < 24.0f) {

 [self setPosition:ccp(24.0f, currentSpritePosition.y)];

 } else if (currentSpritePosition.x > 456.0f) {

 [self setPosition:ccp(456.0f, currentSpritePosition.y)];

 }

 }

}

@end

The getWeaponDamage method provides a quick method to determine how much
damage to inf lict when an enemy or the Viking attacks. In the Viking this value
will change if Ole is using his fists or the Mallet.

The checkAndClampSpritePosition is used to ensure that an object stays
in the confines of the screen. It checks the current object’s position and repositions

Chapter 3 Introduction to Cocos2D Animations and Actions82

the object if it is too far to the left or right of the screen. This is useful for keeping
Ole the Viking and his enemies onscreen at all times. By having this method in the
GameCharacter class, you can avoid typing redundant code in each of your game
character classes.

Tip on Points Versus Pixels
Remember that Cocos2D uses a point system to help position objects on the
normal iPhone display (480 × 320 pixels) and the retina display (960 × 640 pix-
els). In the nonretina display a point equals a pixel, but in the retina display a
point equals two pixels. When you set Ole’s position to 24 points, on an iPhone
3G or 3GS it equates to exactly 24 pixels from the left side. On an iPhone 4 with
the retina display it is 48 pixels from the left side. In both cases, to the player
Ole will look like he is in the exact same position onscreen. You can read more
about the points system in Cocos2D at www.cocos2d-iphone.org/wiki/doku.php/
prog_guide:how_to_develop_retinadisplay_games_in_cocos2d.

Once more, hit c-B or select Build from the Product menu to make sure your code
is free of typos and errors. Having created the GameObject and the GameCharacter
classes, in the next chapter you will dive in a little deeper and get into the first enemy
Ole the Viking will encounter.

Summary
In this chapter you learned about Cocos2D animations, the CCAnimationCache, and
the game design that you will use for Space Viking. Although you cannot see tangible
results yet, it was necessary to set up the groundwork in order to add enemies and
more to the game. When you are ready, f lip over to Chapter 4 and learn how to add
the menacing RadarDish enemy to SpaceViking.

Challenges
1. Think about your own game: How would you design the classes and hierarchy

of your objects?

2. How would you modify the method loadPlistForAnimationWithName
inside of GameObject so that the CCAnimations are added to the
CCAnimationCache?

Hint
If you are stumped, look at the commented-out solution inside the source code for this
chapter.

www.cocos2d-iphone.org/wiki/doku.php/prog_guide:how_to_develop_retinadisplay_games_in_cocos2d
www.cocos2d-iphone.org/wiki/doku.php/prog_guide:how_to_develop_retinadisplay_games_in_cocos2d

4
Simple Collision Detection and

the First Enemy

In the previous chapter you learned the basics of Cocos2D animations and actions. You also
started building a f lexible framework for Space Viking. In this chapter you go further and create
the first enemy for Ole to do battle with. In the process you learn how to implement a simple sys-
tem for collision detection and the artificial intelligence brain of the enemies in Space Viking.

There is a significant amount of code necessary in this chapter to drive the behavior of Ole and
the RadarDish. Take your time understanding how these classes work, as they are the foundation
and models for the rest of the classes in Space Viking.

Ready to defeat the aliens?

Creating the Radar Dish and Viking Classes
From just a CCSprite to a fully animated character, Ole the Viking takes the plunge
from simple to advanced from here on out. In this section you create the RadarDish
and Viking classes to encapsulate the logic needed by each, including all of the ani-
mations. The RadarDish class is worth a close look, as all of the enemy characters in
Space Viking are modeled after it.

Creating the RadarDish Class
In this first scene, there is a suspicious radar dish on the right side of the screen. It
scans for foreign creatures such as Ole. Ole needs to find a way to destroy the radar
dish before it alerts the enemy robots of his presence. Fortunately, Ole knows two
ways to deal with such problems: his left and right fists. Create the new RadarDish
class in Xcode by following these steps:

1. In Xcode, right-click on the EnemyObjects group.

2. Select New File, choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

Chapter 4 Simple Collision Detection and the First Enemy84

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter RadarDish for the filename and click Finish.

Open the RadarDish.h header file and change the contents to match the code in
Listing 4.1.

Listing 4.1 RadarDish.h header file

// RadarDish.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

@interface RadarDish : GameCharacter {

CCAnimation *tiltingAnim;

CCAnimation *transmittingAnim;

CCAnimation *takingAHitAnim;

CCAnimation *blowingUpAnim;

GameCharacter *vikingCharacter;

}

@property (nonatomic, retain) CCAnimation *tiltingAnim;

@property (nonatomic, retain) CCAnimation *transmittingAnim;

@property (nonatomic, retain) CCAnimation *takingAHitAnim;

@property (nonatomic, retain) CCAnimation *blowingUpAnim;

@end

Looking at Listing 4.1 you can see that the RadarDish class inherits from the
GameCharacter class and that it defines four CCAnimation instance variables. There
is also an instance variable to hold a pointer back to the Viking character.

Why the vikingCharacter Variable Is of Type GameCharacter and Not of Type
Viking Class
If you look carefully at Listing 4.1, you will notice that the vikingCharacter
instance variable is of type GameCharacter and not of type Viking. This is
because the RadarDish class needs access only to the methods defined in
GameCharacter and not to the full Viking class.

Having an instance variable of type GameCharacter here allows for the
RadarDish class to not have to know anything further about the Viking object
except that it is a GameCharacter. You are free to add features to the Viking
class without fear that it will break any functionality in RadarDish. If you were to
change the main character in a future version of Space Viking, the code would still

Creating the Radar Dish and Viking Classes 85

function fine, since that new main character class too would, presumably, be derived
from the GameCharacter class.

Listings 4.2, 4.3, and 4.4 show the contents of the RadarDish.m implementation file.
The changeState and updateStateWithDelta time methods are crucial to under-
stand, as they are the most basic versions of what you will find in all of the characters
in Space Viking. While reading this code, keep in mind that the RadarDish is a simple
enemy that never moves or attacks the Viking. The RadarDish does take damage
from the Viking, eventually blowing up by moving to a dead state. Listing 4.2 covers
the top portion of the RadarDish.m implementation file, including the changeState
method. Open the RadarDish.m implementation file and replace the code so that it
matches the contents in Listings 4.2, 4.3, and 4.4.

Listing 4.2 RadarDish.m implementation file (top portion)

// RadarDish.m

// SpaceViking

#import "RadarDish.h"

@implementation RadarDish

@synthesize tiltingAnim;

@synthesize transmittingAnim;

@synthesize takingAHitAnim;

@synthesize blowingUpAnim;

- (void) dealloc{

 [tiltingAnim release];

 [transmittingAnim release];

 [takingAHitAnim release];

 [blowingUpAnim release];

 [super dealloc];

}

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

 [self setCharacterState:newState];

switch (newState) {

case kStateSpawning:

CCLOG(@"RadarDish->Starting the Spawning Animation");

 action = [CCAnimate actionWithAnimation:tiltingAnim

restoreOriginalFrame:NO];

break;

Chapter 4 Simple Collision Detection and the First Enemy86

case kStateIdle:

CCLOG(@"RadarDish->Changing State to Idle");

 action = [CCAnimate actionWithAnimation:transmittingAnim

restoreOriginalFrame:NO];

break;

case kStateTakingDamage:

CCLOG(@"RadarDish->Changing State to TakingDamage");

characterHealth =

characterHealth - [vikingCharacter getWeaponDamage];

if (characterHealth <= 0.0f) {

 [self changeState:kStateDead];

 } else {

 action = [CCAnimate actionWithAnimation:takingAHitAnim

restoreOriginalFrame:NO];

 }

break;

case kStateDead:

CCLOG(@"RadarDish->Changing State to Dead");

 action = [CCAnimate actionWithAnimation:blowingUpAnim

restoreOriginalFrame:NO];

break;

default:

CCLOG(@"Unhandled state %d in RadarDish", newState);

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

The changeState method is called when the RadarDish needs to transition
between states. In the beginning of this chapter you were introduced to state
machines, and the changeState method is what allows for transitions to different
states in the miniscule “brain” of the RadarDish. The RadarDish brain can exist in
one of four states: spawning, idle, taking damage, or dead. In the listings that follow,
you will see that the RadarDish is initialized in the spawning state when it is created,
and then through the updateStateWithDeltaTime method it will move through
the four states.

When the updateStateWithDeltaTime determines that the RadarDish needs to
change its state, the changeState method is called. Looking at Listing 4.2, you can
recap what the switch state is doing as follows:

Creating the Radar Dish and Viking Classes 87

n Spawning (kStateSpawning)

Starts up the RadarDish with the tilting animation, which is the dish moving
up and down.

n Idle (kStateIdle)

Runs the transmitting animation, which is the RadarDish blinking.
n Taking Damage (kStateTakingDamage)

Runs the taking damage animation, showing a hit to the RadarDish. The
RadarDish health is reduced according to the type of weapon being used
against it.

n Dead (kStateDead)

The RadarDish plays a death animation of it blowing up. This state occurs once
the RadarDish health is at or below zero.

The next section of the RadarDish implementation file is covered in Listing 4.3,
showing the updateStateWithDeltaTime method.

Listing 4.3 RadarDish.m implementation file (middle portion)

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

if (characterState == kStateDead)

return; // 1

 vikingCharacter =

 (GameCharacter*)[[self parent]

 getChildByTag:kVikingSpriteTagValue]; // 2

 CGRect vikingBoudingBox =

 [vikingCharacter adjustedBoundingBox]; // 3

 CharacterStates vikingState = [vikingCharacter

 characterState]; // 4

// Calculate if the Viking is attacking and nearby

if ((vikingState == kStateAttacking) &&

 (CGRectIntersectsRect([self adjustedBoundingBox],
vikingBoudingBox))) { // 5

if (characterState != kStateTakingDamage) {

// If RadarDish is NOT already taking Damage

 [self changeState:kStateTakingDamage];

return;

 }

 }

Chapter 4 Simple Collision Detection and the First Enemy88

if (([self numberOfRunningActions] == 0) &&

 (characterState != kStateDead)) {

 CCLOG(@"Going to Idle");

 [self changeState:kStateIdle]; // 6

return;

 }

}

Now let’s examine the numbered lines of the code:

1. Checks if the RadarDish is already dead. If it is, this method is short-circuited
and returned. If the RadarDish is dead, there is nothing to update.

2. Gets the Viking character object from the RadarDish parent. All of Space
Viking’s objects are children of the scene SpriteBatchNode, referred to here
as the parent. The Viking in particular was added to the SpriteBatchNode
with a particular tag, referred to by the constant kVikingSpriteTagValue.
By obtaining a reference to the Viking object, the RadarDish can determine
if the Viking is nearby and attacking the RadarDish. (Listing 4.3 contains the
code that sets up the kVikingSpriteTagValue constant.)

3. Gets the Viking character’s adjusted bounding box.

4. Gets the Viking character’s state.

5. Determines if the Viking is nearby and attacking. If the adjusted bounding
boxes for the Viking and the RadarDish overlap, and the Viking is in his
attack phase, the RadarDish can be certain that the Viking is attacking it. The
call to changeState:kStateTakingDamage will alter the RadarDish anima-
tion to ref lect the attack and reduce the RadarDish character’s health.

6. Resets the transmission animation on the RadarDish. If the RadarDish is not
currently playing an animation, and it is not dead, it is reset to idle so that the
transmission animation can restart.

The last part of the RadarDish.m implementation file is the longest but least com-
plicated. There is an initAnimations method, which sets up all of the RadarDish
animations, and an init method that initializes the RadarDish and sets up the
starting values for the instance variables. Add the contents of Listing 4.4 to your
RadarDish.m implementation file.

Listing 4.4 RadarDish.m implementation file (bottom portion)

-(void)initAnimations {

 [self setTiltingAnim:

 [self loadPlistForAnimationWithName:@"tiltingAnim"

andClassName:NSStringFromClass([self class])]];

Creating the Radar Dish and Viking Classes 89

 [self setTransmittingAnim:

 [self loadPlistForAnimationWithName:@"transmittingAnim"

andClassName:NSStringFromClass([self class])]];

 [self setTakingAHitAnim:

 [self loadPlistForAnimationWithName:@"takingAHitAnim"

andClassName:NSStringFromClass([self class])]];

 [self setBlowingUpAnim:

 [self loadPlistForAnimationWithName:@"blowingUpAnim"

 andClassName:NSStringFromClass([self class])]];

}

-(id) init {

if((self=[super init])) {

CCLOG(@"### RadarDish initialized");

 [self initAnimations]; // 1

 characterHealth = 100.0f; // 2

 gameObjectType = kEnemyTypeRadarDish; // 3

 [self changeState:kStateSpawning]; // 4

 }

return self;

}

@end

The initAnimations method calls the loadPlistForAnimationWithName
method you declared in the GameObject class. The name of the animation to load
is passed along with the class name. Note the convenience method NSStringFrom-
Class is used to get an NSString from the class name, in this case RadarDish. The
class name is used to find the correct plist file for the object, since the plist files have a
name corresponding to the class. The following occurs in the init method:

1. Calls the initAnimations method, which sets up all of the animations for
the RadarDish. The frame’s coordinates and textures were already loaded and
cached by Cocos2D when the texture atlas files (scene1atlas.png and scene1atlas.
plist) were loaded by the GameplayLayer class.

2. Sets the initial health of the RadarDish to a value of 100.

3. Sets the RadarDish to be a Game Object of type kEnemyTypeRadarDish.

4. Initializes the state of the RadarDish to spawning. Looking back at Listing 4.2,
you can see that this starts the tilting animation, which is followed by the trans-
mitting animation when the RadarDish moves from spawning to an idle state.

There is a little more work left before you can have this chapter’s game running
on your device. You need to add the Viking class and make some changes to the
GameplayLayer class. It is important to understand how the updateStateWith-
DeltaTime and the changeState methods in RadarDish control the state of the

Chapter 4 Simple Collision Detection and the First Enemy90

AI brain. These same two methods are used to drive the brain of all of the other game
characters, including Ole the Viking.

Creating the Viking Class
In the previous chapter, Ole the Viking was nothing more than a CCSprite. In this
chapter you pull him out into his own class complete with animations and a state
machine to transition him through his various states. If the Viking class code starts to
look daunting, refer back to the RadarDish class: the Viking is simply a game charac-
ter like the RadarDish, albeit with more functionality. Create the new Viking class
in Xcode by:

1. In Xcode, right-click on the GameObjects group.

2. Select Add > New File, choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter Viking for the filename and click Save.

Open the Viking.h header file and change the contents to match the code in
Listing 4.5.

Listing 4.5 Viking.h header file

// Viking.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

#import "SneakyButton.h"

#import "SneakyJoystick.h"

typedef enum {

 kLeftHook,

 kRightHook

} LastPunchType;

@interface Viking : GameCharacter {

LastPunchType myLastPunch;

BOOL isCarryingMallet;

CCSpriteFrame *standingFrame;

 // Standing, breathing, and walking

CCAnimation *breathingAnim;

CCAnimation *breathingMalletAnim;

CCAnimation *walkingAnim;

CCAnimation *walkingMalletAnim;

Creating the Viking Class 91

 // Crouching, standing up, and Jumping

CCAnimation *crouchingAnim;

CCAnimation *crouchingMalletAnim;

CCAnimation *standingUpAnim;

CCAnimation *standingUpMalletAnim;

CCAnimation *jumpingAnim;

CCAnimation *jumpingMalletAnim;

CCAnimation *afterJumpingAnim;

CCAnimation *afterJumpingMalletAnim;

 // Punching

CCAnimation *rightPunchAnim;

CCAnimation *leftPunchAnim;

CCAnimation *malletPunchAnim;

 // Taking Damage and Death

CCAnimation *phaserShockAnim;

CCAnimation *deathAnim;

SneakyJoystick *joystick;

SneakyButton *jumpButton ;

SneakyButton *attackButton;

float millisecondsStayingIdle;

}

// Standing, Breathing, Walking

@property (nonatomic, retain) CCAnimation *breathingAnim;

@property (nonatomic, retain) CCAnimation *breathingMalletAnim;

@property (nonatomic, retain) CCAnimation *walkingAnim;

@property (nonatomic, retain) CCAnimation *walkingMalletAnim;

// Crouching, Standing Up, Jumping

@property (nonatomic, retain) CCAnimation *crouchingAnim;

@property (nonatomic, retain) CCAnimation *crouchingMalletAnim;

@property (nonatomic, retain) CCAnimation *standingUpAnim;

@property (nonatomic, retain) CCAnimation *standingUpMalletAnim;

@property (nonatomic, retain) CCAnimation *jumpingAnim;

@property (nonatomic, retain) CCAnimation *jumpingMalletAnim;

@property (nonatomic, retain) CCAnimation *afterJumpingAnim;

@property (nonatomic, retain) CCAnimation *afterJumpingMalletAnim;

// Punching

@property (nonatomic, retain) CCAnimation *rightPunchAnim;

@property (nonatomic, retain) CCAnimation *leftPunchAnim;

@property (nonatomic, retain) CCAnimation *malletPunchAnim;

Chapter 4 Simple Collision Detection and the First Enemy92

// Taking Damage and Death

@property (nonatomic, retain) CCAnimation *phaserShockAnim;

@property (nonatomic, retain) CCAnimation *deathAnim;

@property (nonatomic,assign) SneakyJoystick *joystick;

@property (nonatomic,assign) SneakyButton *jumpButton;

@property (nonatomic,assign) SneakyButton *attackButton;

@end

Listing 4.5 shows the large number of animations that are possible with the Viking
character as well as instance variables to point to the onscreen joystick and button
controls.

The key items to note are the typedef enumerator for the left and right
punches, an instance variable to store what the last punch thrown was, and a float
to keep track of how long the player has been idle. The code for the Viking imple-
mentation file is a bit on the lengthy side, hence it is broken up into four Listings, 4.6
through 4.9. Open the Viking.m implementation file and replace the code so that it
matches the contents in Listings 4.6, 4.7, 4.8, and 4.9.

Listing 4.6 Viking.m implementation file (part 1 of 4)

// Viking.m

// SpaceViking

#import "Viking.h"

@implementation Viking

@synthesize joystick;

@synthesize jumpButton ;

@synthesize attackButton;

// Standing, Breathing, Walking

@synthesize breathingAnim;

@synthesize breathingMalletAnim;

@synthesize walkingAnim;

@synthesize walkingMalletAnim;

// Crouching, Standing Up, Jumping

@synthesize crouchingAnim;

@synthesize crouchingMalletAnim;

@synthesize standingUpAnim;

@synthesize standingUpMalletAnim;

@synthesize jumpingAnim;

@synthesize jumpingMalletAnim;

@synthesize afterJumpingAnim;

@synthesize afterJumpingMalletAnim;

// Punching

@synthesize rightPunchAnim;

Creating the Viking Class 93

@synthesize leftPunchAnim;

@synthesize malletPunchAnim;

// Taking Damage and Death

@synthesize phaserShockAnim;

@synthesize deathAnim;

- (void) dealloc {

joystick = nil;

jumpButton = nil;

attackButton = nil;

 [breathingAnim release];

 [breathingMalletAnim release];

 [walkingAnim release];

 [walkingMalletAnim release];

 [crouchingAnim release];

 [crouchingMalletAnim release];

 [standingUpAnim release];

 [standingUpMalletAnim release];

 [jumpingAnim release];

 [jumpingMalletAnim release];

 [afterJumpingAnim release];

 [afterJumpingMalletAnim release];

 [rightPunchAnim release];

 [leftPunchAnim release];

 [malletPunchAnim release];

 [phaserShockAnim release];

 [deathAnim release];

 [super dealloc];

}

-(BOOL)isCarryingWeapon {

return isCarryingMallet;

}

-(int)getWeaponDamage {

if (isCarryingMallet) {

return kVikingMalletDamage;

 }

return kVikingFistDamage;

}

-(void)applyJoystick:(SneakyJoystick *)aJoystick forTimeDelta:(float)
deltaTime

{

 CGPoint scaledVelocity = ccpMult(aJoystick.velocity, 128.0f);

 CGPoint oldPosition = [self position];

 CGPoint newPosition =

Chapter 4 Simple Collision Detection and the First Enemy94

 ccp(oldPosition.x +

 scaledVelocity.x * deltaTime,

 oldPosition.y); // 1

 [self setPosition:newPosition]; // 2

if (oldPosition.x > newPosition.x) {

self.flipX = YES; // 3

 } else {

self.flipX = NO;

 }

}

-(void)checkAndClampSpritePosition {

if (self.characterState != kStateJumping) {

if ([self position].y > 110.0f)

 [self setPosition:ccp([self position].x,110.0f)];

 }

 [super checkAndClampSpritePosition];

}

At the beginning of the Viking.m implementation file is the dealloc method. Far
wiser Objective-C developers than this author have commented on the benefits of
having your dealloc method up top and near your synthesize statements. The idea
behind this move is to make sure you are deallocating any and all instance variables,
therefore avoiding one of the main causes of memory leaks in Objective-C code.

Following the dealloc method, you have the isCarryingWeapon method, but
since it is self-explanatory, move on to the applyJoystick method. This method is
similar to the one back in Chapter 2, “Hello, Space Viking,” Listing 2.10, but it has
been modified to deal only with Ole’s movement and removes the handling for the
jump or attack buttons. The first change to applyJoystick is the creation of the
oldPosition variable to track the Viking’s position before it is moved. Looking at
the applyJoystick method in Listing 4.6, take a note of the following key lines:

1. Sets the new position based on the velocity of the joystick, but only in the
x-axis. The y position stays constant, making it so Ole only walks to the left or
right, and not up or down.

2. Moves the Viking to the new position.

3. Compares the old position with the new position, f lipping the Viking horizon-
tally if needed. If you look closely at the Viking images, he is facing to the right
by default. If this method determines that the old position is to the right of the
new position, Ole is moving to the left, and his pixels have to be f lipped hori-
zontally. If you don’t f lip Ole horizontally, he will look like he is trying to do
the moonwalk when you move him to the left. It is a cool effect but not useful
for your Viking.

Creating the Viking Class 95

Cocos2D has two built-in functions you will make use of frequently: flipX and
flipY. These functions f lip the pixels of a texture along the x- or y-axis, allowing
you to display a mirror image of your graphics without having to have left- and right-
facing copies of each image for each character. Figure 4.1 shows the effect of flipX
on the Viking texture. This is a really handy feature to have, since it helps reduce the
size of your application, and it keeps you from having to create images for every pos-
sible state.

Figure 4.1 Effects of the flipX function on the Viking texture or graphic

The next section of the Viking.m implementation file covers the changeState
method. As you learned with the RadarDish class, the changeState method is used
to transition the character from one state to another and to start the appropriate ani-
mations for each state. Copy the contents of Listing 4.7 into your Viking.m class.

Listing 4.7 Viking.m implementation file (part 2 of 4)

#pragma mark -

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

id movementAction = nil;

 CGPoint newPosition;

 [self setCharacterState:newState];

switch (newState) {

case kStateIdle:

if (isCarryingMallet) {

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_mallet_1.png"]];

 } else {

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_1.png"]];

 }

break;

Chapter 4 Simple Collision Detection and the First Enemy96

case kStateWalking:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:walkingMalletAnim

restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:walkingAnim

restoreOriginalFrame:NO];

 }

break;

case kStateCrouching:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:crouchingMalletAnim

 restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:crouchingAnim

restoreOriginalFrame:NO];

 }

break;

case kStateStandingUp:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:standingUpMalletAnim

restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:standingUpAnim

restoreOriginalFrame:NO];

 }

break;

case kStateBreathing:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:breathingMalletAnim

restoreOriginalFrame:YES];

 } else {

 action =

 [CCAnimate actionWithAnimation:breathingAnim

restoreOriginalFrame:YES];

 }

break;

Creating the Viking Class 97

 case kStateJumping:

newPosition = ccp(screenSize.width * 0.2f, 0.0f);

if ([self flipX] == YES) {

 newPosition = ccp(newPosition.x * -1.0f, 0.0f);

 }

 movementAction = [CCJumpBy actionWithDuration:0.5f

position:newPosition

 height:160.0f

 jumps:1];

if (isCarryingMallet) {

// Viking Jumping animation with the Mallet

 action = [CCSequence actions:

 [CCAnimate

actionWithAnimation:crouchingMalletAnim

restoreOriginalFrame:NO],

 [CCSpawn actions:

 [CCAnimate

actionWithAnimation:jumpingMalletAnim

restoreOriginalFrame:YES],

 movementAction,

nil],

 [CCAnimate

actionWithAnimation:afterJumpingMalletAnim

 restoreOriginalFrame:NO],

nil];

 } else {

// Viking Jumping animation without the Mallet

 action = [CCSequence actions:

 [CCAnimate

actionWithAnimation:crouchingAnim

restoreOriginalFrame:NO],

 [CCSpawn actions:

 [CCAnimate

actionWithAnimation:jumpingAnim

restoreOriginalFrame:YES],

 movementAction,

nil],

 [CCAnimate

actionWithAnimation:afterJumpingAnim

restoreOriginalFrame:NO],

nil];

 }

break;

case kStateAttacking:

if (isCarryingMallet == YES) {

Chapter 4 Simple Collision Detection and the First Enemy98

 action = [CCAnimate

actionWithAnimation:malletPunchAnim

restoreOriginalFrame:YES];

 } else {

if (kLeftHook == myLastPunch) {

// Execute a right hook

myLastPunch = kRightHook;

 action = [CCAnimate

actionWithAnimation:rightPunchAnim

restoreOriginalFrame:NO];

 } else {

// Execute a left hook

myLastPunch = kLeftHook;

 action = [CCAnimate

actionWithAnimation:leftPunchAnim

restoreOriginalFrame:NO];

 }

 }

break;

case kStateTakingDamage:

self.characterHealth = self.characterHealth - 10.0f;

 action = [CCAnimate

actionWithAnimation:phaserShockAnim

restoreOriginalFrame:YES];

break;

case kStateDead:

 action = [CCAnimate

actionWithAnimation:deathAnim

restoreOriginalFrame:NO];

break;

default:

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

The first part of the changeState method stops any running actions, including
animations. Any running actions would be a part of a previous state of the Viking
and would no longer be valid. Following the first line, the Viking state is set to the
new state value, and a switch statement is used to carry out the animations for the
new state. A few items are important to note:

Creating the Viking Class 99

1. Method variables cannot be declared inside a switch statement, as they would
be out of scope as soon as the code exited the switch statement. Your id
action variable is declared above the switch statement but initialized inside
the switch branches.

2. Most of the states have two animations: one for the Viking with the Mallet
and one without. The isCarryingMallet Boolean instance variable is key in
determining which animation to play.

3. An action in Cocos2D can be made up of other actions in that it can be a com-
pound action. The switch branch taken when the Viking state is kState-
Jumping has a compound action made up of CCSequence, CCAnimate,
CCSpawn, and CCJumpBy actions. The CCJumpBy action provides the parabolic
movement for Ole the Viking, while the CCAnimate actions play the crouching,
jumping, and landing animations. The CCSpawn action allows for more than one
action to be started at the same time, in this case the CCJumpBy and CCAnimate
animation action of Ole jumping. The CCSequence action ties it all together by
making Ole crouch down, then jump, and finally land on his feet in sequence.

4. Taking a closer look at the kStateTakingDamage switch branch, you can see
that after the animation completes, Ole reverts back to the frame that was display-
ing before the animation started. In this state transition, the CCAnimate action
has the restoreOriginalFrame set to YES. The end effect of restore-
OriginalFrame is that Ole will animate receiving a hit, and then return to
looking as he did before the hit took place.

The first line of Listing 4.7 might be rather odd-looking: #pragma mark. The
pragma mark serves as a formatting guide to Xcode and is not seen by the compiler.
After the words #pragma mark you can place any text you would like displayed in
the Xcode pulldown for this file. If you have just a hyphen (-), Xcode will create a
separate section for that portion of the file. Using pragma mark can make your code
easier to navigate. Figure 4.2 shows the effects of the pragma mark statements in the
completed Viking.m file.

Figure 4.2 The effect of the pragma mark statements in the Xcode
pulldown menus

Chapter 4 Simple Collision Detection and the First Enemy100

The next section of the Viking.m file covers the updateStateWithDeltaTime
and the adjustedBoundingBox methods. Copy the contents of Listing 4.8 into your
Viking.m file immediately following the changeState method.

Listing 4.8 Viking.m implementation file (part 3 of 4)

#pragma mark -

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

if (self.characterState == kStateDead)

return; // Nothing to do if the Viking is dead

if ((self.characterState == kStateTakingDamage) &&

 ([self numberOfRunningActions] > 0))

return; // Currently playing the taking damage animation

// Check for collisions

// Change this to keep the object count from querying it each time

CGRect myBoundingBox = [self adjustedBoundingBox];

for (GameCharacter *character in listOfGameObjects) {

// This is Ole the Viking himself

 // No need to check collision with one's self

if ([character tag] == kVikingSpriteTagValue)

continue;

CGRect characterBox = [character adjustedBoundingBox];

if (CGRectIntersectsRect(myBoundingBox, characterBox)) {

// Remove the PhaserBullet from the scene

if ([character gameObjectType] == kEnemyTypePhaser) {

 [self changeState:kStateTakingDamage];

 [character changeState:kStateDead];

 } else if ([character gameObjectType] ==

kPowerUpTypeMallet) {

// Update the frame to indicate Viking is

 // carrying the mallet

isCarryingMallet = YES;

 [self changeState:kStateIdle];

// Remove the Mallet from the scene

 [character changeState:kStateDead];

 } else if ([character gameObjectType] ==

kPowerUpTypeHealth) {

 [self setCharacterHealth:100.0f];

// Remove the health power-up from the scene

 [character changeState:kStateDead];

 }

 }

 }

Creating the Viking Class 101

 [self checkAndClampSpritePosition];

if ((self.characterState == kStateIdle) ||

 (self.characterState == kStateWalking) ||

 (self.characterState == kStateCrouching) ||

 (self.characterState == kStateStandingUp) ||

 (self.characterState == kStateBreathing)) {

if (jumpButton.active) {

 [self changeState:kStateJumping];

 } else if (attackButton.active) {

 [self changeState:kStateAttacking];

 } else if ((joystick.velocity.x == 0.0f) &&

 (joystick.velocity.y == 0.0f)) {

if (self.characterState == kStateCrouching)

 [self changeState:kStateStandingUp];

 } else if (joystick.velocity.y < -0.45f) {

if (self.characterState != kStateCrouching)

 [self changeState:kStateCrouching];

 } else if (joystick.velocity.x != 0.0f) { // dpad moving

if (self.characterState != kStateWalking)

 [self changeState:kStateWalking];

 [self applyJoystick:joystick

forTimeDelta:deltaTime];

 }

 }

if ([self numberOfRunningActions] == 0) {

// Not playing an animation

if (self.characterHealth <= 0.0f) {

 [self changeState:kStateDead];

 } else if (self.characterState == kStateIdle) {

millisecondsStayingIdle = millisecondsStayingIdle +

 deltaTime;

if (millisecondsStayingIdle > kVikingIdleTimer) {

 [self changeState:kStateBreathing];

 }

 } else if ((self.characterState != kStateCrouching) &&

 (self.characterState != kStateIdle)){

millisecondsStayingIdle = 0.0f;

 [self changeState:kStateIdle];

 }

 }

}

#pragma mark -

-(CGRect)adjustedBoundingBox {

// Adjust the bouding box to the size of the sprite

// without the transparent space

Chapter 4 Simple Collision Detection and the First Enemy102

CGRect vikingBoundingBox = [self boundingBox];

float xOffset;

float xCropAmount = vikingBoundingBox.size.width * 0.5482f;

float yCropAmount = vikingBoundingBox.size.height * 0.095f;

if ([self flipX] == NO) {

// Viking is facing to the rigth, back is on the left

 xOffset = vikingBoundingBox.size.width * 0.1566f;

 } else {

// Viking is facing to the left; back is facing right

 xOffset = vikingBoundingBox.size.width * 0.4217f;

 }

 vikingBoundingBox =

CGRectMake(vikingBoundingBox.origin.x + xOffset,

 vikingBoundingBox.origin.y,

 vikingBoundingBox.size.width - xCropAmount,

 vikingBoundingBox.size.height - yCropAmount);

if (characterState == kStateCrouching) {

// Shrink the bounding box to 56% of height

// 88 pixels on top on iPad

 vikingBoundingBox = CGRectMake(vikingBoundingBox.origin.x,

 vikingBoundingBox.origin.y,

 vikingBoundingBox.size.width,

 vikingBoundingBox.size.height * 0.56f);

 }

return vikingBoundingBox;

}

In the same manner as the RadarDish updateStateWithDeltaMethod worked,
this method also returns immediately if the Viking is dead. There is no need to
update a dead Viking because he won’t be going anywhere.

If the Viking is in the middle of playing, the taking damage animation is played.
This method again short-circuits and returns. The taking damage animation is block-
ing in that the player cannot do anything else while Ole the Viking is being shocked.

If the Viking is not taking damage or is dead, then the next step is to check what
objects are coming in contact with the Viking. If there are objects in contact with the
Viking, he checks to see if they are:

n Phaser: Changes the Viking state to taking damage.
n Mallet power-up: Gives Ole the Viking the mallet, a fearsome weapon.
n Health power-up: Ole’s health is restored back to 100.

After checking for contacts, often called collisions, a quick call is made to the
checkAndClampSpritePosition method to ensure that the Viking sprite stays
within the boundaries of the screen.

Creating the Viking Class 103

The next if statement block checks the state of the joystick, jump, and attack but-
tons and changes the state of the Viking to ref lect which controls are being pressed.
The if statement executes only if the Viking is not currently carrying out a blocking
animation, such as jumping.

Lastly the Viking class reaches a section of the updateStateWithDeltaTime
method that handles what happens when there are no animations currently running.
Cocos2D has a convenience method on CCNodes that reports back the number of
actions running against a particular CCNode object. If you recall from the beginning
of this chapter, all animations have to be run by a CCAnimate action. Once the ani-
mation for a state completes, the numberOfRunningActions will return zero for the
Viking, and this block of code will reset the Viking’s state.

If the health is zero or less, the Viking will move into the dead state. Otherwise, if
Viking is idle, a counter is incremented indicating how many seconds the player has
been idle. Once that counter reaches a set limit, the Viking will play a heavy breath-
ing animation. Finally, if the Viking is not already idle or crouching, he will move
back into the idle state.

Note
The breathing animation is just a little bonus move to try to get the player to focus back
on the game. If the joystick has been idle for more than 3 seconds, the Viking will let
out a few deep breaths as if to say “Come on! I have aliens to fight here, let’s get going!”

After the updateStateWithDeltaTime method, there is the adjustedBounding-
Box method you declared inside the GameObject class. In Chapter 3, “Introduction
to Cocos2D Animations and Actions,” Figure 3.6 illustrated the transparent space in
the Viking texture between the actual Viking and the edges of the image/texture.
This method compensates for the transparent pixels by returning an adjusted bound-
ing box that does not include the transparent pixels. The flipX parameter is used to
determine which side the Viking is facing, as fewer pixels are trimmed off the back of
the Viking image than the front.

The last part of the Viking.m implementation file sets up the animations inside the
initAnimations method and the instance variables inside the init method. Once
more, copy the contents of Listing 4.9 into your Viking.m implementation file immedi-
ately following the end of the adjustedBoundingBox method.

Listing 4.9 Viking.m implementation file (part 4 of 4)

#pragma mark -

-(void)initAnimations {

 [self setBreathingAnim:[self loadPlistForAnimationWithName:
@"breathingAnim" andClassName:NSStringFromClass([self class])]];

 [self setBreathingMalletAnim:[self loadPlistForAnimationWithName:
@"breathingMalletAnim" andClassName:NSStringFromClass([self class])]];

Chapter 4 Simple Collision Detection and the First Enemy104

 [self setWalkingAnim:[self loadPlistForAnimationWithName:
@"walkingAnim" andClassName:NSStringFromClass([self class])]];

 [self setWalkingMalletAnim:[self loadPlistForAnimationWithName:
@"walkingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setCrouchingAnim:[self loadPlistForAnimationWithName:
@"crouchingAnim" andClassName:NSStringFromClass([self class])]];

 [self setCrouchingMalletAnim:[self loadPlistForAnimationWithName:
@"crouchingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setStandingUpAnim:[self loadPlistForAnimationWithName:
@"standingUpAnim" andClassName:NSStringFromClass([self class])]];

 [self setStandingUpMalletAnim:[self loadPlistForAnimationWithName:
@"standingUpMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setJumpingAnim:[self loadPlistForAnimationWithName:
@"jumpingAnim" andClassName:NSStringFromClass([self class])]];

 [self setJumpingMalletAnim:[self loadPlistForAnimationWithName:
@"jumpingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setAfterJumpingAnim:[self loadPlistForAnimationWithName:
@"afterJumpingAnim" andClassName:NSStringFromClass([self class])]];

 [self setAfterJumpingMalletAnim:[self loadPlistForAnimationWithName:
@"afterJumpingMalletAnim" andClassName:NSStringFromClass([self class])]];

// Punches

 [self setRightPunchAnim:[self loadPlistForAnimationWithName:
@"rightPunchAnim" andClassName:NSStringFromClass([self class])]];

 [self setLeftPunchAnim:[self loadPlistForAnimationWithName:
@"leftPunchAnim" andClassName:NSStringFromClass([self class])]];

 [self setMalletPunchAnim:[self loadPlistForAnimationWithName:
@"malletPunchAnim" andClassName:NSStringFromClass([self class])]];

// Taking Damage and Death

 [self setPhaserShockAnim:[self loadPlistForAnimationWithName:
@"phaserShockAnim" andClassName:NSStringFromClass([self class])]];

 [self setDeathAnim:[self loadPlistForAnimationWithName:
@"vikingDeathAnim" andClassName:NSStringFromClass([self class])]];

}

Final Steps 105

#pragma mark -

-(id) init {

if((self=[super init])) {

joystick = nil;

jumpButton = nil;

attackButton = nil;

 self.gameObjectType = kVikingType;

myLastPunch = kRightHook;

millisecondsStayingIdle = 0.0f;

isCarryingMallet = NO;

 [self initAnimations];

 }

return self;

}

@end

The initAnimation method, while quite long, is very basic in that it only initial-
izes all of the Viking animations based on the display frames already loaded from the
scene1atlas.plist file in the GameplayLayer class. The init method sets up the instance
variables to their starting values.

Final Steps
The final step for this chapter is to make some changes to the GameplayLayer class
so it loads the RadarDish and Viking onto the layer. Once these changes are made
to the GameplayLayer files, you will have a working and playable version of Space
Viking in your hands.

The GameplayLayer Class
The GameplayLayer class has a few changes to the header file. There is an additional
import for the CommonProtocols.h file and the vikingSprite has been removed;
instead there is a CCSpriteBatchNode called sceneSpriteBatchNode. Move your
GameplayLayer.h and GameplayLayer.m files into the Layers Group folder in Xcode and
ensure that your GameplayLayer.h header file has the same contents as Listing 4.10.

Listing 4.10 GameplayLayer.h header file

// GameplayLayer.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "SneakyJoystick.h"

Chapter 4 Simple Collision Detection and the First Enemy106

#import "SneakyButton.h"

#import "SneakyButtonSkinnedBase.h"

#import "SneakyJoystickSkinnedBase.h"

#import "Constants.h"

#import "CommonProtocols.h"

#import "RadarDish.h"

#import "Viking.h"

@interface GameplayLayer : CCLayer <GameplayLayerDelegate> {

CCSprite *vikingSprite;

SneakyJoystick *leftJoystick;

SneakyButton *jumpButton;

SneakyButton *attackButton;

 CCSpriteBatchNode *sceneSpriteBatchNode;

}

@end

The initJoystickAndButtons method of GameplayLayer stays the same as
in Chapter 3. The rest of the GameplayLayer class requires changes to use the new
CCSpriteBatchNode instance. Listings 4.11, 4.12, 4.13, and 4.14 cover the code for
GameplayLayer.m. Replace the code in your GameplayLayer.m implementation file with
the code in the next four listings.

Listing 4.11 GameplayLayer.m implementation file (part 1 of 4)

// GameplayLayer.m

// SpaceViking

#import "GameplayLayer.h"

@implementation GameplayLayer

- (void) dealloc {

 [leftJoystick release];

 [jumpButton release];

 [attackButton release];

 [super dealloc];

}

-(void)initJoystickAndButtons {

CGSize screenSize = [CCDirector sharedDirector].winSize; // 1

 // 2

CGRect joystickBaseDimensions = CGRectMake(0, 0, 128.0f, 128.0f);

CGRect jumpButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

CGRect attackButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

 // 3

CGPoint joystickBasePosition;

Final Steps 107

CGPoint jumpButtonPosition;

CGPoint attackButtonPosition;

 // 4

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 // The device is an iPad running iPhone 3.2 or later.

CCLOG(@"Positioning Joystick and Buttons for iPad");

 joystickBasePosition = ccp(screenSize.width*0.0625f,

 screenSize.height*0.052f);

 jumpButtonPosition = ccp(screenSize.width*0.946f,

 screenSize.height*0.052f);

 attackButtonPosition = ccp(screenSize.width*0.947f,

 screenSize.height*0.169f);

 } else {

 // The device is an iPhone or iPod touch.

CCLOG(@"Positioning Joystick and Buttons for iPhone");

 joystickBasePosition = ccp(screenSize.width*0.07f,

 screenSize.height*0.11f);

 jumpButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.11f);

 attackButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.35f);

 }

SneakyJoystickSkinnedBase *joystickBase =

 [[[SneakyJoystickSkinnedBase alloc] init] autorelease];

 joystickBase.position = joystickBasePosition;

 joystickBase.backgroundSprite =

 [CCSprite spriteWithFile:@"dpadDown.png"];

 joystickBase.thumbSprite =

 [CCSprite spriteWithFile:@"joystickDown.png"];

 joystickBase.joystick = [[SneakyJoystick alloc]

initWithRect:joystickBaseDimensions];

leftJoystick = [joystickBase.joystick retain];

 [self addChild:joystickBase];

SneakyButtonSkinnedBase *jumpButtonBase =

 [[[SneakyButtonSkinnedBase alloc] init] autorelease];

 jumpButtonBase.position = jumpButtonPosition;

 jumpButtonBase.defaultSprite =

 [CCSprite spriteWithFile:@"jumpUp.png"];

 jumpButtonBase.activatedSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

Chapter 4 Simple Collision Detection and the First Enemy108

 jumpButtonBase.pressSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

 jumpButtonBase.button = [[SneakyButton alloc]

initWithRect:jumpButtonDimensions];

jumpButton = [jumpButtonBase.button retain];

jumpButton.isToggleable = NO;

 [self addChild:jumpButtonBase];

SneakyButtonSkinnedBase *attackButtonBase = [[[SneakyButtonSkinnedBase
alloc] init] autorelease];

 attackButtonBase.position = attackButtonPosition;

 attackButtonBase.defaultSprite = [CCSprite spriteWithFile:
@"handUp.png"];

 attackButtonBase.activatedSprite = [CCSprite
spriteWithFile:@"handDown.png"];

 attackButtonBase.pressSprite = [CCSprite spriteWithFile:
@"handDown.png"];

 attackButtonBase.button = [[SneakyButton alloc] initWithRect:
attackButtonDimensions];

attackButton = [attackButtonBase.button retain];

attackButton.isToggleable = NO;

 [self addChild:attackButtonBase];

}

The initJoystick method remains unchanged from previous chapters. The
directional pad (DPad) as well as the jump and attack buttons are set up and added to
the GameplayLayer. The high z values ensure that the joystick controls appear on
top of all the other graphical elements in the GameplayLayer.

Listing 4.12 GameplayLayer.m implementation file (part 2 of 4)

#pragma mark –

#pragma mark Update Method

-(void) update:(ccTime)deltaTime {

CCArray *listOfGameObjects =

 [sceneSpriteBatchNode children]; // 1

for (GameCharacter *tempChar in listOfGameObjects) { // 2

 [tempChar updateStateWithDeltaTime:deltaTime andListOfGameObjects:
 listOfGameObjects]; // 3

 }

}

The update method is the run loop for the entire GameplayLayer. The
CCSpriteBatchNode object contains a list of all of the CCSprites for which it will
handle the rendering, batching their OpenGL ES draw calls. The update method
does the following:

Final Steps 109

1. Gets the list of all of the children CCSprites rendered by the CCSpriteBatch-
Node. In Space Viking this is a list of all of the GameCharacters, including the
Viking and his enemies.

2. Iterates through each of the Game Characters, calls their updateStateWith-
DeltaTime method, and passes a pointer to the list of all Game Characters. If
you look back at the updateStateWithDeltaTime code in Viking.m, you can
see the list of Game Characters used to check for power-ups and phaser blasts.
Power-ups and aliens with phaser beams are covered in the next chapter.

3. Calls the updateStateWithDeltaTime method on each of the Game
Characters. This call allows for all of the characters to update their individual
states to determine if they are colliding with any other objects in the game.

The next section of code in GameplayLayer.m (Listing 4.13) contains the methods
for creating the enemies and a placeholder for creating the phaser blast.

Listing 4.13 GameplayLayer.m implementation file (part 3 of 4)

#pragma mark -

-(void)createObjectOfType:(GameObjectType)objectType

 withHealth:(int)initialHealth

 atLocation:(CGPoint)spawnLocation

 withZValue:(int)ZValue {

if (objectType == kEnemyTypeRadarDish) {

CCLOG(@"Creating the Radar Enemy");

RadarDish *radarDish = [[RadarDish alloc] initWithSpriteFrameName:
@"radar_1.png"];

 [radarDish setCharacterHealth:initialHealth];

 [radarDish setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:radarDish

z:ZValue

tag:kRadarDishTagValue];

 [radarDish release];

 }

}

-(void)createPhaserWithDirection:(PhaserDirection)phaserDirection
andPosition:(CGPoint)spawnPosition {

CCLOG(@"Placeholder for Chapter 5, see below");

return;

}

The createObjectOfType method sets up the RadarDish object using the
CCSpriteBatchNode and adds it to the layer. This method is expanded upon in

Chapter 4 Simple Collision Detection and the First Enemy110

Chapter 5, “More Actions, Effects, and Cocos2D Scheduler,” to include the other
enemies in the Space Viking world.

The last code listing for GameplayLayer.m covers the init method. Copy the con-
tents of Listing 4.14 into your GameplayLayer.m file.

Listing 4.14 GameplayLayer.m implementation file (part 4 of 4)

-(id)init {

self = [super init];

if (self != nil) {

CGSize screenSize = [CCDirector sharedDirector].winSize;

// enable touches

self.isTouchEnabled = YES;

srandom(time(NULL)); // Seeds the random number generator

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

addSpriteFramesWithFile:@"scene1atlas.plist"]; // 1

sceneSpriteBatchNode =

 [CCSpriteBatchNode batchNodeWithFile:@"scene1atlas.png"]; // 2

 } else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene1atlasiPhone.plist"]; // 1

 sceneSpriteBatchNode =

 [CCSpriteBatchNode

batchNodeWithFile:@"scene1atlasiPhone.png"]; // 2

 }

 [self addChild:sceneSpriteBatchNode z:0]; // 3

 [self initJoystickAndButtons]; // 4

Viking *viking = [[Viking alloc]

initWithSpriteFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_1.png"]]; // 5

 [viking setJoystick:leftJoystick];

 [viking setJumpButton:jumpButton];

 [viking setAttackButton:attackButton];

 [viking setPosition:ccp(screenSize.width * 0.35f,

 screenSize.height * 0.14f)];

 [viking setCharacterHealth:100];

 [sceneSpriteBatchNode

addChild:viking

 z:kVikingSpriteZValue

tag:kVikingSpriteTagValue]; // 6

Final Steps 111

 [self createObjectOfType:kEnemyTypeRadarDish

withHealth:100

 atLocation:ccp(screenSize.width * 0.878f,

 screenSize.height * 0.13f)

withZValue:10]; // 7

 [self scheduleUpdate]; // 8

 }

return self;

}

@end

Some key lines have been added since Chapter 2; they support the use of the
CCSpriteBatchNode class and texture atlas:

1. Adds all of the frame dimensions specified in scene1atlas.plist to the Cocos2D
Sprite Frame Cache. This will allow any CCSprite to be created by referencing
one of the frames/images in the texture atlas. This line is also key in loading up
the animations, since they reference spriteFrames loaded by the CCSprite-
FrameCache here.

2. Initializes the CCSpriteBatchNode with the texture atlas image. The image
scene1atlas.png becomes the master texture used by all of the CCSprites under
the CCSpriteBatchNode. In Space Viking these are all of the GameObjects in
the game, from the Viking to the Mallet power-up and the enemies.

3. Adds the CCSpriteBatchNode to the layer so it and all of its children (the
GameObjects) are rendered onscreen.

4. Initializes the Joystick DPad and buttons.

5. Creates the Viking character using the already cached sprite frame of the
Viking standing.

6. Adds the Viking to the CCSpriteBatchNode. The CCSpriteBatchNode
does all of the rendering for the GameObjects. Therefore, the objects have
to be added to the CCSpriteBatchNode and not to the layer. It is important
to remember that the objects drawn from the texture atlas are added to the
CCSpriteBatchNode and only the CCSpriteBatchNode is added to the
CCLayer.

7. Adds the RadarDish to the CCSpriteBatchNode. The RadarDish health is
set to 100 and the location as 87% of the screen width to the right (900 pixels
from the left of the screen on the iPad) and 13% of the screen height (100 pixels
from the bottom).

The percentages are used instead of hard point values so that the same game will
work on the iPhone, iPhone 4, and iPad. Although the screen width and height

Chapter 4 Simple Collision Detection and the First Enemy112

ratios between the iPhones and iPad are a little different, they are close enough
to work for the placement of objects in Space Viking.

8. Sets up a scheduler call that will fire the update method in GameplayLayer.m on
every frame.

Now that you have added code to handle the RadarDish, the Viking, and the
texture atlas, it is time to test out Space Viking. If you select Run from Xcode, you
should see the Space Viking game in the iPad Simulator, as shown in Figure 4.3.

Figure 4.3 Space Viking with the RadarDish in place

Summary
If you made it through, great work—you’ve gotten a simple Cocos2D game working,
and you’ve learned a lot in the process! You learned about texture atlases, actions, and
animations. You utilized the texture atlas you created in the previous chapter to ren-
der all of the GameObjects in Space Viking. You created the enemy RadarDish and
gave Ole the power to go over there and destroy it to bits. In the process you learned
how to implement a simple state machine brain (AI) for the RadarDish and for the
Viking. You have also set up the groundwork for Space Viking to have multiple ene-
mies onscreen at once, each with its own AI state machines. The CCArray of objects
you pass in GameplayLayer to each character on the updateStateWithDeltaTime

Challenges 113

call will allow for the enemy objects to send messages to each other and even coordi-
nate attacks against the Viking.

Since you just wrote so much code, you might want to take a few moments
to examine the code in more detail and make sure you understand how it all fits
together. It’s important to make sure you understand how things work so far, since
you’ll be building more on top of what you’ve built here in the rest of the chapters.

In the next chapter, you will dive deeper into Cocos2D actions, learn to use some
of the built-in effects, and add more enemies to Space Viking. When you are ready,
turn the page and learn how to add a mean alien robot that shoots phaser beams.

Challenges
1. Try changing the RadarDish animation delay on the takingAHitAnim to

1.0f seconds instead of 0.2f in the RadarDish.plist file. What happens when you
click Run and Ole attacks the RadarDish?

2. How would you add another instance of the RadarDish on the left side of the
screen facing in the opposite direction?

Hint
You can use the CCFlipX action to flip the RadarDish pixels horizontally.

3. How would you detect when the RadarDish object is destroyed and alert the
player that the level is complete?

Hint
You can extract the RadarDish object from the sceneSpriteBatchNode by using
the unique tag assigned to the RadarDish.

This page intentionally left blank

Part II
More Enemies and

More Fun

Learn how to create more complex enemies for Ole to battle and in the
process learn about Cocos2D actions and effects. Finish up with a live,
onscreen debugging system using Cocos2D text capabilities.

n Chapter 5: “More Actions, Effects, and Cocos2D Scheduler”

n Chapter 6: “Text, Fonts, and the Written Word”

This page intentionally left blank

5
More Actions, Effects, and

Cocos2D Scheduler

In Chapters 3 and 4 you created the foundation for the Space Viking game, added Ole the
Viking and a radar dish to the scene, and wired up all of the controls. In this chapter you will add
an enemy robot, the massive space cargo ship, and several power-ups to help Ole. You will learn
how to create a complex enemy that can chase after and attack the player. You will also learn
about the Cocos2D scheduler and how to use the Cocos2D built-in effects.

Terminology Review
Before you begin with Chapter 5, there are a few terms worth reviewing.

n Protocols in Objective-C
Protocols in Objective-C are a way to declare methods, which are implemented
by any class conforming to the protocol. Using protocols can help you have a
loose coupling between your classes, where they know as little about each
other as possible, allowing them to be interchanged more easily. If you are com-
ing from another language such as Java, protocols are similar to interfaces. In
SpaceViking the GameplayLayer adheres to the GameplayLayerDel-
egate protocol, which defines two methods. The EnemyRobot uses one of
these methods to create a PhaserBullet, and the SpaceCargoShip uses
the other method to create the power-ups. By using a protocol, the only thing
that the SpaceCargoShip and the EnemyRobot need to know about the
GameplayLayer is that it conforms to the protocol, and not all of the other
classes that GameplayLayer imports.

n Loose Coupling
Loose coupling is when two classes only know what public methods each other
respond to and not the internal details or actual instance of the classes. Two
classes that are loosely coupled can be replaced as long as the methods they
expect to call on each other exist in the new classes. In SpaceViking you
will use loose coupling between the EnemyRobot and the GameplayLayer.
If at a later point you were to replace the GameplayLayer class with another

Chapter 5 More Actions, Effects, and Cocos2D Scheduler118

CCLayer, you would just need to ensure that it too responds to the one method
required by the EnemyRobot, defined in the GameplayLayerDelegate
protocol.

n Delegates
Delegates are classes that carry out specific functionality on behalf of other
classes. In SpaceViking the GameplayLayer will act as a delegate for
the SpaceCargoShip and EnemyRobot. The GameplayLayer will cre-
ate power-ups and PhaserBullets on behalf of the SpaceCargoShip and
EnemyRobot classes.

Power-Ups
When Ole first appears in Space Viking, he is armed only with his fists. While he does
pack a powerful punch, Ole will still need the help of his trusty mallet to inf lict dam-
age more quickly on the enemy RadarDish and robot. As you might have guessed,
the mallet is a power-up. The power-ups are dropped from the SpaceCargoShip, but
before you can code the ship, you have to add the power-ups and their logic to your
Space Viking game. With the SpaceViking project opened in Xcode, you can start by
creating the Mallet and Health power-up classes.

Mallet Power-Up
It is good practice to continue the organization in your SpaceViking Xcode project that
you started in Chapter 4, “Simple Collision Detection and First Enemy.” You will
create the Mallet and Health classes inside of the PowerUps group you previously
created.

To create the Mallet class, first select the PowerUps group.

1. Right-click and select New File.

2. Select the Cocoa Touch category under iOS and the Objective-C class type
and click Next.

3. For the Subclass field, enter GameObject and click Next.

4. Enter Mallet.m for the filename and click Save.

After Xcode creates the header and implementation files for you, replace the con-
tents of the Mallet.h file with the code in Listing 5.1.

Listing 5.1 Mallet.h header file

// Mallet.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "GameObject.h"

Power-Ups 119

@interface Mallet : GameObject {

CCAnimation *malletAnim;

}

@property (nonatomic, retain) CCAnimation *malletAnim;

@end

The power-up objects in Space Viking are very simple, consisting of nothing more
than a simple animation. As you can see in Listing 5.1, the Mallet object inher-
its from GameObject and contains a single animation stored in the malletAnim
instance variable. The Mallet implementation is equally short: switch to the Mallet.m
implementation file and replace the contents with the code in Listing 5.2.

Listing 5.2 Mallet.m implementation file

// Mallet.m

// SpaceViking

//

#import "Mallet.h"

@implementation Mallet

@synthesize malletAnim;

- (void) dealloc {

 [malletAnim release];

 [super dealloc];

}

-(void)changeState:(CharacterStates)newState {

if (newState == kStateSpawning) {

id action = [CCRepeatForever actionWithAction:

 [CCAnimate actionWithAnimation:malletAnim
restoreOriginalFrame:NO]];

 [self runAction:action];

 } else {

 [self setVisible:NO]; // Picked up

 [self removeFromParentAndCleanup:YES];

 }

}

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

float groundHeight = screenSize.height * 0.065f;

if ([self position].y > groundHeight)

 [self setPosition:ccp([self position].x,

 [self position].y - 5.0f)];

}

Chapter 5 More Actions, Effects, and Cocos2D Scheduler120

-(void)initAnimations {

 [self setMalletAnim:

 [self loadPlistForAnimationWithName:@"malletAnim"

 andClassName:NSStringFromClass([self class])]];

}

-(id) init

{

if((self=[super init]))

 {

screenSize = [CCDirector sharedDirector].winSize;

gameObjectType = kPowerUpTypeMallet;

 [self initAnimations];

 [self changeState:kStateSpawning];

 }

return self;

}

@end

The Mallet is initialized by first calling initAnimations and then setting its
state to kStateSpawning. The initAnimations method loads the malletAnim
animation based on the animation frames listed in Mallet.plist. The changeState
method then sets up a CCRepeatForever animation of the mallet spinning around.

If look closely in the else block in the changeState method, you can see that
transitioning to any other state will cause the Mallet object to remove itself from
the game. The Viking character will use this to signal to the Mallet that it has been
picked up and that it should disappear.

Tip
If you have any animations you need to repeat, the CCRepeat and CCRepeatForever
actions are what you should use. It frees you from having to restart those animations
each time they finish.

The other power-up in this scene is the Health power-up. The next section covers
the steps needed to add it to Space Viking.

Health Power-Up
The Health power-up comes in the form of a sandwich, which Ole can consume,
restoring his health to 100%. It may seem odd to have a sandwich fall from a space
cargo ship on an alien planet, but hey, aliens have to eat, too. So go ahead and create a
new class to represent the Health power-up using the following steps:
In Xcode, right-click on the PowerUps folder and select New File.

1. Select the Cocoa Touch category under iOS and the Objective-C class type
and click Next.

2. For the Subclass field, enter GameObject and click Next.

Power-Ups 121

3. Enter Health.m for the filename and ensure that the “Also create Health.h”
checkbox is selected. Click Finish.

Replace the contents of the Health.h header file with the code in Listing 5.3.

Listing 5.3 Health.h header file

// Health.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "GameObject.h"

@interface Health : GameObject {

CCAnimation *healthAnim;

}

@property (nonatomic, retain) CCAnimation *healthAnim;

@end

Open the Health.m implementation file and replace the code with the contents of
Listing 5.4.

Listing 5.4 Health.m implementation file

// Health.m

// SpaceViking

//

#import "Health.h"

@implementation Health

@synthesize healthAnim;

-(void) dealloc {

 [healthAnim release];

 [super dealloc];

}

-(void)changeState:(CharacterStates)newState {

if (newState == kStateSpawning) {

id action = [CCRepeatForever actionWithAction:

 [CCAnimate actionWithAnimation:healthAnim

restoreOriginalFrame:NO]];

 [self runAction:action];

 } else {

 [self setVisible:NO];// Picked up

 [self removeFromParentAndCleanup:YES];

 }

}

Chapter 5 More Actions, Effects, and Cocos2D Scheduler122

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

float groundHeight = screenSize.height * 0.065f;

if ([self position].y > groundHeight)

 [self setPosition:ccp([self position].x,

 [self position].y - 5.0f)];

}

-(void)initAnimations {

 [self setHealthAnim:

 [self loadPlistForAnimationWithName:@"healthAnim"

 andClassName:NSStringFromClass([self class])]];

}

-(id) init

{

if((self=[super init]))

 {

screenSize = [CCDirector sharedDirector].winSize;

 [self initAnimations];

 [self changeState:kStateSpawning];

gameObjectType = kPowerUpTypeHealth;

 }

return self;

}

@end

The Health power-up is identical to the Mallet power-up except for the anima-
tion that is repeated while the power-up is onscreen. The gameObjectType is set in
the init method of both power-ups and is the variable the Viking will use to detect
and pick up the power-ups. Now that you have both power-ups created, you need to
add a way to get them in the game, which brings you to the SpaceCargoShip.

Space Cargo Ship
The SpaceCargoShip is a massive freight vehicle that travels to and from the alien
planet. The SpaceCargoShip travels back and forth on the screen, getting closer on
each pass. When it is closest to the Viking, it drops a power-up. The SpaceCargo-
Ship is an example of how you can add a background animation that interacts with
the game. To create the SpaceCargoShip:

1. In Xcode, right-click on the GameObjects folder and select New File.

2. Select the Cocoa Touch category under iOS and the Objective-C class type
and click Next.

3. For the Subclass field, enter GameObject and click Next.

4. Enter SpaceCargoShip.m for the filename and click Save.

Power-Ups 123

Replace the contents of the SpaceCargoShip.h header file with the code in
Listing 5.5.

Listing 5.5 SpaceCargoShip.h header file

// SpaceCargoShip.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "GameObject.h"

@interface SpaceCargoShip : GameObject {

BOOL hasDroppedMallet;

id <GameplayLayerDelegate> delegate;

}

@property (nonatomic,assign) id <GameplayLayerDelegate> delegate;

@end

The SpaceCargoShip does not contain any animations; instead it uses a set of
CCMoves and CCScale actions to achieve the motion effects. The SpaceCargoShip
has an instance variable to keep track if it has already dropped the Mallet and an
object reference back to the GameplayLayerDelegate. The delegate instance vari-
able is the link from the SpaceCargoShip back to the gameplayLayer, allowing the
ship to ask the GameplayLayer to create a power-up.

Having the SpaceCargoShip only know about the delegate frees it from having a tight
coupling with the GameplayLayer class. In fact, you could replace the Gameplay Layer
class with any other class that implements the GameplayLayerDelegate protocol.

The next step is to set up the SpaceCargoShip implementation file. Open the
SpaceCargoShip.m implementation file and replace the code with the contents of
Listing 5.6.

Listing 5.6 SpaceCargoShip.m implementation file

// SpaceCargoShip.m

// SpaceViking

//

#import "SpaceCargoShip.h"

@implementation SpaceCargoShip

@synthesize delegate;

-(void)dropCargo {

 CGPoint cargoDropPosition = ccp(screenSize.width/2,

 screenSize.height);

if (hasDroppedMallet == NO) {

CCLOG(@"SpaceCargoShip --> Mallet Powerup was created!");

Chapter 5 More Actions, Effects, and Cocos2D Scheduler124

hasDroppedMallet = YES;

 [delegate createObjectOfType:kPowerUpTypeMallet withHealth:0.0f

atLocation:cargoDropPosition withZValue:50];

 } else {

CCLOG(@"SpaceCargoShip --> Health Powerup was created!");

 [delegate createObjectOfType:kPowerUpTypeHealth withHealth:0.0f

atLocation:cargoDropPosition withZValue:50];

 }

}

-(id) init

{

if((self=[super init]))

 {

CCLOG(@"SpaceCargoShip init");

hasDroppedMallet = NO;

float shipHeight = screenSize.height * 0.71f;

CGPoint position1 = ccp(screenSize.width * -0.48f, shipHeight);

CGPoint position2 = ccp(screenSize.width * 2.0f, shipHeight);

CGPoint position3 = ccp(position2.x * -1.0f, shipHeight);

CGPoint offScreen = ccp(screenSize.width * -1.0f,

screenSize.height * -1.0f);

id action = [CCRepeatForever actionWithAction:

 [CCSequence actions:

 [CCDelayTime actionWithDuration:2.0f],

 [CCMoveTo actionWithDuration:0.01f

position:position1],

 [CCScaleTo actionWithDuration:0.01f scale:0.5f],

 [CCFlipX actionWithFlipX:YES],

 [CCMoveTo actionWithDuration:8.5f

position:position2],

 [CCScaleTo actionWithDuration:0.1f scale:1.0f],

 [CCFlipX actionWithFlipX:NO],

 [CCMoveTo actionWithDuration:7.5

position:position3],

 [CCScaleTo actionWithDuration:0.1f scale:2.0f],

 [CCFlipX actionWithFlipX:YES],

 [CCMoveTo actionWithDuration:6.5f

position:position2],

 [CCFlipX actionWithFlipX:NO],

 [CCScaleTo actionWithDuration:0.1f scale:2.0f],

 [CCMoveTo actionWithDuration:5.5

position:position3],

 [CCFlipX actionWithFlipX:YES],

 [CCScaleTo actionWithDuration:0.1f scale:4.0f],

 [CCMoveTo actionWithDuration:4.5f

position:position2],

Enemy Robot 125

 [CCCallFunc actionWithTarget:

self selector:@selector(dropCargo)],

 [CCMoveTo actionWithDuration:0.0f

position:offScreen],

nil]

];

 [self runAction:action];

 }

return self;

}

@end

The dropCargo method of the space cargo ship gets called when the ship is clos-
est to the viewer. This method checks to see if the Mallet has been dropped; if not,
it calls on the GameplayDelegate to drop the Mallet. If the Mallet has been
dropped, it asks for the Health power-up to be dropped. This one method call is
what sets in motion the code in GameplayLayer to create and add the power-ups to
the game.

The init method consists of a long chain of actions wrapped around a CCRepeat-
Forever. If you take a close look at the actions, you can see that there are CCMoveTo,
CCFlipX, and CCScaleTo actions wrapped inside a CCSequence action. The
CCSequence action is in turn wrapped inside a CCRepeatForever.

You can use this same setup for background animations in your games, where you
script the animations as a series of nested CCActions. To keep the ship from appear-
ing too often, a CCDelayAction is called on the beginning of the sequence, pausing
the action sequence before it starts, and on every repeat.

At this point you have added the power-ups and the SpaceCargoShip to drop
those power-ups on the screen. The next step is to create the EnemyRobot, and then
add the final bits of code to GameplayLayer and Viking so that Ole can fight off
the EnemyRobot.

Enemy Robot
The enemy robot is Ole’s main opponent in the first scene of Space Viking. While the
RadarDish will sit quietly in the corner, the enemy robot doesn’t mess around—he
pulls out a phaser and shoots to kill!

However, the enemy robot has a weak point. Modeled after the 1960s Ultraman
TV shows, the enemy robot is a humanoid with poor vision. Maybe Ole can figure a
way to sneak behind the robot and take him out?

Chapter 5 More Actions, Effects, and Cocos2D Scheduler126

Creating the Enemy Robot
The EnemyRobot is set up just like the RadarDish enemy you created in the previ-
ous chapter. It has all of the AI included in a single EnemyRobot class that inherits
from GameCharacter.

1. Right-click on the EnemyObjects folder and select New File.

2. Select the Cocoa Touch category under iOS and the Objective-C class type
and click Next.

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter EnemyRobot.m for the filename and click Save.

Open the EnemyRobot.h header file and replace the template code with the contents
for Listing 5.7.

Listing 5.7 EnemyRobot.h header file

// EnemyRobot.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

@interface EnemyRobot : GameCharacter {

CCAnimation *robotWalkingAnim;

CCAnimation *raisePhaserAnim;

CCAnimation *shootPhaserAnim;

CCAnimation *lowerPhaserAnim;

CCAnimation *torsoHitAnim;

CCAnimation *headHitAnim;

CCAnimation *robotDeathAnim;

BOOL isVikingWithinBoundingBox;

BOOL isVikingWithinSight;

GameCharacter *vikingCharacter;

id <GameplayLayerDelegate> delegate;

}

@property (nonatomic,assign) id <GameplayLayerDelegate> delegate;

@property (nonatomic, retain) CCAnimation *robotWalkingAnim;

@property (nonatomic, retain) CCAnimation *raisePhaserAnim;

@property (nonatomic, retain) CCAnimation *shootPhaserAnim;

@property (nonatomic, retain) CCAnimation *lowerPhaserAnim;

@property (nonatomic, retain) CCAnimation *torsoHitAnim;

Enemy Robot 127

@property (nonatomic, retain) CCAnimation *headHitAnim;

@property (nonatomic, retain) CCAnimation *robotDeathAnim;

-(void)initAnimations;

@end

The first part of Listing 5.7 is very similar to what you saw on RadarDish, as
the EnemyRobot class inherits from GameCharacter class and has a set of instance
variables for the animations. Toward the end of Listing 5.7 is the <GameplayLayer-
Delegate> instance variable of type id. In the previous chapter in Listing 4.2, you
created a CommonProtocols file that defined the GameplayLayerDelegate pro-
tocol. This protocol defines what methods a class conforming to the protocol can
be expected to implement. In the case of the EnemyRobot, the GameplayLayer-
Delegate is what will allow the EnemyRobot to ask the GameplayLayer to create a
PhaserBullet object. By using a protocol here, the EnemyRobot class does not have
to know any further details about the GameplayLayer, only that it responds to the
createPhaserWithDirection method.

The Space Viking game in this book is designed not only to provide a sample of a
full working game but also to give you the components you can reuse in your own
games. The idea is to not reinvent the wheel but rather spend your time on making
your games better. An issue that comes up frequently during game development is
how to alert the CCLayer or CCScene in a game that some event has occurred. For
instance, maybe the player has died and the game over animation needs to play. Space
Viking has two actions the CCLayer (GameplayLayer) must perform for the char-
acters: creating a phaser beam and dropping a power-up. Using protocols allows the
game objects to be loosely coupled with the CCLayer and therefore gives you the most
f lexibility when it comes to changing the CCLayer or game objects at a later date.
When you encounter the same condition in your games, refer back to this design and
chapter.

The EnemyRobot implementation file is lengthy, as the robot has a significant
amount of logic. The implementation details are split into the next four sections. So
be sure to include all of the code in Listings 5.8 through 5.11 in your EnemyRobot.m
implementation file.

Listing 5.8 EnemyRobot.m implementation file (part 1 of 4)

// EnemyRobot.m

// SpaceViking

//

#import "EnemyRobot.h"

@implementation EnemyRobot

@synthesize delegate;

@synthesize robotWalkingAnim;

@synthesize raisePhaserAnim;

@synthesize shootPhaserAnim;

Chapter 5 More Actions, Effects, and Cocos2D Scheduler128

@synthesize lowerPhaserAnim;

@synthesize torsoHitAnim;

@synthesize headHitAnim;

@synthesize robotDeathAnim;

-(void) dealloc {

delegate = nil;

 [robotWalkingAnim release];

 [raisePhaserAnim release];

 [shootPhaserAnim release];

 [lowerPhaserAnim release];

 [torsoHitAnim release];

 [headHitAnim release];

 [robotDeathAnim release];

 [super dealloc];

}

-(void)shootPhaser {

CGPoint phaserFiringPosition;

PhaserDirection phaserDir;

CGRect boundingBox = [self boundingBox];

CGPoint position = [self position];

float xPosition = position.x + boundingBox.size.width * 0.542f;

float yPosition = position.y + boundingBox.size.height * 0.25f;

if ([self flipX]) {

CCLOG(@"Facing right, Firing to the right");

 phaserDir = kDirectionRight;

 } else {

CCLOG(@"Facing left, Firing to the left");

 xPosition = xPosition * -1.0f; // Reverse direction

 phaserDir = kDirectionLeft;

 }

 phaserFiringPosition = ccp(xPosition, yPosition);

 [delegate createPhaserWithDirection:phaserDir

andPosition:phaserFiringPosition];

}

-(CGRect)eyesightBoundingBox {

 // Eyesight is 3 robot widths in the direction the robot is facing.

CGRect robotSightBoundingBox;

CGRect robotBoundingBox = [self adjustedBoundingBox];

if ([self flipX]) {

 robotSightBoundingBox = CGRectMake(robotBoundingBox.origin.x,

 robotBoundingBox.origin.y,

Enemy Robot 129

 robotBoundingBox.size.width*3.0f,

 robotBoundingBox.size.height);

 } else {

 robotSightBoundingBox =

CGRectMake(robotBoundingBox.origin.x -

 (robotBoundingBox.size.width*2.0f),

 robotBoundingBox.origin.y,

 robotBoundingBox.size.width*3.0f,

 robotBoundingBox.size.height);

 }

return robotSightBoundingBox;

}

The EnemyRobot implementation file starts with the @synthesize statement
for the delegate variable, which is the link to the gameplayLayer. The first method
immediately following it is the dealloc method, which takes care to set the delegate
to nil, releasing any references to it.

The shootPhaser method takes the current direction the EnemyRobot is fac-
ing and asks the delegate (the GameplayLayer) to create a phaser bullet moving in
that direction. The createPhaserWithDirection method was declared in the
Gameplay LayerDelegate protocol, and you will add the implementation details
later in this chapter.

Following the shootPhaser is the eyesightBoundingBox method, which cal-
culates how far the EnemyRobot can see. This method creates an eyesight box three
times the width of the enemy. This method is used by the EnemyRobot to figure out
if it can “see” the Viking and change state so that it can attack Ole. The EnemyRobot
uses bounding boxes to approximate the vision; later on you can see how to use ray
casting to simulate an enemy’s line of sight.

The next listing has the contents of the changeState method that is used by the
EnemyRobot to alternate states and animations. Copy the contents of Listing 5.9 into
the EnemyRobot.m implementation file below the eyesightBoundingBox method.

Listing 5.9 EnemyRobot.m implementation file (part 2 of 4)

-(void)changeState:(CharacterStates)newState {

if (characterState == kStateDead)

return; // No need to change state further once I am dead

 [self stopAllActions];

id action = nil;

characterState = newState;

switch (newState) {

case kStateSpawning:

 [self runAction:[CCFadeOut actionWithDuration:0.0f]];

Chapter 5 More Actions, Effects, and Cocos2D Scheduler130

// Fades out the sprite if it was visible before

 [self setDisplayFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"teleport.png"]];

 action = [CCSpawn actions:

 [CCRotateBy actionWithDuration:1.5f angle:360],

 [CCFadeIn actionWithDuration:1.5f],

nil];

break;

case kStateIdle:

CCLOG(@"EnemyRobot->Changing State to Idle");

 [self setDisplayFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"an1_anim1.png"]];

break;

case kStateWalking:

CCLOG(@"EnemyRobot->Changing State to Walking");

if (isVikingWithinBoundingBox)

break; // AI will change to Attacking on next frame

float xPositionOffSet = 150.0f;

if (isVikingWithinSight) {

if ([vikingCharacter position].x < [self position].x)

 xPositionOffSet = xPositionOffSet * -1;

// Invert to -150

 } else {

if (CCRANDOM_0_1() > 0.5f)

 xPositionOffSet = xPositionOffSet * -1;

if (xPositionOffSet > 0.0f) {

 [self setFlipX:YES];

 } else {

 [self setFlipX:NO];

 }

 }

 action = [CCSpawn actions:

 [CCAnimate actionWithAnimation:robotWalkingAnim

restoreOriginalFrame:NO],

 [CCMoveTo actionWithDuration:2.4f

position:ccp([self position].x +

 xPositionOffSet,

 [self position].y)],

nil];

break;

Enemy Robot 131

case kStateAttacking:

CCLOG(@"EnemyRobot->Changing State to Attacking");

 action = [CCSequence actions:

 [CCAnimate actionWithAnimation:raisePhaserAnim

restoreOriginalFrame:NO],

 [CCDelayTime actionWithDuration:1.0f],

 [CCAnimate actionWithAnimation:shootPhaserAnim

restoreOriginalFrame:NO],

 [CCCallFunc actionWithTarget:self

selector:@selector(shootPhaser)],

 [CCAnimate actionWithAnimation:lowerPhaserAnim

restoreOriginalFrame:NO],

 [CCDelayTime actionWithDuration:2.0f],

nil];

break;

case kStateTakingDamage:

CCLOG(@"EnemyRobot->Changing State to TakingDamage");

if ([vikingCharacter getWeaponDamage] > kVikingFistDamage){

// If the viking has the mallet, then

 action =

 [CCAnimate actionWithAnimation:headHitAnim

 restoreOriginalFrame:YES];

 } else {

// Viking does not have weapon, body blow

 action = [CCAnimate actionWithAnimation:torsoHitAnim

restoreOriginalFrame:YES];

 }

break;

case kStateDead:

CCLOG(@"EnemyRobot -> Going to Dead State");

 action = [CCSequence actions:

 [CCAnimate actionWithAnimation:robotDeathAnim

restoreOriginalFrame:NO],

 [CCDelayTime actionWithDuration:2.0f],

 [CCFadeOut actionWithDuration:2.0f],

nil];

break;

default:

CCLOG(@"Enemy Robot -> Unknown CharState %d",

characterState);

break;

 }

Chapter 5 More Actions, Effects, and Cocos2D Scheduler132

if (action != nil)

 [self runAction:action];

}

The first part of the changeState method checks to make sure the EnemyRobot
is not dead. If the robot is dead, the method does nothing. Otherwise, any currently
running actions are also stopped, since the EnemyRobot is about to transition to a
new state.

After these setup lines, the method drops into a switch statement that carries out
the particular logic depending on which state the EnemyRobot is transitioning to. The
first state listed is the kStateSpawning, which is how the EnemyRobot first appears
onscreen. Here you can see an action consisting of a fade-in and a rotation, along with
the EnemyRobot’s display frame being set to the teleport graphic.

The teleport graphic is a round swirl graphic, and this action makes it rotate around
the screen. You can see the teleport graphic in Figure 5.1; remember that this image is
included in the texture atlas for this scene.

Figure 5.1 EnemyRobot teleport graphic

The next state is the idle state, which simply sets the display frame of the Enemy-
Robot to a standing pose.

The walking state contains more logic: first it checks to see if the Viking is near
the EnemyRobot. If so, it returns knowing that the updateStateWithDelta time
method will automatically transition the state of the EnemyRobot to “attacking.”
If the Viking is not within the adjusted bounding box of the EnemyRobot, it then
checks to see if the Viking is within the eyesight of the robot. If the robot can “see”
the Viking, it moves toward it; otherwise, it just moves in a random direction. If the
direction of travel is to the right, the EnemyRobot’s flipX f lag is turned to YES, f lip-
ping all of the pixels horizontally. As with the Viking, this makes the EnemyRobot
appear to be moving to the left or right instead of left and backwards.

The attacking state is next on the changeState method, and it sets up the raise,
fire, and then lower animations for the EnemyRobot. As with the SpaceCargoShip,
there are a series of compound actions to perform the full attack. The EnemyRobot
first raises the gun, then delays, and then runs a CCCallFunc action. The CCCallFunc
action calls the shootPhaser method that you created in Listing 5.8. This method

Enemy Robot 133

tells the gameplayLayer to create a phaser beam and send it off toward the Viking.
After firing, the EnemyRobot lowers the gun and pauses for another 2 seconds.

Note
CCCallFunc is a special action that can call a method in any object. It is useful when
you want to call some portion of your code before, during, or after an action sequence.
Along with CCCallFunc are CCCallFuncN, which passes along the CCNode as a
parameter, and CCCallFuncND, which passes along the CCNode and a pointer to some
data element you define.

Following the attacking state, there is the taking damage state in the switch block.
The taking damage state determines if the Viking is carrying a weapon or not and
plays the corresponding animation. If the Viking is carrying a weapon, the Enemy-
Robot takes on damage to the head; otherwise, it shows the torso taking a hit. The
difference here is purely for effects, as the Mallet weapon attack animation has the
Viking swinging the mallet over the top of the EnemyRobot, while a punch is
straight on at about chest height.

Finally there is a dead state, which plays an animation of the EnemyRobot explod-
ing followed by a fade-out. These are all of the various states that the EnemyRobot
transitions between, depending on what is happening in the game play.

The changeState method is called from within the updateStateWithDelta-
Time method, which is shown in Listing 5.10.

Listing 5.10 EnemyRobot.m implementation file (part 3 of 4)

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

 [self checkAndClampSpritePosition];

if ((characterState != kStateDead) && (characterHealth <= 0)) {

 [self changeState:kStateDead];

return;

 }

vikingCharacter = (GameCharacter*)[[self parent]

getChildByTag:kVikingSpriteTagValue];

CGRect vikingBoundingBox = [vikingCharacter adjustedBoundingBox];

CGRect robotBoundingBox = [self adjustedBoundingBox];

CGRect robotSightBoundingBox = [self eyesightBoundingBox];

isVikingWithinBoundingBox =

CGRectIntersectsRect(vikingBoundingBox, robotBoundingBox) ?

YES : NO;

isVikingWithinSight =

CGRectIntersectsRect(vikingBoundingBox, robotSightBoundingBox)?

YES : NO;

Chapter 5 More Actions, Effects, and Cocos2D Scheduler134

if ((isVikingWithinBoundingBox) &&

 ([vikingCharacter characterState] == kStateAttacking)) {

// Viking is attacking this robot

if ((characterState != kStateTakingDamage) &&

 (characterState != kStateDead)) {

 [self setCharacterHealth:

 [self characterHealth] –

 [vikingCharacter getWeaponDamage]];

if (characterHealth > 0) {

 [self changeState:kStateTakingDamage];

 } else {

 [self changeState:kStateDead];

 }

return; // Nothing to update further, stop and show damage

 }

 }

if ([self numberOfRunningActions] == 0) {

if (characterState == kStateDead) {

// Robot is dead, remove

 [self setVisible:NO];

 [self removeFromParentAndCleanup:YES];

 } else if ([vikingCharacter characterState] == kStateDead) {

// Viking is dead, walk around the scene

 [self changeState:kStateWalking];

 } else if (isVikingWithinSight) {

 [self changeState:kStateAttacking];

 } else {

// Viking alive and out of sight, resume walking

 [self changeState:kStateWalking];

 }

 }

}

The updateStateWithDeltaTime method starts with a quick call to the check-
AndClampPosition method inherited from GameCharacter. This method ensures
the EnemyRobot remains within the boundaries of the screen. The following if
statement then checks that the EnemyRobot is not already dead and that the health is
greater than zero. If the EnemyRobot’s health is zero or less, the robot is transitioned
to a dead state.

The next set of lines gets the Viking from the CCSpriteSheet, which is the
parent to all of the characters on this scene. The Viking is retrieved by using the
getChildByTag and passing the unique tag used by the Viking character. Recall
from earlier chapters that any CCNode can maintain a unique integer tag for each of its

Enemy Robot 135

children. By having the kVikingSpriteTagValue as a constant, each of the children
of the CCSpriteSheet can call it and retrieve a pointer to the Viking character. The
next three lines create three CGRects that are used to determine where the Viking is
in relation to the EnemyRobot and if the EnemyRobot can see the Viking.

If Statement Shortcuts
The two lines with the ternary “?” operator in EnemyRobot.m are a simple shortcut way
to combine an if statement and an assignment operator. You should read the follow-
ing line as:

isVikingWithinSight = CGRectIntersectsRect(vikingBoundingBox,
robotSightBoundingBox)? YES : NO;

If CGRectIntersectsRect returns true, set isVikingWithinSight to YES;
otherwise, set it to NO. You could rewrite this one line of code as:

if (CGRectIntersectsRect(vikingBoundingBox, robotSightBoundingBox)) {

isVikingWithinSight = YES;

} else {

isVikingWithinSight = NO;

}

This simple shortcut can save you some tedious typing on simple compares and
assignments. Keep in mind that CGRectIntersectsRect evaluates to either TRUE
or FALSE, so you can leave out the == TRUE in the if statement.

There are two more critical sections in this method. The first is an if block that
checks to see if the Viking is attacking the EnemyRobot and if the Viking is attack-
ing with a weapon or just his bare fists. The health of the EnemyRobot is reduced and
then checked to see if it is greater than zero. If the EnemyRobot still has a health level
of greater than zero, he is transitioned to a taking damage state; otherwise, he is tran-
sitioned to the dead state. Both of those transitions were covered in the earlier listing
of the changeState method.

The next critical section of this method is the if block once the numberOf-
RunningActions is zero for the EnemyRobot. As you learned with the RadarDish,
if the EnemyRobot is currently executing an action such as an animation, the num-
berOfRunningActions will be greater than zero. This if block first checks to see
if the EnemyRobot is dead and finished the dead animation. If so, the EnemyRobot
is removed from the CCLayer. The next check is if the Viking is dead, and if so,
then the robot is just transitioned to a walking state, where he will wander around
the screen. The next check is to see if the Viking is within sight, and if so, then the
robot moves to attack the Viking. Lastly, if the Viking is not within the sight box of
the EnemyRobot, the robot will change to a walking state and patrol the scene. The
next listing details the remaining three methods in EnemyRobot used to calculate the

Chapter 5 More Actions, Effects, and Cocos2D Scheduler136

adjusted bounding box and initialize the animations. Copy the contents of Listing 5.11
and paste it below the updateStateWithDelta time in EnemyRobot.m.

Listing 5.11 EnemyRobot.m implementation file (part 4 of 4)

-(CGRect)AdjustedBoundingBox {

// Shrink the bounding box by 18% on the X axis, and move it to the

 // right by 18% and crop it by 5% on the Y Axis.

// On the iPad this is 30 pixels on the X axis and

 // 10 pixels from the top (Y Axis)

CGRect enemyRobotBoundingBox = [self boundingBox];

float xOffsetAmount = enemyRobotBoundingBox.size.width * 0.18f;

float yCropAmount = enemyRobotBoundingBox.size.height * 0.05f;

 enemyRobotBoundingBox =

CGRectMake(enemyRobotBoundingBox.origin.x + xOffsetAmount,

 enemyRobotBoundingBox.origin.y,

 enemyRobotBoundingBox.size.width - xOffsetAmount,

 enemyRobotBoundingBox.size.height - yCropAmount);

return enemyRobotBoundingBox;

}

#pragma mark -

#pragma mark initAnimations

-(void)initAnimations {

 [self setRobotWalkingAnim:

 [self loadPlistForAnimationWithName:@"robotWalkingAnim"

andClassName:NSStringFromClass([self class])]];

 [self setRaisePhaserAnim:

 [self loadPlistForAnimationWithName:@"raisePhaserAnim"

andClassName:NSStringFromClass([self class])]];

 [self setShootPhaserAnim:

 [self loadPlistForAnimationWithName:@"shootPhaserAnim"

andClassName:NSStringFromClass([self class])]];

 [self setLowerPhaserAnim:

 [self loadPlistForAnimationWithName:@"lowerPhaserAnim"

andClassName:NSStringFromClass([self class])]];

 [self setTorsoHitAnim:

 [self loadPlistForAnimationWithName:@"torsoHitAnim"

andClassName:NSStringFromClass([self class])]];

 [self setHeadHitAnim:

 [self loadPlistForAnimationWithName:@"headHitAnim"

andClassName:NSStringFromClass([self class])]];

Adding the PhaserBullet 137

 [self setRobotDeathAnim:

 [self loadPlistForAnimationWithName:@"robotDeathAnim"

 andClassName:NSStringFromClass([self class])]];

}

-(id) init

{

if((self=[super init]))

 {

isVikingWithinBoundingBox = NO;

isVikingWithinSight = NO;

gameObjectType = kEnemyTypeAlienRobot;

 [self initAnimations];

srandom(time(NULL));

 }

return self;

}

@end

The AdjustedBoundingBox method does exactly what the name implies: it takes
the EnemyRobot’s bounding box and adjusts it to compensate for the transparent
space. The initAnimations method just calls the loadPlistForAnimationWith-
Name to load the many animations used by the robot. Lastly, the init method sets up
the initial states of the instance variables and calls the initAnimation method.

Adding the PhaserBullet
The EnemyRobot will be using his gun to fire an electrifying phaser bullet at Ole.
The PhaserBullet itself is an object that will travel left or right on the screen. Before
creating the code behind the PhaserBullet, take a moment and create a new anima-
tion plist file called PhaserBullet.plist under the Plists group, as shown in Figure 5.2.
You can also drag over this file from the resource folder for this chapter.

Figure 5.2 PhaserBullet.plist containing the animations for the
PhaserBullet

Chapter 5 More Actions, Effects, and Cocos2D Scheduler138

The PhaserBullet is a simple class; to create it in your SpaceViking project:

1. Right-click on EnemyObjects group and click New File.

2. Select Cocoa Touch category under iOS and Objective-C class as the file
type and click Next.

3. For the Subclass field, enter GameCharacter.

4. Enter PhaserBullet.m for the filename and click Save.

Open the PhaserBullet.h header file and replace it with the contents of Listing 5.12.

Listing 5.12 PhaserBullet.h header file

// PhaserBullet.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

@interface PhaserBullet : GameCharacter {

CCAnimation *firingAnim;

CCAnimation *travelingAnim;

PhaserDirection myDirection;

}

@property PhaserDirection myDirection;

@property (nonatomic,retain) CCAnimation *firingAnim;

@property (nonatomic,retain) CCAnimation *travelingAnim;

@end

Switch over to the PhaserBullet.m implementation file and replace the contents with
Listing 5.13.

Listing 5.13 PhaserBullet.m implementation file

// PhaserBullet.m

// SpaceViking

#import "PhaserBullet.h"

@implementation PhaserBullet

@synthesize myDirection;

@synthesize travelingAnim;

@synthesize firingAnim;

- (void) dealloc {

 [travelingAnim release];

 [firingAnim release];

Adding the PhaserBullet 139

 [super dealloc];

}

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

characterState = newState;

switch (newState) {

case kStateSpawning:

CCLOG(@"Phaser->Changed state to Spawning");

 action =

 [CCAnimate actionWithAnimation:firingAnim

restoreOriginalFrame:NO];

break;

case kStateTraveling:

CCLOG(@"Phaser->Changed state to Traveling");

CGPoint endLocation;

if (myDirection == kDirectionLeft) {

CCLOG(@"Phaser direction LEFT");

 endLocation = ccp(-10.0f,

 [self position].y);

 } else {

CCLOG(@"Phaser direction RIGHT");

 endLocation = ccp(screenSize.width+24.0f,

 [self position].y);

 }

 [self runAction:

 [CCMoveTo actionWithDuration:2.0f position:endLocation]];

 action = [CCRepeatForever actionWithAction:

 [CCAnimate actionWithAnimation:travelingAnim

restoreOriginalFrame:NO]];

break;

case kStateDead:

CCLOG(@"Phaser->Changed state to dead");

// Remove from parent

 [self setVisible:NO];

 [self removeFromParentAndCleanup:YES];

default:

break;

 }

if (action != nil)

 [self runAction:action];

}

-(BOOL)isOutsideOfScreen { // 5

CGPoint currentSpritePosition = [self position];

Chapter 5 More Actions, Effects, and Cocos2D Scheduler140

if ((currentSpritePosition.x < 0.0f) || (

 currentSpritePosition.x > screenSize.width)) {

 [self changeState:kStateDead];

return YES;

 }

return NO;

}

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

if ([self isOutsideOfScreen])

return;

if ([self numberOfRunningActions] == 0) {

if (characterState == kStateSpawning) {

 [self changeState:kStateTraveling];

return;

 } else {

 [self changeState:kStateDead];

return;

 // Should not do anything else from traveling

 }

 }

}

-(void)initAnimations {

 [self setFiringAnim:

 [self loadPlistForAnimationWithName:@"firingAnim"

andClassName:NSStringFromClass([self class])]];

 [self setTravelingAnim:

 [self loadPlistForAnimationWithName:@"travelingAnim"

andClassName:NSStringFromClass([self class])]];

}

-(id) init

{

if((self=[super init]))

 {

CCLOG(@"### PhaserBullet initialized");

 [self initAnimations];

 gameObjectType = kEnemyTypePhaser;

 }

return self;

}

@end

GameplayLayer and Viking Updates 141

The PhaserBullet is a simple character that moves from the firing location to
either the left or right side of the screen. If it comes in contact with Ole, the Viking
will change the PhaserBullet’s state to dead, as it absorbs the hit. If the Phaser-
Bullet travels outside of the screen boundaries, it removes itself from the game. This
wraps up what you need to do to create the EnemyRobot. The next step is to add a
little bit of code in GameplayLayer to create the EnemyRobot and in the Viking
class to enable the Viking to pick up the power-ups.

GameplayLayer and Viking Updates
The gameplayLayer class has to know about the power-ups, the space cargo ship,
and the enemy robot in order to be able to add them on the screen.

The first step is to include the imports for the new classes you have added in this
chapter. Open up the GameplayLayer.m implementation file and add the import state-
ments in Listing 5.14 to the import for RadarDish.h.

Listing 5.14 GameplayLayer.m imports

#import "SpaceCargoShip.h"

#import "EnemyRobot.h"

#import "PhaserBullet.h"

#import "Mallet.h"

#import "Health.h"

The next step is to enhance the createObjectOfType method so that it can cre-
ate the power-ups, the SpaceCargoShip, the PhaserBullet, and the EnemyRobot.
Move to the createObjectOfType method and replace it with the contents of List-
ing 5.15.

Listing 5.15 GameplayLayer.m createObjectOfType method

-(void)createObjectOfType:(GameObjectType)objectType

 withHealth:(int)initialHealth

 atLocation:(CGPoint)spawnLocation

 withZValue:(int)ZValue {

if (kEnemyTypeRadarDish == objectType) {

CCLOG(@"Creating the Radar Enemy");

RadarDish *radarDish =

 [[RadarDish alloc] initWithSpriteFrameName:@"radar_1.png"];

 [radarDish setCharacterHealth:initialHealth];

 [radarDish setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:radarDish z:ZValue

tag:kRadarDishTagValue];

 [radarDish release];

Chapter 5 More Actions, Effects, and Cocos2D Scheduler142

 } else if (kEnemyTypeAlienRobot == objectType) {

CCLOG(@"Creating the Alien Robot");

EnemyRobot *enemyRobot =

 [[EnemyRobot alloc] initWithSpriteFrameName:@"an1_anim1.png"];

 [enemyRobot setCharacterHealth:initialHealth];

 [enemyRobot setPosition:spawnLocation];

 [enemyRobot changeState:kStateSpawning];

 [sceneSpriteBatchNode addChild:enemyRobot z:ZValue];

 [enemyRobot setDelegate:self];

 [enemyRobot release];

 } else if (kEnemyTypeSpaceCargoShip == objectType) {

CCLOG(@"Creating the Cargo Ship Enemy");

SpaceCargoShip *spaceCargoShip =

 [[SpaceCargoShip alloc]

initWithSpriteFrameName:@"ship_2.png"];

 [spaceCargoShip setDelegate:self];

 [spaceCargoShip setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:spaceCargoShip z:ZValue];

 [spaceCargoShip release];

 } else if (kPowerUpTypeMallet == objectType) {

CCLOG(@"GameplayLayer -> Creating mallet powerup");

Mallet *mallet =

 [[Mallet alloc] initWithSpriteFrameName:@"mallet_1.png"];

 [mallet setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:mallet];

 [mallet release];

 } else if (kPowerUpTypeHealth == objectType) {

CCLOG(@"GameplayLayer-> Creating Health Powerup");

Health *health =

 [[Health alloc] initWithSpriteFrameName:@"sandwich_1.png"];

 [health setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:health];

 [health release];

 }

}

The beginning of this method has the same if statement you wrote in Chapter 4,
creating the RadarDish enemy. The next if else blocks create the SpaceCargo-
Ship, the power-ups, and the EnemyRobot. Note how the RadarDish is given a
unique tag: this tag will be used later so that the GameplayLayer can get a reference
back to the RadarDish object to determine its state.

The next method to replace is createPhaserWithDirection. In Chapter 4 this
method was just a stub with a CCLOG statement inside. You now need to add the logic
so that a PhaserBullet can be created by the GameplayLayer with a particular
direction. Replace the contents of the createPhaserWithDirection method with
the code in Listing 5.16.

GameplayLayer and Viking Updates 143

Listing 5.16 GameplayLayer.m createPhaserWithDirection method

-(void)createPhaserWithDirection:(PhaserDirection)phaserDirection
andPosition:(CGPoint)spawnPosition {

PhaserBullet *phaserBullet = [[PhaserBullet alloc] initWithSpriteFrame
Name:@"beam_1.png"];

 [phaserBullet setPosition:spawnPosition];

 [phaserBullet setMyDirection:phaserDirection];

 [phaserBullet setCharacterState:kStateSpawning];

 [sceneSpriteBatchNode addChild:phaserBullet];

 [phaserBullet release];

}

The createPhaserWithDirection method has the GameplayLayer create a
new PhaserBullet object and set its direction. Once the PhaserBullet is added
as a child to sceneSpriteBatchNode, it will be rendered onscreen and its update
method will be called on every frame by the GameplayLayer.

There is a final method to add to the GameplayLayer class, which will con-
tinue adding EnemyRobots as long as the RadarDish is still not destroyed. Add
the contents of Listing 5.17 below the createPhaserWithDirectionMethod in
GameplayLayer.m.

Listing 5.17 GameplayLayer.m addEnemy method

-(void)addEnemy {

CGSize screenSize = [CCDirector sharedDirector].winSize;

 RadarDish *radarDish = (RadarDish*)

 [sceneSpriteBatchNode getChildByTag:kRadarDishTagValue];

if (radarDish != nil) {

if ([radarDish characterState] != kStateDead) {

 [self createObjectOfType:kEnemyTypeAlienRobot

 withHealth:100

 atLocation:ccp(screenSize.width * 0.195f,

 screenSize.height * 0.1432f)

 withZValue:2];

 } else {

 [self unschedule:@selector(addEnemy)];

 }

 }

}

As you will see shortly, the addEnemy method will be called by the Cocos2D
Scheduler. The first line retrieves the reference to the RadarDish object from the
sceneSpriteBatchNode via the unique tag that was given to the RadarDish object
when it was added as a child to the sceneSpriteBatchNode. If the RadarDish is
not nil and not in a kStateDead, then the GameplayLayer will spawn off a new

Chapter 5 More Actions, Effects, and Cocos2D Scheduler144

EnemyRobot. If the RadarDish is dead, the GameplayLayer will unschedule the
timer calling this method.

The final glue in GameplayLayer are a few lines to add in the init method. Add
the lines shown in Listing 5.18 immediately after the [self scheduleUpdate] call.

Listing 5.18 GameplayLayer.m init method additions

[self schedule:@selector(addEnemy) interval:10.0f];

[self createObjectOfType:kEnemyTypeSpaceCargoShip

 withHealth:0

 atLocation:ccp(screenSize.width * -0.5f,

 screenSize.height * 0.74f)

 withZValue:50];

With the last two lines in place, the GameplayLayer will create the SpaceCargo-
Ship and add another EnemyRobot every 10 seconds until the Viking destroys the
RadarDish.

Running Space Viking
Now that you have all of the elements in place, you should be able to just click Run
and play Space Viking on your iPad Simulator. Even better, you can connect your iPad
and play Space Viking on the real thing. Figure 5.3 shows the Space Viking game with
the RadarDish, EnemyRobot, and SpaceCargoShip.

Figure 5.3 Space Viking running on the iPad Simulator

For the More Curious: Effects in Cocos2D 145

If you have any trouble running Space Viking, go back and check your code against
the listings in this chapter. Make sure you have included all of the classes and code in
your copy of Space Viking. While playing the game, be sure to try out the crouching
move to avoid those pesky phaser bullets.

A Word on Cocos2D’s Scheduler
The Cocos2D Scheduler provides your game with timed events and calls. All CCNode
objects know how to schedule and unschedule events, and using the Cocos2D Sched-
uler has several distinct advantages over just using NSTimer. The first advantage is
that the scheduler calls get deactivated whenever the CCNode is no longer visible or
is removed from the scene. The scheduler calls are also deactivated when Cocos2D is
paused and are rescheduled when Cocos2D is resumed. If you were using NSTimer
directly, you would have to keep track of when any object you had a timer set against
was deallocated and deactivate that timer or risk a crash when the NSTimer fired.

Another advantage of the Cocos2D Scheduler is that it delivers a deltaTime of the
milliseconds that have passed since the last call. This deltaTime is useful in mov-
ing objects and in modeling objects in physics engines, as you will see in Chapter 10,
“Basic Game Physics: Adding Realism with Box2D.”

Lastly, using the Cocos2D Scheduler with the [self scheduleUpdate] call
ensures that your update function will be called before each frame needs to be ren-
dered, not after or, even worse, midframe.

You can schedule the timers via the [self schedule:] call on any CCNode or
by calling the CCScheduler singleton directly with [[CCScheduler shared-
Scheduler] ...]. Having Cocos2D automatically manage your timers via the
CCScheduler can save you a lot of time over NSTimer and let you focus on the
mechanics of your game.

For the More Curious: Effects in Cocos2D
Cocos2D has a powerful, built-in effects system that you can use to create dramatic
visual effects in your games. Effects in Cocos2D are packaged as actions, and you
already know how to use those: they are the basis for all of the behaviors and anima-
tions in Space Viking.

The Cocos2D effects act on the OpenGL ES frame buffer object (FBO), and it is
important to understand a little bit about the FBO to know how the actions work.

Each object that needs to be rendered onscreen is first rendered on the frame buf-
fer object and then sent to the GPU for processing and to be displayed onscreen.
The images are present in the FBO as an array of vertex data. The scope of the
effect depends on what object you apply it to. If you apply an effect action to just a
CCSprite, only that particular CCSprite is affected. If you apply it to a CCSprite-
BatchNode, all CCSprites being rendered under that node will have the effect.

Chapter 5 More Actions, Effects, and Cocos2D Scheduler146

Finally, if you apply the effect to the CCLayer, everything in the layer will have the
effect applied.

You don’t have to know exactly how the vertex array is stored in the FBO,
although you are free to see the implementation details in the Cocos2D source code.
The important points to remember are that there is a grid of image data in the FBO,
and the effect actions act on this grid.

Within the Cocos2D effects there are two subtypes: a tiled and a nontiled version.
The tiled version breaks down the contents of the frame buffer object into individual
tiles, which can be manipulated separately, whereas the nontiled version has the entire
frame as a large tile.

Effects for Fun in Space Viking
To get a better feel for the Cocos2D effects, you will take one effects line and apply it
first to a background tile and then to the CCSpriteBatchNode.

To start, open the BackgroundLayer.m implementation file and add these two lines
at the bottom of the init method directly following the lines where you created the
background CCSprite, as shown in Listing 5.19.

Listing 5.19 BackgroundLayer.m waves action

id wavesAction = [CCWaves actionWithWaves:5 amplitude:20

 horizontal:NO vertical:YES

 grid:ccg(15,10) duration:20];

[backgroundImage runAction:

 [CCRepeatForever actionWithAction:wavesAction]];

The first line sets up the wavesAction variable as an CCWave action, while the
second line applies it to the background image. The CCWaves action has several
parameters to control the amplitude of the waves, whether it is to “wave” in the hori-
zontal or vertical axis, and the size of the grid along with the wave durations. The
grid size determines how to break up the image in order to apply the effect. Larger
grid sizes result in better effects at the cost of larger CPU time to generate each
frame. Effects can take a lot of processing power, especially on older devices such as
the iPhone 3G; do remember this when setting up effects in your system. If you click
Run, you can see only the top left background image is experiencing the waves effect,
as shown in Figure 5.4.

On the last step, you had an effect applied to only a background image; all of the
other graphical elements in Space Viking are untouched. For the next example, com-
ment out the two lines you just added so that the background is back to normal and
open up the GameplayLayer.m implementation file. On the init method, add these
two lines before the Cocos2D Scheduler calls, as shown in Listing 5.20.

For the More Curious: Effects in Cocos2D 147

Listing 5.20 GameplayLayer.m waves action

id wavesAction = [CCWaves actionWithWaves:5 amplitude:20 horizontal:NO
vertical:YES grid:ccg(15,10) duration:20];

 [sceneSpriteBatchNode runAction: [CCRepeatForever
actionWithAction:wavesAction]];

This is setting up a CCWaves action against the CCSpriteBatchNode that is used
to render the Viking and all of the enemies onscreen. If you click Run, you should see
an image similar to Figure 5.5. Pay close attention to the joystick and the attack and
jump buttons. Note how the joystick and buttons are not impacted by the CCWaves
action, since they are not part of the CCSpriteBatchNode.

Note
If you are using a CCSpriteBatchNode, then you need to apply the effects to the
entire CCSpriteBatchNode instead of the individual sprites. Since the CCSprite-
BatchNode is doing all of the rendering, it must have the effects applied to the
CCSpriteBatchNode itself; otherwise, you will not see any of the effects onscreen.

Be sure to comment out the two lines you added to GameplayLayer.m and return
Space Viking back to normal. If you want to check out all of the effect actions included
with Cocos2D, you can run the EffectsTest and EffectsTestAdvanced samples
included with Cocos2D.

Figure 5.4 Top left background; CCSprite with waves effect applied

Chapter 5 More Actions, Effects, and Cocos2D Scheduler148

Running the EffectsTest
Navigate to the directory where you downloaded Cocos2D back in Chapter 1, “Hello,
Cocos2D,” and open the cocos2d-iphone project. With the cocos2d-iphone project opened,
set the Scheme dropdown to EffectsTest, as shown in Figure 5.6.

Figure 5.5 CCWaves action applied to the CCSpriteBatchNode in
Space Viking

Figure 5.6 EffectsTest selected under the Scheme dropdown in Xcode

Select Run in Xcode, and you should see the EffectsTest running in the simula-
tor. You can see the various effects that are possible with Cocos2D. You can also try
out the EffectsAdvancedTest target for more examples of Cocos2D effects.

Exercises and Challenges 149

Returning Sprites and Objects Back to Normal
Once you start playing with effects, you will notice that they stay applied to the
CCSprites and other objects even after you stop the action. To return your CCSprite
to its normal, nonaltered state, you need to call the special StopGrid action. For
example, if you wanted to stop the CCWaves action applied to the CCSpriteBatch-
Node in Space Viking, you would need:

[sceneSpriteBatchNode runAction:[CCStopGrid action]];

Summary
In this chapter you built on the Cocos2D actions and animations you created previously
to add more characters to your Space Viking game. You added a SpaceCargoShip,
power-ups, and an enemy robot that can pursue and attack Ole the Viking. In the later
part of this chapter, you learned about the Cocos2D Scheduler and the built-in effects
in Cocos2D. Hopefully, you are beginning to think about how you can reuse the
techniques shown here in your own games. In the next chapter, you will learn about
the Cocos2D text subsystem and will add health meters and an interactive debugger
to Space Viking. Some quick challenges await before you can proceed in creating your
Viking adventure.

Exercises and Challenges
1. What happens when you turn off the [self flipX:true]; statement in the

EnemyRobot? How does it affect the animation?

2. The EnemyRobot has a long delay after he raises his phaser and before he fires
it at Ole. What would happen if you made that delay very small, such as 0.015
seconds?

3. The GameplayLayer spawns a new EnemyRobot every 10 seconds for as long
as the RadarDish is still alive. What happens if you change this to 1 second?

4. How does changing the grid size change the quality of the waves effects?

This page intentionally left blank

6
Text, Fonts, and the

Written Word

In the last two chapters, you learned how to add artificial intelligence, animations, and enemies to
your game. In this chapter you get to have a reprieve from the complexities of game mechanics and
focus on the text rendering available in Cocos2D. Cocos2D has extensive support for all of the
built-in iOS fonts as well as embedded TrueType fonts. The text system allows you to add labels
and text to your game with ease.

The font-rendering system in Cocos2D is split into two portions or classes: the CCLabelTTF
and the CCLabelBMFont classes. This chapter covers both classes and how to use them in
Space Viking.

CCLabelTTF
The CCLabelTTF class is meant as a quick and easy way to get text into your game
with a minimal amount of setup or code. You already used the CCLabelTTF class way
back in Chapter 1 as part of the HelloWorld sample. In the HelloWorld code you had the
following lines:

CCLabelTTF *label = [CCLabelTTF labelWithString:@"Hello World"
fontName:@"Marker Felt" fontSize:64];

To create a CCLabelTTF, all that is required is that you specify the text, the font,
and the font size. The CCLabelTTF object will use the CCTexture2D class to create
an image texture from your text and display that texture onscreen. After the initializa-
tion code above, you can use the CCLabelTTF like any other CCNode, add it to your
layer, position it, and so forth. The CCLabelTTF class is great for text that is static or
that you do not want to change often. Each time you call the setText method, a new
texture is created, and this can have a significant performance impact if you are creat-
ing or changing the text on every frame.

Chapter 6 Text, Fonts, and the Written Word 152

Adding a Start Banner to Space Viking
To better understand how to use a CCLabelTTF, you will create a quick “Game Start”
banner when the Space Viking game play first starts. This banner will be centered on
the screen and will zoom and fade out over the course of 2 seconds. To get started,
open the SpaceViking project and the GameplayLayer.m implementation file.

In the init method add the lines shown in Listing 6.1 before the [self
scheduleUpdate] call.

Listing 6.1 Game start label in GameplayLayer.m init method

CCLabelTTF *gameBeginLabel =

 [CCLabelTTF labelWithString:@"Game Start" fontName:@"Helvetica"

 fontSize:64]; // 1

[gameBeginLabel setPosition:ccp(screenSize.width/2,screenSize.height/2)];
// 2

[self addChild:gameBeginLabel]; // 3

id labelAction = [CCSpawn actions:

 [CCScaleBy actionWithDuration:2.0f scale:4],

 [CCFadeOut actionWithDuration:2.0f],

nil]; // 4

[gameBeginLabel runAction:labelAction]; // 5

The code segment in Listing 6.1 accomplishes the following:

1. A new CCLabelTTF is created with the text “Game Start” using the Helvetica
font with a size of 64. From this line forward, the CCLabelTTF acts just like any
other CCNode, such as a CCSprite: you can position it and apply actions to it.

2. Sets the position of the label to the center of the screen by halving the screen
width and height.

3. Adds the label to the GameplayLayer so that it will be rendered onscreen.

4. Creates an action called labelAction, which consists of two actions running
simultaneously. The first action is a CCScaleBy, which zooms in the text to four
times the original size. The second action is a CCFadeOut that fades out the text
over the course of 2 seconds.

5. The CCLabelTTF runs the actions that you created in the previous line.

If you click Run on Space Viking on your iPad Simulator, you should see the
“Game Start” text banner, as shown in Figure 6.1.

Understanding Anchor Points and Alignment 153

Understanding Anchor Points and Alignment
All CCNodes from CCSprites to CCLabelTTF have anchor points to allow them
to be positioned onscreen. Anchor points are useful in positioning and aligning your
objects onscreen, especially labels. The anchor point is an offset into an object tex-
ture—in other words, what point in the texture to use to place it onscreen. Cocos2D
defaults to an anchor point in the middle of your texture, so by default your objects
are always placed according to their center points. For example, if you set the position
of the sprite to (100,100), the center of the sprite would be at (100,100) by default.

If you set the anchor point to the bottom left corner of a sprite, and set the posi-
tion of the sprite to (100,100), then the bottom left corner of the sprite would be at
(100,100) instead of the center of the sprite being at that location.

Take a close look at Figure 6.2, showing the anchor point values for a “Game Start”
CCLabelTTF.

Figure 6.1 Space Viking with Game Start banner

Chapter 6 Text, Fonts, and the Written Word 154

Looking at Figure 6.2, you can see the default anchor point at the middle of the
texture would have a value of (0.5,0.5). Look at anchor point values as percentages,
with 1 being 100%, or all the way to the end of the texture. Take a close look at the
bottom right of Figure 6.2, at the value (1,0). This anchor point (1,0) is all the way
over on the x-axis of the texture, but at the start of the y-axis, so bottom right.

On the top right you can see the anchor point value of (1,1), meaning it is all the
way on the x- and y-axes of the texture, therefore upper right.

Remember, anchor points range between zero and one, with (0,0) on the bottom
left and (1,1) on the top right.

Normally, you will not need to change the anchor point in your objects; an excep-
tion is when you are trying to align labels.

If you wanted the CCLabelTTF to be aligned to the left, you would set the anchor
point to (0,0.5). This translates to zero on the x-axis (left) and halfway up on the
y-axis, which means a left alignment but centered vertically. If you had it at (0,0)
instead, it would be aligned to the left but also to the bottom. Here are some examples
of common CCLabelTTF alignments:

//Left Alignment

[gameBeginLabel setAnchorPoint: ccp(0, 0.5f)];

// Right Alignment

[gameBeginLabel setAnchorPoint: ccp(1, 0.5f)];

// Top Alignment

[gameBeginLabel setAnchorPoint: ccp(0.5f, 0)];

// Bottom Alignment

[gameBeginLabel setAnchorPoint: ccp(0.5f, 1.0f)];

// Center - Default

[gameBeginLabel setAnchorPoint: ccp(0.5f, 0.5f)];

Anchor Points and Rotation
Anchor points are used in rotation and with other effects in addition to being used to
position a CCSprite. Keep in mind that if you change the CCSprite default anchor
point (center of image), any rotations you apply to the CCSprite will happen at the new
anchor point location.

Game Start

(1,1)

(1,0)

(0,1)

(0,0)
(0.5,0.5)

Figure 6.2 Game Start CCLabelTTF anchor points

CCLabelBMFont 155

Listing the Fonts Available in iOS
The CCLabelTTF class relies on the fonts available in the iOS, and Apple is always
adding to the available fonts with each iOS release. The best way to know what fonts
you can use is to query the iOS for available fonts under the UIFont class. Jonathan
Saggau wrote an excellent bit of compact code to list out the fonts. A modified version
of it is given here and can be dropped in the init method of GameScene.m to print
out the available fonts to your console.

NSMutableArray *fontNames = [[NSMutableArray alloc] init];

NSArray *fontFamilyNames = [UIFont familyNames];

for (NSString *familyName in fontFamilyNames) {

NSLog(@"Font Family Name = %@", familyName);

NSArray *names = [UIFont fontNamesForFamilyName:familyName];

NSLog(@"Font Names = %@", fontNames);

 [fontNames addObjectsFromArray:names];

 }

[fontNames release];

Fonts are part of a font family, and the UIFont class returns a list of all of the font
families available in iOS as well as the fonts under each font family. The code above
first gets a list of all the font families, and then a list of all the fonts under each fam-
ily, printing those font names out to the console.

CCLabelBMFont
CCLabelTTFs are great for when you just need the standard iOS fonts and do not
have to change the text of the labels very often. In the situations where you need to
use a custom font or change the text on each frame, the CCLabelBMFont class is what
you will want to use.

A bitmapped font atlas is an image containing all of the characters you want to dis-
play along with coordinates data that allows the characters to be cut out of the master
image. The bitmap font atlas works in exactly the same way as the texture atlas you
created in Chapter 2, “Hello, Space Viking,” but in this case each of the images in the
atlas represents a character. Since the characters are already stored as images, you can-
not alter their size without using a different font atlas. If your game will have the same
characters in two or more sizes, you need to create several font atlases for each of the
sizes you need.

Cocos2D has support for any bitmapped fonts that use the fnt file format. While
Cocos2D itself does not have a bundled tool to create the font atlases, there are plenty
of great tools that can help you create them. This chapter covers Hiero (free) and the
excellent Glyph Designer (available in the Mac App Store).

Chapter 6 Text, Fonts, and the Written Word 156

Using Glyph Designer
Glyph Designer is a Mac OS X–based application for design font atlases developed by
71Squared. Unlike Hiero, it is a native Mac OS X application, offering better perfor-
mance and compatibility with Mac OS X. In order to use Glyph Designer, you need
to purchase it in the Mac App Store or at http://glyphdesigner.71squared.com/.

To create the font texture atlas:

1. Start up Glyph Designer, or select File > New if it is already running.

2. In the top left search box, enter Helvetica and select it as the font.

3. Move the size slider so that the font size is set to 32.

4. By default, Glyph Designer automatically resizes the texture atlas to the smallest
possible size that would fit all of the glyphs.

5. On the right, click on the Gradient Bar and select a yellow tone from the
color wheel that pops up.

The color you choose is not important; yellow was chosen because it is more vis-
ible against the Space Viking background.

6. On the bottom right, in the Included Glyphs section, click on the NEHE
button.

This area is where you enter the characters you need in your font atlas. The
NEHE is a small subset of the full ASCII character set. Be sure to always include
any characters you will need in your game inside of the font texture atlas. If in
your game you try to render a character in a label without that glyph being pres-
ent in the font texture atlas, Cocos2D will leave a blank space for it.

7. Under the file menu, select Export and enter SpaceVikingFont for the Save As
field.

This step creates two files: a PNG of all the glyphs in one font texture atlas and
a plist file that will allow Cocos2D to extract each glyph from the font texture
atlas. Figure 6.3 shows Glyph Designer with Helvetica selected.

Lastly, you need to import the newly created font texture atlas and plist files into
Xcode. Drag both the SpaceVikingFont.png and SpaceVikingFont.fnt files into your
SpaceViking project under the Images folder.

Using the Hiero Font Builder Tool
If you are looking for a free alternative to Glyph Designer, the Hiero Font Builder
Tool is a Java application that you can run in your browser. It is a free tool that you
can use to create a font texture atlas for Cocos2D. First point your browser to www.
n4te.com/hiero/hiero.jnlp.

www.n4te.com/hiero/hiero.jnlp
www.n4te.com/hiero/hiero.jnlp
http://glyphdesigner.71squared.com/

Using the Hiero Font Builder Tool 157

Warning
Safari’s default behavior is to just download the Hiero.jnpl file. You will need to double-
click it in the Downloads window to launch Hiero.

If prompted, accept the warning shown in Figure 6.4.

Figure 6.3 Glyph Designer

Figure 6.4 Warning upon running Hiero

Chapter 6 Text, Fonts, and the Written Word 158

Once Hiero is up and running, you will see a list of the fonts available in your sys-
tem in the top left text box. To create the font atlas needed for Space Viking, follow
these steps:

1. In the top left font selection box, scroll down and pick Helvetica.

2. In the Sample Text area, click on NEHE to have some sample characters entered
in for you. If the text you need consists only of a few characters, you can type
them here.

3. Under the Color, click on the white box and select a yellow color.

4. In the Rendering section, switch to glyph cache and set the page width and
height to 256. As with image texture atlases, you want the smallest power-of-
two sized image that will contain all of the characters you need. This setting
indicates that Hiero will create a 256 × 256 texture with all of the characters in
the sample text. At this point, Hiero should look like Figure 6.5.

5. From the File menu, select Save BMFont Files and name the saved file
SpaceVikingFont.fnt. Hiero will create both a .fnt and a .png file.

Figure 6.5 Hiero running/screen

Using the Hiero Font Builder Tool 159

If you created your font texture atlas with Hiero, you will need to import the PNG
and plist files into Xcode. Drag both the SpaceVikingFont.png and SpaceVikingFont.fnt
files into your SpaceViking project under the Images folder.

Note
All the characters you want to display have to be present in this font atlas. If you are
using lowercase and uppercase versions of the characters, both need to be included. If
you try to set the text to a character that is not in your font atlas, it will show up as blank
onscreen. You can use Hiero or any other bitmap font utility that can generate both the
PNG and FNT files for Cocos2D to use. If you wish to skip the font atlas creation, you can
use the FNT and PNG files included with the source code for the book.

Using CCLabelBMFont Class
After you have created and imported the SpaceVikingFont.fnt and SpaceVikingFont.png
files into Space Viking, you need to add the code to use the CCLabelBMFont class. To
start, you will replace the Game Start CCLabelTTF with a CCLabelBMFont.

Open the GameplayLayer.m to the init method and replace the line creating the
CCLabelTTF with the contents of Listing 6.2.

Listing 6.2 GameplayLayer.m init method, CCLabelBMFont instead of CCLabelTTF

// With CCLabelBMFont

CCLabelBMFont *gameBeginLabel =

 [CCLabelBMFont labelWithString:@"Game Start"

 fntFile:@"SpaceVikingFont.fnt"];

The remaining lines that you created in the previous section setting the posi-
tion and the two actions to the gameBeginLabel can remain in place. If you click
Run, you should see the “Game Start” banner, although this time it should be yellow
instead of white and in size 32 instead of 64.

Using CCLabelBMFont restricts you to having the fonts only in the original size
saved to the font texture atlas via the external tool. Because the CCLabelBMFont is
really just a texture, you can scale it and apply any other actions and effects to it as you
would to any other CCNode. In the Game Start banner, the font size is 32 but the ban-
ner is scaled to four times its size as part of the CCScaleBy action.

Note
You should be careful not to scale your fonts too large, as they will lose clarity. In general,
if you know you will need your fonts in several sizes, you can create font texture atlases
for each of the needed sizes.

A good way to put the CCLabelBMFont to use is in setting up a live debugging
system in Space Viking. The next section walks you through creating a live debugging
text for the EnemyRobot.

Chapter 6 Text, Fonts, and the Written Word 160

For the More Curious: Live Debugging
At this point you know how to add text labels into your games, so if you just are inter-
ested in the basics, feel free to skip to the next chapter. But if you want to learn a cool
way to use text labels to make debugging and developing your game easier, check out
this section!

In your games it is often useful to know what state each of the characters is in dur-
ing game play. One way you can do this is to overlay above the objects small text
labels showing their state and other relevant data. In this section you set up a system to
show the position and the current state of the enemy robots. To accomplish this, you
need to set up an instance variable in EnemyRobot to point to the debug label and a
method to update the label with the latest position and status. To start, open up the
EnemyRobot.h header file.

Updating EnemyRobot
In the EnemyRobot.h header file, in the @interface section, add an instance variable
to hold a pointer to the label object called myDebugLabel. The myDebugLabel vari-
able can be added directly below the id <GameplayLayerDelegate> delegate
declaration.

CCLabelBMFont *myDebugLabel;

Below the @interface section, add the property definition so that this pointer
variable can be set by the GameplayLayer as follows:

@property (nonatomic,assign) CCLabelBMFont *myDebugLabel;

Listing 6.3 shows the full contents of the EnemyRobot.h header file with the two
lines added for the myDebugLabel variable in bold.

Listing 6.3 EnemyRobot.h header file

// EnemyRobot.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

@interface EnemyRobot : GameCharacter {

CCAnimation *robotWalkingAnim;

CCAnimation *raisePhaserAnim;

CCAnimation *shootPhaserAnim;

CCAnimation *lowerPhaserAnim;

CCAnimation *torsoHitAnim;

CCAnimation *headHitAnim;

CCAnimation *robotDeathAnim;

For the More Curious: Live Debugging 161

BOOL isVikingWithinBoundingBox;

BOOL isVikingWithinSight;

GameCharacter *vikingCharacter;

id <GameplayLayerDelegate> delegate;

CCLabelBMFont *myDebugLabel;

}

@property (nonatomic,assign) id <GameplayLayerDelegate> delegate;

@property (nonatomic, retain) CCAnimation *robotWalkingAnim;

@property (nonatomic, retain) CCAnimation *raisePhaserAnim;

@property (nonatomic, retain) CCAnimation *shootPhaserAnim;

@property (nonatomic, retain) CCAnimation *lowerPhaserAnim;

@property (nonatomic, retain) CCAnimation *torsoHitAnim;

@property (nonatomic, retain) CCAnimation *headHitAnim;

@property (nonatomic, retain) CCAnimation *robotDeathAnim;

@property (nonatomic,assign) CCLabelBMFont *myDebugLabel;

-(void)initAnimations;

@end

Switch over to the EnemyRobot.m implementation file. Immediately below the
@synthesize delegate statement, add the following line:

@synthesize myDebugLabel;

These three lines take care of making the myDebugLabel variable accessible from
outside EnemyRobot so that it can be set by the GameplayLayer.

Next, you need a small method so that each EnemyRobot can update its debug
label to show the current position and state. Move to above the updateStateWith-
DeltaTime method in EnemyRobot and add the setDebugLabelAndTextAnd-
Position method, as shown in Listing 6.4.

Listing 6.4 setDebugLabelTextAndPosition method

-(void)setDebugLabelTextAndPosition {

CGPoint newPosition = [self position];

NSString *labelString =

 [NSString stringWithFormat:@"X: %.2f \n Y:%.2f \n",

 newPosition.x, newPosition.y];

switch (characterState) {

case kStateSpawning:

 [myDebugLabel setString:

 [labelString stringByAppendingString:@" Spawning"]];

break;

Chapter 6 Text, Fonts, and the Written Word 162

case kStateIdle:

 [myDebugLabel setString:

 [labelString stringByAppendingString:@" Idle"]];

break;

case kStateWalking:

 [myDebugLabel setString:

 [labelString stringByAppendingString:@" Walking"]];

break;

case kStateAttacking:

 [myDebugLabel setString:

 [labelString stringByAppendingString:@" Attacking"]];

break;

case kStateTakingDamage:

 [myDebugLabel setString:

 [labelString stringByAppendingString:@" Taking Damage"]];

break;

case kStateDead:

 [myDebugLabel setString:

 [labelString stringByAppendingString:@" Dead"]];

break;

default:

 [myDebugLabel setString:

 [labelString stringByAppendingString:@" Unknown State"]];

break;

 }

 float yOffset = screenSize.height * 0.195f;

 newPosition = ccp(newPosition.x,newPosition.y+yOffset);

[myDebugLabel setPosition:newPosition];

}

The setDebugLabelTextAndPosition method creates a string with the Enemy-
Robot’s current position and state. The .2f you see is just a formatting parameter to
limit the decimal positions to two places. The \n adds a carriage return to keep the
debug label tidy. Lastly, the debug label’s position is set to directly above the Enemy-
Robot’s center point by 150 pixels.

Move to the updateStateWithDeltaTime method and add this line directly
below the checkAndClampSpritePosition call:

[self setDebugLabelTextAndPosition];

For the More Curious: Live Debugging 163

This one line will call the setDebugLabelTextAndPosition method and update
the debug label on every frame. If you recall from Chapter 5, “More Actions, Effects,
and Cocos2D Scheduler,” the EnemyRobot removes itself from the CCSpriteBatch-
Node once it is done playing the death animation. When the EnemyRobot is removed
from the CCSpriteBatchNode, it needs to inform the debug label to remove itself
from the GameplayLayer. Open the dealloc method in the EnemyRobot and add
the following two lines above the [super dealloc] call:

myDebugLabel = nil;

The first line asks for the debug label to remove itself from the parent Gameplay-
Layer. The second line sets the debug label pointer to nil, since the object reference is
no longer valid.

Updating GameplayLayer
Now that the EnemyRobot is set up to update the debug label, the label itself needs to
be created and associated with the EnemyRobot. Open the GameplayLayer.m imple-
mentation file and move to the createObjectOfTypeMethod.

In the if block that defines the steps needed to spawn an EnemyRobot, add the
following three lines before the line [enemyRobot release].

CCLabelBMFont *debugLabel =

 [CCLabelBMFont

labelWithString:@"NoneNone"

fntFile:@"SpaceVikingFont.fnt"];

 [self addChild:debugLabel];

 [enemyRobot setMyDebugLabel:debugLabel];

The first line creates the CCLabelBMFont debugLabel with a temporary
"NoneNone" string and the font file you created earlier in this chapter. The
debugLabel is then added to the GameplayLayer, allowing it to be rendered
onscreen. Lastly, a pointer to it is passed to the newly created EnemyRobot, allowing
the EnemyRobot to update the label. Your if block for creating EnemyRobot should
be identical to Listing 6.5.

Listing 6.5 GameplayLayer.m createObjectOfTypeMethod for EnemyRobot objects

} else if (kEnemyTypeAlienRobot == objectType) {

CCLOG(@"Creating the Alien Robot");

EnemyRobot *enemyRobot = [[EnemyRobot alloc]

initWithSpriteFrameName:@"an1_anim1.png"]; //teleport_2

 [enemyRobot setCharacterHealth:initialHealth];

 [enemyRobot setPosition:spawnLocation];

 [enemyRobot changeState:kStateSpawning];

 [sceneSpriteBatchNode addChild:enemyRobot z:ZValue];

 [enemyRobot setDelegate:self];

Chapter 6 Text, Fonts, and the Written Word 164

CCLabelBMFont *debugLabel =

 [CCLabelBMFont

labelWithString:@"NoneNone"

fntFile:@"SpaceVikingFont.fnt"];

 [self addChild:debugLabel];

 [enemyRobot setMyDebugLabel:debugLabel];

 [enemyRobot release];

 }

If you click Run now, you will see that the EnemyRobot characters have three
lines of debug text above their heads indicating state and their current position.
Figure 6.6 shows Space Viking on the iPad Simulator with the debug labels. Notice
how the position coordinates update on every frame while the EnemyRobot is walk-
ing without impacting the game’s performance.

Figure 6.6 Space Viking with debug labels showing on top of the
EnemyRobot characters

Other Uses for Text Debugging
You can use the text debugging in your games to get a real-time view of the states of
various entities or game objects while playing. This technique can be really useful to
find hard-to-diagnose bugs in your logic or when you are left scratching your head as
to why that enemy does not attack even though the player is nearby. Some developers

Challenges 165

have even gone even further to show how much memory is free on the device as the
game is being played to tip them off when they are about to encounter a low-memory
condition or if they have memory leaks.

Summary
You have learned about the font-rendering system in Cocos2D and the differences
between using CCLabelTTF and CCLabelBMFont. You also learned about using text
labels as a live debugging system for your games and implemented a debugging system
for the EnemyRobot. In the next chapter you will work to create the main menu and
the foundation needed to allow Ole to explore more than just one level in the Space
Viking universe.

Challenges
1. Try making the debug labels appear only in debug builds of Space Viking or

enabling it to be toggled on and off by a #define statement.

Hint
You could define a #define around the COCOS2D_DEBUG flag.

2. Replace the y-axis indicator from the EnemyRobot with the robot’s current
health level.

3. Try adding a debug label to the Viking so you can see what state and position
Ole is in.

This page intentionally left blank

Part III
From Level to Game

Learn how to expand the Space Viking level you have built into a full
game by adding menus, using sound, and scrolling.

n Chapter 7: “Main Menu, Level Completed, and Credits Scenes”

n Chapter 8: “Pump Up the Volume!”

n Chapter 9: “When the World Gets Bigger: Adding Scrolling”

This page intentionally left blank

7
Main Menu, Level Completed,

and Credits Scenes

So far in this book you have built a full working scene for Ole the Viking to explore. He has
to battle evil robots and figure out a way to stop them from spawning. In this chapter you learn
about Cocos2D menus and how to create and link multiple scenes. By the end of this chapter
you will have Space Viking set up to start on a main menu, show three different levels for Ole
to explore, and show a level complete screen once Ole has killed all the enemies or died trying. If
you are ready, read on.

Scenes in Cocos2D
In Chapter 1, “Hello, Cocos2D,” you learned that each distinct level or view is stored
inside of a CCScene and that the Cocos2D Director is in charge of running one scene
at a time. Up to this point, you had one CCScene, the GameScene where all the
action takes place. While one scene has been great to get Space Viking started, Ole
needs more levels to explore. There are menus, scrolling, and physics to discover and
implement before you reach the end of this book. This chapter covers how to create
and link menus and levels in your games.

In Space Viking each level is represented by a CCScene. In your own games, you can
split levels in whichever way suits you: you could have a CCScene that handles all lev-
els or a set of levels that share the same graphics. Remember that a CCScene is just a
subclass of CCNode with the anchorPoint set to the middle of the screen. It is has no
further logic and is just a container for all the objects you will have in a particular part
of your game. In Space Viking you will have the following scenes:

n Main Menu

First screen displayed when Space Viking launches. It shows Ole spinning around
and gives the player the option to play, set options, or see the website for this
book.

Chapter 7 Main Menu, Level Completed, and Credits Scenes170

n Options Menu

A menu screen that allows the user to turn music on/off and sound effects on/
off, as well as an option to view the Space Viking credits.

n Credits

A list of the people involved in bringing Space Viking to life.
n Level Completed

Shown when the player completes a level or dies, indicating the player’s progress.
n GameplayScenes

A scene for each of the levels in Space Viking. You have already created the first
gameplay scene, when Ole awakens in the alien world.

In order to bring these scenes to life, you need to create a MainMenuScene,
LevelCompleteScene, OptionsScene, and CreditsScene. The next section walks
you through the process of creating the code needed to power these scenes. Figure 7.1
shows the navigation hierarchy of these scenes from the Main Menu.

Figure 7.1 Menu screen flow in Space Viking

Before you can start creating these scenes, you need to set up the GameManager
singleton, which informs the director which scene to display.

Introducing the GameManager
In the previous chapters you had the game starting out with the first scene, where
Ole fights off the RadarDish and EnemyRobot. In order to make it easy to switch

Introducing the GameManager 171

between scenes, you create a GameManager class to handle the task of asking the
Cocos2D Director to switch CCScenes. The GameManager class will be a singleton
class, so there will be only one instance of it during the lifetime of the Space Viking
game, and it will be accessible from all the scenes. All of the scenes will know about
the GameManager, and the GameManager will know about them, but the individual
scenes will not know about each other. This way, each scene is self-contained and you
can add more scenes or change them at will without worrying about interdependencies
between scenes. The Singleton pattern is a powerful design pattern used throughout
Cocos2D for the CCDirector, CCTextureCache, and other classes.

Note
For more information on the Singleton design pattern as well as other useful patterns in
Cocoa programming, take a look at Cocoa Design Patterns, by Erik M. Buck and Donald A.
Yacktman (Addison-Wesley, 2009).

The game manager needs to know what scenes to switch between, so before coding
up the GameManager, open the Constants.h file and add the lines shown in Listing 7.1
to the bottom of it.

Listing 7.1 Constants.h SceneType enumeration type

#define kMainMenuTagValue 10

#define kSceneMenuTagValue 20

typedef enum {

 kNoSceneUninitialized=0,

 kMainMenuScene=1,

 kOptionsScene=2,

 kCreditsScene=3,

 kIntroScene=4,

 kLevelCompleteScene=5,

 kGameLevel1=101,

 kGameLevel2=102,

 kGameLevel3=103,

 kGameLevel4=104,

 kGameLevel5=105,

 kCutSceneForLevel2=201

} SceneTypes;

typedef enum {

 kLinkTypeBookSite,

 kLinkTypeDeveloperSiteRod,

 kLinkTypeDeveloperSiteRay,

 kLinkTypeArtistSite,

 kLinkTypeMusicianSite

} LinkTypes;

Chapter 7 Main Menu, Level Completed, and Credits Scenes172

// Debug Enemy States with Labels

// 0 for OFF, 1 for ON

#define ENEMY_STATE_DEBUG 0

The SceneTypes is just an enumeration type that defines the scenes the Game-
Manager will support switching between. You can see there are placeholders for game
levels 2 through 5 that you have yet to create.

The LinkTypes is a set of types that are used to determine what URL to open.
In the Main Menu the user will have the choice to open this book’s site, and in the
Credits scene the player can visit Ray’s and my development site as well as the artist
and musician sites.

Lastly, the ENEMY_STATE_DEBUG f lag is used to answer the first challenge question
from Chapter 6, “Text, Fonts, and the Written Word.” You will use this f lag to turn
the Enemy Debug labels on and off. You will notice that this f lag answers the chal-
lenge question from Chapter 6.

Creating the GameManager
To start creating the GameManager, select the Singletons folder you created in Chapter 3,
“Introduction to Cocos2D Animations and Actions”:

1. Right-click and, from the contextual menu, select New File. Choose the
Cocoa Touch category under iOS and Objective-C class as the file type,
and click Next.

2. For the Subclass field, enter NSObject and click Next.

3. Enter GameManager.m for the filename and click Save.

Open the GameManager.h header file and replace the code with the contents of List-
ing 7.2.

Listing 7.2 GameManager.h header file

// GameManager.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "Constants.h"

@interface GameManager : NSObject {

BOOL isMusicON;

BOOL isSoundEffectsON;

BOOL hasPlayerDied;

 SceneTypes currentScene;

}

Introducing the GameManager 173

@property (readwrite) BOOL isMusicON;

@property (readwrite) BOOL isSoundEffectsON;

@property (readwrite) BOOL hasPlayerDied;

+(GameManager*)sharedGameManager; // 1

-(void)runSceneWithID:(SceneTypes)sceneID; // 2

-(void)openSiteWithLinkType:(LinkTypes)linkTypeToOpen ; // 3

@end

In Listing 7.2 pay close attention to the +(GameManager*)sharedManager
method. The plus sign is key here—it indicates that the sharedManager method is
a class method and not an instance method. This method is available at the class level,
without your code having to have an allocated and initialized GameManager instance
before calling it. In fact, this class method will allocate and initialize an instance of the
GameManager class if there is not one already created for your game.

1. Sets up a class method called sharedGameManager. This class method returns
the one and only instance of the GameManager. The full details are in the
implementation file for GameManager in Listing 7.3.

2. Declares a runSceneWithID method that takes a sceneID of type SceneTypes.
This method is called by various scenes when they need to have the director (via
the GameManager) switch the scene that is currently running. An example is
when the player finishes a level and the Gameplay scene has to be replaced by
the LevelComplete scene.

3. Opens a URL based on the linkType sent. This method closes Space Viking
and opens Mobile Safari to one of the predefined links in the game. You can use
this same code if you want to send players to your site in your own games.

Note
As you will see in the GameManager.m implementation, the openSiteWithLinkType
closes the Space Viking game and launches MobileSafari. If you wanted to keep your
game running and open a web page with MobileSafari from within your game, you
could create a UIWebView and add it to the view hierarchy, as doing so would let you
display a website while keeping your game running.

The implementation of the GameManager can be thought of in two logical parts.
In the first part are the methods needed to make the GameManager a singleton. The
second part covers the runSceneWithID and openSiteWithLinkType methods and
contains the GameManager-specific functionality. When you are creating your own
singletons, copy the first part, and replace the second with your own game code.

Switch to the GameManager.m implementation file and replace the code with the
contents of Listing 7.3.

Chapter 7 Main Menu, Level Completed, and Credits Scenes174

Listing 7.3 GameManager.m implementation—singleton portion

// GameManager.m

// SpaceViking

//

#import "GameManager.h"

#import "GameScene.h"

#import "MainMenuScene.h"

#import "OptionsScene.h"

#import "CreditsScene.h"

#import "IntroScene.h"

#import "LevelCompleteScene.h"

@implementation GameManager

static GameManager* _sharedGameManager = nil; // 1

@synthesize isMusicON;

@synthesize isSoundEffectsON;

@synthesize hasPlayerDied;

+(GameManager*)sharedGameManager {

@synchronized([GameManager class]) // 2

 {

if(!_sharedGameManager) // 3

 [[self alloc] init];

return _sharedGameManager; // 4

 }

return nil;

}

+(id)alloc

{

@synchronized ([GameManager class]) // 5

 {

NSAssert(_sharedGameManager == nil,

@"Attempted to allocate a second instance of the Game
Manager singleton"); // 6

_sharedGameManager = [super alloc];

return _sharedGameManager; // 7

 }

return nil;

}

-(id)init { // 8

self = [super init];

if (self != nil) {

 // Game Manager initialized

Introducing the GameManager 175

CCLOG(@"Game Manager Singleton, init");

isMusicON = YES;

isSoundEffectsON = YES;

hasPlayerDied = NO;

 currentScene = kNoSceneUninitialized;

 }

return self;

}

The singleton code has one purpose, to ensure that there is only one instance of
GameManager allocated and running in your game at any time; hence the “single”
part of the name. The code lines in Listing 7.3 carry out the following:

1. Declares a static object of type GameManager and initializes it to nil. This is
the object that gets sent back to calling classes once GameManager is initialized.

2. Defines a synchronized block. This ensures that even if two class instances call
this method at the same time, only one will go through at a time. This code
becomes really important when you have a multithreaded app or game and you
have the risk of executing the same code block by two different class instances
(such as a scene and another object).

3. If the sharedManager is nil, this line allocates and initializes it. The
sharedManager is the GameManager instance that gets returned by the Game-
Manager class. If this sounds confusing, just remember that this code simply
ensures that the GameManager class creates and returns only one instance of the
GameManager, much the same way iOS creates only one instance of your Appli-
cation Delegate.

4. Returns the newly allocated and initialized GameManager instance.

5. Allocates the memory needed for an instance of GameManager. This method is
called by the sharedManager method in step 3. This method is surrounded by
the @synchronized directive so that it can be executed by only one thread at a
time.

6. An NSAssert to ensure that the GameManager instance is nil or nonexistent
before an attempt is made to allocate it. As the message indicates, the NSAssert
will stop execution if a second instance of GameManager is being allocated, as it
would no longer be a singleton.

7. Returns the newly allocated instance of GameManager.

8. Initializes the instance variables of GameManager, including the default for the
Music and Sound Effects options. The init method is the same as the other
classes you have written for Space Viking; hopefully, by this point you can spot
and repeat the init method pattern from memory.

Chapter 7 Main Menu, Level Completed, and Credits Scenes176

When looking over Listing 7.3, keep in mind that a singleton is just like other
classes, except that within your game there can be only one instance of the class. With
the singleton portion out of the way, copy the contents of Listing 7.4 into GameManager’s
init method.

Listing 7.4 GameManager.m implementation—runSceneWithID

-(void)runSceneWithID:(SceneTypes)sceneID {

 SceneTypes oldScene = currentScene;

 currentScene = sceneID;

id sceneToRun = nil;

switch (sceneID) {

case kMainMenuScene:

 sceneToRun = [MainMenuScene node];

break;

case kOptionsScene:

 sceneToRun = [OptionsScene node];

break;

case kCreditsScene:

 sceneToRun = [CreditsScene node];

break;

case kIntroScene:

 sceneToRun = [IntroScene node];

break;

case kLevelCompleteScene:

 sceneToRun = [LevelCompleteScene node];

break;

case kGameLevel1:

 sceneToRun = [GameScene node];

break;

case kGameLevel2:

// Placeholder for Level 2

 break;

case kGameLevel3:

// Placeholder for Level 3

break;

case kGameLevel4:

// Placeholder for Level 4

break;

case kGameLevel5:

// Placeholder for Level 5

break;

case kCutSceneForLevel2:

// Placeholder for Platform Level

break;

Introducing the GameManager 177

default:

 CCLOG(@"Unknown ID, cannot switch scenes");

return;

break;

 }

if (sceneToRun == nil) {

// Revert back, since no new scene was found

currentScene = oldScene;

return;

 }

// Menu Scenes have a value of < 100

if (sceneID < 100) {

if (UI_USER_INTERFACE_IDIOM() != UIUserInterfaceIdiomPad) {

CGSize screenSize =

 [CCDirector sharedDirector].winSizeInPixels;

if (screenSize.width == 960.0f) {

 // iPhone 4 Retina

 [sceneToRun setScaleX:0.9375f];

 [sceneToRun setScaleY:0.8333f];

CCLOG(@"GM:Scaling for iPhone 4 (retina)");

 } else {

 [sceneToRun setScaleX:0.4688f];

 [sceneToRun setScaleY:0.4166f];

CCLOG(@"GM:Scaling for iPhone 3G(non-retina)");

 }

 }

 }

if ([[CCDirector sharedDirector] runningScene] == nil) {

 [[CCDirector sharedDirector] runWithScene:sceneToRun];

 } else {

 [[CCDirector sharedDirector] replaceScene:sceneToRun];

 }

}

The GameManager singleton asks the Cocos2D Director to switch between
different scenes, from the MainMenu, to LevelComplete, to Gameplay. The
runSceneWithID method is what controls the scene to switch to, and it can be
called from any scene. The switch statement initializes the new scene to be displayed.
The if block at the end of the function checks to see if the director is already run-
ning a scene, and if so, it calls replaceScene with the new scene. The check for

Chapter 7 Main Menu, Level Completed, and Credits Scenes178

UI_USER_INTERFACE_IDIOM() determines if Space Viking is not running on the iPad
and then applies a scaling down to the entire scene. Since the scene contains the layer
and the sprites, everything gets scaled down in one call. The menu scenes contain very
few images, so scaling down iPad-sized images provides a savings on the size of Space
Viking. Unlike the other checks for UI_USER_INTERFACE_IDIOM(), here you are
scaling if the game detects it is not running on the iPad. If you have a lot of images for
your menus, you may decide to use iPhone and iPhone4 (-hd)-sized images, just as is
done in the gameplay scenes.

Warning
The issue of when to use runScene and replaceScene is a common source of frus-
tration to developers starting out with Cocos2D. runScene can be called only if the
director is not currently running a scene, while replaceScene is called when there is
already a scene being displayed. The if statement at the end of runSceneWithID
takes care of calling the proper director method by checking to see if the director is cur-
rently running a scene.

The last part of the GameManager implementation deals with opening Mobile-
Safari to one of the links from the MainMenu or other menus. Paste the contents of
Listing 7.5 into the runSceneWithID method in GameManager.m.

Listing 7.5 GameManager.m openSiteWithLinkType method

-(void)openSiteWithLinkType:(LinkTypes)linkTypeToOpen {

 NSURL *urlToOpen = nil;

if (linkTypeToOpen == kLinkTypeBookSite) {

CCLOG(@"Opening Book Site");

 urlToOpen =

 [NSURL URLWithString:

@"http://www.informit.com/title/9780321735621"];

 } else if (linkTypeToOpen == kLinkTypeDeveloperSiteRod) {

 CCLOG(@"Opening Developer Site for Rod");

 urlToOpen = [NSURL URLWithString:@"http://www.prop.gr"];

 } else if (linkTypeToOpen == kLinkTypeDeveloperSiteRay) {

 CCLOG(@"Opening Developer Site for Ray");

urlToOpen =

 [NSURL URLWithString:@"http://www.raywenderlich.com/"];

 } else if (linkTypeToOpen == kLinkTypeArtistSite) {

CCLOG(@"Opening Artist Site");

 urlToOpen = [NSURL URLWithString:@"http://EricStevensArt.com"];

 } else if (linkTypeToOpen == kLinkTypeMusicianSite) {

CCLOG(@"Opening Musician Site");

 urlToOpen =

 [NSURL URLWithString:@"http://www.mikeweisermusic.com/"];

Menus in Cocos2D 179

 } else {

 CCLOG(@"Defaulting to Cocos2DBook.com Blog Site");

urlToOpen =

 [NSURL URLWithString:@"http://www.cocos2dbook.com"];

 }

if (![[UIApplication sharedApplication] openURL:urlToOpen]) {

 CCLOG(@"%@%@",@"Failed to open url:",[urlToOpen description]);

 [self runSceneWithID:kMainMenuScene];

 }

}

@end

The openSiteWithLinkType method determines which URL to open via the
linkTypeToOpen variable and makes a call to UIApplication to open the URL.
The call to UIApplication closes Space Viking and opens MobileSafari, navigating
to the URL sent via the openURL call. If this call fails, the game is returned to the
MainMenu.

Warning
The code you have entered so far will not compile because you have yet to create the
classes for the MainMenu, Options, Credits, and LevelComplete scenes. The
error dialogs in Xcode should disappear as soon as you create these classes.

The next section covers the basics for the different CCMenu classes that make up the
menu system in Cocos2D. You will use the CCMenu classes to create the MainMenu,
Options, Credits, and LevelComplete scenes.

Menus in Cocos2D
Cocos2D has a built-in menu system that you can use to create the menus for your
game, and that is what you will use to create the Main Menu and Credits screens for
Space Viking. A similar hierarchy to how CCLayers are children of CCScenes exists in
CCMenu. The classes are as follows:

n CCMenu

The main class driving a menu, it contains the menu list items that represent
your text, buttons, and toggles. The CCMenu is what you create last and add to
your CCLayer.

n CCMenuAtlasFont

A bitmapped font atlas class, used to create a text string to act as a text button
onscreen.

Chapter 7 Main Menu, Level Completed, and Credits Scenes180

n CCMenuItemFont

A menu item class that can display a text string you want to display onscreen to
act as a text button.

n CCMenuItemImage

An image button composed of a normal and active/pressed-down image.
n CCMenuItemLabel

A button that uses a CCLabelTTF to display the text.
n CCMenuItemSprite

Similar to the CCMenuItemImage class except it uses already created
CCSprites for the normal and active/pressed-down images.

n CCMenuItemToggle

A toggle switch made of text or a label. When pressed, it switches between the
two text options or toggles. The Music and Sound Effects On/Off menu items
in the Options scene are examples of CCMenuItemToggle.

CCMenuItems act as buttons by calling a selector for methods in your code. If this
sounds confusing, do not worry: you will see it in action in the next section. In a nut-
shell, it means that for each CCMenuItem press, one of your methods will get called.
In that method you will then carry out the necessary action, such as switching the
scene.

Scene Organization and Images
In the next section you create several scenes and layers to support all of the menus in
Space Viking. In order to avoid a jumbled mess of scenes and layers, you should set up
groups in Xcode to keep the new scenes and layers organized.

In your SpaceViking project

1. Select the Scenes group and right-click, selecting Add > New Group.

2. Label the new group Intro inside of the Scenes group.

3. Repeat the steps to create the groups MainMenu, Options, Credits, LevelComplete,
and Scene1.

4. Move the GameScene.h and GameScene.m files into the Scene1 group.

5. Move the Layers group you created previously inside of the Scene1 group.

Your newly created groups should look like Figure 7.2.

Scene Organization and Images 181

Adding Images and Fonts for the Menus
The various menus in Space Viking require a new set of images in addition to what you
have used up to now. In the resources file you downloaded for this chapter, you will
find two new folders: Menus and Fonts. Use the following steps to add the new images
and new font atlas needed into your SpaceViking project.

1. In Xcode, select the Images group, right-click, and select Add Files.

2. Navigate to the directory where you downloaded the resources for this chapter
and select the Menus folder and click Add.

3. Repeat Step 2 for the Fonts folder.

4. Move the SpaceVikingFont.fnt and SpaceVikingFont.png files you created in
Chapter 6 inside of the Fonts group in Xcode.

Figure 7.3 shows the Images group in Xcode with the Menus and Fonts subfolders
added.

With your SpaceViking project organized, you are ready to move on to creating the
Main Menu classes.

Figure 7.2 Scenes groups in Xcode

Chapter 7 Main Menu, Level Completed, and Credits Scenes182

Creating the Main Menu
The Main Menu serves as the model for the menus in Space Viking. Once you under-
stand how it works, you can have confidence in adding menus to your own games.
You will first create the CCMenuItems, and then a CCMenu object that represents the
entire menu that will be created and added to your scenes.

Creating the MainMenuScene
To start, select the MainMenu group in the Groups and Files tab.

1. Right-click and select New File.

2. Right-click and, from the contextual menu, select New File. Choose the
Cocoa Touch category under iOS and Objective-C class as the file type,
and click Next.

3. For the Subclass field, enter CCScene and click Next.

4. Enter MainMenuScene.m for the filename and click Save.

5. Create the MainMenuLayer.m class by following steps 1 to 3 but entering
CCLayer for the Subclass field and MainMenuLayer.m for the filename.

Open the MainMenuScene.h header file and replace the template code with the con-
tents of Listing 7.6.

Listing 7.6 MainMenuScene.h header file

// MainMenuScene.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "MainMenuLayer.h"

Figure 7.3 Menu and fonts images in Xcode Images group

Creating the Main Menu 183

@interface MainMenuScene : CCScene {

MainMenuLayer *mainMenuLayer;

}

@end

The MainMenu scene is just a container object to hold the MainMenuLayer
class. In the header file you can see the declaration for the MainMenuLayer instance
variable.

Switch to the MainMenu.m implementation file and copy the code in Listing 7.7 in
place of the template-generated code.

Listing 7.7 MainMenuScene.m implementation file

// MainMenuScene.m

// SpaceViking

//

#import "MainMenuScene.h"

@implementation MainMenuScene

-(id)init {

self = [super init];

if (self != nil) {

mainMenuLayer = [MainMenuLayer node];

 [self addChild:mainMenuLayer];

 }

return self;

}

@end

The MainMenuScene implementation file is just an init method that sets up the
MainMenuLayer and adds it to the MainMenuScene as a child. All of the actual
menu buttons and background images and animations are in the MainMenuLayer.

MainMenuLayer class
The MainMenuLayer is the class that contains the logic to power the Main Menu
buttons, scene selections, and a background animation of Ole f loating in space. To
start, open the MainMenuLayer.h header file and replace the code with the contents of
Listing 7.8.

Listing 7.8 MainMenuLayer.h header file

// MainMenuLayer.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "cocos2d.h"

Chapter 7 Main Menu, Level Completed, and Credits Scenes184

#import "Constants.h"

#import "GameManager.h"

@interface MainMenuLayer : CCLayer {

CCMenu *mainMenu;

CCMenu *sceneSelectMenu;

}

@end

In the header file of MainMenuLayer are two instance variables to cover the Main
Menu and the scene selection menu. There is also an include of the GameManager.h
header file so that the MainMenuLayer can call GameManager directly. In the imple-
mentation file is where everything comes together. Listing 7.9 shows the beginning
portion of the MainMenuLayer.m class file. Make sure you copy the contents of Listings
7.9 through 7.13 into the MainMenuLayer.m class file.

Listing 7.9 MainMenuLayer.m (part 1: private methods)

// MainMenuLayer.m

// SpaceViking

//

#import "MainMenuLayer.h"

@interface MainMenuLayer()

-(void)displayMainMenu;

-(void)displaySceneSelection;

@end

@implementation MainMenuLayer

The first thing you may notice in Listing 7.9 is the @interface declaration inside
of the implementation file. If you are thinking that @interface declarations normally
belong in the header files, you are correct. Objective-C does not have explicit support
for private class methods: any methods you declare in your header file are considered
public methods. In order to have private methods, you need to include their declara-
tions in the .m implementation file in an @interface section before the @implemen-
tation section.

In some of the previous code in Space Viking you have not had to add explicit pri-
vate declarations for your methods; they have always preceded the calls to them in
the class source code files. The private method–style declaration is really useful if you
have method calls that may precede the implementation of those methods. An example
would be if you had a call to [self displayMainMenu] before you defined the
implementation of the displayMainMenu method in your code.

The next section of MainMenuLayer covers the calls to show the Options Menu,
open the book site, and play the first scene in the game. Add the contents of Listing
7.10 to your MainMenuLayer.m class.

Creating the Main Menu 185

Listing 7.10 MainMenuLayer.m (part 2: buyBook, showOptions, playScene)

-(void)buyBook {

 [[GameManager sharedGameManager]

openSiteWithLinkType:kLinkTypeBookSite];

}

-(void)showOptions {

CCLOG(@"Show the Options screen");

 [[GameManager sharedGameManager] runSceneWithID:kOptionsScene];

}

-(void)playScene:(CCMenuItemFont*)itemPassedIn {

if ([itemPassedIn tag] == 1) {

CCLOG(@"Tag 1 found, Scene 1");

 [[GameManager sharedGameManager] runSceneWithID:kIntroScene];

 } else {

CCLOG(@"Tag was: %d", [itemPassedIn tag]);

CCLOG(@"Placeholder for next chapters");

 }

}

The buyBook method is just a call to the openSiteWithLink method you
declared in GameManager, which exits Space Viking and launches MobileSafari.
The showOptions method places a call to GameManager to swap the MainMenu
scene with the Options scene. The GameManager will initialize the Options scene
and load it in place of the currently running MainMenu scene.

The playScene method launches the GameplayScene depending on which of
the three levels the player has selected. In Listing 7.10 you can see the code for the first
level you already created and placeholders for the next two scenes you will be creating
later in this book. To understand exactly how playScene is called from the MainMenu
scene, you need to refer to the code in Listings 7.11, 7.12, and 7.13.

Listing 7.11 MainMenuLayer.m (part 3: displayMainMenu)

-(void)displayMainMenu {

CGSize screenSize = [CCDirector sharedDirector].winSize;

if (sceneSelectMenu != nil) {

 [sceneSelectMenu removeFromParentAndCleanup:YES];

 }

// Main Menu

CCMenuItemImage *playGameButton = [CCMenuItemImage

itemFromNormalImage:@"PlayGameButtonNormal.png"

 selectedImage:@"PlayGameButtonSelected.png"

 disabledImage:nil

 target:self

 selector:@selector(displaySceneSelection)];

Chapter 7 Main Menu, Level Completed, and Credits Scenes186

CCMenuItemImage *buyBookButton = [CCMenuItemImage

itemFromNormalImage:@"BuyBookButtonNormal.png"

 selectedImage:@"BuyBookButtonSelected.png"

 disabledImage:nil

 target:self

 selector:@selector(buyBook)];

CCMenuItemImage *optionsButton = [CCMenuItemImage

itemFromNormalImage:@"OptionsButtonNormal.png"

 selectedImage:@"OptionsButtonSelected.png"

 disabledImage:nil

 target:self

 selector:@selector(showOptions)];

mainMenu = [CCMenu

menuWithItems:playGameButton,buyBookButton,optionsButton,nil];

 [mainMenu alignItemsVerticallyWithPadding:

 screenSize.height * 0.059f];

 [mainMenu setPosition:

ccp(screenSize.width * 2,

 screenSize.height / 2)];

id moveAction =

 [CCMoveTo actionWithDuration:1.2f

position:ccp(screenSize.width * 0.85f,

 screenSize.height/2)];

id moveEffect = [CCEaseIn actionWithAction:moveAction rate:1.0f];

 [mainMenu runAction:moveEffect];

 [self addChild:mainMenu z:0 tag:kMainMenuTagValue];

}

The displayMainMenu method creates the CCMenuItems and the CCMenu
needed for the Main Menu and adds the menu to the MainMenuLayer itself. It also
adds an animation at the end to slide the menu buttons from right to left.

The key to remember is that a CCMenu is just a collection of CCMenuItems, and
those menu items are what define the various buttons or text labels you will have as
part of your menu. Since the CCMenu contains all of the menu items, it controls the
alignment and position of those items. By default, all of the menu items are placed at
the center of the CCMenu. The line [mainMenu alignItemsVerticallyWithPad
ding:60.0f]; aligns all of the CCMenuItems vertically with a padding of 60 pixels
between each of them. There is an equivalent method for aligning the menu items
horizontally if your menu is left to right instead of top to bottom.

There are two more methods you need to include in MainMenuLayer.m: the dis-
playSceneSelection and init methods. Be sure to copy the entire contents of
those two methods into your MainMenuLayer.m file from Listings 7.12 and 7.13.

Creating the Main Menu 187

Listing 7.12 MainMenuLayer (part 4: displaySceneSelection)

-(void)displaySceneSelection {

CGSize screenSize = [CCDirector sharedDirector].winSize;

if (mainMenu != nil) {

 [mainMenu removeFromParentAndCleanup:YES];

 }

CCLabelBMFont *playScene1Label =

 [CCLabelBMFont labelWithString:@"Ole Awakes!"

 fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *playScene1 =

 [CCMenuItemLabel itemWithLabel:playScene1Label target:self

selector:@selector(playScene:)];

 [playScene1 setTag:1];

CCLabelBMFont *playScene2Label =

 [CCLabelBMFont labelWithString:@"Dogs of Loki!"

fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *playScene2 =

 [CCMenuItemLabel itemWithLabel:playScene2Label target:self

selector:@selector(playScene:)];

 [playScene2 setTag:2];

CCLabelBMFont *playScene3Label =

 [CCLabelBMFont labelWithString:@"Descent Into Hades!"

 fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *playScene3 = [CCMenuItemLabel
itemWithLabel:playScene3Label target:self

selector:@selector(playScene:)];

 [playScene3 setTag:3];

 CCLabelBMFont *playScene4Label =

 [CCLabelBMFont labelWithString:@"Descent Into Hades!"

 fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *playScene4 = [CCMenuItemLabel

itemWithLabel:playScene4Label target:self

 selector:@selector(playScene:)];

 [playScene4 setTag:4];

CCLabelBMFont *playScene5Label =

 [CCLabelBMFont labelWithString:@"Escape!"

 fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *playScene5 = [CCMenuItemLabel

itemWithLabel:playScene5Label target:self

 selector:@selector(playScene:)];

 [playScene5 setTag:5];

Chapter 7 Main Menu, Level Completed, and Credits Scenes188

CCLabelBMFont *backButtonLabel =

 [CCLabelBMFont labelWithString:@"Back"

fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *backButton =

 [CCMenuItemLabel itemWithLabel:backButtonLabel target:self

selector:@selector(displayMainMenu)];

CCLabelBMFont *backButtonLabel =

 [CCLabelBMFont labelWithString:@"Back"

 fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *backButton =

 [CCMenuItemLabel itemWithLabel:backButtonLabel target:self

 selector:@selector(displayMainMenu)];

sceneSelectMenu = [CCMenu menuWithItems:playScene1,

 playScene2,playScene3,playScene4,

 playScene5,backButton,nil];

 [sceneSelectMenu alignItemsVerticallyWithPadding:

 screenSize.height * 0.059f];

 [sceneSelectMenu setPosition:ccp(screenSize.width * 2,

 screenSize.height / 2)];

id moveAction = [CCMoveTo actionWithDuration:0.5f

position:ccp(screenSize.width * 0.75f,

 screenSize.height/2)];

id moveEffect = [CCEaseIn actionWithAction:moveAction rate:1.0f];

 [sceneSelectMenu runAction:moveEffect];

 [self addChild:sceneSelectMenu z:1 tag:kSceneMenuTagValue];

}

In the beginning of the displaySceneSelection, the code checks to see if
mainMenu is initialized (it should be), and if so, removes it from the layer.

The next few lines deal with creating the text labels for each of the level selection
tags. In Space Viking you will be using the free Vinland font for the text labels. In the
book’s resource files for this chapter, you will find the font map and bitmap texture
files for the Vinland font at size 64 and with a red color. The playScene1Label uses
these font files to create a bitmapped font label of the “Ole Awakes!” text in Vinland
size 64. These lines are identical to the debug fonts you created in the previous chapter
for the EnemyRobot. Once the bitmap font label (playScene1Label) is created, it is
added to a CCMenuItemLabel, which has a selector set to the playScene method.

The next line is important: it sets the tag value for the CCMenuItemLabel, 1
for this scene, 2 for the second scene, and so on. Toward the end of the display-
SceneSelection method, the CCMenu is instantiated with the three scene selection
CCMenuItemLabels. Listing 7.13 shows the init method.

Creating the Main Menu 189

Listing 7.13 MainMenuLayer (part 5: init method)

-(id)init {

self = [super init];

if (self != nil) {

CGSize screenSize = [CCDirector sharedDirector].winSize;

CCSprite *background =

 [CCSprite spriteWithFile:@"MainMenuBackground.png"];

 [background setPosition:ccp(screenSize.width/2,

 screenSize.height/2)];

 [self addChild:background];

 [self displayMainMenu];

CCSprite *viking =

 [CCSprite spriteWithFile:@"VikingFloating.png"];

 [viking setPosition:ccp(screenSize.width * 0.35f,

 screenSize.height * 0.45f)];

 [self addChild:viking];

id rotateAction = [CCEaseElasticInOut actionWithAction:

 [CCRotateBy actionWithDuration:5.5f

angle:360]];

id scaleUp = [CCScaleTo actionWithDuration:2.0f scale:1.5f];

id scaleDown = [CCScaleTo actionWithDuration:2.0f scale:0.5f];

 [viking runAction:[CCRepeatForever actionWithAction:

 [CCSequence

actions:scaleUp,scaleDown,nil]]];

 [viking runAction:

 [CCRepeatForever actionWithAction:rotateAction]];

 }

return self;

}

@end

The first key part of the init method is the call to [self displayMainMenu],
which creates the Main Menu buttons and places them onscreen. The rest of Listing
7.13 creates a sprite of the Viking f loating in space and adds some repeating actions
to him. The Viking will rotate and at the same time scale up and then down. In
previous chapters you saw actions created in compound or nested sets, such as the
actions for the space cargo ship. One thing to observe here is that CCNodes, includ-
ing CCSprites, can run more than one action at a time. In the f loating Viking, he is

Chapter 7 Main Menu, Level Completed, and Credits Scenes190

running a CCSequenceAction, scaling up and then down, and at the same time run-
ning a CCRotateBy action to cause him to spin around.

Additional Menus and GameplayLayer
The Intro, Credits, LevelComplete, and Options menus are set up in the
same way as the MainMenu, each with its own CCScene and CCLayer classes. The
Credits menu consists of just three links to the people who had a part in creating the
Space Viking game. The LevelComplete and Intro have two key points worth not-
ing in detail. In addition to these three menu scenes, there is a minor change to your
existing GameplayLayer.m class for it to call GameManager and transition to the
LevelComplete scene.

Importing the Intro, LevelComplete, Credits, and Options Scenes
and Layers
The remaining menu scenes and layers are very similar to the MainMenu that you cre-
ated earlier in this chapter. To save you some time typing in similar code, these classes
are included as part of the resources for this chapter.

Locate the folder to which you downloaded the resources for this chapter and:

1. Drag the IntroScene.h, IntroScene.m, IntroLayer.h, and IntroLayer.m files into Xcode
under the Intro subfolder inside of the Scenes group.

2. Drag the LevelCompleteScene.h, LevelCompleteScene.m, LevelCompleteLayer.h, and
LevelCompleteLayer.m files into Xcode under the LevelComplete subfolder inside of
the Scenes group.

3. Drag the CreditsScene.h, CreditsScene.m, CreditsLayer.h, and CreditsLater.m files into
Xcode under the Credits subfolder inside of the Scenes group.

4. Drag the OptionsScene.h, OptionsScene.m, OptionsLayer.h, and OptionsLayer.m files
into Xcode under the Options subfolder inside of the Scenes group.

Your SpaceViking project should look like Figure 7.4. Feel free to look through these
classes. At this point you should have a good understanding of how they work based
on what you’ve learned in previous chapters.

If you press c-B, your SpaceViking project should now compile with no errors. If
you encounter any errors or warnings, check that you have imported all of the files.
The next step is to make changes to the Gameplay layer and to the SpaceViking-
AppDelegate so they can support the new scenes.

GameplayLayer
There is a small addition to the GameplayLayer class in order to support the new
GameManager and to transition to the LevelComplete scene once the Viking or
RadarDish object is dead. In the Gameplayer you wrote in the previous chapters,

Additional Menus and GameplayLayer 191

there was no code to transition out of game play if the Viking died or the RadarDish
was destroyed. To add these changes, start by opening the GameplayLayer.h header file.

In the import section, add an import for the GameManager.h header file, so that you
have this line among the other import statements:

#import "GameManager.h"

The import statement allows the GameplayLayer to call upon the GameManager
singleton and transition Space Viking from Gameplay to Level Complete.

Open the GameplayLayer.m implementation file and add the code shown in Listing
7.14 to the update:(ccTime)deltaTime method so that it can call the GameMan-
ager singleton when the Viking dies or the RadarDish is destroyed.

Listing 7.14 GameplayLayer.m update:(ccTime)deltaTime method

-(void) update:(ccTime)deltaTime

{

// ...(See source for previous lines)

 // Chapter 7 Additions

// Check to see if the Viking is dead

GameCharacter *tempChar = (GameCharacter*)

 [sceneSpriteBatchNode

getChildByTag:kVikingSpriteTagValue];

if (([tempChar characterState] == kStateDead) &&

 ([tempChar numberOfRunningActions] == 0)) {

Figure 7.4 Space Viking after all of the menu classes have been added

Chapter 7 Main Menu, Level Completed, and Credits Scenes192

 [[GameManager sharedGameManager] setHasPlayerDied:YES];

 [[GameManager sharedGameManager]

runSceneWithID:kLevelCompleteScene];

 }

// Check to see if the RadarDish is dead

 tempChar = (GameCharacter*)[sceneSpriteBatchNode

getChildByTag:kRadarDishTagValue];

if (([tempChar characterState] == kStateDead) &&

 ([tempChar numberOfRunningActions] == 0)) {

 [[GameManager sharedGameManager]

runSceneWithID:kLevelCompleteScene];

 }

}

If the code in Listing 7.14 looks long and convoluted, it is only because the
Gameplay Layer does not have a direct link to the Viking or RadarDish, since they
are both children of the CCSpriteBachNode called sceneSpriteBatchNode. The
GameplayLayer pulls the two objects from the sceneSpriteBatchNode using the
unique integer tags you assigned to the Viking and RadarDish when they were
created.

First the Viking is checked to see if he is in a dead state and is not currently run-
ning any actions. If you are wondering what dead actions a Viking would be doing, it
is the death animation of the Viking turning to smoke and just a helmet falling to the
ground. You don’t want the GameplayLayer to transition to LevelComplete until
the Viking death animation is complete.

The next check is to see if the RadarDish is dead and not currently playing the
blowing up animation.

If either the Viking or RadarDish are dead, the GameManager is called and
asked to replace the GameScene with the LevelCompleteScene.

In your games you may have a similar setup, with your gameplay transitioning to a
game over or level complete when the player dies.

Changes to SpaceVikingAppDelegate
Finally, there is one more change to the SpaceVikingAppDelegate to support hav-
ing the GameManager, not the Application Delegate, control the Cocos2D Director.

Open the SpaceVikingAppDelegate.m implementation file and add the import state-
ment for the GameManager class:

#import "GameManager.h"

In the applicationDidFinishLaunching method, replace the runWithScene
call with the following line:

[[GameManager sharedGameManager] runSceneWithID:kMainMenuScene];

For the More Curious: The IntroLayer and LevelComplete Classes 193

While you are in the SpaceVikingAppDelegate, you can remove the imports for
HelloWorldScene and GameScene, as they are no longer called from the Application
Delegate directly.

With all of the changes in this chapter in place, click Run and test your SpaceViking
project. It should start with the Main Menu with the Viking rotating around the logo.
If you play the first level and destroy the RadarDish or Ole dies, you will see the
LevelComplete scene, and touching anywhere on LevelComplete will take you
back to the MainMenu.

For the More Curious: The IntroLayer and
LevelComplete Classes
The IntroLayer class has some specific functionality that differs from just driving a
menu. The IntroLayer pages through several images before starting the gameplay,
while the LevelComplete class displays different images depending on whether Ole
beat a level or died trying.

Looking in the init method of the IntroLayer.m class, you will see the following
line:

self.isTouchEnabled = YES;

This line alerts Cocos2D that you want to receive touch events on the IntroLayer.
In IntroLayer you are only concerned with a touch began notification, as it means
the player wants to skip ahead of the introduction animation. Since Cocos2D already
knows that the IntroLayer is to receive touch events, all you need to implement is
the following method:

-(void)ccTouchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

CCLOG(@"Touches received, skipping intro");

 [self startGamePlay];

}

All that startGamePlay does is call [[GameManager sharedGameManager]
runSceneWithID:kGameLevel1];. There is an animation that plays in the intro
scene, and when it finishes, there is a CCCallFunc action that calls the startGame-
Play method. If you followed the logic so far, the IntroLayer just plays an intro
animation, and if the animation finishes or the player touches the screen, the start-
GamePlay method is called, calling the GameManager to swap the intro scene out
and start the GamePlayScene.

If you wanted to know when a player moves a touch or lifts a finger off the screen,
you can add the ccTouchesMoved, ccTouchesEnded, and ccTouchesCancelled
methods to your layers. Be sure to copy the full IntroScene.h, IntroScene.m, IntroLayer.h,
and IntroLayer.m files into the Intro groups in your SpaceViking project.

Chapter 7 Main Menu, Level Completed, and Credits Scenes194

LevelCompleteLayer Class
The LevelCompleteLayer is set up similarly to the IntroLayer. It also responds
to touches by asking the GameManager to swap the MainMenu in place of Level-
Complete. There is one benefit to having the GameManager singleton that has not
yet been discussed, and that is to have it act as a single place to store what’s happen-
ing in the game. Read that last line again: the GameManager singleton is the one
place where you will store the Viking’s score, what happened on the last level, and
any other data you may want to access in various scenes. If you recall Listing 7.2 when
you set up GameManager.m, it had the hasPlayerDied. In a moment, you will see
how the GameplayLayer sets that variable. Listing 7.15 shows how it is used in the
LevelCompleteLayer.

Listing 7.15 LevelCompleteLayer.m—how hasPlayerDied is used

BOOL didPlayerDie = [[GameManager sharedGameManager] hasPlayerDied];

CCSprite *background = nil;

if (didPlayerDie) {

 background =

 [CCSprite spriteWithFile:@"LevelCompleteDead.png"];

 } else {

 background =

 [CCSprite spriteWithFile:@"LevelCompleteAlive.png"];

 }

If the GameManager hasPlayerDied indicates that the Viking has died on the
game right before LevelComplete was shown, then the LevelCompleteDead image
is used as the background; otherwise, the LevelCompleteAlive image is shown.
Figure 7.5 shows these two images.

Figure 7.5 LevelComplete background image when the Viking lives and dies

Challenges 195

The use of the Singleton pattern for a game manager can be greatly beneficial in
keeping your game data in one place and at the same time accessible by any class in
your game. If you want to save the player’s progress or create a new level based on how
the player did on the previous level, you can do that with a singleton game manager.

Note
While the CreditsScene and Layer classes are not covered in this chapter, they con-
tain the same basic Cocos2D objects and calls you have already seen in MainMenu.

Summary
In this chapter you learned about the CCMenu and CCMenuItem classes and how to
wire menus together in Space Viking. More important, you learned about creating a
GameManager singleton and how to talk to it from any scene in your game. While
writing your own games, feel free to refer back to this chapter for code and techniques
you can reuse in your game singleton and how to connect scenes together. In the next
chapter you learn how to add music and sound to Space Viking. To turn up the volume,
turn the page.

Challenges
1. Add a counter to the LevelComplete scene to show how many EnemyRobots

Ole has disposed off.

Hint
Add a variable to track it in GameManager, and call it from GameplayLayer and
LevelCompleteLayer.

2. Add a label showing a “Level Cleared” message when Ole destroys the
RadarDish.

Hint
Look at the game start CCLabelTTF that comes onscreen when gameplay begins. Could
it be changed and reused?

This page intentionally left blank

8
Pump Up the Volume!

In the last chapter you learned how to create menus and link scenes together in your games. Now
it is time to head back into the gameplay and add music and sound effects to Space Viking. In
this chapter you will learn how to use the audio engine included with Cocos2D and how you can
add audio to your own games. Read on to hear what Ole the Viking sounds like, and find out
what sounds break the silence of the alien planet.

Introducing CocosDenshion
Apple provides two great frameworks to play audio on iOS devices, AVAudioPlayer
and OpenAL. AVAudioPlayer is a quick and simple way to play audio but gives you
only limited control, while OpenAL is a lower-level API with more features.

Cocos2D comes bundled with the CocosDenshion sound engine, which is an
easy-to-use wrapper for both frameworks. CocosDenshion was created by Steve
Oldmeadow and has been included with Cocos2D since the early days. Recently
CocosDenshion has incorporated a new, simpler API called SimpleAudioEngine,
which you use in this chapter. CocosDenshion leverages the power of AVAudioPlayer
and OpenAL for you, so you don’t have to dive down into the lower-level sound APIs
unless you want to.

Just like the rest of the Cocos2D source code, the source for CocosDenshion is
included with Cocos2D and you are encouraged to look through it. While Cocos2D
uses the CC namespace for all of its classes, CocosDenshion uses the CD namespace
except for SimpleAudioEngine, which is not preceded by the letters CD.

What Is in a Name
SimpleAudioEngine was originally designed by Joao Caxaria as an interface into
CocosDenshion, and the name has remained the same to indicate the origins of the API.
Since you will just be using SimpleAudioEngine, all you need to know is that this is
the easiest way to leverage CocosDenshion.

There are some great examples included with CocosDenshion that you might want
to check out, including a game called “Tom the Turret” created by Ray Wenderlich

Chapter 8 Pump Up the Volume!198

and Steve Oldmeadow. The code for Space Viking borrows heavily from the Tom the
Turret sample.

Importing and Setting Up the Audio Filenames
Before you can dive into coding the audio playback in Space Viking, you need to add
the audio files to your project. In this section you also set up a series of #define con-
stants for the audio filenames, as you have done with other constants in Space Viking.

Adding the Audio Files to Space Viking
To add background music and sound effects to Space Viking, you start by adding the
Sounds folder to your SpaceViking Xcode project. Grab the Sounds folder from the
resources file for this chapter and drag it into your SpaceViking project, selecting to
copy the items into your destination folder (into your project). Your Xcode navigator
should resemble Figure 8.1.

Figure 8.1 Sounds folder added to SpaceViking project

Warning
If you do not add the Sounds folder to your project and select copy items to destination
folder, the audio files will not be copied into your project. Not having the audio files in
your project will result in a silent Space Viking and a sad Ole.

Audio Constants
SimpleAudioEngine uses filenames as the identifier for the audio. In order not to
have to list the filenames for the audio assets in multiple places, you use a SoundEffects.
plist file to contain all of the filenames. Keeping the sound effects in a plist file makes
it easy to swap out audio files later on, while only having to make the change in one
place. In addition, there are just four background music tracks in Space Viking, and
those filenames are in a set of #defines in Constants.h.

Importing and Setting Up the Audio Filenames 199

Open Constants.h and add the lines in Listing 8.1. The audio filenames are set up
as #define statements to make it easy to switch filenames without having to find
every reference to them in the code. Do not worry about hand-typing all of these
#defines; in the resources folder for this chapter is a file called AddtionsToConstants-
HeaderFile.rtf that includes all of them.

Listing 8.1 #defines for audio filenames in Constants.h

// Audio Items

#define AUDIO_MAX_WAITTIME 150

typedef enum {

 kAudioManagerUninitialized=0,

 kAudioManagerFailed=1,

 kAudioManagerInitializing=2,

 kAudioManagerInitialized=100,

 kAudioManagerLoading=200,

 kAudioManagerReady=300

} GameManagerSoundState;

// Audio Constants

#define SFX_NOTLOADED NO

#define SFX_LOADED YES

#define PLAYSOUNDEFFECT(...) \

[[GameManager sharedGameManager] playSoundEffect:@#__VA_ARGS__]

#define STOPSOUNDEFFECT(...) \

[[GameManager sharedGameManager] stopSoundEffect:__VA_ARGS__]

// Background Music

// Menu Scenes

#define BACKGROUND_TRACK_MAIN_MENU @"VikingPreludeV1.mp3"

// GameLevel1 (Ole Awakens)

#define BACKGROUND_TRACK_OLE_AWAKES @"SpaceDesertV2.mp3"

// Physics Puzzle Level

#define BACKGROUND_TRACK_PUZZLE @"VikingPreludeV1.mp3"

// Physics MineCart Level

#define BACKGROUND_TRACK_MINECART @"DrillBitV2.mp3"

// Physics Escape Level

#define BACKGROUND_TRACK_ESCAPE @"EscapeTheFutureV3.mp3"

Chapter 8 Pump Up the Volume!200

At this point, the #defines and typedef enum declarations should be pretty
familiar to you. The GameManagerSoundState type definition makes it easier to
track what state the audio engine is in. In this enumeration you also declare the value
of each choice. Notice how the states before “initialized” are less than 100 in value.
That makes it easier later on to check whether the engine is still initializing or loading
audio. The #defines serves as reference for background music filenames.

The #define PLAYSOUNDEFFECT (...) line is a macro definition that expands
into a call for the playSoundEffect method in GameManager. In Space Viking you
use the GameManager to handle the initialization of the CocosDenshion engine and
to start and stop the playback of sound effects. The macro is nothing more than a
shortcut to keep you from having to type out the [[[GameManager sharedGame-
Manager] playSoundEffect:SFX_NAME] over and over.

The STOPSOUNDEFFECT(...) macro is a shortcut to the stopSoundEffect
method in GameManager that takes the ALuint identifier of the audio effect you
want to stop. You will learn more about the audio effects identifier when adding the
walking sounds to the EnemyRobot and Viking later in this chapter.

If your games have a long list of filenames, you may also choose to keep them in a
plist file similar to the animation frames you did in earlier chapters instead of a long
list of #defines. In Space Viking you do just that, adding a set of methods to Game-
Manager to load and unload sound effect files as you move between scenes.

Before going any further, copy the SoundEffects.plist file from the resources folder
for this chapter into your SpaceViking Xcode project. Figure 8.2 shows the contents of
the SoundEffects.plist file.

Figure 8.2 SoundEffects.plist added to the SpaceViking project

Synchronous versus Asynchronous Loading of Audio 201

Warning
Be sure to copy the SoundEffects.plist file into your Xcode project; otherwise, Space Viking
will not work when you reach the end of this chapter.

The code that utilizes the SoundEffects.plist is inside GameManager. Before learning
about those methods, it is important to understand the two ways that audio files can
be loaded into CocosDenshion.

Synchronous versus Asynchronous Loading
of Audio
Music and sound files are usually the second biggest items in your games after the
images. Loading them into memory for your game can take time, and the last thing
you want to do is have the player encounter an unresponsive game while the sound
files are being loaded. Luckily, it is easy to load sounds asynchronously in a back-
ground thread with the help of NSOperationQueues. This chapter covers both
methods of loading audio in your games. First you learn the simpler synchronous
method, and then you learn how to create an asynchronous loader method that runs
in a separate thread.

Loading Audio Synchronously
Open the GameplayLayer.h file and add this single import for the
SimpleAudioEngine:

#import "SimpleAudioEngine.h"

In the @interface definition, add this variable declaration:

SimpleAudioEngine *soundEngine;

CocosDenshion is already included with Cocos2D, and importing SimpleAudio-
Engine is all you need to do in order to start using it in your projects.

The next step is to create a method to handle the sound initialization in Gameplay-
Layer. Above the init method in GameplayLayer.m, create a method called loadAudio,
as shown in Listing 8.2.

Listing 8.2 The loadAudio method in the GameplayLayer.m implementation file

-(void)loadAudio {

 // Loading Sounds Synchronously

 [CDSoundEngine setMixerSampleRate:CD_SAMPLE_RATE_MID]; // 1

 [[CDAudioManager sharedManager] setResignBehavior:kAMRBStopPlay

 autoHandle:YES]; // 2

Chapter 8 Pump Up the Volume!202

soundEngine = [SimpleAudioEngine sharedEngine]; // 3

 // 4

 [soundEngine preloadBackgroundMusic:BACKGROUND_TRACK_OLE_AWAKES];

 // 5

 [soundEngine playBackgroundMusic:BACKGROUND_TRACK_OLE_AWAKES];

}

The loadAudio method here is very simple, since it loads the music synchronously
and plays it immediately after loading. The method works as follows:

1. The audio mixing rate is set up for the CocosDenshion SoundEngine.

The iPhone and iPad audio hardware has the best performance when all of
the audio has the same sample rate. In Space Viking all of the audio is set to the
middle bit rate of 22,050Hz, but in your games you may want a lower bit rate
to save on memory. The bit rate depends on the type of sound you need in your
games.

Xcode comes with afconvert, a handy utility to convert and modify the bit
rate for your audio files called. You can learn more about it by typing afconvert -h
in a terminal window. You can read more about audio converting and playback
on iOS here: http://developer.apple.com/library/ios/#codinghowtos/AudioAndVideo/.

2. The CocosDenshion AudioManager is set up and instructed to automatically
handle events such as the player locking the screen. If the application receives a
Resign Active event from iOS, it stops playing the audio. If you do not include
this line, it is up to your code to stop and restart playback when your game is
interrupted or sent to the background and resumed.

3. Grab a reference to the Simple Audio Engine so that you can ask it to load and
play audio.

4. Preload the background music track. This method call loads the mp3 file into
the buffer and gets it ready to start playing. No sound is played yet, but it is
loaded in memory and ready to go.

5. Starts playing the background music. This method call also has the option to
loop the background music. By default, CocosDenshion continuously loops your
background track.

Inside the init method of GameplayLayer.m, add a call to the loadAudio method:

[self loadAudio];

If you click Run now and select the Ole Awakens level, you will start to hear the
background track coming in. If you run Space Viking on your iPad, you will notice
a delay of a second or two before the level starts. That delay is caused by loading the
music synchronously instead of in a background thread.

http://developer.apple.com/library/ios/#codinghowtos/AudioAndVideo/

Synchronous versus Asynchronous Loading of Audio 203

Before we get to asynchronous loading, let’s quickly cover how to play sound
effects. In the start of the level, let’s have Ole speak a quick curse to show his frustra-
tion with his situation. You can imagine how irritated you would be, waking up in an
alien world surrounded by robots. Don’t worry—the curse is PG-rated and spoken in
words only a Viking would know.

Add the lines shown in Listing 8.3 to your loadAudio method in order to play the
Viking cursing sound effect.

Listing 8.3 Additions to loadAudio method showing how to play a sound effect

[soundEngine preloadEffect: @"22k_viking_cursingV1.wav"];

[soundEngine playEffect: @"22k_viking_cursingV1.wav"];

Just like the background music track, the effect sound is first preloaded into mem-
ory and set up for playing. The second line actually plays the sound effect. If you click
Run and select the Ole Awakens level, you will hear the Viking mumble a curse at the
same time the background music is playing.

At this point, you have seen how easy it is to add music and sound effects to
your game with just a few simple lines. The next section deals with loading audio
asynchronously. Then you will add sound effects for the Viking, RadarDish, and
EnemyRobot.

Before moving any further, comment out the call to [self loadAudio] in the
GameplayLayer.m init method. You will be handling the CocosDenshion initializa-
tion and effect playback from the GameManager singleton.

Loading Audio Asynchronously
In your games, you do not want the whole game to pause because you are loading
audio assets from f lash and into memory. Even though f lash memory is fast, it is much
slower than the CPU can execute code. You do not want the CPU to sit idle while
it is waiting for the f lash memory to return the next few bytes from your audio files.
The best way to get around the freeze during loading times is to load the audio assets
asynchronously in another thread.

In Space Viking you use an asynchronous approach to initializing CocosDenshion
and loading the sound effect audio files. The CocosDenshion audio engine is initial-
ized asynchronously, and the sound effects are loaded asynchronously as a scene starts
to run. The GameManager controls the loading and unloading of sound effects to
keep the memory footprint as small as possible. Any calls to try to play effects before
they are loaded are just ignored by the GameManager.

You can reuse the code from this chapter if in your game you know you will be
using only certain sound effects in specific parts of your game. You can set up the
preloading to happen right before you need the audio, in a loading scene, or as you see
here during gameplay. If you know you are not going to need a sound asset anymore,
you can also unload it from memory.

Chapter 8 Pump Up the Volume!204

Remember to remove or comment out the code you just added to GameplayLayer.m.
You are going to have the audio set up and preloaded in the GameManager, and the
individual GameObjects, such as the Viking and EnemyRobot, will take care of
calling GameManager to play their audio.

Adding Audio to GameManager
For the next step you need to move the audio initialization and preloading code to

GameManager. You will use NSOperationQueue to manage the background threads
for you, setting up and preloading the audio in the background in just a few easy steps.

To get started, open the GameManager.h header file and add the bold lines shown in
Listing 8.4.

Listing 8.4 Additions to GameManager.h

// GameManager.h

#import <Foundation/Foundation.h>
#import "Constants.h"
#import "SimpleAudioEngine.h"

@interface GameManager : NSObject {
BOOL isMusicON;
BOOL isSoundEffectsON;
BOOL hasPlayerDied;

 // Added for audio
 BOOL hasAudioBeenInitialized;
 GameManagerSoundState managerSoundState;
 SimpleAudioEngine *soundEngine;
 NSMutableDictionary *listOfSoundEffectFiles;
 NSMutableDictionary *soundEffectsState;
}
@property (readwrite) BOOL isMusicON;
@property (readwrite) BOOL isSoundEffectsON;
@property (readwrite) BOOL hasPlayerDied;
@property (readwrite) GameManagerSoundState managerSoundState;
@property (nonatomic, retain) NSMutableDictionary
 *listOfSoundEffectFiles;
@property (nonatomic, retain) NSMutableDictionary *soundEffectsState;
+(GameManager*)sharedGameManager; // 1
-(void)runSceneWithID:(SceneTypes)sceneID; // 2
-(void)openSiteWithLinkType:(LinkTypes)linkTypeToOpen ;// 3
-(void)setupAudioEngine;
-(ALuint)playSoundEffect:(NSString*)soundEffectKey;
-(void)stopSoundEffect:(ALuint)soundEffectID;
-(void)playBackgroundTrack:(NSString*)trackFileName;

@end

Synchronous versus Asynchronous Loading of Audio 205

The first line is the import of the SimpleAudioEngine, which brings the Cocos-
Denshion classes into GameManager. In the @interface block add two instance
variables, one to keep track of the GameManagerSoundState and another to be
a pointer to the soundEngine. Lastly, add two @property statements for the
managerSoundState and the soundEngine. Note also the NSMutableDictionary
variables that keep track of the sound effect filenames and whether or not they are
loaded in memory.

Switching over to the GameManager.m implementation file, first add the three lines
shown in Listing 8.5 next to the other @synthesize statements at the top of the class.

Listing 8.5 Addition to the top of GameManager.m class file

@synthesize managerSoundState;

@synthesize listOfSoundEffectFiles;

@synthesize soundEffectsState;

Next, add the two lines shown in Listing 8.6 to the init method.

Listing 8.6 Additions to the init method of GameManager

hasAudioBeenInitialized = NO;

soundEngine = nil;

managerSoundState = kAudioManagerUninitialized;

The first line sets the boolean variable indicating whether the audio engine is
initialized to NO, since no initialization has been done yet. The second line sets the
soundEngine to nil, since it too has not been initialized yet.

Next you need to set up the audio engine. This method is called from the Space-
VikingAppDelegate. The setupAudioEngine method kicks off the background
thread to set up the audio engine and preload the audio. Add the contents of Listing 8.7
to GameManager.m above the init method.

Listing 8.7 setupAudioEngine method in GameManager.m

-(void)setupAudioEngine {

if (hasAudioBeenInitialized == YES) {

return;

 } else {

hasAudioBeenInitialized = YES;

NSOperationQueue *queue = [[NSOperationQueue new] autorelease];

NSInvocationOperation *asyncSetupOperation =

 [[NSInvocationOperation alloc] initWithTarget:self

selector:@selector(initAudioAsync)

 object:nil];

Chapter 8 Pump Up the Volume!206

 [queue addOperation:asyncSetupOperation];

 [asyncSetupOperation autorelease];

 }

}

The first part of setupAudioEngine checks to make sure the audio engine has not
yet been initialized. If the engine is already initialized, there is no need to do anything
else, so the method just returns. If the engine is not initialized, the process to get it set
up is started.

The next few lines set up NSOperationQueue and NSInvocationOperation to
run the contents of the initAudioAsync method in another thread. This means that
as soon as asynchSetupOperation is added to the queue, it starts running in the
background and this method returns. This allows the game logic to continue while the
audio engine is being initialized and the audio preloaded in the background.

The next step is, of course, the actual initAudioAsync method that is added to
the NSOperationQueue. Add the contents of Listing 8.8 above the setupAudio-
Engine method in GameManager.

Listing 8.8 initAudioAsync method in GameManager

-(void)initAudioAsync {

 // Initializes the audio engine asynchronously

managerSoundState = kAudioManagerInitializing;

 // Indicate that we are trying to start up the Audio Manager

 [CDSoundEngine setMixerSampleRate:CD_SAMPLE_RATE_MID];

 //Init audio manager asynchronously as it can take a few seconds

 //The FXPlusMusicIfNoOtherAudio mode will check if the user is

 // playing music and disable background music playback if

 // that is the case.

 [CDAudioManager initAsynchronously:kAMM_FxPlusMusicIfNoOtherAudio];

 //Wait for the audio manager to initialize

while ([CDAudioManager sharedManagerState] != kAMStateInitialised)

 {

 [NSThread sleepForTimeInterval:0.1];

 }

 //At this point the CocosDenshion should be initialized

 // Grab the CDAudioManager and check the state

CDAudioManager *audioManager = [CDAudioManager sharedManager];

if (audioManager.soundEngine == nil ||

 audioManager.soundEngine.functioning == NO) {

CCLOG(@"CocosDenshion failed to init, no audio will play.");

managerSoundState = kAudioManagerFailed;

Synchronous versus Asynchronous Loading of Audio 207

 } else {

 [audioManager setResignBehavior:kAMRBStopPlay autoHandle:YES];

soundEngine = [SimpleAudioEngine sharedEngine];

managerSoundState = kAudioManagerReady;

CCLOG(@"CocosDenshion is Ready");

 }

}

The first part of the initAudioSync method sets the managerSoundState to
initializing and sets the CocosDenshion sample rate. The sample rate should match the
sample rate in your audio files. Usually you want this to be set to CD_SAMPLE_RATE_
MID. In Space Viking the audio files were exported at 22050Hz, so the CD_ SAMPLE_
RATE_MID is used here. It is really important to have your audio files at the same
sample rate for best performance. When playing audio with different sample rates, the
iPhone and iPad audio hardware automatically pads and extrapolates your lower sam-
ple audio clips to the highest sample rate you are currently playing.

The next set of lines kick off the initialization of the CocosDenshion Audio Man-
ager. The audio manager can be started in a variety of states.

The CDAudioManager can be initialized to the following states:

1. kAMM_FxOnly

Plays sound effects only; other applications can continue playing audio.

2. kAMM_FxPlusMusic

Only this game will play audio.

3. kAMM_FxPlusMusicIfNoOtherAudio

If another application is already playing audio when the game starts, play effects
only; otherwise, play music and effects. This is the option you will most likely
want to use for your games. This way, for instance, your players can listen to
their own music while playing your game.

4. kAMM_MediaPlayback

This setting forces the game to completely take over the audio hardware and act
just like a music player application.

5. kAMM_PlayAndRecord

Same as kAMM_MediaPlayback except that it adds access to the microphone.

After kicking off CocosDenshion initialization, the next lines wait for the Cocos-
Denshion Audio Manager to start and then set the state of the managerSoundState
in GameManager. This state is used to determine if it is safe to load audio. In other
words, it determines if the CocosDenshion is initialized and the audio files can be
loaded into memory.

Chapter 8 Pump Up the Volume!208

Caveat about Multiple Threads
Although asynchronous loading of audio is recommended and encouraged, CocosDenshion
is not designed to be thread safe, meaning that you should not attempt to load and play
audio at the same time or load audio from a number of separate threads. When loading
audio asynchronously, you should always have one worker thread, as shown here. The
background music and sound effects engines are separate, though, so it is perfectly safe
to play background music while loading sound effects, and vice versa.

After the initAudioAsync method returns, the managerSoundState is set to
kAudioManagerReady. There are two steps to load the sound effects. First, you need
to get a list of the sound effects for the current scene from the SoundEffects.plist file.
After you have the list (as a NSDictionary) of what files to load, you have to call
CocosDenshion to load them in memory and prepare them to be played. As before,
copy the contents of Listing 8.9 to GameManager.m right above the initAudioAsync
method.

Listing 8.9 formatSceneTypeToString and getSoundEffectsListForSceneWithID methods
in GameManager.m

- (NSString*)formatSceneTypeToString:(SceneTypes)sceneID {

NSString *result = nil;

switch(sceneID) {

case kNoSceneUninitialized:

 result = @"kNoSceneUninitialized";

break;

case kMainMenuScene:

 result = @"kMainMenuScene";

break;

case kOptionsScene:

 result = @"kOptionsScene";

break;

case kCreditsScene:

 result = @"kCreditsScene";

break;

case kIntroScene:

 result = @"kIntroScene";

break;

case kLevelCompleteScene:

 result = @"kLevelCompleteScene";

break;

case kGameLevel1:

 result = @"kGameLevel1";

break;

case kGameLevel2:

 result = @"kGameLevel2";

break;

Synchronous versus Asynchronous Loading of Audio 209

case kGameLevel3:

 result = @"kGameLevel3";

break;

case kGameLevel4:

 result = @"kGameLevel4";

break;

case kGameLevel5:

 result = @"kGameLevel5";

break;

case kCutSceneForLevel2:

 result = @"kCutSceneForLevel2";

break;

default:

 [NSException raise:NSGenericException format:@"Unexpected
SceneType."];

 }

return result;

}

-(NSDictionary *)getSoundEffectsListForSceneWithID:(SceneTypes)sceneID {

NSString *fullFileName = @"SoundEffects.plist";

NSString *plistPath;

// 1: Get the Path to the plist file

NSString *rootPath =

 [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES)

objectAtIndex:0];

 plistPath = [rootPath stringByAppendingPathComponent:fullFileName];

if (![[NSFileManager defaultManager] fileExistsAtPath:plistPath]) {

 plistPath = [[NSBundle mainBundle]

pathForResource:@"SoundEffects" ofType:@"plist"];

 }

// 2: Read in the plist file

NSDictionary *plistDictionary =

 [NSDictionary dictionaryWithContentsOfFile:plistPath];

// 3: If the plistDictionary was null, the file was not found.

if (plistDictionary == nil) {

CCLOG(@"Error reading SoundEffects.plist");

return nil; // No Plist Dictionary or file found

 }

// 4. If the list of soundEffectFiles is empty, load it

if ((listOfSoundEffectFiles == nil) ||

 ([listOfSoundEffectFiles count] < 1)) {

Chapter 8 Pump Up the Volume!210

NSLog(@"Before");

 [self setListOfSoundEffectFiles:

 [[NSMutableDictionary alloc] init]];

NSLog(@"after");

for (NSString *sceneSoundDictionary in plistDictionary) {

 [listOfSoundEffectFiles

addEntriesFromDictionary:

 [plistDictionary objectForKey:sceneSoundDictionary]];

 }

CCLOG(@"Number of SFX filenames:%d",

 [listOfSoundEffectFiles count]);

 }

// 5. Load the list of sound effects state, mark them as unloaded

if ((soundEffectsState == nil) ||

 ([soundEffectsState count] < 1)) {

 [self setSoundEffectsState:[[NSMutableDictionary alloc] init]];

for (NSString *SoundEffectKey in listOfSoundEffectFiles) {

 [soundEffectsState setObject:[NSNumber

numberWithBool:SFX_NOTLOADED] forKey:SoundEffectKey];

 }

 }

// 6. Return just the mini SFX list for this scene

NSString *sceneIDName = [self formatSceneTypeToString:sceneID];

NSDictionary *soundEffectsList =

 [plistDictionary objectForKey:sceneIDName];

return soundEffectsList;

}

The beginning of Listing 8.9 has the formatSceneTypeToString method,
which may look a bit odd to you at first. Earlier in the book, you set up a typedef
enumeration for various scenes in Space Viking. Internally, typedefs are stored as
integers, unbeknownst to you. Here is the problem you have:

1. The list of sound effects to load are in the SoundEffects.plist, each as an entry in
an NSDictionary. There are NSDictionary entries for each scene in Space
Viking.

2. You want to reference each scene by the typedef enum name, not the integer
value. For example, you want to reference the Main Menu scene by getting the
NSDictionary named kMainMenuScene and not have to remember it has an
actual value of 1.

3. How do you get an NSString out of an integer constant (typedef enum)?
That is where formatSceneTypeToString comes in. It has just a switch

Synchronous versus Asynchronous Loading of Audio 211

branch to create and return an NSString based on the SceneTypes typedef

enum you send it.

The getSoundEffectsListForSceneWithID method loads the SoundEffects.plist
file and returns just the NSDictionary for the scene that was requested. This should
be familiar to you by now, as this method contains the same logic you used to load the
animation plist files.

Pay close attention to step 4 in the getSoundEffectsListForSceneWithID
method. The listOfSoundEffectFiles is an instance variable in GameManager
that keeps the list of all sound files you load. Not the files themselves, just the filenames,
which are used as the unique key in CocosDenshion to load and unload audio. As each
scene is loaded, the list of audio filenames is added to listOfSoundEffectFiles.

Step 5 in getSoundEffectsListForSceneWithID loads the state of each of
the audio files, marking them as unloaded. This NSDictionary is used by the
GameManager to determine if a sound effects file has been loaded into memory and
is safe to play. As you move from scene to scene, the status of each sound effect is
updated to ref lect whether or not it is currently loading in memory.

Now that you have the methods in place to retrieve the filenames of the audio
files to use for each scene, you need two methods to call CocosDenshion and carry
out the loading and unloading. Copy the contents of Listing 8.10 at the end of the
getSoundEffectsListForSceneWithID method.

Listing 8.10 loadAudioForSceneWithID and unloadAudioForSceneWithID methods in
GameManager.m

-(void)loadAudioForSceneWithID:(NSNumber*)sceneIDNumber {

 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];

 SceneTypes sceneID = (SceneTypes)[sceneIDNumber intValue];

// 1

if (managerSoundState == kAudioManagerInitializing) {

int waitCycles = 0;

while (waitCycles < AUDIO_MAX_WAITTIME) {

 [NSThread sleepForTimeInterval:0.1f];

if ((managerSoundState == kAudioManagerReady) ||

 (managerSoundState == kAudioManagerFailed)) {

break;

 }

 waitCycles = waitCycles + 1;

 }

 }

if (managerSoundState == kAudioManagerFailed) {

return; // Nothing to load, CocosDenshion not ready

 }

Chapter 8 Pump Up the Volume!212

 NSDictionary *soundEffectsToLoad =

 [self getSoundEffectsListForSceneWithID:sceneID];

if (soundEffectsToLoad == nil) { // 2

CCLOG(@"Error reading SoundEffects.plist");

return;

 }

// Get all of the entries and PreLoad // 3

for(NSString *keyString in soundEffectsToLoad)

 {

CCLOG(@"\nLoading Audio Key:%@ File:%@",

 keyString,[soundEffectsToLoad objectForKey:keyString]);

 [soundEngine preloadEffect:

 [soundEffectsToLoad objectForKey:keyString]]; // 3

// 4

 [soundEffectsState setObject:

 [NSNumber numberWithBool:SFX_LOADED] forKey:keyString];

 }

 [pool release];

}

-(void)unloadAudioForSceneWithID:(NSNumber*)sceneIDNumber {

 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];

 SceneTypes sceneID = (SceneTypes)[sceneIDNumber intValue];

if (sceneID == kNoSceneUninitialized) {

return; // Nothing to unload

 }

 NSDictionary *soundEffectsToUnload =

 [self getSoundEffectsListForSceneWithID:sceneID];

if (soundEffectsToUnload == nil) {

CCLOG(@"Error reading SoundEffects.plist");

return;

 }

if (managerSoundState == kAudioManagerReady) {

// Get all of the entries and unload

for(NSString *keyString in soundEffectsToUnload)

 {

 [soundEffectsState setObject:

 [NSNumber numberWithBool:SFX_NOTLOADED] forKey:keyString];

 [soundEngine unloadEffect:keyString];

CCLOG(@"\nUnloading Audio Key:%@ File:%@",

 keyString,

 [soundEffectsToUnload objectForKey:keyString]);

 }

 }

Synchronous versus Asynchronous Loading of Audio 213

 [pool release];

}

The loadAudioForSceneWithID and unloadAudioForSceneWithID methods
work in the same way: they both grab an NSDictionary from the SoundEffects.plist
file and call on CocosDenshion to either load or unload the audio files from memory.

You are almost there. Next you need to add three more small methods to Game-
Manager to finish the setup. The playBackgroundTrack method preloads and starts
playing a background music track. The playSoundEffect method checks to see if a
sound effect has been loaded in memory and plays it. Finally, the stopSoundEffect
method calls on CocosDenshion to halt the playback of a sound effect using that
sound’s ALuint identifier. Copy the code in Listing 8.11 to GameManager directly
above the formatSceneTypeToString method.

Listing 8.11 playBackgroundTrack, stopSoundEffect, and playSoundEffect methods in
GameManager.m

-(void)playBackgroundTrack:(NSString*)trackFileName {

 // Wait to make sure soundEngine is initialized

if ((managerSoundState != kAudioManagerReady) &&

 (managerSoundState != kAudioManagerFailed)) {

int waitCycles = 0;

while (waitCycles < AUDIO_MAX_WAITTIME) {

 [NSThread sleepForTimeInterval:0.1f];

if ((managerSoundState == kAudioManagerReady) ||

 (managerSoundState == kAudioManagerFailed)) {

break;

 }

 waitCycles = waitCycles + 1;

 }

 }

 if (managerSoundState == kAudioManagerReady) {

if ([soundEngine isBackgroundMusicPlaying]) {

 [soundEngine stopBackgroundMusic];

 }

 [soundEngine preloadBackgroundMusic:trackFileName];

 [soundEngine playBackgroundMusic:trackFileName loop:YES];

 }

-(void)stopSoundEffect:(ALuint)soundEffectID {

if (managerSoundState == kAudioManagerReady) {

 [soundEngine stopEffect:soundEffectID];

 }

}

Chapter 8 Pump Up the Volume!214

-(ALuint)playSoundEffect:(NSString*)soundEffectKey {

ALuint soundID = 0;

if (managerSoundState == kAudioManagerReady) {

NSNumber *isSFXLoaded =

 [soundEffectsState objectForKey:soundEffectKey];

if ([isSFXLoaded boolValue] == SFX_LOADED) {

 soundID =

 [soundEngine playEffect:

 [listOfSoundEffectFiles objectForKey:soundEffectKey]];

 } else {

CCLOG(@"GameMgr: SoundEffect %@ is not loaded.",

soundEffectKey);

 }

 } else {

CCLOG(@"GameMgr: Sound Manager is not ready, cannot play %@",

 soundEffectKey);

 }

return soundID;

}

The methods in Listing 8.11 wait for the CocosDenshion audio manager to be
initialized and for the sound audio files to have been preloaded into memory before
attempting to play any of them. If for any reason the CocosDenshion audio manager
fails to initialize or the audio effect is not loaded, these methods simply return without
playing.

You are done with adding methods, but there are two steps left before you can have
GameManager fully functional. The first step is to add calls to the load and unload
audio methods.

In GameManager.m locate the runSceneWithID method and add the lines shown in
bold in Listing 8.12.

Listing 8.12 Additional lines in runSceneWithID method in GameManager.m

// ... runSceneWithID method ...

 default:

CCLOG(@"Unknown ID, cannot switch scenes");

 return;

 break;

 }

 if (sceneToRun == nil) {

// Revert back, since no new scene was found

currentScene = oldScene;

return;

 }

Adding the soundEngine to GameObjects 215

 // Load audio for new scene based on sceneID

 [self performSelectorInBackground:

 @selector(loadAudioForSceneWithID:)

 withObject:[NSNumber

 numberWithInt: currentScene]];

if ([[CCDirector sharedDirector] runningScene] == nil) {

 [[CCDirector sharedDirector] runWithScene:sceneToRun];

 } else {

 [[CCDirector sharedDirector]

replaceScene:

 [CCTransitionFlipAngular transitionWithDuration:0.5f

scene:sceneToRun]];

 }

 [self performSelectorInBackground:

 @selector(unloadAudioForSceneWithID:)

 withObject:[NSNumber

 numberWithInt: oldScene]];

 currentScene = sceneID;

}

As you can see in Listing 8.12, both the loading and unloading of audio files is done
in a background thread via the performSelectorInBackground call. There is one
final step to having the GameManager handle the audio setup and preloading. The
setupAudioEngine method must be called when Space Viking starts. For that, open
the SpaceVikingAppDelegate.m file and add the line shown in Listing 8.13 right above
the runSceneWithID call in the applicationDidFinishLaunching method.

Listing 8.13 setupAudioEngine call in SpaceVikingAppDelegate

[[GameManager sharedGameManager] setupAudioEngine];

You should do a quick build of your SpaceViking project to make sure you have not
made any typos. The next section covers adding audio to the GameObjects so that
Ole the Viking and the enemies will have voices.

Adding the soundEngine to GameObjects
Now that you have the GameManager initializing the sound engine and preloading
the audio, it is time to give Ole and the other characters their voices. Since all of the
objects in Space Viking inherit from GameObject, we can add properties and methods
in GameObject that are used by all.

Chapter 8 Pump Up the Volume!216

First, open GameObject.h and add an import for the GameManager.h class.

#import "GameManager.h"

This is all that is needed to make the GameManager available in the GameObject
and therefore in the Viking, EnemyRobot, and other objects in Space Viking. The
GameManager will handle the playing of sound effects and the background music.
The next section covers how to play the sound effects in time with the actions and
animations.

Adding Sounds to RadarDish and SpaceCargoShip
The RadarDish and SpaceCargoShip are ideal objects to start with when adding
sound effects. The RadarDish has only one sound effect when it is hit by Ole, while
the SpaceCargoShip has four, representing the different sounds of the engines as it
gets closer to Ole the Viking.

Adding Audio to RadarDish
Open the RadarDish.m file and go to the changeState method. In the kState-
TakingDamage branch, add a call to the soundEngineLink, as shown in bold in
Listing 8.14.

Listing 8.14 RadarDish changeState method showing call to soundEngineLink

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

 [self setCharacterState:newState];

switch (newState) {

case kStateSpawning:

CCLOG(@"RadarDish->Starting the Spawning Animation");

 action = [CCAnimate actionWithAnimation:tiltingAnim

restoreOriginalFrame:NO];

break;

case kStateIdle:

CCLOG(@"RadarDish->Changing State to Idle");

 action = [CCAnimate actionWithAnimation:transmittingAnim

restoreOriginalFrame:NO];

break;

case kStateTakingDamage:

CCLOG(@"RadarDish->Changing State to TakingDamage");

characterHealth =

characterHealth - [vikingCharacter getWeaponDamage];

if (characterHealth <= 0.0f) {

Adding the soundEngine to GameObjects 217

 [self changeState:kStateDead];

 } else {

 PLAYSOUNDEFFECT(VIKING_HAMMERHIT1);

 action = [CCAnimate actionWithAnimation:takingAHitAnim

restoreOriginalFrame:NO];

}

break;

case kStateDead:

CCLOG(@"RadarDish->Changing State to Dead");

 PLAYSOUNDEFFECT(VIKING_HAMMERHIT2);

PLAYSOUNDEFFECT(ENEMYROBOT_DYING);

 action = [CCAnimate actionWithAnimation:blowingUpAnim

restoreOriginalFrame:NO];

 break;

default:

CCLOG(@"Unhandled state %d in RadarDish", newState);

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

In the previous section you added the GameManager import to GameObject.
Since RadarDish inherits from GameCharacter, which in turn inherits from
GameObject, RadarDish has access to GameManager and can call it via the
PLAYSOUNDEFFECT macro. The PLAYSOUNDEFFECT macro expands into a call to the
playSoundEffect in GameManager, playing the sound effect for the RadarDish.
The GameManager already took care of loading the sound effects when the Game-
play scene was loaded, so it is just a quick call to CocosDenshion and you can hear
the sound effects.

After adding this line, click Run. You should be able to have Ole strike the
RadarDish and hear a crashing/clunking sound. Can you hear the explosion sound
when Ole destroys the RadarDish?

Adding Audio to SpaceCargoShip
The SpaceCargoShip inherits directly from GameObject, so it too has access to the
GameManager. The SpaceCargoShip plays four sounds. During the first two and
most distant passes, the faraway engine sound is played. On the next three passes, a
louder and closer sound is played to give the player the illusion that the ship is getting
closer.

In SpaceCargoShip you need a method to play the four sounds in sequence
with the animations and actions you previously created in the init method. Before

Chapter 8 Pump Up the Volume!218

creating this method, open the SpaceCargoShip.h header file and add the following
instance variable inside the @interface declaration block.

int soundNumberToPlay;

This is a number you will increment to indicate which engine sound the Space-
CargoShip should play. Open the SpaceCargoShip.m file and add the contents of List-
ing 8.15 into the init method.

Listing 8.15 SpaceCargoShip.m playSpaceCargoShipSound

#pragma mark -

#pragma mark SoundMethods

-(void)playSpaceCargoShipSound {

if (soundNumberToPlay < 2) {

 PLAYSOUNDEFFECT(SPACECARGOSHIP_FAR);

 } else if (soundNumberToPlay == 2) {

 PLAYSOUNDEFFECT(SPACECARGOSHIP_CLOSE_1);

 } else if (soundNumberToPlay == 3) {

 PLAYSOUNDEFFECT(SPACECARGOSHIP_CLOSE_2);

 } else if (soundNumberToPlay == 4) {

 PLAYSOUNDEFFECT(SPACECARGOSHIP_CLOSE_3);

 }

soundNumberToPlay = soundNumberToPlay + 1;

if (soundNumberToPlay > 4) {

soundNumberToPlay = 0;

 }

}

Listing 8.15 shows the soundNumberToPlay variable being incremented each time
the playSpaceCargoShip method is called. When the soundNumberToPlay is
greater than four, it is reset to zero.

The init method for SpaceCargoShip ties it all together. Go to the init
method in SpaceCargoShip and locate the id action declaration. In this nested set
of actions, add the CCCallFunc action shown in Listing 8.16 before each CCMoveTo
action, starting with the second one.

Listing 8.16 SpaceCargoShip init method—adding CCCallFunc

[CCCallFunc actionWithTarget:self

 selector:@selector(playSpaceCargoShipSound)],

// Example:

id action = [CCRepeatForever actionWithAction:

 [CCSequence actions:

 [CCDelayTime actionWithDuration:2.0f],

 [CCMoveTo actionWithDuration:0.01f

position:ccp(-500.0f,550.0f)],

Adding Sounds to EnemyRobot 219

 [CCScaleTo actionWithDuration:0.01f scale:0.5f],

 [CCFlipX actionWithFlipX:YES],

[CCCallFunc actionWithTarget:self

 selector:@selector(playSpaceCargoShipSound)],

 [CCMoveTo actionWithDuration:8.5f

position:ccp(screenSize.width+1000.0f,550.0f)],

In the resources folder for this chapter, the changes to the init method in the
SpaceCargoShip class are included in the UpdatedSpaceCargoShipInit.rtf file. All of the
changes are included as well with the source code for this chapter.

There is one line of code left to complete the SpaceCargoShip. In the beginning
of the init method, be sure to initialize the soundNumberToPlay variable by add-
ing the following line in the init method.

soundNumberToPlay = 0;

That wraps it up for SpaceCargoShip. If you click Run, you will hear the
SpaceCargoShip as it makes its way across the screen. In the next section, you work
on adding sounds to the EnemyRobot and finally to Ole the Viking.

Adding Sounds to EnemyRobot
The EnemyRobot is a bit more complex than the RadarDish or SpaceCargoShip.
The robot patrols the level, looking for Ole, and attacks Ole when he is spotted. So
this time, there are several more sounds to add!

To start, you need to add an instance variable to EnemyRobot. Open the
EnemyRobot.h file and in the @interface declaration section add the following line:

ALuint walkingSound;

Unlike the rest of the sounds in EnemyRobot, the walking sound effect may need
to be cut short if the EnemyRobot suddenly spots Ole. To stop an effect that is cur-
rently playing, you need to know the audio layer identifier for that sound. The audio
layer identifier is a type of unsigned integer called ALuint. You can get the ALuint
by setting it when you call playEffect, as you will see later in the playWalking-
Sound method.

Before creating the walking sounds, you will want to add and understand the sim-
pler playPhaserFireSound method shown in Listing 8.17. Open EnemyRobot.m and
add the contents of Listing 8.17 right above the changeState method.

Listing 8.17 EnemyRobot.m playPhaserFireSound method

#pragma mark -

#pragma mark SoundMethods

-(void)playPhaserFireSound {

int soundToPlay = random() % 2;

Chapter 8 Pump Up the Volume!220

if (soundToPlay == 0) {

 PLAYSOUNDEFFECT(ENEMYROBOT_PHASERFIRE_1);

 } else {

 PLAYSOUNDEFFECT(ENEMYROBOT_PHASERFIRE_2);

 }

}

In the playPhaserFireSound method the modulus (%) operator is used to get the
remainder of a random number divided by two. The two possible outcomes are 0 and
1, and they are used to select one of the two enemy phaser sounds to play.

Next you need to create a similar method to alternate between the two walking
sounds for the EnemyRobot. Once more, copy the contents of Listing 8.18 below the
newly created playPhaserFireSound method.

Listing 8.18 EnemyRobot.m playWalkingSound method

-(void)playWalkingSound {

int soundToPlay = random() % 2;

if (soundToPlay == 0) {

walkingSound = PLAYSOUNDEFFECT(ENEMYROBOT_WALKING_1);

 } else {

walkingSound = PLAYSOUNDEFFECT(ENEMYROBOT_WALKING_2);

 }

}

The main difference between playWalkingSound and playPhaserFireSound
is that you are keeping a reference to the audio layer identifier of the walking sound
effect being played, via the walkingSound variable. This identifier is used to stop the
walking sound anytime the EnemyRobot transitions state, so if he stops walking sud-
denly, the sound will not keep playing.

On Stopping Sounds before They Finish
Stopping a sound effect during playback is a common occurrence in games. Often your
animations or actions may be stopped due to an event in the game, and you will want to
stop your sound effects, too. The easiest way to do this with CocosDenshion is to keep
a reference to the audio layer identifier when you call playEffect and then use it in a
stopEffect method call.

The bulk of the changes to EnemyRobot are in the changeState method, where
a call is added to play a sound effect on several of the state changes. Listing 8.19 shows
an excerpt of the changeState method with the added lines shown. The rest of the
code in the changeState method remains unchanged and is not shown here.

Adding Sounds to EnemyRobot 221

Listing 8.19 EnemyRobot.m changeState method (partial)

 [self stopAllActions];

 STOPSOUNDEFFECT(walkingSound);

id action = nil;

 characterState = newState;

switch (newState) {

case kStateSpawning:

 [soundEngineLink

PLAYSOUNDEFFECT(ENEMYROBOT_TELEPORT);

 [self runAction:[CCFadeOut actionWithDuration:0.0f]]; ...

break;

...

case kStateWalking:

 CCLOG(@"EnemyRobot->Changing State to Walking");

if (isVikingWithinBoundingBox)

break;

[self playWalkingSound];

...

 case kStateAttacking:

CCLOG(@"EnemyRobot->Changing State to Attacking");

 action = [CCSequence actions:

 [CCAnimate actionWithAnimation:raisePhaserAnim

 restoreOriginalFrame:NO],

 [CCDelayTime actionWithDuration:1.0f],

 [CCAnimate actionWithAnimation:shootPhaserAnim

 restoreOriginalFrame:NO],

 [CCCallFunc actionWithTarget:self

 selector:@selector(shootPhaser)],

[CCCallFunc actionWithTarget:self

 selector:@selector(playPhaserFireSound)],

 [CCAnimate actionWithAnimation:lowerPhaserAnim

 restoreOriginalFrame:NO],

 [CCDelayTime actionWithDuration:2.0f],

 nil];

 break;

case kStateTakingDamage:

 CCLOG(@"EnemyRobot->Changing State to TakingDamage");

PLAYSOUNDEFFECT(ENEMYROBOT_DAMAGE);

 if ([vikingCharacter getWeaponDamage] > 10){

// If the viking has the mallet, then

 action =

 [CCAnimate actionWithAnimation:headHitAnim

 restoreOriginalFrame:YES];

Chapter 8 Pump Up the Volume!222

 } else {

// Viking does not have weapon, body blow

action =

 [CCAnimate actionWithAnimation:torsoHitAnim

 restoreOriginalFrame:YES];

 }

 break;

...

case kStateDead:

 CCLOG(@"EnemyRobot -> Going to Dead State");

PLAYSOUNDEFFECT(ENEMYROBOT_DYING);

...

The first addition to the changeState method is the line [soundEngineLink
stopEffect:walkingSound], which stops the walking sound if it is playing. This
line ensures that if the EnemyRobot transitions out of the walking state, the walking
sound will not continue playing. The next sets of changes are in the kStateSpawning,
kStateWalking, kStateAttacking, kStateTakingDamage, and kStateDead
branches.

In the kStateSpawning, kStateTakingDamage, and kStateDead transitions,
a single call to PLAYSOUNDEFFECT is all that is needed to play the teleport sound and
the hit sound effect.

In the kStateWalking transition, the playWalkingSound method is called to
play one of the two walking sounds.

Lastly, in the kStateAttacking transition, the call to playPhaserFireSound
is included in the CCSequence action as a CCCallFunc action so that it starts to play
exactly when the phaser bolt shoots out of the gun.

That wraps up the EnemyRobot sound effects. If you click Run, you should hear
the EnemyRobot teleporting in and the sound effects when he fires at Ole or gets
whacked in the head by the Viking mallet.

In the next section you the give Ole full audio treatment by adding sound effects to
his actions.

Adding Sound Effects to Ole the Viking
The Viking character is the main protagonist in Space Viking, and as such he has the
largest set of sound effects. Earlier in the EnemyRobot class, any sounds involving two
or more effects that could be played were wrapped in a method to make the code clear
and easier to understand. Feel free to reference back and use this code when adding
sound effects to your own game.

First open the Viking.h file and add the following line in the @interface declara-
tion section.

ALuint walkingSound;

Adding Sound Effects to Ole the Viking 223

Just as with EnemyRobot, the walkingSound instance variable allows the Viking
to stop the walking sound anytime he transitions out of that state.

Now move to the Viking.m implementation file to create a set of methods to play
the sounds. Be sure to copy the code in Listings 8.20 to 8.22 into Viking.m into the
changeState method.

Listing 8.20 Viking.m playJumpingSound

#pragma mark -

#pragma mark SoundEffectsMethods

-(void)playJumpingSound {

int soundToPlay = random() % 4;

if (soundToPlay == 0) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_1);

 } else if (soundToPlay == 1) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_2);

 } else if (soundToPlay == 2) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_3);

 } else {

 PLAYSOUNDEFFECT(VIKING_JUMPING_4);

 }

}

The soundToPlay variable is set to one of four possible values randomly, and then
based on that value (0-3), one of the four jumping sounds is played.

Copy the contents of Listing 8.21 into the playJumpingSound method in order to
add the methods to play the swinging mallet sound and the breathing sounds.

Listing 8.21 Viking.m playSwingingSound and playBreathingSound methods

-(void)playSwingingSound {

int soundToPlay = random() % 8;

switch (soundToPlay) {

case 0:

 PLAYSOUNDEFFECT(VIKING_SWINGING_1);

break;

case 1:

PLAYSOUNDEFFECT(VIKING_SWINGING_2);

break;

case 2:

PLAYSOUNDEFFECT(VIKING_SWINGING_3);

break;

case 3:

PLAYSOUNDEFFECT(VIKING_SWINGING_4);

break;

Chapter 8 Pump Up the Volume!224

case 4:

PLAYSOUNDEFFECT(VIKING_SWINGING_5);

break;

case 5:

PLAYSOUNDEFFECT(VIKING_SWINGING_6);

break;

case 6:

PLAYSOUNDEFFECT(VIKING_SWINGING_7);

break;

case 7:

PLAYSOUNDEFFECT(VIKING_SWINGING_8);

break;

default:

 PLAYSOUNDEFFECT(VIKING_SWINGING_9);

break;

 }

}

-(void)playBreathingSound {

int soundToPlay = random() % 4;

if (soundToPlay == 0) {

 PLAYSOUNDEFFECT(VIKING_GRUMBLING_1);

 } else if (soundToPlay == 1) {

 PLAYSOUNDEFFECT(VIKING_GRUMBLING_2);

 } else if (soundToPlay == 2) {

 PLAYSOUNDEFFECT(VIKING_CURSING_1);

 } else {

 PLAYSOUNDEFFECT(VIKING_CURSING_2);

 }

}

As with the playJumpingSound method, the playSwingingSound and play-
BreathingSound methods randomly select between the sound effect options for
swinging and breathing. The breathing sound (grumbling) is played when the player
has not touched any of the controls for a period of time in an attempt to direct the
player’s attention back to the game. After all, there are aliens to bash!

Two more methods remain to round out the sound effects for Ole the Viking.
Copy the contents of Listing 8.22 into the playBreathingSound method in the
Viking.m implementation file.

Listing 8.22 playTakingDamagSound, playDyingSound, and playCrouchingSound
methods in Viking.m

-(void)playTakingDamageSound {

int soundToPlay = random() % 5;

if (soundToPlay == 0) {

PLAYSOUNDEFFECT(VIKING_HIT_1);

Adding Sound Effects to Ole the Viking 225

 } else if (soundToPlay == 1) {

PLAYSOUNDEFFECT(VIKING_HIT_2);

 } else if (soundToPlay == 2) {

PLAYSOUNDEFFECT(VIKING_HIT_3);

 } else if (soundToPlay == 3) {

 PLAYSOUNDEFFECT(VIKING_HIT_4);

 } else {

 PLAYSOUNDEFFECT(VIKING_HIT_5);

 }

}

-(void)playDyingSound {

int soundToPlay = random() % 5;

if (soundToPlay == 0) {

PLAYSOUNDEFFECT(VIKING_DYING_1);

 } else if (soundToPlay == 1) {

PLAYSOUNDEFFECT(VIKING_DYING_2);

 } else if (soundToPlay == 2) {

PLAYSOUNDEFFECT(VIKING_DYING_3);

 } else if (soundToPlay == 3) {

 PLAYSOUNDEFFECT(VIKING_DYING_4);

 } else {

 PLAYSOUNDEFFECT(VIKING_DYING_5);

 }

}

-(void)playCrouchingSound {

int soundToPlay = random() % 4;

if (soundToPlay == 0) {

PLAYSOUNDEFFECT(VIKING_CROUCHING_1);

 } else if (soundToPlay == 1) {

PLAYSOUNDEFFECT(VIKING_CROUCHING_2);

 } else if (soundToPlay == 2) {

 PLAYSOUNDEFFECT(VIKING_CROUCHING_3);

 } else {

 PLAYSOUNDEFFECT(VIKING_CROUCHING_4);

 }

}

The playTakingDamage and playDyingSound methods choose randomly
between the five available sound effects for Ole taking a hit and Ole dying. The
playCrouchingSound method plays four different crouching movement sounds. The
multiple sound effects for each event prevent the game from being too repetitive and
the player from having to hear the sounds played over and over.

Chapter 8 Pump Up the Volume!226

Adding the Sound Method Calls in changeState for Ole
The last step in making Ole speak is to add the calls to the methods you just created.
The calls are inside of the changeState method. Listing 8.23 shows the lines added
to the changeState method. Look closely at Listing 8.23 and add these lines in your
Viking.m implementation file.

Listing 8.23 Viking.m changeState method (partial)

 STOPSOUNDEFFECT(walkingSound);

 [self setCharacterState:newState];

switch (newState) {

...

case kStateWalking:

 PLAYSOUNDEFFECT(VIKING_WALKING_1);

...

break;

case kStateCrouching:

[self playCrouchingSound];

...

break;

case kStateBreathing:

[self playBreathingSound];

...

break;

case kStateJumping:

[self playJumpingSound];

...

break;

case kStateAttacking:

if (isCarryingMallet == YES) {

 action = [CCAnimate

 actionWithAnimation:malletPunchAnim

 restoreOriginalFrame:YES];

[self playSwingingSound];

 } else {

PLAYSOUNDEFFECT(VIKING_PUNCHING);

...

break;

Adding Sound Effects to Ole the Viking 227

case kStateTakingDamage:

[self playTakingDamageSound];

...

break;

case kStateDead:

[self playDyingSound];

...

break;

default:

break;

 }

In the changeState method, the first line added is a call to stop playing the walk-
ing sound effect. This call does nothing if the walking sound is not currently playing.
In the switch block for the states, the following occurs.

If the state is switching to:

1. kStateWalking

The walking sound effect is played and the audio layer identifier for this sound
effect is stored in the instance variable. This audio layer identifier is used to stop
playing the walking sound when Ole changes state.

2. kStateCrouching

There are four crouching sounds, and the playCrouchingSound method
chooses among them at random.

3. kStateBreathing

Calls the playBreathingSound method, which randomly chooses one of the
four mumbling sound effects to try to entice the player to return to the game.

4. kStateJumping

Calls the playJumpingSound method to randomly play one of Ole’s jumping
sound effects.

5. kStateAttacking

If Ole is carrying the mallet, the playSwingingSound is called to randomly
play one of Ole’s mallet-swinging sound effects. If Ole’s just got his bare fists to
rely on, it calls soundEngineLink directly and plays the Viking punch sound
effect.

6. kStateTakingDamage

Calls the playTakingDamageSound to randomly play one of the five sound
effects of Ole being hit by one of the enemies.

Chapter 8 Pump Up the Volume!228

7. kStateDead

Calls the playDyingSound to randomly play one of the five sound effects of
Ole dying and turning to dust. Let’s hope you don’t hear this sound effect very
often.

This concludes all the setup you need to give Ole the Viking a voice and a full
complement of sound effects. If you click Run, you should be able to hear Ole making
the various sound effects as you play Space Viking.

Adding Music to the Menu Screen
All of the scenes in Space Viking have background music to go along with them. You
have already carried out most of the work needed to play background music in the
GameManager class. All you need to do is call it from the various scenes. While you
could add the next call at the scene level, you will be adding it to the layer, as that is
where you have most of the code.

Adding Music to Gameplay
Open the GameplayLayer.h file and add an import for the GameManager class:

#import "GameManager.h"

Switch over to the GameplayLayer.m file and in the init method, add the following
line:

[[GameManager sharedGameManager] playBackgroundTrack:BACKGROUND_TRACK_
OLE_AWAKES];

If you click Run and play the Ole Awakes level, you should hear the background
music starting.

Adding Music to the MainMenu
To add music to the MainMenu, follow the same steps as for adding it to the Gameplay.
Start by opening the MainMenuLayer.h file and add an import for the GameManager
class:

#import "GameManager.h"

Switch over to the MainMenuLayer.m file and in the init method, add the follow-
ing line:

[[GameManager sharedGameManager] playBackgroundTrack:BACKGROUND_TRACK_
MAIN_MENU];

In addition to playing the new background music, the GameManager will stop
any currently playing background music when the player returns to it from one of the
levels.

For the More Curious: If You Need More Audio Control 229

Once more, click Run, and you should now hear music in the Main Menu along
with the Gameplay layer. Since the other menus in Space Viking do not have their
own music, the main menu background track will continue playing when you transi-
tion to them.

For the More Curious: If You Need More Audio
Control
SimpleAudioEngine is an excellent interface for getting sounds into your
games with a minimal amount of code and setup. Even though you used the short
playEffect call, there is a fuller version available with SimpleAudioEngine.

[soundEngine playEffect:

 pitch:

 pan:

 gain:]

Pitch is a multiplier that can change the octave of the sound being played: 1.0 is
unchanged, 0.5 is an octave lower.

Pan controls the left and right stereo position of the sound: -1 is all the way on the
left, while 1 is all the way on the right. Zero is in the center, with the sound coming
out of both the left and right speakers equally.

Gain controls the audio gain: 1.0 is unchanged, 0.5 is half the audio gain.
Although SimpleAudioEngine provides quite a bit of power, sometimes you

need more control over how the audio is played. For greater control over audio play-
back, there are two additional APIs for CocosDenshion, CDAudioManager and
CDSoundEngine.

In Space Viking you used the ALUint identifier to stop audio playback. The
CDSoundSource objects in CocosDenshion provide better control when you need to
stop sounds, even allowing you to fade your sounds. It is recommended that you use
CDSoundSource when you need to stop sound effects or loop them, as it provides
finer-grained control over your audio effects.

Additionally, there is a limit of 32 sounds that can be played simultaneously on the
iOS devices. SimpleAudioEngine always attempts to honor a play request, and if you
attempt to play more than 32 sounds at once, your earlier sounds may be prematurely
cut off.

CDAudioManager provides a mechanism to identify sounds by their unique
numerical IDs instead of filenames and is the underlying CocosDenshion module
SimpleAudioEngine uses.

CDSoundEngine provides full access to the OpenAL layer, allowing you to group
your sounds into interruptible and noninterruptible channels, and provides you with
precise control over the audio buffers and playback. CDSoundEngine also provides an
easy way to loop any audio, not just the background track.

Chapter 8 Pump Up the Volume!230

Covering these two portions of CocosDenshion is beyond the scope of this book,
but there are several example projects included with Cocos2D to help you get started
with these two APIs.

The DrumPad, Fade to Grey, and FancyRat Metering targets included in the
Cocos2D Xcode project are a great starting point for delving deeper into the Cocos-
Denshion framework.

There are also additional examples included with the source files of this book,
found at the InformIT website (www.informit.com/title/9780321735621) and at the
Cocos2DBook website (www.cocos2dbook.com).

Summary
In this chapter you learned about CocosDenshion, the sound engine included with
Cocos2D. You learned how to preload audio and initialize the sound engine. You also
learned how to play a music track and sound effects for the characters in Space Viking
and how to load the music via a background thread. When you create your own
games, you can reuse the code from this book to help you on your way. In the next
chapter you take Ole even further on the alien planet by adding scrolling to
Space Viking.

Challenges
1. Add code in GameManager to avoid playing music or special effect sounds if

the player has selected to turn the music or the sound effects off in the Options
Menu screen.

Hint
Take a look at GameManager’s isMusicON and isSoundEffectsON variables.

2. Add the ability to pan the sounds so that the engine noise from the Space-
CargoShip pans from the left when the ship comes from the left side and from
the right when the ship comes from the right side of the screen.

www.informit.com/title/9780321735621
www.cocos2dbook.com

9
When the World Gets Bigger:

Adding Scrolling

In the last chapter you learned how to add sound effects and music to Space Viking, giving
Ole a heavy metal soundtrack as inspiration to beat the aliens. In this chapter you learn how to
make Ole’s world even larger by adding scrolling and creating a second game level and a cut-scene.
Scrolling is an easy and powerful technique that can be used to make your levels larger and to add
depth to your games.

Let’s take a moment to cover the basics. Up to now the levels have been set to the dimensions
of the iOS device screen. On the iPad the alien world is only 1024 × 768 pixels in size. Ole and
his enemies cannot move beyond the screen to the left or right. For the background, you are using
one large image (1024 × 768 pixels on the iPad) on top of which the GameplayLayer and all
the characters are composited. If you made the level twice as wide, you would need a larger back-
ground image to cover the new space, and larger levels would quickly cause you to run out of mem-
ory. There is a better way, using TileMaps, as you will learn in the third section of this chapter.

Terminology Review
Before jumping into the scrolling functionality, it is useful to cover some of the termi-
nology used in this chapter.

n Parallax Scrolling
A technique used in 2D games to create depth by scrolling separate layers of
the background at different rates. Having the layers closest to the player move
faster than layers further away gives the player the illusion of depth. To visual-
ize this, think about the scenery as you ride in a car or train. The road or track
moves really fast, the items farther away move slower. By replicating the same
movement on a 2D scene, the game can fool the player’s brain into seeing
depth were there is none.

n Tiles
Image or texture used in a TileMap. These are usually PNG images combined in
a texture atlas. Tile images are usually squared, and the common sizes are
32 × 32 and 64 × 64 pixels.

Chapter 9 When the World Gets Bigger: Adding Scrolling232

n TileMap
A large image made up of tiles of a standard size. The tile images/textures
can repeat so that a large TileMap needs only a small amount of unique tiles.
TileMaps can contain multiple TileSets and can contain image and other custom
data for each tile.

n TileSet
A set of tiles stored as one image. Consider how texture atlases are used to
combine multiple sprites images into a single larger image: the TileSet is the
texture atlas of tiles.

Don’t worry if you do not understand the TileMap terminology just yet. It will become
clear by the time you reach the last section of this chapter. With the definitions out of
the way, it is time to get into the code.

First you learn how to scroll with one large image. Then you can learn how to
add multiple layers and scroll them at different speeds with parallax. Finally you learn
about using TileMaps and develop a scrolling background using TileMap layers.

Adding the Logic for a Larger World
Until now you have been working with a single game level. You will leave this first
level unchanged and instead create a new level for use in this chapter and beyond.

In Chapter 3, “Introduction to Cocos2D Animations and Actions,” you created
code in GameCharacter to automatically clamp the character’s position to iOS device
dimensions. If you recall, before the GameCharacter class can clamp the position, it
needs to know the size of the level. Since the first level was the size of the screen, you
simply used the screen dimensions for the level size. However, this will not work if the
level size varies from level to level. Since you already have the GameManager control-
ling the transition from one level to another, it makes sense to create a method there
to provide the size of the level.

Open the GameManager.h header file and add the line shown in Listing 9.1 immedi-
ately below the @property declarations.

Listing 9.1 GameManager.h declaration for getDimensionsOfCurrentScene method

-(CGSize)getDimensionsOfCurrentScene;

Just as the name implies, this method returns the dimensions of the current scene.
Since this method bases the dimension on the CCDirector’s winSize, it automati-
cally has the proper dimensions for iPhone, iPhone 4, and iPad screen sizes. Remem-
ber that winSize returns the size in points, while the winSizeInPixels call returns
the actual pixel size of the display.

Move to the GameManager.m implementation file and add the getDimensionsOf-
CurrentScene right above the @end declaration, as shown in Listing 9.2.

Adding the Logic for a Larger World 233

Listing 9.2 GameManager.m getDimensionsOfCurrentScene method

-(CGSize)getDimensionsOfCurrentScene {

CGSize screenSize = [[CCDirector sharedDirector] winSize];

CGSize levelSize;

switch (currentScene) {

case kMainMenuScene:

case kOptionsScene:

case kCreditsScene:

case kIntroScene:

case kLevelCompleteScene:

case kGameLevel1:

 levelSize = screenSize;

break;

case kGameLevel2:

 levelSize = CGSizeMake(screenSize.width * 2.0f,

 screenSize.height);

break;

default:

 CCLOG(@"Unknown Scene ID, returning default size");

 levelSize = screenSize;

break;

 }

return levelSize;

}

The getDimensionsOfCurrentScene method takes a look at what the cur-
rentSceneID is set to and returns the appropriate level dimensions as a CGSize. The
screen dimensions on the devices are always constant, such as 1024 × 768 on the iPad,
but the sizes of the levels will vary. As you can see in Listing 9.2, the menus and the
first game level are the same size as the screen, while on the second level, identified by
the kGameLevel2 ID that you will be building, they are actually twice as wide.

With the level size out of the way, the next step is to modify the checkAnd-
ClampSpritePosition method in GameCharacter to take into account the
levelDimensions.

Open the GameCharacter.m implementation file and replace the checkAndClamp-
SpritePosition method with the contents of Listing 9.3.

Listing 9.3 GameCharacter.m checkAndClampSpritePosition method

-(void)checkAndClampSpritePosition {

CGPoint currentSpritePosition = [self position];

CGSize levelSize = [[GameManager sharedGameManager]

getDimensionsOfCurrentScene];

Chapter 9 When the World Gets Bigger: Adding Scrolling234

float xOffset;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

// Clamp for the iPad

 xOffset = 30.0f;

 } else {

// Clamp for iPhone, iPhone 4, or iPod touch

 xOffset = 24.0f;

 }

if (currentSpritePosition.x < xOffset) {

 [self setPosition:ccp(xOffset, currentSpritePosition.y)];

 } else if (currentSpritePosition.x > (levelSize.width - xOffset)) {

 [self setPosition:ccp((levelSize.width - xOffset),

 currentSpritePosition.y)];

 }

}

The checkAndClampSpritePosition method now takes into account the
level width and keeps game characters such as Ole and the EnemyRobot 30 pix-
els away from the left and right sides. The level dimensions are retrieved from the
GameManager.

To ensure you have typed everything correctly up to this point, click Run and try
out the first level. Ole and the alien robots should remain within the screen.

Common Scrolling Problems
Before you begin learning about scrolling, it is worthwhile taking a quick detour to
see what happens if you widen the level without taking care to reposition Ole and the
joystick controls.

Open GameManager and modify the lines for the levelSize so that they
match Listing 9.4. Note how the level width is larger than what it should be for
kGameLevel1.

Listing 9.4 Level width change for kGameLevel1 in GameManager.m

case kGameLevel1:

 levelSize = CGSizeMake(screenSize.width * 2.0f,

 screenSize.height);

break;

All you have changed here is the width of the first game level to twice the screen
size; on the iPad this means the width went from 1024 to 2048 pixels. The first level
is not designed for scrolling. Take a minute to run the game, and play the first level.
Figure 9.1 shows what happens when you move Ole to the right.

Creating a Larger World 235

The first game level scene was not set for scrolling, so when Ole moves to the
right, the scene does not follow him, and he quickly disappears offscreen. This was an
exercise to illustrate how you need to track Ole’s position in order to scroll the entire
layer properly to match his position. Keep this in mind as you work through the next
section.

Make sure to return the kGameLevel1 to just be the width of the screenSize
before moving on.

case kGameLevel1:

levelSize = screenSize;

Creating a Larger World
Instead of just creating a scrolling layer, you will create a whole new level for Ole to
play in. In the process you will learn several techniques to achieve scrolling in your
games.

The first step is to import the ParallaxBackgrounds folder located with the resources
for this chapter into your SpaceViking project. You can drag the ParallaxBackgrounds
folder as a subfolder to the Images folder in Xcode.

Warning
Be sure to import all of the images in the ParallaxBackgrounds folder or your SpaceViking
project will not run when you reach the end of this chapter.

Figure 9.1 Ole scrolls past the screen and is nowhere to be seen.

Chapter 9 When the World Gets Bigger: Adding Scrolling236

Next create a new group under Scenes called Scene2, as shown in Figure 9.2. All
of the classes for this scene and level will be created under this group to keep your
SpaceViking project organized.

Figure 9.2 Scene2 group in Xcode

Creating the Second Game Scene
In order to keep things simple and compartmentalized, you will create a new scene
class instead of adding code to the existing GameScene.

Right-click on the Scene2 group in Xcode and create a new Objective-C class called
GameScene2.m as subclass of CCScene. If you are unsure about the steps in creating
a new class, refer back to the previous chapters in this book, in particular Chapter 2,
“Hello, Space Viking.”

Open the GameScene2.h header file and replace it with the contents of Listing 9.5.

Listing 9.5 GameScene2.h header file

// GameScene2.h

// SpaceViking

//

#import <Foundation/Foundation.h>

Creating a Larger World 237

#import "cocos2d.h"

#import "Constants.h"

#import "GameControlLayer.h"

#import "GameplayScrollingLayer.h"

#import "StaticBackgroundLayer.h"

@interface GameScene2 : CCScene {

GameControlLayer *controlLayer;

}

@end

In the import statements, the GameControlLayer GameplayScrollingLayer,
and StaticBackgroundLayer are three classes you have not created yet. Do not
worry if Xcode starts displaying warnings for the missing classes; you will add them in
the next few listings.

The StaticBackgroundLayer is a simple class, which contains the farthest back-
ground image that will not be scrolled.

In the previous scene, the GameplayLayer contained both the controls and the
gameplay action. Since you are going to have the gameplay scroll, it is useful to move
the joystick controls to their own layer. Having the joystick and buttons in their own
layer means you do not have to move or adjust them when the gameplay layer scrolls.
The joystick will always be on top of the gameplay regardless of what scroll position
the other layers are in.

You are going to split the background into two layers: a static backmost layer that
does not scroll, and a GameplayScrollingLayer where the action and scrolling
takes place.

Move on to the implementation of GameScene2.m and replace the code with the
content of Listing 9.6.

Listing 9.6 GameScene2.m implementation file

// GameScene2.m

// SpaceViking

//

#import "GameScene2.h"

@implementation GameScene2

-(id)init {

self = [super init];

if (self != nil) {

 // Background Layer

StaticBackgroundLayer *backgroundLayer =

 [StaticBackgroundLayer node];

 [self addChild:backgroundLayer z:0];

Chapter 9 When the World Gets Bigger: Adding Scrolling238

 // Initialize the Control Layer

controlLayer = [GameControlLayer node];

 [self addChild:controlLayer z:2 tag:2];

 // Gameplay Layer

GameplayScrollingLayer *scrollingLayer =

 [GameplayScrollingLayer node];

[scrollingLayer connectControlsWithJoystick:[controlLayer leftJoystick]

 andJumpButton:[controlLayer jumpButton]

 andAttackButton:[controlLayer attackButton]];

 [self addChild:scrollingLayer z:1 tag:1];

 }

return self;

}

@end

The GameScene2 init method starts by initializing the static background layer
and adding it to the scene. Next it initializes the control layer, which contains the
joystick and buttons. Lastly, it creates the GameplayScrollingLayer where all
the action is going to take place. The connectControlsWithJoystick method
links the joystick and buttons from the ControlLayer to the Viking inside of
Gameplay ScrollingLayer. Take care to notice the z values of the three layers; even
though the ControlLayer is initialized first, it is actually composited on top of the
GameplayScrollingLayer.

Note on z Values
You learned how z values affect the compositing of objects in Cocos2D. The Game-
Scene2 init method provides a clear example of times when this can be really useful.
In Space Viking, you need to initialize the controls before you initialize the Gameplay-
ScrollingLayer. Even though the ControlLayer is initialized first, it is composited
on top of the scrolling GameplayScrollingLayer due to its z value. Keep this in
mind when writing your own games and when you find that you need to initialize objects
and add objects to a scene in a different way than their compositing order.

Next create the StaticBackgroundLayer class inside the Scene2 folder as a sub-
class of CCLayer. Open the header file and replace the template-created code with the
contents of Listing 9.7.

Listing 9.7 StaticBackgroundLayer.h header file

// StaticBackgroundLayer.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "cocos2d.h"

Creating a Larger World 239

@interface StaticBackgroundLayer : CCLayer {

}

@end

The header file is as simple as possible, containing just an import for Cocos2D and
declaring StaticBackgroundLayer as a subclass to CCLayer. Move to the imple-
mentation file and replace the code with the contents of Listing 9.8.

Listing 9.8 StaticBackgroundLayer.m implementation file

// StaticBackgroundLayer.m

// SpaceViking

#import "StaticBackgroundLayer.h"

@implementation StaticBackgroundLayer

-(id)init {

self = [super init];

if (self != nil) {

CGSize screenSize = [CCDirector sharedDirector].winSize;

CCSprite *backgroundImage;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 // Indicates game is running on iPad

 backgroundImage =

 [CCSprite spriteWithFile:@"chap9_scrolling1.png"];

 } else {

 backgroundImage =

 [CCSprite spriteWithFile:@"chap9_scrolling1iPhone.png"];

 }

 [backgroundImage setPosition:ccp(screenSize.width/2.0f,

 screenSize.height/2.0f)];

 [self addChild:backgroundImage];

 }

return self;

}

@end

The StaticBackgroundLayer implementation file contains only the init
method, creating the background CCSprite and adding it to the layer. This is the
same logic that you implemented for the BackgroundLayer in the first level of Space
Viking back in Chapter 2.

The next step is to create the GameControlLayer class as a subclass of CCLayer.
Create it in the Scene2 group, and open the header file. Copy the contents of Listing 9.9
into the GameControlLayer.h file.

Chapter 9 When the World Gets Bigger: Adding Scrolling240

Listing 9.9 GameControlLayer.h header file

// GameControlLayer.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "SneakyJoystick.h"

#import "SneakyJoystickSkinnedBase.h"

#import "SneakyButton.h"

#import "SneakyButtonSkinnedBase.h"

@interface GameControlLayer : CCLayer {

SneakyJoystick *leftJoystick;

SneakyButton *jumpButton;

SneakyButton *attackButton;

}

@property (nonatomic, readonly) SneakyJoystick *leftJoystick;

@property (nonatomic, readonly) SneakyButton *jumpButton;

@property (nonatomic, readonly) SneakyButton *attackButton;

@end

The GameControlLayer imports the SneakyJoystick and SneakyButton
classes. It also contains the instance variables for the leftJoystick, the jump, and
the attack buttons. Note the property declarations for the instance variables to allow
access to them from outside the GameControlLayer class. They are set to readonly
because the SneakyJoystick and buttons should only be read from and not changed.

Next move to the GameControlLayer implementation file and replace the
template-generated code with the contents of Listing 9.10.

Listing 9.10 GameControlLayer.m

// GameControlLayer.m

// SpaceViking

//

#import "GameControlLayer.h"

@implementation GameControlLayer

@synthesize leftJoystick;

@synthesize jumpButton;

@synthesize attackButton;

-(void)initJoystickAndButtons {

CGSize screenSize = [CCDirector sharedDirector].winSize;

CGRect joystickBaseDimensions = CGRectMake(0, 0, 128.0f, 128.0f);

CGRect jumpButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

Creating a Larger World 241

CGRect attackButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

CGPoint joystickBasePosition;

CGPoint jumpButtonPosition;

CGPoint attackButtonPosition;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

// The device is an iPad running iPhone 3.2 or later.

CCLOG(@"Positioning Joystick and Buttons for iPad");

 joystickBasePosition = ccp(screenSize.width*0.0625f,

 screenSize.height*0.052f);

 jumpButtonPosition = ccp(screenSize.width*0.946f,

 screenSize.height*0.052f);

 attackButtonPosition = ccp(screenSize.width*0.947f,

 screenSize.height*0.169f);

 } else {

// The device is an iPhone or iPod touch.

CCLOG(@"Positioning Joystick and Buttons for iPhone");

 joystickBasePosition = ccp(screenSize.width*0.07f,

 screenSize.height*0.11f);

 jumpButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.11f);

 attackButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.35f);

 }

SneakyJoystickSkinnedBase *joystickBase =

 [[[SneakyJoystickSkinnedBase alloc] init] autorelease];

 joystickBase.position = joystickBasePosition;

 joystickBase.backgroundSprite =

 [CCSprite spriteWithFile:@"dpadDown.png"];

 joystickBase.thumbSprite =

 [CCSprite spriteWithFile:@"joystickDown.png"];

 joystickBase.joystick = [[SneakyJoystick alloc]

initWithRect:joystickBaseDimensions];

leftJoystick = [joystickBase.joystick retain];

 [self addChild:joystickBase];

SneakyButtonSkinnedBase *jumpButtonBase =

 [[[SneakyButtonSkinnedBase alloc] init] autorelease];

 jumpButtonBase.position = jumpButtonPosition;

 jumpButtonBase.defaultSprite =

 [CCSprite spriteWithFile:@"jumpUp.png"];

 jumpButtonBase.activatedSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

Chapter 9 When the World Gets Bigger: Adding Scrolling242

 jumpButtonBase.pressSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

 jumpButtonBase.button = [[SneakyButton alloc]

initWithRect:jumpButtonDimensions];

jumpButton = [jumpButtonBase.button retain];

jumpButton.isToggleable = NO;

 [self addChild:jumpButtonBase];

SneakyButtonSkinnedBase *attackButtonBase = [[[SneakyButtonSkinnedBase
alloc] init] autorelease];

 attackButtonBase.position = attackButtonPosition;

 attackButtonBase.defaultSprite = [CCSprite spriteWithFile:@"handUp.png
"];

 attackButtonBase.activatedSprite = [CCSprite
spriteWithFile:@"handDown.png"];

 attackButtonBase.pressSprite = [CCSprite spriteWithFile:@"handDown.png
"];

 attackButtonBase.button = [[SneakyButton alloc] initWithRect:attackBut
tonDimensions];

attackButton = [attackButtonBase.button retain];

attackButton.isToggleable = NO;

 [self addChild:attackButtonBase];

}

-(id)init {

self = [super init];

if (self != nil) {

 // enable touches

self.isTouchEnabled = YES;

 [self initJoystickAndButtons]; // 4

CCLOG(@"GameControlLayer initialized");

 }

return self;

}

@end

The initJoystick method is the same as you wrote back in Chapter 2. It creates
the SneakyJoystick, jump, and attack buttons. The init method marks this layer
as receiving touch events and adds the joystick and buttons to itself. This is all that is
needed for the player to control the game and move Ole the Viking around.

Creating the Scrolling Layer
You are going to create three kinds of scrolling layers in this chapter. First you start
with a simple scrolling layer with a large background image twice as wide as the
screen. Next you add a parallax node and scroll the background in layers, where each
layer has a different scroll speed. Lastly, you scroll with a TileMap layer, learning how

Creating a Larger World 243

to save on memory while creating much larger levels. Along the way you also learn
how to create infinite scrolling for a cut-scene.

To start, create the GameplayScrollingLayer class as a subclass of CCLayer
inside of the Scene2 group. Open the header file and replace the code with the con-
tents of Listing 9.11.

Listing 9.11 GameplayScrollingLayer.h

// GameplayScrollingLayer.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "Viking.h"

#import "GameControlLayer.h"

@interface GameplayScrollingLayer : CCLayer {

CCSpriteBatchNode *sceneSpriteBatchNode;

CCTMXTiledMap *tileMapNode;

CCParallaxNode *parallaxNode;

}

-(void)connectControlsWithJoystick:(SneakyJoystick*)leftJoystick

 andJumpButton:(SneakyButton*)jumpButton

 andAttackButton:(SneakyButton*)attackButton;

@end

The GameplayScrollingLayer contains the imports for Cocos2D, the Viking,
and the GameControlLayer class, which contains the joystick and buttons. In the
interface declaration, you can see instance variables for the CCTMXTiledMap and
CCParallaxNode, which you will use later in this chapter. Lastly, there is a method
called connectControlsWithJoystick, which wires up the joystick and buttons to
the Viking character.

Move to the GameplayScrollingLayer implementation file and replace the tem-
plate code with the contents of Listings 9.12, 9.13, and 9.14.

Listing 9.12 GameplayScrollingLayer.m (part 1 of 3)

// GameplayScrollingLayer.m

// SpaceViking

//

#import "GameplayScrollingLayer.h"

@implementation GameplayScrollingLayer

-(void)connectControlsWithJoystick:(SneakyJoystick*)leftJoystick

 andJumpButton:(SneakyButton*)jumpButton

 andAttackButton:(SneakyButton*)attackButton {

Chapter 9 When the World Gets Bigger: Adding Scrolling244

Viking *viking = (Viking*)[sceneSpriteBatchNode

getChildByTag:kVikingSpriteTagValue];

 [viking setJoystick:leftJoystick];

 [viking setJumpButton:jumpButton];

 [viking setAttackButton:attackButton];

}

// Scrolling with just a large width *2 background

-(void)addScrollingBackground {

CGSize screenSize = [[CCDirector sharedDirector] winSize];

 CGSize levelSize = [[GameManager sharedGameManager]

 getDimensionsOfCurrentScene];

 CCSprite *scrollingBackground;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 // Indicates game is running on iPad

 scrollingBackground =

 [CCSprite spriteWithFile:@"FlatScrollingLayer.png"];

 } else {

 scrollingBackground =

 [CCSprite spriteWithFile:@"FlatScrollingLayeriPhone.png"];

 }

 [scrollingBackground setPosition:ccp(levelSize.width/2.0f,

 screenSize.height/2.0f)];

 [self addChild:scrollingBackground];

}

-(id)init {

self = [super init];

if (self != nil) {

 CGSize screenSize = [[CCDirector sharedDirector] winSize];

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene1atlas.plist"];

sceneSpriteBatchNode =

 [CCSpriteBatchNode

 batchNodeWithFile:@"scene1atlas.png"];

 } else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene1atlasiPhone.plist"];

 sceneSpriteBatchNode =

 [CCSpriteBatchNode

batchNodeWithFile:@"scene1atlasiPhone.png"];

 }

Creating a Larger World 245

 [self addChild:sceneSpriteBatchNode z:20];

 Viking *viking = [[Viking alloc]

 initWithSpriteFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 spriteFrameByName:@"sv_anim_1.png"]];

 [viking setJoystick:nil];

 [viking setJumpButton:nil];

 [viking setAttackButton:nil];

 [viking setPosition:ccp(screenSize.width * 0.35f,

screenSize.height * 0.14f)];

 [viking setCharacterHealth:100];

 [sceneSpriteBatchNode addChild:viking

 z:1000 tag:kVikingSpriteTagValue];

 [self addScrollingBackground];

 [self scheduleUpdate];

 }

return self;

}

The connectControlsWithJoystick method wires up the Viking with refer-
ences to the joystick and button controls residing in the ControlLayer. The Game-
Scene2 class has access to both layers and uses this method to connect the joystick
from the ControlLayer to the Viking in the GameplayScrollingLayer.

The addScrollingBackground method is where you set up the scrolling back-
ground for use in this level. In Listing 9.12 this method starts out with just a large
2048-pixel-wide background image. In the next section of this chapter, you will
change out the contents of this method to use a parallax layer.

The init method starts in much the same way as the GameplayLayer init in the
first SpaceViking scene. The screenSize is determined from the Cocos2D Direc-
tor, and the SpriteBatchNode is set up.

Next the Viking object is created and added to the layer. Note how the joystick
and buttons are set to nil at this point. They will be connected when the connect-
ControlsWithJoystick method is called. Finally, the scrolling background is added.

Before you can test out this game, you have to add the update method and a little
bit of the scrolling logic to the GameplayScrollingLayer class. Add the contents of
Listing 9.13 directly below the init method.

Listing 9.13 GameplayScrollingLayer.m adjustLayer method (part 2 of 3)

#pragma mark SCROLLING_CALCULATION

-(void)adjustLayer {

Viking *viking = (Viking*)[sceneSpriteBatchNode

getChildByTag:kVikingSpriteTagValue]; // 1

Chapter 9 When the World Gets Bigger: Adding Scrolling246

float vikingXPosition = viking.position.x; // 2

CGSize screenSize = [[CCDirector sharedDirector] winSize]; // 3

float halfOfTheScreen = screenSize.width/2.0f; // 4

CGSize levelSize = [[GameManager sharedGameManager]

getDimensionsOfCurrentScene]; // 5

// 6

if ((vikingXPosition > halfOfTheScreen) &&

 (vikingXPosition < (levelSize.width - halfOfTheScreen))) {

// Background should scroll

float newXPosition = halfOfTheScreen - vikingXPosition; // 7

 [self setPosition:ccp(newXPosition,self.position.y)]; // 8

 }

}

The adjustLayer method is responsible for moving the gameplayScrolling-
Layer so that it scrolls left and right as Ole moves around the level. The first few lines
in this method get the size of the screen and then the size of the level. If Ole is more
than halfway across the screen and less than half a screen from the end of the level, the
layer is scrolled. Otherwise the layer is not moved, and Ole remains and moves around
the screen. Line by line, here is what happens:

1. Retrieves the Viking object from the SpriteBatchNode using the unique
Viking Tag Constant

2. Retrieves the x coordinate of the Viking and saves it as a float. The level is
designed to scroll only horizontally, so the y coordinate is ignored. The x coor-
dinate is stored as a float just to make the code clearer; in your own games feel
free to combine lines and shorten this method.

3. Retrieves the screen size from the Cocos2D Director. This is the screen size
(1024 × 768 on the iPad) and not the level size. It is used to figure out if Ole is
more than halfway across the screen.

4. Gets half of the screen size and stores it as a float. Once more, each computation
is given on an individual line for clarity. Feel free to combine these in your own code.

5. Gets the size of the level in pixels. Only the width is used in deciding when to
scroll the level.

6. Determines if the layer needs to be scrolled or not. The first part of this if state-
ment checks to see if Ole’s position is more than halfway across the screen. If
Ole is not, then there is no need to scroll: Ole can move around the scene with
the background remaining static. The second part of the if statement checks to
see if Ole’s position is less than the level width minus half of the screen. In other
words, if Ole is all the way to the right, there is no need to scroll the layer.

To put it another way, if the screen size is a normal iPad, the width will be 1024
pixels. The level here is double that size at 2048 pixels. If Ole is in the first 512
pixels or in the last (1536–2048 pixels), there is no need to scroll the level. If he
is anywhere in between, the layer needs to scroll.

Creating a Larger World 247

7. Calculates how much to move the layer. The layer needs to move in relation
to the Viking minus the half of the screen in which it will not scroll. If this
seems confusing, don’t worry: you will get to see how it works shortly. Since the
Viking is already moved to the new position, the layer needs to be moved so
that it stays onscreen and has the appearance of scrolling.

8. Changes the position of the layer in the x coordinate. The y coordinate remains
the same.

There is one more method to add, and then you can test out scrolling. Copy the
contents of Listing 9.14 directly below adjustLayer in GameplayScrollingLayer.m.

Listing 9.14 GameplayScrollingLayer.m update method (part 3 of 3)

#pragma mark -

-(void) update:(ccTime)deltaTime

{

 CCArray *listOfGameObjects =

 [sceneSpriteBatchNode children];

for (GameCharacter *tempChar in listOfGameObjects) {

 [tempChar updateStateWithDeltaTime:deltaTime

 andListOfGameObjects:listOfGameObjects];

 }

 [self adjustLayer];

// Check to see if the Viking is dead

 GameCharacter *tempChar =

 (GameCharacter*)[sceneSpriteBatchNode

getChildByTag:kVikingSpriteTagValue];

if (([tempChar characterState] == kStateDead) &&

 ([tempChar numberOfRunningActions] == 0)) {

 [[GameManager sharedGameManager] setHasPlayerDied:YES];

 [[GameManager sharedGameManager]

 runSceneWithID:kLevelCompleteScene];

 }

// Check to see if the RadarDish is dead

tempChar = (GameCharacter*)[sceneSpriteBatchNode

 getChildByTag:kRadarDishTagValue];

if (([tempChar characterState] == kStateDead) &&

 ([tempChar numberOfRunningActions] == 0)) {

 [[GameManager sharedGameManager]

 runSceneWithID:kLevelCompleteScene];

 }

}

@end

Chapter 9 When the World Gets Bigger: Adding Scrolling248

The update method is the same as you have written before except for the call to
adjustLayer. The for loop updates all of the GameObjects in the layer, and then
the layer is adjusted, followed by a check to see if the Viking or RadarDish are dead.
Since the layer is adjusted according to the Viking’s position, it is important to do it
after the Viking has had a chance to update inside of the for loop.

Two quick steps remain before you can try out this level. You have to set up the
GameManager to be able to load and run the GameScene2 and the MainMenuLayer
to call the GameManager when you press on the “Dogs of Loki!” button.

Open the GameManager.m class and add an import for the GameScene2 class:

#import "GameScene2.h"

Next scroll down to the runSceneWithID method and update the switch block
so that for kGameLevel2, the GameScene2 is instantiated and set as the sceneToRun
variable.

case kGameLevel2:

 sceneToRun = [GameScene2 node];

break;

Warning
Be sure to remove the return statement that was previously inside of the kGame-
Level2 switch branch. You want the GameScene2 scene to be initialized and for the
method to continue so that the audio is loaded and the director can transition to the new
scene.

Open the MainMenuLayer.m class and add the if else branches shown in
Listing 9.15.

Listing 9.15 Updated playScene method in MainMenuLayer.m

-(void)playScene:(CCMenuItemFont*)itemPassedIn {

if ([itemPassedIn tag] == 1) {

 [[GameManager sharedGameManager] runSceneWithID:kIntroScene];

 } else if ([itemPassedIn tag] == 2) {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel2];

 } else if ([itemPassedIn tag] == 3) {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel3];

 } else if ([itemPassedIn tag] == 4) {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel4];

 } else if ([itemPassedIn tag] == 5) {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel5];

 } else {

CCLOG(@"Unexpected item. Tag was: %d", [itemPassedIn tag]);

 }

}

Creating a Larger World 249

The kGameLevel2 branch is called for the Dogs of Loki; the others are for later
chapters. If you click Run and select the Dogs of Loki level, you should be able to
move Ole to the right. Once he crosses over half of the screen, you should start to see
the background scrolling. Figure 9.3 shows the level as Ole scrolls from left to right.

Figure 9.3 Space Viking level 2 showing scrolling

A Note on CCFollow
There is a built-in action in Cocos2D to move a layer or the camera around any
CCNode called CCFollow. The CCFollow action makes the object running it follow
one of your characters (or any CCNode) and scroll in the opposite direction. To use it
in your games, you just need the lines:

id followAction = [CCFollow actionWithTarget:playerCharacter];

[layer runAction:followAction];

This action runs continuously and adjusts the layer to the position of the player charac-
ter. You can even provide the CCFollow action with boundaries so that the scrolling
or movement of the layer is limited. Unfortunately, it moves the layer in both the x- and
y-axes, so when the playerCharacter jumps, the ground layer falls away. In Space
Viking the scrolling needs to happen only in the x-axis; therefore, the CCFollow action
is not used. It is mentioned here in case you find it helpful in your own games.

While this scrolling is a good start, it lacks depth, and you don’t really get the illu-
sion that Ole is in a big alien landscape. The next section covers adding a parallax
node to this layer in order to have multiple levels of scrolling backgrounds for a faux-
3D scrolling effect.

Chapter 9 When the World Gets Bigger: Adding Scrolling250

Scrolling with Parallax Layers
In the previous section you created a scrolling scene consisting of a background with
two layers. One was the static backdrop of the alien desert, the other the ground along
with the boulders and mountains in the background that moved with Ole. In order to
give your games more depth, it is useful to have multiple background layers all scroll-
ing at different rates. To visualize this effect, think of a time you were looking out
the side window of a car or train. The grass or the side of the road scrolled by quickly,
the trees beyond that slower, and the mountains or faraway items in the background
scrolled the slowest of all. In your Cocos2D games there is no real depth to these lay-
ers, but by scrolling various layers at different speeds from the player, you can have
the same effect. A little bit of work is needed on your part, and the player’s brain will
automatically do the rest.

You do not have to scroll the items manually; there is a handy class in Cocos2D
called CCParallaxNode that takes care of the scrolling for you. A parallax node is a
special Cocos2D parent node that has the logic to scroll its children at different ratios
than the ratios at which the parent itself is scrolled. The best way to understand this is
with a simple code change.

Start by opening the GameplayScrollingLayer.m class and creating a new
method called addScrollingBackgroundWithParallax directly above the init
method. Copy the lines in Listing 9.16 into the new addScrollingBackground-
WithParallax method.

Listing 9.16 GameplayScrollingLayer.m addScrollingBackgroundWithParallax

// Scrolling with 3 Parallax backgrounds

-(void)addScrollingBackgroundWithParallax {

 CGSize screenSize = [[CCDirector sharedDirector] winSize];

CGSize levelSize = [[GameManager sharedGameManager]

 getDimensionsOfCurrentScene];

 CCSprite *BGLayer1;

CCSprite *BGLayer2;

 CCSprite *BGLayer3;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

// Indicates game is running on iPad

 BGLayer1 = [CCSprite spriteWithFile:@"chap9_scrolling4.png"];

 BGLayer2 = [CCSprite spriteWithFile:@"chap9_scrolling2.png"];

 BGLayer3 = [CCSprite spriteWithFile:@"chap9_scrolling3.png"];

 } else {

 BGLayer1 = [CCSprite

 spriteWithFile:@"chap9_scrolling4iPhone.png"];

 BGLayer2 = [CCSprite

 spriteWithFile:@"chap9_scrolling2iPhone.png"];

Scrolling with Parallax Layers 251

 BGLayer3 = [CCSprite

 spriteWithFile:@"chap9_scrolling3iPhone.png"];

 }

// chap9_scrolling4 is the ground

// chap9_scrolling2 are the large mountains

// chap9_scrolling3 are the small rocks

parallaxNode = [CCParallaxNode node];

 [parallaxNode

 setPosition:ccp(levelSize.width/2.0f,screenSize.height/2.0f)];

float xOffset = 0;

// Ground moves at ratio 1,1

 [parallaxNode addChild:BGLayer1 z:40 parallaxRatio:ccp(1.0f,1.0f)

positionOffset:ccp(0.0f,0.0f)];

xOffset = (levelSize.width/2) * 0.3f;

 [parallaxNode addChild:BGLayer2 z:20 parallaxRatio:ccp(0.2f,1.0f)

positionOffset:ccp(xOffset, 0)];

xOffset = (levelSize.width/2) * 0.8f;

 [parallaxNode addChild:BGLayer3 z:30 parallaxRatio:ccp(0.7f,1.0f)

 positionOffset:ccp(xOffset, 0)];

 [self addChild:parallaxNode z:10];

}

The first part of the addScrollingBackgroundWithParallax method cre-
ates three CCSprites to be used as the layers in the parallax background. Next the
CCParallax node is instantiated. The three background elements are added along
with a parallaxRatio and positionOffset. Note how even though you add the
ground first, then the mountains, and then the small rocks layer, they are kept in the
correct order due to the z values. The ground has a z value of 40, the rocks 30, and
the mountains 20.

The positions of the three CCSprites are based on the position of the CCParallax-
Node. To understand how the position of a CCParallaxNode child is calculated, look
at the code inside of ParallaxNode addChild, shown in Listing 9.17.

Listing 9.17 CCParallaxNode addChild method

CGPoint pos = self.position;

float x = pos.x * ratio.x + offset.x;

float y = pos.y * ratio.y + offset.y;

 child.position = ccp(x,y);

Chapter 9 When the World Gets Bigger: Adding Scrolling252

The child layer position is based on the CCParallaxNode position times the ratio
plus the offset.

In the second layer of this scrolling background, the ratio on the x-axis is 0.7. Since
you already set the position of the CCParallaxNode to be 1024 on the x-axis, this
means the second layer would be placed at 716.8 pixels (1024 times 0.7). That would
skew the position of the layer to the left, so the offset is needed to put in the correct
initial position.

The offset helps put the layer in the correct position to compensate for the ratio if
needed. In the case of Space Viking you can see the offset being the remainder needed
to add the initial x coordinate to the middle of the scene. In your games, you may
want the offset to be different, for instance, if a particular background starts later in a
level.

As you can see in Listing 9.15, the topmost background layer (BGLayer3) is moved
0.7 pixels for every pixel the CCParallaxNode is moved in the x-axis, while the back-
most layer (BGLayer2) is moved only 0.3 pixels for every pixel the CCParralaxNode
is moved.

To see how the parallax scrolling works, comment out the call to addScrolling-
Background and add in a call to the addScrollingBackgroundWithParallax in
the init method, as shown in Listing 9.18.

Listing 9.18 GameplayScrollingLayer init method changes

//[self addScrollingBackground];

[self addScrollingBackgroundWithParallax];

If you click Run, you will see the new level with four layers in the background,
three scrolling as part of the CCParallaxNode and one static background element.
Move Ole to the right of the screen and pay close attention to the scrolling layers. Fig-
ure 9.4 shows Ole with the four layers of background: the ground, the rock piles, the
mountains, and the alien sky.

You have taken the first steps in creating a scrolling level. Hopefully, your mind is
already full of ideas on how to bring scrolling into your own games. In the next sec-
tion you learn how to create an infinitely scrolling level as a cut-scene for this second
level. After that, you will learn about TileMaps and how to create even larger levels
while using less memory at the same time.

Scrolling to Infinity
Scrolling left and right a few screen widths is very useful, and there are many games
that go only that far. But perhaps your game requires an endlessly scrolling back-
ground, and if so, this section teaches you how to do that.

To learn how to implement infinite scrolling, you create a cut-scene to play
before the second level you created earlier in this chapter. This scene features Ole in

Scrolling to Infinity 253

a f loating platform f lying through the alien landscape with clouds zooming by in the
background. The clouds keep zooming by until the player touches the screen. In this
example the clouds scroll from right to left, but there is nothing mandating that it has
to be that way. You can scroll left to right, top to bottom, or bottom to top in your
own games.

To start, create a new group in Xcode called CutSceneForLevel2 under the
Scenes group. You will have the infinite scrolling cut-scene separate from the second
alien desert level, so that it is easier to understand the scrolling logic and reuse it in
your games.

To accomplish infinite scrolling, you are going to have a set of 25 clouds that move
from right to left at random speeds. Once the clouds go offscreen on the left, they are
moved to a new position on the right side, offscreen. They are once more moved from
right to left. The whole time, Ole remains in the middle of the screen but seems as if
he is f lying by. That’s because our brains are wired to interpret background movement
as if we were moving, so you “feel” like Ole is moving, even though he is always in
the exact same position. If you are making a 2D f lying game or the next shooter, you
can use this technique to make it look as though your character is f lying through the
air or over the terrain.

Enough with the theory: time to get into the code and see how it is actually done.
You start with the scrolling background to understand the logic in there. Following
that, you build the scene in order to be able to have Cocos2D play the cut-scene.

Figure 9.4 Ole with the four background layers

Chapter 9 When the World Gets Bigger: Adding Scrolling254

Creating the Scrolling Layer
The scrolling layer in the cut-scene is a set of clouds that scrolls from right to left
at varying speeds. Figure 9.5 shows how the clouds look along with Ole and the
platform.

Figure 9.5 Cut-scene for level 2 showing Ole on a platform in front of
scrolling clouds

To make this scene as efficient as possible, you use a texture atlas to hold both the
cloud images and the Viking and Platform graphics. In the beginning of this chapter,
you imported the ParallaxBackgrounds folder into your SpaceViking project. Inside that
folder are subfolders called ScrollingCloudsBackgrounds and ScrollingCloudsTextureAtlases
for the static background and the texture atlases, respectively. There are iPhone-,
iPhone 4-, and iPad-sized backgrounds and texture atlases, just as you created and used
previously in Space Viking.

Create a new Objective-C class inside of the CutSceneForLevel2 group and name it
PlatformScrollingLayer.m, setting it as a subclass of CCLayer. Open the PlatformScrolling-
Layer.h header file and replace the contents with the code from Listing 9.19.

Listing 9.19 PlatformScrollingLayer.h header file

// PlatformScrollingLayer.h

// SpaceViking

//

Scrolling to Infinity 255

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "Constants.h"

@interface PlatformScrollingLayer : CCLayer {

CCSpriteBatchNode *scrollingBatchNode;

}

@end

The PlatformScrollingLayer header file has only imports for Cocos2D and the
Constants.h file, along with an instance variable to hold the CCSpriteBatchNode used
in this scene.

Note on CCSpriteBatchNode
Since the scrolling layer is made up of many clouds using the same six textures, it
is much more efficient to have those textures inside of a texture atlas and rendered
onscreen in a CCSpriteBatchNode. As you will see in this chapter, there are 25
clouds, Ole, and the platform (27 sprites). Using the CCSpriteBatchNode reduces the
OpenGL ES bind calls from 27 to 1 and batches the draw calls for better performance.

Switch over to the PlatformScrollingLayer.m implementation file and add the contents
of Listing 9.20.

Listing 9.20 PlatformScrollingLayer.m (declarations and init method) (part 1 of 6)

// PlatformScrollingLayer.m

// SpaceViking

//

#import "PlatformScrollingLayer.h"

#import "GameManager.h"

@interface PlatformScrollingLayer (PrivateMethods)

-(void)resetCloudWithNode:(id)node;

-(void)createCloud;

-(void)createVikingAndPlatform;

-(void)createStaticBackground;

@end

@implementation PlatformScrollingLayer

-(id)init {

self = [super init];

if (self != nil) {

 srandom(time(NULL));

self.isTouchEnabled = YES;

 [self createStaticBackground];

Chapter 9 When the World Gets Bigger: Adding Scrolling256

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

// Indicates game is running on iPad

 [[CCSpriteFrameCache sharedSpriteFrameCache]

addSpriteFramesWithFile:

@"ScrollingCloudsTextureAtlas.plist"];

 scrollingBatchNode = [CCSpriteBatchNode

batchNodeWithFile:@"ScrollingCloudsTextureAtlas.png"];

 } else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:

@"ScrollingCloudsTextureAtlasiPhone.plist"];

 scrollingBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"ScrollingCloudsTextureAtlasiPhone.png"];

 }

 [self addChild:scrollingBatchNode];

for (int x=0; x < 25; x++) {

 [self createCloud];

 }

 [self createVikingAndPlatform];

 }

return self;

}

The second @interface declaration becomes a Category to the Platform-
ScrollingLayer, enabling these methods to be called anywhere within the class. In
the previous classes you wrote for Space Viking, the init method is at the bottom of
the file because the methods it called had to be defined above.

@interface Declaration inside Implementation Files
Remember, if you want to easily move the order of your methods inside of your implemen-
tation file, you can declare your methods in the header file or in a separate @interface
declaration inside of your implementation (.m or .mm) file.

The second @interface declaration defines the four methods used internally by
PlatformScrollingLayer to create and reset the clouds and create the Viking, the
platform, and the static background image. In the init method the CCSpriteFrame-
Cache is asked to load the sprite frames from the ScrollingCloudsTextureAtlas.plist. These
are the coordinates of the clouds, Ole, and the platform inside of the texture atlas.
The scrollingBatchNode is initialized with the texture atlas PNG and added to the
layer.

If you follow the code in the init method, you will see a call to create the static
background followed by a for loop initializing 25 clouds via the createCloud

Scrolling to Infinity 257

method. After the for loop, the createVikingAndPlatform method is called to add
Ole and the platform, as you probably already guessed, by the method name.

Add the code in Listing 9.21 to PlatformScrollingLayer.m in order to create the static
background in the scrolling scene.

Listing 9.21 createStaticBackground in PlatformScrollingLayer.m (part 2 of 6)

-(void)createStaticBackground {

 CGSize screenSize = [CCDirector sharedDirector].winSize;

 CCSprite *background;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

// Indicates game is running on iPad

 background =

 [CCSprite spriteWithFile:@"tiles_grad_bkgrnd.png"];

 } else {

 background =

 [CCSprite spriteWithFile:@"tiles_grad_bkgrndiPhone.png"];

 }

 [background setPosition:

 ccp(screenSize.width/2.0f, screenSize.height/2.0f)];

 [self addChild:background];

}

The createStaticBackground method sets up a new CCSprite to act as the
moon and sky background for this level and adds it to the layer. Since the background
is the full size of the iPad screen, it is centered in the middle of the screen. Because
it is being added first to the layer, it will have a lower z value than the CCSprite-
BatchNode, causing the background image to be composited behind the clouds.

Next add the code in Listing 9.22 to your PlatformScrollingLayer.m implementa-
tion file below the createStaticBackground method, to add the createCloud
method.

Listing 9.22 createCloud method in PlatformScrollingLayer.m (part 3 of 6)

-(void)createCloud {

int cloudToDraw = random() % 6; // 0 to 5

NSString *cloudFileName = [NSString

stringWithFormat:@"tiles_cloud%d.png",cloudToDraw];

CCSprite *cloudSprite = [CCSprite

spriteWithSpriteFrameName:cloudFileName];

 [scrollingBatchNode addChild:cloudSprite];

 [self resetCloudWithNode:cloudSprite];

}

Chapter 9 When the World Gets Bigger: Adding Scrolling258

The cloud filenames are tiles_cloud0.png through tiles_cloud5.png. A random number
between zero and five is used to create a cloud using one of the six images. The cloud
PNG files are inside of the texture atlas PNG, and they can be retrieved via the sprite
frame with the same name as the original filename. Remember when the texture atlas
was created with TexturePacker, how the filenames of the original images were set as
the image frame names? A cloudSprite is created, set to one of the six cloud images,
and added to the CCSpriteBatchNode called scrollingBatchNode. The cloud-
Sprite is then passed to the resetCloudWithNode method, which sets it into place
and starts moving it from right to left. Add the resetCloudWithNode method shown
in Listing 9.23 to your PlatformScrollingLayer.m class file.

Listing 9.23 resetCloudWithNode method in PlatformScrollingLayer.m (part 4 of 6)

-(void)resetCloudWithNode:(id)node {

CGSize screenSize = [CCDirector sharedDirector].winSize; // 1

CCNode *cloud = (CCNode*)node; // 2

float xOffSet = [cloud boundingBox].size.width /2; // 3

int xPosition = screenSize.width + 1 + xOffSet; // 4

int yPosition = random() % (int)screenSize.height; // 5

 [cloud setPosition:ccp(xPosition,yPosition)]; // 6

int moveDuration = random() % kMaxCloudMoveDuration; // 7

if (moveDuration < kMinCloudMoveDuration) {

 moveDuration = kMinCloudMoveDuration; // 8

 }

float offScreenXPosition = (xOffSet * -1) - 1; // 9

// 10

id moveAction = [CCMoveTo actionWithDuration:moveDuration

position:

ccp(offScreenXPosition,[cloud position].y)];

id resetAction = [CCCallFuncN

actionWithTarget:self

selector:@selector(resetCloudWithNode:)];

id sequenceAction = [CCSequence

actions:moveAction,resetAction,nil];

 [cloud runAction:sequenceAction]; // 11

int newZOrder = kMaxCloudMoveDuration - moveDuration; // 12

 [scrollingBatchNode reorderChild:cloud z:newZOrder]; // 13

}

Scrolling to Infinity 259

At a high level, the resetCloud method positions the cloud offscreen on the
right side and setups a CCMove action to move the cloud at a random speed across
the screen from right to left. The z composition ordering of the cloud is based on its
speed with the faster clouds closer to the foreground and the slower clouds toward the
background. At the end of the move, the resetCloud method is called on the cloud’s
behalf to reset it back offscreen to the right at a random position to start the right-to-
left move again. The code in resetCloud works as follows:

1. Gets the screen size from the CCDirector. The screen size is used to figure out
how far to the right and left would be offscreen and not visible to the player.

2. Casts the id type to a CCNode. The resetCloud method is called from both the
createCloud method and a CCCallFuncN action. The CCCallFuncN action
passes back a more generic id type even though you know it is a CCSprite, a
subclass of CCNode. The cast to CCNode pointer is purely for code clarity; you
can omit it in your code if you are comfortable with the generic id type.

3. Sets the x-axis offset to half the width of the cloud image. Recall from earlier
chapters that the anchor point for Cocos2D objects is in the center of the image
by default. When you move an image around, it is always moved and positioned
relative to its center point. Since the anchor point is in the middle, you need to
know half of the image’s width so that you know how far it needs to be to the
right or left to be offscreen.

This point bears repeating because it is important to understand it. The cloud
image is moved around its center point. If its position is half of the width of the
image and the screen width, it is offscreen to the right. Likewise, if it is at zero
minus half of the cloud width on the x-axis, it is just about offscreen on the left
side. Remember zero on the x-axis is the left-most side of the screen. Figure 9.6
illustrates the cloud, its anchor point, and position.

Figure 9.6 Cloud anchor point, width, and position

Chapter 9 When the World Gets Bigger: Adding Scrolling260

4. Sets the x position variable to offscreen on the right. By adding the screen width
to half of the cloud width (xOffSet) and one more pixel, the cloud is placed
directly to the right of the visible area of the screen.

5. Sets the y position variable to a random value along the screen height.

6. Sets the cloud position to the new x and y values calculated in steps 4 and 5.

7. Sets the move duration to a random value between zero and the maximum
move duration. The maxMoveDuration and minMoveDuration #defines are
added in Listing 9.26.

8. Checks to ensure that the move duration is at least as long as the minimum
value. If not, it is set to the minimum value. The move duration is in seconds.

9. Calculates the x position that the cloud will be at when it is offscreen on the left.
The clouds start on the right and move left; this value is when they go offscreen
on the left side. Figure 9.6 illustrates when the cloud is offscreen on the left side.

10. Creates the actions to move and then reset the cloud. The move action moves
the cloud from its current position offscreen on the right, across the screen, end-
ing offscreen on the left side. The CCCallFuncN resets the cloud by calling the
resetCloud method once the cloud has finished moving. The CCSequence
action creates a simple move and reset sequence.

11. Runs the CCSequence action, starting the move from right to left.

12. Calculates the new z compositing value. If you recall back to Chapter 2, the
z values in Cocos2D determine how to composite the CCSprites, with
the higher values being in the foreground and lower values being closer to
the background. In other words, a CCSprite with a higher z value will be
composited in front of one with a lower z value within the same layer or
CCSpriteBatchNode.

In this line the current move duration is subtracted from the maximum duration.
Suppose the maximum duration is 10 seconds and the move duration is 2 seconds.
This means that the new z value would be 8 (10 − 2). If a cloud had a longer
duration, such as 6 seconds, this means the new z value would be 4 (10 − 6).
The cloud with a z value of 8 would be in front of the cloud with a z value of 4.
Calculating and changing the z values allows for the clouds with the fastest
speeds (shortest move durations) to be in front of the slower clouds. This is the
key line that gives the impression of depth by having the faster items in the front
and the slower ones in the back.

13. Asks the CCSpriteBatchNode to reorder the composite position of the cloud
to the new z value, moving it to the front of slower clouds and behind faster
clouds.

Scrolling to Infinity 261

Tips and Tricks
I have often heard more experienced game developers say that most of game develop-
ment was done with tricks, and the key was learning what tricks to use to get the effect
you need. You don’t have to replicate real life in your game in order for scrolling to feel
real. One clear example is keeping Ole centered on this screen and how he was moved in
the second level you built previously. Playing the game, you feel like Ole is moving through
the level when in reality he is centered in the middle of the screen.

There are two more methods to add to PlatformScrollingLayer before it can
be complete. The first is the createVikingPlatform method, shown in Listing 9.24.
Copy the contents into your PlatformScrollingLayer.m class file.

Listing 9.24 createVikingAndPlatform in PlatformScrollingLayer.m (part 5 of 6)

-(void)createVikingAndPlatform {

CGSize screenSize = [CCDirector sharedDirector].winSize; // 1

int nextZValue = [scrollingBatchNode children].count + 1; // 2

// 3

CCSprite *platform = [CCSprite

spriteWithSpriteFrameName:@"platform.png"];

 [platform setPosition:

ccp(screenSize.width/2,

 screenSize.height * 0.09f)];

 [scrollingBatchNode addChild:platform z:nextZValue];

 nextZValue = nextZValue + 1; // 4

//5

CCSprite *viking = [CCSprite

spriteWithSpriteFrameName:@"sv_anim_1.png"];

 [viking setPosition:

ccp(screenSize.width/2,

 screenSize.height * 0.23f)];

 [scrollingBatchNode addChild:viking z:nextZValue];

}

The createVikingAndPlatform method works as follows:

1. Gets the size of the screen, which is used as a reference point to position Ole and
the platform.

2. Calculates the next z value available in order to place the platform and Ole in
front of all of the clouds. The scrollingBatchNode is asked for the CCArray
of all its children, and the count of the number of elements in the CCArray is
returned. The logic here is that no matter how many clouds have been added, if
you set the platform and Viking to a z value greater than the clouds, they will

Chapter 9 When the World Gets Bigger: Adding Scrolling262

be composited in front of them. If you knew you were only going to have 50 or
100 clouds, you could always set the z value to a larger amount, such as 101, or
even 2000, just as long as it is larger than any of the clouds’ z values.

3. Creates a new CCSprite for the platform and sets it on the bottom center of
the screen. The screen size is used to determine the bottom center position. The
new CCSprite is added to the CCSpriteBatchNode scrollingBatchNode.

4. Increments the z value by one so that Ole will be composited in front of the
platform.

5. Creates a new CCSprite for Ole and sets it on top of the platform on the bot-
tom center of the screen. The new CCSprite of Ole is added to the CCSprite-
BatchNode scrollingBatchNode.

The previous code listings set up the cloud, the platform, and Ole and got them
rendered onscreen. This would be all that is needed except that you need a way
to transition out of the cut-scene and into the second level of the game. Since the
PlatformScrollingLayer already listens for touch events, all you need to do is add
a ccTouchesBegan method, as shown in Listing 9.25. Add the contents of Listing 9.25
to your PlatformScrollingLayer.m class.

Listing 9.25 ccTouchesBegan method in PlatformScrollingLayer (part 6 of 6)

-(void)ccTouchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel2];

}

@end

The ccTouchesBegan method just places a call to the GameManager to switch
from the cut-scene to the game level 2 scene.

There is one more quick addition you need to make to Constants.h file to support
the new cut-scene. Open the Constants.h file and add the #defines, as shown in List-
ing 9.26.

Listing 9.26 Constants.h #define used in PlatformScrollingLayer.m

// Defines for Cloud Scrolling Scene

#define kMaxCloudMoveDuration 10

#define kMinCloudMoveDuration 1

At this point you should build your project to make sure you did not make any
typos or other mistakes. If the project compiles fine, you can move on to creating the
scene and adding the logic to the GameManager class to be able to play the cut-scene
in Space Viking.

Scrolling to Infinity 263

Creating the Platform Scene
The cut-scene will be a new Cocos2D scene with just a single scrolling layer. Create a
new Objective-C class inside of the CutSceneForLevel2 group called PlatformScene.m as
a subclass of CCScene. Open the PlatformScene.h header file and replace the template
contents with Listing 9.27.

Listing 9.27 PlatformScene.h header file

// PlatformScene.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "PlatformScrollingLayer.h"

@interface PlatformScene : CCScene {

}

@end

The header file format should be very familiar to you by now; the PlatformScene
inherits from CCScene, and it imports the scrolling background class.

Switch over to the PlatformScene.m implementation file and replace it with the con-
tents of Listing 9.28.

Listing 9.28 PlatformScene.m implementation file

// PlatformScene.m

// SpaceViking

//

#import "PlatformScene.h"

@implementation PlatformScene

-(id)init {

self = [super init];

if (self != nil) {

 // Platform Cloud Scrolling

PlatformScrollingLayer *scrollingLayer =

 [PlatformScrollingLayer node];

 [self addChild:scrollingLayer];

 }

return self;

}

@end

Chapter 9 When the World Gets Bigger: Adding Scrolling264

The PlatformScene implementation is straightforward, just a simple boilerplate
init method that creates the scrolling layer and adds it to the scene.

There are two more steps, and then you can run the cut-scene in Space Viking. First,
let’s add the necessary code to the MainMenuLayer.m so that it plays the cut-scene when
the second level is selected.

Open the MainMenuLayer.m and find the playScene method. Modify the if else

branch for the 2 tag so that the playScene method looks like the bold code in List-
ing 9.29.

Listing 9.29 playScene method in MainMenuLayer.m

-(void)playScene:(CCMenuItemFont*)itemPassedIn {

if ([itemPassedIn tag] == 1) {

 [[GameManager sharedGameManager] runSceneWithID:kIntroScene];

 } else if ([itemPassedIn tag] == 2) {

 [[GameManager sharedGameManager]

 runSceneWithID:kCutSceneForLevel2];

 } else if ([itemPassedIn tag] == 3) {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel3];

 } else if ([itemPassedIn tag] == 4) {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel4];

 } else if ([itemPassedIn tag] == 5) {

 [[GameManager sharedGameManager] runSceneWithID:kGameLevel5];

 } else {

CCLOG(@"Unexpected item. Tag was: %d", [itemPassedIn tag]);

 }

}

When the second level menu item is selected on the Main Menu screen, the Game-
Manager will be called and asked to run the kCutSceneForLevel2, which is the
cut-scene you just wrote.

Open the GameManager.m class and the import for the PlatformScene next to the
other #import statements as follows:

#import "PlatformScene.h"

Next move to the runSceneWithID method. In the switch block add the code
shown in Listing 9.30.

Listing 9.30 Switch branch for cut-scene and level 2 in GameManager.m runSceneWithID
method

case kCutSceneForLevel2:

 sceneToRun = [PlatformScene node];

break;

Lastly,

Tile Maps 265

You should now be able to click Run and select the second level from the Main
Menu. The scrolling clouds scene should show up, playing in an endless loop. If you
touch anywhere, the game should transition to the second level you built earlier in this
chapter.

Now that you have learned how to add parallax scrolling and infinite scrolling, the
next step is to learn about TileMaps. You can use TileMaps to create large scrolling
worlds of almost infinite size while keeping your game’s memory footprint small.

Tile Maps
In building the parallax levels, you used a series of double screen-width images to cre-
ate the scrolling background strips. While this was easy to code, it was not efficient as
far as memory is concerned. You can imagine that making a large level of, say, 10,000
or 20,000 pixels in width would use up all the available memory on an iPad or iPhone 4,
saying nothing of the older iPhone and iPhone 3G.

There is a simpler way to create large worlds and levels without the use of large
amounts of memory for your textures. The key is in using tiles, or unique textures
that you can repeat over and over to create your landscape. Take a close look at Figure
9.7. It shows how the new ground layer will be made up of just four unique tiles. Like-
wise, the rock formation that you will add as a repeating background will be made of
only two unique tiles each. If you are careful with how your tiles are designed, you
can use them over and over while still making the player believe he or she is seeing a
unique landscape.

Figure 9.7 Ground and rock formation and the tiles that make them up

Chapter 9 When the World Gets Bigger: Adding Scrolling266

In Space Viking you are going to use tiles that are 64 × 64 pixels in size. It is impor-
tant that your tiles all be the same size, and preferably a size that is a power of two.
Most games can get away with 32 × 32 pixel tiles. Looking at Figure 9.7, imagine that
you use the four ground tiles to re-create the entire ground layer on the second level
you created in this chapter. In other words, by using various combinations of these
tiles, you can create a background to stretch out as long as you need. No matter how
large the background you design, it never takes any more graphic memory than the
unique tiles you have here.

Tiles take very little memory, as they themselves are very small images. Even if a
tile is drawn on 20 places onscreen, it is stored only once in texture memory. If you
can get creative and build your backgrounds from tiles, you can have really wide or
tall backgrounds while using very little memory.

Tiles in Space Viking
The artwork for Space Viking was not designed with tiles in mind, so it does not break
apart into tiles as easily as if it were designed to fit in those tiles. If you design your
game and artwork to fit into tiles from the start, you can achieve even greater memory
savings.

In the next section you create the TileMap and learn how to incorporate it inside of
the second-level code you have already built.

Installing the Tiled Tool
To create the tile map that Cocos2D will use, you need to use the free Tiled tool. The
Tiled tool allows you to create tile maps and set up multiple layers in your tile maps.
In Space Viking you use Tiled only to set up the layout of the tiles. In your games you
can use it for setting up the locations of the walls, enemies, and a host of other ele-
ments. In fact, some people design complete games using Tiled where quite a bit of the
game logic is centered around the features offered by tiled maps. Given that you can
visually lay out a level to see how it looks before you code the functionality, this offers
an easy way for developers to set up games like puzzles and platforms where you need
to create a variety of large and intricate levels.

Download the Tiles Texture Atlas before Proceeding
The tiles have already been added to a texture atlas that you can download along with
the source code for this chapter. The instructions in this section assume that you already
have the TilesTextureAtlas.png that is located with the resources for this chapter saved on
your Mac.

To Install Tiled on Your Mac

1. Open a browser to http://mapeditor.org.

2. Click the Tiled Qt for Mac OS X link on the right. This will download a
DMG file to your Mac.

http://mapeditor.org

Tile Maps 267

3. Double-click on the DMG to open it if it is not opened automatically by your
browser.

4. Drag the Tiled application into your Applications folder.

That’s it. Tiled is installed on your system. Figure 9.8 shows the mapeditor.org
website and the contents of the Tiled DMG.

Figure 9.8 Mapeditor.org website and contents of Tiled DMG

Now that you have Tiled installed, the next step is to create the TileMap that you
are going to use in Space Viking.

Creating the Tile Map
You are going to create a TileMap for the iPad that is 4096 pixels wide by 768 pixels tall.
This map will be twice as wide as the scrolling map you created earlier in the chapter.

Start up the Tiled tool, and

1. Select File > New.

2. In the dialog box, under Map Size:

Enter 64 for the width.

Enter 12 for the height.

3. Under Tile Size:

Enter 64 for the width and height.

Your dialog box should look like Figure 9.9.

Chapter 9 When the World Gets Bigger: Adding Scrolling268

4. Click OK to create the empty TileMap.

5. From the Map menu, select New Tileset.

6. Click Browse and select the TilesTextureAtlas.png file you downloaded previously
from the book’s site. Set the tile width and height to 64 and the margins to 1.
The Tiled New Tileset window should look like Figure 9.10.

Figure 9.9 Tiled showing the new TileMap window

Figure 9.10 Tiled New Tileset window

7. Click OK to add the new TileSet to your TileMap.

Now you have a blank TileMap along with a set of tiles in a TileSet that you can
use to paint the TileMap. By clicking on the tiles and then on the TileMap, you can
set a particular tile in the TileMap to be a specific tile texture.

The next step is to create the Tile layers you will need to store the ground, the rock
column, and the rock boulder.

Creating the Three TileMap Layers

1. Click on the Layers tab in the right panel of Tiled.

2. Select Layer > Add Tiled Layer from the menu to add each layer.

Tile Maps 269

3. Add two tile layers, one called RockColumnsLayer and one called
RockBoulderLayer.

4. Rename the first layer to GroundLayer.

5. Uncheck both the RockColumnsLayer and the RockBoulderLayer so that
only GroundLayer is checked and selected.

If you switch over to the Tilesets tab, you can select a tile and place it on the
TileMap. Create a ground layer on the bottom row of tiles, similar to the one shown
in Figure 9.11.

Figure 9.11 GroundLayer populated on TileMap

Next, deselect the GroundLayer and select the RockColumnLayer. Add the rock
columns above the ground at random intervals. Your TileMap should now look like
Figure 9.12.

Figure 9.12 RockColumnsLayer populated on TileMap

Chapter 9 When the World Gets Bigger: Adding Scrolling270

There is one more layer to create, the rock boulders, which will scroll the slowest:

1. Ensure that both the GroundLayer and the RockColumnsLayers are
unchecked.

2. Select and check the RockBoulderLayer.

3. Create rock boulders randomly across the TileMap, starting with the second tile
from the bottom. Your TileMap should look similar to Figure 9.13.

Figure 9.13 RockBoulderLayer populated on TileMap

The RockBoulderLayer and the RockColumnsLayer overlap, but in the code
you will see how to pull the layers apart and assign them to a CCParallaxNode. This
is all the work you need to do in Tiled. Make sure all three layers are selected (check-
box to the left side of the layer name), then save the TileMap as Level2TimeMap.tmx
and:

1. Add the Level2TileMap.tmx to your SpaceViking Xcode project.

2. Add the TilesTextureAtlas.png to your SpaceViking Xcode project.

You need both the TMX and the PNG files for the TileMap to work. If you had
any trouble creating these files, they are available in the resources folder for this
chapter.

What’s in a TMX File?
If you open the Level2TileMap.tmx file in Xcode, you will see it is just an XML file with
a reference back to the TilesTextureAtlas.png and a compressed section for the tiles in
each of the layers. The compressed data is just a listing of what texture occupies each
tile in the TileMap. If you were to make the TileMap larger, say 8192 pixels, only this
compressed TileMap data would increase, and then only by a few kilobytes. Since you are
using the same tiles, the texture memory stays the same. In other words, you can make a
huge level without using up all of the available memory on your iPhone or iPad.

Tile Maps 271

Cocos2D Compressed TileMap Class
Cocos2D has a built-in class to read TileMap files from Tiled both in a compressed
and noncompressed format. Since Tiled exports the TileMaps in a compressed (TMX)
format by default, this book covers only this one. If you are using uncompressed tiled
maps, the Cocos2D class is different, but the process and code are the same. The class
you are going to use is CCTMXTiledMap, and it makes loading and using TileMaps a
breeze.

You are first going to add a TileMap to the Scene2 GameplayScrollingLayer

and then learn how to add the individual layers to a CCParallaxNode in order to
have them scroll at different speeds.

Adding CCTMXTiledMap to the Second Level
Open the GameplayScrollingLayer.m implementation file and above the init method
add the contents of Listing 9.31.

Listing 9.31 addScrollingBackgroundWithTileMap in GameplayScrollingLayer.m

// Scrolling with all TileMap Layers together

-(void)addScrollingBackgroundWithTileMap {

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 tileMapNode = [CCTMXTiledMap

 tiledMapWithTMXFile:@"Level2TileMap.tmx"];

 } else {

tileMapNode = [CCTMXTiledMap

tiledMapWithTMXFile:@"Level2TileMapiPhone.tmx"];

 }

 [self addChild:tileMapNode];

}

Adding a TileMap to your Cocos2D game takes nothing more than a single call
to initialize a CCTMXTiledMap object and then adding that object to your layer. The
TileSet file is specified inside of the TMX file, and Cocos2D automatically loads when
you are creating your TileMap.

There is one more change to the init method to replace the parallax back-
ground with the new TileMap. Open the init method, comment out the call to
addScrollingBackgroundWithParallax, and add the call to addScrolling-
BackgroundWithTileMap as shown in Listing 9.32.

Listing 9.32 new call to addScrollingBackgroundWithTileMap in init method

//[self addScrollingBackgroundWithParallax];

[self addScrollingBackgroundWithTileMap];

Chapter 9 When the World Gets Bigger: Adding Scrolling272

While you created the Level2TileMap.tmx file in the previous section, you need the
Level2TileMapiPhone.tmx and Level2TileMapiPhone-hd.tmx files if you are testing on the
iPhone. Take a moment and copy them into Xcode from the resources folder for this
chapter.

If you click Run and select the second level in Space Viking, you should see the new
TileMap background that you created. You should see it scrolling when you move Ole
to the right and left of the level. Figure 9.14 shows what Space Viking looks like with
the TileMap level when all the layers are in the same position.

Figure 9.14 Space Viking showing TileMap level, with all layers in the
same position

Did you notice anything strange about the TileMap background? You can see that
the RockColumnsLayer and the RockBoulderLayer overlap each other. You also
should have noticed that the entire TileMap moves as one element, so the illusion of
depth is lost.

Adding a TileMap to a ParallaxNode
The solution to adding the illusion of depth when using a TileMap as a scrolling
background is to take the individual layers and move them from the TileMap to a
CCParallaxNode.

Open the GameplayScrollingLayer and add the method addScrolling-
BackgroundWithTileMapInsideParallax above the init method, as shown in
Listing 9.33.

Tile Maps 273

Listing 9.33 addScrollingBackgroundWithTileMapInsideParallax

// Scrolling with TileMap Layers inside of a Parallax Node

-(void)addScrollingBackgroundWithTileMapInsideParallax {

CGSize screenSize = [[CCDirector sharedDirector] winSize];

CGSize levelSize = [[GameManager sharedGameManager]

getDimensionsOfCurrentScene];

// 1

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 tileMapNode = [CCTMXTiledMap

 tiledMapWithTMXFile:@"Level2TileMap.tmx"];

 } else {

tileMapNode = [CCTMXTiledMap

tiledMapWithTMXFile:@"Level2TileMapiPhone.tmx"];

 }

CCTMXLayer *groundLayer = [tileMapNode layerNamed:@"GroundLayer"];

CCTMXLayer *rockColumnsLayer = [tileMapNode

layerNamed:@"RockColumnsLayer"];

CCTMXLayer *rockBoulderLayer = [tileMapNode

layerNamed:@"RockBoulderLayer"];

// 2

parallaxNode = [CCParallaxNode node];

 [parallaxNode setPosition:

 ccp(levelSize.width/2,screenSize.height/2)];

float xOffset = 0.0f;

// 3

 xOffset = (levelSize.width/2);

 [groundLayer retain];

 [groundLayer removeFromParentAndCleanup:NO];

 [groundLayer setAnchorPoint:CGPointMake(0.5f, 0.5f)];

 [parallaxNode addChild:groundLayer z:30 parallaxRatio:ccp(1,1)

positionOffset:ccp(0,0)];

 [groundLayer release];

// 4

 xOffset = (levelSize.width/2) * 0.8f;

 [rockColumnsLayer retain];

 [rockColumnsLayer removeFromParentAndCleanup:NO];

 [rockColumnsLayer setAnchorPoint:CGPointMake(0.5f, 0.5f)];

 [parallaxNode addChild:rockColumnsLayer z:20

parallaxRatio:ccp(0.2,1)

positionOffset:ccp(xOffset, 0.0f)];

 [rockColumnsLayer release];

Chapter 9 When the World Gets Bigger: Adding Scrolling274

// 5

 xOffset = (levelSize.width/2) * 0.3f;

 [rockBoulderLayer retain];

 [rockBoulderLayer removeFromParentAndCleanup:NO];

 [rockBoulderLayer setAnchorPoint:CGPointMake(0.5f, 0.5f)];

 [parallaxNode addChild:rockBoulderLayer z:30

parallaxRatio:ccp(0.7,1)

positionOffset:ccp(xOffset, 0.0f)];

 [rockBoulderLayer release];

// 6

 [self addChild:parallaxNode z:1];

}

While the method in Listing 9.33 has a long and descriptive name, the logic inside
is similar to what you have created previously. The CCTMXTiledMap is initialized
first, and then the layers are pulled from the CCTMXTiledMap and added to a new
ParallaxNode. Finally, the ParallaxNode is added to the GameplayScrolling-
Layer. The CCTMXTiledMap is not added to the layer because it is without children
at this point and is no longer needed. The code sections are as follows:

1. Initializes the TileMapNode with the contents of the Level2TileMap.tmx file.
This section also retrieves the three tile layers from the TileMap by name. These
are the names you set your layers to in the Tiled application.

2. Initializes the ParallaxNode, which will be the scrolling background, and then
adds the ParallaxNode to the center of the level and sets up the x-axis offset to
be used when adding in the layers.

3. Adds the ground layer to the ParallaxNode. The groundLayer is first
retained so that it is not deallocated. It is then removed from the TileMap
and added to the ParallaxNode. A CCNode cannot have two parents at once,
and this is why you have to retain, reassign, and then release each of the three
layers. The anchor point of the tile layers are set to the leftmost side by default;
this is changed to the center to make positioning easier.

4. Adds the rock columns layer to the ParallaxNode using a ratio of 0.2 on the
x-axis. This means the rock columns will move 2 pixels for every 10 pixels the
ParallaxNode is moved on the x-axis.

5. Adds the rock boulder layer to the ParallaxNode using a ratio of 0.7 on
the x-axis. The rock boulder layer will move 7 pixels for every 10 pixels the
ParallaxNode is moved on the x-axis.

6. Adds the ParallaxNode to the layer, causing the scrolling background to
appear.

Tile Maps 275

Add the call to addScrollingBackgroundWithTileMapInsideParallax and
comment out the line calling addScrollingBackgroundWithTileMap, as shown in
Listing 9.34.

Listing 9.34 Changes to init method in GameplayScrollingLayer

//[self addScrollingBackgroundWithTileMap];

[self addScrollingBackgroundWithTileMapInsideParallax];

The last change you need to make is to increase the level size in the GameManager,
since the TileMap background is now 4096 pixels wide instead of 2048. Open the
GameManager.m implementation file and locate the getDimensionsOfCurrentScene
method. Change the width of the kGameLevel2 branch to 4096, as shown in
Listing 9.35.

Listing 9.35 getDimensionsOfCurrentScene changes in GameManager.m

case kGameLevel2:

 levelSize = CGSizeMake(4096.0f, screenSize.height);

break;

If you click Run and select the second level from the Main Menu, you can move
Ole left and right on the screen. You will see how much farther you can get Ole to
scroll if you move him to the right.

Note
Remember that you need to import the Level2TileMapiPhone.tmx and Level2TileMapiPhone-
hd.tmx files into your Xcode project in order to test out the TileMap scrolling on the iPhone
or iPhone 4. The two tiles are set up with a width of four times the screen size of each
iOS device: 3840 pixels wide for the iPhone 4 and 1920 pixels wide for the iPhone.

There is a lot more you can do with TileMaps than what you have learned here.
You can use layers in Tiled to specify walls, enemies, and even game characters in
your games. TileMaps are often used for top-down games, but as you learned in Space
Viking, they can be used in games with other viewpoints as well.

Note
If you want to learn more about TileMaps, including building a whole game based on
them, check out Mike Daley’s book, Learning iOS Game Programming, at http://
www.informit.com/store/product.aspx?isbn=0321699424.

http://www.informit.com/store/product.aspx?isbn=0321699424
http://www.informit.com/store/product.aspx?isbn=0321699424

Chapter 9 When the World Gets Bigger: Adding Scrolling276

Summary
In this chapter you learned three different techniques to add scrolling to your games.
You learned how to use the CCParallaxNode in Cocos2D, how to move sprites
endlessly, and how to use TileMaps to create large levels. Whether you are making a
role-playing game (RPG) or the next f lying shooter, you now have the concepts and
techniques needed to make it happen.

In the next few chapters, you will learn about physics and how to implement both
the Box2D and Chipmunk physics engines. There is a whole new level of fun and
realism you can add to your games with physics engines, and Cocos2D comes bundled
with two of the best 2D physics engines out there, Box2D and Chipmunk, for free.

Challenges
1. Change Ole and the platform’s z values so that Ole is in the middle of the clouds

instead of in front of them during the cut-scene.

2. Change the cut-scene so that the clouds scroll from the top of the screen to the
bottom instead of right to left.

3. Add the RadarDish to the GameplayScrollingLayer. Position it so that it is
at the far right side of the level.

4. Create a new TileMap and use it instead of the Level2TileMap.tmx file. Can you
set it up to have more than three parallax layers?

Part IV
Physics Engines

With the Box2D and Chipmunk physics engines that come with Cocos2D,
you can add some amazing effects to your games, such as gravity, real-
istic collisions, and even ragdoll effects. In these chapters you get a
chance to add some physics-based levels to Space Viking, from simple to
advanced.

n Chapter 10: “Basic Game Physics: Adding Realism with Box2D”

n Chapter 11: “Intermediate Game Physics: Modeling, Racing, and
Leaping”

n Chapter 12: “Advanced Game Physics: Even Better than the Real
Thing”

n Chapter 13: “The Chipmunk Physics Engine (No Alvin Required)”

This page intentionally left blank

10
Basic Game Physics: Adding

Realism with Box2D

So far Space Viking has been an action-packed game complete with aliens blasting, cargo ships
f lying, and fists bashing. Up until this point, any time you wanted to move an object in Space
Viking, it was up to you. You would use Cocos2D actions or update the positions of objects
manually.

But what if you wanted to add more realistic physics behavior in your game? Maybe you want
more realistic collisions between objects, objects f lying through the air under the inf luence of grav-
ity, vehicles bouncing off terrain, or enemies collapsing like ragdolls when they are defeated.

Well, you could always crack open a physics textbook, start plugging away at some complex
equations, and start developing your own game physics library.

But if you’re not a math guru, don’t worry: there’s a much easier way. You can save yourself a
lot of time, energy, and hair pulling by using the power of Box2D!

Getting Started
Box2D is a popular and easy-to-use, full-featured game physics library integrated with
Cocos2D that can help you make your game objects move in realistic ways.

When you create objects you want Box2D to simulate, you tell Box2D where to
initially place them and then let Box2D handle the rest of the simulation and calculate
the new positions of the objects over time. The high-level workf low can be seen in
Figure 10.1.

As Figure 10.1 illustrates, there are four main steps to using Box2D:

1. The first time you add an object to your scene (but only the first time!), you tell
Box2D where it is and what shape it has.

2. In your game update loop, you tell Box2D if you want to apply any forces to
the game objects, such as gravity or movement.

Chapter 10 Basic Game Physics: Adding Realism with Box2D280

3. In your game update loop, you tell Box2D to simulate the world for a certain
amount of time. Box2D then calculates the new positions for each object based
on forces and collisions.

4. Also in your game update loop, you get the new positions of the objects from
Box2D and update your sprites to match those positions.

In summary, Box2D controls the positions of your objects and where they move,
and you just update your sprites to where Box2D says your objects are. Instead of
moving your objects by setting their position or using CCMoveTo, you should inf lu-
ence your objects’ positions by applying forces and impulses to Box2D objects. You’ll
see how this works in detail as you work through these next few chapters!

Box2D and C++
Box2D is written in C++ rather than in Objective-C like Cocos2D. This is because Box2D
has a long history. Box2D was developed by Erin Catto as a simple game physics library in
2006, before Cocos2D even existed! Box2D has since been ported for several platforms,
including Flash, Java, and Python, and has been made to work seamlessly with Cocos2D.

With Xcode you can use both Objective-C and C++ code within the same file, so you
can use C++ libraries with no problems. However, if you’re new to C++, some of the
syntax will look unfamiliar to you.

You can work through the code samples in this and the next two chapters without hav-
ing any C++ knowledge, but it’s still a good idea to learn C++ if you plan to use Box2D
in your own projects. Here’s a quick cheat sheet for some of the most common new
syntax elements that you’ll see in this chapter:

n Creating New Objects
Rather than using the [[object alloc] init] methods you are familiar
with in Objective-C to allocate objects, in C++ you use the new keyword like this:

MyClass *myClassPointer = new MyClass();

Figure 10.1 High-level workflow for Box2D

Getting Started 281

n Pointers
In the previous example, you see that the variable is prefixed with a star (*).
This indicates that the variable is a pointer to an object somewhere in memory.
Later, when you want to call a method on a pointer to an object, you use the
arrow (->). For example:

myClassPointer->doSomething();

n For More Information
For more information on C++, a great reference is The C++ Programming Lan-
guage by Bjarne Stroustrup (Addison-Wesley Professional, 2000).

Mad Dreams of the Dead
The easiest way to understand Box2D is to see it in action for yourself, so it’s time to
continue the story of Ole the Viking!

In this chapter, you create a scene that represents a strange dream Ole had while
frozen in his block of ice after he landed on the planet. It takes the form of a mini-
puzzle game in which you try to figure out how to move frozen Ole to a spot that can
thaw him back to action—with the aid of Box2D physics. You can see what the fin-
ished level looks like in Figure 10.2.

Making this level teaches you how to create objects with Box2D, how to move
them with touches or the accelerometer, how to skin them with your own sprites, how
to do simple collision detection with sensors, and much more!

Figure 10.2 The Box2D-enabled puzzle game you make in this chapter

Chapter 10 Basic Game Physics: Adding Realism with Box2D282

Creating a New Scene
The first thing to do is create a new scene for the puzzle level. Open your SpaceViking
project if you don’t have it open already, expand Classes\Scenes, click New Group,
then rename the new folder that was created to Scene3. Then with the Scene3 group
selected, go to File > New > New File..., choose iOS > Cocoa Touch >
Objective-C class, and click Next. Enter CCLayer as the Subclass of, click Next,
name the file PuzzleLayer.m, and click Save.

Then replace the contents of PuzzleLayer.h with the contents of Listing 10.1.

Listing 10.1 PuzzleLayer.h

#import <Foundation/Foundation.h>

#import "cocos2d.h"

@interface PuzzleLayer : CCLayer {

}

+ (id)scene;

@end

This should look familiar; you’re creating a Cocos2D layer to be added to the scene
called PuzzleLayer. However, you may be wondering where the scene class went.
Until this point, you have been creating subclasses of CCScene in addition to subclass-
ing CCLayer.

Well, for times when you know your scene is going to have only one layer, a short-
cut is to create a static method that creates a plain CCScene and add the given layer
as the only child of that scene. It’s a bit simpler, and since that’s all you’ll need in this
scene, let’s give it a try.

Next, replace the contents of PuzzleLayer.m with the contents of Listing 10.2.

Listing 10.2 PuzzleLayer.m

#import "PuzzleLayer.h"

@implementation PuzzleLayer

+ (id)scene {

CCScene *scene = [CCScene node];

PuzzleLayer *layer = [self node];

 [scene addChild:layer];

return scene;

}

- (id)init {

if ((self = [super init])) {

Getting Started 283

CGSize winSize = [CCDirector sharedDirector].winSize;

CCLabelTTF *label = [CCLabelTTF

labelWithString:@"Hello, Mad Dreams of the Dead!"

fontName:@"Helvetica" fontSize:24.0];

 label.position = ccp(winSize.width/2, winSize.height/2);

 [self addChild:label];

 }

return self;

}

@end

There should be no surprises here. The init method simply puts a label in the
middle of the screen so you can verify it’s working.

Finally, you need to modify GameManager.m to load your scene when it gets called
with kGameLevel3. First, add a line to import PuzzleLayer.h at the top of the file, as
shown in Listing 10.3.

Listing 10.3 GameManager.m (at top of file)

#import "PuzzleLayer.h"

Then inside runSceneWithID, modify the entry in the case statement for level 3
to create the new scene, as shown in Listing 10.4.

Listing 10.4 GameManager.m (inside runSceneWithID’s case statement)

case kGameLevel3:

 sceneToRun = [PuzzleLayer scene];

break;

That’s it! Compile and run your project, select Mad Dreams of the Dead from
the Main Menu, and you should see your new scene with the placeholder text, as
shown in Figure 10.3.

Tip
You are going to be modifying this scene quite a bit in this chapter. To avoid having to
select the Main Menu option every time you want to test this level, there’s a shortcut to
run your new scene right away. Simply open Classes\Singletons\SpaceVikingAppDelegate.m,
navigate to the bottom of applicationDidFinishLaunching, and replace the
CCDirector:runSceneWithID call at the bottom to:

[[GameManager sharedGameManager]

 runSceneWithID:kGameLevel3];

Compile and run your project, and now it should start running your new scene right away!

Chapter 10 Basic Game Physics: Adding Realism with Box2D284

Adding Box2D Files to Your Project
Now you have a scene ready to try out Box2D—except you don’t have the required
Box2D files in your project! This is because you created the project with the plain
Cocos2D Application template (i.e., you didn’t pick the Cocos2D Box2D Application
template). The plain Cocos2D Application template doesn’t come with the Box2D files
included by default.

Luckily, this is quite easy to fix. Just perform the following steps:

1. Open a Finder window and navigate to where you downloaded the Cocos2D
source.

2. Open the folder and navigate to external\Box2d\Box2D.

3. Open a second Finder window, navigate to your SpaceViking project, and navi-
gate to libs.

4. Copy the Box2D folder to the libs folder.

Once you’re done, your directory structure should look as shown in Figure 10.4.
The next step is adding these files to your Xcode project. Expand the cocos2d Sources

group, then drag the Box2D folder from your SpaceViking\ libs directory to the group.
When the dialog appears, make sure Copy items into destination group’s folder
(if needed) is not checked, Create groups for any added folders is selected, and
then click Finish, as shown in Figure 10.5.

Figure 10.3 Placeholder scene for Mad Dreams of the Dead

Getting Started 285

Figure 10.4 Where to place the Box2D files in the SpaceViking project

Figure 10.5 Adding the Box2D directory to your Xcode project

Chapter 10 Basic Game Physics: Adding Realism with Box2D286

Figure 10.6 Adding libs folder to header search paths

Next you need to set up the project so it knows where the Box2D header files are.
Click on your SpaceViking project in the Project Navigator to bring up your project
settings, select the Build Settings tab, make sure the All and Combined buttons
are selected, and look for the entry for Search Paths > Header Search Paths.
Double-click the entry to bring up an editor, click the plus button to add a new entry,
double-click the entry for path, set it to libs if you are using Xcode 3 or SpaceViking/
libs if you are using Xcode 4, and click OK. When you are done, the settings should
look like Figure 10.6.

Now you’ve copied over the main Box2D files, but there are two more impor-
tant files that you should copy over as well: the ones responsible for drawing Box2D
objects to the screen for debug purposes.

In Xcode, make a new group to put these files inside the Classes group, and name
it Box2D. Then open up a Finder window, navigate to your Cocos2D directory, and
navigate to templates\ cocos2d_box2d_app\Classes. Inside you’ll find the files GLES-
Render.h and GLES-Render.mm. Select those two files and drag them to your new
Box2D group in Xcode. Make sure Copy items into destination group’s folder (if
needed) is checked, and click Finish.

Getting Started 287

Now, let’s test if it’s working. In Xcode, expand the Classes\Scenes\Scene3 group, and
open PuzzleLayer.h. Import the Box2D header at the top of the file, as shown in List-
ing 10.5.

Listing 10.5 PuzzleLayer.h (at top of file)

#import "Box2D.h"

Now try to compile your project. Yowza! You will notice a huge list of errors, as
shown in Figure 10.7.

Figure 10.7 Errors you’ll see if you don’t use the .mm extension when
using C++ code

This is happening because you are importing the Box2D header file (which uses
C++) in files that are set up to use only Objective-C. How do you instruct the
compiler to allow both C++ and Objective-C? Simply rename the files with a .mm
extension!

Give this a shot: rename PuzzleLayer.m to PuzzleLayer.mm. Then repeat this for
Classes\Singletons\GameManager.m—rename it GameManager.mm. The reason you have

Chapter 10 Basic Game Physics: Adding Realism with Box2D288

to do this for GameManager.m is because GameManager.m imports PuzzleLayer.h, which
imports Box2D.h.

Ok! Compile and run again, and this time it should compile with no errors.

Tip
As you’ve seen, if you’re working with Box2D and you see hundreds of strange errors
like we demonstrated here, chances are that you’re trying to use C++ code in a file that
doesn’t end with .mm. Just remember, when you see a huge list of errors like that, double
check to make sure that all files using Box2D have the .mm extension!

Congratulations! You have successfully imported the Box2D code into your proj-
ect. But before you proceed, you should learn about one of the most important con-
cepts when working with Box2D in Cocos2D projects: units.

Box2D Units
When making a game with Cocos2D, you usually think in terms of points. Ole, for
example, is about a 100 × 180-point sprite on the iPad (and a good looking one at
that)!

However, Box2D does not deal with points. Box2D is optimized to work with
meters (m), kilograms (kg), and seconds(s). So, Box2D considers an object “x meters”
wide instead of “x points” wide.

You may think to yourself, Why not just define 1 point = 1 meter, and make it easy?
Unfortunately, this does not work too well. Box2D works best with objects between
0.1 and 10 meters, so you want to make most of your objects fit within that length—
and ideally have your most common object types be about 1 meter in length.

Luckily, this is quite easy to do by applying a conversion factor. For example, if
you wanted Ole to be 1 meter wide, you could just set the conversion factor to be 1
width of Ole per 1 meter, or 100 points/meter if Ole is 100 points wide. Figure 10.8
illustrates how you can use this conversion factor to convert any number of points to
meters.

Figure 10.8 Converting points to meters

Hello, Box2D! 289

In code, the conversion looks something like this:

#define PTM_RATIO 100.0

// When converting from Cocos2D coord to Box2D coord:

float x_box2D = x_cocos2D / PTM_RATIO;

float y_box2D = y_cocos2D / PTM_RATIO;

// When converting from Box2D coord to Cocos2D coord:

float x_cocos2D = x_box2D * PTM_RATIO;

float y_cocos2D = y_box2D * PTM_RATIO;

Tip
If you look at Box2D samples, you’ll see that a common value for the PTM_RATIO is 32.
Why is this number commonly chosen? Well, the size of the iPhone screen is 480 points
wide, so a normal sprite would commonly be about 1/15 of that size (32 points). So if the
PTM_RATIO is set to 32, that common sprite would be equal to 1 meter, which is great
because Box2D is optimized for objects between 0.1 and 10 meters.

But since your game’s sprites may be larger or smaller, don’t use this value blindly—
choose it according to the actual sizes of your sprites!

If you forget to set your PTM_RATIO properly, the sizes of your objects might be very
small or very large in Box2D terms. This could cause some strange behavior in your game,
such as objects bouncing and colliding in unexpected ways. So if you see odd behavior
and are wondering why, double check that your objects aren’t too big or too small when
converted to meters under Box2D!

In the puzzle level you’re about to create, on the iPad the most common objects
will be 100 points in width and the largest 800 points, so you’ll set the PTM_RATIO to
be 100 (so most common objects are 1 meter and the largest still less than 10 meters).
On the iPhone, the objects will be half the size in points.

So define the PTM_RATIO to be 100 points per meter at the bottom of Constants.h
(and half that on the iPhone), as shown in Listing 10.6.

Listing 10.6 Constants.h (at the bottom of the file)

#define PTM_RATIO ((UI_USER_INTERFACE_IDIOM() == \
 UIUserInterfaceIdiomPad) ? 100.0 : 50.0)

With that done, you’ve got your project completely ready to use Box2D, so you can
proceed with creating and populating your Box2D world!

Hello, Box2D!
The first step to using Box2D is to create a Box2D world. Think of a Box2D world as
Box2D’s view of the objects it simulates (in units of meters). If you recall Figure 10.1,
you’ll populate this world with objects, let Box2D handle the simulation for you, then
update your sprites according to the positions of the Box2D objects.

Chapter 10 Basic Game Physics: Adding Realism with Box2D290

Let’s see how to create a Box2D world. First open up PuzzleLayer.h and import the
Box2D debug drawing header that you added earlier and the constants file containing
the PTM_RATIO, as shown in Listing 10.7.

Listing 10.7 PuzzleLayer.h (at the top of the file)

#import "GLES-Render.h"

#import "Constants.h"

Next add a few member variables inside the @interface declaration, as shown in
Listing 10.8.

Listing 10.8 PuzzleLayer.h (inside @interface declaration)

b2World * world;

GLESDebugDraw * debugDraw;

These are two instance variables stored in the Box2D world and debug draw classes.
You’ll learn exactly what these mean shortly in this chapter. Now, open up Puzzle-
Layer.mm, and add a method to create your Box2D world above the init method, as
shown in Listing 10.9.

Listing 10.9 PuzzleLayer.mm (above init method)

- (void)setupWorld {

b2Vec2 gravity = b2Vec2(0.0f, -10.0f);

bool doSleep = true;

 world = new b2World(gravity, doSleep);

}

This function initializes the Box2D world. The first thing it does is set up the grav-
ity force that will affect all objects in the world—a b2Vec2 initialized with an x value
of 0 and a y value of −10. A b2Vec2 is a Box2D class used to represent vectors, so this
vector is facing down along the y-axis with a magnitude of 10.

You may be wondering why you should use this as your value. Well, gravity is in m/s²,
and 10 m/s² down the y-axis is pretty close to the actual gravity of earth (9.8 m/s²)!

Note
As you work with Box2D, you’ll be using a lot of vectors, so if you’re not familiar with how
they work, here’s a quick explanation.

Vectors are simply a pair of x and y values that can be used to represent either a posi-
tion or a direction and magnitude.

For example, Figure 10.9 shows what the vector (3, 4) looks like. This same vector could
be used to indicate the position (3, 4) or to indicate the direction of 53° with a magnitude
of 5.

Hello, Box2D! 291

Whether the vector is used as a position or direction/magnitude depends on the context.
In the case of gravity, you know that the vector is being used to indicate a direction and
magnitude.

Don’t worry if you’re still confused by this. You’ll be using vectors a lot as you go through
this chapter, and it will start to make more sense as you proceed!

(3, 4)

1
53°

52

3

4

21 3

Figure 10.9 Diagram of a vector, which can represent either a point or a
magnitude/angle

In summary, the first line sets up a gravity vector pointing down, much like Earth’s
gravity. The second and third lines create a new b2World object, passing in the grav-
ity vector and true for doSleep.

Note that the doSleep parameter is set to true. This tells the b2World that when
objects have settled in to their positions and aren’t moving anymore, it can stop per-
forming calculations on those objects until something causes them to move again.
Usually you want this to be on by default, but if you don’t, you can disable this for all
objects here.

One more thing . . . since you created a new world, you need to create a dealloc
method to delete it once your layer is deallocated, as shown in Listing 10.10.

Listing 10.10 PuzzleLayer.mm (at the bottom of the file)

- (void)dealloc {

if (world) {

delete world;

 world = NULL;

 }

 [super dealloc];

}

Deleting a world also deletes anything you have added into that world (such as bod-
ies, joints, or fixtures, all of which we cover later on).

Chapter 10 Basic Game Physics: Adding Realism with Box2D292

That’s it—you have created a Box2D world! However, there’s currently nothing in
it. So let’s fix this by adding a simple box into the world.

Creating a Box2D Object
Before you create a Box2D object, it’s important to understand the terminology that
Box2D uses when setting up objects.

Each individual object in a Box2D world is called a body. Box2D is a rigid body
physics simulation, which just means that when two bodies collide, they don’t squish—
instead they bounce off each other rigidly.

Each body can be made up of several different pieces, or fixtures. In Figure 10.10,
you can see that if you wanted to create a baseball cap, you might make a single body
with two fixtures: one for the cap and one for the brim. The reason you might want
to create a body from two fixtures rather than one is because it may be simpler, and
for reasons you’ll learn about in the next chapter, you need to do this in order to cre-
ate certain shapes with Box2D.

Fixture
(helmet)

Body
(Viking helmet)

Fixture
(horns)

Figure 10.10 A Box2D body is composed of one or more fixtures.

Note
Since Box2D is a rigid physics simulation, any fixtures that are in the same body will
not move relative to each other, which works great for fixtures that are permanently con-
nected like the Viking helmet in Figure 10.10. But if you wanted to model an arm (made
up of a lower arm and an upper arm), you wouldn’t want to model it as two fixtures on the
same body, because then the arm wouldn’t be able to rotate at the elbow.

For cases like an arm where you want two pieces to be able to move relative to each
other, you create two bodies (one for the lower arm and one for the upper arm) and con-
nect them with a joint. You will learn how to use joints in detail in the next chapter. In this
chapter, you work with just simple bodies, usually with just one fixture, and not connected
to any other bodies with joints.

Hello, Box2D! 293

Figure 10.11 illustrates the steps you take to create a body with Box2D. As you can
see in the figure, first you create a body definition. A body definition specifies some
properties of the body, such as its position and movement type. There are three differ-
ent movement types: a dynamic body (Box2D handles the movement), a kinematic body
(the game code handles the movement), or a static body (the body doesn’t move at all).

World Body

Body
Definition

Figure 10.11 Creating a body with Box2D

When you’re done, you pass the body definition to the world, which creates a body
object for you.

Let’s see what this looks like in code. Inside PuzzleLayer.mm above the init
method, add the beginning of a method that will create a box in the Box2D world at a
particular location, as shown in Listing 10.11.

Listing 10.11 PuzzleLayer.mm (above init method)

- (void)createBoxAtLocation:(CGPoint)location withSize:(CGSize)size {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position =

b2Vec2(location.x/PTM_RATIO, location.y/PTM_RATIO);

b2Body *body = world->CreateBody(&bodyDef);

}

This function creates a box at a specified location with a specified size. It sets the
body as a dynamic body (which means its movement should be handled by Box2D),
sets its initial position, and then calls the CreateBody method on the world to create
a body object.

Note that since this function takes a location in points, it needs to convert the loca-
tion from points to meters by using the PTM_RATIO, as discussed earlier.

Once you create the body, you can create one or more fixtures to attach to the
body. To create a fixture, you follow a process much like you did while creating a

Chapter 10 Basic Game Physics: Adding Realism with Box2D294

body, as Figure 10.12 illustrates. Basically, first you create a shape, which can be a cir-
cle, a square, or an arbitrary shape made up of connected vertices. You pass that shape
to a fixture definition, where you can set other properties such as bounciness or density.
You then pass the fixture definition to the body, which returns to you a fixture object.

Body Fixture

Fixture
Definition

Shape

Figure 10.12 Creating a fixture with Box2D

To try this out, continue the createBoxAtLocation method by adding the code
shown in Listing 10.12 to add a fixture to the body.

Listing 10.12 PuzzleLayer.mm (at bottom of createBoxAtLocation method)

b2PolygonShape shape;

shape.SetAsBox(size.width/2/PTM_RATIO, size.height/2/PTM_RATIO);

b2FixtureDef fixtureDef;

fixtureDef.shape = &shape;

fixtureDef.density = 1.0;

body->CreateFixture(&fixtureDef);

This function defines a shape object and uses a helper method to set the vertices
up so that it is a box of the specified size. Note that it has to divide the width and
height by 2, since this helper method takes a half width and half height of the box as
parameters. Again note that this uses the PTM_RATIO to convert the size from points
to meters.

Hello, Box2D! 295

Warning
Note that when using the SetAsBox method, it’s easy to forget that you have to pro-
vide a half width and half height and to instead pass in the full height and width. If your
objects seem to be double the size you expect, double check that you’ve passed in the
half width and half height correctly in this method.

Note that this function sets the density of the box to 1.0. The higher the fixture’s
density, the “heavier” it is, but for now don’t worry too much about it. We discuss
density in detail later in this chapter.

At this point you have written methods to create the world and add an object to
the world. However, if you called these methods in your init method right now,
you wouldn’t see anything, because there is no code that draws representations of the
Box2D bodies in your scene.

This is where Box2D debug drawing comes to the rescue!

Box2D Debug Drawing
Box2D debug drawing is already implemented for you by the GLES-Render files
you copied into your project earlier. You just need to add a bit of code to create an
instance of the debug drawing class, connect it to your world, and call it in your draw
method.

So add a method to set up a debug drawing above your init method, as shown in
Listing 10.13.

Listing 10.13 PuzzleLayer.mm (above init method)

- (void)setupDebugDraw {

debugDraw = new GLESDebugDraw(PTM_RATIO *[[CCDirector sharedDirector]
contentScaleFactor]);

world->SetDebugDraw(debugDraw);

debugDraw->SetFlags(b2DebugDraw::e_shapeBit);

}

Here you create a new instance of the GLESDebugDraw class and pass it to the
world with the SetDebugDraw method. You then set some f lags on the debug draw
telling it what specifically to draw. For this level, you’re just interested in shapes.

Note
You have to multiply the PTM_RATIO by the contentScaleFactor because GLES-
DebutDraw deals with pixels, not points. Without this, debug drawing will not be sized
correctly on the retina display.

Also, you can use the Box2D debug draw class to render other interesting things, such as
joints, axis-aligned bounding boxes, or center of mass. Check out b2WorldCallbacks.h in
the Box2D source for the full list!

Chapter 10 Basic Game Physics: Adding Realism with Box2D296

Next you need to make sure that the debug draw class gets a chance to draw. Add a
draw method to your layer, as shown in Listing 10.14.

Listing 10.14 PuzzleLayer.mm (below init method)

-(void) draw {

glDisable(GL_TEXTURE_2D);

glDisableClientState(GL_COLOR_ARRAY);

glDisableClientState(GL_TEXTURE_COORD_ARRAY);

world->DrawDebugData();

glEnable(GL_TEXTURE_2D);

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

}

Here you’re overriding the layer’s draw method so you can perform the debug
drawing in every frame. Inside, it sets the OpenGL states to handle debug drawing and
tells the world to go ahead and draw each object with the specified debug draw class.
Don’t worry if you don’t understand this—this is boilerplate code that you can use as is.

One last step . . . since you created a debug draw object, you need to delete it in
your dealloc routine. Add the code to delete your debug draw object inside your
dealloc routine, as shown in Listing 10.15.

Listing 10.15 PuzzleLayer.mm (inside dealloc routine)

if (debugDraw) {

delete debugDraw;

 debugDraw = nil;

}

Okay, you now have almost all of the pieces in place, so it’s almost time to see
something on the screen!

Putting It All Together
First delete your current init method, and replace it with the contents of Listing 10.16.

Listing 10.16 PuzzleLayer.mm (init method)

- (id)init {

if ((self = [super init])) {

 [self setupWorld];

 [self setupDebugDraw];

Hello, Box2D! 297

 [self scheduleUpdate];

self.isTouchEnabled = YES;

 }

return self;

}

- (void)registerWithTouchDispatcher {

 [[CCTouchDispatcher sharedDispatcher] addTargetedDelegate:self

 priority:0 swallowsTouches:YES];

}

The first two lines call the methods you added earlier to set up the world and debug
drawing. It then schedules an update method to be called every tick, which you’ll
write in a second. It also sets up the layer to accept touches by setting isTouchEnabled
to YES and implementing registerWithTouchDispatcher—further down, you’ll
add a touch handler to create a box wherever the user taps.

Next add the implementation of the update method that will be called every tick,
as shown in Listing 10.17.

Listing 10.17 PuzzleLayer.mm (below init method)

-(void)update:(ccTime)dt {

int32 velocityIterations = 3;

int32 positionIterations = 2;

world->Step(dt, velocityIterations, positionIterations);

}

By calling scheduleUpdate in the init method earlier, Cocos2D will automati-
cally look for a routine named update in your layer and call it every frame. Inside this
method, you need to give Box2D time to perform its simulation, and you do that by
calling the Step method on the world.

When calling the Step method, you pass it a parameter for the number of veloc-
ity iterations to perform and the number of position iterations to perform. The higher
these values, the better the simulation will be—but the tradeoff is performance.
Hence, you generally want to set these numbers as low as you can while still getting
acceptable behavior for your game. In other words, you need to tweak these and see
what works best for your situation!

Note
The game loop shown in Listing 10.17 uses a variable-based timestep, meaning it is
called with a variable amount of delta time (dt) each tick. However, Box2D works best
with a fixed timestep—that is, when it is called with the same amount of time every step.

Chapter 10 Basic Game Physics: Adding Realism with Box2D298

If you don’t use a fixed timestep, as your simulations get more complicated, you may
see some strange behavior, such as joints disconnecting or bodies bouncing strangely.
We’ll come back to the game loop in Chapter 11, “Intermediate Game Physics,” with an
improved version, but for this level you can get away fine with this simple implementation
without any noticeable problems.

One last step: you need to add the code to create the box! To make things inter-
esting, you’ll add a routine to create a box wherever the user taps. Implement the
ccTouchBegan method to do this, as shown in Listing 10.18.

Listing 10.18 PuzzleLayer.mm (below init method)

-(BOOL) ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event {

CGPoint touchLocation = [touch locationInView:[touch view]];

 touchLocation = [[CCDirector sharedDirector]

convertToGL:touchLocation];

 touchLocation = [self convertToNodeSpace:touchLocation];

b2Vec2 locationWorld =

b2Vec2(touchLocation.x/PTM_RATIO, touchLocation.y/PTM_RATIO);

 [self createBoxAtLocation:touchLocation

withSize:CGSizeMake(50, 50)];

return TRUE;

}

This gets called whenever there is a touch in your layer. It first converts the touch
from UIView coordinates to OpenGL coordinates with convertToGL. Then it con-
verts the coordinates to the node space for the current layer. Finally, it converts the
coordinates to Box2D coordinates by applying the PTM_RATIO. Note that it is divid-
ing by the PTM_RATIO this time, since it is moving from meters to points.

Finally, with the resulting touch location, it calls the method you wrote earlier to
create a box at the location.

That’s it—you’re finally ready to check it out! Compile and run your project, and
you’ll be able to tap the screen to have objects created into the Box2D world. The
boxes will fall down as though affected by gravity, as shown in Figure 10.13.

However, you’ll notice an immediate problem: there’s nothing stopping these
objects from falling off the screen! So let’s fix that by adding some ground.

Hello, Box2D! 299

Creating Ground
The goal here is to create a boundary that lines up with the edges of the screen so that
the falling objects don’t fall out of view.

Note
You don’t have to set up the boundaries of the Box2D world to line up exactly to the
screen. It’s typical to want to have worlds that extend many screen widths so players can
scroll from side to side. If you want to do that, you simply make the ground boundaries
wider and move the position of the layer as the user scrolls from side to side. You learn
exactly how to do that in the next chapter, in fact!

But for this mini-game, you don’t need scrolling, so you want the boundaries to line up
with the width and height of one screen.

First open PuzzleLayer.h and add a new instance variable that will keep a handy ref-
erence to the ground body you’re about to create, as shown in Listing 10.19.

Listing 10.19 PuzzleLayer.h (inside @interface declaration)

b2Body *groundBody;

Next open PuzzleLayer.mm and add the method to create the ground body above
your init method, as shown in Listing 10.20.

Figure 10.13 Box2D objects falling with gravity

Chapter 10 Basic Game Physics: Adding Realism with Box2D300

Listing 10.20 PuzzleLayer.mm (above init method)

- (void)createGround {

CGSize winSize = [[CCDirector sharedDirector] winSize];

float32 margin = 10.0f;

b2Vec2 lowerLeft = b2Vec2(margin/PTM_RATIO, margin/PTM_RATIO);

b2Vec2 lowerRight = b2Vec2((winSize.width-margin)/PTM_RATIO,

 margin/PTM_RATIO);

b2Vec2 upperRight = b2Vec2((winSize.width-margin)/PTM_RATIO,

 (winSize.height-margin)/PTM_RATIO);

b2Vec2 upperLeft = b2Vec2(margin/PTM_RATIO,

 (winSize.height-margin)/PTM_RATIO);

 b2BodyDef groundBodyDef;

 groundBodyDef.type = b2_staticBody;

 groundBodyDef.position.Set(0, 0);

 groundBody = world->CreateBody(&groundBodyDef);

b2PolygonShape groundShape;

 b2FixtureDef groundFixtureDef;

 groundFixtureDef.shape = &groundShape;

 groundFixtureDef.density = 0.0;

 groundShape.SetAsEdge(lowerLeft, lowerRight);

 groundBody->CreateFixture(&groundFixtureDef);

 groundShape.SetAsEdge(lowerRight, upperRight);

 groundBody->CreateFixture(&groundFixtureDef);

 groundShape.SetAsEdge(upperRight, upperLeft);

 groundBody->CreateFixture(&groundFixtureDef);

 groundShape.SetAsEdge(upperLeft, lowerLeft);

 groundBody->CreateFixture(&groundFixtureDef);

}

The beginning of this method sets up the Box2D coordinates that correspond to
the four corners of the ground boundary you’re about to make. Note that it uses a
margin to pad the edges a bit and that it uses PTM_RATIO to convert from points to
meters as usual.

Next the method creates a body following the usual process. The only differences
are that the body is set up as a static body (i.e., it does not move) and the position of
the body is set to (0, 0).

Note
After setting the position of a body, the coordinates you use to create fixtures are local
coordinates (i.e., relative to the body). In this case, the position of the body is (0,0), so if
you specified a vertex for a fixture of (10,10), the world coordinates for the fixture would
also be (10,10).

Hello, Box2D! 301

However, if the position of the body was at (5, 5) and you specified a vertex for a fixture
at (10,10), the world coordinates for the fixture would be at (15,15).

This is a handy property of Box2D, since it allows you to create fixtures relative to a body,
then easily change where you place a body without having to redo the fixture coordinates.
It doesn’t matter very much in this particular example, but it becomes useful when making
complicated objects (such as vehicles) that you want to place in a scene multiple times.

After creating the body, the method sets up a fixture definition. It sets the shape to
the groundShape (which isn’t filled in yet) and the density to 0. When the density
for an object is 0, this is a special case that means that the object is static (not moving).

Warning
Be careful of this! If you ever create a Box2D fixture and forget to set its density, it will
default to 0 and the body will become static and not move. So if you ever notice that a fix-
ture isn’t moving at all, double check that you set the density to a nonzero value!

Finally, the method adds four fixtures to the body, one for each side of the box. To
do this, it uses the SetAsEdge helper method to create a fixture with just two vertices
and then adds it to the body. Remember from the earlier discussion that you can have
multiple fixtures attached to the same body (like modeling a ball cap); this is the first
example of doing this.

Next, you just need to call your new method at the bottom of init, as shown in
Listing 10.21.

Listing 10.21 PuzzleLayer.mm (at bottom of init method)

[self createGround];

And that’s it! Compile and run to try it out, and you should now see a green
boundary along the edges of the screen—that’s the ground you just created. Now
when you create the objects, they will fall until they hit the ground, then they will
stop, as shown in Figure 10.14. You can also see some cool physics effects by making
objects fall on top of other objects!

Note
If you’re wondering why some bodies are pink and some are gray, it’s because Box2D
colors bodies gray when they aren’t currently moving and are asleep. As mentioned ear-
lier, when bodies are asleep, Box2D can stop performing calculations on the bodies until
something causes them to move again, which is a performance optimization.

At this point, you’ve gotten a basic “Hello, World” Box2D scene functioning from
scratch—you’ve added Box2D bodies, set up gravity, and set up a ground box to
contain the objects! Let’s take this to the next level by adding more interactivity and
decoration.

Chapter 10 Basic Game Physics: Adding Realism with Box2D302

Basic Box2D Interaction and Decoration
This scene is starting to be a little bit fun, watching boxes fall off each other and the
like, but you know what would make it even more fun? The ability to move your
device around and modify your Box2D world’s gravity based on how you hold it!

This is ridiculously easy to do, so let’s give it a shot. First enable accelerometer sup-
port in your scene by adding a line to your init method as shown in Listing 10.22.

Listing 10.22 PuzzleLayer.mm (at the bottom of the init method)

self.isAccelerometerEnabled = TRUE;

This tells Cocos2D that you want to receive a callback for accelerometer events in
your layer. When the accelerometer gets data, it calls a method in your layer called
accelerometer:didAccelerate. Go ahead and write that now, as shown in
Listing 10.23.

Listing 10.23 PuzzleLayer.mm (after init method)

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {

b2Vec2 gravity(-acceleration.y * 15, acceleration.x *15);

world->SetGravity(gravity);

}

Figure 10.14 Box2D bodies landing on the ground

Basic Box2D Interaction and Decoration 303

This simply converts the accelerometer input to a gravity vector. It multiplies the
accelerometer result (which typically ranges between −1 and 1) by 15, in order to get a
nice feel for gravity in the level. Since Space Viking is set up to run in landscape mode
(and accelerometer data is given in portrait orientation), it reverses the x and y coordi-
nates and f lips the sign of the y coordinate to get the proper vector.

Then it simply calls SetGravity on the world to update the gravity vector!
Compile and run your project (on your device, since accelerometer input is not

supported on the simulator), add a bunch of boxes, and rotate your device to see them
all f ly around, as shown in Figure 10.15; it’s actually pretty fun!

Figure 10.15 Making Box2D bodies move with gravity and the
accelerometer

As you play with it, you may notice that if the bodies settle down, they turn gray
(which means the objects are asleep). If you try to rotate the device again, they won’t
move.

There are a couple of ways to fix this (such as running a high-pass filter over the
accelerometer input to detect if the orientation has changed enough to warrant waken-
ing the sleeping bodies), but there’s an even simpler way that works for the purposes of
this app: set the bodies as unable to sleep.

To do this, all you need to do is add one line inside your createBoxAtLocation
routine before you call CreateBody, as shown in Listing 10.24.

Chapter 10 Basic Game Physics: Adding Realism with Box2D304

Listing 10.24 PuzzleLayer.mm (in createBoxAtLocation, before call to CreateBody)

bodyDef.allowSleep = false;

Now compile and run your project again, and note that the bodies no longer go to
sleep, so they will no longer get stuck.

Note
If you’re interested in the high-pass filter option, check out Apple’s Event Handling Guide
for iOS (inside the Motion Events section), which does a great job explaining the topic in
further detail. Implementing this would be more efficient than simply waking all bodies,
since allowing bodies to sleep saves processing time.

Dragging Objects
Now that the scene has accelerometer input, it’s getting kind of fun, since you can see
the impact of physics on the various bodies. But it would be even cooler if you could
move objects just by dragging them!

The good news is that you can do so easily in Box2D using a special kind of joint
called a mouse joint.

Joints are a way to tell Box2D that two bodies are connected in some way and
to enforce some kind of rule about their relative motion. For example, you can tell
Box2D that two objects are connected by a distance joint, which sets them up so that
they are always the same distance apart. Or you could tell Box2D that two objects are
connected by a revolute joint, which sets them up so that they can rotate only along the
same shared axis.

You’ll learn more about joints in the next chapter, but for now you’re going to use
a specific kind of joint designed for user input: the mouse joint. The mouse joint is
meant to connect the location the user touches with an object the user wants to move
and have the object move toward the desired location as quickly as possible.

There are several steps required to use a mouse joint, so let’s go through them step
by step. First open up PuzzleLayer.h and add a new instance variable for the mouse
joint, as shown in Listing 10.25.

Listing 10.25 PuzzleLayer.h (inside @interface declaration)

b2MouseJoint *mouseJoint;

Then switch back to PuzzleLayer.mm and find the ccTouchBegan method. Delete
the createBoxAtLocation line and add the contents of Listing 10.26 in its place.

Listing 10.26 PuzzleLayer.mm (inside ccTouchBegan, replaces call to createBoxAtLocation)

b2AABB aabb;

b2Vec2 delta = b2Vec2(1.0/PTM_RATIO, 1.0/PTM_RATIO);

Basic Box2D Interaction and Decoration 305

aabb.lowerBound = locationWorld - delta;

aabb.upperBound = locationWorld + delta;

SimpleQueryCallback callback(locationWorld);

world->QueryAABB(&callback, aabb);

To set up a mouse joint, the first thing you need to do is figure out what object
the user wants to move. You can do this by asking Box2D what object is at a certain
location.

To search for an object in the Box2D world, you need to use a method called
AABB Testing, which stands for axis-aligned bounding box testing. This is a highly
optimized method that can quickly return to you all of the objects whose bound-
ing boxes intersect a given rectangle. Then it’s up to you to figure out if any of the
returned objects actually intersect.

To see how it works, consider Figure 10.16. Here you want to test if the touch
point (represented by the small rectangle in the lower right) intersects the polygon
shape. To be able to quickly return a list of possible objects that the point could hit,
Box2D first performs an AABB test to see if the point is within the bounding box of
any of the shapes (which it is, for this polygon). You then need to perform a second
test to see if the point is actually within the bounds of the polygon itself by calling
TestPoint (which it isn’t, for this polygon).

Figure 10.16 AABB testing vs. actual shape intersection

The code you wrote in Listing 10.26 sets up a lower bound and an upper bound for
the AABB test, which is the equivalent of a 1-point box around the touch location,
converted to meters. It then calls the QueryAABB function to perform the test. As a
parameter, the QueryAABB function takes a pointer to a class as an argument. The
QueryAABB method calls a method on this class for all of the possible intersections,
and it’s the job of the class to perform a secondary test to see whether or not there was
actually an intersection.

This SimpleQueryCallback class doesn’t come with Box2D—you have to write
it yourself. So select your Classes\Box2D folder, go to File > New > New File...,

Chapter 10 Basic Game Physics: Adding Realism with Box2D306

choose iOS > C and C++ > Header File, and click Next. Name the file
SimpleQueryCallback.h, and click Save.

Then replace SimpleQueryCallback.h with the contents of Listing 10.27.

Listing 10.27 SimpleQueryCallback.h

#import "Box2D.h"

class SimpleQueryCallback : public b2QueryCallback

{

public:

b2Vec2 pointToTest;

b2Fixture * fixtureFound;

 SimpleQueryCallback(const b2Vec2& point) {

 pointToTest = point;

 fixtureFound = NULL;

 }

bool ReportFixture(b2Fixture* fixture) {

b2Body* body = fixture->GetBody();

if (body->GetType() == b2_dynamicBody) {

if (fixture->TestPoint(pointToTest)) {

 fixtureFound = fixture;

return false;

 }

 }

return true;

 }

};

This is a very simple C++ class that derives from b2QueryCallback. It has
a constructor that takes the original point to test as a parameter and saves it in an
instance variable. It then overrides the virtual method ReportFixture, which is
called on every possible intersection. Inside this method, it checks to see if the body is
a dynamic body (those are the only types of objects you’ll want to move with mouse
joints) and uses TestPoint to see if the point actually intersects. If it does, it saves a
pointer to the fixture in an instance variable and returns false (which tells Box2D it
can stop looking for matches); otherwise, it returns true (which tells Box2D to keep
searching).

Note that this returns only the first object found at the given point. If multiple
objects are at the current point, it just returns the first one found, but that is sufficient
for this level.

Switch back to PuzzleLayer.mm. Go ahead and add the import for this new class at
the top of your file, as shown in Listing 10.28.

Basic Box2D Interaction and Decoration 307

Listing 10.28 PuzzleLayer.mm (at the top of the file)

#import "SimpleQueryCallback.h"

Looking back to your ccTouchBegan method, you see that your last line calls
QueryAABB. After this method returns, the world will have called the SimpleQuery-
Callback object for each potential intersection, and the class will have figured out if
the point actually intersects anything or not. Now it’s time to make use of that infor-
mation! Continue your ccTouchBegan method by adding the lines shown in Listing
10.29 at the end of the method (but before the return statement).

Listing 10.29 PuzzleLayer.mm (at end of ccTouchBegan but before return):

if (callback.fixtureFound) {

b2Body *body = callback.fixtureFound->GetBody();

 b2MouseJointDef mouseJointDef;

 mouseJointDef.bodyA = groundBody;

 mouseJointDef.bodyB = body;

 mouseJointDef.target = locationWorld;

 mouseJointDef.maxForce = 100 * body->GetMass();

 mouseJointDef.collideConnected = true;

mouseJoint = (b2MouseJoint *) world->CreateJoint(&mouseJointDef);

body->SetAwake(true);

return YES;

} else {

 [self createBoxAtLocation:touchLocation

withSize:CGSizeMake(50, 50)];

}

This code first checks to see if a fixture was found by the SimpleQueryCallback
class, and if so it gets a pointer to the body from the fixture. It then creates a mouse
joint definition, setting the parameters on the mouse joint definition as follows:

bodyA: When you specify a joint, you usually specify two bodies. For mouse joints,
you usually want the first body to be a nonmoving body, so you can specify a fixed
target location and have the target move to that location. So for bodyA, you set it
to the groundBody you saved away earlier.

bodyB: The body you want to move. In this case, it’s the body that was detected by
the AABB test and SimpleQueryCallback.

target: Where you want the object to move to. In this case, it’s the location
tapped by the user.

Chapter 10 Basic Game Physics: Adding Realism with Box2D308

maxForce: The maximum amount of force to apply to move the body. In this case,
you want to be able to move an object of any mass, so you give it a multiple of the
body’s mass. The larger the multiple, the faster objects will move to their target
locations.

collideConnected: Whether or not bodyA and bodyB should collide. In this
case, you still want the chosen body to collide with the ground, so you set it to
true.

Warning
It’s a common mistake to forget to set collideConnected to true when setting up
joints connected with ground bodies. If you forget to set this, it defaults to false, which
means that your body will no longer collide with the ground. So if you see your objects
going through your world boundaries, double check that you don’t have any joints set up
that would prevent the objects from colliding with the ground!

After creating the mouse joint definition, it passes it to the world with the
CreateJoint method, which actually creates the joint. It also sets the body to awake
in case it was sleeping.

Note that if a fixture was not found, it runs the old method to create a new box at
that touch point.

You’re almost done! Just add the methods to handle touch movement and ending, as
shown in Listing 10.30.

Listing 10.30 PuzzleLayer.mm (after ccTouchBegan)

-(void) ccTouchMoved:(UITouch *)touch withEvent:(UIEvent *)event {

CGPoint touchLocation = [touch locationInView:[touch view]];

 touchLocation =

 [[CCDirector sharedDirector] convertToGL:touchLocation];

 touchLocation = [self convertToNodeSpace:touchLocation];

b2Vec2 locationWorld = b2Vec2(touchLocation.x/PTM_RATIO,

 touchLocation.y/PTM_RATIO);

if (mouseJoint) {

mouseJoint->SetTarget(locationWorld);

 }

}

-(void) ccTouchEnded:(UITouch *)touch withEvent:(UIEvent *)event {

if (mouseJoint) {

 world->DestroyJoint(mouseJoint);

 mouseJoint = NULL;

 }

}

Basic Box2D Interaction and Decoration 309

The ccTouchMoved method simply updates the target of the existing mouse
joint based on the new touch location, and the ccTouchEnded method destroys the
joint, since the movement is complete.

That’s it! Compile and run your app, and you should now be able to drag the
objects all around the screen and f lick them around in fun and amusing ways!

Mass, Density, Friction, and Restitution
So far, the bodies you’ve added to your Box2D world have used mostly default values.
But sometimes you want some bodies to be heavier than others, or to slide along
objects more (or less), or to be more (or less) bouncy.

You can set this behavior on each fixture you create in Box2D by setting three
properties: density, friction, and restitution. How to use these properties can
be confusing to beginners of Box2D, so we’ll run a few experiments so that you can
fully understand how they work.

Begin by opening PuzzleLayer.mm and modifying your createBoxAtLocation
method so it looks like Listing 10.31.

Listing 10.31 PuzzleLayer.mm (modify createBoxAtLocation to this)

- (void)createBoxAtLocation:(CGPoint)location

 withSize:(CGSize)size friction:(float32)friction

 restitution:(float32)restitution density:(float32)density {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position = b2Vec2(location.x/PTM_RATIO,

 location.y/PTM_RATIO);

 bodyDef.allowSleep = false;

b2Body *body = world->CreateBody(&bodyDef);

b2PolygonShape shape;

 shape.SetAsBox(size.width/2/PTM_RATIO, size.height/2/PTM_RATIO);

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.density = density;

 fixtureDef.friction = friction;

 fixtureDef.restitution = restitution;

body->CreateFixture(&fixtureDef);

}

This is almost exactly like the previous routine, except that it adds in a few extra
parameters, allowing us to specify three properties on the fixture: the density, the

Chapter 10 Basic Game Physics: Adding Realism with Box2D310

friction, and the restitution. If you don’t know what these mean, don’t worry—
you’re about to learn what they mean through hands-on experimentation!

Next add some calls to the bottom of your init method to add three boxes to your
scene when it first loads, as shown in Listing 10.32.

Listing 10.32 PuzzleLayer.mm (at the bottom of the init method)

CGPoint location1, location2, location3;

CGSize smallSize, medSize, largeSize;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 location1 = ccp(200, 400);

 location2 = ccp(500, 400);

 location3 = ccp(800, 400);

 smallSize = CGSizeMake(50, 50);

 medSize = CGSizeMake(100, 100);

 largeSize = CGSizeMake(200, 200);

} else {

 location1 = ccp(100, 200);

 location2 = ccp(250, 200);

 location3 = ccp(400, 200);

 smallSize = CGSizeMake(25, 25);

 medSize = CGSizeMake(50, 50);

 largeSize = CGSizeMake(100, 100);

}

[self createBoxAtLocation:location1 withSize:medSize

 friction:0.2 restitution:0.0 density:1.0];

[self createBoxAtLocation:location2 withSize:medSize

 friction:0.2 restitution:0.0 density:1.0];

[self createBoxAtLocation:location3 withSize:medSize

 friction:0.2 restitution:0.0 density:1.0];

This creates three boxes in the middle of your scene to play around with; each
has the same values for friction, restitution, and density as the default values
would be. Note that it sets up some locations and sizes for the boxes, which need to be
different depending on whether you’re running on the iPhone or iPad.

Now that you’re creating objects when the scene starts up, you no longer want
to create boxes on touches. So comment out the line in ccTouchBegan that creates
boxes where you touch, as shown in Listing 10.33.

Listing 10.33 PuzzleLayer.mm (comment out the following line in ccTouchBegan)

//[self createBoxAtLocation:touchLocation withSize:CGSizeMake(50, 50)];

Compile and run, and throw the boxes around a little bit so you get an idea how
they work. Pay particular attention to how they slide along the ground, what happens

Basic Box2D Interaction and Decoration 311

when you throw one object into another, and how bouncy it is when it collides on the
ground.

Next replace the three createBoxAtLocation lines with the contents of Listing
10.34.

Listing 10.34 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[self createBoxAtLocation:location1 withSize:smallSize

 friction:0.2 restitution:0.0 density:1.0];

[self createBoxAtLocation:location2 withSize:medSize

 friction:0.2 restitution:0.0 density:1.0];

[self createBoxAtLocation:location3 withSize:largeSize

 friction:0.2 restitution:0.0 density:1.0];

This time you’re creating boxes of three different sizes: a small, medium, and large
box. They still all have the default parameters though. Compile and run, and try
throwing the small box at the large box. Notice how it barely moves? Now throw the
large box at the small box. Yowza!

So this tells you something cool and interesting: Box2D computes the mass of an
object for you automatically based (in part) on the size of an object. The larger the
object, the higher the mass will be and the harder it will be to move around.

Let’s try another experiment: seeing what density does. Replace the three create-
BoxAtLocation lines with the contents of Listing 10.35.

Listing 10.35 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[self createBoxAtLocation:location1 withSize:smallSize

 friction:0.2 restitution:0.0 density:10.0];

[self createBoxAtLocation:location2 withSize:medSize

 friction:0.2 restitution:0.0 density:1.0];

[self createBoxAtLocation:location3 withSize:largeSize

 friction:0.2 restitution:0.0 density:1.0];

Note that there are still three different sizes of boxes, but the small box now has
a much higher density than the other boxes. This time when you try throwing the
small box at the large box, you’ll see it moves quite a bit, while the small box is not
impacted as much by the other boxes.

This reveals the other component that affects the mass: density. The higher the
density, the higher the mass will be, and the harder it will be to move around. Which
makes perfect sense, because as you may have learned in physics, mass = volume ×
density!

Okay, next let’s play around with friction. Replace the three createBoxAtLocation
lines with the contents of Listing 10.36.

Chapter 10 Basic Game Physics: Adding Realism with Box2D312

Listing 10.36 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[self createBoxAtLocation:location1 withSize:medSize

 friction:0.0 restitution:0.0 density:1.0];

[self createBoxAtLocation:location2 withSize:medSize

 friction:1.0 restitution:0.0 density:1.0];

[self createBoxAtLocation:location3 withSize:medSize

 friction:10.0 restitution:0.0 density:1.0];

The boxes are back to being all the same size now, but the first one is set to be
extremely slippery, the second to be somewhat slippery, and the third to be not slip-
pery at all. Play around with them and see how they act.

Note
When two fixtures slide along each other, each with different friction values, Box2D
computes the friction to apply based on the geometric mean of the two fixture’s friction
values.

One final test: restitution! Replace the three createBoxAtLocation lines with
the contents of Listing 10.37.

Listing 10.37 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

[self createBoxAtLocation:location1 withSize:medSize

 friction:1.0 restitution:0.0 density:1.0];

[self createBoxAtLocation:location2 withSize:medSize

 friction:1.0 restitution:0.5 density:1.0];

[self createBoxAtLocation:location3 withSize:medSize

 friction:1.0 restitution:1.0 density:1.0];

Compile and run, and you’ll see the third box is extremely bouncy, while the sec-
ond bounces just a little, and the first not at all.

Note
When two bodies collide with each other with different restitution values, Box2D applies
the restitution value to use by choosing the maximum of the two fixtures’ restitution
values.

That about covers the tests of mass, density, friction, and restitution. In summary,
you’ve seen that

n Mass is automatically calculated by the volume of the shape (automatically com-
puted by Box2D based on the size of the shape) times the density.

n The more mass an object has, the more force it will take to move the object.
n The less friction an object has, the more it will slide along other objects.
n The more restitution an object has, the bouncier it will be.

Basic Box2D Interaction and Decoration 313

By thinking about the bodies in your game and how heavy/slippery/bouncy they
should be, you can tweak these properties and get much nicer (and more realistic, if
that’s what you’re aiming for) behavior!

Decorating Your Box2D Bodies with Sprites
You’re getting close to being able to have all the tools necessary to make a simple
game using Box2D, except you’re missing one major piece: the ability to associate
sprites with Box2D bodies! Obviously, shipping a game with Box2D debug drawing
as your art layer wouldn’t win you any Apple Design Awards.

Now you’ll learn how to decorate Box2D bodies by decorating your objects with
some artwork for this level: a frozen Ole, blocks of ice, rocks, meteors, and even a few
deranged skulls!

The downloadable files associated with this chapter include the sprite sheets and
background files you’ll need for this scene (scene3atlas.plist,scene3atlas.png, scene3atlas-hd.
plist, scene3atlas-hd.png, puzzle_level_bkgrnd.png, puzzle_level_bkgrnd-hd.png, and puzzle_
level_bkgrnd-ipad.png). Find these files in Finder, and drag them into your Images group.
Make sure Copy items into destination group’s folder (if needed) is checked,
and click Finish.

Note
For this level, we use the hd sprite sheet for the iPad and retina display, and the non-hd
sprite sheet for the iPhone. Although the aspect ratio is different on the iPhone and iPad,
they’ll still look good as long as we place the objects in the correct spot for each device.

The background is a special case, however. It’s critical it matches up to the exact size of
each screen so we have a separate image for each case.

Note that the sprite sheets are premade for you in the resources for this chapter. How-
ever, if you’d like, you can make them yourself with TexturePacker or Zwoptex, using the
instructions from Chapter 2. You can find the sprites used in the sprite sheets in the Raw
Art folder.

The next step is to create a new subclass of GameCharacter that sprites associ-
ated with Box2D bodies will derive from so that they have a place to keep track of
the associated Box2D body. Choose the Classes\Game Objects group, and make a new
subgroup named Box2D. With the new Box2D subgroup selected, go to File > New
> New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter GameCharacter as the Subclass of, click Next, name the file Box2DSprite.mm, and
click Save.

With that done, replace the contents of Box2DSprite.h, as shown in Listing 10.38.

Listing 10.38 Box2DSprite.h

#import "GameCharacter.h"

#import "Box2D.h"

Chapter 10 Basic Game Physics: Adding Realism with Box2D314

@interface Box2DSprite : GameCharacter {

b2Body *body;

}

@property (assign) b2Body *body;

// Return TRUE to accept the mouse joint

// Return FALSE to reject the mouse joint

- (BOOL)mouseJointBegan;

@end

This class derives from GameCharacter, since subclasses will need the ability to
store their current character state. It contains a single instance variable and property
for the associated Box2D body. It also defines a method that you will use to check if
the Box2D body accepts mouse joint input or not.

Next replace the contents of Box2DSprite.m, as shown in Listing 10.39.

Listing 10.39 Box2DSprite.mm

#import "Box2DSprite.h"

@implementation Box2DSprite

@synthesize body;

// Override if necessary

- (BOOL)mouseJointBegan {

return TRUE;

}

@end

This simply synthesizes the variable, and returns TRUE as the default behavior
for mouseJointBegan (which means objects should be able to be moved by mouse
joints).

Now switch back to PuzzleLayer.h and add a few instance variables inside the inter-
face, as shown in Listing 10.40.

Listing 10.40 PuzzleLayer.h (inside @interface declaration)

CCSpriteBatchNode *sceneSpriteBatchNode;

b2Body *frozenVikingBody;

This keeps track of your sprite batch node and is a handy reference to your frozen
Viking.

Basic Box2D Interaction and Decoration 315

Next, switch to PuzzleLayer.mm and import the header for Box2DSprite at the top of
the file, as shown in Listing 10.41.

Listing 10.41 PuzzleLayer.mm (at top of file)

#import "Box2DSprite.h"

Then modify your createBoxAtLocation one more time, as shown in Listing
10.42. The bold lines indicate the changes since last time.

Listing 10.42 PuzzleLayer.mm (modify createBoxAtLocation to this)

- (void)createBodyAtLocation:(CGPoint)location

forSprite:(Box2DSprite *)sprite friction:(float32)friction

 restitution:(float32)restitution density:(float32)density

isBox:(BOOL)isBox {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position = b2Vec2(location.x/PTM_RATIO,

 location.y/PTM_RATIO);

 bodyDef.allowSleep = false;

b2Body *body = world->CreateBody(&bodyDef);

body->SetUserData(sprite);

 sprite.body = body;

 b2FixtureDef fixtureDef;

if (isBox) {

 b2PolygonShape shape;

 shape.SetAsBox(sprite.contentSize.width/2/PTM_RATIO,

 sprite.contentSize.height/2/PTM_RATIO);

 fixtureDef.shape = &shape;

 } else {

 b2CircleShape shape;

 shape.m_radius = sprite.contentSize.width/2/PTM_RATIO;

 fixtureDef.shape = &shape;

 }

 fixtureDef.density = density;

 fixtureDef.friction = friction;

 fixtureDef.restitution = restitution;

body->CreateFixture(&fixtureDef);

}

Chapter 10 Basic Game Physics: Adding Realism with Box2D316

There are a few interesting differences this time. First, the routine takes a parameter
of a Box2DSprite (our new subclass of GameCharacter), and sets this as the user
data of the Box2D body. It also uses the content size of the sprite to figure out the size
of the box to create.

Note
The content size of a sprite includes any transparent space that may be in the sprite
image. This isn’t a problem for the puzzle level, as the sprites don’t have any extra trans-
parent space, but if you’re making a game where your images do, you will have to modify
the Box2D body to map to the actual image more closely. You’ll learn how to do this with
Vertex Helper in the next chapter!

The routine also has a new parameter specifying whether to create a box (as before)
or, if not, a circle. Why would we want to make a circle? Well, for some of the shapes
in this level, a circle is a better match than a box for the sprite. Creating a circle is sim-
ply a matter of creating a b2CircleShape instead of a b2PolygonShape and setting
the radius of the circle.

Note that the method also has a name change (createBodyAtLocation rather
than createBoxAtLocation), since it now can make circles as well as boxes.

Next create several routines, which will use this method to create Box2D objects
associated with sprites, as shown in Listing 10.43.

Listing 10.43 PuzzleLayer.mm (above init method)

- (void)createMeteorAtLocation:(CGPoint)location {

Box2DSprite *sprite = [Box2DSprite spriteWithSpriteFrameName:@"meteor.
png"];

 sprite.gameObjectType = kMeteorType;

 [self createBodyAtLocation:location forSprite:sprite friction:0.1
restitution:0.3 density:1.0 isBox:FALSE];

 [sceneSpriteBatchNode addChild:sprite];

}

- (void)createSkullAtLocation:(CGPoint)location {

Box2DSprite *sprite = [Box2DSprite spriteWithSpriteFrameName:@"skull.
png"];

 sprite.gameObjectType = kSkullType;

 [self createBodyAtLocation:location forSprite:sprite friction:0.5
restitution:0.5 density:0.25 isBox:FALSE];

 [sceneSpriteBatchNode addChild:sprite];

}

- (void)createLongBlockAtLocation:(CGPoint)location {

Box2DSprite *sprite = [Box2DSprite spriteWithSpriteFrameName:@"long_
block.png"];

 sprite.gameObjectType = kLongBlockType;

Basic Box2D Interaction and Decoration 317

 [self createBodyAtLocation:location forSprite:sprite friction:0.2
restitution:0.0 density:1.0 isBox:TRUE];

 [sceneSpriteBatchNode addChild:sprite];

}

- (void)createIceBlockAtLocation:(CGPoint)location {

Box2DSprite *sprite = [Box2DSprite spriteWithSpriteFrameName:@"ice_
block.png"];

 sprite.gameObjectType = kIceType;

 [self createBodyAtLocation:location forSprite:sprite friction:0.2
restitution:0.2 density:1.0 isBox:TRUE];

 [sceneSpriteBatchNode addChild:sprite];

}

- (void)createFrozenOleAtLocation:(CGPoint)location {

Box2DSprite *sprite = [Box2DSprite spriteWithSpriteFrameName:@"frozen_
ole.png"];

 sprite.gameObjectType = kFrozenVikingType;

 [self createBodyAtLocation:location forSprite:sprite friction:0.1
restitution:0.2 density:1.0 isBox:TRUE];

 [sceneSpriteBatchNode addChild:sprite];

frozenVikingBody = sprite.body;

}

- (void)createRockAtLocation:(CGPoint)location {

Box2DSprite *sprite = [Box2DSprite spriteWithSpriteFrameName:@"rock.
png"];

 sprite.gameObjectType = kRockType;

 [self createBodyAtLocation:location forSprite:sprite friction:3.0
restitution:0.0 density:1.0 isBox:TRUE];

 [sceneSpriteBatchNode addChild:sprite];

}

This is pretty straightforward: each routine simply creates a Box2DSprite, passing
in the appropriate sprite frame name from the sprite sheet, sets the game object type
and friction/restitution/density/isBox parameters appropriately, and adds the
new sprite to the sprite batch node.

Now delete the calls to createBoxAtLocation in your init method and replace
them with the contents of Listing 10.44.

Listing 10.44 PuzzleLayer.mm (replace createBoxAtLocation lines in init method)

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene3atlas-hd.plist"];

 sceneSpriteBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"scene3atlas-hd.png"];

Chapter 10 Basic Game Physics: Adding Realism with Box2D318

 [self addChild:sceneSpriteBatchNode z:0];

 [self createMeteorAtLocation:ccp(200, 600)];

 [self createSkullAtLocation:ccp(200, 500)];

 [self createRockAtLocation:ccp(400, 100)];

 [self createIceBlockAtLocation:ccp(400, 400)];

 [self createLongBlockAtLocation:ccp(400, 300)];

 [self createFrozenOleAtLocation:ccp(100, 400)];

 [self createRockAtLocation:ccp(300, 400)];

 [CCTexture2D

 setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_RGB565];

 CCSprite *background = [CCSprite

 spriteWithFile:@"puzzle_level_bkgrnd-ipad.png"];

 background.anchorPoint = ccp(0,0);

 [CCTexture2D

 setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_Default];

 [self addChild:background z:-1];

} else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene3atlas.plist"];

 sceneSpriteBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"scene3atlas.png"];

 [self addChild:sceneSpriteBatchNode z:0];

 [self createMeteorAtLocation:ccp(100, 300)];

 [self createSkullAtLocation:ccp(100, 250)];

 [self createRockAtLocation:ccp(200, 50)];

 [self createIceBlockAtLocation:ccp(200, 200)];

 [self createLongBlockAtLocation:ccp(200, 150)];

 [self createFrozenOleAtLocation:ccp(40, 200)];

 [self createRockAtLocation:ccp(150, 200)];

 [CCTexture2D

 setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_RGB565];

 CCSprite *background = [CCSprite

 spriteWithFile:@"puzzle_level_bkgrnd.png"];

 background.anchorPoint = ccp(0,0);

 [CCTexture2D

 setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_Default];

 [self addChild:background z:-1];

}

Listing 10.44 adds some bodies to the scene at particular locations. Note there is
one case for the iPad and one case for the iPhone, so the appropriate sprite sheets are
loaded and the sprites are put at the correct positions for each device.

It also sets up a background image of the level. Note that it sets the pixel format to
RGB565 before loading the background image—it’s good practice to use a lower qual-
ity pixel format when loading large images (such as background images) to conserve
memory usage, which is quite limited on iOS devices.

Basic Box2D Interaction and Decoration 319

Warning
If you don’t make wise use of setting pixel formats and load a lot of massive images,
eventually you will run out of memory and the OS will shut down your app. To learn
more about pixel formats, check out this great post written by Ricardo Quesada on the
Cocos2D site:

http://www.cocos2d-iphone.org/archives/61

To review, at this point you’ve created a sprite sheet and then created several Box2D
bodies with the same dimensions as each sprite. But you’re missing a key piece: some-
how, you need to connect the locations of the sprites to the locations of the Box2D
bodies.

For each animation frame of your game, you should update your sprites based
on the locations of the Box2D bodies—hence you need to add some code to your
update method. Find your update method and add the contents of Listing 10.45 to
the bottom of the method.

Listing 10.45 PuzzleLayer.mm (add at end of update method)

for(b2Body *b = world->GetBodyList(); b != NULL; b = b->GetNext()) {

if (b->GetUserData() != NULL) {

Box2DSprite *sprite = (Box2DSprite *) b->GetUserData();

 sprite.position = ccp(b->GetPosition().x * PTM_RATIO,

 b->GetPosition().y * PTM_RATIO);

 sprite.rotation = CC_RADIANS_TO_DEGREES(b->GetAngle() * -1);

 }

}

This simply loops through all of the bodies in the world and checks to see if their
user data isn’t null. Remember how in createBodyAtLocation it now sets the user
data for the Box2D body to be the sprite? This is where it’s used.

It then sets the position and rotation of the sprite based on the Box2D body’s posi-
tion. Note that it has to apply the PTM_RATIO and also convert from the Box2D angle
(radians) to the Cocos2D angle (degrees). There’s also a difference between clockwise
and counterclockwise angles that is corrected by the −1.

One last thing: you’ve been experimenting with the accelerometer, but for the final
puzzle level, you don’t want the accelerometer enabled for the style of puzzle you’re
going to build. So comment out the isAccelerometerEnabled line in your init
routine, as shown in Listing 10.46.

Listing 10.46 PuzzleLayer.mm (in init method, comment out the following line)

//self.isAccelerometerEnabled = TRUE;

http://www.cocos2d-iphone.org/archives/61

Chapter 10 Basic Game Physics: Adding Realism with Box2D320

Compile and run your code, and you should now see a bunch of Box2D objects
decorated with sprites, as shown in Figure 10.17. You can try moving the various
objects around and check out their various density/restitution/friction properties!

Figure 10.17 Box2D objects decorated with sprites

At this point you’ve learned a ton about Box2D—how to create bodies of square
and circle shapes, how to move them around the screen with mouse joints, and even
how to decorate them with sprites. You now have enough knowledge about Box2D to
make a simple puzzle game out of this, so let’s add in some game logic and polish next!

Making a Box2D Puzzle Game
The goal of this puzzle game is to get Ole into the spot where the sun is shining so
his ice block can melt. But of course, in order for this to work, you need some code to
detect when Ole reaches that spot.

One way to accomplish this is to simply check the position of Ole each update and
check if he is within a set position. This would work, but there’s another way that
leverages the power of Box2D.

Since Box2D is a physics engine that models what happens when objects col-
lide into each other, it already has code to detect when objects collide so that it can
respond appropriately. You can make use of this by registering for notifications from
Box2D when collisions occur or by asking Box2D for a list of the currently active col-
lisions for an object.

For this mini-game, you want to know when Ole collides with the bottom right
corner of the scene. One way of doing this is to make a very thin object at that posi-
tion and check to see when Ole collides with that dummy object.

Making a Box2D Puzzle Game 321

But this isn’t ideal, because you might want to detect if Ole hits near, but not
exactly on, the bottom right corner. Luckily, Box2D provides a very nice solution to
this: sensors!

Sensors are just Box2D objects that don’t cause any collision responses. So you can
have an “imaginary box” in the lower right corner that Ole and other objects can just
pass through as if it weren’t there. However, Box2D will still report when objects col-
lide with the imaginary box object, so you can look for that and mark the level as won
when Ole reaches that spot!

Let’s see this in action. First add two instance variables in PuzzleLayer.h, as shown
in Listing 10.47.

Listing 10.47 PuzzleLayer.h (inside @interface declaration)

b2Body *sensorBody;

BOOL hasWon;

These instance variables keep track of the sensor body and whether or not the user
has won the level.

Then switch over to PuzzleLayer.mm and import GameManager.h at the top of the
file, as shown in Listing 10.48.

Listing 10.48 PuzzleLayer.mm (at top of file)

#import "GameManager.h"

You had to import GameManager.h because you’ll need to use GameManager later
on to go to the level completed scene. Next add a new method to create the sensor
that represents the spot where the sun is shining, as shown in Listing 10.49.

Listing 10.49 PuzzleLayer.mm (before init method)

- (void)createSensor {

CGSize winSize = [[CCDirector sharedDirector] winSize];

CGSize sensorSize = CGSizeMake(100, 50);

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone) {

 sensorSize = CGSizeMake(50, 25);

 }

 b2BodyDef bodyDef;

 bodyDef.type = b2_staticBody;

 bodyDef.position =

b2Vec2((winSize.width-sensorSize.width/2)/PTM_RATIO,

 (sensorSize.height/2)/PTM_RATIO);

sensorBody = world->CreateBody(&bodyDef);

Chapter 10 Basic Game Physics: Adding Realism with Box2D322

b2PolygonShape shape;

 shape.SetAsBox(sensorSize.width/PTM_RATIO,

 sensorSize.height/PTM_RATIO);

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.isSensor = true;

sensorBody->CreateFixture(&fixtureDef);

}

This sets up a body and attaches a box-shaped fixture to it in the usual manner.
However, there is one difference—it sets isSensor to true on the fixture. This
makes the object detect collisions but still allows anything to pass through.

Next add the code to call your new createSensor method and a method to dis-
play the instructions for the level (which you will write soon), as shown in Listing 10.50.

Listing 10.50 PuzzleLayer.mm (inside init method)

[self createSensor];

[self instructions];

If you implemented a stub for the instructions method you’re about to write, you
could compile and run your project now and you’d see a strange green box in the
lower right corner representing the sensor. However, it wouldn’t do anything, since
you haven’t added any code to look for the collision yet. So let’s add that now by add-
ing the contents of Listing 10.51 to the bottom of your update method.

Listing 10.51 PuzzleLayer.mm (at the bottom of the update method)

if (!hasWon) {

 b2ContactEdge* edge = frozenVikingBody->GetContactList();

while (edge)

 {

b2Contact* contact = edge->contact;

b2Fixture* fixtureA = contact->GetFixtureA();

b2Fixture* fixtureB = contact->GetFixtureB();

b2Body *bodyA = fixtureA->GetBody();

b2Body *bodyB = fixtureB->GetBody();

if (bodyA == sensorBody || bodyB == sensorBody) {

hasWon = true;

 [self win];

break;

 }

 edge = edge->next;

 }

}

Making a Box2D Puzzle Game 323

This code checks if the user has won, and if not, it checks if Ole is colliding with
the sensor.

How does this work? Well, Box2D maintains a list of all of the contacts that one
body makes to other bodies. Each contact contains information on exactly what points
are touching as well as references to the fixtures that are touching (from which you
can get the bodies). So this simply looks through Ole’s current contacts and checks if
any of them are the sensor body. If so, it sets the level as won and calls a method you’ll
write in a second to perform the winning animations.

Note
This way of doing things has a small problem. It uses only the current state of Ole’s con-
tacts. If Ole was moving very quickly and moved through the sensor area within a single
Box2D step, this would not pick up the collision. Next chapter, we show a more robust
way of detecting collisions with Box2D (at the cost of extra complexity), but for this level,
this manner of checking collisions works quite fine!

The last step is to add the code to display the instructions at the beginning of the
level and display an effect when the player wins (see Figure 10.18). Add the code in
Listing 10.52 above your init method.

Listing 10.52 PuzzleLayer.mm (above init method)

- (void)instructions {

CGSize winSize = [[CCDirector sharedDirector] winSize];

CCLabelTTF *label = [CCLabelTTF labelWithString:@"Melt the Viking!"
fontName:@"Helvetica" fontSize:48.0];

 label.position = ccp(winSize.width/2, winSize.height/2);

 label.scale = 0.25;

 [self addChild:label];

CCScaleTo *scaleUp = [CCScaleTo actionWithDuration:1.0 scale:1.2];

CCScaleTo *scaleBack = [CCScaleTo actionWithDuration:1.0 scale:1.0];

CCDelayTime *delay = [CCDelayTime actionWithDuration:5.0];

CCFadeOut *fade = [CCFadeOut actionWithDuration:2.0];

CCSequence *sequence = [CCSequence actions:scaleUp, scaleBack, delay,
fade, nil];

 [label runAction:sequence];

}

- (void)winComplete:(id)sender {

 [[GameManager sharedGameManager] setHasPlayerDied:NO];

 [[GameManager sharedGameManager]

 runSceneWithID:kLevelCompleteScene];

}

- (void)win {

CGSize winSize = [[CCDirector sharedDirector] winSize];

Chapter 10 Basic Game Physics: Adding Realism with Box2D324

CCLabelTTF *label = [CCLabelTTF labelWithString:@"You Win!"
fontName:@"Helvetica" fontSize:48.0];

 label.position = ccp(winSize.width/2, winSize.height/2);

 label.scale = 0.25;

 [self addChild:label];

CCScaleTo *scaleUp = [CCScaleTo actionWithDuration:1.0 scale:1.2];

CCScaleTo *scaleBack = [CCScaleTo actionWithDuration:1.0 scale:1.0];

CCDelayTime *delay = [CCDelayTime actionWithDuration:2.0];

CCCallFuncN *winComplete = [CCCallFuncN actionWithTarget:self
selector:@selector(winComplete:)];

CCSequence *sequence = [CCSequence actions:scaleUp, scaleBack, delay,
winComplete, nil];

 [label runAction:sequence];

}

This uses a set of CCActions (which you learned about in Chapter 5) to animate
a label (which you learned about in Chapter 6) to zoom in and out, wait a bit, then
transition to the level complete scene.

Compile and run the code, and if everything works well, you should be able to
drag Ole to the bottom right corner of the scene and win the level!

Figure 10.18 Sensor detecting Ole reaching target location

Ramping It Up
You may notice one major problem with the level at this point: it’s just way too easy!
As it stands, you can simply pick up frozen Ole and drag him over to the finish zone.

Making a Box2D Puzzle Game 325

To make things more challenging, you’ll set things up so that you can’t move cer-
tain objects directly, such as Ole or the long stone block, and you’ll also add a bunch
of extra objects to clutter up the space. While you’re at it, you’ll add a little extra
interactivity by adding sound effects and making skulls “pop” and disappear when you
tap them.

Up to this point, you’ve been using the same subclass of CCSprite for all of the
sprites (Box2DSprite) because they all had the same behavior and it was easy to do.
But now you want different behavior for each object, so to keep your code nice and
organized, you’ll subclass Box2DSprite for each one.

Note that you’re about to embark upon writing a bunch of code for this! But don’t
worry—most of the code that follows is pretty straightforward, and if you don’t want
to type it all, you can copy/paste it from the sample project (or copy/paste the relevant
bits from file to file).

So take a big stretch, maybe grab some munchies and a soda, and get ready for some
coding!

Start by adding a new file for the first subclass of Box2DSprite. Select the Classes\
GameObjects\Box2D group, go to File > New > New File..., choose iOS > Cocoa
Touch > Objective-C class, and click Next. Enter Box2DSprite as the Subclass of,
click Next, name the file Meteor.mm (note the .mm extension, since it imports Box2D),
and click Save.

Now repeat this for the other objects in this scene: Skull.mm, Rock.mm, IceBlock.mm,
LongBlock.mm, and FrozenOle.mm.

Next, replace the contents of Meteor.h with the contents of Listing 10.53.

Listing 10.53 Meteor.h

#import "Box2DSprite.h"

@interface Meteor : Box2DSprite {

}

@end

There’s nothing fancy here—it’s just a subclassing of Box2DSprite. Repeat
the above for the rest of the headers: Skull.h, Rock.h, IceBlock.h, LongBlock.h, and
FrozenOle.h, replacing Meteor with the appropriate class name for each file.

Next onto the implementations for each of these classes. Start by replacing the con-
tents of FrozenOle.mm with the contents of Listing 10.54.

Listing 10.54 FrozenOle.mm

#import "FrozenOle.h"

@implementation FrozenOle

Chapter 10 Basic Game Physics: Adding Realism with Box2D326

-(id) init {

if((self = [super init])) {

 [self setDisplayFrame:[

 [CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"frozen_ole.png"]];

gameObjectType = kFrozenVikingType;

 }

return self;

}

- (BOOL)mouseJointBegan {

return FALSE;

}

@end

This simply sets the display frame to be the frozen Ole image and sets up the game
object type appropriately. It’s nice to encapsulate this logic inside the FrozenOle class
itself so the main game level doesn’t have to contain knowledge about what sprite
frame to use or the object type for this sprite.

Note
You could keep the organization even cleaner by refactoring the logic to construct the
Box2D body for this object into the init method for this class as well. However, in the
interest of clarity and time in this chapter, you will keep things as they are.

Note that the mouseJointBegan method returns false when the user tries to start
a mouse joint on the body (meaning you cannot move Ole by dragging directly).

Next replace LongBlock.mm with a similar implementation, as shown in Listing 10.55.

Listing 10.55 LongBlock.mm

#import "LongBlock.h"

@implementation LongBlock

-(id) init {

 if((self = [super init])) {

 [self setDisplayFrame:[

 [CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"long_block.png"]];

gameObjectType = kLongBlockType;

 }

 return self;

}

Making a Box2D Puzzle Game 327

- (BOOL)mouseJointBegan {

return FALSE;

}

@end

This is very similar in behavior to the FrozenOle class, so there’s not much to dis-
cuss here. Next replace IceBlock.mm, as shown in Listing 10.56.

Listing 10.56 IceBlock.mm

#import "IceBlock.h"

@implementation IceBlock

-(id) init {

 if((self = [super init])) {

 [self setDisplayFrame:[

 [CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"ice_block.png"]];

 gameObjectType = kIceType;

 }

 return self;

}

@end

Again, similar implementation, except this time it doesn’t override mouseJoint-
Began, so it accepts the default behavior (to allow the mouse joint).

Next up, replace Rock.mm with the contents of Listing 10.57.

Listing 10.57 Rock.mm

#import "Rock.h"

#import "SimpleAudioEngine.h"

@implementation Rock

-(id) init {

 if((self=[super init])) {

 gameObjectType = kRockType;

 [self setDisplayFrame:[

 [CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"rock.png"]];

 }

 return self;

}

Chapter 10 Basic Game Physics: Adding Realism with Box2D328

- (BOOL)mouseJointBegan {

 PLAYSOUNDEFFECT(PUZZLE_ROCK1);

return TRUE;

}

@end

Similar implementation, except here we spice things up a bit by playing a sound
effect when the user begins to move the rock.

Next replace Meteor.mm with the contents of Listing 10.58, which is similar but
plays a different sound effect.

Listing 10.58 Meteor.mm

#import "Meteor.h"

#import "SimpleAudioEngine.h"

@implementation Meteor

-(id) init {

 if((self=[super init])) {

 gameObjectType = kMeteorType;

 [self setDisplayFrame:[

 [CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"meteor.png"]];

 }

 return self;

}

- (BOOL)mouseJointBegan {

 PLAYSOUNDEFFECT(PUZZLE_METEOR);

return TRUE;

}

@end

Finally, replace Skull.mm with the contents of Listing 10.59.

Listing 10.59 Skull.mm

#import "Skull.h"

#import "SimpleAudioEngine.h"

@implementation Skull

-(id) init {

 if((self=[super init])) {

Making a Box2D Puzzle Game 329

gameObjectType = kSkullType;

 [self setDisplayFrame:[

 [CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"skull.png"]];

 }

 return self;

}

- (void)shrinkDone:(id)sender {

 [self removeFromParentAndCleanup:YES];

}

-(void)changeState:(CharacterStates)newState {

 [self setCharacterState:newState];

switch (newState) {

case kStateDead:

 {

 CCLOG(@"Skull->Changing State to Dead");

 PLAYSOUNDEFFECT(PUZZLE_SKULL);

body->GetWorld()->DestroyBody(body);

body = NULL;

CCScaleTo *growAction = [

CCScaleTo actionWithDuration:0.1 scale:1.2];

CCScaleTo *shrinkAction =

 [CCScaleTo actionWithDuration:0.1 scale:0.1];

CCCallFuncN *doneAction = [CCCallFuncN actionWithTarget:self

selector:@selector(shrinkDone:)];

CCSequence *sequence = [CCSequence actions:

 growAction, shrinkAction, doneAction, nil];

 [self runAction:sequence];

break;

 }

default:

 CCLOG(@"Unhandled state %d in Skull", newState);

break;

 }

}

- (BOOL)mouseJointBegan {

if (self.characterState == kStateDead) return FALSE;

 [self changeState:kStateDead];

return FALSE;

}

@end

Chapter 10 Basic Game Physics: Adding Realism with Box2D330

In the case of the skull, when the user begins to tap the skull, it sets the state of the
skull to dead and returns false (mouse joint not allowed). When the state is changed to
dead, it performs the following steps:

1. Destroys the Box2D body by calling DestroyBody(), passing in the saved away
Box2D body as a parameter.

2. Sets the body pointer to NULL.

3. Runs a little animation showing the skull popping away with Cocos2D actions,
with a scheduled callback upon complete.

4. The callback uses removeFromParentAndCleanup to remove the sprite from
the scene.

Okay, time to integrate these new classes. Switch to PuzzleLayer.mm and add some
imports to the top of the file, as shown in Listing 10.60.

Listing 10.60 PuzzleLayer.mm (at the top of the file)

#import "Meteor.h"

#import "Skull.h"

#import "Rock.h"

#import "IceBlock.h"

#import "LongBlock.h"

#import "FrozenOle.h"

#import "SimpleAudioEngine.h"

Then go to createMeteorAtLocation, delete the first two lines, and replace
them with a new line to create a meteor with the new Meteor class, as shown in List-
ing 10.61.

Listing 10.61 PuzzleLayer.mm (modify createMeteorAtLocation)

- (void)createMeteorAtLocation:(CGPoint)location {

Meteor *sprite = [Meteor node];

 [self createBodyAtLocation:location forSprite:sprite

friction:0.1 restitution:0.3 density:1.0 isBox:FALSE];

 [sceneSpriteBatchNode addChild:sprite];

}

Now repeat this for the other methods (createSkullAtLocation, createLong-
BlockAtLocation, etc.), using the appropriate class for each method.

Next go to the init method and add some code at the bottom to start up the
background music and add some extra objects to make the level more interesting, as
shown in Listing 10.62.

Making a Box2D Puzzle Game 331

Listing 10.62 PuzzleLayer.mm (at the bottom of the init method)

for(int i = 0; i < 10; ++i) {

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [self createSkullAtLocation:ccp(200, 700)];

 } else {

 [self createSkullAtLocation:ccp(100, 250)];

 }

}

for(int i = 0; i < 2; ++i) {

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [self createMeteorAtLocation:ccp(300, 600)];

 [self createRockAtLocation:ccp(300, 600)];

 [self createIceBlockAtLocation:ccp(300, 600)];

 } else {

 [self createMeteorAtLocation:ccp(100, 250)];

 [self createRockAtLocation:ccp(100, 250)];

 [self createIceBlockAtLocation:ccp(100, 250)];

 }

}

Note that you’re adding all of the bodies at the same locations. That is okay because
Box2D automatically spreads out the bodies when the level starts so they aren’t collid-
ing. You could also modify this to put the bodies at specific locations if you like.

While you’re in the init method, also comment out the line to set up debug
drawing, since you don’t need it anymore, as shown in Listing 10.63.

Listing 10.63 PuzzleLayer.mm (comment out this line in the init method)

//[self setupDebugDraw];

One final step! Go to the ccTouchBegan method, right after you call callback.
fixtureFound->GetBody(), and add the three lines of code shown in Listing 10.64.

Listing 10.64 PuzzleLayer.mm (inside ccTouchBegan, after callback.fixtureFound->GetBody())

Box2DSprite *sprite = (Box2DSprite *) body->GetUserData();

if (sprite == NULL) return FALSE;

if(![sprite mouseJointBegan]) return FALSE;

This calls the mouseJointBegan method on the objects so they have a chance to
respond to (or cancel) the mouse joint.

Phew—you’re done! Compile and run the code, and now you should be able to
hear sound effects when you move a rock or a meteor and see the skulls disappear
when you tap them. And best of all, you’ve ramped up the difficulty, since you can no

Chapter 10 Basic Game Physics: Adding Realism with Box2D332

longer move Ole or the long ice block directly, and there are more objects blocking
the way, so you’ll have to use a little physics to win! See Figure 10.19.

Figure 10.19 The final puzzle level!

Summary
You have developed a cool mini-puzzle game, using Box2D to handle the game
physics automatically. You should now be familiar with the most important concepts
in Box2D, such as bodies, fixtures, density, restitution, and friction. You also have
hands-on experience adding bodies to the world, skinning them with sprites, and add-
ing simple collision checking and game logic.

In the next level, you take this a step further and see how you can use Box2D to
create a side-scrolling action game, complete with vehicles, bridges, motors, and more!

Challenges
1. Try to modify the level to be a different puzzle by moving the positions of the

Box2D bodies to different locations or adding more bodies or deleting some.
Can you come up with an interesting challenge to stump your friends?

2. Try creating your own sprite (perhaps a snowball?) and add it to the scene, as
you did with the other types of sprites/bodies.

3. To add to the challenge, create a new body type (perhaps an electrified power
generator?) that the Frozen Ole can’t touch without losing the level.

11
Intermediate Game Physics:

Modeling, Racing, and Leaping

In Chapter 10, “Basic Game Physics: Adding Realism with Box2D,” you learned the basics
of using the Box2D physics engine. Specifically, you learned how to create basic shapes, decorate
them with sprites, and use gravity. In the process, you made your own simple puzzle game with
Box2D physics!

Although the level you made is quite cool, it barely scratches the surface of what you can do
with Box2D. You’re not limited to simple shapes such as squares or circles with Box2D—you
can make more complicated shapes and connect multiple bodies together to create objects such as
vehicles. You’re also not limited to using gravity to move your objects—you can also apply forces,
impulses, and motor effects to move your objects through your level in realistic ways.

In this chapter, you create an action-packed level where you move a mine cart with wheels
based on accelerometer input. You race the cart in a side-scrolling level (Figure 11.1) over rocky
terrain, tap to jump through the air, and learn a lot more about using Box2D along the way!

Figure 11.1 The Box2D-enabled side-scrolling action level you make in
this chapter

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping334

Getting Started
To get started with this level, you first need to get a basic Box2D scene set up—
then you can build from there, adding features bit by bit. In this section you add the
required resource files for this chapter to your project and create a basic Box2D scene
as a starting point.

You should be familiar with how to do the code in this section based on what you
learned in Chapter 10, but this will be a great refresher to make sure you mastered
everything. And don’t worry—before you know it, you’ll be done with the initial
setup and on to the fun stuff!

Adding the Resource Files
Go ahead and download the resource files for this chapter (if you haven’t already) so
you can add the required images, sounds, and property lists to your project.

Once you download the resource files, you will see several directories of files
(Images\Backgrounds, Images\TextureAtlases, Sounds, and Plists), as shown in Figure 11.2.

Figure 11.2 Resources for Chapter 11

Drag the contents of the Images directory into the similarly named Images group
in Xcode, and drag the contents of the Plists directory into the similarly named Plists
group in Xcode.

Getting Started 335

Note
You do not need to add the contents of the Raw Art—Do Not Add! folder to your project—
that folder contains the images inside the sprite sheet in case you want to try making the
sprite sheet yourself with TexturePacker or Zwoptex.

Now that you have the files you need for Chapter 11 added, it’s time to create a
basic Box2D scene for the level.

Creating a Basic Box2D Scene
You start simple for the scene for this level and just create a Box2D world and one
sprite-decorated Box2D body for Ole’s cart.

The scene for this level contains two layers: one for the main action of the scene
(the cart racing and jumping) and one to contain the user interface (win/lose text).

Note
The reason you use separate layers for the user interface (UI) elements and the action
elements in this scene is related to how scrolling is implemented for this scene. As you’ll
see later, you implement scrolling by moving the action layer itself left or right to keep the
player centered as he or she moves through the scene.

By keeping the action layer and the UI layer separate, moving the action layer won’t affect
the UI elements, and they will always stay at the right spots on your screen.

First, make a class for the user interface layer. Control-click on the Classes\Scenes
group in Xcode, select New Group, then rename the new folder that was created
to Scene4. Then with the Scene4 group selected, go to File > New > New File...,
choose iOS > Cocoa Touch > Objective-C class, and click Next. Enter CCLayer
as the Subclass of, click Next, name the file Scene4UILayer.m, and click Save.

Open Scene4UILayer.h and replace it with the contents of Listing 11.1.

Listing 11.1 Scene4UILayer.h

#import "cocos2d.h"

@interface Scene4UILayer : CCLayer {

CCLabelTTF *label;

}

- (BOOL)displayText:(NSString *)text

 andOnCompleteCallTarget:(id)target selector:(SEL)selector;

@end

This is just a standard subclass of CCLayer. It contains a reference to a label that is
used to display text to the user and a function that displays a line of text to the screen

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping336

and runs a callback upon completion. You use this to display text on the screen, such
as when the level begins or when the player wins or loses.

Next switch to Scene4UILayer.m and replace it with the contents of Listing 11.2.

Listing 11.2 Scene4UILayer.m

#import "Scene4UILayer.h"

@implementation Scene4UILayer

- (id)init {

if ((self = [super init])) {

CGSize winSize = [CCDirector sharedDirector].winSize;

 label = [CCLabelTTF labelWithString:@"" fontName:@"Helvetica"

fontSize:48.0];

 label.position = ccp(winSize.width/2, winSize.height/2);

 label.visible = NO;

 [self addChild:label];

 }

return self;

}

- (BOOL)displayText:(NSString *)text

 andOnCompleteCallTarget:(id)target selector:(SEL)selector {

 [label stopAllActions];

 [label setString:text];

 label.visible = YES;

 label.scale = 0.0;

 label.opacity = 255;

CCScaleTo *scaleUp = [CCScaleTo actionWithDuration:0.5 scale:1.2];

CCScaleTo *scaleBack =

 [CCScaleTo actionWithDuration:0.1 scale:1.0];

CCDelayTime *delay = [CCDelayTime actionWithDuration:2.0];

CCFadeOut *fade = [CCFadeOut actionWithDuration:0.5];

CCHide *hide = [CCHide action];

CCCallFuncN *onComplete =

 [CCCallFuncN actionWithTarget:target selector:selector];

CCSequence *sequence = [CCSequence actions:scaleUp, scaleBack,

 delay, fade, hide, onComplete, nil];

 [label runAction:sequence];

return TRUE;

}

@end

Getting Started 337

The init method adds a blank label to the middle of the screen and sets it to invis-
ible. The displayText method stops any running actions (in case the label is cur-
rently animating), sets the string to the value passed in, and resets the label to visible,
fully opaque, and very tiny (with a scale of 0.0). Then it scales the label up and slightly
back to make it appear to “pop” into view, waits a few seconds, then fades out and
rehides the label. It then calls whatever callback was passed in (and it’s okay to pass
nil for the parameters there if you don’t have a callback). These are just the standard
Cocos2D actions that you learned about earlier in the book, chained together in a cool
and easy way. Aren’t Cocos2D actions great?

Next, add a class for the game object representing Ole’s cart. Select the Classes\
Game Objects\Box2D group, go to File > New > New File..., choose iOS > Cocoa
Touch > Objective-C class, and click Next. Enter Box2DSprite as the Subclass
of, click Next, name the file Cart.mm (note the .mm extension, since this imports
Box2D), and click Save.

Replace Cart.h with the contents of Listing 11.3.

Listing 11.3 Cart.h

#import "Box2DSprite.h"

@interface Cart : Box2DSprite {

b2World *world;

}

- (id)initWithWorld:(b2World *)world atLocation:(CGPoint)location;

@end

You’ve made subclasses of Box2DSprite before, but there’s something new here—
this time it takes the Box2D world as a parameter to the init method. This is because
the class will now contain the logic to create its Box2D body in addition to setting up
the sprite.

Let’s see how this works with the implementation. Switch over to Cart.mm and
replace it with the contents of Listing 11.4.

Listing 11.4 Cart.mm

#import "Cart.h"

@implementation Cart

- (void)createBodyAtLocation:(CGPoint)location {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position =

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping338

b2Vec2(location.x/PTM_RATIO, location.y/PTM_RATIO);

body = world->CreateBody(&bodyDef);

body->SetUserData(self);

 b2FixtureDef fixtureDef;

b2PolygonShape shape;

 shape.SetAsBox(self.contentSize.width/2/PTM_RATIO,

self.contentSize.height/2/PTM_RATIO);

 fixtureDef.shape = &shape;

 fixtureDef.density = 1.0;

 fixtureDef.friction = 0.5;

 fixtureDef.restitution = 0.5;

body->CreateFixture(&fixtureDef);

}

- (id)initWithWorld:(b2World *)theWorld atLocation:(CGPoint)location {

if ((self = [super init])) {

 world = theWorld;

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache] spriteFrameByName:@"Cart.png"]];

 gameObjectType = kCartType;

 characterHealth = 100.0f;

 [self createBodyAtLocation:location];

 }

return self;

}

@end

The code in createBodyAtLocation should be familiar to you—it creates a
Box2D body and fixture in the same way you did in Chapter 10. The init method
should look familiar as well, based on the other game objects you have made.

Now you implement the action layer, which uses this Cart object in a basic Box2D
setup that you learned how to create in the previous chapter. It creates a Box2D
world, enables debug drawing, preloads the sound effects you need, and adds a cart.
It also sets up a mouse joint like you learned in Chapter 10, since it will be useful for
debugging purposes as you develop this level (so you can move objects around to test
their behavior).

With the Scene4 group selected, go to File > New > New File..., choose iOS >
Cocoa Touch > Objective-C class, and click Next. Enter CCLayer as the Subclass
of, click Next, name the file Scene4ActionLayer.mm (note the .mm extension, since this
imports Box2D), and click Save.

Then replace Scene4ActionLayer.h with the contents of Listing 11.5.

Getting Started 339

Listing 11.5 Scene4ActionLayer.h

#import "cocos2d.h"

#import "Box2D.h"

#import "GLES-Render.h"

#import "Constants.h"

@class Scene4UILayer;

@class Cart;

@interface Scene4ActionLayer : CCLayer {

b2World * world;

GLESDebugDraw * debugDraw;

CCSpriteBatchNode * sceneSpriteBatchNode;

b2Body * groundBody;

b2MouseJoint * mouseJoint;

Cart * cart;

Scene4UILayer * uiLayer;

}

- (id)initWithScene4UILayer:(Scene4UILayer *)scene4UILayer;

@end

This includes the Cocos2D and Box2D headers, the Box2D debug draw class
header, and Constants.h (mainly for the PTM_RATIO). As instance variables, it has
pointers to the Box2D world, debug draw class, sprite batch node, ground body,
mouse joint, and cart object. It also has an instance variable for the Scene4UILayer
(and an initializer that takes this as a parameter)—this is because this class needs to call
the Scene4UILayer to do things like display text or update Ole’s health status.

Next you’re on to the most important part—creating the basic implementation of
the Box2D scene by implementing Scene4ActionLayer.mm. There’s a good bit of code to
write in this section, but don’t worry—most of this should be quite familiar to you by
now, and this is almost the last step before you’ll be ready to compile and run!

Take a deep breath and a swig of caffeine. When you’re ready, replace Scene4Action-
Layer.mm with the contents of Listing 11.6.

Listing 11.6 Scene4ActionLayer.mm

#import "Scene4ActionLayer.h"

#import "Box2DSprite.h"

#import "Scene4UILayer.h"

#import "Cart.h"

#import "SimpleQueryCallback.h"

@implementation Scene4ActionLayer

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping340

- (void)setupWorld {

b2Vec2 gravity = b2Vec2(0.0f, -10.0f);

bool doSleep = true;

 world = new b2World(gravity, doSleep);

}

- (void)setupDebugDraw {

 debugDraw = new GLESDebugDraw(PTM_RATIO*

 [[CCDirector sharedDirector] contentScaleFactor]);

 world->SetDebugDraw(debugDraw);

 debugDraw->SetFlags(b2DebugDraw::e_shapeBit);

}

- (void)createGround {

CGSize winSize = [[CCDirector sharedDirector] winSize];

float32 margin = 10.0f;

b2Vec2 lowerLeft = b2Vec2(margin/PTM_RATIO, margin/PTM_RATIO);

b2Vec2 lowerRight = b2Vec2((winSize.width-margin)/PTM_RATIO,

 margin/PTM_RATIO);

b2Vec2 upperRight = b2Vec2((winSize.width-margin)/PTM_RATIO,

 (winSize.height-margin)/PTM_RATIO);

b2Vec2 upperLeft = b2Vec2(margin/PTM_RATIO,

 (winSize.height-margin)/PTM_RATIO);

 b2BodyDef groundBodyDef;

 groundBodyDef.type = b2_staticBody;

 groundBodyDef.position.Set(0, 0);

 groundBody = world->CreateBody(&groundBodyDef);

b2PolygonShape groundShape;

 b2FixtureDef groundFixtureDef;

 groundFixtureDef.shape = &groundShape;

 groundFixtureDef.density = 0.0;

 groundShape.SetAsEdge(lowerLeft, lowerRight);

 groundBody->CreateFixture(&groundFixtureDef);

 groundShape.SetAsEdge(lowerRight, upperRight);

 groundBody->CreateFixture(&groundFixtureDef);

 groundShape.SetAsEdge(upperRight, upperLeft);

 groundBody->CreateFixture(&groundFixtureDef);

 groundShape.SetAsEdge(upperLeft, lowerLeft);

 groundBody->CreateFixture(&groundFixtureDef);

}

- (void)createCartAtLocation:(CGPoint)location {

 cart = [[[Cart alloc]

 initWithWorld:world atLocation:location] autorelease];

Getting Started 341

 [sceneSpriteBatchNode addChild:cart z:1 tag:kVikingSpriteTagValue];

}

- (void)registerWithTouchDispatcher {

 [[CCTouchDispatcher sharedDispatcher]

addTargetedDelegate:self priority:0 swallowsTouches:YES];

}

- (id)initWithScene4UILayer:(Scene4UILayer *)scene4UILayer {

if ((self = [super init])) {

CGSize winSize = [CCDirector sharedDirector].winSize;

 uiLayer = scene4UILayer;

 [self setupWorld];

 [self setupDebugDraw];

 [[GameManager sharedGameManager]

 playBackgroundTrack:BACKGROUND_TRACK_MINECART];

 [self scheduleUpdate];

 [self createGround];

 self.isTouchEnabled = YES;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

addSpriteFramesWithFile:@"scene4atlas-hd.plist"];

sceneSpriteBatchNode = [CCSpriteBatchNode

batchNodeWithFile:@"scene4atlas-hd.png"];

 [self addChild:sceneSpriteBatchNode z:-1];

 } else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

addSpriteFramesWithFile:@"scene4atlas.plist"];

sceneSpriteBatchNode = [CCSpriteBatchNode

batchNodeWithFile:@"scene4atlas.png"];

 [self addChild:sceneSpriteBatchNode z:-1];

 }

 [self createCartAtLocation:

ccp(winSize.width/4, winSize.width*0.3)];

 [uiLayer displayText:@"Go!" andOnCompleteCallTarget:nil

 selector:nil];

 }

return self;

}

-(void)update:(ccTime)dt {

int32 velocityIterations = 3;

int32 positionIterations = 2;

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping342

 world->Step(dt, velocityIterations, positionIterations);

for(b2Body *b=world->GetBodyList(); b!=NULL; b=b->GetNext()) {

if (b->GetUserData() != NULL) {

Box2DSprite *sprite = (Box2DSprite *) b->GetUserData();

 sprite.position = ccp(b->GetPosition().x * PTM_RATIO,

 b->GetPosition().y * PTM_RATIO);

 sprite.rotation =

CC_RADIANS_TO_DEGREES(b->GetAngle() * -1);

 }

 }

CCArray *listOfGameObjects = [sceneSpriteBatchNode children];

for (GameCharacter *tempChar in listOfGameObjects) {

 [tempChar updateStateWithDeltaTime:dt

andListOfGameObjects:listOfGameObjects];

 }

}

-(void) draw {

glDisable(GL_TEXTURE_2D);

glDisableClientState(GL_COLOR_ARRAY);

glDisableClientState(GL_TEXTURE_COORD_ARRAY);

if (world) {

 world->DrawDebugData();

 }

glEnable(GL_TEXTURE_2D);

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

}

-(BOOL) ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event {

CGPoint touchLocation = [touch locationInView:[touch view]];

 touchLocation = [[CCDirector sharedDirector]

convertToGL:touchLocation];

 touchLocation = [self convertToNodeSpace:touchLocation];

b2Vec2 locationWorld =

b2Vec2(touchLocation.x/PTM_RATIO, touchLocation.y/PTM_RATIO);

b2AABB aabb;

b2Vec2 delta = b2Vec2(1.0/PTM_RATIO, 1.0/PTM_RATIO);

 aabb.lowerBound = locationWorld - delta;

 aabb.upperBound = locationWorld + delta;

SimpleQueryCallback callback(locationWorld);

 world->QueryAABB(&callback, aabb);

Getting Started 343

if (callback.fixtureFound) {

b2Body *body = callback.fixtureFound->GetBody();

 b2MouseJointDef mouseJointDef;

 mouseJointDef.bodyA = groundBody;

 mouseJointDef.bodyB = body;

 mouseJointDef.target = locationWorld;

 mouseJointDef.maxForce = 50 * body->GetMass();

 mouseJointDef.collideConnected = true;

 mouseJoint = (b2MouseJoint *)

 world->CreateJoint(&mouseJointDef);

body->SetAwake(true);

return YES;

 }

return TRUE;

}

-(void) ccTouchMoved:(UITouch *)touch withEvent:(UIEvent *)event {

CGPoint touchLocation = [touch locationInView:[touch view]];

 touchLocation = [[CCDirector sharedDirector]

convertToGL:touchLocation];

 touchLocation = [self convertToNodeSpace:touchLocation];

b2Vec2 locationWorld = b2Vec2(touchLocation.x/PTM_RATIO,

 touchLocation.y/PTM_RATIO);

if (mouseJoint) {

 mouseJoint->SetTarget(locationWorld);

 }

}

-(void) ccTouchEnded:(UITouch *)touch withEvent:(UIEvent *)event {

 if (mouseJoint) {

 world->DestroyJoint(mouseJoint);

 mouseJoint = NULL;

 }

}

@end

Phew! Now that you’ve got that coded, take a breather and look things over to
make sure you understand how everything works.

You should already be familiar with most of this based on what you learned in
Chapter 10. Here’s a quick reminder of what each method does, but if you’re unsure
about anything, refer back to Chapter 10 for full details. This is the foundation for
everything else you’re about to do, so make sure you take the time to understand it
fully!

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping344

setupWorld creates a Box2D world with gravity similar to Earth’s gravity. It stores
a pointer to the world object in an instance variable for future reference.

setupDebugDraw creates a Box2D debug draw object and tells the world object
to use it. The draw method sets up the OpenGL states properly for debug drawing
and tells the world to do the debug drawing.

createGround creates a static Box2D body (out of four edge fixtures) around the
boundaries of the screen to act as the “ground” so that any Box2D objects we add
to the scene don’t fall off the edge of the screen.

createCartAtLocation simply creates an instance of the Cart object you made
earlier and adds it as a child of the sprite sheet object.

update gives Box2D time to run the simulation every frame. It then loops through
all of the Box2D bodies, looking for those that have a Box2DSprite in their user
data. For each sprite it finds, it updates the position of the sprite based on where
Box2D says it should be.

ccTouchBegan, ccTouchMoved, and ccTouchEnded contain the mouse joint
code used for testing and debugging, the same as you learned in Chapter 10.

initWithScene4UILayer simply calls the above methods to create the world,
ground, and Box2D body for Ole’s cart. It also preloads the sound effects and calls
displayText on the UI layer to display some text in the middle of the screen.

You’re almost ready to try this out! But first, you need to create a Cocos2D scene
that contains these two layers. With the Scene4 group selected, go to File > New >
New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter CCScene as the Subclass of, click Next, name the file Scene4.mm (note the .mm
extension, since this imports Box2D), and click Save.

Replace Scene4.h with the contents of Listing 11.7.

Listing 11.7 Scene4.h

#import "cocos2d.h"

@interface Scene4 : CCScene {

}

@end

Nothing fancy here—it’s simply a subclass of CCScene. Move on to Scene4.mm and
replace it with the contents of Listing 11.8.

Listing 11.8 Scene4.mm

#import "Scene4.h"

#import "Scene4UILayer.h"

#import "Scene4ActionLayer.h"

Getting Started 345

@implementation Scene4

-(id)init {

 if ((self = [super init])) {

Scene4UILayer * uiLayer = [Scene4UILayer node];

 [self addChild:uiLayer z:1];

Scene4ActionLayer * actionLayer =

 [[[Scene4ActionLayer alloc]

 initWithScene4UILayer:uiLayer] autorelease];

 [self addChild:actionLayer z:0];

 }

 return self;

}

@end

This simply creates both of the layers (passing the UI layer as a parameter to the
action layer) and adds both to the scene. Note that the UI layer is set with a higher z
value than the action layer, so it shows up in front.

The final step is to modify GameManager.mm to run your new scene when the user
chooses Level 4. First import Scene4.h at the top of GameManager.mm, as shown in List-
ing 11.9.

Listing 11.9 GameManager.mm (at top of file)

#import "Scene4.h"

Then find runSceneWithId and modify the case for kGameLevel4 to run
Scene4, as shown in Listing 11.10.

Listing 11.10 GameManager.mm (in the case statement in runSceneWithId)

case kGameLevel4:

 sceneToRun = [Scene4 node];

break;

Tip
As mentioned in the previous chapter, you may wish to set up your app to run this new
scene right away, since you’ll be working with it a lot in this chapter. Again, to do this,
simply open Classes\Singletons\SpaceVikingAppDelegate.m, navigate to the bottom of
applicationDidFinishLaunching, and replace the CCDirector:runScene-
WithID call at the bottom to:

[[GameManager sharedGameManager]

 runSceneWithID:kGameLevel4];

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping346

That’s it! If you compile and run the app and choose Descent Into Hades! from
the Main Menu (or have it set up to launch right away), you should see your new
scene appear with a ground body around the edges, and Ole’s cart (well at least part of
it) will drop into your scene, as shown in Figure 11.3.

Figure 11.3 A Basic Box2D scene with a world, ground box, and single
body/sprite

Creating a Cart with Box2D
If Ole saw his cart right now, he wouldn’t be very impressed. First, the Box2D body
doesn’t actually match up with the cart’s shape—the Box2D body is a rectangle, while
the cart’s shape is actually thinner at the bottom than at the top. Second, it doesn’t
have wheels! Even the Flintstones had those.

In this section, you learn how to make the shape of the Box2D body match up to
the shape of the cart, how to create Box2D bodies for the wheels, and how to connect
them with Box2D joints. You’ll have Ole cruising along in no time!

Creating Custom Shapes with Box2D
Until this point, the shapes you’ve made with Box2D have been boxes, circles, or
edges. When making a circle, you set the radius, and when making a rectangle or
edge, you used helper methods such as SetAsBox and SetAsEdge to set up the verti-
ces for you.

But with Box2D you’re not stuck with simple box or circle shapes alone—you can
set the location of each vertex yourself to make more complicated shapes as well. You
use a b2PolygonShape as usual, but instead of using SetAsBox or SetAsEdge, you
create a vertex array and then call the Set method, as shown in Figure 11.4.

Creating a Cart with Box2D 347

Let’s explain how Figure 11.4 works. When defining vertices for Box2D shapes,
there are four important things to know: vertices are relative to the body’s center,
vertices need to be defined in counterclockwise order, there is a maximum count of
vertices per shape, and vertices cannot define a concave shape. Let’s go through these
one by one.

Vertices are relative to the body’s center: As you can see in the code shown
in Figure 11.4, when you set vertices, you don’t give world coordinates; instead you
give local coordinates relative to the body’s center point. So for the case of the cart,
the upper right corner of the cart is about 78.3 pixels to the right of the center and
38.5 pixels above the center. This is a convenient trait, because it allows you to set
up a shape without having to worry about where the body is in the world.

Vertices need to be defined in counterclockwise order: As you can see in
Figure 11.4, the vertices are defined in counterclockwise order: upper right →
upper left → lower left → lower right. If you forget to do this and define vertices
in a different order, Box2D will likely crash (usually specifying an assertion error
when computing the area).

There is a maximum count of vertices per shape: By default, each shape
can have, at most, only eight vertices. This setting is configurable—it is set in
b2Settings.h with the b2_maxPolygonVertices setting. Obviously, you want to
keep this as small as possible, since the more vertices your shapes have, the larger
the memory usage and slower the performance. If you try to add more vertices than
the maximum, Box2D will likely crash (usually specifying an assertion error when
checking the vertex count).

Vertices cannot define a concave shape: When you set up your shapes, you
need to make sure that the shapes you define are convex, not concave. A concave
shape is a shape in which one of the interior angles inside the shape is greater than

Figure 11.4 Defining vertices based on a center point in Box2D

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping348

180 degrees. A good way to think of it is as a shape that has an indentation in it.
Figure 11.5 illustrates the difference between convex and concave polygons.

Convex
All internal angles < 180°

Concave
At least one internal angle > 180°

Angle > 180°

Figure 11.5 Convex vs. concave polygons

When defining vertices in Box2D, you have several options. First, you could guess-
timate the pixel offsets for the vertices, compile, test, and iterate until you get them
right. This works but is slow and painful. Second, you could load your image into an
image editor and use a tool such as a ruler to measure the pixel offsets. This works
too and is quicker than the first option, but it is still time consuming. Finally, there’s
a third method that can save you a lot of time—use a neat tool written by Johannes
Fahrenkrug called Vertex Helper.

Using Vertex Helper
Vertex Helper is an open source tool that lets you import an image and click points
on the image to represent the vertices you wish to define. When you’re done, Vertex
Helper generates Box2D code for you to define the vertices; you can simply cut and
paste this code into your project. Let’s see how this is done.

First, download and compile Vertex Helper (or if you’d rather, you can download
the full version—Vertex Helper Pro—from the Mac App Store).

To grab the code, visit htt ps://github.com/jfahrenkrug/VertexHelper, click Downloads,
and click Download zip, as shown in Figure 11.6.

Once you’ve downloaded the zip file, extract the file to a folder and open the Ver-
texHelper.xcodeproj file within. Compile and run the project, and you should see the
main Vertex Helper UI appear, as shown in Figure 11.7.

Next find the image for Ole’s cart from the resources folder that comes with this
chapter (Raw Art…\Scene\ cart.png) and drag it to the Vertex Helper window (where it
says Drop Sprite Image).

You should now see the cart image in the center of the window. Now go to the
control panel at the bottom and type 1 for Rows, 1 for Cols, set the Type to Box2D,
and set the Style to Initialization. At this point Vertex Helper should have drawn a
black boundary around your image, and you are ready to start defining vertices.

Creating a Cart with Box2D 349

Figure 11.6 Downloading Vertex Helper

Figure 11.7 Main Vertex Helper screen

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping350

Now click on Edit Mode in the upper right corner, and then click on the upper
right corner of the cart, which sets the first vertex at that point. Click on the upper
left corner next, then the lower left corner, and lower right corner (counterclockwise
order). Do not finish the shape off with a line back to the upper right—Box2D closes
the shape automatically.

As you click your vertices, Vertex Helper draws a green line between the points
you click, showing you the shape you are defining. When you’re done, your screen
should look similar to the screenshot shown in Figure 11.8.

If you look at the edit pane to the lower right, you’ll see that Vertex Helper has set
up a Box2D vertex array for you based on the vertices that you defined. It’s a snap to
use, so let’s give it a shot!

Figure 11.8 Cart vertices defined with Vertex Helper

Open up Cart.mm and comment out the line that calls SetAsBox in the create-
BodyAtLocation method. Right below that commented line, paste the code that
Vertex Helper generated for you in the edit pane (but replace all instances of PTM_
RATIO with 100.0—more on why later). After you paste that, use the Set method on
the shape and pass in the vertices and number of vertices, as shown in Listing 11.11.

Creating a Cart with Box2D 351

Listing 11.11 Cart.mm (in createBodyAtLocation method)

// Comment out this line

//shape.SetAsBox(self.contentSize.width/2/PTM_RATIO,

// self.contentSize.height/2/PTM_RATIO);

// Add your code from Vertex Helper here, but replace all

// instances of PTM_RATIO with 100.0

int num = 4;

b2Vec2 verts[] = {

b2Vec2(77.5f / 100.0, 37.0f / 100.0),

b2Vec2(-78.5f / 100.0, 38.0f / 100.0),

b2Vec2(-60.5f / 100.0, -37.0f / 100.0),

b2Vec2(56.5f / 100.0, -38.0f / 100.0)

};

// Then call this

shape.Set(verts, num);

Note
You may be wondering why you had to replace all instances of PTM_RATIO with 100.0.
This is because you traced the large (HD) artwork in Vertex Helper. So to convert the pix-
els to Box2D coordinates, you divide by the HD PTM_RATIO, which is 100.0. For Space
Viking, you can’t just use PTM_RATIO constant, since it’s defined to be different on the
iPad than on the iPhone.

Now compile and run your code. Instead of a rectangular shape around the cart,
the Box2D body’s shape should match up much better with your sprite, as shown in
Figure 11.9.

Figure 11.9 A Box2D shape with custom-defined vertices

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping352

Now you know how to make an arbitrary shape using Box2D and how to use Ver-
tex Helper to make your life a lot easier. But right now our cart has a big problem—it
doesn’t have wheels. So let’s roll on out of the Stone Age and learn about Box2D revo-
lute joints!

Adding Wheels with Box2D Revolute Joints
To add wheels to the cart, you need to make two more bodies—one for each wheel.
Remember from Chapter 10 that they need to be separate bodies (rather than fixtures)
because you want the cart and the wheels to be able to move independently from each
other. For example, the wheels should be able to rotate without having to rotate the
cart body.

However, you do need to set some kind of restriction on the movement of the bod-
ies. You want the wheels and the cart to be fixed together at a particular point—but
still able to rotate about that point independently. And that’s exactly what joints are
for—what we need is a type of joint called a revolute joint in this particular case.

Although there are many kinds of joints in Box2D, all of them work in a similar
way. You set up a joint definition and specify which bodies are involved. Each joint is
a relationship between two bodies—like marriage! You then set up some parameters
on the joint definition, which vary depending on the joint type you’re using. For rev-
olute joints, the only parameter required is the common anchor point (i.e., the center
of the wheel).

Let’s give it a shot! First open Cart.h and add a few instance variables you’ll need for
the wheel sprites, bodies, and joints, as shown in Listing 11.12.

Listing 11.12 Cart.h (inside @interface)

Box2DSprite *wheelL;

Box2DSprite *wheelR;

b2Body *wheelLBody;

b2Body *wheelRBody;

b2RevoluteJoint *wheelLJoint;

b2RevoluteJoint *wheelRJoint;

While you’re there, add properties for the wheel sprites and bodies so they can be
accessed from the action layer, as shown in Listing 11.13.

Listing 11.13 Cart.h (after @interface)

@property (readonly) b2Body * wheelLBody;

@property (readonly) b2Body * wheelRBody;

@property (readonly) Box2DSprite * wheelL;

@property (readonly) Box2DSprite * wheelR;

Creating a Cart with Box2D 353

Then switch to Cart.mm and synthesize the properties right after the @implemen-
tation line, as shown in Listing 11.14.

Listing 11.14 Cart.mm (after @implementation)

@synthesize wheelL;

@synthesize wheelR;

@synthesize wheelLBody;

@synthesize wheelRBody;

Next add a new method to create a wheel before the initWithWorld method, as
shown in Listing 11.15.

Listing 11.15 Cart.mm (before initWithWorld method)

- (b2Body *)createWheelWithSprite:(Box2DSprite*)sprite

 offset:(b2Vec2)offset {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position = body->GetWorldPoint(offset);

b2Body * wheelBody = world->CreateBody(&bodyDef);

 wheelBody->SetUserData(sprite);

 sprite.body = wheelBody;

b2CircleShape circleShape;

 circleShape.m_radius = sprite.contentSize.width/2/PTM_RATIO;

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &circleShape;

 fixtureDef.friction = 1.0;

 fixtureDef.restitution = 0.2;

 fixtureDef.density = 10.0;

 wheelBody->CreateFixture(&fixtureDef);

return wheelBody;

}

Most of this should look quite familiar to you—this method creates a Box2D body
and circle shape/fixture in the usual manner. However, there are three things to point
out.

First, the goal for this method is to create a wheel based on an offset from the main
cart body. This is important so that you can place the body in any initial angle or rota-
tion and still have the wheel be in the right place. To accomplish this, it calls a method
on the main cart body called GetWorldPoint, to convert a local offset from the cart
body to a world coordinate (which is required when creating a body).

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping354

Second, the friction for the wheels is quite high (1.0). This is because you will be
using the wheels to drive the cart along the ground, so you want a high friction so
that moving the wheels causes the cart to move responsively (rather than slipping along
the ground too much).

Third, the density of the wheel (10.0) is much larger than the density of the cart
(1.0). This is because the wheels behave best in Box2D when they have equal or more
mass than the body they are supporting. Since the wheels are small and the cart body
is large, we need to make it a much bigger number. If you forget to set this higher,
you may see strange behavior like the wheels falling off the cart or bouncing strangely.

Next add a method to make use of this below createWheelWithSprite, as
shown in Listing 11.16.

Listing 11.16 Cart.mm (below createWheelWithSprite)

- (void)createWheels {

 wheelL = [Box2DSprite spriteWithSpriteFrameName:@"Wheel.png"];

 wheelL.gameObjectType = kCartType;

 wheelLBody = [self createWheelWithSprite:wheelL

 offset:b2Vec2(-63.0/100.0, -48.0/100.0)];

 wheelR = [Box2DSprite spriteWithSpriteFrameName:@"Wheel.png"];

 wheelR.gameObjectType = kCartType;

 wheelRBody = [self createWheelWithSprite:wheelR

 offset:b2Vec2(63.0/100.0, -48.0/100.0)];

b2RevoluteJointDef revJointDef;

 revJointDef.Initialize(body, wheelLBody,

 wheelLBody->GetWorldCenter());

 wheelLJoint = (b2RevoluteJoint *) world->CreateJoint(&revJointDef);

 revJointDef.Initialize(body, wheelRBody,

 wheelRBody->GetWorldCenter());

 wheelRJoint = (b2RevoluteJoint *) world->CreateJoint(&revJointDef);

}

This method first creates a sprite for each wheel and then calls the method you just
wrote to create a Box2D object for that sprite.

Afterwards, it sets up a revolute joint for each wheel. As you can see, this is
quite simple. It creates a b2RevoluteJointDef structure and calls the Initial-
ize method, passing in the two bodies that are involved (the wheel and the body)
and the point at which they should be fixed (the center of the wheel). It then passes
the b2RevoluteJointDef to the world to actually create the joint. This returns a
b2Joint object, which it saves away in an instance variable.

Creating a Cart with Box2D 355

Note
The offsets for the wheels were figured out by using the ruler tool in an image editor to
estimate the number of pixels that each wheel should be offset from the center of the
cart. Since the HD artwork was used for this, it needs to be converted to HD coordinates
by dividing by the HD PTM_RATIO, which is 100.0.

Next call this new method in initWithWorld:atLocation, as shown in
Listing 11.17.

Listing 11.17 Cart.mm (at the bottom of initWithWorld:atLocation)

[self createWheels];

One last step: you need to add the new sprites for the wheels to the sprite batch
node. Back in Scene4ActionLayer.mm, add the lines to do so the bottom of createCart-
AtLocation, as shown in Listing 11.18.

Listing 11.18 Scene4ActionLayer.mm (at the bottom of createCartAtLocation)

[sceneSpriteBatchNode addChild:cart.wheelL];

[sceneSpriteBatchNode addChild:cart.wheelR];

That’s it! Compile and run the app, and now your cart should have wheels, as
shown in Figure 11.10. You can use the mouse joint to roll it around the screen and
see how it works. Note how the wheels and cart are fixed at the center of the wheels,
but the wheels can still spin. That’s revolute joints in action!

Figure 11.10 Cart with wheels connected with Box2D revolute joints

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping356

Making the Cart Move and Jump
Ole’s cart is pretty cool so far, and it rolls around adhering to real game physics. How-
ever, there’s still a long way to go—the goal is to make this level an action-packed
side-scroller, complete with accelerometer-based movement, interesting obstacles and
ground terrain to ride over, and the ability to tap to launch the cart into the air so Ole
can get some major hangtime!

In this section, you learn how to make the cart move based on accelerometer input,
how to make a side-scrolling level by tracing ground pieces, how to make the cart
jump, and how to fix a few problems that arise along the way.

Making the Cart Move with the Accelerometer
The first step is to add the capability to move the cart based on accelerometer input.
After reading Chapter 10, your first thought might be to just set the gravity based
on the accelerometer input, making the cart move back and forth due to the pull of
gravity. This would work great at first—until the player f lips his or her device upside
down, at which time the cart would f ly up into the air!

If you take a step back and think about it, what you really want to happen is for the
cart to move in relation to how much the device is currently tilted. If it’s tilted a little
bit, you want the cart to move slowly, and if it’s tilted a lot, you want the cart to move
quickly.

There are several ways you can move the cart in Box2D. You could apply a force
or impulse (which you’ll learn about later) on the cart to push it forward each frame
based on the current accelerometer input. You could set the linear velocity for the
body directly (although this can cause problems with the physics simulation some-
times, so avoid it when possible). But for this level you’re going to take an approach
that models the behavior of a real-world cart—you’re going to move the cart by mak-
ing the wheels spin!

Since you set up revolute joints for the cart wheels, rotating the wheels is easy.
Revolute joints have a built-in “motor” that defines how quickly the wheels rotate
in radians per second. You can make use of this to simply set the motor speed of the
wheels based on the accelerometer input!

Let’s see how this looks. First open Cart.mm and add the bolded lines in List-
ing 11.19 to createWheels, right after the first call to Initialize for the
b2RevoluteJointDef.

Listing 11.19 Cart.mm (add bolded lines inside createWheels, right after first call
to Initialize)

// Right after creating wheelRBody...

b2RevoluteJointDef revJointDef;

revJointDef.Initialize(body, wheelLBody,

 wheelLBody->GetWorldCenter());

Making the Cart Move and Jump 357

revJointDef.enableMotor = true;

revJointDef.maxMotorTorque = 1000;

revJointDef.motorSpeed = 0;

wheelLJoint = (b2RevoluteJoint *) world->CreateJoint(&revJointDef);

revJointDef.Initialize(body, wheelRBody,

 wheelRBody->GetWorldCenter());

wheelRJoint = (b2RevoluteJoint *) world->CreateJoint(&revJointDef);

These calls enable the motor for the revolute joint and set the initial speed to 0.
Think of a motor as an automatic mechanism that turns the wheels based on the
motorSpeed. motorSpeed is in radians per second, and M_PI radians is equivalent
to half a circle (180 degrees). So a motor speed of M_PI would rotate the wheel half a
circle (M_PI) every second.

maxMotorTorque is the maximum amount of torque that the motor should apply
to the wheel in order to reach the desired wheel speed. If this number is low and the
wheel hits resistance (such as something stopping its rotation), it will likely “give up”
and stop rotating. If this number is high, the wheel can keep increasing the torque
until it overcomes the resistance. In this case, you set it to a fairly high number so the
wheels can continue spinning despite resistance.

Next add a new method to Cart.mm to set the motor speed on both of the wheel
joints when called, as shown in Listing 11.20.

Listing 11.20 Cart.mm (anywhere inside class)

- (void)setMotorSpeed:(float32)motorSpeed {

if (characterState != kStateTakingDamage) {

wheelLJoint->SetMotorSpeed(motorSpeed);

wheelRJoint->SetMotorSpeed(motorSpeed);

 } else {

wheelLJoint->SetMotorSpeed(0.2 * motorSpeed);

wheelRJoint->SetMotorSpeed(0.2 * motorSpeed);

 }

}

Note that this usually just passes the motor speed onto the wheel joints, but if the
cart is taking damage (which you’ll implement later), it temporarily slows down the
cart.

Then switch to Cart.h and add the declaration for this method in the header, as
shown in Listing 11.21.

Listing 11.21 Cart.h (after @interface)

- (void)setMotorSpeed:(float32)motorSpeed;

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping358

Now that this is set up, open Scene4ActionLayer.mm and add a line in the init
method to enable accelerometer support, as shown in Listing 11.22.

Listing 11.22 Scene4ActionLayer.mm (at the bottom of the initWithScene4UILayer
method)

self.isAccelerometerEnabled = YES;

Next write the actual implementation of the accelerometer callback to set the speed
of the wheels based on how much the device is tilted, as shown in Listing 11.23.

Listing 11.23 Scene4ActionLayer.mm (anywhere inside class)

- (void)accelerometer:(UIAccelerometer *)accelerometer

 didAccelerate:(UIAcceleration *)acceleration {

float32 maxRevsPerSecond = 7.0;

float32 accelerationFraction = acceleration.y*6;

if (accelerationFraction < -1) {

 accelerationFraction = -1;

 } else if (accelerationFraction > 1) {

 accelerationFraction = 1;

 }

float32 motorSpeed =

 (M_PI*2) * maxRevsPerSecond * accelerationFraction;

 [cart setMotorSpeed:motorSpeed];

}

This method first sets up the max speed of the wheels to be 7 revolutions per sec-
ond. This number was determined by simply play testing and seeing what “felt right.”

It then computes the fraction of the max speed to actually set the wheels according
to how much the device is tilted. Acceleration usually ranges from 0 (completely level)
to ± 1 (completely vertical one way or the other). However, you don’t want the user
to have to tilt the device completely vertical to achieve max speed, so you multiply the
current acceleration value by 6 and limit the result to be within the range of −1 to 1,
so that one-sixth of a tilt either way is the “max speed range.”

Remember that motor speed is in radians per second, so if you set it to M_PI*2,
that would be one full rotation a second. It multiplies one full rotation a second times
the max speed and then the current fraction of speed based on how much the device is
tilted.

Compile and run the code (on your device, since accelerometer input does not
work in the simulator), and you should now be able to move your cart back and forth
by tilting the device. Nice, you’re making some great progress toward an action level!

Making the Cart Move and Jump 359

Making It Scrollable
While you could probably make an entire game about moving back and forth within
this box, in this chapter you’re going to do even better. You’re now going to learn
how to make a scrollable level with Box2D—and have the view stay focused on the
cart as it moves!

Figure 11.11 shows part of Images\groundAtlas-hd.png, which contains the pieces of
ground that you’re about to add to the level. You’ll be adding each of these strips to
the level horizontally like Lego blocks, laying down each piece side by side to con-
struct the entire level.

Figure 11.11 Strips of ground you’ll be adding to this level

Note
The ground images in the sprite sheet appear to be vertical even though the source
images are horizontal. This is because the sprite sheets were created with TexturePacker,
which sometimes rotates your images so they fit in the sprite sheets better. Don’t
worry—this is completely transparent to you as a user—when you retrieve the images in
the code, they will be rotated back to their initial orientation.

Currently you have a Box2D ground body that maps to the size of the screen, but
now you want to create a ground body that extends far offscreen to the right and juts
up and down according to the slopes of the ground artwork.

Your first thought might be to simply load the ground images into Vertex Helper,
click on the points along each of the bodies to figure out their vertices, and then add
them to the scene as different shapes. Well, you’re partly right (you will be using Ver-
tex Helper), but it wouldn’t work well in practice because you’ll find two problems:

n The shapes have too many vertices.
n The shapes are concave.

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping360

Remember back to earlier in this chapter—when defining shapes in Box2D, you
can only have up to eight vertices (by default), and they can’t be concave (i.e., have an
interior angle of greater than 180 degrees). You could split the ground body up into
smaller pieces so that both of these rules would be followed, but that would be a big
pain.

Luckily, there is an easy solution—and you can still use Vertex Helper. The idea is,
instead of creating polygons for each ground piece, you just make edges along the top
of each piece. You can use Vertex Helper to define the list of vertices, and then write a
helper method to create an edge for each vertex pair in the array.

Let’s see what this looks like. First, open Scene4ActionLayer.h and add a few more
instance variables, as shown in Listing 11.24.

Listing 11.24 Scene4ActionLayer.h (inside @interface)

CCSpriteBatchNode * groundSpriteBatchNode;

float32 groundMaxX;

groundSpriteBatchNode stores a reference to the sprite sheet that contains
the strips of ground, and groundMaxX keeps track of the maximum x value for the
ground pieces added to the scene.

Then replace your createGround method in Scene4ActionLayer.mm, as shown in
Listing 11.25.

Listing 11.25 Scene4ActionLayer.mm (replace createGround method)

- (void)createGround {

 b2BodyDef groundBodyDef;

 groundBodyDef.type = b2_staticBody;

 groundBodyDef.position.Set(0, 0);

groundBody = world->CreateBody(&groundBodyDef);

}

Note that you’ve removed all of the code relating to adding the edges mapping to
the boundaries of the screen but are still creating a body (with no fixtures). So next
write a function to create some ground edges based on a passed-in set of vertices, as
shown in Listing 11.26.

Listing 11.26 Scene4ActionLayer.mm (right below the createGround method)

- (void)createGroundEdgesWithVerts:(b2Vec2 *)verts numVerts:(int)num

 spriteFrameName:(NSString *)spriteFrameName {

CCSprite *ground =

 [CCSprite spriteWithSpriteFrameName:spriteFrameName];

 ground.position = ccp(groundMaxX+ground.contentSize.width/2,

 ground.contentSize.height/2);

 [groundSpriteBatchNode addChild:ground];

Making the Cart Move and Jump 361

b2PolygonShape groundShape;

 b2FixtureDef groundFixtureDef;

 groundFixtureDef.shape = &groundShape;

 groundFixtureDef.density = 0.0;

for(int i = 0; i < num - 1; ++i) {

b2Vec2 offset = b2Vec2(groundMaxX/PTM_RATIO +

 ground.contentSize.width/2/PTM_RATIO,

 ground.contentSize.height/2/PTM_RATIO);

b2Vec2 left = verts[i] + offset;

b2Vec2 right = verts[i+1] + offset;

 groundShape.SetAsEdge(left, right);

groundBody->CreateFixture(&groundFixtureDef);

 }

 groundMaxX += ground.contentSize.width;

}

Let’s go through this step by step. This method takes an array of vertices, the num-
ber of vertices (that you generate using Vertex Helper), and the name of the sprite that
goes along with this. It then creates a normal CCSprite with the given sprite frame
name and adds it to the ground sprite batch node.

Note
Notice that the ground sprites are not associated with a Box2D body in any way—the
sprites just happen to be placed at the same position. Since the ground sprites never
move, there’s no need to associate them with a Box2D body to synchronize the position
in the update loop. This also makes things simpler, since you can make the ground edges
on the same Box2D body (groundBody) rather than having to create a separate Box2D
body for each sprite.

Remember that you don’t need to make a Box2D body for every sprite you add into your
game unless you want Box2D to handle the movement/physics simulation. You may find
this useful in your games—sometimes, you might just want sprites without Box2D bodies
for decoration or so you can move the sprites yourself with actions such as CCMoveTo.

Next the method loops through the list of vertices and creates an edge for each.
Each vertex is offset by the maximum x value the ground has reached so far and by
half the width and height (since the vertices are centered around the center of the
sprite). At the end of the routine, it simply adds the width of the sprite to the ground
maximum x value. Note that this code makes the assumption that vertices are listed
from left to right and that ground chunks are also placed down left to right.

Now it’s time to get a list of vertices for each piece of ground so that you can call
this routine with the appropriate list of vertices. To do this, open Vertex Helper,
find the resource folder for this chapter, and drag Raw Art…\ground\ground1.png to

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping362

the Vertex Helper window. As usual, type 1 for Rows, 1 for Cols, set the Type
to Box2D, set the Style to Initialization, and click Edit Mode to begin clicking
vertices.

Add the vertices by clicking from left to right across the ground. Since the ground
is quite wide, it will most likely extend beyond the width of your window. To scroll,
you need to toggle the Edit Mode checkbox so you can pan the image, toggle it again
to define a few more vertices, and repeat. When you are done, your window should
look similar to Figure 11.12.

Figure 11.12 Defining vertices for ground edges with Vertex Helper

When you are done, write a method to call createGroundEdgesWithVerts pass-
ing in the vertex array generated by Vertex Helper, as shown in Listing 11.27. Just like
last time, you’ll also need to replace all instances of PTM_RATIO with 100.0, since you
traced the HD artwork. Note that the vertex coordinates might be slightly different
for you depending on how you clicked using Vertex Helper.

Listing 11.27 Scene4ActionLayer.mm (right below createGroundEdgesWithVerts)

- (void)createGround1 {

// Replace with your values from Vertex Helper, but replace all

 // instances of PTM_RATIO with 100.0

int num = 23;

b2Vec2 verts[] = {

b2Vec2(-1022.5f / 100.0, -20.2f / 100.0),

b2Vec2(-966.6f / 100.0, -18.0f / 100.0),

b2Vec2(-893.8f / 100.0, -10.3f / 100.0),

Making the Cart Move and Jump 363

b2Vec2(-888.8f / 100.0, 1.1f / 100.0),

b2Vec2(-804.0f / 100.0, 10.3f / 100.0),

b2Vec2(-799.7f / 100.0, 5.3f / 100.0),

b2Vec2(-795.5f / 100.0, 8.1f / 100.0),

b2Vec2(-755.2f / 100.0, -1.8f / 100.0),

b2Vec2(-755.2f / 100.0, -9.5f / 100.0),

b2Vec2(-632.2f / 100.0, 5.3f / 100.0),

b2Vec2(-603.9f / 100.0, 17.3f / 100.0),

b2Vec2(-536.0f / 100.0, 18.0f / 100.0),

b2Vec2(-518.3f / 100.0, 28.6f / 100.0),

b2Vec2(-282.1f / 100.0, 13.1f / 100.0),

b2Vec2(-258.1f / 100.0, 27.2f / 100.0),

b2Vec2(-135.1f / 100.0, 18.7f / 100.0),

b2Vec2(9.2f / 100.0, -19.4f / 100.0),

b2Vec2(483.0f / 100.0, -18.7f / 100.0),

b2Vec2(578.4f / 100.0, 11.0f / 100.0),

b2Vec2(733.3f / 100.0, -7.4f / 100.0),

b2Vec2(827.3f / 100.0, -1.1f / 100.0),

b2Vec2(1006.9f / 100.0, -20.2f / 100.0),

b2Vec2(1023.2f / 100.0, -20.2f / 100.0)

 };

 [self createGroundEdgesWithVerts:verts

 numVerts:num spriteFrameName:@"ground1.png"];

}

Once you are done, repeat with ground2.png and ground3.png to create two more
methods, createGround2 and createGround3, as shown in Listing 11.28.

Listing 11.28 Scene4ActionLayer.mm (right below createGround1)

- (void)createGround2 {

// Replace with your values from Vertex Helper, but replace all

 // instances of PTM_RATIO with 100.0

int num = 24;

b2Vec2 verts[] = {

b2Vec2(-1022.0f / 100.0, -20.0f / 100.0),

b2Vec2(-963.0f / 100.0, -23.0f / 100.0),

b2Vec2(-902.0f / 100.0, -4.0f / 100.0),

b2Vec2(-762.0f / 100.0, -7.0f / 100.0),

b2Vec2(-674.0f / 100.0, 26.0f / 100.0),

b2Vec2(-435.0f / 100.0, 22.0f / 100.0),

b2Vec2(-258.0f / 100.0, -1.0f / 100.0),

b2Vec2(-242.0f / 100.0, 19.0f / 100.0),

b2Vec2(-170.0f / 100.0, 43.0f / 100.0),

b2Vec2(-58.0f / 100.0, 45.0f / 100.0),

b2Vec2(98.0f / 100.0, -20.0f / 100.0),

b2Vec2(472.0f / 100.0, -20.0f / 100.0),

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping364

b2Vec2(471.0f / 100.0, -7.0f / 100.0),

b2Vec2(503.0f / 100.0, 4.0f / 100.0),

b2Vec2(614.0f / 100.0, 66.0f / 100.0),

b2Vec2(679.0f / 100.0, 59.0f / 100.0),

b2Vec2(681.0f / 100.0, 46.0f / 100.0),

b2Vec2(735.0f / 100.0, 31.0f / 100.0),

b2Vec2(822.0f / 100.0, 24.0f / 100.0),

b2Vec2(827.0f / 100.0, 12.0f / 100.0),

b2Vec2(934.0f / 100.0, 14.0f / 100.0),

b2Vec2(975.0f / 100.0, 1.0f / 100.0),

b2Vec2(982.0f / 100.0, -19.0f / 100.0),

b2Vec2(1023.0f / 100.0, -20.0f / 100.0)

 };

 [self createGroundEdgesWithVerts:verts numVerts:num

 spriteFrameName:@"ground2.png"];

}

- (void)createGround3 {

// Replace with your values from Vertex Helper, but replace all

 // instances of PTM_RATIO with 100.0

int num = 2;

b2Vec2 verts[] = {

b2Vec2(-1021.0f / 100.0, -22.0f / 100.0),

b2Vec2(1021.0f / 100.0, -20.0f / 100.0)

 };

 [self createGroundEdgesWithVerts:verts numVerts:num

 spriteFrameName:@"ground3.png"];

}

Now that you are making this level scrollable, it would be cool to have a paral-
lax scrolling background. To implement this, add a new method, as shown in Listing
11.29.

Listing 11.29 Scene4ActionLayer.mm (right after createGround3)

- (void)createBackground {

CCParallaxNode * parallax = [CCParallaxNode node];

 [CCTexture2D setDefaultAlphaPixelFormat:

kCCTexture2DPixelFormat_RGB565];

 CCSprite *background;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 background =

 [CCSprite spriteWithFile:@"scene_4_background-ipad.png"];

 } else {

background =

 [CCSprite spriteWithFile:@"scene_4_background.png"];

 }

Making the Cart Move and Jump 365

 background.anchorPoint = ccp(0,0);

 [CCTexture2D setDefaultAlphaPixelFormat:

kCCTexture2DPixelFormat_Default];

 [parallax addChild:background z:-10 parallaxRatio:ccp(0.05f, 0.05f)

positionOffset:ccp(0,0)];

 [self addChild:parallax z:-10];

}

This creates a parallax node to store the background image so that it slowly scrolls
as the player moves through the level. Note that it sets the texture pixel format to
RGB565, which is a 16-bit pixel format (saves memory in comparison to the default
32-bit format with a tradeoff in quality). This format in particular gives the best pos-
sible quality for red, green, and blue channels for 16-bit images, with the tradeoff of
not having any alpha channel (transparency) support at all, but that is okay because this
image doesn’t have any transparent parts.

Next, create a method to create the level by laying these pieces side by side, as
shown in Listing 11.30.

Listing 11.30 Scene4ActionLayer.mm (right after createBackground)

- (void)createLevel {

 [self createBackground];

 [self createGround3];

 [self createGround1];

 [self createGround3];

 [self createGround2];

 [self createGround3];

}

This simply calls the above methods to create a starting level layout by laying down
the pieces of ground one after the other. You’ll be returning to this method to add
more content to the level as this chapter progresses.

Next you need to add some code to follow the cart as it moves through the level.
You can do this by setting the layer’s position based on the position of the cart, as
shown in Listing 11.31.

Listing 11.31 Scene4ActionLayer.mm (right after createLevel)

- (void)followCart {

CGSize winSize = [CCDirector sharedDirector].winSize;

float fixedPosition = winSize.width/4;

float newX = fixedPosition - cart.position.x;

 newX = MIN(newX, fixedPosition);

 newX = MAX(newX, -groundMaxX-fixedPosition);

CGPoint newPos = ccp(newX, self.position.y);

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping366

 [self setPosition:newPos];

}

This method moves the layer to keep the cart in a fixed position as the cart moves
through the level. Figure 11.13 illustrates how this works.

Figure 11.13 Moving the layer to keep the cart at a fixed position
onscreen

As Figure 11.13 shows, if the layer did not move, the cart would simply move
offscreen. However, you can keep the cart centered by figuring out the difference
between where you want the cart to be centered (in this case, at one-fourth the screen
width) and the cart’s current position and setting the layer to that position.

This method also bounds the scroll value so that the scrolling stops when you near
the edges of the level, as you can see in the calls to MAX and MIN.

Note
There is also a built-in Cocos2D action called CCFollow that behaves similarly to the
code you just wrote here. The reason you wrote separate code to do this rather than
using CCFollow is twofold. First, CCFollow centers the object in the screen, and you
want the cart to be to the left-hand side of the screen so that Ole can see more of what’s
ahead. Second, you need precise control over when the layer’s position is updated so that
it runs at the same rate that your update method is called in order to ensure smooth
scrolling.

Next add a call to followCart at the end of your update method, as shown in
Listing 11.32.

Listing 11.32 Scene4ActionLayer.mm (at the end of update)

[self followCart];

Making the Cart Move and Jump 367

One last step: add the code to set up the ground batch sprite node and call cre-
ateLevel at the end of initWithScene4UILayer, as shown in Listing 11.33.

Listing 11.33 Scene4ActionLayer.mm (at the end of initWithScene4UILayer)

[CCTexture2D setDefaultAlphaPixelFormat:

 kCCTexture2DPixelFormat_RGB5A1];

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"groundAtlas-hd.plist"];

 groundSpriteBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"groundAtlas-hd.png"];

} else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"groundAtlas.plist"];

 groundSpriteBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"groundAtlas.png"];

}

[CCTexture2D setDefaultAlphaPixelFormat:

 kCCTexture2DPixelFormat_Default];

[self addChild:groundSpriteBatchNode z:-2];

[self createLevel];

The first section of code loads the ground texture atlas. Note that it sets the texture
pixel format to RGB5A1, which is a 16-bit pixel format (saves memory in comparison
to the default 32-bit format with a tradeoff in quality). This format in particular gives
good quality for red, green, and blue channels but poor quality for alpha channel,
which is okay because for these images, the alpha channel is only used as an on/off
indicator for transparency.

Compile and run the code, and you should now be able to use your accelerometer
to move and bounce the cart back and forth along a side-scrolling level!

However, as you go through the level, you may find times when you hit an out-
cropping or a strange edge and your cart f lips over! Obviously, Ole would not be very
happy about that if he was stuck inside.

There are several ways you can fix this with Box2D, such as making the terrain
smoother to make this less likely to occur, having bigger wheels, modifying the weight
distribution of the cart to discourage this behavior, and so on. But for this level, you
want to keep the current wheel sizes, terrain, and weight distribution, so you’ll fix
this by adding some code to prevent the cart from rotating more than a specified angle
range—and pushing it back within the range if by chance it does exceed it.

But how can you “push” the cart in a certain direction? To understand that, let’s
discuss forces and impulses.

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping368

Forces and Impulses
An impulse is an instantaneous change in momentum (momentum is mass × velocity).
Think of it as an instant boost that you can apply to an object to make it jump or f ly
through the air.

A force is a change in momentum over a period of time. Think of it as a gradual
energy that you can use to make objects f loat into the air or be pushed toward a wall.

Both impulses and forces affect an object’s velocity (how fast it’s moving), but the
difference is that an impulse affects the velocity immediately while a force is meant to
be applied over a longer period of time. Usually, you would call an impulse at a single
point in time in code (like when the user taps to jump), but you would apply forces in
your update method every frame while the force is still active.

There are two kinds of impulses: linear impulses (a push in a certain direction) and
angular impulses (a rotation in a certain direction). To push the cart back to a certain
angle, you want to apply an angular impulse. So let’s give that a shot.

Fixing the Tipping
Open Cart.mm and add the method shown in Listing 11.34.

Listing 11.34 Cart.mm (anywhere in class)

- (void) updateStateWithDeltaTime:(ccTime)deltaTime

 andListOfGameObjects:(CCArray *)listOfGameObjects {

float32 minAngle = CC_DEGREES_TO_RADIANS(-20);

Figure 11.14 A side-scrolling Box2D level with a moving cart

Making the Cart Move and Jump 369

float32 maxAngle = CC_DEGREES_TO_RADIANS(20);

double desiredAngle = self.body->GetAngle();

if (self.body->GetAngle() > maxAngle) {

 desiredAngle = maxAngle;

 } else if (self.body->GetAngle() < minAngle) {

 desiredAngle = minAngle;

 }

float32 diff = desiredAngle - self.body->GetAngle();

if (diff != 0) {

body->SetAngularVelocity(0);

float32 diff = desiredAngle - self.body->GetAngle();

float angimp = self.body->GetInertia() * diff;

self.body->ApplyAngularImpulse(angimp * 2);

 }

}

This method checks the angle of the cart and compares it to a desired range (−20 to
20 degrees). If the cart is out of range, it first stops the cart from rotating further (by
setting the angular velocity to 0) and then applies a slight angular impulse to push the
cart back toward the center. The more the cart is off center, the stronger the angular
impulse will be.

Now compile and run: your cart should be able to get through the entire level
without f lipping!

Making the Cart Jump
To make the cart jump, you apply the other type of impulse—a linear impulse. You
apply a boost to the bottom of the cart to launch it up into the air to give a neat jump
effect.

The first thing you need to do is write a helper function to detect if a Box2D body
is intersecting another body of a given type. This function detects if the cart is touch-
ing the ground, and more later on.

Select the Classes\Box2D group, go to File > New > New File..., choose iOS >
Cocoa Touch > Objective-C class, and click Next. Enter NSObject as the Subclass
of, click Next, name the file Box2DHelpers.mm (note the .mm extension, since this
imports Box2D), and click Save.

Replace Box2DHelpers.h with the contents of Listing 11.35.

Listing 11.35 Box2DHelpers.h

#import "Box2D.h"

#import "CommonProtocols.h"

bool isBodyCollidingWithObjectType(b2Body *body,

GameObjectType objectType);

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping370

This simply predeclares the helper function you’re about to write. Next write the
implementation by replacing Box2DHelpers.mm with the contents of Listing 11.36.

Listing 11.36 Box2DHelpers.mm

#import "Box2DHelpers.h"

#import "Box2DSprite.h"

bool isBodyCollidingWithObjectType(b2Body *body, GameObjectType
objectType) {

 b2ContactEdge* edge = body->GetContactList();

while (edge)

 {

b2Contact* contact = edge->contact;

if (contact->IsTouching()) {

b2Fixture* fixtureA = contact->GetFixtureA();

b2Fixture* fixtureB = contact->GetFixtureB();

b2Body *bodyA = fixtureA->GetBody();

b2Body *bodyB = fixtureB->GetBody();

Box2DSprite *spriteA =

 (Box2DSprite *) bodyA->GetUserData();

Box2DSprite *spriteB =

 (Box2DSprite *) bodyB->GetUserData();

if ((spriteA != NULL &&

 spriteA.gameObjectType == objectType) ||

 (spriteB != NULL &&

 spriteB.gameObjectType == objectType)) {

return true;

 }

 }

 edge = edge->next;

 }

return false;

}

This code should look pretty familiar: it’s the same method of looping through the
contacts list to look for collisions that you learned in Chapter 10.

Note
As mentioned in Chapter 10, this method of checking for collisions won’t detect the case
where an object was colliding at one point since the last call but bounced off and is no
longer colliding. However, for the purposes of this level, this doesn’t matter to us, so we’ll
continue to use this simple method.

If this is something you care about, you need to implement a Box2D contact listener. For
more information on how to do this, check out the Box2D manual at www.box2d.org.

www.box2d.org

Making the Cart Move and Jump 371

Now go to Scene4ActionLayer.mm and import Box2DHelpers.h at the top of the file,
as shown in Listing 11.37.

Listing 11.37 Scene4ActionLayer.mm (at the top of the file)

#import "Box2DHelpers.h"

Next delete the ccTouchBegan, ccTouchMoved, and ccTouchEnded methods,
since you won’t need the mouse joint for debugging anymore. Then add the contents
of Listing 11.38 as your new ccTouchBegan method.

Listing 11.38 Scene4ActionLayer.mm (delete ccTouchXX methods and replace with this)

-(BOOL) ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event {

if (isBodyCollidingWithObjectType(cart.body, kGroundType) ||

 isBodyCollidingWithObjectType(groundBody, kCartType)) {

 [cart jump];

 }

return TRUE;

}

This simply checks to see if the ground body is colliding with any object marked as
a cart type, and if so, it instructs the cart to jump.

Now switch to Cart.h and predeclare the jump function you just called as well as
another helper method, as shown in Listing 11.39.

Listing 11.39 Cart.h (after @interface)

- (void)jump;

- (float32)fullMass;

Then switch to Cart.mm and add the support methods to implement jumping, as
shown in Listing 11.40.

Listing 11.40 Cart.mm (anywhere inside class)

- (void)playJumpEffect {

int soundToPlay = random() % 4;

if (soundToPlay == 0) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_1);

 } else if (soundToPlay == 1) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_2);

 } else if (soundToPlay == 2) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_3);

 } else {

 PLAYSOUNDEFFECT(VIKING_JUMPING_4);

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping372

 }

}

- (float32)fullMass {

return body->GetMass() + wheelLBody->GetMass() +

wheelRBody->GetMass();

}

- (void)jump {

 [self playJumpEffect];

b2Vec2 impulse = b2Vec2([self fullMass]*1.0, [self fullMass]*5.0);

b2Vec2 impulsePoint =

body->GetWorldPoint(b2Vec2(5.0/100.0, -15.0/100.0));

body->ApplyLinearImpulse(impulse, impulsePoint);

}

The code first plays a sound effect, then applies a linear impulse to the cart body
to make it jump. When you apply an impulse, you specify the impulse to apply and
the point at which to apply it. The impulse should usually be a multiple of the mass of
the object; the exact numbers depend on how high you want your cart to jump. Here
it is making it jump upward by a good amount and a slight amount to the right. The
impulse point is set slightly to the right and bottom of the cart in order to make the
cart tend to slightly tip backward on a jump to get a nicer effect.

There’s one last thing. When implementing jumping in Box2D, sometimes you
want to let the user jump even if the object isn’t actually hitting the ground, but is
“close enough.” For example, when the user rides over rough terrain, the wheels
might be bouncing off the ground quite often, but the user would perceive that the
cart should be able to jump anyway. To address this, you add a sensor to the bottom of
the cart so that if the cart is “close enough” to the ground, a jump will be allowed.

Add the code to create a sensor on the bottom of the cart at the bottom of cre-
ateBodyAtLocation, as shown in Listing 11.41.

Listing 11.41 Cart.mm (at the bottom of createBodyAtLocation)

b2PolygonShape sensorShape;

sensorShape.SetAsBox(self.contentSize.width/2/PTM_RATIO, self.contentSize.
height/2/PTM_RATIO,

b2Vec2(0, -self.contentSize.height/PTM_RATIO), 0);

fixtureDef.shape = &sensorShape;

fixtureDef.density = 0.0;

fixtureDef.isSensor = true;

body->CreateFixture(&fixtureDef);

Compile and run the code, and your cart should now jump when you tap the
screen, as you can see in Figure 11.15.

Making the Cart Move and Jump 373

More Responsive Direction Switching
If you experiment with the level, you’ll see that once the cart gets moving, it takes a
bit of time to switch directions. This models what would happen in real life, but in
games, players are used to instant gratification!

So let’s use impulses again to make the direction switching a bit faster for play-
ers. Inside Scene4ActionLayer.mm, add the contents of Listing 11.42 to the bottom of
accelerometer:didAccelerate.

Listing 11.42 Scene4ActionLayer.mm (at the bottom of accelerometer:didAccelerate)

if (abs(cart.body->GetLinearVelocity().x) < 5.0) {

b2Vec2 impulse =

b2Vec2(-1 * acceleration.y * cart.fullMass * 2, 0);

 cart.body->ApplyLinearImpulse(impulse,

 cart.body->GetWorldCenter());

}

This simply checks to see if the cart is moving very slowly (less than 5 meters per
second in either direction). If that is the case, it applies a slight impulse to get the body
moving a bit faster in the intended direction. This helps reduce the time switching
directions or starting up.

Figure 11.15 Cart jumping using Box2D impulses

Chapter 11 Intermediate Game Physics: Modeling, Racing, and Leaping374

Compile and run the code, and now the cart should switch directions more quickly.
Finally, you have a cart worthy of Ole to ride in!

Summary
At this point you have created a side-scrolling action level with Box2D, complete with
vehicles, motors, joints, impulses, and more! You should now be familiar with how
to use Box2D to model arbitrary shapes with Vertex Helper, connect multiple bodies
with joints, and use impulses to move your game objects.

In the next chapter, you pick up where you left off and add Ole into the game, rid-
ing the cart—using Box2D to model his body for a cool effect. You also add bridges
to cross, spikes to avoid, and a dangerous boss for Ole to battle at the end with an epic
cinematic fight intro!

Challenges
1. Make the level longer by adding more ground pieces to the level. Draw your

own piece of ground in an image editor, use Vertex Helper to determine the
vertices for the edges, and then add it to the level. See how cool and fun you can
make the level!

1. Replace the cart with your own vehicle. Maybe instead of racing a mining cart,
you’d like Ole to drive a truck or a sports car? The vehicle you choose may
be slower or faster than a cart, so modify the acceleration and impulse values
accordingly.

2. Add a long platform to the level that has a revolute joint in the middle so that
when Ole is at either end, the platform starts to fall down on that side. This
makes for a fun challenge for Ole to navigate and give you a chance to practice
making your own bodies and joints!

12
Advanced Game Physics: Even

Better than the Real Thing

In Chapter 11, “Intermediate Game Physics,” you made an action-packed level where you can
race a mining cart across interesting terrain and tap to leap through the air. However, there are
two major problems. First, the level is far too easy! There are no dangers to avoid, no enemies to
fight. Second, our hero Ole is nowhere to be seen! It’s time to wake him up from his mad dreams
and bring him back into action.

In this level, you pick up where you left off in Chapter 11 and add Ole into the mine cart
(Figure 12.1) using Box2D so his body reacts to the bumps and jumps using a cool ragdoll effect.
You also add bridges to cross, spikes to avoid, and even a boss fight at the end with a cinematic
intro sequence!

By the time you finish reading this chapter, you’ll have covered the most important aspects
of using Box2D and will be ready to make your own physics-based game including vehicles,
enemies, ragdoll bodies, and more!

Figure 12.1 Adding Ole, spikes, and more to the Box2D side-scrolling
action level!

Chapter 12 Advanced Game Physics: Even Better than the Real Thing376

Joints and Ragdolls: Bringing Ole Back
into Action
Now that you have the cart ready for Ole to ride in, let’s add him into the scene!

One way you could approach this is to draw Ole in as part of the cart sprite—but
where would be the fun in that? In this chapter, you take things to the next level by
adding Ole to the cart using ragdoll physics, so he bounces and moves in realistic and
amusing ways as the cart travels through the level.

You accomplish this by breaking Ole’s body into pieces (poor Ole!), making sepa-
rate bodies for each, and connecting them with joints, as shown in Figure 12.2.

Figure 12.2 Breaking Ole into various Box2D bodies and connecting
them with joints

As you can see in Figure 12.2, you want to create bodies for each piece (the out-
lined boxes) and set things up so that some of the bodies rotate around each other (the
dots) and some of the bodies move up and down in relation to each other (the arrows).

In order to accomplish this, you need to know three things: (1) how to restrict the
rotation of revolute joints, (2) how to use a new type of joint called a prismatic joint,
and (3) how to create multiple bodies and joints at the right spots. Before you begin
coding this up, let’s go over these items one by one.

Restricting Revolute Joints
For most of the body parts, you’ll use revolute joints, which you learned about in
Chapter 11 when you added the wheels to the cart. Remember, revolute joints fix two
bodies together at a certain point but allow each body to rotate around that point.

This is exactly what you want for connecting an arm to the body, except you also
want to restrict the rotations to a certain angle range. For example, if your arm started

Joints and Ragdolls: Bringing Ole Back into Action 377

spinning around and around 360 degrees without any limits, people would think it
was time to call an exorcist!

Luckily, it is quite easy to restrict revolute joints to a certain angle range with
Box2D. When you set up a b2RevoluteJointDef, you just set a few extra proper-
ties: enableLimit, lowerAngle, and upperAngle. Listing 12.1 shows an example of
connecting an arm to the main body.

Listing 12.1 Example of limiting revolute joint angles

revJointDef.Initialize(trunkBody, armBody,

armBody->GetWorldPoint(b2Vec2(-9.0/PTM_RATIO, 29.0/PTM_RATIO)));

revJointDef.lowerAngle = CC_DEGREES_TO_RADIANS(-30);

revJointDef.upperAngle = CC_DEGREES_TO_RADIANS(60);

revJointDef.enableLimit = true;

world->CreateJoint(&revJointDef);

The angles you set for lowerAngle and upperAngle are in respect to the initial
placement of the two bodies. Whatever angle the bodies are placed at when you first
add them to the scene is considered “angle 0.”

When you rotate body #2 counterclockwise (the arm in this case), the angle is
positive. So in this example, the arm can rotate at most 60 degrees clockwise from the
initial orientation.

Similarly, when you rotate body #2 clockwise, the angle is negative. So in this exam-
ple, the arm can rotate at most −30 degrees clockwise from the initial orientation.

Figure 12.3 shows the angles each revolute joint in Ole should be restricted to for
planning purposes.

Figure 12.3 Angles to restrict each revolute joint for Ole

Chapter 12 Advanced Game Physics: Even Better than the Real Thing378

Using Prismatic Joints
A prismatic joint is a type of joint that restricts two bodies so they can move relative
to each other only along a specified axis. For example, you could connect a garage
door body with a ground body and set the axis to be the y-axis, so the garage door
can only slide up and down. Or you could connect a raft body with a ground body
and set the axis to be the x-axis, so the raft can only slide right and left.

Prismatic joints are useful for connecting Ole’s legs with the cart. You can set up
the axis to be the y-axis, so that when the cart goes over a bump, Ole will “pop” out
of the cart a little bit. Just like you can set up revolute joints to revolve only a certain
amount, you can set up prismatic joints to allow only a limited amount of movement.

You set up prismatic joints in a similar manner to how you set up revolute joints.
Listing 12.2 shows an example of creating a prismatic joint to connect Ole’s legs to the
cart.

Listing 12.2 Example of creating a prismatic joint

b2PrismaticJointDef prisJointDef;

prisJointDef.Initialize(body, legsBody,

 legsBody->GetWorldCenter(), axis);

prisJointDef.enableLimit = true;

prisJointDef.lowerTranslation = 0.0;

prisJointDef.upperTranslation = 43.0/100.0;

world->CreateJoint(&prisJointDef);

The Initialize method takes the two bodies in the joint relationship (in this
case, the cart and the legs), the anchor point, and the axis where the objects can move
relative to each other (the y-axis in this case).

Note that you can restrict how much the objects can move along the axis relative to
each other by setting enableLimit, lowerTranslation, and upperTranslation,
similar to how you could limit revolute joints. In this case, the legs can’t go down the
y-axis any further than they currently are, but they can move up the y-axis up to 43.0
points (relative to the HD artwork), so Ole can pop out of the cart over a bump.

Figure 12.4 shows the offsets each prismatic joint in Ole should be restricted to for
planning purposes.

How to Create Multiple Bodies and Joints at the Right Spots
To add Ole to the scene, you need to add multiple pieces—legs, trunk, arm, head, and
helmet. When you add these bodies to the scene, you need to give the world coordi-
nates for where to place each. One method to do this is to place all of the bodies in
the configuration you want in an image editor, use ruler tools to measure the world
point for where you want to place each object, and use that for each location.

This approach works if you know the exact points for where you want to place each
body, but it’s rather fragile. What happens if you want to start your body at a different

Joints and Ragdolls: Bringing Ole Back into Action 379

location? A second method is to measure the distance of each object relative to a main
body (such as the cart) and then add the main body’s current position to that point.
This is better, but if you try to change the cart’s initial angle, the related bodies will
no longer be in the correct location.

An approach that works well even if you want to place an object in a different spot
or at a different initial angle is to (1) measure the distance between each object and the
object it’s connected to, and (2) use a helper function called GetWorldPoint on the
body it’s connected to to convert a local offset from that body to a world coordinate.

For example, Listing 12.3 shows the code you should (and shouldn’t) use to place
Ole’s legs in the right position. The first line shows the not-so-good way (adding an
offset to the body’s current position). The second line shows the better way (using the
GetWorldPoint to convert a local offset to a world coordinate, which correctly fac-
tors in the body’s rotation).

Listing 12.3 Good and bad ways to place bodies relative to each other

// Bad way (adding body's position manually)

legsBody = [self createPartAtLocation:

b2Vec2(body->GetPosition().x-10.0/100.0,

body->GetPosition().y+6.0/100.0)

withSprite:legs];

// Good way (using GetWorldPoint, which factors in rotation)

legsBody = [self createPartAtLocation:

body->GetWorldPoint(b2Vec2(-10.0/100.0,

6.0/100.0))

withSprite:legs];

Figure 12.4 Offsets to restrict each prismatic joint for Ole

Chapter 12 Advanced Game Physics: Even Better than the Real Thing380

In summary, to place multiple bodies and joints at the right spot, it’s a matter of
using GetWorldPoint to convert local offsets from bodies to world coordinates and
using an image editing tool to measure the offsets to place each body.

In this chapter, you can use the sample code, which has the offsets premeasured, or
you can replace the coordinates with your own measurements to make sure you fully
understand how it works—it’s your choice!

Note
If all of this measuring and tweaking is too much for you, there are some tools you can
purchase to make your life a bit easier.

The first is a tool called Mekanimo (w ww.mekanimo.net) that helps you visually sketch out
physics bodies, connect them with joints, and even test out how they work inside the tool.
When you’re done, you can export the shapes and joints you defined as Box2D code that
you can cut and paste into your projects (with a few modifications). At the time of writing,
Mekanimo has both Windows and Mac versions and costs $29.95 for noncommercial use
and $199.95 for independent developer use.

The second is a tool/sample project called LevelSVG (www.sapusmedia.com/levelsvg),
written by none other than Ricardo Quesada, the creator of Cocos2D. LevelSVG allows you
to create levels for your games in Inkscape, a free vector editing tool, and read the saved
files in Cocos2D code to create Box2D bodies and objects. LevelSVG works especially
well for platformer games if you want to have an easier time developing your levels and
is also a good example of Cocos2D game programming. At the time of writing, LevelSVG
costs $249 if you buy it alone and $149 if you buy it along with other source code proj-
ects written by Ricardo.

Last but not least, there’s a great tool by the author of TexturePacker called Physics Edi-
tor (www.physicseditor.de). This tool is similar to Vertex Helper but even easier, since it
can automatically trace your shapes for you! You can even set your Box2D object proper-
ties from right within Physics Editor and easily load your objects in code, saving yourself
a lot of time and work. TexturePacker has a free trial version, and the full version costs
$17.95, or $29.99 if you buy it along with TexturePacker.

We didn’t cover using these tools in these chapters because we wanted you to learn how
things work from the ground up, but in practice, they are definitely recommended because
they can save you a lot of time!

Adding Ole: The Implementation
With that background knowledge in mind, let’s give Ole the ride of his life!

First things first: adding some required instance variables and properties. Open up
Cart.h and add the member variables for the body part sprites and Box2D bodies, as
shown in Listing 12.4.

Listing 12.4 Cart.h (inside @interface)

Box2DSprite * legs;

Box2DSprite * trunk;

Box2DSprite * head;

www.sapusmedia.com/levelsvg
www.physicseditor.de

Joints and Ragdolls: Bringing Ole Back into Action 381

Box2DSprite * helm;

Box2DSprite * arm;

b2Body * legsBody;

b2Body * trunkBody;

b2Body * headBody;

b2Body * helmBody;

b2Body * armBody;

Then underneath, add properties for the sprites, as shown in Listing 12.5.

Listing 12.5 Cart.h (after @interface)

@property (readonly) Box2DSprite * legs;

@property (readonly) Box2DSprite * trunk;

@property (readonly) Box2DSprite * head;

@property (readonly) Box2DSprite * helm;

@property (readonly) Box2DSprite * arm;

At the top of Cart.mm, synthesize your new properties, as shown in Listing 12.6.

Listing 12.6 Cart.mm (right after @implementation)

@synthesize legs;

@synthesize trunk;

@synthesize head;

@synthesize helm;

@synthesize arm;

Now on to the fun stuff. First modify both createBodyAtLocation and
createWheelWithSprite and add the lines in Listing 12.7 as you create your fixture
definition.

Listing 12.7 Cart.mm (in both createBodyAtLocation and createWheelWithSprite, right
after creating the fixtureDef)

fixtureDef.filter.categoryBits = 0x2;

fixtureDef.filter.maskBits = 0xFFFF;

fixtureDef.filter.groupIndex = -1;

These three settings set up the collision filters for Box2D. You need to set these up
so that the cart doesn’t collide with any of the body parts you’re about to add. Let’s go
through what each setting means.

Every Box2D body can belong to a set of object categories, and by setting
categoryBits, you control which categories the body belongs to. The default cat-
egory is 0x1, so here you set the cart to a different category (mainly to illustrate that
you can do this).

Chapter 12 Advanced Game Physics: Even Better than the Real Thing382

You can set which categories of objects an object will collide with by setting the
maskBits field. This is a 16-bit value, so setting it to 0xFFFF means that it collides
with all categories (the same as the default behavior).

The final item, groupIndex, is a special field you can use to override the mask
bits. When two bodies share the same group index, if the number is negative, they
will not collide, and if the number is positive, they will collide. In this case, it’s set to
negative (and the bodies that make up Ole will have the same negative value), so they
will not collide even though they would otherwise.

Tip
In your games, you may find it useful to use #defines for the various categories that
your objects might belong to. For example, you could #define kGroundCategory
0x1, #define kCartCategory 0x2, and so on, and then set the categoryBits
and maskBits for all of your fixtures using these constants. This makes your code a
little bit easier to work with, especially when your scenes start getting more complex.

Next create a new function to create a part of Ole, as shown in Listing 12.8.

Listing 12.8 Cart.mm (before initWithWorld:atLocation)

-(b2Body *)createPartAtLocation:(b2Vec2)location

 withSprite:(Box2DSprite *)sprite {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position = location;

 bodyDef.angle = body->GetAngle();

b2Body *retval = world->CreateBody(&bodyDef);

 retval->SetUserData(sprite);

 sprite.body = retval;

b2PolygonShape shape;

 shape.SetAsBox(sprite.contentSize.width/2/PTM_RATIO,

 sprite.contentSize.height/2/PTM_RATIO);

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.density = 0.05;

 fixtureDef.filter.categoryBits = 0x2;

 fixtureDef.filter.maskBits = 0xFFFF;

 fixtureDef.filter.groupIndex = -1;

 retval->CreateFixture(&fixtureDef);

return retval;

}

Joints and Ragdolls: Bringing Ole Back into Action 383

Most of this is standard body creation code that you have seen many times. There
are three things in particular to point out though.

First, the density is set to very low so Ole’s bouncing around only affects the cart’s
movement a little bit. Without this, you might see an effect where the force of Ole
bouncing around overwhelms the joint constraints, and Ole could end up under the
cart!

Second, the category filtering is set up so that Ole doesn’t collide with the cart, as
described previously.

Third, each part of Ole is created as a box (rather than tracing it more exactly with
Vertex Helper). Boxes are used because in this level, Ole won’t really be colliding with
much, so the exact shapes don’t matter, and boxes are much simpler.

Next, add a new method to create Ole, as shown in Listing 12.9.

Listing 12.9 Cart.mm (right after createPartAtLocation)

-(void)createOle {

 legs = [Box2DSprite spriteWithSpriteFrameName:@"OleCartLegs.png"];

 legs.gameObjectType = kCartType;

 legsBody = [self createPartAtLocation:

body->GetWorldPoint(b2Vec2(-10.0/100.0, 6.0/100.0))

 withSprite:legs];

 trunk = [Box2DSprite spriteWithSpriteFrameName:@"OleCartBody.png"];

 trunk.gameObjectType = kCartType;

 trunkBody = [self createPartAtLocation:

 legsBody->GetWorldPoint(b2Vec2(0, 45.0/100.0))

 withSprite:trunk];

 head = [Box2DSprite spriteWithSpriteFrameName:@"OleCartHead.png"];

 head.gameObjectType = kCartType;

 headBody = [self createPartAtLocation:

 trunkBody->GetWorldPoint(

b2Vec2(18.0/100.0, 24.0/100.0)) withSprite:head];

 helm = [Box2DSprite

spriteWithSpriteFrameName:@"OleCartHelmet.png"];

 helm.gameObjectType = kCartType;

 helmBody = [self createPartAtLocation:

 headBody->GetWorldPoint(b2Vec2(15.0/100.0, 25.0/100.0))

 withSprite:helm];

 arm = [Box2DSprite spriteWithSpriteFrameName:@"OleCartArm.png"];

 arm.gameObjectType = kCartType;

 armBody = [self createPartAtLocation:

 trunkBody->GetWorldPoint(

b2Vec2(5.0/100.0, -15.0/100.0)) withSprite:arm];

}

Chapter 12 Advanced Game Physics: Even Better than the Real Thing384

This simply uses the above method to create a Box2D body for each piece of Ole.
Note that it uses GetWorldPoint to make each piece relative to the piece it’s connect-
ing to for maximum code reuse. All of the points listed here were simply measured
with a ruler tool in an image-editing program using the HD artwork, so they need to
be divided by the HD PTM_RATIO (100.0) to be converted to the proper Box2D coor-
dinates as usual.

Next, at the bottom of createOle, add the code to create the necessary joints, as
shown in Listing 12.10.

Listing 12.10 Cart.mm (at bottom of createOle)

b2Transform axisTransform;

axisTransform.Set(b2Vec2(0, 0), body->GetAngle());

b2Vec2 axis = b2Mul(axisTransform.R, b2Vec2(0,1));

b2PrismaticJointDef prisJointDef;

prisJointDef.Initialize(body, legsBody,

 legsBody->GetWorldCenter(), axis);

prisJointDef.enableLimit = true;

prisJointDef.lowerTranslation = 0.0;

prisJointDef.upperTranslation = 43.0/100.0;

world->CreateJoint(&prisJointDef);

b2RevoluteJointDef revJointDef;

revJointDef.Initialize(legsBody, trunkBody,

 legsBody->GetWorldPoint(b2Vec2(0, 20.0/100.0)));

revJointDef.lowerAngle = CC_DEGREES_TO_RADIANS(-15);

revJointDef.upperAngle = CC_DEGREES_TO_RADIANS(15);

revJointDef.enableLimit = true;

revJointDef.enableMotor = true;

revJointDef.motorSpeed = 0.5;

revJointDef.maxMotorTorque = 50.0;

world->CreateJoint(&revJointDef);

revJointDef.enableMotor = false;

revJointDef.Initialize(trunkBody, armBody,

 armBody->GetWorldPoint(b2Vec2(-9.0/100.0, 29.0/100.0)));

revJointDef.lowerAngle = CC_DEGREES_TO_RADIANS(-30);

revJointDef.upperAngle = CC_DEGREES_TO_RADIANS(60);

revJointDef.enableLimit = true;

world->CreateJoint(&revJointDef);

revJointDef.Initialize(trunkBody, headBody,

 headBody->GetWorldPoint(b2Vec2(-12.0/100.0, -9.0/100.0)));

revJointDef.lowerAngle = CC_DEGREES_TO_RADIANS(-5);

revJointDef.upperAngle = CC_DEGREES_TO_RADIANS(5);

Joints and Ragdolls: Bringing Ole Back into Action 385

revJointDef.enableLimit = true;

world->CreateJoint(&revJointDef);

prisJointDef.Initialize(headBody, helmBody,

 helmBody->GetWorldCenter(), axis);

prisJointDef.enableLimit = true;

prisJointDef.lowerTranslation = 0.0/100.0;

prisJointDef.upperTranslation = 5.0/100.0;

world->CreateJoint(&prisJointDef);

Based on the discussion earlier in this chapter, most of this should be straightfor-
ward. It’s simply creating revolute joints and prismatic joints to connect each body to
another and setting up the limits so the bodies act appropriately.

There are two things of interest to note in this method, however. The first is that
for the first revolute joint (connecting the legs to the trunk), the motor for the joint is
enabled, with a speed of 0.5 and a small max torque. This is to make Ole tend to lean
backward a bit, so he looks upright rather than falling over due to the weight of his
head being in the front.

The second thing of interest is that the axis is rotated according to the body’s angle
rather than just pointing straight up. This is important so that if you rotate the body
when you initially place it into the scene, it will still be connected properly.

Now call your new method at the bottom of initWithWorld:atLocation, as
shown in Listing 12.11.

Listing 12.11 Cart.mm (at bottom of initWithWorld:atLocation)

[self createOle];

And finally, switch to Scene4ActionLayer.mm and modify createCartAtLocation
to add the new sprites to the scene, as shown in Listing 12.12.

Listing 12.12 Scene4ActionLayer.mm (at bottom of createCartAtLocation)

[sceneSpriteBatchNode addChild:cart.legs];

[sceneSpriteBatchNode addChild:cart.trunk];

[sceneSpriteBatchNode addChild:cart.head];

[sceneSpriteBatchNode addChild:cart.helm];

[sceneSpriteBatchNode addChild:cart.arm z:2];

Note that Ole’s arm is added with a higher z value, so it appears to be hanging out-
side the cart.

Compile and run your code (on the device, as the simulator is slower and can have
some oddities), and as you can see in Figure 12.5, Ole should now be back in action,
swaying and bouncing in a really cool manner as your cart jumps through the level!

Chapter 12 Advanced Game Physics: Even Better than the Real Thing386

Adding Obstacles and Bridges
So far the level is kind of fun, with a cart that you can move around and jump—but
there’s absolutely no challenge! So let’s spice things up a bit by adding some simple
spikes along the ground that you have to jump and a neat swaying bridge you can
cross.

Adding a Bridge
You start with adding the bridge, since it’s simpler and will reinforce what you just
learned about how to use joints.

As you can see in Figure 12.6, the basic idea is that you create a sequence of small
rectangles for bridge planks end to end, connect each plank to the next with a revolute
joint, and connect the first and last bridge planks to the ground. Then Box2D handles
the simulation, and gravity causes the planks toward the middle to sag a bit, much like
a bridge made out of connected planks would.

Since you know how to create revolute joints and create Box2D bodies, this should
be a snap. First, add two new instance variables to Scene4ActionLayer.h, as shown in
Listing 12.13.

Listing 12.13 Scene4ActionLayer.h (inside @interface)

b2Joint * lastBridgeStartJoint;

b2Joint * lastBridgeEndJoint;

Figure 12.5 Ole leaping through the level with a ragdoll effect

Adding Obstacles and Bridges 387

These just hold a reference to the first and last joints in the bridge added to the
scene. They come in handy later in this chapter.

Next add a new method to Scene4ActionLayer.mm to create the bridge, as shown in
Listing 12.14.

Listing 12.14 Scene4ActionLayer.mm (before createLevel)

- (void)createBridge {

Box2DSprite *lastObject;

b2Body *lastBody = groundBody;

for(int i = 0; i < 15; i++) {

Box2DSprite *plank =

 [Box2DSprite spriteWithSpriteFrameName:@"plank.png"];

 plank.gameObjectType = kGroundType;

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position =

b2Vec2(groundMaxX/PTM_RATIO +

 plank.contentSize.width/2/PTM_RATIO,

80.0/100.0 -

 (plank.contentSize.height/2/PTM_RATIO));

b2Body *plankBody = world->CreateBody(&bodyDef);

 plankBody->SetUserData(plank);

 plank.body = plankBody;

 [groundSpriteBatchNode addChild:plank];

b2PolygonShape shape;

 float32 diff;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 diff = 40.0-plank.contentSize.height;

 } else {

diff = 20.0-plank.contentSize.height;

 }

Figure 12.6 Adding a bridge using revolute joints

Chapter 12 Advanced Game Physics: Even Better than the Real Thing388

 shape.SetAsBox(

 plank.contentSize.width/2/PTM_RATIO, 40.0/100.0,

b2Vec2(0, -plank.contentSize.height/2/

PTM_RATIO-diff/PTM_RATIO), 0);

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.density = 2.0;

 plankBody->CreateFixture(&fixtureDef);

b2RevoluteJointDef jd;

 jd.Initialize(lastBody, plankBody,

 plankBody->GetWorldPoint(

b2Vec2(-plank.contentSize.width/2/PTM_RATIO, 0)));

 jd.lowerAngle = CC_DEGREES_TO_RADIANS(-0.25);

 jd.upperAngle = CC_DEGREES_TO_RADIANS(0.25);

 jd.enableLimit = true;

b2Joint *joint = world->CreateJoint(&jd);

if (i == 0) { lastBridgeStartJoint = joint; }

groundMaxX += (plank.contentSize.width * 0.8);

 lastBody = plankBody;

 lastObject = plank;

 }

b2RevoluteJointDef jd;

 jd.Initialize(lastBody, groundBody,

 lastBody->GetWorldPoint(

b2Vec2(lastObject.contentSize.width/2/PTM_RATIO, 0)));

 lastBridgeEndJoint = world->CreateJoint(&jd);

}

This code creates 15 bridge planks and lays them end to end, but slightly overlap-
ping, so there are no gaps in the bridge when it sags due to gravity. It connects each
bridge plank to the next with a revolute joint, setting it up with a very tight restriction
(−0.25 degrees per connection) to get a “tight” feel to the bridge. Also note that the
first and last joints are connected to the ground.

One thing you may be wondering about is the section that begins with a test if
the height of the plank is less than 40 points (relative to the HD artwork). This code
makes sure that the actual Box2D body representing the plank is at least 40 points
tall. This height is needed to prevent the wheels of the cart from falling through the
planks, which could happen in practice if the plank was too thin. The code just lines
up the taller Box2D bodies so that the tops of the bodies align with the tops of the
planks.

Adding Obstacles and Bridges 389

Next, just modify your createLevel method to call the new createBridge
method between the calls to create the ground, as shown in Listing 12.15.

Listing 12.15 Scene4ActionLayer.mm (replace createLevel with this)

- (void)createLevel {

 [self createBackground];

 [self createGround3];

 [self createBridge];

 [self createGround1];

 [self createBridge];

 [self createGround3];

 [self createBridge];

 [self createGround2];

 [self createGround3];

 [self createBridge];

 [self createGround3];

}

Compile and run your code, and as you can see in Figure 12.7, now you should be
able to ride over cool dynamic bridges!

Figure 12.7 Creating bridges with Box2D revolute joints

Chapter 12 Advanced Game Physics: Even Better than the Real Thing390

Adding Spikes
Now that you have bridges, let’s increase the challenge for the player by scattering
some spikes across the level for the player to avoid.

To start, you create a new subclass of Box2DSprite for the spikes. Select the
Classes\Game Objects\Box2D group, go to File > New > New File..., choose iOS >
Cocoa Touch > Objective-C class, and click Next. Enter Box2DSprite as the Sub-
class of, click Next, name the file Spikes.mm (note the .mm extension, since this will
be importing Box2D), and click Save.

Open Spikes.h and replace the file with the contents of Listing 12.16.

Listing 12.16 Spikes.h

#import "Box2DSprite.h"

@interface Spikes : Box2DSprite {

b2World *world;

}

- (id)initWithWorld:(b2World *)world atLocation:(CGPoint)location;

@end

This creates a subclass of Box2DSprite and declares an init method. Next open
Spikes.mm and replace the file with the contents of Listing 12.17.

Listing 12.17 Spikes.mm

#import "Spikes.h"

@implementation Spikes

- (void)createBodyAtLocation:(CGPoint)location {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position = b2Vec2(location.x/PTM_RATIO,

 location.y/PTM_RATIO);

self.body = world->CreateBody(&bodyDef);

body->SetUserData(self);

b2PolygonShape shape;

 shape.SetAsBox(self.contentSize.width/2/PTM_RATIO,

self.contentSize.height/2/PTM_RATIO,

b2Vec2(0, +5.0/100.0), 0);

Adding Obstacles and Bridges 391

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.density = 1000.0;

body->CreateFixture(&fixtureDef);

}

- (id)initWithWorld:(b2World *)theWorld atLocation:(CGPoint)location {

if ((self = [super init])) {

 world = theWorld;

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache] spriteFrameByName:@"spikes.png"]];

 gameObjectType = kSpikesType;

 [self createBodyAtLocation:location];

 }

return self;

}

@end

You should be familiar with this by now; it creates a rectangular Box2D body for
the sprite. Note that you could try to mimic the shape of the spikes more accurately
using Vertex Helper or other methods, but for this level it’s just not worth the time
and effort, as a box approximation is good enough. Note that the box is set up to be
slightly smaller than the actual sprite (so it appears sunken into the ground) and that
spikes are set up with a very high density so that they barely move when hit.

Now switch to Cart.mm and first add an import for Box2DHelpers.h to the top of
the file, as shown in Listing 12.18.

Listing 12.18 Cart.mm (at top of file)

#import "Box2DHelpers.h"

Then add a few methods to allow the cart to transition to a damage-taking state, as
shown in Listing 12.19.

Listing 12.19 Cart.mm (anywhere in class)

- (void)playHitEffect {

int soundToPlay = random() % 5;

if (soundToPlay == 0) {

 PLAYSOUNDEFFECT(VIKING_HIT_1);

 } else if (soundToPlay == 1) {

 PLAYSOUNDEFFECT(VIKING_HIT_2);

 } else if (soundToPlay == 2) {

 PLAYSOUNDEFFECT(VIKING_HIT_3);

Chapter 12 Advanced Game Physics: Even Better than the Real Thing392

 } else if (soundToPlay == 3) {

 PLAYSOUNDEFFECT(VIKING_HIT_4);

 } else {

 PLAYSOUNDEFFECT(VIKING_HIT_5);

 }

}

-(void)changeState:(CharacterStates)newState {

if (characterState == newState) return;

 [self stopAllActions];

 [self setCharacterState:newState];

switch (newState) {

case kStateTakingDamage: {

 [self playHitEffect];

characterHealth = characterHealth - 10;

CCAction *blink = [CCBlink actionWithDuration:1.0

blinks:3.0];

 [self runAction:blink];

 [wheelL runAction:[blink copy]];

 [wheelR runAction:[blink copy]];

 [legs runAction:[blink copy]];

 [trunk runAction:[blink copy]];

 [head runAction:[blink copy]];

 [helm runAction:[blink copy]];

 [arm runAction:[blink copy]];

break;

 }

default:

break;

 }

}

The first method plays a random sound effect when Ole gets hit. The second
method decreases the character’s health upon a hit and starts a blink animation to indi-
cate that the cart is taking damage. Note that it has to run the animation on all of the
sprites that make up Ole’s cart.

Next add the lines to handle state transitions at the bottom of updateStateWith-
DeltaTime, as shown in Listing 12.20.

Listing 12.20 Cart.mm (at the bottom of updateStateWithDeltaTime)

if (characterState == kStateDead)

return; // Nothing to do if the Viking is dead

Adding Obstacles and Bridges 393

if ((characterState == kStateTakingDamage) &&

 ([self numberOfRunningActions] > 0))

return; // Currently playing the taking damage animation

if ([self numberOfRunningActions] == 0) {

// Not playing an animation

if (characterHealth <= 0) {

 [self changeState:kStateDead];

 } else {

 [self changeState:kStateIdle];

 }

}

if (isBodyCollidingWithObjectType(wheelLBody, kSpikesType)) {

 [self changeState:kStateTakingDamage];

} else if (isBodyCollidingWithObjectType(wheelRBody, kSpikesType)) {

 [self changeState:kStateTakingDamage];

}

This returns if any action is running on the object (such as the cart blinking as it’s
taking damage—it gets temporary invulnerability). If there are no actions running, it
switches to either dead or idle depending on the cart’s health. Finally, it uses the helper
method you wrote earlier to check if the cart body is colliding with any spikes, and if
so, changes the state to taking damage.

Now switch over to Scene4ActionLayer.mm and add the import for Spikes.h at the top
of the file, as shown in Listing 12.21.

Listing 12.21 Scene4ActionLayer.mm (at the top of the file)

#import "Spikes.h"

Then add a method to create spikes at a particular offset, as shown in Listing 12.22.

Listing 12.22 Scene4ActionLayer.mm (before createLevel)

- (void)createSpikesWithOffset:(int)offset {

Spikes * spikes;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 spikes = [[[Spikes alloc] initWithWorld:world

 atLocation:ccp(groundMaxX + offset, 100)] autorelease];

 } else {

 spikes = [[[Spikes alloc] initWithWorld:world

 atLocation:ccp(groundMaxX + offset/2, 100/2)] autorelease];

 }

 [sceneSpriteBatchNode addChild:spikes];

}

Chapter 12 Advanced Game Physics: Even Better than the Real Thing394

Note that the coordinates are divided by two if it’s not the iPad—this way we can
specify the coordinates once (for the HD artwork) and convert to the other device.

One last step! Modify your createLevel method to call this new method a couple
times, as shown in Listing 12.23.

Listing 12.23 Scene4ActionLayer.mm (replace createLevel with this)

- (void)createLevel {

 [self createBackground];

 [self createGround3];

 [self createSpikesWithOffset:-1200];

 [self createSpikesWithOffset:-400];

 [self createBridge];

 [self createGround1];

 [self createSpikesWithOffset:-1050];

 [self createSpikesWithOffset:-100];

 [self createBridge];

 [self createGround3];

 [self createSpikesWithOffset:-1700];

 [self createSpikesWithOffset:-900];

 [self createBridge];

 [self createGround2];

 [self createSpikesWithOffset:-1300];

 [self createSpikesWithOffset:-900];

 [self createGround3];

 [self createSpikesWithOffset:-1200];

 [self createSpikesWithOffset:-400];

 [self createBridge];

 [self createGround3];

}

Compile and run your code, and as you can see in Figure 12.8, now the level is a
lot more fun and challenging, since Ole has some spikes to avoid!

An Improved Main Loop
As you’ve been experimenting with adding bridges and spikes, you may have

noticed some odd behavior with Box2D along the way. You may have seen the wheels
pop off at times or the bridges sway more than expected.

The root cause of all of this goes back to the way you give Box2D time to run in
your update loop. Currently, you are just using an extremely simplified run loop that
gives Box2D a different amount of time to process each frame (also known as a variable
rate timestep), as shown in Listing 12.24.

Adding Obstacles and Bridges 395

Listing 12.24 Current main loop for Box2D—a variable rate timestep

int32 velocityIterations = 3;

int32 positionIterations = 2;

world->Step(dt, velocityIterations, positionIterations);

As you can see in Listing 12.24, each time the update method is called, the Step
method is called in the world with a different amount of time—whatever the variable
dt happens to be.

As mentioned in Chapter 10, “Basic Game Physics,” Box2D doesn’t work well with
a variable rate timestep; it works much better with a fixed timestep, which means giving
it the same exact amount of time each time you call the Step method. Although you
can get away with variable rate timesteps with smaller apps or games, the more Box2D
has to do, the more likely this is to cause problems.

So let’s replace this with a fixed timestep implementation. Go to your update
method in Scene4ActionLayer.mm, comment out the lines from Listing 12.24, and add
the new implementation shown in Listing 12.25.

Listing 12.25 Scene4ActionLayer.mm (in update method, comment out the code from
Listing 12.24 and replace with this)

static double UPDATE_INTERVAL = 1.0f/60.0f;

static double MAX_CYCLES_PER_FRAME = 5;

static double timeAccumulator = 0;

Figure 12.8 Ole jumping spike obstacles in level

Chapter 12 Advanced Game Physics: Even Better than the Real Thing396

timeAccumulator += dt;

if (timeAccumulator > (MAX_CYCLES_PER_FRAME * UPDATE_INTERVAL)) {

 timeAccumulator = UPDATE_INTERVAL;

}

int32 velocityIterations = 3;

int32 positionIterations = 2;

while (timeAccumulator >= UPDATE_INTERVAL) {

 timeAccumulator -= UPDATE_INTERVAL;

world->Step(UPDATE_INTERVAL,

 velocityIterations, positionIterations);

}

Every time the Step method is called on the world, it’s always called with the same
amount of time (UPDATE_INTERVAL; i.e., 1/60 of a second). If the time passed in to
the method is greater than this, it divides it by the UPDATE_INTERVAL and calls Step
multiple times. It also keeps track of the leftover amount and uses it next time update
is called.

Note
There is one further optimization you can do to your physics loop: interpolate the results
to remove the effects of that tiny extra slice of time in each frame. For more information
on how to do this, check out http://gafferongames.com/game-physics/fix-your-timestep/ or
search the Cocos2D forums for a good discussion.

The fixed timestep greatly improves the stability of the physics simulation. If you
compile and run your code, you should see a lot less strange behavior.

The Boss Fight!
What better way to end an awesome level than with an amazing boss fight? In this
section we do exactly that: pit Ole against the dangerous Digger Robot!

The idea here is that the Digger Robot paces back and forth on the final platform.
If Ole collides with the Digger, Ole gets hurt. However, if Ole slams into the back of
the Digger, he can push the Digger back a bit and eventually push him off the edge of
the level to win!

Figure 12.9 gives you an idea of what this menacing foe looks like and how you’ll
model him in the Box2D world.

As you can see in Figure 12.9, you model the Digger as a box with two wheels,
which makes it easy to move him left and right. Since the robot will be pacing back
and forth, you also add two sensors for the Digger: one on the left of the robot and
one on the right. You simply use the appropriate sensor depending on which direction
the Digger is facing.

http://gafferongames.com/game-physics/fix-your-timestep/

The Boss Fight! 397

To make the Digger Robot, the first thing you need to do is create a new subclass
of Box2DSprite for the Digger. Select the Classes\Game Objects\Box2D group, go to
File > New > New File..., choose iOS > Cocoa Touch > Objective-C class,
and click Next. Enter Box2DSprite as the Subclass of, click Next, name the file Digger.
mm (note the .mm extension, since this will be importing Box2D), and click Save.

Replace the contents of Digger.h, as shown in Listing 12.26.

Listing 12.26 Digger.h

#import "Box2DSprite.h"

@interface Digger : Box2DSprite {

b2Body *wheelLBody;

b2Body *wheelRBody;

b2RevoluteJoint *wheelLJoint;

b2RevoluteJoint *wheelRJoint;

b2Body *drillLBody;

b2Body *drillRBody;

b2Fixture *drillLFixture;

b2Fixture *drillRFixture;

 Box2DSprite *wheelLSprite;

Box2DSprite *wheelRSprite;

}

@property (assign) Box2DSprite *wheelLSprite;

@property (assign) Box2DSprite *wheelRSprite;

- (id)initWithWorld:(b2World *)world atLocation:(CGPoint)location;

@end

Figure 12.9 Mapping the Digger sprite to Box2D bodies

Chapter 12 Advanced Game Physics: Even Better than the Real Thing398

Here you make a subclass of Box2DSprite for the Digger Robot and declare refer-
ences to a few variables you’ll need to keep track of. Specifically, these variables keep
track of the Box2D bodies and joints for the Digger’s wheels and the body and fixture
for the two drill sensor bodies.

Next, switch to Digger.mm and add the method to create a body for the Digger
Robot, as shown in Listing 12.27.

Listing 12.27 Digger.mm (inside @implementation)

@synthesize wheelLSprite;

@synthesize wheelRSprite;

- (void)createBodyWithWorld:(b2World *)world

 atLocation:(CGPoint)location {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position =

b2Vec2(location.x/PTM_RATIO, location.y/PTM_RATIO);

b2Body *cartBody = world->CreateBody(&bodyDef);

 cartBody->SetUserData(self);

self.body = cartBody;

b2PolygonShape shape;

int num = 4;

b2Vec2 verts[] = {

b2Vec2(87.0f / 100.0, -32.0f / 100.0),

b2Vec2(81.0f / 100.0, 110.0f / 100.0),

b2Vec2(-87.0f / 100.0, 112.0f / 100.0),

b2Vec2(-84.0f / 100.0, -33.0f / 100.0)

 };

 shape.Set(verts, num);

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.density = 0.5;

 fixtureDef.friction = 0.5;

 fixtureDef.restitution = 0.5;

 cartBody->CreateFixture(&fixtureDef);

 cartBody->SetAngularDamping(1000);

}

Most of this should look pretty familiar to you by now. It creates a body for the
Digger with a polygon shape that traces a box around the top of the body. The vertices

The Boss Fight! 399

for the shape were created with Vertex Helper; you can trace the shape to define your
own vertices if you wish.

As far as the settings go, the robot is set up to have a low density (so that when
Ole collides with it, he gives it a good thwack). It’s also set up to use angular damping.
Angular damping is a value that affects the body’s resistance to rotation, so you set this
to a high value here to prevent the Digger from f lipping when Ole collides with it.

Next add a method to create the wheels for the Digger, as shown in Listing 12.28.

Listing 12.28 Digger.mm (after createBodyWithWorld)

- (void)createWheelsWithWorld:(b2World *)world {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position =

body->GetWorldPoint(b2Vec2(-50.0/100.0, -80.0/100.0));

 wheelLBody = world->CreateBody(&bodyDef);

 bodyDef.position =

body->GetWorldPoint(b2Vec2(50.0/100.0, -80.0/100.0));

 wheelRBody = world->CreateBody(&bodyDef);

b2CircleShape circleShape;

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &circleShape;

 fixtureDef.friction = 0.2;

 fixtureDef.restitution = 0.5;

 fixtureDef.density = 5.0;

 circleShape.m_radius = 25.0/100.0;

 wheelLBody->CreateFixture(&fixtureDef);

 circleShape.m_radius = 25.0/100.0;

 wheelRBody->CreateFixture(&fixtureDef);

b2RevoluteJointDef revJointDef;

 revJointDef.Initialize(body, wheelLBody,

 wheelLBody->GetWorldCenter());

 revJointDef.enableMotor = true;

 revJointDef.motorSpeed = 0;

 revJointDef.maxMotorTorque = 1000;

 wheelLJoint = (b2RevoluteJoint *) world->CreateJoint(&revJointDef);

 revJointDef.Initialize(body, wheelRBody,

 wheelRBody->GetWorldCenter());

 wheelRJoint = (b2RevoluteJoint *) world->CreateJoint(&revJointDef);

 wheelLSprite = [Box2DSprite

 spriteWithSpriteFrameName:@"digger_wheel.png"];

Chapter 12 Advanced Game Physics: Even Better than the Real Thing400

wheelLSprite.body = wheelLBody;

wheelLBody->SetUserData(wheelLSprite);

wheelRSprite = [Box2DSprite

 spriteWithSpriteFrameName:@"digger_wheel.png"];

wheelRSprite.body = wheelRBody;

wheelRBody->SetUserData(wheelRSprite);

}

This method creates two wheels for the Digger. Even though the Digger doesn’t
appear to have wheels, you still want it to slide around the ground as if it has wheels.
This is a good example of how sometimes it’s convenient to have your Box2D bodies
appear differently than what the user sees in order to get certain effects.

The code in the method should look quite familiar to you at this point; it creates
a body and fixture for each wheel. The numbers for the radius and position of the
wheels in the method were determined by measuring the desired size and distance of
the virtual wheels in an image editor. Feel free to measure it yourself to make sure you
fully understand it.

It also sets the density for the wheels to be higher (since wheels should be close in
mass to the bodies they support in Box2D to act properly) and creates revolute joints
to connect each wheel to the main body.

Finally, it creates a sprite for each wheel and ties the sprites and Box2D bodies
together.

Next add a method to create the drill sensors, as shown in Listing 12.29.

Listing 12.29 Digger.mm (after createWheelsWithWorld)

- (void)createDrillWithWorld:(b2World *)world {

 b2BodyDef bodyDef;

 bodyDef.type = b2_dynamicBody;

 bodyDef.position = body->GetPosition();

drillLBody = world->CreateBody(&bodyDef);

drillRBody = world->CreateBody(&bodyDef);

b2PolygonShape shape;

int num = 3;

b2Vec2 verts[] = {

b2Vec2(-65.0f / 100.0, 31.0f / 100.0),

b2Vec2(-189.0f / 100.0, -2.0f / 100.0),

b2Vec2(-85.0f / 100.0, -72.0f / 100.0)

 };

 shape.Set(verts, num);

 b2FixtureDef fixtureDef;

 fixtureDef.density = 0.25;

The Boss Fight! 401

 fixtureDef.shape = &shape;

 fixtureDef.isSensor = true;

drillLFixture = drillLBody->CreateFixture(&fixtureDef);

int num2 = 3;

b2Vec2 verts2[] = {

b2Vec2(85.0f / 100.0, -72.0f / 100.0),

b2Vec2(189.0f / 100.0, -2.0f / 100.0),

b2Vec2(65.0f / 100.0, 31.0f / 100.0),

 };

 shape.Set(verts2, num2);

drillRFixture = drillRBody->CreateFixture(&fixtureDef);

b2WeldJointDef weldJointDef;

 weldJointDef.Initialize(body, drillLBody, body->GetWorldCenter());

 world->CreateJoint(&weldJointDef);

 weldJointDef.Initialize(body, drillRBody, body->GetWorldCenter());

 world->CreateJoint(&weldJointDef);

}

This method creates two bodies and fixtures for the drill sensors: one for when the
driller is facing left and one for when the driller is facing right. The vertices for the
left drill were determined by tracing the drill shape using Vertex Helper (feel free to
trace them yourself if you’d like). Note that it sets the position of the drills to be the
position of the body, so tracing the drill in Vertex Helper would result in the proper
coordinates.

Once you have vertices for the left drill, you can easily determine the vertices for
the right drill by switching the x offset from negative to positive (i.e., −65.0 would
become 65.0), since the center of the body matches up to the center of the driller
sprite. However, you need to swap the order of the vertices, because vertices must
always be added in counterclockwise order, as you can see in Figure 12.10.

Figure 12.10 Making sure vertex order is counterclockwise for both left
and right drill sensors

Chapter 12 Advanced Game Physics: Even Better than the Real Thing402

Next add the init method to create a new Digger, as shown in Listing 12.30.

Listing 12.30 Digger.mm (after createDrillWithWorld)

- (id)initWithWorld:(b2World *)world atLocation:(CGPoint)location {

if ((self = [super init])) {

 [self setDisplayFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"digger_anim5.png"]];

 gameObjectType = kDiggerType;

 characterHealth = 100.0f;

 [self createBodyWithWorld:world atLocation:location];

 [self createWheelsWithWorld:world];

 [self createDrillWithWorld:world];

 }

return self;

}

This simply sets an initial frame for the Digger and calls the methods you wrote
previously to create the body, wheels, and drill sensors.

Now it’s time to add the Digger to your level! Open Scene4ActionLayer.h and prede-
clare Digger at the top of the file, as shown in Listing 12.31.

Listing 12.31 Scene4ActionLayer.h (at the top of the file)

@class Digger;

While you’re there, add a few new instance variables, as shown in Listing 12.32.

Listing 12.32 Scene4ActionLayer.h (inside @interface)

Digger * digger;

bool gameOver;

b2Body *offscreenSensorBody;

These keep track of the Digger, whether the game is over, and a pointer to a body
that will help detect if the cart or the Digger falls off the screen.

Then switch to Scene4ActionLayer.m and add a few imports to the top of the file, as
shown in Listing 12.33.

Listing 12.33 Scene4ActionLayer.mm (at the top of the file)

#import "Digger.h"

#import "GameManager.h"

Then add a method to create a new Digger, as shown in Listing 12.34.

The Boss Fight! 403

Listing 12.34 Scene4ActionLayer.mm (before createLevel)

- (void)createDigger {

CGSize winSize = [CCDirector sharedDirector].winSize;

digger = [[[Digger alloc] initWithWorld:world

 atLocation:ccp(groundMaxX - winSize.width * 0.8,

 winSize.height/2)] autorelease];

 [sceneSpriteBatchNode addChild:digger];

 [sceneSpriteBatchNode addChild:digger.wheelLSprite];

 [sceneSpriteBatchNode addChild:digger.wheelRSprite];

}

This method places the Digger 80 percent of a screen width left of the last ground/
bridge section added to the scene and in the air a bit (he’ll drop down due to gravity).

Next you add a method to create the sensor that helps detect if the cart or the Dig-
ger falls offscreen, as shown in Listing 12.35.

Listing 12.35 Scene4ActionLayer.mm (after createDigger)

- (void)createOffscreenSensorBody {

CGSize winSize = [CCDirector sharedDirector].winSize;

float32 sensorWidth = groundMaxX + winSize.width*4;

float32 sensorHeight = winSize.height * 0.25;

 float32 sensorOffsetX = -winSize.width*2;

float32 sensorOffsetY = -winSize.height/2;

 b2BodyDef bodyDef;

 bodyDef.type = b2_staticBody;

 bodyDef.position.Set(

 sensorOffsetX/PTM_RATIO + sensorWidth/2/PTM_RATIO,

 sensorOffsetY/PTM_RATIO + sensorHeight/2/PTM_RATIO);

 offscreenSensorBody = world->CreateBody(&bodyDef);

b2PolygonShape shape;

 shape.SetAsBox(sensorWidth/2/PTM_RATIO, sensorHeight/2/PTM_RATIO);

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.isSensor = true;

 fixtureDef.density = 0.0;

 offscreenSensorBody->CreateFixture(&fixtureDef);

}

This creates a large rectangular area below the level that can be used to detect if the
cart or Digger falls into that area.

Chapter 12 Advanced Game Physics: Even Better than the Real Thing404

Next, add some code to the bottom of your update method to check for the win
and lose conditions, as shown in Listing 12.36.

Listing 12.36 Scene4ActionLayer.mm (at the bottom of the update method)

if (!gameOver) {

if (isBodyCollidingWithObjectType(offscreenSensorBody, kCartType)) {

 gameOver = true;

 [uiLayer displayText:@"You Lose"

andOnCompleteCallTarget:self selector:@selector(gameOver:)];

 } else if (isBodyCollidingWithObjectType(offscreenSensorBody,

kDiggerType)) {

 gameOver = true;

 [uiLayer displayText:@"You Win!"

andOnCompleteCallTarget:self selector:@selector(gameOver:)];

 }

}

This checks to see if the cart has collided with the offscreen sensor (which causes
the player to lose) or if the Digger has collided with the offscreen sensor (which causes
the player to win).

Next add the gameOver method as shown in Listing 12.37.

Listing 12.37 Scene4ActionLayer.mm (before the update method)

-(void)gameOver:(id)sender {

 [[GameManager sharedGameManager] runSceneWithID:kMainMenuScene];

}

Almost done! As the final step, add the lines shown in Listing 12.38 at the end of
your createLevel method.

Listing 12.38 Scene4ActionLayer.mm (at the end of the createLevel method)

[self createDigger];

[self createGround3];

[self createGround3];

[self createOffscreenSensorBody];

That’s it! Compile and run your code, and as you can see in Figure 12.11, if you
can make it to the end of the level, you’ll see Ole’s menacing foe ready for battle!

Or maybe not so ready. Right now the poor Digger just sits there doing absolutely
nothing. Since Ole deserves a more menacing nemesis than that, let’s start making this
Digger a bit more dangerous.

The Boss Fight! 405

A Dangerous Digger
The Digger will move back and forth along the platform, switching directions every
so often, while Ole tries to slam into the Digger from behind. If Ole is successful, he’ll
bump the Digger a bit toward the edge, but if he fails and collides with the drill, Ole
takes some damage.

To implement this action, you add a new updateStateWithDeltaTime method
inside the Digger class to check for collisions and implement game logic and a
changeState method to switch between states such as drilling, walking, rotating,
and taking damage. You also add a few animations to the Digger, for when the Digger
rotates from left to right or successfully drills into Ole.

Start by opening Digger.h and add three new instance variables to keep track of
when the Digger started moving in the current direction and the two animations for
rotating and drilling, as shown in Listing 12.39.

Listing 12.39 Digger.h (inside @interface)

double movingStartTime;

CCAnimation *rotateAnim;

CCAnimation *drillAnim;

Next, switch to Digger.mm and add the imports listed in Listing 12.40 to the top of
the file.

Figure 12.11 Ole first encountering the Digger robot

Chapter 12 Advanced Game Physics: Even Better than the Real Thing406

Listing 12.40 Digger.mm (at the top of the file)

#import "Cart.h"

#import "Box2DHelpers.h"

Then add the first part of the updateStateWithDeltaTime method, which con-
tains most of the game logic for the Digger, as shown in Listing 12.41.

Listing 12.41 Digger.mm (anywhere in class)

- (void) updateStateWithDeltaTime:(ccTime)deltaTime

 andListOfGameObjects:(CCArray *)listOfGameObjects {

// 1

if ((characterState == kStateTakingDamage) &&

 ([self numberOfRunningActions] > 0)) {

return;

 }

// 2

if (characterState == kStateDrilling &&

 [self numberOfRunningActions] == 0) {

 [self changeState:kStateRotating];

 }

// 3

if (characterState == kStateTakingDamage &&

 [self numberOfRunningActions] == 0) {

 wheelLJoint->SetMotorSpeed(0);

 wheelRJoint->SetMotorSpeed(0);

 [self changeState:kStateRotating];

 }

// 4

if (characterState != kStateWalking &&

 [self numberOfRunningActions] == 0) {

 [self changeState:kStateWalking];

 }

}

Let’s go through this method section by section.

1. Check to see if the Digger is in the taking-damage state and has an action run-
ning (which would mean the blinking action is running). If this is the case,
the method immediately returns because it shouldn’t do anything else until the
blinking animation finishes.

The Boss Fight! 407

2. Check to see if the Digger is in the drilling state and has no actions running
(which would mean the drilling animation has finished). If this is the case, it
immediately rotates the Digger (so Ole has a chance to retaliate).

3. Check to see if the Digger is in the taking-damage state and has no actions run-
ning (which would mean the blinking action has finished). If this is the case, it
stops the wheel motors to pause the Digger and switches the state to rotating (to
give the Digger a chance to retaliate this time).

4. Check to see if the Digger is in any state but walking and has no running actions
(which would happen when the rotating animation finishes, etc.). If this is the
case, it changes the Digger to walking.

Next, wrap up the method by adding the remaining logic, shown in Listing 12.42.

Listing 12.42 Digger.mm (at the end of updateStateWithDeltaTime)

// 5

if (characterState == kStateWalking) {

Cart *cart = (Cart *)

 [[self parent] getChildByTag:kVikingSpriteTagValue];

b2Body *cartBody = cart.body;

 // 6

double curTime = CACurrentMediaTime();

double timeMoving = curTime - movingStartTime;

static double TIME_TO_MOVE = 2.0f;

 // 7

b2Body * drill = drillLBody;

float direction = -1.0;

if ([self flipX]) {

 drill = drillRBody;

 direction = -1 * direction;

 }

 // 8

if (isBodyCollidingWithObjectType(drill, kCartType)) {

 [[SimpleAudioEngine sharedEngine] playEffect:@"drill.caf"];

 [cart changeState:kStateTakingDamage];

 [self changeState:kStateDrilling];

 wheelLJoint->SetMotorSpeed(0);

 wheelRJoint->SetMotorSpeed(0);

 cartBody->ApplyLinearImpulse(

b2Vec2(direction * cart.fullMass * 8, -1.0 * cart.fullMass),

 cartBody->GetWorldPoint(b2Vec2(0, -15.0/100.0)));

 }

Chapter 12 Advanced Game Physics: Even Better than the Real Thing408

 // 9

else if (isBodyCollidingWithObjectType(cartBody, kDiggerType)) {

 [[SimpleAudioEngine sharedEngine] playEffect:@"collision.caf"];

 [self changeState:kStateTakingDamage];

 cartBody->ApplyLinearImpulse(

b2Vec2(-direction * cart.fullMass * 8, -1.0 * cart.fullMass),

 cartBody->GetWorldPoint(b2Vec2(0, -15.0/100.0)));

body->ApplyLinearImpulse(

b2Vec2(direction * body->GetMass() * 10, 0),

body->GetWorldPoint(b2Vec2(0, -5.0/100.0)));

 }

 // 10

else if (timeMoving > TIME_TO_MOVE) {

 wheelLJoint->SetMotorSpeed(0);

 wheelRJoint->SetMotorSpeed(0);

 [self changeState:kStateRotating];

 }

 // 11

else {

 wheelLJoint->SetMotorSpeed(-1 * direction * M_PI * 3);

 wheelRJoint->SetMotorSpeed(-1 * direction * M_PI * 3);

 }

}

Again, let’s explore the rest of this method section by section.

5. Check to see if the Digger is in the walking state; the rest of the logic applies
only if that is the case. Also grab a reference to Ole’s cart by looking it up using
the kVikingSpriteTagValue tag from the Digger’s parent (the sprite batch
node). Remember, when you added the tag to the sprite batch node earlier in
this chapter, you set the tag to kVikingSpriteTagValue. This is an easy way
to get a reference to a particular sprite.

6. Calculate how long the Digger has been moving in the current direction by sub-
tracting the initial time the Digger started moving from the current time.

7. Figure out the direction the drill is moving in. Normally it moves left, since that
is the way the sprite faces, but if the sprite is f lipped (i.e., flipX is set), it moves
right. Based on the direction, we get a reference to the drill sensor that should
be active.

8. Check to see if the active drill is colliding with the cart. If it is, change the cart
to the taking-damage state, change the drill to the drilling state, and also use an
impulse to slightly “knock back” the cart.

9. Check to see if the cart is colliding with the drill. If it is, change the drill to the
taking-damage state and use impulses to apply a slight “knock back” effect to
both the cart and the Digger.

The Boss Fight! 409

10. Check to see if the cart has moved in the current direction for a preset period of
time, and if so, switch directions by switching to the rotating state.

11. If none of the above conditions are met, set the wheels of the Digger to move in
the current direction as the default action.

Phew! You’ve made a lot of progress so far and are well on your way to having a
cool boss fight! Just a few more steps to go.

The next thing you need is a method to change states and supporting methods for
that method, as shown in Listing 12.43.

Listing 12.43 Digger.mm (anywhere in class)

-(void)disableDrills {

 drillLFixture->SetSensor(true);

 drillRFixture->SetSensor(true);

}

-(void)enableDrills {

if ([self flipX]) {

 drillRFixture->SetSensor(false);

 } else {

drillLFixture->SetSensor(false);

 }

}

-(void)changeState:(CharacterStates)newState {

if (characterState == newState) return;

 [self stopAllActions];

id action = nil;

 [self setCharacterState:newState];

switch (newState) {

case kStateTakingDamage:

 action = [CCBlink actionWithDuration:1.0 blinks:3.0];

break;

case kStateDrilling:

 action = [CCRepeat actionWithAction:

 [CCAnimate actionWithAnimation:drillAnim

restoreOriginalFrame:YES] times:3];

break;

case kStateWalking:

 movingStartTime = CACurrentMediaTime();

break;

case kStateRotating:

 {

Chapter 12 Advanced Game Physics: Even Better than the Real Thing410

CCCallFunc *disableDrills =

 [CCCallFunc actionWithTarget:self

selector:@selector(disableDrills)];

CCAnimate *rotToCenter =

 [CCAnimate actionWithAnimation:rotateAnim

restoreOriginalFrame:NO];

CCFlipX *flip = [CCFlipX actionWithFlipX:!self.flipX];

CCAnimate *rotToSide = (CCAnimate *) [rotToCenter reverse];

CCCallFunc *enableDrills =

 [CCCallFunc actionWithTarget:self

selector:@selector(enableDrills)];

 action = [CCSequence actions:disableDrills, rotToCenter,

 flip, rotToSide, enableDrills, nil];

break;

 }

default:

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

This method runs the appropriate visual effects for each change of state. For tak-
ing damage, the cart runs a blinking action. For drilling, it runs the drill animation.
Rotating launches a sequence of actions: it first disables both drill sensors as the cart
starts rotating, then runs a rotation animation to rotate to the center position, f lips
the sprite, runs the rotation animation again to face the other way, and reenables the
appropriate drill.

Next, add a method to load the animations needed in this class, as shown in
Listing 12.44.

Listing 12.44 Digger.mm (before initWithWorld:atLocation)

-(void)initAnimations {

rotateAnim = [self loadPlistForAnimationWithName:@"rotateAnim"

andClassName:NSStringFromClass([self class])];

 [[CCAnimationCache sharedAnimationCache] addAnimation:rotateAnim
name:@"rotateAnim"];

drillAnim = [self loadPlistForAnimationWithName:@"drillAnim"

andClassName:NSStringFromClass([self class])];

 [[CCAnimationCache sharedAnimationCache] addAnimation:drillAnim
name:@"drillAnim"];

}

The Boss Fight! 411

This uses the same helper methods you’ve used before to create animations based on
a property list. If you would like, you can look at the property list and compare it to
the images in the sprite sheet to see how each animation is put together.

Note
The animations are added to the CCAnimationCache so that they are retained some-
where for future use. Alternatively, you could just retain these variables and release them
in dealloc.

One final step! Just add the following call to the end of initWithWorld:
atLocation to load the animations, as shown in Listing 12.45.

Listing 12.45 Digger.mm (at the end of initWithWorld:atLocation)

[self initAnimations];

That’s it! Compile and run your code, and as you can see in Figure 12.12, now Ole
can fight a forbidding foe!

Figure 12.12 Ole getting drilled by the digger

Finishing Touches: Adding a Cinematic Fight Sequence
The level is looking really good now. It has action, danger, cool physics effects, and
even a boss fight! But let’s make this even more awesome by adding a cinematic intro-
duction to the final fight to add some spice and excitement to the level.

Chapter 12 Advanced Game Physics: Even Better than the Real Thing412

The idea is that when Ole approaches the final boss, action pauses for a moment,
and the camera pans to the left to show the bridge that Ole just crossed go up in
f lames and drop to the ground! The camera then pans to reveal the boss menacingly
approach Ole with the drill, and then again to the far side of the screen to reveal the
pit where you can push the Digger off.

Not only does this make the level cooler, but it also explains to the player:
n This is a boss fight,
n This is the boss’s location, and
n The way to defeat him is to push him off the cliff—

all without saying a word.
The good news is, you can do most of this with material that you’ve already learned

in this book, such as how to move the camera and how to run actions. So let’s dig in.
First, open Scene4ActionLayer.h and add the new instance variables shown in

Listing 12.46.

Listing 12.46 Scene4ActionLayer.h (inside @implementation)

CCParticleSystem *fireOnBridge;

b2Body *finalBattleSensorBody;

bool inFinalBattle;

bool actionStopped;

These variables are a particle system used for the fire particle effect (more on this
later), a sensor to detect when it’s time to play the final battle animation, a Boolean to
keep track of whether the player is in the final battle, and a Boolean to keep track of
whether the action is temporarily stopped.

Next, switch to Scene4ActionLayer.mm and add a routine to create a sensor to detect
if the player has reached a certain location, which triggers the start of the final battle
sequence, as shown in Listing 12.47.

Listing 12.47 Scene4ActionLayer.mm (before createLevel)

- (void)createFinalBattleSensor {

CGSize winSize = [CCDirector sharedDirector].winSize;

float32 sensorWidth = winSize.width * 0.03;

 float32 sensorHeight = winSize.height;

float32 sensorOffset = winSize.width * 0.15;

 b2BodyDef bodyDef;

 bodyDef.type = b2_staticBody;

 bodyDef.position.Set(

groundMaxX/PTM_RATIO + sensorOffset/PTM_RATIO

 + sensorWidth/2/PTM_RATIO,

The Boss Fight! 413

 sensorHeight/2/PTM_RATIO);

finalBattleSensorBody = world->CreateBody(&bodyDef);

b2PolygonShape shape;

 shape.SetAsBox(sensorWidth/2/PTM_RATIO, sensorHeight/2/PTM_RATIO);

 b2FixtureDef fixtureDef;

 fixtureDef.shape = &shape;

 fixtureDef.isSensor = true;

 fixtureDef.density = 0.0;

finalBattleSensorBody->CreateFixture(&fixtureDef);

}

This is just a tall thin box that is placed right after the final bridge leading to the
boss. When the player collides with it, the cinematic fight sequence begins.

Next, add a method to create a particle system that creates a fire effect to show the
bridge burning, as shown in Listing 12.48.

Listing 12.48 Scene4ActionLayer.mm (after createFinalBattleSensor)

- (void)createParticleSystem {

fireOnBridge = [CCParticleSystemQuad

particleWithFile:@"fire.plist"];

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

fireOnBridge.position = ccp(groundMaxX - 400.0, 80);

 } else {

fireOnBridge.position = ccp(groundMaxX - 200, 40);

 }

 [fireOnBridge stopSystem];

 [self addChild:fireOnBridge z:10];

}

This method is called right after adding the final bridge, so the particle system is
located in the middle of the bridge. The particle system immediately stops after initial-
ization, but it is started up again later when needed.

The particle system itself was generated with Particle Designer, and its definition is
saved to a property list. You can read more about Particle Designer and creating par-
ticle systems in Chapter 14, “Particle Systems, Game Center, and Performance.”

Next add the “meat” of the cinematic fight sequence code at the bottom of your
update method, as shown in Listing 12.49.

Chapter 12 Advanced Game Physics: Even Better than the Real Thing414

Listing 12.49 Scene4ActionLayer.mm (at the end of the update method)

CGSize winSize = [CCDirector sharedDirector].winSize;

if (!inFinalBattle &&

 isBodyCollidingWithObjectType(finalBattleSensorBody, kCartType)) {

 inFinalBattle = true;

 actionStopped = true;

 [cart setMotorSpeed:0];

 cart.body->SetLinearVelocity(b2Vec2(0, 0));

 [self runAction:

 [CCSequence actions:

 [CCDelayTime actionWithDuration:1.0],

 [CCMoveBy actionWithDuration:0.5

 position:ccp(winSize.width * 0.6, 0)],

 [CCCallFunc actionWithTarget:self

 selector:@selector(startFire)],

 [CCDelayTime actionWithDuration:2.0],

 [CCCallFunc actionWithTarget:self

 selector:@selector(destroyBridge)],

 [CCDelayTime actionWithDuration:1.0],

 [CCMoveBy actionWithDuration:2.0

position:ccp(-1 * winSize.width * 1.3, 0)],

 [CCDelayTime actionWithDuration:1.0],

 [CCCallFunc actionWithTarget:self

 selector:@selector(playRoar)],

 [CCDelayTime actionWithDuration:1.0],

 [CCMoveBy actionWithDuration:2.0

 position:ccp(-1 * (winSize.width*6-winSize.width*0.7), 0)],

 [CCDelayTime actionWithDuration:1.0],

 [CCMoveBy actionWithDuration:2.0

 position:ccp(winSize.width*6, 0)],

 [CCCallFunc actionWithTarget:self

 selector:@selector(backToAction)],

nil]];

}

This first checks to see if the player collided with the final battle sensor. If the
player has, it marks that the player is in the final battle and that the game action is
stopped. Next, it sets the motor speed on the cart’s wheels to 0, stops the layer from
following the player, and also uses SetLinearVelocity on the cart body to immedi-
ately stop the cart.

The Boss Fight! 415

Note
SetLinearVelocity is a function that immediately sets the velocity of a Box2D body
to a specified value. Usually, it is better to use impulses or forces to indirectly influ-
ence the velocity of an object rather than using SetLinearVelocity, because Set-
LinearVelocity can cause strange behavior with the physics engine. However, it’s
okay in cases in which you just want to immediately stop a body.

Once everything is stopped, it runs a sequence of actions. Specifically, the scene
pans to the left, starts a fire on the bridge, destroys the bridge, pans back over to the
boss and plays an evil roar sound effect, pans to the far side of the screen to reveal the
pit, then pans back and starts the action back up. These are all done with Cocos2D
actions, as you learned in Chapter 4, “Simple Collision Detection and the First
Enemy.”

Next, add the helper functions referenced earlier to start the fire, destroy the
bridge, play the laugh, and return to action, as shown in Listing 12.50.

Listing 12.50 Scene4ActionLayer.mm (above the update method)

- (void)startFire {

 PLAYSOUNDEFFECT(FLAME_SOUND);

 [fireOnBridge resetSystem];

}

- (void)destroyBridge {

 [fireOnBridge stopSystem];

world->DestroyJoint(lastBridgeStartJoint);

lastBridgeStartJoint = NULL;

world->DestroyJoint(lastBridgeEndJoint);

lastBridgeEndJoint = NULL;

}

- (void)playRoar {

 PLAYSOUNDEFFECT(ENEMYDRILL_ROAR1);

}

- (void)backToAction {

actionStopped = false;

 [self followCart];

}

These are pretty simple. The startFire method plays a fire sound effect and
restarts the fire particle system; the destroyBridge method calls DestroyJoint to
remove the two joints connecting the bridge to the ground (so it falls); playLaugh
plays a sound; and backToAction disables the actionStopped f lag and refollows
the cart.

Chapter 12 Advanced Game Physics: Even Better than the Real Thing416

Next, you need to add some code to check for the actionStopped variable. If
the variable is set, the layer shouldn’t follow the cart and the cart shouldn’t be able to
move. So add a check to the top of both the accelerometer:didAccelerate and
followCart methods, as shown in Listing 12.51.

Listing 12.51 Scene4ActionLayer.mm (at the top of both accelerometer:didAccelerate
and followCart)

if (actionStopped) return;

One last step. Inside your createLevel method, immediately after the last call to
createBridge, add two lines to create the particle system and add the final battle
sensor—important—immediately after the last call to createBridge, as shown in
Listing 12.52.

Listing 12.52 Scene4ActionLayer.mm (in the createLevel method, immediately after the
last call to createBridge)

[self createParticleSystem];

[self createFinalBattleSensor];

Comment out the setupDebugDraw method if you like, and compile and run the
code. As you can see in Figure 12.13, you should now have an action-packed, physics-
enabled, side-scrolling level, complete with a cinematic boss fight!

Figure 12.13 The burning bridge in the cinematic boss fight

Challenges 417

Summary
At this point you have created a side-scrolling action level with Box2D, complete
with vehicles, motors, joints, collisions, enemy logic, cinematic effects, and more! You
should now be familiar with how to use Box2D in real games and how to use the
most important capabilities of the engine.

To learn more about Box2D, check out the Box2D manual available on the offi-
cial Box2D site (http://www.box2d.org). It contains a full reference to some additional
features of Box2D that may be useful in your games, such as additional joint types,
raycasting, and more. The Box2D forums are also a great source of knowledge and a
good place to ask Box2D-related questions.

Hopefully these three chapters have gotten you excited about the possibilities of
using Box2D in your games, and we look forward to seeing your Box2D-enabled
games available at the App Store!

Challenges
1. Add some additional artificial intelligence to the boss enemy. For example, have

him charge at Ole when Ole is nearby or stop moving to the right once he nears
the edge of the level.

2. Due to space and time constraints, this chapter didn’t implement an indicator of
Ole’s health in the UI layer or create a lose condition if Ole’s health hits zero.
Go ahead and implement these features to reinforce the material you’ve learned
in earlier chapters.

3. Make another type of enemy and add it to the level. For example, maybe add a
long pole of spikes connected to a revolute joint on the ground that tries to slam
into the ground when Ole draws near.

http://www.box2d.org

This page intentionally left blank

13
The Chipmunk Physics Engine

(No Alvin Required)

Now that you have experienced using Box2D to make a cart-racing-and-jumping level, you can
see how using a game physics library allows you to add some amazing effects to your game.

One of the nice things about Cocos2D is that it comes with not one but two different 2D
game physics libraries. You’ve tried Box2D already in Chapters 10, 11, and 12, so now it’s time
to try the other library: Chipmunk.

In this chapter, you use Chipmunk to create a Metroid-style platform jumping level (Figure 13.1),
where Ole has to leap from platform to platform to escape the planet before it explodes. In the
process, you learn how to use Chipmunk, how it differs from Box2D, and you’ll be ready to use
whichever library you prefer in your games.

If you haven’t read Chapters 10, 11, and 12 yet, you should go through those chapters first,
as this chapter builds on some of the concepts covered there.

So let’s get to it—the clock is ticking!

Figure 13.1 The Chipmunk Metroid-style platform jumping level you’ll
make in this chapter

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)420

What Is Chipmunk?
Chipmunk is an open source 2D game physics library originally written by Scott
Lembcke. Like Box2D, Chipmunk comes integrated with Cocos2D by default, so it is
quite easy to use in your Cocos2D games. Its feature set is very similar to Box2D, and
even works in the same way but has slightly different terminology:

n You start by creating a physics world (but it’s called a “space” in Chipmunk) to
place your physics bodies. You give Chipmunk time to simulate the space in
each frame. Chipmunk then moves the bodies in the space with physics, and you
update the positions of your sprites afterward based on the body locations.

n You add bodies and fixtures into the space (but fixtures are called “shapes” in
Chipmunk). Just like in Box2D, you can have multiple shapes on a body if you
have a particularly complicated object to model, and bodies and shapes do not
have to match exactly to sprites.

n You add joints to restrict the movement of bodies (but joints are called “con-
straints” in Chipmunk, as they are a bit more generic in Chipmunk). Chipmunk
has similar types of constraints to those in Box2D, but there are some important
differences, which you learn about in this chapter.

The good news is that since you’re already familiar with using Box2D, Chipmunk
will be much easier to pick up! The engines are so similar that it’s mostly a matter
of learning the slightly different APIs to call in Chipmunk to accomplish the same
effects.

In this chapter, you dive right into using Chipmunk and get hands-on experience
with the most important concepts: creating a space, adding bodies and shapes to the
space, adding constraints, and more.

Chipmunk versus Box2D
Considering that you have a choice between using either Chipmunk or Box2D as
the physics engine in your Cocos2D game, you might wonder which you should use.
It really comes down to a personal preference, so it’s best to play around with both
engines and then see which you prefer, which you can do by completing these chap-
ters! However, here are a few differences between Chipmunk and Box2D to keep in
mind:

n Chipmunk is written in C, while Box2D is written in C++. Some program-
mers are more comfortable with C than with C++ (or vice versa), so they may
prefer working with one engine over another. In addition, Chipmunk has some
helper Objective-C wrapper classes you can use if you want to avoid C and C++
entirely.

n Chipmunk does not require you to convert points to meters. Therefore, you
don’t need to use the point-to-meter ratio (PTM_RATIO) to convert your

Getting Started with Chipmunk 421

coordinates in Chipmunk, which can make your code less error prone and easier
to read.

n Chipmunk code is often more terse. The code to create the same effect in Chip-
munk is often fewer lines of boilerplate than it is in Box2D, which can be nice
when you want to quickly prototype your game.

n Box2D joints and Chipmunk constraints have some differences. For example,
when you create a revolute joint in Box2D, you can also set limits on how much
the joint can move and set a motor on the joint. In Chipmunk, to accomplish
the same effect, you have to use three different constraints. Some effects are
more difficult to accomplish in Chipmunk than they are in Box2D because of
the additional options that Box2D joints have. However, Chipmunk has a few
joints (such as a damped rotary spring or ratchet joint effects) that have no direct
equivalent in Box2D.

n Box2D has a continuous collision detection feature that prevents objects from
penetrating static objects such as the ground. In certain cases, your objects in
Chipmunk might get stuck in static objects or even go through.

n Box2D seems more stable/weather torn. Take this with a grain of salt, as this is
just my personal opinion/experience, but after working with both engines, I’ve
encountered fewer oddities that I’ve had to work around with Box2D than I
have with Chipmunk.

But no matter which engine you choose, you can’t go wrong! You can accomplish
most of the things you might want to do with either engine, both offer an amazing
feature set and are easy to use, and both have a wealth of knowledge available on their
forums as you begin to use them.

In this chapter, you get a chance to try out Chipmunk, and when you’re done,
you’ll have experience using both Box2D and Chipmunk in a nontrivial level. That
way you can pick which you like best for your game, and have fun!

Getting Started with Chipmunk
Before you can get started writing Chipmunk code, you need to make a placeholder
scene for the level and hook it up to the Main Menu.

Much as you did in Chapter 11, “Intermediate Game Physics,” you create two lay-
ers in this scene: a user interface (UI) layer and an action layer. For this level, the UI
level contains the countdown timer until the planet explodes, and the action layer con-
tains just about everything else.

First, make a class for the user interface layer. Control-click on the Scenes group in
Xcode, select New Group, then rename the new folder that was created to Scene5.
Then with the new Scene5 group selected, go to File > New > New File..., choose
iOS > Cocoa Touch > Objective-C class, and click Next. Enter CCLayer as the
Subclass of, click Next, name the file Scene5UILayer.m, and click Save.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)422

Replace Scene5UILayer.h with contents of Listing 13.1.

Listing 13.1 Scene5UILayer.h

#import "cocos2d.h"

@interface Scene5UILayer : CCLayer {

CCLabelTTF *label;

}

- (void)displaySecs:(double)secs;

@end

Note that the UI layer contains a single label used for the countdown timer, and a
method that the action layer uses to display the number of seconds remaining.

Next switch to Scene5UILayer.m and replace it with the contents of Listing 13.2.

Listing 13.2 Scene5UILayer.m

#import "Scene5UILayer.h"

@implementation Scene5UILayer

- (void)displaySecs:(double)secs {

// 1

 secs = MAX(0, secs);

// 2

double intPart = 0;

double fractPart = modf(secs, &intPart);

int isecs = (int)intPart;

int min = isecs / 60;

int sec = isecs % 60;

int hund = (int) (fractPart * 100);

 [label setString:[NSString stringWithFormat:@"%02d:%02d:%02d",

 min, sec, hund]];

}

- (id)init {

if ((self = [super init])) {

// 3

 CGSize winSize = [CCDirector sharedDirector].winSize;

float fontSize = 40.0;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 fontSize *= 2;

 }

Getting Started with Chipmunk 423

label = [CCLabelTTF labelWithString:@""

fontName:@"AmericanTypewriter-Bold" fontSize:fontSize];

 label.anchorPoint = ccp(1, 1);

 label.position = ccp(winSize.width - 20, winSize.height - 20);

 [self addChild:label];

 }

return self;

}

@end

Let’s go through this section by section.

1. This makes the minimum number of seconds zero, because it wouldn’t make
sense to display a negative number of seconds in this scene. After all, when the
time hits zero, it’s explosion time!

2. This converts the seconds into three parts: minutes, seconds, and hundredths of
seconds, and shows the results in the label as a formatted string. If you haven’t
seen the modf function before, it is a handy C-library function that breaks a
double value into an integral part and a fractional part.

3. This creates the label (which is blank to start) and positions it near the upper
right. Note that it sets the anchor point to ccp(1,1), which is the top right.
That way when it sets the position of the label later, that sets where the top right
corner of the label is.

That’s it for the UI layer, so now make a class for the action layer. With the Scene5
group selected, go to File > New > New File..., choose iOS > Cocoa Touch >
Objective-C class, and click Next. Enter CCLayer as the Subclass of, click Next,
name the file Scene5ActionLayer.m, and click Save.

Replace Scene5ActionLayer.h with the contents of Listing 13.3.

Listing 13.3 Scene5ActionLayer.h

#import "cocos2d.h"

@class Scene5UILayer;

@interface Scene5ActionLayer : CCLayer {

Scene5UILayer * uiLayer;

double startTime;

}

- (id)initWithScene5UILayer:(Scene5UILayer *)scene5UILayer;

@end

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)424

This layer contains a reference to the UI layer and the time the layer started. It also
contains an initializer that takes the UI layer as a parameter.

Now switch to Scene5ActionLayer.m and replace it with the contents of Listing 13.4.

Listing 13.4 Scene5ActionLayer.m

#import "Scene5ActionLayer.h"
#import "Scene5UILayer.h"

@implementation Scene5ActionLayer

- (id)initWithScene5UILayer:(Scene5UILayer *)scene5UILayer {
if ((self = [super init])) {

 uiLayer = scene5UILayer;
 startTime = CACurrentMediaTime();
 [self scheduleUpdate];
 }

return self;
}

- (void)update:(ccTime)dt {
static double MAX_TIME = 60;
double timeSoFar = CACurrentMediaTime() - startTime;
double remainingTime = MAX_TIME - timeSoFar;

 [uiLayer displaySecs:remainingTime];
}

@end

initWithScene5UILayer stores the reference to the UI layer and the current
time and schedules the update method to be called in each frame.

update first defines that Ole has 1 minute (60 seconds) to escape the planet. It figures
out how much time Ole has been in the scene so far (by subtracting the start time from
the current time), then figures out how much time is remaining and displays that value.

Next make use of these two new layers by creating a class for the scene. With
the Scene5 group selected, go to File > New > New File..., choose iOS > Cocoa
Touch > Objective-C class, and click Next. Enter CCScene as the Subclass of, click
Next, name the file Scene5.m, and click Save.

Replace Scene5.h with the contents of Listing 13.5.

Listing 13.5 Scene5.h

#import "cocos2d.h"

@interface Scene5 : CCScene {
}

@end

Getting Started with Chipmunk 425

So far this is nothing but a subclass of CCScene. Now switch to Scene5.m and
replace it with the contents of Listing 13.6.

Listing 13.6 Scene5.m

#import "Scene5.h"

#import "Scene5UILayer.h"

#import "Scene5ActionLayer.h"

@implementation Scene5

-(id)init {

if ((self = [super init])) {

Scene5UILayer * uiLayer = [Scene5UILayer node];

 [self addChild:uiLayer z:1];

Scene5ActionLayer * actionLayer =

 [[[Scene5ActionLayer alloc]

 initWithScene5UILayer:uiLayer] autorelease];

 [self addChild:actionLayer z:0];

 }

return self;

}

@end

This creates the UI layer and the action layer and passes the UI layer as a parameter
to the action layer.

You’re almost done. The last step is to hook the new scene into the GameManager.
Switch to GameManager.mm and import Scene5.h at the top of the file, as shown in
Listing 13.7.

Listing 13.7 GameManager.mm (at top of file)

#import "Scene5.h"

Then go to the runSceneWithID method and modify the case for kGameLevel5
to run your new scene, as shown in Listing 13.8.

Listing 13.8 GameManager.mm (inside runSceneWithID’s switch statement)

case kGameLevel5:

 sceneToRun = [Scene5 node];

break;

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)426

Tip
As mentioned in the previous chapters, you may wish to set up your app to run this new
scene right away, since you’ll be working with it a lot in this chapter. Again, to do this
simply open Classes\Singletons\SpaceVikingAppDelegate.m, navigate to the bottom of
applicationDidFinishLaunching, and replace the CCDirector:runScene-
WithID call at the bottom to:

[[GameManager sharedGameManager]

 runSceneWithID:kGameLevel5];

That’s it. Compile and run your code, and select Escape! from the main menu
(unless you’ve set it up to run right away). You should see a countdown timer appear
in the upper right (Figure 13.2), proving that you’re making progress and that it’s only
a matter of time before everything goes boom.

Figure 13.2 The placeholder scene with the countdown timer
for the level

It’s also just a matter of time before you start writing some Chipmunk code. But
before you can do that, you need to add the Chipmunk files to your project.

Adding Chipmunk into Your Project
With Finder, navigate to the folder where you downloaded Cocos2D and navigate to
the external\Chipmunk subdirectory. Control-click the Chipmunk directory and select
Copy Chipmunk.

Then navigate to your SpaceViking project folder and navigate to the libs subdirectory.
Control-click the libs directory and select Paste Item. At this point, you should have
the Chipmunk directory as a subdirectory of SpaceViking\ libs, as shown in Figure 13.3.

Getting Started with Chipmunk 427

The next step is adding these files to your Xcode project. Expand the cocos2d Sources
group, then drag the Chipmunk folder from your SpaceViking\ libs directory to the
group. When the dialog appears, make sure Copy items into destination group’s
folder (if needed) is not checked, Create groups for any added folders is selected,
and click Finish, as shown in Figure 13.4.

Figure 13.3 Copying the Chipmunk files to your project directory

Figure 13.4 Adding the Chipmunk files to your Xcode project

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)428

Although you just added the entire Chipmunk directory, you actually only need
the include and src subdirectories, so let’s remove the references for the rest. To do
this, expand your new Chipmunk group in Xcode and select all of the subfolders and
files except for include and src. Control-click and choose delete, then choose Remove
References Only, as shown in Figure 13.5.

Figure 13.5 Removing all subfolders except for include and src

When you’re done, your group tree in Xcode should look similar to Figure 13.6.

Figure 13.6 Your Chipmunk group in Xcode after adding the
Chipmunk files

Getting Started with Chipmunk 429

One last step. Click on your Space Viking project in the Project Navigator to
bring up your project settings, select the Build Settings tab, make sure the All and
Combined buttons are selected, and look for the entry for Search Paths > Header
Search Paths. Double-click the entry to bring up an editor, click the Plus button
to add a new entry, double-click the entry for path, set it to libs/Chipmunk/include/
chipmunk if you are using Xcode 3 or SpaceViking/libs/Chipmunk/include/chipmunk if you
are using Xcode 4, and click Done. When you are done, the settings should look like
Figure 13.7.

Figure 13.7 Adding the Chipmunk include directory to the cocos2d
libraries target

Now compile your project; if it compiles, you’ve successfully integrated Chipmunk
into your project. Now let’s try it out and see how it works.

Creating a Basic Chipmunk Scene
Let’s start simple by creating a basic Chipmunk scene. Here we create a Chipmunk
space, add a simple box object to it, turn on debug drawing, and add a border at the
bottom to prevent the box from falling off the screen.

Before you can use any Chipmunk functions, you need to call a method called cpIn-
itChipmunk to initialize Chipmunk. This function needs to be called only once for the
entire game, so a good place to put this is inside the init method for GameManager.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)430

Switch to GameManager.mm and import chipmunk.h at the top of the file, as shown in
Listing 13.9.

Listing 13.9 GameManager.mm (at top of file)

#import "chipmunk.h"

Then call cpInitChipmunk inside the init method, as shown in Listing 13.10.

Listing 13.10 GameManager.mm (inside init method)

cpInitChipmunk();

Note
cpInitChipmunk allocates some global data necessary for Chipmunk to run properly.
If you forget to call cpInitChipmunk, your game will most likely crash with an EXC_
BAD_ACCESS error the first time two objects collide.

Now that you’ve initialized Chipmunk, the next step is to create a Chipmunk
space. A Chipmunk space is a “Chipmunk’s view” of the physics objects it simulates,
the equivalent of a Box2D world. You populate the space with Chipmunk bodies, let
Chipmunk handle the simulation for you, then update your sprites according to the
positions of the Chipmunk bodies.

As mentioned earlier, one difference between a Chipmunk space and a Box2D
world is units. In Box2D, units are optimized for meters, so you have to convert
points to meters with a point-to-meter ratio (PTM_RATIO). In Chipmunk, units can
be whatever you want, so it’s often simpler to use points directly as units rather than
applying a conversion.

Note
Even though you can use points directly with Chipmunk, you still need to make sure the
points you use are relative to the size of the current artwork. As in previous chapters,
sometimes we’ll be measuring offsets using the HD artwork, so we’ll need to use differ-
ent values for iPad and the iPhone.

Note that things won’t compile yet because you still need to add some code; don’t
worry, you’ll be able to compile again soon (when you get to Listing 13.16).

Next, switch to Scene5ActionLayer.m and add a method to create the space, as shown
in Listing 13.11.

Listing 13.11 Scene5ActionLayer.m (before initWithScene5UILayer)

- (void)createSpace {

space = cpSpaceNew(); // 1

Getting Started with Chipmunk 431

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 space->gravity = ccp(0, -1500); // 2

 } else {

space->gravity = ccp(0, -750);

 }

cpSpaceResizeStaticHash(space, 400, 200); // 3

cpSpaceResizeActiveHash(space, 200, 200);

}

It’s important to understand everything that’s going on here, so let’s review it line
by line:

1. This creates a new Chipmunk space by calling cpSpaceNew and stores the result
in the space instance variable that you’ll use later on.

2. Initializes the gravity for the Chipmunk space to a certain amount downward on
the y-axis. The exact number here was chosen by play-testing and choosing what
“felt right.” Note that the gravity needs to be different on the iPad than on the
iPhone due to the gravity being relative to the number of points on the screen.

3. To optimize collision detection, Chipmunk divides the space into a grid; that
way if two objects are in different grid cells, Chipmunk can quickly determine
that they don’t collide. You can (and should) use cpSpaceResizeStaticHash
and cpSpaceResizeActiveHash to tweak how large the grid sizes should be.
It’s best to have the size of the grid cells (the second parameter) be a little larger
than the average size of an object you’ll add to the scene and the number of grid
cells (the third parameter) to be about 10 times the number of objects you’ll
add to the scene. Note that there is both a static hash (for static objects that do
not move) and an active hash (for active objects that do move) that you can set
separately.

Now that you have created a Chipmunk space, you write a method to add a simple
box to the space at a particular location. To add an object to a Chipmunk space:

1. Create a Chipmunk body for the object and add it to the space.

2. Create one or more shapes for the Chipmunk body and add them to the space.

Let’s see how this works. Write a new method to create a box, as shown in
Listing 13.12.

Listing 13.12 Scene5ActionLayer.m (after createSpace)

- (void)createBoxAtLocation:(CGPoint)location {

float boxSize = 60.0;

float mass = 1.0;

cpBody *body = cpBodyNew(mass,

cpMomentForBox(mass, boxSize, boxSize)); // 1

body->p = location; // 2

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)432

cpSpaceAddBody(space, body); // 3

cpShape *shape =

cpBoxShapeNew(body, boxSize, boxSize); // 4

 shape->e = 0.0; // 5

 shape->u = 0.5; // 6

cpSpaceAddShape(space, shape); // 7

}

Again, this is foundational knowledge that is important to understand, so let’s step
through this line by line:

1. Creates a new Chipmunk body for the box. It sets the mass of the box (how hard
the box is to move) to 1.0 and uses a helper function to compute the moment of
inertia for the box (how hard the box is to rotate). You should always use helper
functions to compute the moment of inertia, as it’s tricky to estimate by hand.

2. Sets the position of the body to be the passed-in location. Note that there is no
need to convert units: you can just use points.

3. Adds the body to the Chipmunk space.

4. Creates a new shape for the box, associating it with the body. It uses a helper
function to create the vertices for a rectangle shape. You can also use helper
functions to create circle shapes (cpCircleShapeNew) or polygon shapes with
arbitrary vertices (cpPolyShapeNew).

5. The e member variable on the body stands for elasticity (how bouncy the box
is). Here it is set to 0.0 (no bounciness).

6. The f member variable on the body stands for friction (how much resistance
the body gives when sliding across another). Here it is set to 0.5 for a medium
amount of resistance.

7. Adds the shape to the Chipmunk space.

Now that you have a method to create a box, add a method to create the “level,”
which right now is just a single instance of that box, as shown in Listing 13.13.

Listing 13.13 Scene5ActionLayer.m (after createBoxAtLocation)

- (void)createLevel {

CGSize winSize = [CCDirector sharedDirector].winSize;

 [self createBoxAtLocation:ccp(winSize.width * 0.5, winSize.height *
0.15)];

}

Next add a method to create a “ground” border along the bottom to prevent the
box from falling off the screen due to gravity, as shown in Listing 13.14.

Getting Started with Chipmunk 433

Listing 13.14 Scene5ActionLayer.m (after createLevel)

- (void)createGround {

// 1

CGSize winSize = [CCDirector sharedDirector].winSize;

CGPoint lowerLeft = ccp(0, 0);

CGPoint lowerRight = ccp(winSize.width, 0);

 groundBody = cpBodyNewStatic(); // 2

float radius = 10.0f;

cpShape * shape = cpSegmentShapeNew(groundBody,

 lowerLeft, lowerRight, radius); // 3

 shape->e = 1.0f; // 4

 shape->u = 1.0f; // 5

 shape->layers ^= GRABABLE_MASK_BIT; // 6

cpSpaceAddShape(space, shape); // 7

}

There’s a lot of interesting new stuff here, so let’s go through it section by section:

1. Computes the coordinates for the lower left and lower right of the screen based
on the screen size.

2. This creates a Chipmunk body for the ground body by calling cpBodyNew-
Static and stores the result in an instance variable you’ll use later on.
cpBodyNewStatic is used instead of cpBodyNew because this is a static object
that should not move. Note that the body isn’t actually added to the space,
which is okay for static bodies like the ground that never need to move.

3. Creates a line segment shape from the lower left to the lower right by calling
cpSegmentShapeNew, attaching it to the ground body created earlier. The last
parameter is the radius of how wide to make the line segment; it’s given a thick-
ness of 10.0. This is a convenient feature in Chipmunk that is not present in
Box2D (the ability to give an edge shape a thickness).

4. Sets the elasticity (how bouncy the ground is) to 1.0 (perfect bounciness).

5. Sets the friction of the ground to 1.0.

6. Removes the GRABABLE_MASK_BIT from the layers that this shape is in. This
effectively prevents you from trying to move the ground with a mouse con-
straint, which you will learn more about later. If you forget to do this and are
using mouse constraints, you may see Chipmunk crash with an unsolvable con-
straint error, since it is impossible to move a body with infinite mass.

7. Adds the shape to the Chipmunk space.

Next you need to give Chipmunk time to run each frame. To do so, add the con-
tents of Listing 13.15 to the end of your update method.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)434

Listing 13.15 Scene5ActionLayer.m (at end of the update method)

static double UPDATE_INTERVAL = 1.0f/60.0f;

static double MAX_CYCLES_PER_FRAME = 5;

static double timeAccumulator = 0;

timeAccumulator += dt;

if (timeAccumulator > (MAX_CYCLES_PER_FRAME * UPDATE_INTERVAL)) {

 timeAccumulator = UPDATE_INTERVAL;

}

while (timeAccumulator >= UPDATE_INTERVAL) {

 timeAccumulator -= UPDATE_INTERVAL;

cpSpaceStep(space, UPDATE_INTERVAL);

}

This game loop is the fixed timestep game loop, similar to the game loop you
added in Chapter 12, “Advanced Game Physics,” but it calls cpSpaceStep in each
frame rather than world->Step. Just as with Box2D, it is usually best to use a fixed
timestep game loop like this in order to have a stable physics simulation.

Next you need to add debug draw support into the scene, so you can see the new
shapes you’re adding, and mouse support so you can move the objects by dragging.
Most of the code you need for this is already contained in some handy support classes;
you just need to add them to your project.

In Xcode, Control-click your Classes group, select New Group, and then rename
the new folder to Chipmunk. Then open the folder for the resource files for this chap-
ter and drag cpMouse.c, cpMouse.h, drawSpace.c, and drawSpace.h to the new Chipmunk
group. Verify Copy items into destination group’s folder (if needed) is checked,
that only the SpaceViking target is checked, and click Finish, as shown in Figure 13.8.

Figure 13.8 Adding cpMouse.c/h and drawSpace.c/h from the resources
files for this chapter

Getting Started with Chipmunk 435

After you add the files, there’s an important step to take to make sure they compile
correctly. In Xcode, select cpMouse.c, and go to View > Utilities > File Inspector.
Click on the File Type dropdown, and set it to Objective-C source, as you can see
in Figure 13.9. Repeat the process with drawSpace.c.

Figure 13.9 Setting file type of cpMouse.c and drawSpace.c to
Objective-C source

Switch to Scene5ActionLayer.h and import chipmunk.h, cpMouse.h, and drawSpace.h at
the top of the file, as shown in Listing 13.16.

Listing 13.16 Scene5ActionLayer.h (at top of file)

#import "chipmunk.h"

#import "cpMouse.h"

#import "drawSpace.h"

Still inside Scene5ActionLayer.h, add the instance variables you need inside the inter-
face declaration, as shown in Listing 13.17.

Listing 13.17 Scene5ActionLayer.h (inside interface declaration)

cpSpace *space;

cpBody *groundBody;

cpMouse *mouse;

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)436

Switch back to Scene5ActionLayer.m and implement your draw method to call Chip-
munk’s debug draw code in drawSpace.c/h, as shown in Listing 13.18.

Listing 13.18 Scene5ActionLayer.m (after update method)

- (void)draw {

drawSpaceOptions options = {

0, // drawHash

0, // drawBBs

1, // drawShapes

4.0f, // collisionPointSize

0.0f, // bodyPointSize

1.5f, // lineThickness

 };

drawSpace(space, &options);

}

This method calls the helper code contained in debugDraw.c/h to draw representa-
tions of the Chipmunk physics objects to the screen so you can visualize what’s going
on in the physics simulation. You can configure what to show in the drawSpace-
Options structure. In this example, it turns on drawing of the shapes, sets the point
that is drawn to indicate collisions to have a size of 4 points, and sets the general line
thickness to be 1.5 points.

Next, add some touch-handling code that uses some helper functions in cpMouse.c/h
to enable you to move objects by dragging, as shown in Listing 13.19.

Listing 13.19 Scene5ActionLayer.m (after draw method)

- (void)registerWithTouchDispatcher {

 [[CCTouchDispatcher sharedDispatcher] addTargetedDelegate:self

priority:0 swallowsTouches:YES];

}

- (BOOL)ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event {

CGPoint touchLocation = [self convertTouchToNodeSpace:touch];

cpMouseGrab(mouse, touchLocation, false);

return YES;

}

- (void)ccTouchMoved:(UITouch *)touch withEvent:(UIEvent *)event {

CGPoint touchLocation = [self convertTouchToNodeSpace:touch];

cpMouseMove(mouse, touchLocation);

}

- (void)ccTouchEnded:(UITouch *)touch withEvent:(UIEvent *)event {

cpMouseRelease(mouse);

}

Getting Started with Chipmunk 437

This registers the node with the touch dispatcher to receive the callbacks, then for
each callback, it calls the appropriate helper routine in cpMouse.c/h to enable mouse
movement for this scene. Note how you have to convert the touches to node coordi-
nates as usual before passing them on to the helper routines.

You’re almost done! To wrap things up, add the code to call the new methods you
wrote at the end of initWithScene5UILayer, as shown in Listing 13.20.

Listing 13.20 Scene5ActionLayer.m (at end of initWithScene5UILayer)

[self createSpace];

[self createGround];

mouse = cpMouseNew(space);

self.isTouchEnabled = YES;

[self createLevel];

This calls the functions you wrote to create the space and ground, initializes the
mouse joint, sets the layer as accepting touches, and calls the method to create the level
(which right now contains just a single box).

Compile and run your code, and you should be able to see a box fall down into
your scene. You should also be able to move the box around by dragging it with your
finger, as you can see in Figure 13.10.

Figure 13.10 A basic Chipmunk scene with a space, body, shape,
mouse joint movement, and debug drawing

Believe it or not, now you already know how to use some of the most important
features of Chipmunk:

n How to create a space
n How to add a body and shape to the space

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)438

n How to enable debug drawing
n How to use mouse joint support

Based on this knowledge, you could use Chipmunk to make the puzzle level you
created with Box2D in Chapter 10, “Basic Game Physics,” except for one piece: how
to map a sprite to the Chipmunk body. So let’s learn this by bringing our hero back
into action and enabling him to run and leap to safety.

Adding Sprites and Making Them Move
It’s time to add a sprite for Ole into this level, but before you do, let’s review the
approach.

In Chapters 10, 11, and 12, you made the Box2D bodies line up very closely to
the shapes of the sprites. You then looped through each Box2D body in the scene and
updated the associated sprite to be in the same position as the body.

In this chapter, you take a different approach. You make the shape representing
Ole just a small box toward his feet, since you don’t really care about the collisions
with the rest of his body, and that shape is simple to work with. Also, instead of loop-
ing through all of the physics bodies, you go the other way around: you loop through
each of the sprites and their position based on the appropriate physics body. This is a
preferred method of working, since it doesn’t make the assumption that a sprite maps
one-to-one to a physics body.

Much as you did in Chapter 11, you create a base class for all sprites that are related
to Chipmunk bodies in order to contain some of the common code.

So let’s get started by creating this class! Control-click on the Classes\GameObjects
group in Xcode, select New Group, then rename the new folder Chipmunk. Then
with the new Chipmunk group selected, go to File > New > New File..., choose
iOS > Cocoa Touch > Objective-C class, and click Next. Enter GameCharacter as
the Subclass of, click Next, name the file CPSprite.m, and click Save.

Replace CPSprite.h with the contents of Listing 13.21.

Listing 13.21 CPSprite.h

#import "cocos2d.h"

#import "chipmunk.h"

#import "GameCharacter.h"

@interface CPSprite : GameCharacter {

cpBody * body;

cpShape * shape;

cpSpace * space;

}

Adding Sprites and Making Them Move 439

- (void)addBoxBodyAndShapeWithLocation:(CGPoint)location

 size:(CGSize)size

 space:(cpSpace *)theSpace

 mass:(cpFloat)mass

 e:(cpFloat)e

 u:(cpFloat)u

 collisionType:(cpCollisionType)collisionType

 canRotate:(BOOL)canRotate;

@end

Note the base class defines a single body and shape for the sprite and keeps a refer-
ence to the Chipmunk space. It also has a superlong helper method to create a box
body and shape based on several passed in values.

Next replace CPSprite.m with the contents of Listing 13.22.

Listing 13.22 CPSprite.m

#import "CPSprite.h"

@implementation CPSprite

-(void)updateStateWithDeltaTime:(ccTime)deltaTime

 andListOfGameObjects:(CCArray*)listOfGameObjects {

self.position = ccp(body->p.x, body->p.y);

self.rotation = CC_RADIANS_TO_DEGREES(-body->a);

}

- (void)addBoxBodyAndShapeWithLocation:(CGPoint)location

 size:(CGSize)size

 space:(cpSpace *)theSpace

 mass:(cpFloat)mass

 e:(cpFloat)e

 u:(cpFloat)u

 collisionType:(cpCollisionType)collisionType

 canRotate:(BOOL)canRotate {

 space = theSpace;

float moment = INFINITY;

if (canRotate) {

 moment = cpMomentForBox(mass, size.width, size.height);

 }

body = cpBodyNew(mass, moment);

body->p = location;

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)440

cpSpaceAddBody(space, body);

 shape = cpBoxShapeNew(body, size.width, size.height);

 shape->e = e;

 shape->u = u;

 shape->collision_type = collisionType;

 shape->data = self;

cpSpaceAddShape(space, shape);

}

@end

This first implements updateStateWithDeltaTime to update the position of the
sprite based on the position of the Chipmunk body.

Then addBoxBodyAndShapeWithLocation creates a Chipmunk body and shape
based on the passed in values, in the way you created the box shape earlier in this
chapter. Note that if canRotate is false, the body is given an infinite moment of
inertia, which makes the body unable to rotate.

Note that the data variable on the shape is set to self, so that a pointer to the
class can be found if you just have the shape (which you’ll need later on). Also note
that the collisionType of the body is set to a passed in value. You’ll be learning
more about collision types and what they mean later in this chapter.

Now that you have your handy new CPSprite class, you create a subclass to rep-
resent Ole. With the Classes\GameObjects\Chipmunk group selected, go to File > New
> New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter CPSprite as the Subclass of, click Next, name the file CPViking.m, and click
Save.

Replace CPViking.h with the contents of Listing 13.23.

Listing 13.23 CPViking.h

#import "CPSprite.h"

@interface CPViking : CPSprite {

}

- (id)initWithLocation:(CGPoint)location space:(cpSpace *)space

 groundBody:(cpBody *)groundBody;

@end

Not much to see here: this just subclasses CPSprite and defines an initializer for
the class. Next switch to CPViking.m and replace it with the contents of Listing 13.24.

Adding Sprites and Making Them Move 441

Listing 13.24 CPViking.m

#import "CPViking.h"

@implementation CPViking

- (id)initWithLocation:(CGPoint)location space:(cpSpace *)theSpace

 groundBody:(cpBody *)groundBody {

if ((self = [super initWithSpriteFrameName:@"sv_anim_1.png"])) {

 CGSize size;

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 size = CGSizeMake(60, 60);

self.anchorPoint = ccp(0.5, 30/self.contentSize.height);

} else {

 size = CGSizeMake(30, 30);

self.anchorPoint = ccp(0.5, 15/self.contentSize.height);

}

 [self addBoxBodyAndShapeWithLocation:location

 size:size space:theSpace mass:1.0 e:0.0 u:0.5

 collisionType:0 canRotate:TRUE];

 }

return self;

}

@end

This class represents Ole’s sprite and will eventually contain the game logic for
Ole’s movement and behavior. In this level, the Chipmunk body does not match up
exactly to Ole’s size for this level. Instead, the Chipmunk body is just a smallish box
toward the bottom of Ole’s feet. This is because you don’t really care about what the
top of Ole’s body collides with in this level, and it makes for nicer game behavior, as a
short box is less likely to tip over than a long rectangular box.

Note
If you do care about the collisions with the top half of Ole, one good solution is to add a
second shape to the same Chipmunk body for his upper half. This way, you can still use
the box shape on the bottom for setting surface velocity for more stable player move-
ment, as you’ll see later on in this chapter.

The first thing the initWithLocation method does is set the sprite frame to Ole’s
“standing still” position. It then sets the anchor point to be in the middle of the sprite
along the x-axis and 30 (or 15 for the iPhone) points from the bottom along the y-axis
(since the goal is to match the anchor point with the center of the Chipmunk body).
Finally, it calls the addBoxBodyAndShapeWithLocation method you wrote earlier
in CPSprite to create a 60 × 60 (or 30 × 30 for the iPhone) box representing Ole.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)442

Note
If you’re still confused about why the anchor point was set, remember that the anchor
point is the offset within the sprite that represents its position. For this sprite, you are
creating a 60 × 60 box toward the bottom of the sprite, so you want the sprite’s position
to match up with the center of the box (i.e., the Chipmunk body’s position). Since anchor
point’s values range from 0 to 1 (a percentage of the sprite’s width/height), you divide 30
points by the height of the sprite to get the percentage.

Now, let’s integrate this new class into the level. Switch to Scene5ActionLayer.h and
add the declaration for CPViking above the interface declaration, as shown in
Listing 13.25.

Listing 13.25 Scene5ActionLayer.h (above interface declaration)

@class CPViking;

Then add two new instance variables you’ll need for the viking sprite and the
scene’s sprite batch node, as shown in Listing 13.26.

Listing 13.26 Scene5ActionLayer.h (inside interface declaration)

CPViking *viking;

CCSpriteBatchNode *sceneSpriteBatchNode;

Switch to Scene5ActionLayer.m and import CPViking.h at the top of the file, as
shown in Listing 13.27.

Listing 13.27 Scene5ActionLayer.m (at top of file)

#import "CPViking.h"

Next go to the initWithScene5UILayer method and add the contents of Listing
13.28 right before the call to createLevel. Note that it is important to add it before
createLevel, because later on createLevel will assume the sprite sheet was cre-
ated beforehand.

Listing 13.28 Scene5ActionLayer.m (in initWithScene5UILayer, right before call to
createLevel)

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene5atlas-hd.plist"];

 sceneSpriteBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"scene5atlas-hd.png"];

Adding Sprites and Making Them Move 443

 viking = [[[CPViking alloc] initWithLocation:ccp(200,200)

 space:space groundBody:groundBody] autorelease];

} else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene5atlas.plist"];

 sceneSpriteBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"scene5atlas.png"];

 viking = [[[CPViking alloc] initWithLocation:ccp(100,100)

 space:space groundBody:groundBody] autorelease];

}

[self addChild:sceneSpriteBatchNode z:0];

[sceneSpriteBatchNode addChild:viking z:2];

This creates the sprite batch node for this level and stores it in an instance variable.
It then creates a CPViking object, using the initializer you just wrote, and adds it to
the sprite batch node.

Speaking of the sprite batch node, go ahead and drag scene5atlas.png, scene5atlas.
plist, scene5atlas-hd.png, and scene5atlas-hd.plist from the resources files for this chapter
into the Images group. Make sure Copy items into destination group’s folder (if
needed) is checked when you do so.

One last step. You need to call the update method on each of the GameObjects in
your scene, so add the code to your update method, as shown in Listing 13.29.

Listing 13.29 Scene5ActionLayer.m (at bottom of update method)

CCArray *listOfGameObjects = [sceneSpriteBatchNode children];

for (GameCharacter *tempChar in listOfGameObjects) {

 [tempChar updateStateWithDeltaTime:dt

andListOfGameObjects:listOfGameObjects];

}

Compile and run, and you should see Ole in your scene with a small box tied to
the bottom of his feet, as shown in Figure 13.11.

He acts a little weird if right now you move him around with the mouse joint, but
that’s okay because you’re about to enable Ole to run and jump his way off this planet.
For this level, you move Ole by tilting the device left and right and make him jump
by tapping the screen.

But before you dive into code, let’s take a moment to discuss some Chipmunk con-
cepts you need to know to implement his movement.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)444

Jumping by Directly Setting Velocity
In the mine cart level you made in Chapters 11 and 12, you implemented jumping by
applying an impulse to the Box2D body. You can apply forces and impulses in Chip-
munk as well, but for this level you take a different approach: you implement jumping
by setting the velocity of the sprite directly.

One of the nice things about Chipmunk is that it works well with directly setting
the velocity of bodies, which can be really convenient for player controls like this.
Setting the velocity of a body is easy: you just call a function like the one in
Listing 13.30.

Listing 13.30 Example of directly setting velocity

cpBodySetVel(body, newVel);

For the y velocity of Ole, this function is set to a hardcoded value as long as Ole is
jumping. For this level, the longer the player’s finger is held down, the higher Ole will
jump. So basically, the y velocity is set to the hardcoded value as long as the finger is
held down, up until a maximum number of seconds. This makes it a little more fun
for the player, as he or she can make both short jumps and longer jumps.

For the x velocity of Ole, this function is set based on the amount the device is
currently tilted while Ole is in the air. This is a nice trait to have, so the player can
reverse Ole’s direction in midjump.

Figure 13.11 Ole sprite added to scene, mapped to a (smaller)
Chipmunk object

Adding Sprites and Making Them Move 445

Ground Movement by Setting Surface Velocity
Chipmunk has a neat property you can set on objects called surface velocity that works
nicely for conveyor belt effects or for character controls such as this.

Basically, the surface velocity for an object represents the speed at which the surface
of the object itself is moving. You can set it to make an object slide along the ground
or move across a conveyor belt.

For this level, when Ole is on the ground, you will set the surface velocity to move
Ole based on accelerometer input. This is more convenient than modifying Ole’s
velocity directly, so that his velocity does not affect the speed of moving platforms and
so on. Setting the surface velocity is quite easy, as you can see in Listing 13.31.

Listing 13.31 Example of setting surface velocity

shape->surface_v = newSurfaceVel;

Detecting Collisions with the Ground
Since you’re going to move Ole in different ways based on whether he’s in the air or
on the ground, you need to know when Ole is colliding with the ground.

Detecting collisions is very easy with Chipmunk. You first set the collisionType
of each shape to a number representing the type of shape it is, so you can refer to it
later. For this level, you set the ground and platforms as one number (kCollision-
TypeGround) and Ole as another number (kCollisionTypeViking).

The next step is to tell Chipmunk what collision-related events you are interested
in by specifying one or more callback functions. The events you can register for are:

n Begin: Called when two objects start colliding. In your handler for this event,
you can return false to make Chipmunk permanently ignore the collision. This
can be handy to have fine-grained control of which objects collide with each
other, as Chipmunk’s built-in collision filtering is somewhat limited.

n PreSolve: Called each frame while two objects are touching, immediately
before Chipmunk calculates the collision response for the two objects. In your
handler for this event, you can return false to make Chipmunk ignore this colli-
sion for the current frame only. This can be useful to implement if you want the
collisions ignored sometimes but not always (such as you’ll be doing in this level
for one-way platforms!). It is also a good spot where you can modify collision-
related values such as elasticity or friction.

n PostSolve: Called each frame while two objects are touching, immediately after
Chipmunk calculates the collision response for the two objects. This is a good
place to put code that relies on how hard two objects collide against each other,
such as playing a sound effect with its volume based on the collision force.

n Separate: Called when two objects separate and are no longer colliding.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)446

In this level, you use collision detection callbacks for two reasons: (1) to detect if
the player is currently on the ground, by implementing the Begin and Separate
callbacks, and (2) to allow the player to jump through the bottom of a one-way plat-
form, by implementing the PreSolve callback.

Note
The callback functions you write are C functions, so you can’t access member variables
from your class in these functions. A common workaround is to pass your game object as
a parameter, and then access properties on your object or call a method on it.

Also note that you cannot delete Chipmunk objects directly from these callback functions
(or Chipmunk will likely crash). Instead, you should use the cpSpaceAddPostStep-
Callback function to schedule a callback to be called when it’s safe to delete Chip-
munk objects, passing in parameters for the objects you wish to delete. This is useful
when you want to delete objects in the case of a collision (such as bullets intersecting a
monster).

Chipmunk Arbiter and Normals
When you receive callbacks from Chipmunk for collision events, you get passed a data
structure called cpArbiter that contains useful information on the collision.

The cpArbiter structure contains a list of all of the points where the two objects
are colliding, and each collision point has a useful value called a normal, which is a
vector perpendicular to the contact point, in the direction of the collision.

This is quite useful to detect if Ole is colliding with the top of a platform or the
bottom of the platform. As you will see in the following code, we use this structure to
allow Ole to jump through the bottom of a platform but still collide with the top.

Implementation—Collision Detection
Now that you are armed with some background knowledge, let’s try this out and get
Ole moving.

The first step is to add the code to detect when Ole is hitting the ground and when
he isn’t and to allow Ole to jump through the bottom of platforms. Open Classes\
Constants\Constants.h and add a new enum for the collision types you need for this
level, as shown in Listing 13.32.

Listing 13.32 Constants.h (add to bottom of file)

typedef enum {

 kCollisionTypeGround = 0x1,

 kCollisionTypeViking

} CollisionType;

Then, switch to CPViking.m and modify your call to addBoxBodyAndShapeWith-
Location to specify the new collision type for Ole instead of 0, as shown in Listing
13.33.

Adding Sprites and Making Them Move 447

Listing 13.33 CPViking.m (modify call to addBoxBodyAndShapeWithLocation in
initWithLocation)

[self addBoxBodyAndShapeWithLocation:location

 size:size space:theSpace mass:1.0 e:0.0 u:1.0

 collisionType:kCollisionTypeViking canRotate:TRUE];

Similarly, switch to Scene5ActionLayer.m and set the collision type for the ground
shape created in createGround, as shown in Listing 13.34.

Listing 13.34 Scene5ActionLayer.m (before calling cpSpaceAddShape in createGround)

shape->collision_type = kCollisionTypeGround;

Next let’s convert the dynamic shape you added to the level into a static platform so
you can test that the one-way platform code you’re about to add works. Replace cre-
ateBoxAtLocation with the contents of Listing 13.35.

Listing 13.35 Scene5ActionLayer.m (replace createBoxAtLocation)

- (void)createBoxAtLocation:(CGPoint)location {

 cpFloat hw, hh;

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 hw = 100.0/2.0f;

 hh = 10.0/2.0f;

 } else {

 hw = 50.0/2.0f;

 hh = 5.0/2.0f;

 }

cpVect verts[] = {

cpv(-hw,-hh),

cpv(-hw, hh),

cpv(hw, hh),

cpv(hw,-hh),

 };

cpShape *shape = cpPolyShapeNew(groundBody, 4, verts, location);

 shape->e = 1.0;

 shape->u = 1.0;

 shape->collision_type = kCollisionTypeGround;

cpSpaceAddShape(space, shape);

}

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)448

Note
This method is a good example of how to create shapes with arbitrary vertices by using
cpPolyShapeNew, passing in an array of vertices. If you wanted to, you could use Ver-
tex Helper to trace exact shapes and create bodies based on those shapes, just as you
did in Chapter 11. However, note that for Chipmunk, vertices must be defined in clockwise
order (rather than counterclockwise as with Box2D).

Now that each of the shapes in the scene has the correct collision type set, you can
set up some callback functions to be called when Ole hits or separates from the ground
shapes.

The callbacks keep track of which ground shapes Ole is currently colliding with
at any given time. Open CPViking.h and add an instance variable to store the array of
ground shapes, as shown in Listing 13.36.

Listing 13.36 CPViking.h (inside interface declaration)

cpArray *groundShapes;

While you’re there, also add a property for the ground shapes array, since you need
to access it from outside the class (in the C-function callbacks), as shown in Listing
13.37.

Listing 13.37 CPViking.h (after interface declaration)

@property (readonly) cpArray *groundShapes;

Switch to CPViking.m and synthesize your new property, as shown in Listing 13.38.

Listing 13.38 CPViking.m (right after @implementation)

@synthesize groundShapes;

Then add the code to initialize the groundShapes array and register for the colli-
sion callbacks inside your initWithLocation method, as shown in Listing 13.39.

Listing 13.39 CPViking.m (at end of initWithLocation)

groundShapes = cpArrayNew(0);

cpSpaceAddCollisionHandler(space, kCollisionTypeViking,

 kCollisionTypeGround, begin, preSolve, NULL, separate, NULL);

This registers for three of the four possible collision-related events for Ole colliding
with the ground: the begin, preSolve, and separate events. Go ahead and write
these methods next, as shown in Listing 13.40.

Adding Sprites and Making Them Move 449

Listing 13.40 CPViking.m (before initWithLocation)

static cpBool begin(cpArbiter *arb, cpSpace *space, void *ignore) {

CP_ARBITER_GET_SHAPES(arb, vikingShape, groundShape); // 1

CPViking *viking = (CPViking *)vikingShape->data; // 2

cpVect n = cpArbiterGetNormal(arb, 0); // 3

if (n.y < 0.0f) { // 4

cpArray *groundShapes = viking.groundShapes; // 5

cpArrayPush(groundShapes, groundShape);

 }

return cpTrue;

}

static cpBool preSolve(cpArbiter *arb, cpSpace *space, void *ignore) {

if(cpvdot(cpArbiterGetNormal(arb, 0), ccp(0,-1)) < 0){ // 6

return cpFalse;

 }

return cpTrue;

}

static void separate(cpArbiter *arb, cpSpace *space, void *ignore) {

CP_ARBITER_GET_SHAPES(arb, vikingShape, groundShape); // 7

CPViking *viking = (CPViking *)vikingShape->data;

cpArrayDeleteObj(viking.groundShapes, groundShape);

}

Overall, the begin method detects when Ole is colliding with the top of a plat-
form (and adds it to an array if so), and the separate method removes the platform
from the array. The preSolve method is responsible for ignoring any collisions Ole
has with the bottom of platforms.

There’s a good bit of new material here, so let’s go over it step by step:

1. This is a helper macro that declares variables for the two shapes involved in the
collision, naming them vikingSprite and groundShape. Note that the order
of the shapes is the same as the order of the collision types that you passed into
cpSpaceAddCollisionHandler.

2. Retrieves the pointer to the CPViking object from the data pointer in the shape.
Remember that you set the data pointer of the shape to self when you created
the shape in CPSprite’s addBoxBodyAndShapeWithLocation method. Also
remember that this is a C function, so it doesn’t have access to the instance vari-
ables of the CPViking class, which is why you need to do this.

3. Gets the normal vector for the first contact point. Remember that a normal is a
vector perpendicular to the contact point, in the direction of the collision.

4. If the y component of the normal vector is less than 0, Ole is colliding with the
top of the platform.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)450

5. Any time Ole is colliding with the top of the platform, this adds it to the list of
shapes Ole is currently colliding with.

6. This tests to see if Ole is jumping through the bottom of the platform and, if
so, cancels the collision response by returning false. Otherwise it returns true to
have Chipmunk continue to process the collision response.

7. The separate method removes the ground shape from the array of shapes cur-
rently in contact if it is present.

At this point, the Viking class has a list of all of the ground shapes that Ole is cur-
rently in contact with, and it allows Ole to jump through the bottom of platforms.
Well, if he could jump, that is! So let’s add this capability next.

Note
This is just one of several ways to detect if an object is colliding with the ground. I chose
to cover this method in this chapter because I thought it was a good introduction to the
various callback methods available in Chipmunk.

Another method suggested by Scott Lembcke, the creator of Chipmunk, is to keep a Bool-
ean flag on the object and set it to false before stepping the Chipmunk space (as long as
the body isn’t sleeping). Then, register a presolve callback on the object and the ground,
and set it back to true if the collision normal is pointing upward. The advantage of this
method is only one callback is necessary rather than three like in the example.

Implementation—Movement and Jumping
The first thing you need to do to implement movement and jumping is add a few new
instance variables to CPViking.h, as shown in Listing 13.41.

Listing 13.41 CPViking.h (inside interface declaration)

double jumpStartTime;

float accelerationFraction;

These variables keep track of the most recent time Ole began jumping and the frac-
tion Ole should accelerate based on accelerometer input (between −1 and 1).

While you’re there, also predeclare a few methods, as shown in Listing 13.42.

Listing 13.42 CPViking.h (after interface declaration)

- (void)accelerometer:(UIAccelerometer*)accelerometer

 didAccelerate:(UIAcceleration*)acceleration;

- (BOOL)ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event;

- (void)ccTouchEnded:(UITouch *)touch withEvent:(UIEvent *)event;

Adding Sprites and Making Them Move 451

Note that these are the methods that accept accelerometer and touch input; you
need to forward the accelerometer and touch input from the action layer straight to the
CPViking class for processing. Now switch to CPViking.m and implement those meth-
ods, as shown in Listing 13.43.

Listing 13.43 CPViking.m (after initWithLocation)

- (BOOL)ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event {

if (groundShapes->num > 0) {

 jumpStartTime = CACurrentMediaTime();

 }

return TRUE;

}

- (void)ccTouchEnded:(UITouch *)touch withEvent:(UIEvent *)event {

 jumpStartTime = 0;

}

- (void)accelerometer:(UIAccelerometer*)accelerometer

 didAccelerate:(UIAcceleration*)acceleration {

 accelerationFraction = acceleration.y*2;

if (accelerationFraction < -1) {

 accelerationFraction = -1;

 } else if (accelerationFraction > 1) {

 accelerationFraction = 1;

 }

 if ([[CCDirector sharedDirector] deviceOrientation] ==

 UIDeviceOrientationLandscapeLeft) {

 accelerationFraction *= -1;

 }

}

ccTouchBegan checks to see if Ole is currently colliding with any ground shapes
and, if so, sets the jump start time to the current time. This has the effect of beginning
the jump, as you’ll see later on. ccTouchEnded effectively ends the jump by setting
the jump start time to 0.

accelerometer:didAccelerate computes the fraction to accelerate the player. It
multiplies the y value of the acceleration by 2 so that you only have to tilt the device
about halfway to get Ole to move at max speed, and it clamps the range to between
−1 and 1. Also note that it f lips the acceleration values if the screen is the opposite ori-
entation than expected.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)452

Next override the updateStateWithDeltaTime method to add the jumping
code, as shown in Listing 13.44.

Listing 13.44 CPViking.m (before initWithLocation)

-(void)updateStateWithDeltaTime:(ccTime)dt

 andListOfGameObjects:(CCArray*)listOfGameObjects {

 [super updateStateWithDeltaTime:dt

andListOfGameObjects:listOfGameObjects]; // 1

 float jumpFactor;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 jumpFactor = 300.0;

 } else {

 jumpFactor = 150.0;

 }

CGPoint newVel = body->v; // 2

if (groundShapes->num == 0) { // 3

 newVel = ccp(jumpFactor*accelerationFraction,body->v.y); // 4

 }

double timeJumping = CACurrentMediaTime()-jumpStartTime; // 5

if (jumpStartTime != 0 && timeJumping < 0.25) { // 6

 newVel.y = jumpFactor*2;

 }

cpBodySetVel(body, newVel); // 7

}

There’s a good bit to cover here, so let’s go over it line by line:

1. Starts by calling the superclass’s implementation of updateStateWithDelta-
Time, which is the code in CPSprite that updates the position and rotation of
the sprite based on the position and rotation of the Chipmunk body.

2. Sets a jump factor based on whether the device is an iPad or iPhone. It’s more on
the iPad because there are about double the points on the screen. Also gets the
current velocity of the body as a vector.

3. Tests to see if Ole is in the air (i.e., Ole is not currently colliding with any
ground shapes).

4. If so, sets the new x velocity to be the current acceleration fraction multiplied by
−300, effectively making the x velocity range from −300 to 300.

5. Tests to see how long Ole has been jumping by subtracting the jump start time
from the current time.

Adding Sprites and Making Them Move 453

6. If the jump start time isn’t 0 (i.e., Ole is currently trying to jump) and Ole hasn’t
been jumping for more than a quarter second, it sets the y component of the
velocity to a straight 600.0 to make Ole leap into the air. After a quarter second,
gravity starts to gradually lower the y component so Ole returns to earth.

7. Sets the velocity of the Chipmunk body to the newly calculated velocity.

That covers the movement of Ole while he’s in the air, but to move Ole while he’s
on the ground, you use surface velocity instead. So add the code to handle ground
movement to the bottom of the updateStateWithDeltaTime method next, as
shown in Listing 13.45.

Listing 13.45 CPViking.m (at bottom of updateStateWithDeltaTime)

if (groundShapes->num > 0) { // 1

if (ABS(accelerationFraction) < 0.05) { // 2

 accelerationFraction = 0;

 shape->surface_v = ccp(0, 0);

 } else { // 3

float maxSpeed = 200.0f;

 shape->surface_v = ccp(-maxSpeed*accelerationFraction, 0);

cpBodyActivate(body);

 }

} else {

 shape->surface_v = cpvzero; // 4

}

Again, several things to point out, so let’s go over it line by line.

1. Checks to see if Ole is on the ground (i.e., Ole is currently colliding with at least
one ground shape).

2. Tests if the acceleration fraction is very small. In this case, it halts Ole to prevent
him from constantly moving when the player is trying to make him be still.
Note that you should use the capital case ABS method so that it works properly
with f loat values.

3. Otherwise, sets the x component of the surface velocity based on the current
acceleration fraction multiplied by −200, effectively making the x component
of the surface velocity range from −200 to 200. It also activates the body, which
wakes it up if it was sleeping.

4. If Ole is not colliding with the ground, resets the surface velocity to 0.

There’s one more bit of code to add to the bottom of the update method. Add the
contents of Listing 13.46 to the end of the method next.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)454

Listing 13.46 CPViking.m (at bottom of updateStateWithDeltaTime)

float margin = 70;

CGSize winSize = [CCDirector sharedDirector].winSize;

if (body->p.x < margin) {

cpBodySetPos(body, ccp(margin, body->p.y));

}

if (body->p.x > winSize.width - margin) {

cpBodySetPos(body, ccp(winSize.width - margin, body->p.y));

}

This code prevents Ole from going off the sides of the screen by clamping the x
coordinate to min/max values.

You’re almost done: now you just need to call these methods. Switch to
Scene5ActionLayer.m, comment out your current implementations of ccTouchBegan,
ccTouchMoved, and ccTouchEnded, and replace them with the contents of
Listing 13.47.

Listing 13.47 Scene5ActionLayer.m (replace ccTouchBegan, ccTouchMoved, and
ccTouchEnded with these, effectively deleting ccTouchMoved)

- (BOOL)ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event {

 [viking ccTouchBegan:touch withEvent:event];

return YES;

}

- (void)ccTouchEnded:(UITouch *)touch withEvent:(UIEvent *)event {

 [viking ccTouchEnded:touch withEvent:event];

}

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {

 [viking accelerometer:accelerometer didAccelerate:acceleration];

}

These simply forward the accelerometer and touch input on to the new code you
added in the CPViking class.

One last step: add a line inside your initWithScene5UILayer method to enable
accelerometer input, as shown in Listing 13.48.

Listing 13.48 Scene5ActionLayer.m (at bottom of initWithScene5UILayer)

self.isAccelerometerEnabled = YES;

Chipmunk and Constraints 455

That’s it. Compile and run, and now you should be able to use the accelerometer to
move Ole back and forth, tap to jump in the air, and land on top of the platform (but
still be able to jump through the bottom of the platform). See Figure 13.12.

Figure 13.12 A moving and jumping Viking with a platform

A B

A B

Figure 13.13 Pivot joint: Rotate around a point

It’s starting to work nicely, except you may notice that Ole sometimes gets f lipped
over, landing unheroically on his behind. Momma always told me to avoid angry
Vikings, so we’re going to fix this next by using Chipmunk’s constraints.

Chipmunk and Constraints
Constraints in Chipmunk are special objects you can create to restrict how objects can
move—similar to joints in Box2D but more fine-grained and specialized.

You can use a variety of constraints in Chipmunk. Let’s take a quick tour of some
of the most useful constraints available.

Pivot joint: Restricts two bodies so that they can only rotate around a particular
point, similar to revolute joints in Box2D (Figure 13.13).

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)456

Rotary limit joint: Unlike in Box2D, when you make pivot joints you cannot
restrict the rotation to a certain degree range. Instead, you need to create a second
constraint: a rotary limit joint. With this, you can specify the minimum and maxi-
mum rotation range for two objects (Figure 13.14).

A B B

A

+15° maximum
rotation

Initial
angle

Figure 13.14 Rotary limit joint: Restrict rotation

Simple motor: Unlike Box2D, Chipmunk does not allow you to set motors
directly on joints. An alternative method is an additional constraint called a simple
motor. It lets you rotate an object at a desired speed (Figure 13.15).

A

Rotate 15° per second

Figure 13.15 Simple motor: Rotate at a set speed

Pin joint: You can think of this as pinning two points together with a large metal
rod, so that as you move one body, the rod keeps the two points always the same
distance apart. This is similar to a distance joint in Box2D (Figure 13.16).

Figure 13.16 Pin joint: Keep objects at set distance

Groove joint: Allows one body to slide (and rotate) up and down a “groove” on the
first body. This is somewhat similar to prismatic joints in Box2D (Figure 13.17).

Figure 13.17 Groove joint: Object B moves and rotates along a groove
on object A

Chipmunk and Constraints 457

Damped spring: Creates a “spring effect” between two objects that should be a
specified distance apart. If you push the objects together, the constraint pushes them
apart. If you pull them too far apart, the constraint pulls them together. This is
similar to a soft distance joint in Box2D (with frequencyHz and dampingRatio
set) (Figure 13.18).

Figure 13.18 Damped spring: Creates a spring effect for the distance
between objects

Damped rotary spring: This works similarly to a damped spring, but instead of
attempting to keep bodies a particular distance from each other, it attempts to keep
two bodies at the same relative angle (Figure 13.19).

When one object rotates . . . the other also rotates

Figure 13.19 Damped rotary spring: Creates a spring effect for the
angle between objects

Note
This is just a sample of the most useful Chipmunk constraints. There are several more,
including slide, ratchet, and gear joints. If you’re interested in checking out the others,
Scott Lembcke made a great demonstration video you can watch on YouTube at http://
www.youtube.com/watch?v=ZgJJZTS0aMM.

Now that you have an idea of the types of constraints that are available, let’s try
them out by adding a constraint to prevent Ole from tipping over. Based on the list of
useful constraints, you can see that an easy way to solve this problem is to use a rotary
limit joint—you can use it to restrict Ole from rotating more than 30 degrees in either
direction.

There are two steps to use a constraint in Chipmunk: create and initialize the con-
straint, then add it to the scene. Just as in Box2D, every constraint acts on two bodies.
In this case, the bodies are the ground body and Ole.

http://www.youtube.com/watch?v=ZgJJZTS0aMM
http://www.youtube.com/watch?v=ZgJJZTS0aMM

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)458

So let’s see this in code. Switch to CPViking.m and add two lines of code to the
bottom of your initWithLocation method, as shown in Listing 13.49.

Listing 13.49 CPViking.m (at bottom of initWithLocation)

cpConstraint *constraint = cpRotaryLimitJointNew(groundBody, body,

 CC_DEGREES_TO_RADIANS(-30), CC_DEGREES_TO_RADIANS(30));

cpSpaceAddConstraint(space, constraint);

That’s how easy constraints are to use! Compile and run your code, and now Ole
should be able to leap around without falling over anymore. It’s good to have a happy
Viking again.

Revolving Platforms
Now that you have Ole moving and jumping, you can create platforms for him to
jump on to escape the level. For this level, you create a variety of different platform
types, such as revolving platforms, spring platforms, and pivoting platforms. Creating
them will help you learn more about Chipmunk constraints and see how useful they
are.

You start by making a revolving platform, and for that you need to create a new
subclass of CPSprite. Select the Classes\GameObjects\Chipmunk group, go to File >
New > New File..., choose iOS > Cocoa Touch > Objective-C class, and click
Next. Enter CPSprite as the Subclass of, click Next, name the file CPRevolvePlatform.m,
and click Save.

Replace CPRevolvePlatform.h with the contents of Listing 13.50.

Listing 13.50 CPRevolvePlatform.h

#import "CPSprite.h"

@interface CPRevolvePlatform : CPSprite {

}

@end

As you can see, this is just a subclass of CPSprite with no extra instance variables.
Next switch to CPRevolvePlatform.m and replace it with the contents of Listing 13.51.

Listing 13.51 CPRevolvePlatform.m

#import "CPRevolvePlatform.h"

@implementation CPRevolvePlatform

Chipmunk and Constraints 459

- (id)initWithLocation:(CGPoint)location space:(cpSpace *)theSpace

 groundBody:(cpBody *)groundBody {

if ((self = [super

initWithSpriteFrameName:@"platform_revolve.png"])) {

 [self addBoxBodyAndShapeWithLocation:location

size:self.contentSize space:theSpace mass:1.0 e:0.2 u:1.0

collisionType:kCollisionTypeGround canRotate:TRUE];

// 1

cpConstraint *c1 = cpPivotJointNew(groundBody, body, body->p);

cpSpaceAddConstraint(space, c1);

// 2

cpConstraint *c2 = cpSimpleMotorNew(groundBody, body,
CC_DEGREES_TO_RADIANS(45));

cpSpaceAddConstraint(space, c2);

 }

return self;

}

@end

This creates a body using the helper method you wrote earlier in CPSprite and
then sets up two constraints:

1. Creates a pivot joint connecting the body with the groundBody so that the
body can rotate around its center point (its position).

2. Creates a simple motor so that the body rotates at a rate of 45 degrees a second
with respect to the fixed groundBody.

To test this out, switch to Scene5ActionLayer.m and import the class at the top of the
file, as shown in Listing 13.52.

Listing 13.52 Scene5ActionLayer.m (at top of file)

#import "CPRevolvePlatform.h"

Then add a helper method to create a revolving platform, as shown in Listing 13.53.

Listing 13.53 Scene5ActionLayer.m (before createLevel)

- (void)createRevolvePlatformAtLocation:(CGPoint)location {

CPRevolvePlatform *revolvePlatform =

 [[[CPRevolvePlatform alloc] initWithLocation:location

space:space groundBody:groundBody] autorelease];

 [sceneSpriteBatchNode addChild:revolvePlatform];

}

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)460

Finally, inside your createLevel method, comment out the call to createBox-
AtLocation and call your new method, as shown in Listing 13.54.

Listing 13.54 Scene5ActionLayer.m (replace createBoxAtLocation inside createLevel
with this)

[self createRevolvePlatformAtLocation:

 ccp(winSize.width * 0.5, winSize.height * 0.25)];

Compile and run your code, and you should now be able to jump on top of a
revolving platform (Figure 13.20)!

Figure 13.20 A revolving platform made pivot and simple
motor constraints

Pivot, Spring, and Normal Platforms
Let’s create three more platform types to spice it up: a platform that pivots around a
center point, a platform that gets pushed down when you jump on it, and a normal
(static) platform.

Start by creating files for each of these. Select the Classes\GameObjects\Chipmunk
group, go to File > New > New File..., choose iOS > Cocoa Touch >
Objective-C class, and click Next. Enter CPSprite as the Subclass of, click Next,
name the file CPPivotPlatform.m, and click Save. Repeat this process for
CPSpringPlatform.m and CPNormalPlatform.m.

Replace CPPivotPlatform.h with the contents of Listing 13.55.

Chipmunk and Constraints 461

Listing 13.55 CPPivotPlatform.h

#import "CPSprite.h"

@interface CPPivotPlatform : CPSprite {

}

@end

This is just a subclass of CPSprite, with nothing extra added. Next replace
CPPivotPlatform.m with the contents of Listing 13.56.

Listing 13.56 CPPivotPlatform.m

#import "CPPivotPlatform.h"

@implementation CPPivotPlatform

- (id)initWithLocation:(CGPoint)location space:(cpSpace *)theSpace

 groundBody:(cpBody *)groundBody {

if ((self = [super

initWithSpriteFrameName:@"platform_pivot.png"])) {

 [self addBoxBodyAndShapeWithLocation:location

size:self.contentSize space:theSpace mass:10.0 e:0.2 u:1.0

collisionType:kCollisionTypeGround canRotate:TRUE];

// 1

cpConstraint *c1 = cpPivotJointNew(groundBody, body, body->p);

cpSpaceAddConstraint(space, c1);

// 2

cpConstraint *c2 = cpDampedRotarySpringNew(groundBody, body, 0,

60000.0, 100.0);

cpSpaceAddConstraint(space, c2);

// 3

cpConstraint *c3 = cpRotaryLimitJointNew(groundBody, body,

CC_DEGREES_TO_RADIANS(-30), CC_DEGREES_TO_RADIANS(30));

cpSpaceAddConstraint(space, c3);

 }

return self;

}

@end

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)462

This creates a body for the pivot platform using the helper method you wrote ear-
lier (but notice how it uses a large mass for this body to make it a bit harder to move).
It then sets up three constraints:

1. Creates a pivot joint connecting the platform body with the ground body so that
the platform body can rotate around its center point (its position).

2. Creates a damped rotary spring between the platform body and the ground
body. The third parameter to cpDampedRotarySpringNew is the desired rela-
tive angle and is set to 0 to encourage the platform to return to its original hori-
zontal position when the player is not on it. The fourth parameter is the stiffness.
The larger the stiffness parameter, the more force is applied to rotate the plat-
form, so a large value is added here to make the platform reset at a decent speed.
The fifth parameter is the damping. The larger the damping parameter, the more
the spring will resist motion in general, so a medium-sized value is added here to
provide a degree of resistance when Ole jumps on the platform.

3. Creates a rotary limit joint between the ground body and the platform body,
restricting the platform so it can’t rotate more than 30 degrees in either
direction.

That’s it for the pivot platform; on to the spring platform. Replace
CPSpringPlatform.h with the contents of Listing 13.57.

Listing 13.57 CPSpringPlatform.h

#import "CPSprite.h"

@interface CPSpringPlatform : CPSprite {

}

@end

Again, just a subclass of CPSprite. Next replace CPSpringPlatform.m with the con-
tents of Listing 13.58.

Listing 13.58 CPSpringPlatform.m

#import "CPSpringPlatform.h"

@implementation CPSpringPlatform

- (id)initWithLocation:(CGPoint)location space:(cpSpace *)theSpace

 groundBody:(cpBody *)groundBody {

if ((self = [super

initWithSpriteFrameName:@"platform_spring.png"])) {

 [self addBoxBodyAndShapeWithLocation:location

Chipmunk and Constraints 463

size:self.contentSize space:theSpace mass:1.0 e:0.2 u:1.0

collisionType:kCollisionTypeGround canRotate:FALSE];

// 1

float springLength = 200;

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone) {

 springLength /= 2;

 }

cpConstraint * constraint = cpDampedSpringNew(groundBody, body,

ccp(body->p.x, body->p.y-springLength), ccp(0,0),

 springLength, 25.0, 0.5);

cpSpaceAddConstraint(space, constraint);

// 2

cpConstraint * c2 = cpGrooveJointNew(groundBody, body,

ccp(body->p.x, body->p.y-springLength),

ccp(body->p.x, body->p.y+springLength), ccp(0,0));

cpSpaceAddConstraint(space, c2);

 }

return self;

}

@end

This creates a body for the platform using the helper method you wrote earlier (but
notice how it sets canRotate to FALSE, which makes the platform have an infinite
moment of inertia and hence unable to rotate). It then sets up two constraints:

1. Creates a damped spring constraint between the platform body and the ground
body. This makes it so the platform “wants to be” a certain distance from the
ground and resists movement more and more the further away it gets from the
desired point. The third parameter to cpDampedSpringNew is the anchor
point on the first body (the ground body) in local coordinates, which is set as
200 points (or half that for iPhone) below the platform’s current position. The
fourth parameter is the anchor point on the second body (the platform body)
in local coordinates, which is set to the exact center of the platform body. The
fifth parameter is the desired length of the platform, and the fourth and fifth
values are the stiffness and damping, which act the same way as discussed in the
damped rotary spring example.

2. Without another joint, there would be nothing stopping the platform from mov-
ing left and right, but for this platform, you want it to only move up and down.
So the call to cpGrooveJointNew creates a second constraint that restricts the
platform body to only move up and down a “groove” on the ground body. The
third and fourth parameters are the start and end points of the groove that the
platform body can move in, in ground body coordinates. They are set here to a

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)464

little bit above and below the platform body’s current position. The fifth param-
eter is the platform body-local coordinate that slides up and down the groove—
set here to be the center position of the platform body.

Just one more platform type to add, and then you’ll get to test them out. This time
you add a normal platform. This platform is a special case because it doesn’t move at
all, so you can add it as a static shape attached to the existing ground body. Start by
replacing CPNormalPlatform.h with the contents of Listing 13.59.

Listing 13.59 CPNormalPlatform.h

#import "CPSprite.h"

@interface CPNormalPlatform : CPSprite {

}

@end

Next replace CPNormalPlatform.m with the contents of Listing 13.60.

Listing 13.60 CPNormalPlatform.m

#import "CPNormalPlatform.h"

@implementation CPNormalPlatform

-(void)updateStateWithDeltaTime:(ccTime)dt andListOfGameObjects:(CCArray*)
listOfGameObjects {

// Do nothing...

}

- (id)initWithLocation:(CGPoint)location space:(cpSpace *)theSpace

 groundBody:(cpBody *)groundBody {

if ((self = [super

initWithSpriteFrameName:@"platform_normal.png"])) {

 space = theSpace;

self.position = location;

cpFloat hw = self.contentSize.width/(cpFloat)2.0;

cpFloat hh = self.contentSize.height/(cpFloat)2.0;

cpVect verts[] = {

cpv(-hw,-hh),

cpv(-hw, hh),

cpv(hw, hh),

cpv(hw,-hh),

 };

Chipmunk and Constraints 465

 shape = cpPolyShapeNew(groundBody, 4, verts, location);

 shape->e = 1.0f;

 shape->u = 1.0f;

 shape->collision_type = kCollisionTypeGround;

cpSpaceAddStaticShape(space, shape);

 }

return self;

}

@end

This first overrides updateStateWithDeltaTime to do nothing, since there is
no need to update the position of the sprite based on the body, since the body never
moves!

It then creates a new static shape for the sprite based on the size of the sprite.
Note that it uses cpPolyShapeNew, passing in the vertices for the shape rather than
calling cpBoxShapeNew. This is because you need to place the shape at a speci-
fied offset relative to the ground body, and you can’t specify an offset when you call
cpBoxShapeNew.

Okay, now you can test the new platforms. First import the headers at the top of
Scene5ActionLayer.m, as shown in Listing 13.61.

Listing 13.61 Scene5ActionLayer.m (at top of file)

#import "CPPivotPlatform.h"

#import "CPSpringPlatform.h"

#import "CPNormalPlatform.h"

Then add the helper methods to create the platforms, as shown in Listing 13.62.

Listing 13.62 Scene5ActionLayer.m (before createLevel)

- (void)createPivotPlatformAtLocation:(CGPoint)location {

CPPivotPlatform *pivotPlatform = [[[CPPivotPlatform alloc]

initWithLocation:location space:space groundBody:groundBody]

autorelease];

 [sceneSpriteBatchNode addChild:pivotPlatform];

}

- (void)createSpringPlatformAtLocation:(CGPoint)location {

CPSpringPlatform *springPlatform = [[[CPSpringPlatform alloc]

initWithLocation:location space:space groundBody:groundBody]

autorelease];

 [sceneSpriteBatchNode addChild:springPlatform];

}

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)466

- (void)createNormalPlatformAtLocation:(CGPoint)location {

CPNormalPlatform *normPlatform = [[[CPNormalPlatform alloc]

initWithLocation:location space:space groundBody:groundBody]

autorelease];

 [sceneSpriteBatchNode addChild:normPlatform];

}

Finally, comment out the call to createRevolvePlatformAtLocation in your
createLevel method and replace it with the contents of Listing 13.63.

Listing 13.63 Scene5ActionLayer.m (replace contents of createLevel with the following)

[self createPivotPlatformAtLocation:

ccp(winSize.width * 0.7, winSize.height * 0.45)];

[self createSpringPlatformAtLocation:

ccp(winSize.width * 0.4, winSize.height * 0.25)];

[self createNormalPlatformAtLocation:

ccp(winSize.width * 0.2, winSize.height * 0.35)];

Compile and run your code, and you can jump Ole around to try out the new plat-
form types (Figure 13.21)!

Figure 13.21 Pivot, spring, and normal platforms made with
Chipmunk joints

The Great Escape! 467

The Great Escape!
At this point, you have enough building blocks to make this into a complete level, so
let’s put things together and add in a bit of polish and excitement along the way.

Following Ole
Since Ole will be moving vertically up this level, you need to set the layer to follow
Ole as he moves up and down the scene. While you’re at it, you’ll apply a neat “screen
shake” effect to the layer to make it seem like the planet is about to explode and add
some tension to the scene.

Inside Scene5ActionLayer.m, add a new method to update the layer’s position that
will be called in each frame, as shown in Listing 13.64.

Listing 13.64 Scene5ActionLayer.m (above update method)

- (void)followPlayer:(ccTime)dt {

// 1

static double totalTime = 0;

 totalTime += dt;

// 2

double shakesPerSecond = 5;

double shakeOffset = 3;

double shakeX =

sin(totalTime*M_PI*2*shakesPerSecond) * shakeOffset;

// 3

CGSize winSize = [CCDirector sharedDirector].winSize;

float fixedPosition = winSize.height/4;

float newY = fixedPosition - viking.position.y;

float groundMaxY = 2048;

 newY = MIN(newY, 50);

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone) {

 groundMaxY = 900;

 newY = MIN(newY, 25);

 }

 newY = MAX(newY, -groundMaxY-fixedPosition);

CGPoint newPos = ccp(shakeX, newY);

 [self setPosition:newPos];

}

There are three things to point out about this method:

1. This first part keeps track of the total time elapsed in the scene, which is needed
in order to calculate how much to shake the screen.

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)468

2. To shake the screen, you need to move the layer a little bit to the right for a
short period of time, then a little bit to the left, then repeat. Whenever you find
yourself needing to do something on a periodic basis like this, a good trick is
to use the sin function. The sin function gives a periodic wave that cycles
between −1 and 1 every 2*M_PI (6.28), so if you pass in seconds, it cycles
between −1 and 1 every 6.28 seconds. However, if you multiply the seconds by
2*M_PI, it cycles between −1 and 1 every second. It multiplies that by the num-
ber of times you want to shake per second to get a nice jittery effect. Finally, it
converts the result from the range of (−1,1) to (−3,3) by multiplying by 3.

3. The rest of this code is the same method of moving the layer with respect to the
player’s current position that you learned about in earlier chapters.

Now that you have this new method, add a line to call it at the bottom of your
update method, as shown in Listing 13.65.

Listing 13.65 Scene5ActionLayer.m (at bottom of update method)

[self followPlayer:dt];

Compile and run your code to see the layer follow Ole with a neat shake effect.

Laying Out the Platforms
Now that the layer follows Ole around, replace the createLevel method to add
some platforms in an interesting and challenging layout. Listing 13.66 shows one pos-
sible implementation; see if you can come up with your own.

Listing 13.66 Scene5ActionLayer.m (replace createLevel with this, or your own layout)

- (void)createLevel {

 CGSize winSize = [CCDirector sharedDirector].winSize;

 [self createNormalPlatformAtLocation:ccp(200, 100)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.2, winSize.height * 0.15)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.4, winSize.height * 0.30)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.6, winSize.height * 0.45)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.8, winSize.height * 0.75)];

 [self createNormalPlatformAtLocation:

 ccp(winSize.width * 0.6, winSize.height * 0.90)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.4, winSize.height * 1.15)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.2, winSize.height * 1.30)];

The Great Escape! 469

 [self createPivotPlatformAtLocation:

ccp(winSize.width * 0.4, winSize.height * 1.60)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.7, winSize.height * 1.90)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.4, winSize.height * 2.15)];

 [self createSpringPlatformAtLocation:

ccp(winSize.width * 0.45, winSize.height * 2.60)];

 [self createSpringPlatformAtLocation:

ccp(winSize.width * 0.75, winSize.height * 2.80)];

 [self createSpringPlatformAtLocation:

ccp(winSize.width * 0.55, winSize.height * 3.05)];

 [self createNormalPlatformAtLocation:

ccp(winSize.width * 0.4, winSize.height * 3.15)];

 [self createNormalPlatformAtLocation:

 ccp(winSize.width * 0.2, winSize.height * 3.35)];

 [self createRevolvePlatformAtLocation:

 ccp(winSize.width * 0.5, winSize.height * 3.50)];

 [self createNormalPlatformAtLocation:

 ccp(winSize.width * 0.8, winSize.height * 3.65)];

}

Once you’ve implemented this platform, compile and run your project, and try out
your new level.

Animating Ole
Right now Ole is just a nonanimated sprite, which isn’t very entertaining for such an
action-packed level. Let’s fix that by integrating Ole’s movement and jump animations
into this level.

The first step is to add the property list file that defines the animations you’ll need
for Ole in this level. From the resources folder for this chapter, drag CPViking.plist to
the Plists group in Xcode. Verify Copy items into destination group’s folder (if
needed) is checked, and click Finish.

Once you’ve added the file, open CPViking.h and add some new instance variables
you’ll need for the animations and to keep track of the last time Ole changed direc-
tions, as seen in Listing 13.67.

Listing 13.67 CPViking.h (inside interface declaration)

CCAnimation * walkingAnim;

CCAnimation * jumpingAnim;

CCAnimation * afterJumpingAnim;

float lastFlip;

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)470

Now switch to CPViking.m and add a method to load the animations from the
property list, as shown in Listing 13.68.

Listing 13.68 CPViking.m (before initWithLocation)

-(void)initAnimations {

 walkingAnim = [self loadPlistForAnimationWithName:@"walkingAnim"

andClassName:NSStringFromClass([self class])];

 [[CCAnimationCache sharedAnimationCache]

addAnimation:walkingAnim name:@"walkingAnim"];

 jumpingAnim = [self loadPlistForAnimationWithName:@"jumpingAnim"

andClassName:NSStringFromClass([self class])];

 [[CCAnimationCache sharedAnimationCache]

 addAnimation:jumpingAnim name:@"jumpingAnim"];

 afterJumpingAnim = [self

loadPlistForAnimationWithName:@"afterJumpingAnim"

andClassName:NSStringFromClass([self class])];

 [[CCAnimationCache sharedAnimationCache]

 addAnimation:afterJumpingAnim name:@"afterJumpingAnim"];

}

This method loads the three animations you need for this level from the CPViking.
plist file that you just added to the project, using the helper method in GameObject.

Now it’s time to add the code to manage Ole’s states and play the correct anima-
tions for each state, as shown in Listing 13.69.

Listing 13.69 CPViking.m (before initWithLocation)

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

 [self setCharacterState:newState];

switch (newState) {

case kStateIdle:

 [self setDisplayFrame:

 [[CCSpriteFrameCache sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_1.png"]];

break;

case kStateWalking:

 action = [CCAnimate actionWithAnimation:walkingAnim

restoreOriginalFrame:NO];

break;

The Great Escape! 471

case kStateJumping:

 action = [CCAnimate actionWithAnimation:jumpingAnim

restoreOriginalFrame:NO];

break;

case kStateAfterJumping:

 action = [CCAnimate actionWithAnimation:afterJumpingAnim

restoreOriginalFrame:NO];

break;

default:

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

You should be familiar with how this works by now, based on what you learned
starting back in Chapter 4, “Simple Collision Detection and the First Enemy.”

You’re almost done; you just need to add the code to handle state management.
First add a line to the top of updateStateWithDeltaTime to record the position of
the object before you call the superclass’s updateStateWithDeltaTime, as shown in
Listing 13.70.

Listing 13.70 CPViking.m (at very top of updateStateWithDeltaTime)

CGPoint oldPosition = self.position;

Then at the bottom of updateStateWithDeltaTime, add the code to handle
transitioning Ole’s states and f lipping his sprite, as shown in Listing 13.71.

Listing 13.71 CPViking.m (at bottom of updateStateWithDeltaTime)

// 1

if(ABS(accelerationFraction) > 0.05) {

double diff = CACurrentMediaTime() - lastFlip;

if (diff > 0.1) {

 lastFlip = CACurrentMediaTime();

if (oldPosition.x > self.position.x) {

self.flipX = YES;

 } else {

self.flipX = NO;

 }

 }

}

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)472

// 2

if (characterState != kStateJumping && jumpStartTime != 0) {

 [self changeState:kStateJumping];

}

// 3

if (characterState == kStateIdle && accelerationFraction != 0) {

 [self changeState:kStateWalking];

}

// 3

if ([self numberOfRunningActions] == 0) {

if (characterState == kStateJumping) {

if (groundShapes->num > 0) {

 [self changeState:kStateAfterJumping];

 }

 } else if (characterState != kStateIdle) {

 [self changeState:kStateIdle];

 }

}

There’s a good bit of code here, so let’s go through this section by section:

1. Checks to see if Ole is moving left or right compared to his last position, and
f lips the sprite accordingly. It also adds a check to prevent the sprite from f lip-
ping too often. Note that you should use the capital case ABS method so that it
works properly with f loat values.

2. If the sprite isn’t in the jumping state but yet it’s jumping (the jumpStartTime
isn’t 0), it changes the sprite to the jumping state.

3. If the state is idle but yet the accelerationFraction isn’t 0, it changes the
state to walking.

4. If no actions (i.e., animations) are running, it looks to see if it should change the
state. If it just finished jumping, it changes the state to after jumping. Otherwise,
if the sprite isn’t idle, it switches to the idle state.

As the last step, add the call to initialize the animations at the end of initWith-
Location, as seen in Listing 13.72.

Listing 13.72 CPViking.m (at end of initWithLocation)

[self initAnimations];

Compile and run your code, and now Ole should be able to leap around in style
(Figure 13.22)!

The Great Escape! 473

Music and Sound Effects
Now let’s add some music and sound effects to make it even cooler. Add the line to
start the background music playing in initWithScene5UILayer, as shown in
Listing 13.73.

Listing 13.73 Scene5ActionLayer.m (at bottom of initWithScene5UILayer)

[[GameManager sharedGameManager]

 playBackgroundTrack:BACKGROUND_TRACK_ESCAPE];

Similarly, switch to CPViking.m and add a method to play a random jump sound
effect, as shown in Listing 13.74.

Listing 13.74 CPViking.m (before updateStateWithDeltaTime)

- (void)playJumpEffect {

int soundToPlay = random() % 4;

if (soundToPlay == 0) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_1);

 } else if (soundToPlay == 1) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_2);

 } else if (soundToPlay == 2) {

 PLAYSOUNDEFFECT(VIKING_JUMPING_3);

Figure 13.22 Adding jumping and moving animations to Ole’s sprite

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)474

 } else {

 PLAYSOUNDEFFECT(VIKING_JUMPING_4);

 }

}

Finally, inside the changeState method in the case for kStateJumping, call the
playJumpEffect method, as shown in Listing 13.75.

Listing 13.75 CPViking.m (inside changeState method’s kStateJumping case)

[self playJumpEffect];

Compile and run your code, and enjoy the grooves and grunts!

Adding the Background
The black background is getting kind of boring, so let’s add a real background to the
scene. In the resources files for this chapter, drag all of the files beginning with chip-
munk_background and chipmunk_ground to the Images group in your project, make sure
Copy items into destination group’s folder (if needed) is checked, and click
Add.

Next, write a method to add these two images to the scene, as shown in Listing
13.76.

Listing 13.76 Scene5ActionLayer.m (before initWithScene5UILayer method)

- (void)createBackground {

// 1

CCParallaxNode * parallax = [CCParallaxNode node];

 [CCTexture2D

setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_RGB565];

 CCSprite *background;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 background =

 [CCSprite spriteWithFile:@"chipmunk_background-ipad.png"];

 } else {

 background =

 [CCSprite spriteWithFile:@"chipmunk_background.png"];

 }

 background.anchorPoint = ccp(0,0);

 [CCTexture2D

setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_Default];

 [parallax addChild:background z:-10 parallaxRatio:ccp(0.1f, 0.1f)

positionOffset:ccp(0,0)];

 [self addChild:parallax z:-10];

The Great Escape! 475

// 2

 CCSprite *groundSprite;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 groundSprite =

 [CCSprite spriteWithFile:@"chipmunk_ground-hd.png"];

 } else {

 groundSprite =

 [CCSprite spriteWithFile:@"chipmunk_ground.png"];

 }

 groundSprite.anchorPoint = ccp(0,0);

 groundSprite.position = ccp(0,0);

 [self addChild:groundSprite z:-10];

// 3

 [background runAction:

 [CCRepeatForever actionWithAction:

 [CCSequence actions:

 [CCTintTo actionWithDuration:0.5 red:200 green:0 blue:0],

 [CCTintTo actionWithDuration:0.5 red:255 green:255 blue:255],

nil]]];

}

This method has three parts:

1. Adds the background to the scene, contained within a parallax node so that it
scrolls at a slower rate than the foreground.

2. Adds a sprite to the bottom of the scene for the ground and positions the bottom
left corner to start at the bottom left corner of the screen.

3. Runs an action on the background to make it pulse slightly for a subtle neat
effect.

Now that you have this method, all you need to do is call it from initWith-
Scene5UILayer, as you can see in Listing 13.77.

Listing 13.77 Scene5ActionLayer.m (at bottom of initWithScene5UILayer)

[self createBackground];

Compile and run the code (and comment out the debug draw code if you’d like),
and you should now have a neat rocky background in your scene (Figure 13.23).

Chapter 13 The Chipmunk Physics Engine (No Alvin Required)476

Adding Win/Lose Conditions
One last thing to add: a check to see if Ole has escaped the planet or if he’s run out of
time. You’re going to do a real simple check for this here, and just check if the y posi-
tion of Ole is greater than a certain amount.

You’ll need to use GameManager to switch to the win/lose scene, so import that at
the top of the file, as you can see in Listing 13.78.

Listing 13.78 Scene5ActionLayer.m (at top of file)

#import "GameManager.h"

Next, add the checking for the win/lose conditions at the bottom of your update
method, as you can see in Listing 13.79.

Listing 13.79 Scene5ActionLayer.m (at bottom of the update method)

if (remainingTime <= 0) {

 [[GameManager sharedGameManager] setHasPlayerDied:YES];

 [[GameManager sharedGameManager]

runSceneWithID:kLevelCompleteScene];

} else if (viking.position.y > 2900) {

 [[GameManager sharedGameManager] setHasPlayerDied:NO];

 [[GameManager sharedGameManager]

runSceneWithID:kLevelCompleteScene];

}

Figure 13.23 A background added to the almost complete level!

Challenges 477

Compile and run your level—see if you can help Ole escape from the planet before
it’s too late!

Summary
At this point, you have created a complete Metroid-style platformer escape level with
Chipmunk. In the process, you gained hands-on experience using the most important
aspects of Chipmunk: creating a space, adding bodies and shapes, moving the bodies,
and restricting their movement with constraints.

Now that you know the basics of using Chipmunk, you should check out the
official reference documentation for Chipmunk, available at http://files.slembcke.net/
chipmunk/release/ChipmunkLatest-Docs/. It contains a handy reference of the API calls
you’ll need and is good to keep on hand as you program your games.

In addition, you may wish to consider using one of the Objective-C wrappers for
Chipmunk, which can make the APIs a bit easier to work with. Scott Lembcke has
written an official Objective-C binding for Chipmunk called Objective-Chipmunk
(http://howlingmoonsoftware.com/objectiveChipmunk.php), and there is also an (older)
Objective-C binding for Chipmunk called SpaceManager (http://code.google.com/p/
chipmunk-spacemanager/) available as well. Remember if you decide to use Chipmunk
in your games, you might consider donating to Scott, as he makes his living off Chip-
munk donations and consulting.

Congratulations! You’ve learned what many consider one of the trickiest (and also
the most fun) parts of Cocos2D: how to use the physics libraries. Now that you have
practical experience using both Chipmunk and Box2D, you can make an educated
decision which you prefer most for your future games.

Challenges
1. Add a new platform type of your own design, using some of Chipmunk’s

constraints.

2. Create a platform that is a different shape than a rectangle, using Vertex Helper
and Chipmunk’s polygon shapes.

3. Add a jet pack item to the level. When Ole collides with it, apply a one-shot
impulse to Ole to boost him quickly up into the air!

http://files.slembcke.net/chipmunk/release/ChipmunkLatest-Docs/
http://files.slembcke.net/chipmunk/release/ChipmunkLatest-Docs/
http://howlingmoonsoftware.com/objectiveChipmunk.php
http://code.google.com/p/chipmunk-spacemanager/
http://code.google.com/p/chipmunk-spacemanager/

This page intentionally left blank

Part V
Particle Systems,

Game Center, and
Performance

Learn how to quickly create and add particle systems to your games,
how to integrate with Apple’s Game Center for online leaderboards and
achievements, and some performance tips and tricks to keep your game
running fast.

n Chapter 14: “Particle Systems: Creating Fire, Snow, Ice, and More”

n Chapter 15: “Achievements and Leaderboards with Game Center”

n Chapter 16: “Performance Optimizations”

n Chapter 17: “Conclusion”

This page intentionally left blank

14
Particle Systems: Creating Fire,

Snow, Ice, and More

In the previous chapters you learned about the Box2D and Chipmunk physics engines and how
to incorporate them into Space Viking and your games. In this chapter you will learn about par-
ticle systems and how easily you can add realistic fire, smoke, snow, rain, and other effects to your
games. Particle system is just a name for a technique to generate certain graphical effects, such as
explosions, f lames, and of course fire, smoke, or even rain. Instead of trying to model those effects,
a large set of tiny images, or particles, is used to fool the player into seeing the desired effect.

Terminology Review
Before moving on to creating and coding particle systems, it is important to under-
stand a few key terms.

n Particle System
A technique and object that you use to add and render a set of particles on
the screen. The particle system contains an emitter as well as a configuration
for how the particles should behave. In Cocos2D the particle systems classes
(CCParticleSystemPoint and CCParticleSystemQuad) are responsible
for rendering the particle systems, and both inherit from CCNode.

n Particle
The image (as a texture) that is used to create your particle system. Varying the
transparency and design of the particle image can create soft edge effects such
as smoke.

n Emitter
The brains behind the particle system. The emitter is what creates, moves, and
eventually removes the particles in a particle system. The emitter controls the
spawning and movement of particles based on the configuration you specify.

n CCParticleSystemPoint
Cocos2D particle system that renders the particles using GL_POINT_SPRITE.
It stores only one vertex coordinate for the each particle, the center point of the
image. This particle system can have a maximum particle image size of only
64 × 64 pixels. The CCParticleSystemPoint cannot be rotated or scaled.

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More482

n CCParticleSystemQuad
Cocos2D particle system that renders the particles using quads (two triangles).
The CCParticleSystemQuad can have particle images of any size, and it
allows for rotating and scaling of the entire particle system as a whole.

Do not worry if it is not clear to you how the emitter works or is configured. This chap-
ter guides you through several examples of setting up and adding particle systems to
Space Viking.

About ARCH_OPTIMAL_PARTICLE_SYSTEM
CCParticleSystemPoint is slightly faster than CCParticleSystemQuad on
the older iPhone 3G and iPod touch (first and second generation). CCParticle-
SystemQuad is faster on the newer iPhone 3GS, iPhone 4, and iPad. There is an easy
way to choose between the two of them during compile time. Cocos2D has a handy macro
to choose the fastest particle system for you to use during compile time based on the
architecture you are compiling for (armv6 or armv7).

To use it, simply declare your particle system as inheriting from the ARCH_OPTIMAL_
PARTICLE_SYSTEM macro instead of CCParticleSystemPoint or CCParticle-
SystemQuad directly:

Instead of:

@interface MyParticleSystem: CCParticleSystemPoint

use:

@interface MyParticleSystem: ARCH_OPTIMAL_PARTICLE_SYSTEM

The best way to understand particle systems is to create one firsthand. First you learn about
the built-in particle systems bundled with Cocos2D, and then you learn about Particle Designer,
a tool you can use to create and customize your own particle systems.

Built-In Particle Systems
Cocos2D comes with 11 particle systems set up and ready for you to use inside of the
Cocos2D source code, in the CCParticleExamples.m class. All it takes to use these par-
ticle systems is to initialize the emitter and add them to your CCLayer. The 11 built-
in particle systems include fire, fireworks, smoke, rain, and even a f lower emitter that
generates a steady stream of sparkles.

Running the Built-In Particle Systems
To check out the built-in particle systems, open the cocos2d-ios Xcode project located in
the folder you downloaded and extracted from the Cocos2D source in the beginning
of this book.

Select ParticleTest under the Scheme dropdown menu in Xcode and click Run,
as shown in Figure 14.1.

Built-In Particle Systems 483

Figure 14.1 ParticleTest in the Scheme dropdown menu in Xcode

Pay close attention to the ParticleSmoke and ParticleSnow examples, as you
will be incorporating those into Space Viking.

To see how the example particle systems are added to the scene, open the
ParticleTest.m class in the cocos2d-ios Xcode project, located inside the Tests group. Move
to the DemoSnow implementation and observe the lines shown on Listing 14.1.

Listing 14.1 ParticleSnow being created in the ParticleTest demo

self.emitter = [CCParticleSnow node];

[background addChild: emitter z:10];

The particle system settings are actually in the CCParticleSnow class; if you click
on it and select Jump to Definition, you can see the details. In Cocos2D you can
declare your particle systems programmatically, as shown with CCParticleSnow, or
via a plist file produced by other tools, such as Particle Designer.

Making It Snow in the Desert
To get your feet wet on using particle systems, you are going to add the CCParticle-
Snow to the Space Viking Ole Awakes level. It is an alien planet—who says it can’t
snow a little bit. To add the snow:

1. Open the SpaceViking Xcode project.

2. Drag the Particles folder available with the resources for this chapter into your
SpaceViking project, under the Images group.

This step is key, as the CCParticleSnow system relies on the snow.png texture to
create the snowf lakes. Figure 14.2 shows the Particles folder added to SpaceViking.

3. Open the GameplayLayer.m file and add the lines shown in Listing 14.2 to the
end of the init method.

Listing 14.2 GameplayLayer.m init method additions

// Add Snow Particle System

CCParticleSystem *snowParticleSystem = [CCParticleSnow node];

[self addChild:snowParticleSystem];

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More484

If you are using the built-in particle systems, it just takes these two lines of code to
get it into your game. If you click Run and select the Ole Awakes level, you will see
Ole the Viking on the familiar alien desert, this time with snow. Figure 14.3 shows
the Space Viking first level with the snow particle system.

Figure 14.2 Particles image folder added to SpaceViking Xcode project

Figure 14.3 Space Viking with the snow particle system

At some point in your game development, you may want to create your own
particle systems in addition to using the built-in ones. While you can make your par-
ticles by hand, and Cocos2D already comes with some great definitions for particle
systems, the best way to understand each of the variables you have to play with is by
using a tool like Particle Designer. The Particle Designer Mac application created by

Getting Started with Particle Designer 485

Mike Daley and Tom Bradley provides a great way to create and see your particle sys-
tems in real time. It also exports any particle systems you create in a plist format that
Cocos2D can read and use natively.

The next section takes you through installing Particle Designer and creating the
engine exhaust for the space cargo ship.

Getting Started with Particle Designer
Although Particle Designer is a tool you must pay for, you can try it out for free before
buying it. To get Particle Designer on your Mac, download it from the 71Squared
website at http://particledesigner.71squared.com/.

You can try out all of the particle systems settings in the free trial version, but you
will not be able to save or export your particle systems until you purchase a license.

After you have downloaded Particle Designer:

1. Unzip the downloaded zip file and drag the Particle Designer app into your
Applications folder.

2. If you want to save or export the particles you design, be sure to obtain a license
from the Particle Designer website.

When you first start Particle Designer, it opens an iPhone simulator showing the
particle system in action and a gallery of some of the user-submitted particle systems.
Figure 14.4 shows Particle Designer’s initial screen.

Figure 14.4 Particle Designer showing iPhone simulator and particle systems gallery

http://particledesigner.71squared.com/

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More486

The iPhone and iPad simulators in Particle Designer are not the Xcode iPhone/iPad
simulator but a window running the OpenGL code to render the particle system. The
next version of Particle Designer includes a live export to iOS devices, so you can see
your particle systems directly on your iPhone or iPad. Keep in mind that just because
a particle system runs fast on your Mac does not mean it will run as fast on your iOS
device. There is no substitute for testing it in your game on real hardware.

A Quick Tour of Particle Designer
Particle Designer contains the ability to pull particle system configurations from the
71Squared online gallery, and this list is always updated with new particle designs.
Particle Designer’s toolbar allows you to quickly view your particle system in iPhone
and iPad mode as well as get into the configuration for each particle system. Figure 14.5
shows the available toolbar buttons.

Figure 14.5 Particle Designer toolbar

The toolbar shown in Figure 14.5 has the Load, Save, and Save As buttons as well
as the following options:

1. Switches between iPhone- and iPad-sized preview display. Click on this button
to see how your particle system would look on an iPhone or an iPad.

2. Toggles between portrait and landscape orientations for the preview display.

3. Randomly sets all of the particle emitter’s values, so you can try a new combina-
tion at random.

4. Pauses or starts the particle emitter. If you want to pause or restart the preview
display, use this button to do it.

5. Opens the emitter configuration panel. This is the heart of Particle Designer and
contains all of the settings for the particle system.

The configuration panel is where you will spend most of your time in Particle
Designer, as it contains the settings that Cocos2D will use to render your particle sys-
tem. Figure 14.6 shows the configuration panel.

Getting Started with Particle Designer 487

Particle Designer Controls
As you can see from Figure 14.6, there are quite a lot of options behind creating a
particle system. Don’t be overwhelmed if this looks like the control panel for a nuclear
reactor: it is much simpler than it looks at first glance. Here is what each section sets
up in the particle system:

n Background Color Section
The background color is not exported to Cocos2D plist files. It is only used so
that you can better see your particle system against a color similar to the back-
ground in your game. The default is a black background.

n Particle Configuration Section
This section sets up how many particles are going to be used within the particle
effect as well as how long they will live, known as the lifespan of a particle. This
section also sets up the starting size of the particles and the variance and angle
at which they are emitted. The size at which the particles will finish is also con-
figured in this section.

Figure 14.6 Particle Designer’s emitter configuration panel

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More488

n The variance determines how much each of the settings will vary from particle
to particle. Having a good amount of variance in your particle system can make
it seem more realistic. Having no variance will have each of the particles act
exactly as the previous ones.

n Emitter Type Section
The emitter type section lets you choose between a gravity or radial style par-
ticle system. Gravity has the particles flowing in one direction defined for both
the x- and y-axes. This can create an effect similar to water flowing out of the
tap. The radial type of emitter has particles emitting from a ring and usually col-
lapsing inward. The best way to understand the difference between these two
options is to try them out on Particle Designer by toggling the value in the Emit-
ter Type dropdown.

n Gravity/Radial Configuration Section
This section contains the configuration options for both the gravity and the radial
emitters. If you have the gravity emitter selected, then you have the option to
configure radial and tangential acceleration values. Radial acceleration occurs in
all directions from the emitter, while tangential acceleration takes the particles
on a curved path from the center point out. Text descriptions of these effects
are hard to visualize, so be sure to play with these values to see for yourself
what effect these settings have. If you select a radial emitter in the Emitter Type
section, you can set the radius and rotation (in degrees) of the emitter.

n Emitter Location Section
This section controls the location of the emitter itself. You can change the look
of a particle system just by increasing the variance of the emitter location.
Keep in mind you can also change the emitter location later in code via the
setPosition call.

n Particle Texture Section
This is the texture used to render each particle. Drag and drop your PNG texture
into this section to have Particle Designer use it for your particle system. When
you export the Cocos2D plist from Particle Designer, the texture is automatically
embedded in the plist file.

n Particle Color Section
This section controls the start and finish color values for the particles. These
settings can turn a snowy particle system into a rain of fiery meteors.

n Blend Function Section
This section sets the OpenGL ES parameters for the rendering of the particle
system. While OpenGL is beyond the scope of this book, you can see how some
of the settings work here by playing around in Particle Designer.

Remember, the best way to learn about particle systems is to play around with the set-
tings and see what impact the changes have. When you are done creating your next
particle system, a quick export will get it into the plist file that Coco2D can use to bring
it into your iOS game. If you are using the trial version and cannot export, you will find
the EngineExhaust.plist in the resources folder for this chapter. The next section covers
how to create the engine exhaust for the space cargo ship and add it to Space Viking.

Creating and Adding a Particle System to Space Viking 489

Creating and Adding a Particle System to
Space Viking
To create the space cargo ship exhaust plume, you take one of the existing Particle
Designer systems and modify it. To start:

1. Open Particle Designer and look at the Shared Emitters Gallery.

2. Select the Plasma Exhaust Particle System.

In the Particle Configuration section:

1. Change the Max Particles to 100 (from 1000).

2. Change the Particle Lifespan to 1.5 (from 10).

3. Change the Lifespan Variance to 0 (from 10), indicating that all particles will
live for the same amount of time.

You can leave the Emitter Type and Gravity Configuration settings exactly as they
are. In the Emitter Location section:

1. Change the Source Pos Y variance to 30 (from 0). This allows the plume to be
wider in the vertical direction.

2. Change the Source Pos Y to 240.

3. Change the Source Pos X position to 363.

4. Change the Source Pos X variance to 68.

Finally, you have to modify the Particle Color section so that the exhaust plume
will have a yellow color instead of a blue plasma look.

1. Change the Start Particle Color Red amount to 0.86.

2. Change the Start Particle Color Green amount to 0.14.

3. Change the Start Particle Color Blue amount to 0.

Your configuration panel should look as shown in Figure 14.7. You can test to see
how the particle system looks by clicking the play button.

Before you can use the new particle system in Space Viking, you have to save it as a
plist and import it into your Space Viking project.

1. Click Save As, and label the file EngineExhaust.plist.

2. Set the File Format to cocos2d (plist).

3. After saving the EngineExhaust.plist file, import it into your SpaceViking project
under the Images group.

The last step is to add the code to instantiate the particle system inside of
SpaceViking.

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More490

Adding the Engine Exhaust to Space Viking
What could be cooler than a fire and smoke exhaust trail on the space cargo ship? In
this section you add the fire plume particle system (EngineExhaust.plist) you created as
well as a smoke particle system.

To start, open the GameplayLayer.h header file and add the lines shown in Listing
14.3 inside the @interface declaration.

Listing 14.3 Engine exhaust particle systems in GameplayLayer.h header file

CCParticleSystem *emitter;

CCParticleSystem *smokeEmitter;

Move to the GameplayLayer.m implementation file and locate the createObject-
OfType method. In the createObjectOfTypeMethod add the lines shown in bold
in Listing 14.4 inside the if else branch for the SpaceCargoShip.

Figure 14.7 Engine exhaust particle system in Particle Designer

Creating and Adding a Particle System to Space Viking 491

Listing 14.4 creatObjectofType method in GameplayLayer.m implementation file

} else if (kEnemyTypeSpaceCargoShip == objectType) {

CCLOG(@"Creating the Cargo Ship Enemy");

SpaceCargoShip *spaceCargoShip =

 [[SpaceCargoShip alloc]

initWithSpriteFrameName:@"ship_2.png"];

 [spaceCargoShip setDelegate:self];

 [spaceCargoShip setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:spaceCargoShip

 z:ZValue

 tag:kEnemyTypeSpaceCargoShip];

 [spaceCargoShip release];

// Chapter 14

// Add the flaming particle system

 emitter = [ARCH_OPTIMAL_PARTICLE_SYSTEM

 particleWithFile:@"EngineExhaust.plist"]; // 1

 smokeEmitter = [CCParticleSmoke node]; // 2

 [self addChild:emitter]; // 3

 [self addChild:smokeEmitter]; // 4

 } else if (kPowerUpTypeMallet == objectType) {

The first step is to replace the addChild call so that the SpaceCargoShip can
have its tag set to the kEnemyTypeSpaceCargoShip value. With the tag value
in place, you can retrieve the SpaceCargoShip from the list of children objects
rendered by the sceneSpriteBatchNode and update the position of the particle
systems.

As with the built-in particle systems, creating a particle system takes just a few
steps:

1. Initializes the emitter with the EngineExhaust.plist file you created in Particle
Designer.

The particle image/texture is actually embedded inside of the plist file, so it does
not have to be included. The ARCH_OPTIOMAL_PARTICLE_SYSTEM macro is
used here so that the best-performing particle system is selected depending on
the architecture being compiled (armv6 or armv7).

2. Initializes the smokeEmitter to the built-in smoke particle system.
Along with the EngineExhaust fire plume, the smokeEmitter adds a second
particle system to create the trailing smoke.

3. Adds the EngineExhaust particle system to the GameplayLayer.

4. Adds the smokeEmitter particle system to the GameplayLayer.

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More492

Now that the particle systems are added to the Gameplay layer, the last step is to
position both particle systems behind the SpaceCargoShip so that they follow it left
and right.

Move to the update method inside GameplayLayer.m and add the lines shown in
bold in Listing 14.5.

Listing 14.5 update method in GameplayLayer.m implementation file

#pragma mark Update Method

-(void) update:(ccTime)deltaTime {

CCArray *listOfGameObjects =

 [sceneSpriteBatchNode children]; // 1

for (GameCharacter *tempChar in listOfGameObjects) { // 2

 [tempChar updateStateWithDeltaTime:deltaTime
andListOfGameObjects:listOfGameObjects]; // 3

 }

// Chapter 7 Additions

// Check to see if the Viking is dead

GameCharacter *tempChar = (GameCharacter*)

 [sceneSpriteBatchNode

getChildByTag:kVikingSpriteTagValue];

if (([tempChar characterState] == kStateDead) &&

 ([tempChar numberOfRunningActions] == 0)) {

 [[GameManager sharedGameManager] setHasPlayerDied:YES];

 [[GameManager sharedGameManager]

runSceneWithID:kLevelCompleteScene];

 }

// Check to see if the RadarDish is dead

 tempChar = (GameCharacter*)[sceneSpriteBatchNode

getChildByTag:kRadarDishTagValue];

if (([tempChar characterState] == kStateDead) &&

 ([tempChar numberOfRunningActions] == 0)) {

 [[GameManager sharedGameManager]

runSceneWithID:kLevelCompleteScene];

 }

// Chapter 14 Updates for Particle System

 GameCharacter *spaceCargoShip = (GameCharacter*)

 [sceneSpriteBatchNode getChildByTag:kEnemyTypeSpaceCargoShip];

 if (spaceCargoShip != nil) {

 CGRect cargoShipBoundingBox = [spaceCargoShip boundingBox];

 float xOffset = 0.0f;

Creating and Adding a Particle System to Space Viking 493

 if ([spaceCargoShip flipX] == NO) {

 // Ship facing to the left

 xOffset = cargoShipBoundingBox.size.width;

 }

 CGPoint newPosition =

 ccp(cargoShipBoundingBox.origin.x + xOffset,

 cargoShipBoundingBox.origin.y +

 (cargoShipBoundingBox.size.height*0.6f));

 [emitter setPosition:newPosition];

 [smokeEmitter setPosition:newPosition];

 }

}

After the for loop has iterated through all of the GameObjects and updated their
positions, the SpaceCargoShip is retrieved from the SpriteBatchNode via the
kEnemytypeCargoShip tag value.

The logic to update the particle systems position works as follows:

1. Retrieve the bounding box so that the screen location and size of the Space-
CargoShip are known (its size indicates how scaled up it currently is).

2. If the ship is currently facing to the left, the xOffset is set to the ship’s width.
Since the SpaceCargoShip is facing left, you want the particle systems to be
behind it, which means they should be set to the position of the SpaceCargo-
Ship plus the width.

3. The newPosition for the particle system is set to the SpaceCargoShip
origin plus the xOffset in the x-axis and the SpaceCargoShip origin and
to 60 percent of its height on the y-axis.

Recall that sprites have their bounding box origin at the bottom left unless you
change the anchor point.

If the SpaceCargoShip is facing to the left side of the screen, the newPosition
is set to be on the rightmost edge of the bounding box. If the SpaceCargoShip
is facing to the left, it is moving in the left direction, and the exhaust is posi-
tioned on the right side.

4. Both the EngineExhaust and Smoke particle systems are set to the new
position.

If you click Run you should see the Space Cargo Ship move with the engine
exhaust and smoke trails following it. Figure 14.8 shows the SpaceCargoShip mov-
ing across the screen with the engine exhaust and smoke trails following it.

Chapter 14 Particle Systems: Creating Fire, Snow, Ice, and More494

Summary
Particle systems can add a great deal of realism to your games and help pull the player
into the game world. In this chapter you learned about particle systems and how to
easily add them to your own Cocos2D games. You also learned about the Particle
Designer tool and how to experiment with the various settings for particle systems
quickly and easily from your Mac. In the next chapter you learn about Apple’s Game
Center API and how to add achievements and leaderboards to Space Viking.

Challenges
1. Change the CCParticleSnow class to increase the number of particles being

used, simulating a large snowstorm on the alien planet.

Hint: Look at the [self initWithTotalParticles:700]; call for
CCParticleSnow.

2. Change the smokeEmitter so that it is positioned behind the engine exhaust
instead of on top of it.

Figure 14.8 Space cargo ship showing the engine exhaust and smoke
particle systems

15
Achievements and Leaderboards

with Game Center

Space Viking is quickly becoming a pretty cool game. It uses a lot of different aspects of
Cocos2D, including actions, animation, scrolling, sound, and game physics. It has multiple levels
with different styles and has a kick-butt main character.

But when you make a game like this, you want to keep your players coming back for more.
One good way to do that is by adding achievements and leaderboards into your game using
Apple’s new social gaming network: Game Center.

In this chapter, you add achievements into Space Viking for completing each level to give
players a sense of accomplishment and drive them to complete the game. You also add leaderboards
for the Escape level, so players can compete for the fastest escapes.

In the process, you learn a lot about Game Center, how to set up your leaderboards and
achievements, and how to integrate them into your games. You learn about some pitfalls you
might run into along the way and how to navigate through them successfully.

So let’s take this game to the next level and integrate Game Center.

What Is Game Center?
When users think of Game Center, they often think of the app that comes preinstalled
with iOS (4.1+). In the Game Center app, you can view your list of friends, see what
kinds of games they’ve been playing, and see how far they’ve gotten in their games, as
you can see in Figure 15.1.

You can also check out your own progress with Game Center. You can look
through your list of Game Center games and compare your scores to those of your
friends and the world, as you can see in Figure 15.2.

However, Game Center is more than just the app. It’s also a set of APIs you can use
in your apps that make it easy for you to add leaderboards, achievements, and multi-
player capabilities to your games. The APIs integrate with back-end services provided
by Apple to store your leaderboards and achievements in a central spot online.

Chapter 15 Achievements and Leaderboards with Game Center496

Figure 15.1 Friends list in Game Center and viewing friend’s games

Figure 15.2 Viewing your progress in a game in Game Center

Enabling Game Center for Your App 497

In this chapter, you get some hands-on experience using Game Center, by adding
leaderboards and achievements into Space Viking. But before we get started, let’s talk
about why you’d want to use Game Center in the first place.

Why Use Game Center?
Using Game Center is a great idea for many reasons:

First, it’s easy to do. Adding networked leaderboards or achievements to your game
used to be a difficult task involving writing networking code and a server-side app—
but now it’s just a few simple API calls.

Second, it’s fun for your players and keeps them coming back to your game. Many
players feel an unstoppable urge to get all of their games 100 percent completed, so
you can reward them for their dedication with achievements. Leaderboards are great as
well, because they encourage users to keep replaying your game in order to get high
scores or to beat their friends!

Third, Game Center can help you sell more apps. Game Center games are listed in
a special section in the App Store, which you can get to straight from the Game Cen-
ter app by tapping Find Game Center Games on the Games tab. You can also see
what games your friends have, which might lead to more people downloading your
game. Finally, the more features of Game Center you implement, the more players
will enjoy your game and want to share it with others!

Now that you know that Game Center can give your app a lot of cool advantages
with a minimal amount of effort, let’s try it out in Space Viking.

Enabling Game Center for Your App
Unlike the other APIs that you’ve used in this book so far, your app requires a few
configuration steps so it can use Game Center:

1. Obtain an iOS Developer Program account.

2. Create an App ID for your app.

3. Register your app in iTunes Connect.

The next three sections walk you through this process in detail so you can get back
to code as quickly as possible.

If you’ve already created an entry for your app in iTunes Connect, you can skip
straight to the last step in this section (Enable Game Center) and continue from there.

Obtain an iOS Developer Program Account
In order to use Game Center in your apps, you need to be able to register your app in
iTunes Connect and the iPhone Developer Portal, both of which require you to be a
registered member of the iOS Developer Program.

Chapter 15 Achievements and Leaderboards with Game Center498

In order to complete this chapter and try out Game Center, you need to sign up for
this program first and pay your $99 if you haven’t already. At the time of writing this
book, you can sign up at http://developer.apple.com/programs/ios/.

Note that it usually takes a couple weeks for the application to go through, so it’s a
good idea to register as soon as you can!

Create an App ID for Your App
Once you’ve created your iOS Developer Program account, the next step is to create
an App ID for your app. An App ID is a unique identifier for an app that enables the
OS to know if two apps are the same or different. App IDs are split into two parts, as
you can see in Figure 15.3.

App ID
FTXQ92UGJZ.com.prop-group.spaceviking

Bundle Identifer
.com.prop-group.spaceviking

Bundle Seed ID
FTXQ92UGJZ + =

Figure 15.3 The two parts of an App ID

The first part (the Bundle Seed ID) is a random string of 10 characters generated
by Apple. In the example in Figure 15.3, you can see that this was randomly set to
FTXQ92UGJZ. If you have two different apps with the same App ID, they can share
keychain access (a secure way to store information on iOS). If you aren’t sure whether
you’ll ever need this or not, a safe bet is to use the same Bundle Seed ID for all of your
apps, just in case you want keychain access in the future.

The second part (the Bundle Identifier) is a string you make up. It can be anything
you want, but usually the best thing to do is start the name with a reverse DNS name
to avoid any conf licts with something other developers might put. At the end, it’s usu-
ally best to put something related to the name of your app to keep it straight. In the
example in Figure 15.3, you can see that we set to com.prop-group.spaceviking (but you’ll
have to make up your own).

For the reverse DNS name, you can use a domain name you own as the start. If you
don’t have a domain name, don’t worry: just use something fairly unique, such as your
full name (e.g., com.joeschmoe.spaceviking).

Now that you know what App IDs are, let’s create one for Space Viking. Here are
the steps to do so at the time of writing, but note that this process changes from time
to time. If it does, check the book forums or check the official documentation for
more information.

1. Visit the iOS Dev Center (http://developer.apple.com/devcenter/ios/), click the Log
in button, as shown in Figure 15.4, and sign in with your account.

http://developer.apple.com/programs/ios/
http://developer.apple.com/devcenter/ios/

Enabling Game Center for Your App 499

2. Click the link for iOS Provisioning Portal on the right-hand side, as shown in
Figure 15.5. The iOS Provisioning Portal is a service that helps you set up your
devices, App IDs, and provisioning/distribution/ad-hoc profiles.

Figure 15.4 Click Log in

Figure 15.5 Click iOS Provisioning Portal

3. Right now, you just need an App ID, so click the link for App IDs on the left-
hand side, then click the New App ID button in the upper right. Create a new
App ID for your app according to the following instructions:
n For the Description, choose something to help you remember what this App

ID is later, such as Space Viking.

Chapter 15 Achievements and Leaderboards with Game Center500

n For the Bundle Seed ID, choose the same Bundle ID as your other apps if
you want to share keychain access; otherwise choose Generate New.

n For the Bundle Identifier, enter in a unique name based on a DNS name
you own, such as com.prop-group.spaceviking. If you do not own a domain name,
you can make one up based on your full name or something else unique.

When you’re done, click Submit, as shown in Figure 15.6.

Figure 15.6 Create new App ID (but replace this with your own)

4. Now that you’ve created an App ID for your app, you need to go back to
Xcode and set the Bundle Identifier in the info.plist file for SpaceViking. Go back
to SpaceViking in Xcode, and select Resources\Info.plist. Edit the Bundle
Identifier to be the second part of your App ID (the part after the 10 random
characters). For our App ID, it is com.prop-group.spaceviking, as you can see in
Figure 15.7.

Enabling Game Center for Your App 501

Congratulations! You’ve successfully set up your app with a unique identifier,
which is the first step toward enabling Game Center in your app. The next thing you
need to do is register your app in iTunes Connect.

Register Your App in iTunes Connect
If you’ve developed other apps on the App Store before, you may be used to writing
the app first, then registering the app in iTunes Connect and uploading it. If you want
to use Game Center, however, you have to register your app early, even before you’ve
written any Game Center code. But don’t worry: you can just enter placeholder infor-
mation to start and then fix it up later when you’re ready to release.

Here are the steps to register your app on iTunes Connect. These steps also change
from time to time, so if something is different, check the book forums or official doc-
umentation for more information.

1. Visit iTunes Connect (https://itunesconnect.apple.com) and log in with your
account, as shown in Figure 15.8.

Figure 15.7 Set Bundle identifier in info.plist

Figure 15.8 Log in to iTunes Connect

2. Click Manage Your Applications in the main menu, as shown in Figure 15.9.

https://itunesconnect.apple.com

Chapter 15 Achievements and Leaderboards with Game Center502

3. From your list of apps, click Add New App to register a new app, and choose
iOS App for the App type, as shown in Figure 15.10. Note that this screen may
not appear if you are an iOS-only developer (if so, just continue to the next
step). Also note that you may get a screen that asks you for your company name
and language.

Figure 15.9 Click Manage Your Applications

Figure 15.10 Click Add New App, then select iOS App as the App Type

Enabling Game Center for Your App 503

4. Next you enter in the basic information for your app, according to the following
instructions:
n For the App Name, choose a unique app name. We chose Space Viking here,

but you must choose a different name, as this name is already taken.
n For SKU Number, you can put in some kind of abbreviation to keep track

of your app; we just use SPACEVIKING001.
n For Bundle ID, choose the Bundle Identifier you just made as part of your

App ID; ours is com.prop-group.spaceviking.

When you’re done, click Continue, as shown in Figure 15.11.

Figure 15.11 Enter basic information for your app

5. You now advance to the Rights and Pricing screen, as shown in Figure 10.12.
Here you can set your availability date, pricing, and educational discounts if
you’d like. If you aren’t sure, just select anything for now; you can go back and
change this later.

6. The final screen is the Version Information screen, as shown in Figure 10.13.
Just fill out this information the best you can. If you don’t know what to put for
a field yet, just put a few placeholder characters in there so you can get past this
field. Don’t worry; you can change all of this before you upload your final ver-
sion. Note that Apple requires a large icon and a screenshot in order to accept
your app; you can just upload temporary images of the right size there and
replace them later as well. When you’re done, click Save.

Chapter 15 Achievements and Leaderboards with Game Center504

Figure 15.12 Entering rights and pricing

Figure 15.13 Enter placeholder information in Version Information
screen

Enabling Game Center for Your App 505

At this point you should see a page for your app in the Prepare for Upload state, as
shown in Figure 15.14. You won’t be uploading the app yet (since you’re still working
on it), but at this point it’s ready for you to enable Game Center support!

Figure 15.14 Your placeholder app entry in iTunes Connect

Enable Game Center Support
Now that you’ve gotten this far, enabling Game Center in your app is really easy. Just
click on the Manage Game Center button, as shown in Figure 15.14, and then click
the big blue Enable button as shown in Figure 15.15.

That’s it; you’re done. It gives you options to set up leaderboards and achievements,
but you won’t be setting those up until later in this chapter. For now, let’s start some
coding by integrating authentication into your app.

Chapter 15 Achievements and Leaderboards with Game Center506

Game Center Authentication
Before you can do anything with Game Center, you must take three steps:

1. Make sure Game Center is available on the current device.

2. Try to authenticate the player with Game Center.

3. Keep informed if authentication status ever changes.

You’ll start by learning what all of this means and how to implement it, then you’ll
try it out yourself by adding the code into Space Viking. So let’s get authenticating!

Make Sure Game Center Is Available
Game Center is only available on iOS 4.1 and above, so if you want to use Game Cen-
ter in your app, one option is to prevent your app from running on OS versions older
than 4.1. You can do this by setting the Deployment Target of your app to iOS 4.1+ in
the build settings. This is a simple fix, but the problem with this approach is that you
might lose potential customers who are running on older versions of iOS.

In this chapter, you take a second approach: weak-link to Game Center and check
if Game Center is available before you try to use it. This way, your code can still run
on pre-iOS4 devices (but just not be able to use Game Center features).

To get this to work, you need to add some code to check if Game Center is avail-
able. Listing 15.1 shows Apple’s recommended way to check.

Listing 15.1 Recommended way to check if Game Center is available

- (BOOL)isGameCenterAvailable

{

// Check for presence of GKLocalPlayer API

 Class gcClass = (NSClassFromString(@"GKLocalPlayer"));

Figure 15.15 Click Enable to enable Game Center.

Game Center Authentication 507

// Check if the device is running iOS 4.1 or later

 NSString *reqSysVer = @"4.1";

 NSString *currSysVer = [[UIDevice currentDevice] systemVersion];

BOOL osVersionSupported = ([currSysVer compare:reqSysVer

options:NSNumericSearch] != NSOrderedAscending);

return (gcClass && osVersionSupported);

}

The method in Listing 15.1 checks if the GKLocalPlayer class exists (one of the
Game Center API classes), and then checks that the OS is 4.1 or later (since the class
existed in an earlier OS but not in a fully complete state). If both of these are true, it’s
safe to use Game Center!

Try to Authenticate the Player
Once you’ve made sure that Game Center is available, the next thing you need to do is
authenticate your user. The Game Center API makes this very easy: you just call a sin-
gle line of code to authenticate players (which prompts them to enter their usernames/
passwords if they’re not logged in already), as shown in Listing 15.2.

Listing 15.2 Example of authenticating the player

[[GKLocalPlayer localPlayer]

 authenticateWithCompletionHandler:^(NSError *error) {

// Do something if necessary...

}];

Note that this method takes a completion handler, which is a block of code that
should be executed after the user successfully logs in or when there is an error.

Note
If you’re unfamiliar with blocks, don’t panic! The syntax looks weird, but once you get
used to it, you’ll start to like blocks because they keep related code close together. The
best way to learn about blocks and how to use them is to read Apple’s “A Short Practical
Guide to Blocks,” available at: http://developer.apple.com/library/ios/#featuredarticles/
Short_Practical_Guide_Blocks/.

Apple’s guidance is to call authenticateWithCompletionHandler once when
your app starts up, as early in the launch sequence as possible. This causes one of three
things to happen:

n If the user is already logged in, it will display a Welcome Back dialog at the top
of the app.

n If the user isn’t logged in (and hasn’t opted out), it will prompt the user to log in
with an existing account or to create a new account.

http://developer.apple.com/library/ios/#featuredarticles/Short_Practical_Guide_Blocks/
http://developer.apple.com/library/ios/#featuredarticles/Short_Practical_Guide_Blocks/

Chapter 15 Achievements and Leaderboards with Game Center508

n If the user isn’t logged in (and has opted out by pressing cancel three times in a
row), no dialog will be presented to the user—ever! The user will have to go to
Game Center to log in again. This behavior is by design, as Game Center should
be treated as systemwide login behavior.

Note
Note that you shouldn’t try to add a Game Center button that calls authenticate-
WithCompletionHandler again. If the user wants to log in to Game Center again, he
or she should switch to the Game Center app to do so.

For more information on the reasoning behind this, there is a good discussion on Apple’s
developer forums here: https://devforums.apple.com/thread/71830.

Keep Informed If Authentication Status Changes
There is one trick to authenticating users, and it has to do with multitasking on
iOS 4+. With multitasking, the user can switch away from your app at any time,
switch over to the Game Center app, and log out. Your app needs to know when this
has happened so you can disable Game Center features until the user logs back in.
Luckily, you can get notice of this by using the NSNotificationCenter to set
a method to be called when the user’s authentication status changes, as shown in List-
ing 15.3.

Listing 15.3 Example of registering for authentication status change callbacks

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

[nc addObserver:self selector:@selector(authenticationChanged)

 name:GKPlayerAuthenticationDidChangeNotificationName object:nil];

This code registers for the GKPlayerAuthenticationDidChangeNotifica-
tionName notification, so every time the user logs in or logs out, the authentica-
tionChanged method is called.

Note that this method is called even when the user initially logs in (after calling
authenticateWithCompletionHandler), so it’s a good central place to put code
related to the authentication status changing.

The Implementation
Enough talk; time to try it out. The first step is to add the Game Kit framework to
your project. Game Kit is the library that contains the Game Center API code.

To add Game Kit, select your SpaceViking project in the groups and files tree to
bring up the project settings. Click on the Build Phases tab and expand the Link
Binary with Libraries section. Click the + button at the bottom of the dialog, select
iOS SDK\GameKit.framework, and click Add. Then in the Link Binary with
Libraries section, find the entry for GameKit.framework, and set the Type to
Optional (instead of Required), as shown in Figure 15.16.

https://devforums.apple.com/thread/71830

Game Center Authentication 509

Now it’s time to add some code. You’ll be putting all of the Game Center–related
code in a helper class to keep your code clean and reusable in future projects.

To add the helper class, select the Singletons group in Xcode, go to File > New >
New File..., choose iOS > Cocoa Touch > Objective-C class, and click Next.
Enter NSObject as the Subclass of, click Next, name the file GCHelper.m, and click
Save.

Once you’ve created the class, replace GCHelper.h with the contents of Listing 15.4.

Listing 15.4 GCHelper.h

#import <Foundation/Foundation.h>

#import <GameKit/GameKit.h>

@interface GCHelper : NSObject {

BOOL gameCenterAvailable;

BOOL userAuthenticated;

}

+ (GCHelper *) sharedInstance;

- (void)authenticationChanged;

- (void)authenticateLocalUser;

@end

This method first imports the GameKit header, then creates a simple object with
two member variables: one to keep track if the Game Center API is available on this

Figure 15.16 Weak-linking to the GameKit framework

Chapter 15 Achievements and Leaderboards with Game Center510

device and one to keep track if the user is currently authenticated. It also defines a
static method to get the single instance of the GCHelper for the application, prede-
clares the callback for authentication status changes, and defines a method that will
authenticate the local user.

Next, switch to GCHelper.m and replace it with the contents of Listing 15.5.

Listing 15.5 GCHelper.m

#import "GCHelper.h"

@implementation GCHelper

#pragma mark Loading/Saving

static GCHelper *sharedHelper = nil;

+ (GCHelper *) sharedInstance {

@synchronized([GCHelper class])

 {

if (!sharedHelper) {

 [[self alloc] init];

 }

return sharedHelper;

 }

return nil;

}

+(id)alloc

{

@synchronized ([GCHelper class])

 {

NSAssert(sharedHelper == nil, @"Attempted to allocated a \

 second instance of the GCHelper singleton");

 sharedHelper = [super alloc];

return sharedHelper;

 }

return nil;

}

@end

This is just the beginning of GCHelper.m; you’ll add the rest soon. This is the
implementation of the Singleton design pattern to make sure there is only one instance
of the GCHelper class in memory, just like you used to create the GameManager
singleton in Chapter 7, “Main Menu, Level Completed, and Credits Scenes.” If you’re
confused about how this code works, refer back to Chapter 7 for more details.

Game Center Authentication 511

Now that you’ve added the code to create a singleton instance of GCHelper, add
the code to initialize the object and keep track of authentication status changes, as
shown in Listing 15.6.

Listing 15.6 GCHelper.m (after alloc method)

- (BOOL)isGameCenterAvailable {
// check for presence of GKLocalPlayer API
Class gcClass = (NSClassFromString(@"GKLocalPlayer"));

// check if the device is running iOS 4.1 or later
NSString *reqSysVer = @"4.1";
NSString *currSysVer = [[UIDevice currentDevice] systemVersion];
BOOL osVersionSupported = ([currSysVer compare:reqSysVer

options:NSNumericSearch] != NSOrderedAscending);

return (gcClass && osVersionSupported);
}

- (id)init {
if ((self = [super init])) {

 gameCenterAvailable = [self isGameCenterAvailable];
if (gameCenterAvailable) {

NSNotificationCenter *nc =
 [NSNotificationCenter defaultCenter];
 [nc addObserver:self

selector:@selector(authenticationChanged)
name:GKPlayerAuthenticationDidChangeNotificationName
object:nil];

 }
 }

return self;
}

#pragma mark Internal functions

- (void)authenticationChanged {
dispatch_async(dispatch_get_main_queue(), ^(void)

 {
if ([GKLocalPlayer localPlayer].isAuthenticated &&

 !userAuthenticated) {
NSLog(@"Authentication changed: player authenticated.");

 userAuthenticated = TRUE;
 } else if (![GKLocalPlayer localPlayer].isAuthenticated &&
 userAuthenticated) {

NSLog(@"Authentication changed: player not authenticated");
 userAuthenticated = FALSE;
 }
 });
}

Chapter 15 Achievements and Leaderboards with Game Center512

isGameCenterAvailable is the same code shown earlier in this chapter that
checks to see if this version of the OS has the Game Center code on it.

init first checks to see if Game Center is available. If it is, it registers
authentication Changed to be called whenever the authentication status changes.

authenticationChanged keeps a f lag of whether or not the user is currently
authenticated and logs when there is a change in status.

Note
You may be wondering why the call to dispatch_async is in this function. That line of
code runs the contained block on the main thread. This is necessary because when you
register for a callback for a notification, it’s not guaranteed to run on the main thread.

Since this method needs to modify variables on the object, it should run in the main
thread to avoid multithreading access issues. dispatch_async is an easy way
to do this. Note that it only works on iOS 3.2+, though. If you want your code to run
on an earlier version of iOS, you should use an alternative method such as [self
perform SelectorOnMainThread:withObject:waitUntilDone].

The next step is to add the method to authenticate the local user, as shown in List-
ing 15.7.

Listing 15.7 GCHelper.m (after authenticationChanged)

#pragma mark User functions

- (void)authenticateLocalUser {

if (!gameCenterAvailable) return;

NSLog(@"Authenticating local user...");

if ([GKLocalPlayer localPlayer].authenticated == NO) {

 [[GKLocalPlayer localPlayer]

authenticateWithCompletionHandler:nil];

 } else {

NSLog(@"Already authenticated!");

 }

}

You’ll be adding some code to call authenticateLocalUser when Space Viking
first starts up. Notice it immediately quits if Game Center isn’t available or if the user
is already authenticated. Otherwise, it calls authenticateWithCompletionHandler
on the GKLocalPlayer singleton to start the authentication process, as described ear-
lier in this chapter.

Note that there is no need to set a completion handler, since this class has already
registered for the authentication changed notification.

Game Center Authentication 513

Now that you’re done with the implementation, it’s time to try it out! Switch to
SpaceVikingAppDelegate.m and import the GCHelper class at the top of your file, as
shown in Listing 15.8.

Listing 15.8 SpaceVikingAppDelegate.m (at top of file)

#import "GCHelper.h"

Then at the beginning of applicationDidFinishLaunching, add a call to
authenticate the user, as shown in Listing 15.9.

Listing 15.9 SpaceVikingAppDelegate.m (at beginning of applicationDidFinishLaunching)

[[GCHelper sharedInstance] authenticateLocalUser];

That’s it! But before you run, open the Game Center app on your simulator or
device, and sign out if you’re logged in (by tapping on your Account banner and
choosing Sign Out). That way, you are in a known state (logged out of Game Center)
at this point.

Compile and run, and you should see a dialog prompting you to log in, as you can
see in Figure 15.17.

Figure 15.17 Authenticating the player against the Sandbox Game
Center environment

Chapter 15 Achievements and Leaderboards with Game Center514

Note
Note that the dialog has the label “Sandbox” on it. This is because there are two differ-
ent Game Center environments: a development “sandbox” environment for testing and a
production environment that is used when your app has launched. You can tell which one
you’re on because the dialog boxes and Game Center app itself make it clear by contain-
ing Sandbox labels if you’re on the sandbox.

Each environment has its own set of accounts, leaderboards, and achievements. So you
can test happily away on the sandbox environment without worrying that it will affect the
production leaderboards or achievements.

When your app authenticates with Game Center, it automatically uses the Sandbox envi-
ronment if you are building with a development provisioning profile.

If you don’t already have a Sandbox account, go ahead and create one. Then log in,
shut down your app, and run it again. This time, you should see a “Welcome Back”
message, since you’re already logged in, as shown in Figure 15.18.

Figure 15.18 Welcome Back user interface

Congratulations: you now have an app that is Game Center enabled. You could
actually publish your app at this point and get many of the advantages of having a
Game Center app, such as making your app easier to find. However, adding achieve-
ments and leaderboards is pretty easy, too, so let’s continue by adding those next.

Setting Up Achievements 515

Setting Up Achievements
Achievements are a way that you can set a challenge for users (such as “Get 1000
coins,” “Kill 20 monsters,” or “Beat this level”) and then reward users for reaching
that goal by keeping track of their achievements and giving them points. Users can see
at a quick glance what achievements they’ve fulfilled and which are yet to be done.

In this section, you add achievements to Space Viking. To keep things simple, you
just add an achievement for beating each level in the game. You also add a special
“hidden” achievement for if the user dies three or more times in the mine cart level,
just for fun.

First, you add achievements into iTunes Connect, then you learn a bit about how
achievements work, and finally you add the implementation into the game.

Adding Achievements into iTunes Connect
Before you can implement achievements in your game, you need to set them up in
iTunes Connect. Set these up for Space Viking now by taking the following steps:

1. Log on to iTunes Connect at https://itunesconnect.apple.com.

2. Click Manage Your Applications, select your application, click Manage
Game Center, and then click Set up under Achievements. At this point, you
should see a window similar to Figure 15.19.

Figure 15.19 Empty Achievements List

Note that the screen says “1000 Points Remaining.” When you set up your
achievements, you give each one a number of points. No matter how many
achievements you add, your achievements can’t sum to over 1000 points.

https://itunesconnect.apple.com

Chapter 15 Achievements and Leaderboards with Game Center516

Note
Be careful with how you allocate points, because if you start out with achievements sum-
ming to 1000 points and you want to add another achievement later, there will be no
more points left to give out. Therefore, it’s a good idea to start with giving out a smaller
number of points if you aren’t sure how many you might add later.

3. Click Add New Achievement to bring up the Add Achievement screen, as
shown in Figure 15.20.

Figure 15.20 The Add Achievement screen

Let’s go over each field on this screen in turn.
n The Achievement Reference Name is a string you use internally to keep

track of the achievement—the player will never see this. Note that this name
needs to be unique across all of your apps, however.

n Achievement ID is a unique ID to keep track of the achievement. You can use
anything here, but again, it’s a good idea to use reverse DNS notation so you’re
sure your names are unique.

n Hidden indicates whether users should see the achievement before they unlock
it. This can be useful if you want to surprise users for accomplishing something
rather than having them know it’s there in advance.

n Point value is the number of points that this achievement is worth once it is
completed, as discussed earlier.

Setting Up Achievements 517

There are several more values that are set on a per-language basis; you can see them
by clicking Add Language. They are self-explanatory: the title of the achievement,
the descriptions for before and after the user accomplishes the achievement, and a
512 × 512 image for the achievement.

Note
Note that achievement images in Game Center are circular to look a bit like coins. You
can either make your icons circular as well or just upload a square image with transpar-
ency and Game Center will automatically add a circular border and background color (if
your icon has transparency).

The resources folder for this chapter contains icons for each of the six achievements
you’ll be adding to Space Viking. Use them and the table in Figure 15.21 to set up six
achievements for Space Viking. Remember to replace the Achievement ID with your
own unique name!

Figure 15.21 Space Viking achievement reference

How Achievements Work
When a user makes some progress on an achievement (i.e., kills 10 of the 20 mon-
sters she needs to kill) or completes an achievement (i.e., completely finishes level 1),
reporting that progress to Game Center is quite simple. You create a GKAchievement
object with the Achievement ID you set up in iTunes Connect, set the percentCom-
plete property, and call reportAchievementWithCompletionHandler, as shown
in Listing 15.10.

Listing 15.10 Example of reporting an achievement

GKAchievement* achievement = [[[GKAchievement alloc]

 initWithIdentifier:identifier] autorelease];

achievement.percentComplete = percentComplete;

Chapter 15 Achievements and Leaderboards with Game Center518

[achievement reportAchievementWithCompletionHandler:^(NSError *error) {

// Do something...

}];

Pretty simple, eh? But there’s one big problem: there is a chance that report-
AchievementWithCompletionHandler could fail, such as if the Internet connec-
tion goes down or if Game Center itself is having troubles. If that happens, you don’t
want the player to lose the achievement, especially since some achievements entail a lot
of work and are a big deal for your player!

Luckily, Apple makes this situation easy to deal with by making it easy to save
GKAchievement objects to disk. This way, if any achievements can’t be successfully
sent to Game Center’s servers, you can save them to disk and send them to Game
Center again at a later time.

There are different approaches you can take to using Game Center. You can take
the “Game Center knows best” approach, where you read the achievements the user
has recorded in Game Center and use that as a baseline. Another option is the “game
knows best” approach, where the game keeps its own storage of the user’s achieve-
ments and just sends a copy to Game Center.

For Space Viking, you use the “game knows best” approach, which has the advan-
tage that you can report achievements immediately as they happen without having to
worry about Game Center’s status, and just keep Game Center up to date when you
can. You keep track of the user’s progress internally and call a method on GCHelper
to report achievements when the player makes progress. If GCHelper fails to send
them, it saves them to disk until the next time the user authenticates, at which time
the achievements are sent again.

So let’s see what this looks like and move on to the implementation.

Implementing Achievements
Right now Space Viking doesn’t save any game state, so before you can implement
achievements, you need to add that capability. Then you can add the code to send the
achievements to Game Center and save them to disk if they fail to send. Finally, you
can update Space Viking to use the new Game State and achievement-sending classes.

There are four steps to implementing achievements in Space Viking:

1. Add a class to keep track of the game’s state.

2. Add helper functions to make it easier to load/save data from disk.

3. Update GCHelper to support sending achievements (and saving unsent achieve-
ments to disk).

4. Update Space Viking to make use of these new classes.

This is all simple stuff, but there’s a good chunk of code to write to get everything
sorted, so grab a tasty snack and some caffeine, and let’s get to work!

Implementing Achievements 519

Creating a Game State Class
First, you create a new object called GameState, which the game will use to keep
track of the user’s progress. Select the Singletons group in Xcode, go to go to File >
New > New File..., choose iOS > Cocoa Touch > Objective-C class, and click
Next. Enter NSObject as the Subclass of, click Next, name the file GameState.m, and
click Save.

Once you’ve created the class, replace GameState.h with the contents of Listing 15.11.

Listing 15.11 GameState.h

#import <Foundation/Foundation.h>

@interface GameState : NSObject <NSCoding> {

BOOL completedLevel1;

BOOL completedLevel2;

BOOL completedLevel3;

BOOL completedLevel4;

BOOL completedLevel5;

int timesFell;

}

+ (GameState *) sharedInstance;

- (void)save;

@property (assign) BOOL completedLevel1;

@property (assign) BOOL completedLevel2;

@property (assign) BOOL completedLevel3;

@property (assign) BOOL completedLevel4;

@property (assign) BOOL completedLevel5;

@property (assign) int timesFell;

@end

This is just a simple object that keeps track of the players’ progress in the game:
what levels they’ve completed and how many times they’ve fallen off the screen in
Descent into Hades. You could extend this class to contain additional instance vari-
ables and properties for other data you’d like to save from game session to game session
if you’d like.

Note that the class implements the NSCoding protocol, which is an easy way to
encode/decode the data of a class to or from a data buffer. Also note that the class is
a singleton (with a static method sharedInstance to get the single instance of the
object) and has a method to save the data to disk.

Next add the implementation of GameState.m, as shown in Listing 15.12.

Chapter 15 Achievements and Leaderboards with Game Center520

Listing 15.12 GameState.m

#import "GameState.h"

#import "GCDatabase.h"

@implementation GameState

@synthesize completedLevel1;

@synthesize completedLevel2;

@synthesize completedLevel3;

@synthesize completedLevel4;

@synthesize completedLevel5;

@synthesize timesFell;

static GameState *sharedInstance = nil;

+(GameState*)sharedInstance {

@synchronized([GameState class])

 {

if(!sharedInstance) {

sharedInstance = [loadData(@"GameState") retain];

if (!sharedInstance) {

 [[self alloc] init];

 }

 }

return sharedInstance;

 }

return nil;

}

+(id)alloc

{

@synchronized ([GameState class])

 {

NSAssert(sharedInstance == nil, @"Attempted to allocate a \

 second instance of the GameState singleton");

sharedInstance = [super alloc];

return sharedInstance;

 }

return nil;

}

- (void)save {

 saveData(self, @"GameState");

}

- (void)encodeWithCoder:(NSCoder *)encoder {

 [encoder encodeBool:completedLevel1 forKey:@"CompletedLevel1"];

Implementing Achievements 521

 [encoder encodeBool:completedLevel2 forKey:@"CompletedLevel2"];

 [encoder encodeBool:completedLevel3 forKey:@"CompletedLevel3"];

 [encoder encodeBool:completedLevel4 forKey:@"CompletedLevel4"];

 [encoder encodeBool:completedLevel5 forKey:@"CompletedLevel5"];

 [encoder encodeInt:timesFell forKey:@"TimesFell"];

}

- (id)initWithCoder:(NSCoder *)decoder {

if ((self = [super init])) {

completedLevel1 = [decoder

decodeBoolForKey:@"CompletedLevel1"];

completedLevel2 = [decoder

decodeBoolForKey:@"CompletedLevel2"];

completedLevel3 = [decoder

decodeBoolForKey:@"CompletedLevel3"];

completedLevel4 = [decoder

decodeBoolForKey:@"CompletedLevel4"];

completedLevel5 = [decoder

decodeBoolForKey:@"CompletedLevel5"];

timesFell = [decoder decodeIntForKey:@"TimesFell"];

 }

return self;

}

@end

This first synthesizes the variable and has the static method to get the singleton
instance of this class.

Note that when creating the singleton instance of this class, it first tries to load the
data off the disk, with a function called loadData() that you’ll write next. If the data
doesn’t exist, it creates an empty object. By default, when initializing an object, all
instance variables are set to false or 0, so all the levels are marked as uncompleted and
the timesFell is initialized to 0.

The save routine calls a function named saveData() that you’ll also write next,
passing the current instance of the object (self) as a parameter.

encodeWithCoder is the method that saves the object’s data out to a data buf-
fer. This is similar to the concept of serialization in other languages. Basically, it goes
through each of the instance variables and calls a method to write it out, such as
encodeBool for the booleans and encodeInt for the integers. There is also encode-
Object for strings, arrays, and other types of objects, but that isn’t needed here. Each
time you call encodeWithCoder, you give it a key to save the data out to, and you
use that key when reading the data back in.

initWithCoder is the opposite of encodeWithCoder: it reads an object back off
disk. Here it simply calls the decode methods for each instance variable, passing in the
appropriate key.

Chapter 15 Achievements and Leaderboards with Game Center522

Creating Helper Functions to Load and Save Data
Now you implement the loadData() and saveData() methods referenced above
in a new file: GCDatabase. Select the Singletons group in Xcode, go to go to File >
New > New File..., choose iOS > Cocoa Touch > Objective-C class, and click
Next. Enter NSObject as the Subclass of, click Next, name the file GCDatabase.m, and
click Save.

Replace GCDatabase.h with the contents of Listing 15.13.

Listing 15.13 GCDatabase.h

#import <Foundation/Foundation.h>

id loadData(NSString * filename);

void saveData(id theData, NSString *filename);

These are two helper functions to save and load an object to a file, assuming the
object implements the NSCoding protocol. These two functions are regular C func-
tions (i.e., not Objective-C), since they need no object state.

The nice thing about these functions is you’ll be writing them in a way so that they
can be reused to load or save any object that implements NSCoding to a file, so you
can reuse these in future projects if you’d like.

Implement these functions in GCDatabase.m, as shown in Listing 15.14.

Listing 15.14 GCDatabase.m

#import "GCDatabase.h"

NSString * pathForFile(NSString *filename) {

// 1

NSArray *paths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask,

YES);

// 2

NSString *documentsDirectory = [paths objectAtIndex:0];

// 3

return [documentsDirectory

stringByAppendingPathComponent:filename];

}

id loadData(NSString * filename) {

// 4

NSString *filePath = pathForFile(filename);

// 5

if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {

Implementing Achievements 523

// 6

NSData *data = [[[NSData alloc]

initWithContentsOfFile:filePath] autorelease];

// 7

NSKeyedUnarchiver *unarchiver = [[[NSKeyedUnarchiver alloc]

initForReadingWithData:data] autorelease];

// 8

id retval = [unarchiver decodeObjectForKey:@"Data"];

 [unarchiver finishDecoding];

return retval;

 }

return nil;

}

void saveData(id theData, NSString *filename) {

// 9

NSMutableData *data = [[[NSMutableData alloc] init] autorelease];

// 10

NSKeyedArchiver *archiver = [[[NSKeyedArchiver alloc]

initForWritingWithMutableData:data] autorelease];

// 11

 [archiver encodeObject:theData forKey:@"Data"];

 [archiver finishEncoding];

// 12

 [data writeToFile:pathForFile(filename) atomically:YES];

}

If you’re not familiar with saving data or NSCoding, much of this may be new to
you, so let’s go over it line by line:

1. pathForFile takes a filename and returns a string for the full path of the file.
In iOS, you can call the NSSearchPathForDirectoriesInDomains function
to get standard system directories in which you can save files. One good place to
save files for your apps is the NSDocumentDirectory, so it calls that function
to get a path to that here.

2. NSSearchPathForDirectoriesInDomains actually returns a list of match-
ing directories, but you’re only interested in the first match, so you get the first
entry in the array.

3. Now that you have the directory where the file should reside, you can get the
full path by combining the two with a slash. NSString has a helper method that
does this for you, called stringByAppendingPathComponent.

4. loadData tries to load the data from the disk (or return nil if there is no data
saved to the disk yet). It starts by calling the pathForFile method to get a full
path for where the file should be.

Chapter 15 Achievements and Leaderboards with Game Center524

5. To check if a file exists on the disk, it uses the NSFileManager singleton’s
fileExistsAtPath method. NSFileManager is a useful class that can check if
files exist, delete files, enumerate directories, and more.

6. To read an entire file off the disk and put it into a data buffer, there is a handy
helper method on NSData called initWithContentsOfFile. This returns an
NSData, which is a helper class that represents a buffer of bytes and a length.

7. Now that you have a buffer of data read from the disk, you need to unarchive
any object encoded in the data with the NSCoding protocol. The first step for
this is to create a NSKeyedUnarchiver and pass it the buffer of data, which is
done here.

8. Finally it gets a reference to the object by calling decodeObjectForKey and
then finishDecoding on the unarchiver, which decodes the object from the
buffer using the NSCoding protocol, and returns the result. In effect, this calls
initWithCoder on the object contained within.

9. To save an object, the first step is to create an empty data buffer. The data buffer
is marked as mutable, since it will need to be modified after it is created.

10. The next step to encode the object is to create an NSKeyedUnarchiver and
pass in an empty mutable data buffer to write to, which is done here.

11. The object is then written to the buffer by calling encodeObject:forKey and
finishEncoding, which has the effect of calling encodeWithCoder on the
object to write it to the buffer.

12. Now that the data buffer is full of archived data, it can be written to the disk
with a helper method on NSData called writeToFile:atomically.

Modifying GCHelper to Send Achievements
At this point, you have written a class to store the game’s state that implements
NSCoding and a helper class that helps save objects that implement NSCoding out to
a file. The next step is to make some modifications to your Game Center helper class
to support saving achievements to Game Center, to keep track of achievements not yet
confirmed as received by Game Center, and to save its data to disk.

You start by making some modifications to GCHelper.h, so open it up and modify
the contents of the file so it looks like Listing 15.15.

Listing 15.15 GCHelper.h

#import <Foundation/Foundation.h>

#import <GameKit/GameKit.h>

// Make sure these #defines are on one line each to avoid errors

#define kAchievementLevel1

 @"com.prop-group.spaceviking.achievement.level1"

Implementing Achievements 525

#define kAchievementLevel2

 @"com.prop-group.spaceviking.achievement.level2"

#define kAchievementLevel3

 @"com.prop-group.spaceviking.achievement.level3"

#define kAchievementLevel4

 @"com.prop-group.spaceviking.achievement.level4"

#define kAchievementLevel5

 @"com.prop-group.spaceviking.achievement.level5"

#define kAchievementBadDream

 @"com.prop-group.spaceviking.achievement.baddream"

#define kLeaderboardEscape

 @"com.prop-group.spaceviking.leaderboard.escape"

@interface GCHelper : NSObject <NSCoding> {

BOOL gameCenterAvailable;

BOOL userAuthenticated;

NSMutableArray *scoresToReport;

 NSMutableArray *achievementsToReport;

}

@property (retain) NSMutableArray *scoresToReport;

@property (retain) NSMutableArray *achievementsToReport;

+ (GCHelper *) sharedInstance;

- (void)authenticationChanged;

- (void)authenticateLocalUser;

- (void)save;

- (id)initWithScoresToReport:(NSMutableArray *)scoresToReport

 achievementsToReport:(NSMutableArray *)achievementsToReport;

- (void)reportAchievement:(NSString *)identifier

 percentComplete:(double)percentComplete;

- (void)reportScore:(NSString *)identifier score:(int)score;

@end

The first change is the #defines up top for the Achievement IDs. You should
replace these with whatever values you set up in Game Center when creating your
achievements. Note that there’s a leaderboard ID you haven’t created yet; you’ll use
this later on.

The second change is to mark the GCHelper class as implementing NSCoding. The
GCHelper class needs to know how to save itself out to disk, so any achievements (or
scores, later on) that haven’t been confirmed as received by Game Center can be sent
out again later.

Chapter 15 Achievements and Leaderboards with Game Center526

The third change is to add new arrays to store the scores and achievements that still
need to be sent to Game Center. Note that you’re adding the scores array now (even
though you won’t use it until later) just to avoid backtracking here later.

The final change is to add several new methods: one to save the GCHelper class to
disk, an updated initializer, and methods to report achievements and scores (although
right now, only the achievement method will be implemented).

Now, switch to GCHelper.m and import GCDatabase.h at the top of the file, which
you’ll need to use to help save this class to disk, as shown in Listing 15.16.

Listing 15.16 GCHelper.m (at top of file)

#import "GCDatabase.h"

Next synthesize your two arrays, as shown in Listing 15.17.

Listing 15.17 GCHelper.m (right after @implementation)

@synthesize scoresToReport;

@synthesize achievementsToReport;

Then modify the sharedInstance method, as shown in Listing 15.18.

Listing 15.18 GCHelper.m (modify sharedInstance)

+ (GCHelper *) sharedInstance {

@synchronized([GCHelper class])

 {

if (!sharedHelper) {

 sharedHelper = [loadData(@"GameCenterData") retain];

 if (!sharedHelper) {

 [[self alloc]

 initWithScoresToReport:[NSMutableArray array]

 achievementsToReport:[NSMutableArray array]];

 }

 }

return sharedHelper;

 }

return nil;

}

The difference is that instead of always creating a new instance, it first tries to
load the class from disk, and if that fails, it creates a new instance (using the new
initializer).

Next implement the method to save the class to disk using the GCDatabase helper
code, as shown in Listing 15.19.

Implementing Achievements 527

Listing 15.19 GCHelper.m (below alloc method)

- (void)save {

saveData(self, @"GameCenterData");

}

Then modify the init method to take arrays as parameters, as shown in Listing 15.20.

Listing 15.20 GCHelper.m (modify init method)

- (id)initWithScoresToReport:(NSMutableArray *)theScoresToReport

 achievementsToReport:(NSMutableArray *)theAchievementsToReport {

if ((self = [super init])) {

self.scoresToReport = theScoresToReport;

 self.achievementsToReport = theAchievementsToReport;

gameCenterAvailable = [self isGameCenterAvailable];

if (gameCenterAvailable) {

NSNotificationCenter *nc =

 [NSNotificationCenter defaultCenter];

 [nc addObserver:self

selector:@selector(authenticationChanged)

name:GKPlayerAuthenticationDidChangeNotificationName

object:nil];

 }

 }

return self;

}

The only difference here is that the init method now takes the arrays of scores and
achievements to send as parameters and saves them to the instance variables. This way,
the class can be initialized with any saved scores/achievements that failed to send and
were saved to the disk in a previous session.

Next, go to the Internal functions section and add a method to send a single achieve-
ment, as shown in Listing 15.21.

Listing 15.21 GCHelper.m (after authenticationChanged)

- (void)sendAchievement:(GKAchievement *)achievement {

 [achievement reportAchievementWithCompletionHandler:

 ^(NSError *error) {

 dispatch_async(dispatch_get_main_queue(), ^(void)

 {

if (error == NULL) {

NSLog(@"Successfully sent achievement!");

 [achievementsToReport removeObject:achievement];

Chapter 15 Achievements and Leaderboards with Game Center528

 } else {

NSLog(@"Achievement failed to send... will try again \

 later. Reason: %@", error.localizedDescription);

 }

 });

 }];

}

This uses the reportAchievementWithCompletionHandler method to attempt
to send an achievement to Game Center. Note that the handler isn’t guaranteed to run
on the main thread, so this uses dispatch_async to run the inner code on the main
thread. If the achievement is successfully sent, it removes it from the array of achieve-
ments to report.

After the sendAchievement method, add a method to resend any unsent achieve-
ments, as shown in Listing 15.22.

Listing 15.22 GCHelper.m (after sendAchievement)

- (void)resendData {

for (GKAchievement *achievement in achievementsToReport) {

 [self sendAchievement:achievement];

 }

}

This loops through each of the achievements that haven’t been confirmed by Game
Center and resends each one by calling sendAchievement.

Now call this method inside the “player now authenticated” case of authentica-
tionChanged, as shown in Listing 15.23.

Listing 15.23 GCHelper.m (in authenticationChanged, right after userAuthenticated =
TRUE)

[self resendData];

This way, if any data fails to send, the next time the app starts up, it will resend any
leftover data. This is just one way of doing things; if you’d like, you could take a dif-
ferent strategy in your apps (such as try resending any leftover data on a periodic basis).

In the User functions section, add the implementation for reportAchievement:
percentComplete and reportScore:score, as shown in Listing 15.24.

Listing 15.24 GCHelper.m (after authenticateLocalUser)

- (void)reportScore:(NSString *)identifier score:(int)rawScore {

// TODO...

}

Implementing Achievements 529

- (void)reportAchievement:(NSString *)identifier

 percentComplete:(double)percentComplete {

GKAchievement* achievement = [[[GKAchievement alloc]

initWithIdentifier:identifier] autorelease];

 achievement.percentComplete = percentComplete;

 [achievementsToReport addObject:achievement];

 [self save];

if (!gameCenterAvailable || !userAuthenticated) return;

 [self sendAchievement:achievement];

}

The reportScore method is just a stub to be filled in later. The report-
Achievement method creates a new achievement based on the passed-in identifier
(such as com.prop-group.spaceviking.achievement.level1) and sets the percentComplete. It
then adds it to the array of achievementsToReport.

At this point, it immediately saves itself to disk so that the achievements to send are
saved away for safekeeping. If Game Center isn’t available or the user isn’t authenti-
cated, it then quits. This has the advantage of being able to queue up the achievements
for sending later, even if the user isn’t logged in or is running on an older version of
the OS.

Finally, if the user is online and Game Center is available, it calls the send-
Achievement method to attempt to send the achievement to Game Center.

Next add the implementation of NSCoding for this object, as shown in Listing 15.25.

Listing 15.25 GCHelper.m (after reportAchievement)

#pragma mark NSCoding

- (void)encodeWithCoder:(NSCoder *)encoder {

 [encoder encodeObject:scoresToReport forKey:@"ScoresToReport"];

 [encoder encodeObject:achievementsToReport

forKey:@"AchievementsToReport"];

}

- (id)initWithCoder:(NSCoder *)decoder {

NSMutableArray * theScoresToReport =

 [decoder decodeObjectForKey:@"ScoresToReport"];

NSMutableArray * theAchievementsToReport =

 [decoder decodeObjectForKey:@"AchievementsToReport"];

return [self initWithScoresToReport:theScoresToReport

achievementsToReport:theAchievementsToReport];

}

Chapter 15 Achievements and Leaderboards with Game Center530

This encodes the two arrays of scores and achievements to report to disk in
encodeWithDecoder, decodes them in initWithCoder, and calls the initializer.

Phew! That was a lot of code, but the good news is most of it is reusable for future
projects and for the leaderboard implementation as well. There’s only one part left: to
make use of these new classes in Space Viking.

Using GameState and GCHelper in SpaceViking
Now you’re ready to make use of your new objects to keep track of the user’s progress
locally and report the progress to Game Center when necessary.

In Space Viking, you’ll be giving the users achievements after they win or lose a level,
so most of the fun code will be in Scenes\LevelComplete\LevelCompleteLayer.m. First
import GameState.h and GCHelper.h at the top of the file, as shown in Listing 15.26.

Listing 15.26 LevelCompleteLayer.m (at top of file)

#import "GameState.h"

#import "GCHelper.h"

Then add the code to keep track of achievements at the bottom of your init
method, as shown in Listing 15.27.

Listing 15.27 LevelCompleteLayer.m (at bottom of init method)

CCLabelBMFont *achievementLabelText = [CCLabelBMFont

 bitmapFontAtlasWithString:@"" fntFile:@"VikingSpeechFont64.fnt"];

[achievementLabelText setPosition:

ccp(screenSize.width/2, screenSize.height * 0.7f)];

[self addChild:achievementLabelText];

if ([GameManager sharedGameManager].lastLevel == kGameLevel1 &&

 ![GameManager sharedGameManager].hasPlayerDied) {

CCLOG(@"Finished level 1");

if (![GameState sharedInstance].completedLevel1) {

 [GameState sharedInstance].completedLevel1 = true;

 [[GameState sharedInstance] save];

 [[GCHelper sharedInstance] reportAchievement:kAchievementLevel1

percentComplete:100.0];

 achievementLabelText.string =

@"Achievement Unlocked: Simple Gamer!";

 }

} else if ([GameManager sharedGameManager].lastLevel == kGameLevel2 &&

 ![GameManager sharedGameManager].hasPlayerDied) {

CCLOG(@"Finished level 2");

if (![GameState sharedInstance].completedLevel2) {

 [GameState sharedInstance].completedLevel2 = true;

Implementing Achievements 531

 [[GameState sharedInstance] save];

 [[GCHelper sharedInstance] reportAchievement:kAchievementLevel2

percentComplete:100.0];

 achievementLabelText.string =

@"Achievement Unlocked: Side Scroller!";

 }

} else if ([GameManager sharedGameManager].lastLevel == kGameLevel3 &&

 ![GameManager sharedGameManager].hasPlayerDied) {

CCLOG(@"Finished level 3");

if (![GameState sharedInstance].completedLevel3) {

 [GameState sharedInstance].completedLevel3 = true;

 [[GameState sharedInstance] save];

 [[GCHelper sharedInstance] reportAchievement:kAchievementLevel3

percentComplete:100.0];

 achievementLabelText.string =

@"Achievement Unlocked: Physics Puzzler!";

 }

} else if ([GameManager sharedGameManager].lastLevel == kGameLevel4 &&

 ![GameManager sharedGameManager].hasPlayerDied) {

CCLOG(@"Finished level 4");

if (![GameState sharedInstance].completedLevel4) {

 [GameState sharedInstance].completedLevel4 = true;

 [[GameState sharedInstance] save];

 [[GCHelper sharedInstance] reportAchievement:kAchievementLevel4

percentComplete:100.0];

 achievementLabelText.string =

@"Achievement Unlocked: Box2D Master!";

 }

} else if ([GameManager sharedGameManager].lastLevel == kGameLevel5 &&
![GameManager sharedGameManager].hasPlayerDied) {

CCLOG(@"Finished level 5");

if (![GameState sharedInstance].completedLevel5) {

 [GameState sharedInstance].completedLevel5 = true;

 [[GameState sharedInstance] save];

 [[GCHelper sharedInstance] reportAchievement:kAchievementLevel5

percentComplete:100.0];

 achievementLabelText.string =

@"Achievement Unlocked: Chipmunk Master!";

 }

} else if ([GameManager sharedGameManager].lastLevel == kGameLevel4 &&
[GameManager sharedGameManager].hasPlayerDied) {

CCLOG(@"Died on level 4. Fell %d times...", [GameState
sharedInstance].timesFell);

int maxTimesToFall = 3;

if ([GameState sharedInstance].timesFell < maxTimesToFall) {

 [GameState sharedInstance].timesFell++;

 [[GameState sharedInstance] save];

Chapter 15 Achievements and Leaderboards with Game Center532

double pctComplete = ((double)

 [GameState sharedInstance].timesFell /

 (int)maxTimesToFall) * 100.0;

 [[GCHelper sharedInstance]

reportAchievement:kAchievementBadDream

percentComplete:pctComplete];

if ([GameState sharedInstance].timesFell >= maxTimesToFall) {

 achievementLabelText.string =

@"Achievement Unlocked: Bad Dream!";

 }

 }

}

There’s a lot of code here, but it’s pretty straightforward. For each level, it checks
to see if the player won, and if so, it checks to see whether or not the player already
completed that level. If this is the first time the player completed the level, it marks the
game’s state as having completed the level and saves the updated state to disk. It then
calls the reportAchievement:percentComplete method on the GCHelper to also
try to send the achievement to Game Center and displays a label to the user.

The only different case is the “player died” achievement. In this case, the player has
to die three times before the achievement will be unlocked. Each time the player dies,
it updates the counter and updates the current progress on the achievement, but the
achievement is only displayed to the user once it is 100 percent complete.

However, there’s one problem with the above. Right now, there is no lastLevel
property on GameManager! So let’s add this next.

Start by adding a new instance variable for the current level and the last level inside
Classes\Singletons\GameManager.h, as shown in Listing 15.28.

Listing 15.28 GameManager.h (inside @interface)

SceneTypes curLevel;

SceneTypes lastLevel;

Then add their properties right below the interface declaration, as shown in
Listing 15.29.

Listing 15.29 GameManager.h (after @interface)

@property (assign) SceneTypes curLevel;

@property (assign) SceneTypes lastLevel;

In GameManager.m, synthesize these variables, as shown in Listing 15.30.

Implementing Achievements 533

Listing 15.30 GameManager.m (after @implementation)

@synthesize curLevel;

@synthesize lastLevel;

Finally, add the contents of Listing 15.31 to the beginning of runSceneWithID.

Listing 15.31 GameManager.m (at top of runSceneWithID)

lastLevel = curLevel;

curLevel = sceneID;

Now GameManager keeps track of the last level played, so the LevelComplete-
Layer code can work properly.

That’s it! Compile and run your code, and beat a level in the game. Then exit out
of the app, go to Game Center, and look to find the entry for your app. You should
see the icon for the achievement you unlocked!

Figure 15.22 An unlocked achievement from your game!

You might also like to test what happens if the network connection is down and an
achievement fails to send. To do this, you can start the game, then unplug the Ethernet
cable from your computer (or disable your Ethernet adapter). Beat the level, and verify
that the game records your achievement but fails to send it in the logs. Then plug your
Ethernet cable back in and restart the game. When the user is authenticated, the game

Chapter 15 Achievements and Leaderboards with Game Center534

should resend your achievement data to Game Center, and you won’t have lost your
progress!

Displaying Achievements within the App
It’s extremely easy to display achievements within your game by using a built-in view
controller provided by Apple. Let’s try it out!

In Space Viking, you display the achievements when the user selects the option in
the Options menu. There’s already an entry there: you just have to implement it!
Switch to Scenes\Options\OptionsLayer.m and start by importing a few headers at the top
of the file, as shown in Listing 15.32.

Listing 15.32 OptionsLayer.m (at top of file)

#import <GameKit/GameKit.h>

#import "SpaceVikingAppDelegate.h"

You need to import GameKit.h to use the achievement view controller, and you
need to import SpaceVikingAppDelegate.h to access the root view controller of the app
so that you can present the achievement view controller from it.

Next, add some new methods to show the achievements, as shown in Listing 15.33.

Listing 15.33 OptionsLayer.m (above init)

- (void)showAchievements {

CCLOG(@"Show achievements!");

SpaceVikingAppDelegate *delegate =

 [UIApplication sharedApplication].delegate;

GKAchievementViewController *achievements =

 [[GKAchievementViewController alloc] init];

if (achievements != NULL)

 {

 achievements.achievementDelegate = self;

 [delegate.viewController

presentModalViewController: achievements animated: YES];

 }

}

- (void)achievementViewControllerDidFinish:

 (GKAchievementViewController *)viewController {

SpaceVikingAppDelegate *delegate =

 [UIApplication sharedApplication].delegate;

 [delegate.viewController dismissModalViewControllerAnimated: YES];

 [viewController release];

}

Implementing Achievements 535

You also need to modify init to add new menu options for achievements, as
shown in Listing 15.34.

Listing 15.34 OptionsLayer.m (in init, replace CCMenu * optionsMenu… and
[optionsMenu alignItems… lines with the following)

CCLabelBMFont *achievementsButtonLabel = [CCLabelBMFont

labelWithString:@"Achievements" fntFile:@"VikingSpeechFont64.fnt"];

CCMenuItemLabel *achievementsButton = [CCMenuItemLabel

itemWithLabel:achievementsButtonLabel target:self

selector:@selector(showAchievements)];

CCMenu *optionsMenu = [CCMenu menuWithItems:achievementsButton,

 musicToggle,

 SFXToggle,

 creditsButton,

 backButton,nil];

[optionsMenu alignItemsVerticallyWithPadding:40.0f];

Now we need to add a property for the viewController to the SpaceVikingApp-
Delegate. First add a property declaration, as shown in Listing 15.35.

Listing 15.35 SpaceVikingAppDelegate.h (after @interface)

@property (nonatomic, assign) RootViewController *viewController;

Then switch to SpaceVikingAppDelegate.m and synthesize the variable, as shown in
Listing 15.36.

Listing 15.36 SpaceVikingAppDelegate.m (after @implementation)

@synthesize viewController;

One final step: since this code uses UIKit to display a view controller, it’s best
to set Cocos2D to use UIViewController rotation (otherwise the view controller
might display sideways!). So go to GameConfig.h, comment out the current define for
GAME_AUTOROTATION, and set it up as shown in Listing 15.37.

Listing 15.37 GameConfig.h (comment out current GAME_AUTOROTATION define and
replace with this)

#define GAME_AUTOROTATION kGameAutorotationUIViewController

That’s it! Compile and run your app, and now you should be able to see the
achievement in the app by selecting the line for achievements in the Options menu
(Figure 15.23).

Chapter 15 Achievements and Leaderboards with Game Center536

Note
Displaying achievements with the built-in view controller like this is definitely the easiest
way and will suffice for many apps, but you may want to make the achievement display
look different (and more like the rest of your app). This is possible with Game Center: you
just need to load the achievements and descriptions yourself and create a custom view.
For more information, check the Creating a Custom Achievement User Interface section in
the Game Kit Programming Guide.

Setting Up and Implementing Leaderboards
The good news is, after all of the work you did to track game state and implement
achievements, adding leaderboards will be a breeze. For Space Viking, you’ll just add a
single leaderboard—the time to complete the Escape level.

To do this, you follow a process similar to (but shorter than) the process for adding
achievements. You set up a leaderboard in iTunes Connect, learn how leaderboards
work, and finally implement the code.

Setting up Leaderboards in iTunes Connect
Setting up leaderboards in iTunes Connect follows a similar process to setting up
achievements. You’ll just be adding a single leaderboard this time, so it will go quickly.
Take the following steps:

Figure 15.23 Viewing achievements in-game

Setting Up and Implementing Leaderboards 537

1. Log on to iTunes Connect at https://itunesconnect.apple.com.

2. Click Manage Your Applications, select your application, click Manage
Game Center, and then click Set up under Leaderboards. At this point, you
should see a window similar to Figure 15.24.

Figure 15.24 Empty leaderboards screen

3. Click Add Leaderboard to add a new leaderboard. It gives you a choice
between a Single Leaderboard or Combined Leaderboard; choose Single
Leaderboard. Then enter the settings as follows:
n Leaderboard Reference Name is just an internal name used to keep track

of the leaderboard, similar to the achievement reference name. Set this to
SVEscapeLeaderboard.

n Leaderboard ID is similar to an achievement ID, a unique name for your
leaderboard. Set this to something similar to com.prop-group.spaceviking.leader-
board.escape, but change the DNS name to one of your own (or your name
if you don’t have a DNS name), and make sure it matches to the line for
kLeaderboardEscape in Classes\Singletons\GCHelper.h.

n Leaderboard values are always integers, but Score Format Type lets you for-
mat the integers in different ways. For the Escape level, we store the num-
ber of seconds it took to escape but display them like seconds by choosing
Elapsed Time - To the Second as the Score Format Type.

n For Sort Order, pick ascending so the fastest escapes (least time) are at the top.
n Click Add Language to set the remaining options. For Name, choose

Escape from Robot Planet. For Score Format Suffix, you could set a string
to appear after the time, but that isn’t necessary here, so leave it blank.

When you’re done, click Save to save your leaderboard, as shown in Figure 15.25.

https://itunesconnect.apple.com

Chapter 15 Achievements and Leaderboards with Game Center538

How Leaderboards Work
A leaderboard is simply an ordered collection of best scores. When the user has
reached a score, you create a GKScore object and call a method to send the score to
Game Center. Game Center keeps track of the max score for each user, and it is okay
if you submit a lower score or send a score more than once; it silently discards it. The
process looks similar to Listing 15.38.

Listing 15.38 Example of sending a score to Game Center

GKScore *score = [[[GKScore alloc]

 initWithCategory:identifier] autorelease];

score.value = rawScore;

[score reportScoreWithCompletionHandler:^(NSError *error) {

// Do something...

}];

Of course, sending scores suffers from the same potential pitfall as sending achieve-
ments: the score might not make it to Game Center, so you need to add the code to
save it to disk and resend later if necessary.

Also, note that although you create only a single leaderboard in this chapter, you
can create multiple leaderboards if you want. Perhaps you’d like to make different
leaderboards for different levels or difficulty levels in your game.

Figure 15.25 Adding a leaderboard

Setting Up and Implementing Leaderboards 539

Implementing Leaderboards
Since you’ve already added the code to persist an array of scores to disk in GCHelper
and added a placeholder method, implementing leaderboards will be easy.

Start by adding a new method called sendScore right above sendAchievement
in GCHelper.m, as shown in Listing 15.39.

Listing 15.39 GCHelper.m (above sendAchievement)

- (void)sendScore:(GKScore *)score {

 [score reportScoreWithCompletionHandler:^(NSError *error) {

 dispatch_async(dispatch_get_main_queue(), ^(void)

 {

if (error == NULL) {

NSLog(@"Successfully sent score!");

 [scoresToReport removeObject:score];

 } else {

NSLog(@"Score failed to send... will try again later.
Reason: %@", error.localizedDescription);

 }

 });

 }];

}

This is very similar to the sendAchievement method. It tries to send the score
and runs a completion block on the main thread; if the score is successfully sent, it
removes the score from the scoresToReport array.

Next add a few lines to resendData to have it resend any leftover scores as well, as
shown in Listing 15.40.

Listing 15.40 GCHelper.m (at end of resendData)

for (GKScore *score in scoresToReport) {

 [self sendScore:score];

}

By adding this code to resendData, if any scores fail to send, they’ll be resent the
next time the user connects to Game Center.

Finally, implement the reportScore method, as shown in Listing 15.41.

Listing 15.41 GCHelper.m (replace reportScore)

- (void)reportScore:(NSString *)identifier score:(int)rawScore {

GKScore *score = [[[GKScore alloc]

initWithCategory:identifier] autorelease];

Chapter 15 Achievements and Leaderboards with Game Center540

 score.value = rawScore;

 [scoresToReport addObject:score];

 [self save];

if (!gameCenterAvailable || !userAuthenticated) return;

 [self sendScore:score];

}

This is similar to the reportAchievement method. It sets up the GKScore object,
adds it to the array of scores to report, and saves the array. It bails if game center isn’t
available or the user isn’t authenticated; otherwise, it calls the sendScore method to
attempt to send the score.

Now all you have to do is report the score when the user completes the level.
Switch to Classes\Scenes\Scene5\Scene5ActionLayer.m, and start by importing GCHelper.h
at the top of the file, as shown in Listing 15.42.

Listing 15.42 Scene5ActionLayer.m (at top of file)

#import "GCHelper.h"

Then find the update method, and right before you call setHasPlayerDied:NO,
add a line to report the user’s score, as shown in Listing 15.43.

Listing 15.43 Scene5ActionLayer.m (in update method, right before call to
setHasPlayerDied:NO)

[[GCHelper sharedInstance] reportScore:kLeaderboardEscape score:(int)
timeSoFar];

Compile and run your code, and beat the Escape level. When you’re done, switch
to the Game Center app, and you should see your best time in the leaderboard.

Displaying Leaderboards in-Game
Thanks to a built-in view controller provided by Apple, displaying leaderboards in-
game is as simple as displaying achievements. Let’s see how this works by displaying
the leaderboards after the user taps the screen in the Level Complete scene for the
Escape level.

Open LevelCompleteLayer.m and import SpaceVikingAppDelegate.h at the top of the
file, as shown in Listing 15.44.

Listing 15.44 LevelCompleteLayer.m (at top of file)

#import "SpaceVikingAppDelegate.h"

Setting Up and Implementing Leaderboards 541

Then replace ccTouchesBegan with some new code to display a view controller,
and add a method underneath, as shown in Listing 15.45.

Listing 15.45 LevelCompleteLayer.m (replace ccTouchesBegan and add new method)

-(void)ccTouchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

if ([GameManager sharedGameManager].lastLevel == kGameLevel5) {

GKLeaderboardViewController *leaderboardController =

 [[GKLeaderboardViewController alloc] init];

if (leaderboardController != NULL)

 {

 leaderboardController.category = kLeaderboardEscape;

 leaderboardController.timeScope =

GKLeaderboardTimeScopeAllTime;

 leaderboardController.leaderboardDelegate = self;

SpaceVikingAppDelegate *delegate =

 [UIApplication sharedApplication].delegate;

 [delegate.viewController

presentModalViewController:leaderboardController

animated:YES];

 }

 } else {

 [[GameManager sharedGameManager] setHasPlayerDied:NO];

 [[GameManager sharedGameManager]

Figure 15.26 Viewing leaderboards in Game Center

Chapter 15 Achievements and Leaderboards with Game Center542

runSceneWithID:kMainMenuScene];

 }

}

- (void)leaderboardViewControllerDidFinish:(GKLeaderboardViewController *)
viewController

{

SpaceVikingAppDelegate *delegate =

 [UIApplication sharedApplication].delegate;

 [delegate.viewController dismissModalViewControllerAnimated: YES];

 [viewController release];

 [[GameManager sharedGameManager] setHasPlayerDied:NO];

 [[GameManager sharedGameManager] runSceneWithID:kMainMenuScene];

}

ccTouchesBegan checks to see if the last level was level 5 (the Escape level) and,
if so, creates a GKLeaderboardViewController. When you create a GKLeader-
boardViewController, you can select the leaderboard to display by setting the cat-
egory, and the time scope to display by setting the timeScope property. Just as when
displaying achievements, you need to set the delegate to your view controller and call
presentModalViewController to display it.

When the user closes the leaderboard view controller, leaderboardView-
ControllerDidFinish is called. This routine simply goes back to the main menu.

Compile and run your code, beat the Escape level, and after the Level Complete
scene appears, tap to see the leaderboards in-game!

Figure 15.27 Leaderboard display in-game

Challenges 543

Summary
At this point you have had hands-on experience integrating Game Center player
authentication, achievements, and leaderboards into a Cocos2D game. And you’ve
learned how to send achievements and leaderboards in a safe way, so that the player’s
hard-earned achievements get sent even if the network connection is temporarily
down.

Now that you know how to implement Game Center in your games, you can enjoy
the many benefits, including making your game easier to find and download, keeping
players coming back to enjoy your game, and making the game more fun and memo-
rable for players!

Now that you’ve gotten this far, you might be interested in learning more about
some of Game Center’s additional features. Along with achievements and leaderboards,
Game Center also makes it easy to add multiplayer matchmaking into your games and
to add voice chat support. These features are beyond the scope of this book, but to
learn more, a good place to start is the Game Kit Programming Guide.

Challenges
1. Add a new achievement to Space Viking—perhaps for dying three times in level 1.

2. Add a new leaderboard to Space Viking—perhaps for the fastest time to complete
Descent into Hades.

3. So far, you only display when achievements are unlocked in the Level Complete
scene. But what if you want to display achievement unlocks while inside in a
level? Add the ability to display achievement unlocks in your level by scrolling a
sprite down from the top of the window that says “Achievement Unlocked: Your
Achievement Name.” You may find it helpful to put this code in a helper class so
it can be reused from level to level.

This page intentionally left blank

16
Performance Optimizations

Throughout this book, you learned how to create a game using Cocos2D, Box2D, and Chip-
munk. You learned the basics of Cocos2D and advanced concepts from scrolling to physics engines
to particle systems. This chapter takes you through some of the optimizations tips and tricks you
may need in bringing that last bit of polish to your game now that you have a foundation of
knowledge in Cocos2D game development.

In this chapter you learn how to tackle some of the common challenges and issues you will face
in optimizing and getting the most of your Cocos2D game. This chapter uses a test bed sample
game called PerformanceTestGame, which is included with the resources of this chapter.

CCSprite versus CCSpriteBatchNode
In Chapter 2, “Hello, Space Viking,” you learned about CCSpriteBatchNode and
how it is used in Space Viking. The CCSpriteBatchNode reduces the OpenGL texture
binds to one call and batches all of the OpenGL draw calls together. If you do nothing
else in your game, this one change has the largest benefit in terms of performance.

Note
The rest of this chapter requires the source code for the PerformanceTestGame project
provided in the resource folder for this chapter. Please ensure you have downloaded the
source code and built the project before proceeding.

The PerformanceTestGame project consists of the Space Viking alien desert background
with Ole standing in the middle of it. From the sky are falling hundreds of little items,
debris from the SpaceCargoShip. There are 500 items falling from the sky at ran-
dom locations and at random speeds. This project is meant as an example of common
performance issues you may encounter in your Cocos2D games.

To start, open the PerformanceTestGame project and click Run. Figure 16.1 illustrates
what the game example looks like.

Chapter 16 Performance Optimizations546

Run this game on your actual iPad device. Right away you should notice that the
performance is not very good: the frame rate is around 30 to 40 frames per second
(fps), with occasional drops to 22 fps.

From the PerformanceTestGame project and the GameplayLayer class. Take a close
look at the top of the implementation file and the #define shown in Listing 16.1.

Listing 16.1 #define in GameplayLayer.m in the PerformanceTestGame

#import "GameplayLayer.h"

#define USE_CCSPRITEBATCHNODE 0

#define REUSE_CCSPRITES 0

#define NUMBER_OF_ITEMS 500

The USE_CCSPRITEBATCHNODE #define determines if the CCSpriteBatchNode
class is used or if just plain CCSprites are attached to the layer for all of the items
falling from the sky. The REUSE_CCSPRITES directive allows this game to reuse the
falling item CCSprites instead of creating new CCSprites every time a new item
needs to be dropped. Setting USE_CCSPRITEBATCHNODE or REUSE_CCSPRITES to 1
turns them on.

Scroll to the bottom of the GameplayLayer.m implementation file and take a look at
the init method shown in Listing 16.2.

Figure 16.1 PerformanceTestGame project running on the iPad

CCSprite versus CCSpriteBatchNode 547

Listing 16.2 Init method in GameplayLayer.m in the PerformanceTestGame

-(id)init {

self = [super init];

if (self != nil) {

srandom(time(NULL));

CGSize screenSize = [CCDirector sharedDirector].winSize;

// 1

CCSprite *background;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 background = [CCSprite spriteWithFile:@"background.png"];

 } else {

 background =

 [CCSprite spriteWithFile:@"backgroundiPhone.png"];

 }

 [background setPosition:ccp(screenSize.width/2.0f,

 screenSize.height/2.0f)];

 [self addChild:background z:0 tag:0];

// 2

 CCSprite *viking;

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 viking = [CCSprite spriteWithFile:@"sv_anim_1.png"];

 } else {

 viking = [CCSprite spriteWithFile:@"sv_anim_1iPhone.png"];

 }

 [viking setPosition:ccp(screenSize.width/2.0f,

 screenSize.height * 0.15f)];

 [self addChild:viking z:1 tag:1];

currentItemTag = 2; // 3

// 4

#if (USE_CCSPRITEBATCHNODE == 1)

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"FallingItemsAtlas.plist"];

 sceneSpriteBatchNode = [CCSpriteBatchNode

 batchNodeWithFile:@"FallingItemsAtlas.png"];

 [self addChild:sceneSpriteBatchNode];

#endif

Chapter 16 Performance Optimizations548

// 5

dropElementsArray =

 [CCArray arrayWithCapacity:NUMBER_OF_ITEMS];

 [dropElementsArray retain];

// 6

for (int x =0; x < NUMBER_OF_ITEMS; x++) {

CCSprite *dropSprite = [self createItem];

 [dropElementsArray insertObject:dropSprite atIndex:x];

// 7

#if (USE_CCSPRITEBATCHNODE == 1)

 [sceneSpriteBatchNode addChild:dropSprite

 z:currentItemTag tag:currentItemTag];

#else

 [self addChild:dropSprite

z:currentItemTag

tag:currentItemTag];

#endif

// 8

currentItemTag = currentItemTag + 1;

 }

 [self scheduleUpdate];

 }

return self;

}

The init method sets up the important components of this test game as follows:

1. Creates the background image used for this game and adds it to the layer. Noth-
ing special here: this is the same as you did in Space Viking. A differently sized
background image is used depending on if you are running on the iPhone,
iPhone 4, or iPad displays. The background has a Z-Order and Tag value of
zero.

2. Creates the Viking CCSprite and adds it to the layer. The Viking has a
Z-Order and Tag value of 1. All of the items that will drop have Z-Order and
Tag values larger then 1.

3. Sets the currentItemTag to 2. The currentItemTag is an instance variable
used to keep track of the next tag number to assign to the falling items. The
background has a Tag value of zero, and the Viking a Tag value of 1, leaving a
value of 2 and higher for the falling items.

4. Creates the CCSpriteBatchNode if the USE_CCSPRITEBATCHNODE #define

is set to 1 (on). The USE_CCSPRITEBATCHNODE is used throughout this
class to have the falling items as independent CCSprites or under a single
CCSpriteBatchNode.

CCSprite versus CCSpriteBatchNode 549

5. Initializes and retains a CCArray to hold all of the falling items. The CCArray
is used for another optimization in this game, reusing the CCSprites (fall-
ing items) instead of creating new ones. CCArray is a Cocos2D fast array
implementation.

Memory allocation and deallocation is an expensive operation that you want to
avoid and minimize if you can. By storing the CCSprites inside of a CCArray,
they can be reused by simply moving them back to the top of the screen and
restarting the CCMove action. The optimization section of this chapter covers
how to reuse CCSprites.

6. Creates all of the falling objects, adding them to the CCArray. First the
CCSprite is created in the createItem method and added to the CCArray.
Note how the index on the CCArray is based on the loop counter (x) and not
on the CCSprite’s tag, since the tag value starts at 2 and not zero.

7. Adds the newly created CCSprite to either the Layer or the CCSpriteBatch-
Node depending on the value of the USE_CCSPRITEBATCHNODE #define.

The z-Order and Tag values are set to the currentItemTag variable, which is
incremented on each pass of the for loop.

8. Increments the currentItemTag value so that each falling item has a higher
z-Order and Tag value than the previous item.

The point to keep in mind from this method is that the falling items CCSprites
are all stored in a CCArray as well as in either the Layer or CCSpriteBatchNode.
Before turning on the optimizations in the PerformanceTestGame, take a close look at
the update method shown in Listing 16.3.

Listing 16.3 update method in GameplayLayer

-(void) update:(ccTime)deltaTime {

CCNode *node;

CCARRAY_FOREACH(dropElementsArray, node)

 {

if ([node tag] > 1) {

if ([node position].y < 10.0f) {

int arrayID = [node tag]-2;

#if (REUSE_CCSPRITES == 1)

 [self dropWithHighPerformanceItemWithID:arrayID];

#else

 [self dropWithLowPerformanceItemWithID:arrayID];

#endif

 }

 }

 }

}

Chapter 16 Performance Optimizations550

The update method cycles through each of the falling items stored in the CCAr-
ray, checking to see if their position is less than 10 on the y-axis. If so, they are reset.
The dropWith methods work as follows:

dropWithLowPerformanceItemWithID: Method removes the CCSprite item
from the layer or CCSpriteBatchNode, creates a new CCSprite, and adds it back
in the old one’s place.

dropWithHighPerformanceItemWithID: Method simply moves the CCSprite
back to the top, slightly offscreen, and restarts the CCMove animation to move the
falling item down. The CCSprite is not removed from memory, just repositioned.

Testing the Performance Difference
Locate the #define USE_CCSPRITEBATCHNODE on the top of the GameplayLayer.m
class and set it to 1.

#define USE_CCSPRITEBATCHNODE 1

Click Run and try out the PerformanceTestGame on your iPad. You should see the
performance jump back to 60 fps on an iPhone4 or an iPad. On the iPhone 3G, you
will not see 60 fps but an improvement over running this project without using the
CCSpriteBatchNode.

Reducing the OpenGL bind calls from many textures down to one texture and
batching the OpenGL draw calls greatly improves performance. Even a small texture
atlas can make a big difference in your performance. The texture atlas for the falling
items was small, only 256 × 256 pixels. The reduction in texture binds from individ-
ual CCSprites to using the CCSpriteBatchNode are what provided the performance
improvements. Figure 16.2 shows the texture atlas used for the falling items.

Figure 16.2 FallingItems texture atlas

CCSprite versus CCSpriteBatchNode 551

Tips for Textures and Texture Atlases
In order to get the most performance out of using textures, texture atlases, and the
CCSpriteBatchNode class, you should follow these simple rules.

Minimize the Empty Space in the Texture Atlas
Having a large, empty texture atlas is just as wasteful as having individual sprites. You
want the smallest-sized texture atlas that you can use for your images with the least
amount of empty space.

Use the Smallest Bit Depth Possible for Your Game
In Space Viking you had the bit depth of the PNGs at maximum RGBA8888. If you
can use smaller bit depth in your images, do so, and make sure you save the texture
atlas using the smaller bit depth (in Zwoptex or TexturePacker). In Cocos2D you can
set the bit depth/texture format used by CCTexture 2D anytime by using the call:

// Default texture format for PNG/BMP/TIFF/JPEG/GIF images

// It can be RGBA8888, RGBA4444, RGB5_A1, RGB565

// You can change anytime.

[CCTexture2D

 setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_RGBA8888];

Use PVR Images if Possible
Use the Imagination Technologies PVRTC format if possible, as PVRTC textures can
be stored in their compressed format directly in the iPhone and iPad GPU memory.
PNG, JPG, and other image formats have to be uncompressed before they are stored in
memory. PVRTC images using the PVRTC protocol work well for real-world images
and photorealistic images, but not as well for pixel art and cartoon drawings. While
PVRTC images generally take up more space on disk (f lash memory), they can save
you a significant amount of RAM in the form of texture memory, as they generally
occupy less space than a PNG or JPG image. The PVRTC texture has either 4 bits or
2 bits of color data per pixel. Cocos2D also supports a special format of PVR images
called PVR.CCZ, which is a PVR image that is has been gzip compressed so that it
takes up less space on disk. It is decompressed by Cocos2D when it is loaded, before
being passed to the GPU.

Use Smaller Images and Scale Up
Another trick is to use smaller images and scale them up. Depending on the images in
your game, you can use half-sized images and scale them up.

CCSprite *sprite = [CCSprite spriteWithFile:@"image.png"];

// Setting the Scale as a property

[sprite setScale:2.0f];

// Setting the Scale via an Action

[sprite runAction:[CCScaleBy actionWithDuration:1.5f scale:2.0f]];

Chapter 16 Performance Optimizations552

Use the FlipX and FlipY for Reverse Images
If you need the reverse of an image either horizontally or vertically, use the FlipX or
FlipY parameter instead of storing two images of your character facing left and right.
You used the FlipX setting in Space Viking to make Ole face left or right depending
on his direction of movement.

[sprite setFlipX:YES]; // Flip the image Horizontally

[sprite setFlipY:YES]; // Flip the image Vertically

Allocate your CCSprites When a Layer Is Initialized
If you have a significant number of CCSprites being used in your game, it is benefi-
cial to allocate them when the layer/scene or level is first initialized. This way, most
of the memory allocation activity is done before gameplay begins and not during. In
the PerformanceTestGame, all 500 falling items are initialized in the init method of the
GameplayLayer. Preallocating your CCSprites or other game elements is always a
balance between performance and trying to keep your memory footprint as small as
possible. Do not read this tip as a free pass to allocate thousands of elements on the
init method of your layers.

Flush Unused Textures
When writing your games, you may have different textures and texture atlases for the
various scenes and levels. Cocos2D maintains a texture cache of every image/texture
you load so that if you want to reuse it, it will not have to waste time loading it from
f lash storage. While this can save on loading time, it can consume a significant portion
of the available memory.

The Cocos2D texture cache (CCTextureCache) is a singleton that can be called
from anywhere in your game. After you have deallocated a scene and are no longer
using those textures, a call to removeUnusedTextures will remove them from
memory.

[[CCTextureCache sharedTextureCache] removeUnusedTextures];

Reusing CCSprites
Another optimization you can make in your game is to reuse CCSprites that you
allocate for your enemies or bullets. Any image in your game that you are going to be
using repeatedly is a good candidate for reuse.

In the PerformanceTestGame the CCSprites are all stored in a CCArray so that
they can be easily reused. The REUSE_CCSPRITES #define determines if the low-
performance or high-performance reuse method is called.

Open the GameplayLayer.m class and navigate to the dropWithLowPerformance-
ItemWithID method shown in Listing 16.4.

Reusing CCSprites 553

Listing 16.4 What not to do: dropWithLowPerformanceItemWithID method

-(void)dropWithLowPerformanceItemWithID:(int)arrayID {

CGSize screenSize = [CCDirector sharedDirector].winSize;

CCSprite *item = [dropElementsArray objectAtIndex:arrayID];

 [dropElementsArray removeObjectAtIndex:arrayID];

 [item stopAllActions];

 [item removeFromParentAndCleanup:YES];

 item = nil;

 item = [CCSprite spriteWithFile:[self getNextItemFileName]];

#if (USE_CCSPRITEBATCHNODE == 1)

 item = [CCSprite spriteWithSpriteFrameName:

 [self getNextItemFileName]];

 [sceneSpriteBatchNode addChild:item

z:arrayID+2

tag:arrayID+2];

#else

 item = [CCSprite spriteWithFile:[self getNextItemFileName]];

 [self addChild:item z:arrayID+2 tag:arrayID+2];

#endif

 [dropElementsArray insertObject:item atIndex:arrayID];

int randomX = random() % 1024;

 [item setPosition:ccp(randomX,screenSize.height)];

float randomDuration = CCRANDOM_0_1() * 5.0f;

id moveAction = [CCMoveTo actionWithDuration:randomDuration

position:ccp(randomX,0)];

 [item runAction:moveAction];

}

The dropWithLowPerformanceItemWithID method illustrates an incorrect way to
use CCSprites in your games. In this method, as each falling item reaches the bottom of
the screen, it is deallocated and a new CCSprite is created to take its place. There are a
lot of memory copy operations in removing, deallocating, then allocating and readding a
new CCSprite to the CCArray and the CCSpriteBatchNode or CCLayer.

The better way to reuse CCSprites is shown on the dropWithHighPerformance-
ItemWithID method shown in Listing 16.5.

Listing 16.5 Reusing CCSprites dropWithHighPerformanceItemWithID method

-(void)dropWithHighPerformanceItemWithID:(int)arrayID {

CGSize screenSize = [CCDirector sharedDirector].winSize;

CCSprite *item = [dropElementsArray objectAtIndex:arrayID];

 [item stopAllActions];

Chapter 16 Performance Optimizations554

int randomX = random() % 1024;

 [item setPosition:ccp(randomX,screenSize.height)];

float randomDuration = CCRANDOM_0_1() * 5.0f;

id moveAction = [CCMoveTo actionWithDuration:randomDuration

position:ccp(randomX,0)];

 [item runAction:moveAction];

}

The dropWithHighPerformance method shows the correct way to reuse a
CCSprite. In this case the CCSprite is just moved back to the top of the screen
and the CCMove action is added to it once more. In your game you may have the
CCSprites fading out or even carrying out an animation. You can easily reset them to
the original frame, stop all of the actions, and reuse them.

The falling items are just meant as an example; in your game you may have a lot of
bullets or laser beams or little enemies moving around the screen. Check to see if you
can reuse those elements instead of creating new ones.

To turn on the dropWithHighPerformanceItemWithID method, set the
REUSE_CCSPRITES to 1 (on).

#define REUSE_CCSPRITES 1

If you click Run, you can execute the PerformanceTestGame running with the
CCSprites being reused. The next two sections contain some tips on using the
Cocos2D Profiler and the Instruments tool to diagnose which parts of your code are
causing performance issues.

Profiling within Cocos2D
Cocos2D comes with a built-in mini-profiling tool that can help you determine how
much time is being spent in your methods. Perhaps you need an easy way to see if that
enemy artificial intelligence method is taking too long or if the path-finding algo-
rithm you used is causing the sluggishness. In this section you learn how to turn on
time profiling in Cocos2D by adding it to the PerformanceTestGame project.

The Cocos2D Profiler is a set of classes that provide millisecond-level timers for
you to wrap around methods or any parts of your code that you want to easily mea-
sure. Once a second, the results of all the profiler timers are displayed to the console.

To start, open the Cocos2D folder in the PerformanceTestGame and locate the
ccConfig.h file. Inside the ccConfig.h file, change the CC_ENABLE_PROFILERS to 1 so
that the required classes are compiled into Cocos2D. Save the change to the ccConfig.h
file. Your CC_ENABLE_PROFILERS line in ccConfig.h should look as follows:

#define CC_ENABLE_PROFILERS 1

Next, open up the GameplayLayer.h header file and add the following two instance
variables bracketed by a #if as shown in Listing 16.6.

Profiling within Cocos2D 555

Listing 16.6 Profiling variables in GameplayLayer.h header file

// GameplayLayer.h

// PerformanceTestGame

//

#import <Foundation/Foundation.h>

#import "cocos2d.h"

@interface GameplayLayer : CCLayer {

CCSprite *Viking;

int currentItemTag;

CCArray *dropElementsArray;

CCSpriteBatchNode *sceneSpriteBatchNode;

 #if CC_ENABLE_PROFILERS

 CCProfilingTimer *resetSpriteProfiler;

 CCProfilingTimer *updateLoopProfiler;

 #endif

}

@end

All of the profiling code you add should always be bracketed by the #if CC_
ENABLE_PROFILERS block so that it is compiled in only when the profilers are
included via the change to ccConfig.h and not compiled when the CC_ENABLE_PRO-
FILERS is turned off. In the next four listings are the definitions for a profiler to track
the time in the update loop and another to track the time in the CCSprite reset
methods.

Switch over to the GameplayLayer.m file and scroll down to the init method. Add
the lines shown in Listing 16.7 to the top of the init method directly below the
screenSize declaration.

Listing 16.7 Profiling setup inside of init method in GameplayLayer.m

CGSize screenSize = [CCDirector sharedDirector].winSize;

#if CC_ENABLE_PROFILERS

resetSpriteProfiler = [[CCProfiler

timerWithName:@"resetSprite"

andInstance:self] retain];

updateLoopProfiler = [[CCProfiler

timerWithName:@"updateProfiler"

andInstance:self] retain];

 #endif

The resetSpriteProfiler and updateLoopProfiler are initialized and given
a unique name. The next step is to add the beginTiming and endTiming profiler
calls in the dropWithLowPerformanceItemWithID and the dropWithHigh-
PerfItemWithID methods.

Chapter 16 Performance Optimizations556

In the GameplayLayer.m class, locate the dropWithLowPerformanceItemWithID
and dropWithHighPerformanceItemWithID methods. In the beginning of these
two methods, add the lines shown in Listing 16.8. Then, at the end of both methods,
add the lines shown in Listing 16.9.

Listing 16.8 Profiler BeginTiming bracket in GameplayLayer.m

#if CC_ENABLE_PROFILERS

 CCProfilingBeginTimingBlock(resetSpriteProfiler);

#endif

Listing 16.9 Profiler EndTiming bracket in GameplayLayer.m

#if CC_ENABLE_PROFILERS

 CCProfilingEndTimingBlock(resetSpriteProfiler);

#endif

The final step to set up the profilers is to add the beginning and end blocks to
the update method. Add the beginTiming and endTiming blocks to the update
method inside of GameplayLayer.m, as shown in Listing 16.10.

Listing 16.10 BeginTiming and EndTiming blocks in update method inside of
GameplayLayer.m

-(void) update:(ccTime)deltaTime {

 #if CC_ENABLE_PROFILERS

 CCProfilingBeginTimingBlock(updateLoopProfiler);

 #endif

CCNode *node;

 CCARRAY_FOREACH(dropElementsArray, node)

 {

if ([node tag] > 1) {

if ([node position].y < 10.0f) {

int arrayID = [node tag]-2;

 #if (REUSE_CCSPRITES == 1)

 [self dropWithHighPerfItemWithID:arrayID];

 #else

 [self dropWithLowPerformanceItemWithID:arrayID];

 #endif

 }

 }

 }

 #if CC_ENABLE_PROFILERS

 CCProfilingEndTimingBlock(updateLoopProfiler);

 #endif

}

Using Instruments to Find Performance Bottlenecks 557

If you click Run, you will see timing results on the Xcode console. Figure 16.3
shows the PerformanceTestGame console messages for the updateLoop and resetSprite
profilers.

Figure 16.3 Console showing output from updateLoop and
resetSprite profilers

You can use the built-in Cocos2D profilers to quickly see how long sections of
your game are taking to execute without having to write the timing code yourself. If
you use the #if brackets shown in this section, you can easily turn all the profiling
code on or off via the ccConfig.h file.

The next section takes your profiling skills further by covering a portion of Apple’s
Instruments tool.

Using Instruments to Find Performance
Bottlenecks
Apple provides an excellent profiling tool along with Xcode called Instruments.
Instruments is capable of a variety of performance and analysis methods, and it is a
much larger topic than can be covered in one chapter. This section offers an overview
and some pointers in using Instruments with your Cocos2D games.

Note
If you are not familiar with Instruments, Apple provides a detailed Instruments User’s
Guide at https://developer.apple.com/library/prerelease/ios/#documentation/Developer-
Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/
uid/TP40004652.

A great set of WWDC 2010 Videos on Instruments is available for free to any registered
Apple iPhone Developer.

https://developer.apple.com/library/prerelease/ios/#documentation/Developer-Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652
https://developer.apple.com/library/prerelease/ios/#documentation/Developer-Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652
https://developer.apple.com/library/prerelease/ios/#documentation/Developer-Tools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652

Chapter 16 Performance Optimizations558

It is important that you run any performance metrics on the actual iPhone, iPad,
or iPod touch you are targeting. Performance measurements on your Mac are mean-
ingless, as the architecture and underlying hardware are vastly different from the iOS
devices. Running the Leaks instrument to catch memory leaks is useful on the iPhone
simulator; for everything else, run Instruments against a build on the device.

Warning
When profiling your code, make sure you are not running a Debug build. The Debug build
adds a significant number of checks and is slower due to the CCLOG calls. In Xcode make
sure you can always select Build for Profiling under the Product menu and use Profile
instead of the Run command.

Xcode contains a couple of very handy templates for launching instruments precon-
figured with what you would want to look at. The next sections cover some of these
built-in templates.

Time Profiler
The Time Profiler template captures the CPU utilization of the device and how
much time each portion of code spends on the CPU. It tracks both your code and any
frameworks or system libraries called by your code. By default, the information is dis-
played in an inverted call tree, showing the called code on top and the caller below it.
With Invert Call Tree selected, if method A calls method B, you will see B on top and
A below it.

Make sure you have the USE_CCSPRITEBATCHNODE set to zero so that it is off. In
Xcode select Profile and then pick the Time Profiler. After you have collected data
for a few seconds, you should have in Instruments something similar to Figure 16.4.

If you look closely at Figure 16.4, you can see that the iPad is spending a lot of the
CPU time running gleUpdateDeferredState. In fact, there are quite a few gle
entries on the top of the Call Tree Samples list. This is an indication that the OpenGL
ES driver is doing a lot of work, maybe more than it should. If you look further down,
you can see that nodeToParentTransform is the method taking quite a bit of time,
and you can see that it is called by the CCDirectorIOS drawScene method. All of
those separate sprites have to be drawn one at time, causing a lot of work for the CPU
and GPU. The CPU utilization is between 65 and 75 percent on the iPad.

Change the USE_CCSPRITEBATCHNODE #define to 1 (on) and select Profile
under the Products menu. You will now have on the iPad a version of the Performance-
TestGame that uses the CCSpriteBatchNode.

Once more in Xcode, select Profile and then pick the Time Profiler. You should
have a trace that looks like Figure 16.5.

In Figure 16.5 the Time Profiler shows a completely different picture. Most of the
time is spent in the CCSpriteBatchNode, and in particular in the draw method,
which is drawing all of the CCSprites. The next item on the list is the gleRun-
VertexSubmitARM, which is submitting the draw data to the GPU. Note how the
CPU utilization is also much lower at around 24 percent.

Using Instruments to Find Performance Bottlenecks 559

Figure 16.4 Time Profiler on PerformanceTestGame running at 40 fps

Figure 16.5 Time Profiler on PerformanceTestGame running at 60 fps

Chapter 16 Performance Optimizations560

As you can see, by using the CCSpriteBatchNode, you are utilizing the GPU on
the device much more efficiently, the CPU utilization is down, and the frames per
seconds are up.

OpenGL Driver Instrument
To get a better feel for what the GPU is doing, there is an excellent OpenGL Instru-
ment that can record what the utilization is on the renderer and tiler units in the
GPU.

The OpenGL Driver Instrument is easily available from within Instruments. To use it:

1. First, change the PerformanceTestGame back to not using CCSpriteBatch nodes
and close Instruments if it is running.

1. In Xcode, select Profile and then choose the OpenGL ES Driver
Instrument.

2. Click on info on the OpenGL ES Driver and click Configure. Select the fol-
lowing attributes to track:

Device Utilization %

Renderer Utilization %

Tiler Utilization %

Keep ResourceBytes and CoreAnimationFramesPerSecond selected.

3. Click done and check that all of the selected parameters from step 3 are checked
(turned on) in the OpenGL ES Driver.

Figure 16.6 shows the parameters selected in the OpenGL ES Driver Instrument.

Figure 16.6 OpenGL ES Driver Instrument configuration

Using Instruments to Find Performance Bottlenecks 561

If PerformanceTestGame is not already running, click the Record button and cap-
ture about a minute or so of the PerformanceTestGame running without CCSprite-
BatchNode on your iOS device. Figure 16.7 shows what the instruments trace for the
OpenGL ES Driver looks like for the iPad.

Figure 16.7 OpenGL ES Instrument on PerformanceTestGame with
CCSpriteBatchNode turned off

You can see Device Utilization is around 72 percent, but Renderer Utilization is
only at 66 percent. To risk oversimplifying, the Renderer Utilization represents the
fragment shader portion of the GPU, and the Tiler Utilization represents the vertex
processing section of the GPU. The Device Utilization represents how busy the GPU
is doing the rendering and tiling work combined. The Renderer is affected by the
amount of texture data the GPU is processing. The important thing to note here is
that neither the Device Utilization nor the Renderer Utilization are close to 100 per-
cent, and the frames per second are stalled at around 44 fps. It is an indication that
perhaps PerformanceTestGame is not sending data between the CPU and GPU in an
efficient manner, so the GPU could be waiting for memory access or instructions from
the OpenGL Driver.

Chapter 16 Performance Optimizations562

Change the PerformanceTestGame to use the CCSpriteBatchNode and select
Profile once more in Xcode under the Product menu. Xcode automatically builds the
PerformanceTestProject and starts another OpenGL ES Driver Instrument cap-
ture inside of the Instruments tool. Record for about a minute to see the changes. Fig-
ure 16.8 shows what the OpenGL ES Driver Instrument result looks like on the iPad.

Figure 16.8 OpenGL ES Instrument on PerformanceTestGame with
CCSpriteBatchNode turned on

Figure 16.8 shows quite a different picture: the Device Utilization and Renderer
Utilization are much closer to 100 percent, and the frames per second have jumped
back up to 60. Since Cocos2D games are 2D, they contain a small amount of vertex
data, meaning that the Tiler (vertex processing) section of the GPU is not going to
get much work sent its way. Lowering the bit depth of the images used in the game
would improve your performance further, as less texture data would need to be moved
between the CPU and GPU. You can see that the GPU in the iPad is working at full
capacity.

Challenges 563

If you need even more detailed data than Instruments can provide, there is another
tool included with Xcode called Shark. Apple has a User’s Guide to Shark at https://
developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/SharkUserGuide/
Introduction/Introduction.html.

This section was a small sample of what kinds of profiling data you can access with
the Instruments tool. There is a great set of information available to you in the Instru-
ments tool, and even the ability to create your own instruments. Do not hesitate to
read Apple’s documentation so you can get the most out of this performance analysis
tool.

Summary
In this chapter you learned a few of the performance tricks and tips you can use to
keep your Cocos2D game running smoothly at 60 fps. You built a quick example of
using the built-in Cocos2D Profiler and learned about Apple’s Instruments tool. From
the beginning of the book until now, you have learned the basics of Cocos2D and
how to use every part of the framework in making Space Viking.

Your learning does not have to stop here: game development is a deep and rich
field. You can learn more about artificial intelligence for your enemies, path finding,
physics, and a whole lot more when it comes to rendering and effects. You can even
start learning about OpenGL and mix in your own OpenGL rendering code inside of
Cocos2D. Simply override the draw method in your CCNode or CCSprites to add
your own OpenGL code alongside Cocos2D.

Challenges
1. Further optimize PerformanceTestGame so that the CCMove actions are reused and

not allocated and deallocated each time that the CCSprites need to restart their
motion.

2. The last challenge left for you is to create your own game using the knowledge
and skills you learned and publish your game to the iOS or Mac AppStore. Ray
and I look forward to seeing what games you create, and we wish you the best of
luck. Your idea could be the next top AppStore game!

https://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/SharkUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/SharkUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/SharkUserGuide/Introduction/Introduction.html

This page intentionally left blank

17
Conclusion

Throughout this book you have learned how to create a full game using Cocos2D,
Box2D, and Chipmunk. You started out by learning the basics of the Cocos2D frame-
work, and about scenes, layers, sprites, and sprite sheets. You then moved on to putting
Space Viking together, getting Ole the Viking on the screen, and adding a set of joy-
stick controls.

From this humble beginning, you learned how to add animations and enemies to
Space Viking. You dived into a small sampling of how to configure an enemy’s brain
by designing a simple artificial intelligence (AI) system out of a state machine. You
moved on from static enemies like the RadarDish to the EnemyRobot that patrols
and seeks out Ole, and if it spots Ole, fires a shot off his phaser. You covered anima-
tions and actions in detail, even building a complex action sequence to drive the
SpaceCargoShip around the level. Figure 17.1 shows the progression of Space Viking.

Figure 17.1 Progression of Space Viking

Chapter 17 Conclusion566

After learning about actions and animations, you worked on building some of the
non-gameplay elements, by creating the menus used in Space Viking and a live text
debug system. Along the way you discovered how Cocos2D renders fonts and how to
use Font texture atlases for lightning-fast text labels.

Beyond the menus and labels, you moved on to CocosDenshion, the full-featured
sound engine included with Cocos2D. You added a set of background music tracks to
Space Viking and sound effects for every part of the game, from the menu click to the
explosions when Ole smashes the EnemyRobot.

The next step for you was to make the alien world larger by learning how to imple-
ment scrolling in Cocos2D. You learned about parallax scrolling, infinite scrolling,
and even using tile maps to have large scrolling backgrounds that take just a little bit
of memory.

Scrolling added a whole new dimension to the Space Viking game, but to bring in
the realism, the next chapters took you through an introduction and a complete guide
in using the Box2D physics engine included with Cocos2D. You created a mine cart
layer with an evil enemy drill robot Ole had to defeat. Not only did you learn and
incorporate physics, but you even picked up tips on how to create a boss scene at the
end of a level. After discovering the intricacies of Box2D, you worked on the Chip-
munk physics engine and created a frantic escape level for Ole to try to make it out of
the cave before it exploded. Figure 17.2 shows the two physics levels you created.

Figure 17.2 Physics levels in Space Viking

Having built several levels with and without physics, and even a puzzle level, you
learned about Apple’s GameCenter API and how to add achievements and leaderboards
to your own games.

The last topic on Cocos2D was on particle systems. You learned how to use Particle
Designer to design and create your own particle systems and how to incorporate them
into your own games using Cocos2D. You added three different particle systems to
Space Viking to give the SpaceCargoShip an exhaust plume and make it snow on the
alien desert.

To round off your game development knowledge, you learned how to optimize
your code and some of the common pitfalls that can hamper performance in your own
games. You even saw how to use the Cocos2D profiler and Apple’s Instruments tool.

Android and Beyond 567

Where to Go from Here
Cocos2D is a 2D game engine even though the OpenGL and OpenGL ES API it relies
on to render the graphics supports 3D. If you want to take your games into the third
dimension, you have at least three options: using the Cocos3D extension, learning
OpenGL, or using a middleware tool such as Unity3D.

The Cocos3D extension allows you load and use 3D models in a special layer
within Cocos2D. You can mix and match 2D and 3D objects and connect them
together. Cocos3D is written in Objective-C and works alongside Cocos2D to create
the OpenGL calls to render your game. It is brand new as of this writing and looks to
be a really great addition to the Cocos2D family. You can find out more about it here:
http://brenwill.com/cocos3d.

You can also learn how to program the OpenGL and OpenGL ES API directly.
You could start by looking inside the CCNode class for what OpenGL calls relate to
that node being rendered.

If you want to learn more about OpenGL ES, I strongly recommend Mike Daley’s
book Learning iOS Game Programming, as it covers making a full TileMap game using
OpenGL ES. OpenGL and OpenGL ES are complex topics, and depending on what
you are looking to do, there is a bit of math behind it. Don’t be alarmed: you already
picked up Cocos2D—this is simply the next step in becoming an even better game
developer.

Unity3D provides a whole platform for you to develop on, from asset manage-
ment to game logic. The rendering engine is 3D and creates the OpenGL calls for
you behind the scenes. It is free to use if developing for the Mac, but there is a license
required to deploy on the iOS devices. You can learn more about Unity3D here:
http://www.unity3d.com.

Android and Beyond
There are now additional ports of Cocos2D to other platforms beyond Objective-C.
While the language and syntax used in these ports is different from Objective-C, all of
the Cocos2D fundamentals and techniques you learned would apply to these and other
frameworks based on Cocos2D. Three ports getting a lot of attention are Cocos2D-
Android-1, Cocos2D-X, and Cocos2D-JavaScript.

Cocos2D-Android-1

Port of Cocos2D to Java for the Android operating system. At the time of this writ-
ing, it is based on Cocos2D 0.99.4. More information can be found at http://code.
google.com/p/cocos2d-android-1/.

Cocos2D-X

Cocos2D port written in C++. This port of Cocos2D runs on the iOS devices,
just like Cocos2D, and also on Windows and Bada (Samsung), and there is work to

http://www.unity3d.com
http://brenwill.com/cocos3d
http://code.google.com/p/cocos2d-android-1/
http://code.google.com/p/cocos2d-android-1/

Chapter 17 Conclusion568

bring it to Android. Many other portable game consoles, such as the Sony PlaySta-
tion Portable (PSP) and Nintendo DS, have compilers for C++, so it is not too far
off to think that this port could be used there. In other areas of game development,
C++ is a much more common language then Objective-C. More information can
be found at www.cocos2d-x.org/.

Cocos2D-JavaScript

If you are interested in building web-based games, there is a port of Cocos2D to
the JavaScript language. It is an excellent framework for bringing your Cocos2D
games to any device with a modern browser. More information can be found at
www.cocos2d-javascript.org/.

Cocos2D now offers native support for the Mac, so you can start making Mac OS
X games as well as iOS ones. In fact, you can port your iOS games to Mac OS X with
little effort if you have used Cocos2D.

Final Thoughts
We hope to have done a good job teaching you both the fundamentals and the in-
depth usage of the Cocos2D framework to make games. We joke that the trials of Ole
the Viking may have provided some comic relief as you made your way through the
book and source code. With the knowledge and confidence you learned in this book,
you are ready to create your own games with Cocos2D and get them in the AppStore.
Remember that you can reuse any of the code in this book in your games for free. It is
our hope you will find some of the classes, methods, or techniques useful.

You can keep up to date with this book and the Space Viking sample code at http://
cocos2dbook.com. We wish you success in your games and look forward to playing them!

www.cocos2d-x.org/
www.cocos2d-javascript.org/
http://cocos2dbook.com
http://cocos2dbook.com

Appendix
Principal Classes of Cocos2D

In order to use Cocos2D, it is important to understand a few key classes in the
Cocos2D framework. To avoid conf licts with your classes or other libraries and frame-
works, all of the Cocos2D classes start with CC. When you see Director, Scene,
Layer, Sprite, and other Cocos2D classes in this book, they are referred to by their
class name, such as CCDirector, CCScene, CCLayer, and so forth. Knowing these
classes wilsl make it easier for you to work through the tutorials in this book:

n CCDirector

The director design in Cocos2D is similar to a director’s role in movies. The
director controls when a scene starts and ends and the transitions between each
scene. Do not fret; you are still in full control over the director in your role
as the game producer. In addition, the director is responsible for maintaining
and running the game loop. The CCDirector class is responsible for setting
up the OpenGL ES context into which the CCNodes (sprites and other classes)
will draw. The director also sets up the orientation and projection settings in
OpenGL ES. You will learn how to use the director throughout this book as
well as when to use each of the four types of directors included in Cocos2D.

The four types of directors in Cocos2D are:
n CCDirectorTypeNSTimer

This is the director to use if you plan on mixing UIKit views or objects with
Cocos2D and you are targeting an iOS version prior to 3.1. It is the slowest
director, and the update interval is customizable from 1 to 60 frames per second.

n CCDirectorTypeMainLoop

The main loop director is slightly faster than the NSTimer director and is
fired off from a custom main loop on the main thread. It does not integrate
well with UIKit objects, and the update interval cannot be customized.

n CCDirectorTypeThreadMainLoop

This director has the timer on a separate thread that triggers the main loop on
the main thread. It is also faster than NSTimer director. It does not integrate
well with UIKit objects, and the update interval cannot be customized.

Appendix Principal Classes of Cocos2D570

n CCDirectorTypeDisplayLink

This director utilizes CADisplayLink to synchronize the run loop timer
and drawing with the refresh of the screen. It is available only on iOS 3.1 and
higher. It integrates well with UIKit objects, and the update interval can be
set to 60, 30, or 15 frames per second.

n CCNode

The Cocos2D node is the main class used in Cocos2D. CCNode contains all of
the necessary code to render itself using OpenGL ES. CCNode also contains the
logic to enable it to schedule and unschedule events on itself as well as to per-
form Cocos2D actions. Everything that is rendered by the Cocos2D Director is
a CCNode or a subclass of it.

n CCSprite

A Cocos2D sprite is a subclass of CCNode and contains the necessary logic to
hold and manipulate your image. The CCSprite works in parallel with other
Cocos2D classes, such as the TextureCache, to display your images onscreen.

n CCSpriteBatchNode

A sprite batch node is a combined collection of CCSprites. The sprite batch
node also goes by the name of sprite sheet in older Cocos2D releases. Sprite
batch nodes are used to reduce memory usage and increase OpenGL ES perfor-
mance. You can combine many sprites into a single sprite batch node, greatly
reducing the OpenGL ES CPU overhead required to render the sprites individu-
ally. The CCSpriteBatchNode requires a texture atlas, covered in Chapter 3.

n CCLayer

A Cocos2D layer is a subclass of CCNode with the extra ability to receive touch
and accelerometer events. All of the sprites and other elements in your game
are contained within layers. In the beginning of the book, the game has only
two layers: a background and a gameplay layer. The gameplay layer is where the
sprites for your player and enemy characters reside.

n CCScene

The scenes in Cocos2D hold all that is visible onscreen. The scene is a container
of CCLayers and other graphical objects that you want to display or interact
with on the screen. The director is responsible for loading, running, and then
unloading the scenes. The game you develop in this book starts with a game-
play scene, followed by a menu, and then level-completed and credits scenes.
CCScenes are simple container classes to hold your CCLayers and other elements
of your game.

Index

Symbols and Numbers
? (Ternary operator), 134–135
3D

2D vs., xxv
extensions to Cocos2D, 567
z values in, 33

A
AABB (axis-aligned bounding boxes)

avoiding object overlap, 77
searching for objects in Box2D world,

305–307
Accelerometer

cart movement example, 355–358
commenting out, 319
enabling support for, 302–303
implementing movement in Box2D, 281
implementing movement in Chipmunk,

451, 454–455
Accounts

iOS Developer Program account, 497–498
iPhone Developer account, 20
Sandbox accounts, 514

Achievements
adding to iTunes Connect, 515–517
displaying within apps, 534–536
GameState class and, 519–521
helper function for sending achievement

data, 524–530
helper functions for loading/saving

achievement data, 522–524
how they work, 517–518
implementing, 518
overview of, 515
using GameState and GCHelper classes

in Space Viking, 530–534
Action layer, getting started with Chipmunk,

423–425

Actions. See also Animation (CCAnimation)
CCMoves and CCScale actions in Space

Cargo ship, 123
compound, 99
effects packaged as, 145
GameplayLayer class and, 127
key features in Cocos 2D, xxiii
numberOfRunningActions method, 135
overview of, 66–67
space cargo ship and, 125

addChild method, CCParallaxNode,
251–252

addEnemy method, 143–144
addScrollingBackground method, 245
addScrollingBackgroundWithParallax

method, 250–252
addScrollingBackground-

withTileMapInsideParallax

method, 272–275
adjustedBoundingBox method

enemy robot, 137
Ole the Viking, 100–103

adjustLayer method, 245–247
AI (artif icial intelligence)

design basics, 65
game logic and, 63

Anchor points
for Game Start banner, 153–154
overview of, 153
for rotation and other effects, 154

Android, Coscos2D-Android, 567
Angular impulses, Box2D

controlling f lipping of cart, 368–369
overview of, 368

Animation (CCAnimate)
actions and, 66
approaches to animation, 57
creating actions, 58
delays between frames and frame list, 61

Index572

Animation (CCAnimation)
actions and, 66–67
animating sprites generally, 57–60
animating sprites rendered by

CCSpriteBatchNode, 60–61
caching, 62
delays between frames and frame list, 61
frame rate in, 61
overview of, 57
storing animation data in plist f iles, 61,

67–69
Animation, generally

adding background animation that inter-
acts with game, 122

of breathing, 103
changeState method for starting, 95–98
helper methods for, 411
initiating for RadarDish class, 88–89
initiating for Viking class, 103–105
of Ole the Viking in Chipmunk, 469–473
repeating, 67, 120

App ID, creating, 498–501
App Store, 497
Application Delegate (AppDelegate)

ApplicationDidFinishLaunching

method, 14–15
commanding director to run game scene,

34–35
in HelloWorld app, 15–18

ApplicationDidFinishLaunching

method, AppDelegate class, 14–15
applyJoystick method, Viking class, 94
Apps

creating App ID, 498–501
displaying achievements in, 534–536
enabling support in Game Center,

505–506
registering in iTunes Connect, 501–505

Arbiters, collision events and, 446
ARCH_OPTIMAL_PARTICLE_SYSTEM,

482
artificial intelligence (AI)

design basics, 65
game logic and, 63

Assignment operator, combining if state-
ment with, 134–135

Attack buttons, added to GameplayLayer
class, 108

Attack phase, RadarDish class and Viking
class and, 88

Attack state, enemy robot and, 132–133
Audio

adding audio files, 198
additions to game manager header and

implementation files, 204–205
audio constants, 198–201
CocosDenshion sound engine, 197–198
getting list of sound effects, 208–211
initAudioAsync method, 206–207
initializing audio manager (CDAudio-

Manager), 207–208
loading asynchronously, 203–204
loading sound effects, 211–213
loading synchronously, 201–203
loading/unloading audio files, 214–215
music added to GameplayLayer, 228
music added to MainMenu, 228–229
music and sound effects in Chipmunk,

473–474
playbackgroundTrack, stopSound-

Effect, and playSoundEffect
methods, 213–214

setting up audio engine, 205–206
SimpleAudioEngine, 229–230
sound engine in Cocos2D, xxiv
sounds added to EnemyRobot, 219–222
sounds added to game objects, 215–216
sounds added to Ole the Viking, 222–228
sounds added to RadarDish, 216–217
sounds added to SpaceCargoShip,

217–219
Audio constants, 198–201
Audio engines

setting up, 205–206
SimpleAudioEngine, 229–230

Audio files
adding to Space Viking project, 198
loading/unloading, 214–215

Authentication
notification of changes to authentication

status, 508–514
of players in Game Center, 507–508

Index 573

AVAudioPlay, audio framework for iOS
devices, 197

Axis-aligned bounding boxes (AABB)
avoiding object overlap, 77
searching for objects in Box2D world,

305–307

B
Background color, Particle Designer controls,

487
Background layer

adding background music in Chipmunk,
473–474

adding in Chipmunk, 474–476
addScrollingBackground method,

245
connecting background and game layers

to a scene, 31–32
creating for Space Viking project, 26–29
creating wave action in, 146–148
splitting into static and scrolling layers,

237–239
Background threads

adding audio asynchronously in, 201
managing, 204

begin events, collision-related events in
Chipmunk, 445, 448–449

Bind calls, OpenGL ES, 45, 48
Bit depth, performance tips and, 551
Bitmapped fonts, 155, 179
Bodies, Box2D

createBodyAtLocation method, 338
creating, 292–295
creating drill sensor for Digger Robot,

401–402
creating for Ole and connecting with

joints, 376
creating ground body in PuzzleLayer,

299–302
creating multiple bodies and joints,

378–380
decorating, 313–320
good and bad ways for placing, 379–380
setLinearVelocity method, 415

Bodies, Chipmunk
adding, 420
adding box to Chipmunk space, 431–433

constraints acting on, 457–458
creating revolving platform, 459–460
directly setting velocity, 444

Bottlenecks, finding, 557–558
Bounding boxes

for avoiding object overlap, 77
EyesightBoundingBox method, for

enemy robot, 129
Box2D

bodies. See bodies, Box2D
Chipmunk compared with, 420–421
source code, 18
template, 7

Box2D, advanced physics
adding dangerous methods to Digger,

405–411
bridges in, 386–389
creating cinematic fight sequence,

411–416
creating multiple bodies and joints,

378–380
joints in, 376
Ole leaping with ragdoll effect, 381–386
overview of, 375
pitting Ole against Digger in fight,

396–405
prismatic joints, 378
restricting revolute joints, 376–377
spike obstacle in, 390–394
summary and challenges, 417
variable and fixed rate timestamps in,

394–396
Box2D, basic physics

adding files to project, 284–288
creating ground body in PuzzleLayer,

299–302
creating new scene in PuzzleLayer,

282–284
creating objects, 292–295
creating world, 289–292
debug drawing, 295–296
decorating using sprites, 313–320
dragging objects, 304–309
getting started with, 279–281
interaction and decoration in, 302–304
mass, density, friction, and restitution in,

309–313
overview of, 279

Index574

Box2D, basic physics (continued)
puzzle game example, 320–324
ramping up puzzle game, 324–332
units in, 288–289
viewing PuzzleLayer, 296–298

Box2D, intermediate physics
adding resource files, 334–335
adding wheels to cart using revolute

joints, 352–355
controlling f lipping of cart, 368–369
creating cart scene for, 335–346
creating custom shapes, 346–348
forces and impulses, 368
getting started with, 334
making cart jump, 369–373
making cart move using accelerometer,

355–358
making cart scene scrollable, 358–368
overview of, 333
responsive direction switching, 373–374
Vertex Helper, 348–352

Box2DSprite class, subclasses for Digger
Robot, 398

Bridges, creating in Box2D, 386–389
Build (z-B), testing build of Space Viking, 33
Buttons

adding to Space Viking, 36–40
connecting button controls to Ole the

Viking, 245

C
C++, Box2D written in, 280, 420
C language, Chipmunk written in, 420
Caching

animations, 62, 411
textures, 17

Callback functions, collision detection and,
446

Cargo ship. See Space cargo ship
Cart

adding wheels using revolute joints,
352–355

controlling f lipping, 368–369
creating cart scene, 335–346
creating custom shapes, 346–348
header and implementation files, 337–338

making cart jump, 369–373
making cart scene scrollable, 358–368
moving using accelerometer, 355–358

categoryBits, setting object categories,
381–382

CCAnimate. See Animation (CCAnimate)
CCAnimation. See Animation

(CCAnimation)
CCAnimationCache, 62, 411
CCCallFunc action, 132–133
CCDirector. See Director (CCDirector)
CCFollow action, 249
CCJumpBy action, 66
CCLabel class. See Labels (CCLabel)
CCLabelIBMFont class

overview of, 155
using, 159

CCLabelTTF class
adding Game Start banner, 152–153
anchor points for Game Start banner,

153–154
fonts, 155
overview of, 151

CCLayer class. See Layers (CCLayer)
CCLOG macro, for NSLOG method, 41
CCMenu class. See also Menus, 179
CCMenuAtlasFont, 179
CCMenuItemFont, 180
CCMenuItemImage, 180
CCMenuItemLabel, 180
CCMenuItemSprite, 180
CCMenuItemToggle, 180
CCMoves action, 123
CCNode class. See Nodes (CCNode)
ccp macro, shortcut to CGPointMake

method, 20
CCParallaxNode

addChild method, 251–252
adding TileMap to, 272–275
addScrollingBackgroundWithParal-

lax method, 250–251
CCParticleSystemPoint, 481–482
CCParticleSystemQuad, 482
CCRepeat, 120
CCRepeatForever, 67, 120
CCScale action, 123
CCScenes. See Scenes (CCScenes)

Index 575

CCSequence, 67
CCSpawn, 67
CCSprite (Sprites). See Sprites (CCSprite)
CCSpriteBatchNode

animating sprites rendered by, 60–61
GameplayLayer class and, 111
performance benefits of, 255, 545–550
testing use in game layer, 52–53
using texture atlases and, 44–45

CCSpriteFrame, 60
CCSpriteSheet, 134–135
CCTMXTiledMap, 271
ccTouchBegan method, 304–308, 344
ccTouchEnded method, 344
ccTouchesBegan method, 262
ccTouchMoved method, 308–309, 344
CCWaves action, creating wave action in

background, 146–148
CDAudioManager, initializing, 207–208
CGSize, 232–233
changeState method

enemy robot, 129–133
Ole the Viking, 95–98
radar dish, 85–86

Characters. See Game characters
(GameCharacter)

checkAndClampSpritePosition method
ensuring enemy robot remains within

screen boundaries, 134
ensuring Viking sprite remains within

screen boundaries, 102
gameCharacter class and, 233–234

Chipmunk
adding backgrounds, 474–476
adding music and sound effects, 473–474
adding sprites, 438–444
adding to Xcode project, 426–429
adding win/lose conditions, 476–477
animating Ole, 469–473
Box2D compared with, 420–421
collision detection in, 445–450
constraints in, 455–458
creating a scene, 430–438
following Ole, 467–468
getting started with, 421–426
implementing velocity of sprite, 444
initializing, 429–430

laying out platforms, 468–469
movement and jumping, 450–455
overview of, 419–420
pivot, spring, and normal platforms in,

460–466
revolving platform in, 458–460
summary and challenges, 477
surface velocity for ground movement,

445
template, 7
viewing source code, 18

Cinematic fight sequence, creating, 411–416
Classes

converting objects into, 63
creating for Space Viking project, 24–26
creating GameCharacter class, 80–82
creating GameObject class, 74–80
of game objects, 64–65
grouping as organization technique, 70
importing joystick class for Space Viking,

35–36
loose coupling, 117–118
principal classes in Cocos2D, 569–570

Cocos2D-Android, 567
Cocos2D Application template, 7, 284
Cocos2D Box2D Application template, 284
Cocos2D Director. See Director

(CCDirector)
Cocos2D, introduction to

important concept, xiv–xxv
key features, xxiii–xiv
what it is, xxii
why you should use it, xxii–xxiii

Cocos2D-JavaScript, 568
Cocos2D-X, 567–568
CocosDenshion

importing SimpleAudioEngine, 205
initializing audio manager (CDAudioMan-

ager), 207–208
loading audio asynchronously, 203–204
loading sound effects, 211–213
sound engine, 197–198
viewing source code, 18

Collision filters, Box2D, 381–382
Collisions

checking for, 102
comparing Box2D with Chipmunk, 421

Index576

Collisions (continued)
detecting in Chipmunk, 445–450
Digger Robot and, 408
optimizing collision detection in Chip-

munk, 431
Common protocols. See Protocols
Compression formats, 43
Constants

audio, 198–201
for static values used in more than one

class, 71–72
Constraints, in Chipmunk

compared with joints, 420–421
creating pivot platforms and, 462
creating spring platforms and, 463–464
steps in use of, 456–458
types of, 455–456

ControlLayer, connecting joystick and but-
ton controls to Viking, 245

Coordinate systems, converting UIKIT to/
from OpenGL ES, 29

cpArbiter, collision events and, 446
cpPolyShapeNew, 448
CPRevolvePlatform, subclass for revolving

platform, 458–460
CPSprite (Sprites). See Sprites (CPSprite)
CPU utilization, Time Profiler capturing

data related to, 558–560
CPViking, animating Ole in Chipmunk,

469–473
createBodyAtLocation method, Box2D,

338
createCartAtLocation method, Box2D,

344
createCloud method, platformScroll-

ingLayer class, 257–258
createGround method, carts, 344
createObjectType method, adding

objects to gameplayLayer class,
141–142

createPhaserWithDirection method,
142–143

createStaticBackground method, in
platformScrollingLayer, 257

createVikingAndPlatform method, in
platformScrollingLayer, 261–262

createWheelWithSprite, 354

Credits
scene types and, 170
setting up menus, 190

Ctrl-z-D (Jump to Definition), for viewing
source code, 18–19

Cut-scene
creating group for, 252–253
creating scrolling layer in, 254–262

D
Damage taking state

(kStateTakingDamage)
Digger Robot and, 407–408
for enemy robot, 133
spike obstacle and, 391–392
taking a hit and being restored to previ-

ous state, 99
Damped rotary spring

constraints in Chipmunk, 457
creating pivot platform, 462

Damped spring
constraints in Chipmunk, 457
creating spring platform, 463

Database, loading/saving achievement data to
GCDatabase, 522–524

Dead state (kStateDead)
for enemy robot, 133
health at zero level, 103
state transition in RadarDish class, 87

dealloc method, Viking class, 94
Debug draw

in Box2D, 295–296
in Chipmunk, 434–436

Debugging, creating debug label, 160–165
Decoration, Box2D, 302–304
#define statement

setting object categories, 382
setting up audio filenames as, 199–200

Delegate classes, 118
deltaTime, scheduler and, 145
density property

for cart wheels, 354
for fixtures, 309–313

Design basics
artif icial intelligence and, 65
caching and, 62

Index 577

classes of game objects, 64–65
object-orientation in, 63
overview of, 62–63

Devices, older
fixing slow performance, 53–54
power-of-two support, 46

Digger robot
adding dangerous methods to, 405–411
creating cinematic fight sequence,

411–416
pitting Ole against, 396–405

Direction switching, in Box2D, 373–374
Directional pad (DPad)

added to GameplayLayer class, 108
initializing, 111

Director (CCDirector)
running loops and rendering graphics,

16–18
running scenes, 11, 34–35
types of, 569

Directory, adding Chipmunk files to Xcode
project, 426–429

Distance joints
in Box2D, 304
Chipmunk damped spring compared

with, 457
Chipmunk pin joint compared with, 456

Downloading Cocos2D, 4–5
DPad (directional pad)

added to GameplayLayer class, 108
initializing, 111

Dragging objects, in Box2D, 304–309
Drill sensors, creating for Digger Robot,

401–402
dropCargo method, space cargo ship, 125
dropWithLowPerformanceItemWithID

method, reusing sprites and, 553–554
Dynamic bodies, Box2D, 293

E
EAGLView, rendering game with, 16
Effects, 145–149

anchor points for, 154
comparing Box2D with Chipmunk, 421
creating wave action in background,

146–148

packaged as actions, 145
returning sprites and objects to nonaltered

state, 149
running EffectsTest, 148
screen shake, 467–468
subtypes of, 146

Effects library, key features in Cocos 2D, xxiv
Elasticity, setting for ground in Chipmunk

space, 433
Emitters

adding engine exhaust to space cargo
ship, 490–494

Particle Designer controls for, 487–488
in particle systems, 481

enableLimit, restricting revolute joints
and, 377

Enemy characters
Digger Robot. See Enemy robot
enemy robot. See Enemy robot
methods for creating in GameplayLayer

class, 109
RadarDish class. See RadarDish class

Enemy robot
adding as long as radar dish is not dead,

143–144
adding sounds to, 219–222
animating, 58–59
changeState method and, 129–133
checking if Viking is attacking, 135
header file, 126–127
implementation file, 127–137
overview of, 125
setting up to update debug label, 160–163
steps in creation of, 126
teleport graphic for, 132
texture atlases and robot size, 61
updateStateWithDeltaTime method

for, 133–135
Engine exhaust effect, adding to space cargo

ship, 490–494
EyesightBoundingBox method, for enemy

robot, 129

F
FBO (frame buffer object), 145–146
Fight sequence, creating, 411–416

Index578

Files
Add New File dialog, 26
adding Box2D files to project, 334–335
adding Chipmunk files to project,

426–429
audio files, 198, 214–215
constants file for static values used in

more than one class, 71–72
format for fonts, 155
formats for images, 43
GLES-Render files, 295–296
header. See Header files
implementation. See Implementation files
PNG files, 43, 270
property list. See plist f iles
TMX files, 270–271

Fixed rate timestamps
game loops and, 434
improving main loop and, 394–396

Fixtures
of Box2D bodies, 292–294
compared with Chipmunk shapes, 420
creating drill sensor for Digger Robot,

401–402
properties, 309–313

flipX/flipY functions
for mirroring graphic views, 95
reversing images, 552

fnt file format, 155
Fonts

adding for menus, 181–182
built-in support for, xxiii
CCLabelIBMFont class, 155, 159
CCLabelTTF class, 155
CCMenuAtlasFont, 179
CCMenuItemFont, 180
Hiero Font Builder Tool, 156–159

Forces, Box2D, 368
FPS (Frames Per Second), managing frame

rate in animation, 16, 61
Frame buffer object (FBO), 145–146
friction property

fixtures, 309–313
setting for cart wheels, 354
setting for ground, 433

G
Game Center

achievements. See Achievements
authenticating players, 507–508
checking availability of, 506–507
creating App ID, 498–501
enabling support for apps, 505–506
leaderboards. See Leaderboards
notification of changes to authentication

status, 508–514
obtaining iOS Developer Program

account, 497–498
overview of, 495–497
reasons for using, 497
registering apps in iTunes Connect,

501–505
sending scores to, 538
summary and challenges, 543

Game characters (GameCharacter)
checkAndClampSpritePosition

method, 233–234
in class hierarchy, 64
creating, 80–82
enemy robot inheriting from, 126–127
RadarDish class inheriting from, 84–85
Viking class inheriting from, 90

Game layers. See Layers (CCLayer)
Game logic, behind game objects, 63
Game manager (GameManager)

adding last level completed property to,
532–534

adding support to GameplayLayer class
for, 190–192

additions for audio to header and imple-
mentation files, 204–205

changing level width, 234–235
connecting to Chipmunk scene with,

425–426
creating, 172–179
getDimensionsOfCurrentScene

method, 232–233
getting list of sound effects, 208–211
header file, 172–173
implementation file, 174–177
initAudioAsync method, 206–207

Index 579

initializing audio manager (CDAudio-
Manager), 207–208

IntroLayer class and, 193
LevelCompleteLayer class and, 194–195
loading audio asynchronously, 203–204
loading sound effects, 211–213
loading/unloading audio files, 214–215
overview of, 170–172
playbackgroundTrack, stopSound-

Effect, and playSoundEffect
methods, 213–214

running new cart scene, 345
setting up audio engine, 205–206
SpaceVikingAppDelegate supporting,

192–193
switching to win/lose conditions,

476–477
Game objects (GameObject). See also Objects

adding sound to game objects, 215–216
in class hierarchy, 64–65
creating, 74–80
Mallet class inheriting from, 119

Game physics. See Physics engines
Game Start banner

adding, 152–153
anchor points for, 153–154

GameControlLayer, as subclass of CCLayer,
239–242

GameManager class. See Game manager
(GameManager)

Gameplay scenes, 170
GameplayLayer class

adding music to, 228
adding support for game manager,

190–192
addScrollingBackgroundWith-

Parallax method, 250–252
associating debug label with, 163–165
header file, 105–106
implementation file, 106–111, 138–140
importing updates for Viking, 141–144
loadAudio method, 201–203
overview of, 105

GameplayScrollingLayer class
adjustLayer method, 245–247
connecting joystick and button controls to

Viking, 245

subclass of CCLayer, 243–245
update method, 247–248

GameState class
adding to Space Viking project, 530–534
creating to track user achievements,

519–521
GCDatabase, loading/saving achievement

data to, 522–524
GCHelper. See also Helper methods

adding to Space Viking project, 530–534
creating helper class for Game Center,

508–510
implementing leaderboards, 539–540
keeping track of player authentication

status, 511–512
modifying for sending achievements,

524–530
GetWorldPoint helper method, 379–380
GKScore object, creating, 538
GLES-Render files, 295–296
Glyph Designer, creating font texture atlas,

156
GPU, checking performance of, 560–563
Gravity property

initializing in Chipmunk space, 431
Particle Designer controlling, 488

Groove joint
constraints in Chipmunk, 456
creating spring platforms and, 463–464

Ground
creating for Chipmunk space, 432–433
detecting collisions with, 445–450
setting collision type for, 447–448
surface velocity, 445

GroundLayer, of TileMap, 269
groupIndex f ield, 382
Groups

creating for scenes, 236
organizing classes by, 70
organizing scenes, 180–181

H
Header files

additions for audio to, 204–205
cart, 337–338
enemy robot, 126–127

Index580

Header files (continued)
game manager, 172–173
GameplayLayer class, 105–106
health, 121
Main Menu, 182–183
mallet, 118
Ole the Viking, 90–92
phaser, 138
PlatformScene, 263–264
PlatformScrollingLayer, 254–255
radar dish, 84
space cargo ship, 123

Health (Health class)
in class hierarchy, 65
enemy robot, 134
moving into dead state, 103
power-up, 120–122
restoring Ole's health, 102

HelloWorld apps
adding movement to cargo ship, 10–11
adding space cargo ship to app, 9–10
adding to iPhone or iPad, 20–21
applicationDidFinishLaunching

method in, 14–15
building, 7–9
Director's role in running game loop and

rendering graphics, 16–18
Hello, Box2D, 289–292
initializing UIWindow, 15–16
inspecting Cocos2D templates, 6–7
scenes and nodes in application template,

11–14
Helper methods

for creating animations, 411
for loading/saving achievement data,

522–524
overview of, 19–20
for sending achievement data, 524–530

Hiero Font Builder Tool, 156–159

I
Idle state (kStateIdle)

for enemy robot, 132
for radar dish, 87

if statement, combining with assignment
operator, 134–135

Images
adding for menus, 181–182
adding to Space Viking project, 24–26
advantages of texture atlases for, 47
loading image files, 43
performance tips and, 551

Implementation files
additions to for audio, 204–205
enemy robot, 127–137
game manager (GameManager), 174–177
GameplayLayer class, 106–111
gameplayLayer class, 138–140
health, 121
@interface declaration in, 256
mallet, 119–120
phaser, 138–140
PlatformScene, 263–264
radar dish, 85–89
space cargo ship, 123–125

Implementation files, Viking class
changeState method for animation,

95–98
dealloc method, 94
effect of pragma mark statements in

Xcode pulldown menus, 99
f lipping graphic views, 95
initAnimations method, 103–105
joystick methods, 94–95
updateStateWithDeltaTime and

adjustedBoundingBox methods,
100–103

Importing updates, for Space Viking project,
141–144

Impulses
Box2D, 368
controlling f lipping of cart, 368–369
making cart jump, 369–373
for responsive direction switching,

373–374
Infinite scrolling

creating group for cut-scene, 252–253
creating platform scene, 263–265
creating scrolling layer in cut-scene,

254–262
creating texture atlas for cloud images,

254
overview of, 252–253

Index 581

Inheritance, class hierarchy and, 64–65
init method

for Chipmunk, 429–430
in game layer of Space Viking, 41–42
for HelloWorld app, 13
for PerformanceTestGame, 546–549
of platformScrollingLayer, 255–256

initAnimations method
Mallet class, 120
RadarDish class, 88–89
Viking class, 103–105

InitAudioAsync method, GameManager
class, 206–207

initJoystick method, 108
InitWithScene4UILayer method, carts,

344
Installing Cocos2D templates, 5–6
Instance variables

adding to CPViking, 450–451
for sprite positions, 43

Instruments tool
for checking GPU, 560–563
for finding bottlenecks, 557–558

Interaction, in Box2D, 302–304
@interface declaration, inside implementa-

tion files, 256
Intro class, setting up menus, 190
IntroLayer class, images displayed before

game play, 193
iOS

audio framework for, 197
fonts available in, 155
Game Center app, 495
making games in, xxii

iOS Developer Program account, 497–498
iPad

adding HelloWorld app to, 20–21
power-of-two support on older devices,

46
running performance test game on, 546,

550
running Space Viking on iPad Simulator,

144–145
simulator in Particle Designer, 485–486

iPhone
adding HelloWorld app to, 20–21

fixing slow performance on older devices,
53–54

power-of-two support on older devices, 46
simulator in Particle Designer, 485–486

iPhone Developer account, 20
iPhone Developer Portal, 497
iPod, power-of-two support on older

devices, 46
isCarryingWeapon method, Viking class,

94
iTunes Connect

adding achievements to, 515–517
registering apps in, 497, 501–505
setting up leaderboards in, 536–538

J
JavaScript, Coscos2D-JavaScript, 568
Joints

adding wheels using revolute joints,
352–355

breaking Ole's body into pieces, 376
compared with Chipmunk constraints,

420–421
creating multiple bodies and joints,

378–380
dragging objects in Box2D, 304
motor settings for revolute joint, 385
prismatic, 378
restricting revolute joints, 376–377

Joysticks
adding, 36–40
applying joystick movement, 40–44
connecting to Space Viking, 245
importing joystick class, 35–36
initializing, 111
initJoystick method, 108
Viking class methods, 94–95

JPEG files, 43
Jump buttons, adding GameplayLayer class,

108
Jump to Definition (Ctrl-z-D), for viewing

source code, 18–19
Jumping, in Chipmunk

implementing, 450–455
by setting velocity, 444

Index582

K
Kinematic bodies, Box2D, 293
kStateDead. See Dead state (kStateDead)
kStateIdle (idle state)

for enemy robot, 132
for radar dish, 87

kStateSpawning (Spawning state)
for enemy robot, 132
for radar dish, 87

kStateTaking Damage (Taking damage
state), 87

kStateTakingDamage. See Damage taking
state (kStateTakingDamage)

L
Labels (CCLabel)

adding to scenes, 13–14
CCLabelIBMFont class, 155, 159
CCLabelTTF class, 151–155
in layers, 12

Layers (CCLayer)
adding, 29–31
allocating sprites when layer is initialized,

552
connecting background and game layers

to a scene, 31–32
creating background layer, 26–29
GameControlLayer as subclass of,

239–242
GameplayScrollingLayer as subclass

of, 243–245
principal classes in Cocos2D, 570
Scene4UILayer as subclass of, 335
scenes as container for, 12, 33
z values and, 33

Leaderboards
displaying, 540–542
how they work, 538
implementing, 539–540
overview of, 536
setting up in iTunes Connect, 536–538

LevelComplete class
scene types and, 170
setting up menus, 190

LevelCompleteLayer class
achievements and, 530–534
displaying leaderboards, 540–542
scenes and, 194–195

Levels
accounting for level width when scrolling,

233–234
creating in Chipmunk, 432–433
creating with LevelSVG tool, 380
getting dimension of current level,

232–233
LevelSVG tool, 380
Linear impulses, Box2D

making cart jump, 369–373
overview of, 368

LinkTypes, URLs and, 172
loadAudio method, GameplayLayer class,

201–203
Loops

Director running, 16–18
update loop, 279–280, 394–396
variable and fixed rate timestamps and,

394–396, 434
Loosely coupled classes, 117–118
lowerAngle method, restricting revolute

joints, 377

M
Mac OS X

Cocos2D native support for, 568
downloading particle system to, 485
making games in, xxii

Macros, 20
Main Menu (MainMenu)

adding music to, 228–229
creating, 182–190
header file for, 182–183
MainMenuLayer class, 183–190
scene types and, 169

Mallet (Mallet class)
dropping from space cargo ship, 125
powering up, 102, 118–120

Manager. See Game manager
(GameManager)

mass property, fixtures, 309–313

Index 583

Mekanimo tool, for working with bodies, 380
Member variables, for body part sprites,

380–381
Memory

benefits of texture atlases, 48
managing memory footprint, 17
textures and, 45–47

Menus
adding images and fonts for, 181–182
in addition to Main Menu, 190
classes in, 179–180
Main Menu. See Main Menu

(MainMenu)
Options Menu, 170

Meters, converting points to, 420–421, 430
Methods, declaring in Objective-C, 117
Metroid-style platform. See Platforms, in

Chipmunk
Motors

in Chipmunk, 456
settings for revolute joint, 385

Mouse joint
dragging objects in Box2D, 304–309
supporting in Chipmunk, 436–437

Movement
adding movement to cargo ship, 10–11
adding to Space Viking project, 35
implementing n Chipmunk, 450–455
jumping, 444
surface velocity, 445

Music. See also Audio
adding in Chipmunk, 473–474
adding to GameplayLayer, 228

N
New Group (Option-z-N), 70
Nodes (CCNode)

in application templates, 11–14
in Cocos2D hierarchy, 12
principal classes in Cocos2D, 570
tags, 71–72

Normal platform, creating in Chipmunk,
464–466

NSCoding protocol, loading/saving achieve-
ment data to GCDatabase, 522–524

NSDictionary objects, storing animation
settings in, 67

NSOperationQueues

adding audio asynchronously in back-
ground thread, 201

managing background threads, 204
NSTimer, scheduler compared with, 145
numberOfRunningActions, 135

O
Object-Oriented Programming (Coad and Nic-

ola), 63
Objective-C framework

Cocos2D and, xxii, xxv
protocols in, 117

Objects. See also Game objects
(GameObject)

adding sound to, 215–216
converting into classes, 63
creating Box2D, 292–295
creating C++, 280
creating game objects, 74–80
GameObject in class hierarchy, 64–65
GKScore object, 538
Mallet class inheriting from GameOb-

ject class, 119
plist f iles and, 67
positioning using anchor points, 153
positioning using point system, 82
returning to nonaltered state after effects,

146–148
update method added to, 443
use in design, 63

Obstacles, creating spikes in Box2D,
390–394

Offsets, restricting prismatic joints, 379–380
Ole the Viking. See also Viking class

adding sounds to, 222–228
adding subclass for, 440–443
adjustedBoundingBox method,

100–103
animating in Chipmunk, 469–473
breaking body into pieces using joints,

376
changeState method, 95–98

Index584

Ole the Viking (continued)
connecting button controls to, 245
creating cinematic fight sequence, 411–416
following in Chipmunk, 467–468
Header files, 90–92
leaping with ragdoll effect, 381–386
pitting against Digger in fight, 396–405
restoring health of, 102

OpenAL audio framework, for iOS devices,
197

OpenGL Driver Instrument, for checking
GPU, 560–563

OpenGL ES
benefits of batching bind calls, 45
converting UIKIT to OpenGL ES coor-

dinate system, 29
EAGLView and, 16
FBO (frame buffer object), 145–146
for graphics rendering in Cocos2D, xxii
references for, 567
support in Cocos2D, xxv

Option-z-N (New Group), 70
Options Menu

scene types and, 170
setting up menus, 190

OptionsLayer, displaying achievements
within apps, 534–536

Organizing source code
constants file for static values used in

more than one class, 71–72
grouping classes, 70
protocols in implementation of class

methods, 72–74

P
Parallax scrolling

adding background to cart layer, 364–368
defined, 231
overview of, 250–252

ParallaxBackgrounds folder, importing,
235–236

Particle Designer
application in cinematic fight sequence,

413
controls, 487–488
creating particle system, 489–490

downloading to Mac, 485
engine exhaust effect, 490–494
features of, 486–488
toolbar, 486

Particle systems
creating, 489–490
engine exhaust added to space cargo ship,

490–494
running built-in system, 482–483
snow effect, 483–485
summary and challenges, 494
terminology related to, 481–482
tour of Particle Designer, 486–488

Particles
controls for, 487–488
defined, 481

Performance optimization
bottlenecks and, 557–558
capturing CPU utilization data, 558–560
CCSprite vs. CCSpriteBatchNode,

545–550
checking GPU, 560–563
on older devices, 53–54
overview of, 545
profiling tool for, 554–557
reusing sprites, 552–554
running performance test game, 550
summary and challenges, 563
textures and texture atlases and, 551–552

PerformanceTestGame
adding profiling tool to, 554–557
capturing CPU utilization data, 558–560
checking GPU, 560–563
init method, 546–549
opening and running on iPad, 545–546
reusing sprites, 552–554
running, 550
update method for, 549–550

Phaser (Phaser class)
adding phaser bullet, 137–141
createPhaserWithDirection method,

142–143
header file, 138
implementation file, 138–140
placeholder for creating phaser blast, 109
protocols for creating in GameplayLayer

class, 127

Index 585

shootPhaser method, 129, 132–133
taking damage from, 102

Physics Editor, 380
Physics engines

advanced. See Box2D, advanced physics
basic. See Box2D, basic physics
bundled with Cocos2D, xxiv
Chipmunk. See Chipmunk
intermediate. See Box2D, intermediate

physics
Pin joint, constraints in Chipmunk, 456
Pivot joint

constraints in Chipmunk, 455
creating pivot platform, 462

Pixels, in object positioning, 82
Platforms, in Chipmunk

laying out, 468–469
normal platform, 464–466
pivot platform, 460–462
revolving platform, 458–460
spring platform, 463–464

PlatformScene

header and implementation files, 263–264
playScene method, 264

PlatformScrollingLayer

ccTouchesBegan method, 262
createCloud method, 257–258
createStaticBackground method,

257
createVikingAndPlatform method,

261–262
declarations and init method, 255–256
header file, 254–255
resetCloudWithNode method, 258–261

playbackgroundTrack method, audio,
213–214

playScene method, platform scene, 264
playSoundEffect method, audio, 213–214
plist files

phaser bullet effect, 137
sound effects in, 198–201
storing animation data in, 61, 67–69

PNG files
file formats for images, 43
using in TileMap, 270

Point-to-meter (PTM) ratio, 420–421, 430
Pointers, C++, 281

Points
converting to meters, 420–421, 430
in object positioning, 82

postSolve events, collision events in Chip-
munk, 445

Power-of-two, textures and, 45–47
Power-up objects

Health class, 120–122
Mallet class, 118–120
overview of, 118
protocols for creating in GameplayLayer

class, 127
Pragma mark statements, in Xcode pulldown

menus, 99
preSolve events, collision events in Chip-

munk, 445, 448–449
Prismatic joints

Chipmunk groove joint compared with,
456

offsets for restricting, 379
overview of, 378

Profiling
capturing CPU utilization data, 558–560
finding bottlenecks, 557–558
for performance optimization, 554–557

Project setup
background and game layers connected to

a scene, 31–32
background layer created, 26–29
CCSpriteBatchNode in, 52–53
classes for, 24–26
creating new project, 23–24
director running game scene, 34–35
fixing slow performance on older devices,

53–54
game layer added, 29–31
game scene for, 32–33
joystick class imported for, 35–36
joystick movement in, 40–44
joysticks and buttons added, 36–40
movement added, 35
summary and challenges, 54–55
texture atlas added to scene, 48–51

Property list f iles. See plist f iles
Protocols

common protocol class, 72–74
in implementation of class methods, 72–74

Index586

Protocols (continued)
in Objective-C, 117
use with enemy robot, 127

PTM (point-to-meter) ratio, 420–421, 430
Puzzle game example, in Box2D, 320–324
PuzzleLayer

box created for, 293
createBoxAtLocation method,

294–295
debug drawing, 295–296
decorating bodies using sprites, 313–320
dragging objects in Box2D, 304–309
ground body created for, 299–302
interaction and decoration in, 302–304
mass, density, friction, and restitution

properties, 309–313
puzzle game example, 320–324
scene created for, 282–284
viewing on screen, 296–298
world created for, 290–292

PVR TC
compression format, 43
performance tips for textures, 551

Q
Queries, searching for objects in Box2D

world, 305–307

R
RadarDish class

adding sounds to, 216–217
changeState method, 86
in class hierarchy, 64
header file, 84
implementation file, 85–89
inheriting from GameCharacter class,

84–85
initAnimations method, 88–89
plist f iles for, 68–69
steps in creation of, 83–84
updateStateWithDeltaTime method,

86
Ragdoll effect

adding action to Ole, 376
leaping effect and, 381–386

resetCloudWithNode method, platform-
ScrollingLayer, 258–261

Responsive direction switching, Box2D,
373–374

restitution property, fixtures, 309–313
Revolute joints

in Box2D, 304
for bridge, 386–389
for cart wheels, 352–355
Chipmunk pivot joint compared with,

455
for Digger Robot wheels, 400
motor settings for, 385
restricting, 376–377

Revolving platform, creating in Chipmunk,
458–460

Rigid body physics simulation, 292
Robots

Digger Robot. See Digger Robot
enemy robot. See Enemy robot

RockBoulderLayer, of TileMap, 270
RockColumnsLayer, of TileMap, 269
RootViewController, for device orienta-

tion, 53–54
Rotary limit joint

constraints in Chipmunk, 456
creating pivot platform, 462

Rotation, anchor points for, 154
Running state, Digger Robot, 407

S
Sandbox accounts, in Game Center, 514
Scaling images, performance tips and, 551
Scenes (CCScenes)

ActionLayer of Scene4, 339–343
adding images and fonts, 181–182
additional menu types, 190
in application template, 11–14
background and game layers connected

to, 31–32
basic Box2D scene, 335–346
basic Chipmunk scene, 429–438
CCScenes as principal class in Cocos2D,

570
changing SpaceVikingAppDelegate to

support game manager, 192–193

Index 587

classes in menu system, 179–180
creating for Space Viking, 32–33
creating new Chipmunk scene, 421–425
creating new scene (PuzzleLayer),

282–284
creating second game scene, 236–242
director running game scene, 34–35
game manager connected to Chipmunk

scene, 425–426
game manager for switching between,

170–172
GameplayLayer class and, 190–192
group for cut-scene, 253
group for scene2, 236
IntroLayer class and, 193
LevelCompleteLayer class, 194–195
Main Menu, 182–190
organizing, 180–181
texture atlases for, 48–51
types of, 169–170
UILayer of Scene4, 335–336

SceneTypes, 172
Scheduler, for timed events and call, 145
Scores, sending to Game Center, 538
Screen resolution, support in Cocos2D, xxv
Screen shake effect, 467–468
Scrolling. See also Tile maps

accounting for level width, 233–234
background, 271–272
common problems in, 234–235
creating scrolling layer, 242–249
in cut-scene, 254–262
getting dimension of current level,

232–233
to infinity, 252–253
new scene for, 236–242
overview of, 231
parallax layers and, 250–252
in platform scene, 263–265

ScrollingCloudsBackground folder, 254
ScrollingCloudsTextureAtlases folder, 254
Selection techniques, three-finger swipe, 27
separate events, collision events in Chip-

munk, 445, 448–449
SetLinearVelocity function, for Box2D

bodies, 415
setupDebugDraw method, cart, 344

setupWorld method, cart, 344
Shapes, Chipmunk

adding, 420
box shaped added, 431–433
converting dynamic shape into static plat-

form, 447–448
Shapes, custom shapes with Box2D, 346–348
ShootPhaser method, 129
Simple motor, constraints in Chipmunk, 456
SimpleAudioEngine, in CocosDenshion,

197, 229–230
Singletons

for game manager, 195
important concepts in Cocos2D, xxiv

SneakyInput joystick project, 35–36
Snow effect, creating with particle system,

483–485
Social gaming network. See Game Center
Sound effects. See also Audio

adding in Chipmunk, 473–474
getting list of, 208–211
loading, 211–213
in plist files, 198

Sounds folder, 198
Source code

availability of, 18–20
constants file and, 71–72
grouping classes and, 70
protocols in implementation of class

methods, 72–74
Space cargo ship (SpaceCargoShip class)

adding sounds to, 217–219
in class hierarchy, 64
creating, 122
engine exhaust effect for, 490–494
header file, 123
implementation file, 123–125

Space Viking
basic setup. See Project setup
downloading, xxi
introduction to, xxv–xxvi
storyline in, xxvi–xxvii

Spaces, Chipmunk
box added to, 431–432
creating, 429–431
creating a physics world, 420
creating the level and ground, 432–433

Index588

SpaceVikingAppDelegate, 192–193
Spawning state (kStateSpawning)

for enemy robot, 132
for radar dish, 87

Spikes, creating obstacles in Box2D, 390–394
Spring platform, creating in Chipmunk,

462–463
Sprite Frame Cache, 111
SpriteBatchNode, 88
Sprites (CCSprite)

allocating during layer initialization, 552
animating sprites rendered by CCSprite-

BatchNode, 60–61
basic animation, 57–60
batching (CCSpriteBatchNode), 44–45
Box2D bodies, 380–381
CCSprite as principal classes in

Cocos2D, 570
CCSprite vs. CCSpriteBatchNode,

545–550
containing within screen boundaries, 102
decorating bodies, 313–320
important concepts in Cocos2D, xxiv
in layers, 12
listed in CCSpriteBatchNode object,

108
returning to nonaltered state after effects,

146–148
reusing, 552–554
Sprite Frame Cache, 111

Sprites (CPSprite)
adding, 438
defining body and shape for, 438–440
implementing velocity of, 444
subclass for Ole, 440–443
subclass for revolving platform, 458–460

startFire method, 415
State transitions. See also Animation

Ole the Viking, 471–473
radar dish, 86–87
spike obstacle and, 392–393
Viking class and, 95–98
visual effects and, 410

Static bodies, Box2D, 293
StaticBackgroundLayer, splitting back-

ground into static and scrolling layers,
237–239

stopSoundEffect method, audio, 213–214
Surface velocity, for ground movement in

Chipmunk, 445
switch statement

method variables not declared in, 99
state transitions and, 98

T
Taking damage state. See Damage taking

state (kStateTakingDamage)
Teleport graphic, for enemy robot, 132
Templates

inspecting, 6–7
installing, 5–6
SpaceViking based on, 23–24
working of scenes and nodes in applica-

tion template, 11–14
Ternary operator (?), combining if state-

ment with assignment operator,
134–135

Text. See also Labels (CCLabel)
adding Game Start banner, 152–153
anchor points for Game Start banner,

153–154
CCLabelIBMFont class, 155, 159
CCLabelTTF class, 151
creating debug label, 160–165
font texture atlas for, 156–159
fonts, 155

Texture atlases
CCSpriteBatchNode initialized with

image from, 111
for cloud images, 254
combining textures into, 44
downloading tiles texture atlas, 266
for fonts, 156–159
overview of, 44–45
performance optimization and, 551–552
reasons for using, 48
for Space Viking Scene 1, 48–51
steps in use of, 53
technical details of, 45–47

Texture padding, 45–47
TexturePacker

creating texture atlas for Space Viking
Scene 1, 49–51

Index 589

texture atlas software, 47
trial version, 380

Textures
caching, 17
combining into texture atlases, 43
f lushing unused, 552
loading images into RAM and, 43
performance optimization and, 551–552

Tile maps. See also Scrolling
adding to ParalaxNode, 272–275
built-in support for, xxiv
compressed TiledMap class, 271–272
creating, 267–268
defined, 232
installing Tiled tool on Mac, 266–267
overview of, 265–266
three-layered, 268–270

Tiled tool
creating three-layered tile map, 268–270
creating TileMap for iPad, 267–268
Installing on Mac, 266–267

Tiles
defined, 231
of repeating images, 265–266

TileSets, 232
Time Profiler, for capturing CPU utilization

data, 558–560
TMX files, 270–271
Touch-handling code, helper methods for,

436–437
typedef enumerator

getting list of sound effects, 210–211
for left and right punches, 92

U
UIFont class, 155
UIKit, converting to OpenGL ES coordinate

system, 29
UILayer, in Chipmunk, 421–423
UIViewController, for device orientation,

53–54
UIWindow, initialization of, 15–16
Units

Box2D, 288–289
converting points to meters in Chipmunk,

430

Unity3D, 567
Update functions, scheduler and, 145
update loop

Box2D, 279–280
improving main loop, 394–396

update method
adding to game objects, 443
cart methods, 344
in game layer of Space Viking, 41–42
GameplayScrollingLayer, 247–248
for PerformanceTestGame, 549–550

updateStateWithDeltaTime method
animating Ole, 471–473
for Chipmunk sprite, 452–454
Digger Robot and, 406
enemy robot and, 133–137
radar dish and, 85–86
Viking class, 100–103

upperAngle, restricting revolute joints,
377

URLs, 172
Utilities, 19–20

V
Variable rate timestamps, 394–396
Variables, method variables not declared in

switch statement, 99
Vectors, for direction and magnitude, 291
Velocity

of ground movement in Chipmunk, 445
of sprite in Chipmunk, 444

Vertex Helper
creating vertices for Digger Robot,

399–401
creating vertices with, 348–352
making cart scene scrollable, 359–362

Vertices
for Box2D shapes, 347–348
creating shapes with arbitrary vertices,

448
for Digger Robot, 399–401
making cart scene scrollable, 359–362
Vertex Helper and, 348–352

View controller
displaying achievements, 534–536
displaying leaderboards, 540–542

Index590

Viking class. See also Ole the Viking
adding sounds to, 222–228
applying joystick movement to, 40–44
changeState method for animations in,

95–98
checking to see if attacking enemy robot,

135
in class hierarchy, 64
dealloc method, 94
effect of pragma mark statements in

Xcode pulldown menus, 99
f lipping graphic views, 95
header file, 90–92
initAnimations method, 103–105
joystick methods, 94–95
pitting Digger against Ole, 396–405
referencing from SpriteBatchNode, 88
retrieving from CCSpriteSheet,

134–135
subclass for in Chipmunk, 440–443
updateStateWithDeltaTime and

adjustedBoundingBox methods,
100–103

in Xcode, 90
Visual effects, state transitions and, 410

W
Walking state

Digger Robot, 407–408
enemy robot, 132

Wheels
adding to cart, 352–355
creating for Digger Robot, 399–400

Win/lose conditions, adding in Chipmunk,
476–477

World, Box2D
Chipmunk space compared with, 430
creating, 289–292
searching for objects in, 305–307

X
Xcode

Add New File dialog, 26
build management for iOS devices, 20–21
Chipmunk files added to Xcode project,

426–429
classes as organization technique in, 70
HelloWorld app, 7–9
inspecting Cocos2D templates, 6–7
Instruments tool, 557–558
location of Cocos2D templates in, 23–24
pragma mark statements in pull down

menus, 99
RadarDish class created with, 83–84
texture atlases added to, 51

Z
z values, in 3D engines, 33
Zwoptex, 47–49

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Your purchase of Learning Cocos2D includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with more
than 5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: EPLUQGA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Contents
	Preface
	Acknowledgments
	About the Authors
	I: Getting Started with Cocos2D
	1 Hello, Cocos2D
	Downloading and Installing Cocos2D
	Creating Your First Cocos2D HelloWorld
	For the More Curious: Understanding the Cocos2D HelloWorld
	Getting CCHelloWorld on Your iPhone or iPad
	Summary
	Challenges

	2 Hello, Space Viking
	Creating the SpaceViking Project
	Creating the Space Viking Classes
	Creating the Background Layer
	The Gameplay Layer: Adding Ole the Viking to the Game
	The GameScene Class: Connecting the Layers in a Scene
	Commanding the Cocos2D Director
	Adding Movement
	Texture Atlases
	For the More Curious: Testing Out CCSpriteBatchNode
	Fixing Slow Performance on iPhone 3G and Older Devices
	Summary
	Challenges

	3 Introduction to Cocos2D Animations and Actions
	Animations in Cocos2D
	Space Viking Design Basics
	Actions and Animation Basics in Cocos2D
	Using Property List Files to Store Animation Data
	Organization, Constants, and Common Protocols
	The GameObject and GameCharacter Classes
	Summary
	Challenges

	4 Simple Collision Detection and the First Enemy
	Creating the Radar Dish and Viking Classes
	Creating the Viking Class
	Final Steps
	Summary
	Challenges

	II: More Enemies and More Fun
	5 More Actions, Effects, and Cocos2D Scheduler
	Power-Ups
	Enemy Robot
	Adding the PhaserBullet
	GameplayLayer and Viking Updates
	For the More Curious: Effects in Cocos2D
	Summary
	Exercises and Challenges

	6 Text, Fonts, and the Written Word
	CCLabelTTF
	Understanding Anchor Points and Alignment
	CCLabelBMFont
	Using Glyph Designer
	Using the Hiero Font Builder Tool
	For the More Curious: Live Debugging
	Summary
	Challenges

	III: From Level to Game
	7 Main Menu, Level Completed, and Credits Scenes
	Scenes in Cocos2D
	Introducing the GameManager
	Menus in Cocos2D
	Scene Organization and Images
	Creating the Main Menu
	Additional Menus and GameplayLayer
	For the More Curious: The IntroLayer and LevelComplete Classes
	Summary
	Challenges

	8 Pump Up the Volume!
	Introducing CocosDenshion
	Importing and Setting Up the Audio Filenames
	Synchronous versus Asynchronous Loading of Audio
	Adding the soundEngine to GameObjects
	Adding Sounds to EnemyRobot
	Adding Sound Effects to Ole the Viking
	Adding Music to the Menu Screen
	For the More Curious: If You Need More Audio Control
	Summary
	Challenges

	9 When the World Gets Bigger: Adding Scrolling
	Adding the Logic for a Larger World
	Creating a Larger World
	Scrolling with Parallax Layers
	Scrolling to Infinity
	Tile Maps
	Summary
	Challenges

	IV: Physics Engines
	10 Basic Game Physics: Adding Realism with Box2D
	Getting Started
	Hello, Box2D!
	Basic Box2D Interaction and Decoration
	Making a Box2D Puzzle Game
	Summary
	Challenges

	11 Intermediate Game Physics: Modeling, Racing, and Leaping
	Getting Started
	Creating a Cart with Box2D
	Making the Cart Move and Jump
	Summary
	Challenges

	12 Advanced Game Physics: Even Better than the Real Thing
	Joints and Ragdolls: Bringing Ole Back into Action
	Adding Obstacles and Bridges
	The Boss Fight!
	Summary
	Challenges

	13 The Chipmunk Physics Engine (No Alvin Required)
	What Is Chipmunk?
	Getting Started with Chipmunk
	Adding Sprites and Making Them Move
	Chipmunk and Constraints
	The Great Escape!
	Summary
	Challenges

	V: Particle Systems, Game Center, and Performance
	14 Particle Systems: Creating Fire, Snow, Ice, and More
	Built-In Particle Systems
	Getting Started with Particle Designer
	Creating and Adding a Particle System to Space Viking
	Summary
	Challenges

	15 Achievements and Leaderboards with Game Center
	What Is Game Center?
	Enabling Game Center for Your App
	Game Center Authentication
	Setting Up Achievements
	Implementing Achievements
	Setting Up and Implementing Leaderboards
	Summary
	Challenges

	16 Performance Optimizations
	CCSprite versus CCSpriteBatchNode
	Reusing CCSprites
	Profiling within Cocos2D
	Using Instruments to Find Performance Bottlenecks
	Summary
	Challenges

	17 Conclusion
	Where to Go from Here
	Android and Beyond
	Final Thoughts

	A: Principal Classes of Cocos2D
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

