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ABSTRACT
Speech dynamics refer to the temporal characteristics in all stages of the human speech com-

munication process. This speech “chain” starts with the formation of a linguistic message in a

speaker’s brain and ends with the arrival of the message in a listener’s brain. Given the intri-

cacy of the dynamic speech process and its fundamental importance in human communication,

this monograph is intended to provide a comprehensive material on mathematical models of

speech dynamics and to address the following issues: How do we make sense of the complex

speech process in terms of its functional role of speech communication? How do we quantify

the special role of speech timing? How do the dynamics relate to the variability of speech that

has often been said to seriously hamper automatic speech recognition? How do we put the

dynamic process of speech into a quantitative form to enable detailed analyses? And finally,

how can we incorporate the knowledge of speech dynamics into computerized speech analysis

and recognition algorithms? The answers to all these questions require building and applying

computational models for the dynamic speech process.

What are the compelling reasons for carrying out dynamic speech modeling? We pro-

vide the answer in two related aspects. First, scientific inquiry into the human speech code has

been relentlessly pursued for several decades. As an essential carrier of human intelligence and

knowledge, speech is the most natural form of human communication. Embedded in the speech

code are linguistic (as well as para-linguistic) messages, which are conveyed through four levels

of the speech chain. Underlying the robust encoding and transmission of the linguistic mes-

sages are the speech dynamics at all the four levels. Mathematical modeling of speech dynamics

provides an effective tool in the scientific methods of studying the speech chain. Such scientific

studies help understand why humans speak as they do and how humans exploit redundancy and

variability by way of multitiered dynamic processes to enhance the efficiency and effectiveness

of human speech communication. Second, advancement of human language technology, espe-

cially that in automatic recognition of natural-style human speech is also expected to benefit

from comprehensive computational modeling of speech dynamics. The limitations of current

speech recognition technology are serious and are well known. A commonly acknowledged and

frequently discussed weakness of the statistical model underlying current speech recognition

technology is the lack of adequate dynamic modeling schemes to provide correlation structure

across the temporal speech observation sequence. Unfortunately, due to a variety of reasons,

the majority of current research activities in this area favor only incremental modifications and

improvements to the existing HMM-based state-of-the-art. For example, while the dynamic

and correlation modeling is known to be an important topic, most of the systems neverthe-

less employ only an ultra-weak form of speech dynamics; e.g., differential or delta parameters.

Strong-form dynamic speech modeling, which is the focus of this monograph, may serve as an

ultimate solution to this problem.
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After the introduction chapter, the main body of this monograph consists of four chapters.

They cover various aspects of theory, algorithms, and applications of dynamic speech models,

and provide a comprehensive survey of the research work in this area spanning over past 20 years.

This monograph is intended as advanced materials of speech and signal processing for graudate-

level teaching, for professionals and engineering practioners, as well as for seasoned researchers

and engineers specialized in speech processing.

KEYWORDS
Articulatory trajectories, Automatic speech recognition, Coarticulation, Discretizing hidden

dynamics, Dynamic Bayesian network, Formant tracking, Generative modeling, Speech

acoustics, Speech dynamics, Vocal tract resonance
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1

C H A P T E R 1

Introduction

1.1 WHAT ARE SPEECH DYNAMICS?
In a broad sense, speech dynamics are time-varying or temporal characteristics in all stages

of the human speech communication process. This process, sometimes referred to as speech

chain [1], starts with the formation of a linguistic message in the speaker’s brain and ends with

the arrival of the message in the listener’s brain. In parallel with this direct information transfer,

there is also a feedback link from the acoustic signal of speech to the speaker’s ear and brain.

In the conversational mode of speech communication, the style of the speaker’s speech can be

further influenced by an assessment of the extent to which the linguistic message is successfully

transferred to or understood by the listener. This type of feedbacks makes the speech chain a

closed-loop process.

The complexity of the speech communication process outlined above makes it desirable to

divide the entire process into modular stages or levels for scientific studies. A common division of

the direct information transfer stages of the speech process, which this book is mainly concerned

with, is as follows:

• Linguistic level: At this highest level of speech communication, the speaker forms the

linguistic concept or message to be conveyed to the listener. That is, the speaker decides

to say something linguistically meaningful. This process takes place in the language

center(s) of speaker’s brain. The basic form of the linguistic message is words, which are

organized into sentences according to syntactic constraints. Words are in turn composed

of syllables constructed from phonemes or segments, which are further composed of

phonological features. At this linguistic level, language is represented in a discrete or

symbolic form.

• Physiological level: Motor program and articulatory muscle movement are involved at

this level of speech generation. The speech motor program takes the instructions, spec-

ified by the segments and features formed at the linguistic level, on how the speech

sounds are to be produced by the articulatory muscle (i.e., articulators) movement

over time. Physiologically, the motor program executes itself by issuing time-varying

commands imparting continuous motion to the articulators including the lips, tongue,
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2 DYNAMIC SPEECH MODELS

larynx, jaw, and velum, etc. This process involves coordination among various articu-

lators with different limitations in the movement speed, and it also involves constant

corrective feedback. The central scientific issue at this level is how the transformation

is accomplished from the discrete linguistic representation to the continuous articula-

tors’ movement or dynamics. This is sometimes referred to as the problem of interface

between phonology and phonetics.

• Acoustic level: As a result of the articulators’ movements, acoustic air stream emerges

from the lungs, and passes through the vocal cords where a phonation type is developed.

The time-varying sound sources created in this way are then filtered by the time-varying

acoustic cavities shaped by the moving articulators in the vocal tract. The dynamics of

this filter can be mathematically represented and approximated by the changing vocal

tract area function over time for many practical purposes. The speech information

at the acoustic level is in the form of dynamic sound pattern after this filtering process.

The sound wave radiated from the lips (and in some cases from the nose and through the

tissues of the face) is the most accessible element of the multiple-level speech process

for practical applications. For example, this speech sound wave may be easily picked

by a microphone and be converted to analog or digital electronic form for storage or

transmission. The electronic form of speech sounds makes it possible to transport them

thousands of miles away without loss of fidelity. And computerized speech recognizers

gain access to speech data also primarily in the electronic form of the original acoustic

sound wave.

• Auditory and perceptual level: During human speech communication, the speech sound

generated at the acoustic level above impinges upon the eardrums of a listener, where it

is first converted to mechanical motion via the ossicles of the middle ear, then to fluid

pressure waves in the medium bathing the basilar membrane of the inner ear invoking

traveling waves. This finally excites hair cells’ electrical, mechanical, and biochemical

activities, causing firings in some 30,000 human auditory nerve fibers. These various

stages of the processing carry out some nonlinear form of frequency analysis, with the

analysis results in the form of dynamic spatial–temporal neural response patterns. The

dynamic spatial–temporal neural responses are then sent to higher processing centers

in the brain, including the brainstem centers, the thalamus, and the primary auditory

cortex. The speech representation in the primary auditory cortex (with a high degree

of plasticity) appears to be in the form of multiscale and jointly spectro-temporally

modulated patterns. For the listener to extract the linguistic content of speech, a process

that we call speech perception or decoding, it is necessary to identify the segments and

features that underlie the sound pattern based on the speech representation in the
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primary auditory cortex. The decoding process may be aided by some type of analysis-

by-synthesis strategies that make use of general knowledge of the dynamic processes at

the physiological and acoustic levels of the speech chain as the “encoder” device for the

intended linguistic message.

At all the four levels of the speech communication process above, dynamics play a central

role in shaping the linguistic information transfer. At the linguistic level, the dynamics are

discrete and symbolic, as is the phonological representation. That is, the discrete phonological

symbols (segments or features) change their identities at various points of time in a speech

utterance, and no quantitative (numeric) degree of change and precise timing are observed.

This can be considered as a weak form of dynamics. In contrast, the articulatory dynamics at

the physiological level, and the consequent dynamics at the acoustic level, are of a strong form

in that the numerically quantifiable temporal characteristics of the articulator movements and

of the acoustic parameters are essential for the trade-off between overcoming the physiological

limitations for setting the articulators’ movement speed and efficient encoding of the phono-

logical symbols. At the auditory level, the importance of timing in the auditory nerve’s firing

patterns and in the cortical responses in coding speech has been well known. The dynamic

patterns in the aggregate auditory neural responses to speech sounds in many ways reflect the

dynamic patterns in the speech signal, e.g., time-varying spectral prominences in the speech

signal. Further, numerous types of auditory neurons are equipped with special mechanisms (e.g.,

adaptation and onset-response properties) to enhance the dynamics and information contrast

in the acoustic signal. These properties are especially useful for detecting certain special speech

events and for identifying temporal “landmarks” as a prerequisite for estimating the phonological

features relevant to consonants [2, 3].

Often, we use our intuition to appreciate speech dynamics—as we speak, we sense the

motions of speech articulators and the sounds generated from these motions as continuous flow.

When we call this continuous flow of speech organs and sounds as speech dynamics, then we

use them in a narrow sense, ignoring their linguistic and perceptual aspects.

As is often said, timing is of essence in speech. The dynamic patterns associated with ar-

ticulation, vocal tract shaping, sound acoustics, and auditory response have the key property that

the timing axis in these patterns is adaptively plastic. That is, the timing plasticity is flexible but

not arbitrary. Compression of time in certain portions of speech has a significant effect in speech

perception, but not so for other portions of the speech. Some compression of time, together

with the manipulation of the local or global dynamic pattern, can change perception of the style

of speaking but not the phonetic content. Other types of manipulation, on the other hand, may

cause very different effects. In speech perception, certain speech events, such as labial stop bursts,

flash extremely quickly over as short as 1–3 ms while providing significant cues for the listener
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to identify the relevant phonological features. In contrast, for other phonological features, even

dropping a much longer chunk of the speech sound would not affect their identification. All

these point to the very special status of time in speech dynamics. The time in speech seems to

be quite different from the linear flow of time as we normally experience it in our living world.

Within the speech recognition community, researchers often refer to speech dynamics

as differential or regression parameters derived from the acoustic vector sequence (called delta,

delta–delta, or “dynamic” features) [4, 5]. From the perspective of the four-level speech chain

outlined above, such parameters can at best be considered as an ultra-weak form of speech

dynamics. We call them ultra-weak not only because they are confined to the acoustic domain

(which is only one of the several stages in the complete speech chain), but also because temporal

differentiation can be regarded hardly as a full characterization in the actual dynamics even

within the acoustic domain. As illustrated in [2, 6, 7], the acoustic dynamics of speech exhib-

ited in spectrograms have the intricate, linguistically correlated patterns far beyond what the

simplistic differentiation or regression can characterize. Interestingly, there have been numer-

ous publications on how the use of the differential parameters is problematic and inconsistent

within the traditional pattern recognition frameworks and how one can empirically remedy

the inconsistency (e.g., [8]). The approach that we will describe in this book gives the subject

of dynamic speech modeling a much more comprehensive and rigorous treatment from both

scientific and technological perspectives.

1.2 WHAT ARE MODELS OF SPEECH DYNAMICS?
As discussed above, the speech chain is a highly dynamic process, relying on the coordination

of linguistic, articulatory, acoustic, and perceptual mechanisms that are individually dynamic as

well. How do we make sense of this complex process in terms of its functional role of speech

communication? How do we quantify the special role of speech timing? How do the dynamics

relate to the variability of speech that has often been said to seriously hamper automatic speech

recognition? How do we put the dynamic process of speech into a quantitative form to enable

detailed analyses? How can we incorporate the knowledge of speech dynamics into computerized

speech analysis and recognition algorithms? The answers to all these questions require building

and applying computational models for the dynamic speech process.

A computational model is a form of mathematical abstraction of the realistic physical

process. It is frequently established with necessary simplification and approximation aimed at

mathematical or computational tractability. The tractability is crucial in making the mathemat-

ical abstraction amenable to computer or algorithmic implementation for practical engineering

applications. Applying this principle, we define models of speech dynamics in the context of this

book as the mathematical characterization and abstraction of the physical speech dynamics.

These characterization and abstraction are capable of capturing the essence of time-varying
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aspects in the speech chain and are sufficiently simplified to facilitate algorithm development

and engineering system implementation for speech processing applications. It is highly desirable

that the models be developed in statistical terms, so that advanced algorithms can be developed

to automatically and optimally determine any parameters in the models from a representative

set of training data. Further, it is important that the probability for each speech utterance be

efficiently computed under any hypothesized word-sequence transcript to make the speech

decoding algorithm development feasible.

Motivated by the multiple-stage view of the dynamic speech process outlined in the

preceding section, detailed computational models, especially those for the multiple generative

stages, can be constructed from the distinctive feature-based linguistic units to acoustic and

auditory parameters of speech. These stages include the following:

• A discrete feature-organization process that is closely related to speech gesture over-

lapping and represents partial or full phone deletion and modifications occurring per-

vasively in casual speech;

• a segmental target process that directs the model-articulators up-and-down and front-

and-back movements in a continuous fashion;

• the target-guided dynamics of model-articulators movements that flow smoothly from

one phonological unit to the next; and

• the static nonlinear transformation from the model-articulators to the measured speech

acoustics and the related auditory speech representations.

The main advantage of modeling such detailed multiple-stage structure in the dynamic

human speech process is that a highly compact set of parameters can then be used to cap-

ture phonetic context and speaking rate/style variations in a unified framework. Using this

framework, many important subjects in speech science (such as acoustic/auditory correlates of

distinctive features, articulatory targets/dynamics, acoustic invariance, and phonetic reduction)

and those in speech technology (such as modeling pronunciation variation, long-span context-

dependence representation, and speaking rate/style modeling for recognizer design) that were

previously studied separately by different communities of researchers can now be investigated

in a unified fashion.

Many aspects of the above multitiered dynamic speech model class, together with its scien-

tific background, have been discussed in [9]. In particular, the feature organization/overlapping

process, as is central to a version of computational phonology, has been presented in some

detail under the heading of “computational phonology.” Also, some aspects of auditory speech

representation, limited mainly to the peripheral auditory system’s functionalities, have been

elaborated in [9] under the heading of “auditory speech processing.” This book will treat these
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topics only lightly, especially considering that both computational phonology and high-level

auditory processing of speech are still active ongoing research areas. Instead, this book will

concentrate on the following:

• The target-based dynamic modeling that interfaces between phonology and

articulation-based phonetics;

• the switching dynamic system modeling that represents the continuous, target-directed

movement in the “hidden” articulators and in the vocal tract resonances being closely

related to the articulatory structure; and

• the relationship between the “hidden” articulatory or vocal tract resonance parame-

ters to the measurable acoustic parameters, enabling the hidden speech dynamics to

be mapped stochastically to the acoustic dynamics that are directly accessible to any

machine processor.

In this book, these three major components of dynamic speech modeling will be treated

in a much greater depth than in [9], especially in model implementation and in algorithm

development. In addition, this book will include comprehensive reviews of new research work

since the publication of [9] in 2003.

1.3 WHY MODELING SPEECH DYNAMICS?
What are the compelling reasons for carrying out dynamic speech modeling? We provide

the answer in two related aspects. First, scientific inquiry into the human speech code has

been relentlessly pursued for several decades. As an essential carrier of human intelligence

and knowledge, speech is the most natural form of human communication. Embedded in the

speech code are linguistic (and para-linguistic) messages, which are conveyed through the four

levels of the speech chain outlined earlier. Underlying the robust encoding and transmission of

the linguistic messages are the speech dynamics at all the four levels (in either a strong form

or a weak form). Mathematical modeling of the speech dynamics provides one effective tool

in the scientific methods of studying the speech chain—observing phenomena, formulating

hypotheses, testing the hypotheses, predicting new phenomena, and forming new theories.

Such scientific studies help understand why humans speak as they do and how humans exploit

redundancy and variability by way of multitiered dynamic processes to enhance the efficiency

and effectiveness of human speech communication.

Second, advancement of human language technology, especially that in automatic recog-

nition of natural-style human speech (e.g., spontaneous and conversational speech), is also

expected to benefit from comprehensive computational modeling of speech dynamics. Auto-

matic speech recognition is a key enabling technology in our modern information society. It

serves human–computer interaction in the most natural and universal way, and it also aids the
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enhancement of human–human interaction in numerous ways. However, the limitations of

current speech recognition technology are serious and well known (e.g., [10–13]). A commonly

acknowledged and frequently discussed weakness of the statistical model (hidden Markov model

or HMM) underlying current speech recognition technology is the lack of adequate dynamic

modeling schemes to provide correlation structure across the temporal speech observation se-

quence [9, 13, 14]. Unfortunately, due to a variety of reasons, the majority of current research

activities in this area favor only incremental modifications and improvements to the existing

HMM-based state-of-the-art. For example, while the dynamic and correlation modeling is

known to be an important topic, most of the systems nevertheless employ only the ultra-weak

form of speech dynamics, i.e., differential or delta parameters. A strong form of dynamic speech

modeling presented in this book appears to be an ultimate solution to the problem.

It has been broadly hypothesized that new computational paradigms beyond the conven-

tional HMM as a generative framework are needed to reach the goal of all-purpose recognition

technology for unconstrained natural-style speech, and that statistical methods capitalizing

on essential properties of speech structure are beneficial in establishing such paradigms. Over

the past decade or so, there has been a popular discriminant-function-based and conditional

modeling approach to speech recognition, making use of HMMs (as a discriminant function

instead of as a generative model) or otherwise [13, 15–19]. This approach has been grounded

on the assumption that we do not have adequate knowledge about the realistic speech process,

as exemplified by the following quote from [17]: “The reason of taking a discriminant function

based approach to classifier design is due mainly to the fact that we lack complete knowledge

of the form of the data distribution and training data are inadequate.” The special difficulty of

acquiring such distributional speech knowledge lies in the sequential nature of the data with a

variable and high dimensionality. This is essentially the problem of dynamics in the speech data.

As we gradually fill in such knowledge while pursing research in dynamic speech modeling, we

will be able to bridge the gap between the discriminative paradigm and the generative modeling

one, but with a much higher performance level than the systems at present. This dynamic speech

modeling approach can enable us to “put speech science back into speech recognition” instead of

treating speech recognition as a generic, loosely constrained pattern recognition problem. In this

way, we are able to develop models “that really model speech,” and such models can be expected to

provide an opportunity to lay a foundation of the next-generation speech recognition technology.

1.4 OUTLINE OF THE BOOK
After the introduction chapter, the main body of this book consists of four chapters. They cover

theory, algorithms, and applications of dynamic speech models and survey in a comprehensive

manner the research work in this area spanning over past 20 years or so. In Chapter 2, a general

framework for modeling and for computation is presented. It provides the design philosophy

for dynamic speech models and outlines five major model components, including phonological
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construct, articulatory targets, articulatory dynamics, acoustic dynamics, and acoustic distor-

tions. For each of these components, relevant speech science literatures are discussed, and general

mathematical descriptions are developed with needed approximations introduced and justified.

Dynamic Bayesian networks are exploited to provide a consistent probabilistic language for

quantifying the statistical relationships among all the random variables in the dynamic speech

models, including both within-component and cross-component relationships.

Chapter 3 is devoted to a comprehensive survey of many different types of statistical mod-

els for speech dynamics, from the simple ones that focus on only the observed acoustic patterns

to the more advanced ones that represent the dynamics internal to the surface acoustic domain

and represent the relationship between these “hidden” dynamics and the observed acoustic dy-

namics. This survey classifies the existing models into two main categories—acoustic dynamic

models and hidden dynamic models, and provides a unified perspective viewing these models as

having different degrees of approximation to the realistic multicomponent overall speech chain.

Within each of these two main model categories, further classification is made depending

on whether the dynamics are mathematically defined with or without temporal recursion.

Consequences of this difference in the algorithm development are addressed and discussed.

Chapters 4 and 5 present two types of hidden dynamic models that are best developed

to date as reported in the literature, with distinct model classes and distinct approximation and

implementation strategies. They exemplify the state-of-the-arts in the research area of dynamic

speech modeling. The model described in Chapter 4 uses discretization of the hidden dynamic

variables to overcome the original difficulty of intractability in algorithms for parameter estima-

tion and for decoding the phonological states. Modeling accuracy is inherently limited to the

discretization precision, and the new computation difficulty arising from the large discretiza-

tion levels due to multi-dimensionality in the hidden dynamic variables is addressed by a greedy

optimization technique. Except for these two approximations, the parameter estimation and

decoding algorithms developed and described in this chapter are based on rigorous EM and

dynamic programming techniques. Applications of this model and the related algorithms to

the problem of automatic hidden vocal tract resonance tracking are presented, where the esti-

mates are for the discretized hidden resonance values determined by the dynamic programming

technique for decoding based on the EM-trained model parameters.

The dynamic speech model presented in Chapter 5 maintains the continuous nature in the

hidden dynamic values, and uses an explicit temporal function (i.e., defined nonrecursively) to

represent the hidden dynamics or “trajectories.” The approximation introduced to overcome the

original intractability problem is made by iteratively refining the boundaries associated with

the discrete phonological units while keeping the boundaries fixed when carrying out parameter

estimation. We show computer simulation results that demonstrate the desirable model behavior

in characterizing coarticulation and phonetic reduction. Applications to phonetic recognition

are also presented and analyzed.
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C H A P T E R 2

A General Modeling and

Computational Framework

The main aim of this chapter is to set up a general modeling and computational framework,

based on the modern mathematical tool called dynamic Bayesian networks (DBN) [20, 21],

and to establish general forms of the multistage dynamic speech model outlined in the preceding

chapter. The overall model presented within this framework is comprehensive in nature, covering

all major components in the speech generation chain—from the multitiered, articulation-based

phonological construct (top) to the environmentally distorted acoustic observation (bottom).

The model is formulated in specially structured DBN, in which the speech dynamics at separate

levels of the generative chain are represented by distinct (but dependent) discrete and continuous

state variables and by their characteristic temporal evolution.

Before we present the model and the associated computational framework, we first provide

a general background and literature review.

2.1 BACKGROUND AND LITERATURE REVIEW
In recent years, the research community in automatic speech recognition has started attacking

the difficult problem in the research field—conversational and spontaneous speech recogni-

tion (e.g., [12, 16, 22–26]). This new endeavor has been built upon the dramatic progress in

speech technology achieved over the past two decades or so [10, 27–31]. While the progress

has already created many state-of-the-art speech products, ranging from free-text dictation

to wireless access of information via voice, the conditions under which the technology works

well are highly limited. The next revolution in speech recognition technology should enable

machines to communicate with humans in a natural and unconstrained way. To achieve this

challenging goal, some of researchers (e.g., [3, 10, 11, 13, 20, 22, 32–39]) believe that the se-

vere limitations of the HMM should be overcome and novel approaches to representing key

aspects of the human speech process are highly desirable or necessary. These aspects, many of

which are of a dynamic nature, have been largely missing in the conventional hidden Markov

model (HMM) based framework. Towards this objective, one specific strategy would be to
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place appropriate dynamic structure on the speech model that allows for the kinds of variations

observed in conversational speech. Furthermore, enhanced computational methods, including

learning and inference techniques, will also be needed based on new or extended models beyond

the HMM.

It has been well known that many assumptions in the current HMM framework are

inconsistent with the underlying mechanisms, as well as with the surface acoustic observations,

of the dynamic speech process (e.g., [13, 14]). However, a number of approaches, notably

known as the stochastic segment model, segmental HMM, and trended trajectory models

[14,40,41], which are intended to specifically overcome some of these inconsistent assumptions,

have not delivered significant and consistent performance improvements, especially in large

speech recognition systems. Most of these approaches aimed mainly at overcoming the HMM’s

assumption of conditional IID (independent and identical distribution conditioned on the

HMM state sequence). Yet the inconsistency between the HMM assumptions and the properties

of the realistic dynamic speech process goes far beyond this “local” IID limitation. It appears

necessary not just to empirically fix one weak aspect of the HMM or another, but rather to

develop the new computational machinery that directly incorporates key dynamic properties of

the human speech process. One natural (but challenging) way of incorporating such knowledge

is to build comprehensive statistical generative models for the speech dynamics. Via the use of

Bayes theorem, the statistical generative models explicitly give the posterior probabilities for

different speech classes, enabling effective decision rules to be constructed in a speech recognizer.

In discriminative modeling approaches, on the other hand, where implicit computation of the

posterior probabilities for speech classes is carried out, it is generally much more difficult to

systematically incorporate knowledge of the speech dynamics.

Along the direction of generative modeling, many researchers have, over recent years, been

proposing and pursuing research that extensively explores the dynamic properties of speech in

various forms and at various levels of the human speech communication chain (e.g., [24,32–34,

42–49]). Some approaches have advocated the use of the multitiered feature-based phonological

units, which control human speech production and are typical of human lexical representation

(e.g., [11, 50–52]). Other approaches have emphasized the functional significance of abstract,

“task” dynamics in speech production and recognition (e.g., [53, 54]). Yet other approaches

have focused on the dynamic aspects in the speech process, where the dynamic object being

modeled is in the space of surface speech acoustics, rather than in the space of the intermediate,

production-affiliated variables that are internal to the direct acoustic observation (e.g., [14, 26,

55–57]).

Although dynamic modeling has been a central focus of much recent work in speech

recognition, the dynamic object being modeled, either in the space of “task” variables or of

acoustic variables, does not, and potentially may not be able to, directly take into account

the many important properties in realistic articulatory dynamics. Some earlier proposals and
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empirical methods for modeling pseudo-articulatory dynamics or abstract hidden dynamics

for the purpose of speech recognition can be found in [42, 44–46, 58, 59]. In these studies,

the dynamics of a set of pseudo-articulators are realized either by filtering from sequentially

arranged, phoneme-specific target positions or by applying trajectory-smoothness constraints.

Due to the simplistic nature in the use of the pseudo-articulators, one important property

of human speech production, compensatory articulation, could not be taken into account,

because it would require modeling correlations among target positions of a set of articu-

lators. This has reduced the power of such models for potentially successful use in speech

recognition.

To incorporate essential properties in human articulatory dynamics—including compen-

satory articulation, target-directed behavior, and flexibly constrained dynamics due to biome-

chanical properties of different articulatory organs—in a statistical generative model of speech, it

appears necessary to use essential properties of realistic multidimensional articulators. Previous

attempts using the pseudo-articulators did not incorporate most of such essential properties. Be-

cause much of the acoustic variation observed in speech that makes speech recognition difficult

can be attributed to articulatory phenomena, and because articulation is one key component in

the closed-loop human speech communication chain, it is highly desirable to develop an explicit

articulation-motivated dynamic model and to incorporate it into a comprehensive generative

model of the dynamic speech process.

The comprehensive generative model of speech and the associated computational frame-

work discussed in this chapter consists of a number of key components that are centered on

articulatory dynamics. A general overview of this multicomponent model is provided next, fol-

lowed by details of the individual model components including their mathematical descriptions

and their DBN representations.

2.2 MODEL DESIGN PHILOSOPHY AND OVERVIEW
Spontaneous speech (e.g., natural voice mails and lectures) and speech of verbal conversations

among two or more speakers (e.g., over the telephone or in meetings) are pervasive forms of

human communication. If a computer system can be constructed to automatically decode the

linguistic messages contained in spontaneous and conversational speech, one will have vast

opportunities for the applications of speech technology.

What characterizes spontaneous and conversational speech is its casual style nature. The

casual style of speaking produces two key consequences that make the acoustics of spontaneous

and conversational speech significantly differ from that of the “read-style” speech: phono-

logical reorganization and phonetic reduction. First, in casual speech, which is called “hypo-

articulated” speech in [60], phonological reorganization occurs where the relative timing or

phasing relationship across different articulatory feature/gesture dimensions in the “orches-

trated” feature strands are modified. One obvious manifestation of this modification is that the



P1: IML/FFX P2: IML

MOBK024-02 MOBK024-LiDeng.cls May 30, 2006 12:56

12 DYNAMIC SPEECH MODELS

more casual or relaxed the speech style is, the greater the overlapping across the feature/gesture

dimensions becomes. Second, phonetic reduction occurs where articulatory targets as phonetic

correlates to the phonological units may shift towards a more neutral position due to the use of

reduced articulatory efforts. Phonetic reduction also manifests itself by pulling the realized ar-

ticulatory trajectories further away from reaching their respective targets due to physical inertia

constraints in the articulatory movements. This occurs within generally shorter time duration

in casual-style speech than in the read-style speech.

It seems difficult for the HMM systems to provide effective mechanisms to embrace

the huge, new acoustic variability in casual, spontaneous, and conversational speech arising

either from phonological organization or from phonetic reduction. Importantly, the additional

variability due to phonetic reduction is scaled continuously, resulting in phonetic confusions

in a predictable manner. (See Chapter 5 for some detailed computation simulation results

pertaining to such prediction.) Due to this continuous variability scaling, very large amounts

of (labeled) speech data would be needed. Even so, they can only partly capture the variability

when no structured knowledge about phonetic reduction and about its effects on speech dynamic

patterns is incorporated into the speech model underlying spontaneous and conversational

speech-recognition systems.

The general design philosophy of the mathematical model for the speech dynamics de-

scribed in this chapter is based on the desire to integrate the structured knowledge of both

phonological reorganization and phonetic reduction. To fully describe this model, we break up

the model into several interrelated components, where the output, expressed as the probability

distribution, of one component serves as the input to the next component in a “generative” spirit.

That is, we characterize each model component as a joint probability distribution of both input

and output sequences, where both the sequences may be hidden. The top-level component is the

phonological model that specifies the discrete (symbolic) pronunciation units of the intended

linguistic message in terms of multitiered, overlapping articulatory features. The first intermedi-

ate component consists of articulatory control and target, which provides the interface between

the discrete phonological units to the continuous phonetic variable and which represents the

“ideal” articulation and its inherent variability if there were no physical constraints in articu-

lation. The second intermediate component consists of articulatory dynamics, which explicitly

represents the physical constraints in articulation and gives the output of “actual” trajectories in

the articulatory variables. The bottom component would be the process of speech acoustics be-

ing generated from the vocal tract whose shape and excitation are determined by the articulatory

variables as the output of the articulatory dynamic model. However, considering that such a

clean signal is often subject to one form of acoustic distortion or another before being processed

by a speech recognizer, and further that the articulatory behavior and the subsequent speech

dynamics in acoustics may be subject to change when the acoustic distortion becomes severe,
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we complete the comprehensive model by adding the final component of acoustic distortion

with feedback to the higher level component describing articulatory dynamics.

2.3 MODEL COMPONENTS AND THE COMPUTATIONAL
FRAMEWORK

In a concrete form, the generative model for speech dynamics, whose design philosophy and

motivations have been outlined in the preceding section, consists of the hierarchically structured

components of

1. multitiered phonological construct (nonobservable or hidden; discrete valued);

2. articulatory targets (hidden; continuous-valued);

3. articulatory dynamics (hidden; continuous);

4. acoustic pattern formation from articulatory variables (hidden; continuous); and

5. distorted acoustic pattern formation (observed; continuous).

In this section, we will describe each of these components and their design in some detail.

In particular, as a general computational framework, we provide the DBN representation for

each of the above model components and for their combination.

2.3.1 Overlapping Model for Multitiered Phonological Construct

Phonology is concerned with sound patterns of speech and with the nature of the discrete

or symbolic units that shapes such patterns. Traditional theories of phonology differ in the

choice and interpretation of the phonological units. Early distinctive feature-based theory [61]

and subsequent autosegmental, feature-geometry theory [62] assumed a rather direct link be-

tween phonological features and their phonetic correlates in the articulatory or acoustic domain.

Phonological rules for modifying features represented changes not only in the linguistic struc-

ture of the speech utterance, but also in the phonetic realization of this structure. This weakness

has been recognized by more recent theories, e.g., articulatory phonology [63], which empha-

size the importance of accounting for phonetic levels of variation as distinct from those at the

phonological levels.

In the phonological model component described here, it is assumed that the linguis-

tic function of phonological units is to maintain linguistic contrasts and is separate from

phonetic implementation. It is further assumed that the phonological unit sequence can be

described mathematically by a discrete-time, discrete-state, multidimensional homogeneous

Markov chain. How to construct sequences of symbolic phonological units for any arbitrary

speech utterance and how to build them into an appropriate Markov state (i.e., phonological

state) structure are two key issues in the model specification. Some earlier work on effective
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methods of constructing such overlapping units, either by rules or by automatic learning, can

be found in [50, 59, 64–66]. In limited experiments, these methods have proved effective for

coarticulation modeling in the HMM-like speech recognition framework (e.g., [50, 65]).

Motivated by articulatory phonology [63], the asynchronous, feature-based phonological

model discussed here uses multitiered articulatory features/gestures that are temporally over-

lapping with each other in separate tiers, with learnable relative-phasing relationships. This

contrasts with most existing speech-recognition systems where the representation is based on

phone-sized units with one single tier for the phonological sequence acting as “beads-on-a-

string.” This contrast has been discussed in some detail in [11] with useful insight.

Mathematically, the L-tiered, overlapping model can be described by the “factorial”

Markov chain [51, 67], where the state of the chain is represented by a collection of discrete-

component state variables for each time frame t:

st = s
(1)
t , . . . , s

(l)
t , . . . , s

(L)
t .

Each of the component states can take K (l) values. In implementing this model for American

English, we have L = 5, and the five tiers are Lips, Tongue Blade, Tongue Body, Velum, and

Larynx, respectively. For “Lips” tier, we have K (1) = 6 for six possible linguistically distinct Lips

configurations, i.e., those for /b/, /r/, /sh/, /u/, /w/, and /o/. Note that at this phonological level,

the difference among these Lips configurations is purely symbolic. The numerical difference is

manifested in different articulatory target values at lower phonetic level, resulting ultimately in

different acoustic realizations. For the remaining tiers, we have K (2) = 6, K (3) = 17, K (4) = 2,

and K (5) = 2.

The state–space of this factorial Markov chain consists of all KL = K (1) × K (2) × K (3) ×
K (4) × K (5) possible combinations of the s

(l)
t state variables. If no constraints are imposed on

the state transition structure, this would be equivalent to the conventional one-tiered Markov

chain with a total of KL states and a KL × KL state transition matrix. This would be an unin-

teresting case since the model complexity is exponentially (or factorially) growing in L. It would

also be unlikely to find any useful phonological structure in this huge Markov chain. Further,

since all the phonetic parameters in the lower level components of the overall model (to be

discussed shortly) are conditioned on the phonological state, the total number of model param-

eters would be unreasonably large, presenting a well-known sparseness difficulty for parameter

learning.

Fortunately, rich sources of phonological and phonetic knowledge are available to

constrain the state transitions of the above factorial Markov chain. One particularly useful set

of constraints come directly from the phonological theories that motivated the construction

of this model. Both autosegmental phonology [62] and articulatory phonology [63] treat the

different tiers in the phonological features as being largely independent of each other in their
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FIGURE 2.1: A dynamic Bayesian network (DBN) for a constrained factorial Markov chain as a prob-

abilistic model for an L-tiered overlapping phonological model based on articulatory features/gestures.

The constrained transition structure in the factorial Markov chain makes different tiers in the phono-

logical features independent of each other in their evolving dynamics. This gives rise to parallel streams,

s (l), l = 1, 2, . . . , L, of the phonological features in their associated articulatory dimensions

evolving dynamics. This thus allows the a priori decoupling among the L tiers:

P (st|st−1) =
L∏

l=1

P (s
(l)
t |s (l)

t−1).

The transition structure of this constrained (uncoupling) factorial Markov chain can be

parameterized by L distinct K (l) × K (l) matrices. This is significantly simpler than the original

KL × KL matrix as in the unconstrained case.

Fig. 2.1 shows a dynamic Bayesian network (DBN) for a factorial Markov chain with

the constrained transition structure. A Bayesian network is a graphical model that describes

dependencies and conditional independencies in the probabilistic distributions defined over a

set of random variables. The most interesting class of Bayesian networks, as relevant to speech

modeling, is the DBN specifically aimed at modeling time series data or symbols such as speech

acoustics, phonological units, or a combination of them. For the speech data or symbols, there

are causal dependencies between random variables in time and they are naturally suited for the

DBN representation.

In the DBN representation of Fig. 2.1 for the L-tiered phonological model, each node

represents a component phonological feature in each tier as a discrete random variable at a

particular discrete time. The fact that there is no dependency (lacking arrows) between the
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nodes in different tiers indicates that each tier is autonomous in the evolving dynamics. We

call this model the overlapping model, reflecting the independent dynamics of the features

at different tiers. The dynamics cause many possible combinations in which different feature

values associated with their respective tiers occur simultaneously at a fixed time point. These are

determined by how the component features/gestures overlap with each other as a consequence

of their independent temporal dynamics. Contrary to this view, in the conventional phone-

based phonological model, there is only one single tier of phones as the “bundled” component

features, and hence there is no concept of overlapping component features.

In a DBN, the dependency relationships among the random variables can be implemented

by specifying the associated conditional probability for each node given all its parents. Because

of the decoupled structure across the tiers as shown in Fig. 2.1, the horizontal (temporal)

dependency is the only dependency that exists for the component phonological (discrete) states.

This dependency can be specified by the Markov chain transition probability for each separate

tier, l , defined by

P
(
s (l)

t = j |s (l)
t−1 = i

) = a
(l)
i j . (2.1)

2.3.2 Segmental Target Model

After a phonological model is constructed, the process for converting abstract phonological units

into their phonetic realization needs to be specified. The key issue here is whether the invariance

in the speech process is more naturally expressed in the articulatory or the acoustic/auditory

domain. A number of theories assumed a direct link between abstract phonological units and

physical measurements. For example, the “quantal theory” [68] proposed that phonological

features possessed invariant acoustic (or auditory) correlates that could be measured directly

from the speech signal. The “motor theory” [69] instead proposed that articulatory properties

are directly associated with phonological symbols. No conclusive evidence supporting either

hypothesis has been found without controversy [70].

In the generative model of speech dynamics discussed here, one commonly held view

in phonetics literature is adopted. That is, discrete phonological units are associated with a

temporal segmental sequence of phonetic targets or goals [71–75]. In this view, the function

of the articulatory motor control system is to achieve such targets or goals by manipulating the

articulatory organs according to some control principles subject to the articulatory inertia and

possibly minimal-energy constraints [60].

Compensatory articulation has been widely documented in the phonetics literature where

trade-offs between different articulators and nonuniqueness in the articulatory–acoustic map-

ping allow for the possibility that many different articulatory target configurations may be

able to “equivalently” realize the same underlying goal. Speakers typically choose a range
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of possible targets depending on external environments and their interactions with listen-

ers [60, 70, 72, 76, 77]. To account for compensatory articulation, a complex phonetic control

strategy need to be adopted. The key modeling assumptions adopted here regarding such a strat-

egy are as follows. First, each phonological unit is correlated to a number of phonetic parameters.

These measurable parameters may be acoustic, articulatory, or auditory in nature, and they can

be computed from some physical models for the articulatory and auditory systems. Second, the

region determined by the phonetic correlates for each phonological unit can be mapped onto

an articulatory parameter space. Hence, the target distribution in the articulatory space can

be determined simply by stating what the phonetic correlates (formants, articulatory positions,

auditory responses, etc.) are for each of the phonological units (many examples are provided

in [2]), and by running simulations in detailed articulatory and auditory models. This particular

proposal for using the joint articulatory, acoustic, and auditory properties to specify the artic-

ulatory control in the domain of articulatory parameters was originally proposed in [59, 78].

Compared with the traditional modeling strategy for controlling articulatory dynamics [79]

where the sole articulatory goal is involved, this new strategy appears more appealing not only

because of the incorporation of the perceptual and acoustic elements in the specification of the

speech production goal, but also because of its natural introduction of statistical distributions

at the relatively high level of speech production.

A convenient mathematical representation for the distribution of the articulatory target

vector t follows a multivariate Gaussian distribution, denoted by

t ∼ N (t; m(s), �(s)), (2.2)

where m(s) is the mean vector associated with the composite phonological state s, and

the covariance matrix �(s) is nondiagonal. This allows for the correlation among the ar-

ticulatory vector components. Because such a correlation is represented for the articula-

tory target (as a random vector), compensatory articulation is naturally incorporated in the

model.

Since the target distribution, as specified in Eq. (2.2), is conditioned on a specific phono-

logical unit (e.g., a bundle of overlapped features represented by the composite state s consisting

of component feature values in the factorial Markov chain of Fig. 2.1), and since the target does

not switch until the phonological unit changes, the statistics for the temporal sequence of the

target process follows that of a segmental HMM [40].

For the single-tiered (L = 1) phonological model (e.g., phone-based model), the

segmental HMM for the target process will be the same as that described in [40], except

the output is no longer the acoustic parameters. The dependency structure in this segmental

HMM as the combined one-tiered phonological model and articulatory target model can be

illustrated in the DBN of Fig. 2.2. We now elaborate on the dependencies in Fig. 2.2. The
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FIGURE 2.2: DBN for a segmental HMM as a probabilistic model for the combined one-tiered phono-

logical model and articulatory target model. The output of the segmental HMM is the target vector, t,

constrained to be constant until the discrete phonological state, s , changes its value

output of this segmental HMM is the random articulatory target vector t(k) that is constrained

to be constant until the phonological state switches its value. This segmental constraint for

the dynamics of the random target vector t(k) represents the adopted articulatory control

strategy that the goal of the motor system is to try to maintain the articulatory target’s position

(for a fixed corresponding phonological state) by exerting appropriate muscle forces. That is,

although random, t(k) remains fixed until the phonological state s k switches. The switching of

target t(k) is synchronous with that of the phonological state, and only at the time of switching,

is t(k) allowed to take a new value according to its probability density function. This segmental

constraint can be described mathematically by the following conditional probability density

function:

p[t(k)|s k, s k−1, t(k − 1)] =
{

δ[t(k) − t(k − 1)] if s k = s k−1,

N (t(k); m(s k), �(s k)) otherwise.

This adds the new dependencies of random vector of t(k) on s k−1 and t(k − 1), in addition to

the obvious direct dependency on s k , as shown in Fig. 2.2.

Generalizing from the one-tiered phonological model to the multitiered one as discussed

earlier, the dependency structure in the “segmental factorial HMM” as the combined multitiered

phonological model and articulatory target model has the DBN representation in Fig. 2.3. The

key conditional probability density function (PDF) is similar to the above segmental HMM

except that the conditioning phonological states are the composite states (sk and sk−1) consisting

of a collection of discrete component state variables:

p[t(k)|sk, sk−1, t(k − 1)] =
{

δ[t(k) − t(k − 1)] if sk = sk−1,

N (t(k); m(sk), �(sk)) otherwise.

Note that in Figs. 2.2 and 2.3 the target vector t(k) is defined in the same space as that of

the physical articulator vector (including jaw positions, which do not have direct phonological
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FIGURE 2.3: DBN for a segmental factorial HMM as a combined multitiered phonological model and

articulatory target model

connections). And compensatory articulation can be represented directly by the articulatory

target distributions with a nondiagonal covariance matrix for component correlation. This

correlation shows how the various articulators can be jointly manipulated in a coordinated

manner to produce the same phonetically implemented phonological unit.

An alternative model for the segmental target model, as proposed in [33] and called the

“target dynamic” model, uses vocal tract constrictions (degrees and locations) instead of artic-

ulatory parameters as the target vector, and uses a geometrically defined nonlinear relationship

(e.g., [80]) to map one vector of vocal tract constrictions into a region (with a probability dis-

tribution) of the physical articulatory variables. In this case, compensatory articulation can also

be represented by the distributional region of the articulatory vectors induced indirectly by any

fixed vocal tract constriction vector.

The segmental factorial HMM presented here is a generalization of the segmental HMM

proposed originally in [40]. It is also a generalization of the factorial HMM that has been

developed from the machine learning community [67] and been applied to speech recognition

[51]. These generalizations are necessary because the output of our component model (not the

full model) is physically the time-varying articulatory targets as random sequences, rather than

the random acoustic sequences as in the segmental HMM or the factorial HMM.
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2.3.3 Articulatory Dynamic Model

Due to the difficulty in knowing how the conversion of higher-level motor control into artic-

ulator movement takes place, a simplifying assumption is made for the new model component

discussed in this subsection. That is, we assume that at the functional level the combined (non-

linear) control system and articulatory mechanism behave as a linear dynamic system. This

combined system attempts to track the control input, equivalently represented by the articu-

latory target, in the physical articulatory parameter space. Articulatory dynamics can then be

approximated as the response of a linear filter driven by a random target sequence as represented

by a segmental factorial HMM just described. The statistics of the random target sequence ap-

proximate those of the muscle forces that physically drives motions of the articulators. (The

output of this hidden articulatory dynamic model then produces a time-varying vocal tract

shape that modulates the acoustic properties of the speech signal.)

The above simplifying assumption then reduces the generally intractable nonlinear state

equation,

z(k + 1) = gs [z(k), ts , w(k)],

into the following mathematically tractable, linear, first-order autoregressive (AR) model:

z(k + 1) = As z(k) + Bs ts + w(k), (2.3)

where z is the n-dimensional real-valued articulatory-parameter vector, w is the IID and Gaus-

sian noise, ts is the HMM-state-dependent target vector expressed in the same articulatory

domain as z(k), As is the HMM-state-dependent system matrix, and Bs is a matrix that mod-

ifies the target vector. The dependence of ts and �s parameters of the above dynamic system

on the phonological state is justified by the fact that the functional behavior of an articulator

depends both on the particular goal it is trying to implement, and on the other articulators with

which it is cooperating in order to produce compensatory articulation.

In order for the modeled articulatory dynamics above to exhibit realistic behaviors, e.g.,

movement along the target-directed path within each segment and not oscillating within the

segment, matrices As and Bs can be constrained appropriately. One form of the constraint gives

rise to the following articulatory dynamic model:

z(k + 1) = �s z(k) + (I − �s )ts + w(k), (2.4)

where I is the identity matrix. Other forms of the constraint will be discussed in Chapters 4

and 5 of the book for two specific implementions of the general model.

It is easy to see that the constrained linear AR model of Eq. (2.4) has the desirable target-

directed property. That is, the articulatory vector z(k) asymptotically approaches the mean of

the target random vector t for artificially lengthened speech utterances. For natural speech, and
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especially for conversational speech with a casual style, the generally short duration associated

with each phonological state forces the articulatory dynamics to move away from the target

of the current state (and towards the target of the following phonological state) long before it

reaches the current target. This gives rise to phonetic reduction, and is one key source of speech

variability that is difficult to be directly captured by a conventional HMM.

Including the linear dynamic system model of Eq. (2.4), the combined phonological,

target, and articulatory dynamic model now has the DBN representation of Fig. 2.4. The new

dependency for the continuous articulatory state is specified, on the basis of Eq. (2.4), by the

following conditional PDF:

pz[z(k + 1)|z(k), t(k), sk] = pw[z(k + 1) − �sk
z(k) − (I − �sk

)t(k)]. (2.5)

This combined model is a switching, target-directed AR model driven by a segmental factorial

HMM.
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FIGURE 2.4: DBN for a switching, target-directed AR model driven by a segmental factorial HMM.

This is a combined model for multitiered phonology, target process, and articulatory dynamics
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2.3.4 Functional Nonlinear Model for Articulatory-to-Acoustic Mapping

The next component in the overall model of speech dynamics moves the speech generative

process from articulation down to distortion-free speech acoustics. While a truly consistent

framework to accomplish this based on explicit knowledge of speech production should include

detailed mechanisms for articulatory-to-acoustic generation, this becomes impractical due to

difficulties in modeling learning and excessive computational requirements. Again, we make

the simplifying assumptions that the articulatory and acoustic states of the vocal tract can be

adequately described by low-order vectors of variables, where the articulatory state variables

represent respectively the relative positions of the major articulators, and the acoustic state

variables represent corresponding time-averaged spectral-like parameters computed from the

acoustic signal. If an appropriate time scale is chosen, the relationship between the articulatory

and acoustic representations can be modeled by a static memoryless transformation, converting

a vector of articulatory parameters into a vector of acoustic ones. This assumption appears

reasonable for a vocal tract with about 10-ms reverberation time.

This static memoryless transformation can be mathematically represented by the follow-

ing “observation” equation in the state–space model:

o(k) = h[z(k)] + v(k), (2.6)

where o is the m-dimensional real-valued observation vector, v is the IID observation noise

vector uncorrelated with the state noise w, and h[·] is the static memoryless transformation

from the articulatory vector to its corresponding acoustic observation vector.

Including this static mapping model, the combined phonological, target, articulatory

dynamic, and the acoustic model now has the DBN representation shown in Fig. 2.5. The new

dependency for the acoustic random variables is specified, on the basis of “observation” equation

in Eq. (2.6), by the following conditional PDF:

po[o(k) | z(k)] = pv[o(k) − h(z(k))]. (2.7)

There are many ways of choosing the static nonlinear function for h[z] in Eq. (2.6), such as

using a multilayer perceptron (MLP) neural network. Typically, the analytical forms of nonlinear

functions make the associated nonlinear dynamic systems difficult to analyze and make the

estimation problems difficult to solve. Simplification is frequently used to gain computational

advantages while sacrificing accuracy for approximating the nonlinear functions. One most

commonly used technique for the approximation is truncated (vector) Taylor series expansion.

If all the Taylor series terms of order two and higher are truncated, then we have the linear

Taylor series approximation that is characterized by the Jacobian matrix J and by the point of

Taylor series expansion z0:

h(z) ≈ h(z0) + J(z0)(z − z0). (2.8)
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FIGURE 2.5: DBN for a target-directed, switching dynamic system (state–space) model driven by a seg-

mental factorial HMM. This is a combined model for multitiered phonology, target process, articulatory

dynamics, and articulatory-to-acoustic mapping

Each element of the Jacobian matrix J is partial derivative of each vector component of the

nonlinear output with respect to each of the input vector components. That is,

J(z0) = ∂h

∂z0

=

⎡⎢⎢⎢⎢⎢⎣
∂h1(z0)

∂z1

∂h1(z0)
∂z2

· · · ∂h1(z0)
∂zn

∂h2(z0)
∂z1

∂h2(z0)
∂z2

· · · ∂h2(z0)
∂zn

...
...

∂hm (z0)
∂z1

∂hm (z0)
∂z2

· · · ∂hm (z0)
∂zn

⎤⎥⎥⎥⎥⎥⎦ . (2.9)
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The radial basis function (RBF) is an attractive alternative to the MLP as a universal

function approximator [81] for implementing the articulatory-to-acoustic mapping. Use of the

RBF for a nonlinear function in the general nonlinear dynamic system model can be found

in [82], and will not be elaborated here.

2.3.5 Weakly Nonlinear Model for Acoustic Distortion

In practice, the acoustic vector of speech, o(k), generated from the articulatory vector z(k) is

subject to acoustic environmental distortion before being “observed” and being processed by a

speech recognizer for linguistic decoding. In many cases of interest, acoustic distortion can be

accurately characterized by joint additive noise and channel (convolutional) distortion in the

signal-sample domain. In this domain, the distortion is linear and can be described by

y(t) = o (t) ∗ �(t) + n(t), (2.10)

where y(t) is the distorted speech signal sample, modeled as convolution between the clean

speech signal sample o (t) and distortion channel’s impulse response �(t) plus additive noise

sample n(t).

However, in the log-spectrum domain or in the cepstrum domain that is commonly used

as the input for speech recognizers, Eq. (2.10) has its equivalent form of (see a derivation in [83])

y(k) = o(k) + h̄ + C log
[
I + exp[C−1(n(k) − o(k) − h̄)]

]
. (2.11)

In Eq. (2.11), y(k) is the cepstral vector at frame k, when C is taken as cosine transform

matrix. (When C is taken as the identity matrix, y(k) becomes a log-spectral vector.) y(k) now

becomes weakly nonlinearly related to the clean speech cepstral vector o(k), cepstral vector of

additive noise n(k), and cepstral vector of the impulse response of the distortion channel h̄. Note

that according to Eq. (2.11), the relationship between clean and noisy speech cepstral vectors

becomes linear (or affine) when the signal-to-noise ratio is either very large or very small.

After incorporating the above acoustic distortion model, and assuming that the statistics of

the additive noise changes slowly over time as governed by a discrete-state Markov chain, Fig. 2.6

shows the DBN for the comprehensive generative model of speech from the phonological

model to distorted speech acoustics. Intermediate models include the target model, articulatory

dynamic model, and clean-speech acoustic model. For clarity, only a one-tiered, rather than

multitiered, phonological model is illustrated. [The dependency of the parameters (�) of the

articulatory dynamic model on the phonological state is also explicitly added.] Note that in Fig.

2.6, the temporal dependency in the discrete noise states Nk gives rise to nonstationarity in the

additive noise random vectors nk . The cepstral vector h̄ for the distortion channel is assumed

not to change over the time span of the observed distorted speech utterance y1, y2, . . ., yK .
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FIGURE 2.6: DBN for a comprehensive generative model of speech from the phonological model to

distorted speech acoustics. Intermediate models include the target model, articulatory dynamic model, and

acoustic model. For clarity, only a one-tiered, rather than multitiered, phonological model is illustrated.

Explicitly added is the dependency of the parameters (�(s )) of the articulatory dynamic model on the

phonological state

In Fig. 2.6, the dependency relationship for the new variables of distorted acoustic ob-

servation y(k) is specified, on the basis of observation equation 2.11 where o(k) is specified in

Eq. (5), by the following conditional PDF:

p(y(k) | o(k), n(k), h̄) = pε(y(k) − o(k) − h̄ − C log[I + exp(C−1(n(k) − o(k) − h̄))]),

(2.12)
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where we assume that any inaccuracy in the parametric model of Eq. (2.11) can be repre-

sented by residual random noise ε[k]. This noise is assumed to be IID and zero-mean Gaus-

sian: N [ε(k); 0, �ε]. This then specifies the conditional PDF of Eq. (2.12) to be Gaussian of

N [y(k); m, �ε], where the mean vector m is the right-hand side of Eq. (2.11).

It is well known that the behavior of articulation and subsequent acoustics is subject

to modification under severe environmental distortions. This modification, sometimes called

“Lombard effect,” can take a number of possible forms, including articulatory target overshoot,

articulatory target shift, hyper-articulation or increased articulatory efforts by modifying the

temporal course of the articulatory dynamics. The Lombard effect has been very difficult to

represent in the conventional HMM framework since there is no articulatory representation or

any similar dynamic property therein. Given the generative model of speech described here that

explicitly contains articulatory variables, the Lombard effect can be naturally incorporated. Fig.

2.7 shows the DBN that incorporates Lombard effect in the comprehensive generative model of

speech. It is represented by the “feedback” dependency from the noise and h-distortion nodes to

the articulator nodes in the DBN. The nature of the feedback may be represented in the form of

“hyper-articulation,” where the “time constant” in the articulatory dynamic equation is reduced

to allow for more rapid attainment of the given articulatory target (which is sampled from the

target distribution). The feedback for Lombard effect may alternatively take the form of “target

overshoot,” where the articulatory dynamics exhibit oscillation around the articulatory target.

Finally, the feedback may take the form of “target elevation,” where the mean vector of the target

distribution is shifted further away from the target value of the preceding phonological state

compared with the situation when no Lombard effect occurs. Any of these three articulatory

behavior changes may result in enhanced discriminability among speech units under severe

environmental distortions, at the expense of greater articulatory efforts.

2.3.6 Piecewise Linearized Approximation for Articulatory-to-Acoustic Mapping

The nonlinearity h[z(k)] of Eq. (2.6) is a source of difficulty in developing efficient and effective

modeling learning algorithms. While the use of neural networks such as MLP or RBF as

described in the preceding subsection makes it possible to design such algorithms, a more

convenient strategy is to simplify the model by piecewise linearizing the nonlinear mapping

function h[z(k)] of Eq. (2.6). An extensive study based on nonlinear learning of the MLP-

based model can be found in [24]), where a series of approximations are required to complete

the algorithm development. Using piecewise linearization in the model would eliminate these

approximations.

After the model simplification, it is hoped that the piecewise linear methods will lead

to an adequate approximation to the nonlinear relationship between the hidden and observa-

tional spaces in the formulation of the dynamic speech model while gaining computational
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FIGURE 2.7: DBN that incorporates the Lombard effect in the comprehensive generative model of

speech. The behavior of articulation is subject to modification (e.g., articulatory target overshoot or hyper-

articulation or increased articulatory efforts by shortening time constant) under severe environmental

distortions. This is represented by the “feedback” dependency from the noise nodes to the articulator

nodes in the DBN

effectiveness and efficiency in model learning. The most straightforward method is to use a

set of linear regression functions to replace the general nonlinear mapping in Eq. (2.6), while

keeping intact the target-directed, linear state dynamics of Eq. (2.4). That is, rather than using

one single set of linear-model parameters to characterize each phonological state, multiple sets
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of linear-model parameters are used. This gives rise to the mixture of linear dynamic model as

extensively studied in [84, 85].

This piecewise linearized dynamic speech model can be written succinctly in the following

state–space form (for a fixed phonological state s not shown for notational simplicity):

z(k + 1) = �mz(k) + (I − �m)tm + wm(k), (2.13)

o(k) = Ḣm ż(k) + vm(k), m = 1, 2, . . . , M, (2.14)

where Ḣm = [a | Hm] is the expanded matrix by left appending vector a to matrix Hm , and

ż(k) = [1 | z(k)′]′ is the expanded vector in a similar manner. In the above equations, M is the

total number of mixture components in the model for each phonological state (e.g., phone). The

state noise and measurement noise, wm(k) and vm(k), are respectively modeled by uncorrelated,

IID, zero-mean, Gaussian processes with covariance matrices Qm and Rm . o represents the

sequence of acoustic vectors, o(1), o(2), . . . , o(k). . . , and the z represents the sequence of

hidden articulatory vectors, z(1), z(2), . . . , z(k), . . . .

The full set of model parameters for each phonological state (not indexed for clarity) are

� = (�m, tm, Qm, Rm , Hm, for m = 1, 2, . . . , M).

It is important to impose the following mixture-path constraint on the above dynamic

system model: for each sequence of acoustic observations associated with a phonological state,

the sequence is forced to be produced from a fixed mixture component, m, in the model. This

means that the articulatory target for each phonological state is not permitted to switch from

one mixture component to another within the duration of the same segment. The constraint

is motivated by the physical nature of the dynamic speech model—the target that is correlated

with its phonetic identity is defined at the segment level, not at the frame level. Use of the

type of segment-level mixture is intended to represent the various sources of speech variability

including speakers’ vocal tract shape differences and speaking-habit differences, etc.

In Fig. 2.8 is shown the DBN representation for the piecewise linearized dynamic speech

model as a simplified generative model of speech where the nonlinear mapping from hidden

dynamic variables to acoustic observational variables is approximated by a piecewise linear rela-

tionship. The new, discrete random variable m is introduced to provide the “region” or mixture-

component index m to the piecewise linear mapping. Both the input and output variables that

are in a nonlinear relationship have now simultaneous dependency on m. The conditional PDFs

involving this new node are

p[o(k) | z(k), m] = N [o(k); Ḣm ż(k), Rm], (2.15)

and

p[z(k + 1) | z(k), t(k), s, m] = N [z(k + 1); �s ,mz(k) − (I − �s ,m)t(k), Qm], (2.16)

where k denotes the time frame and s denotes the phonological state.
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FIGURE 2.8: DBN representation for a mixture linear model as a simplified generative model of

speech where the nonlinear mapping from hidden dynamic variables to acoustic observational variables

is approximated by a piecewise linear relationship. The new, discrete random variable m is introduced to

provide “region” index to the piecewise linear mapping. Both the input and output variables that are in a

nonlinear relationship have now simultaneous dependency on m

2.4 SUMMARY
After providing general motivations and model design philosophy, technical detail of a multi-

stage statistical generative model of speech dynamics and its associated computational frame-

work based on DBN is presented in this chapter. We now summarize this model description.

Equations (2.4) and (2.6) form a special version of the switching state–space model appropriate

for describing the multilevel speech dynamics. The top-level dynamics occur at the discrete-state

phonology, represented by the state transitions of s with a relatively long time scale (roughly

about the duration of phones). The next level is the target (t) dynamics; it has the same time

scale and provides systematic randomness at the segmental level. At the level of articulatory

dynamics, the time scale is significantly shortened. This level represents the continuous-state

dynamics driven by the stochastic target process as the input. The state equation (2.4) explicitly

describes the dynamics in z, with index of s (which takes discrete values) implicitly representing

the phonological process of transitions among a set of discrete states, which we call “switching.”

At the lowest level is acoustic dynamics, where there is no phonological switching process.

Since the observation equation (2.6) is static, this simplified acoustic generation model assumes

that acoustic dynamics are a direct consequence of articulatory dynamics only. Improvement

of this model component that overcomes this simplification is unlikely until better modeling
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techniques are developed for representing multiple time scales in the dynamic aspects of speech

acoustics.

Due to the generality of the DBN-based computational framework that we adopt, it

becomes convenient to extend the above generative model of speech dynamics one step further

from undistorted speech acoustics to distorted (or noisy) ones. We included this extension in

this chapter. Another extension that includes the changed articulatory behavior due to acoustic

distortion of speech is presented also within the same DBN-based computational framework.

Finally, we discussed piecewise linear approximation in the nonlinear articulatory-to-acoustic

mapping component of the overall model.
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C H A P T E R 3

Modeling: From Acoustic Dynamics

to Hidden Dynamics

In Chapter 2, we described a rather general modeling scheme and the DBN-based computa-

tional framework for speech dynamics. Detailed implementation of the speech dynamic models

would vary depending on the trade-offs in modeling precision and mathematical/algorithm

tractability. In fact, various types of statistical models of speech beyond the HMM have already

been in the literature for sometime, although most of them have not been viewed from a unified

perspective as having varying degrees of approximation to the multistage speech chain. The

purpose of this chapter is to take this unified view in classifying and reviewing a wide variety of

current statistical speech models.

3.1 BACKGROUND AND INTRODUCTION
As we discussed earlier in this book, as a linguistic and physical abstraction, human speech pro-

duction can be functionally represented at four distinctive but correlated levels of dynamics. The

top level of the dynamics is symbolic or phonological. The multitiered linear sequence demon-

strates the discrete, time-varying nature of speech dynamics at the mental motor-planning

level of speech production. The next level of the dynamics is continuous-valued and asso-

ciated with the functional, “task” variables in speech production. At this level, the goal or

“task” of speech generation is defined, which may be either the acoustic goal such as vocal

tract resonances or formants, or the articulatory goal such as vocal-tract constrictions, or their

combination. It is at this level that each symbolic phonological unit is mapped to a unique set

of the phonetic parameters. These parameter is often called the correlate of the phonological

units. The third level of the dynamics occurs at the physiological articulators. Such articulatory

dynamics are a nonlinear transformation of the task dynamics. Finally, the last level of the

dynamics is the acoustic one, where speech “observations” are extracted from the speech signal.

They are often called acoustic observations or “feature” vectors in automatic speech recogni-

tion applications, and are called speech measurements in experimental phonetics and speech

science.
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The review of several different types of computational dynamic models for speech in

this chapter will be organized in view of the above functional levels of speech dynamics. We

will classify the models into two main categories. In the first category are the models focusing

on the lowest, acoustic level of dynamics, which is also the most peripheral level for human

or computer speech perception. This class of models is often called the stochastic segment

model as is known through an earlier review paper [14]. The second category consists of what

is called the hidden dynamic model where the task dynamic and articulatory dynamic levels are

functionally grouped into a functional single-level dynamics. In contrast to the acoustic-dynamic

model, which represents coarticulation at the surface, observational level, the hidden dynamic

model explores a deeper, unobserved (hence “hidden”) level of the speech dynamic structure

that regulates coarticulation and phonetic reduction.

3.2 STATISTICAL MODELS FOR ACOUSTIC SPEECH DYNAMICS
Hidden Markov model (HMM) is the simplest type of the acoustic dynamic model in this

category. Stochastic segment models are a broad class of statistical models that generalize from

the HMM and that intend to overcome some shortcomings of the HMM such as the conditional

independent assumption and its consequences. As discussed earlier in this book, this assumption

is grossly unrealistic and restricts the ability of the HMM as an accurate generative model. The

generalization of the HMM by acoustic dynamic models is in the following sense: In an HMM,

one frame of speech acoustics is generated by visiting each HMM state, while a variable-length

sequence of speech frames is generated by visiting each “state” of a dynamic model. That is,

a state in the acoustic dynamic or stochastic segment model is associated with a “segment” of

acoustic speech vectors having a random sequence length.

Similar to an HMM, a stochastic segment model can be viewed as a generative process

for observation sequences. It is intended to model the acoustic feature trajectories and tem-

poral correlations that have been inadequately represented by an HMM. This is accomplished

by introducing new parameters that characterize the trajectories and the temporal correla-

tions.

From the perspective of the multilevel dynamics in the human speech process, the acoustic

dynamic model can be viewed as a highly simplified model—collapsing all three lower phonetic

levels of speech dynamics into one single level. As a result, the acoustic dynamic models have

difficulties in capturing the structure of speech coarticulation and reduction. To achieve high

performance in speech recognition, they tend to use many parallel (as opposed to hierarchi-

cal structured) parameters to model variability in acoustic dynamics, much like the strategies

adopted by the HMM.

A convenient way to understand a variety of acoustic dynamic models and their relation-

ships is to establish a hierarchy showing how the HMM is generalized by gradually relaxing the
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modeling assumptions. Starting with a conventional HMM in this hierarchy, there are two main

classes of its extended or generalized models. Each of these classes further contains subclasses

of models. We describe this hierarchy below.

3.2.1 Nonstationary-State HMMs

This model class has also been called the trended HMM, constrained mean trajectory model,

segmental HMM, or stochastic trajectory model, etc., with minor variations according to

whether the parameters defining the trend functions or trajectories are random or not and

how their temporal properties are constrained. The trajectories for each state or segment are

sometimes normalized in time, especially when the linguistic unit associated with the state is

large (e.g., a word).

Given the HMM state s , the sample paths of most of these model types are explicitly

defined acoustic feature trajectories:

o(k) = gk(Λs ) + rs (k), (3.1)

where gk(Λs ) is the deterministic function of time frame k, parameterized by state-specific Λs ,

which can be either deterministic or random. And rs (k) is a state-specific stationary residual

signal.

The trend function gk(Λs ) in Eq. (3.1) varies with time (as indexed by k), and hence

describes acoustic dynamics. This is a special type of dynamics where no temporal recursion is

involved in characterizing the time-varying function. Throughout this book, we call this special

type of the dynamic function as a “trajectory,” or a kinematic function.

We now discuss further classification of the nonstationary-state or trended HMMs.

Polynomial Trended HMM

In this subset of the nonstationary-state HMMs, the trend function associated with each

HMM state is a polynomial function of time frames. Two common types of such models are as

follows:

• Observable polynomial trend functions: This is the simplest trended HMM where there

is no uncertainty in the polynomial coefficients Λs (e.g., [41, 55, 56, 86]).

• Random polynomial trend functions: The trend functions gk(Λs ) in Eq. (3.1) are stochas-

tic due to the uncertainty in polynomial coefficients Λs . Λs are random vectors in one

of the two ways: (1) Λs has a discrete distribution [87,88] and (2) Λs has a continuous

distribution. In the latter case, the model is called the segmental HMM, where the

earlier versions have a polynomial order of zero [40, 89] and the later versions have an

order of one [90] or two [91].
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Nonparametric Trended HMM

The trend function is determined by the training data after performing dynamic time warping

[92], rather than by any parametric form.

Observation-dependent Trended Function

In this rather recent nonstationary-state HMM, the trend function is designed in a special

way, where the parameters in Λs in the function gk(Λs ) of Eq. (3.1) are made dependent on

the observation vector o(k). The dependency is nonlinear, based on the posterior probability

computation [26].

3.2.2 Multiregion Recursive Models

Common to this model class is the recursive form in dynamic modeling of the region-dependent

time-varying acoustic feature vectors, where the “region” or state is often associated with a

phonetic unit. The most typical recursion is of the following linear form:

o(k) = Λs (1)o(k − 1) + · · · + Λs (p)o(k − p) + rs (k), (3.2)

and the starting point of the recursion for each state s comes usually from the previous state’s

ending history.

The model expressed in Eq. (3.2) provides clear contrast to the trajectory or trended

models where the time-varying acoustic observation vectors are approximated as an explicit

temporal function of time. The sample paths of the model Eq. (3.2), on the other hand, are

piecewise, recursively defined stochastic time-varying functions. Further classification of this

model class is discussed below.

Autoregressive or Linear-predictive HMM

In this model, the time-varying function associated with each region (a Markov state) is defined

by linear prediction, or recursively defined autoregressive function. The work in [93] and that

in [94] developed this type of model having the state-dependent linear prediction performed on

the acoustic feature vectors (e.g., cepstra), with a first-order prediction and a second-order linear

prediction, respectively. The work in [95,96] developed the model having the state-dependent

linear prediction performed on the speech waveforms. The latter model is also called the hidden

filter model in [95].

Dynamics Defined by Jointly Optimized Static and Delta Parameters

In this more recently introduced HMM version with recursively defined state-bound dy-

namics on acoustic feature vectors, the dynamics are in the form of joint static and delta

parameters [57, 97, 98]. The coefficients in the recursion are fixed for the delta parameters,

instead of being optimized as in the linear-predictive HMM. The optimized feature-vector
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“trajectories” are obtained by joint use of static and delta model parameters. The results of the

constrained optimization provide an explicit relationship between the static and delta acoustic

features.

Nonlinear-predictive HMM

Several versions of nonlinear-predictive HMM have appeared in the literature, which generalize

the linear prediction in Eq. (3.2) to nonlinear prediction using neural networks (e.g., [99–101]).

In the model of [101], detailed statistical analysis was provided, proving that nonlinear prediction

with a short temporal order effectively produces a correlation structure over a significantly longer

temporal span.

Switching Linear Dynamic System Model

In this subclass of the multiregion recursive linear models, in addition to the use of the autoregres-

sive function that recursively defines the region-bound dynamics, which we call (continuous)-

state dynamics, a new noisy observation function is introduced. The actual effect of autore-

gression in this model is to smoothen the observed acoustic feature vectors. This model was

originally introduced in [102] for speech modeling.

3.3 STATISTICAL MODELS FOR HIDDEN SPEECH DYNAMICS
The various types of acoustic dynamic or stochastic segment models described in this chapter

generalize the HMM by generating a variable-length sequence of speech frames in each state,

overcoming the HMM’s assumption of local conditional independence. Yet the inconsistency

between the HMM assumptions and the properties of the realistic dynamic speech process goes

beyond this limitation. In acoustic dynamic models, the speech frames assigned to the same

segment/state have been modeled to be temporally correlated and the model parameters been

time-varying. However, the lengths of such segments are typically short. Longer-term correla-

tion across phonetic units, which provides dynamic structure responsible for coarticulation and

phonetic reduction, in a full utterance has not been captured.

This problem has been addressed by a class of more advanced dynamic speech models,

which we call hidden dynamic models. A hidden dynamic model exploits an intermediate level

of speech dynamics, functionally representing a combined system for speech motor control,

task dynamics, and articulatory dynamics. This intermediate level is said to be hidden since it is

not accessed directly from the speech acoustic data. The speech dynamics in this intermediate,

hidden level explicitly captures the long-contextual-span properties over the phonetic units

by imposing continuity constraints on the hidden dynamic variables internal to the acoustic

observation data. The constraint is motivated by physical properties of speech generation. The

constraint captures some key coarticulation and reduction properties in speech, and makes

the model parameterization more parsimonious than does the acoustic dynamic model where
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modeling coarticulation requires a large number of free parameters. Since the underlying speech

structure represented by the hidden dynamic model links a sequence of segments via continuity

in the hidden dynamic variables, it can also be appropriately called the a super-segmental

model.

Differing from the acoustic dynamic models, the hidden dynamic models represent speech

structure by the hidden dynamic variables. Depending on the nature of these dynamic variables

in light of multilevel speech dynamics discussed earlier, the hidden dynamic models can be

broadly classified into

• articulatory dynamic model (e.g., [46, 54, 58, 59, 78, 79, 103, 104]);

• task-dynamic model (e.g., [105, 106]);

• vocal tract resonance (VTR) dynamic model (e.g., [24, 42, 48, 49, 84, 85, 107–112]);

• model with abstract dynamics (e.g., [42, 44, 107, 113]).

The VTR dynamics are a special type of task dynamics, with the acoustic goal or “task”

of speech production in the VTR domain. Key advantages of using VTRs as the “task” are their

direct correlation with the acoustic information, and the lower dimensionality in the VTR vector

compared with the counterpart hidden vectors either in the articulatory dynamic model or in

the task-dynamic model with articulatorily defined goal or “task” such as vocal tract constriction

properties.

As an alternative classification scheme, the hidden dynamic models can also be classified,

from the computational perspective, according to whether the hidden dynamics are represented

mathematically with temporal recursion or not. Like the acoustic dynamic models, the two

types of the hidden dynamic models in this classification scheme are reviewed here.

3.3.1 Multiregion Nonlinear Dynamic System Models

The hidden dynamic models in this first model class use the temporal recursion (k-recursion

via the predictive function gk in Eq. (3.3)) to define the hidden dynamics z(k). Each region, s ,

of such dynamics is characterized by the s -dependent parameter set Λs , with the “state noise”

denoted by ws (k). The memoryless nonlinear mapping function is exploited to link the hidden

dynamic vector z(k) to the observed acoustic feature vector o(k), with the “observation noise”

denoted by vs (k), and also parameterized by region-dependent parameters. The combined “state

equation” (3.3) and “observation equation” (3.4) form a general multiregion nonlinear dynamic

system model:

z(k + 1) = gk[z(k),Λs ] + ws (k), (3.3)

o(k ′) = hk ′[z(k ′),Ωs ′] + vs ′(k ′). (3.4)
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where subscripts k and k ′ indicate that the functions g[·] and h[·] are time-varying and may

be asynchronous with each other. The subscripts s or s ′ denotes the dynamic region correlated

with phonetic categories.

Various simplified implementations of the above generic nonlinear system model have

appeared in the literature (e.g., [24,33,42,45,46,59,85,108]). Most of these implementations

reduce the predictive function gk in the state equation (3.3) into a linear form, and use the

concept of phonetic targets as part of the parameters. This gives rise to linear target filtering

(by infinite impulse response or IIR filters) as a model for the hidden dynamics. Also, many of

these implementations use neural networks as the nonlinear mapping function hk[z(k),Ωs ] in

the observation equation (3.4).

3.3.2 Hidden Trajectory Models

The second type of the hidden dynamic models use trajectories (i.e., explicit functions of

time with no recursion) to represent the temporal evolution of the hidden dynamic variables

(e.g., VTR or articulatory vectors). This hidden trajectory model (HTM) differs conceptually

from the acoustic dynamic or trajectory model in that the articulatory-like constraints and

structure are captured in the HTM via the continuous-valued hidden variables that run across

the phonetic units. Importantly, the polynomial trajectories, which were shown to fit well

to the temporal properties of cepstral features [55, 56], are not appropriate for the hidden

dynamics that require realistic physical constraints of segment-bound monotonicity and target-

directedness. One parametric form of the hidden trajectory constructed to satisfy both these

constraints is the critically damped exponential function of time [33,114]. Another parametric

form of the hidden trajectory, which also satisfies these constraints but with more flexibility to

handle asynchrony between segment boundaries for the hidden trajectories and for the acoustic

features, has been developed more recently [109,112,115,116] based on finite impulse response

(FIR) filtering of VTR target sequences. In Chapter 5, we provide a systematic account of this

model, synthesizing and expanding the earlier descriptions of this work in [109, 115, 116].

3.4 SUMMARY
This chapter serves as a bridge between the general modeling and computational framework

for speech dynamics (Chapter 2) and Chapters 4 and 5 on detailed descriptions of two specific

implementation strategies and algorithms for hidden dynamic models. The theme of this chapter

is to move from the relatively simplistic view of dynamic speech modeling confined within the

acoustic stage to the more realistic view of multistage speech dynamics with an intermediate

hidden dynamic layer between the phonological states and the acoustic dynamics. The latter,

with appropriate constraints in the form of the dynamic function, permits a representation

of the underlying speech structure responsible for coarticulation and speaking-effort-related
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reduction. This type of structured modeling is difficult to accomplish by acoustic dynamic

models with no hidden dynamic layer, unless highly elaborate model parameterization is carried

out. In Chapter 5, we will show an example where a hidden trajectory model can be simplified

to an equivalent of an acoustic trajectory model whose trajectory parameters become long-

span context-dependent via a structured means and delicate parameterization derived from the

construction of the hidden trajectories.

Guided by this theme, in this chapter we classify and review a rather rich body of literature

on a wide variety of statistical models of speech, starting with the traditional HMM [4] as

the most primitive model. Two major classes of the models, acoustic dynamic models and

hidden dynamic models, respectively, are each further classified into subclasses based on how the

dynamic functions are constructed. When explicit temporal functions are constructed without

recursion, then we have classes of “trajectory” models. The trajectory models and recursively

defined dynamic models can achieve a similar level of modeling accuracy but they demand very

different algorithm development for model parameter learning and for speech decoding. Each

of these two classes (acoustic vs. hidden dynamic) and two types (trajectory vs. recursive) of the

models simplifies, in different ways, the DBN structure as the general computational framework

for the full multistage speech chain (Chapter 2).

In the remaining two chapters, we select two types of hidden dynamic models of speech for

their detailed exposition, one with and another without recursion in defining the hidden dynamic

variables. The exposition will include the implementation strategies (discretization of the hidden

dynamic variables or otherwise) and the related algorithms for model parameter learning and

model scoring/decoding. The implementation strategy with discretization of recursively defined

hidden speech dynamics will be covered in Chapter 4, and the strategy using hidden trajectories

(i.e., explicit temporal functions) with no discretization will be discussed in Chapter 5.
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C H A P T E R 4

Models with Discrete-Valued Hidden

Speech Dynamics

In this chapter, we focus on a special type of hidden dynamic models where the hidden dynamics

are recursively defined and where these hidden dynamic values are discretized. The discretization

or quantization of the hidden dynamics causes an approximation to the original continuous-

valued dynamics as described in the earlier chapters but it enables an implementation strategy

that can take direct advantage of the forward–backward algorithm and dynamic programming

in model parameter learning and decoding. Without discretization, the parameter learning and

decoding problems would be typically intractable (i.e., the computation cost would increase

exponentially with time). Under different kinds of model implmentation schemes, other types

of approximation will be needed and one type of the approximation in this case will be detailed

in Chapter 5.

This chapter is based on the materials published in [110, 117], with reorganization,

rewriting, and expansion of these materials so that they naturally fit as an integral part of this

book.

4.1 BASIC MODEL WITH DISCRETIZED HIDDEN DYNAMICS
In the basic model presented in this section, we assume discrete-time, first-order hidden dy-

namics in the state equation and linearized mapping from the hidden dynamic variables to the

acoustic observation variables in the observation equation. Before discretizing hidden dynam-

ics, the first-order dynamics in a scalar form have the following form (which was discussed in

Chapter 2 with a vector form):

xt = rs xt−1 + (1 − rs )Ts + wt(s ), (4.1)

where state noise wt ∼ N(wk ; 0, Bs ) is assumed to be IID, zero-mean Gaussian with phonolog-

ical state (s )-dependent precision (inverse of variance) Bs . The linearized observation equation

is

o t = Hs xt + hs + vt, (4.2)
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where observation noise vk ∼ N(vk ; 0, Ds ) is assumed to be IID, zero-mean Gaussian with

precision Ds .

We now perform discretization or quantization on hidden dynamic variable xt . For sim-

plicity in illustration, we use scalar hidden dynamics most of the times in this chapter (except

Section 4.2.3) where scalar quantization is carried out, and let C denote the total number of

discretization/quantization levels. (For the more realistic, multidimensional hidden dynamic

case, C would be the total number of cells in the vector-quantized space.) In the following

derivation of the EM algorithm for parameter learning, we will use variable xt[i] or it to denote

the event that at time frame t the state variable (or vector) xt takes the mid-point (or centroid)

value associated with the ith discretization level in the quantized space.

We now describe this basic model with discretized hidden dynamics in an explicit prob-

abilistic form and then derive and present a maximum-likelihood (ML) parameter estimation

technique based on the Expectation-Maximization (EM) algorithm. The background infor-

mation on ML and EM can be found in of [9], [Part I, Ch. 5, Sec. 5.6].

4.1.1 Probabilistic Formulation of the Basic Model

Before discretization, the basic model that consists of Eqs. (4.1) and (4.2) can be equivalently

written in the following explicit probabilistic form:

p(xt | xt−1, s t = s ) = N(xt ; rs xt−1 + (1 − rs )Ts , Bs ), (4.3)

p(o t | xt, s t = s ) = N(o t ; Hs xt + hs , Ds ). (4.4)

And we also have the transition probability for the phonological states:

p(s t = s | s t−1 = s ′) = πs ′s .

Then the joint probability can be written as

p(s N
1 , x N

1 , o N
1 ) =

N∏
t=1

πs t−1s t
p(xt | xt−1, s t)p(o t | xt, s t = s ),

where N is the total number of observation data points in the training set.

After discretization of hidden dynamic variables, Eqs. (4.3) and (4.4) are approximated

as

p(xt[i] | xt−1[ j], s t = s ) ≈ N(xt[i]; rs xt−1[ j] + (1 − rs )Ts , Bs ), (4.5)

and

p(o t | xt[i], s t = s ) ≈ N(o t ; Hs xt[i] + hs , Ds ). (4.6)
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4.1.2 Parameter Estimation for the Basic Model: Overview

For carrying out the EM algorithm for parameter estimation of the above discretized model,

we first establish the auxiliary function, Q. Then we simplify the Q function into a form that

can be optimized in a closed form.

According to the EM theory, the auxiliary objective function Q is the conditional expecta-

tion of logarithm of the joint likelihood of all hidden and observable variables. The conditioning

events are all observation sequences in the training data:

o N
1 = o 1, o 2, . . . , o t, . . . , o N,

And the expectation is taken over the posterior probability for all hidden variable sequences:

x N
1 = x1, x2, . . . , xt, . . . , xN,

and

s N
1 = s1, s2, . . . , s t, . . . , s N,

This gives (before discretization of the hidden dynamic variables):

Q =
∑

s1

· · ·
∑

s t

· · ·
∑

s N

∫
x1

· · ·
∫

xt

· · ·
∫

xN

p(s N
1 , x N

1 | o N
1 ) log p(s N

1 , x N
1 , o N

1 )d x1 · · · d xt · · · d xN,

(4.7)

where the summation for each phonological state s is from 1 to S (the total number of distinct

phonological units).

After discretizing xt into xt[i], the objective function of Eq. (4.7) is approximated by

Q ≈
∑

s1

· · ·
∑

s t

· · ·
∑

s N

∑
i1

· · ·
∑

it

· · ·
∑

iN

p(s N
1 , i N

1 | o N
1 ) log p(s N

1 , i N
1 , o N

1 ), (4.8)

where the summation for each discretization index i is from 1 to C .

We now describe details of the E-step and m-Step in the EM algorithm.

4.1.3 EM Algorithm: The E-Step

The following outlines the simplification steps for the objective function of Eq. (4.8). Let us de-

note the sequence summation
∑

s1
· · · ∑s t

· · · ∑s N
by

∑
s N

1
, and summation

∑
i1

· · · ∑it
· · · ∑iN

by
∑

i N
1

. Then we rewrite Q in Eq. (4.8) as

Q(rs , Ts , Bs , Hs , hs , Ds ) ≈
∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 ) log p(s N

1 , i N
1 , o N

1 ) (4.9)

=
∑
s N

1

∑
i N
1

p(s N
1 , i N

1 |o N
1 ) log p(o N

1 | s N
1 , i N

1 )

︸ ︷︷ ︸
Qo (Hs ,hs ,Ds )

+
∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 ) log p(s N

1 , i N
1 )

︸ ︷︷ ︸
Qx (rs ,Ts ,Bs )

,
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where

p(s N
1 , i N

1 ) =
∏

t

πs t−1s t
N(xt[i]; rs t

xt−1[ j] + (1 − rs t
)Tst

, Bst
),

and

p(o N
1 | s N

1 , i N
1 ) =

∏
t

N(o t ; Hst
xt[i] + hst

, Dst
).

In these equations, discretization indices i and j denote the hidden dynamic values taken at

time frames t and t − 1, respectively. That is, s t = i, s t−1 = j .

We first compute Qo (omitting constant −0.5d log(2π ) that is irrelevant to optimization):

Qo = 0.5
∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )

N∑
t=1

[
log |Dst

| − Dst

(
o t − Hst

xt[i] − hst

)2
]

=
S∑

s =1

C∑
i=1

{
0.5

∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )

N∑
t=1

[
log |Dst

| − Dst

(
o t − Hst

xt[i] − hst

)2
]}

δs t s δit i

= 0.5
S∑

s =1

C∑
i=1

N∑
t=1

{∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )δs t s δit i

}[
log |Ds | − Ds (o t − Hs xt[i] − hs )

2
]
.

Noting that ∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )δs t s δit i = p(s t = s , it = i | o N

1 ) = γt(s , i),

we obtain the simplified form of

Qo (Hs , hs , Ds ) = 0.5
S∑

s =1

N∑
t=1

C∑
i=1

γt(s , i)
[
log |Ds | − Ds (o t − Hs xt[i] − hs )

2
]
. (4.10)

Similarly, after omitting optimization-independent constants, we have

Qx = 0.5
∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )

N∑
t=1

[
log |Bst

| − Bst

(
xt[i] − rs t

xt−1[ j] − (1 − rs t
)Tst

)2
]

=
S∑

s =1

C∑
i=1

C∑
j=1

{
0.5

∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )

×
N∑

t=1

[
log |Bst

| − Bst

(
xt[i] − rs t

xt−1[ j] − (1 − rs t
)Tst

)2
]}

δs t s δit iδit−1 j
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= 0.5
S∑

s =1

C∑
i=1

C∑
j=1

N∑
t=1

{∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )δs t s δit iδit−1 j

}
×

[
log |Bs | − Bs (xt[i] − rs xt−1[ j] − (1 − rs )Ts )

2
]
.

Now noting∑
s N

1

∑
i N
1

p(s N
1 , i N

1 | o N
1 )δs t s δit iδit−1 j = p(s t = s , it = i, it−1 = j | o N

1 ) = ξt(s , i, j ),

we obtain the simplified form of

Qx(rs , Ts , Bs ) = 0.5
S∑

s =1

N∑
t=1

C∑
i=1

C∑
j=1

ξt(s , i, j )
[
log |Bs |

−Bs (xt[i] − rs xt−1[ j] − (1 − rs )Ts )
2
]
, (4.11)

Note that large computational saving can be achieved by limiting the summations in

Eq. (4.11) for i, j based on the relative smoothness of hidden dynamics. That is, the range of

i, j can be limited such that |xt[i] − xt−1[ j]|< Th, where Th is empirically set threshold value

that controls the computation cost and accuracy.

In Eqs. (4.11) and (4.10), we used ξt(s , i, j ) and γt(s , i) to denote the single-frame

posteriors of

ξt(s , i, j ) ≡ p(s t = s , xt[i], xt−1[ j] | o N
1 ),

and

γt(s , i) ≡ p(s t = s , xt[i] | o N
1 ).

These can be computed efficiently using the generalized forward–backward algorithm (part of

the E-step), which we describe below.

4.1.4 A Generalized Forward–Backward Algorithm

The only quantities that need to be determined in simplified auxiliary function Q = Qo + Qx

as in Eqs. (4.9)–(4.11) are the two frame-level posteriors ξt(s , i, j ) and γt(s , i), which we

compute now in order to complete the E-step in the EM algorithm.

Generalized α(st, it) Forward Recursion

The generalized forward recursion discussed here uses a new definition of the variable

αt(s , i) ≡ p(o t
1, s t = s , it = i).
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The generalization of the standard forward–backward algorithm for HMM in any standard

textbook on speech recognition is by including additional discrete hidden variables related to

hidden dynamics.

For notational convenience, we useα(s t, it) to denoteαt(s , i) below. The forward recursive

formula is

α(s t+1, it+1) =
S∑

s t=1

C∑
it=1

α(s t, it)p(s t+1, it+1|s t, it)p(o t+1|s t+1, it+1). (4.12)

Proof of Eq. (4.12):

α(s t+1, it+1) ≡ p(o t+1
1 , s t+1, it+1)

=
∑

s t

∑
it

p(o t
1, o t+1, s t+1, it+1, s t, it)

=
∑

s t

∑
it

p(o t+1, s t+1, it+1 | o t
1, s t, it)p(o t

1, s t, it)

=
∑

s t

∑
it

p(o t+1, s t+1, it+1 | s t, it)α(s t, it)

=
∑

s t

∑
it

p(o t+1 | s t+1, it+1, s t, it)p(s t+1, it+1 | s t, it)α(s t, it)

=
∑

s t

∑
it

p(o t+1 | s t+1, it+1)p(s t+1, it+1 | s t, it)α(s t, it). (4.13)

In Eq. (4.12), p(o t+1 | s t+1, it+1) is determined by the observation equation:

p(o t+1 | s t+1 = s , it+1 = i) = N(o t+1; Hs xt+1[i] + hs , Ds ),

and p(s t+1, it+1 | s t, it) is determined by the state equation (with order one) and the switching

Markov chain’s transition probabilities:

p(s t+1 = s , it+1 = i | s t = s ′, it = i ′) ≈ p(s t+1 = s | s t = s ′)p(it+1 = i | it = i ′)
= πs t−1s t

p(it+1 = i | it = i ′). (4.14)

Generalized γ(st, it) Backward Recursion

Rather than performing backward β recursion and then combining the α and β to obtain

the single-frame posterior as for the conventional HMM, a more memory-efficient technique

can be used for backward recursion, which directly computes the single-frame posterior. For

notational convenience, we use γ (s t, it) to denote γt(s , i) below.
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The development of the generalized γ (s t, it) backward recursion for the first-order state

equation proceeds as follows:

γ (s t, it) ≡ p(s t, it | o N
1 )

=
∑
s t+1

∑
it+1

p(s t, it, s t+1, it+1 | o N
1 )

=
∑
s t+1

∑
it+1

p(s t, it, s t+1, it+1 | o N
1 )p(s t+1, it+1 | o N

1 )

=
∑
s t+1

∑
it+1

p(s t, it, s t+1, it+1 | o t
1)γ (s t+1, it+1)

=
∑
s t+1

∑
it+1

p(s t, it, s t+1, it+1, o t
1)

p(s t+1, it+1, o t
1)

γ (s t+1, it+1) (Bayes rule)

=
∑
s t+1

∑
it+1

p(s t, it, s t+1, it+1, o t
1)∑

s t

∑
it

p(s t, it, s t+1, it+1, o t
1)

γ (s t+1, it+1)

=
∑
s t+1

∑
it+1

p(s t, it, o t
1)p(s t+1, it+1 | s t, it, o t

1)∑
s t

∑
it

p(s t, it, o t
1)p(s t+1, it+1 | s t, it, o t

1)
γ (s t+1, it+1)

=
∑
s t+1

∑
it+1

α(s t, it)p(s t+1, it+1 | s t, it)∑
s t

∑
it
α(s t, it)p(s t+1, it+1 | s t, it)

γ (s t+1, it+1), (4.15)

where the last step uses conditional independence, and where α(s t, it) and p(s t+1, it+1 | s t, it)

on the right-hand side of Eq. (4.15) have been computed already in the forward recursion.

Initialization for the above γ recursion is γ (s N, iN) = α(s N, iN), which will be equal to 1 for

the left-to-right model of phonetic strings.

Given this result, ξt(s , i, j ) can be computed directly using α(s t, it) and γ (s t, it). Both of

them are already computed from the forward–backward recursions described above.

Alternatively, we can compute β generalized recursion (not discussed here) and then

combine αs and βs to obtain γt(s , i) and ξt(s , i, j ).

4.1.5 EM Algorithm: The M-Step

Given the results of the E-step described above where the frame-level posteriors are computed

efficiently by the generalized forward–backward algorithm, we now derive the reestimation

formulas, as the M-step in the EM algorithm, by optimizing the simplified auxiliary function

Q = Qo + Qx as in Eqs. (4.9), (4.10) and (4.11).
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Reestimation for the Hidden-to-Observation Mapping Parameters Hs and hs

Taking partial derivatives of Qo in Eq. (4.10) with respect to Hs and hs , respectively, and setting

them to zero, we obtain:

∂ Qo (Hs , hs , Ds )

∂hs

= −Ds

N∑
t=1

C∑
i=1

γt(s , i){o t − Hs xt[i] − hs } = 0, (4.16)

and

∂ Qo (Hs , hs , Ds )

∂ Hs

= −Ds

N∑
t=1

C∑
i=1

γt(s , i){o t − Hs xt[i] − hs }xt[i] = 0. (4.17)

These can be rewritten as the standard linear system of equations:

U Ĥs + V1ĥ s = C1, (4.18)

V2 Ĥs + Uĥs = C2, (4.19)

where

U =
N∑

t=1

C∑
i=1

γt(s , i)xt[i], (4.20)

V1 = N, (4.21)

C1 =
N∑

t=1

C∑
i=1

γt(s , i)o t, (4.22)

V2 =
N∑

t=1

C∑
i=1

γt(s , i)x2
t [i], (4.23)

C2 =
N∑

t=1

C∑
i=1

γt(s , i)o t xt[i]. (4.24)

The solution is [
Ĥs

ĥ s

]
=

[
U V1

V2 U

]−1 [
C1

C2

]
. (4.25)

Reestimation for the Hidden Dynamic Shaping Parameter rs

Taking partial derivative of Qx in Eq. (4.11) with respect to rs and setting it to zero, we obtain

the reestimation formula of

∂ Qx(rs , Ts , Bs )

∂rs

= −Bs

N∑
t=1

C∑
i=1

C∑
j=1

ξt(s , i, j ) (4.26)

×
[

xt[i] − rs xt−1[ j] − (1 − rs )Ts

][
xt−1[ j] − Ts

]
= 0.
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Solving for rs , we have

r̂s =
[

N∑
t=1

C∑
i=1

C∑
j=1

ξt(s , i, j )(Ts − xt−1[ j])2

]−1

×
[

N∑
t=1

C∑
i=1

C∑
j=1

ξt(s , i, j )(Ts − xt−1[ j])(Ts − xt[i])

]
, (4.27)

where we assume that all other model parameters are fixed.

It is interesting to note from the above that when xt is monotonically moving (on average)

toward the target Ts (i.e., no target overshooting), the reestimate of rs is guaranteed to be positive,

as it should be.

Reestimation for the Hidden Dynamic Target Parameter Ts

Similarly, taking partial derivative of Qx in Eq. (4.11) with respect to Ts and setting it to zero,

we obtain the reestimation formula of

∂ Qx(rs , Ts , Bs )

∂Ts

= −Bs

N∑
t=1

C∑
i=1

C∑
j=1

ξt(s , i, j )
[

xt[i] − rs xt−1[ j] − (1 − rs )Ts

]
(1 − rs ) = 0.

(4.28)

Solving for Ts , we obtain

T̂s = 1

1 − rs

N∑
t=1

C∑
i=1

C∑
j=1

ξt(s , i, j )
[

xt[i] − rs xt−1[ j]
]
. (4.29)

Intuitions behind the target estimate above are particularly obvious.

Reestimation for the Noise Precisions Bs and Ds

Setting

∂ Qx(rs , Ts , Bs )

∂ Bs

= 0.5
N∑

t=1

C∑
i=1

C∑
j=1

ξt(s , i, j )
[

B−1
s − (xt[i] − rs xt−1[ j] − (1 − rs )Ts )

2
]

= 0,

we obtain the state noise variance reestimate of

B̂−1
s =

∑N
t=1

∑C
i=1

∑C
j=1 ξt(s , i, j ) [xt[i] − r̂s xt−1[ j] − (1 − r̂s )Ts ]

2∑N
t=1

∑C
i=1

∑C
j=1 ξt(s , i, j )

. (4.30)

Similarly, setting

∂ Qo (Hs , hs , Ds )

∂ Ds

= 0.5
N∑

t=1

C∑
i=1

γt(s , i)
[

D−1
s − (o t − Hs xt[i] − hs )

2
]

= 0,
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we obtain the observation noise variance reestimate of

D̂s =
∑N

t=1

∑C
i=1 γt(s , i) [o t − Hs xt[i] − hs ]

2∑N
t=1

∑C
i=1 γt(s , i)

. (4.31)

4.1.6 Decoding of Discrete States by Dynamic Programming

After the parameters of the basic model are estimated using the EM algorithm described above,

estimation of discrete phonological states and of the quantized hidden dynamic variables can be

carried out jointly. We call this process “decoding.” Estimation of the phonological states is the

problem of speech recognition, and estimation of the hidden dynamic variables is the problem

of tracking hidden dynamics. For large vocabulary speech recognition, aggressive pruning and

careful design of data structures will be required (which is not described in this book).

Before describing the decoding algorithm, which is aimed at finding the best single joint

state and quantized hidden dynamic variable sequences (s N
1 , i N

1 ) for a given observation sequence

o N
1 , let us define the quantity

δt(s , i) = max
s1,s2,...,s t−1,i1,i2,...,it−1

P (o t
1, s t−1

1 , i t−1
1 , s t = s , xt[i])

= max
s t−1

1 ,i t−1
1

P (o t
1, s t−1

1 , i t−1
1 , s t = s , it = i). (4.32)

Note that each δt(s , i) defined here is associated with a node in a three-dimensional trellis

diagram. Each increment in time corresponds to reaching a new stage in dynamic programming

(DP). At the final stage t = N, we have the objective function of δN(s , i) that is accomplished

via all the previous stages of computation for t ≤ N − 1. On the basis of the DP optimality

principle, the optimal (joint) partial likelihood at the processing stage of t + 1 can be computed

using the following DP recursion:

δt+1(s , i) = max
s ′,i ′

δt(s
′, i ′)p(s t+1 = s , it+1 = i | s t = s ′, it = i ′)p(o t+1 | s t+1 = s , it+1 = i)

≈ max
s ′,i ′

δt(s
′, i ′)p(s t+1 = s | s t = s ′)p(it+1 = i | it = i ′)p(o t+1 | s t+1 = s , it+1 = i)

= max
s ′,i ′, j

δt(s
′, i ′)πs ′s N(xt+1[i]; rs ′ xt[ j] + (1 − rs ′)Ts ′, Bs ′)

×N(o t+1; Hs xt+1[i] + hs , Ds ), (4.33)

for all states s and for all quantization indices i . Each pair of (s , i) at this processing stage is

a hypothesized “precursor” node in the global optimal path. All such nodes except one will be

eventually eliminated after the backtracking operation. The essence of DP used here is that we

only need to compute the quantities of δt+1(s , i) as individual nodes in the trellis, removing

the need to keep track of a very large number of partial paths from the initial stage to the

current (t + 1)th stage, which would be required for the exhaustive search. The optimality is
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guaranteed, due to the DP optimality principle, with the computation only linearly, rather than

geometrically, increasing with the length N of the observation data sequence o N
1 .

4.2 EXTENSION OF THE BASIC MODEL
The preceding section presented details of the basic hidden dynamic model where the discretized

state equation takes the simplest first-order recursive form and where the observation equation

also takes the simplest linear form responsible for mapping from hidden dynamic variables to

acoustic observation variables. We now present an extension of this discretized basic model.

First, we will extend the state equation of the basic model from first-order dynamics to second-

order dynamics so as to improve the modeling accuracy. Second, we will extend the observation

equation of the basic model from the linear form to a nonlinear form of the mapping function

from the discretized hidden dynamic variables to (nondiscretized or continuous-valued) acoustic

observation variables.

4.2.1 Extension from First-Order to Second-Order Dynamics

In this first step of extension of the basic model, we change from the first-order state equation

(Eq. (4.1)):

xt = rs xt−1 + (1 − rs )Ts + wt(s ),

to the new second-order state equation

xt = 2rs xt−1 − r 2
s xt−2 + (1 − rs )2Ts + wt(s ). (4.34)

Here, like the first-order state equation, state noise wk ∼ N(wk ; 0, Bs ) is assumed to be IID

zero-mean Gaussian with state (s )-dependent precision Bs . And again, Ts is the target parameter

that serves as the “attractor” drawing the time-varying hidden dynamic variable toward it within

each phonological unit denoted by s .

It is easy to verify that this second-order state equation, as for the first-order one, has the

desirable properties of target directedness and monotonicity. However, the trajectory implied

by the second-order recursion is more realistic than that by the earlier first-order one. The

new trajectory has critically damped trajectory shaping, while the first-order trajectory has

exponential shaping. Detailed behaviors of the respective trajectories are controlled by the

parameter rs in both the cases. For analysis of such behaviors, see [33, 54].

The explicit probabilistic form of the state equation (4.34) is

p(xt | xt−1, xt−2, s t = s ) = N(xt ; 2rs xt−1 − r 2
s xt−2 + (1 − rs )2Ts , Bs ). (4.35)

Note the conditioning event is both xt−1 and xt−2, instead of just xt−1 as in the first-order case.
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After discretization of the hidden dyanmic variables xt, xt−1, and xt−2, Eq. (4.35) turns

into an approximate form:

p(xt[i] | xt−1[ j], xt−2[k], s t = s ) ≈ N(xt[i]; 2rs xt−1[ j] − r 2
s xt−2[k] + (1 − rs )2Ts , Bs ).

(4.36)

4.2.2 Extension from Linear to Nonlinear Mapping

The second step of extension of the basic model involves changing from the linear form of the

observation equation

o t = Hs xt + hs + vt,

to the new nonlinear form

o t = F(xt) + hs + vt(s ), (4.37)

where the output of nonlinear predictive or mapping function F(xt) is the acoustic measurement

that can be computed directly from the speech waveform. The expression hs + vt(s ) is the

prediction residual, where hs is the state-dependent mean and the observation noise vk(s ) ∼
N(vk ; 0, Ds ) is an IID, zero-mean Gaussian with precision Ds . The phonological unit or state

s in hs may be further subdivided into several left-to-right subunit states. In this case, we can

treat all the state labels s as the subphone states but tie the subphone states in the state equation

so that the sets of Ts , rs , Bs are the same for a given phonological unit. This will simplify

the exposition of the model in this section without having to distinguish the state from the

“substate” and we will use the same label s to denote both. The nonlinear function F(xt) may

be made phonological-unit-dependent to increase the model discriminability (as in [24]). But

for simplicity, we assume that in this chapter it is independent of phonological units.

Again, we rewrite Eq. (4.37) in an explicit probabilistic form of

p(o t | xt, s t = s ) = N(o t ; F(xt) + hs , Ds ). (4.38)

After discretizing the hidden dyanmic variable xt , the observation equation (4.38) is approxi-

mated by

p(o t | xt[i], s t = s ) ≈ N(o t ; F(xt[i]) + hs , Ds ). (4.39)

Combining this with Eq. (4.35), we have the joint probability model:

p(s N
1 , x N

1 , o N
1 ) =

N∏
t=1

πs t−1s t
p(xt | xt−1, xt−2, s t)p(o t | xt, s t = s )

≈
N∏

t=1

πs t−1s t
N(x[it]; 2rs x[it−1] − r 2

s x[it−2] + (1 − rs )2Ts , Bs )

×N(o t ; F(x[it]) + hs , Ds ), (4.40)
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where it , it−1, and it−2 denote the discretization indices of the hidden dynamic variables at time

frames t, t − 1, and t − 2, respectively.

4.2.3 An Analytical Form of the Nonlinear Mapping Function

The choice of the functional form of F(xt) in Eq. (4.38) is critical for the success of the model

in applications. In Chapter 2, we discussed the use of neural network functions (MLP and RBF,

etc.) as well as the use of piecewise linear functions to represent or approximate the generally

nonlinear function responsible for mapping from the hidden dynamic variables to acoustic

observation variables. These techniques, while useful as shown in [24, 84, 85, 108, 118], either

require a large number of parameters to train, or necessitate crude approximation as needed for

carrying out parameter estimation algorithm development.

In this section, we will present a specific form of the nonlinear function of F(x) that

contains no free parameters and that after discretizing the input argument x invokes no further

approximation in developing and implementing the EM-based parameter estimation algorithm.

The key to developing this highly desirable form of the nonlinear function is to endow the hidden

dynamic variables with their physical meaning. In this case, we let the hidden dynamic variables

be vocal tract resonances (VTRs, and sometimes called formants) including both resonance

frequencies and bandwidths. Then, under reasonable assumptions, we can derive an explicit

nonlinear functional relationship between the hidden dynamic variables (in the form of VTRs)

and the acoustic observation variables in the form of linear cepstra [5]. We now describe this

approach in detail.

Definition of Hidden Dynamic Variables and Related Notations

Let us define the hidden dynamic variables for each frame of speech as the 2K-dimensional

vector of VTRs. It consists of a set of P resonant frequencies f and corresponding bandwidths

b, which we denote as

x =
(

f

b

)
,

where

f =

⎛⎜⎜⎜⎜⎝
f1

f2

...

f P

⎞⎟⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎜⎝
b1

b2

...

b P

⎞⎟⎟⎟⎟⎠ .
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We desire to establish a memoryless mapping relationship between the VTR vector x and

an acoustic measurement vector o:

o ≈ F(x).

Depending on the type of the acoustic measurements as the output in the mapping function,

closed-form computation for F(x) may be impossible, or its in-line computation may be too

expensive. To overcome these difficulties, we may quantize each dimension of x over a range

of frequencies or bandwidths, and then compute C(x) for every quantized vector value of x.

This will be made especially effective when a closed form of the nonlinear function can be

established. We will next show that when the output of the nonlinear function becomes linear

cepstra, a closed form can be easily derived.

Derivation of a Closed-form Nonlinear Function from VTR to Cepstra

Consider an all-pole model of speech, with each of its poles represented as a frequency–

bandwidth pair ( f p, b p). Then the corresponding complex root is given by [119]

zp = e
−π

b p
fsamp

+ j2π
f p

fsamp , and z∗
p = e

−π
b p

fsamp
− j2π

f p
fsamp , (4.41)

where fsamp is the sampling frequency. The transfer function with P poles and a gain of G is

H(z) = G
P∏

p=1

1

(1 − zp z−1)(1 − z∗
p z−1)

. (4.42)

Taking logarithm on both sides of Eq. (4.42), we obtain

log H(z) = log G −
P∑

p=1

log(1 − zp z−1) −
P∑

p=1

log(1 − z∗
p z−1). (4.43)

Now using the well-known infinite series expansion formula

log(1 − v) = −
∞∑

n=1

vn

n
, |v| ≤ 1,

and with v = zp z−1, we obtain

log H(z) = log G +
P∑

p=1

∞∑
n=1

zn
p z−n

n
+

P∑
p=1

∞∑
n=1

z∗n
p z−n

n
= log G +

∞∑
n=1

[
P∑

p=1

zn
p + z∗n

p

n

]
z−n.

(4.44)

Comparing Eq. (4.44) with the definition of the one-sided z-transform,

C(z) =
∞∑

n=0

c nz−n = c 0 +
∞∑

n=1

c nz−n,
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we immediately see that the inverse z-transform of log H(z) in Eq. (4.44), which by definition

is the linear cepstrum, is

c n =
P∑

p=1

zn
p + z∗n

p

n
, n > 0, (4.45)

and c 0 = log G .

Using Eq. (4.41) to expand and simplify Eq. (4.45), we obtain the final form of the

nonlinear function (for n > 0):

c n = 1

n

P∑
p=1

[
e−πn

b p
fs

+ j2πn
f p
fs + e−πn

b p
fs

− j2πn
f p
fs

]

= 1

n

P∑
p=1

e−πn
b p
fs

[
e j2πn

f p
fs + e− j2πn

f p
fs

]

= 1

n

P∑
p=1

e−πn
b p
fs

[
cos

(
2πn

f p

fs

)
+ j sin

(
2πn

f p

fs

)
+ cos

(
2πn

f p

fs

)
− j sin

(
2πn

f p

fs

)]

= 2

n

P∑
p=1

e−πn
b p
fs cos

(
2πn

f p

fs

)
. (4.46)

Here, c n constitutes each of the elements in the vector-valued output of the nonlinear

function F(x).

Illustrations of the Nonlinear Function

Equation (4.46) gives the decomposition property of the linear cepstrum—it is a sum of the

contributions from separate resonances without interacting with each other. The key advantage

of the decomposition property is that it makes the optimization procedure highly efficient for

inverting the nonlinear function from the acoustic measurement to the VTR. For details, see a

recent publication in [110].

As an illustration, in Figs. 4.1–4.3, we plot the value of one term,

e−πn b
fs cos

(
2πn

f

fs

)
,

in Eq. (4.46) as a function of the resonance frequency f and bandwidth b, for the first-order

(n = 1), second-order (n = 2), and the fifth-order (n = 5) cepstrum, respectively. (The sam-

pling frequency fs = 8000 Hz is used in all the plots.) These are the cepstra corresponding to

the transfer function of a single-resonance (i.e., one pole with no zeros) linear system. Due to
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FIGURE 4.1: First-order cepstral value of a one-pole (single-resonance) filter as a function of the

resonance frequency and bandwidth. This plots the value of one term in Eq. (4.46) vs. f p and b p with

fixed n = 1 and fs = 8000 Hz

the decomposition property of the linear cepstrum, for multiple-resonance systems, the corre-

sponding cepstrum is simply a sum of those for the single-resonance systems.

Examining Figs. 4.1–4.3, we easily observe some key properties of the (single-resonance)

cepstrum. First, the mapping function from the VTR frequency and bandwidth variables to the

cepstrum, while nonlinear, is well behaved. That is, the relationship is smooth, and there is no

sharp discontinuity. Second, for a fixed resonance bandwidth, the frequency of the sinusoidal

relation between the cepstrum and the resonance frequency increases as the cepstral order

increases. The implication is that when piecewise linear functions are to be used to approximate

the nonlinear function of Eq. (4.46), more “pieces” will be needed for the higher-order than

for the lower-order cepstra. Third, for a fixed resonance frequency, the dependence of the low-

order cepstral values on the resonance bandwidth is relatively weak. The cause of this weak

dependence is the low ratio of the bandwidth (up to 800 Hz) to the sampling frequency (e.g.,

16 000 Hz) in the exponent of the cepstral expression in Eq. (4.46). For example, as shown

in Fig. 4.1 for the first-order cepstrum, the extreme values of bandwidths from 20 to 800 Hz
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FIGURE 4.2: Second-order cepstral value of a one-pole (single-resonance) filter as a function of the

resonance frequency and bandwidth (n = 1 and fs = 8000 Hz)

reduce the peak cepstral values only from 1.9844 to 1.4608 (computed by 2 exp(−20π/8000) and

2 exp(−800π/8000), respectively). The corresponding reduction for the second-order cepstrum

is from 0.9844 to 0.5335 (computed by exp(−2 × 20π/8000) and exp(−2 × 800π/8000),

respectively). In general, the exponential decay of the cepstral value, as the resonance bandwidth

increases, becomes only slightly more rapid for the higher-order than for the lower-order cepstra

(see Fig. 4.3). This weak dependence is desirable since the VTR bandwidths are known to

be highly variable with respect to the acoustic environment [120], and to be less correlated

with the phonetic content of speech and with human speech perception than are the VTR

frequencies.

Quantization Scheme for the Hidden Dynamic Vector

In the discretized hidden dynamic model, which is the theme of this chapter, the discretization

scheme is a central issue. We address this issue here using the example of the nonlinear function

discussed above, based on the recent work published in [110]. In that work, four poles are used

in the LPC model of speech [i.e., using P = 4 in Eq. (4.46)], since these lowest VTRs carry the
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FIGURE 4.3: Fifth-order cepstral value of a one-pole (single-resonance) filter as a function of the

resonance frequency and bandwidth n = 5 and fs = 8000 Hz

most important phonetic information of the speech signal. That is, an eight-dimensional vector

x = ( f1, f2, f3, f4, b1, b2, b3, b4) is used as the input to the nonlinear function F(x). For the

output of the nonlinear function, up to 15 orders of linear cepstra are used. The zeroth order

cepstrum, c 0, is excluded from the output vector, making the nonlinear mapping from VTRs

to cepstra independent of the energy level in the speech signal. This corresponds to setting the

gain G = 1 in the all-pole model of Eq. (4.42).

For each of the eight dimensions in the VTR vector, scalar quantization is used. Since

F(x) is relevant to all possible phones in speech, the appropriate range is chosen for each VTR

frequency and its corresponding bandwidth to cover all phones according to the considerations

discussed in [9]. Table 4.1 lists the range, from minimal to maximal frequencies in Hz, for

each of the four VTR frequencies and bandwidths. It also lists the corresponding number of

quantization levels used. Bandwidths are quantized uniformly with five levels while frequencies

are mapped to the Mel-frequency scale and then uniformly quantized with 20 levels. The

total number of quantization levels shown in Table 4.1 yields a total of 100 million (204 × 54)
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TABLE 4.1: Quantization Scheme for the VTR Variables, Including the Ranges of the Four VTR

Frequencies and Bandwidths and the Corresponding Numbers of Quantization Levels

MINIMUM (Hz) MAXIMUM (Hz) NO. OF QUANTIZATION

f1 200 900 20

f2 600 2800 20

f3 1400 3800 20

f4 1700 5000 20

b1 40 300 5

b2 60 300 5

b3 60 500 5

b4 100 700 5

entries for F(x), but because of the constraint f1 < f2 < f3 < f4, the resulting number has

been reduced by about 25%.

4.2.4 E-Step for Parameter Estimation

After giving a comprehensive example above for the construction of a vector-valued nonlinear

mapping function and the quantization scheme for the vector valued hidden dynamics as the

input, we now return to the problem of parameter learning for the extended model. We also

return to the scalar case for the purpose of simplicity in exposition. We first describe the E-step

in the EM algorithm for the extended model, and concentrate on the differences from the basic

model as presented in a greater detail in the preceding section.

Like the basic model, before discretization, the auxiliary function for the E-step can be

simplified into the same form of

Q(rs , Ts , Bs , hs , Ds ) = Qx(rs , Ts , Bs ) + Qo (hs , Ds ) + Const., (4.47)

where

Qx(rs , Ts , Bs ) = 0.5
S∑

s =1

N∑
t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k)
[
log |Bs |

−Bs

(
(xt[i] − 2rs xt−1[ j] + r 2

s xt−2[k] − (1 − rs )2Ts

)2
]
, (4.48)

and

Qo (hs , Ds ) = 0.5
S∑

s =1

N∑
t=1

C∑
i=1

γt(s , i)
[
log |Ds | − Ds (o t − F(xt[i]) − hs )

2
]
. (4.49)
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Again, large computational saving can be achieved by limiting the summations in Eq. (4.48)

for i, j, k based on the relative smoothness of trajectories in xt . That is, the range of i, j, k can

be set such that |xt[i] − xt−1[ j]| < Th1, and |xt−1[ j] − xt−2[k]| < Th2. Now two thresholds,

instead of one in the basic model, are to be set.

In the above, we used ξt(s , i, j, k) and γt(s , i) to denote the frame-level posteriors of

ξt(s , i, j, k) ≡ p(s t = s , xt[i], xt−1[ j], xt−2[k] | o N
1 ),

and

γt(s , i) ≡ p(s t = s , xt[i] | o N
1 ).

Note that ξt(s , i, j, k) has one more index k than the counterpart in the basic model. This is

due to the additional conditioning in the second-order state equation.

Similar to the basic model, in order to compute ξt(s , i, j, k) and γt(s , i), we need to

compute the forward and backward probabilities by recursion. The forward recursion αt(s , i) ≡
p(o t

1, s t = s , it = i) is

α(s t+1, it+1) =
S∑

s t=1

C∑
it=1

α(s t, it)p(s t+1, it+1 | s t, it, it−1)p(o t+1 | s t+1, it+1), (4.50)

where

p(o t+1 | s t+1 = s , it+1 = i) = N(o t+1; F(xt+1[i]) + hs , Ds ),

and

p(s t+1 = s , it+1 = i | s t = s ′, it = j, it−1 = k)

≈ p(s t+1 = s | s t = s ′)p(it+1 = i | it = j, it−1 = k)

= πs ′s N(xt[i]; 2rs xt−1[ j] − r 2
s xt−2[k] + (1 − rs )2Ts , Bs ).

The backward recursion βt(s , i) ≡ p(o N
t+1 | s t = s , it = i) is

β(s t, it) =
S∑

s t+1=1

C∑
it+1=1

β(s t+1, it+1)p(s t+1, it+1 | s t, it, it−1)p(o t+1 | s t+1, it+1). (4.51)

Given αt(s , i) and β(s t, it) as computed, we can obtain the posteriors of ξt(s , i, j, k) and

γt(s , i).
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4.2.5 M-Step for Parameter Estimation

Reestimation for Parameter rs

To obtain the reestimation formula for parameter rs , we set the following partial derivative to

zero:

∂ Qx(rs , Ts , Bs )

∂rs

= −Bs

N∑
t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k) (4.52)

×
[

xt[i] − 2rs xt−1[ j] + r 2
s xt−2[k] − (1 − rs )2Ts

][
−xt−1[ j] + rs xt−2[k] + (1 − rs )Ts

]
= −Bs

N∑
t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k)

×
[
−xt[i]xt−1[ j] + 2rs x2

t−1[ j] − r 2
s xt−1[ j]xt−2[k] + (1 − rs )2xt−1[ j]Ts

+ rs xt[i]xt−2[k] − 2r 2
s xt−1[ j]xt−2[k] + r 3

s x2
t−2[k] − rs (1 − rs )2xt−2[k]Ts

+ xt[i](1 − rs )Ts − 2rs xt−1[ j](1 − rs )Ts + r 2
s xt−2[k](1 − rs )Ts − (1 − rs )3T 2

s

]
= 0.

This can be written in the following form in order to solve for rs (assuming Ts is fixed

from the previous EM iteration):

A3r̂ 3
s + A2r̂ 2

s + A1r̂s + A0 = 0, (4.53)

where

A3 =
N∑

t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k){x2
t−2[k] + Ts xt−2[k] + Ts

2},

A2 =
N∑

t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k){−3xt−1[ j]xt−2[k] + 3Ts xt−1[ j] + 3Ts xt−2[k] − 3Ts
2},

A1 =
N∑

t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k){2x2
t−1[ j] + xt[i]xt−2[k] − xt[i]Ts

− 4xt−1[ j]Ts − xt−2[k]Ts + 3Ts
2},

A0 =
N∑

t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k){−xt[i]xt−1[ j] + xt[i]Ts + xt−1[ j]Ts − Ts
2}. (4.54)

Analytic solutions exist for third-order algebraic equations such as the above. For the three roots

found, constraints 1 > rs > 0 can be used for selecting the appropriate one. If there is more

than one solution satisfying the constraint, then we can select the one that gives the largest

value for Qx .
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Reestimation for Parameter Ts

We now optimize Ts by setting the following partial derivative to zero:

∂ Qx(rs , Ts , Bs )

∂Ts

= −Bs

N∑
t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k)[xt[i]

−2rs xt−1[ j] + r 2
s xt−2[k] − (1 − rs )2Ts ](1 − rs )2 = 0. (4.55)

Now fixing rs from the previous EM iteration, we obtain an explicit solution to the reestimate

of Ts :

T̂s = 1

(1 − rs )2

N∑
t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k){xt[i] − 2rs xt−1[ j] + r 2
s xt−2[k]}.

Reestimation for Parameter hs

We set

∂ Qo (hs , Ds )

∂hs

= −Ds

N∑
t=1

C∑
i=1

γt(s , i){o t − F(xt[i]) − hs } = 0. (4.56)

This gives the reestimation formula:

ĥ s =
∑N

t=1

∑C
i=1 γt(s , i){o t − F(xt[i])}∑N

t=1

∑C
i=1 γt(s , i)

. (4.57)

Reestimation for Bs and Ds

Setting

∂ Qx(rs , Ts , Bs )

∂ Bs

= 0.5
N∑

t=1

C∑
i=1

C∑
j=1

C∑
k=1

ξt(s , i, j, k)[B−1
s

− (
xt[i] − 2rs xt−1[ j] + r 2

s xt−2[k] − (1 − rs )2Ts

)2
] = 0, (4.58)

we obtain the reestimation formula:

B̂s =
∑N

t=1

∑C
i=1

∑C
j=1

∑C
k=1 ξt(s , i, j, k)

[
xt[i] − 2rs xt−1[ j] + r 2

s xt−2[k] − (1 − rs )2Ts

]2∑N
t=1

∑C
i=1

∑C
j=1

∑C
k=1 ξt(s , i, j, k)

.

(4.59)

Similarly, setting

∂ Qo (Hs , hs , Ds )

∂ Ds

= 0.5
N∑

t=1

C∑
i=1

γt(s , i)
[

D−1
s − (o t − Hs xt[i] − hs )

2
]

= 0,



P1: IML/FFX P2: IML

MOBK024-04 MOBK024-LiDeng.cls May 30, 2006 15:30

MODELS WITH DISCRETE-VALUED HIDDEN SPEECH DYNAMICS 61

we obtain the reestimate (scalar value) of

D̂s =
∑N

t=1

∑C
i=1 γt(s , i) [o t − Hs xt[i] − hs ]

2∑N
t=1

∑C
i=1 γt(s , i)

. (4.60)

4.2.6 Decoding of Discrete States by Dynamic Programming

The DP recursion is essentially the same as in the basic model, except an additional level (index

k) of optimization is introduced due to the second-order dependency in the state equation. The

final form of the recursion can be written as

δt+1(s , i) = max
s ′,i ′

δt(s
′, i ′)p(s t+1 = s , it+1 = i | s t = s ′, it = i ′)p(o t+1 | s t+1 = s , it+1 = i)

≈ max
s ′,i ′

δt(s
′, i ′)p(s t+1 = s | s t = s ′)p(it+1 = i | it = i ′)p(o t+1 | s t+1 = s , it+1 = i)

= max
s ′,i ′, j,k

δt(s
′, i ′)πs ′s N(xt+1[i]; 2rs ′ xt[ j] − r 2

s ′ xt−1[k] + (1 − rs ′)2Ts , Bs )

×N(o t+1; F(xt+1[i]) + hs , Ds ). (4.61)

4.3 APPLICATION TO AUTOMATIC TRACKING
OF HIDDEN DYNAMICS

As an example for the application of the discretized hidden dynamic model discussed in this

chapter so far, we discuss implementation efficiency issues and show results for the specific

problem of automatic tracking of the hidden dynamic variables that are discretized. The accuracy

of the tracking is obviously limited by the discretization level, but this approximation makes it

possible to run the parameter learning and decoding algorithms in a manner that is not only

tractable but also efficient.

While the description of the parameter learning and decoding algorithms earlier in

this chapter is confined to the scalar case for purposes of clarification and notational con-

venience, in practical cases where often vector valued hidden dynamics are involved, we need

to address the problem of algorithms’ efficiency. In the application example in this section

where eight-dimensional hidden dynamic vectors (four VTR frequencies and four bandwidths

x = ( f1, f2, f3, f4, b1, b2, b3, b4)) are used as presented in detail in Section 4.2.3, it is important

to address the issue related to the algorithms’ efficiency.

4.3.1 Computation Efficiency: Exploiting Decomposability in the

Observation Function

For multidimensional hidden dynamics, one obvious difficulty for the training and tracking

algorithms presented earlier is the high computational cost in summing and in searching over
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the huge space in the quantized hidden dynamic variables. The sum with C terms as required

in the various reestimation formulas and in the dynamic programming recursion is typically

expensive since C is very large. With scalar quantization for each of the eight VTR dimensions,

the C would be the Cartesian product of the quantization levels for each of the dimensions.

To overcome this difficulty, a suboptimal, greedy technique is implemented as described

in [110]. This technique capitalizes on the decomposition property of the nonlinear mapping

function from VTR to cepstra that we described earlier in Section 4.2.3. This enables a much

smaller number of terms to be evaluated than the rigorous number determined as the Cartesian

product, which we elaborate below.

Let us consider an objective function F , to be optimized with respect to M noninteracting

or decomposable variables that determine the function’s value. An example is the following

decomposable function consisting of M terms Fm, m = 1, 2, . . . , M, each of which contains

independent variables (αm) to be searched for:

F =
M∑

m=1

Fm(αm).

Note that the VTR-to-cepstrum mapping function, which was derived to be Eq. (4.46)

as the observation equation of the dynamic speech model (extended model), has this de-

composable form. The greedy optimization technique proceeds as follows. First, initialize

αm, m = 1, 2, . . . , M to reasonable values. Then, fix all α′
ms except one, say αn, and optimize

αn with respect to the new objective function of

F −
n−1∑
m=1

Fm(αm) −
M∑

m=n+1

Fm(αm).

Next, after the low-dimensional, inexpensive search problem for α̂n is solved, fix it and

optimize a new αm, m 	= n. Repeat this for all α′
ms . Finally, iterate the above process until all

optimized α′
ms become stabilized.

In the implementation of this technique for VTR tracking and parameter estimation as

reported in [110], each of the P = 4 resonances is treated as a separate, noninteractive variables

to optimize. It was found that only two to three overall iterations above are already sufficient to

stabilize the parameter estimates. (During the training of the residual parameters, these inner

iterations are embedded in each of the outer EM iterations.) Also, it was found that initialization

of all VTR variables to zero gives virtually the same estimates as those by more carefully thought

initialization schemes.

With the use of the above greedy, suboptimal technique instead of full optimal search,

the computation cost of VTR tracking was reduced by over 4000-fold compared with the

brute-force implementation of the algorithms.
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4.3.2 Experimental Results

As reported in [110], the above greedy technique was incorporated into the VTR tracking

algorithm and into the EM training algorithm for the nonlinear-prediction residual parameters.

The state equation was made simpler than the counterpart in the basic or extended model in

that all the phonological states s are tied. This is because for the purposes of tracking hidden

dynamics there is no need to distinguish the phonological states. The DP recursion in the more

general case of Eq. (4.33) can then be simplified by eliminating the optimization on index s ,

leaving only the indices i and j of the discretization levels in the hidden VTR variables during

the DP recursion. We also set the parameter rs = 1 uniformly in all the experiments. This gives

the role of the state equation as a “smoothness” constraint.

The effectiveness of the EM parameter estimation, Eqs. (4.57) and (4.60) in particular,

discussed for the extended model in this chapter will be demonstrated in the VTR tracking

experiments. Due to the tying of the phonological states, the training does not require any

data labeling and is fully unsupervised. Fig. 4.4 shows the VTR tracking ( f1, f2, f3, f4) results,

FIGURE 4.4: VTR tracking by setting the residual mean vector to zero
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superimposed on the spectrogram of a telephone speech utterance (excised from the Switchboard

database) of “the way you dress” by a male speaker, when the residual mean vector h (tied over

all s state) was set to zero and the covariance matrix D is set to be diagonal with empirically

determined diagonal values. [The initialized variances are those computed from the codebook

entries that are constructed from quantizing the nonlinear function in Eq. (4.46.)] Setting h

to zero corresponds to the assumption that the nonlinear function of Eq. (4.46) is an unbiased

predictor of the real speech data in the form of linear cepstra. Under this assumption we observe

from Fig. 4.4 that while f1 and f2 are accurately tracked through the entire utterance, f3 and

f4 are incorrectly tracked during the later half of the utterance. (Note that the many small step

jumps in the VTR estimates are due to the quantization of the VTR frequencies.) One iteration

of the EM training on the residual mean vector and covariance matrix does not correct the

errors (see Fig. 4.5), but two iterations are able to correct the errors in the utterance for about

20 frames (after time mark of 0.6 s in Fig. 4.6). One further iteration is able to correct almost

all errors as shown in Fig. 4.7.

FIGURE 4.5: VTR tracking with one iteration of residual training
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FIGURE 4.6: VTR tracking with two iterations of residual training

To examine the quantitative behavior of the residual parameter training, we list the log-

likelihood score as a function of the EM iteration number in Table 4.2. Three iterations of the

training appear to have reached the EM convergence. When we examine the VTR tracking

results after 5 and 20 iterations, they are found to be identical to Fig. 4.7, consistent with the

near-constant converging log-likelihood score reached after three iterations of training. Note

that the regions in the utterance where the speech energy is relatively low are where consonantal

constriction or closure is formed; e.g., near time mark of 0.1 s for /w/ constriction and near

time mark of 0.4 s for /d/ closure). The VTR tracker gives almost as accurate estimates for the

resonance frequencies in these regions as for the vowel regions.

4.4 SUMMARY
This chapter discusses one of the two specific types of hidden dynamic models in this book,

as example implementations of the general modeling and computational scheme introduced in

Chapter 2. The essence of the implementation described in this chapter is the discretization
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FIGURE 4.7: VTR tracking with three iterations of residual training

TABLE 4.2: Log-likelihood Score as a Function of the EM

Iteration Number in Training the Nonlinear-prediction Resid-

ual Parameters

EM ITERATION LOG-LIKELIHOOD

NO. SCORE

0 1.7680

1 2.0813

2 2.0918

3 2.1209

5 2.1220

20 2.1222
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of the hidden dynamic variables. While this implementation introduces approximations to

the original continuous-valued variables, the otherwise intractable parameter estimation and

decoding algorithms have become tractable, as we have presented in detail in this chapter.

This chapter starts by introducing the “basic” model, where the state equation in the

dynamic speech model gives discretized first-order dynamics and the observation equation is a

linear relationship between the discretized hidden dynamic variables and the acoustic observa-

tion variables. Probabilistic formulation of the model is presented first, which is equivalent to

the state–space formulation but is in a form that can be more readily used in developing and

describing the model parameter estimation algorithms. The parameter estimation algorithms

are presented, with sufficient detail in deriving all the final reestimation formulas as well as the

key intermediate quantities such as the auxiliary function in the E-step of the EM algorithm.

In particular, we separate the forward–backward algorithm out of the general E-step derivation

in a new subsection to emphasize its critical role. After deriving the reestimation formulas for

all model parameters as the M-step, we describe a DP-based algorithm for jointly decoding

the discrete phonological states and the hidden dynamic “state,” the latter constructed from

discretization of the continuous variables.

The chapter is followed by presenting an extension of the basic model in two aspects.

First, the state equation is extended from the first-order dynamics to the second-order dy-

namics, making the shape of the temporally unfolded “trajectories” more realistic. Second, the

observation equation is extended from the linear mapping to a nonlinear one. A new subsection

is then devoted to a special construction of the nonlinear mapping where a “physically” based

prediction function is developed when the hidden dynamic variables as the input are taken to

be the VTRs and the acoustic observations as the output are taken to be the linear cepstral

features. Using this nonlinear mapping function, we proceed to develop the E-step and M-step

of the EM algorithm for this extended model in a way parallel to that for the basic model.

Finally, we give an application example of the use of a simplified version of the extended

model and the related algorithms discussed in this chapter for automatic tracking of the hidden

dynamic vectors, the VTR trajectories in this case. Specific issues related to the tracking algo-

rithm’s efficiency arising from multidimensionality in the hidden dynamics are addressed, and

experimental results on some typical outputs of the algorithms are presented and analyzed.
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C H A P T E R 5

Models with Continuous-Valued

Hidden Speech Trajectories

The preceding chapter discussed the implementation strategy for hidden dynamic models based

on discretizing the hidden dynamic values. This permits tractable but approximate learning of

the model parameters and decoding of the discrete hidden states (both phonological states

and discretized hidden dynamic “states”). This chapter elaborates on another implementation

strategy where the continuous-valued hidden dynamics remain unchanged but a different type of

approximation is used. This implementation strategy assumes fixed discrete-state (phonological

unit) boundaries, which may be obtained initially from a simpler speech model set such as the

HMMs and then be further refined after the dynamic model is learned iteratively. We will

describe this new implementation and approximation strategy for a hidden trajectory model

(HTM) where the hidden dynamics are defined as an explicit function of time instead of by

recursion. Other types of approximation developed for the recursively defined dynamics can be

found in [84, 85, 121–123] and will not be described in this book.

This chapter extracts, reorganizes, and expands the materials published in [109,115,116,

124], fitting these materials into the general theme of dynamic speech modeling in this book.

5.1 OVERVIEW OF THE HIDDEN TRAJECTORY MODEL
As a special type of the hidden dynamic model, the HTM presented in this section is a struc-

tured generative model, from the top level of phonetic specification to the bottom level of

acoustic observations via the intermediate level of (nonrecursive) FIR-based target filtering that

generates hidden VTR trajectories. One advantage of the FIR filtering is its natural handling of

the two constraints (segment-bound monotonicity and target-directedness) that often requires

asynchronous segment boundaries for the VTR dynamics and for the acoustic observations.

This section is devoted to the mathematical formulation of the HTM as a statistical

generative model. Parameterization of the model is detailed here, with consistent notations set

up to facilitate the derivation and description of algorithmic learning of the model parameters

presented in the next section.
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5.1.1 Generating Stochastic Hidden Vocal Tract Resonance Trajectories

The HTM assumes that each phonetic unit is associated with a multivariate distribution of

the VTR targets. (There are exceptions for several compound phonetic units, including diph-

thongs and affricates, where two distributions are used.) Each phone-dependent target vector, ts ,

consists of four low-order resonance frequencies appended by their corresponding bandwidths,

where s denotes the segmental phone unit. The target vector is a random vector—hence stochas-

tic target—whose distribution is assumed to be a (gender-dependent) Gaussian:

p(t | s ) = N (t;μTs
,ΣTs

). (5.1)

The generative process in the HTM starts by temporal filtering the stochastic targets.

This results in a time-varying pattern of stochastic hidden VTR vectors z (k). The filter is

constrained so that the smooth temporal function of z (k) moves segment-by-segment towards

the respective target vector ts but it may or may not reach the target depending on the degree

of phonetic reduction.

These phonetic targets are segmental in that they do not change over the phone segment

once the sample is taken, and they are assumed to be largely context-independent. In our HTM

implementation, the generation of the VTR trajectories from the segmental targets is through

a bidirectional finite impulse response (FIR) filtering. The impulse response of this noncausal

filter is

hs (k) =

⎧⎪⎨⎪⎩
cγ−k

s (k) −D < k < 0,

c k = 0,

cγk
s (k) 0 < k < D,

(5.2)

where k represents time frame (typically with a length of 10 ms each), and γs (k) is the segment-

dependent “stiffness” parameter vector, one component for each resonance. Each component

is positive and real-valued, ranging between zero and one. In Eq. (5.2), c is a normalization

constant, ensuring that hs (k) sums to one over all time frames k. The subscript s (k) in γs (k)

indicates that the stiffness parameter is dependent on the segment state s (k), which varies

over time. D in Eq. (5.2) is the unidirectional length of the impulse response, representing the

temporal extent of coarticulation in one temporal direction, assumed for simplicity to be equal

in length for the forward direction (anticipatory coarticulation) and the backward direction

(regressive coarticulation).

In Eq. (5.2), c is the normalization constant to ensure that the filter weights add up to

one. This is essential for the model to produce target undershooting, instead of overshooting.

To determine c , we require that the filter coefficients sum to one:

D∑
k=−D

hs (k) = c
D∑

k=−D

γ
|k|
s (k) = 1. (5.3)
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For simplicity, we make the assumption that over the temporal span of −D ≤ k ≤ D, the

stiffness parameter’s value stays approximately constant

γ s (k) ≈ γ.

That is, the adjacent segments within the temporal span of 2D + 1 in length that contribute

to the coarticulated home segment have the same stiffness parameter value as that of the home

segment. Under this assumption, we simplify Eq. (5.3) to

c
D∑

k=−D

γ
|k|
s (k) ≈ c [1 + 2(γ + γ2 + · · · + γD)] = c

1 + γ − 2γD+1

1 − γ
.

Thus,

c (γ) ≈ 1 − γ

1 + γ − 2γD+1
. (5.4)

The input to the above FIR filter as a linear system is the target sequence, which is a

function of discrete time and is subject to abrupt jumps at the phone segments’ boundaries.

Mathematically, the input is represented as a sequence of stepwise constant functions with

variable durations and heights:

t(k) =
I∑

i=1

[u(k − kl
s i

) − u(k − kr
s i

)]ts i
, (5.5)

where u(k) is the unit step function, kr
s , s = s1, s2, . . . , s I are the right boundary sequence

of the segments (I in total) in the utterance, and kl
s , s = s1, s2, . . . , s I are the left boundary

sequence. Note the constraint on these starting and end times: kl
s +1 = kr

s . The difference of

the two boundary sequences gives the duration sequence. ts , s = s1, s2, . . . , s I are the random

target vectors for segment s .

Given the filter’s impulse response and the input to the filter as the segmental VTR

target sequence t(k), the filter’s output as the model’s prediction for the VTR trajectories is the

convolution between these two signals. The result of the convolution within the boundaries of

home segment s is

z (k) = hs (k) ∗ t(k) =
k+D∑

τ=k−D

c γγ
|k−τ |
s (τ ) ts (τ ), (5.6)

where the input target vector’s value and the filter’s stiffness vector’s value typically take not only

those associated with the current home segment, but also those associated with the adjacent

segments. The latter case happens when the time τ in Eq. (5.6) goes beyond the home segment’s

boundaries, i.e., when the segment s (τ ) occupied at time τ switches from the home segment to

an adjacent one.
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The linearity between z and t as in Eq. (5.6) and Gaussianity of the target t makes the

VTR vector z (k) (at each frame k) a Gaussian as well. We now discuss the parameterization of

this Gaussian trajectory:

p(z (k) | s ) = N [z (k);μz(k),Σz(k)]. (5.7)

The mean vector above is determined by the filtering function:

μz(k) =
k+D∑

τ=k−D

c γγ
|k−τ |
s (τ ) μTs (τ )

= ak · μT. (5.8)

Each f th component of vector μz (k) is

μz (k)( f ) =
L∑

l=1

ak(l)μT(l, f ), (5.9)

where L is the total number of phone-like HTM units as indexed by l , and f = 1, . . . , 8 denotes

four VTR frequencies and four corresponding bandwidths.

The covariance matrix in Eq. (5.7) can be similarly derived to be

Σz(k) =
k+D∑

τ=k−D

c 2
γ γ

2|k−τ |
s (τ ) ΣTs (τ )

.

Approximating the covariance matrix by a diagonal one for each phone unit l , we represent its

diagonal elements as a vector:

σ2
z(k) = vk · σ2

T. (5.10)

and the target covariance matrix is also approximated as diagonal:

ΣT(l) ≈

⎡⎢⎢⎢⎢⎣
σ 2

T(l, 1) 0 · · · 0

0 σ 2
T(l, 2) · · · 0

...
...

. . .
...

0 0 · · · σ 2
T(l, 8)

⎤⎥⎥⎥⎥⎦ .

The f th element of the vector in Eq. (5.10) is

σ 2
z (k)( f ) =

L∑
l=1

vk(l)σ 2
T(l, f ). (5.11)

In Eqs. (5.8) and (5.10), ak and vk are frame (k)-dependent vectors. They are constructed

for any given phone sequence and phone boundaries within the coarticulation range (2D + 1

frames) centered at frame k. Any phone unit beyond the 2D + 1 window contributes a zero
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value to these “coarticulation” vectors’ elements. Both ak and vk are a function of the phones’

identities and temporal orders in the utterance, and are independent of the VTR dimension f .

5.1.2 Generating Acoustic Observation Data

The next generative process in the HTM provides a forward probabilistic mapping or prediction

from the stochastic VTR trajectory z (k) to the stochastic observation trajectory o(k). The

observation takes the form of linear cepstra. An analytical form of the nonlinear prediction

function F[z (k)] presented here is in the same form as described (and derived) in Section 4.2.3

of Chapter 4 and is summarized here:

Fq (k) = 2

q

P∑
p=1

e
−πq

b p (k)

fsamp cos(2πq
f p(k)

fsamp

), (5.12)

where fsamp is the sampling frequency, P is the highest VTR order (P = 4), and q is the cepstral

order.

We now introduce the cepstral prediction’s residual vector:

rs (k) = o(k) − F[z (k)].

We model this residual vector as a Gaussian parameterized by residual mean vector μrs (k)
and

covariance matrix Σrs (k)
:

p(rs (k) | z (k), s ) = N
[

rs (k);μrs (k)
,Σrs (k)

]
. (5.13)

Then the conditional distribution of the observation becomes:

p(o(k) | z (k), s ) = N
[

o(k);F[z (k)] + μrs (k)
,Σrs (k)

]
. (5.14)

An alternative form of the distribution in Eq. (5.14) is the following “observation equa-

tion”:

o(k) = F[z (k)] + μrs (k)
+ vs (k),

where the observation noise vs (k) ∼ N (vs ; 0,Σrs (k)
).

5.1.3 Linearizing Cepstral Prediction Function

To facilitate computing the acoustic observation (linear cepstra) likelihood, it is important to

characterize the linear cepstra uncertainty in terms of its conditional distribution on the VTR,

and to simplify the distribution to a computationally tractable form. That is, we need to specify

and approximate p(o | z, s ). We take the simplest approach to linearize the nonlinear mean
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function of F[z (k)] in Eq. (5.14) by using the first-order Taylor series approximation:

F[z (k)] ≈ F[z0(k)] + F ′[z0(k)](z (k) − z0(k)), (5.15)

where the components of Jacobian matrix F ′[·] can be computed in a closed form of

F ′
q [ f p(k)] = − 4π

fsamp

e
−πq

b p (k)

fsamp sin

(
2πq

f p(k)

fsamp

)
, (5.16)

for the VTR frequency components of z , and

F ′
q [b p(k)] = − 2π

fsamp

e
−πq

b p (k)

fsamp cos

(
2πq

f p(k)

fsamp

)
, (5.17)

for the VTR bandwidth components of z . In the current implementation, the Taylor series

expansion point z0(k) in Eq. (5.15) is taken as the tracked VTR values based on the HTM.

Substituting Eq. (5.15) into Eq. (5.14), we obtain the approximate conditional acoustic

observation probability where the mean vector μo s
is expressed as a linear function of the VTR

vector z :

p(o(k) | z (k), s ) ≈ N (o(k);μo s (k),Σrs (k)
), (5.18)

where

μo s (k)
= F ′[z 0(k)]z (k) +

[
F[z 0(k)] − F ′[z 0(k)]z 0(k) + μrs (k)

]
. (5.19)

This then permits a closed-form solution for acoustic likelihood computation, which we

derive now.

5.1.4 Computing Acoustic Likelihood

An essential aspect of the HTM is its ability to provide the likelihood value for any sequence of

acoustic observation vectors o(k) in the form of cepstral parameters. The efficiently computed

likelihood provides a natural scoring mechanism comparing different linguistic hypotheses as

needed in speech recognition. No VTR values z (k) are needed in this computation as they are

treated as the hidden variables. They are marginalized (i.e., integrated over) in the linear cepstra

likelihood computation. Given the model construction and the approximation described in the

preceding section, the HTM likelihood computation by marginalization can be carried out in
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a closed form. Some detailed steps of derivation give

p(o(k) | s ) =
∫

p[o(k) | z (k), s ]p[z (k) | s ] d z

≈
∫

N [o(k);μo s (k)
,Σrs (k)

] N [z (k);μz(k),Σz(k)] d z

= N
{

o(k); μ̄o s (k), Σ̄o s (k)

}
, (5.20)

where the time (k)-varying mean vector is

μ̄o s
(k) = F[z0(k)] + F ′[z0(k)][ak · μT − z0(k)] + μrs (k)

, (5.21)

and the time-varying covariance matrix is

Σ̄o s
(k) = Σrs (k)

+ F ′[z0(k)]Σz(k)(F ′[z0(k)])Tr. (5.22)

The final result of Eqs. (5.20)–(5.22) are quite intuitive. For instance, when the Taylor

series expansion point is set at z0(k) = μz(k) = ak · μT, Eq. (5.21) is simplified to μ̄o s
(k) =

F[μz(k)] + μrs
, which is the noise-free part of cepstral prediction. Also, the covariance ma-

trix in Eq. (5.20) is increased by the quantity F ′[z0(k)]Σz(k)(F ′[z0(k)])Tr over the covariance

matrix for the cepstral residual term Σrs (k)
only. This magnitude of increase reflects the newly

introduced uncertainty in the hidden variable, measured by Σz(k). The variance amplification

factor F ′[z0(k)] results from the local “slope” in the nonlinear function F[z] that maps from

the VTR vector z (k) to cepstral vector o(k).

It is also interesting to interpret the likelihood score Eq. (5.20) as probabilistic charac-

terization of a temporally varying Gaussian process, where the time-varying mean vectors are

expressed in Eq. (5.21) and the time-varying covariance matrices are expressed in Eq. (5.22).

This may make the HTM look ostensibly like a nonstationary-state HMM (within the acoustic

dynamic model category). However, the key difference is that in HTM the dynamic structure

represented by the hidden VTR trajectory enters into the time-varying mean vector Eq. (5.21)

in two ways: (1) as the argument z0(k) in the nonlinear function F[z0(k)]; and (2) as the

term ak · μT = μz(k) in Eq. (5.21). Being closely related to the VTR tracks, they both capture

long-span contextual dependency, yet with mere context-independent VTR target parameters.

Similar properties apply to the time-varying covariance matrices in Eq. (5.22). In contrast, the

time-varying acoustic dynamic models do not have these desirable properties. For example, the

polynomial trajectory model [55, 56, 86] does regression fitting directly on the cepstral data,

exploiting no underlying speech structure and hence requiring context dependent polynomial

coefficients for representing coarticulation. Likewise, the more recent trajectory model [26] also

relies on a very large number of free model parameters to capture acoustic feature variations.
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5.2 UNDERSTANDING MODEL BEHAVIOR
BY COMPUTER SIMULATION

In this section, we present the model simulation results, extracted from the work published

in [109], demonstrating major dynamic properties of the HTM. We further compare these

results with the corresponding results from direct measurements of reduction in the acoustic–

phonetic literature.

To illustrate VTR frequency or formant target undershooting, we first show the spectro-

gram of three renditions of a three-segment /iy aa iy/ (uttered by the author of this book) in

Fig. 5.1. From left to right, the speaking rate increases and speaking effort decreases, with the

durations of the /aa/’s decreasing from approximately 230 to 130 ms. Formant target under-

shooting for f1 and f2 is clearly visible in the spectrogram, where automatically tracked formants

are superimposed (as the solid lines) in Fig. 5.1 to aid identification of the formant trajectories.

(The dashed lines are the initial estimates, which are then refined to give the solid lines.)

5.2.1 Effects of Stiffness Parameter on Reduction

The same kind of target undershooting for f1 and f2 as in Fig. 5.1 is exhibited in the model

prediction, shown in Fig. 5.2, where we also illustrate the effects of the FIR filter’s stiffness

parameter on the magnitude of formant undershooting or reduction. The model prediction

is the FIR filter’s output for f1 and f2. Figs. 5.2(a)–(c) correspond to the use of the stiffness

parameter value (the same for each formant vector component) set at γ = 0.85, 0.75 and 0.65,

respectively, where in each plot the slower /iy aa iy/ sounds (with the duration of /aa/ set at

FIGURE 5.1: Spectrogram of three renditions of /iy aa iy/ by one author, with an increasingly higher

speaking rate and increasingly lower speaking efforts. The horizontal label is time, and the vertical one

is frequency
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FIGURE 5.2: f1 and f2 formant or VTR frequency trajectories produced from the model for a slow /iy

aa iy/ followed by a fast /iy aa iy/. (a), (b) and (c) correspond to the use of the stiffness parameter values

of γ = 0.85, 0.75 and 0.65, respectively. The amount of formant undershooting or reduction during the

fast /aa/ is decreasing as the γ value decreases. The dashed lines indicate the formant target values and

their switch at the segment boundaries

230 ms or 23 frames) are followed by the faster /iy aa iy/ sounds (with the duration of /aa/ set

at 130 ms or 13 frames). f1 and f2 targets for /iy/ and /aa/ are set appropriately in the model

also. Comparing the three plots, we have the model’s quantitative prediction for the magnitude

of reduction in the faster /aa/ that is decreasing as the γ value decreases.

In Figs. 5.3(a)–(c), we show the same model prediction as in Fig. 5.2 but for different

sounds /iy eh iy/, where the targets for /eh/ are much closer to those of the adjacent sound /iy/

than in the previous case for /aa/. As such, the absolute amount of reduction becomes smaller.

However, the same effect of the filter parameter’s value on the size of reduction is shown as for

the previous sounds /iy aa iy/.
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FIGURE 5.3: Same as Fig. 5.2 except for the /iy eh iy/ sounds. Note that the f1 and f2 target values

for /eh/ are closer to /iy/ than those for /aa/

5.2.2 Effects of Speaking Rate on Reduction

In Fig. 5.4, we show the effects of speaking rate, measured as the inverse of the sound segment’s

duration, on the magnitude of formant undershooting. Subplots (a)–(c) correspond to three

decreasing durations of the sound /aa/ in the /iy aa iy/ sound sequence. They illustrate an

increasing amount of the reduction with the decreasing duration or increasing speaking rate.

Symbol “x” in Fig. 5.4 indicates the f1 and f2 formant values at the central portions of vowels/

aa/, which are predicted from the model and are used to quantify the magnitude of reduction.

These values (separately for f1 and f2) for /aa/ are plotted against the inversed duration in

Fig. 5.5, together with the corresponding values for /eh/ (i.e., IPA ε) in the /iy eh iy/ sound

sequence. The most interesting observation is that as the speaking rate increases, the distinction

between vowels /aa/ and /eh/ gradually diminishes if their static formant values extracted from

the dynamic patterns are used as the sole measure for the difference between the sounds. We
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FIGURE 5.4: f1 and f2 formant trajectories produced from the model for three different durations of

/aa/ in the /iy aa iy/ sounds: (a) 25 frames (250 ms), (b) 20 frames and (c) 15 frames. The same γ value of

0.85 is used. The amount of target undershooting increases as the duration is shortened or the speaking

rate is increased. Symbol “x” indicates the f1 and f2 formant values at the central portions of vowels of /aa/

refer to this phenomenon as “static” sound confusion induced by increased speaking rate (or/and

by a greater degree of sloppiness in speaking).

5.2.3 Comparisons with Formant Measurement Data

The “static” sound confusion between /aa/ and /eh/ quantitatively predicted by the model

as shown in Fig. 5.5 is consistent with the formant measurement data published in [125],

where thousands of natural sound tokens were used to investigate the relationship between

the degree of formant undershooting and speaking rate. We reorganized and replotted the raw

data from [125] in Fig. 5.6, in the same formant as Fig. 5.5. While the measures of speaking

rate differ between the measurement data and model prediction and cannot be easily converted

to each other, they are generally consistent with each other. The similar trend for the greater
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FIGURE 5.5: Relationship, based on model prediction, between the f1 and f2 formant values at the

central portions of vowels and the speaking rate. Vowel /aa/ is in the carry-phrase /iy aa iy/, and vowel

/eh/ in /iy eh iy/. Note that as the speaking rate increases, the distinction between vowels /aa/ and /eh/

measured by the difference between their static formant values gradually diminishes. The same γ value

of 0.9 is used in generating all points in the figure

degree of “static” sound confusion as speaking rate increases is clearly evident from both the

measurement data (Fig. 5.6) and prediction (Fig. 5.5).

5.2.4 Model Prediction of Vocal Tract Resonance Trajectories for Real

Speech Utterances

We have used the expected VTR trajectories computed from the HTM to predict actual VTR

frequency trajectories for real speech utterances from the TIMIT database. Only the phone

identities and their boundaries are input to the model for the prediction, and no use is made of

speech acoustics. Given the phone sequence in any utterance, we first break up the compound

phones (affricates and diphthongs) into their constituents. Then we obtain the initial VTR
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FIGURE 5.6: The formant measurement data from literature are reorganized and plotted, showing

similar trends to the model prediction under similar conditions

target values based on limited context dependency by table lookup (see details in [9], Ch. 13).

Then automatic and iterative target adaptation is performed for each phone-like unit based

on the difference between the results of a VTR tracker (described in [126]) and the VTR

prediction from the FIR filter model. These target values are provided not only to vowels, but

also to consonants for which the resonance frequency targets are used with weak or no acoustic

manifestation. The converged target values, together with the phone boundaries provided from

the TIMIT database, form the input to the FIR filter of the HTM and the output of the filter

gives the predicted VTR frequency trajectories.

Three example utterances from TIMIT (SI1039, SI1669 and SI2299) are shown in

Figs. 5.7–5.9. The stepwise dashed lines ( f1/ f2/ f3/ f4) are the target sequences as inputs to the

FIR filter, and the continuous lines ( f1/ f2/ f3/ f4) are the outputs of the filter as the predicted

VTR frequency trajectories. Parameters γ and D are fixed and not automatically learned. To

facilitate assessment of the accuracy in the prediction, the inputs and outputs are superimposed
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FIGURE 5.7: The f1/ f2/ f3/ f4 VTR frequency trajectories (smooth lines) generated from the FIR model

for VTR target filtering using the phone sequence and duration of a speech utterance (SI1039) taken from

the TIMIT database. The target sequence is shown as stepwise lines, switching at the phone boundaries

labeled in the database. They are superimposed on the utterance’s spectrogram. The utterance is “He has

never, himself, done anything for which to be hated—which of us has ”

on the spectrograms of these utterances, where the true resonances are shown as the dark

bands. For the majority of frames, the filter’s output either coincides or is close to the true VTR

frequencies, even though no acoustic information is used. Also, comparing the input and output

of the filter, we observe only a rather mild degree of target undershooting or reduction in these

and many other TIMIT utterances we have examined but not shown here.

5.2.5 Simulation Results on Model Prediction for Cepstral Trajectories

The predicted VTR trajectories in Figs. 5.7–5.9 are fed into the nonlinear mapping function

in the HTM to produce the predicted linear cepstra shown in Figs. 5.10–5.12, respectively, for
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FIGURE 5.8: Same as Fig. 5.7 except with another utterance “Be excited and don’t identify yourself ”

(SI1669)

the three example TIMIT utterances. Note that the model prediction includes residual means,

which are trained from the full TIMIT data set using an HTK tool. The zero-mean random

component of the residual is ignored in these figures. The residual means for the substates

(three for each phone) are added sequentially to the output of the nonlinear function Eq. (5.12),

assuming each substate occupies three equal-length subsegments of the entire phone segment

length provided by TIMIT database. To avoid display cluttering, only linear cepstra with orders

one (C1), two (C2) and three (C3) are shown here, as the solid lines. Dashed lines are the linear

cepstral data C1, C2 and C3 computed directly from the waveforms of the same utterances

for comparison purposes. The data and the model prediction generally agree with each other,

somewhat better for lowerorder cepstra than for higherorder ones. It was found that these

discrepancies are generally within the variances of the prediction residuals automatically trained

from the entire TIMIT training set (using an HTK tool for monophone HMM training).
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FIGURE 5.9: Same as Fig. 5.7 except with the third utterance “Sometimes, he coincided with my father’s

being at home ” (SI2299)

5.3 PARAMETER ESTIMATION
In this section, we will present in detail a novel parameter estimation algorithm we have devel-

oped and implemented for the HTM described in the preceding section, using the linear cepstra

as the acoustic observation data in the training set. The criterion used for this training is to

maximize the acoustic observation likelihood in Eq. (5.20). The full set of the HTM parameters

consists of those characterizing the linear cepstra residual distributions and those characterizing

the VTR target distributions. We present their estimation separately below, assuming that all

phone boundaries are given (as in the TIMIT training data set).

5.3.1 Cepstral Residuals’ Distributional Parameters

This subset of the HTM parameters consists of (1) the mean vectors μrs
and (2) the diagonal

elements σ2
rs

in the covariance matrices of the cepstral prediction residuals. Both of them are

conditioned on phone or sub-phone segmental unit s .
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FIGURE 5.10: Linear cepstra with order one (C1), two (C2) and three (C3) predicted from the final

stage of the model generating the linear cepstra (solid lines) with the input from the FIR filtered results

(for utterance SI1039). Dashed lines are the linear cepstral data C1, C2 and C3 computed directly from

the waveform

Mean Vectors

To find the ML (maximum likelihood) estimate of parameters μrs
, we set

∂ log
∏K

k=1 p(o(k) | s )

∂μrs

= 0,

where p(o(k) | s ) is given by Eq. (5.20), and K denotes the total duration of sub-phone s in the

training data. This gives

K∑
k=1

[
o(k) − μ̄o s

]
= 0, or (5.23)
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FIGURE 5.11: Same as Fig. 5.10 except with the second utterance (SI2299)

K∑
k=1

[
o(k) − F ′[z 0(k)]μz(k)

−{F[z 0(k)] + μrs
− F ′[z 0(k)]z 0(k)}

]
= 0. (5.24)

Solving for μrs
, we have the estimation formula of

μ̂rs
=

∑
k

[
o(k) − F[z 0(k)] − F ′[z 0(k)]μ z(k) + F ′[z 0(k)]z 0(k)

]
K

. (5.25)

Diagonal Covariance Matrices

Denote the diagonal elements of the covariance matrices for the residuals as a vector σ2
rs

. To

derive the ML estimate, we set

∂ log
∏K

k=1 p(o(k) | s )

∂σ2
rs

= 0,
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FIGURE 5.12: Same as Fig. 5.10 except with the third utterance (SI1669)

which gives

K∑
k=1

[σ2
rs

+ q(k) − (o(k) − μ̄o s
)2

[σ2
rs

+ q(k)]2

]
= 0, (5.26)

where vector squaring is the element-wise operation, and

q(k) = diag
[
F ′[z0(k)]Σz(k)(F ′[z0(k)])Tr

]
. (5.27)

Due to the frame (k) dependency in the denominator in Eq. (5.26), no simple closed-form

solution is available for solving σ2
rs

from Eq. (5.26). We have implemented three different

techniques for seeking approximate ML estimates that are outlined as follows:

1. Frame-independent approximation: Assume the dependency of q(k) on time frame k is

mild, or q(k) ≈ q̄. Then the denominator in Eq. (5.26) can be cancelled, yielding the
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approximate closed-form estimate of

σ̂2
rs

≈
∑K

k=1

{
(o(k) − μ̄o s

)2 − q(k)
}

K
. (5.28)

2. Direct gradient ascent: Make no assumption of the above, and take the left-hand side of

Eq. (5.26) as the gradient ∇L of log-likelihood of the data in the standard gradient-

ascent algorithm:

σ2
rs

(t + 1) = σ2
rs

(t) + εt∇L(o K
1 |σ2

rs
(t)),

where εt is a heuristically chosen positive constant controlling the learning rate at the

t-th iteration.

3. Constrained gradient ascent: Add to the previous standard gradient ascent technique the

constraint that the variance estimate be always positive. The constraint is established

by the parameter transformation: σ̃2
rs

= logσ2
rs

, and by performing gradient ascent for

σ̃2
rs

instead for σ2
rs

:

σ̃2
rs

(t + 1) = σ̃2
rs

(t) + ε̃t∇ L̃(o K
1 | σ̃2

rs
(t)),

Using chain rule, we show below that the new gradient ∇ L̃ is related to the gradient

∇L before parameter transformation in a simple manner:

∇ L̃ = ∂L̃

∂σ̃2
rs

= ∂ L̃

∂σ2
rs

∂σ2
rs

∂σ̃2
rs

= (∇L) exp(σ̃2
rs

).

At the end of the algorithm iteration, the parameters are transformed viaσ2
rs

= exp(σ̃2
rs

),

which is guaranteed to be positive.

For efficiency purposes, parameter updating in the above gradient ascent techniques is

carried out after each utterance in the training, rather than after the entire batch of all utterances.

We note that the quality of the estimates for the residual parameters discussed above plays

a crucial role in phonetic recognition performance. These parameters provide an important

mechanism for distinguishing speech sounds that belong to different manners of articulation.

This is attributed to the fact that nonlinear cepstral prediction from VTRs has different accuracy

for these different classes of sounds. Within the same manner class, the phonetic separation

is largely accomplished by distinct VTR targets, which typically induce significantly different

cepstral prediction values via the “amplification” mechanism provided by the Jacobian matrix

F ′[z].
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5.3.2 Vocal Tract Resonance Targets’ Distributional Parameters

This subset of the HTM parameters consists of (1) the mean vectors μTs
and (2) the diagonal

elements σ2
Ts

in the covariance matrices of the stochastic segmental VTR targets. They are also

conditioned on phone segment s (and not on sub-phone segment).

Mean Vectors

To obtain a closed-form estimation solution, we assume diagonality of the prediction cepstral

residual’s covariance matrix Σrs
. Denoting its q th component by σ2

r (q ) (q = 1, 2, . . . , Q), we

decompose the multivariate Gaussian of Eq. (5.20) element-by-element into

p(o(k) | s (k)) =
J∏

j=1

1√
2πσ 2

o s (k)
( j )

exp
{
− (o k( j ) − μ̄o s (k)

( j ))2

2σ 2
o s (k)

( j )

}
, (5.29)

where o k( j ) denotes the j th component (i.e., j th order) of the cepstral observation vector at

frame k.

The log-likelihood function for a training data sequence (k = 1, 2, . . . , K ) relevant to

the VTR mean vector μTs
becomes

P =
K∑

k=1

J∑
j=1

{
− (o k( j ) − μ̄o s (k)

( j ))2

σ 2
o s (k)

( j )

}
(5.30)

=
K∑

k=1

J∑
j=1

{ [
∑

f F ′[z0(k), j, f ]
∑

l ak(l)μT(l, f ) − dk( j )]2

σ 2
o s (k)

( j )

}
,

where l and f are indices to phone and to VTR component, respectively, and

dk( j ) = o k( j ) − F[z0(k), j] +
∑

f

F ′[z0(k), j, f ]z0(k, f ) − μrs (k)
( j ).

While the acoustic feature’s distribution is Gaussian for both HTM and HMM given

the state s , the key difference is that the mean and variance in HTM as in Eq. (5.20) are both

time-varying functions (hence trajectory model). These functions provide context dependency

(and possible target undershooting) via the smoothing of targets across phonetic units in the

utterance. This smoothing is explicitly represented in the weighted sum over all phones in the

utterance (i.e.,
∑

l ) in Eq. (5.30).

Setting

∂P

∂μT(l0, f0)
= 0,
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and grouping terms involving unknown μT (l, f ) on the left and the remaining terms on the

right, we obtain ∑
f

∑
l

A(l, f ; l0, f0)μT(l, f )

=
∑

k

{∑
j

F ′[z0(k), j, f0]

σ 2
o s (k)

( j )
dk( j )

}
ak(l0), (5.31)

with f0 = 1, 2, . . . , 8 for each VTR dimension, and with l0 = 1, 2, . . . , 58 for each phone unit.

In Eq. (5.31),

A(l, f ; l0, f0) =
∑
k, j

F ′[z0(k), j, f ]F ′[z0(k), j, f0]

σ 2
o s (k)

( j )
ak(l0)ak(l). (5.32)

Eq. (5.31) is a 464 × 464 full-rank linear system of equations. (The dimension 464 =
58 × 8 where we have a total of 58 phones in the TIMIT database after decomposing each

diphthong into two “phones”, and 8 is the VTR vector dimension.) Matrix inversion gives an

ML estimate of the complete set of target mean parameters: a 464-dimensional vector formed

by concatenating all eight VTR components (four frequencies and four bandwidths) of the

58 phone units in TIMIT.

In implementing Eq. (5.31) for the ML solution to target mean vectors, we kept other

model parameters constant. Estimation of the target and residual parameters was carried out

in an iterative manner. Initialization of the parameters μT (l, f ) was provided by the values

described in [9].

An alternative training of the target mean parameters in a simplified version of the HTM

and its experimental evaluation are described in [112]. In that training, the VTR tracking

results obtained by the tracking algorithm described in Chapter 4 are exploited as the basis for

learning, contrasting the learning described in this section, which uses the raw cepstral acoustic

data only. Use of the VTR tracking results enables speaker-adaptive learning for the VTR target

parameters as shown in [112].

Diagonal Covariance Matrices

To establish the objective function for optimization, we take logarithm on the sum of the

likelihood function Eq. (5.29) (over K frames) to obtain

LT ∝ −
K∑

k=1

J∑
j=1

{
(o k( j ) − μ̄o s (k)

( j ))2

σ 2
rs

( j ) + q (k, j )
+ log [σ 2

rs
( j ) + q (k, j )]

}
, (5.33)
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where q (k, j ) is the j th element of the vector q(k) as defined in Eq. (5.27). When Σz(k) is

diagonal, it can be shown that

q (k, j ) =
∑

f

σ 2
z(k)( f )(F ′

j f )2 =
∑

f

∑
l

vk(l)σ 2
T(l, f )(F ′

j f )2, (5.34)

where F ′
j f is the ( j, f ) element of Jacobian matrix F ′[·] in Eq. (5.27), and the second equality

is due to Eq. (5.11).

Using chain rule to compute the gradient, we obtain

∇LT(l, f ) = ∂LT

∂σ 2
T(l, f )

(5.35)

=
K∑

k=1

J∑
j=1

{
(o k( j ) − μ̄o s (k)

( j ))2(F ′
j f )2vk(l)

[σ 2
rs

( j ) + q (k, j )]2
− (F ′

j f )2vk(l)

σ 2
rs

( j ) + q (k, j )

}
.

Gradient-ascend iterations then proceed as follows:

σ2
T(l, f ) ← σ2

T(l, f ) + ε∇LT(l, f ),

for each phone l and for each element f in the diagonal VTR target covariance matrix.

5.4 APPLICATION TO PHONETIC RECOGNITION
5.4.1 Experimental Design

Phonetic recognition experiments have been conducted [124] aimed at evaluating the HTM

and the parameter learning algorithms described in this chapter. The standard TIMIT phone

set with 48 labels is expanded to 58 (as described in [9]) in training the HTM parameters using

the standard training utterances. Phonetic recognition errors are tabulated using the commonly

adopted 39 labels after the label folding. The results are reported on the standard core test set

of 192 utterances by 24 speakers [127].

Due to the high implementation and computational complexity for the full-fledged HTM

decoder, the experiments reported in [124] have been restricted to those obtained by N-best

rescoring and lattice-constrained search. For each of the core test utterances, a standard decision-

tree-based triphone HMM with the bi-gram language model is used to generate a large N-best

list (N = 1000) and a large lattice. These N-best lists and lattices are used for the rescoring

experiments with the HTM. The HTM system is trained using the parameter estimation

algorithms described earlier in this chapter. Learning rates in the gradient ascent techniques

have been tuned empirically.
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5.4.2 Experimental Results

In Table 5.1, phonetic recognition performance comparisons are shown between the HMM

system described above and three evaluation versions of the HTM system. The HTM-1 version

uses the HTM likelihood computed from Eq. (5.20) to rescore the 1000-best lists, and no HMM

score and language model (LM) score attached in the 1000-best list are exploited. The HTM-2

version improves the HTM-1 version slightly by linearly weighting the log-likelihoods of the

HTM, the HMM and the (bigram) LM, based on the same 1000-best lists. The HTM-3

version replaces the 1000-best lists by the lattices, and carries out A* search, constrained by the

lattices and with linearly weighted HTM–HMM–LM scores, to decode phonetic sequences.

(See a detailed technical description of this A*-based search algorithm in [111].) Notable

performance improvement is obtained as shown in the final row of Table 5.1. For all the

systems, the performance is measured by percent phone recognition accuracy (i.e., including

insertion errors) averaged over the core test-set sentences (numbers in bolds in column 2). The

percent-correctness performance (i.e., excluding insertion errors) is listed in column 3. The

substitution, deletion and insertion error rates are shown in the remaining columns.

The performance results in Table 5.1 are obtained using the identical acoustic features of

frequency-warped linear cepstra for all the systems. Frequency warping of linear cepstra [128]

has been implemented by a linear matrix-multiplication technique on both acoustic features and

the observation-prediction component of the HTM. The warping gives slight performance

improvement for both HMM and HTM systems by a similar amount. Overall, the lattice-

based HTM system (75.07% accuracy) gives 13% fewer errors than does the HMM system

TABLE5.1: TIMIT Phonetic Recognition Performance Comparisons Between

an HMM System and Three Versions of the HTM System

ACC % CORR % SUB % DEL % INS %

HMM 71.43 73.64 17.14 9.22 2.21

HTM-1 74.31 77.76 16.23 6.01 3.45

HTM-2 74.59 77.73 15.61 6.65 3.14

HTM-3 75.07 78.28 15.94 5.78 3.20

Note. HTM-1: N-best rescoring with HTM scores only; HTM-2: N-

best rescoring with weighted HTM, HMM and LM scores; HTM-3:

Lattice-constrained A* search with weighted HTM, HMM and LM

scores. Identical acoustic features (frequency-warped linear cepstra) are

used.
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(71.43% accuracy). This performance is better than that of any HMM system on the same task

as summarized in [127], and is approaching the best-ever result (75.6% accuracy) obtained by

using many heterogeneous classifiers as reported in [127] also.

5.5 SUMMARY
In this chapter, we present in detail a second specific type of hidden dynamic models, which

we call the hidden trajectory model (HTM). The unique character of the HTM is that the

hidden dynamics are represented not by temporal recursion on themselves but by explicit “tra-

jectories” or hidden trended functions constructed by FIR filtering of targets. In contrast to

the implementation strategy for the model discussed in Chapter 4 where the hidden dynamics

are discretized, the implementation strategy in the HTM maintains continuous-valued hidden

dynamics, and introduces approximations by constraining the temporal boundaries associated

with discrete phonological states. Given such constraints, rigorous algorithms for model param-

eter estimation are developed and presented without the need to approximate the continuous

hidden dynamic variables by their discretized values as done in Chapter 4.

The main portions of this chapter are devoted to formal construction of the HTM, its

computer simulation and the parameter estimation algorithm’s development. The computa-

tionally efficient decoding algorithms have not been presented, as they are still under research

and development and are hence not appropriate to describe in this book at present. In contrast,

decoding algorithms for discretized hidden dynamic models are much more straightforward to

develop, as we have presented in Chapter 4.

Although we present only two types of implementation strategies in this book (Chapters

4, 5, respectively) for dynamic speech modeling within the general computational framework

established in Chapter 2, other types of implementation strategies and approximations (such as

variational learning and decoding) are possible. We have given some related references at the

beginning of this chapter.

As a summary and conclusion of this book, we have provided scientific background, math-

ematical theory, computational framework, algorithmic development and technological needs

and two selected applications for dynamic speech modeling, which is the theme of this book.

A comprehensive survey in this area of research is presented, drawing on the work of a number

of (non-exhaustive) research groups and individual researchers worldwide. This direction of

research is guided by scientific principles applied to study human speech communication, and is

based on the desire to acquire knowledge about the realistic dynamic process in the closed-loop

speech chain. It is hoped that with integration of this unique style of research with other pow-

erful pattern recognition and machine learning approaches, the dynamic speech models, as they

become better developed, will form a foundation for the next-generation speech technology

serving the humankind and society.
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