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Zigital speech processing is a maCor field in current research all oAer the world. -n particular 
for automatic speech recognition [8?O\, Aery significant achieAements haAe been made since 
the first attempts of digit recogni]ers in the YU^G_s and YUXG_s when spectral resonances were 
determined by analogue filters and logical circuits. 8s "rof. Kurui pointed out in his reAiew 
on ^G years of automatic speech recognition at the WFnd -111 -nternational Monference on 
8coustics, ?peech, and ?ignal "rocessing [-M8??"\, FGGH, we may now see speech recogni.
tion systems in their W.^th generation. 8lthough there are many excellent systems for con.
tinuous speech recognition, speech translation and information extraction, 8?O systems 
need to be improAed for spontaneous speech. Kurthermore, robustness under noisy condi.
tions is still a goal that has not been achieAed entirely if distant microphones are used for 
speech input. The automated recognition of emotion is another aspect in Aoice.driAen sys.
tems that has gained much importance in recent years. Kor natural language understanding 
in general, and for the correct interpretation of a speaDer_s recogni]ed words, such paralin.
guistic information may be used to improAe future speech systems. 
This booD on Oobust ?peech Oecognition and Pnderstanding brings together many different 
aspects of the current research on automatic speech recognition and language understand.
ing. The first four chapters address the tasD of Aoice actiAity detection which is considered 
an important issue for all speech recognition systems. The next chapters giAe seAeral exten.
sions to state.of.the.art `QQ methods. Kurthermore, a number of chapters particularly ad.
dress the tasD of robust 8?O under noisy conditions. Two chapters on the automatic recog.
nition of a speaDer_s emotional state highlight the importance of natural speech 
understanding and interpretation in Aoice.driAen systems. The last chapters of the booD ad.
dress the application of conAersational systems on robots, as well as the autonomous acaui.
sition of Aocali]ation sDills. 
be want to express our thanDs to all authors who haAe contributed to this booD by the best 
of their scientific worD. be hope you enCoy reading this booD and get many helpful ideas for 
your own research or application of speech technology. 
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Voice Activity Detection. Fundamentals and 
Speech Recognition System Robustness

J. Ramírez, J. M. Górriz and J. C. Segura 
University of Granada 

Spain

1. Introduction     

An important drawback affecting most of the speech processing systems is the 
environmental noise and its harmful effect on the system performance. Examples of such 
systems are the new wireless communications voice services or digital hearing aid devices. 
In speech recognition, there are still technical barriers inhibiting such systems from meeting 
the demands of modern applications. Numerous noise reduction techniques have been 
developed to palliate the effect of the noise on the system performance and often require an 
estimate of the noise statistics obtained by means of a precise voice activity detector (VAD).  
Speech/non-speech detection is an unsolved problem in speech processing and affects 
numerous applications including robust speech recognition (Karray and Marting, 2003; 
Ramirez et al. 2003), discontinuous transmission (ITU, 1996; ETSI, 1999), real-time speech 
transmission on the Internet (Sangwan et al., 2002) or combined noise reduction and echo 
cancellation schemes in the context of telephony (Basbug et al., 2004; Gustafsson et al., 2002). 
The speech/non-speech classification task is not as trivial as it appears, and most of the 
VAD algorithms fail when the level of background noise increases. During the last decade, 
numerous researchers have developed different strategies for detecting speech on a noisy 
signal (Sohn et al., 1999; Cho and Kondoz, 2001; Gazor and Zhang, 2003, Armani et al., 2003) 
and have evaluated the influence of the VAD effectiveness on the performance of speech 
processing systems (Bouquin-Jeannes and Faucon, 1995). Most of the approaches have 
focussed on the development of robust algorithms with special attention being paid to the 
derivation and study of noise robust features and decision rules (Woo et al., 2000; Li et al., 
2002; Marzinzik and Kollmeier, 2002). The different VAD methods include those based on 
energy thresholds (Woo et al., 2000), pitch detection (Chengalvarayan, 1999), spectrum 
analysis (Marzinzik and Kollmeier, 2002), zero-crossing rate (ITU, 1996), periodicity 
measure (Tucker, 1992), higher order statistics in the LPC residual domain (Nemer et al., 
2001) or combinations of different features (ITU, 1993; ETSI, 1999; Tanyer and Özer, 2000). 
This chapter shows a comprehensive approximation to the main challenges in voice activity 
detection, the different solutions that have been reported in a complete review of the state of 
the art and the evaluation frameworks that are normally used. The application of VADs for 
speech coding, speech enhancement and robust speech recognition systems is shown and 
discussed. Three different VAD methods are described and compared to standardized and 
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recently reported strategies by assessing the speech/non-speech discrimination accuracy 
and the robustness of speech recognition systems. 

2. Applications 

VADs are employed in many areas of speech processing. Recently, VAD methods have been 
described in the literature for several applications including mobile communication services 
(Freeman et al. 1989), real-time speech transmission on the Internet (Sangwan  et al., 2002) or 
noise reduction for digital hearing aid devices (Itoh and Mizushima, 1997). As an example, a 
VAD achieves silence compression in modern mobile telecommunication systems reducing 
the average bit rate by using the discontinuous transmission (DTX) mode. Many practical 
applications, such as the Global System for Mobile Communications (GSM) telephony, use 
silence detection and comfort noise injection for higher coding efficiency.  This section 
shows a brief description of the most important VAD applications in speech processing: 
coding, enhancement and recognition. 

2.1 Speech coding 

VAD is widely used within the field of speech communication for achieving high speech 
coding efficiency and low-bit rate transmission. The concepts of silence detection and 
comfort noise generation lead to dual-mode speech coding techniques. The different modes 
of operation of a speech codec are: i) the active speech codec, and ii) the silence suppression 
and comfort noise generation modes. The International Telecommunication Union (ITU) 
adopted a toll-quality speech coding algorithm known as G.729 to work in combination with 
a VAD module in DTX mode. Figure 1 shows a block diagram of a dual mode speech codec. 
The full rate speech coder is operational during active voice speech, but a different coding 
scheme is employed for the inactive voice signal, using fewer bits and resulting in a higher 
overall average compression ratio. As an example, the recommendation G.729 Annex B 
(ITU, 1996) uses a feature vector consisting of the linear prediction (LP) spectrum, the full- 
band energy, the low-band (0 to 1 KHz) energy and the zero-crossing rate (ZCR). The 
standard was developed with the collaboration of researchers from France Telecom, the 
University of Sherbrooke, NTT and AT&T Bell Labs and the effectiveness of the VAD was 
evaluated in terms of subjective speech quality and bit rate savings (Benyassine et al., 1997). 
Objective performance tests were also conducted by hand-labeling a large speech database 
and assessing the correct identification of voiced, unvoiced, silence and transition periods. 
Another standard for DTX is the ETSI (Adaptive Multi-Rate) AMR speech coder (ETSI, 1999) 
developed by the Special Mobile Group (SMG) for the GSM system. The standard specifies 
two options for the VAD to be used within the digital cellular telecommunications system. 
In option 1, the signal is passed through a filterbank and the level of signal in each band is 
calculated. A measure of the SNR is used to make the VAD decision together with the 
output of a pitch detector, a tone detector and the correlated complex signal analysis 
module. An enhanced version of the original VAD is the AMR option 2 VAD, which uses 
parameters of the speech encoder, and is more robust against environmental noise than 
AMR1 and G.729. The dual mode speech transmission achieves a significant bit rate 
reduction in digital speech coding since about 60% of the time the transmitted signal 
contains just silence in a phone-based communication. 
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Figure 1. Speech coding with VAD for DTX. 

2.2 Speech enhancement 

Speech enhancement aims at improving the performance of speech communication systems 
in noisy environments. It mainly deals with suppressing background noise from a noisy 
signal. A difficulty in designing efficient speech enhancement systems is the lack of explicit 
statistical models for the speech signal and noise process. In addition, the speech signal, and 
possibly also the noise process, are not strictly stationary processes. Speech enhancement 
normally assumes that the noise source is additive and not correlated with the clean speech 
signal. One of the most popular methods for reducing the effect of background (additive) 
noise is spectral subtraction (Boll, 1979). The popularity of spectral subtraction is largely due 
to its relative simplicity and ease of implementation. The spectrum of noise N(f) is estimated 
during speech inactive periods and subtracted from the spectrum of the current frame X(f)
resulting in an estimate of the spectrum S(f) of the clean speech: 

|)(||)(||)(| fNfXfS −=  (1) 

There exist many refinements of the original method that improve the quality of the 
enhanced speech. As an example, the modified spectral subtraction enabling an over-
subtraction factor α and maximum attenuation β for the noise is given by: 
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{ }|)(||,)(||)(|max|)(| fXfNfXfS βα−=  (2) 

Generally, spectral subtraction is suitable for stationary or very slow varying noises so that 
the statistics of noise could be updated during speech inactive periods. Another popular 
method for speech enhancement is the Wiener filter that obtains a least squares estimate of 
the clean signal s(t) under stationary assumptions of speech and noise. The frequency 
response of the Wiener filter is defined to be:  

)()(
)()(

ff
ffW

nnss

ss

Φ+Φ
Φ

=  (3) 

and requires an estimate of the power spectrum Φss(f) of the clean speech and the power 
spectrum Φnn(f) of the noise. 

2.3 Speech recognition 

Performance of speech recognition systems is strongly influenced by the quality of the 
speech signal. Most of these systems are based on complex hidden Markov models (HMM) 
that are trained using a training speech database. The mismatch between the training 
conditions and the testing conditions has a deep impact on the accuracy of these systems 
and represents a barrier for their operation in noisy environments. Fig. 2 shows an example 
of the degradation of the word accuracy for the AURORA2 database and speech recognition 
task when the ETSI recommendation (ETSI, 2000) not including noise compensation 
algorithm is used as feature extraction process. Note that, when the HMMs are trained using 
clean speech, the recognizer performance rapidly decreases when the level of background 
noise increases. Better results are obtained when the HMMs are trained using a collection of 
clean and noisy speech records.  
VAD is a very useful technique for improving the performance of speech recognition 
systems working in these scenarios. A VAD module is used in most of the speech 
recognition systems within the feature extraction process for speech enhancement. The noise 
statistics such as its spectrum are estimated during non-speech periods in order to apply the 
speech enhancement algorithm (spectral subtraction or Wiener filter). On the other hand, 
non-speech frame-dropping (FD) is also a frequently used technique in speech recognition 
to reduce the number of insertion errors caused by the noise. It consists on dropping non-
speech periods (based on the VAD decision) from the input of the speech recognizer. This 
reduces the number of insertion errors due to the noise that can be a serious error source 
under high mismatch training/testing conditions. Fig. 3 shows an example of a typical 
robust speech recognition system incorporating spectral noise reduction and non-speech 
frame-dropping. After the speech enhancement process is applied, the Mel frequency 
cepstral coefficients and its first- and second-order derivatives are computed in a frame by 
frame basis to form a feature vector suitable for recognition. Figure 4 shows the 
improvement provided by a speech recognition system incorporating the VAD presented in 
(Ramirez et al., 2005) within an enhanced feature extraction process based on a Wiener filter 
and non-speech frame dropping for the AURORA 2 database and tasks. The relative 
improvement over (ETSI, 2000) is about 27.17% in multicondition and 60.31% in clean 
condition training/testing. 
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Figure 4. Results obtained for an enhanced feature extraction process incorporating VAD-
based Wiener filtering and non-speech frame-dropping. 

3. Voice activity detection in noisy environments 

An important problem in many areas of speech processing is the determination of presence 
of speech periods in a given signal. This task can be identified as a statistical hypothesis 
problem and its purpose is the determination to which category or class a given signal 
belongs. The decision is made based on an observation vector, frequently called feature 
vector, which serves as the input to a decision rule that assigns a sample vector to one of the 
given classes. The classification task is often not as trivial as it appears since the increasing 
level of background noise degrades the classifier effectiveness, thus leading to numerous 
detection errors. Fig. 5 illustrates the challenge of detecting speech presence in a noisy signal 
when the level of background noise increases and the noise completely masks the speech 
signal. The selection of an adequate feature vector for signal detection and a robust decision 
rule is a challenging problem that affects the performance of VADs working under noise 
conditions. Most algorithms are effective in numerous applications but often cause detection 
errors mainly due to the loss of discriminating power of the decision rule at low SNR levels 
(ITU, 1996; ETSI, 1999). For example, a simple energy level detector can work satisfactorily 
in high signal-to-noise ratio (SNR) conditions, but would fail significantly when the SNR 
drops. VAD results more critical in non-stationary noise environments since it is needed to 
update the constantly varying noise statistics affecting a misclassification error strongly to 
the system performance. 
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Figure 5. Energy profile of a speech utterance corrupted by additive backgorund noise at 
decreasing SNRs.  

3.1 Description of the problem 

The VAD problem considers detecting the presence of speech in a noisy signal. The VAD 
decision is normally based on a feature vector x. Assuming that the speech signals and the 
noise are additive, the VAD module has to decide in favour of the two hypotheses: 
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A block diagram of VAD is shown in figure 6. It consists of: i) the feature extraction process, 
ii) the decision module, and iii) the decision smoothing stage. 

Feature
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Decision

module

Decision
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VAD(l)

Decisión

final
VAD0(l)

Figure 6. Block diagram of a VAD. 

3.2 Feature extraction 

The objective of feature extraction process is to compute discriminative speech features 
suitable for detection. A number of robust speech features have been studied in this context. 
The different approaches include: i) full-band and subband energies (Woo et al., 2000), ii)
spectrum divergence measures between speech and background noise (Marzinzik and 
Kollmeier, 2002), iii) pitch estimation (Tucker, 1992), iv) zero crossing rate (Rabiner et al., 
1975), and v)  higher-order statistics (Nemer et al. 2001; Ramírez et al., 2006a; Górriz et al., 
2006a; Ramírez et al., 2007). Most of the VAD methods are based on the current observation 
(frame) and do not consider contextual information. However, using long-term speech 
information (Ramírez et al., 2004a; Ramírez et al. 2005a) has shown significant benefits for 
detecting speech presence in high noise environments. 

3.3 Formulation of the decision rule 

The decision module defines the rule or method for assigning a class (speech or silence) to 
the feature vector x. Sohn et al. (Sohn et al., 1999) proposed a robust VAD algorithm based 
on a statistical likelihood ratio test (LRT) involving a single observation vector. (Sohn et al., 
1999). The method considered a two-hypothesis test where the optimal decision rule that 
minimizes the error probability is the Bayes classifier. Given an observation vector to be 
classified, the problem is reduced to selecting the class (H0 or H1) with the largest posterior 
probability P(Hi|x):

 )|()|( 01

0

1

xx HPHP
H

H

<
>

 (5) 

Using the Bayes rule leads to statistical likelihood ratio test: 



Voice Activity Detection. Fundamentals and Speech Recognition System Robustness 9

)(
)(

)|(
)|(

1

0

0

1

0

1

HP
HP

HP
HP

H

H

<
>

x
x  (6) 

In order to evaluate this test, the discrete Fourier transform (DFT) coefficients of the clean 
speech (Sj) and the noise (Nj) are assumed to be asymptotically independent Gaussian 
random variables: 
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where Xj represents the noisy speech DFT coefficients, and )( jNλ  and )( jSλ  denote the 
variances of Nj and Sj for the j-th bin of the DFT, respectively. Thus, the decision rule is 
reduced to: 
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and η defines the decision threshold and J is the DFT order. jξ and jγ  define the a priori and 
a posteriori SNRs: 
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that are normally estimated using the Ephraim and Malah minimum mean-square error 
(MMSE) estimator (Ephraim and Malah, 1984). 
Several methods for VAD formulate the decision rule based on distance measures like the 
Euclidean distance (Gorriz et al., 2006b), Itakura-Saito and Kullback-Leibler divergence 
(Ramírez et al., 2004b). Other techniques include fuzzy logic (Beritelli et al., 2002), support 
vector machines (SVM) (Ramírez et al. 2006b) and genetic algorithms (Estevez et al., 2005). 

3.4 Decision smoothing 

Most of the VADs that formulate the decision rule on a frame by frame basis normally use 
decision smoothing algorithms in order to improve the robustness against the noise. The 
motivations for these approaches are found in the speech production process and the 
reduced signal energy of word beginnings and endings. The so called hang-over algorithms 
extends and smooth the VAD decision in order to recover speech periods that are masked 
by the acoustic noise. 
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4. Robust VAD algorithms 

This section summarizes three VAD algorithms recently reported that yield high 
speech/non-speech discrimination in noisy environments. 

4.1 Long-term spectral divergence 

The speech/non-speech detection algorithm proposed in (Ramírez et al., 2004a) assumes 
that the most significant information for detecting voice activity on a noisy speech signal 
remains on the time-varying signal spectrum magnitude. It uses a long-term speech window 
instead of instantaneous values of the spectrum to track the spectral envelope and is based 
on the estimation of the so called Long-Term Spectral Envelope (LTSE). The decision rule is 
then formulated in terms of the Long-Term Spectral Divergence (LTSD) between speech and 
noise.  
Let x(n) be a noisy speech signal that is segmented into overlapped frames and, X(k,l) its 
amplitude spectrum for the k-th band at frame l. The N-order Long-Term Spectral Envelope 
(LTSE) is defined as: 

{ } Nj
NjN jlkXlkLTSE +=

−=+= ),(max),(  (9) 

The VAD decision rule is then formulated by means of the N-order Long-Term Spectral 
Divergence (LTSD) between speech and noise is defined as the deviation of the LTSE respect 
to the average noise spectrum magnitude N(k) for the k band, k= 0, 1, …, NFFT-1, and is 
given by: 
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4.2 Multiple observation likelihood ratio test 

An improvement over the LRT proposed by Sohn (Sohn et al., 1999) is the multiple 
observation LRT (MO-LRT) proposed by Ramírez (Ramírez et al., 2005b). The performance 
of the decision rule was improved by incorporating more observations to the statistical test. 
The MO-LRT is defined over the observation vectors },...,...,{ mllml +− xxx  as follows: 
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where l denotes the frame being classified as speech (H1) or silence (H0). Thus, the decision 
rule is formulated over a sliding window consisting of observation vectors around the 
current frame. The so-defined decision rule reported significant improvements in 
speech/non-speech discrimination accuracy over existing VAD methods that are defined on 
a single observation and need empirically tuned hangover mechanisms. 

4.3 Order statistics filters 

The MO-LRT VAD takes advantage of using contextual information for the formulation of 
the decision rule. The same idea can be found in other existing VADs like the Li et al. (Li et 
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al., 2002) that considers optimum edge detection linear filters on the full-band energy. Order 
statistics filters (OSFs) have been also evaluated for a low variance measure of the 
divergence between speech and silence (noise). The algorithm proposed in (Ramírez et al., 
2005a) uses two OSFs for the multiband quantile (MBQ) SNR estimation. The algorithm is 
described as follows. Once the input speech has been de-noised by Wiener filtering, the log-
energies for the l-th frame, E(k,l), in K subbands (k= 0, 1, …, K-1), are computed by means of: 
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The implementation of both OSFs is based on a sequence of log-energy values {E(k,l-N), …, 
E(k,l), …, E(k,l+N)} around the frame to be analyzed. The r-th order statistics of this 
sequence, E(r)(k,l), is defined as the r-th largest number in algebraic order. A first OSF 
estimates the subband signal energy by means of 

 ),(),()1(),( )1()( lkfElkEflkQ ssp ++−=  (12) 

where Qp(k,l) is the sampling quantile, s= 2pN  and f= 2pN-s. Finally, the SNR in each 
subband is measured by: 

 )(),(),( kElkQlkQSNR Np −=  (13) 

where EN(k) is the noise level in the k-th band that needs to be estimated. For the 
initialization of the algorithm, the first frames are assumed to be non-speech frames and the 
noise level EN(k) in the k-th band is estimated as the median of the set {E(0,k), E(1,k), …, E(N-
1,k)}. In order to track non-stationary noisy environments, the noise references are updated 
during non-speech periods by means of a second OSF (a median filter) 

),()1()()( 5.0 lkQkEkE NN αα −+=  (14) 

where Q0.5(k,l) is the output of the median filter and α= 0.97 was experimentally selected. On 
the other hand, the sampling quantile p= 0.9 is selected as a good estimation of the subband 
spectral envelope. The decision rule is then formulated in terms of the average subband 
SNR:
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Figure 7 shows the operation of the MBQ VAD on an utterance of the Spanish SpeechDat-
Car (SDC) database (Moreno et al., 2000). For this example, K= 2 subbands were used while 
N= 8 . The optimal selection of these parameters is studied in (Ramirez et al., 2005a). It is 
clearly shown how the SNR in the upper and lower band yields improved speech/non-
speech discrimination of fricative sounds by giving complementary information. The VAD 
performs an advanced detection of beginnings and delayed detection of word endings 
which, in part, makes a hang-over unnecessary. 
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Figure 7. Operation of the VAD on an utterance of Spanish SDC database. (a) SNR and VAD 
decision. (b) Subband SNRs. 
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5. Experimental framework 

Several experiments are commonly conducted to evaluate the performance of VAD 
algorithms. The analysis is mainly focussed on the determination of the error probabilities 
or classification errors at different SNR levels (Marzinzik and Kollmeier, 2002), and the 
influence of the VAD decision on the performance of speech processing systems (Bouquin-
Jeannes and Faucon, 1995). Subjective performance tests have also been considered for the 
evaluation of VADs working in combination with speech coders (Benyassine et al., 1997). 
The experimental framework and the objective performance tests commonly conducted to 
evaluate VAD methods are described in this section. 

5.1 Speech/non-speech discrimination analysis 

VADs are widely evaluated in terms of the ability to discriminate between speech and pause 
periods at different SNR levels. In order to illustrate the analysis, this subsection considers 
the evaluation of the LTSE VAD (Ramírez et al., 2004). The original AURORA-2 database 
(Hirsch and Pearce, 2000) was used in this analysis since it uses the clean TIdigits database 
consisting of sequences of up to seven connected digits spoken by American English talkers 
as source speech, and a selection of eight different real-world noises that have been 
artificially added to the speech at SNRs of 20dB, 15dB, 10dB, 5dB, 0dB and -5dB. These noisy 
signals have been recorded at different places (suburban train, crowd of people (babble), car, 
exhibition hall, restaurant, street, airport and train station), and were selected to represent 
the most probable application scenarios for telecommunication terminals. In the 
discrimination analysis, the clean TIdigits database was used to manually label each 
utterance as speech or non-speech frames for reference. Detection performance as a function 
of the SNR was assessed in terms of the non-speech hit-rate (HR0) and the speech hit-rate 
(HR1) defined as the fraction of all actual pause or speech frames that are correctly detected 
as pause or speech frames, respectively: 

refref N
N

N
N

1

1,1

0

0,0 HR1HR0 ==  (15) 

where refN0  and refN1  are the number of real non-speech and speech frames in the whole 
database, respectively, while N0,0 and N1,1 are the number of non-speech and speech frames 
correctly classified.  
Figure 8 provides the results of this analysis and compares the proposed LTSE VAD 
algorithm to standard G.729, AMR and AFE (ETSI, 2002) VADs in terms of non-speech hit-
rate (HR0, Fig. 8.a) and speech hit-rate (HR1, Fig. 8.b) for clean conditions and SNR levels 
ranging from 20 to -5 dB. Note that results for the two VADs defined in the AFE DSR 
standard (ETSI, 2002) for estimating the noise spectrum in the Wiener filtering stage and 
non-speech frame-dropping are provided. It can be concluded that LTSE achieves the best 
compromise among the different VADs tested; it obtains a good behavior in detecting non-
speech periods as well as exhibits a slow decay in performance at unfavorable noise 
conditions in speech detection. 
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Figure 8. Speech/non-speech discrimination analysis. (a) Non-speech hit-rate (HR0). (b) 
Speech hit rate (HR1). 
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5.2 Receiver operating characteristics curves 

The ROC curves are frequently used to completely describe the VAD error rate. The 
AURORA subset of the original Spanish SpeechDat-Car (SDC) database (Moreno et al., 
2000) was used in this analysis. This database contains 4914 recordings using close-talking 
and distant microphones from more than 160 speakers. The files are categorized into three 
noisy conditions: quiet, low noisy and highly noisy conditions, which represent different 
driving conditions with average SNR values between 25 dB, and 5 dB. The non-speech hit 
rate (HR0) and the false alarm rate (FAR0= 100-HR1) were determined in each noise 
condition being the actual speech frames and actual speech pauses determined by hand-
labeling the database on the close-talking microphone.  
Figure 9 shows the ROC curves of the MO-LRT VAD (Ramírez et al., 2005b) and other 
frequently referred algorithms for recordings from the distant microphone in quiet and high 
noisy conditions. The working points of the G.729, AMR, and AFE VADs are also included. 
The results show improvements in detection accuracy over standard VADs and over a 
representative set of VAD algorithms. Thus, among all the VAD examined, our VAD yields 
the lowest false alarm rate for a fixed non-speech hit rate and also, the highest non-speech 
hit rate for a given false alarm rate. The benefits are especially important over G.729, which 
is used along with a speech codec for discontinuous transmission, and over the Li’s 
algorithm, that is based on an optimum linear filter for edge detection. The proposed VAD 
also improves Marzinzik’s VAD that tracks the power spectral envelopes, and the Sohn’s 
VAD, that formulates the decision rule by means of a statistical likelihood ratio test. 

5.3 Improvement in speech recognition systems 

Performance of ASR systems working over wireless networks and noisy environments 
normally decreases and non efficient speech/non-speech detection appears to be an 
important degradation source (Karray and Martin, 2003). Although the discrimination 
analysis or the ROC curves are effective to evaluate a given algorithm, this section evaluates 
the VAD according to the goal for which it was developed by assessing the influence of the 
VAD over the performance of a speech recognition system. 
The reference framework considered for these experiments was the ETSI AURORA project 
for DSR (ETSI, 2000; ETSI, 2002). The recognizer is based on the HTK (Hidden Markov 
Model Toolkit) software package (Young et al., 1997). The task consists of recognizing 
connected digits which are modeled as whole word HMMs (Hidden Markov Models) with 
the following parameters: 16 states per word, simple left-to-right models, mixture of three 
Gaussians per state (diagonal covariance matrix) while speech pause models consist of three 
states with a mixture of six Gaussians per state. The 39-parameter feature vector consists of 
12 cepstral coefficients (without the zero-order coefficient), the logarithmic frame energy 
plus the corresponding delta and acceleration coefficients.  
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Figure 9. ROC curves. (a) Stopped Car, Motor Running. (b) High Speed, Good Road. 
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WF 66.19 74.97 83.37 81.57 84.12

WF+FD 70.32 74.29 82.89 83.29 86.09

 Woo Li Marzinzik Sohn Hand-labeled 

WF 83.64 77.43 84.02 83.89 84.69 

WF+FD 81.09 82.11 85.23 83.80 86.86 

Table 1. Average Word Accuracy (%) for the AURORA 2 database for clean and 
multicondition training experiments. Results are mean values for all the noises and SNRs 
ranging from 20 to 0 dB. 

Two training modes are defined for the experiments conducted on the AURORA-2 database: 
i) training on clean data only (Clean Training), and ii) training on clean and noisy data 
(multicondition training). For the AURORA-3 SpeechDat-Car databases, the so called well-
matched (WM), medium-mismatch (MM) and high-mismatch (HM) conditions are used. 
These databases contain recordings from the close-talking and distant microphones. In WM 
condition, both close-talking and hands-free microphones are used for training and testing. 
In MM condition, both training and testing are performed using the hands-free microphone 
recordings. In HM condition, training is done using close-talking microphone material from 
all driving conditions while testing is done using hands-free microphone material taken for 
low noise and high noise driving conditions. Finally, recognition performance is assessed in 
terms of the word accuracy (WAcc) that considers deletion, substitution and insertion errors. 
An enhanced feature extraction scheme incorporating a noise reduction algorithm and non-
speech frame-dropping was built on the base system (ETSI, 2000). The noise reduction 
algorithm has been implemented as a single Wiener filtering stage as described in the AFE 
standard (ETSI, 2002) but without mel-scale warping. No other mismatch reduction 
techniques already present in the AFE standard have been considered since they are not 
affected by the VAD decision and can mask the impact of the VAD precision on the overall 
system performance. 
Table 1 shows the recognition performance achieved by the different VADs that were 
compared. These results are averaged over the three test sets of the AURORA-2 recognition 
experiments and SNRs between 20 and 0 dBs. Note that, for the recognition experiments 
based on the AFE VADs, the same configuration of the standard (ETSI, 2002), which 
considers different VADs for WF and FD, was used. The MBQW VAD outperforms G.729, 
AMR1, AMR2 and AFE standard VADs in both clean and multi condition training/testing 
experiments. When compared to recently reported VAD algorithms, it yields better results 
being the one that is closer to the “ideal” hand-labeled speech recognition performance. 
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Base + WF Base + WF + FD 
Base

G.729 AMR1 AMR2 AFE MBQW G.729 AMR1 AMR2 AFE MBQW

WM 92.74 93.27 93.66 95.52 94.28 95.36 88.62 94.57 95.52 94.25 94.70 

MM 80.51 75.99 78.93 75.51 78.52 74.49 67.99 81.60 79.55 82.42 80.08 

HM 40.53 50.81 40.95 55.41 55.05 56.40 65.80 77.14 80.21 56.89 83.67 
Finnish

Average 71.26 73.36 71.18 75.48 75.95 75.42 74.14 84.44 85.09 77.85 86.15 

WM 92.94 89.83 85.48 91.24 89.71 91.66 88.62 94.65 95.67 95.28 96.79 

MM 83.31 79.62 79.31 81.44 76.12 83.95 72.84 80.59 90.91 90.23 91.85 

HM 51.55 66.59 56.39 70.14 68.84 70.47 65.50 62.41 85.77 77.53 87.25 
Spanish 

Average 75.93 78.68 73.73 80.94 78.22 82.03 75.65 74.33 90.78 87.68 91.96 

WM 91.20 90.60 90.20 93.13 91.48 92.87 87.20 90.36 92.79 93.03 93.73 

MM 81.04 82.94 77.67 86.02 84.11 85.58 68.52 78.48 83.87 85.43 87.40 
HM 73.17 78.40 70.40 83.07 82.01 82.56 72.48 66.23 81.77 83.16 83.49 

German 

Average 81.80 83.98 79.42 87.41 85.87 87.00 76.07 78.36 86.14 87.21 88.21 

Average 76.33 78.67 74.78 81.28 80.01 81.48 75.29 79.04 87.34 84.25 88.77 

(a)

Base + WF Base + WF + FD 
Base

Woo Li Marzinzik Sohn MBQW Woo Li Marzinzik Sohn MBQW

WM 92.74 95.25 95.15 95.39 95.21 95.36 86.81 85.60 93.73 93.84 94.70 

MM 80.51 77.70 76.74 73.94 72.16 74.49 66.62 55.63 76.47 80.10 80.08 

HM 40.53 57.74 53.85 57.28 57.24 56.40 62.54 58.34 68.37 75.34 83.67 
Finnish

Average 71.26 76.90 75.25 75.54 74.87 75.42 71.99 66.52 79.52 83.09 86.15 

WM 92.94 90.85 91.24 91.31 91.25 91.66 95.35 91.82 94.29 96.07 96.79 

MM 83.31 81.07 84.00 82.90 82.21 83.95 89.30 77.45 89.81 91.64 91.85 

HM 51.55 61.38 64.72 65.05 69.89 70.47 83.64 78.52 79.43 84.03 87.25 
Spanish 

Average 75.93 77.77 79.99 79.75 81.12 82.03 89.43 82.60 87.84 90.58 91.96 

WM 91.20 92.83 92.25 93.17 93.17 92.87 91.59 89.62 91.58 93.23 93.73 

MM 81.04 85.58 85.21 85.29 86.09 85.58 80.28 70.87 83.67 83.97 87.40 

HM 73.17 83.02 82.98 83.02 83.53 82.56 78.68 78.55 81.27 82.19 83.49 
German 

Average 81.80 87.14 86.81 87.16 87.60 87.00 83.52 79.68 85.51 86.46 88.21 

Average 76.33 80.60 80.68 80.82 81.20 81.48 81.65 76.27 84.29 86.71 88.77 

(b)

Table 2. Average Word Accuracy for the SpeechDat-Car databases. (a) Comparison to 
standardized VADs. (b) Comparison to other recently reported methods. 
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Table 2 shows the recognition performance for the Finnish, Spanish, and German SDC 
databases for the different training/test mismatch conditions (HM, high mismatch, MM: 
medium mismatch and WM: well matched) when WF and FD are performed on the base 
system (ETSI, 2000). Again, MBQW VAD outperforms all the algorithms used for reference, 
yielding relevant improvements in speech recognition. Note that the SDC databases used in 
the AURORA 3 experiments have longer non-speech periods than the AURORA 2 database 
and then, the effectiveness of the VAD results more important for the speech recognition 
system. This fact can be clearly shown when comparing the performance of MBQW VAD to 
Marzinzik’s VAD. The word accuracy of both VADs is quite similar for the AURORA 2 task. 
However, MBQW yields a significant performance improvement over Marzinzik’s VAD for 
the SDC databases. 

6. Conclusions 

This chapter has shown an overview of the main challenges in robust speech detection and a 
review of the state of the art and applications. VADs are frequently used in a number of 
applications including speech coding, speech enhancement and speech recognition. A 
precise VAD extracts a set of discriminative speech features from the noisy speech and 
formulates the decision in terms of well defined rule. The chapter has summarized three 
robust VAD methods that yield high speech/non-speech discrimination accuracy and 
improve the performance of speech recognition systems working in noisy environments. 
The evaluation of these methods showed the experiments most commonly conducted to 
compare VADs: i) speech/non-speech discrimination analysis, ii) the receiver operating 
characteristic curves, and iii) speech recognition system tests. 
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1. Introduction 

With the increasing amount of information stored in various audio-data documents there is 
a growing need for the efficient and effective processing, archiving and accessing of this 
information. One of the largest sources of such information is spoken audio documents, 
including broadcast-news (BN) shows, voice mails, recorded meetings, telephone 
conversations, etc. In these documents the information is mainly relayed through speech, 
which needs to be appropriately processed and analysed by applying automatic speech and 
language technologies.  
Spoken audio documents are produced by a wide range of people in a variety of situations, 
and are derived from various multimedia applications. They are usually collected as 
continuous audio streams and consist of multiple audio sources. These audio sources may 
be different speakers, music segments, types of noise, etc. For example, a BN show typically 
consists of speech from different speakers as well as music segments, commercials and 
various types of noises that are present in the background of the reports. In order to 
efficiently process or extract the required information from such documents the appropriate 
audio data need to be selected and properly prepared for further processing.  In the case of 
speech-processing applications this means detecting just the speech parts in the audio data 
and delivering them as inputs in a suitable format for further speech processing. The 
detection of such speech segments in continuous audio streams and the segmentation of 
audio streams into either detected speech or non-speech data is known as the speech/non-
speech (SNS) segmentation problem. In this chapter we present an overview of the existing 
approaches to SNS segmentation in continuous audio streams and propose a new 
representation of audio signals that is more suitable for robust speech detection in SNS-
segmentation systems. Since speech detection is usually applied as a pre-processing step in 
various speech-processing applications we have also explored the impact of different SNS-
segmentation approaches on a speaker-diarisation task in BN data.  
This chapter is organized as follows: In Section 2 a new high-level representation of audio 
signals based on phoneme-recognition features is introduced.  First of all we give a short 
overview of the existing audio representations used for speech detection and provide the 
basic ideas and motivations for introducing a new representation of audio signals for SNS 
segmentation. In the remainder of the section we define four features based on consonant-
vowel pairs and the voiced-unvoiced regions of signals, which are automatically detected by 
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a generic phoneme recognizer. We also propose the fusion of different selected 
representations in order to improve the speech-detection results. Section 3 describes the two 
SNS-segmentation approaches used in our evaluations, one of which was specially designed 
for the proposed feature representation. In the evaluation section we present results from a 
wide range of experiments on a BN audio database using different speech-processing 
applications. We try to assess the performance of the proposed representation using a 
comparison with existing approaches for two different tasks. In the first task the 
performance of different representations of the audio signals is assessed directly by 
comparing the evaluation results of speech and non-speech detection on BN audio data. The 
second group of experiments tries to determine the impact of SNS segmentation on the 
subsequent processing of the audio data. We then measure the impact of different SNS-
segmentation systems when they are applied in a pre-processing step of an evaluated 
speaker-diarisation system that is used as a speaker-tracking tool for BN audio data.  

2. Phoneme-Recognition Features 

2.1 An Overview of Audio Representations for Speech Detection  

As briefly mentioned in the introduction, SNS segmentation is the task of partitioning audio 
streams into speech and non-speech segments. While speech segments can be easily defined 
as regions in audio signals where somebody is speaking, non-speech segments represent 
everything that is not speech, and as such consist of data from various acoustical sources, 
e.g., music, human noises, silences, machine noises, etc. 
Earlier work on the separation of audio data into speech and non-speech mainly addressed 
the problem of classifying known homogeneous segments as either speech or music, and not 
as non-speech in general. The research was focused more on developing and evaluating 
characteristic features for classification, and the systems were designed to work on already-
segmented data. 
Saunders (Saunders, 1996) designed one such system using features pointed out by 
(Greenberg, 1995) to successfully discriminate between speech and music in radio 
broadcasting. For this he used time-domain features, mostly derived from zero crossing 
rates. In (Samouelian et al., 1998) time-domain features, combined with two frequency 
measures, were also used. The features for speech/music discrimination that are closely 
related to the nature of human speech were investigated in (Scheirer & Slaney, 1997). The 
proposed measures, i.e., the spectral centroid, the spectral flux, the zero-crossing rate, the 4-
Hz modulation energy (related to the syllable rate of speech), and the percentage of low-
energy frames were explored in an attempt to discriminate between speech and various 
types of music. The most commonly used features for discriminating between speech, music 
and other sound sources are the cepstrum coefficients. The mel-frequency cepstral 
coefficients (MFCCs) (Picone, 1993) and the perceptual linear prediction (PLP) cepstral 
coefficients (Hermansky, 1990) are extensively used in speaker- and speech-recognition 
tasks. Although these signal representations were originally designed to model the short-
term spectral information of speech events, they were also successfully applied in SNS-
discrimination systems (Hain et al., 1998; Beyerlein et al., 2002; Ajmera, 2004; Barras et al., 
2006; Tranter & Reynolds, 2006) in combination with Gaussian mixture models (GMMs) or 
hidden Markov models (HMMs) for separating different audio sources and channel 
conditions (broadband speech, telephone speech, music, noise, silence, etc.). The use of these 
representations is a natural choice in speech-processing applications based on automatic 
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speech recognition since the same feature set can be used later on for the speech recognition. 
An interesting approach was proposed in (Parris et al., 1999), where a combination of 
different feature representations of audio signals in a GMM-based fusion system was made 
to discriminate between speech, music and noise. They investigated energy, cepstral and 
pitch features. 
These representations and approaches focused mainly on the acoustic properties of data that 
are manifested in either the time and frequency or the spectral (cepstral) domains. All the 
representations tend to characterize speech in comparison to other non-speech sources 
(mainly music). Another perspective on the speech produced and recognized by humans is 
to treat it as a sequence of recognizable units. Speech production can thus be considered as a 
state machine, where the states are phoneme classes (Ajmera et al., 2003). Since other non-
speech sources do not possess such properties, features based on these characteristics can be 
usefully applied in an SNS classification. The first attempt in this direction was made by 
Greenberg (Greenberg, 1995), who proposed features based on the spectral shapes 
associated with the expected syllable rate in speech. Karnebäck (Karnebäck, 2002) produced 
low-frequency modulation features in the same way and showed that in combination with 
the MFCC features they constitute a robust representation for speech/music discrimination 
tasks. A different approach based on this idea was presented in (Williams & Ellis, 1999). 
They built a phoneme speech recognizer and studied its behaviour with different speech 
and music signals. From the behaviour of the recognizer they proposed posterior-
probability-based features, i.e., entropy and dynamism, and used them for classifying the 
speech and music samples.  

2.2 Basic Concepts and Motivations 

The basic SNS-classification systems typically include statistical models representing speech 
data, music, silence, noise, etc. They are usually derived from training material, and then a 
partitioning method detects the speech and non-speech segments according to these models. 
The main problem with such systems is the non-speech data, which are produced by various 
acoustic sources and therefore possess different acoustic characteristics. Thus, for each type 
of such audio signals one needs to build a separate class (typically represented as a model) 
and include it in a system. This represents a serious drawback with SNS-segmentation 
systems, which need to be data independent and robust to different types of speech and 
non-speech audio sources. 
On the other hand, the SNS-segmentation systems are meant to detect speech in audio data 
and should discard non-speech parts, regardless of their different acoustic properties. Such 
systems can be interpreted as two-class classifiers, where the first class represents speech 
samples and the second class represents everything else. In this case the speech class defines 
the non-speech class. Following on from this basic concept one should find and use those 
characteristics or features of audio signals that better emphasize and characterize speech 
and exhibit the expected behaviour with all other non-speech audio data. 
While the most commonly used acoustic features (MFCCs, PLPs, etc.) perform well when 
discriminating between different speech and non-speech signals, (Logan, 2000), they still 
only operate on an acoustic level. Hence, the data produced by the various audio sources 
with different acoustic properties needs to be modelled by several different classes and 
represented in the training process of such systems. To avoid this, we decided to design an 
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audio representation that would better determine the speech and perform significantly 
differently on all other non-speech data. 
One possible way to achieve this is to see speech as a sequence of basic speech units that 
convey some meaning.  This rather broad definition of speech led us to examine the 
behaviour of a simple phoneme recognizer and analyze its performance on speech and non-
speech data. In that respect we followed the idea of Williams & Ellis, (Williams & Ellis, 
1999), but rather than examine the functioning of phoneme recognizers, as they did, we 
analyzed the output transcriptions of such recognizers in various speech and non-speech 
situations. 

2.3 Features Derivation 

Williams & Ellis, (Williams & Ellis, 1999), proposed a novel method for discriminating 
between speech and music. They proposed measuring the posterior probability of 
observations in the states of neural networks that were designed to recognise basic speech 
units. From the analysis of the posterior probabilities they extracted features such as the 
mean per-frame entropy, the average probability dynamism, the background-label ratio and 
the phone distribution match. The entropy and dynamism features were later successfully 
applied to the speech/music segmentation of audio data (Ajmera et al., 2003). In both cases 
they used these features for speech/music classification, but the idea could be easily 
extended to the detection of speech and non-speech signals, in general. The basic motivation 
in both cases was to obtain and use features that were more robust to different kinds of 
music data and at the same time perform well on speech data.  
In the same manner we decided to measure the performance of a speech recognizer by 
inspecting the output phoneme-recognition transcriptions, when recognizing speech and 
non-speech samples (Žibert et al., 2006a). In this way we also examined the behaviour of a 
phoneme recognizer, but the functioning of the recognizer was measured at the output of 
the recognizer rather than in the inner states of such a recognition engine.  
Typically, the input of a phoneme recognizer consists of feature vectors based on the 
acoustic parameterization of speech signals, and the corresponding output is the most likely 
sequence of pre-defined speech units and time boundaries, together with the probabilities or 
likelihoods of each unit in a sequence. Therefore, the output information from a recognizer 
can also be interpreted as a representation of a given signal. Since the phoneme recognizer is 
designed for recognizing speech signals it is to be expected that it will exhibit characteristic 
behaviour when speech signals are passed through it, and all other signals will result in 
uncharacteristic behaviour. This suggests that it should be possible to distinguish between 
speech and non-speech signals just by examining the outputs of phoneme recognizers. 
In general, the output from speech recognizers depends on the language and the models 
included in the recognizer.  To reduce these influences the output speech units should be 
chosen from among broader groups of phonemes that are typical for the majority of 
languages. Also, the corresponding speech representation should not be heavily dependent 
on the correct transcription produced by the recognizer. Because of these limitations and the 
fact that human speech can be described as concatenated syllables, we decided to examine 
the functioning of recognizers in terms of the consonant-vowel (CV) level (Žibert et al., 
2006a) and by inspecting the voiced and unvoiced regions (VU) of recognized audio signals 
(Miheli  & Žibert, 2006). 
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Figure 1. A block diagram showing the derivation of the phoneme-recognition features  

The procedure for extracting phoneme-recognition features is shown in Figure 1. First, the 
acoustic representation of a given signal is produced and passed through a simple phoneme 
recognizer. Then, the transcription output is translated to specified phoneme classes, in the 
first case to the consonant (C), vowel (V) and silence (S) classes, and in the second case to the 
voiced (V), unvoiced (U) and silence (S) regions. At this point the output transcription is 
analysed, and those features that resemble the discriminative properties of speech and non-
speech signals and are relatively independent of specific recognizer properties and errors 
are extracted. In our investigations we examined just those characteristics of the recognized 
outputs that are based on the duration and the changing rate of the basic units produced by 
the recognizer. 
After a careful analysis of the functioning of several different phoneme recognizers for 
different speech and non-speech data conditions, we decided to extract the following 
features (Žibert et al., 2006a): 

• Normalized CV (VU) duration rate of consonant-vowel (CV) or voiced-unvoiced (VU) 
pairs, defined in CV case as: 

CVS
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where Ct  is the overall time duration of all the consonants recognized in a signal 
window of time duration CVSt , and Vt  is the time duration of all the vowels in a window 
of duration CVSt .  The second term denotes the proportion of silence units (term St )
represented in a recognized signal measured in time units. α  serves as a weighting 
factor to emphasize the number of silence regions in a signal and has to be 10 ≤≤ α . In 
the VU case the above formula stays the same, whereas unvoiced phonemes replace 
consonants, voiced substitute vowels and silences are the same. 
It is well known that speech is constructed from CV (VU) units in combination with S 
parts; however, we observed that speech signals exhibit relatively equal durations of C 
(U) and V (V) units and a rather small proportion of silences (S), which yielded small 
values (around 0.0) in Equation (1), measured on fixed-width speech segments. On the 
other hand, non-speech data were almost never recognized as a proper combination of 
CV or VU pairs, which is reflected in the different rates of C (U) and V (V) units, and 
hence the values of Equation (1) tend to be more like 1.0. In addition, when non-speech 
signals are recognized as silences, the values in the second term of Equation (1) follow 
the same trend as in the previous case. 
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Note that in Equation (1) we used the absolute difference between the durations, 

VC tt − , rather than the duration ratios, 
V

C
t
t  or 

C

V
t
t

. This was done to reduce the effect of 
labelling, and not to emphasize one unit over another. The latter would result in the 
poor performance of this feature when using different speech recognizers. 

• Normalized average CV (VU) duration rate, defined in the CV case as 

CV
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tt − , (2) 

 where Ct  and Vt  represent the average time durations of the C and V units in a given 
segment of a recognized signal, while CVt  is the average duration of all the recognized 
(C,V) units in the same segment. In the same way the normalized, average VU duration 
rate can be defined. 

 This feature was constructed to measure the difference between the average duration of 
the consonants (unvoiced parts) and the average duration of the vowels (voiced parts). 
It is well known that in speech the vowels (voiced parts) are in general longer than the 
consonants (unvoiced parts), and as a result this should be reflected in recognized 
speech. On the other hand, it was observed that non-speech signals do not exhibit such 
properties. Therefore, we found this feature to be sufficiently discriminative to 
distinguish between speech and non-speech data. 

 This feature correlates with the normalized time-duration rate defined in Equation (1). 
Note that in both cases the differences were used, instead of the ratios between the C 
(U) and V (V) units. This is for the same reason as in the previous case. 

• Normalized CV (VU) speaking rate, defined in the CV case as 

CVS

VC

t
nn + , (3) 

where Cn  and Vn  are the number of C and V units recognized in the signal for the time 
duration CVSt . The normalized VU speaking rate can be defined in the same manner. In 
both cases the silence units are not taken into account. 
Since phoneme recognizers are trained on speech data they should detect changes when 
normal speech moves between phones every few tens of milliseconds. Of course, 
speaking rate in general depends heavily on the speaker and the speaking style. Actually, 
this feature is often used in systems for speaker recognition (Reynolds et al., 2003). To 
reduce the effect of speaking style, particularly spontaneous speech, we decided not to 
count the S units. 
Even though the CV (VU) speaking rate in Equation (3) changes with different speakers 
and speaking styles, it varies less than for non-speech data. In the analyzed signals 
speech tended to change (in terms of the phoneme recognizer) much less frequently, 
but the signals varied greatly among different non-speech data types. 
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• Normalized CVS (VUS) changes, defined in the CV case as 

CVSt
SVCc ),,( , (4) 

where ),,( SVCc  counts how many times the C, V and S units exchange in the signal in 
the window of duration CVSt . The same definition with V, U and S units can be 
produced in the VU case. 
This feature is related to the CV (VU) speaking rate, but with one significant difference. 
Here, just the changes between the units that emphasize the pairs and not just the single 
units are taken into account. As speech consists of such CV (VU) combinations one 
should expect higher values when speech signals are decoded and lower values in the 
case of non-speech data. 
This approach could be extended even further to observe higher-order combinations of 
the C, V, and S units to construct n-gram CVS (VUS) models (like in statistical language 
modelling), which could be additionally estimated from the speech and non-speech 
data.

As can be seen from the above definitions, all the proposed features measure the properties 
of recognized data on the pre-defined or automatically obtained segments of a processing 
signal. The segments should be large enough to provide reliable estimations of the proposed 
measurements. They depend on the size of the proportions of speech and non-speech data 
that were expected in the processing signals. We tested both possibilities of the segment 
sizes in our experiments. The typical segment sizes varied between 2.0 and 5.0 seconds in 
the fixed-segment size case. In the case of automatically derived segments the minimum 
duration of the segments was set to 1.5 seconds.  
Another issue was how to calculate the features to be time aligned. In order to make a 
decision as to which proportion of the signal belongs to one or other class the time stamps 
between the estimation of consecutive features should be as small as possible. The natural 
choice would be to compute the features on moving segments between successive 
recognized units, but in our experiments we decided to keep a fixed frame skip, since we 
also used them in combination with the cepstral features. 
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Figure 2. Estimation of the phoneme-recognition CVS features in a portion of a single 
broadcast news show in Slovene. The top four panes show the estimated CVS features from 
an audio signal that is shown in the fifth pane. The bottom pane displays the audio signal 
with the corresponding manual transcription. The top four panes consist of two lines. The 
black (darker) line represents the features obtained from a phoneme-based speech 
recognizer built to recognise Slovene speech, while the red (brighter) line displays the 
features obtained from the phoneme recognizer for English. All the data plots were 
produced using the wavesurfer tool, available at http://www.speech.kth.se/wavesurfer/. 

Figure 2 shows phoneme-recognition features in action. In this example the CVS features 
were produced by phoneme recognizers based on two languages. One was built for Slovene 
(darker line in Figure 2), the other was trained on the TIMIT database (Garofolo et al., 1993) 
(brighter line), and was therefore used for recognizing English speech data. This example 
was extracted from a Slovenian BN show. The data in Figure 2 consist of different portions 
of speech and non-speech. The speech segments are built from clean speech, produced by 
different speakers in a combination with music, while the non-speech is represented by 
music and silent parts. As can be seen from Figure 2, each of these features has a reasonable 
ability to discriminate between the speech and non-speech data, which was later confirmed 
by our experiments. Furthermore, the features computed from the English speech 
recognizer, and thus in this case used on a foreign language, exhibit nearly the same 
behaviour as the features produced by the Slovenian phoneme decoder. This is a very 
positive result in terms of our objective to design features that should be language and 
model independent.  
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3. Speech Detection in Continuous Audio Streams 

While there has been a lot of research done on producing appropriate representations of 
audio signals suitable for discriminating between speech and non-speech on already-
segmented audio data, there have not been so many experiments conducted for speech 
detection in continuous audio streams, where the speech and non-speech parts are 
interleaving randomly. Such kinds of data are to be expected in most practical applications 
of automatic speech processing. 
Most recent research in this field addresses this problem as part of large-vocabulary 
continuous-speech-recognition systems (LVCSRs),  like BN transcription systems 
(Woodland, 2002; Gauvain et al., 2002; Beyerlein et al., 2002) or speaker-diarisation and 
speaker-tracking systems in BN data (Zhu et al., 2005; Sinha et al., 2005; Žibert et al., 2005; 
Istrate et al., 2005; Moraru et al., 2005; Barras et al., 2006; Tranter & Reynolds, 2006). In most 
of these investigations, energy and/or cepstral coefficients (mainly MFCCs) are used for the 
segmenting, and GMMs or HMMs are used for classifying the segments into speech and 
different non-speech classes. An alternative approach was investigated in (Lu et al., 2002), 
where the audio classification and segmentation were made by using support-vector 
machines. Another approach was presented in (Ajmera et al., 2003), where speech/music 
segmentation was achieved by incorporating GMMs into the HMM classification 
framework. This approach is also followed in our work and together with MFCC features it 
serves as a baseline SNS segmentation-classification method in our experiments. 
In addition to our proposed representations, we also developed a method based on the 
acoustic segmentation of continuous audio streams obtained with the Bayesian information 
criterion (BIC) (Chen & Gopalakrishnan, 1998) and followed by the SNS classification.  
In the following sections both segmentation-classification frameworks are described and 
compared using different audio-data representations.   

3.1 Speech/Non-Speech-Segmentation Procedures 

Block diagrams of the evaluated SNS-segmentation systems are shown in Figure 3. 

(a)     (b)  
Figure 3. Block diagram of the two approaches used in the SNS segmentation. In (a) the 
segmentation and classification are performed simultaneously using HMM Viterbi 
decoding. In the second approach (b), firstly, the audio segmentation based on acoustic 
changes is performed by using the BIC segmentation procedure, followed by the GMM 
speech/non-speech classification.  

The basic building blocks of both systems are GMMs. These models were trained with the 
EM algorithm in a supervised way (Young et al., 2004). In the first case, see Figure 3 (a), we 
followed the approach presented in (Ajmera, 2004), which was primarily designed for 
speech/music segmentation. Here, the segmentation and classification were performed 
simultaneously, by integrating already-trained GMMs into the HMM classification 
framework. We built a fully connected network consisting of N HMMs, as shown in Figure 
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4, where N represents the number of GMMs used in the speech/non-speech classification. 
Each HMM was constructed by simply concatenating the internal states associated with the 
same probability density function represented by one GMM. The number of states was fixed 
(M states in Figure 4) and set in such a way as to impose a minimum duration on each 
HMM. All the transitions inside each model were set manually, while the transitions 
between different HMMs were additionally trained on the evaluation data. In the 
segmentation process Viterbi decoding was used to find the best possible state sequence 
corresponding to speech and non-speech classes that could have produced the input-
features sequence. 

Figure 4. Topology of the HMM classification network used in the first procedure of the SNS 
segmentation. 

In the second approach, see Figure 3 (b), the segmentation and classification were performed 
sequentially. The audio was segmented by applying the BIC measure to detect the acoustic-
change points in the audio signals (Chen & Gopalakrishnan ,1998; Tritschler & Gopinath, 
1999). Hence, in the first step of this procedure the segments based on acoustic changes were 
obtained, i.e., speaker, channel, background changes, different types of audio signals (music, 
speech), etc. In the next step these segments were classified as speech or non-speech. This 
classification was based on the same GMM set, which was also incorporated in the HMM 
classifier from the previous approach. In this way we could compare both methods using 
the same models. This approach is suited to the proposed CVS (VUS) features, which 
operate better on larger segments of signals than on smaller signal windows on a frame-by-
frame basis. 
In addition to both approaches, we also explored the fusion of different audio 
representations for SNS segmentation. The fusion of different representations was achieved 
at the score level in GMMs. We experimented with the fusion of the MFCC and the 
proposed CVS features, where each of the audio-signal representations form a separate 
feature stream.  For each stream, separate GMMs were trained using the EM method. For 
SNS-segmentation purposes a similar HMM classification network to that of the non-fusion 
cases was built, see Figure 3 (a) and Figure 4, where in each state the fusion was made by 
computing the product of the weighted observation likelihoods produced by the GMMs 
from each stream. The product-stream weights were set empirically to optimize the 
performance on the evaluation dataset. In this way a fusion of the MFCC and CVS feature 
representations was performed by using a state-synchronous two-stream HMM 
(Potamianos et al., 2004).  
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3.3 Evaluation of Speech/Non-Speech Segmentation 

We experimented with different approaches and representations of audio signals in order to 
find the best possible solution for the SNS discrimination in continuous audio streams.  
We tested three main groups of features: acoustic features, represented by MFCCs, and the 
proposed CVS and VUS phoneme recognition, defined in Section 2. In addition, we 
combined both types of representations in one fusion SNS-segmentation system. All the 
representations were compared by using two SNS-segmentation approaches, presented in 
Section 3.1.  
There were two evaluation databases: the development database, which was used to tune all 
the parameters of the audio representations and the SNS-segmentation systems, and the test 
dataset, which was composed of 12 hours of BN shows. The development dataset consisted 
of 6 hours of television entertainment and BN shows in different languages. A total of 4 
hours of audio data were used to train the GMMs for SNS classification, the rest were used 
for setting the open parameters of the SNS-segmentation procedures to optimize their 
performances. The test database was used to compare the different audio representations 
and approaches in the SNS-segmentation task. This database is part of the audio database of 
BN shows in Slovene, which is presented in (Žibert & Miheli , 2004). 

3.3.1 Evaluation measures 

The SNS-segmentation results were obtained in terms of the percentage of frame-level 
accuracy. We calculated three different statistics in each case: the percentage of true speech 
frames identified as speech, the percentage of true non-speech frames identified as non-
speech, and the overall percentage of speech and non-speech frames identified correctly (the 
overall accuracy). 
Note that in cases where one class dominates in the data (i.e., in the test-data case) the 
overall accuracy depends heavily on the accuracy of that class, and in such a case it cannot 
provide enough information on the performance of such a classification by itself. Therefore, 
in order to correctly assess classification methods one should provide all three statistics.  

3.3.2 Evaluated SNS-segmentation systems 

As a baseline system for the SNS classification we chose the MFCC features’ representation 
in combination with the HMM classifier. We decided to use 12 MFCC features together with 
the normalized energy and first-order derivatives as a base representation, since no 
improvement was gained by introducing second-order derivatives. In that case 128-mixture 
GMMs for the modelling of several different speech and non-speech classes were trained. 
This baseline audio representation together with the HMM-based SNS segmentation is 
referred to as the HMM-GMM: MFCC-E-D-26 system throughout the evaluation sections. 
The above-described system was compared with different SNS approaches where phoneme-
recognition features were used on their own and with the fusion system, where a 
combination of the MFCC and the CVS features were applied. The CVS and VUS features 
were obtained from two phoneme recognizers. One was built on Slovenian data, trained 
from three speech databases: GOPOLIS, VNTV and K211d, (Miheli  et al., 2003). It is 
referred as the SI-phones recognizer throughout the evaluation sections. The second was 
built from the TIMIT database, and thus was used for recognizing English speech. It is 
referred to as the EN-phones recognizer in all our experiments. Both phoneme recognizers 
were constructed from the HMMs of monophone units joined in a fully connected network. 
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Each HMM state was modelled by 32 diagonal-covariance Gaussian mixtures, built in a 
standard way, i.e., using 39 MFCCs, including the energy, and the first- and second-order 
derivatives, and setting all of the HMM parameters using the Baum-Welch re-estimation 
(Young et al., 2004). The phoneme sets of each language were different. In the SI-phones
recognizer, 38 monophone base units were used, while in the TIMIT case, the base units 
were reduced to 48 monophones, according to (Lee & Hon, 1989). In both recognizers we 
used bigram phoneme language models in the recognition process. The recognizers were 
also tested on parts of the training databases. The SI-phones recognizer achieved a phoneme-
recognition accuracy of about 70% on the GOPOLIS database, while the EN-phones
recognizer had a phoneme-recognition accuracy of around 61% in a test part of the TIMIT 
database. Since our CVS (VUS) features were based on transcriptions of these recognizers, 
we also tested both recognizers on CVS recognition tasks. The SI-phones recognizer reached 
a CVS recognition accuracy of 88% on the GOPOLIS database, while for the EN-phones
recognizer the CVS accuracy on the TIMIT database was around 75%. The same 
performance was achieved when recognizing the VUS units. 
The CVS (VUS) features were calculated from phoneme-recognition transcriptions on the 
evaluation databases produced by both the SI-phones and EN-phones recognizers using the 
formulas defined in Section 2. The CVS (VUS) representations of the audio signal obtained 
from the SI-phones recognizer are named SI-phones CVS (SI-phones VUS) In the same manner, 
the CVS and VUS representations obtained from the EN-phones recognizer are marked as
EN-phones CVS (EN-phones VUS).  The models used for classifying the speech and non-
speech data were 2-mixture GMMs.  
In the CVS (VUS) features case we tested both segmentation procedures, which were 
already described in Section 3.1. The segmentation performed by the HMM classifiers, based 
on trained speech/non-speech GMMs is referred to as the HMM-GMM and the 
segmentation based on the BIC measure, followed by the GMM classification, is referred to 
as the BICseg-GMM. In the HMM-GMM case the CVS (VUS) feature vectors were produced 
on a frame-by-frame basis. Hence, a fixed window length of 3.0 s with a frame rate of 100 ms 
was used in all the experiments. In Equation (1), α  was set to 0.5. In the second approach 
the BIC segmentation produced acoustic segments computed from 12 MFCC features, 
together with the energy. The BIC measure was applied by using full-covariance matrices 
and a lambda threshold set according to the development dataset. These segments were 
then classified as speech or non-speech, according to the maximum log-likelihood criteria 
applied to the GMMs modelled by the CVS (VUS) features. 
The fusion SNS-segmentation system was designed to join the MFCC and CVS feature 
representations into a two-stream HMMs classification framework. The GMMs from the 
MFCC-E-D-26 and SI-phones CVS representations were merged into HMMs, and such an 
SNS-segmentation system is called a HMM-GMM: fusion MFCC+CVS system. 
In the HMM-GMM-segmentation case the number of states used to impose the minimum 
duration constraint in the HMMs was fixed. This was done according to (Ajmera et al., 
2003). Since in our evaluation-data experiments speech or non-speech segments shorter than 
1.4 s were not found, we set the minimum duration constraint to 1.4 s, which corresponded 
to a different number of states with different types of representations. All the transition 
probabilities (including self-loop transitions) inside the HMMs were fixed to 0.5. 
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The HMM classification based on the Viterbi algorithm was made with the HTKToolkit 
(Young et al., 2004), while we provided our own tools for the BIC segmentation and the 
GMM classification and training. 

3.3.3 Development Data Evaluations 

The development dataset was primarily designed to serve for determining the models and 
for the tuning of other open parameters of the evaluated SNS-segmentation systems. Hence, 
this dataset was divided into the training part (4 hours) and the evaluation part (2 hours). In 
this subsection experiments on the evaluation data are outlined.  
The evaluation data were intended mainly for tuning the threshold probability weights to 
favour the speech and non-speech models in the classification systems in order to optimize 
the overall performance of the SNS-segmentation procedures. Such optimal models were 
then used in the SNS-segmentation systems on the test data.  
When plotting the overall accuracy of the SNS segmentation of the evaluation data against 
different choices of threshold probability weights, we were able to examine the 
performances of the evaluated approaches in optimal and non-optimal cases. In this way the 
constant overall accuracy of an SNS segmentation under different choices of probability 
weights could indicate the more stable performance of such an SNS-segmentation system in 
adverse acoustic or other audio conditions. The results of such experiments are shown in 
Figures 5 and 6. 

Figure 5. Determining the optimal threshold probability weights of the speech and non-
speech models to maximize the overall accuracy of the CVS and VUS feature representations 
with different SNS-segmentation procedures. 
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Figure 5 shows a comparison of the different types of phoneme-recognition features with 
different SNS-segmentation procedures. As can be seen from Figure 5, all the segmentation 
methods based on both types of phoneme-recognition features are stable across the whole 
range of operating points of the threshold probability weights. The overall accuracy ranges 
between 92% and 95%. No important differences in the performance among the approaches 
based on the HMM classification and the BIC segmentation can be observed, even though 
the BICseg-GMM systems operated, on average, slightly better than their HMM-based 
counterparts. The same can be concluded when comparing CVS and VUS features 
computed from different phoneme recognizers. There is no significant difference in the 
performances when using SI-phones and EN-phones recognizers, even though the audio data 
in this development set are in Slovene. This proves that the phoneme-recognition features 
performed equally well, regardless of the spoken language that appeared in the audio data. 
When comparing the CVS and VUS feature types, no single conclusion can be made: the 
VUS features performed better than the CVS features when the SI-phones recognizers were 
used, but the opposite was the case when the CVS and VUS features derived from the EN-
phones recognizers were applied. 
In summary, the CVS and VUS features were stable and performed equally well across the 
whole range of threshold probability weights. They are also language independent and 
perform slightly better when they are derived from larger segments of data, like in the case 
of the BICseg-GMM-segmentation procedures. Therefore, we decided to use just the SI-
phones CVS features in all the following evaluation experiments. 

Figure 6. Determining the optimal threshold probability weights of the speech and non-
speech models to maximize the overall accuracy of the different audio representations and 
SNS-segmentation procedures. 
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Figure 6 shows a comparison of the phoneme-recognition and acoustic features. The MFCC 
representation achieved the maximum accuracy, slightly above 95%, at the operating point 
(0.8,1.2). Around this point it performed better than the CVS-based segmentations, but in 
general the segmentation with just the MFCC features is more sensitive to the different 
operating points of the probability weights. The best overall performance was achieved by 
the fusion of both representations. The accuracy was increased to 96% (maximum values) 
around those operating points where the corresponding base representations achieved their 
own maximum performances. The fusion representation is also stable across the whole 
range of threshold probability weights due to the base CVS representation.  
In general, it can be concluded that the CVS and VUS phoneme-recognition features were 
more stable than the acoustic MFCC features across the whole range of optimal and non-
optimal cases. Therefore, it can be expected that they would also perform better in situations 
when the training and working conditions are not the same. In addition, a fusion of the 
phoneme and acoustic feature representations yielded the results with the highest overall 
accuracy. 

3.3.4 Test Data Evaluations 

In order to properly assess the proposed methods we performed an evaluation of the SNS-
segmentation systems on 12 hours of audio data from BN shows. The results are shown in 
Table 1. 

Classification & Features Type 
Speech

Recognition
(%)

Non-Speech 
Recognition

(%)

Overall
Accuracy

(%)

HMM-GMM:
MFCC 97.9 58.8 95.4 

HMM-GMM:
SI-phones recognition, CVS units 98.2 91.3 97.8 

BICseg-GMM:
EN-phones recognition, CVS units 98.3 90.9 97.9 

HMM-GMM:
Fusion: MFCC + CVS 99.3 86.4 98.5 

Table 1. Speech- and non-speech-segmentation results on 12 hours of audio data from BN 
shows.

The results in Table 1 were obtained when the optimum set of parameters was applied in all 
the evaluated SNS-segmentation procedures. The results on the test data reveal the same 
performance for the different methods as was the case in the development experiments. The 
results on the test set show that the proposed CVS representations of the audio signals 
performed better than just the acoustic MFCC representations. The advantage of using the 
proposed phoneme-recognition features becomes even more evident when they are 
compared in terms of speech and non-speech accuracies. In general, there exists a huge 
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difference between the CVS and the MFCC representations in correctly identifying non-
speech data with a relatively small loss of accuracy when correctly identifying speech data. 
One of the reasons for this is the stability issue discussed in the previous subsection. In all 
cases of the CVS features (regardless of the segmentation method) this resulted in an 
increased overall accuracy in comparison to the MFCC features.  
When comparing the results of just the CVS representations no substantial differences in the 
classifications can be found. The results from the SI-phones and the EN-phones recognizers 
confirm that the proposed features really are independent of the phoneme recognizers 
trained on speech from different languages. They also suggest that there are almost no 
differences when using different segmentation methods, even though in the case of the BIC 
segmentation and the GMM classification we got slightly better results. 
In the case of fusing the MFCC and CVS features we obtained the highest scores in terms of 
overall accuracy, and the fusion of both representations performed better than their stand-
alone counterparts. 
In general, the results in Table 1 and in Figures 5 and 6 speak in favour of the proposed 
phoneme-recognition features.  This can be explained by the fact that our features were 
designed to discriminate between speech and non-speech, while the MFCC features were, in 
general, developed for speech-processing applications. Another issue concerns stability, and 
thus the robustness of the evaluated approaches. For the MFCC features the performance of 
the segmentation depends heavily on the training data and the training conditions, while 
the classification with the CVS features in combination with the GMMs performed reliably 
on the development and test datasets. Our experiments with fusion models also showed 
that probably the most appropriate representation for the SNS classification is a combination 
of acoustic- and recognition-based features. 
In next section the impact of the evaluated speech-detection approaches on speech-
processing applications is discussed.  

4. The Impact of Speech Detection on Speech-Processing Applications 

In the introduction we explained that a good segmentation of continuous audio streams into 
speech and non-speech has many practical applications. Such a segmentation is usually 
applied as a pre-processing step in real-world systems for automatic speech processing: in 
automatic speech recognition (Shafran & Rose, 2003), like a broadcast-news transcription 
(Gauvain et al., 2002; Woodland, 2002; Beyerlein et al., 2002), in automatic audio indexing 
and summarization (Makhoul et al., 2000; Magrin-Chagnolleau & Parlangeau-Valles, 2002), 
in audio and speaker diarisation (Tranter & Reynolds, 2006; Barras et al., 2006; Sinha et al., 
2005; Istrate et al., 2005; Moraru et al., 2005), in speaker identification and tracking (Martin et 
al., 2000), and in all other applications where efficient speech detection helps to greatly 
reduce the computational complexity and generate more understandable and accurate 
outputs. Accordingly, an SNS segmentation has to be easily integrated into such systems 
and should not increase the overall computational load. 
Therefore, we additionally explored our SNS-segmentation procedures in a speaker-
diarisation application of broadcast-news audio data. We focused mainly on the impact of 
different SNS-segmentation approaches to the final speech (speaker) processing results.  The 
importance of accurate speech detection in each task of the speaker diarisation is evaluated 
and discussed in the following section. 
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4.1 Evaluation of the Impact of Speech Detection in a Speaker-Diarisation System 

4.1.1 Speaker Diarisation-System Framework 

Speaker diarisation is the process of partitioning input audio data into homogeneous 
segments according to the speaker’s identity. The aim of speaker diarisation is to improve 
the readability of an automatic transcription by structuring the audio stream into speaker 
turns, and in cases when used together with speaker-identification systems by providing the 
speaker’s true identity. Such information is of interest to several speech- and audio-
processing applications. For example, in automatic speech-recognition systems the 
information can be used for unsupervised speaker adaptation (Anastasakos et al., 1996, 
Matsoukas et al., 1997), which can significantly improve the performance of speech 
recognition in LVCSR systems (Gauvain et al., 2002; Woodland, 2002; Beyerlein et al., 2002). 
This information can also be applied for the indexing of multimedia documents, where 
homogeneous speaker or acoustic segments usually represent the basic units for indexing 
and searching in large archives of spoken audio documents, (Makhoul et al., 2000). The 
outputs of a speaker diarisation system could also be used in speaker-identification or 
speaker-tracking systems, (Delacourt et al., 2000; Nedic et al., 1999).  

Figure 6. The main building blocks of a typical speaker-diarisation system. Most systems 
have components to perform speech detection, speaker or acoustic segmentation and 
speaker clustering, which may include components for gender detection and speaker 
identification. 
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Most speaker-diarisation systems have a similar general architecture to that shown in Figure 
6. First, the audio data, which are usually derived from continuous audio streams, are 
segmented into speech and non-speech data. The non-speech segments are discarded and 
not used in further processing. The speech data are then chopped into homogeneous 
segments. The segment boundaries are located by finding acoustic changes in the signal, 
and each segment is expected to contain speech from only one speaker. The resulting 
segments are then clustered so that each cluster corresponds to just one speaker. At this 
stage, each cluster is labelled with relative speaker-identification names. Additionally, 
speaker identification or gender detection can be performed. In the first case, each of the 
speaker clusters can be given a true speaker name, or it is left unlabelled if the speech data 
in the cluster do not correspond to any of the target speakers. In the case of gender 
detection, each cluster gets an additional label to indicate to which gender it belongs. As 
such a speaker diarisation of continuous audio streams is a multistage process made up of 
four main components: speech detection, speaker audio segmentation, speaker clustering, 
and speaker identification. The latest overview of the approaches used in speaker-
diarisation tasks can be found in (Tranter & Reynolds , 2006).  
Our speaker-diarisation system, which was used for the current evaluation of speech-
detection procedures, serves for speaker tracking in BN shows (Žibert, 2006b). All the 
components of the system were designed in such a way as to include the standard 
approaches from similar state-of-the-art systems. While the component for speech detection 
was derived from one of the SNS-segmentation procedures in each evaluation experiment, 
the audio segmentation, the speaker clustering and the speaker-identification procedures 
were the same in all experiments. The segmentation of the audio data was made using the 
acoustic-change detection procedure based on the Bayesian information criterion (BIC), 
which was proposed in (Chen & Gopalakrishnan, 1999) and improved by (Tritchler & 
Gopinath 1999). The applied procedure processed the audio data in a single pass, with the 
change-detection points found by comparing the probability models estimated from two 
neighbouring segments with the BIC. If the estimated BIC score was under the given 
threshold, a change point was detected. The threshold, which was implicitly included in the 
penalty term of the BIC, has to be given in advance and was in our case estimated from the 
training data. This procedure is widely used in most of the current audio-segmentation 
systems (Tranter & Reynolds, 2006; Fiscus et al., 2004; Reynolds & Torres-Carrasquillo, 2004; 
Zhou & Hansen, 2000; Istrate et al., 2005; Žibert et al., 2005).  While the aim of an acoustic-
change detection procedure is to provide the proper segmentation of the audio-data 
streams, the purpose of speaker clustering is to join or connect together segments that 
belong to the same speakers. In our system we realized this by applying a standard 
procedure using a bottom-up agglomerative clustering principle with the BIC as a merging 
criterion (Tranter & Reynolds, 2006). A speaker-identification component was adopted from 
a speaker-verification system, which was originally designed for the detection of speakers in 
conversational telephone speech (Martin et al., 2000). The speaker-verification system was 
based on a state-of-the-art Gaussian Mixture Model – Universal Background model (GMM-
UBM) approach (Reynolds et al., 2000). The system made use of 26-dimensional feature 
vectors, composed of 12 MFCCs together with a log energy and their delta coefficients, 
computed every 10 ms and subjected to feature warping using a 3-s-long sliding window 
(Pelecanos & Sridharan, 2001). The log-likelihood scores produced by the system were 
normalized using the ZT-norm normalization technique (Auckenthaler et al., 2000). 
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All the open parameters and all the models used in each task of our speaker-diarisation 
system were estimated from the training data in such a way as to maximise the overall 
performance of the system. 

4.1.2 Evaluation of the Impact 

Since our speaker-diarisation system was constructed from four basic building blocks, we 
performed the evaluation of our speech-detection procedures after each processing block. 
Hence, the impact of the speech-detection procedures was measured, when using them as a 
pre-processing step of an audio-segmentation task, when using them together with an audio 
segmentation for speaker clustering, and in the final step, when measuring the overall 
speaker-tracking performance. The BN audio data used in the evaluation were the same as 
in the case of the evaluation of speech-detection procedures only, in Section 3.3.4. The audio-
segmentation results, when using different speech-detection procedures, are shown in Table 
2 and the final speaker-clustering and speaker-tracking results are shown in Figures 7 and 8, 
respectively.

Segmentation: baseline BIC method
SNS segmentation:

Recall
(%)

Precision
(%)

F-measure 
(%)

Manual SNS segmentation 78.1 78.2 78.1 

HMM-GMM:
MFCC 60.0 80.7 68.8 

HMM-GMM:
SI-phones recognition, CVS 72.2 77.0 74.5 

BICseg-GMM:
EN-phones recognition, CVS 75.2 76.1 75.6 

HMM-GMM:
Fusion: MFCC + CVS 75.7 76.8 76.3 

Table 2. Audio-segmentation results on BN audio data, when using different SNS-
segmentation procedures.

The audio-segmentation performance in Table 2 was measured using three standard 
measures (Kemp et al., 2000): recall, precision and the F-measure. The recall is defined as the 
rate of correctly detected boundaries divided by the total number of boundaries, while the 
precision corresponds to the rate of correctly detected boundaries divided by the total 
number of hypothesized boundaries. Both measures are closely related to the well-known 
false-acceptance and false-rejection rates. The F-measure joins the recall and the precision in a 
single overall measure.  
The overall segmentation results in Table 2 speak in favour of the proposed phoneme-
recognition features (CVS), when using them as a representation of audio signals in speech-
detection procedures. As has already been shown in the evaluation of speech-detection 
procedures alone (see Table 1), a baseline approach HMM-GMM: MFCC performed poorly 
in the detection of non-speech data. The non-speech segments were not detected, and 
consequently too many non-speech boundaries were not found. Therefore, the recall was too 
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low, and regardless of the relatively high precision the overall audio-segmentation results 
were not as good as in the other cases. We achieved relatively good results with both CVS 
representations in comparison to the manual SNS segmentation (in the first row of Table 2).  
The best overall results were achieved with the fusion representation of the MFCC and CVS 
features. The corresponding audio-segmentation results are just approximately 2% worse 
(measured by all three measures) than in the manual SNS-segmentation case. This proves 
that proper speech detection is an important part of an audio-segmentation system and that 
a good SNS segmentation can greatly improve the overall audio-segmentation results. This 
fact becomes even more obvious when different speech-detection procedures were 
compared in a speaker-clustering task, shown in Figure 7.  

Figure 7. Speaker-clustering results when using different SNS-segmentation procedures. The 
lower DER values correspond to better performance.  

Figure 7 shows a comparison of the four speech-detection procedures when using them 
together with the audio segmentation in the speaker-clustering task. The speaker clustering 
was evaluated by measuring the speaker-diarisation performance in terms of the diarisation 
error rate (DER), (Fiscus et al., 2004).  The comparison was made when no stopping criteria 
were used in the speaker-clustering procedure. Hence, the impact of different speech-
detection approaches was compared across the whole range of possible numbers of speaker 
clusters.  
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In Figure 7, the overall performance of the speaker clustering when using different SNS-
segmentation procedures varies between 13.5% and 18.5%, measured using the DER. The 
speaker-clustering system, where the manual SNS segmentation was applied, was the best 
performing of all the evaluated procedures.  In second place was the SNS segmentation with 
the fusion of the CVS and MFCC features. The DER results show on average an 
approximately 1% loss of performance with such speaker clustering. Speaker-clustering 
approaches show comparable performance, where just CVS representations of the audio 
signals were used in combination with different SNS-segmentation systems. A baseline 
speaker-clustering approach with MFCC features performed, on average, 3% worse (in 
absolute figures) than the best-evaluated approaches.  These results also indicate the 
importance of speech detection in speaker-clustering procedures.  

Figure 8. Overall speaker-tracking results plotted with DET curves. Lower DET values 
correspond to better performance. 

The overall performance of the evaluated speaker-diarisation (SD) system is depicted in 
Figure 8, where the overall speaker-tracking results are shown. The results are presented in 
terms of the false-acceptance (FA) and false-rejection (FR) rates, measured at different 
operating points in the form of detection-error trade-off (DET) curves (Martin et al., 2000). In 
our case, the evaluated speaker-tracking system was capable of detecting 41 target speakers 
from the audio data, which included 551 different speakers. The target speakers were 
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enrolled in the system beforehand from the training part of the evaluation BN database. The 
performances of the evaluated speaker-tracking systems were therefore assessed by 
including all 41 target speakers, with the addition of the non-speech segments, and the 
results were produced from the FA and FR rates measured at the time (frame) level.  
Figure 8 presents the evaluation results from four tested speaker-tracking systems. In all the 
evaluated systems the components for the audio segmentation, the speaker clustering and 
the speaker identification were the same, while the speech-detection procedures were 
different. The overall speaker-tracking results from Figure 8 reveal the same performance 
for the evaluated systems as for the speaker-clustering case. The best performance was 
achieved when using manual SNS segmentation, while the speaker-tracking system with the 
baseline SNS segmentation (HMM-GMM:MFCC) performed worse than all the other tested 
systems. Our proposed SNS-segmentation approaches with CVS features produce nearly the 
same overall evaluation results, which are in general 3% worse (in absolute figures) than the 
speaker-tracking results obtained using manual SNS segmentation. Note that the fusion of 
the MFCC and CVS features did not improve the evaluation results in comparison to the 
systems when just the CVS features were used, as was the case in previous evaluations.  
We can conclude that, in general, the impact of SNS segmentation on speaker-diarisation 
and speaker-tracking systems is direct and indirect. As shown in the evaluation of an audio 
segmentation, good speech detection in continuous audio streams is a necessary pre-
processing step if we want to achieve good segmentation results. And since audio 
segmentation serves as a front-end processing component for speaker clustering and 
speaker tracking, an erroneous audio segmentation influences the speaker-clustering 
performance. Speech detection alone has a direct impact on the performance of the speaker-
diarisation performance. Since speaker-clustering performance (measured using the DER) 
and speaker-tracking performance (measured using the DET) are expressed in terms of a 
miss (speaker in reference but not in hypothesis), a false alarm (speaker in hypothesis but 
not in reference) and speaker error (mapped reference speaker is not the same reference as 
the hypothesized speaker), the errors in the speech detection produce a miss, a false alarm 
and false rejection errors in the overall speaker-diarisation results assessed by both 
evaluation measures. All types of errors are consequently integrated in the DER and DET 
plots in Figures 7 and 8.   

5. Conclusion 

This chapter addresses the problem of speech detection in continuous audio streams and 
explores the impact of speech/non-speech segmentation on speech-processing applications. 
We proposed a novel approach for deriving speech-detection features based on phoneme 
transcriptions from generic speech-recognition systems. The proposed phoneme-recognition 
features were designed to be recognizer and language independent and could be applied in 
different speech/non-speech segmentation-classification frameworks. In our evaluation 
experiments two segmentation-classification frameworks were tested, one based on the 
Viterbi decoding of hidden Markov models, where speech/non-speech segmentation and 
detection were performed simultaneously, and the other framework, where segments were 
initially produced on the basis of acoustic information by using the Bayesian information 
criterion and then speech/non-speech classification was performed by applying Gaussian 
mixture models.  
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All the proposed feature representations and segmentation methods were tested and 
compared in the different tasks of a speaker-diarisation system, which served for speaker 
tracking in audio broadcast-news shows. The impact of the speech detection was measured 
in four different tasks of a speaker-diarisation system. The evaluation results of the audio 
segmentation, the speaker clustering and the speaker tracking demonstrate the importance 
of a good speech-detection procedure in such systems. In all tasks, our proposed phoneme-
recognition features proved to be a suitable and robust representation of audio data for 
speech detection and were capable of reducing the error rates of the evaluated speaker-
diarisation systems. At the same time the evaluation experiments showed that the 
speech/non-speech segmentation with the fusion of the acoustic and the phoneme features 
performed the best among all the systems, and was even comparable to the manual 
speech/non-speech segmentation systems.  This confirmed our expectations that probably 
the most suitable representation of audio signals for the speech/non-speech segmentation of 
continuous audio streams is a combination of acoustic- and recognition-based features. 
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1. Introduction     

Nowadays, the emerging wireless communication applications require increasing levels of 
performance and speech processing systems working in noise adverse environments. These 
systems often benefit from using voice activity detectors (VADs) which are frequently used 
in such application scenarios for different purposes. Speech/non-speech detection is an 
unsolved problem in speech processing and affects numerous applications including robust 
speech recognition (Karray & Martin, 2003), (Ramírez et al., 2003), discontinuous 
transmission (ETSI, 1999), (ITU, 1996), estimation and detection of speech signals (Krasny, 
2000), real-time speech transmission on the Internet (Sangwan et al., 2002) or combined 
noise reduction and echo cancellation schemes in the context of telephony (Basbug et al., 
2003). The speech/non-speech classification task is not as trivial as it appears, and most of 
the VAD algorithms fail when the level of background noise increases.  
During the last decade, numerous researchers have developed different strategies for 
detecting speech on a noisy signal (Sohn et al., 1999), (Cho & Kondoz 2001) and have 
evaluated the influence of the VAD effectiveness on the performance of speech processing 
systems (Bouquin-Jeannes & Faucon, 1995) (see also the preceding chapter about VAD). 
Most of them have focussed on the development of robust algorithms with special attention 
on the derivation and study of noise robust features and decision rules (Woo et al., 2000), (Li 
et al., 2002), (Marzinzik & Kollmeier, 2002), (Sohn et al., 1999). The different approaches 
include those based on energy thresholds (Woo et al., 2000), pitch detection 
(Chengalvarayan, 1999), spectrum analysis (Marzinzik & Kollmeier, 2002), zero-crossing rate 
(ITU, 1996), periodicity measures (Tucker, 1992) or combinations of different features (ITU, 
1996), (ETSI, 1999). 
In this Chapter we show three methodologies for VAD: i) statistical likelihood ratio tests 
(LRTs) formulated in terms of the integrated bispectrum of the noisy signal. The integrated 
bispectrum is defined as a cross spectrum between the signal and its square, and therefore a 
function of a single frequency variable. It inherits the ability of higher order statistics to 
detect signals in noise with many other additional advantages (Górriz, 2006a), (Ramírez et 
al, 2006); ii) Hard decision clustering approach where a set of prototypes is used to 
characterize the noisy channel. Detecting the presence of speech is enabled by a decision 
rule formulated in terms of an averaged distance between the observation vector and a 
cluster-based noise model; and iii) an effective method employing support vector machines 
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(SVM) , a paradigm of learning from examples based in Vapkik-Chervonenkis theory 
(Vapnik, 1995). The use of kernels in SVM enables to map the data, via a nonlinear 
transformation, into some other dot product space (called feature space) in which the 
classification task is settled. 

2. Relevant Feature Vectors for VAD 

In this section we show some standard and novel Feature Vectors (FVs) for VAD. After the 
framing procedure, that is processing the input signal in short time frames, these FVs are 
computed in the feature extraction stage. Usually, the features are extracted using 
overlapping frames, which results in correlation between consecutive frames, and smoothes 
the spectral change from frame to frame. Feature extraction attempts to present the content 
of the speech signal compactly, such that the characteristic information of the signal is 
preserved. Then, the VAD decision is made using information provided by the features in 
the decision-making module. 

2.1 Feature Vector based on Power Spectrum 

Let x(n) be a discrete zero-mean time signal. In the framing stage the input signal x(n) 
sampled at 8 kHz is decomposed into 25-ms overlapped frames with a 10-ms window shift. 
The current frame consisting of 200 samples is zero padded to 256 samples and power 
spectral magnitude X( ) is computed through the discrete Fourier transform (DFT).  Finally, 
the filterbank reduces the dimensionality of the feature vector to a suitable representation 
for detection including broadband spectral information. Thus, the signal is passed through a 
K-band filterbank which is defined by: 
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This feature in combination with long term information is usually adopted as feature vector, 
i.e. the one used in the clustering based VAD (Górriz et al., 2006b). In addition, it also 
provides the definition of other feature vector, the subband SNRs (that is used in the SVM 
approach), which includes the environmental level of noise and can be computed as: 
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where NB denotes the subband power spectral magnitude of the residual noise that is 
extracted from the noisy channel using the approach presented in section 3.1. 

2.2 Feature Vector based on HOS 

The bispectrum of a discrete-time zero-mean signal x(t) is defined as the 2-D discrete time 
Fourier transform: 
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where C3x is the third-order cumulant of the input signal (third order moment of a zero-
mean signal). Note that, from the above definition the third-order cumulant can be 
expressed as: 
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Let denote y(t)= x2(t)-E{x2(t)}, the cross correlation between y(t) and x(t) is defined to be: 
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so that its cross spectrum is given by: 
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and the reverse transformation is also satisfied:  
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If we compare Eq. (4) with Eq. (7) we obtain: 
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The integrated bispectrum is defined as a cross spectrum between the signal and its square, 
and therefore a function of a single frequency variable. Hence, its computation as a cross 
spectrum leads to significant computational savings, but more important is that the variance 
of the estimator is of the same order as that of the power spectrum estimator. On the other 
hand, Gaussian processes have vanishing third order moments so that the bispectrum and 
integrated bispectrum functions are zero as well, preserving their detection ability. From 
figure 1 it can be clearly concluded that higher order statistics or polyspectra provide 
discriminative features for speech/non-speech classification (Górriz et. al, 2005). 
Given a finite data set {x(1), x(2), ..., x(N)} the integrated bispectrum is normally estimated 
by splitting the data set into blocks. Thus, the data set is divided into KB non-overlapping 
blocks of data each of size MB samples so that N= KBMB. Then, the cross periodogram of the 
ith block of data is given by 
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where Xi( ) and Yi( )) denote the discrete Fourier transforms of x(t) and y(t) for the ith 
block. Finally, the estimate is obtained by averaging KB blocks: 
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Figure 1. Third order statistics of a: left) noise only signal, right) speech signal corrupted by 
car noise.

3. Modelling the Noise subspace. 

In the VAD problem, the background noise is usually assumed to be stationary over longer 
period of time than the speech signal. This enables to develop a smoothed noise model 
during a initialization period, and the estimation of noise statistics during non-speech 
periods for noise model update. Of course updating the noise parameters requires the 
information provided by the VAD decision in the previous frames (i.e. the non-speech 
periods). Then, the decision-making module can be divided to two separate parts: a primary 
decision, which makes the actual decision for the frame and a secondary decision, which 



New Advances in Voice Activity Detection using HOS and Optimization Strategies 53

monitors the updating of the noise parameters. These parameters or noise model are related 
to the feature vectors used in the VAD algorithm, the decision-making module compares 
them with the actual FV to detect the current speech/non-speech period. 

3.1 Spectral Noise Model 

Assuming that the first N overlapped frames are nonspeech frames the noise level in the kth 
band, NB(k) can be estimated as the median of the set {NB(0, k),..., NB(N-1,k)}. In order to 
track non stationary noisy environments, the noise spectrum NB(k) is updated during non-
speech periods by means of a 1st order IIR filter on the smoothed spectrum Xs(k), that is:

( ) ( ) ( ) ( ) 99.0;,1,1, ≅−+−= λλλ klXklNklN sBB   (11) 

where Xs(k) is obtained averaging over consecutive frames and adjacent spectral bands, i.e. 
two consecutive frames and two adjacent bands, l is the frame index and  is selected 
empirically. This update is applied to non-speech periods exclusively where Xs(k) provides 
the instant noise characterization. 

3.2 Clustering Based Model 

Recently, cluster analysis has been applied to a set of noise spectral FVs to obtain a soft 
model for VAD (Górriz et al., 2006b). Given an initial set of noise FVs {NB(j,k)} with j=1,…,N, 
we apply  hard decision-based clustering  to assign them to a prespecified number of 
prototypes C<N, labelled by an integer  i=1,…,C. This allocation is achieved in such a way 
that the similarity measure is minimized in terms of the squared Euclidean distance between 
noise energy vectors: 
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where (j)=i denotes a many-to-one mapping, that assigns the jth observation to the ith 
prototype and 
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is the mean vector associated with the ith prototype (the sample mean for the ith prototype. 
Thus, the loss function is minimized by assigning N noise spectral observations to C noise 
prototypes in such a way that within each prototype the average dissimilarity of the 
observations is minimized. Once convergence is reached, N K-dimensional pause frames are 
efficiently modelled by C K-dimensional noise prototype vectors (see figure 2). We call this 
set of clusters C-partition or noise prototypes since, in this scenario, the word “cluster” is 
assigned to different classes of labelled data, that is K is fixed to 2, i.e. we define two clusters: 
“noise” and “speech” and the cluster “noise” consists of C prototypes (Górriz et al., 2006b). 
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Figure 2. 20 noise log-energy frames, computed using NFFT=256 and averaged over 50 
subbands and clustering approach to the latter set of frames using hard decision C-means 
(C=4 prototypes). 

4. Novel methodologies for VAD 

The VAD decision is done in the decision-making module of the VAD algorithm, according 
to the decision rule. This section addresses the problem of voice activity detection 
formulated in terms of a classical binary hypothesis testing framework: 
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There are several ways of defining this decision rule which selects between both hypotheses, 
depending of the application where the VAD decision is employed. In the following, we 
show the most representative methodologies presented by the authors in several works over 
the past few years: i) multiple observation likelihood ratio tests (MO-LRT)  for VAD over the 
integrated bispectrum (IBI) FV ii) the clustering distance based VAD using spectral FVs and 
iii)  Support Vector Machines for solving a binary classification problem using subband 
SNRs as FVs. 

4.1 Integrated Bispectrum based MO-LRT VAD 

In a two-hypothesis test, the optimal decision rule that minimizes the error probability is the 
Bayes classifier. Given an observation vector y to be classified, the problem is reduced to 
selecting the class (H0 or H1) with the largest posterior probability P(Hi|y). From the Bayes 
rule a statistical LRT  can be  defined by: 
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where the observation vector y is classified as H1 if L(y) is greater than P(H0)/P(H1)
otherwise it is classified as H0. The LRT first proposed by Sohn (Sohn et al., 1999) for VAD, 
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which was defined on the power spectrum, is generalized and extended to the case where 
successive observations. The proposed multiple-observation likelihood ratio test (MO-LRT) 
formulates the decision for the central frame of a (2m+1)-observation buffer {yl-m, ..., yl-1, yl,
yl+1, ..., yl+m}: 
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where l denotes the frame being classified as speech (H1) or non-speech (H0). Note that, 
assuming statistical independence between the successive observation vectors, the 
corresponding log-LRT: 
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is recursive in nature and if each term of equation (18) is defined as (k) the latter equation 
can be recursively calculated as: 

( ) ( ) ( ) ( )1,,1 ++Φ+−Φ−=+ mlmlll mlml yy   (19) 

The so called multiple observation LRT (MO-LRT) reports significant improvements in 
robustness as the number of observations increases. Assuming the integrated bispectrum 
{Syx( ): } as the FV y and to be independent zero-mean Gaussian variables in presence and 
absence of speech with variances 1 and 0 , resp. we obtain that the ratio of likelihoods can 
be expressed as: 
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where the a priori and a posteriori variance ratios are defined as: 
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In order to evaluate the decision function the computation of variances under both 
hypotheses must be properly established. This is discussed further in (Ramírez et al., 2006) 
where a complete derivation of them is obtained in terms of the power spectrum of the noise 
(computed using the model presented in section 3.1) and the clean signal. 
Figure 3 shows an example of the operation of the contextual MO-LRT VAD on an utterance 
of the Spanish SpeechDat-Car database (Moreno et al., 2000). The figure shows the decision 
variables for the tests defined by equation 20 and, alternatively, for the test with the second 
log-term in equation 20 suppressed (approximation) when compared to a fixed threshold η=
1.5. For this example, MB= 256 and m= 8. This approximation reduces the variance during 
non-speech periods. It can be shown that using an 8-frame window reduces the variability 
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of the decision variable yielding to a reduced noise variance and better speech/non-speech 
discrimination. On the other hand, the inherent anticipation of the VAD decision contributes 
to reduce the number of speech clipping errors. 

Figure 3. Operation of the MO-LRT VAD defined on the integrated bispectrum. 

4.2 Long Term C-Means VAD 

The speech/pause discrimination may be described as an unsupervised learning problem. 
Clustering is an appropriate solution for this case where the data set is divided into groups 
which are related ``in some sense''. Despite the simplicity of clustering algorithms, there is 
an increasing interest in the use of clustering methods in pattern recognition (Anderberg et 
al., 1973), image processing (Jain & Flynn, 1996) and information retrieval (Rasmussen, 
1992). Clustering has a rich history in other disciplines such as machine learning, biology, 
psychiatry, psychology, archaeology, geology, geography, and marketing. Cluster analysis, 
also called data segmentation has a variety of goals. All of these are related to grouping or 
segmenting a collection of objects into subsets or “clusters” such that those within each 
cluster are more closely related to one another than objects assigned to different clusters. 
Cluster analysis is also used to form descriptive statistics to ascertain whether or not the 
data consists of a set of distinct subgroups, each group representing objects with 
substantially different properties. Consider noise model proposed in section 3.2 and let Ê(l) 
be the decision feature vector at frame l that is defined on the MO window as follows: 

{ } mlmljjElE B +−=≡ ,,;)(max)(ˆ   (22) 

where EB(j) is defined in section 2.1 and the function max is applied in each frequency band 
k. The selection of this envelope feature vector, describing not only a single instantaneous 
frame but also a (2m+1) entire neighbourhood, is useful as it detects the presence of voice 
beforehand (pause-speech transition) and holds the detection flag, smoothing the VAD 
decision (as a hangover based algorithm in speech-pause transition (Marzinzik & Kollmeier, 
2002), (Li et al., 2002). 
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In the LTCM-VAD (Górriz et al., 2006b) the presence of the second ”cluster” (speech frame) 
is detected if the following ratio holds: 
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where <ÑB(i)>=(1/C) Ci=1ÑB(i)=(1/C) Ci=1 Nj=1 ijNB(j) is the averaged noise prototype 
center defined in terms of the noise model presented in section 3.2 and  is the decision 
threshold.
In order to adapt the operation of the proposed VAD to non-stationary and noise 
environments, the set of noise prototypes are updated according to the VAD decision 
during non-speech periods (not satisfying equation 23) in a competitive manner (only the 
closer noise prototype ÑB(l) at time l is moved towards the current feature vector Ê(l)):
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where  is a normalized constant. Its value is close to one for a soft decision function (i.e. we 
selected in simulation =0.99), that is, uncorrected classified speech frames contributing to 
the false alarm rate will not affect the noise space model significantly. 

4.3 SVM enabled VAD 

SVMs have recently been proposed for pattern recognition in a wide range of applications 
by its ability for learning from experimental data (Vapnik, 1995). The reason is that SVMs 
are much more effective than other conventional parametric classifiers. In SVM-based 
pattern recognition, the objective is to build a function f: RN  ±1 using training data that is, 
N-dimensional patterns xi and class labels yi:

( ) ( ) ( ) { }1,,,,,, 2211 ±×∈ N
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so that f will correctly classify new examples (x,y). The use of kernels in SVM enables to map 
the data into some other dot product space (called feature space) F via a nonlinear 
transformation : RN F and perform the linear SVM algorithm (Vapnik, 1995) in F. The 
kernel is related to the  function by k(xi,xj)= ( (xi) (xj)). In the input space, the 
hyperplane corresponds to a nonlinear decision function whose form is determined by the 
kernel. Thus, the decision function can be formulated in terms of a nonlinear function as: 
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where the parameters i are the solution of a quadratic programming problem that are 
usually determined by the well known Sequential Minimal Optimization (SMO) algorithm 
(Platt, 1999). Many classification problems are always separable in the feature space and are 
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able to obtain better results by using RBF kernels instead of linear and polynomial kernel 
functions (Clarkson & Moreno, 1999). 
The feature vector used in the SVM approach is the subband SNR described in section 2.1 
but also including long term information: the long-term spectral envelope (LTSE) (Ramírez 
et al., 2006b) including contextual information of the speech signal is computed by:  = 
max{Xj( m), where j=l-L,…,l-1, l, l+1,…,l+L} and its dimensionality is reduced to a wide K-
band spectral representation as in section 2.1. 
An optional denoising process is applied to the input signal which consist of: i) Spectrum 
smoothing, ii) Noise estimation., iii) Wiener Filtering (WF) design and iv) Frequency domain 
filtering (Ramirez et al, 2006b). Once the SVM model is trained (i.e using the LIBSVM 
software tool (Chang & Lin, 2001); a training set consisting of 12 utterances of the AURORA 
3 Spanish SpeechDat-Car (SDC) was used), we obtain the relevant support vectors and 
parameters in the classification of noise and speech features which enable to build the non-
linear decision function shown in equation 26. The evaluation of the latter function is 
computational expensive, however evaluation methods have been also proposed (Ramírez 
et al. 2006b) in order to speed up the VAD decision. The method is based on a off-line 
computation of the decision rule over an input space grid and storing it in an N-dimensional
look-up table.  Finally, given a feature vector x we look for the nearest point in the grid 
previously defined and then perform a table look-up to assign a class (speech or non-
speech) to the former feature vector. 
Fig. 4..left shows the training data set in the 3-band input space. It is shown that the two 
classes can not be separated without error in the input space. Fig. 4.right shows the SVM 
decision rule that is obtained after the training process. Note that, i) the non-speech and 
speech classes are clearly distinguished in the 3-D space, and ii) the SVM model learns how 
the signal is masked by the noise and automatically defines the decision rule in the input 
space. Fig. 4. right also suggests a fast algorithm for performing the decision rule defined by 
equation 26 that becomes computationally expensive when the number of support vectors 
and/or the dimension of the feature vector are high. Note that all the information needed 
for deciding the class a given feature vector x belongs resides in figure 4.right. Thus, the 
input space can be discretized over the different components of the feature vector x.

Figure 4.  Classification rule in the input space after training a 3-band SVM model. left) 
Training data set, right) SVM classification rule. 
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5. Experimental Section. 

Several experiments are commonly conducted in order to evaluate the performance of VAD 
algorithms. The analysis is mainly focussed on the determination of the error probabilities 
or classification errors at different SNR levels (Marzinzik & Kollmeier, 2002) and the 
influence of the VAD decision on the performance of speech processing systems (Bouquin-
Jeannes & Faucon, 1995). Subjective performance tests have also been considered for the 
evaluation of VADs working in combination with speech coders (Benyassine et al., 1997). 
This section describes the experimental framework and the objective performance tests 
conducted in this paper to evaluate the proposed algorithms.  

5.1 Receiver operating characteristics (ROC) curves 

The ROC curves are frequently used to completely describe the VAD error rate. They show 
the tradeoff between speech and non-speech detection accuracy as the decision threshold 
varies. The AURORA subset of the original Spanish SpeechDat-Car database (Moreno et al., 
2000) was used in this analysis. This database contains 4914 recordings using close-talking 
and distant microphones from more than 160 speakers. The files are categorized into three 
noisy conditions: quiet, low noisy and highly noisy conditions, which represent different 
driving conditions with average SNR values between 25dB and 5dB. The non-speech hit rate 
(HR0) and the false alarm rate (FAR0= 100-HR1) were determined for each noise condition 
being the actual speech frames and actual speech pauses determined by hand-labelling the 
database on the close-talking microphone. 

Figure 5.  Classification rule in the input space after training a 3-band SVM model. left) 
Training data set, right) SVM classification rule. 

Figure 5 shows the ROC curves of the proposed IBI-MO-LRT VAD and other frequently 
referred algorithms (Woo et al., 2000), (Li et al., 2002), (Marzinzik & Kollmeier, 2002), (Sohn 
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et al., 1999) for recordings from the distant microphone in high noisy conditions. The 
working points of the G.729, AMR and AFE standard VADs are also included. The efficient 
MO-LRT IBI VAD exhibits a shift of the ROC curve when the number of observations (m)
increases as shown in figure 5. The method shows clear improvements in detection accuracy 
over standardized VADs and over a representative set of recently published VAD 
algorithms  such us (Woo et al., 2000), (Li et al., 2002), (Marzinzik & Kollmeier, 2002), (Sohn 
et al, 1999). 
The AURORA-2 database (Hirsch & Pearce, 2000) is also an adequate database for this 
analysis since it is built on the clean TIdigits database that consists of sequences of up to 
seven connected digits spoken by American English talkers as source speech, and a selection 
of eight different real-world noises that have been artificially added to the speech at SNRs of 
20dB, 15dB, 10dB, 5dB, 0dB and -5dB. These noisy signals have been recorded at different 
places (suburban train, crowd of people (babble), car, exhibition hall, restaurant, street, 
airport and train station), and were selected to represent the most probable application 
scenarios for telecommunication terminals. In the discrimination analysis, the clean TIdigits 
database was used to manually label each utterance as speech or non-speech on a frame by 
frame basis for reference. Figure 6 provide comparative results of this analysis and compare 
the proposed LTCM VAD to standardized algorithms including the ITU-T G.729 (ITU, 
1996), ETSI AMR (ETSI, 1999) and ETSI AFE (ETSI, 2002) and recently reported (Sohn et al., 
1999), (Woo et al., 2000), (Li et al., 2002), (Marzinzik & Kollmeier, 2002) VADs in terms of 
speech hit-rate (HR1) for clean conditions and SNR levels ranging from 20 to -5 dB. Note 
that results for the two VADs defined in the AFE DSR standard (ETSI, 2002) for estimating 
the noise spectrum in the Wiener filtering (WF) stage and non-speech frame-dropping (FD) 
are provided. The results shown in these figures are averaged values for the entire set of 
noises. Table 1 summarizes the advantages provided by LTCM VAD over the different VAD 
methods in terms of the average speech/non-speech hit-rates (over the entire range of SNR 
values). Thus, the proposed method with a mean of 97.57% HR1 and a mean of 47.81% HR0 
yields the best trade-off in speech/non-speech detection. 

Figure 6.  right) Speech hit rates (HR1) of standard VADs as a function of the SNR for the 
AURORA-2 database. Left) Speech hit rates (HR1) of other VADs as a function of the SNR 
for the AURORA-2 database. 
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 G729 AMR
1 AMR2 AFE(WF) AFE(FD) LTCM

HR0(%) 31.77 31.31 42.77 57.68 28.74 47.81 

HR1(%) 93.00 98.18 93.76 88.72 97.70 97.57 

Sohn Woo Li Marzinzik LTCM

HR0(%) 43.66 55.40 57.03 52.69 47.81 

HR1(%) 94.46 88.41 83.65 93.04 97.57 

Table 1. Average speech/non-speech hit rates for SNRs between clean conditions and -5 dB. 
Comparison to standardized VADs, and other VAD methods. 

Figure 7 shows the ROC curves of the proposed SVM VAD, after a training process that  
consists of 12 utterances of the AURORA 3 Spanish SpeechDat-Car (SDC), using for varying 
L and K= 4 (number of subbands). It is shown that increasing the time span up to 8 frames 
also leads to a shift-up and to the left of the ROC curve. The optimal parameters for the 
proposed VAD are then K= 4 subbands and L= 8 frames. The results show significant 
improvements in speech/non-speech detection accuracy over standard VADs and over a 
representative set of VAD algorithms. These improvements are obtained by including 
contextual information in the feature vector and defining a non-linear decision rule over a 
wide band spectral representation of the data which enables a SVM-based classifier to learn 
how the speech signal is masked by the acoustic noise present in the environment. 
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5.2 Speech recognition experiments 

Although the ROC curves are effective for VAD evaluation, the influence of the VAD in a 
speech recognition system was also studied. Many authors claim that VADs are well 
compared by evaluating speech recognition performance (Woo et al., 2000) since non-
efficient speech/non-speech classification is an important source of the degradation of 
recognition performance in noisy environments (Karray & Martin, 2003). There are two clear 
motivations for that: i) noise parameters such as its spectrum are updated during non-
speech periods being the speech enhancement system strongly influenced by the quality of 
the noise estimation, and ii) frame-dropping (FD), a frequently used technique in speech 
recognition to reduce the number of insertion errors caused by the noise, is based on the 
VAD decision and speech misclassification errors lead to loss of speech, thus causing 
irrecoverable deletion errors. This section evaluates the VAD according to the objective it 
was developed for, that is, by assessing the influence of the VAD in a speech recognition 
system. 
The reference framework (base) considered for these experiments is the ETSI AURORA 
project for distributed speech recognition (ETSI, 2000). The recognizer is based on the HTK 
(Hidden Markov Model Toolkit) software package (Young et al., 1997). The task consists of 
recognizing connected digits which are modeled as whole word HMMs (Hidden Markov 
Models) with 16 states per word, simple left-to-right models and 3-gaussian mixtures per 
state (diagonal covariance matrix). Speech pause models consist of 3 states with a mixture of 
6 Gaussians per state. The 39-parameter feature vector consists of 12 cepstral coefficients 
(without the zero-order coefficient), the logarithmic frame energy plus the corresponding 
delta and acceleration coefficients. For the AURORA-3 SpeechDat-Car databases, the so 
called well-matched (WM), medium-mismatch (MM) and high-mismatch (HM) conditions 
are used. These databases contain recordings from the close-talking and distant 
microphones. In WM condition, both close-talking and hands-free microphones are used for 
training and testing. In MM condition, both training and testing are performed using the 
hands-free microphone recordings. In HM condition, training is done using close-talking 
microphone recordings from all the driving conditions while testing is done using the 
hands-free microphone at low and high noise driving conditions. Finally, recognition 
performance is assessed in terms of the word accuracy (WAcc) that considers deletion, 
substitution and insertion errors. 
Table 2 shows the recognition performance for the Spanish SpeechDat-Car database when 
WF and FD are performed on the base system (ETSI, 2000) using the IBI-MO-LRT and 
LTCM VADs. Our VADs outperform all the algorithms used for reference yielding relevant 
improvements in speech recognition. Note that, this particular database used in the 
AURORA 3 experiments have longer non-speech periods than the AURORA 2 database and 
then, the effectiveness of the VAD results more important for the speech recognition system 
(Ramírez et al., 2006), (Górriz et al., 2006b). This fact can be clearly shown when comparing 
the performance of the proposed VADs to Marzinzik VAD (Marzinzik & Kollmeier, 2002). 
The word accuracy of the VADs is quite similar for the AURORA 2 task. However, the 
proposed VADs yield a significant performance improvement over Marzinzik VAD 
(Marzinzik & Kollmeier, 2002) for the AURORA 3 database (Górriz et al., 2006b), (Ramírez 
et al., 2006). 
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Base Woo Li Marzinzik Sohn G729

WM 92.94 95.35 91.82 94.29 96.07 88.62

MM 83.31 89.30 77.45 89.81 91.64 72.84

HM 51.55 83.64 78.52 79.43 84.03 65.50

Ave. 75.93 89.43 82.60 87.84 90.58 75.65

AMR1 AMR2 AFE LTCM IBI-LRT 

WM 94.65 95.67 95.28 96.41 96.39 

MM 80.59 90.91 90.23 91.61 91.75 

HM 62.41 85.77 77.53 86.20 86.65 

Ave. 74.33 90.78 87.68 91.41 91.60 

Table 1. Average speech/non-speech hit rates for SNRs between clean conditions and -5 dB. 
Comparison to standardized VADs, and other VAD methods. 

6. Conclusion 

This paper showed three different schemes for improving speech detection robustness and 
the performance of speech recognition systems working in noisy environments. These 
methods are based on: i) statistical likelihood ratio tests (LRTs) formulated in terms of the 
integrated bispectrum of the noisy signal. The integrated bispectrum is defined as a cross 
spectrum between the signal and its square, and therefore a function of a single frequency 
variable. It inherits the ability of higher order statistics to detect signals in noise with many 
other additional advantages; ii) Hard decision clustering approach where a set of prototypes 
is used to characterize the noisy channel. Detecting the presence of speech is enabled by a 
decision rule formulated in terms of an averaged distance between the observation vector 
and a cluster-based noise model; and iii) an effective method employing support vector 
machines (SVM) , a paradigm of learning from examples based in Vapkik-Chervonenkis 
theory. The use of kernels in SVM enables to map the data, via a nonlinear transformation, 
into some other dot product space (called feature space) in which the classification task is 
settled. 
The proposed methods incorporate contextual information to the decision rule, a strategy 
that has reported significant improvements in speech detection accuracy and robust speech 
recognition applications. The optimal window size was determined by analyzing the 
overlap between the distributions of the decision variable and the error rate. The 
experimental analysis conducted on the well-known AURORA databases has reported 
significant improvements over standardized techniques such as ITU G.729, AMR1, AMR2 
and ESTI AFE VADs, as well as over recently published VADs. The analysis assessed: i) the 
speech/non-speech detection accuracy by means of the ROC curves, with the proposed 
VADs yielding improved hit-rates and reduced false alarms when compared to all the 
reference algorithms, and ii) the recognition rate when the VADs are considered as part of a 
complete speech recognition system, showing a sustained advantage in speech recognition 
performance.
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1. Introduction    

Speech recognition is one of our most effective communication tools when it comes to a 
hands-free (human-machine) interface.  Most current speech recognition systems are capa-
ble of achieving good performance in clean acoustic environments. However, these systems 
require the user to turn the microphone on/off to capture voices only. Also, in hands-free 
environments, degradation in speech recognition performance increases significantly 
because the speech signal may be corrupted by a wide variety of sources, including 
background noise and reverberation. 
Sudden and short-period noises also affect the performance of a speech recognition system.  
Figure 1 shows a speech wave overlapped by a sudden noise (a telephone call).  To 
recognize the speech data correctly, noise reduction or model adaptation to the sudden 
noise is required.  However, it is difficult to remove such noises because we do not know 
where the noise overlapped and what the noise was.  Many studies have been conducted on 
non-stationary noise reduction in a single channel (A. Betkowska, et al., 2006), (V. Barreaud, 
et al., 2003), (M. Fujimoto & S. Nakamura, 2005). But it is difficult for these methods to track 
sudden noises. 

Figure 1. Speech wave overlapped by a sudden noise (telephone call)  

In actual noisy environments, a speech detection algorithm plays an especially important 
role in noise reduction, speech recognition, and so on. In this chapter, a noise detection and 
classification algorithm using AdaBoost, which can achieve extremely high detection rates, 
is described. If a speech recognition system can detect sudden noises, it will make the 
system able to require the same utterance from the user again, and if clean speech data can 

sudden noise 
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be input, it will help prevent system operation errors. Also, if it can be determined what 
noise is overlapped, the noise characteristics information will be useful in noise reduction. 
''Boosting'' is a technique in which a set of weak classifiers is combined to form one high-
performance prediction rule, and AdaBoost (Y. Freund & R. E. Schapire, 1999) serves as an 
adaptive boosting algorithm in which the rule for combining the weak classifiers adapts to 
the problem and is able to yield extremely efficient classifiers. In this chapter, we discuss the 
AdaBoost algorithm for sudden-noise detection and classification problems. The proposed 
method shows an improved speech detection rate, compared to that of conventional 
detectors based on the GMM (Gaussian Mixture Model).  

2. System Overview 

Figure 2 shows the overview of the noise detection and classification system based on 
AdaBoost. The speech waveform is split into a small segment by a window function. Each 
segment is converted to the linear spectral domain by applying the discrete Fourier 
transform. Then the logarithm is applied to the linear power spectrum, and the feature 
vector (log-mel spectrum) is obtained. Next the system identifies whether or not the feature 
vector is a noisy speech overlapped by sudden noises using two-class AdaBoost, where the 
multi-class AdaBoost is not used due to the computation cost. Then the system clarifies the 
kind of sudden noises from only the detected noisy frame using multi-class AdaBoost.  

Figure 2. System overview of noise detection and classification  
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3. Noise Detection with AdaBoost 

Boosting is a voting method by weighted weak classifier and AdaBoost is one of method of 
Boosting (Y. Freund & et al., 1997). The Boosting decides the weak classifiers and their 
weights based on the minimizing of loss function in a two-class problem. Since the Boosting 
is fast and has high performance, it is commonly used for face detection in images (P. Viola, 
et al., 2001). 

Figure 3. AdaBoost algorithm for noise detection 

Figure 3 shows the AdaBoost learning algorithm. The AdaBoost algorithm uses a set of 
training data, { ),x(),...,,(x 11 nn yy }, where ix is the i-th feature vector of the observed signal 
and y is a set of possible labels. For the noise detection, we consider just two possible labels, 

{-1,1}Y = , where the label, -1, means noisy speech, and the label, 1, means speech only. 
As shown in Figure 3, the weak learner generates a hypothesis {-1,1}x: →th  that has a 
small error. In this paper, single-level decision trees (also known as decision stamps) are 
used as the base classifiers. 
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Here jx  is the j-dimensional feature of x and tθ is the threshold which is decided by 
minimizing the error. After training the weak learner on the t-th iteration, the error of th  is 
calculated. 
Next, AdaBoost sets a parameter .tα  Intuitively, tα measures the importance that is 
assigned to .th  Then the weight tw  is updated. Equation (1) leads to the increase of the 
weight for the data misclassified by .th  Therefore, the weight tends to concentrate on 
``hard'' data. After the T-th iteration, the final hypothesis, )x(f combines the outputs of the 
T weak hypotheses using a weighted majority vote.  If ,)x( η<if  AdaBoost outputs the 
label -1 and that means the i-th frame is a noisy frame overlapped by sudden noises to 
detect. In this paper, we set η = 0. As AdaBoost trains the weight, focusing on ``hard'' data, 
we can expect that it will achieve extremely high detection rates even if the power of noise 
to detect is low. 

4. Noise Classification with Multi-Class AdaBoost 

As AdaBoost is based on a two-class classifier, it is difficult to classify multi-class noises.  
Therefore, we use an extended multi-class AdaBoost to classify sudden noises.  There are 
some ways to classify multi-class using a pair-wise method (such as a tree), K-pair-wise, or 
one-vs-rest (E. Alpaydin, 2004).  In this paper, we used one-vs-rest for multi-class 
classification with AdaBoost. The multi-class AdaBoost algorithm is as follows: 
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The multi-class algorithm is applied to the detected noisy frames overlapped by sudden 
noises.  The number of classifiers, K, corresponds to the noise class.  The k-th classifier is 
designed to separate the class k and other classes (Fig. 4) using AdaBoost described in 
Section 3.  The final classifier decides a noise class having the maximum value from all 
classes in (5). 
The multi-class AdaBoost can be applied to the noise detection problem, too.  But in this 
paper, due to the computation cost, the two-class AdaBoost first detects noisy speech and 
then the detected frame only is classified into each noise class by multi-class AdaBoost. 
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Figure 4. One-vs-rest AdaBoost for noise classification 

5. GMM-Based Noise Detection and Classification 

We used a conventional GMM (Gaussian mixture model) for comparing the proposed 
method. GMM is used widely for VAD (Voice Activity Detection) because the model is easy 
to train and usually powerful (A. Lee et al., 2004). In this paper, in order to detect sudden 
noises, we trained two GMMs, a clean speech model and a noisy speech model, where the 
number of mixtures is 64. Using two GMMs, the likelihood ratio is calculated by 

)lnoisy_mode|xPr(

)elspeech_mod|xPr(
)x( =L                                                    (6) 

If θ>)x(L , x is detected as speech only. Otherwise x is detected as noisy speech. 
In order to classify noise types, we need to train a noise GMM for each noise. Then, for the 
detected noisy speech only, we find a maximum likelihood noise from noise GMMs. 

)lnoisy_mode|xPr(maxarg)x( )(k

k
C =                                           (7) 

6. Experiments 

6.1 Experimental Conditions 

To evaluate the proposed method, we used six kinds of sudden noises from the RWCP 
corpus (S. Nakamura, et al., 2000).  The following sudden noise sounds were used: spraying, 
telephone sounds, tearing up paper, particle-scattering, bell-ringing and horn blowing. 
Figure 5 shows the log-power spectrum of noises. In the database, each kind of noise has 50 
data samples, which are divided into 20 data samples for training and 30 data for testing. 
In order to make noisy speech corrupted by sudden noises, we added the sudden noises to 
clean speech in the wave domain and used 2,104 utterances of 5 men for testing and 210 
utterances of 21 men for training (the total number of training data: 210 utterances × (6 + 1) 
= 1,470).  The speech signal was sampled at 16 kHz and windowed with a 20-msec 
Hamming window every 10 msec, and 24-order log-mel power spectrum and 12-order 
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MFCCs were used as feature vectors. The number of the training iterations, T, is 500, where 
AdaBoost is composed of 500 weak classifiers. 

Figure 5. Log-power spectrum of noises 

6.2 Experimental Results 

Figure 6 and 7 show the results of the sudden-noise detection (F-measure) and classification 
(accuracy) at SNRs (Signal to Noise Ratio) of -5 dB, 0 dB, 5 dB and 10 dB. Here the SNR is 
calculated by 
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where ][ 2sE  is the expectation of the power of the clean speech signal. Therefore, an 
increase of the SNR degrades the performance of the noise detection and classification 
because the noise power decreases. The F-measure used for the noise detection is given by 

.
2

PR
PRF

+
⋅⋅=   (9) 

Here, R is recall and P is precision.  
As can be seen from those figures, these results clarify the effectiveness of the AdaBoost-
based method in comparison to the GMM-based method. As the SNR increases (the noise 
power decreases), the difference in performance is large. As the GMM-based method 
calculates the mean and covariance of the training data only, it may be difficult to express a 
complex non-linear boundary between clean speech and noisy speech (overlapped by a low-
power noise). On the other hand, the AdaBoost system can obtain good performance at an 
SNR of 5 dB because AdaBoost can make a non-linear boundary from the training data near 
the boundary. 
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Figure 6. Results of noise detection 

7. Conclusion 

We proposed the sudden-noise detection and classification with Boosting. Experimental 
results show that the performance using AdaBoost is better than that of the conventional 
GMM-based method, especially at a high SNR (meaning, under low-power noise 
conditions). The reason is that Boosting could make a complex non-linear boundary fitting 
training data, while the GMM approach could not express the complex boundary because 
the GMM-based method calculates the mean and covariance of the training data only. 
Future research will include combining the noise detection and classification with noise 
reduction.
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1. Introduction 

Automatic speech recognition systems are becoming ever more common and are 
increasingly deployed in more variable acoustic conditions, by very different speakers. After 
a short adaptation, they are most of all robust to the change of speaker, to low background 
noise, etc. Nevertheless, using these systems in more difficult acoustic conditions (high 
background noise, fast changing acoustic conditions ...) still need an adapted microphone, a 
long time relearning, background noise computing, which make these systems fastidious to 
use. 
The difference between learning and testing conditions is the major reason of the drop in the 
systems’ performances. Therefore, a system that obtains good performances in a laboratory 
is not automatically performant in real conditions (in an office, a car, using a telephone, ...). 
The two main causes are the extreme acoustic variability of the conditions of use and the 
non exhaustive corpus faced with these multiple conditions of use. The speech signal 
production, the signal propagation in the acoustic environment and the way the listener 
perceives and interprets this signal constitute multiple sources of variability which limit the 
usability of these systems. 
In order to ensure the adaptability of these systems to different sources of variability and in 
order to improve their robustness, a lot of research has been developped. Technics can 
operate at different levels. For example, an adaptation of the noisy signal can be done at the 
acoustic level by applying filters, semantic and context knowledge can be used also as well 
as prosodic or multimodal informations (gestures accompanying the words, lips 
movements, etc.) 
This article presents an acoustical approache which concentrates on the adaptation of the 
system itself so that it recognizes noisy speech signals. It is organized as follows: section 2 
presents the different sources of speech signal variability. Section 3 presents classical 
technics to overcome the problem of variability and a discussion on classical technics and 
the importance of exploring the evolutionary technics. In section 4, evolutionary algorithms 
and methods to combine them with neural networks are described. The application of these 
methods onto automatic speech recognition systems and results obtained are presented in 
section 5. Discussion on results and possible future directions are developped in section 6. 
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2. Source of speech signal variability 

Speech is a dynamical acoustic signal with many sources of variation. Sources of 
degradation of the speech signal can be classified in 3 main categories (cf. Figure 1.) which 
are speaker variability, channel distortions and to room acoustic (Junqua, 2000).  

Speaker effect  Transmission channel effect  Environment effect 

Figure 1. Schematic representation of the different sources of variability which can degrade 
the speech recognition system performances 

The production of speech depends on many articulators that induce a lot of variability in the 
same linguistic message and for a unique speaker. These variations, known as speaking 
style, are due to factors like environment or social context. A speaker can change the quality 
of his voice, his speaking rate, his articulation according to some environmental factors. 
Stress conditions due to background noise increase the vocal effort. 
The same message pronounced by two different speakers generate big variations. This is 
due most of all to physiological differences such as the vocal track length, male-female 
differences or child-adult differences. 
The speech signal can be affected by the kind of microphone (or telephone) used, the 
number of microphones, the distance between the microphone and the speaker. 
The characteristics of the environment such as the size of room, the ability of the materials 
used on the walls to absorb frequencies or modify the signal’s properties, background noise, 
affect the signal quality. The characteristics of the spectrum resulting from the mix of noise 
and speech signal differ from the ones of a clean speech signal and the mix can be both 
additive (ambiant noise) or convolutive (room reverberation, microphone).  
Robustness in speech recognition refers to the need to maintain good recognition accuracy 
even when the quality of the input speech is degraded, or when the acoustical, articulatory, 
or phonetic characteristics of speech in the training and testing environments differ. 
The next section presents the main solutions proposed in order to deal with all these sources 
of degradation. 
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3. Classical proposed solutions in speech recognition robustness  

Limiting the drop in performance due to acoustic environment changes remains a major 
challenge for speech recognition systems.  
To overcome this problem of mismatch between a training environment and an unknown 
testing environment, many speech researchers have proposed different strategies which we 
classify in four categories:  
• Speech signal processing approaches 
• Model adaptation approaches 
• Integration of multiple sources of information approaches 
• Hybrid approaches 
The first group focuses on a richer pre-processing of the input speech signal before 
presenting it to the model; e.g. by trying to suppress environment noises or by modifying 
acoustic parameters before the classification level (Bateman et al. 1992) (Mansour and Juang 
1988).
In the second group, the adaptation to a new environment is achieved by changing the 
parameters of a speech recognition model (Das et al. 1994) (Gong 1995). For example, for a 
hidden markov model, this implies the modification of the number of states, of gaussians. 
Equivalently for a neural network, the number of units and the number of layers would be 
adjusted, as well as the weights’ values.  
The third group is increasingly addressed and corresponds to the combination of at least 
two sources of information to improve the robustness (Yuhas et al. 1989) (McGurk and 
MacDonald 1976). For example, the speaker's lips movements and their corresponding 
acoustic signals are processed and integrated to improve the robustness of the speech 
recognition systems.  
The fourth group is based on the idea that hybridization should improve the robustness of 
systems by compensating the drawbacks of a given method with the advantages of the other 
(Junqua and Haton 1996). For example many contributions have focused on the combination 
of hidden markov models and neural networks to take advantage of the power of 
discrimination of neural networks while preserving the time alignment feature of hidden 
markov models.  

3.1. Speech signal processing 

3.1.1. Improving the signal-to-noise ratio 

Speech enhancement techniques aim at recovering either the waveform or the parameter 
vectors of the clean speech embedded in noise (Gong 95). Among all the technics 
developped, methods working on noise filtering, spectal mapping and microphones arrays 
have been developped.  
Different kinds of filters have been elaborated to reduce the noise. Classical filters such as 
Kalman or Wiener filters have been used for speech enhancement (Koo et al. 89). (Cardoso, 
1989) (Jutten et al., 1991) have developped blind separation of noise and speech. These filters 
have shown a great capacity to reduce the noise in the spectrum but their drawback is that 
these methods alter also the speech signal. Bayesian methods have been developped to 
obtain an estimate of clean speech given noisy speech (Ephraim and Malah 1983) (Lim and 
Oppenheim, 1979) and the use of HMM to enhance noisy speech have been proposed in 
(Ephraim  92) (Seymour and Niranjan 94).  
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Spectral substraction is another technique which reduces the effect of added noise in speech. 
This method assumes that the noise and speech are uncorrelated and additive in the time 
domain (Gouvea and Stern, 1997) (Huerta and Stern, 1997). 
The signal restoration via a mapping transformation exploits the direct correspondance 
between noisy and clean environments (Juang and Rabiner, 1987) (Barbier and Cholet 1991) 
(Gong and Haton 1994) (Guan et al. 1997) (Sagayama 1999). They propose to reduce the 
distance between a noisy signal and its corresponding clean signal. Unfortunalty, it requires 
knowing the clean speech which is not avalaible in most practical applications. 
Further improvements in recognition accuracy can be obtained at lower signal-to-noise 
ratios by the use of multiple microphones (Silverman et al., 1997) (Seltzer, 2003). 

3.1.2. Extracting robust features 

Contrary to speech recognition systems, human beings are able to disregard noises to 
concentrate on one signal in particular. He is able to perform robust phonetical analysis 
which not depends on the speaker, transmissions channels or environment noises. Even if 
high levels are implied in the complex process of speech recognition, it seems that the 
auditory model has a major role.
Many ear models inspired by the human ear have been developped (Hermansky, 1990) 
(Allen, 1979) (Bourlard and Dupont, 1997). 

3.2. Model adaptation 

The noisy integration can be done by compensation that is by adapting the system to new 
noisy data (by restructurating the system structure and learning). Many techniques have 
been studied to proceed speaker adaptation (Schwartz and Kubala92) (Ström 94), channel 
adaptation such as telephone adaptation (Mokbel et al 93) or environment adaptation 
(Chiang 97). The major problem of these methods is the choice of the corpus. Very few 
methods propose to adapt the system on-line without knowledge on the new data to which 
the system should be adapted to (Kemp and Waibel 99). Practically, it is impossible to create 
an exhaustive corpus taking into account all the possible condition of use with all the noise 
characteristics. One other major problem is the systems’ ability to learn correctly a huge 
amount of data.  

3.3. Discussion 

Among all these methods, very little are used in real automatic speech recognition systems. 
Actually, most of these methods are still at the stage of experimental research and do not 
provide enough convincing results to be integrated. The most common method is certainly 
the increase of the size of the database. As the computing power and the size of memory 
increase, it becomes possible to provide a good quantity of information for the training 
phase in order to have a powerful system in many conditions of use. However, in spite of 
the increase of their size, training databases are only small samples of the whole possible 
signal variabilities.  
It is not possible to forecast all the testing conditions and it is necessary to explore new ways 
of search for a better comprehension of the problems involved in speech recognition 
(Bourlard, 1996).  
We are conscious of the fragility of speech recognition. The communication between a 
speaker and his interlocutor is a complex mechanism. It implies acoustic signal exchanges in 
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a certain context (the acoustic environment) but it implies also exchanges of different kinds 
of signs with various levels of signification. 'Recognize‘ signifies for human beings 'identify‘ 
learned elements but also 'generalize‘ his knowledge of new elements. That is also 
'recognize‘ missing or redondant features, 'adapt‘ to the environment, to the speaker or the 
situation. In hard conditions, the human listener takes into account the constraints offered 
by the linguistic code to reduce ambiguities, but he uses also information coming from the 
situation, redondancy, repetition. Generally, the speaker knows where he is and knows the 
environment’s properties and limitations. He is able to take into account the semantic, 
pragmatic and lexical contexts (Caelen et al., 1996) and he is able to adapt his perception to 
the acoustic context. 
Nature has created extremely complex systems with, sometimes, very simple principles. We 
can imagine that algorithms based on living being abilities (such as adaptation and 
evolution) could be able in the future to deal with all the parameters evolving during a 
dialogue, and reach human capacities. 
The objective of the work presented in this article is to investigate innovative strategies 
using evolutionary algorithms inspired by Darwin. These algorithms evolve population of 
individuals in an environment supporting the survival and the reproduction of best suited 
individuals. The efficiency of this kind of algorithms is well known for the optimization of 
complex functions and for the resolution of the multi criteria problems. We aim at 
answering whether these algorithms can constitute a new approach for the adaptation of 
speech recognition systems to changing acoustic environments. 
In order to study the possibility of incorporating evolutionary algorithms in the field of 
automatic speech recognition systems’ robustness, we propose to remain at the acoustic 
level of the speech processing and more particularly at the level of the automatic speech 
recognition systems’ adaptation with no assumption about the type of noise. 
In this context, the robustness of the automatic speech recognition systems can be 
approached by two ways: dealing with structure or dealing with stimuli.  
The first approach consists in adapting corrupted testing data so that they become close to 
training data (cf Figure 2.).

Auditory
Perception 

Recognition Recognized
feature

Adaptation

Figure 2. adaptation of the auditory perception 

The speech recognition system is then able to provide good recognition rate. In this study, 
the system does not evolve anymore, only data do. The approach proposed first in 
(Spalanzani 99) processed a signal transformation via a mapping operator using a principal 
components analysis and evolutionary algorithms. This transformation attempted to achieve 
a self-adaptation of speech recognition systems under adverse conditions.  
The second approach consists in adapting the speech recognition system itself (cf. Figure 3.). 
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Figure 3. adaptation of the recognition system 

Through the combination of evolutionary algorithms and backpropagation, a kind of 
relearning is operated to adapt the system to an environment different from the one in 
which it has been trained using the capacities of the system to adapt to changes of acoustic 
conditions using a local approach (by backpropagation of the gradient) and a global one (by 
evolution) in order to find an optimal system. 
This article focuses on this second approach. Next section explains why and how combining 
neural networks and evolutionary algorithms. 

4. Combining neural networks and evolutionary algorithms 

In nature, living organisms are able to learn to adapt to the environment in order to survive 
and reproduce. Evolutionary algorithms are directly drawn from these principals of nature. 
Their principle consists of maintaining and manipulating a population of individuals 
(potential solutions) and implementing a "survival of the fittest“ strategy (best solutions). 
Neural networks are also a simplified way of simulating the ability of living organisms to 
adapt to their environment by learning. 
It is appealing to consider hybrids of neural network learning algorithms with evolutionary 
search procedures, simply because Nature has so successfully done so. 
The evolutionary algorithms proceed by globally sampling over the space of alternative 
solutions, while backpropagation proceeds by locally searching the immediate 
neighborhood of a current solution. This suggests that using the evolutionary algorithms to 
provide good initial weights sub-spaces  from which backpropagation then continues to 
search will be effective (Belew, 1991). 

4.1. Evolutionary algorithms 

Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural 
biological evolution. They operate on a population of potential solutions applying the 
principle of survival of the fittest to produce better and better approximations to a solution. 
At each generation, a new set of approximations is created by the process of selecting 
individuals according to their level of fitness in the problem domain and breeding them 
together using operators borrowed from natural genetics.  
This process leads to the evolution of populations of individuals that are better suited to 
their environment than the individuals that they were created from, just as in natural 
adaptation.

4.1.1. Evolution 

At the beginning of the computation a number of individuals (the population) are randomly 
initialized. The objective function (fitness function) is then evaluated for these individuals. 
The initial generation is produced. 
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If the optimization criteria are not met the creation of a new generation starts. Individuals 
are selected according to their fitness for the production of offspring. Parents are 
recombined to produce offspring. All offspring will be mutated with a certain probability. 
The fitness of the offspring is then computed. The offspring are inserted into the population 
replacing the parents, producing a new generation. This cycle is performed until the 
optimization criteria are reached. 
The algorithm used to evolve to population is the following:  

t = 0     // time initialization  
Init (P(t))    // initial population creation 
Eval (P(t))    // population evaluation 
While criteria non reached  // number of generations or good solution obtained 
 P’(t) = Selection(P(t))  // mates selection  
 P’’(t) = Evolution (P’(t)) // mates‘ recombination and mutation 
 Evaluation(P’’(t))  // evaluation of the new population 
 P(t+1) = P’’(t)   // current population update 
 t = t + 1   // new generation 
End While 
Figure 4.  evolutionary algorithm 

4.1.2. Recombination 

Recombination produces new individuals in combining the information contained in the 
parents. It consists in selecting a locus point and permutation the two right parts of the 
mates’ genotypes. 

Figure 5. crossover principle 

4.1.3. Mutation 

After recombination, every offspring undergoes mutation. Offspring variables are mutated 
by small perturbations (size of the mutation step), with low probability. The representation 
of the genes determines the used algorithm. If the genes are binary, a bit-flip mutation is 
used. If the genes are real values, many possible mutations can be operated. Figure 6 shows 
an example of real value mutation. 
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Figure 6: example of mutation  

Next section will explain how to evaluate the individuals based on neural networks. 

4.2. Neural networks 

4.2.1. Backpropagation 

Neural networks are collections of units (neurons) connected by weighted links (connection 
weights) used to transmit signals.  

Figure 7: Extract of a multilayer neural network  

The principle is based on the minimization of the quadratic error E which is function of the 
n desired outputs ydi and the n outputs yi given effectively by the network: 
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4.2.2. Learning 

The learning algorithm used in this work is adapted from (Schalkwyk et Fanty, 1996) which 
permits a fast convergence toward a good solution. The learning phase stops when the error 
does not decrease anymore, that is when it is not able to learn anymore. At the end of this 
learning phase, the algorithm gives a recognition rate which corresponds to the number of 
recognized features divided by the total number of features to recognize and a number of 
learning iterations. 

4.2.3. Recognition 

The recognition phase is used to evaluate the neural network based individuals. Data used 
for recognition are different from the one used for learning. The recognition rate given by 
the individuals are used as fitness function. 

4.3. Hybridization 

Three major approaches combining neural networks and evolutionary algorithms are 
presented in the literature: finding the optimal weights of the neural network (using 
evolution only or combined with backpropagation), finding the optimal topology of the 
neural network and finding optimal learning parameters (Yao, 1995) (Whitley, 1995) 
(Hancock 1992). 

4.3.1. The topology of the neural network 

The design of the network’s topology is not easy. Finding the optimal number of layers as 
well as finding the number of neurons on each layer is usually done by empiric methods 
(more than based on theoric fundations).  

4.3.2. The optimal weights of the neural network 

The initialization of the weights before learning is crucial. It influences the convergence 
speed and the quality of the obtained network. 
• Learning time 
The learning convergence time depends on the initial and final weight space. In fact, the 
more initial weights are close to their final value, the faster is the convergence (Thimm, 
1994) (Chan and Nutter, 1991). For example (Lee et al. 93) have shown theorically that the 
probability of premature saturation at the beginning epoch of learning procedure in the 
backpropagation algorithm derived in terms of the maximum value of initial weights, the 
number of nodes in each layer and the maximum slope of the sigmoidal activation function.  
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• Quality of the resulting network 
Learning by backpropagation can be seen as a function optimization where the weights are 
its parameters. Its convergence toward a local minimum can be global also. If it is not the 
case, we can consider that the learning has not been done correctly.  

4.4. Neural network encoding 

The representation of a neural network in a genotype has been studied deeply in the 
literature (Miller et al., 1989) (Gruau and Whitley, 1993) (Mandischer, 1993). Weights 
manipulated by the backpropagation algorithm are real values and can be encoded by 
different ways as described in (Belew, 1991). In order to be efficient with the crossover 
operator, weights having a high interaction should be close. 
Let’s consider a 3 layer-network with n inputs, m+1-n hidden and p+1-m outputs, wij the 
connection of the neuron i toward the neuron j. Figure 8 shows the representation of this 
network: 

Figure 8: architecture of a neural network 

The genotypic representation of this architecture is the following:  

(w(n+1)1, w(n+1)2, …, w(n+1)n, w(n+2)1, w(n+2)2, …, w(n+2)n, …, w(m+1)m, …, wpm) 

Figure 9. genotypic representation of the neural network architecture 

4.5. Changing environment adaptation 

The problem of adapting populations to changing environment is an interesting problem 
which gave place to a certain number of works. For example, (Nolfi and Parisi, 1997) 
investigated a robot adaptation in a changing environment controlled by a population of 
neural networks. (Cobb and Grefenstette, 1993) studied the evolution of a population 
tracking the optimum of complex functions (such as combination of sinusoids and 
gaussians) and the capacity of genetic algorithms to adapt, for example, to the translation of 
such functions.  
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Keeping diversity in the population seems to be the key for a good adaptation to 
environments changing quickly. (Cobb and Grefenstette, 1993) proposed a comparison of 
the performances of various strategies (high mutation rate (10%), triggered hypermutation 
and random immigrants). The high mutation rate generates a significant diversity, the 
triggered hypermutation varies the mutation rate according to the way the environment 
changes, its rate is weak when the changes are weak, high during abrupt changes, the 
random immigrants introduces randomness into a percentage of its population which 
generates diversity. It results from this work that each of these methods has advantages and 
disadvantages depending on the way the environment changes.  
Methods based on the thermodynamic principles (Mori et al. 1996) can be found in the 
literature also. In addition, evolution strategy seems to be well fitted to adapt to the changes 
of environment (Bäck, 1996). Indeed, the integration of evolution's parameters in the 
genotype enables the adaptation of the mutation rates when it is necessary.  

4.6. Lamarkism versus Darwinism 

A certain number of works studied the influence of the heritage on the evolution of the 
populations (Turney et al., 1996). At the beginning of the century, two schools were 
confronted: The Darwinism is based on the idea that only the predisposition of the 
individuals to learn is transmitted to the children. Knowledge acquired by the parents is not 
transmitted then. Lamarckianism proposes that knowledge obtained by parents is directly 
transmitted to children. Hence, those parents' weights resulting from the training phase are 
transmitted to the following generation.  
In the context of this debate, Baldwin proposed a kind of intermediary. He suggested the 
existence of a strong interaction between learning and evolution. The principal objective for 
the individuals is to integrate, by means of a neural network training, the information 
provided by the environment. The fittest individuals are selected for reproduction. So they 
transmit to their descendant their capacity to learn. If it is considered that an individual is all 
the more ready to integrate knowledge that the innate configuration of its neural network' 
weights is closed to that after training, we can consider then that knowledge is assimilated 
in its genes. Thus, the training time decreases. Once the individuals are able to acquire these 
concepts correctly, we can consider that those are comparable in the genotype.  
(Nolfi et al., 1994) and (Nolfi and Spalanzani, 2000) showed that learning guides evolution 
(individuals having the best learning performances reproduce more often than the others), 
but also that evolution guides learning (the selected individuals have greater capacities to 
learn and these capacities are improved during generations). Thus, instinctive knowledge of 
the individuals is transmitted and improved during the evolution whereas, and it is the 
difference with the theory of Lamarck, the genotype is not affected directly by the training.  
(Whitley et al., 1994) affirmed that under all the test conditions they explored, the 
Lamarckian evolution is much faster than that of Darwin and results are often better. 
Concerning the problem in which we are interested in, the adaptation to the changes of 
environment, (Sasaki and Tokoro, 1997) affirmed that the Darwinism is more adapted than 
Lamarckianism, whereas for a static environment, the opposite is noted. (Mayley 1996) 
proposed to penalise individuals having a long training phase. He affirmed also that 
knowledge assimilation can be done only if there is a neighbourhood correlation, i.e. a 
correlation between the distance from two genotypes and that of their associated phenotype.  
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5. Experimental results 

5.1. Experimental plateform 

Our simulations take place in EVERA (Environnement d'Etude de la Robustesse des 
Apprentis), our speech Artificial Life simulator which has been described in (Kabré and 
Spalanzani 1997). The main purpose is to provide a test-bed for the evaluation and 
improvement of the robustness of speech recognition systems. Two models are proposed in 
EVERA, a model of environment and a model of organisms (speech recognition systems) 
which evolve in it. In our study, the environment is a virtual acoustic environment. The 
virtual environment allows the simulation of the transfer function between acoustic sources 
(speaker and noise) and a microphone position. Thanks to Allen model of sound 
propagation in small rooms (Allen and Berkley 1979), by varying the reflection coefficient of 
walls, floor and ceiling, it is possible to control the reverberation time. This latter measures 
the time needed for the sound emitted in an acoustic environment to extinct. The difficulty 
of recognition increases with the reverberation time. The convolution between a speech 
signal taken from any database and the acoustic environment impulse response gives the 
speech signal for training the neural based speech recognition systems. 
A population of speech recognition systems is built in an initial virtual acoustic 
environment. The creation of the initial population resorts to make a desired number of 
copies of a pre-trained neural network while making a random change of its weights. The 
environment is changed by either taking a new acoustic environment, a different speech 
database or a different noise (we considered different noises such as door closing, alarm, 
radio). The change is such that the systems are no longer well-suited to this environment. At 
this moment, after a period of training, an adaptation cycle starts thanks to genetic 
operators.

1. Init a population of automatic speech recognition systems. 
2. If duration of simulation not elapsed change the acoustic environment else goto 6. 
3. Train automatic speech recognition systems. 
4. Evaluate, Select and Reproduce speech recognition systems. 
5. If duration of adaptation elapsed then goto 2 else goto 3. 
6. end.

Figure 10. Algorithm for evolving speech recognition systems so that they adapt to new 
virtual acoustic environments. 

The acoustic environments are represented by a set of words to which noise and 
reverberation were added. Noises have been chosen thanks to their characteristics: PO for 
door closing (impulsive noise), AL for alarm and RE for alarm clock (narrow-band noises at 
different frequencies), FE for fire (white noise) and RA for change of radio frequency (non 
stationary noise). 
An environment is defined by a triplet (type of noise, reverberation time, signal to noise 
ratio). The intelligibility of the signal is inversely proportional to the reverberation time and 
proportional to the signal to noise ratio. This is why a signal with a strong reverberation and 
a weak signal to noise ratio (for example (FE 0,7 -6)) is more difficult to recognize than a 
signal like (RA 0,4 20). 
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5.2. Comparison between Lamarckian and Darwinian evolution 

First experiments determine the most effective method for our problem of adaptation to the 
environment. Since the opinions are divided concerning the method to use, we propose to 
test the performances of populations in term of quality of the individuals and in term of 
effectiveness. Within the framework of our experiments, this consists in studying the 
recognition rate of our population as well as the number of iterations necessary for each 
individual to optimise its training (i.e. the network converged). The objective of the 
individuals is to recognize a set of isolated words analysed by an acoustic analyser based on 
the model of the human ear (Hermansky, 1990). The vector resulting from the acoustic 
analysis represents the input of the networks having 7 input units, 6 hidden units and 10 
output units. They are able to learn thanks to training algorithm based on backpropagation.  

5.2.1 Quality of the results 

On the general shape of the curves, we can also notice that results provided by the 
Lamarckian evolution are more stable and seem to drop less easily than those of the 
Darwinian population. The numerical results of the performances are presented in table 1. 
We can notice that the performances are quite equivalent in average. In average, the 
population evolving according to the method of Lamarck obtains 78% of recognition rate 
whereas that according to the method of Darwin obtains 76.6%. Concerning the best 
individual, less than 1% of improvement is noted since in average (for the 10 environments, 
that is to say 1000 generations), the best Darwinian individual obtains 80.1% whereas 
Lamarckian 80.9%.

Figure 11. Recognition rates of the population of speech recognition systems evolving in a 
changing acoustic environment. 20 individuals evolve by genetic algorithms and neural 
training. Darwinian and Lamarckian heritage are compared on the average of the 
population.
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Recognition rate Worst Best Average 

Lamarckian evolution 73.8 % 80.9 % 78 % 

Darwinian evolution 70.5 % 80.1 % 76.6 % 

 Table 1. Comparison of the recognition rates between Lamarckian and Darwinian 
evolution.

5.2.2. Training efficiency 

Concerning now the efficiency of the populations in the training phase, figures 12 shows the 
number of iterations necessary for a good convergence of the individuals’ networks. 
Although, at each change of environment, the number of iterations increases in a more 
significant way during the evolution of Lamarck, the decrease of this number is more 
significant and, in average, the number of iterations is weaker. It is interesting to note that 
this number decreases throughout the Darwinian evolution, which can means that there is 
knowledge assimilation, and this without the use of penalty as proposed (Mayley 1996).  
In both kinds of evolution, the number of iterations decreases during generations. Once 
more, we can notice that the evolution of Lamarck is more effective than that of Darwin. As 
indicates it table 2, Darwinian individual needs in average 91 iterations to learn correctly, 
whereas a Lamarckian individual need only 68.2 iterations. We can notice the differences 
between the best individuals (54.8 against 33.1) and worse (144 against 113.6). 

Figure 12. Learning times of ASRSs population evolving in a changing acoustic 
environment. 20 individuals evolve by genetic algorithms and neural training. Darwinian 
and Lamarckian heritage are compared on the average of the population. 

Number of iterations Worst Best Average 

Lamarckian evolution 113.6 33.1 68.2 

Darwinian evolution 144 54.8 91 

Table 2. Comparison of the learning times. 
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5.3. Evolution during time 

This experiment consists in presenting speech signals produced in several noisy 
environments. A sequence of several noisy environments is presented 5 times. This permits 
to test the systems’ performances in identical acoustic conditions at different times. 
Performances of 2 populations are tested. One population is made of neural networks 
evolving with the backpropagation algorithm only, the other is made of neural networks 
evolving with both backpropagation and lamarkian evolutionary algorithm. Results 
presented in figure 13 are the average of 9 simulations.  

Figure 13. Evolution of the recognition rate during time while a sequence of 10 acoustic 
environments is presented 5 times. In gray, recognition rate of the “neural network 
population”, in black, the recognition rate of the “evolutionary neural network population” 

One can notice the regularity of the performances of the evoluted population and the 
constant decrease of the population using back-propagation only. Moreover, the recognition 
rates of the evoluted population are much higher than the ones given by the non evoluted 
population, whatever the acoustic environment.  

6. Conclusion and perspectives 

In this article, we have adapted neural networks based speech recognition systems using 
evolutionary algorithms in order to keep them adapted to new acoustic environments. We 
have compared two methods of heritage suggested by Darwin and Lamarck for the 
evolution of a population in changing acoustic environments. In term of speech recognition 
rate, both methods provide similar results. In term of learning speed, The Lamarckian 
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evolution seems to be more interesting in the context of changing acoustic environments. 
Results obtained in a long sequence of environments show that evolution provides stable 
results (i.e. for two identical acoustic conditions but at different times, results are similar) 
but systems without evolution do not. 
The generic concepts presented in this article must not be limited to neural based methods. 
In this article, neural networks have been implemented because they are easy to controle 
and their convergence is quite fast. Moreover, the hybridization of neural networks and 
evolutionary methods have been studied deeply. But hidden markov models could be 
adapted also (Asselin de Beauville et al. 96) instead of neural network systems.  
Moreover, (Lauri et al. 2003) have shown the efficency to combine evolutionary algorithms 
and Eigenvoices to adapt the system to new speakers. (Selouani and O’Shaughnessy 2003) 
combined hidden markov models and Karhonen-Loève transform to improve telephone 
speech recognition. 
This work is at the frontiere between two very different fields which are automatic speech 
recognition and evolutionary algorithms. Work carried out comes from the idea that if the 
systems of recognition were able to self-modified in time, in order to adapt to the changes of 
acoustic environment, they could be much more robust. The idea was to take as a starting 
point the capacities of the alive beings to adapt to their environment to be the most powerful 
possible in order to survive.  
Within the framework of speech recognition, we considered the automatic speech 
recognition systems, or filters, like individuals having to adapt to their acoustic environment 
changing. It appeared interesting to imagine a system able to adapt to the acoustic changes 
of conditions (characteristic of the speaker or the room for example) in order to remain 
performant whatever its conditions of use. The alive beings are able to adapt their manner of 
perceiving several signals while concentrating on the signal in which they are interested in. 
They are also able to update their knowledge of the environment when it is necessary. 
Considering that speech signal recognition for alive beings can be summarized in two main 
phases, namely perception of the signals and the attribution of entities to these signals, we 
have suggested to adapt one or the other independently by evolutionary technics.  
We keep in mind that there is a strong interaction between these two processes but their 
adaptation by evolutionary algorithms in a parallel way seems, for the moment, impossible 
to control. Indeed, how to adapt our recognition system on data which adapt 
simultaneously to this one? 
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1. Introduction   

The development for speech recognition system has been for a while. The recognition 
platform can be divided into three types. Dynamic Time Warping (DTW) (Sakoe, 1978), the 
earliest platform, uses the variation in frame's time for adjustment and further recognition. 
Later, Artificial Neural Network (ANN) replaced DTW. Finally, Hidden Markov Model was 
developed to adopt statistics for improved recognition performance.  
Besides the recognition platform, the process of speech recognition also includes: recording 
of voice signal, point detect, pre-emphasis, speech feature capture, etc. The final step is to 
transfer the input sampling feature to recognition platform for matching.
In recent years, study on Genetic Algorithm can be found in many research papers (Chu, 
2003a; Chen, 2003; Chu, 2003b). They demonstrated different characteristics in Genetic 
Algorithm than others. For example, parallel search based on random multi-points, instead 
of a single point, was adopted to avoid being limited to local optimum. In the operation of 
Genetic Algorithm, it only needs to establish the objective function without auxiliary 
operations, such as differential operation. Therefore, it can be used for the objective 
functions for all types of problems.   
Because artificial neural network has better speech recognition speed and less calculation 
load than others, it is suitable for chips with lower computing capability. Therefore, artificial 
neural network was adopted in this study as speech recognition platform. Most artificial 
neural networks for speech recognition are back-propagation neural networks. The local 
optimum problem (Yeh, 1993) with Steepest Descent Method makes it fail to reach the 
highest recognition rate. In this study, Genetic Algorithm was used to improve the 
drawback.
Consequently, the mission of this chapter is the experiment of speech recognition under the 
recognition structure of Artificial Neural Network (ANN) which is trained by the Genetic 
Algorithm (GA).  This chapter adopted Artificial Neural Network (ANN) to recognize 
Mandarin digit speech. Genetic algorithm (GA) was used to complement Steepest Descent 
Method (SDM) and make a global search of optimal weight in neural network. Thus, the 
performance of speech recognition was improved. The nonspecific speaker speech 
recognition was the target of this chapter. The experiment in this chapter would show that 
the GA can achieve near the global optimum search and a higher recognition rate would be 
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obtained. Moreover, two method of the computation of the characteristic value were 
compared for the speech recognition.   
However, the drawback of GA used to train the ANN is that it will waste many training 
time.  This is becasue that the numbers of input layer and output layer is very large when 
the ANN is used in recognizing speech. Hence, the parameters in the ANN is emormously 
increasing.  Consequently, the training rate of the ANN becomes very slow.  It is then 
necessary that other improved methods must be investigated in the future research.  
The rest of this chapter is organized as follows. In section 2, the speech pre-processing is 
introduced. Then, in section 3 we investigate the speech recognition by ANN which is 
trained by genetic algorithm to attain global optimal weights. Section 4 present the 
experiment result of the speech recognition. Finally, in section 5, we make some conclusions 
about this chapter.  

2. Speech pre-processing  

The speech signal needs be pre-processed prior to entering the recognition platform. The 
speech pre-processing includes point detection, hamming windows, speech feature, etc. 
Each process is illustrated as follows.  

2.1 Fixed-size frame and Dynamic-size frame  

With fixed-size frame, the number of frame varies with speech speed due to different length 
of voice signal. This problem does not exist in DTW recognition system. However, this 
study with artificial neural network ANN has to use dynamic-size frame to obtain a fixed 
number of frames. There are two methods to get a fixed number of frames: (1) dynamic 
numbers of sample points (2) dynamic overlap rates (Chen, 2002). Either of the two methods 
can lead to a fixed numbers of frames, meeting the requirement by ANN recognition 
system.  

2.2 Point Detection  

A voice signal can be divided into three parts: speech segment, silence segment and 
background noise. How to differentiate between speech segment and silence segment is 
called point detection. After removal of unnecessary segments, the time frame in 
comparison is narrowed and the response time is shortened.  
There are a number of algorithms for speech end point detection. In general, there are three 
types based on parameters: (1) time domain point detection method, (2) frequency domain 
point detection method, (3) hybrid parameters point detection method. Among the three, 
the time domain point detection is the simplest and the most frequently used, but has the 
shortcoming of lower noise resistance. On the other hand, frequency domain point detection 
and hybrid parameters point detection have higher noise resistance and better accuracy, but 
is more complicated in calculation. In this chapter, we adopted the time domain point 
detection method for shortening the computation time.  

2.3 Hamming Window  

The purpose to fetch hamming window is to prevent discontinuity in every frame and both 
ends of every frame. When the voice signal is multiplied by hamming window, we can 
reduce the effect of discontinuity (Wang, 2004).  
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2.4 Feature capture  

In general, there are two types of features capturing of voice signal for speech recognition, 
time domain analysis and frequency domain analysis. Of the two, time domain analysis is 
more straightforward and involves less calculation, so it saves time. Frequency domain 
analysis needs to go through Fourier transform first, so it involves more calculation and 
complexity and takes more time. Common speech features capturing include Linear Predict 
Coding (LPC) (Chen, 1994), linear predict cepstrum coefficient (LPCC), Mel-frequency 
Cepstrum coefficient (MFCC) (Chu, 2003b) etc. With consideration of recognition accuracy, 
this study selected MFCC as the speech feature capturing method.   
Using MFCC to obtain solutions involves three steps: 1. Using Fast Fourier Transform (FTT) 
to obtain power spectrum of the speech signal; 2. Applying a Mel-space filter-bank to the 
power spectrum to get logarithmic energy value; 3. We conduct the discrete cosine 
transform (DCT) of log filter-bank energies to obtain MFCC.  

3. Speech recognition platform  

BPNN is the most commonly used structure in ANN. Although ANN has fast recognition 
rate and fault tolerance, it is not perfect because its SDM has a problem with Local 
Optimum. To prevent this from happening, GA is adopted to assist in SDM for obtaining 
optimal weight and improved recognition performance.  

3.1 Back-propagation neural network  

In principle, back-propagation neural network uses Multiple-Layer Perception as system 
framework and SDM as training rule. Such a system is called back-propagation neural 
network. Multiple-layer in Multiple-Layer Perception model indicates it is composed of 
many layers of neurons. Besides, the signal transmittance mode between neurons in two 
layers is the same as that for a single layer. The study adopted three-layer structure (input 
layer, hidden layer, output layer) as the basic framework for speech recognition, which is 
depicted in Fig. 1.  

3.2 Genetic algorithm  

Genetic algorithm (Goldberg, 1989; Michalewicz, 1999) involves Selection, Reproduction and 
Mutation.
The purpose of selection is to determine the genes to retain or delete for each generation 
based on their degree of adaptation. There are two types of determination: (1) Roulette-
Wheel Selection (2) Tournament Selection. The study adopted tournament selection. It is to 
follow their fitness function sequence for each gene set to determine whether they are 
retained. The fittest survives. Reproduction is a process to exchange chromosomes to create 
the next generation according to distribution rule.  In general, there are one-point crossover, 
two-point crossover and uniform crossover, etc. The evolutionary process of GA is depicted 
in Fig. 2.  
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 Figure 1. The  three-layer structured ANN 

The way of mutation is not very different from that for crossover. There are one-point 
mutation and two-point mutation. Mutation process depends on conditions; for example, 
mutation can start as adaptation function and stop changing after several generations. 
Mutation rate cannot be too high. Otherwise, convergence will not occur.  

Figure 2. The evolutionary process of GA  
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4. Experimental results  

ANN with SDM training (i.e., BPNN) was first adopted to be speech recognition platform. 
The result was compared to GA assisted ANN platform. Although genetic algorithm has 
advantages that SDM cannot provide. It has one drawback, i.e. the crossover, reproduction 
and mutation process needs more time to seek optimal solutions.   
In the initial speech, voice files for ten people were collected. This file contains the voice of 
numeral 1 ~ 9. Each people recorded four sets, three of which were used for training and 
one of which was for test.  Recording format had sampling frequency 8 kHz, mono channel 
16 bit sampling point. After recording, point detection was to remove silence segment, 
followed by pre-emphasis. Then, speech segment was divided to 20 fixed frames. Feature 
parameter was extracted from each frame. One frame had 10 features. Thus, each number 
would have 200 features.  
In the aspect of speech frame, because ANN recognition platform was adopted, speech 
segment needs the same number of frames regardless of its length of time. The adopted 
dynamic-size frame was different from the DTW fixed frame. The study also adopted 
dynamic sampling point (fixed overlap rate). The frame sampling point can be expressed by 
the following equation (1) (Chen, 2002):  

 (1) 

L represents the number of frame sampling points, ls is the total signal length, N is the 
number of frames, R is overlap rate (%), while Fix(x) the maximum integer smaller than x. 
Through such function, the same number of frames can be obtained for different length of 
speech. Besides, the point detection in the study still adopted time-domain point detection 
due to the reason of less calculation load. It took the average of energies for the first few 
silence segments (background noise) and added it to 5%~10% of the maximum frame 
energy to set the threshold value for point detection, as shown in the following equation (2) 
(Chen, 2002):   

 (2) 

Threshold is the point detection threshold value. N is the number of frames prior to point 
detection. E(n) is the sum of energies for sampling points in the nth frame prior to point 
detection. K represents captured number of silence segment frames. E(i) is the sum of 
energies for sampling points in ith silence segment. 7.5% of the maximum frame energy was 
added with the average energy for five silence segment frames (K = 5) to establish point 
detection threshold calculation.  
After completion of point detection, pre-emphasis and Hamming window were carried out 
to capture features. With consideration of recognition accuracy, MFCC parameter was 
adopted for recognition. MFCC level in this experiment was 10. After obtaining features, 
they were input to recognition platform to start speech recognition.  

4.1 BPNN Experiment Results  

In the design structure of artificial neural network, there are two output modes. One used 
binary coding to express output, for example, the system has 16 corresponding outputs to 
four output neurons. Thus, the number of output neurons was reduced. The other was one-
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to-one output. For example, 9 frames needed 9 outputs neurons. Although binary coding 
can minimize the number of neurons, it not only had low recognition rate, but difficulty in 
convergence after experiment comparison with one-to-one mode. Therefore, one-to-one 
output was adopted here. The entire ANN structure had 200 inputs, 30 neurons in hidden 
layer and 9 neurons in output layer.  
In the experiment, each speech had 20 frames. Each frame had ten levels of features, 
indicating 200 input parameters as input layer, while 30 neurons were in the hidden layer. 
The number of neurons cannot be too many; otherwise, it cannot obtain convergence. If the 
number is too small, recognition error will be large. The number of neurons in the hidden 
layer (N_no) is expressed by the following equation (3) (Yeh, 1993)

 (3) 

In_number represents the number of input layer units, while Out_number represents the 
number of output layer units.
Because the number of ANN inputs is as high as 200, there will be a problem, i.e. when the 
input approaches a relatively large number, the output will be at the extreme condition. To 
solve the problem, the speech features were all downsized prior to input. It was to multiply 
the speech feature by 0.01 to prevent transfer function from over-saturation.  From Fig. 3, it 
is known that once the number of training generation is over 1,500, it then fails to 
breakthrough and the recognition rate is 91% for the existing database. Even further training 
is continued, root mean square error does not progress, and recognition rate does not 
improve either. Under this situation, genetic algorithm is used to assist in seeking the 
weight.

Figure 3. MSE for Output in ANN with SDM Training Process  
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4.2 Experiment Results with Genetic Algorithm to assist in Training  

SDM in the above-mentioned artificial neural network was used to seek the weight. Back-
propagation neural network tended to have problems with local optimum, so genetic 
algorithm was used to seek the weight for the entire domain (Chu, 2003a).  
At first, the study used SDM to train ANN to obtain the weight. Then converged weight and 
bias were entered into genetic algorithm. It improved the initial speed and also helped SDM 
out of the local optimum. Fig. 4 shows the entire training structure. The experiment has 
shown that SDM training followed by GA training would help error break the SDM limit 
and greatly improve recognition rate. Fig. 5 shows the error range for SDM training 
followed by GA.  
Through 3000 generations of GA, MSE value drops to 0.001 with recognition rate up to 95%, 
as shown in Table 1.  

Figure 4. The Proposed ANN Training Structure  

Figure 5. MSE for Output in Genetic Algorithm Training after SDM Training  

5. Conclusion  

In this chapter, we have seen that the recognition rate through the SDM in BPNN is up to 
91% under the MFCC feature. This recognition rate is not the optimum because that the 
SDM can always get local optimum. To solve this problem, GA was adopted and following 
SDM to improve MSE. By this two stage (SDM then GA) training scheme, the recognition 
rate can be increasing up to 95%. However, under the condition of adopting only MFCC 
parameters, speech recognition rate still has room for improvement. For the future, other 
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modes of features capturing method can be adopted, such as Cepstrum Coefficient or LPC 
parameter together with pitch parameter, to improve recognition rate.

Speech Successful 
Recognition 

Failed 
Recognition 

Recognition 
Rate(%)

Total Recognition 
Rate(%)

1
2
3
4
5
6
7
8
9

10
10
7
10
10
9
9
10
10

0
0
3
0
0
1
1
0
0

100
100
70
100
100
90
90
100
100

95

Table 1. Speech Recognition Results after 10 sets of testing  
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1. Introduction 

The most successful modeling approach to automatic speech recognition (ASR) is to use a 
set of hidden Markov models (HMMs) as the acoustic models for subword or whole-word 
speech units and to use the statistical N-gram model as language model for words and/or 
word classes in sentences. All the model parameters, including HMMs and N-gram models, 
are estimated from a large amount of training data according to certain criterion. It has been 
shown that success of this kind of data-driven modeling approach highly depends on the 
goodness of estimated models. As for HMM-based acoustic models, the dominant 
estimation method is the Baum-Welch algorithm which is based on the maximum likelihood 
(ML) criterion. As an alternative to the ML estimation, discriminative training (DT) has also 
been extensively studied for HMMs in ASR. It has been demonstrated that various DT 
techniques, such as maximum mutual information (MMI), minimum classification error 
(MCE) and minimum phone error (MPE), can significantly improve speech recognition 
performance over the conventional maximum likelihood (ML) estimation. 
More recently, we have proposed the large margin estimation (LME) of HMMs for speech 
recognition (Li et al., 2005; Liu et al., 2005a; Li & Jiang, 2005; Jiang et al., 2006), where 
Gaussian mixture HMMs are estimated based on the principle of maximizing the minimum 
margin. From the theoretical results in machine learning (Vapnik, 1998), a large margin 
classifier implies a good generalization power and generally yields much lower 
generalization errors in new test data, as shown in support vector machine and boosting 
method. As in Li et al., 2005 and Li & Jiang, 2005, estimation of large margin CDHMMs 
turns out to be a constrained minimax optimization problem. In the past few years, several 
optimization methods have been proposed to solve this problem, such as iterative localized 
optimization in Li et al., 2005, constrained joint optimization method in Li & Jiang, 2005 and Jiang 
et al., 2006, and semi-definite programming (SDP) method in Li & Jiang, 2006a and Li & Jiang 
2006b. In this paper, we present a general Approximation-optiMization (AM) approach to 
solve the LME problem of Gaussian mixture HMMs in ASR. Similar to the EM algorithm, 
each iteration of the AM method consists of two distinct steps: namely A-step and M-step. 
In A-step, the original LME problem is approximated by a simple convex optimization 
problem in a close proximity of initial model parameters. In M-step, the approximate convex 
optimization problem is solved by using efficient convex optimization algorithms. 
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This paper is structured as follows. In section 2, we present the large margin estimation 
formulation for HMMs in speech recognition. In section 3, we explain the proposed AM 
approach under a general framework. Next, as two examples, we consider to apply the AM 
method to solve the LME of HMMs for ASR. In section 4, we use the so-called V-approx for
the case where competing hypotheses are given as N-Best lists. In section 5, we use E-approx 
for the case where competing hypotheses are given as word graphs. At last, some final 
remarks are discussed in section 6. 

2. Large Margin Estimation (LME) of HMMs for ASR 

In ASR, we consider a joint probability distribution between any speech utterance X and any 
word W, i.e. p(X, W). Depending on the problem of interest, a word W may be any linguistic 
unit, e.g., a phoneme, a syllable, a word, a phrase, even a sentence. Given a speech utterance 
X, a speech recognizer will choose the word W as output based on the following plug-in 
MAP decision rule (Jiang et al., 1999): 

(1)

where denotes the composite HMM representing word W and is called 
discriminant function of given X, which is normally calculated in the logarithm domain 
as . In this work, we are only 
interested in estimating HMM and assume language model used to calculate p(W) is
fixed.
For a speech utterance Xi , assuming its true word identity as Wi, following Weston & 
Watkins, 1999 and Crammer & Singer, 2001 and Altun et al., 2003, the multi-class separation 
margin for Xi is defined as: 

(2)

where  denotes the set of all possible words. Clearly, eq.(2) can be re-arranged as: 

(3)

Obviously, if d(Xi) 0, Xi will be incorrectly recognized by the current HMM set, denoted as 
, which includes all HMMs in the recognizer. On the other hand, if d(Xi) > 0, Xi will be 

correctly recognized by the model set .
Given a set of training data  = {X1 , X2, ··· XT}, we usually know the true word identities 
for all utterances in , denoted as  = {W1, W2, ··· WT }- Thus, we can calculate the 
separation margin (or margin for short hereafter) for every utterance in T based on the 
definition in eq. (2) or (3). According to the statistical learning theory (Vapnik, 1998), the 
generalization error rate of a classifier in new test sets is theoretically bounded by a quantity 
related to its margin. A large margin classifier usually yields low error rate in new test sets 
and it shows more robust and better generalization capability. Motivated by the large 
margin principle, even for those utterances in the training set which all have positive 
margin, we may still want to maximize the minimum margin to build an HMM-based large 
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margin classifier. In this paper, we will study how to estimate HMMs for speech recognition 
based on the principle of maximizing minimum margin. First of all, from all utterances in 

, we need to identify a subset of utterances as: 

(4)

where  > 0 is a pre-set positive number. Analogically, we call as support vector set and 
each utterance in is called a support token which has relatively small positive margin 
among all utterances in the training set . In other words, all utterances in are relatively 
close to the classification boundary even though all of them locate in the right decision 
regions. To achieve better generalization power, it is desirable to adjust decision boundaries, 
which are implicitly determined by all models, through optimizing HMM parameters  to 
make all support tokens as far from the decision boundaries as possible, which will result in 
a robust classifier with better generalization capability. This idea leads to estimating the 
HMM models  based on the criterion of maximizing the minimum margin of all support 
tokens, which is named as large margin estimation (LME) of HMMs. 

(5)

The HMM models, , estimated in this way, are called large margin HMMs. 
Considering eq. (3), large margin estimation of HMMs can be formulated as the following 
maximin optimization problem: 

(6)

Note it is fine to include all training data into the support token set with a large value for e
in eq. (4). However, this may significantly increase the computational complexity in the 
following optimization process and most of those data with large margin are usually 
inactive in the optimization towards maximizing the minimum one, especially when a 
gradual optimization method is used, such as gradient descent and other local optimization 
methods. 
As shown in Li et al., 2005 and Liu et al., 2005a and Jiang et al., 2006, the above maximin 
optimization may become unsolvable for Gaussian mixture HMMs because its margin as 
defined in eq. (3) may become unbounded with respect to model parameters. As one 
possible solution to solve this problem, some additional constraints must be imposed to 
ensure the margin is bounded during optimization as in Li & Jiang, 2005, Jiang et al., 2006. 
As suggested in Li & Jiang, 2006a and Liu et al., 2007, a KL-divergence based constraint can 
be introduced for HMM parameters to bound the margin. The KL-divergence (KLD) is 
calculated between an HMM  and its initial value as follows: 

(7)

or

(8)
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where denotes the initial model parameters and r2 is a constant to control a trust region 
for large margin optimization which is centered at the initial models. Since the KLD 
constraints given in eq. (7) defines a closed and compact set, it is trivial to prove that the 
margin in eq. (3) is a bounded function of HMM parameters  so that the maximin
optimization in eq. (6) is solvable under these constraints. 
Furthermore, as shown in Li, 2005 and Li & Jiang, 2006a, the maximin optimization problem 
in eq. (6) can be equivalently converted into a constrained maximization problem by 
introducing a new variable  (  > 0) as a common lower bound to represent min part of all 
terms in eq.(6) along with the constraints that every item must be larger than or equal to .
As the result, the maximin optimization in eq.(6) can be equivalently transformed into the 
following optimization problem: 
Problem 1 

(9)

subject to: 

(10)

(11)

(12)

3. A General Approximation-optiMization (AM) Approach to Large Margin 
Estimation of HMMs 

Obviously, we can use a gradient descent method to solve the optimization Problem 1. As in 
Li & Jiang, 2005 and Jiang et al., 2006, we cast all constraints in eqs.(10) to (12) as some 
penalty terms in the objective function so that the model parameter updating formula can be 
easily derived. Thus, HMM parameters can be optimized gradually by following the 
calculated gradient direction. The gradient descent method is easy to implement and 
applicable to any differentiable objective functions. However, the gradient descent method 
can be easily trapped into a shallow local optimum if the derived objective function is 
jagged and complicated in nature, especially when the gradient descent method is operated 
in a high-dimensionality space. Also it is very difficult to set appropriate values for some 
critical parameters in gradient descent, such as step size and so on. As the result, the 
gradient method normally can not significantly improve over the initial models in a high-
dimensionality space if the initial models have been set to some reasonably good values. 
In this paper, we propose a novel approach to solve the above large margin estimation 
problem for HMMs. The key idea behind this approach is that we first attempt to find a 
simpler convex function to approximate the original objective function in a close proximity 
of initial model parameters if the original objective function is too complicated to optimize 
directly. Then, the approximate function is optimized by using an efficient convex 
optimization algorithm. In some cases, some relaxation must be made to ensure the 
resultant problem is indeed an convex optimization problem. As we know, a convex 
optimization problem can be efficiently solved even in a very high-dimensionality space 
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since it never suffers from the local optimum problem in a convex optimization problem. 
Based on the proximity approximation, we hope the optimal solution found for this 
approximate convex problem will also improve the original objective function as well. Then, 
in next iteration, the original objective function can be similarly approximated in the close 
proximity of this optimal solution as another convex optimization problem based on the 
same approximation principle. This process repeats until convergence conditions are met for 
the original objective function. Analogous to the popular EM algorithm (Dempster et al., 
1977 and Neal & Hinton, 1998), each iteration consists of two separate steps: i) 
Approximation step (A-step): the original objective function is approximated in a close 
proximity of initial model parameters; ii) optiMization step (M-step): the approximate 
function is optimized by a convex optimization algorithm (convex relaxation may be 
necessary for some models). Analogously, we call this method as the AM algorithm. It is 
clear that the AM algorithm is more general than the EM algorithm since the expectation (E-
step) can also be viewed as a proximity approximation method as we will show later. More 
importantly, comparing with the EM algorithm, the AM algorithm will be able to deal with 
more complicated objective functions such as those arising from discriminative training of 
many statistical models with hidden variables. 
As one particular application of the AM algorithm, we will show how to solve the large 
margin estimation (LME) problem of HMMs in speech recognition. 

3.1 Approximation Step (A-step): 

There are many different methods to approximate an objective function in a close proximity. 
In this section, we introduce two different methods, namely Viterbi-based approximation 
(V-approx) and Expectation-based approximation (E-approx).
Let us first examine the log-likelihood function of HMMs, . Since HMMs have 
hidden variables such as unobserved state sequence, denoted as s, and unobserved 
Gaussian mixture labels (for Gaussian mixture HMMs), denoted as 1, we have the following: 

(13)

As the first way to approximate the above log-likelihood function, we can use the Viterbi 
approximation, i.e., we use the best Viterbi path, s* and 1*, to approximate the above 
summation instead of summing over all possible paths. And the best Viterbi path can be 
easily derived based on the initial models, by the following max operation using the 
well-known Viterbi algorithm: 

(14)

Thus, the log-likelihood function can be approximated as follows: 

(15)

This approximation scheme is named as Viterbi approximation, i.e., V-approx.  Obviously, 
for HMMs, the approximate function  is a convex function. 
If we assume the language model, p(W), is fixed, the discriminant function of HMM, ,
in LME can be viewed as difference of log-likelihood functions. If we use the V-approx for 
both correct model and incorrect competing model :
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(16)

(17)

Then, the constraints in eq.(10) can be approximated by difference of two convex functions 
as follows: 

(18)

for all possible i and j.
Now let us consider the second scheme to approximate the objective function, i.e., E-approx. 
For the log-likelihood function of HMMs,  in eq.(13), we consider the following 
auxiliary function used in the EM algorithm: 

(19)

As shown in Dempster et al., 1977 and Neal & Hinton, 1998, the above auxiliary function is 
related to the original log-likelihood function as follows: 

(20)

 (21)

(22)

From these, it is clear that can be viewed as a close proximity approximation of 
log-likelihood function  at with accuracy up to the first order. Under the 
proximity constraint in eq.(ll), it serves as a good approximation of the original log-
likelihood function. Since the function is originally computed as an expectation in the EM 
algorithm, this approximation scheme is named as Expectation-based approximation (E-
approx). Similarly, we use E-approx to approximate both correct model and 
incorrect competing model in discriminant function as: 

(23)

(24)

It can be easily shown that the function is also a convex function for HMMs. Therefore, 
the discriminant function can also be similarly approximated as difference of two convex 
functions as follows: 

(25)

for all possible i and j.
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3.2 OptiMization Step (M-step): 

After the approximation, either V-approx or E-approx, the original Problem 1 has been 
converted into a relatively simpler optimization problem since all constraints have been 
approximately represented by differences of convex functions. As we know, a difference of 
two convex functions is not necessarily a convex function. Thus, in some cases, we will have 
to make some convex relaxations to convert the problem into a convex optimization 
problem so that a variety of convex optimization algorithms can be applied to find the 
global optimum of the approximate problem under the proximity constraint in eq.(ll). Due 
to this proximity constraint, we expect the global optimal solution will also improve the 
original LME optimization problem since the approximate convex optimization problem 
approaches the original LME problem with sufficient accuracy under the proximity 
constraint. 
In the remainder of this paper, we will use two examples to show how to make convex 
relaxations and how to perform the convex optimization for LME of Gaussian mean vectors 
in Gaussian mixture HMMs. In the first example, we use V-approx to approximate the 
likelihood function of HMMs and then make some convex relaxations to convert the 
problem into an SDP (semi-definite programming) problem. This method is suitable for both 
isolated word recognition and continuous speech recognition based on the string-model of 
N-Best lists. In the second example, we use E-approx to approximate likelihood function of 
HMMs when the competing hypotheses are represented by word graphs or lattices. Then 
we similarly convert the problem into an SDP problem by making the same relaxation. This 
method is suitable for LME in large vocabulary continuous speech recognition where 
competing hypotheses are encoded in word graphs or lattices. 

4. LME of Gaussian Mixture HMMs based on N-Best Lists 

In this section, we apply the AM algorithm to solve the large margin estimation for 
Gaussian mixture HMMs in speech recognition. Here, we consider to use V-approx in the A-
Step of the AM algorithm. This method is applicable to isolated word recognition and 
continuous speech recognition using string-models based on N-Best lists. 
At first, we assume each speech unit, e.g., a word W, is modeled by an N-state Gaussian 
mixture HMM with parameter vector , where is the initial state distribution, 

is transition matrix, and is parameter vector composed of 
mixture parameters for each state i, where K denotes 
number of Gaussian mixtures in each state. The state observation p.d.f. is assumed to be a 
mixture of multivariate Gaussian distribution: 

(26)

where D denotes dimension of feature vector x and mixture weights  satisfy the 
constraint . In this paper, we only consider multivariate Gaussian 
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distribution with diagonal covariance matrix. Thus, the above state observation p.d.f. is 
simplified as: 

(27)

We assume training data is given as along with true labels for all 
utterances in , denoted as . In this section, we assume for each 
Xi in , its competing hypotheses are encoded as an N-Best list, , which can be 
generated from an N-Best Viterbi decoding process. We also assume the correct label has 
been excluded from the list. Then, the LME formulation in section 2 can be easily extended 
to this case. The only difference is that the set of all possible words, , used to define 
margin for each training data Xi in eq.(2), becomes different for different training data, Xi,
where we denote its N-Best list as . And each model  denotes the string model 
concatenated according to the true transcription or a hypothesis from N-Best lists. 

4.1 A-Step: V-approx 

Given any speech utterance , let be the 
unobserved state sequence, and be the associated sequence of the 
unobserved mixture component labels, if we use V-approx, the discriminant function, i.e., 

, can be expressed as: 

(28)

where we denote the optimal Viterbi path as and the best mixture 
component label as .
In this paper, for simplicity, we only consider to estimate Gaussian mean vectors of HMMs 
based on the large margin principle while keeping all other HMM parameters constant 
during the large margin estimation. Therefore, we have 

 (29) 

where c • is a constant which is independent from all Gaussian mean vectors. 
Furthermore, we assume there are totally M Gaussian mixtures in the whole HMM set ,
denoted as . We denote each Gaussian as  where k .
For notation convenience, the optimal Viterbi path s* and 1* can be equivalently represented 
as a sequence of Gaussian mixture index, i.e., , where jt . is index 
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of Gaussians along the optimal Viterbi path {s*, 1*}. Therefore, we can rewrite the 
discriminant function in eq. (29) according to this new Gaussian index as: 

(30)

For , let us assume the optimal Viterbi path is , where it

. As we are only considering to estimate mean vectors of CDHMMs, after V-approx, 
the decision margin dij(Xi) can be represented as a standard diagonal quadratic form as 
follows: 

(31)

where cij is another constant independent of all Gaussian means. 
Furthermore, if we only estimate Gaussian mean vectors, the KL-divergence based 
constraint in eq.(11) can also be simplified for Gaussian mixture HMMs with diagonal 
covariance matrices as follows: 

(32)

To convert the above optimization problem into an SDP problem, we first represent the 
above approximated problem in a matrix form. We first define a mean matrix by
concatenating all normalized Gaussian mean vectors in  as its columns as follows: 

(33)

where each column is a normalized mean vector (column vector): 

(34)
Then we have 

(35)

where  denotes a normalized feature vector (column vector) as 

(36)
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Since we have 

(37)

where ID is D-dimension identity matrix and ek is a column vector with all zeros except only 
one —1 in k-th location. Then, we have 

(38)

where Vi and Z are (D + L) x (D + L) dimensional symmetric matrices defined as: 

(39)

(40)

Similarly, we can express the discriminant function, , as: 

where Vj is a (D + L) x (D + L) dimensional symmetric matrix defined as: 

(41)

Thus, it is straightforward to convert the constraint in eq. (10) into the following form: 

(42)
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where Vij = Vi—Vj and .
Following the same line, we can convert the constraint in eq. (32) into the following matrix 
form as well: 

(43)

(44)

(45)

where R is a (D + L) x (D + L) dimensional symmetric matrix defined as: 

(46)

and  is normalized Gaussian mean vector in the initial model set, as defined in eq. 
(34).
In summary, after V-approx in the A-Step, the approximate optimization problem can be 
represented as: 
Problem 2 

(47)
subject to: 

(48)

(49)

(50)

(51)

4.2 M-Step: SDP 

Obviously, Problem 2 is equivalent to the original LME optimization Problem 1 except it is 
expressed in a matrix form. However, since the constraint is not convex, it is a 
non-convex optimization problem. Thus, some relaxations are necessary to convert it into a 
convex optimization problem. In this section, we consider to use a standard SDP (semi-
definite programming) relaxation to convert Problem 2 into an SDP problem. 
As shown in Boyd et al., 1994, the following statement always holds for matrices: 

(52)
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where  denotes is a positive semidefinite matrix. 
Therefore, following Boyd et al., 1994, if we relax the constraint to

, we are able to make a positive semidefinite matrix. During the 
optimization, the top left corner of must be an identity matrix, i.e., , which 
can be easily represented as a group of linear constraints as: 

(53)

where  is 1 when k = l and 0 otherwise. If k = l (for l k, l D),

(54)
otherwise

(55)

since Z is a symmetric matrix, zkl = zlk. Obviously, the unique solution for this set of linear 
constraints is zkk = 1 and zkl = zlk = 0 for all 1 k D,   k l D.
Finally, under the relaxation in eq. (52), Problem 2 is converted into a standard SDP 
problem as follows: 
Problem 3 

(56)

subject to: 

(57)

(58)

(59)

(60)

Problem 3 is a standard SDP problem, which can be solved efficiently by many SDP 
algorithms, such as interior-point methods (Boyd & Vandenberghe, 2004). In Problem 3, the 
optimization is carried out w.r.t. Z (which is constructed from all HMM Gaussian means) 
and , and Vij and cij and R are constant matrix calculated from training data and initial 
models, and r is a pre-set control parameter. Then, all Gaussian mean vectors are updated 
based on the found SDP solution Z*.
At last, the AM algorithm for LME of Gaussian mixture HMMs based on N-Best lists is 
summarized as follows: 

Algorithm 1 The AM Algorithm for LME of HMMs based on N-Best Lists 
repeat
1. Perform N-Best Viterbi decoding for all training data using models 
2. Identify the support set according to eq. (4). 
3. A-Step: collect sufficient statistics including R, and Vij, cij for all Xi and j
4. M-Step: Perform SDP to solve Problem 3 and update models.
5. n = n + 1. 

until some convergence conditions are met. 
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5. LME of Gaussian mixture HMMs based on Word Graphs 

As in most large vocabulary continuous speech recognition systems, competing hypotheses 
for training utterances are encoded in a more compact format, i.e., word graphs or word 
lattices. In this section, we apply the AM algorithm to LME of Gaussian mixture HMMs for 
speech recognition based on word graphs instead of N-Best lists. Here, we use E-approx in
A-step to derive an efficient method to conduct LME for large vocabulary continuous speech 
recognition tasks using word graphs. 
Assume we are given a training set as , for each training utterance 
Xi, assume its true transcription is Wi and its competing hypotheses are represented as a 
word graph, denoted as . Ideally the true transcription Wj should be excluded from the 
word graph . In this case, we define the margin for Xi as follows: 

(61)

where the summation is taken for all hypotheses in word graph . In this paper, we only 
consider to estimate acoustic models and assume language model scores p(Wi) and p(Wj) are 
constants. Then, the idea of LME in section 2 can be extended to estimate acoustic models 
towards maximizing the minimum margin across a selected support token set , as in 
eq.(5). In the following, we consider to solve this LME problem with the AM algorithm 
where E-approx is used in A-step and SDP is used to solve M-step. For simplicity, we only 
estimate Gaussian mean vectors and assume other HMM parameters are kept constant in 
LME. But it is quite trivial to extend to estimating all HMM parameters with the same idea. 

5.1 A-Step: E-approx 

Given any speech utterance , in E-approx, the HMM log-
likelihood function  is approximated by the following auxiliary function 
calculated based on expectation: 

(62)

where  denotes posterior probability calculated for k-th Gaussian component in the 
model set (k ) using the Baum- Welch algorithm conditional on the initial model 
and training utterance Xi, and is a constant independent from all Gaussian mean vectors. 
After rearranging all terms in eq. (62), we can organize  as a quadratic function 
of all Gaussian mean vectors: 

(63)

where is another constant independent of Gaussian mean vectors and 
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(64)

(65)

If we denote two column vectors as 

(66)

and

(67)

then we have 

(68)

Since we have 

 (69) 

Then, we have 

(70)
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where Z and are (D + L) x (D + L) dimensional symmetric matrices, Z is defined as in 
eq.(40) and is calculated as: 

(71)

Similarly, we consider to approximate the log-likelihood function of word graph with E-
approx as follows: 

(72)

where both and are two constants independent of Gaussian mean vectors, and 

(73)

(74)

And  and  can be calculated efficiently by running the forward-backward algorithm 
in the word graph as in Wessel et al., 2001. 
Similarly, can be expressed as the following matrix form: 

(75)

where

(76)

Therefore, the margin d(Xi) can be approximated as: 

(77)

where .
As the result, the LME problem based on the word graphs can be approximately represented 
as follows: 
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Problem 4 

(78)

subject to:: 

(79)

(80)

(81)

(82)

5.2 M-Step: SDP 

Next, using the same relaxation in eq.(52), we convert the above optimization problem into 
the following SDP problem: 
Problem 5 

(83)

subject to:: 

(84)

(85)

(86)

(87)

The Problem 5 can be efficiently solved using a fast SDP optimization algorithm. The found 
solution Z* can be used to update all Gaussian mean vectors. 
At last, the AM algorithm for LME of Gaussian mixture HMMs using E-approx based on 
word graphs is summarized as follows: 

Algorithm 2 The AM Algorithm for LME of HMMs based on Word Graphs 
repeat
1. Perform Viterbi decoding for all training data to generate word graphs using models 

.
2. Identify the support set according to eq.(4).
3. A-Step: collect sufficient statistics including R, and , bi for all Xi .
4. M-Step: Perform SDP to solve Problem 5 and update models.
5. n = n+ 1. 

until some convergence conditions are met. 
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6. Final Remarks 

In this paper, we have proposed a general Approximation-optiMization (AM) approach for 
large margin estimation (LME) of Gaussian mixture HMMs in speech recognition. Each 
iteration of the AM method consists of A-step and M-step. In A-step, the original LME 
problem is approximated by a simple convex optimization problem in a close proximity of 
initial model parameters. In M-step, the approximate convex optimization problem is solved 
by using efficient convex optimization algorithms. The AM method is a general approach 
which can be easily applied for discriminative training of statistical models with hidden 
variables. In this paper, we introduce two examples to apply the AM approach to LME of 
Gaussian mixture HMMs. The first method uses V-approx and is applicable for isolated 
word recognition and continuous speech recognition based on N-Best lists. The second 
method uses E-approx and can be applied to large vocabulary continuous speech 
recognition when competing hypotheses are given as word graphs or word lattices. Due to 
space limit, we can not report experimental results in this paper. Readers can refer to Li, 
2005 and Li & Jiang, 2006a, Li & Jiang, 2006b for details about ASR experiments. 
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1. Introduction 

Understanding continuous speech uttered by a random speaker in a random language and 
in a variable environment is a challenging problem for a machine. Broad knowledge of the 
world is needed if context is to be taken into account, and this has been the main source of 
difficulty in speech-related research. Automatic speech recognition has only been possible 
by simplifying the problem - which involves restricting the vocabulary, the speech domain, 
the way sentences are constructed, the number of speakers, and the language to be used-, 
and controlling the environmental noise. 
Current speech recognition systems are usually based on the statistical modelling of the 
acoustic information, generally using hidden Markov models (HMM). However, these 
systems are subject to some restrictions regarding the incorporation of other speech-related 
knowledge that might have an influence on the recognition rate.  
The evolution of Automatic Speech Recognition (ASR) technology over the last few years 
has led to the development of applications and products that are able to operate under real 
conditions by acknowledging the above-mentioned limitations (or simplifications). ASR 
applications include dialogue systems, speech-based interfaces (such as automatic access to 
information services) and voice-controlled systems (like voice-driven database retrieval).  
Due to the number of potential ASR applications, research efforts have been focused on 
developing systems that can accept spontaneous speech in a wide range of environments 
and from a wide range of speakers. However, in the case of spontaneous speech, large 
vocabularies must be considered. Moreover, language must be modelled by a non-restrictive 
grammar, which takes into account events that are common in natural speech, such as 
truncated or grammatically incorrect sentences, non-speech-events and hesitation. To deal 
with this, and to be able to introduce all the information available into the recognition 
architecture, a change of paradigm from conventional speech recognition had to be 
proposed.
In this chapter, we will talk about different approaches to a double layer architecture using 
HMM for ASR, which should allow other, non-acoustic information to be incorporated and 
more complex modelling of the speech signal than has been possible up to now. After 
analyzing different approaches, the main conclusions will be summarized and possible 
further work in this field will be briefly discussed. 
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2. ASR Using HMM 

2.1 Standard systems 

A standard ASR system is based on a set of so-called acoustic models that link the observed 
features of the voice signal to the expected phonetics of the hypothesis sentence. The most 
typical implementation of this process is probabilistic, namely Hidden Markov Models 
(HMM) (Rabiner, 1989; Huang et al., 2001). 
A Markov model is a stochastic model that describes a sequence of possible events in which 
the probability of each event only depends on the state attained in the previous event. This 
characteristic is defined as the Markov property. An HMM is a collection of states that fulfils 
the Markov property, with an output distribution for each state defined in terms of a 
mixture of Gaussian densities (Rabiner, 1993). These output distributions are generally 
made up of the direct acoustic vector plus its dynamic features (namely, its first and second 
derivatives), plus the energy of the spectrum. Dynamic features are the way of representing 
context in an HMM, but they are generally only limited to a few subsequent feature vectors 
and do not represent long-term variations. Frequency filtering parameterization (Nadeu et 
al., 2001) has become a successful alternative to cepstral coefficients. 
Conventional HMM training is based on maximum likelihood estimation (MLE) criteria 
(Furui & Sandhi, 1992), via powerful training algorithms such as the Baum-Welch algorithm 
and the Viterbi algorithm. In recent years, the discriminative training method and the 
minimum classification error (MCE) criteria, which is based on the generalized probabilistic 
descent (GPD) framework, has been successful in training HMMs for speech recognition 
(Juang et al., 1997). For decoding, both the Viterbi and Baum-Welch algorithms have been 
implemented with similar results, but the former showed better computational behaviour. 
The first implementations of HMMs for ASR were based on discrete HMMs (DHMMs). In a 
DHMM, a quantization procedure is needed to map observation vectors from the 
continuous space to the discrete space of the statistical models. Of course, there is a 
quantization error inherent to this process, which can be eliminated if continuous HMMs 
(CHMMs) are used.  
For CHMMs, a different form of output probability function is needed. Multivariate 
Gaussian mixture density functions are an obvious choice, as they can approximate any 
continuous density function (Huan et al., 2001). However, computational complexity can 
become a major drawback in the maximization of the likelihood by way of re-estimation, as 
the M-mixture observation densities used must be accommodated.  
In many implementations, the gap between the discrete and continuous mixture density 
HMM has been bridged under certain minor assumptions. For instance, in a tied-mixture 
HMM the mixture density functions are tied together across all the models to form a set of 
shared kernels.
Another solution is a semi-continuous HMM (SCHMM), in which a VQ codebook is used to 
map the continuous input feature vector x to ok, as in a discrete HMM. However, in this case 
the output probabilities are no longer used directly (as they are in a DHMM), but rather 
combined with the VQ density functions. That is, the discrete model-dependent weighting 
coefficients are combined with the continuous codebook’s probability density functions.  
From another point of view, semi-continuous models are equivalent to M-mixture 
continuous HMMs, with all the continuous output probability density functions shared by 
all the Markov states. Hence, SCHMMs maintain the modelling ability of large-mixture 
probability density functions. In addition, the number of free parameters and the 
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computational complexity can be reduced, because all the probability density functions are 
tied together, thus providing a good compromise between detailed acoustic modelling and 
trainability. 
However, standard ASR systems still do not provide convincing results under changeable 
environmental conditions. Most current commercial speech recognition technologies still 
work using either a restricted lexicon (i.e. digits or a definite number of commands) or a 
semantically restricted task (i.e. database information retrieval, tourist information, flight 
information, hotel services, etc.). Extensions to more complex tasks and/or vocabulary still 
have a reputation for poor quality and are thus viewed with scepticism by both potential 
users and customers. 
Because of the limitations of HMM-based speech recognition systems, research has had to 
progress in a number of different directions. Rather than adopting an overall approach to 
tackling problems, they have generally been dealt with individually. Regarding robust 
speech recognition, the spectral variability of speech signals has been studied using different 
methods, such as variable frame rate (VFR) search analysis of speech. Model adaptation has 
also been on scope or, more specifically, speaker adaptation and vocal tract normalization 
(VTN).
Language modelling research has played a significant role in improving recognition 
performance in continuous speech recognition. However, another problem that faces 
standard speech recognition is the dependency of the models obtained regarding to the 
speakers (or database) used for training. Speaker adaptation can be used to overcome this 
drawback, as it performs well as a solution to certain tasks. However, its benefits are not 
entirely clear for speaker-independent tasks, because the adaptation costs are higher.  
Of all the active fields of research in speech recognition, we will focus our attention on those 
closest to the approach presented in this chapter. 

2.2 Modelling temporal evolution using temporal and trajectory models 

At the outset of speech recognition research, the application of statistical methods, i.e. 
Markov Models, proved to be clearly advantageous. First-order Markov Models are 
sufficiently flexible to accommodate variations in probability along an utterance and, at the 
same time, simple enough to lend themselves to mathematically rigorous optimization and 
the deployment of search strategies. However, as the Markov property is an artificial 
constraint forced upon a model of the temporal speech utterance, it was expected that some 
speech characteristics would not be correctly modelled.  
Several approaches for modelling temporal evolution have been proposed in the past. 
Temporal models have been used to optimally change the duration and temporal structure 
of words. Experiments showed that first-order Markov chains do not model expected local 
duration effectively. Thus, different approaches for a more explicit modelling of duration 
led to an improvement in performance.  
Some approaches started by directly introducing continuously variable duration into the 
HMM. In (Russell & Cook, 1987) and (Bonafonte et al., 1996), each HMM state is expanded 
to a sub-HMM (ESHMM) that shares the same emission probability density and performs 
the correct state duration distribution using its own topology and transition probability. To 
reduce the loss of efficiency introduced by the ESHMM, a post-processor duration model 
can be implemented (Wu et al., 2005) using the output of a Viterbi algorithm and ranking 
the proposed paths through the use of better models for state duration. However, 
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incorporating explicit duration models into the HMM also breaks up some of conventional 
Markov assumptions. When HMM geometric distribution is replaced with an explicitly 
defined one, Baum-Welch and Viterbi algorithms are no longer directly applicable. 
In (Bonafonte et al., 1993), Hidden Semi-Markov models (HSMMs) are proposed as a 
framework for a more explicit modelling of duration. In these models, the first-order 
Markov hypothesis is broken in the loop transitions. The main drawback of an HSMM, 
however, is an increase in the computational time by a factor of D, D being the maximum 
time allowed in each state. Hence, the Viterbi algorithm must be modified to cope with this 
higher complexity and to limit the computational increase.  
An alternative to this is to model the occupancy of each HMM state by means of a Markov 
chain (Vidal et al., 2004). This occupancy is represented using a distribution function (DF). 
Thus, each state of the initial HMM is expanded by the DF estimated for that state.  
In another approach to overcome the limitations of standard HMM framework, alternative 
trajectory models have been proposed that take advantage of frame correlation. Although 
these models can improve the speech recognition performance, they generally require an 
increase in model parameters and computational complexity.  
In (Tokuda et al., 2003) a trajectory model is derived by reformulating the standard HMM 
whose state output vector includes static and dynamic feature parameters. This involves 
imposing the explicit relationship between the static and dynamic features. A similar 
technique is based on maximizing the models’ output probability under the constraints 
between static and dynamic features.  
A smooth speech trajectory is also generated from an HMM by maximizing the likelihood 
subject to the constraints that exist between static and dynamic features. A parametric 
trajectory can be obtained using direct relationships between the vector time series for static 
and dynamic features, or from mixture distribution HMMs (Minami et al., 2003). This 
method chooses the target sequence of Gaussian distributions by selecting the best Gaussian 
distribution for each state during Viterbi decoding. Thus, the relationship between the 
cepstrum and the dynamic coefficients is now taken into account in the recognition phase, 
unlike in previous approaches. 

2.3 Second-order models (HMM2) 

HMM-based speech modelling assumes that the input signal can be split into segments, 
which are modelled as states of an underlying Markov chain, and that the waveform of each 
segment is a stationary random process. As previously mentioned, the sequence of states in 
an HMM is assumed to be a first-order Markov chain. This assumption is motivated by the 
existence of efficient, tractable algorithms for model estimation and recognition.  
To overcome the drawbacks of regular HMMs regarding segment duration modelling and 
trajectory (frame correlation) modelling, some authors have proposed a new class of models 
in which the underlying state sequence is a second-order Markov chain (HMM2) (Mari et 
al., 1997). These models show better state occupancy modelling, at the cost of higher 
computational complexity. To overcome this disadvantage, an appropriate implementation 
of the re-estimation formulation is needed. Algorithms that yield an HMM only Ni times 
slower than an HMM1 can be obtained, Ni being the average input branching factor of the 
model. 
Another approach to a second-order HMM is a mixture of temporal and frequency models 
(Weber et al., 2003). This solution consists of a primary (conventional) HMM that models the 
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temporal properties of the signal, and a secondary HMM that models the speech signal's 
frequency properties. That is, while the primary HMM is performing the usual time 
warping and integration, the secondary HMM is responsible for extracting/modelling the 
possible feature dependencies, while also performing time warping and integration.  
In these models, the emission probabilities of the temporal (primary) HMM are estimated 
through a secondary, state-specific HMM that works in the acoustic feature space. Such 
models present a more flexible modelling of the time/frequency structure of the speech 
signal, which results in better performance. Moreover, when such systems are working with 
spectral features, they are able to perform non-linear spectral warping by implementing a 
form of non-linear vocal-tract normalization.  
To solve the increase in computational complexity associated with this solution, the Viterbi 
algorithm must be modified, which leads to a considerable computational increase.  
The differences in performance between an HMM and HMM2 are not particularly 
remarkable when a post-processor step is introduced. In this post-processor step, durational 
constraints based on state occupancy are incorporated into conventional HMM-based 
recognition. However, in this case HMM2s are computationally better, while the complexity 
increase is similar in both cases. 

2.4 Layered speech recognition 

With regard to the integration of different information into the ASR architecture, and going 
one step further from the HMM2, several authors have proposed using layered HMM-based 
architectures (Demuynck et al., 2003).  
Layered ASR systems fit all the knowledge levels commonly used in automatic speech 
recognition (acoustic, lexical and language information) in a final model. From these 
architectures, a modular framework can be suggested that allows a two-step (or multi-step) 
search process. The usual acoustic-phonetic modelling is divided into two (or more) 
different layers, one of which is closer to the voice signal for modelling acoustic and 
physical characteristics, whilst the other is closer to the phonetics of the sentence. The 
modelling accuracy and the ease with which acoustic and phonetic variability can be 
managed are thus expected to increase. 
By splitting the recognition scheme into an acoustic lower layer and a language-based upper 
layer, the introduction of new functionalities may be consigned to the second layer. The goal 
is to develop models that are not limited by acoustic constraints (such as left-to-right 
restrictions). This also provides an open field for the introduction of new (and high-level) 
information with no loss of efficiency. Moreover, layered architectures can increase speaker 
independence if the upper layer is trained with a different set of recordings to that used for 
the acoustic layer, which approaches conditions similar to those faced in the recognition of 
unknown speakers.  
In the following sections, two approaches for a double-layer architecture are presented and 
justified. Thanks to the advantages mentioned above, layered architectures are expected to 
bring standard HMM-based ASR systems up to date. 
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3. HMM State Scores Evolution Modelling 

3.1 Justification 

In standard HMM-based modelling, feature vectors only depend on the states that 
generated them. Dynamic features (generally first and second derivatives of the cepstral 
coefficients and derivatives of the energy) are used to represent context in HMM. However, 
they only consider a few subsequent vectors and do not represent long-term variations. 
Moreover, first-order Markov chains do not effectively model expected local duration. 
Furthermore, as seen above, incorporating explicit state duration models into the HMM 
breaks up some of conventional Markov assumptions. An alternative way of incorporating 
context into an HMM lies in taking a similar approach to the evolution of state scores as that 
used for well-known trajectory models. However, in this case a double-layer architecture is 
used. 
In (Casar & Fonollosa, 2006a), a method is presented for incorporating context into an HMM 
by considering the state scores obtained by a phonetic-unit recognizer. These state scores are 
obtained from a Viterbi grammar-free decoding step that is added to the original HMM, 
which yields a new set of “expanded” HMMs. A similar approach was used by (Stemmer et 
al., 2003), who integrated the state scores of a phone recognizer into the HMM of a word 
recognizer, using state-dependent weighting factors. 

3.2 Mathematical formalism 

To better understand the method for implementing HMM state scores evolution modelling 
presented in (Casar & Fonollosa, 2006a), the formulation on which it relies must be 
introduced. 
In a standard SCHMM, the density function bi (xt) for the output of a feature vector xt by
state i at time t is computed as a sum over all codebook classes m  M (the number of 
mixture components): 

= ≈, ,( ) · ( | , ) · ( | )i t i m t i m t
m m

b x c p x m i c p x m   (1) 

where p(xt|m) = N(xt,μm,Σm) denotes the Gaussian density function shared across all Markov 
models and ci,m are the weights for the kth codeword that satisfy ci,m =1.
As in (Stemmer et al., 2003) probability density functions can be considered that make it 
possible to integrate a large context x1t-1 = x1,.... xt-1 of feature vectors observed thus far into 
the HMM output densities.  
If we tried to directly integrate this context into bi, this would result in a large increase of 
computational effort. Therefore, a new hidden random variable l (henceforth called class
label) is introduced, which is a discrete representation of the feature vectors x1t-1. These class 
labels l can correspond to the units whose context is to be modelled, for instance phone 
symbols.  
From now on, each state i not only chooses between the codebook classes m  M but also 
takes an independent decision for the class label l. The integration of l into the output 
density makes bi dependent on the history x1t-1.
Thus, Equation (1) is expanded by defining the new output probability and integrating the 
context, as in (Stemmer et al., 2003): 
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Moreover, as x1t-1 is the same for all states i at time t there is no increase in the computational 
complexity of the algorithms for training and decoding.  
However, the representation of bi (xt|x1t-1) needs additional simplifications if the number of 
parameters to be estimated is to be reduced. 
Since the decisions of l and m are independent, we can use the following approximation: 

1 1 1
1 1 1( , | , ) ( | , )· ( | , )t t tP l m i x P l i x P m i x− − −=  (3) 

and as m does not depend on x1 t-1, P(m|i,x1t-1) = P(m|i)= ci,m .
Thus, Equation (3) can be reformulated as: 

1 1
1 , 1( , | , ) · ( | , )t t

i mP l m i x c P l i x− −=   (4) 

We can also split the second term P(l|i, x1t-1) into two parts in which i is considered 
separately from x1 t-1 and by applying Bayes’ rule: 

1 1
1 , 1( | , ) · ( | )t t

l iP l i x C P l x− −=   (5) 

where Cl,i is related to P(l|i) by means of a variable proportionality term.  
To summarize, we can express Equation (2) by splitting the separately considered 
contributions of m and l, thus: 

1 1
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i t i m t l i t
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where the first term corresponds to Equation (1). 
In this case, we do not want to introduce the modelling of the context for each feature vector 
into the HMM output densities, but to create a new feature by modelling the context. A new 
probability term is defined: 

' 1
, 1( ) · ( | ) ( | )t

i t l i t
l

b x C P l x p x l−=  (7) 

Thus, when a regular bi(xt) for each spectral feature and a bi'(xt) for the phonetic-unit feature 
are combined, the joint output densities of the expanded set of models are equivalent to 
Equation (6). 
We can express P(l|x1t) = P(l|xt,x1t-1), and applying Bayes’ rule to the second term of this 
expression:
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− −
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Given that class l is itself a discrete representation of feature vectors x1t-1, we can 
approximate p(xt|l,x1t-1)  p(xt|l).
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Likewise, p(xt,x1t-1) is a constant in its evaluation across the different phonetic units so we 
can simplify Equation (8) to P(l|x1 t) = K p(xt|l) P(l|x1t-1) (with K as a constant). 
Finally,  

' '
, 1( ) · ( | )t

i t l i
l

b x C P l x=   (9) 

The new terms in Equation (9) are obtained as follows: C’l,i is estimated during the Baum-
Welch training of the expanded set of models, whilst P(l|x1t) corresponds to the state scores 
output obtained by the Viterbi grammar-free decoding step. Thus, the output probability 
distribution of the models in the second layer can be estimated through a regular second 
training process.  

3.3 Recognition system 

The double-layer architecture proposed (Figure 1) divides the modelling process into two 
levels and trains a set of HMMs for each level. For the lower layer, a standard HMM-based 
scheme is used, which yields a set of regular acoustic models. From these models, a 
phonetic-unit recognizer performs a Viterbi grammar-free decoding step, which provides (at 
each instant t) the current most likely last state score for each unit.  
This process can also be seen as a probabilistic segmentation of the speech signal, for which 
only the last state scores associated with the unit with the highest accumulated probability 
are kept.

Training 
corpus

training

Viterbi
Grammar-free

training

HMM_1

HMM_2

HMM_1 HMM_2

Viterbi
Grammar-free

Viterbi Recognized
output

Speech
input

RECOGNITION

TRAINING

Figure 1. Double-layer ASR system with HMM state scores modelling 

Let us consider, for instance, semidigit acoustic models for the first layer. In this case, labels l
in the second layer represent the last states of each semidigit model. Thus, the output 
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density value for each unit can be computed as the probability that the current state st of a 
semidigit model is equal to l:

1 1( | ) : ( | )t t
tP l x P s l x= =   (10) 

where P(st =l|x1t) is calculated from the forward score: 
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t t
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P s j x
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= =

=
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The last state scores probability will be the new parameter to be added to the original set of 
features (spectral parameters). Henceforth, five features are considered for further training 
the joint output densities of the expanded set of HMM parameters. However, they are not 
independent features as the phonetic-unit feature models the evolution of the other features.  
A weighting factor w is also introduced, as in (Stemmer et al., 2003) to control the influence 
of the new parameter regarding the spectral features. A global, non-state-dependent 
weighting factor will be used. 
In Table 1, digit chain recognition results obtained using this architecture are compared with 
the baseline results obtained using the regular RAMSES SCHMM system (Bonafonte et al., 
1998). Results show a significant improvement in both sentence and word recognition rates.  

Configuration 

System w 
Sentence 

recognition rate 
Word

recognition rate 
Relative reduction 

in WER 

Baseline - 93.304 % 98.73 % -  

0.5 93.605 % 98.80 % 5.51 % 
Layered 

0.2 93.699 % 98.81 % 6.3 % 

Table 1. Recognition rates using expanded state-scores based HMM. 

The relevance of choosing a suitable weighting factor w is reflected in the results. Different 
strategies can be followed for selecting w. In this case, as in Stemmer et al. (2003), an 
experimental weighting factor is selected and its performance verified using an independent 
database.  

4. Path-based Layered Architectures 

4.1 Justification 

HMM-based speech recognition systems rely on the modelling of a set of states and 
transitions using the probability of the observations associated with each state. As these 
probabilities are considered independent in SCHMMs, the sequence of states leading to each 
recognized output remains unknown. Thus, another interesting approach for implementing 
the second layer of a double-layer architecture consists in training the appearance pattern 
instead of modelling the temporal evolution of the states scores. 
In (Casar & Fonollosa, 2003b) the “path” followed by the signal is modelled; each final 
active state is taken as a step. Recognition is then associated with decoding the best 
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matching path. This aids the recognition of acoustic units regardless of the fact that they 
may vary when they are uttered in different environments or by different speakers, or if 
they are affected by background noise.  
Let us examine an example using phoneme HMMs, with three states each, which allows a 
maximum leap of 2 for intra-model state transitions, as in Figure 2.  

Figure 2. A three-state HMM with a maximum leap of 2 for intra-model state transitions 

Thus, when a word is uttered, for example “zero”, the speech signal is able to go through 
the different states of the models associated with each of the word’s phonemes. The graph in 
Figure 3 represents the different “paths” that the speech signal can follow through these 
states at the decoding stage.  
As the intra-model and inter-model state transitions allowed are also represented, by 
modelling this path we are also modelling the different durations of the utterance as local 
modifications of the path.  
In a double-layer framework, the recognition architecture is broken down into two levels 
and performs a conventional acoustic modelling step in the first layer. The second layer is 
consigned to model the evolution followed by the speech signal. This evolution is defined as 
the path through the different states of the sub-word acoustic models defined in the first 
layer. 

z1 z2 z3 e1 e2 e3 r1 r2 r3 o1 o2 o3

z1 z2 z3 e1 e2 e3 r1 r2 r3 o1 o2 o3

Figure 3. Example of paths that can be followed when the word “zero” is uttered 
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To model this path without taking into account the causal relationships between neighbour 
states, we can implement a transparent second layer. This is because we are doing a direct 
mapping of the acoustic probabilities of the activated states. However, while in traditional 
acoustic HMMs the Gaussian densities model the probability with which a state generates 
certain spectral parameters (acoustic or physical information), the new HMM generated in 
this second layer will give the probability of being at a certain point of the path followed by 
the speech signal. 
If we take it one step further, the context of each state will be considered in the process of 
modelling the path. As shown in Figure 5, the speech signal will now be modelled by means 
of the different paths through the activated states, in which each path has its own associated 
probability. Thus, each state will be allowed to be part of different paths and to have 
different contexts. This increases the variability of the path and helps to model different 
utterances of the same speech symbol. 

4.2 Mathematical formalism 

In a semi-continuous HMM, a VQ codebook is used to map the continuous input feature 
vector x to ok (the kth codeword) by means of the distribution function f(x|ok). Therefore, we 
can use a discrete output probability distribution function (PDF) bj(k) for state j:

1
( ) ( ) ( | )

M

j j k
k

b x b k f x o
=

=   (12) 

If Equation (12) is taken as the output density function of the models from the first layer, the 
input into the HMM of the second layer will be the vector of state probabilities given by the 
acoustic models of the first layer. Hence, a new set of semi-continuous output PDFs b’j (k) is 
defined for the second layer:  
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This equation can also be expressed in terms of a new distribution function f’(x|bk), where
the output probability vectors bk play the role usually carried out by ok in the first level. In 
fact, by doing this we are defining a new codebook that covers the sub-word state-
probability space by means of the distribution function f’(x|bk) = bk (x).
The new weights b’(x) will be obtained through a new Baum-Welch estimation in a second 
modelling step. New observation distributions for the second-layer HMM are trained using 
the same stochastic matrix as that of the original acoustic HMM.  
In practice, as M and M' are large, Equations (12) and (13) are simplified using the most 
significant values of I and I'. Thus, it is possible to avoid certain recognition paths from 
being activated, and this can result in a different decoding when I  I'. This simplification 
also means that the preceding and following states to be activated for each state are pruned. 
In the previous formulation, we model the path followed by the signal, taking each final 
active state as a step, but without studying the possible causal relationships between 
adjacent states. When context-dependent path-based modelling is implemented, the 
mapping of the models will be undertaken using windows centred in each state and that 
embrace one or more adjacent states, that is, the states that are most likely to have been 



Robust Speech Recognition and Understanding 132

visited before the current state and those that will most probably become future ones. 
Therefore, instead of taking the output probability vectors bk of the first layer as ok for the 
new distribution function f’(x|bk), we will work with a combination between the output 
probabilities of the adjacent states considered.  

4.3 Path-based double-layer architectures 

The main aims of the path-based double-layer architecture developed are twofold: firstly, to 
achieve a better modelling of speech units as regards their variation when they are uttered 
in a changeable environment, and secondly, to improve speaker independence by taking 
advantage of the double layer.  
Two implementations are possible for the second layer, namely, the state context in the 
definition of the path can either be taken into account or ignored. The two schemes are 
presented below. Firstly, in the one-state width path-based modelling scheme, the state 
context is not considered, that is, the path followed by the signal is considered without 
taking into account the causal relationships between adjacent states. This context is 
subsequently introduced in the L-state width path-based modelling scheme. In this case, L-1 
is the number of adjacent states considered as the significant context for each state of the 
path.

Path-based modelling without context 
In Figure 4, a basic diagram of the proposal for a double-layer architecture that implements 
path-based modelling without context in the second layer is shown.  
The first layer of both the training and recognition schemes is equivalent to a regular 
acoustic HMM-based system. The second layer consists in mapping the acoustic models 
obtained in the first layer into a state-probability-based HMM. In addition, a new codebook 
that covers the probability space is defined. This means that we are no longer working with 
spectral parameter distributions but with the probabilities for the whole set of possible 
states. Thus, we have moved from the signal space (covered by the spectrum) to the 
probability space (defined by the probability values of each of the states).  
In traditional HMMs, Gaussian densities model the probability with which a state generates 
certain spectral parameters (acoustic information). The new HMMs generated by this second 
layer will give the probability of being at a certain point of the path followed by the speech 
signal.
In practice, this means that in acoustic HMMs the probability of reaching a certain state si of 
model mi depends on the parameterization value of the four spectral features, which depend 
on physical and acoustic characteristics. For instance, the “z” in “zero” may vary 
considerably when it is uttered by two different speakers (in terms of acoustic and physical 
parameters). It is the task of the HMM parameter to achieve a correct modelling of these 
variations. However, if a very flexible model is trained to accept a wide range of different 
utterances in the acoustic segment, the power of discrimination between units will be lost.  
When we are working with  path-based HMM, we are directly modelling the probability of 
reaching state si of model mi regardless of the acoustic features’ values. We use the new 
codebook to map the spectral feature to the new probability space. Thus, we decode the 
path followed by the speech signal in terms of the probabilities of each active state.  
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Figure 4. Basic diagram of a one-state width path-based double-layer ASR system 

As the models are mapped to a space of dimension N (the total number of HMM states from 
the first layer), some pruning can be implemented by keeping only the N/2 most significant 
values (see Equation (13)). We are therefore constraining the possible states preceding and 
following each active state, which prevents some recognition paths from being activated. 
This solution will increase speed, and an improvement in recognition performance is also 
expected.
In fact, this can be seen as a similar strategy to CHMM Gaussian mixture pruning, in which 
each state is modelled using a mixture of private Gaussians and only the most likely 
mixtures are considered. 

L-states width path-based modelling 
From a mathematical point of view, speech signals can be characterized as a succession of 
Markov states, in which transitions between states and models are restricted by the topology 
of the models and the grammar. Hence, each state of every model is unique, even though 
the topology can allow multiple repetitions.  
Thus, speech can be modelled by means of different state successions (or paths). Each path has 
its own associated probability, which allows one state to be part of different paths (see 
Figure 5). Furthermore, the context of each state becomes relevant, which brings about a 
higher variability in the possible paths that make up an utterance.
However, the maximum likelihood estimation criteria still apply. Thus, the path with 
maximum likelihood will be that configured by the succession of states that maximizes the 
joint probability (defined by the product of probabilities of each state in the path).  
Theoretically, each path should be defined as the complete succession of states. However, as 
can be seen in Figure 5, the number of paths to consider can become too high (close to 
infinite) if the total number of previous and following states is considered for each state 
context.  
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LL

Figure 5. Different paths go into a certain state. Only those enclosed in a window of length L 
will be considered. 

In practice, each state context is limited to a window of length L in order to allow 
generalization and to make implementation computationally feasible. That is, we will not 
deal with the whole path followed by the signal in the successive states defining a certain 
speech utterance. Instead, for each state that defines the path only the possible previous and 
subsequent L/2-1 states will be considered. Grammatical (phonetic) concordance along the 
path will likewise be verified.  
By stretching this simplification to its limit, if a window of length L=1 were used we would 
be directly mapping the acoustic models into state-probability models in the same way as in 
the previous proposal (path-based modelling without context). This means that this second 
proposal can be seen as an extension of the previous one.  
The training and recognition schemes for this architecture, in which L-states width path-
based modelling in the second layer are implemented, is very similar to the previous one 
(for path-based modelling without context, see Figure 4). Only some modifications to the 
second layer of the training scheme are needed to take the L-states with context into 
account.  
In this case, by mapping the acoustic models obtained in the first layer, a new codebook that 
covers the probability space is built. Furthermore, a table with all the possible state 
combinations is defined, which takes the aforementioned restrictions into account. If all state 
combinations are considered, the input speech is statistically defined and a new set of 
parameters is obtained. These parameters represent the probabilities of each sequence of 
states. A new set of state-probability-based models is built, which makes it possible to 
decode the path followed by the speech signal that uses the state probability parameters.  
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4.4 Results 

If working with the first implementation, without considering the context for the path-based 
modelling in the second layer, it is assumed that there is a “transparent” second layer, as it 
is equivalent to a direct mapping of the acoustic probabilities. Performance would be 
expected to be equivalent to that of a baseline system (without the second layer being 
implemented). However, due to (and thanks to) the pruning implemented by keeping only 
the most significant N/2 values of the total number of HMM states (N), it is possible to 
prevent some recognition paths from being activated. 
For the L-states width path-based modelling, the total number of possible state 
combinations represented in the new codebook is a result of considering the characteristics 
of the acoustic models in the lower layer (number of models and number of states) and the 
window length. Again, for the new representation of the input signal that uses the 
probability space codebook, only the most significant N/2 values will be kept.  
In Table 2, digit recognition results obtained with these two architectures are compared 
against the baseline results obtained with a regular RAMSES SCHMM system (Bonafonte et 
al., 1998). Using one-width path-based modelling for the second layer, there is an 
improvement in the sentence and word recognition rate. This is achieved thanks to a 
positive weighting of the states with higher likelihood (implicit in the solution proposed) 
and the pruning of the preceding and following states to be activated for each state.  
The results for the L-states width path-based modelling show a noticeable improvement in 
sentence and word recognition, but lower than that resulting from the first approach. This 
responds to the growth of the information to be modelled and the pruning performed, 
which induces a loss of information.  
However, the general performance of the L-states width path-based implementation for the 
second layer is good and the flexibility of this approach would allow added value 
information to be introduced into the recognition. Recognition speed, which is slightly 
higher than with the first implementation, is also a point in its favour.  
The gain obtained by these two approaches is also shown by means of the word error rate 
(WER). As the original recognition error rate of the baseline is low for the task under 
consideration, the perceptual relative reduction of the WER achieved is a good measure of 
the goodness of these solutions. Therefore, what would initially seem to be just a slight 
improvement in the (word/sentence) recognition rates can actually be considered a 
substantial gain in terms of perceptual error rate reduction. 

Recognition system Sentence 
recognition rate 

Word
recognition rate 

Relative reduction 
in WER 

Baseline 93.304 % 98.73 % - 

One-state width  
path-based double-layer 94.677 % 99.10 % 29.1% 

L-states width  
path-based double-layer 93.717 % 98.98 % 19.7% 

Table 2. Recognition rates using path-based double-layer recognition architectures 
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5. Discussion 

The future of speech-related technologies is connected to the improvement of speech 
recognition quality. Until recently, speech recognition technologies and applications had 
assumed that there were certain limitations regarding vocabulary length, speaker 
independence, and environmental noise or acoustic events. In the future, however, ASR 
must deal with these restrictions and it must also be able to introduce other speech-related 
non-acoustic information that is available in speech signals.  
Furthermore, HMM-based statistical modelling—the standard state-of-the-art ASR—has 
several time-domain limitations that are known to affect recognition performance. Context 
is usually represented by means of spectral dynamic features (namely, its first and second 
derivatives). However, they are generally limited to a few subsequent feature vectors and 
do not represent long-term variations. 
To overcome all these drawbacks and to achieve a qualitative improvement in speech 
recognition, a change of paradigm from conventional speech recognizers has been proposed 
by several authors. Although some authors propose a move away from HMM-based 
recognition (or, at the very least, introducing hybrid solutions), we are adhering to Markov-
based acoustic modelling as we believe its approach is still unbeatable. However, to 
overcome HMM-related limitations certain innovative solutions are required. 
Throughout this chapter we have pointed out different approaches for improving standard 
HMM-based ASR systems. The main solutions for modelling temporal evolution and speech 
trajectory have been introduced, together with some ideas on how second-order HMMs deal 
with the same problems. These models provide an improvement in most cases, but they also 
require major modifications in the decoding of algorithms. Generally, there is also a 
considerable increase in complexity, even if this is compensated for by a moderate gain.  
Layered architectures have been presented, and special attention has been paid to the 
implementation of the second layer using extended HMMs. Two implementations for this 
second layer have been described in detail. The first relies on modelling the temporal 
evolution of acoustic HMM state scores. In the second one, the evolution of the acoustic 
HMM is modelled by the speech utterance as a new way of modelling state transitions. This 
can be done in two ways, namely, by taking into account or ignoring the context of each 
active state while the “path” followed by the speech signal through the HMM states is being 
modelled. Again, speech recognition performance improves that of a conventional HMM-
based speech recognition system, but at the cost of increased complexity.  
Although current research solutions should not be unduly concerned by the computational 
cost (due to the constant increase in the processing capacity of computers), it is important to 
keep their implementation in commercial applications in mind. Therefore, a great deal of 
work remains if layered architectures are to be generalized for large vocabulary applications 
that keep complexity down to a moderate level. 
Efforts should be made in the field of research for defining and testing innovative 
approaches to implementing layered architectures. Although keeping an HMM-based 
scheme for the different layers reduces the overall complexity, a change in paradigm may 
help to bring about significant improvements.  



Double Layer Architectures for Automatic Speech Recognition Using HMM 137

6. References 

Bonafonte, A.; Ros, X. & Mariño, J.B. (1993). An efficient algorithm to find the best state 
sequence in HSMM. Proceedings of the 3th European Conference on Speech 
Communication and Technology (EUROSPEECH93), 1993. 

Bonafonte, A.; Vidal, J. & Nogueiras, A. (1996). Duration modelling with Expanded HMM 
Applied to Speech Recognition. Proceedings of International Conference in Spoken 
Language Processing (ICSLP96), Volume2, pp:1097-1100, ISBN:0-7803-3555-4. 
Philadelphia (USA), October, 1996. 

Bonafonte, A.; Mariño, J.B.; Nogueiras, A. & Fonollosa, J.A.R. (1998). RAMSES: el sistema de 
reconocimiento del habla continua y gran vocabulario desarrollado por la UPC. 
VIII Jornadas de Telecom I+D (TELECOM I+D'98), Madrid, Spain, 1998. 

Casar, M. & Fonollosa, J.A.R. (2006a). Analysis of HMM temporal evolution for ASR 
Utterance verification. Proceedings of the Ninth International Conference on Spoken 
Language Processing (Interspeech2006-ICSLP), pp:613-616, ISSN:1990-9772. 
Pittsburgh, USA, September 2006.  

Casar, M. & Fonollosa, J.A.R. (2006b). A path-based layered architecture using HMM for 
automatic speech recognition. Proceedings of the 14th European Signal Processing 
Conference (EUSIPCO2006). Firenze, Italia. September 2006. 

Demuynck, K.; Kaureys, T., Van Compernolle, D. & Van Hamme, H. (2003). FLAVOR: a 
flexible architecture for LVCSR. Proceedings of the 8th European Conference on Speech 
Communication and Technology (EUROSPEECH2003), pp:1973-1976. Genova, 2003. 

Furui, S. & Sandhi, M. (1992). Advances in Speech Signal Processing, Marcel Dekker, Inc. ISBN 
0-8247-8540-1, 1st edition, 1992, New York (USA).  

Huang, X.; Acero, A. & Hon, H.W. (2001). Spoken Language Processing, Prentice Hall PTR, 
ISBN 0-13-022616-5, 1st edition, 2001, New Jersey (USA).  

Juang, B.H.; Chou, W. & Lee, C.H. (1997). Minimum Classification Error rate methods for 
speech recognition, IEEE Transaction on Speech and Audio Processing, Vol. 5, No. 3, 
(May, 1997) pp: 257-265, ISSN: 1063-6676. 

Mari, J.-F.; Haton, J.-P. & Kriouile, A. (1997). Automatic word recognition based on Second-
Order Hidden Markov Models, IEEE Transaction on Speech and Audio Processing, 
Vol. 5, No. 1, (January, 1997) pp: 22-25, ISSN:1063-6676. 

Nadeu, C.; Macho, D. & Hernando, J. (2001). Time and frequency filtering of filter-bank 
energies for robust HMM speech recognition. Speech Communication, Vol. 34, Issues 
1-2 (April, 2001) pp: 93-114, ISSN:0167-6393. 

Rabiner, L.R. (1989). A tutorial on Hidden Markov Models and selected applications in 
speech recognition. Proceedings of the IEEE, No. 2, Vol. 77, (March, 1989), pp: 257-
289, ISSN:0018-9219. 

Rabiner, L. & Juang, B.H. (1993). Fundamentals of Speech Recognition, Prentice Hall PTR, 
ISBN:0-13-015157-2. NY, USA, 1993.  

Russell, M.J. & Cook, A.E. (1987). Explicit modelling of state occupancy in Hidden Markov 
Models for automatic speech recognition. Proceedings of IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP’85), Volume 10, pp:5-8. 
April, 1987. 



Robust Speech Recognition and Understanding 138

Stemmer, G.; Zeissler, V.; Hacker,C.; Nöth, E. & Niemann,H. (2003). Context-dependent 
output densities for Hidden Markov Models in speech recognition. Proceedings of 
the 8th European Conference on Speech Communication and Technology 
(EUROSPEECH2003), pp:969-972. Genova, 2003. 

Tokuda, K.; Zen, H. & Kitamura,T. (2003). Trajectory modelling based on HMMs with the 
explicit relationship between static and dynamic features. Proceedings of the 8th

European Conference on Speech Communication and Technology (EUROSPEECH2003), 
pp:865-868. Genova, 2003. 

Vidal,J.; Bonafonte, A. & Fernández,N. (2004) Rational characteristic functions and Markov 
Chains: application to modelling probability density functions, Signal Processing,
No. 12, Vol. 84 (December, 2004) pp: 2287-2296, ISSN: 0165-1684. 

Weber, K.; Ikbal, S.; Bengio, S. & Bourlard, H. (2003). Robust speech recognition and feature 
extraction using HMM2. Computer, Speech and Language, Vol. 17, Issues 2-3 (April-
July 2003) pp: 195-211, ISSN:0885-2308. 

Wu,Y.-J.; Kawai,H.; Ni,J. & Wang,R.-H. (2005) Discriminative training and explicit duration 
modelling for HMM-based automatic segmentation, Speech Communication, Vol. 47,  
Issue 4 (December, 2005) pp: 397-410, ISSN: 0167-6393. 



9

Audio Visual Speech Recognition and 
Segmentation Based on DBN Models 

Dongmei Jiang1,2, Guoyun Lv1, Ilse Ravyse2, Xiaoyue Jiang1,
Yanning Zhang1, Hichem Sahli2,3 and Rongchun Zhao1

Joint NPU-VUB Research Group on Audio Visual Signal Processing (AVSP) 
1 Northwestern Polytechnical University (NPU), School of computer Science, 

127 Youyi Xilu, Xi’an 710072, P.R.China 
2 Vrije Universiteit Brussel (VUB), Electronics & Informatics Dept., 

VUB-ETRO, Pleinlaan 2, 1050 Brussels, Belgium 
3 IMEC, Kapeldreef 75, 3001 Leuven, Belgium 

1. Introduction     

Automatic speech recognition is of great importance in human-machine interfaces. Despite 
extensive effort over decades, acoustic-based recognition systems remain too inaccurate for 
the vast majority of real applications, especially those in noisy environments, e.g. crowed 
environment. The use of visual features in audio-visual speech recognition is motivated by 
the speech formation mechanism and the natural speech ability of humans to reduce audio 
ambiguities using visual cues. Moreover, the visual information provides complementary 
cues that cannot be corrupted by the acoustic noise of the environment. However, problems 
such as the selection of the optimal set of visual features, and the optimal models for audio-
visual integration remain challenging research topics. In recent years, the most common 
model fusion methods for audio visual speech recognition are Multi-stream Hidden Markov 
Models (MSHMMs) such as product HMM and coupled HMM. In these models, audio and 
visual features are imported to two or more parallel HMMs with different topology 
structures. These MSHMMs describe the correlation of audio and visual speech to some 
extent, and allow asynchrony within speech units. Compared with the single stream HMM, 
system performance is improved especially in noisy speech environment. But at the same 
time, problems remain due to the inherent limitation of the HMM structure, that is, on some 
nodes, such as phones, syllables or words, constraints are imposed to limit the asynchrony 
between audio stream and visual stream to phone (or syllable, word) level.  Since for large 
vocabulary continuous speech recognition task, phones are the basic modeling units, audio 
stream and visual stream are forced to be synchronized at the timing boundaries of phones, 
which is not coherent with the fact that the visual activity often precedes the audio signal 
even by 120 ms.
Besides the audio visual speech recognition to improve the word recognition rate in noisy 
environments, the task of audio visual speech units (such as phones or visemes) 
segmentation also requires a more reasonable speech model which describes the inherent 
correlation and asynchrony of audio and visual speech.  
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Dynamic Bayesian Network (DBN) is a good speech model due to its strong description 
ability and flexible structure. DBN is a statistic model that can represent multiple collections 
of random variables as they evolve over time. Coupled HMM and product HMM are special 
cases of much more general DBN models. In fact, many DBN models have been proposed in 
recent years for speech recognition. For example, in [Zweig 1998], a baseline DBN model 
was designed to implement a standard HMM, while in [Bilmes 2001], a single stream DBN 
model with whole-word-state structure, i.e a fixed number of states are assigned to one 
word to assemble the HMM of the word, was designed for small vocabulary speech 
recognition. Experimental results show that it obtains high word recognition performance 
and robustness to noise. But the DBN model with whole-word-state structure, does not 
allow to make a speech subunit segmentation. [Zhang 2003] extended the single stream 
whole-word-state DBN model to multi-stream inputs with different audio features such as 
Mel filterbank cepstrum coefficients (MFCC) and perceptual linear prediction (PLP) 
features, and built two multi-stream DBN (MSDBN) models: i) a synchronous MSDBN 
model which assumes that multiple streams are strictly synchronized at the lowest state 
level, namely, all the different types of feature vectors on the same time frame are tied to one 
state variable;  ii) an asynchronous MSDBN model which allows for limited asynchrony 
between streams at the state level, forcing the two streams to be synchronized at the word 
level by resetting the state variables of both streams to their initial value when a word 
transition occurs. [Gowdy 2004] combined the merit of the synchronous and asynchronous 
MSDBN models on a mixed type MSDBN model, and extended the speech recognition 
experiments on an audio visual digit speech database. In the mixed type MSDBN model, on 
each time slice, all the audio features share one state variable, while the visual stream and 
the composite audio stream each depend on different state variables which introduces the 
asynchrony between them. [Bilmes 2005] introduced a new asynchronous MSDBN model 
structure in which the word transition probability is determined by the state transitions and 
the state positions both in the audio stream and in the visual stream. Actually this structure 
assumes the same relationship between word transition and states with the asynchronous 
MSDBN model in [Zhang 2003], but describes it by different conditional probability 
distributions. Despite their novelties in breaking through the limitation of MSHMMs by 
allowing the asynchrony between streams to exceed the timing boundaries of states in a 
word, all the MSDBN models above build the whole-word-state model for a word i.e 
emulate the HMM that a word is composed of a fixed number of states, and therefore, the 
relationships between words and their corresponding subword units (for example phones) 
are not described. As a consequence, no subword unit level recognition and segmentation 
output can be obtained from these synchronous and asynchronous MSDBN models.  
[Bilmes 2005] also presented a single stream bigram DBN model, in which the composing 
relationship between words and their corresponding phone units are defined by conditional 
probability distributions. This model emulates another type of word HMM in which a word 
is composed of its corresponding phone units instead of fixed number of states, by 
associating each phone unit with the observation feature vector, one set of Gaussian Mixture 
Model (GMM) parameters are trained. This model gives the opportunity to output the 
phone units with their timing boundaries, but to our best knowledge, no experiments have 
been done yet on evaluating its recognition and segmentation performance of the phone 
units (or viseme units in visual speech). Further more, it has not been extended to a 
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synchronous or asynchronous multi-stream DBN model to emulate the word composition of 
its subword units simultaneously in audio speech and visual speech.  
In our work, the new contributions to the speech modeling are: 1) the single stream DBN 
(SDBN) model in [Bilmes 2005] is implemented, speech recognition and segmentation 
experiments are done on audio speech and visual speech respectively. Besides the word 
recognition results, phone recognition and segmentation outputs are also obtained for both 
audio and visual speech. 2) a novel multi-stream asynchronous DBN (MSADBN) model is 
designed, in which the composition of a word with its phone units in audio stream and 
visual stream is explicitly described by the phone transitions and phone positions in each 
stream, as well as the word transition probabilities decided by both streams. In this 
MSADBN model, the asynchrony of audio speech and visual speech exceeds the timing 
boundaries of phone units but is restricted to word level. 3) for evaluating the performance 
of the single stream and multi-stream asynchronous DBN models, besides the word 
recognition rate, recognition and segmentation accuracy of the phone units with their timing 
boundaries in the audio stream is compared to the results from the well trained triphone 
HMMs, segmentation of visemes in the visual stream is compared to the manually labeled 
references, and the asynchrony between the segmented phone and viseme units is also 
analyzed.
The sections are organized as follows. Section 2.1 discusses the visual features extraction, 
starting from the detection and tracking of the speaker's head in the image sequence, 
followed by the detailed extraction of mouth motion, and section 2.2 lists the audio features. 
The structures of the single stream DBN model and the designed multi-stream 
asynchronous DBN model, as well as the definitions of the conditional probability 
distributions, are addressed in section 3. While section 4 analyzes the speech recognition 
and phone segmentation results in the audio and visual stream obtained by the SDBN and 
the MSADBN model, concluding remarks and future plans are outlined in section 5. 

2. Audio-Visual Features Extraction 

2.1 Visual Feature Extraction 

Robust location of the speaker's face and the facial features, specifically the mouth region, 
and the extraction of a discriminant set of visual observation vectors are key elements in an 
audio-video speech recognition system. The cascade algorithm for visual feature extraction 
used in our system consists of the following steps: face detection and tracking, mouth region 
detection and lip contour extraction for 2D feature estimation. In the following we describe 
in details each of these steps. 
Head Detection and Tracking The first step of the analysis is the detection and tracking of 
the speaker's face in the video stream. For this purpose we use a previously developed head 
detection and tracking method [Ravyse 2006]. The head detection consists of a two-step 
process: (a) face candidates selection, carried out here by iteratively clustering the pixel 

values in the brCYC  color space and producing labeled skin-colored regions { }N
iiR 1=  and 

their best fit ellipse ( )θ,,, iiiii bayxE =  being the center coordinates, the major and minor 
axes length, and the orientation respectively, and (b) the face verification that selects the best 
face candidate. In the verification step a global face cue measure iM , combining gray-tone 
cues and ellipse shape cues, is estimated for each face candidate region iR . Combining 
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shape and facial feature cues ensures an adequate detection of the face. The face candidate 
that has the maximal measure iM localizes the head region in the image.  
The tracking of the detected head in the subsequent image frames is performed via a kernel-
based method wherein a joint spatial-color probability density characterizes the head region 
[Ravyse 2005]. 
Fig. 1 illustrates the tracking method. Samples are taken from the initial ellipse region in the 
first image, called model target, to evaluate the model target joint spatial-color kernel-based 
probability density function (p.d.f.). A hypothesis is made that the true target will be 
represented as a transformation of this model target by using a motion and illumination 
change model. The hypothesized target is in fact the modeled new look in the current image 
frame of the initially detected object. A hypothesized target is therefore represented by the 
hypothesized p.d.f. which is the transformed model p.d.f. To verify this hypothesis, samples of 
the next image are taken within the transformed model target boundary to create the 
candidate target and the joint spatial-color distribution of these samples is compared to the 
hypothesized p.d.f. using a distance-measure. A new set of transformation parameters is 
selected by minimizing the distance-measure. The parameter estimation or tracking 
algorithm lets the target's region converge to the true object's region via changes in the 
parameter set.  
This kernel-based approach is proved to be robust, and moreover, incorporating an 
illumination model into the tracking equations enables us to cope with potentially 
distracting illumination changes. 

Figure 1. Tracking algorithm 

2D Lip Contour Extraction The contour of the lips is obtained through the Bayesian Tangent 
Shape Model (BTSM) [Zhou 2003]. Fig. 2 shows several successful results of the lip contour 
extraction.
The lip contour is used to estimate a visual feature vector consisting of the mouth opening 
measures shown in Fig. 3. In total, 42 mouth features have been identified based on the 
automatically labeled landmark feature points: 5 vertical distances between the outer 
contour feature points; 1 horizontal distance between the outer lip corners; 4 angles; 3 
vertical distances between the inner contour feature points; 1 horizontal distance between 
the inner lip corners; and the first order and second order regression coefficient (delta and 
acceleration in the image frames at 25 fps) of the previous measures. 
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Figure 2.  Face detection/tracking and lip contour extraction

                                                       (a)                                         (b) 
Figure 3. Vertical and horizontal opening distances and angle features of the mouth: (a) 
outer contour features; (b) inner contour features 

2.2 Audio Feature Extraction 

The acoustic features are computed with a frame rate of 100frames/s. In our experiments, 
two different types of acoustic features are extracted: (i) 39 MFCC features: 12 MFCCs 
[Steven 1980], energy, together with their differential and acceleration coefficients; (ii) 39 
dimension PLP features: 12 PLP coefficients [Hermansky 1990], energy, together with their 
differential and acceleration coefficients. 

3. Single Stream DBN Model and Multi-Stream Asynchronous DBN Model 

3.1 Single Stream DBN Model (SDBN)  

In our framework, we first implement the single-stream DBN model following the idea of 
the bigram DBN model in [Bilmes 2005], and adopt it to the segmentation of phone units  
and viseme units both in the audio speech and in the visual speech respectively. The 
training data consists of the audio and video features extracted from word labeled speech 
sentences.  
The DBN models in Fig. 4 represent the unflattened and hierarchical structures for a speech 
recognition system. (a) is the training model and (b) the decoding model. They consist of an 
initialization with a Prologue part, a Chunk part that is repeated every time frame (t), and a 
closure of a sentence with an Epilogue part. Every horizontal row of nodes in Fig. 4 depicts a 
separate temporal layer of random variables. The arcs between the nodes are either 
deterministic (straight lines) or random (dotted lines) relationships between the random 
variables, expressed as conditional probability distributions (CPD).  
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In the training model, the random variables Word Counter (WC) and Skip Silence (SS), denote 
the position of the current word or silence in the sentence, respectively. The other random 
variables in Fig. 4 are: (I) the word identity (W); (II) the occurrence of a transition to another 
word (WT), with WT = 1 denoting the start of a new word, and WT = 0 denoting the 
continuation of the current word; (III)  the position of the current phone in the current word 
(PP); (iv) the occurrence of a transition to another phone (PT), defined similarly as WT; and (v) 
the phone identification (P), e.g. 'f' is the first phone in the word 'four'. 

Figure 4. The single stream DBN model 
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Suppose the input speech contains T frames of features, for the decoding model of SDBN as 
shown in Fig.4, the set of the all the hidden nodes is denoted 
as ( )TTTTTT PPTPPWTWH :1:1:1:1:1:1 ,,,,= , then the probability of observations can be 
computed as 

( ) ( )=
TH

TTT OHPOP
:1

:1:1:1 ,

The graph thus specifies the following factorization for the joint probability distribution as: 
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The different conditional probability distributions (CPD) are defined as follows. 
• Feature O. The observation feature O t is a random function of the phone tP in the CPD 

( )tt POP , which is denoted by a Gaussian Mixture Model as 

( ) ( )==
=

M
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1

,,)( σμω   (2) 

where ( )kPkPt ttON σμ ,,  is the normal distribution with mean kPtμ and covariance kPtσ ,

and kPtω is the weight of the probability from the kth mixture.  

• Phone node P. The CPD ),( ttt WPPPP is a deterministic function of its parents nodes 
phone position PP and word W :         
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This means that, given the current word W and the phone position PP, the phone P is 
known with certainty. For example, given the phone position PP as 2 in the word 
“five”, we can know exactly the corresponding phone unit “ay”.

• Phone transition probability PT which describes the probability of the transition from 
the current phone to the next phone. The CPD )( tt PPTP is a random distribution since 
each phone has a nonzero probability for staying at the current phone of a word or 
moving to the next phone. 

• Phone position PP. It has three possible behaviors. (i) It might not change if the phone 
unit is not allowed to transit ( 01 =−tPT ); (ii) It might increment by 1 if there is a phone 
transition ( 11 =−tPT ) while the phone doesn’t reach the last phone of the current word, 
i.e. the word unit doesn’t transit ( 01 =−tWT ); (iii) It might be reset to 0 if the word 
transition occurs ( 11 =−tWT ).
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• Word transition probability WT. In this model, each word is composed of its 
corresponding phones. The CPD ),,( tttt PTPPWWTP  is given by: 
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The condition )(alastphoneb =  means that b corresponds to the last phone of the word 
a, where b is the current position of the phone in the word. Equation (8) means that 
when the phone unit reaches the last phone of the current word, and phone transition is 
allowed, the word transition occurs with 1=tWT .

• Word node W. In the training model, the word units are known from the transcriptions 
of the training sentences. In the decoding model, the word variable tW  uses the 
switching parent functionality, where the existence or implementation of an edge can 
depend on the value of some other variable(s) in the network, referred to as the 
switching parent(s). In this case, the switching parent is the word transition variable. 
When the word transition is zero ( 01 =−tWT ), it causes the word variable to copy its 
previous value, i.e., 1−= tt WW  with probability one. When a word transition occurs, 

11 =−tWT , however, it switches the implementation of the word-to-word edge to use 
bigram language model probability i.e. bigram which means the probability of one word 
transiting to another word whose value comes from the statistics of the training script 
sentences. The CPD   ),|( 1 mWTiWjWP ttt === −  is: 
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• In the training DBN model, the Word Counter (WC) node is incremented according to 
the following CPD: 
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where ),( jwbound is a binary indicator specifying if the position j of the current word w
exceeds the boundary of the training sentence, if so, 1),( =jwbound . 1)( =wrealword
means that the coming word w after silence is a word with real meaning. If there is no 
word transition, 1−= tt WCWC . On the contrary, if the word transits, the word number 
counts in different ways depending if the position of the word exceeds the boundary of 
the sentence: (i) if it does, word counter keeps the same as 1−= tt WCWC ;  (ii) otherwise, 
it needs to check further the coming word, if there is no Skip Silence (SS) before the 
coming word, the word counter increments by one; If there is a SS, then check if the 
coming word has a real meaning, the word counter increments by 2 for the answer 
“yes” , and 1 for the answer “no”.  

3.2 Multi-Stream Asynchronous DBN Model (MSADBN) 

Figure 7. the audio visual asynchronous DBN model for training 
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For the audio visual speech unit segmentation, a multi-stream asynchronous DBN model is 
designed as shown in Fig.7. Audio features and visual features are imported into two 
independent graphical models in the same structure as the single stream DBN model of 
Fig.6, but are forced to be synchronized at the timing boundaries of words, by sharing one 
word variable W and word transition variable WT. In order to represent in the best way how 
the audio and visual speech are composed, between the succeeding word variables, the 
graphical topology of the audio stream with the phone variable P1 is also allowed to be 
different with that of the visual stream with another phone variable P2. In other words, for 
each stream an independent phone variable is assigned, and its transition depends only on 
the phone instances inside the stream. This makes sure that the phone units in the audio 
stream and the visual stream may vary asynchronously. But at the same time, this 
asynchrony is limited inside the word by the word transition variable WT. The transition 
between words has to consider the cues from both the audio stream and the visual stream. 
Vice versa, it will affect the variations of both the phone positions PP1 in the audio stream, 
and PP2 in the visual stream: when and only when both the phone units in the two streams 
arrive the last phone position of a word, and both the phones are allowed to transit, the 
word transition occurs with the probability of 1. On the other hand, when a word transits to 
another word, it will reset the phone positions in the audio and in the visual stream to their 
initial values 0, in order to count the phone positions in the new word.  
For the node variables that are not shared by the audio stream and visual stream as W and 
WT, the definitions of their conditional probability distributions are kept the same as that in 
the single stream DBN model. However, in this multi-stream DBN model, WT has five 
parent nodes: word W, phone position PP1 and phone transition PT1 in the audio stream, 
phone position PP2 and phone transition PT2 in the visual stream.  As is explained above, 
the conditional probability distribution of WT can be defined as 
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where )(1 alastphoneb = and )(2 alastphonec = mean that the phone position b in the audio 
stream, and the phone position c in the visual stream correspond to the last phone of the 
word “a ”.

4. Experiments on Audio and Visual Speech 

GMTK [Bilmes 2002] has been used for the inference and learning of the DBN models. In the 
experiments, we recorded our own audiovisual speech database with the scripts of the 
Aurora 3.0 audio database containing connected digits sequence from telephone 
dialing[Bilmes 2001]. 100 recorded sentences are selected as training data, and another 50 
sentences as testing data. White noise with signal to noise ratio (SNR) ranging from 0dB to 
30dB has been added to obtain noisy speech. 

)log(10 Ns EESNR =   (12) 

with sE denoting the average energy of the speech sentence, and NE  the mean energy of 
white noise. 
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In the training process of the SDBN model, we first extract a word-to-phone dictionary from 
the standard TIMITDIC dictionary [Garofolo 1993] for the 11 digits. Actually, only 24 phone 
units--22 phones for the 11 digits together with the silence and short pause 'sp', are used due 
to the small size of the vocabulary. Associating each of the 22 phones with the observation 
features, the conditional probability distribution is modelled by 1 Gaussian mixture. 
Together with the silence model, and the short pause model which ties its state with the 
middle state of the silence model, a total parameter set of 25 Gaussian mixtures need to be 
trained.
For the MSADBN model, phone units are adopted in both graphical structures 
corresponding with audio and visual input. For each individual stream, the setup of the 
parameters is the same as that in the SDBN model. Therefore, for the 11 digits, 25 Gaussian 
mixtures are trained for the audio speech, and another 25 Gaussian mixtures for the visual 
speech.
To evaluate the speech recognition and phone segmentation performance of the SDBN and 
the MSADBN model, experiments are also done on the tied-state triphone HMMs with 8 
Gaussian mixtures trained by the HMM toolkit HTK [Young 2006].  

4.1 Speech Recognition Results 

For the SDBN, Table 1 summarizes the word recognition rates (WRR) using acoustic 
features MFCC or PLP with white noise at different SNRs. Compared to the trained triphone 
HMMs, one can notice that with the SDBN model we obtain equivalent results in case of 
'clean' signal and better results with strong noise. Over all (SNR=0dB to 30dB), SDBN with 
MFCC features shows an average improvement of 5.33%, and even 23.59% with PLP 
features in word accuracies over the triphone HMMs. Another interesting aspect of these 
results is that the improvement in word accuracies is more pronounced in cases of low 
SNRs.

Setup 0db 5db 10db 15db 20db 30db Clean 0-30db 

SDBN (MFCC_D_A) 42.94 66.10 71.75 77.97 81.36 96.61 97.74 72.79 

SDBN (PLP_D_A) 76.27 88.70 92.09 93.79 97.18 98.31 98.87 91.05 

Triphone HMM 
(MFCC_D_A) 27.55 42.76 58.67 83.85 93.82 98.10 98.34 67.46 

Table 1. Speech recognition rate from audio stream (%) 

For the speech recognition on the visual stream with SDBN, the word recognition rate is 
67.26 percent for all SNR levels, which is also higher than 64.2% from the triphone HMMs. 
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Setup 0db 5db 10db 15db 20db 30db Clean 0-30db 

MSADBN  
(MFCC_D_A +GF) 53.94 70.61 86.06 89.39 93.03 95.76 97.27 81.46 

MSADBN  
(PLP_D_A+GF) 90.96 94.92 96.05 96.61 97.19 98.87 98.31 95.76 

MSHMM
(MFCC_D_A +GF) 42.73 54.24 67.88 77.27 85.15 91.21 92.73 69.74 

Table 2. Audio visual speech recognition rate (%) 

Table 2 shows the word recognition rates from the audio visual multi-stream models. 
Comparing with the recognition results in Table 1 from only the audio stream, one can 
notice that in noisy environment, visual speech information, such as geographical features 
(GF) of lip, helps to improve the perception of speech. For the MSHMM, the MSADBN with 
MFCC features and MSADBN with PLP features, the average WRR improvements of 2.28%, 
8.67% and 4.71% are obtained respectively for SNR=0dB to 30dB. Comparing the results 
from MSADBN and MSHMM with the same MFCC and geographical features, it can be 
seen that the designed MSADBN model outperforms MSHMM in modelling the dynamics 
of words in the two streams. 

4.2 Phone Segmentation Results in the Audio Stream 

Besides the word recognition results, the novelty of our work lies in the fact that we also 
obtain the phone segmentation sequence from the SDBN model, and further more, the 
asynchronous phone segmentation results in both audio and visual stream simultaneously 
from the MSADBN model. 
Here we first evaluate the phone segmentation accuracies in the audio stream. An objective 
evaluation criterion, the phone segmentation accuracy (PSA) is proposed as follows: the 
phone segmentation results of the testing speech from the triphone HMMs are used as 
references. We convert the timing format of all the phone sequences obtained from the tri-
phone HMM, the SDBN model and the MSADBN model with 10ms as frame rate, and then 
compare the phone units frame by frame. For each frame, if the segmented phone result 
from the SDBN (or MSADBN) model is the same as that in the reference, the score A is 
incremented. For the phone sequence of a speech sentence with C frames, the PSA is defined 
as

CAPSA /=  (11)

This evaluation criterion is very strict since it takes into account both phone recognition 
results together with their timing boundary information. 
The average PSA values for the 50 testing sentences from the SDBN model and the 
MSADBN model with different features are shown in Table 3. One can notice that the SDBN 
model, either with MFCC features or with PLP features, gives phone segmentation results 
very close to those of the triphone HMMs, the standard continuous speech recognition 
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models. While for the MSADBN model, the phone segmentations in the audio stream with 
timing boundaries differ even more to those from the triphone HMMs. This is reasonable 
because in the MSADBN model, it takes into account the phone units in the audio and in the 
visual streams simultaneously, and forces them to be synchronized on the timing 
boundaries of words.  
As for the segmented timing boundaries of phones in the audio stream, whether the results 
from the single stream DBN model, or the results from the MSADBN model which also 
considers the visual features are more reasonable, will be discussed further in section 4.4.        

Setup 0dB 5dB 10dB 15dB 20dB 30dB Clean 

SDBN (MFCC_D_A) 33.1 41.3 45.5 53.2 60.2 79.6 81.5 

SDBN (PLP_D_A) 55.1 61.8 64.2 71.5 78.5 79.7 81.7 

MSADBN (MFCC_D_A + GF) 25.4 26.9 28.2 31.4 33.3 38.4 40.4 

MSADBN (PLP_D_A+GF) 35.2 36.0 39.2 40.8 42.1 45.6 46.4 

Table 3. Phone segmentation accuracy in the audio stream (%) 

4.3 Viseme Segmentation Results in the Visual Stream 

To evaluate the phone segmentation results in the visual stream, the phone sequences are 
mapped to viseme sequences with a phone-to-viseme mapping table containing 16 viseme 
units that we previously proposed[Xie 2003]. The reference viseme sequences for the 50 
testing sentences are obtained by manually labelling the image sequences, while also 
listening to the accompanying audio.  
Viseme Segmentation Accuracy Firstly, the average viseme segmentation accuracies (VSA) 
for the 50 testing sentences from SDBN and MSADBN, calculated in the same way as PSA, 
are obtained as shown in Table 4. One can notice that MSADBN gets the improvement of 
17.6% over SDBN for clean speech, with the consideration of audio cues. So by combining 
the audio and visual information together, we obtain more correct and accurate viseme 
segmentation in the visual speech.  

Setup 0dB 5dB 10dB 15dB 20dB 30dB Clean 

SDBN (MFCC_D_A) 50.7 50.7 50.7 50.7 50.7 50.7 50.7 

MSADBN
(MFCC_D_A +GF) 51.5 52.9 56.2 58.5 59.8 62.5 68.3 

Table 4. Viseme segmentation accuracy (%) 

Relative Viseme Segmentation Accuracy (RVSA) VSA is a very strict criterion for 
evaluating the viseme segmentation results in the visual stream: only when the 
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corresponding viseme units are correctly recognized, and the segmented timing boundaries 
are the same with the references, the score can be incremented. On the other hand, in our 
task, the purpose of segmenting the viseme sequence is for constructing a mouth animation 
in the future: suppose for each viseme, one representative mouth image is built, a mouth 
animation can be constructed by concatenating the mouth images corresponding to the 
viseme sequence. So from the speech intelligibility point of view, it is also acceptable if a 
viseme is recognized as another viseme unit with very similar mouth shape. RVSA is thus a 
measurement to evaluate the global similarity between the mouth animation constructed 
from the reference viseme sequence, and the one constructed from the segmented viseme 
sequence.  
The RVSA is calculated as follows:  
For two gray level images refI and I with the same size, their difference can be measured by 
Mean Square Error 

−=
u v

refref vuIvuI
M

IIMSE 2)),(),((
1

),(   (12) 

with M the number of pixels, ),( vuI the gray level of the pixel on the coordinate ),( vu . The 
difference of an arbitrary viseme representative image pair ( )nm visvis ,  can be measured by 
eq. (12) and then be normalized to a viseme similarity weight (VSW) which shows their 
similarity contrariwise. 
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The lower the difference is, the higher the VSW is. If two visemes are totally the same, the 
VSW is 1.
Therefore, for the whole viseme image sequence of N frames, the RVSA can be calculated by 
the VSW between the resulting and reference visemes on each image frame t. 

=
t

tVSW
N

RVSA 1   (14) 

Table 5 shows the average RVSA values of the viseme sequences for the 50 testing sentences, 
obtained from the SDBN model and from the MSADBN respectively. One can notice that in 
relative clean environment with SNR higher than 20dB, the MSADBN model creates more 
close mouth shape animations to the reference animations. While with the increasing of 
noise, the viseme segmentations from MSADBN will get worse.   

Setup 0dB 5dB 10dB 15dB 20dB 30dB Clean 

SDBN 75.1 75.1 75.1 75.1 75.1 75.1 75.1 

MSADBN
(MFCC_D_A+GF) 71.8 73.1 73.8 74.3 75.6 77.6 82.6 

Table 5. Relative viseme segmentation accuracy based on image (%) 
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4.3 Asynchronous Segmentation Timing Boundaries  

The asynchronous timing boundaries of phone segmentation in the audio stream, and the 
viseme segmentation in the visual stream can be obtained, either by performing the SDBN 
for two times (with audio features and with visual features respectively), or by inputting the 
audio and visual features into the MSADBN simultaneously. As an example to illustrate the 
segmentation results, we adopt a simple audio-video speech corresponding to the sentence 
"two nine". Table 6 shows the segmentation results in both audio and visual streams, 
together with the manually labeled phone and viseme timing boundaries as references. To 
see clearly the asynchrony between the phones and visemes obtained from the SDBN model 
and the MSADBN model, the results are also expressed in Fig.8, together with the temporal 
changes of audio and visual features. The mapping relationships between visemes and 
phones are: viseme 'vm' corresponds to the mouth shape of the phone 't', 'vg' to phone 'uw', 
'vp' to phone 'n', and 'vc' to phone 'ay'. 

setup t (vm) uw (vg) n (vp) ay (vc) n (vp) 

Reference (audio) 0.43-0.56 0.56-0.83 0.83-0.98 0.98-1.23 1.23-1.39 

Reference(visual) 0.36-0.44 0.45-0.76 0.77-0.88 0.89-1.20 1.21-1.36 

SDBN(audio) 0.43-0.54 0.55-0.84 0.85-0.97 0.98-1.20 1.21-1.34 

SDBN(visual) 0.36-0.40 0.41-0.67 0.68-0.71 0.72-1.18 1.19-1.24 

MSADBN(audio) 0.42-0.50 0.51-0.76 0.77-0.99 1.00-1.29 1.30-1.36 

MSADBN(visual) 0.42-0.45 0.46-0.76 0.77-0.87 0.88-0.97 0.98-1.36 

Table 6. The phone and viseme segmentation timing boundaries (s) 

From Fig.8, one can notice that for the single stream segmentation from SDBN, without 
considering the mutual effect of the other accompanying cue, the asynchronies between the 
phones and the corresponding visemes are quite large. For example, the first viseme “vm” 
in the visual stream ends at 0.54s, preceding about 140ms than the corresponding phone 
unit “t” in the audio stream. And for the viseme “vp” (phone “n”) at the beginning of the 
word “nine”, the ending time in the visual stream is even 260ms earlier than that in the 
audio stream.  
Considering the asynchronous segmentation from the MSADBN model, one can notice that 
by integrating the audio features and visual features in one model, and forcing them to be 
aligned at the timing boundaries of words, that for most of the segmented timing 
boundaries in the two streams, they seem to attract each other to be closer. Now the distance 
of the ending times in the visual stream and in the audio stream, becomes 50ms for the first 
viseme “vm” (phone “t”), and 120ms for the first viseme “vp” (phone “n”) of “nine”. But 
this behavior is not always this case, for example, an exception occurs with the ending times 
of the viseme “vc” (phone “ay”). From the MSADBN model, the distance between the 
timing boundaries in visual and in audio stream is 220ms, which is longer than 20ms 
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obtained from the SDBN model. Comparing the asynchronous audio visual phone (viseme) 
segmentation results from the SDBN model and the MDBN model with the reference timing 
boundaries, we can see that in most cases, the asynchrony obtained from the MSADBN 
model is more reasonable.  

5. Discussion 

In this chapter, we first implement an audio or visual single stream DBN model proposed in 
[Bilmes 2005], which we demonstrate that it can break through the limitation of the state-of-
the-art ‘whole-word-state DBN’ models and output phone (viseme) segmentation results. 
Then we expand this model to an audio-visual multi-stream asynchronous DBN (MSADBN) 
model. In this MSADBN model, the asynchrony between audio and visual speech is allowed 
to exceed the timing boundaries of phones/visemes, in opposite to the multi-stream hidden 
markov models (MSHMM) or product HMM (PHMM) which constrain the audio stream 
and visual stream to be synchronized at the phone/viseme boundaries.  
In order to evaluate the performances of the proposed DBN models on word recognition 
and subunit segmentation, besides the word recognition rate (WRR) criterion, the timing 
boundaries of the segmented phones in the audio stream are compared to those obtained 
from the well trained triphone HMMs using HTK. The viseme timing boundaries are 
compared to manually labeled timing boundaries in the visual stream. Furthermore, 
suppose for each viseme, one representative image is built and hence a mouth animation is 
constructed using the segmented viseme sequence, the relative viseme segmentation 
accuracy (RVSA) is evaluated from the speech intelligibility aspect, by the global image 
sequence similarity between the mouth animations obtained from the segmented and the 
reference viseme sequences. Finally, the asynchrony between the segmented audio and 
visual subunits is also analyzed. Experiment results show: 1) the SDBN model for audio or 
visual speech recognition has higher word recognition performance than the triphone 
HMM, and with the increasing noise in the audio stream, the SDBN model shows more 
robust tendency; 2) in a noisy environment, the MSADBN model has higher WRR than the 
SDBN model, showing that the visual information increases the intelligibility of speech. 3) 
compared with the segmentation results by running the SDBN model on audio features and 
on visual features respectively, the MSADBN model, by integrating the audio features and 
visual features in one scheme and forcing them to be synchronized on the timing boundaries 
of words, in most cases, gets more reasonable asynchronous relationship between the 
speech units in the audio and visual streams. 
In our future work, we will expand the MSADBN model to the subunits segmentation task 
of a large vocabulary audio visual continuous speech database, and test its performance in 
speech recognition, as well as analyze its ability of finding the inherent asynchrony between 
audio and visual speech.     
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Figure 8. Audio visual asynchronous phone/viseme segmentation results 
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1. Introduction  

It is well known that the application of hidden Markov models (HMMs) has led to a 
dramatic increase of the performance of automatic speech recognition in the 1980s and from 
that time onwards. In particular, large vocabulary continuous speech recognition (LVCSR) 
could be realized by using a recognition unit such as phones. A variety of speech 
characteristics can be modelled by using HMMs effectively. The HMM represents the 
transition of statistical characteristics by using the state sequence of a Markov chain. Each 
state of the chain is composed by either a discrete output probability or a continuous output 
probability distribution. In 1980s, discrete HMM was mainly used as an acoustic model of 
speech recognition. The SPHINX speech recognition system was developed by K.-F. Lee in 
the late 1980s (Lee & Hon, 1988). The system was a speaker-independent, continuous speech 
recognition system based on discrete HMMs.  It was evaluated on the 997-word resource 
management task and obtained a word accuracy of 93% with a bigram language model. 
After that, comparative investigation between discrete HMM and continuous HMM had 
been made and then it was concluded that the performance of continuous-mixture HMM 
overcame that of discrete HMM. Then almost all of recent speech recognition systems use 
continuous-mixture HMMs (CHMMs) as acoustic models.  
The parameters of CHMMs can be estimated efficiently under assumption of normal 
distribution. Meanwhile, the discrete Hidden Markov Models (DHMMs) based on vector 
quantization (VQ) have a problem that they are effected by quantization distortion. 
However, CHMMs may unfit to recognize noisy speech because of false assumption of 
normal distribution. The DHMMs can represent more complicated shapes and they are 
expected to be useful for noisy speech. 
This chapter introduces new methods of noise robust speech recognition using discrete-
mixture HMMs (DMHMMs) based on maximum a posteriori (MAP) estimation. The aim of 
this work is to develop robust speech recognition for adverse conditions which contain both 
stationary and non-stationary noise. Especially, we focus on the issue of impulsive noise 
which is a major problem in practical speech recognition system. 
DMHMM is one type of DHMM frameworks. The method of DMHMM was originally 
proposed to reduce computation costs in decoding process (Takahashi et al., 1997).
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Figure 1. Block diagram of speech recognition system 

DMHMM has more advantages of recognition performance than original DHMM. 
Nevertheless, the performance of DMHMM was lower than that of CHMM. In our work, we 
propose some new methods to improve the performance of DMHMM and demonstrate that 
the performance of DMHMM overcome that of CHMM in noisy conditions. We describe the 
characteristics of DMHMM and indicate the effectiveness and impact of the DMHMM for 
noisy speech recognition. 

2. Noise Robust Speech Recognition 

2.1 Basic approach of speech recognition under noisy conditions 

Many efforts have been made for the issue of noise robust speech recognition over the years. 
For example, Parallel Model Combination (PMC) (Gales & Young, 1993), and Spectral 
Subtraction (SS) (Boll, 1979) are well known as effective methods of noisy speech 
recognition. And many other methods of noise robust speech recognition have been 
proposed. They are organized by some category. Fig. 1 is the block diagram of speech 
recognition system. Here, categorized methods of noise robust recognition are explained by 
using this figure. The noise robust methods can be roughly categorized into three groups: 
voice activity detection (VAD), speech analysis and acoustic modeling.  
First, input speech is processed in voice activity detector. In this module, the presence or 
absence of speech is determined in noisy environment. If the speech detection fails, it is 
difficult to recognize input speech accurately. In recent years, the investigation on noise 
robust VAD has become active.   
After a speech segment is detected, the speech signal is analyzed to extract the useful 
information for speech recognition.  A cepstral analysis is a popular method for feature 
extraction in speech recognition. In particular, mel-scale frequency cepstrum coefficients 
(MFCC) are widely used as speech parameter in recent speech recognition system. Some 
noise reduction algorithms have been proposed to remove noise in speech waveform.  The 
spectral subtraction method we mentioned above is one of those algorithms. One of the 
working groups in the European Telecommunication Standards Institute has approved the 
front-end (feature extraction module) for distributed speech recognition (ETSI, 2002). In this 
front-end, a noise reduction algorithm based on Wiener filter theory is employed. It is well 
known that this front-end is effective for various kinds of noise conditions and it is used as 
the baseline of the evaluation of proposed noise robust technique. Some new feature 
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extraction methods have been also proposed. Relative-Spectral Perceptual linear prediction 
(RASTA-PLP) method is one of the extraction methods and was reported that it was 
effective for noisy speech recognition (Hermansky et al., 1992).  
Analysed speech is recognized in decoding process. In the decoder, a search algorithm is 
carried out with acoustic and language models. Those acoustic models are basically trained 
by clean data in which training utterances are recorded in quiet condition. However, models 
trained in clean condition cause a mismatch between models and input features in noisy 
condition. In order to eliminate it, many methods have been proposed. Multi-condition 
training is direct way to eliminate the mismatch condition (Pearce & Hirsch, 2000). In this 
training method, several types of noises are artificially added to the 'clean speech’ data at 
several SNRs. The obtained noisy data were used for creating acoustic models. It was 
reported that this training method was effective, even if the noise conditions between 
training data and test data were different. Parallel Model Combination we mentioned above 
is also the one of the effective methods in this category. In this method, noisy speech model 
can be derived by combining the noise model and the clean speech model. Due to the 
assumption that the speech signal is affected by the additive noise in the linear spectral 
domain, cepstral parameters of the models are transformed to liner spectral domain for the 
combination. After the model combination, combined parameters are re-transformed to 
cepstral domain again. 

2.2 Problem to be solved in this work 

We categorized the previous works in the field of noise robust speech recognition and 
introduced some proposed methods in section 2.1. All the three approaches are important 
and many methods have been proposed. Most of these researches are, however, focused on 
stationary noise in which spectrum of noise signal is stationary in time domain. In contrast, 
speech recognition in non-stationary noise environments remains as a major problem. In 
practical speech recognition systems, the speech signals can be corrupted by transient noises 
created by tongue clicking, phone rings, door slams, or other environmental sources. These 
noises have a large variety of spectral features, onset time and amplitude, and a modeling of 
those features is difficult. Here, we call them 'impulsive noise’. The aim of this work is to 
develop robust speech recognition technology for adverse conditions which contain both 
stationary and non-stationary noise. In particular, we focus on the issue of impulsive noise. 

2.3 Two types of approaches for noisy speech recognition 

In order to solve the problem as shown in Section 2.2, we employ DMHMM as acoustic 
model. While three approaches are introduced in Fig. 1, the proposed method is categorized 
into the model-based approach. For model-based approach of robust speech recognition, we 
propose two different strategies.  
In the first strategy, adverse conditions are represented by acoustic model. In this case, a 
large amount of training data and accurate acoustic models are required to present a variety 
of acoustic environments. This strategy is suitable for recognition in stationary or slow-
varying noise conditions, because modeling of stationary noise is easier than that of non-
stationary noise. In recent years, large speech corpora which contain much amount of 
training data are available. For ASR in stationary or slow-varying noise conditions, the 
effectiveness of multi-condition training has been reported (Pearce & Hirsch, 2000). For the 
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multi-condition training, a scheme of accurate modeling is needed because a large amount 
of noisy data created artificially is available. 
In contrast, such training method is inadequate to recognize speech under impulsive noise. 
As mentioned above, impulsive noise has a large variety of features. However hard you 
may try to collect speech data in impulsive noise conditions, accurate modeling is very 
difficult. Then the second strategy is based on the idea that the corrupted frames are either 
neglected or treated carefully to reduce the adverse effect. 
In order to achieve robust speech recognition in both stationary and impulsive noise 
conditions, we employ both strategies in this work. The concrete methods to realize both 
strategies are described in the next section. They are based on DMHMM framework which 
is one type of discrete HMM (DHMM). The method of DMHMM was originally proposed to 
reduce computation costs in decoding process. Two types of DMHMM systems have been 
proposed in recent years. One is subvector based quantization (Tsakalidis et al., 1999) and 
the other is scalar based quantization (Takahashi et al., 1997). In the former method, feature 
vectors are partitioned into subvectors, and then the subvectors are quantized by using 
separate codebooks. In the latter, each dimension of feature vectors is scalar-quantized. The 
quantization size can be reduced largely by partitioning feature vectors. For example, 
quantization size was reported as 2 to 5 bits in the former, and in the latter method, it was 4 
to 6 bits. Because the quantization size is small, the DMHMM system has superior 
trainability in acoustic modeling. 

2.4 MAP estimation and model compensation in DMHMM approach 

As we mentioned in the previous sub-section, two kinds of strategies are employed to 
achieve robust speech recognition in both stationary and non-stationary noise conditions. In 
order to realize the first strategy, we propose a new modeling scheme of DMHMMs based 
on maximum a posteriori (MAP) estimate. For the second strategy, a method of 
compensating the observation probabilities of DMHMMs is proposed. 
First, a new method of the MAP estimated DMHMMs for the first strategy is described 
below. In recent speech recognition systems, continuous-mixture HMMs (CHMMs) are 
generally used as acoustic models. It is well known that the CHMM system has an 
advantage in recognition performance over discrete HMM system. The parameters of 
CHMMs can be estimated efficiently under assumption of Gaussian distribution. However, 
CHMMs may unfit to recognize noisy speech because of false assumption of Gaussian 
distribution.  
Fig. 2 shows an example of the discrete probability in DMHMM estimated by the method 
which is described below. The xy-plane represents the cepstrum (c1- c2) space and the z-axis 
represents the probability. The estimation was performed on noisy speech. It is obviously 
found that the shape of the distribution is not similar to that of the Gaussian distribution. As 
just described, discrete HMM can represent more complicated shapes and they are expected 
to be useful for noisy speech.  
Considering the use of DHMMs, the insufficient performance is the major problem. The 
main reason why DHMMs show worse performance than CHMMs is because the accuracy 
of quantization in DHMM is insufficient. There is a trade off between quantization size and 
trainability. It is well known that reduction of quantization size of DHMMs leads to increase 
of quantization distortions, conversely, increase of quantization size leads to a lack of 
training data and poor estimation of parameters. As described above, the DMHMMs require  
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Figure 2. An example of discrete-mixture output distribution taken from the triphone 'a-
a+a'.

a smaller amount of training data than ordinary discrete HMMs. Nevertheless, they still 
require larger amount of training data than CHMMs. In order to reduce the amount of 
training data and improve trainability further, we propose a new method for MAP 
estimation of DMHMM parameters. The MAP estimation is successfully used for adaptation 
of CHMM parameters (Lee & Gauvain, 1993). It uses information of an initial model as a
priori knowledge to complement the training data. 
In order to achieve the second strategy, we propose a method of compensating the 
observation probabilities of DMHMMs. Observation probabilities of impulsive noise tend to 
be much smaller than those of normal speech. The motivation in this approach is that 
flooring the observation probability reduces the adverse effect caused by impulsive noise. 
The method is based on missing feature theory (MFT) (Cooke et al., 1997) to reduce the 
effect of impulsive noise, so that the decoding process may become insensitive to 
distortions. In the MFT framework, input frames are partitioned into two disjoint parts, one 
having reliable frames and the other having unreliable frames which are corrupted by noise. 
Two different approaches are explored in the MFT framework: marginalization and 
imputation. In the marginalization approach, unreliable data are either ignored or treated 
carefully. The motivation of this approach is that unreliable components carry no 
information or even wrong information. In the imputation approach, values for the 
unreliable regions are estimated by knowledge of the reliable regions. The proposed 
compensation method is based on the first approach. Applying the MFT framework to 
speech recognition, it is difficult to determine reliable and unreliable regions. The proposed 
method does not require any determination of two regions in advance. 
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3. MAP Estimation of DMHMM Parameters   

3.1 Discrete-Mixture HMMs 

Before explaining MAP estimation of DMHMM parameters, the DMHMM proposed by 
Tskalidis (Tsakalidis et al., 1999) is briefly introduced here. As mentioned in Section 2, there 
are two types of DMHMM systems. In this paper, subvector based DMHMMs are 
employed. The feature vector is partitioned into S subvectors, ],,,,[ 1 Ststtt oooo = . VQ
codebooks are provided for each subvector, and then the feature vector ot is quantized as 
follows: 

   )].(,),(,),([)( 11 StSststt qqqq oooo =   (1) 

 where qs(ost) is the discrete symbol for the s-th subvector. The output distribution of 
DMHMM bi(ot) is given by: 
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 where imw  is the mixture coefficient for the m-th mixture in state i, and simp̂  is the 
probability of the discrete symbol for the s-th subvector. In this equation, it is assumed that 
the different subvectors are conditionally independent in the given state and mixture index. 

3.2 MAP Estimation 

For creating HMMs from training data, maximum likelihood (ML) estimation is generally 
used as a parameter estimation method. MAP estimation is successfully used for adaptation 
of CHMM parameters (Lee & Gauvain, 1993). MAP estimation uses information from an 
initial model as a priori knowledge to complement the training data. This a priori knowledge 
is statistically combined with a posteriori knowledge derived from the training data. When 
the amount of training data is small, the estimates are tightly constrained by the a priori
knowledge, and the estimation error is reduced. On the other hand, the availability of a 
large amount of training data decreases the constraints of the a priori knowledge, thus 
preventing loss of the a posteriori knowledge. Accordingly, MAP estimation tends to achieve 
better performance than ML estimation, if the amount of training data is small. The amount 
of training data tends to lack of the parameter estimation of DMHMMs, because the number 
of parameters in DMHMMs is larger than that in CHMMs. 
In order to improve trainability further, we propose an estimation method of DMHMM 
parameters based on MAP. The ML estimate of discrete probability )(kpsim  is calculated in 
the following form: 
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where k is the index of subvector codebook and imtγ  is the probability of being in state i at 
time t with the m-th mixture component. Assume that the prior distribution is represented 
by Dirichlet distribution. The MAP estimate of DMHMM )(ˆ kpsim  is given by: 

( )
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 where simkv  is the parameter of the prior distribution. And imn  is given as follows: 
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 In order to simplify the calculation, some constraints were added on the prior parameters. 
Assume that simkv  is given by: 
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 where )(0 kpsim  is the constrained prior parameter. Applying Eq. (8) to Eq. (6), the MAP 
estimate )(ˆ kpsim  can be calculated by: 
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 where τ  indicates the relative balance between the corresponding prior parameter and the 
observed data. In our experiments, τ  was set to 10.0. Although both mixture coefficient and 
transition probability can be estimated by MAP, only output probability is estimated by 
MAP in this work. 

3.3 Prior Distribution 

The specification of the parameters of prior distributions is one of the key issues of MAP 
estimation. In this work, it is assumed that the prior distributions can be represented by 
models which are converted from CHMMs to DMHMMs. The conversion method is 
described below. 
First, input vector to  is divided into S subvectors, ],,,,[ 1 Ststtt oooo = . The probability 
density of CHMMs in subvector s, state i and the m-th mixture component is given by: 
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where simμ  is mean vector, sim  is covariance matrix and d is the number of dimension for 
subvector s. In the case of 2=d , sto , simμ  and sim  are given by: 
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 where 1s  and 2s  represent 1st and 2nd dimensions respectively. An output probability 

)(' tib o  is calculated by: 
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 where '
imw  is the weighting coefficient of mixture component m. In order to obtain discrete 

parameters, the probability density for each centroid is calculated and normalized. As a 
result, parameters of the prior distribution )(0 kpsim  are solved by: 
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 where )(ks  is the centroid for each subvector s. While )(0 kpsim  has a constraint of a normal 
distribution, )(ˆ kpsim  in Eq. (10) does not have such constraint. Thus it is expected that 

)(ˆ kpsim  will be updated to represent more complicated shapes in training session. 
Some experimental results on MAP estimation are shown in Table 1 where word error rates 
(WERs) are indicated. ‘DMHMM-ML’ means ML estimated DMHMM and ‘DMHMM-MAP’ 
means MAP estimated DMHMM. MAP and ML estimation methods were compared at 

∞=SNR dB and 5=SNR dB. The maximum number of training samples is 15,732. It is 
apparent that the performance of MAP is superior to that of ML. Then it can be concluded 
that the trainability of DMHMMs is improved by using MAP estimation.  

SNR model\number of samples 1000 5000 10000 15732 
DMHMM-ML 100.0 54.66 27.54 18.63 

∞ dB
DMHMM-MAP 22.26 13.56 11.18 9.42 
DMHMM-ML 99.0 45.01 31.99 29.45 

5dB
DMHMM-MAP 58.26 36.31 30.82 27.92 

Table 1. Word error rate (%) results of the comparison between ML and MAP 
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4. Compensation of Discrete Distributions 

In this section, a method of compensating the observation probabilities of DMHMMs is 
described to achieve robust speech recognition in noisy conditions. In particular, this 
method is effective for impulsive noise. The proposed method is based on the idea that the 
corrupted frames are either neglected or treated carefully to reduce the adverse effect. In 
other words, the decoding process becomes insensitive to distortions in the method. It is 
more likely that significant degradation of output probability appears in the case of 
mismatch conditions caused by unknown noise. Since the effect of impulsive noise is not 
considered in model training process, it is treated as unknown noise. If one of the subvector 
probabilities, ))((ˆ stssim qp o , is close to 0 in Eq. (2), the value of output probability, )( tib o , is 
also close to 0. It causes adverse effects in decoding process, even if the length of noise 
segment is short. Since an acoustic outlier such as impulsive noise is just unknown signal for 
acoustic model, difference in log likelihoods between outliers doesn't make sense for speech 
recognition. However, small difference between features of outliers causes large difference 
between log likelihoods, and it leads to changing the order of hypothesis in some situations. 
In the proposed method, flooring the observation probability by threshold is employed. 
Since no difference in log likelihoods between outliers is shown in this method, it can reduce 
a negative effect in decoding process. Suppose that unreliable part can be found by using 
the value of discrete probability. In the proposed method, threshold for discrete probability 
is set, and negative effect is reduced in decoding process. Especially the method is effective 
for short duration noise. It is expected that pruning the correct candidate caused by 
impulsive noise is avoided. 
For CHMM system, some compensation methods have been proposed with the same 
motivation. For example, Veth et al. proposed acoustic backing-off (Veth et al., 2001) where 
unreliable information is either neglected or treated carefully. Also the similar method was 
proposed in (Yamamoto et al., 2002). In those methods, the Gaussian distribution was 
compensated by threshold value. In our method, threshold can be set directly by value of 
probability. In other words, each threshold is given in the same way based on a probabilistic 
criterion. In contrast, it requires a kind of complicated way in CHMM system, because 
observation probabilities are given by probability density functions. 
In the method proposed by Yamamoto (Yamamoto et al., 2002), single threshold was given 
for all Gussian distributions. In this case, since each shape of distribution is different, 
magnitude of the effect of threshold is also different. In the acoustic backing-off method, 
compensation values are different in each distribution. However, the compensation values 
depend on training data in the method. Comparison experiments with the acoustic backing-
off are shown in Section 5.8.  
Three types of compensation processing are proposed as follows: 

Compensation at subvector level 
A compensation is done at subvector level. In Eq. (2), ))((ˆ stssim qp o  is compensated by the 
threshold for subvector, dth.
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where ))(('ˆ stssim qp o  is the compensated discrete probability of sto . This threshold is 
especially effective in the case that specific subvector is corrupted. 

Compensation at mixture level 
A compensation is done at mixture level. In Eq. (2), ))((ˆ stss sim qp o∏  is compensated by the 
threshold for mixture component, mth.
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 where ∏s stssim qp ))(('ˆ o  is the compensated discrete probability of sto  at mixture level. This 
threshold is useful in the case that corruption affects a wide range of subvectors. 

Compensation at both levels 
Effectiveness of the above compensation methods depends on noise types. Thus, a 
combination of both compensation methods is expected to be effective for various types of 
noises. 
Three types of compensation methods were compared in noisy speech recognition. The 
result of comparison in average error rate reduction among three was mixture level < 
subvector level < combination at both levels, and the reduction rate was 30.1%, 48.2% and 
48.5%, respectively. The combination method obtained the best performance. From the 
viewpoint of the calculation cost, however, the compensation at subvector is not bad 
because the performance is similar. In the subvector method, the best performance can be 
obtained by the threshold from 3100.2 −×  to 3100.5 −× . In the case that threshold is set to 

3100.5 −× , 68.6% of probability values in discrete distributions are floored. It turns out that a 
large proportion of probability values are useless for speech recognition. 

5. Overview of Speech Recognition System Using DMHMMs 

5.1 System Configuration 

An experimental system of speech recognition for the study of DMHMMs has been 
developed. In this section, we describe the overview of the system. The recognition system 
makes use of a statistical speech recognition approach that uses DMHMM as the acoustic 
model and statistical language models such as word bigrams. This type of recognition 
system is called a large vocabulary continuous speech recognition (LVCSR) system. It can 
recognize more than several thousands of different words. Fig. 3 shows a block diagram of 
the system. It employs a time-synchronous beam search. The recognition results indicated in 
the previous sessions were obtained by this system. 
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Figure 3. Speech recognition system 

5.2 Speech Analysis 

In the speech analysis module, a speech signal is digitized at a sampling frequency of 16kHz 
and at a quantization size of 16bits with the Hamming window. The length of the analysis 
frame is 32ms and the frame period is set to 8ms. The 13-dimensional feature (12-
dimensional MFCC and log power) is derived from the digitized samples for each frame. 
Additionally, the delta and delta-delta features are calculated from MFCC feature and log 
power. Then the total number of dimensions is 39. The 39-dimentional parameters are 
normalized by the cepstral mean normalization (CMN) method (Furui, 1974) which can 
reduce the adverse effect of channel distortion.

5.3 Decoder 

For a large vocabulary continuous speech recognition (LVCSR), search space is very large 
and an expensive computation cost is required. A language model, which represents 
linguistic knowledge, is used to reduce search space. The detail of the language model is 
described in the next sub-section. In our system, one-pass frame-synchronous search 
algorithm with beam searching has been adopted. The searching algorithm calculates 
acoustic and language likelihood to obtain word sequence candidates. These word sequence 
candidates are pruned according to their likelihood values to reduce the calculation cost. 
Triphone models and word bigrams are used as acoustic and language models, respectively. 

5.4 Language Model 

A bigram is an occurrence probability of a pair of words that directly follow each other in 
text and is used as a linguistic constraint to reduce a calculation cost and improve 
recognition performance. The set of the probabilities are calculated with a large amount of 
text data. In this system, the bigrams have a 5000-vocabulary and are trained from 45 
months’ worth of issues of the Mainichi newspaper. Those data are in the database of ‘JNAS: 
Japanese Newspaper Article Sentences’. It contains speech recordings and their 
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orthographic transcriptions. Text sets for reading were extracted from the articles of 
newspaper.  The Mainichi Newspaper is one of the major nation-wide newspapers in Japan.  

5.5 Acoustic Model 

In recent years, context dependent models are widely used as acoustic models for speech 
recognition, since allophones or co-articulations can be modeled more accurately than 
context independent ones. Triphone model is one of the context dependent models and both 
the left and the right context are taken into consideration. It is well known that triphone is 
the effective model for continuous speech recognition. However, there is a problem when 
model parameters of triphone are estimated. The number of models exponentially increases 
depending on the number of contextual factors ant it causes the decrease of estimation 
accuracy. Then state sharing technique is widely used for context dependent models. In our 
system, shard-state triphone DMHMMs are uses as acoustic models. The topology of shard-
state DMHMMs is represented by a hidden Markov network (HM-Net) which has been 
proposed by Takami (Takami & Sagayama, 1992). The HM-Net is a network efficiently 
representing context dependent left-to-right HMMs which have various state lengths and 
share their states each other. Each node of the network is corresponding to an HMM state 
and has following information: 
• state number, 
• acceptable context class, 
• lists of preceding states and succeeding states, 
• parameters of the output probability density distribution, 
• state transition probabilities. 
When the HM-Net is given, a model corresponding to a context can be derived by 
concatenating states which can accept the context from the starting node to the ending node.  

1 2 3 4

5 6 7
start end

g/u/r,w d,g/u/r b,d,g/u/r b,d,g/u/r

b,d/u/* d,g/u/w */u/w,y

1 2 3 4

5 6 7
start end

g/u/r,w d,g/u/r b,d,g/u/r b,d,g/u/r

b,d/u/* d,g/u/w */u/w,y

 Figure 4. Example of the HM-Net 
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Fig. 4 shows an example of the HM-Net. In this figure, A/B/C stands for the acceptable 
context class, where A, B and C are the acceptable preceding, base and succeeding phone 
classes respectively. And the asterisk represents a class consisted of all phones. For 
example, the model for a context g/u/w is derived from a string of the states 1, 6 and 7. The 
extracted model is equivalent to general left-to-right HMMs. The structure of HM-Net we 
used in this work is determined by the state clustering-based method proposed by Hori 
(Hori et al., 1998).  Although the output probability distribution of a HMM state is 
represented by Gaussian mixture density in original HM-Net, discrete mixture density is 
used in this system. The acoustic model we used is 2000-state HM-Net, and the number of 
mixture components was 4, 8 and 16, respectively. The 2000-state continuous mixture HM-
Net is also prepared, and it is used for comparative experiments. As a comparative 
experiments in various number of mixture components, 16-mixture HM-Net shows the best 
result with either DMHMMs or CHMMs. 

5.6 Codebook design of DMHMM 

The codebook design in our experiments was determined in reference to the results in the 
paper written by Tsakalidis (Tsakalidis et al., 1999) and the split vector quantizer in the DSR 
front-end (ETSI, 2002). Tsakalidis has reported that DMHMMs with from 9 to 24 subvectors 
showed better performance. The feature vector is partitioned into subvectors that contain 
two consecutive coefficients. The consecutive coefficients that comprise subvector are 
expected to be correlated more closely. It was also reported that subvectors that contained 
consecutive coefficients performed well. Table 2 shows subvector allocation and codebook 
size. In the table, although delta and delta-delta parameters are omitted, those codebooks 
are designed in the same manner. The total number of codebooks is 21. The LBG algorithm 
was utilized for creating the codebook. Two types of codebooks were generated: 1) Clean 
codebook: A codebook derived from clean data. 2) Noisy codebook: A codebook derived 
from multi-condition data. Fig. 5 shows the examples of two codebooks. One represents c1-
c2 plane, and the other is 21 cc Δ−Δ  plane. Each point represents the codebook centroid and 
its number is 64 on c1-c2 or 21 cc Δ−Δ  plane. Both clean codebook and noisy codebook are 
shown. As the experiment results, the performance of the DHMMs with noisy codebooks 
overcame that with clean codebooks for noisy speech recognition. 

5.7 Training Data for Acoustic modeling 

There are two sets of training data. They are on JNAS database. One is used for clean 
training, and the other is used for multi-condition training. The training data set consists of 
15,732 Japanese sentences uttered by 102 male speakers. For clean training, no noise was 
added to the data. For multi-condition training, those utterances were divided into 20 
subsets. No noise was added to 4 subsets. In the rest of the data, noise was artificially added. 

parameter logP, c0 c1,c2 c3,c4 c5,c6 c7,c8 c9,c10 c11,c12 

codebook size 256 64 64 64 64 64 64 

Table 2. Codebook design 
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Figure 5. Examples of the codebooks (left figure: 21 cc −  plane, right figure: 21 cc Δ−Δ
plane)

Four types of noise (train, crowd, car and exhibition hall) were selected, and those were 
added to the utterances at SNRs of 20, 15, 10 and 5dB. The set of clean training data was 
used for parameter estimation of initial CHMMs and also used for clean codebook creation. 
The set of multi-condition training data was used for parameter re-estimation of both 
CHMMs and DMHMMs, and that was also used for creation of noisy codebook. 
The procedures of acoustic model training are described as follows: First, initial CHMMs 
were trained by using clean speech data. Then the CHMMs were converted into DMHMMs 
using Eq. (16). The parameters of the DMHMMs derived here were used as the prior 
parameters of MAP estimation. After that, MAP estimation of DMHMMs was carried out by 
using multi-condition data. 

5.8 Comparative experiments with other methods 

Comparative experiments with other methods were conducted in adverse conditions that 
contain both stationary and impulsive noises. Noise signals from two test sets were mixed 
artificially to make new testset. Twelve types of noises (4 noise types (train, crowd, car and 
exhibition hall) times 3 SNR conditions) were prepared as stationary or slow-varying noise. 
These noises were mixed with 3 impulsive noises which were selected from RWCP database 
(Nakamura et al., 2000). Thus 36 types of noises were used for evaluation. Three types of 
impulsive noise were as follows: 
• whistle3 blowing a whistle 
• claps1 handclaps 
• bank  hitting a coin bank  
The impulsive noises were added at intervals of 1-sec into speech data at SNR of 0 dB.  
In the experiments, DMHMMs were compared with conventional CHMMs and CHMMs 
with acoustic backing-off method which is introduced in Section 4. As we described in the 
previous section, the compensation of discrete distributions is effective for noisy speech 
recognition. The acoustic backing-off is a similar method for CHMMs. In this method, 
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likelihood is calculated by using robust mixture distribution which consists of distribution 
)(yp  and 'outlier' distribution )(ypo . Log likelihood ))(log( ypab  is given by 

{ })()()1(log))(log( ypypyp oab ⋅+−= εε   (19) 

1
minmax )()( −−= RRypo   (20) 

 where ε  is the backing-off parameter, maxR  and minR  are the maximum and minimum 
values for each component as observed in the training data.  
Comparative experiments between acoustic backing-off and the proposed method were 
carried out. In the paper by Veth (Veth et al., 2001), maxR  and minR  are given the maximum 
and minimum values of training data respectively. To avoid the dependence on training 
data, maxR  and minR  are set to 

2
max σμ ⋅+= rR   (21) 

and

2
min σμ ⋅−= rR   (22) 

 where 2σ  is a variance of training data. Both r  and ε  were varied to find the best 
performance. As a result, r  and ε  were set to 3.0 and 5100.5 −× , respectively. 
The results of the comparison among DMHMMs, CHMMs and CHMMs with the acoustic 
backing-off are shown in Table 3. The threshold value of compensation for subvector and 
mixture component were set to 3100.5 −×  and 40100.1 −× , respectively.  
The proposed method shows the best performance among three methods. In the table, 
‘improvement’ means the average error rate reduction from CHMM. It was 28.1% with the 
proposed method. In contrast, it was only 5.5% with the acoustic backing-off method. For 
DMHMMs, various thresholds for subvector were applied. The best performance was 
obtained by the threshold of 3100.2 −× . More detailed results can be shown in the paper by 
Kosaka (Kosaka et al., 2005). 
The results of CHMMs were too bad. It has been generally believed that the recognition 
error rates of DHMM were much higher than those of CHMM until now. Our experiments 
showed that the DMHMM framework performed better than conventional CHMM in noisy 
condition. In contrast, it was found that CHMM system showed similar or even better 
performance at high SNR in our experiments. In clean condition, the WER of DMHMMs 
was 6.7% and that of CHMMs with the acoustic backing-off was 6.6%. Recognition in clean 
conditions remains as an issue to be solved in the DMHMM system. 

6. Conclusions 

This chapter introduced a new method of robust speech recognition using discrete-mixture 
HMMs (DMHMMs) based on maximum a posteriori (MAP) estimation. The aim of this work 
was to develop robust speech recognition for adverse conditions which contain both 
stationary and non-stationary noise. In order to achieve the goal, we proposed two methods. 
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First, an estimation method of DMHMM parameters based on MAP was proposed. The 
second was a method of compensating the observation probabilities of DMHMMs to reduce 
adverse effect of outlier values. Experimental evaluations were done on Japanese speech 
recognition for read newspaper task. Compared with conventional CHMMs and CHMMs 
using the acoustic backing-off method, MAP estimated DMHMMs performed better in noisy 
conditions than those systems. The average error rate reduction from CHMMs was 28.1%
with the proposed method. It has been generally believed that the recognition error rates of 
DHMM were much higher than those of CHMM until now. However, our experiments 
showed that the DMHMM framework performed better in noisy conditions than 
conventional CHMM framework. 

WER(%)  method\noise

 whistle3 claps1 bank 
improvement(%)

CHMM  65.9 43.9 37.5 - 

CHMM-AB  65.2 39.5 36.8 5.5 

4100.5 −× 51.5 34.9 31.2 22.7 

3100.2 −× 46.8 32.9 30.5 28.1 DMHMM

3100.5 −× 46.5 35.2 31.2 24.7 

Table 3. The WER results of the comparison among three methods in mixed noise conditions

Although, the proposed method is effective in noisy conditions, its performance is 
insufficient in clean conditions. What we are aiming for as a future work is to improve 
trainability and recognition performance in clean conditions further. 

7. Future prospects 

We are now conducting the evaluation of the method on more difficult task. In Japan, a 
large-scale spontaneous speech database ‘Corpus of Spontaneous Japanese (CSJ)” has been 
used as the common evaluation database for spontaneous speech now (Furui et al., 2005). 
This corpus consists of roughly 7M words with a total speech length of 650 h.  In the corpus, 
monologues such as academic presentations and extemporaneous presentations have been 
recorded. The recordings were carried out by a headset microphone with relatively little 
background noise. It is well known that the recognition of this task is too difficult because 
those presentations are real and the spontaneity is high. For example, 25.3% of word error 
rate was reported by Furui (Furui et al., 2005). In our experiments, 20.72% of word error rate 
has been obtained with 6000-state 16-mixture DMHMMs and the trigram model of 47,099 
word-pronunciation entries (Yamamoto et al., 2006).  It shows that DMHMM system has a 
high performance even if in low noise conditions. The DMHMM-based system has much 
more potential for speech recognition, because it needs no assumption of Gaussian 
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distribution. For example, model adaptation in which the shape of distribution of HMM is 
modified intricately cannot be carried out in CHMM framework, but could be done in 
DMHMM. We plan to develop DMHMM-related technologies further for improving speech 
recognition performance. 
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1. Introduction    

This chapter describes our recent advances in automatic speech recognition, with a focus on 
improving the robustness against environmental noise. In particular, we investigate a new 
approach for performing recognition using noisy speech samples without assuming prior 
information about the noise. The research is motivated in part by the increasing deployment 
of speech recognition technologies on handheld devices or the Internet. Due to the mobile 
nature of such systems, the acoustic environments and hence the noise sources can be highly 
time-varying and potentially unknown. This raises the requirement for noise robustness in 
the absence of information about the noise. Traditional approaches for noisy speech 
recognition include noise filtering or noise compensation. Noise filtering aims to remove the 
noise from the speech signal. Typical techniques include spectral subtraction (Boll, 1979), 
Wiener filtering (Macho et al., 2002) and RASTA filtering (Hermansky & Morgan, 1994), 
each assuming a priori knowledge of the noise spectra. Noise compensation aims to 
construct a new acoustic model to match the noisy environment thereby reducing the 
mismatch between the training and testing data. Typical approaches include parallel model 
combination (PMC) (Gales & Young, 1993), multicondition training (Lippmann et al., 1987; 
Pearce & Hirsch, 2000), and SPLICE (Deng et al., 2001). PMC composes a noisy acoustic 
model from a clean model by incorporating a statistical model of the noise; multicondition 
training constructs acoustic models suitable for a number of noisy environments through 
the use of training data from each of the environments; SPLICE improves noise robustness 
by assuming that stereo training data exist for estimating the corruption characteristics. 
More recent studies are focused on the approaches requiring less information about the 
noise, since this information can be difficult to obtain in mobile environments subject to 
time-varying, unpredictable noise. For example, recent studies on missing-feature theory 
suggest that, when knowledge of the noise is insufficient for cleaning up the speech features, 
one may alternatively ignore the severely corrupted features and focus the recognition only 
on the features with little or no contamination. This can effectively reduce the influence of 
noise while requiring less knowledge than usually needed for noise filtering or 
compensation (e.g., Lippmann & Carlson, 1997; Raj et al., 1998; Cooke et al., 2001; Ming et 
al., 2002). However, missing-feature theory is only effective given partial feature corruption, 
i.e., the noise only affects part of the speech representation and the remaining part not 
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severely affected by noise can thus be exploited for recognition. This assumption is not 
realistic for many real-world applications in which the noise will affect all time-frequency 
components of the speech signal, i.e., we face a full feature corruption problem. 
In this chapter, we investigate speech recognition in noisy environments assuming a highly 
unfavourable scenario: an accurate estimation of the nature and characteristics of the noise is 
difficult, if not impossible. As such, traditional techniques for noise removal or 
compensation, which usually assume a prior knowledge of the noise, become inapplicable. 
We describe a new noise compensation approach, namely universal compensation, as a 
solution to the problem. The new approach combines subband modeling, multicondition 
model training and missing-feature theory as a means of minimizing the requirement for the 
information of the noise, while allowing any corruption type, including full feature 
corruption, to be modelled. Subband features are used instead of conventional fullband 
features to isolate noisy frequency bands from usable frequency bands; multicondition 
training provides compensations for expected or generic noise; and missing-feature theory 
is applied to deal with the remaining training and testing mismatch, by ignoring the 
mismatched subbands from scoring.  
The rest of the chapter is organized as follows. Section 2 introduces the universal 
compensation approach and the algorithms for incorporating the approach into a hidden 
Markov model for speech recognition. Section 3 describes experimental evaluation on the 
Aurora 2 and 3 tasks for speech recognition involving a variety of simulated and realistic 
noises, including new noise types not seen in the original databases. Section 4 presents a 
summary along with the on-going work for further developing the technique. 

2. Universal Compensation 

2.1 The model 

Let 0 denote the training data set, containing clean speech data, and let p(X|s, 0) represent 
the likelihood function of frame feature vector X associated with speech state s trained on 
data set 0. In this study, we assume that each frame vector X consists of N subband 
features: X=(x1, x2, ..., xN), where xn represents the feature for the n’th subband. We obtain X 
by dividing the whole speech frequency-band into N subbands, and then calculating the 
feature coefficients for each subband independently of the other subbands. Two different 
methods have been used to create the subband features. The first method produces the 
subband MFCC (Mel-frequency cepstral coefficients), obtained by first grouping the Mel-
warped filter bank uniformly into subbands, and then performing a separate DCT (discrete 
cosine transformation) within each subband to obtain the MFCC for that subband (Ming et 
al., 2002). It is assumed that the separation of the DCT among the subbands helps to prevent 
the effect of a band-limited noise from being spread over the entire feature vector, as usually 
occurs within the traditional fullband MFCC. The second method uses the decorrelated log 
filter-bank energies as the subband features, which are obtained by filtering the log filter-
bank energies using a high-pass filter (Ming, 2006). The subband feature framework allows 
the isolation of noisy bands and selection of the optimal subbands for recognition, thereby 
improving the robustness against band-selective noise.  
The universal compensation approach comprises two steps. The first step is to simulate the 
effect of noise corruption. This is done by adding noise into the clean training data 0. We 
have primarily added white noise at variable signal-to-noise ratios (SNRs) to simulate the 
variation of noise, but different types of noises could be used depending on the expected 
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environments. Assume that this leads to multiple training sets 0, 1, …, K, where k

denotes the k’th training set derived from 0 with the addition of a specific level of 
corruption. Then a new likelihood function for the test frame vector can be formed by 
combining the likelihood functions trained on the individual training sets: 

s)|)P(s,|p(Xs)|p(X k

K

0k
k

=
=  (1) 

where p(X|s, k) is the likelihood function of frame vector X associated with state s trained 
on data set k, and P( k|s) is the prior probability for the occurrence of the corruption 
condition k at state s. Eq. (1) is a multicondition model. A recognition system based on Eq. 
(1) should have improved robustness to the noise conditions seen in the training sets { k}, as 
compared to a system based on p(X|s, 0).
The second step of the approach is to make Eq. (1) robust to noise conditions not fully 
matched by the training sets { k} without assuming extra information about the noise. One 
way to achieve this is to ignore the heavily mismatched subbands and focus the score only 
on the matching subbands. Let X=(x1, x2, ..., xN) be a test frame vector and Xk be a specific 
subset of features in X which are corrupted at noise condition k. Then, using Xk in place of 
X as the test vector for each training noise condition k, Eq. (1) can be modified as 

s)|)P(s,|p(Xs)|p(X k

K
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where p(Xk|s, k) is the marginal likelihood of the matching feature subset Xk, derived from 
p(X|s, k) with the mismatched subband features ignored to improve mismatch robustness 
between the test frame X and the training noise condition k. For simplicity, assume 
independence between the subband features. So the marginal likelihood p(Xsub|s, k) for 
any subset Xsub in X can be written as 

)s,|p(x)s,|p(X k
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where p(xn|s, k) is the likelihood function of the n’th subband feature at state s trained 
under noise condition k.
Multicondition or multi-style model training (e.g., Eq. (1)) has been a common method used 
in speech recognition to account for varying noise sources or speaking styles. The universal 
compensation model expressed in Eq. (2) is novel in that it combines multicondition model 
training with missing-feature theory, to ignore noise variations outside the given training 
conditions. This combination makes it possible to account for a wide variety of testing 
conditions based on limited training conditions (i.e., 0 through K), as will be 
demonstrated later in the experiments.  
Missing-feature theory is applied in Eq. (2) for ignoring the mismatched subbands. 
However, it should be noted that the approach in Eq. (2) extends beyond traditional 
missing-feature approaches. Traditional approaches assess the usability of a feature against 
its clean data, while the new approach assesses this against the data containing variable 
degrees of corruption, modelled by the different training conditions 0 through K. This 
allows the model to use noisy features, close to or matched by the noisy training conditions, 
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for recognition. These noisy features, however, may become less usable or unusable with 
traditional missing-feature approaches due to their mismatch against the clean data.  
Given a test frame X, the matching feature subset Xk for each training noise K may be 
defined as the subset in X that gains maximum likelihood over the appropriate noise 
condition. Such an estimate for Xk is not directly obtainable from Eq. (3). This is because the 
values of p(Xsub|s, k) for different sized subsets Xsub are of a different order of magnitude 
and are thus not directly comparable. One way around this is to select the matching feature 
subset Xk for noise condition k that produces maximum likelihood ratio for noise condition 

k as compared to all other noise conditions j k. This effectively leads to a posterior 
probability formulation of Eq. (2). Define the posterior probability of state s and noise 
condition k given test subset Xsub as

Φ
=

j, jjsub

kksub
subk ,)P(,|p(X

))P(s,s,|p(X)X|P(s,
)ς
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On the right, Eq. (4) performs a normalization for p(Xsub|s, k) using the average likelihood 
of subset Xsub calculated over all states and training noise conditions, with P(s, k) = 
P( k|s)P(s) being a prior probability of state s and noise condition k. The normalization 
makes it possible to compare the probabilities associated with different feature subsets Xsub

and to obtain an estimate for Xk based on the comparison. Specifically, we can obtain an 
estimate for Xk by maximizing the posterior probability P(s, k|Xsub) with respect to Xsub.
Dividing the numerator and denominator of Eq. (4) by p(Xsub|s, k) gives  
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Therefore maximizing posterior probability P(s, k|Xsub) with respect to Xsub is equivalent to 
the maximization of likelihood ratios p(Xsub|s, k)/p(Xsub| , j), for all ( , j)  (s, k), by 
choosing Xsub. The universal compensation model, Eq. (2), can be expressed in terms of the 
posterior probabilities P(s, k|Xsub) as follows (the expression will be derived later) 
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where the maximization at each noise condition k accounts for the selection of the optimal 
set of subband features for that noise condition.

2.2 Incorporation into a hidden Markov model (HMM) 

Assume a speech signal represented by a time sequence of T frames X1~T=(X(1), X(2), …, 
X(T)), and assume that the signal is modelled by an HMM with parameter set . Based on 
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the HMM formulation, the likelihood function of X1~T, given the state sequence S1~T=(s(1),
s(2), …, s(T)), where s(t) is the state for frame X(t), can be written as 

∏
=

=
T

1t
T~1T~1 s(t))|p(X(t)),S|p(X  (7) 

where p(X|s) is the state-based observation probability density function with the HMM. To 
incorporate the above universal compensation approach into the HMM, we first express the 
state-based observation density p(X|s) in terms of P(s, k|X), i.e., the posterior probabilities 
of state s and noise condition k given frame vector X. Using Bayes’s rules it follows 
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The last term in Eq. (8), p(X), is not a function of the state index and thus has no effect in 
recognition. Substituting Eq. (8) into Eq. (7), replacing each P(s, k|X) with the maximized 
posterior probability for selecting the optimal set of subbands and assuming an equal prior 
probability P(s) for all the states, we obtain a modified HMM which incorporates the 
universal compensation approach 
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where P(s, k|Xsub) is defined in Eq. (4) with P(s, k) replaced by P( k|s) due to the 
assumption of a uniform prior P(s). In our experiments, we further assume a uniform prior 
P( k|s) for noise conditions k, to account for the lack of prior knowledge about the noise. 

2.3 Algorithm for implementation 

The search in Eq. (9) for the matching feature subset can be computationally expensive for 
frame vectors with a large number of subbands (i.e., N). We can simplify the computation 
by approximating each p(Xsub|s, k) in Eq. (4) using the probability for the union of all 
subsets of the same size as Xsub. As such, p(Xsub|s, k) can be written, with the size of Xsub

indicated in brackets, as (Ming et al. 2002) 
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where Xsub(M) represents a subset in X with M subband features (M N). Since the sum in 
Eq. (10) includes all feature subsets, it includes the matching feature subset that can be 
assumed to dominate the sum due to the best data-model match. Therefore Eq. (4) can be 
rewritten, by replacing p(Xsub|s, k) with p(Xsub(M)|s, k), as 
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Note that Eq. (11) is not a function of the identity of Xsub but only a function of the size of 
Xsub (i.e., M). Using P(s, k|Xsub(M)) in place of P(s, k|Xsub) in Eq. (9), we therefore 
effectively turn the maximization for the exact matching feature subset, of a complexity of 
O(2N), to the maximization for the size of the matching feature subset, with a lower 
complexity of O(N). The sum in Eq. (10) over all p(Xsub(M)|s, k) for a given number of M 
features, for 0<M  N, can be computed efficiently using a recursive algorithm assuming 
independence between the subbands (i.e., Eq. (3)). We call Eq. (11) the posterior union model,
which has been studied previously (e.g., Ming et al., 2006) as a missing-feature approach 
without requiring identity of the noisy data. The universal compensation model Eq. (9) is 
reduced to a posterior union model with single, clean condition training (i.e., K=0). 

3. Experimental Evaluation 

The following describes the experimental evaluation of the universal compensation model 
on the Aurora 2 and 3 databases, involving a variety of simulated and realistic noises, 
including additional noise types not seen in the original databases. In all the experiments, 
the universal compensation system assumed no prior information about the noise. 

3.1 Experiments on Aurora 2 

Aurora 2 (Pearce & Hirsch, 2000) is designed for speaker independent recognition of digit 
sequences in noisy conditions. Aurora 2 involves nine different environments (eight noisy 
and one noise-free) and two different channel characteristics. The eight environmental 
noises include: subway, bubble, car, exhibition hall, restaurant, street, airport and train 
station. The two channel characteristics are G712 and MIRS. Aurora 2 has been divided into 
three test sets, each corresponding to a different set of noise conditions and/or channel 
characteristics. These are: 1) test set A - including clean data and noisy data corrupted by 
four different noises: subway, babble, car and exhibition hall, each at six different SNRs: 20 
dbB, 15 dB, 10 dB, 5 dB, 0 dB and -5 dB, filtered with a G712 characteristic; 2) test set B - 
including data corrupted by four different noises: restaurant, street, airport and train station, 
each at the same range of SNRs as in test set A, filtered with a G712 characteristic; and 3) test 
set C - including data corrupted by two different noises: subway and street, each at the same 
range of SNRs as in test set A, filtered with an MIRS characteristic. 
Aurora 2 offers two training sets, for two different training modes: 1) clean training set, 
consisting of only clean training data filtered with a G712 characteristic; and 2) 
multicondition training set, consisting of both clean data and multicondition noisy data 
involving the same four types of noise as in test set A, each at four different SNRs: 20 dB, 15 
dB, 10 dB, 5 dB, and filtered with a G712 characteristic - also the same as for test set A. As 
such, it is usually assumed that the multicondition training set matches test set A more 
closely than it matches test set B. However, as noted in (Pearce & Hirsch, 2000), the noises in 
test set A seem to cover the spectral characteristics of the noises in test set B, and therefore 
no significant differences in performance have been found between test set A and test set B 
based on the model trained on the multicondition data. Mismatches exist between the 
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multicondition training data and test set C, because of the different channel characteristics 
(i.e., G712 versus MIRS).  
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Figure 1. Word accuracy on the Aurora 2 database 
The universal compensation model was compared with two baseline systems. The first 
baseline system was trained on the clean training set and the second was trained on the 
multicondition training set. The universal compensation model was trained using only the 
clean training set. This clean training set was expanded by adding computer-generated 
wide-band noise to each of the training utterances at ten different SNR levels, starting with 
SNR = 20 dB, reducing 2 dB every level, until SNR = 2 dB. This gives a total of eleven 
corruption levels (including the no corruption condition) for training the universal 
compensation model. The wide-band noise used in the training was computer-generated 
white noise filtered by a low-pass filter with a 3-dB bandwidth of 3.5 kHz. In modelling the 
digit words, the same HMM topology was adopted for all the three models: each word 
being modelled with 16 states, and each state being modelled with Gaussian mixture 
densities. Thirty two mixtures were used in each state for the universal compensation model 
and the multicondition baseline model, while 3 mixtures were used in each state for the 
clean baseline model trained only on the clean data. The speech signal, sampled at 8 kHz, 
was divided into frames of 25 ms at a frame period of 10 ms. The universal compensation 
model used subband features, consisting of 6 subbands derived from the decorrelated log 
filter-bank energies, as the feature set for each frame. The baseline systems used fullband 
MFCC as the feature set. Both models included the first- and second-order time differences 
as dynamic features. More details of the implementation can be found in (Ming, 2006). 
Fig. 1 shows the word accuracy rates for the three systems: clean baseline, multicondition 
baseline and universal compensation, as a function of SNR averaged over all the noise 
conditions in test set A, B and C. As indicated in Fig. 1, the universal compensation model 
significantly improved over the clean baseline model, and achieved an average performance 
close to that obtained by the multicondition baseline model trained on the Aurora noisy 
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training data. Note that the universal compensation model achieved this based only on the 
clean training data and simulated noisy training data, without having assumed any 
knowledge about the actual test noise. 

Figure 2. Spectrograms of three new noises unseen in Aurora 2. From top to bottom: mobile 
phone ring, pop song, broadcast news 
To further investigate the capability of the universal compensation model to offer 
robustness for a wide variety of noises, three new noise conditions unseen in the Aurora 2 
database were added in the test. The three new noises are: 1) a polyphonic mobile phone 
ring, 2) a pop song segment with a mixture of background music and the voice of a female 
singer, and 3) a broadcast news segment from a male speaker. Fig. 2 shows the spectral 
characteristics of the three new noises. Fig. 3 shows a comparison between the universal 
compensation model and the multicondition baseline model across the Aurora 2 noise 
conditions and the new noise conditions. As expected, the multicondition baseline trained 
using the Aurora data performed better than the universal compensation model under the 
Aurora 2 noise conditions. However, the multicondition baseline performed poorer than the 
universal compensation model for all the unseen noises, due to the mismatched conditions 
between the training and testing. The universal compensation model achieved a better 
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average performance across all the noise conditions, indicating improved robustness for 
dealing with unknown/mismatched noises. 
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Figure 3. Word accuracy in different noise conditions within and outside the Aurora 2 
database (averaged over SNRs between 0-10 dB)  
The universal compensation approach involves a combination of multicondition model 
training and missing-feature theory. The importance of the combination, in terms of 
improved recognition performance, is studied. We first considered a system which was built 
on the same simulated noisy training data as used for the universal compensation model, 
but did not apply missing-feature theory to optimally select the subbands for scoring. The 
system thus used the full set of subbands for recognition. Comparisons were conducted for 
all the Aurora 2 noises and the three new noises as described above. Fig. 4 shows the 
absolute improvement in word accuracy obtained by the universal compensation model 
over the system without optimal subband selection. The results indicate that the optimal 
subband selection in the universal compensation model has led to improved accuracy in all 
tested noisy conditions. As expected, the improvement is more significant for those noises 
with a spectral structure significantly different from the wide-band noise spectral structure 
as used in the universal compensation model for noise compensation. In our experiments, 
these noises include, for example, the mobile phone ring, pop song, broadcast news and 
airport noises. Fig. 4 also indicates that the absolute improvement from the optimal subband 
selection is more significant in low SNR conditions (except for the exhibition-hall noise). 
The above experimental results indicate the importance of the missing-feature component in 
the universal compensation model, for achieving robustness to mismatched training and 
testing. Likewise, the multicondition training component in the model plays an equally 
important role, particularly for dealing with broad-band noise corruption for which the 
conventional missing-feature methods usually fail to function. To show this, we considered 
a system which performed optimal subband selection as the universal compensation model, 
but was not trained using the simulated multicondition noisy data. Rather, it was trained 
using only the clean training data. Comparisons were conducted on test set A of the Aurora 
2 database. Fig. 5 shows the absolute improvement in word accuracy obtained by the 
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universal compensation model over the system with the missing-feature component but 
without being trained on the multicondition data. This missing-feature system performed 
better than the clean baseline model (i.e., the baseline model trained on the clean training 
data), due to the optimal selection of the subbands, but worse than the universal 
compensation model. The broad-band nature of the noises in test set A causes the poor 
performance for this missing-feature system. 
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Figure 4. Absolute improvement in word accuracy obtained by optimal subband selection 
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Figure 5. Absolute improvement in word accuracy obtained by multicondition training 

3.2 Experiments on Aurora 3 

Unlike Aurora 2, the Aurora 3 database consists of digit sequences (in four languages – 
Danish, Finnish, German and Spanish) recorded in real-world in-car environments, with 
realistic noise and channel effects. Speech data were recorded in three different noisy 
(driving) conditions - quite, low noise and high noise, and each utterance was recorded 
simultaneously by using two microphones, a close-talk microphone and a hand-free 
microphone. Three experimental conditions are defined in Aurora 3: 1) well-matched 
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condition in which the training and testing data sets contain well-matched data for both the 
microphones and noise conditions; 2) moderately-mismatched condition in which the 
training and testing data are both from the hand-free microphone but differ in noise levels - 
quite and low-noise data for training and high-noise data for testing; 3) highly-mismatched 
condition in which the training and testing sets differ in both the microphone and noise 
levels - the data collected using the close-talk microphone in all the three conditions are 
used for training and the data collected using the hand-free microphone in the low-noise 
and high-noise conditions are used for testing. The hand-free microphone picked up more 
noise than the close-talk microphone from the background. In our experiments, the 
universal compensation model was trained using the training data for the highly-
mismatched condition, by treating the close-talk data as “clean” data. The close-talk training 
data were expended by adding simulated wide-band noise at ten different SNRs between 2 
– 20 dB. These simulated noisy speech data were used to train the universal compensation 
model, which used the same subband feature structure as for Aurora 2. 

Training vs. Testing Danish Finnish German Spanish Average 
Well matched 12.7 7.3 8.8 7.1 8.9 

Moderately mismatched 32.7 19.5 18.9 16.7 21.9 
Highly mismatched 60.6 59.5 26.8 48.5 48.9 

Average 35.3 28.8 18.2 24.1 26.6 

Table 1. Word error rates on the Aurora 3 database, by the ETSI baseline system 

Training vs. Testing Danish Finnish German Spanish Average 
Well matched 11.2 6.1 7.5 6.7 7.9 

Moderately mismatched 26.8 17.2 16.3 15.5 18.9 
Highly mismatched 19.9 12.5 13.7 12.2 14.6 

Average 19.3 11.9 12.5 11.5 13.8 

Table 2. Word error rates on the Aurora 3 database, by the universal compensation model 

Table 1 shows the word error rates produced by the ETSI (European Telecommunications 
Standards Institute) baseline system, included for comparison. Table 2 shows the word error 
rates produced by the universal compensation model. As indicated in Tables 1 and 2, the 
universal compensation model performed equally well as the baseline system trained and 
tested in the well-matched conditions. The universal compensation model outperformed the 
baseline system when there were mismatches between the training and testing conditions. 
The average error reduction is 70.1%, 13.7% and 11.2%, respectively, for the highly-
mismatched, moderately-mismatched and well-matched conditions. 

4. Conclusion 

This chapter investigated the problem of speech recognition in noisy conditions assuming 
absence of prior information about the noise. A method, namely universal compensation, 
was described, which combines multicondition model training and missing-feature theory 
to model noises with unknown temporal-spectral characteristics. Multicondition training 
can be conducted using simulated noisy data, to provide a coarse compensation for the 
noise, and missing-feature theory is applied to refine the compensation by ignoring noise 
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variations outside the given training conditions, thereby accommodating mismatches 
between the training and testing conditions. Experiments on the noisy speech databases 
Aurora 2 and 3 were described. The results demonstrate that the new approach offered 
improved robustness over baseline systems without assuming knowledge about the noise. 
Currently we are considering an extension of the principle of universal compensation to 
model new forms of signal distortion, e.g., handset variability, room reverberation, and 
distant/moving speaking. To make the task tractable, these factors can be “quantized” as we 
did for the SNR. Missing-feature approaches will be used to deemphasize the mismatches 
while exploiting the matches arising from the quantized data. 
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1. Introduction   

Robustness to noise and low-bit rate coding distortion is one of the main problems faced by 
automatic speech recognition (ASR) and speaker verification (SV) systems in real 
applications. Usually, ASR and SV models are trained with speech signals recorded in 
conditions that are different from testing environments. This mismatch between training 
and testing can lead to unacceptable error rates. Noise and low-bit rate coding distortion are 
probably the most important sources of this mismatch. Noise can be classified into additive 
or convolutional if it corresponds, respectively, to an additive process in the linear domain 
or to the insertion of a linear transmission channel function. On the other hand, low-bit rate 
coding distortion is produced by coding – decoding schemes employed in cellular systems 
and VoIP/ToIP.  A popular approach to tackle these problems attempts to estimate the 
original speech signal before the distortion is introduced. However, the original signal 
cannot be recovered with 100% accuracy and there will be always an uncertainty in noise 
canceling.  
Due to its simplicity, spectral subtraction (SS) (Berouti  et al., 1979; Vaseghi & Milner, 1997) 
has widely been used to reduce the effect of additive noise in speaker recognition (Barger & 
Sridharan, 1997; Drygajlo & El-Maliki, 1998; Ortega & Gonzalez, 1997), despite the fact that 
SS loses accuracy at low segmental SNR. Parallel Model Combination (PMC) (Gales & 
Young,1993) was applied under noisy conditions in (Rose et. al.,1994) where high 
improvements with additive noise were reported. Nevertheless, PMC requires an accurate 
knowledge about the additive corrupting signal, whose model is estimated using 
appreciable amounts of noise data which in turn imposes restrictions on noise stationarity, 
and about the convolutional distortion that needs to be estimated a priori (Gales, 1997). 
Rasta filtering (Hermansky et al., 1991) and Cepstral Mean Normalization (CMN) can be 
very useful to cancel convolutional distortion (Furui, 1982; Reynolds, 1994; van Vuuren, 
1996) but, if the speech signal is also corrupted by additive noise, these techniques lose 
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effectiveness and need to be applied in combination with methods such as SS (Hardt & 
Fellbaum, 1997).  
The idea of uncertainty in noise removal was initially proposed by the first author of this 
chapter in (Yoma et al., 1995; 1996-A; 1996-B; 1997-A; 1997-B; 1998-A; 1998-B; 1998-C; 1999) 
to address the problem of additive noise. The main idea was to estimate the uncertainty in 
noise canceling using an additive noise model and to weight the information provided by 
the signal according to the local SNR. As a consequence, Weighted DTW and Viterbi 
algorithms were proposed. Then, it was shown that convolutional noise could also be 
addressed in the framework of weighted matching algorithms. In (Yoma & Villar, 2001), the 
uncertainty in noise or distortion removal was modeled from the stochastic point of view. 
As a result, in the context of HMM, the original signal was modeled as a stochastic variable 
with normal distribution, which in turn leads to consider the expected value of the 
observation probability. If the observation probability is a Gaussian mixture, it is proved 
that its expected value is also a Gaussian mixture. This result, known as Stochastic Weighted 
Viterbi (SWV) algorithm, makes possible to address the problems of  additive/convolutional 
(Yoma & Villar, 2001; 2002; Yoma et al., 2003-B), noise and  low-bit rate coding distortion 
(Yoma et al., 2003-A; 2004; 2005; Yoma & Molina, 2006) in ASR and SV  in a unified 
framework.
It is worth highlighting that SWV allows the interaction between the language and acoustic 
models in ASR just like in human perception: the language model has a higher weight in 
those frames with low SNR or low reliability (Yoma et al., 2003-B). Finally, the concept of 
uncertainty in noise canceling and weighted recognition algorithms (Yoma et al., 1995; 1996-
A; 1996-B; 1997-A; 1997-B; 1998-A; 1998-B; 1998-C; 1999) have also widely been employed 
elsewhere in the fields of ASR and SV in later publications (Acero et al, 2006-A; 2006-B; 
Arrowood & Clements, 2004; Bernard & Alwan, 2002; Breton, 2005; Chan & Siu, 2004; Cho et 
al., 2002; Delaney, 2005; Deng, et al., 2005; Erzin et al., 2005; Gomez et al., 2006; Hung et al., 
1998; Keung et al., 2000; Kitaoka & Nakagawa, 2002; Li, 2003; Liao & Gales, 2005 ; Pfitzinger, 
2000; Pitsikalis et al., 2006; Tan et al., 2005; Vildjiounaite et al., 2006; Wu & Chen, 2001). 

2. The model for additive noise 

Given that s(i), n(i) and x(i) are the clean speech, the noise and the resulting noisy signal, 
respectively, the additiveness condition in the temporal domain is expressed as: 

( ) ( ) ( )x i s i n i= +  (1) 

In the results discussed here, the signals were processed by 20 DFT mel filters. If inside each 
one of these DFT filters the phase difference between s(i) and n(i),  and the energy of both 
signals are considered constant,  the energy of  the noisy signal at the  output of the filter m,

2
mx , can be modeled as (Yoma et al., 1998-B): 

2 2 2 2 22 cos( )m m m m m mx s n c s n φ= + + ⋅ ⋅ ⋅  (2) 

where 2
ms  and 2

mn  are the energy of the clean speech and noise signals at the output of the 

filter m, respectively; φ  is the phase difference, which is also considered constant inside 
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each one of the DFT mel filters, between the clean and noise signals; and mc  is a constant 
that was included  due  to the fact that  these assumptions are not perfectly accurate in 
practice (Yoma et al., 1998-B); the filters are not highly selective, which reduces the validity 
of the assumption of low variation of these parameters inside the filters; and,  a few 
discontinuities in the phase difference may occur, although many of them are unlikely in a 
short term analysis (i.e. a 25 ms frame). Nevertheless, this model shows the fact that there is 
a variance in the short term analysis and defines the relation between this variance and the 
clean and noise signal levels. Due to the approximations the variance predicted by the 
model is higher than the true variance for the same frame length, and the correction mc had 
to be included. In (Yoma et al., 1998-B), this coefficient mc  was estimated with clean speech 
and noise-only frames. However, employing clean speech is not very interesting from the 
practical application point of view and in (Yoma & Villar, 2002) a different approach was 

followed by observing the error rate for a range of values of mc . Solving (2),  2
ms  can be 

written as: 

2 2 2 2 2 2 2( , , ) 2· ·cos ( ) 2· ·cos( )· ·cos ( )m m m m m m m ms n x A B A A Bφ φ φ φ= + − +  (3) 

where 2·m m mA n c=  and 2 2
m m mB x n= − . Notice that 2

mn can be replaced with an estimate of 

the noise energy made in non-speech intervals, 2
mE n , 2

mx is the observed noisy signal 

energy and φ  can be considered as a random variable. If ( )fφ φ , the probability density 
function of φ , is considered as being uniformly distributed between π− and π , it can be 
shown that: 

[ ]2 2log( ( )) log( ( ))· ( )· ( ) log( )m m mE s s f d E B
π

φ
π

φ φ φ φ
−

= ≅  (4) 

where [ ] 2 2
m m mE B x E n= − . To simplify the notation,   2

mn  and 2
mx  are withdrawn as 

arguments of the function 2 ( )ms defined in (3). It is important to emphasize that 2 2
m mx E n−

can be seen as the spectral subtraction (SS) estimation of the clean signal.  

In (Yoma et al., 1998-A; 1998-B) the uncertainty in noise canceling was modeled as being the 
variance:

2 2 2 2 2log( ( )) log ( ( )) log( ( ))m m mVar s E s E sφ φ φ= −  (5) 

where 2 2log ( ( ))mE s φ  was computed by means of numerical integration. 
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Figure 1. The log energy at filter m, 2log( ) log( ( ))m mS s φ= , vs. φ , where 2 ( )ms φ  is defined 

according  to  (5),  for 2 2/m mx n   equal   to  28 (            ),  18 (           ), 8 (            ) and 2 (           ). 
2
mn  was made equal to 1000 and mc to 0.1. 

2.1 Approximated expressions for the additive noise model 

Figure 1 shows the function ( )2log ( )ms φ , when  2 ( )ms φ  is given by  (3), for several values of  

the ratio 2 2/m mx n . As suggested in Fig.1, and easily verified in (3), the function ( )2log ( )ms φ  is 

even and its minimum and maximum values are, respectively, ( )2log (0)ms  and ( )2log ( )ms π

or ( )2log ( )ms π− . Employing log(1 )x x+ ≅  for 1x <<  and considering 2
m mB A>> , which is 

easily satisfied at moderate SNR (greater or equal than 6dB), it is possible to show that (see 
appendix):

( ) [ ]( )2 22· 2·log ( ) ·cos( ) log( ( ))   ·cos( ) logm m
m m m

m m

A As E s E B
B B

φ φ φ φ≅ − + ≅ − +  (6) 

Using (6), it can be shown that the uncertainty variance defined in (5) can be estimated with: 

( ) [ ]

2
2 2

 log ( )
m

m
m

E A
Var s

E B
φ ≅  (7) 
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where 2 2·m m mE A c E n=  and [ ]mE B  is defined above. Due to the fact that (6) and (7) are 

derived considering that 2
m mB A>> , this condition imposes a domain where these 

expressions can be used. Assuming that B needs to be greater or equal than 210 mA⋅ , to 

satisfy the condition above, means that (7) is valid when 2 2 2    10· ·m m m mx E n c E n− ≥ .

When 2 2 2      10· ·m m m mx E n c E n− <  a linear extrapolation could be used and (7) is 

modified to: 

( )

2
2 2 2

2 2

2

2 2
2 2 2

2

2 ·
                       if        10· ·

log ( )

    0.4      if     10· ·  
50· ·

m m
m m m m

m m

m

m m
m m m m

m m

c E n
x E n c E n

x E n

Var s

x E n
x E n c E n

c E n

φ

⋅
− ≥

−

=

−
− + − <

. (8) 

2.2 Spectral subtraction 

As mentioned above, (4) could be considered as a definition for SS (spectral subtraction). 
However, (4) presents the same problems at low SNR when the additive noise model loses 

accuracy and [ ] 2 2
m m mE B x E n= −  can be negative, which in turn is incompatible with the 

log operator. In (Yoma & Villar, 2003) the clean signal was estimated using the SS defined 
as:

{ }2 2 2max   ;  ·  m m m mSSE x E n xβ= −  (9) 

which corresponds  to a simplified version of an SS defined in (Vaseghi & Milner, 1997). 
mSSE  denotes the estimation of the clean signal energy  by means of SS. 

In order to improve the applicability at low segmental SNR of the additive noise model 
discussed here, some modifications would be necessary: first, the domain of φ  requires to 

be modified, affecting the integral in (4), to satisfy the condition 2 ( ) 0ms φ ≥ ; second, the noise 

energy 2
mn  should also be treated as a random variable at low SNR, but the estimation of its 

distribution may require long non-speech intervals, which imposes restrictions on the 
dynamics of the corrupting additive process; third, a more accurate model should also take 
into consideration an a priori distribution of the clean speech energy. Consequently, 
employing the SS defined as in (9) is an interesting compromise between the applicability of 
the approach proposed here and the theoretical model for the addition of noise discussed in 
section 2. The SS as in (9) reduces the distortion at low SNR by setting a lower threshold 
proportional to the noisy signal energy. 
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Figure 2. Probability density function of 2log( ) log( ( ))m mS s φ= assuming that φ  is a random 

variable uniformly distributed between π− and π . 2 2/m mx n  was made equal to 28, 2
mn  to 

1000 and mc  to 0.1. The p.d.f. curve of log( )mS  was estimated using the following theorem 
(Papoulis, 1991): to find ( )yf y  for a specific y, the equation ( )y g x=  is solved; if its real 

roots are denoted by nx , then  1 1( ) ( )/ ( )   ·····  ( )/ ( )y x x n nf y f x g x f x g x′ ′= + +  where ( )g x′

is the derivative of ( )g x . In this case 2log( ( ))my s φ=  and x φ= .

2.3 Uncertainty variance in the cepstral domain 

Most speech recognizers and speaker verification systems compute cepstral coefficients 
from the filter log energies. The static cepstral coefficient nC  is defined as:  

( ) ( )2

1

log ( ) ·cos · 0.5
M

n m
m

nC s m
M

πφ
=

⋅= −  (10) 

where M is the number of DFT filters. Observing that (10) is a sum and assuming that 

( )2log ( )ms φ  with 1 m M≤ ≤ are independent random variables, nC  tends to a random 

variable with Gaussian distribution according to the Central Limit Theorem (Papoulis, 
1991).  The independence hypothesis is strong but substantially simplifies the mapping 
between the log and cepstral domain for the uncertainty variance. Consequently, the 
variance of nC  is given by (Yoma et al., 1998-A; Yoma & Villar, 2002): 
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[ ] ( ) ( )2 2

1

log ( ) ·cos · 0.5
M

n m
m

nVar C Var s m
M

πφ
=

⋅= − . (11) 

In order to counteract the limitation discussed in section 2.2, ( )2log ( )mE s φ  was replaced 

with log( )mSSE , where mSSE is defined according to (9), to estimate [ ]nE C :

[ ] ( ) ( )
1

log ·cos · 0.5
M

n m
m

nE C SSE m
M

π

=

⋅= − . (12) 

The probability density functions (p.d.f.) of ( )2log ( )ms φ and nC  are shown in Figs.2 and 3. 

As can be seen in Fig.3, approximating the distribution of nC with a  Gaussian seems a 
reasonable approach.  

Considering the variables ( )2log ( )ms φ  as being independent should be interpreted as a 

hypothesis that is inaccurate for contiguous filters but more realistic when the separation 
between filters increases. This assumption  is able to simplify the formulation of the 
approach proposed here and to lead to significant improvements in the system performance 

as shown later. Assuming ( )2log ( )ms φ  is correlated requires a more complex analysis to 

estimate the uncertainty variance in the cepstral domain and the distribution of the cepstral 
coefficients of the hidden clean signal. This analysis, which would incorporate further 
knowledge about the speech signal in the spectral domain but also would make the 
estimation of the expected value of the output probability in section 3 more difficult, is not 
addressed in (Yoma & Villar, 2002) although could still lead to some improvements when 
compared with the current model. 
In speech recognition and speaker verification systems delta cepstral coefficients are used in 
combination with the static parameters. The delta cepstral coefficient in frame t, ,t nCδ  is 
defined as:  

1, 1,
, 2

t n t n
t n

C C
Cδ + −−

= . (13) 

where 1,t nC +  and 1,t nC −  are the static cepstral features in frames 1t +  and 1t − . If the 
frames are supposed uncorrelated, the same assumption made by HMM, the uncertainty 
mean and variance of  ,t nCδ  are, respectively,  given by: 

1, 1,
, 2

t n t n
t n

E C E C
E Cδ + −−

= . (14) 

1, 1,
, 4

t n t n
t n

Var C Var C
Var Cδ + −+

= . (15) 
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Concluding, the cepstral coefficients could be treated as random variables with normal 
distribution whose mean and variance are given by (12) (11) and (14) (15). As a result, the 
HMM output probability needs to be modified to represent the fact that the spectral features 
should not be considered as being constants in noisy speech. 
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Figure 3. Probability density function of the static cepstral coefficient 1C  computed with 20 

log energies  2log( ( ))ms φ . As  a consequence,  this  density    function  corresponds  to  the  
convolution (          )  of 20 p.d.f.´s similar to the one shown in Fig. 2. The theoretic Normal 
p.d.f. with the same mean and variance is represented with (           ). 

3. Modelling low-bit rate coding-decoding distortion 

As discussed in (Yoma et al., 2006), to model the distortion caused by coding algorithms, 
samples of clean speech were coded and decoded with the following coding schemes: 8 
kbps CS-CELP (ITU-T, 1996) 13 kbps GSM (ETSI, 1992), 5.3 kbps G723.1 (ITU-T, 1996-B), 4.8 
kbps FS-1016 (Campbell et al, 1991) and 32 kbps ADPCM (ITU-T, 1990). After that, the 
original and coded-decoded speech signals, which were sampled at a rate of 8000 
samples/second, were divided in 25ms frames with 12.5ms overlapping.  Each frame was 
processed with a Hamming window, the band from 300 to 3400 Hz was covered with 14 Mel 
DFT filters, at the output of each channel the energy was computed and the log of the 
energy was estimated. The frame energy plus ten static cepstral coefficients, and their first 
and second time derivatives were estimated.  Then, the parameterized original and coded-
decoded utterances were linearly aligned to generate Figs. 4-9.  
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It is worth mentioning that the estimation and compensation of the coding-decoding 
distortion proposed in (Yoma et al., 2006) was tested with SI continuous speech recognition 
experiments using LATINO-40 database (LDC, 1995). The training utterances were 4500 
uncoded sentences provided by 36 speakers and context-dependent phoneme HMMs were 
employed. The vocabulary is composed of almost 6000 words. The testing database was 
composed of 500 utterances provided by 4 testing speakers (two females and two males). 
Each context-dependent phoneme was modeled with a 3-state left-to-right topology without 
skip transition, with eight multivariate Gaussian densities per state and diagonal covariance 
matrices.  Trigram language model was employed during recognition. 
The points ( ,o d

n nO O ), where o
nO  and d

nO  are the cepstral coefficient n estimated with the 
original and coded-decoded signals, respectively, are symmetrically distributed with respect 
to the diagonal axis in  the 8 kbps CS-CELP (Fig. 4a) and in the 32 kbps ADPCM (Fig. 4b). 
This suggests that the coding-decoding distortion, defined as o d

n n nD O O= − , presents a 
reasonably constant dispersion around the mean that seems to be close to zero. As a 
consequence, the distribution of the coding–decoding distortion does not show a strong 
dependence on o

nO  in those cases. However, the same behavior is not observed in the 13 
kbps GSM coder (Fig. 5) where the pairs ( ,o d

n nO O ) seems to be symmetrically distributed 
around a center near (0, 0). 

          

(a) 8 kbps CS-CELP    (b) 32 kbps ADPCM 

Figure 4. Cepstral coefficients from uncoded ( oO ) vs. coded-decoded ( dO ) speech signals. 
The coders correspond to a) the 8 kbps CS-CELP from the ITU-T standard G.729, and  b) the 
32 kbps ADPCM from the ITU-T standard G.726 The parameters employed in the figures 
correspond to static (1, 5, 10), delta (12, 16, 20) and delta-delta (23, 27, 31) cepstral 
coefficients. The pairs ( ,o dO O ) were generated by linearly aligning uncoded with coded-
decoded speech. 
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Figure 5. Cepstral coefficients from uncoded ( oO ) vs. coded-decoded ( dO ) speech signals. 
The coder is the 13 kbps GSM from the ETSI GSM-06.10 Full Rate Speech Transcoding. The 
parameters employed in the figures correspond to static (1, 5, 10), delta (12, 16, 20) and 
delta-delta (23, 27, 31) cepstral coeffcients. The pairs ( ,o dO O ) were generated by linearly 
aligning uncoded with coded-decoded speech. 

The histograms presented in Fig. 6 (8 kbps CS-CELP) and Fig. 7 (5.3 kbps G723.1) strongly 
suggest that the coding-decoding distortion could be modeled as a Gaussian p.d.f., although 
the 5.3 kbps G723.1 coder provides ( ,o d

n nO O ) patterns similar to those observed with the 13 
kbps GSM coder (Yoma et al., 2006). The expected value, normalized with respect to the 
range of the observed o

nO , of the coding-decoding distortion vs. o
nO  is shown in Fig. 8. 

Notice that the dependence of the expected value on o
nO  is weak for the 8 kbps CS-CELP 

and the 32 kbps ADPCM. Nevertheless, in the case of the 13 kbps GSM scheme this 
dependence is more significant, although the expected value is low compared to o

nO  itself 
and displays an odd symmetry. It is interesting to emphasize that the fuzzy circular-like 
( ,o d

n nO O ) patterns observed with the 13 kbps GSM (Fig. 5) and the 5.3 kbps G723.1 coders are 
the result of this odd symmetry presented by the expected value of the distortion. The 
variance of the coding-decoding distortion vs. o

nO  is shown in Fig. 9. According to Fig. 9, the 
assumption related to the independence of the variance with respect o

nO  does not seem to be 
unrealistic. Moreover, this assumption is strengthen by the fact that the distribution of o

nO
tends to be concentrated around 0o

nO = .
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Figure 6. Distribution of coding distortion ( o dO O− ) with signals processed by 8 kbps CS-
CELP from the ITU-T standard G.729. The parameters employed in the figures correspond 
to static (1, 5, 10), delta (12, 16, 20) and delta-delta (23, 27, 31) cepstral coefficients. The 
histograms were generated with the same data employed in Fig. 4. 
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Figure 7. Distribution of coding distortion ( o dO O− ) with signals processed by 5.3 kbps 
G723-1 from the ITU-T standard G.723.1. The parameters employed in the figures 
correspond to static (1, 5, 10), delta (12, 16, 20) and delta-delta (23, 27, 31) cepstral 
coefficients. The histograms were generated with the same data employed in Fig. 4. 
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Figure 8. Expected value of the coding-decoding error, [ ]o d d
n n nE O O m− = , vs. oO . The 

expected value is normalized with respect to the range of observed oO . The following 
coders are analyzed: A) 8 kbps CS-CELP;  B) 13 kbps GSM; and, C) 32 kbps ADPCM . The 
cepstral coefficients correspond to a static (1), a delta (12) and a delta-delta (23). 
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Figure 9. Variance of the coding-decoding error, [ ]o d d
n n nVar O O v− = , vs. oO . The following 

coders are analyzed: A) 8 kbps CS-CELP;  B) 13 kbps GSM; and, C) 32 kbps ADPCM . The 
cepstral coefficients correspond to a static (1), a delta (12) and a delta-delta (23). 
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From the previous analysis based on empirical observations and comparisons of the 
uncoded and coded-decoded speech signals, it is possible to suggest that the cepstral 
coefficient n in frame t of the original signal, ,

o
t nO , could be given by (Yoma et al., 2006): 

, ,
o d
t n t n nO O D= +  (16) 

where ,
d
t nO is the cepstral coefficient corresponding to the coded-decoded speech signal; nD

is the distortion caused by the coding-decoding process with p.d.f. ( ) ( , )  
n

d d
D n n nf D N m v= that 

does not depend on the value of the cepstral coefficient n, and therefore the phonetic class; 
( , )  d d

n nN m v is a Gaussian distribution with mean d
nm  and variance d

nv . The assumption 
related to the independence of nD  with respect to the value of a cepstral coefficient or the 
phonetic class is rather strong but seems to be a realistic model in several cases, despite the 
odd symmetry shown by the expected value of the coding-decoding distortion with some 
coders. Notice that this analysis takes place in the log-cepstral domain that is not linear. 
Moreover, as discussed later, this model is able to lead to dramatic improvements in WER 
with all the coding schemes considered in (Yoma et al., 2006).  
In a real situation, ,

d
t nO  is the observed cepstral parameter and ,

o
t nO  is the hidden 

information of the original speech signal. From (16), the expected value of ,
o
t nO  is given by: 

, ,
o d d
t n t n nE O O m= +  (17) 

Concluding, according to the model discussed in this section, the distortion caused by the 
coding-decoding scheme is represented by the mean vector 1 2 3, , ,... ,...,d d d d d d

n NM m m m m m=

and the variance vector 1 2 3, , ,... ,..., d d d d d d
n NV v v v v v= . Moreover, this distortion could be 

considered independent of the phonetic class and is consistent with the analysis presented 
in (Huerta, 2000).

4. Estimation of coding-decoding distortion 

In this section the coding-decoding distortion as modeled in section 3 is evaluated 
employing the maximum likelihood criteria. Estimating the coding distortion in the HMM 
acoustic modeling is equivalent to find the vectors dM  and dV  defined above. In (Yoma et 
al., 2006) these parameters are estimated with the Expectation-Maximization (EM) algorithm 
using a code-book, where every code-word corresponds to a multivariate Gaussian, built 
with uncoded speech signals. The use of a code-book to represent the p.d.f. of the features of 
the clean speech is due to the fact that dM  and dV  are considered independent of the 
phonetic class. Inside each code-word jcw  the mean ,1 ,2 ,, ,...,o o o o

j j j j Nμ μ μ μ=  and variance 
2 2 2 2

,1 ,2 ,( ) ( ) ,( ) ,..., ( )o o o o
j j j j Nσ σ σ σ=  are computed, and the distribution of frames in the cells is 

supposed to be Gaussian:  

( ) ( ) ( )11
2

1
2 2

1( / )
(2 )

to o o o o
t j j t jO Oo o

t j N
o
j

f O e
μ μ

φ
π

−
− ⋅ − Σ −

= ⋅
Σ

 (18) 



Robust Speech Recognition and Understanding 200

where N is the number of cepstral coefficients and also the dimension of the code-book; o
jΣ

is the N-by-N covariance matrix that is supposed diagonal; and, ( ),o o o
j j jφ μ= Σ . In this case 

the speech model is composed of J code-words.  Consequently,  the p.d.f. associated to the 
frame o

tO  given the uncoded  speech signal model is: 

1
( / ) ( | ) Pr( )

J
o o o o
t t j j

j
f O f O cwφ

=

Φ = ⋅  (19) 

where { }1o o
j j JφΦ = ≤ ≤  denotes all the means and variances of the code-book. Equation 

(19) is equivalent to modeling the speech signal with a Gaussian mixture with J components. 
If the coded-decoded distortion is independent of the code-word or class, it is possible to 
show that the coded-decoded speech signal is represented by the model whose parameters 
are denoted by { }1d d

j j JφΦ = ≤ ≤ , where ( ),d d d
j j jφ μ= Σ  and,  

d o d
j j Mμ μ= −  (20) 

2 2
, ,( ) ( )d o d

j n j n nvσ σ= +  (21) 

 Consequently, the code-book that corresponds to the coded-decoded speech signal can be 
estimated from the original code-book by means of adding the vectors dM−  and  dV ,
which model the compression distortion, to the  mean and variance vectors, respectively,  
within each code-word.  
In (Yoma et al., 2006) dM  and dV  are estimated with the maximum likelihood (ML) 
criterion using adaptation utterances. Due to the fact that the maximization of the likelihood 
does not lead to analytical solutions, the EM algorithm (Huang  et al., 1990; Moon, 1996)  
was employed. Given an adaptation utterance dO  distorted by a coding-decoding scheme 
and composed of T frames, 

1 2 3,  ,  ,  ..., ,..., d d d d d d
t TO O O O O O=

dO  is also called observable data. In the problem addressed here, the unobserved data is 
represented by: 

1 2 3,  ,  ,  ..., ,..., d d d d d d
t TY y y y y y=

where d
ty  is the hidden number that refers to the code-word or density of the observed 

frame d
tO . The function ˆ( , )Q Φ Φ   is expressed as: 

( )ˆ ˆ( , )   log ( , / )  ,d d dQ E f O Y OΦ Φ = Φ Φ  (22) 

where { }ˆˆ 1j j JφΦ = ≤ ≤ , where ( )ˆ ,d d
j j jφ μ= Σ  denotes the parameters that are estimated in an 

iteration by maximizing ˆ( , )Q Φ Φ . It can be shown that (22) can be decomposed in two 
terms: 
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( )
1 1

ˆˆPr( | , ) log Pr( )
JT

d
j t j

t j
A cw O cw

= =

= Φ ⋅  (23) 

and

( )
1 1

ˆPr( | , ) log ( | , )
JT

d d
j t j t j j

t j
B cw O f O cw

= =
= Φ ⋅ Φ  (24) 

the probabilities P̂r( )jcw  are estimated by means of maximizing A with the Lagrange 
method: 

( ) ( )
1

1P̂r Pr | ,
T

d
j j t j

t
cw cw O

T
φ

=

=  (25) 

The distortion parameters defined in (16) could be estimated by applying to B the gradient 
operator with respect to dM  and dV , and setting the partial derivatives equal to zero.   
However, this procedure does not lead to an analytical solution for dV . In order to 
overcome this problem, the following algorithm is proposed: 

1. Start with oΦ = Φ , where { }1j j JφΦ = ≤ ≤  and ( ),j j jφ μ= Σ .

2. Compute  Pr( , )d
j t jcw O φ

φ
φ

φ
=

⋅
=

⋅
1

( | ) Pr( )
Pr( , )

( | ) Pr( )

d
t j jd

j t j J
d
t k k

k

f O cw
cw O

f O cw
 (26) 

3. Estimate P̂r( )jcw  with (25) 
4. Estimate nμΔ  with 

( ), ,
2

1 1 ,

2
1 1 ,

P̂r( | , )

P̂r( | , )

dJT
t n j nd

j t j
t j j n

n dJT
j t j

t j j n

O
cw O

cw O

μ
φ

σ
μ

φ
σ

= =

= =

−
⋅

Δ =  (27) 

5. Estimate ,ˆ j nμ , 1 j J< <  and  1 n N< <

, ,ˆ j n j n nμ μ μ= + Δ  (28) 

6. Estimate 2
,ˆ j nσ  for each code-book  

( )2

, ,
2 1
,

1

ˆ ˆPr( | , )
ˆ

P̂r( | , )

T
d d

j t j t n j n
t

j n T
d

j t j
t

cw O O

cw O

φ μ
σ

φ
=

=

⋅ −
=  (29) 
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7. Estimate likelihood of  the adaptation utterance dO  with the re-estimated 
parameters: 

T

t 1 1

ˆ( / ) ( | ) Pr( )
J

d d
t j j

j
f O f O cwφ

= =

Φ = ⋅  (30) 

8. Update parameters: 

      ˆΦ = Φ

     ˆPr( ) Pr( )j jcw cw=

9. If convergence was reached, stop iteration; otherwise, go to step 2. 
10. Estimate dM and dV :

, ,( - )d o
n j n j nm μ μ= −  (31) 

for any 1 j J< < , and  

2 2
, , j

1

j
1

-( ) Pr(cw ) 

Pr(cw )

J
o

j n j n
jd

n J

j

v
σ σ

=

=

⋅
=  (32) 

where 1 n N< < . If 0d
nv < , d

nv  is made equal to 0. 

It is worth observing that (27) was derived with 0
( )n

B
μ

∂ =
∂ Δ

, where B is defined in (24), 

, ,ˆ j n j n nμ μ μ= + Δ  corresponds to the re-estimated code-word mean in an iteration. Expression 

(29) was derived by  2
,

0
ˆ j n

B
σ
∂ =

∂
. Moreover, expressions (31) and (32) assume that the coding-

distorting is independent of the code-word or class, and (32) attempts to weight the 
information provided by code-words according to the a priori probability Pr( )jcw .
The EM algorithm is a maximum likelihood estimation method based on a gradient ascent 
algorithm and considers the parameters dM  and dV   as being fixed but unknown. In 
contrast, maximum a posteriori (MAP) estimation (Gauvain & Lee, 1994) would assume the 
parameters dM  and dV  to be random vectors with a given prior distribution. MAP 
estimation usually requires less adaptation data, but the results presented in (Yoma et al., 
2006) show that the proposed EM algorithm can lead to dramatic improvements with as few 
as one adapting utterance.  Nevertheless, the proper use of an a priori distribution of dM
and dV  could lead to reductions in the computational load required by the coding-decoding 
distortion evaluation. When compared to MLLR (Gales, 1998), the proposed computation of 
the coding-decoding distortion requires fewer parameters to estimate, although it should 
still lead to high improvements in word accuracy as a speaker adaptation method. Finally, 
the method discussed in this section to estimate the coding-decoding distortion is similar to 
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the techniques employed in (Acero and Stern, 1990; Moreno et al., 1995; Raj et al., 1996) to 
compensate  additive/convolutional noise and estimate the unobserved clean signal. In 
those papers the p.d.f. for the features of clean speech is also modeled as a summation of 
multivariate Gaussian distributions, and the EM algorithm is applied to estimate the 
mismatch between training and testing conditions.  However, (Yoma et. al, 2006) proposes a 
model of the low bit rate coding-decoding distortion that is different from the model of the 
additive and convolutional noise, although they are similar to some extent. The mean and 
variance compensation is code-word dependent in (Acero & Stern, 1990; Moreno et al., 1995; 
Raj et al., 1996). In contrast, dM  and dV  are considered independent of the code-word in 
(Yoma et. al, 2006). This assumption is very important because it dramatically reduces the 
number of parameters to estimate and the amount of adaptation data required.  Despite the 
fact that (27) to estimate dM  is the same expression employed to estimate convolutional 
distortion (Acero & Stern, 1990) if additive noise is not present (Yoma, 1998-B), the methods 
in (Acero & Stern, 1990; Moreno et al., 1995; Raj et al., 1996) do not compensate the HMMs. 
Notice that the effect of the transfer function  that represents a linear channel is supposed to 
be an additive  constant in the  log-cepstral domain. On the other hand, additive noise 
corrupts the speech signal according to the local SNR (Yoma & Villar, 2002), which leads to a 
variance compensation that clearly depends on the phonetic class and code-word. 

5. The expected value of the observation probability: The Stochastic 
Weighted Viterbi algorithm 

In the ordinary HMM topology the output probability of observing the frame tO  at state s,
( )s tb O , is computed, either in the training or in the testing algorithms, considering tO as

being a vector of constants. As can be seen in (Yoma & Villar; 2002; Yoma et al., 2006) the 
observation vector is composed of static, delta and delta-delta cepstral coefficients, and 
according to sections 2 and 3 these parameters should be considered as being random 
variables with normal distributions when the speech signal is corrupted by additive noise 
and coding-decoding distortion. Therefore, to counteract this incompatibility (Yoma & 
Villar; 2002) proposes to replace, in the Viterbi algorithm, ( )s tb O  with [ ]( )s tE b O  that denotes 
the expected value of the output probability. This new output probability, which takes into 
consideration the additive noise model, can be compared an empiric weighting function 
previously proposed in (Yoma et al., 1998-B). 

5.1 An empiric weighting function 

The uncertainty in noise canceling variance was estimated in each one of the DFT mel filters 
and employed to compute a coefficient w(t) to weight the information provided by the frame 
t (Yoma et al., 1998-B). This weighting coefficient was included in the Viterbi algorithm by 
means of raising the output probability of observing the frame tO  at state s, ( )s tb O , to the 
power of w(t). The weighting parameter was equal to 0 for noise-only signal and equal to 1 
for clean speech. As a consequence, if w(t)=0, [ ] =( )( ) 1w t

s tb O that means that the frame does 
not give any reliable information. This weighted Viterbi algorithm was able to show 
reductions in the error as high as 80 or 90% in isolated word speech recognition 
experiments. However, the approach presented some drawbacks: first, the function to 
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estimate the weighting coefficient from the uncertainty variance was empiric, although 
coherent; second, the variance in (5) was estimated using numeric approximations which 
resulted in a high computational load. It is worth highlighting that the same weighting 

[ ] ( )( ) w t
s tb O  has been used later by other authors. For instance, in (Bernard & Alwan, 2002; 

Tan, Dalsgaard, & Lindberg, 2005) this weighting function was used to address the problem 
of speech recognition in packet based and wireless communication. Notice that a lost packet 
would corresponds to  reliability in signal estimation equal to zero. 

5.2 The expected value of the output probability 

In most HMM systems the output probability is modeled with a mixture of Gaussians with 
diagonal covariance matrices (Huang et al., 1990): 
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where s, g, n are the indices for the states, the Gaussian components and the coefficients, 
respectively; gp  is a weighting parameter; = ,1 ,2,   ,  ..., Ot t t t,NO O O  is the observation 
vector composed of N coefficients (static, delta and delta-delta cepstral parameters); and, 

, ,s g nE  and , ,s g nVar  are the HMM mean and variance, respectively. Assuming that the 
coefficients ntO ,  are uncorrelated, which in turn results in the diagonal covariance matrices, 
the expected value of )( ts Ob  is given by: 
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and, according to sections 2 and 3, ( ), , ,; ( ); ( )t n t n t nG O E O Var O  is the Gaussian distribution of 

ntO , . When the speech signal is corrupted with addittive noise, the mean, )( ,ntOE , and 
variance, )( ,ntOVar , are estimated with  (11) (12) and (14) (15) for the static and delta 
cepstral coefficients, respectively. The delta-delta cepstral parameters can be computed 
using the same strategy employed in (14) (15). When the speech signal is affected by coding-
decoding distortion, ( ) d

tE O M=  and ( ) d
tVar O V= , as discussed in section 3. As a 

consequence, it is possible to show that: 
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where = +, , , , , ,( )s g n t s g n t nVtot Var Var O . Therefore, (34) can be written as: 
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This is an elegant and generic result, and deserves some comments. Firstly, the expression 
(37)  means that the expected value of the output probability is also represented by a sum of 
Gaussian functions. Secondly, if ,( ) 0t nVar O →  (i.e. high SNR) ,t nO  can be considered as a 

constant and (37) is reduced to the ordinary output probability because =, ,t n t nE O O .
Finally, if ,( )t nVar O  is high (i.e. low SNR) the expected value given by (37) tends to zero 

independently of ,t nE O , and  of the HMM parameters , ,s g nE  and , ,s g nVar , which means 

that the information provided by a noisy observation vector is not useful and has a low 
weight in the final decision procedure of accepting or rejecting a speaker. The weighting 
mechanism could be defined by the fact that the original output probability is mapped to 
the same value (1 in the empirical weighting function, and 0 in (37)) when the segmental 
SNR is very low. As a consequence, the expression (37) is consistent with the weighting 
function mentioned in section 6.1 and can define a stochastic version of the weighted Viterbi 
algorithm, which in turn was proposed to take into consideration the segmental SNR. 

5.3 SWV applied to speaker verification with additive noise 

As shown in (Yoma & Villar; 2002), experiments with speech signal corrupted by car noise 
show that the expected value of the output probability using the additive noise model 
combined with SS led to reductions of 10%, 34%, 35% and 31% in the EERSD at SNR=18dB, 
12dB, 6dB and 0dB, respectively, when compared with the ordinary Viterbi algorithm also 
with SS. In the same conditions, the reductions in the EERSI were 26%, 41%, 43% and 30% at, 
respectively, SNR=18dB, 12dB, 6dB and 0dB as shown in Table 1. Although an optimum 
might be considered around cm=0.25, according to Figs. 10 and 11 the EERSD and the EERSI

did not present a high variation with cm, which confirms the stability of the approach 
proposed. Preliminary experiments showed that the lower the reduction due to spectral 
subtraction, the higher the improvement due to the weighted Viterbi algorithm. The 
effectiveness of spectral subtraction is closely related to how low SNR frames are processed.  
According to the experiments presented in (Yoma & Villar; 2002) and Table 1 the weighted 
Viterbi algorithm defined by the expected observation probability in (37) can improve the 
accuracy of the speaker verification system even if SS is not employed. For instance, the 
average reduction in EERSD and EERSI without SS is 11%. As can be seen in (Yoma & Villar; 
2002) shown in Table 2 and in Fig. 12, the expected value of the output probability using the 
additive noise model substantially reduced the variability of TEERSD and TEERSI  with and 
without SS. According to Table 2, the differences TEERSD(18dB) - TEERSD (0dB) and 
TEERSI(18dB) - TEERSI(0dB) with SS are, respectively, 53% and 55% lower with the weighted 
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Viterbi algorithm than with the ordinary one. This must be due to the fact that, when the 
segmental SNR decreases, ,( )t nVar O increases and the output probability according to (37) 
tends to 0 for both the client and global HMM in the normalized log likelihood (log L(O))
(Furui, 1997):: 

 log (O log (O| ) log (O| ) i gL ) P Pλ λ= −  (38) 

where )|O( iP λ  is the likelihood related to the speaker i; and )|O( gP λ  is the likelihood 
related to the global HMMs. 
The results presented in (Yoma & Villar; 2002) with speech noise basically confirmed the 
tests with car noise. The expected observation probability in (37) led to average reductions 
in EERSD and in EERSI  equal to  23% and 30%, respectively, with SS. Significance analysis 
with the McNamar´s testing (Gillik & Cox, 1989) shows that this improvement due to the 
expected value of the output probability using the additive noise model combined with SS, 
when compared with the ordinary Viterbi algorithm also with SS, are significant (p<0.1 at 
SNR=18dB and p<0.001 at SNR=12, 6 and 0dB). Also, the differences TEERSD(18dB) - TEERSD

(0dB) and TEERSI(18dB) - TEERSI(0dB) were dramatically improved by the weighted Viterbi 
algorithm in combination with the additive noise model. 
Finally, it is worth mentioning that the performance of SS is highly dependent on the 
parameters related to the thresholds (Berouti et al., 1979; Vaseghi & Milner, 1997) that are 
defined to make the technique work properly. In the case of the SS as defined in (9), 
parameter β , which defines the lower bound for the estimated signal energy, was not 
optimized for each SNR although its optimum values is case dependent. For instance, Table 
3 shows that the expected observation probability led to a reduction of 26% in the EERSI at 
SNR=18dB although SS alone did not give any improvement. This result suggests that the 
weighted Viterbi algorithm also improves the robustness of SS by means of giving a lower 
weight to those frames with low segmental SNR, where in turn SS is not reliable. 

SNR 18dB 12dB 6dB 0dB 
Vit-Nss 2.50 5.11 14.70 32.94 
Vit-SS 2.59 4.71 11.14 26.73 

SWVit-NSS 2.26 4.40 12.22 31.35 
SWVit-SS 1.92 2.79 6.40 18.85 

Table 1. EERSI (speaker-independent Equal Error Rate) % with speech corrupted by additive 
noise (car noise). The correction coefficient cm was made equal to 0.25. 

 Vit-NSS Vit-SS SWVit-NSS SWVit-SS 
TEERSD 1.72 1.93 1.01 0.90 
TEERSI 1.62 1.88 0.93 0.84 

Table 2. Difference in the threshold of equal error rate at 18dB and 0dB, TEER(18dB)-
TEER(0dB), with speech  corrupted by additive noise (car noise). The correction coefficient 
cm was made equal to 0.25. 
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Figure 10. EERSD vs. cm with speech corrupted by additive noise (car noise):    18dB (        ),  
12dB (          ), 6dB (          ) and 0dB (         ).   

Figure 11. EERSI  vs. mc  with  speech  corrupted by  additive  noise (car noise): 18dB (        ),  
12dB (         ), 6dB (          ) and 0dB (        ).   
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Figure 12. Speaker-independent threshold of equal error rate (TEERSI) vs. SNR with speech 
corrupted by additive noise (car noise):  WVit-SS (          ); Vit-SS (         );  WVit-NSS (         ) 
and Vit-NSS (          ). The correction coefficient cm was made equal to 0.25. 

5.4 SWV applied to low-bit rate coding-decoding distortion compensation 

The code-book to model the non-distorted speech process was composed of 256 code-words 
and was generated with the uncoded training utterances.  The techniques are indicated as 
follows: HMM-Comp, with HMM compensation where dM  and dV  are estimated with the 
training utterances  by directly aligning  original and coded-decoded speech signals; and, 
HMM-Comp-EM, with HMM compensation where dM  and dV  are estimated according to 
the EM-based algorithm explained in section 4. Observe that Baseline indicates that no HMM 
compensation was applied. The baseline system with non-distorted speech and without any 
compensation gave a WER equal to 5.9%. 
According to the results presented in (Yoma et. al., 2006) and shown in Table 3, the ADPCM, 
GSM, CS-CELP, G723-1 and FS-1016 coders increased the error rate from 5.9% (baseline 
system) to 6.2%, 6.9%, 11.2%, 11.9% and 15.2%, respectively. Also in Table 3, it is possible to 
observe that the HMM compensation led to a reduction as high as  37% or 71% in the error 
rate introduced by the coding schemes when the average coding-decoding distortion was 
estimated by directly aligning the training uncoded and coded-decoded speech, HMM-
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Comp. This result clearly shows the validity of the method to model the coding distortion 
and to compensate the HMMs. However, it is worth mentioning that in HMM-Comp all the 
training speakers were employed to compute the average dM  and dV .  Notice that HMM-
Comp gave a WER lower than the one achieved by the baseline system with uncoded speech 
(i.e. 5.9%) in some cases. This result could suggest that the HMMs are slightly under trained, 
so dV  could also tend to compensate this effect.  

Coder Bit rate Baseline 
WER(%)

HMM-Comp.
WER(%)

HMM-Comp-EM
WER(%).

ADPCM 32 kbps 6.2 3.9 2.8 

GSM 13 kbps 6.9 3.8 3.3 

CS-CELP 8 kbps 11.2 3.3 2.6 

G723-1 5.3 kbps 11.9 5.8 2.6 

FS-1016 4.8 kbps 15.2 7.4 3.6 

Table 3. WER (%) with signal processed with the following coders: 32 kbps ADPCM, 13 
kbps GSM, 8kbps CS-CELP, 5.3 kbps G723-1 and 4.8 kbps FS-1016. The baseline system 
without any compensation gives a WER equal to 5.9% with uncoded utterances. 
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Figure 13. dM  (top) and dV  (bottom) estimated with the EM based algorithm (      ) and 
computed with the training database by directly aligning uncoded and coded-decoded 
speech samples (          ). The  signals were processed by the  8 kbps CS-CELP from the ITU-T 
standard G.729. 
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According to Fig. 13, the EM algorithm described here can lead to a reasonable 
approximation of dM  and dV  when compared to the average coding-decoding distortion 
computed with the training database.  The difference between the EM estimation and the 
average dM  and dV  (Fig. 13) could be due to fact that the coding-decoding distortion 
depends on the speaker. As can be seen in Table 3, the EM estimation of dM  and dV  with 
only one adaptation utterance  dramatically reduced  the effect of the ADPCM, GSM, CS-
CELP, G723-1 and FS-1016 coding distortion, and gave a WER lower than HMM-Comp and 
than the one achieved by the baseline system with uncoded speech. A reasonable hypothesis 
could be the fact that the approaches described in sections 3 and 4 also provides an 
adaptation to testing condition beyond the type of codification because the estimation of the 
vectors dM  and  dV  may also account for a speaker adaptation effect.  Actually, the results 
presented in (Yoma et. al., 2006), show that the EM estimation algorithm applied to uncoded 
signal reduces in 56% the WER when compared to the baseline system. In fact, this result 
would be consistent with (Zhao, 1994), where additive bias compensation in the cepstral 
domain for speaker adaptation was studied. Also according to Table 3, it is possible to 
observe that the reduction in WER compared to the baseline system is as high as 52% or 
78%, which in turn suggests that the approach proposed here is effective to model, estimate 
and compensate the coding-decoding distortion. It is worth emphasizing the fact that the 
reduction in WER increases when the bit-rate decreases. Finally, when compared to the 
baseline system, HMM-Comp-EM reduces the averaged difference between WER with 
distorted speech and clean signal from 4.4% to 0.4%. 
The training database was composed of utterances from just 36 speakers. Consequently, the 
fact that the EM compensation method also introduces a speaker adaptation effect would be 
consistent with the size of the database. Most of the compensation methods for HMMs 
attempt to adapt means or variances of the observation probability density functions. 
Moreover, it is to be expected that a canceling/compensation technique proposed to address 
a given distortion also helps to reduce the error introduced by another type of distortion. 
For instance, RASTA filtering was initially proposed to cancel convolutional noise but it also 
reduces the effect of additive noise. It is also hard to believe that a speaker adaptation 
scheme could not compensate or reduce convolutional noise. Finally, as was shown in 
(Yoma et. al., 2006), a speaker adaptation should also be useful for diminishing coding-
decoding distortion, although this reduction would depend on the model adopted to 
estimate the means and variances. However, in additional speaker-dependent (SD) 
experiments with all the coders tested here, HMM-Comp-EM was able to lead to an average 
reduction in WER as high as 54% when compared to the baseline system. Those SD 
experiments were done by training the HMMs with both the training and testing databases. 
Consequently, the mismatch was restricted to the coding decoding distortion. This result 
strongly suggests that: first, the speaker adaptation effect in HMM-Comp-EM, if there is any, 
is not the most important mechanism in the reduction of WER provided by the HMM-Comp-
EM technique; and second, the improvement in word accuracy given by the method 
presented in (Yoma et. al., 2006) is not due to under trained conditions.
The EM adaptation method is unsupervised and requires only one adaptation utterance. In 
(Yoma et. al., 2006), RATZ (Moreno et. al., 1995), without variance compensation and 
supervised ML estimation (Afify et. al., 1998), based on forced Viterbi alignment was 
compared with HMM-Comp-EM algorithm. According to (Moreno et. al., 1995), blind RATZ 
jointly compensates for additive and convolutional noise by employing the EM algorithm 
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s(t)

n(t)

x(t)

xD(t)
coding decoding+

and a summation of multivariate Gaussian distributions to model the p.d.f. for the features 
of clean speech. Notice that blind RATZ is an unsupervised method. Word accuracy given 
by RATZ strongly depends on the number of adapting utterances employed to compute 

,
o
t nO . When compared to the baseline system, RATZ could provide an improvement in WER 

if the number of adapting utterances is higher than 4 or 10. If the method employs only one 
adaptation utterance, it always gave a WER even higher than the one achieved with the 
baseline system. It is worth highlighting that HMM-Comp-EM provides higher recognition 
accuracy even when the whole testing data was employed by RATZ. Supervised ML, 
Superv-ML, estimation evaluated in (Yoma et al., 2006) is similar to the one presented in 
(Afify et. al., 1998) except for the fact that the Forward-Backward procedure was replaced 
with the Viterbi algorithm. The improvement in WER given by Superv-ML also depends on 
the number of adapting utterances. The stochastic model employed by the proposed EM 
unsupervised algorithm is more robust than the one provided by the Superv-ML method, 
which in turn is composed of only the HMMs corresponding to the adapting utterances. 
Consequently, the requirement with respect to the amount of adaptation data to achieve the 
highest reduction in WER is more severe in Superv-ML. When the number of adapting 
utterances is equal to 500, Superv-ML could give improvements in WER worse than HMM-
Comp-EM with GSM and ADPCM, despite the fact that the proposed EM unsupervised 
estimation algorithm employed only one adaptation utterance and Superv-ML  made use of 
the whole testing database. 

5.5. SWV to address the problem of joint compensation of additive noise and low-bit 
rate coding-decoding distortion 

As can be seen in Fig. 14 (Yoma et. al., 2003), the problem of additive noise and low-bit rate 
coding-decoding distortion corresponds to a clean signal s(t) firstly corrupted by an additive 
noise in the temporal domain, x(t), and then  coded  and decoded, xD(t). The observation 
parameter vectors of the signals s(t), x(t)  and xD(t). are OtS,U, OtX,U and OtS,D, respectively. S
and X denote the clean and noisy signal, respectively; U and D correspond to the signals 
before (uncoded) and after (distorted) the coding-decoding process. 

Figure 14. Additive  noise  and  coding  distortion. 
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Figure 15. Join compensation of additive noise and coding distortion: ,
,( )S D

S D
Of O  denotes 

the p.d.f. of the distorted by coding clean signal; ,
,( )S U

S U
Of O  corresponds to the p.d.f. of the 

uncoded clean  signal. 
As is shown in Fig. 15, the method proposed in (Yoma et. al., 2003) firstly compensates the 
presence of additive noise by applying SS and estimating the uncertainty variance in noise 
canceling as in section 2 using ( )Dx t . As a result, the p.d.f. of the distorted by coding clean 
speech, ,

,( )S D
S D

Of O , is generated. Then, as discussed in section 3, ,
,( )S U

S U
Of O  is estimated by 

adding Md and Vd  to the mean and variance, respectively, of ,
,( )S D

S D
Of O . Finally, by taking 

the expected value of the output p.d.f., the compensation of the additive noise and of the 
coding distortion  are incorporated in the Viterbi decoding as in (37). 
As can be seen in Tables 4 and 5 (Yoma et al., 2003), the additive noise  and the  coder 
dramatically degraded the WAC at SNR equal to 18dB and 12dB. SWV and SS substantially 
reduced the WER, but the highest improvement was achieved when coding-decoding 
compensation was also applied. Reductions as high as 50% or 60% in WER were observed at 
18dB and 12dB.  Nevertheless, the degradation of the system at 12dB is still too severe. 
According to Tables 4 and 5, the additive noise has probably a more significant effect on  
rising  the WER than the coding-decoding distortion. As a result, improving the accuracy of 
the additive noise model (Yoma et. al., 1998-B) at low SNR should certainly increase the 
effectiveness of the approach proposed here. 

SNR 18dB 12dB 

Baseline 27.4 38.5 

SWV-SS 11.9 18.3 

SWV-SS-CDC 10.2 16.9 

Table 4. WER (%) with signal corrupted with additive noise (car noise) and coded by 8kbps 
CS-CELP.   
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SNR 18dB 12dB 

Baseline 26.2 37.9 

SWV-SS 11.7 17.5 

SWV-SS-CDC 10.0 15.3 

Table 5. WER (%) with signal corrupted with additive noise (speech noise) and coded by 
8kbps CS-CELP.

6. Language model accuracy and uncertainty in noise canceling in SWV 

No significant improvements were observed when the SWV algorithm in combination with 
the additive noise model proposed in (Yoma et al, 1998-B) and SS was applied to the 
connected digit task. This result must be due to fact that the SWV algorithm makes the 
HMM observation p.d.f.  lose discrimination ability at noisy frames. This hypothesis means 
that the Viterbi decoding should be guided by the information from higher layers, such as 
language modeling, in those intervals with low SNR. In contrast, the connected digit task 
employs a flat language model. In (Yoma et al, 2003-B), the SWV algorithm was applied to a 
continuous speech, medium vocabulary, speaker independent (SI) task opening a new 
paradigm in speech recognition where the noise canceling could interact with the 
information from higher layers in the same way the human perceptions works.  Bigram and 
trigram language models were tested and, in combination with spectral subtraction, the 
SWV algorithm coul lead to reductions as high as 20% or 45% in word error rate (WER) 
using a rough estimation of the additive noise made in a short non-speech interval. Also, the 
results presented in (Yoma et al, 2003-B) suggest that the higher the language model 
accuracy, the higher the improvement due to SWV.  Consequently,  the problem of noise 
robustness in speech recognition should be classified in two different contexts: firstly, at the 
acoustic-phonetic level only, as in small vocabulary tasks with flat language model; and, by 
integrating noise canceling with the information from higher layers.

7. Conclusions 

The Stochastic Weighted Viterbi algorithm offers a unified framework to reduce the effect of 
additive/convolutional noise and low-bit rate coding-decoding distortion.  SWV started a 
new paradigm in speech processing by considering the original speech signal information as 
a stochastic variable. Consequently, the ordinary HMM observation probability needs to be 
replaced with its expected value.  SWV is interesting from the theoretic and applied points 
of view: first, it is based on stochastic models of additive noise and low-bit rate coding-
decoding distortion; and second, it assumes reasonable hypotheses such as a rough 
estimation of additive noise and a low number of adaptation utterances. It is worth 
emphasizing that SWV allows the interaction between the higher layers of language 
modeling (semantic, syntactic, etc…) and acoustic models in ASR just like in human 
perception: the higher layer of the linguistic information should have a higher weight in 
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those frames with low SNR or low reliability.  Finally, the concepts of uncertainty in noise 
canceling and weighted recognition algorithms, which were firstly proposed by the first 
author of this chapter, have also widely been employed elsewhere in the fields of ASR and 
SV in later publications. 
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1. Introduction 

The main task of speech recognition is to enable computer to understand human languages 
(Lawrence, 1999; Jingwei et al., 2006). This makes it possible that machine can communicate 
with human. Usually, speech recognition includes three parts: pre-processing, feature 
extraction and training (recognition) network. In this paper, the speech recognition system is 
described as Fig. 1. It consists of filter bank, feature extraction and training (recognition) 
network. The function of filter bank is dividing speech signal into different frequency band 
to be good for extraction feature. The good feature can improve the system recognition rate. 
The training (recognition) network trains (recognizes) the feature vectors according to 
feature mode and outputs recognition results. 
The research on noise-robust capability of speech recognition system is a difficult problem 
that has been limiting the practical application of the speech recognition system (Tianbing et 
al., 2001). Because human ear has strong noise-robust capability, it is very important to 
abstract the features of fitting auditory characters of human ear for improving system noise-
robust performance. The warping wavelet overcomes the disadvantage that the common 
wavelet divides frequency band in octave band and it is more suitable to the auditory 
characters of human ear. Bark wavelet is a warping wavelet that divides frequency band 
according to critical band (Qiang et al., 2000). At the same time, MFCC (Mel Frequency 
Cepstrum Coefficients) (Lawrence, 1999) and ZCPA (Zero-Crossing with Peak Amplitude) 
(Doh-suk et al., 1999) features themselves have noise-robust performance. HMM is classical 
recognition network, and wavelet neural network is also popular recognition network 
(Tianbing et al., 2001). So considering above three parts of speech recognition system, the 
paper used the two kinds of filters: FIR filter and Bark wavelet filter; two kinds of features:  

outputinput

Filter bank Feature extraction
Training and

recognition network

Figure 1. The speech recognition system 
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MFCC and ZCPA; two kinds of recognition networks: HMM and WNN (Wavelet Neural 
Network). Limited by article length, the paper selected a few of composite modes, described 
their principles and presented experimental results. The three parts of Fig.1 have effect on 
one another. Their different combination can get different results. In practical application we 
can select optimum combination mode. The combination modes selected in the research are 
listed in Table 1.The article includes five sections: the first section is introduction; the second 
section describes the principle of ZCPA and implementation method of combination mode 1 
and 2 in Table 1; and the third section describes the principle of Bark wavelet and 
implementation method of combination mode 3 and 4 in Table 1; the fourth section is the 
experimental results and discussion; the fifth section is conclusions. 

Combination modes 
index Filter Feature Training and 

recognition network 
1 FIR ZCPA HMM 
2 FIR ZCPA WNN 
3 Bark wavelet ZCPA HMM 
4 Bark wavelet MFCC HMM 

Table 1. The combination modes of speech recognition system in the paper 

2. The Principle of ZCPA and Implementation Methods of Combination Mode 
    1 and 2 

2.1 The principle of ZCPA 

The human auditory system consists of outer ear, middle ear and inner ear. Speech signals 
are transformed into mechanical vibrations of the eardrum at the outer ear, and then are 
transmitted to the cochlea of the inner ear through the middle ear. The role of the middle ear 
is known as impedance matching between the outer ear and the inner ear. The speech 
signals are mainly processed in the inner ear, especially in the cochlear of the inner ear. The 
basilar membrane of the cochlear has the function of frequency choice and tune. Speech 
signals transmitted through the oval window at the base of the cochlear are converted into 
travelling waves of the basilar membrane. The site of maximum excursion of the travelling 
wave on the basilar membrane is dependent on frequency. High frequencies show 
maximum excursion near the base while low frequencies near the apex. Frequencies are 
distributed according to logarithm relationship along the basilar membrane over 800Hz. The 
frequency-position relationship can be expressed as Equation (1) (Doh-suk et al., 1999): 

 F = A(10ax - 1) (1) 

Where F is frequency in Hz, and x is the normalized distance along the basilar membrane 
with a value of from zero to one. A and a are the constants. A=165.4 and a=2.1. 
The cochlear takes a very important role in the auditory system, which can apperceive and 
transmit the speech signals. In fact, with the function of series-parallel conversion, it 
corresponds to a bank of parallel band-pass filters. Signals imported by series are 
decomposed and exported by parallel. Then it provides evidence to some extent for cochlear 
filter model.  
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Figure 2. ZCPA feature extraction scheme 

Fig. 2 shows the feature extraction block scheme of ZCPA (Doh-suk et al., 1999). This system 
consists of a bank of band-pass filters, zero-crossing detector, peak detector, nonlinear 
compression and frequency receiver. The filter bank consists of 16 FIR band-pass filters that 
are designed to simulate the basilar membrane of cochlear. And zero-crossing detector, peak 
detector and nonlinear compression simulate the auditory nerve fibers. The frequency 
information is obtained by computing the zero-crossing intervals of speech signal from zero-
crossing detector. And the intensity information is obtained by detecting peak amplitudes 
between the intervals and making nonlinear amplitude compression from peak detector and 
the nonlinear compression. The frequency receiver combines the frequency with the peak 
information. Finally, this information is compounded to form the feature output of speech 
signals. 

2.1.1 The design of the filters   

Because the basilar membrane of cochlear corresponds to a bank of parallel band-pass 
filters, we can choose 16 points along the basilar membrane and get 16 FIR filters, whose 
frequencies change from 200Hz to 4000Hz. The centre frequency of every filter can be 
obtained from the Equation (1). And bandwidths are set to be proportional to the equivalent 
rectangular bandwidth (ERB) (Oded, 1992; Doh-suk et al., 1999).  

 ERB = 6.23F2 + 93.39F + 28.52 (2) 

Where F is the centre frequency of each filter in Hz. Table 2 shows the centre frequencies 
and the bandwidths of each FIR filter, fi is the centre frequency, fi is the bandwidth. 

Filter

No.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

fi(Hz) 200 264 340 429 534 657 802 1011 1172 1408 1685 2011 2395 2845 3376 4000 

fi(Hz) 46 53 61 71 82 95 111 129 151 176 206 241 283 331 389 456 

Table 2. The relationship between centre frequency and bandwidth of FIR filters 
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2.1.2 The theory of the zero-crossing 

When the two adjacent samples have the different sign, we name this phenomenon as zero-
crossing. And the up-going zero-crossing is that the current sample value is bigger than zero 
and the former sample value is smaller than zero. Because the number of the zero-crossing is 
different for different frequency’s signals, that is to say, high frequency signals have more 
zero-crossings than low frequency signals. So the up-going zero-crossing rates can reflect 
the frequency information of the speech signals. 

2.1.3 Extraction of the intensity information 

To simulate the relation between the phase-locking degree of the auditory nerve fibers and 
the intensity of the stimulus, the maximal peak value between the two adjacent zero-
crossing samples need be detected. This relation can be described by a monotonic function. 
That is expressed as Equation 3 :

 g(x) = lg( 1.0+20x ) (3) 

Where x is the maximal peak value, and g(x) is the result of the nonlinear compression.  

2.1.4 Frequency receiver  

The frequency band of speech signal is mainly between 200Hz and 4000Hz. For obtaining 
low dimension and high effect feature parameters, we used ERB-rate (Oded, 1992) scale to 
divide the frequency band into 16 bands. And each band is named as a frequency bin. By 
computing the up-going zero-crossing number of the signal duration, it can be known that 
the signal duration belong to some frequency bins. The frequency information included in 
the speech signals can be reflected consequently.The frequency information and the 
intensity information across all channels are combined to obtain the frequency histograms 
(i.e. frequency bins) by the frequency receiver (Oded, 1994). The course can be described by 
Equation (4). 

=

−

=

=
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1Z
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klij )g(pi)zcpa(m, , 1  i  N (4) 

Where, zcpa(m, i) are output features m is frame index , i is the index of frequency bin. 
And N is the number of frequency bin, which is equal to 16. Nch is the number of FIR 
filters here Nch=16. Each of filters is a signal processing channel and k is its index. Zk

denotes the number of the up-going zero-crossings at frame m and channel k. l is the index 
of up-going zero-crossings, l = 1, 2, Zk-1. And pkl denotes the peak amplitude between 
the l-th and (l+1)-th up-going zero-crossings. 

lij
 is the Kronecker delta (When i= jl,

lij
 =1; 

When i  j1,
lij
 =0). jl is the frequency bin index mapped by the interval between the l-th 

and(l+1)-th up-going zero-crossings 1  jl  N. 
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2.1.5 Time and amplitude normalization 

The feature form obtained is zcpa(m, i). In most case, because m is of different values, the 
number of feature vectors obtained is also different. Thus, it is necessary to normalize time. 
In the paper, the dimension of feature vectors is 64×16 after time normalization. The time  
normalization method used is Non-Linear Partition method (Zhiping et al., 2005). It is also 
necessary to normalize amplitude for latter processing convenience. 

2.2 The implementation method of combination mode 1: FIR+ZCPA+HMM 

2.2.1 The experimental principle 

An isolated word speech recognition system with FIR filter, ZCPA feature and discrete 
HMM is implemented on Windows operating system in C++ language in this paper. The 
system diagram is shown in Fig. 3. In the experiment, speech data with different SNRs of 50 
words 16 persons is used (including data of 15dB, 20dB, 25dB, 30dB and clean). Each person 
says each word 3 times. The model is trained by speech data (a certain SNR) of 9 persons 
and the recognition is carried out by speech data (under the same SNR) of other 7 persons, 
so the recognition result is obtained under this SNR. The parameters of HMM for each word 
is trained by 27 samples (9 persons×3 times), and the number of test data file depends on the 
number of word using in the experiment.  

Speech signal 

for training 

Speech signal 

for recognition 

F
eatu

re ex
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Feature vector
for training

Feature vector
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Clustering

analysis 

Vector 
quantizer 

HMM
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Result 

Elements of
code book  Training

  Recognition

Figure 3. Isolated word speech recognition diagram based on HMM 

2.2.2 The experimental step 

Step 1: Feature extraction. 
Two problems commonly need to be solved: one is to extract representative appropriate 
feature parameters from speech signal; the other is to compress properly data. The feature 
parameter of speech is extracted once each frame, and each frame feature parameter 
commonly constitutes a vector, so speech feature is a vector sequence. At the front end of 
the system, sampling rate of speech signal is 11.025 kHz, frame length is 10ms, sampling 
point number is 110, and frame shift is 5ms. Uniform 64×16 (or 1024) dimensional feature 
vector sequence is obtained through time and amplitude normalizing. 
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Step 2: Vector quantization. 
The extracted feature need be quantized in vector way to satisfy the demands of discrete 
HMM adopted as recognition network. Vector quantization is an effective data compressing 
technology, and the codebook is obtained by LBG clustering method in this article. The 
feature extracted from speech signal becomes speech pattern after data compressing. 
Obviously, that speech pattern is of representative is one of the main factors to improve 
speech recognition rate.  
Firstly, all the features of training words form a large set of speech feature vectors (for 
example, the number of vectors of 50 words is 50×27× (1024/4)), which is used to train 
codebook. In the system, the size of the codebook is 128, and the dimension of the code 
word is 4. These vectors are distributed to 128 classes, and each class has a tab (from 1 to 
128). Secondly, 1024 feature values of each word can form 256 feature vectors with 4 
dimensions to enter vector quantizer that has been trained. According to the nearest 
neighbourhood rule, 256 vectors are quantized and each vector is represented by the tab of 
class which the vector belongs to. Finally, the tab of codeword replaces former vector and 
becomes speech pattern of each word as input signal for the next processing. 
Step 3: Training HMM. 
After above processing, the feature tab of the word is obtained as the input sequence {O=O1,
O2, …, OT  of discrete HMM. For discrete HMM, each word is represented by a HMM (  = 
(A, B, )) (Lawrence, 1999), and is trained by 27 sampling sequences. The HMM is from left 
to right mode without span, and each word model has 5 states (shown in Fig.4). After 
trained, the state transfer matrix of a certain word is shown in Fig.5. Because the size of 
codebook is 128, the number of observation sign is M=128. 
About the assumption of initial value, three parameters in this system are set as equal 
probability values. Training method is classical Baum-Welch algorithm, and training 
terminate condition is that according to the logarithm of probability for one pronunciation, 
the absolute value changing before and after the revaluation of the parameter is less than a 
certain threshold value (in the experiment the threshold is 0.01).  

Figure 4. From left to right model without span 
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Figure 5. State transfer matrix 
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Step 4: The recognition of word. 
After previous training, each word has its own model parameter. It is similar to quantization 
of training data set that feature vector used in test (speech data of another 7 persons in a 
certain SNR) enters vector quantizer formed in step 2. Thus, each word is quantized into a 
codeword tab sequence, which is used in computing probability through all the parameters 
for HMM of all the words, and Viterbi algorithm is used in this process. The criterion in this 
algorithm is searching the single best state sequence, in other words, making condition 
probability P (Q | O, ) maximum, which also equals to making P (Q, O| ) maximum 
(Shuyan et al., 2005). Therefore, the model corresponding to the maximum probability is the 
recognition result. The recognition rate is the ratio between the number of correctly 
recognized words and the number of all the test words. 
Table 5 shows the recognition results of different words using the combination of 
FIR+ZCPA+HMM under different SNRs.   

2.3 The implementation method of combination mode 2: FIR+ZCPA+WNN 

2.3.1 The structure of WNN 

In the structure of FIR+ZCPA+WNN, the training and recognition network uses WNN 
instead of HMM other condition is unchanged, as shown in Fig. 6. The theory base of 
wavelet neural network is the reconstructing theory of wavelet function. It ensures the 
continuous wavelet basis has the ability of approximating any function, so we can take place 
the Sigmoid or Gaussian function of neural network by wavelet basis to construct a new 
feed-forward neural network. This system constructed the WNN according to the wavelet 
basis fitting. It is known to us that a signal function f(t) can be fitted via linear combination 
of selected wavelet basis (Zhigang et al., 2003): 
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Where bk is position factor, ak is scale factor and k is the number of basis function. The 
network topology can refer to Fig. 7. 
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Figure 6. Diagram of speech recognition based on wavelet neural network 
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Where, ak and bk are variables, only wk acts as the weight between the hidden and output 

layer, and −

k

k

a

btφ  can be regarded as the output value of input nodes. The network 

structure is similar to the traditional forward multi-layer perceptron; the key difference 
depends on the hidden layer function. The system this paper presented is a three-layer 
neural network with multi-input and multi-output. The inputs are the feature parameters of 
every word, and their dimension is 1024, so the number of input nodes is 1024. The number 
of hidden nodes depends on words number recognized.  Here, 10 nodes for 10 words and 50 
nodes for 50 words.  
It is a total connection with weight value 1 between input layer and hidden layer, and the 
same as that between hidden layer and output layer, while they have weights. The nodes of 
output layer equal to the classification number of words. So this system has same nodes in 
hidden and output layer. The form of the basis function of every hidden node is uniform, 
while the scale and position parameters vary with nodes. Strictly speaking, this network is 
not based on the wavelet mathematical analysis; in fact, it was used to approximate function 
in wavelet combination of certain form. In this system, it was for word recognition.  As for 
the selecting method of wavelet basis function, there are no uniform rules in theories 
(Johnstone, 1999). Generally, it can be determined by experience and practical application. 
Here, Mexican Hat wavelet was selected. The experiment showed that Mexican Hat wavelet 
certainly has excellent characteristics in recognition. 

2.3.2 The determining of WNN parameters 

The parameters to be determined in the system are number of hidden nodes, scale factor ak,
position factor bk and connection weights wk between all hidden and output nodes. 
Estimation of the number of hidden nodes also has no uniform rules in theories. In this 
paper, the hidden nodes number equal to that of the output layer, i.e. the word classification 
number. Otherwise, a bias should be added to hidden layer, it has fixed value of 1. This bias 
factor also should be connected to all the output nodes in order to estimate weight values.    
Several methods can be used to estimate the three parameters of wavelet network, such as 
BP network training method and orthogonal least square which optimized these three 
parameters simultaneously. The network topology of this paper makes it possible that the 
training of scale and position can be separated from the weights training. One of common 
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methods of estimating ak and bk is clustering. The clustering algorithm just assigns the given 
vectors into several finite classes according to certain distortion measure. However, this 
method does not take full advantage of the information of training samples. The clustering 
algorithm of K-Means has been used in this experiment to estimate the parameters, but the 
recognition results are not satisfying.  
Because the given training samples have involved the corresponding classification 
information of every training feature, this information can be used to estimate the position 
parameter bk. The hidden exciting function of wavelet network is a local function; it has 
strong approximation ability for the function with big difference in localness. The same as 
the feature with big difference, they can be classified properly. In recognition network, we 
hope the output of all training samples corresponding to a certain word via the hidden node 
which is determined by its position factor can get the biggest value. In other words, the 
more adjacent to position factor bk, the bigger the output of the k-th node will be. Hence, for 
all the training samples corresponding to a certain word, their centroid can be calculated to 
be a position factor. Once a position factor has been estimated, there will be a scale factor  
under the condition of corresponding to it. Here Equation (6) was used to calculate scale 
factor knowing position factor (Musavi et al., 1992): 

=

−
+

=
K

1k

2

kkk bx
21

1
a

 (6) 

Where xk is feature vector, bk and xk have same dimension. 
LMS method was adopted to train the weights between hidden and output layer in this 
paper. Training weight by LMS only needs to compute several matrix multiplications, so it 
need less time to train. And the hidden nodes can be added to meet the practical 
requirement. The added nodes will not have an obvious effect on the training time. In this 
system, the number of input nodes is 1024. Generally, wavelet network with high dimension 
will lead to a “dimension disaster”, which means with the increasing of dimension of input 
and training sample, the network converge speed will descend severely. In this paper, the 
calculating of position and scale factor was separated from weights training, so it will avoid 
effectively the “dimension disaster” because of high dimension. 

2.3.3 The experimental steps 

Step 1: ZCPA feature extraction. 
After pre-processing speech signal we obtained ZCPA feature with 1024 dimension of every 
word. It can be directly inputted to following wavelet network.  
Step 2: Confirming network structure. 
The node number of input layer equals feature vector dimension, or 1024. The node number 
of hide layer or output layer equals classification words number. Hidden layer sets a bias 
node which output value is 1. It was also connected to all nodes of output layer to take part 
in weight training. 
Step 3: Confirming position factor and scale factor. 
Input features were divided into N classes by using clustering method supervised. Where, 
N is the classification number of words. For each classification, the position factor was 
obtained by calculating the centroids of all training samples of classification. And 
corresponding scale factor was calculated by Equation (6).  
Step 4: Calculating weight values. 
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Using LMS method to calculate the weight values from hidden layer to output. Because 
LMS method has not the course of iterative operation, its convergence speed is very fast and 
it fits to real-time speech recogintion system.  
Table 5 shows also the recognition results of different words using the combination of 
FIR+ZCPA+WNN under different SNRs.  

3. The Principle of Bark Wavelet and Implementation Methods of 
    Combination mode 3 and 4  

3.1 The principle of Bark wavelet 

The binary wavelet used commonly divides frequency band in octave band way (Gowdy et 
al., 2000). This does not fit entirely to the auditory character of human ear to speech. Bark 
wavelet was put forward on the basis of hearing perception, so it should have better 
function than binary wavelet.  
The basilar membrane of the cochlear has the function of the frequency choice and tune. For 
different centre frequencies, the signals of corresponding critical frequencies band can 
arouse the different place librations of the basilar membrane. So from 20Hz to 16kHz, these 
frequencies can divide into 24 bands. The different frequency speech signals of the same 
place of the basilar membrane are added to evaluate, that is to say, the perception of the 
human auditory system to speech frequency is a nonlinear mapping relation with actual 
frequency. So this introduces the conception of the Bark scale, Traunmular (Zhiping et al., 
2005) presents the relation of the linear frequency and Bark frequency. That is: 

 b = 13arctan(0.76f) + 3.5arctan(f/7.5)2 (7) 

Where b is Bark frequency, and f is the linear frequency in Hz. 
The basic thought of constructing Bark wavelet is: firstly, because of the same importance of 
the time and frequency information in the speech analysis, wavelet mother function selected 
should satisfy time and bandwidth product least; secondly, for being consistent with 
conception of the frequency group, mother wavelet should has the equal bandwidth in the 
Bark domain; furthermore, their bandwidth are the unit bandwidthes, namely 1 Bark (Qiang 
et al., 2000). 
According to the above analysis, the formation of wavelet function selected is Equation (8) 
in the Bark domain. 
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Furthermore, when the bandwidth is the 3dB, the constant c1 is selected 4ln2. It is easy to 
prove that 
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Simultaneously, since the Equation (7) is a monotonic function, the transformation from the 
Bark frequency to linear frequency do not influence the Equation (8). Therefore Bark wavelet 
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satisfies “admissible condition”, that is to say, Bark wavelet transform can perfectly 
reconstruction.
Supposing the speech signals analyzed is s(t), whose linear frequency bandwidth satisfies 
|f|∈[f1, f2], and corresponding Bark frequency bandwidth is [b1, b2]. Thus wavelet function 
in Bark domain can be defined as: 

 Wk(b)=W(b-b1-kΔb), k=0, 1, 2, …, K-1 (10) 

Where Δb is the translation step-length and k is the scale parameter.  According to the 

equal bandwidth principia, there has 
1K

)bb(
b 12

−
−=Δ .

Then substitute Equation (8) into (10) we can get 
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Then substitute Equation (7) into (11), so in the linear frequency the Bark wavelet function 
can be described as: 
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In the Equation (12), c2 is the normalization factor, and c2 can be obtained through Equation 
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From Equation (12), in the frequency domain Bark wavelet transform can be expressed as: 
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Where, S(f) is the spectrum of speech signal s(t) analyzed, sk(t) is the signal of the k-th 
channel, which had been transformed by Bark wavelet.  
Notice that the Equation (13) is also correct for linear frequencies, so there has 
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In Equation (13), let c2=1, we get 

)t(sdfe)f(S tf2j =⋅
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π  (16) 

Therefore, the Equation (16) is called as the engineering perfect reconstruction condition of 
the Bark wavelet. 

3.2 The realization method of combination mode 3 Bark+ZCPA+HMM 

3.2.1 The design of Bark wavelet filter  

The sub-section uses Bark wavelet filter to replace FIR filter forming the mode: 
Bark+ZCPA+HMM. Fig.8 shows the use method of Bark wavelet filter in preprocessing of 
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ZCPA feature extraction. Where, S(f) is the spectrum of s(t) and W(f) is Bark wavelet 
function. They meet the relations as S(f)=FFT[s(t)], Y(f)=S(f)W(f) and IFFT[Y(f)](t)ŝ = .

Y(f)S(f)s(t) (t)ŝ

IFFT W(f)FFT

Figure 8. The scheme of the Bark wavelet filters used in preprocessing 

 Bark scale can be seen as the mapping from linear frequency field to perception frequency 
field. By using Equation (7) the mapping relation may be realized. This builds the base of 
critical band filter bank analysis technology. The frequency between 20Hz~16kHz can be 
divided into 24 fields(or frequency groups).Their pass band bandwidth are equal to the 
critical band of corresponding frequency, that have become the standard in fact (See Table 
3).

Bark No Low
 (Hz) 

High 
(Hz) 

Bandwidth
(Hz) Bark No. Low

(Hz) 
High 
(Hz) 

Bandwidth 
(Hz) 

1 20 100 80 13 1720 2000 280 

2 100 200 100 14 2000 2320 320 

3 200 300 100 15 2320 2700 380 

4 300 400 100 16 2700 3150 450 

5 400 510 110 17 3150 3700 550 

6 510 630 120 18 3700 4400 700 

7 630 770 140 19 4400 5300 900 

8 770 920 150 20 5300 6400 1100 

9 920 1080 160 21 6400 7700 1300 

10 1080 1270 190 22 7700 9500 1800 

11 1270 1480 210 23 9500 12000 2500 

12 1480 1720 240 24 12000 15500 3500 

Table 3. The allocation about 24 critical frequency bands 

The critical bandwidth changes with its centre frequency f. The higher f is, the wider the 
critical bandwidth is. Their relation is as Equation (17). 

0.692

critical ])
1000

f
1.4([17525BW +×+=  (Hz) (17) 
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Figure 9. The frequency responses of the 16 Bark wavelet filters

From Table 4, we can see that in Bark field each filter bandwidth follows the equal 
bandwidth principle, or 3 Bark. During the course of experiment, 1 Bark and 2 Bark 
bandwidth were seleted, but the results were not good. The parameter k was seleted such as 
followings. From Equation (1) the centre frequencies of 16 Bark wavelet filters were 
calculated and from Equation (12) the maxmium responses at centre frequencies can be got, 
so k values can be determined. From Equation (17) the bandwidthes of all filters can be 
determined.Having the parameters of Table 4, Bark wavelet filters can be realized. 

b1 b2 k Bandwidth
(Hz) b1 b2 k Bandwidth 

(Hz) 

1 4 7 100 9 12 4 180 

2 5 5 100 10 13 6 210 

3 6 2 100 11 14 7 250 

4 7 1 110 12 15 9 300 

5 8 0 120 13 16 10 360 

6 9 1 130 14 17 10 450 

7 10 1 140 15 18 10 550 

8 11 4 160 16 19 10 680 

Table 4. Confirmation about all the Bark wavelet parameters 

3.2.2 The calculation steps of the Bark wavelet filters 

Step 1: Read the original speech datum, and estimate the speech data length. 
Step 2: Frame the speech data, so that we can obtain the time domain signals of the every 
frame. Use the 20ms as the frame length, and 10ms as the frame shift. 
Step 3: Then go along the FFT transform to obtain the spectrum information of the speech 
signals, and the width of the window is 256. 
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Step 4: Initialize the Bark wavelet different parameters. 
Step 5: Begin the Bark wavelet transform. Because we used the computer to simulate this 
transform, there need the discrete Bark wavelet transform. It can be described as:  

2
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Where N is the last speech data and fs is sampling frequency. 
Step 6: The transform to the input speech signals of the every filter with Bark   wavelet 
should also adopt the discrete Equation (19). As follows: 
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Step 7: Then continue to operate the next frame speech signal as above. Finally we can 
obtain all the values through Bark wavelet transform. 
Through the above steps, we can obtain the results of signal passing Bark wavelet filters, 
and then we can use the ZCPA theory to extract the features. 
Table 7 shows the recognition rates comparison of different words using the ZCPA and 
BWZCPA (Bark Wavelet ZCPA) features in different SNRs.  

3.3 The realization method of combination mode 4 Bark+MFCC+HMM

3.3.1 The principle of the MFCC feature extraction  

MFCC feature extraction flow chart is showed as Fig. 10. The working process is:  
1. Pre-emphasis of the speech signal, frame, adding window, then make the FFT to obtain 

the frequency information.  
2. Pass the signal through the Mel frequency coordinate triangle filter bank to mimic the 

human hearing mechanism and the human hearing sensibility to different speech 
spectrum. 

3. Calculate the logarithm value of the signal through the Mel filters to obtain the 
logarithmic spectrum.  

4. Make the discrete cosine transform to the signal and obtain the MFCC feature. In the 
MFCC algorithm, we use the FFT to calculate the frequency spectrum of the signal in 
the front-end, while in the back-end we use DCT to further reduce the speech signal’s
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Figure 10. The feature extraction of the MFCC 
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redundant information, and reach the aim of normalizing speech feature coefficients with 
small dimensions. The analysis method is based on the assumption that the speech signal is 
short time stationary signal, so using the fixed window’s Fourier transform, we can get the 
local time-frequency information. As to the any speech segment, the time-frequency 
resolution is fixed. Based on the uncertainty principle we can find that the time-frequency 
resolution can’t be both high simultaneously. This will make the speech signal details fuzzy, 
especially to those speech segments with non-stationary, like the explodent sound and 
spirant, it will definitely lose significant information.  
DCT is the FFT with zero valued imaginary part. The feature vectors based on the DCT 
cover all the frequency band, if only one frequency segment is destroyed by noise 
interference, then all of  MFCC coefficients will be strongly interfered. A speech frame may 
include two adjacent phonemes, suppose one is sonant and the other is surd, this will 
definitely blur the two phonemes’ information and reduce the speech recognition rate. But if 
the speech spectrum can be divided into several sub-frequency bands, the situation will be 
different. Fixed window DFT feature vectors in the time domain and frequency domain all 
have the same resolutions, and unable to meet requirement of the variant time-frequency 
resolution which is needed by the feature vectors. Therefore, the FFT and DCT algorithm is 
unsuitable for the usage in non-stationary speech signal analysis. 

3.3.2 The extraction of Bark wavelet MFCC feature 

Having analysed the drawbacks of the MFCC, we presented the improving method using 
Bark wavelet, just as the Fig.11. After the signal is pre-processed and before making FFT, 
Bark wavelet filtering is inserted. Because the wavelet has the property of multi-resolution, 
it can divide the signal into some parts with different time-frequency resolution that is 
suitable to speech signal processing. Here, the front-end Bark wavelet divides signal 
frequency into 25 sub-bands and we calculate the FFT of each band. Then the spectrum 
combination, Mel filter processing and the logarithmic energy calculating are performed. 
Finally the DCT of the former algorithm is replaced by Bark wavelet transform and we 
obtain the BWMFCC features.  
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Figure 11. The feature extraction of the Bark wavelet MFCC 

The calculation process is as follows: 
1. Making pre-emphasis, framing and window adding processes to the original speech 

data file s(n). 
2. Making the Bark wavelet filtering to each frame signal, by using Equation (20). 
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 Sk(n) = Wk(n S(n), 0  k  K-1 (20) 

Where, Wk(n is the discrete form of Equation (12), S(n) is the speech signal frequency 
spectrum, Sk(n) is the k-th sub-band’s speech spectrum. 

3. The spectrum combination is performed by using Equation (21)  to obtain: 
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4. Passing the )n(S ′ signal through Mel filter bank. The Mel filter bank can smooth the 
frequency spectrum, and reduce the harmonic, and emphasis the original formant of 
the speech signal. Therefore, the tone and the pitch of the sound will not appear in the 
feature coefficients, the speech signal recognition will not be interfered by the different 
pitch of the input signal. 

5. Using the Equation (22) computing the logarithmic energy D(n). 
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6. Finally, passing the D(n) through Bark filter to get the final speech features 
BWMFCC(m) by using Equation (23) . 
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Where, N is the number of Mel filters. Hn(k) is Mel frequency filter. In our experiment, 
N=26, M is the sub-band’s number of back-end Bark wavelet, here M=16. 

Table 8 shows the recognition rates comparison of different words using the MFCC and 
BWMFCC features in different SNRs. 

4. Results and Analysis 

The section will present the experimental results and discussion of the second section and 
the third section. The exprimental condition and the database used are same. The ZCPA or 
MFCC feature of every word is normalized into speech feature vector sequence of 64X16 
demension. In the experiments, speech data with different SNRs of 50 words 16 persons is 
used (including data of 15dB, 20dB, 25dB, 30dB and clean). Each person says each word 3 
times. The model is trained by speech data (a certain SNR) of 9 persons and the recognition 
is carried out by speech data (under the same SNR) of other 7 persons, so the recognition 
result is obtained under this SNR. 

4.1 The combination mode 1: FIR+ZCPA+HMM and mode 2: FIR+ZCPA+WNN 

Table 5 shows the recognition rates of different words using the combination of 
FIR+ZCPA+HMM or FIR+ZCPA+WNN under different SNRs. We analysis these 
experimental results in the tables as follows.  
1. HMM is the statistical model based on the time sequence structure of speech signal, 

and it can simulate reasonably speech time changing process, and describe the whole 
non-stationary and local stationary of speech well. But a shortcoming of HMM is that 
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distinguish ability is not strong enough. HMM is influenced by the number of training 
samples, along with the increase in number of samples, the recognition rate will be 
improved greatly (see Table 6). Table 6 is the recognition rates using FIR+ZCPA+HMM 
after adding training samples from 9 to 16, but test samples are unchanged. 

2. Wavelet neural network (WNN).  
This network has great advantages in recognition. Not only the structure is simple, 
algorithm is easy to be implemented and the recognition rate is high, but also linear 
least square method is used to train weight value, the convergence speed is fast, and 
training time is only a few minutes. From the table we can see that, along with the 
increase in the number of words, the number of hidden nodes of network increases, 
and the recognition rate rises gradually. When reaching a certain number of words, the 
recognition rate descends but descends little. Although the number of hidden nodes 
increases, training time is not obviously influenced. Besides, under noisy environment, 
the recognition rate of the system decreases little, for the speech under the SNR of 
15dB, the recognition rate of 50 words is near 90%. It is sufficiently showed that the 
system combined of ZCPA feature parameter with WNN has good robust 
performance, so this recognition system can fulfill the task of large number of words, 
non-special person, real time speech recognition and has wide application foreground. 

Noumber 
of words 

SNR
Feature 15dB 20dB 25dB 30dB Clean 

HMM 85.7 84.7 86.2 85.7 89.1 
10

WNN 87.1 90.5 90.5 91.4 92.9 
HMM 76.6 81.2 82.4 81.7 85.7 

20
WNN 89.5 92.1 93.3 93.1 94.5 
HMM 77.1 81.9 83.1 82.9 83.5 

30
WNN 92.1 93.2 93.3 94.3 94.0 
HMM 76.6 79.0 81.3 82.6 83.0 

40
WNN 91.9 93.3 94.3 94.1 94.4 
HMM 72.1 74.5 80.1 79.0 81.7 

50
WNN 89.7 91.7 93.3 93.4 94.3 

Table 5. The recognition rates using FIR+ZCPA+HMM or FIR+ZCPA+WNN mode (%) 

SNR
Number of words 15 dB 20 dB 25 dB 30 dB Clean 

10 88.0 88.7 90.7 91.3 92.0 
20 86.0 87.7 90.3 89.3 91.7 
30 84.2 87.3 89.1 89.6 90.4 
40 82.8 87.7 88.7 90.7 90.8 
50 81.7 85.6 87.7 86.7 89.3 

Table 6. The recognition rates using FIR+ZCPA+HMM after adding training samples (%) 
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4.2 The combination mode 3: Bark+ZCPA+HMM and mode 4: Bark+MFCC+HMM 

4.2.1 The combination mode 3 : Bark+ZCPA+HMM 

As showed in Table 7, ZCPA means the recognition results of using FIR as preprocessing 
and BWZCPA means the recognition results of using Bark wavelet as preprocessing.  
From Table 7 we can see that the recogntion results with Bark wavelet filter are better than 
the ones with FIR filter in bigger words and higher noise environment. Especially, the 
system function was improved with increasing of words number. This illustrated Bark 
wavelet more closer to the hearing perception of human ear than common wavelet. 

Noumber 
of words 

SNR
Feature 15dB 20dB 25dB 30dB Clean 

ZCPA 85.71 84.76 86.19 85.71 89.05 10
BWZCPA 84.00 87.14 90.00 90.48 90.00 

ZCPA 76.6 81.19 82.38 81.67 85.71 20
BWZCPA 77.14 83.57 87.56 84.29 88.20 

ZCPA 77.14 81.90 83.17 82.86 83.49 30
BWZCPA 78.42 83.31 85.71 85.56 87.98 

ZCPA 76.55 78.26 81.31 82.62 82.98 40
BWZCPA 77.50 81.48 84.76 85.00 87.14 

ZCPA 72.10 74.48 80.09 78.95 81.71 50
BWZCPA 73.14 78.20 83.71 85.52 85.24 

Table 7. The recognition rates using ZCPA and BWZCPA features in different SNRs (%) 

4.2.2 The combination mode 4: Bark+MFCC+HMM 

Table 8 shows the recognition rates comparison using MFCC and BWMFCC features in 
different SNRs. From the table, we can see the recognition rates are significantly increased 
by using the BWMFCC. The analysis reasons are as follows.  
1. By using the wavelet transform in front-end MFCC, we can extract and separate the 

speech in different transform scales. These in the frequency domain are similar to the 
frequency segmental processing, and make the subsequent speech analysis to be of 
natural local property. Thus, the analysis is more delicate.  

2. By using wavelet instead of DCT, we overcome the shortage of the DCT. If some 
frequency segment is destroyed, it only interferes fewer coefficients not all coefficients. 
We can remove these destroyed coefficients so as to not making strong influence to the 
speech recognition system.  

3. The Bark wavelet transform is designed especially for the speech signal processing. The 
changing of analysis scale is based on the concept of critical band, and makes wavelet 
band of each scale be a frequency group. By using the method, we obtain a model 
which is more close to the human hearing mechanism. The method based on wavelet 
transform has better robust feature. The result shows that BWMFCC feature can 
remain high recognition rate under low SNR and large vocabulary conditions. It makes 
the practical speech recognition system become possible. 
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Noumber 
of words 

SNR
Feature 15dB 20dB 25dB 30dB Clean 

MFCC 86.67 91.90 92.86 93.33 95.24 10
BWMFCC 95.72 97.14 96.19 97.14 99.05 

MFCC 83.80 88.57 90.47 91.47 93.57 20
BWMFCC 93.33 94.52 96.19 96.19 96.67 

MFCC 83.33 87.73 90.32 90.48 93.74 30
BWMFCC 94.76 96.19 97.14 97.30 96.35 

MFCC 82.76 87.57 90.00 91.47 93.57 40
BWMFCC 93.69 94.88 95.71 96.07 96.31 

MFCC 81.19 86.66 89.90 92.28 92.85 50
BWMFCC 92.29 93.43 94.19 94.67 94.29 

Table 8.  The recognition rates using MFCC and BWMFCC features in different SNRs (%) 

5. Conclusion  

The later conculsions can be obtained from the experimental results of the fourth section.  
1. The three parts of speech recognition are conjunct one another and exist the relation 

restricted among themselves.  Bark wavelet was used in improving the feature of 
ZCPA and MFCC the latter effect is obviously better than the former.It illustrates that 
Bark wavelet and the speech character described by MFCC feature are more closer than 
Bark wavelet and the speech character described by ZCPA feature. The fact is also as 
such. Bark wavelet is constructed directly according to the hearing perception of 
human ear, and MFCC is the cepstrum coefficents on the basis of Mel frequency. While  
Mel frequency is just the hearing frequency of human ear.  Though the frequency bins 
of ZCPA are divided according to the hearing perception, the zero-crossing rate and 
peak amplitude are time-domain parameters which are transformed nonlinearly 
mapping to frequency bin. This kind of nonlinear transform may affect the consistency 
of ZCPA and hearing frequency, that results in decreasing in function.  

2. If the selection of training or recognition network is different, they have different effect on 
the results. Furthermore, the function of recogntion network has direct relationship with 
front-end  filter and feature extracted. This point can be seen from the experimental 
results of combination mode1 FIR+ZCPA+HMM and mode 2 FIR+ZCPA+WNN .
Comparing the two modes, the former two parts are same and the third part is different 
from using HMM or WNN the results obtained have much more different.The wavelet 
neural network has bright foreground for speech recognition.Its training speed is fast, 
which is good for implementation in real time. Further,it has also good recognition rates 
under no noise or noise environment and the number of recogintion words is larger.  

3. The paper researched some kinds combination modes aiming to the three parts of 
speech recognition system in Fig. 1. For other combination modes, such as 
Bark+MFCC+WNN Bark+ZCPA+WNN and so on, we will research them in later 
work. Which of combination ever is optimal? This needs considering practical 
application case. We hope the research can be refered by interesting researcher and get 
to the purpose of communication mutually and progress.  
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1. Introduction 

One major concern in the design of speech recognition systems is their performance in real 
environments. In such conditions, different sources could exist which may interfere with the 
speech signal. The effects of such sources could generally be classified as additive noise and 
channel distortion. As the names imply, noise is usually considered as additive in spectral 
domain while channel distortion is multiplicative and therefore appears as an additive part 
in logarithmic spectrum. These could both result in severe performance degradations in 
automatic speech recognition (ASR) systems. Thus, in recent years, a substantial amount of 
research has been devoted to improving the performance of Automatic Speech Recognition 
(ASR) Systems in such environments. 
The main approaches taken to improve the performance of ASR systems could be roughly 
divided into three main categories, namely, robust speech feature extraction; speech 
enhancement and model-based compensation for noise. 
The main goal of the robust speech feature extraction techniques is to find a set of 
parameters, to represent speech signal in the ASR system, that are robust against the 
variations in the speech signal due to noise or channel distortions. Extensive research has 
resulted in such well-known techniques as RASTA filtering (Hermansky & Morgan, 1994), 
cepstral mean normalization (CMN) (Kermorvant, 1999), use of dynamic spectral features 
(Furui, 1986), short-time modified coherence (SMC) (Mansour & Juang, 1989a) and also one-sided 
autocorrelation LPC (OSALPC) (Hernando & Nadeu, 1997), differential power spectrum (DPS) 
(Chen et al., 2003) and relative autocorrelation sequence (RAS) (Yuo & Wang, 1998, 1999). 
In the case of speech enhancement, some initial information about speech and noise is 
needed to allow the estimation of noise and clean up of the noisy speech. Widely used 
methods in this category include spectral subtraction (SS) (Beh & Ko, 2003; Boll, 1979) and 
Wiener filtering (Lee et al., 1996). 
In the framework of model-based compensation, statistical models such as Hidden Markov 
Models (HMMs) are usually considered. The compensation techniques try to remove the 
mismatch between the trained models and the noisy speech to improve the performance of 
ASR systems. Methods such as parallel model combination (PMC) (Gales & Young, 1995, 1996), 
vector Taylor series (VTS) (Acero et al., 2000; Kim et al., 1998; Moreno, 1996; Moreno et al., 
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1996; Shen et al., 1998) and weighted projection measure (WPM) (Mansour & Juang, 1989b) can 
be classified into this category. 
From another point of view, methods can be categorized according to the type of distortion 
they deal with. Methods used to suppress the effect of additive noise such as SS, lin-log 
RASTA, PMC, DPS, minimum variance distortion-less response (MVDR) (Yapanel & 
Dharanipragada, 2003; Yapanel and Hansen, 2003) and RAS can be placed in one category 
while those trying to remove channel distortion such as CMN, logarithmic-RASTA, blind 
equalization (BE) (Mauuary, 1996, 1998) and weighted Viterbi recognition (WVR) (Cui et al., 
2003) are placed in the other category. 
Although all the aforementioned efforts had a certain level of success in speech recognition 
tasks, it is still necessary to investigate new algorithms to further improve the performance 
of ASR systems. Extracting appropriate speech features is crucial in obtaining good 
performance in ASR systems since all of the succeeding processes in such systems are highly 
dependent on the quality of the extracted features. Therefore, robust feature extraction has 
attracted much attention in the field. Use of the autocorrelation domain in speech feature 
extraction has recently proved to be successful for robust speech recognition. A number of 
feature extraction algorithms have been devised using this domain as the initial domain of 
choice. These algorithms were initiated with the introduction of SMC (Mansour & Juang, 
1989a) and OSALPC (Hernando & Nadeu, 1997). Recently, further improvements in this 
field have been reported (Yuo & Wang, 1998, 1999; Shannon and Paliwal, 2004).  
Pole preserving is an important property of the autocorrelation domain, i.e. if the original 
signal can be modelled by an all-pole sequence which has been excited by an impulse train 
and a white noise, the poles of the autocorrelation sequence would be the same as the poles 
of the original signal (McGinn & Johnson, 1989). This means that the features extracted from 
the autocorrelation sequence could replace the features extracted from the original speech 
signal. Another property of autocorrelation sequence is that for many typical noise types, 
noise autocorrelation sequence is more significant in lower lags. Therefore, noise-robust 
spectral estimation is possible with algorithms that focus on the higher lag autocorrelation 
coefficients such as autocorrelation mel-frequency cepstral coefficient (AMFCC) method 
(Shannon & Paliwal, 2004). Moreover, as the autocorrelation of noise could in many cases be 
considered relatively constant over time, a high pass filtering of the autocorrelation 
sequence, as is done in RAS, could lead to substantial reduction of the noise effect. 
Furthermore, it has been shown that preserving spectral peaks is very important in 
obtaining a robust set of features for ASR (Padmanabhan, 2000; Strope & Alwan, 1998; 
Sujatha et al., 2003). Methods such as peak-to-valley ratio locking (Zhu, 2001) and peak isolation
(PKISO) (Strope & Alwan, 1997) have been found very useful in speech recognition error 
rate reduction. In DPS, as an example, differentiation in the spectral domain is used to 
preserve the spectral peaks while the flat parts of the spectrum, that are believed to be more 
vulnerable to noise, are almost removed.  
Each of the above-mentioned autocorrelation-based methods has its own disadvantages. 
RAS, while working well in low SNRs, does not perform as well in higher SNRs and clean 
condition. The main reason is that while filtering the lower frequency parts of noisy 
autocorrelation sequence can lead to the suppression of noise in low SNR conditions (large 
noise energies), it in fact filters out parts of the signal autocorrelation sequence in high 
SNRs. However, the removal of the lower lags of the sequence leads to a good performance 
in high SNRs in comparison to high-pass filtering.  
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(a)                                                                             (b) 

(c)                                                                            (d) 

 (e) 

Figure 1. (a) Autocorrelation sequence of white noise, (b) Autocorrelation sequence of 
factory noise, (c) Autocorrelation sequence for one frame of speech signal contaminated 
with white noise at 10 dB SNR, (d) Autocorrelation sequence for one frame of speech signal 
contaminated with factory noise at 10 dB SNR, (e) Autocorrelation of clean speech signal 
(vowel).
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According to (Shannon & Paliwal, 2004), AMFCC works well for car and subway noises of 
the Aurora 2 task, but in babble and exhibition noises does not work as well. This is 
attributed to high similarities between the properties of the latter two and speech.  
Fig. 1 displays examples of white and factory noise autocorrelation sequences (a and b), 
together with sequences for a speech signal (vowel) contaminated with those noises. 
Apparently, the lower lags of white noise are more important in comparison to those of 
factory noise that features a more spread out sequence.  
Also we can classify autocorrelation-based robust feature extraction methods, from another 
point of view, into two major fields, i.e. magnitude and phase domains. Some examples of 
the methods that work in the magnitude domain are RAS, AMFCC, SS, RASTA filtering etc. 
On the other hand, an example for a phase domain method is phase autocorrelation (PAC) 
(Ikbal et al., 2003). However, recent studies on speech perception have revealed the 
importance of the phase of speech signal (Paliwal & Alsteris, 2003; Bozkurt et al., 2004; 
Bozkurt & Couvreur, 2005). The above-mentioned findings in the phase domain have 
persuaded further work using signal phase information in the feature vector.  
In this chapter, we discuss some of the newest robust feature extraction approaches.

2. Autocorrelation-based Feature Extraction Background 

While different methods have used different approaches to autocorrelation-based feature 
extraction, these methods could roughly be divided into two sub-categories: those that use 
the amplitude and those that use the phase. We will discuss these two groups of methods 
separately.  

2.1. Autocorrelation amplitude-based approaches 

2.1.1. Calculation of the autocorrelation for noisy signal 

If we assume v(m,n) to be the additive noise, x(m,n) noise-free speech signal and h(n)
impulse response of the channel, then the noisy speech signal y(m,n) can be written as 

),()(),(),( nmvnhnmxnmy +∗=                 10 −≤≤ Mm ,     10 −≤≤ Nn ,   (1) 

where * denotes the convolution operation, N is the frame length, n is the discrete time index 
in a frame, m is the frame index and M is the number of frames. If x(m,n), v(m,n) and h(n) are 
considered uncorrelated, the autocorrelation of the noisy speech can be expressed as  

),()()(),(),( kmrkhkhkmrkmr vvxxyy +∗∗=        10 −≤≤ Mm ,     10 −≤≤ Nk ,   (2) 

where ),( kmryy  , ),( kmrxx  and ),( kmrvv are the short-time autocorrelation sequences of the 
noisy speech, clean speech and noise respectively and k is the autocorrelation sequence 
index within each frame. Since additive noise is assumed to be stationary, its autocorrelation 
sequence can be considered the same for all frames. Therefore, the frame index, m, can be 
omitted from the additive noise part in (2) leading to 

    )()()(),(),( krkhkhkmrkmr vvxxyy +∗∗= 10 −≤≤ Mm ,     10 −≤≤ Nk . (3) 

The one-sided autocorrelation sequence of each frame can then be calculated using an 
unbiased estimator. However, alternatively, one may use a biased estimator for its 
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calculation. The unbiased and biased estimators for the calculation of one-sided 
autocorrelation sequence are given in (4) and (5) respectively (Yuo & Wang, 1998, 1999). 
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2.1.2. Filtering of one-sided autocorrelation sequence 

As our target in this chapter is to remove, or reduce, the effect of additive noise from noisy 
speech signal, the channel effect, h(k), may be removed at this point from (3).  We will then 
have

)(),(),( krkmrkmr vvxxyy +=        10 −≤≤ Mm ,   10 −≤≤ Nk .  (6) 

In order to reduce the effect of channel distortion, one may add a simple approach, such as 
cepstral mean normalization, to the final cepstral coefficients, as we will mention later.  
Considering the noise autocorrelation to be constant over the frames of concern, 
differentiating both sides of equation (6) with respect to m, will remove the noise 
autocorrelation and yields (Yuo & Wang, 1999) 
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Equation (7) is equal to a filtering process on the temporal one-sided autocorrelation 
trajectory by a FIR filter where L is the length of the filter. This filtering process can be 
written in z domain as 
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2.1.3. Lower lag elimination 

As we mentioned before, the main effects of noise autocorrelation on the clean speech signal 
autocorrelation is on its lower lags. Therefore eliminating the lower lags of the noisy speech 
signal autocorrelation should lead to removal of the main noise components. The maximum 
autocorrelation index to be removed is usually found experimentally. The resulting 
sequence would be 
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),(),(ˆ kmrkmr yyyy = ,         1−≤< MmD ,     10 −≤< Kk

                        0),(ˆ =kmryy ,                            Dm ≤≤0 ,           10 −≤≤ Kk ,   (9) 

where D is the elimination threshold. 

2.2. Autocorrelation phase-based approaches 

As mentioned earlier, feature extraction from magnitude spectrum will be obtained by 
applying DFT on the frame samples. DFT assumes each frame, y(m,n), is a part of periodic 
signal, ),(~ nmy , which is defined as : 
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The estimator for the calculation of autocorrelation sequence is then given as: 
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Another view to equation (11) is that ),(~ kmryy
 gives the correlation between the samples 

spaced at interval k, which is computed as dot product of two vectors in N-dimensional 
domain, i.e. 

{ })1,(~),...,1,(~),0,(~
0 −= NmymymyY
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k
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yy YYkmr 0),(~ = .     (12) 

If we carry out these steps for clean speech, x(n,m), we would have 

{ })1,(~),...,1,(~),0,(~
0 −= NmxmxmxX                  

{ })1,(~),...,0,(~),1,(~),...,,(~ −−= kmxmxNmxkmxX k

k
T

xx XXkmr 0),(~ =   (13) 

where ),(~ nmx  is the periodic signal obtained from x(m,n).
Clearly, the autocorrelation sequences for clean and noisy signals are different. Therefore, 
features extracted from autocorrelation sequences would be sensitive to noise. From (12), the 
magnitudes of two vectors 0Y and kY  are the same. If we assume )(mY  to be the magnitude 
of vectors and ),( kmyθ  the angle between them, then the relationship between the 
autocorrelation, ),(~ kmryy

, magnitude of the vectors and the angle between them would be  

),(cos)(),(~ 2 kmmYkmr yyy θ= ,       10 −≤≤ Mm , 10 −≤≤ Nk . (14) 

Now the angle ),( kmyθ  between the two vectors will be calculated as: 
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−=
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kmyθ           10 −≤≤ Mm , 10 −≤≤ Nk . (15) 

3. Autocorrelation-based robust feature extraction 

In this section we will describe several autocorrelation-based approaches developed by the 
authors to deal with the problem of robust feature extraction. These methods use either 
amplitude or phase in the autocorrelation domain, as discussed above. Performance of these 
methods in various noisy speech recognition tasks will be discussed in a later section. 

3.1. Differentiated autocorrelation sequence (DAS) 

In this section first we present the calculation of differential power spectrum and then 
describe DAS method. 

3.1.1. Calculating differential power spectrum (DPS)

Although not necessarily an autocorrelation-based approach, we discuss DPS here as it will 
be used in the following discussions. If the noise and clean speech signals are assumed 
mutually uncorrelated, by applying short-time DFT to both sides of equation (6), we can 
calculate the relationship between autocorrelation power spectrums of noisy speech signal, 
clean speech signal and noise as follows: 

    )()()}({)},({)},({)( ωωω VXkrFTkmrFTkmrFTY vvxxyy +=+≈= , (16) 

where [.]FT  denotes the Fourier Transform andω indicates radian frequency. The differential 
power spectrum will then be defined as 

ω
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where
ωd
d  or prime represent differentiation with respect toω .

Therefore, by applying differentiation to both sides of equation (16) we have: 
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where )(ωXDiff and )(ωVDiff are differential autocorrelation power spectrums of clean speech 
signal and noise respectively. 
In discrete domain, the definition of DPS can be approximated by the following equation 
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  (a)  (b) 

Figure 2. (a) A sample speech signal, and (b) the autocorrelation spectrum magnitude and 
the differentiated autocorrelation spectrum magnitude of the same signal with a 512-point 
FFT. Only 128 points of the spectrum are shown for clarity. The sample signal is one frame 
of phone /iy/ (Farahani et al., 2007).

where P and Q are the orders of the difference equation, la  are real-valued weighting 
coefficients and K is the length of FFT. The absolute value of the differentiation indicates the 
peak points of the spectrum. 

3.1.2. DAS algorithm 

This approach combines the advantages of RAS and DPS. In this algorithm (Farahani & 
Ahadi, 2005; Farahani et al., 2007), splitting the speech signal into frames and applying a 
pre-emphasis filter, the autocorrelation sequence of the frame signal is obtained using either 
an unbiased or a biased estimator, as shown in (4) and (5). A FIR filter is then applied to the 
noisy speech signal autocorrelation sequence. Hamming windowing and short-time Fourier 
transform constitute the next stages. Then, the differential power spectrum of the filtered 
signal is calculated. By differentiation of the spectrum, we preserve the peaks, except that 
each peak is split into two, one positive and one negative, and the flat part of the power 
spectrum is approximated to zero. 
Fig. 2 depicts a sample speech signal, its short-time autocorrelation spectrum and the 
differentiated short-time autocorrelation spectrum. This sample signal is one frame of phone 
/iy/. In order to simplify the representation, only the significant lower-frequency parts of 
the spectrum have been shown and the non-significant parts omitted. 
As shown in Fig. 2 and mentioned above, the flat parts of the spectrum have been 
transformed to zero by differentiation and each peak of it split into two positive and 
negative parts. Since the spectral peaks convey the most important information in speech 
signal, this fact that the differential power spectrum retains spectral peaks means that we 
will not lose the important information of the speech signal (Chen et al., 2003). Furthermore, 
since noise spectrum is often flat and the differentiation either reduces or omits the 
relatively flat parts of the spectrum, it will lead to suppression of the noise effect on the 
spectrum. A set of cepstral coefficients can then be derived by applying a conventional mel-
frequency filter-bank to the resultant spectrum and finally passing the logarithm of bin 
outputs to the DCT block. Fig. 3 displays the overall front-end diagram of this method. We 
call these new features Differentiated Autocorrelation Sequence (DAS). 
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Figure 3. Block diagram of DAS front-end for robust feature extraction. 

3.1.3. Experiments 

If the process of feature extraction does not include the extraction of autocorrelation spectral 
peaks, as mentioned in (Yuo & Wang, 1999), using 5 frames of speech for filtering can lead 
to the best results. Therefore, in order to be able to compare our results to the best results of 
RAS, the same filter length (L=2) is used. Thus, equation (8) will be simplified as 
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Furthermore, as discussed in (Chen et al., 2003), the best results for spectral differentiation 
was obtained using the following equation 

)1()()( +−= kYkYkDiff , (21) 

i.e. a simple difference. 
The above-mentioned parameter and formula were used in the implementation of RAS, 
DPS, DAS, SPFH, ACP, ACPAF and APP methods on different mentioned tasks, unless 
otherwise specified. All model creation, training and tests in all our experiments have been 
carried out using the HMM toolkit (HTK, 2002).  

3.1.3.1. Database 

Three speech corpora have been used throughout the experiments reported in this chapter. 
These include an isolated-word Farsi task, a continuous Farsi task and Aurora 2, a noisy 
English connected digits task. 
The Isolated-word Farsi task is a set of isolated-word Farsi (Persian) speech data collected 
from 65 male and female adult speakers uttering the names of 10 Iranian cities. The data was 
collected in normal office conditions with SNRs of 25dB or higher and a sampling rate of 16 
kHz. Each speaker uttered 5 repetitions of words, some of which were removed from the 
corpus due to problems that occurred during the recordings. A total of 2665 utterances from 
55 speakers were used for HMM model training. The test set contained 10 speakers (5 male 
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& 5 female) that were not included in the training set. The noise was then added to their 
speech in different SNRs. The noise data was extracted from the NATO RSG-10 corpus 
(SPIB, 1995). We have considered babble, car, factory and white noises and added them to 
the clean signal at 20, 15, 10, 5, 0 and -5 dB SNRs.
The Continuous Farsi task is a speaker-independent medium-vocabulary continuous speech 
Farsi (Persian) corpus. FARSDAT speech corpus was used for this set of experiments 
(Bijankhan et al., 1994; FARSDAT). This corpus was originally collected from 300 male and 
female adult speakers uttering 20 Persian sentences in two sessions. The sentences uttered 
by each speaker were randomly selected from a set of around 400 sentences. Some of the 
speakers were removed from the corpus due to their accent or problems occurred during the 
recordings. The data was originally collected in quiet environment with SNRs of 25dB or 
higher and a sampling rate of 44.1 kHz. The sampling rate was later reduced to 16 kHz. A 
total of 1814 utterances from 91 speakers were used for HMM model training in these 
experiments. The test set contained 46 speakers that were not included in the training set. A 
total of 889 utterances were used as the test set. The noise was then added to the speech in 
different SNRs. As with the isolated-word experiments, the noise data was extracted from 
the NATO RSG-10 corpus and included babble, car, factory and F16 noises added to the 
clean signal at 20, 15, 10, 5, 0 and -5 dB SNRs. 
Aurora 2 (Hirsch & Pearce, 2000) is a noisy connected-digit recognition task. It includes two 
training modes, training on clean data only (clean-condition training) and training on clean 
and noisy data (multi-condition training). In clean-condition training, 8440 utterances from 
TIDigits speech corpus (Leonard, 1984) containing those of 55 male and 55 female adults are 
used. For multi-condition mode, 8440 utterances from TIDigits training part are split equally 
into 20 subsets with 422 utterances in each subset. Suburban train, babble, car and exhibition 
hall noises are added to these 20 subsets at SNRs of 20, 15, 10, 5, 0 and -5 dB.  
Three test sets are defined in Aurora 2, named A, B and C. 4004 utterances from TIDigits test 
data are divided into four subsets with 1001 utterances in each. One noise is added to each 
subset at different SNRs. 
In test set A, suburban train, babble, car and exhibition noises are added to the above 
mentioned four subsets, leading to a total of 100174 ××  utterances. Test set B is created 
similar to test set A, but with four different noises, namely, restaurant, street, airport and 
train station. Finally, test set C contains two of four subsets with speech and noise filtered 
using different filter characteristics in comparison to the data used in test sets A and B. The 
noises used in this set are suburban train and street. 

3.1.3.2. Results on the isolated-word Farsi task 

The experiments were carried out using MFCC (for comparison purposes), MFCC applied to 
the signal enhanced by spectral subtraction, RAS-MFCC, cepstral coefficients derived using 
DPS and DAS. In all cases, 25 msec. frames with 10 msec. of frame shifts and a pre-emphasis 
coefficient of 0.97 were used. Also, for each speech frame, a 24-channel mel-scale filter-bank 
was used. Here, each word was modelled by an 8-state left-right HMM and each state was 
represented by a single-Gaussian PDF. The feature vectors were composed of 12 cepstral 
and log-energy parameters, together with their first and second order derivatives (39 
coefficients in total). Fig. 4 depicts the results of the implementation.  
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(a) (b)

    
         (c)                                                                           (d) 

Figure 4. Isolated-word recognition results for speech signal contaminated with (a) babble, 
(b) car, (c) factory and (d) white noises in different SNRs. The results correspond to MFCC, 
MFCC+CMN, DPS+CMN, RAS+CMN, DAS+CMN and SS methods for isolated-word task 
with 1 mixture component per state. 

Also, in Tables 1 and 2, the clean recognition results and the average noisy speech 
recognition results are included for comparison purposes. The average values mentioned in 
Table 2 were calculated over the results obtained from 0 dB to 20 dB SNRs, omitting the 
clean and -5 dB results. This is in accordance with average result calculations in Aurora 2 
task.
Note that, all the reported results are for clean-trained models and no matched condition or 
multi-conditioned noisy training was carried out. Furthermore, also for comparison 
purposes, the results of an implementation of cepstral mean normalization, as a feature 
post-processing enhancement method, applied after standard MFCC, DPS and DAS 
parameter extractions, are included. These are denoted by CMN. Note that, for better 
comparison, the results of an implementation of spectral subtraction as an initial 
enhancement method, applied before standard MFCC parameter extraction, are also 
included. These are denoted by SS and the algorithm was applied as explained in (Junqua & 
Haton, 1996). As can be seen in Fig. 4, DAS outperforms all other methods in almost all 
noise types and SNRs. The average results on different SNRs, as shown in Table 2, are again 
considerably better for DAS in comparison to the other feature extraction techniques, except 
for the case of car noise, where it is very close to DPS results. As an example, DAS has about 
29% reduction on the average word error rate for babble noise, compared to DPS, which 
performs the best among the others. Similar conclusions can be made from this table for 
factory and white noises. 



Robust Speech Recognition and Understanding 250

Feature type Recognition Rate (%)

MFCC 96.60 
SS 96.60 

MFCC+CMN 99.20 
DPS+CMN 99.20
RAS+CMN 98.80
DAS+CMN 99.20

Table 1. Comparison of baseline isolated-word recognition rates for various feature types. 

Average Recognition Rate (%) 

Feature type 

Babble Car Factory White 

MFCC (Baseline) 63.60 89.44 57.92 38.68 
SS 51.60 78.88 52.72 43.88 

MFCC+CMN 66.00 91.00 59.24 45.08 
DPS+CMN 77.28 99.24 77.84 71.84 
RAS+CMN 70.00 92.88 68.72 47.24 
DAS+CMN 83.88 99.12 82.80 76.36 

Table 2. Comparison of average isolated-word recognition rates for various feature types 
with babble, car, factory and white noises.  

3.1.3.3. Results on continuous Farsi task 

The feature parameters were extracted similar to the isolated-word recognition case. The 
modeling was carried out using 30 context-independent models for the basic Farsi 
phonemes plus silence and pause models. These, except the pause model, consisted of 3 
states per model, while the pause model included one state only. The number of mixture 
components per state was 6 and no grammar was used during the recognition process to 
enable us better evaluate our acoustic models under noisy conditions. The size of the 
recognition lexicon was around 1200.  
Figures 5 and 6 display the results of our FARSI CSR experiments. These results were 
obtained using a set of parameters similar to the isolated-word experiments parameters.  
According to Fig. 5, DAS outperforms all other front-ends such as RAS, DPS and MFCC in 
almost all cases. While RAS performance is acceptable in low SNRs, it performs inferior to 
other front-ends in SNRs over 10dB. DPS performs slightly better than MFCC except in car 
noise. 
Fig. 6 depicts the results obtained when CMN is applied alongside the above front-ends. 
Here again, the DAS front-end outperforms the others in almost all cases. 
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Figure 5. Continuous speech recognition accuracies for speech signal contaminated with (a) 
babble, (b) car, (c) factory and (d) F16 noises in different SNRs. The results correspond to 
MFCC, DPS, RAS and DAS front-ends and 6 mixture components per state, without CMN. 

Table 3 summarizes recognition rates for various front-ends with/without CMN and 
contaminated with babble, car, factory and f16 noises with six mixture components per state. 
According to this table, DAS with/without CMN outperforms the other methods in average, 
proving its effectiveness in noisy speech recognition.  

3.1.3.4. Results on Aurora 2 task 

The features in this case were computed using 25 msec. frames with 10 msec. of frame shifts. 
Pre-emphasis coefficient was set to 0.97. For each speech frame, a 23-channel mel-scale filter-
bank was used. The feature vectors were composed of 12 cepstral and log-energy 
parameters, together with their first and second order derivatives (39 coefficients in total). 
MFCC feature extraction and all model creation, training and tests were carried out using 
the HMM toolkit.  
Fig. 7 shows the results obtained using MFCC, DPS, RAS and DAS front-ends with CMN on 
models created using the clean-condition training section of Aurora 2 task. Once again, the 
DAS front-end leads to better recognition rates in comparison to other methods. Also, Fig. 8 
depicts the recognition rates of different methods obtained using the multi-condition 
training set of Aurora 2 task. The multi-condition results of different front-ends show very 
close performances. However, DAS still performs slightly better compared to the others.  
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3.1.3.5. Adjusting the Parameters 

For parameter setting in DAS, the length of the FIR filter (filter type is same as (8)) and the 
order of differentiation was taken into consideration. A set of preliminary experiments were  
carried out to find the most appropriate filtering and differentiation parameters. These 
experiments were performed on the continuous Farsi task as explained in section 3.1.3.1. 
Here, the length of the filter was changed from L=1 (three frames) to L=5 (eleven frames) in 
steps. Also, biased and unbiased estimators were used for calculating the one-sided  
autocorrelation sequence. Table 4 summarize the results by displaying the average 
recognition accuracies on the test set with various noises (babble, car, factory and F16) and 
in various SNRs, with two different autocorrelation estimators. At this step, for computing 
the autocorrelation spectral peaks the differentiation defined in (21) was considered. 
As can be seen in Table 4, the best average recognition results using DAS features were 
obtained using the filter length L=3. Furthermore, the unbiased estimator led to better 
results compared to the biased one.
In order to find the best differentiation methods, the following differentiation formulas were 
used. 

)2()()( +−= kYkYkDiff , (22) 

)2()1()1()2()( +−+−−+−= kYkYkYkYkDiff , (23) 

    
(a)                                                                   (b) 

     
 (c)                                                                    (d) 

Figure 6. Continuous speech recognition accuracies for speech signal contaminated with (a) 
babble, (b) car, (c) factory and (d) f16 noises in different SNRs. The results correspond to 
MFCC, DPS, RAS and DAS front-ends with CMN and 6 mixture components per state. 
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Recognition Rate (%) - 6 mix per state 

Noise Type Babble Car Factory F16 
MFCC (Baseline) 19.23 49.39 18.23 17.64 
MFCC+CMN 25.39 53.69 23.22 23.24 
DPS 19.90 48.06 20.32 18.42 
DPS+CMN 26.43 53.62 23.80 23.54 
RAS 20.32 50.67 20.70 21.84 
RAS+CMN 26.44 54.21 25.05 24.03 
DAS 24.72 52.78 26.22 26.42 
DAS+CMN 31.31 57.09 28.67 28.84 

Table 3. Comparison of average continuous speech recognition accuracies for various 
feature types in babble, car, factory and f16 noises with different SNRs. Recognition was 
carried out using 6 mixture components per state. 

     
                                              (a)                                                                    (b) 

 (c) 

Figure 7. Average recognition accuracies for clean-condition on AURORA2.0 (a) set A, (b) 
set B and (c) set C. The results correspond to MFCC, DPS, RAS and DAS front-ends with 
CMN. 
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Figure 8. Average recognition accuracies for AURORA 2 multi-condition training. (a) set A, 
(b) set B and (c) set C. The results correspond to MFCC, DPS, RAS and DAS front-ends with 
CMN.  

Since the filter with length L=3, using unbiased estimator, had led to better results in noisy 
speech recognition, this type of filter and estimator have been tested together with the 
difference equations given in (21), (22) and (23). The results are reported in Table 5. 
According to this table, the one sample difference equation, (21), has led to better overall 
results, compared to (22) and (23).  

                                Biased Estimator Unbiased Estimator 

Filter Lenght Babble Car Factory F16 Babble Car Factory F16 
L=1   3 frames 22.07 49.06 22.59 21.72 24.08 51.80 23.77 23.25 

L=2   5 frames 22.97 50.00 23.24 22.95 24.72 52.78 24.43 24.53 

L=3   7 frames 24.69 51.34 24.41 24.42 26.00 53.24 26.49 25.38 

L=4   9 frames 23.82 50.89 23.76 23.15 25.31 53.06 25.61 23.78 

L=5   11 frames 23.07 49.91 23.35 22.89 25.09 52.59 25.41 23.76 

Table 4. The average continuous speech recognition rates using DAS for various noise and 
SNRs with different filter lengths. Biased and Unbiased estimator was used for one-sided 
autocorrelation sequence calculation and the models featured 6 mixture components per 
state.
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3.2. Spectral Peaks of filtered higher-lag autocorrelation sequence (SPFH) 

In this method, after splitting the speech signal into frames and pre-emphasizing, the 
autocorrelation sequence of the frame signal was obtained using an unbiased estimator 
(equation (4)). The lower lags of the autocorrelation sequence were then removed according 

Noise
 Type 

Recognition Rate (%) 
equation (21) 

Recognition Rate (%) 
equation (22) 

Recognition Rate (%) 
equation (23) 

Babble 26.00 24.83 25.19 
Car 53.24 51.56 52.35 
Factory 26.49 25.17 25.82 
F16 25.38 23.71 24.25 

Table 5. CSR averaged accuracies over various SNRs with different noise types, filter length 
L=3 and unbiased estimator for one-sided autocorrelation sequence obtained using 
equations (21), (22) and (23). 

to the criterion discussed in section 3.2.2. A FIR high-pass filter similar to section 3.1.2 was 
then applied to the signal autocorrelation sequence to further suppress the effect of noise. 
Hamming windowing and short-time Fourier transform were the next stages. In the next 
step, the differential power spectrum of the filtered signal was found using (19). This has an 
effect similar to what discussed in 3.1.2, leading to even further suppression of the effect of 
noise. The steps of this algorithm are shown in Fig. 9. The resultant feature set was called 
spectral peaks of filtered higher-lag autocorrelation sequence (SPFH) (Farahani et al., 2006b). 

Figure 9. Front-end diagram for SPFH feature extraction 

3.2.1. SPFH results on Aurora 2 task 

The discussed approach was implemented on Aurora 2 task. Fig. 10 depicts the results 
obtained using MFCC, RAS, AMFCC, DAS and SPFH front-ends. According to this figure, 
SPFH has led to better recognition rates in comparison to other methods for all test sets. 
Also, in Table 6, average recognition rates obtained for each test set of Aurora 2 are shown. 
As shown in Fig. 10, the recognition rates using MFCC are seriously degraded in lower 
SNRs, while, AMFCC, RAS, DAS and SPFH are more robust to different noises with SPFH 
outperforming all the others. 

3.2.2. Adjusting the parameters

In our experiments we have used a filter length of L=2. Furthermore, the best results for 
spectral differentiation were obtained using a simple difference equation (21). Therefore we 
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(a)                                                                   (b) 

(c)

Figure 10. Average recognition rates on Aurora 2 task. (a) Test set a, (b) Test set b, (c) Test 
set c. The results correspond to MFCC, RAS, AMFCC, DAS and SPFH methods. 

Average Recognition Rate (%) Feature type 
Set A Set B Set C 

MFCC 61.13 55.57 66.68 

RAS 66.77 60.94 71.81 
AMFCC 63.41 57.67 69.72 

DAS 70.90 65.57 77.17 
SPFH 73.61 68.98 80.89 

Table 6. Comparison of Average recognition rates for various feature types on Aurora 2 test 
sets. 

used (21) in our experiments. In order to find the most suitable autocorrelation lag for 
discarding, we have tested several different lag values. The results are reported in Fig. 11. 
According to this figure, the best results were obtained when lags of lower than 2.5 ms (20 
samples) were discarded. Hence, this value was used as the discarding threshold in our 
experiments. The same value was also used with AMFCC. 

3.3. Autocorrelation peaks after filtering (ACPAF) and autocorrelation peaks (ACP) 
methods 

In this section, first we explain the extraction of the frequency locations of peaks. Then we 
explain ACPAF and ACP methods and finally report the results of their implementation. 
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Figure 11. Average normalized recognition rates for each of the three test sets of Aurora 2 
and their total average versus autocorrelation lag threshold.  

3.3.1. Peak frequency location 

For peak calculations, we used the peak threading method that is rather accurate in finding 
the location of peak frequencies in spectral domain (Strope & Alwan, 1998). For this, we first 
applied a set of triangular filters to the signal. These filters had bandwidths of 100 Hz for 
centre frequencies below 1 kHz and bandwidths of one tenth the centre frequency for the 
frequencies above 1 kHz. Then, an AGC (Automatic Gain Control) was applied to the filter 
outputs. In our implementation, we used a typical AGC that slowly adapts the output level, 
so that its value is maintained near that of the target level when the levels of input change. 
Therefore, the inputs below 30 dB are amplified linearly by 20dB and inputs above 30 dB are 
amplified increasingly less. After finding the isolated peaks, the peaks were threaded 
together and smoothed. Then three peak frequencies and two peak derivatives were found 
and added to the feature vector. 

3.3.2. Algorithm implementation 

Due to the importance of spectral peaks and also the effectiveness of autocorrelation 
function, the autocorrelation domain has also been used for extracting frequencies of the 
first three peaks and two derivatives of them. Fig. 12 depicts the block diagram of this 
feature extraction approach. Once again, feature extraction starts with frame blocking, pre-
emphasis and unbiased autocorrelation calculation. Then, the first three spectral peak 
locations and their derivatives are calculated using the signal autocorrelation, to be later 
added to the feature vector. Furthermore, the front-end diagram continues with/without 
filtering, as pointed out in (8). Hamming windowing, FFT and the rest of blocks normally 
used in MFCC calculations constitute the remainder of feature extraction procedure. If the 
filter is used after the autocorrelation of the signal, a cleaner signal, compared to the original 
noisy signal, could result.  
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Figure 12. Front-end diagram to extract ACPAF features in autocorrelation domain. 

                                              (a)                                                                   (b) 

                                                (c)                                                                   (d) 
Figure 13. Recognition Rates for different noises on isolated-word Farsi corpus. (a) babble, 
(b) car, (c) factory and (d) white noises in different SNRs. The results correspond to MFCC, 
RAS, TSP, ACP and ACPAF. 

In Fig. 12, the box named “peak calculation and computing differential of peaks” displays 
how the peak threading method can be integrated in this front-end. Since after the 
application of autocorrelation function, the spectral peaks become clearer, we expect the 
resultant feature vectors to be more robust to noise.  
As mentioned in (Strope & Alwan, 1998; Farahani et al., 2006a), the peaks of the speech 
spectrum are important for speech recognition. Hence, we decided to add three peak 
frequencies and two peak derivatives to the feature vector. The spectral peaks obtained 
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using unfiltered signal autocorrelation, as depicted in the front-end diagram, are called ACP 
(autocorrelation peaks) and those obtained using filtered signal autocorrelation, ACPAF 
(autocorrelation peaks after filtering). For comparison purposes, we have also implemented 
a feature extraction procedure similar to (Strope & Alwan, 1998), except that a different 
AGC was used, as explained above. This will be called threaded spectral peaks (TSP). 

3.3.3. Experiments

The speech corpus used in these experiments is the speaker-independent isolated-word 
Farsi (Persian) corpus. Our experiments were carried out using MFCC (for comparison 
purposes), RAS, GDF, TSP and our three new methods, ACP and ACPAF. The feature 
vectors for both proposed methods were composed of 12 cepstral and a log-energy 
parameter, together with their first and second derivatives and five extra components of 
which three are for the first three formants and the other two for the frequency peak 
derivatives. Therefore, our feature vectors were of size 44. For implementation of these 
methods, we have used a filter length of L=2. Also unbiased autocorrelation sequence is 
used for feature extraction.
Fig. 13 depicts the results of the implementations. Also the averages of the results are 
reported in Table 7. Once again, the average values mentioned in this table are calculated 
over the results obtained from 0 dB to 20 dB SNRs, omitting the clean and -5 dB results. As 
is clear, the recognition rates using MFCC features are seriously degraded by different 
noises, while RAS method exhibits more robustness. Adding the frequencies of peaks 
approved the effectiveness of autocorrelation domain for peak tracking. As the results 
indicate, while ACP achieves a noticeable improvement in the baseline performance in 
noise, the combination of ACP with FIR filter works better than ACP alone, outperforming 
other methods in noisy conditions. The results obtained can be listed in brief as: 
1. The ACPAF outperforms other methods.  
2. The improvements for car noise are very slight, as most of the feature extraction 

techniques perform almost similar in that case. 
3. Appending frequency peaks to the feature vector can further improve the results 

obtained using autocorrelation based features. 

3.4. Autocorrelation peaks and phase features (APP) 

In this section, feature extraction in phase domain plus the extraction of extra feature 
parameters in autocorrelation domain will be discussed (Farahani et al., 2006c). Due to the 
effectiveness of autocorrelation function in preserving peaks, we will also report the results 
of using the autocorrelation domain for extracting the first 3 formants of the speech signal 
(Strope & Alwan, 1998; Farahani et al., 2006a).  
In Fig. 14 we have shown the procedure followed to extract feature parameters in 
autocorrelation phase parameters. Most of the diagram is similar to previously discussed 
methods with the exception of the calculation of the phase angle, ),( kmyθ , as mentioned in 

(15). As it is clear from (15), these features are related only to the phase variations, in 
contrast to the features based on the magnitude, such as MFCC, that are related to both 

)(mY  and ),( kmyθ  (Ikbal et al., 2003). 
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Average Recognition Rate (%) Feature type Babble Car Factory White 
MFCC 63.60 89.44 57.92 38.68 
RAS 67.04 90.56 66.40 44.44 
TSP 76.16 87.20 66.44 64.36 
ACP 77.92 90.76 68.16 66.44 
ACPAF 79.28 92.12 70.76 68.64 

Table 7. Comparison of average recognition rates for various feature types with babble, car, 
factory and white noises. 

Here again, the first three spectral peak locations and their derivatives are also calculated 
using the signal autocorrelation spectrum, as explained in 3.3.1 and later added to the 
feature vector in phase domain. The new coefficients were named Autocorrelation Peaks and 
Phase features (APP). 

Figure 14. Front-end diagram to extract features in phase domain along with autocorrelation 
function.

3.4.1. Experiments 

This method was implemented on Aurora 2 task. The feature vectors were composed of 12 
cepstral and one log-energy parameters, together with their first and second derivatives and 
five extra components of which three were for the first three formants and the other two for 
the frequency peak derivatives. Therefore, the overall feature vector size was 44. In this 
method, we have used a filter length of L=2.
Fig. 15 displays the results obtained using MFCC, PAC (phase autocorrelation) and APP. Also, 
for comparison purposes, we have included the results of adding spectral peaks to feature 
vectors calculated using magnitude spectrum and called it TSP (threaded spectral peaks)
(Strope & Alwan, 1998) and ACP (autocorrelation peaks) (Farahani et al., 2006a). According to 
Fig. 15, APP has led to better recognition rates in comparison to most of the other methods 
and outperformed other methods for all test sets. This result shows that the autocorrelation 
domain is more appropriate for peak isolation in phase domain.  
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Figure 15. Average recognition rates on Aurora 2 database. (a) Test set a, (b) test set b and (c) 
test set c. The results correspond to MFCC, PAC, TSP, ACP, and APP methods. 

In Table 8, we have summarized the average recognition rates obtained for each test set of 
Aurora 2. As can be seen, average recognition rates for features extracted using the 
autocorrelation domain with phase features (APP) tops all other results obtained.  

Average Recognition Rate (%) Feature type 
Set A Set B Set C 

MFCC 61.13 55.57 66.68 
PAC 66.02 62.25 72.60 
TSP 66.31 62.86 72.89 
ACP 68.03 64.86 74.46 
APP 71.83 67.69 76.53 

Table 8. Comparison of Average recognition rates for various feature types on three test sets 
of Aurora 2 task. 

4. Conclusion 

In this chapter, the importance of autocorrelation domain in robust feature extraction for 
speech recognition was discussed. To prove the effectiveness of this domain, some recently 
proposed methods for robust feature extraction against additive noise were discussed. These 
methods resulted in cepstral feature sets derived from the autocorrelation spectral domain. 
The DAS algorithm used the differentiated filtered autocorrelation spectrum of the noisy 
signal to extract cepstral parameters. We noted that similar to RAS and DPS, DAS can better 
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preserve speech spectral information for recognition. Experimental results were used to 
verify the improvements obtained using DAS feature set in comparison to MFCC, RAS and 
DPS. Its superior performance in comparison to both RAS and DPS is an indication of the 
rather independent effectiveness of the two steps in reducing the effect of noise. Its 
combination with CMN has also been found effective. The impact of filter length and type of 
differentiation on recognition results were also examined. 
Also, the performance of DAS and RAS have further been improved by SPFH where the 
effect of noise has further been suppressed using an extra step of discarding the lower lags 
of the autocorrelation sequence. The experiments showed the better performance of this new 
approach in comparison to the previous autocorrelation-based robust speech recognition 
front-ends.
Techniques based on the above methods and the use of spectral peaks were also discussed 
in this chapter. The proposed front-end diagrams in autocorrelation domain, ACP and 
ACPAF, were evaluated together with several different robust feature extraction methods. 
The usefulness of these techniques was shown and the results indicated that the spectral 
peaks inherently convey robust information for speech recognition, especially in 
autocorrelation domain. Better parameter optimization for these two methods can be a basis 
for the future work as it is believed to have important influence on the system performance. 
As discussed, the features extracted in magnitude domain are more sensitive to the 
background noise in comparison to the phase domain. Appending the frequencies of 
spectral peaks and their derivatives to feature parameters extracted in phase domain, 
similar to what was done in magnitude domain, led to even better results in comparison to 
the parameters extracted using the magnitude spectrum. Once again, the autocorrelation 
domain was used here for spectral peak extraction.  
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1. Introduction   

With exponentially evolving technology it is no exaggeration to say that any interface for 
human-robot interaction (HRI) that disregards human affective states and fails to 
pertinently react to the states can never inspire a user’s confidence, but they perceive it as 
cold, untrustworthy, and socially inept. Indeed, there is evidence that HRI is more likely to 
be accepted by the user if it is sensitive towards the user’s affective states, as expression and 
understanding of emotions facilitate to complete the mutual sympathy in human 
communication. To approach the affective human-robot interface, one of the most important 
prerequisites is a reliable emotion recognition system which guarantees acceptable 
recognition accuracy, robustness against any artifacts, and adaptability to practical 
applications. 
Emotion recognition is an extremely challenging task in several respects. One of the main 
difficulties is that it is very hard to uniquely correlate signal patterns with a certain 
emotional state because even it is difficult to define what emotion means in a precise way. 
Moreover, it is the fact that emotion-relevant signal patterns may widely differ from person 
to person and from situation to situation. Gathering “ground-truth” dataset is also 
problematical to build a generalized emotion recognition system. Therefore, a number of 
assumptions are generally required for engineering approach to emotion recognition.   
 Most research on emotion recognition so far has focused on the analysis of a single 
modality, such as speech and facial expression (see (Cowie et al., 2001) for a comprehensive 
overview). Recently some works on emotion recognition by combining multiple modalities 
are reported, mostly by fusing features extracted from audiovisual modalities such as facial 
expression and speech. We humans use several modalities jointly to interpret emotional 
states in human communication, since emotion affects almost all modes, audiovisual (facial 
expression, voice, gesture, posture, etc.), physiological (respiration, skin temperature etc.), 
and contextual (goal, preference, environment, social situation, etc.) states. Hence, one can 
expect higher recognition rates through the integration of multiple modalities for emotion 
recognition. On the other hand, however, more complex classification and fusion problems 
arise.
 In this chapter, we concentrate on the integration of speech signals and physiological 
measures (biosignals) for emotion recognition based on a short-term observation. Several 
advantages can be expected when combining biosensor feedback with affective speech. First 



Robust Speech Recognition and Understanding 266

of all, biosensors allow us to continuously gather information on the users’ affective state 
while the analysis of emotions from speech should only be triggered when the microphone 
receives speech signals from the user. Secondly, it is much harder for the user to deliberately 
manipulate biofeedback than external channels of expression which allows us to largely 
circumvent the artifact of social masking. Finally, an integrated analysis of biosignals and 
speech may help to resolve ambiguities and compensate for errors. 
When combining multiple modalities, the following questions arise: (1) How to handle 
conflicting cases between the single modalities? For instance, a user may consciously or 
unconsciously conceal his/her real emotions by external channels of expression, but still 
reveal them by internal channels of expression. (2) At which level of abstraction should the 
single modalities be fused in order to increase the accuracy of the recognition results? (3) 
How should the window sizes of different modalities be synchronized when same 
emotional cues in the modalities occur with a time discrepancy? 
In the next section, we discuss selected previous work. Section 3 reports on the dataset we 
used and describes the features we extracted from speech signal 5-channel biosignal. Several 
fusion methods are presented including feature-level fusion, decision-level fusion, and a 
hybrid fusion scheme. In Section 4, we analyze the classification results with respect to the 
effect of bimodal integration. We conclude this work with a short outlook on future work. 

2. Related Work 

2.1 Modeling of discrete emotions 

As people display the emotional expressions of others to their various degrees individually, 
it is not an easy task to judge or to model human emotions. The researchers often use two 
different methods to model emotions. One approach is to label the emotions in discrete 
categories, i.e. human judges have to choose from a prescribed list of word labels, e.g. joy, 
sadness, surprise, anger, love, fear, etc. One problem with this method is that the stimuli 
may contain blended emotions that can not adequately be expressed in words since the 
choice of words may be too restrictive and culturally dependent. Another way is to have 
multiple dimension or scales to categorize emotions. Instead of choosing discrete labels or 
words, observers can indicate their impression of each stimulus on several continuous 
scales, for example, pleasant-unpleasant, attention-rejection, simple-complicated, etc. Two 
common scales are valence and arousal. Valence represents the pleasantness of stimuli, with 
positive (or pleasant) on the end, and negative (or unpleasant) on the other. For example, 
happiness has a positive valence, while disgust has a negative valence. Another dimension 
is arousal (activation level). For example, sadness has low arousal, whereas surprise has 
high arousal level. The different emotional labels could be plotted at various positions on a 
two-dimensional plane spanned by these two axes to construct a 2D emotion model (Lang, 
1995) (see Fig. 1.(a)). 
 Recently, the low consistency of physiological configurations supported the hypothesis that 
ANS activation during emotions indicates the demands of a specific action tendency and 
action disposition, instead of reflecting emotions per se (Tooby & Cosmides, 1990; Lazarus, 
1991; Davidson, 1993). (Scholsberg, 1954) suggested a three-dimensional model in which he 
had attention-rejection in addition to the 2D model. Researchers have summarized these 
associated action tendencies as “stance” in three-dimensional emotion model, i.e., arousal, 
valence, and stance (Fig. 1.(b)). 
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Figure 1. Emotion models: (a) Two-dimensional model by valence and arousal, (b) Three-
dimensional model by valence, arousal, and stance 

 For example, fear is associated with the action pattern of “flight”, anger calls to mind the 
urge to “fight”, and so on. However, it is not immediately obvious what elemental problem 
happiness solves and what action pattern or motor program is associated with this emotion. 
Thus such positive emotions seem to be characterized by a lack of autonomic activation, and 
this might be one reason why research on positive emotions has been behind negative 
emotions so far. Interestingly, (Fredricson & Levenson, 1998) reported “undoing” effect of 
positive emotions that certain positive emotions speed recovery from the cardiovascular 
sequelae of negative emotions1. It is a useful finding to support symmetry process of 
emotion system, that the negative emotions act to help the organism escape from 
homeostasis and the positive emotions such as contentment and amusement catalyze a more 
rapid return to homeostatic levels. 

2.2 Automatic emotion recognition using speech and biosignals

There is a vast body of literature on the automatic recognition of emotions. With labelled 
data collected from different modalities, most studies rely on supervised pattern 
classification approaches to automatic emotion recognition. 
Following the long tradition of speech analysis in signal processing, many efforts were taken 
to recognize affective states from vocal information. As emotion-specific contents in speech, 
supra-segmental prosodic features including intensity, pitch, and duration of utterance have 
been widely used in recognition systems. To exploit the dynamic variation along an 
utterance, Mel-frequency cepstral coefficients (MFCC) are extensively employed. For 
example, (New et al., 2001) achieved an average accuracy of 66% for six emotions acted by 
two speakers using 12 MFCC features as input to a discrete hidden Markov model (HMM). 
A rule-based method for emotion recognition was proposed by (Chen, 2000). The data used 
in this work contained two foreign languages (Spanish and Sinhala) for the judges who did 
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not comprehend either language and were therefore able to make their judgment based on 
vocal expression without being influenced by linguistic/semantic content. (Batliner et al., 
2003) achieved about 40% for a 4-class problem with elicited emotions in spontaneous 
speech.
Relatively little attention has been paid so far to physiological signals for emotion 
recognition compared to other channels of expression. A significant series of work has been 
conducted by Picard and colleagues at MIT Lab. For example, they showed that certain 
affective states may be recognized by using physiological measures including heart rate, 
skin conductivity, temperature, muscle activity, and respiration velocity (Picard et al., 2001). 
Eight emotions deliberately elicited from a subject in multiple weeks were classified with an 
overall accuracy of 81%. (Nasoz et al., 2003) used movie clips to elicit target emotions from 
29 subjects and achieved the best recognition accuracy (83%) by applying the Marquardt 
Backpropagation algorithm. More recently, (Wagner et al., 2005) presented an approach to 
the recognition of emotions elicited by music using 4-channel biosignals which were 
recorded while the subject was listening to music songs, and reached an overall recognition 
accuracy of 92% for a 4-class problem. 
In order to improve the recognition accuracy obtained from unimodal recognition systems, 
many studies attempted to exploit the advantage of using multimodal information, 
especially by fusing audio-visual information. For example, (De Silva & Ng, 2000) proposed 
a rule-based singular classification of audio-visual data recorded from two subjects into six 
emotion categories. Moreover, they observed that some emotions are easier to identify with 
audio, such as sadness and fear, and others with video, such as anger and happiness. Using 
decision-level fusion in bimodal recognition system, a recognition rate of 72% has been 
reported. A set of singular classification methods was proposed by (Chen & Huang, 2000), 
in which audio-visual data collected from five subjects was classified into the Ekman’s six 
basic emotions (happiness, sadness, disgust, fear, anger, and surprise). They could improve 
the performance of decision-level fusion by considering the dominant modality, determined 
by empirical studies, in case significant discrepancy between the outputs of each unimodal 
classifier has been observed. Recently, a large-scale audio-visual dataset was collected by 
(Zeng et al., 2004), which contains five HCI-related affective responses (confusion, interest, 
boredom, and frustration) in addition to seven affects (the six basic emotions + neutral). To 
classify the 11 emotions subject-dependently, they used the SNoW (Sparse Network of 
Winnow) classifier with Naive Bayes as the update rule and achieved a recognition accuracy 
of almost 90% through bimodal fusion while the unimodal classifiers yielded only 45-56%. 
Most previous studies have shown that the performance of emotion recognition systems can 
be improved by the use of audio-visual information. However, it should be noted that the 
achieved recognition rates depend rather on the type of the underlying dataset, whether the 
emotions were from acted, elicited or real-life situation, than the used algorithms and 
classification methods. Moreover, apart from our previous work (Kim et al., 2005), work on 
the integration of biosignals and speech is rare. In this paper, we will investigate in how far 
the robustness of an emotion recognition system can be increased by integrating both vocal 
and physiological cues. We evaluate two fusion methods that combine bimodal information 
at different levels of abstraction as well as a hybrid integration scheme. Particularly we 
focus on shorter observations compared to or earlier work. 
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3. Methodology 

3.1 Dataset 

We use the same Quiz dataset as in our prior work (Kim et al., 2005). The dataset contains 
speech (using microphone by 48 KHz/16Bit), physiological (using 6-channel biosensors), 
and visual information (using video camera) from three male German-speaking subjects in 
their twenties. 
To acquire a corpus of spontaneous vocal and physiological emotions, we used a slightly 
modified version of the quiz “Who wants to be a millionaire?”. Questions along with 
options for answers were presented on a graphical display whose design was inspired by 
the corresponding quiz shows on German TV. In order to make sure that we got a sufficient 
amount of speech data, the subjects were not offered any letters as abbreviations for the 
single options (as very common in quiz shows on TV), but were forced to produce longer 
utterances. Furthermore, the users current score was indicated as well as the amount of 
money s/he may win or loose depending on whether his/er answer is correct or not. Each 
of the session took about 45 minutes to complete. The subjects were equipped with a 
directed microphone to interact with a virtual quiz master via spoken natural language 
utterances. The virtual quiz master was represented by a disembodied voice using the 
AT&T Natural Voices speech synthesizer. While the users interacted with the system, their 
bio and speech signals as well as the interaction with the quiz master were recorded. 
The quiz experiment was designed in a Wizard-Of-Oz fashion where the quiz agent who 
presents the quiz is controlled by a human quiz master who guides the actual course of the 
quiz, following a working script to evoke situations that lead to a certain emotional 
response. The wizard was allowed to freely type utterances, but also had access to a set of 
macros that contain pre-defined questions or comments which made it easier for the human 
wizard to follow the script and to get reproducible situations (see Fig. 2). 

Figure  2.  Interface for the user (left) and for the wizard (middle) 
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The wizards working script can be roughly divided into four situations which serve to 
induce certain emotional states in the user. We make use of a dimensional emotion model 
which characterizes emotions in terms of the two continuous dimensions of arousal and 
valence (see (Lang, 1995)). Arousal refers to the intensity of an emotional response. Valence 
determines whether an emotion is positive or negative and to what degree. Apart from the 
ease of describing emotional states that cannot be distributed into clear-cut fixed categories, 
the two dimensions valence and arousal are well suited for emotion recognition. The four 
phases of the experiment correspond to four quadrants the 2-D emotion model in Fig. 1.(a): 
(1) low arousal, positive valence, (2) high arousal, positive valence, (3) low arousal, negative 
valence and (4) high arousal, negative valence. 
First, the users are offered a set of very easy questions every user is supposed to know to 
achieve equal conditions for all of them. This phase is characterized by a slight increase of 
the score and gentle appraisal of the agent and serves to induce an emotional state of 
positive valence and low arousal in the user. In phase 2, the user is confronted with 
extremely difficult questions nobody is supposed to know. Whatever option the user 
chooses, the agent pretends the users answer is correct so that the user gets the feeling that 
s/he hits the right option just by chance. In order to evoke high arousal and positive 
valence, this phase leads to a high gain of money. During the third phase, we try to stress 
the user by a mix of solvable and difficult questions that lead, however, not to a drastic loss 
of money. Furthermore, the agent provides boring information related to the topics 
addressed in the questions. Thus, the phase should lead to negative valence and low 
arousal. Finally, the user gets frustrated by unsolvable questions. Whatever option the user 
chooses, the agent always pretends the answer is wrong resulting in a high loss of money. 
Furthermore, we include simple questions for which we offer similar-sounding options. The 
user is supposed to choose the right option, but we make him/er believe that the speech 
recognizer is not working properly and deliberately select the wrong option. This phase is 
intended to evoke high arousal and negative valence. 

3.2 Used biosensors 

The physiological signals are measured by using the Procomp1 Infiniti™ with the 6-channel 
biosensors: electromyogram (EMG), skin conductivity (SC), electrocardiogram (ECG), blood 
volume pulse (BVP), temperature (Temp), and respiration (RSP). The sampling rates are 32 
Hz for EMG, SC, RSP, and Temp, 256 Hz for ECG and BVP. The positions and typical 
waveforms of the biosensors we used are illustrated in Fig. 3.
 Electrocardiogram (ECG): we used a pre-amplified electrocardiograph sensor (bandwidth: 
0.05Hz-1 KHz) connected with pre-gelled single Ag/AgCl electrodes. We cannot measure 
individual action potentials direct in the heart. We can however measure the average action 
potential on the skin. The mean movement of the action potential is along the ``electrical 
axis'' of the heart. The action potential starts high in the right atrium, moves to the centre of 
the heart, then down towards the apex of the heart. Therefore the main electrical signal from 
heart is flowing away from the upper right of the body, and towards the lower left of the 
body.

                                                                
1 This is an 8 channel multi-modal Biofeedback system with 14 bit resolution and a fiber optic cable 

connection to the computer. www.MindMedia.nl 
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Figure 3.  Position and typical waveforms of the biosensors: (a) ECG, (b) EMG, (c) RSP, (d) 
SC, (e) BVP, (f) Temp. 

Electromyogram (EMG): we used Myoscan-Pro™ sensor with active range 20-500Hz and pre-
gelled single Ag/AgCl electrodes. It can record EMG signals of up to 1600 micro volt. We 
positioned the sensor at the nape of the neck of the subjects. Electromyography measures 
muscle activity by detecting surface voltages that occur when a muscle is contracted. 
Therefore the best readings are obtained when the sensor is placed on the muscle belly and 
its positive and negative electrodes are parallel to the muscle fibers. Since the number of 
muscle fibers that are recruited during any given contraction depends on the force required 
to perform the movement, the intensity (amplitude) of the resulting electrical signal is 
proportional to the strength of contraction. Particularly, the EMG signal required additional 
pre-processing, such as deep smoothing because of the nature of the signal that all the 
muscle fibers within the recording area of the sensor contract at different rates. 
Respiration (RSP): a stretch sensor using latex rubber band fixed with velcro respiration belt 
is used to capture breathing activity of the subjects. It can be worn either thoracically or 
abdominally, over clothing. The amount of stretch in the elastic is measured as a voltage 
change and recorded. Rate of respiration and depth of breath are the most common 
measures of respiration. Although respiration rate generally decreases with relaxation, 
startle events and tense situations may result in momentary respiration cessation. Negative 
emotions generally cause irregularity in the respiration pattern. 
Skin Conductivity (SC): skin conductivity is one of the mostly used measurements to capture 
the affective state of users, especially for arousal difference in emotion. SC sensor measures 
skin's ability to conduct electricity. A small voltage is applied to the skin and the skin's 
current conduction or resistance is measured. Therefore, skin conductance is considered to 
be a function of the activity of the eccrine sweat glands (located in palms of the hands and 
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soles of the feet) and the skin's pore size. We used Ag/AgCl electrodes fixed with two finger 
band and positioned at the index and ring finger of the non-dominant hand. 
Temperature (Temp): Temp is a highly sensitive temperature sensor and can monitor skin 
temperature changes smaller than 0.0001 (1/10000th) degree between 10°C – 45°C (50°F - 
115°F ). The sensor can be applied on the finger, hands, or other parts of the body. 
Blood Volume Pulse (BVP): BVP sensor measures the relative blood flow in the hands (fingers) 
with near infrared light, using the method known as photoplethysmography. The sensor 
housed in a small finger worn package can be used to monitor HR, HRV (heart rate 
variability), bloodflow and pulse. 

3.3 Synchronized segmentation of the bimodal signals 

In the previous work (Kim et al., 2005), we segmented and labelled the data based on the 
four experimental phases taking into account that the agreement between coders annotating 
material of everyday emotions is usually not very high (Douglas-Cowie et al., 2005). All 
speech and physiological signals that may be interpreted as a response to the same question 
have been segmented into one chunk and labelled with the emotion corresponding to the 
experimental phase in which they occurred 

Figure 4.  Segmentation of bimodal signals based on verbal phrases: (a) speech, (b) BVP, 

(c) EMG, (d) RSP, (e) SC, (f) Temp. 

 For the analysis described in this paper, the segmentation and labelling was refined by two 
expert labellers considering the situative context as well as the audio-visual expression of 
the subjects. In this way, we tried to handle cases where we did not succeed in eliciting the 
intended emotion. To segment speech and physiological data, we started from verbal 
phrases. The borders of the segments for both modalities were chosen to lie in the middle of 
two verbal phrases so that they cover the same time span. For the analysis of speech, we 
only consider the part of the segment when the verbal phrase occurs while for the analysis 
of physiological data the complete segment is taken. As a consequence, the observations for 
speech are usually shorter than the observations for the physiological data, but the length of 
the corresponding segments is the same which facilitates the later fusion process. 
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In total, we got 343 samples for classification (343 x 6 channels = 2058 segments in total) 
from the dataset. Based on the four phases of the experiments, our labellers relied on 
dimensional rating (i.e. labelling within the 4 quadrants of the 2D emotion model). 
Disagreements between the ratings of the two labellers were discussed and resolved after 
the annotation process. 
Fig. 4 shows sample segmentation for data from the used channels. The length of the 
observations varies from 2 to 6 seconds for the speech and from 3 to 15 seconds for the 
biosignals. That is the observations are rather short-term compared to previous studies that 
start from a segment length between 50 and 300 seconds (Kim et al., 2004). 

3.4 Feature extraction 

An essential step in pattern classification is to extract class-relevant features (preferably in a 
compressed form) from the raw signal. Moreover the classification of short-term 
observations requires more reasonable treatments in signal processing stages, e.g. extracting 
spectral features in biosignals (containing very low frequencies) within limited bandwidth 
due to the very short window size. 
From the speech signal: for all segments, the conventional statistics in time domain are 
calculated, such as mean, absolute extremum, root mean square, standard deviation, 
energy/power, intensity in dB etc. In frequency domain, three spectrum contents are 
obtained using the STFT; pitches using a window length of 40 ms, energy spectrum, and 
formant object using a window length of 25 ms. In addition, 10 MFCCs from each segment 
are calculated using a window length of 15 ms. From pitch and energy spectrum, also the 
series of the minima and maxima, and of the distances, magnitudes and steepness between 
adjacent extrema were obtained. For the MFCCs, we first exponentiated the cepstral 
coefficients to obtain non-negative values and calculated the spectral entropy as in the case 
of the biosignal in order to capture the distribution of cepstral energy. From each feature 
content above, we tried to extract single features (i.e., mean, standard deviation, mean of 
first and second derivative) representing characteristics (i.e., variance and slop) of each time 
series vector of spectrum, instead of taking all feature vectors. As a result, we obtained a 
total of 61 features from the speech segments. 
From physiological data: differing from (Kim et al., 2005), we employ the BVP signal instead of 
the ECG signal and use the Temp signal as an additional channel from the dataset.2 To 
remove noisy signals, all segments of the 5- channel biosignals (BVP, EMG, SC, RSP, and 
Temp) are lowpass-filtered using pertinent cut-off frequencies that are empirically 
determined for each biosensor channel. Different types of artifacts were observed such as 
transient noise due to movement of the subjects during the recording, mostly at the begin 
and end of the each recording. Particularly to the EMG signal, we needed to pay closer 
attention because the signal contains artifacts generated by respiration and heart beat (Fig. 
5). We found that it was due to the position of EMG sensor at the nape of the neck. 

                                                                
2 Generally the ECG is measured by using electrodes which do need a firm skin contact, whereas the 

BVP is measured by using a photoplethysmograph. Hence, using the BVP signal has some 
advantages such as robustness against motion artifacts during recording process and stable baseline 
in the signal flow.
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Figure 5.  Example of EMG signal with heart beat artifacts and denoised signal 

From the raw BVP signal, we first calculated the 8 subband spectral powers using the 
conventional 512 points short-time Fourier transform (STFT). To capture the irregularity and 
the local spectral distribution, the spectral entropy is calculated from each subband by 
converting the spectrum into a PMF-like (Probability Mass Function) form. Heart rate 
variability (HRV) is the most frequently used characteristic of the heart activity in 
biomedical engineering to assess cardiac health. Using the QRS detection algorithm of (Pan 
& Tompkins, 1985), the HRV like time series (we refer to as PRV)3 is obtained and typical 
statistics (mean value, standard deviation, slope, etc.) are calculated from the time series. By 
calculating the standard deviations in different distances of pulse-pulse interbeats, we also 
added the Poincaré geometry in the feature set to capture the nature of pulse interval 
fluctuations. Figure 6 shows an example plot of the geometry. 

Figure 6.  Example of BVP Analysis: (a) detected pulse interbeats, (b) interpolated PRV like 
series, (c) Poincaré plot of the PRV 

                                                                
3 Strictly speaking, it is the pulse rate variability (PRV) when relying on the BVP, not on the ECG signal, 

because in BVP signal one can not observe the clear QRS waveform, which enables a fine analysis of 
HRV.
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Lastly from the spectrum of the PRV time series, power spectrum densities (PSD) from three 
subbands are calculated from the ranges of VLF (0-0.04Hz), LF (0.05-0.15 Hz), and HF (0.16-
0.4 Hz), respectively and the ratio of LF/HF. Since the RSP signal is quasi periodic we 
calculated similar types of features like the BVP features including the typical statistics, 
except for the geometric features and the PSDs. After appropriate detrending the signals 
using mean value and lowpass filter, we calculated the BRV (time series of the breathing 
rates) by detecting the peaks using the maxima ranks within zero-crossing. 

Figure 7.  Analysis examples of SC and EMG signals 

From the SC and EMG signal respectively we calculated 10 features including the mean 
value, standard deviation, and mean values of first and second derivations. The number of 
transient changes (occurrences) within 4 seconds in SC and EMG signals are calculated from 
two low-passed signals, very low-passed (SC: 0.08 Hz, EMG: 0.3 Hz) and low-passed signals 
(SC: 0.2 Hz, EMG: 0.8 Hz) respectively (see Fig. 7). From the Temp signals, three statistical 
features are calculated: mean value, standard deviation, and ratio of max/min. Finally, we 
obtained a total of 77 features from the 5-channel biosignals. 

3.5 Feature selection and classification 

As the next step, we tried to determine which features are most relevant to differentiate each 
affective state. Reducing the dimension of the feature space has two advantages. First of all, 
the computational costs are lowered and secondly the removal of noisy information may 
lead to a better separation of the classes. In all cases, we achieved indeed considerably 
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higher accuracy rates (an increase of about 30 %) when applying sequential backward 
selection (SBS) to reduce the set of features. Of course, the success of the selection process 
heavily depends on the employed classifier. Several features were selected by SBS for all 
three subjects, e.g., the subband spectral entropy from BVP, the number of occurrences in SC 
and EMG, and the mean values of the MFCCs in the speech features. However, due to the 
small number of subjects, these findings should not be generalized. 
After testing several classification schemes, such as kNN (k-nearest neighbour), MLP 
(multilayer perception), and LDA (Linear discriminant analysis), we have chosen the LDA 
classifier which gave the highest accuracy in our case and which we already used for 
emotion recognition from physiological data in (Wagner et al., 2005). However it should be 
noted that there is no single best classification algorithm and the choice of the best 
classification method strongly depends on characteristics of dataset to be classified. In work 
(King et al., 1995), for example, this conclusion has been supported by wide comparative 
studies of about 20 different machine learning algorithms, including symbolic learning, 
neural networks, and statistical approaches, evaluated on 12 different real-world datasets. 
To combine the two modalities, we need to decide at which level the single modalities 
should be fused. A straightforward approach is to simply merge the features calculated 
from each modality (feature-level). An alternative would be to fuse the recognition results at 
the decision-level based on the outputs of separate unimodal classifiers (decision-level). 
Finally, we may combine both methods by applying a hybrid integration scheme (see Figure 
8).

Figure 8.   Considered fusion schemes for integrating bimodal information 

We performed both feature-level fusion and decision-level fusion using LDA in combination 
with SBS. Feature-level fusion is performed by merging the calculated features from each 
modality into one cumulative structure, selecting the relevant features using SBS, and 
feeding them to the LDA classifier. Decision-level fusion caters for integrating 
asynchronous, but temporally correlated modalities. Each modality is first classified 
independently by the LDA classifier, and the final decision is obtained by fusing the output 
from the modality-specific classification processes. Three criteria, maximum, average, and 
product (Busso et al., 2004) were applied to evaluate the posterior probabilities of the 
unimodal classifiers at the decision stage. As a further variation of decision-level fusion, we 
employed a new hybrid scheme of the two fusion methods in which the output of feature-
level fusion is also fed as an auxiliary input to the decision-level fusion stage. 
In Table 1, the best results are summarized that we achieved by the classification schemes 
described above. We classified the bimodal data subject-dependently (Subject A, B, and C) 
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and subject-independently (All) since this gave us a deeper insight on what terms the 
multimodal systems could improve the results of unimodal emotion recognition. 

System  high/pos high/neg low/neg low/pos Average
Subject A 

Biosignal  0.95 0.92 0.86 0.85 0.90 
Speech signal  0.64 0.75 0.67 0.78 0.71 
Feature Fusion  0.91 0.92 1.00 0.85 0.92
Decision Fusion 0.64 0.54 0.76 0.67 0.65 
Hybrid Fusion  0.86 0.54 0.57 0.59 0.64 

Subject B 
Biosignal  0.50 0.79 0.71 0.45 0.61 
Speech Single  0.76 0.56 0.74 0.72 0.70 
Feature Fusion  0.71 0.56 0.94 0.79 0.75
Decision Fusion 0.59 0.68 0.82 0.69 0.70 
Hybrid Fusion  0.65 0.64 0.82 0.83 0.73 

Subject C 
Bio Single  0.52 0.79 0.70 0.52 0.63 
Speech Single  0.55 0.77 0.66 0.71 0.67 
Feature Fusion  0.50 0.67 0.84 0.74 0.69
Decision Fusion 0.32 0.77 0.74 0.64 0.62 
Hybrid Fusion  0.40 0.73 0.86 0.71 0.68 

All: Subject-independent 
Bio Single  0.43 0.53 0.54 0.52 0.51 
Speech Single  0.40 0.53 0.70 0.53 0.54 
Feature Fusion  0.46 0.57 0.63 0.56 0.55
Decision Fusion 0.34 0.50 0.70 0.54 0.52 
Hybrid Fusion  0.41 0.51 0.70 0.55 0.54 

Table 1.  Recognition results in rates (1.0=100% accuracy) achieved by using SBS, LDA, and 
leave-one-out cross validation. 

4. Analysis of results 

As shown in Table 1, the performance of the unimodal systems varies not only from subject 
to subject, but also for the single modalities. During our experiment, we could observe 
individual differences in the physiological and vocal expressions of the three test subjects 
and it is well revealed in the recognition results. The emotions of subject A were more 
accurately recognized by using biosignals (90 %) than by his voice (71 %) whereas it is the 
case of inverse for subject B and C (70 % and 67 % for voice and 61 % and 63 % for 
biosignals). In particular, for subject A, the difference between the accuracies of the two 
modalities is sizable. However, no suggestively dominant modality could be observed in the 
results of subject-dependent classification in general, which may be used as a decision 
criterion in the decision-level fusion process to improve the recognition accuracy. 
Different accuracy rates were also obtained by using the single fusion methods. Overall, we 
obtained the best results from feature-level fusion. Generally, feature-level fusion is more 
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appropriate for combining modalities with analogous characteristics. For instance, we got an 
acceptable recognition accuracy of 92 % for subject A when using feature-level fusion which 
considerably went down, however, when using decision-level or hybrid fusion. 
As our data show, a high accuracy obtained from one modality may be declined by a 
relatively low accuracy from another modality when fusing data at the decision level. This 
observation may indicate the limitations of the decision-level fusion scheme we used, which 
is based on to a pure arithmetic evaluation of the posterior probabilities at the decision stage 
rather than a parametric assessment process. Actually, the design of optimal strategies for 
decision-level fusion, such as the integration of a parametric refinement stage, is still an 
open research issue. 
As expected, the accuracy rates for subject-independent classification were not comparable 
to those obtained for subject-dependent classification. Figure 9 illustrates examples of Fisher 
projection which is often used to preview the distribution of the features. Obviously, 
merging the features of all subjects does not refine the information related to target 
emotions, but rather leads to scattered class boundaries. 

Figure 9.  Fisher projection examples for Subject A and all subjects (person-independent). 

5. Conclusion 

In this paper, we treated all stages of emotion analysis, from data collection to classification 
using short-term observations, and evaluated several fusion methods as well as a hybrid 
decision scheme. We also compared the results from multimodal classification with the 
unimodal results. As in our earlier work (Kim et al. 2005) where we relied on longer 
observation phases and a different set of features, the best results were obtained by feature-
level fusion method in combination with feature selection stage. In this case, not only user-
dependent, but also user-independent emotion classification could be improved compared 
to the unimodal methods. 
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We did not achieve the same high gains that were achieved for audio-visual data which 
seems to indicate that speech and physiological data contain less complementary 
information. Furthermore, in a natural setting like ours, we cannot exclude that the subjects 
are inconsistent in their emotional expression. Inconsistencies are less likely to occur in 
scenarios where actors are asked to deliberately express emotions via speech and mimics. In 
this case, it might be the reason why fusion algorithms lead to a greater increase of the 
recognition rate. Ambiguities in emotional expressions are also reflected by work on corpus 
annotation. For instance, (Cowie et al., 2005) noticed that the agreement between human 
coders labeling multimodal corpora of everyday emotions was lower when considering both 
audio and video than when relying on a single modality. 
Furthermore some important problems are pointed out, such as the use of posterior 
probabilities when fusing information with high disparity in accuracy. Most of the existing 
classifiers used in the literature are generalized methods based on statistics or estimating 
linear regression of given data. Such classifiers may not be able to capture emotion-specific 
features and to apply self-adapting decision rules that consider contextual information, for 
instance. Therefore, the design of an emotion-specific classification scheme is one of the 
most important issues for the future, and this issue becomes even more critical when 
classifying combined multimodal observations. To overcome these problems, we need to 
develop a multilayer fusion scheme with parametric refinement stages in each decision 
layer. 
More important issue in future work would be how to complementarily combine the multiple 
modalities, since it is obvious that combining modalities by equally weighting them does 
not always guarantee improving recognition accuracy. Toward the human-like analysis and 
finer resolution of recognizable emotion classes, an essential step would be therefore to find 
innate priority among the modalities to be preferred for each emotional state. A 
considerable scheme might be to decompose an emotion recognition problem into several 
refining processes using additional modalities, for example, arousal recognition through 
physiological channels, valence recognition by using audiovisual channels, and then 
resolving subtle uncertainty between adjacent emotion classes, or predicting even the 
“stance” in 3D emotion model, by cumulative analysis of user’s context information. 
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1. Introduction    

Automated recognition of emotions conveyed in the speech is an important research topic 
that has emerged in recent years with a number of possible applications (Picard, 1997). The 
most important one is probably the improvement of the man-machine interface, knowing 
that human communication contains a large amount of emotional messages which should 
be recognized by machines such as robot assistants in the household, computer tutors, or 
automatic speech recognition (ASR) units in call-centers. 
Most research on recognizing emotions in the speech focuses on a small number of emotion 
categories (Dellaert et al., 1996; Lee et al., 2001; Yu et al., 2004; Vidrascu & Devillers, 2005; 
Schuller et al., 2005). However, such categorization is a strong restriction if we think of the 
continuum in the expression of human emotions. In particular, if we want to resolve 
moderate emotions in spontaneous utterances in addition to the stereotype portrayal of 
exaggerated emotions, several questions must be asked: 
• How can we estimate the emotion conveyed in the speech signal more detailed than in 

the state-of-the-art categorization? 
• How many features are necessary for such estimation, and which method is suitable for 

selection? 
• Which estimation methods are suitable, and what are the pros and the cons of each 

method? 
In this contribution we intend to give some answers to these questions, building upon our 
previous work reported in (Grimm et al., 2007a; 2007b). We propose a generalized 
framework using a continuous-valued, three-dimensional emotion space method. This 
method defines emotions as points in a three-dimensional emotion space spanned by the 
three basic attributes (“primitives”) valence (positive-negative axis), activation (calm-excited 
axis), and dominance (weak-strong axis) (see Kehrein, 2002). Figure 1 shows a schematic 
sketch of this emotion space. Anger, e.g., would be represented by negative valence, high 
excitation level on the activation axis, and strong dominance. Such real-valued notion was 
shown to be transferable to emotion categories, if desired (Grimm et al., 2006). At the same 
time, it lends itself to a gradual description of emotion which is helpful to describe intensity 
changes over time or speaker-dependent emotion expression behaviors, for example.  
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Figure 1. Three-dimensional emotion space, spanned by the primitives valence, activation,
and dominance, with a sample emotion vector added for illustration of the component 
concept.

While emotion space concepts have been named as an alternative to emotion categories in 
many studies (see Cowie, et al., 2001 or Cowie & Cornelius, 2003 for a comprehensive 
overview), they have so far only been used for emotional speech synthesis (Schröder, 2003), 
and hardly for emotion recognition. In the few other studies on detecting emotions in 
speech using an emotion space concept, first the emotion space is subdivided into 2 or 3 
subregions and then these emotion space regions are classified just as emotion categories 
(Fragopanagos & Taylor, 2005; Vidrascu & Devillers, 2005). Thus, we consider the direct, 
continuous-valued estimation of these emotion primitives in this contribution. 
Based on a German speech database containing authentic emotional expressions from a TV 
talk-show, the automatic estimation of these three emotion primitives was studied. The 
reference was built by a human listener test using the text-free method of Self Assessment 
Manikins (see Section 2.2). The speech signal was segmented into utterances for this study 
yielding 893 samples of 47 speakers. For the automatic estimation of the emotion in these 
utterances, a feature vector was built containing the statistics of the fundamental frequency, 
energy and the MFCCs, such as mean value, standard deviation, minimum, maximum, 
range, and quartiles. Two different techniques to reduce the feature vector size were 
studied. As an automatic emotion estimation method we used Support Vector Regression 
(SVR), which provides a kernel-based, non-linear estimation of the three emotion primitives. 
This method showed promising results and a moderate to high correlation with the human 
listeners’ ratings in a preliminary study. It is now compared to KNN and Fuzzy Logic both 
with respect to the estimation error and the learning curve properties (see Sections 5.1 and 
5.2, respectively). 
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The rest of the paper is organized as follows. Section 2 briefly introduces the data we used, 
and it also describes the emotion evaluation by human listeners. Section 3 describes the pre-
processing steps of feature extraction and feature selection. Section 4 presents the different 
classifiers used for continuous-valued emotion primitive estimation. Section 5 describes the 
results and discusses the different estimator outcomes. Section 6 contains the conclusion and 
directions for future work. 
The term “emotion” is very difficult to define. It refers to a very complex inner state of a 
person including a wide range of cognitive and physical events (Scherer, 1990). In addition 
to the truly felt affective state, the expression of emotions is superimposed by the display 
rules of the situation. In the scope of this chapter we understand the term “emotion” only as 
the visible part of this inner state that is transmitted through the speech signal and thus 
observable by a human receiver. Also, the conclusions drawn from the automatic estimation 
have to be seen in the context of the situation. Analyzing additional channels, such as the 
mimics, gestures, or physiological signals, might improve the understanding of the situation 
and thus help identify the emotional state of a person more precisely. 

2. Data 

2.1 Data acquisition 

To study the emotion recognition on authentic emotions in speech we extracted dialogue 
episodes from a talk-show on TV. In this talk-show, two or three persons discuss problems 
such as fatherhood questions, friendship issues, or difficulties in the family. Due to the 
spontaneous and unscripted manner of the episodes, the emotional expressions can be 
considered authentic. Due to the topics, the data contains many negative emotions and few 
positive ones.  
This data was first introduced as VAM corpus1 in (Grimm & Kroschel, 2005b). All signals 
were sampled at 16 kHz and 16 bit resolution. In total the corpus contains 893 sentences 
from 47 speakers (11m/36f).  
The emotion in each utterance was evaluated in a listener test (c.f. Section 2.2). Based on 
such a human evaluation, Figure 2 shows the histogram of the emotions contained in the 
database. The attested emotion was taken as the reference for the automatic recognition, 
since assessment by the speakers themselves was not available. 

Figure 2. Distribution of the emotions present in the VAM corpus. 

                                                                
1 The acronym VAM resides from the title of the talk-show, “Vera am Mittag“ (German: 

Vera at Noon). 
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2.2. Emotion evaluation 

For evaluation we used a listener test. A group of evaluators listened to the emotional 
sentences and assessed the emotional content.  For this human evaluation we used the Self 
Assessment Manikins (Fischer, et al., 2002;  Grimm & Kroschel, 2005a). In this method five 
images were offered per emotion primitive.  For each sentence, an evaluator listened to the 
speech signal. Then he/she was asked to select the best describing image for each primitive. 
This evaluation method yields one reference value for each primitive 
i ∈ {valence, activation, dominance} and each utterance n. The individual listener ratings were 
averaged using confidence scores as described in (Grimm & Kroschel, 2005a).  
One half of the database was evaluated by 17 listeners, the other by 6 listeners, which was 
due to the fact that the second half of the database was recorded and evaluated later, when 
only a smaller number of evaluators was available. In comparison with other studies on 
emotion recognition which included 2 to 5 independent evaluations (Vidrascu & Devillers, 
2005; Yu et al., 2004), we used a much higher number of evaluators to gain statistical 
confidence. 
The average standard deviation in the evaluation was 0.29, 0.34, and 0.31 for valence,
activation, and dominance, respectively. Thus, the average human deviation in the evaluation 
test was slightly above one half of the distance between two images, which was notably low 
for such a difficult task. The mean correlation between the evaluators was 0.49, 0.72, and 
0.61, respectively (Grimm et al., 2007a), measured by Pearson’s empirical correlation 
coefficient. Thus, valence was significantly more difficult to evaluate than activation or 
dominance. However, this result might also be an artifact of the correlation coefficient 
including the variance of the distribution, which is also smaller for valence.

3. Pre-processing 

3.1. Feature extraction 

The speaker’s emotion is conveyed through a number of different channels. The most 
apparent correlates are found in the prosody of the speech. An overview on the acoustic 
expression of emotions can be found in (Murray & Arnott, 1993; Cowie & Cornelius, 2003). 
Analyzing the linguistic content provided by ASR in addition to the prosody might improve 
the estimation of the emotion (Lee & Narayanan, 2005). However, it has to be kept in mind 
that the performance of the ASR degrades remarkably in the case of emotional speech. 
Therefore, we concentrate on the non-linguistic information in the speech signal in this 
study. 
In accordance with other research on automatic emotion recognition, we extracted prosodic 
features from the fundamental frequency (pitch) and the energy contours of the speech 
signals. The first and the second derivatives were also used. For pitch extraction, the 
autocorrelation method was used. For each of these 6 signals (pitch, energy x 0th, 1st, 2nd

derivative) we calculated the following 9 statistical parameters:  
• mean value 
• standard deviation  
• median
• minimum (not for energy) 
• maximum 
• 25% quantile 
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• 75% quantile
• difference between maximum and minimum 
• difference between the quartiles 
In addition we used 6 temporal characteristics:  
• pause-to-speech ratio 
• speech duration mean 
• speech duration standard deviation  
• pause duration mean 
• pause duration standard deviation  
• speaking rate 
Finally, the spectral characteristics were added to the feature set. The Mel Frequency 
Cepstral Coefficients (MFCCs) were calculated in 13 subbands. The increased bandwidth 
with increasing center frequency of the individual subbands thereby reflects the hearing 
characteristics of the human ear (O'Shaughnessy, 1999).  The mean value and the standard 
deviation of each of the 39 MFCC trajectories (13 subbands x 0th, 1st, 2nd derivative) were 
added to the feature set. 
Thus, in total 137 acoustic features were extracted: 53 features derived from pitch and 
energy, 6 temporal characteristics, and 78 features to describe the spectral variability in the 
cause of the utterance. They were normalized to the range [0, 1]. 

3.2. Feature selection 

To reduce the large amount of acoustic features, we used two different methods: Sequential 
Forward Selection (SFS) and Principal Component Analysis (PCA). 
In the Sequential Forward Selection (SFS) technique for feature selection (Kittler, 1978), the 
feature set is increased sequentially. In each iteration, the one feature is added to the set 
which minimizes the classification error. Listing 1 contains the pseudo-code for this 
procedure.

current_best_feature_set := { } 

remaining_features := {feat1, ..., feat137} 

for num_features = 1 to 137 

  error := { } 

for new_feature in remaining_features 

 current_feature_set := current_best_feature_set {new_feature}

 error(new_feature):= classific_test(current_feature_set) 

end

  best_feature := arg min error 

  current_best_feature_set := current_best_feature_set {best_feature}

  remaining_features := remaining_features \ {best_feature} 

end

feature_ranking : = current_best_feature_set 

Listing 1: Pseudo-code for the Sequential Forward Feature Selection method. 

Figure 3 shows the classification error as a function of the feature set size. For this procedure 
the Support Vector Regression estimation method was applied, which is introduced in 
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Section 4.1. With an increasing number of features the classification error shrinks rapidly. 
However, for large feature sets, the error increases again, though only marginally. This 
effect might be caused by the fact that some features bear contradictory information 
concerning the emotion that is being conveyed. Thus, we found that, for each of the 
primitives and each of the classifiers, using 20 features was sufficient. Adding more features 
did not improve the results. The variance of the error was almost constant for feature sets of 
10 or more features with a value of σ2 ≈ 0.015. 

Figure 3. Classification error as a function of the feature set. 

The SFS method was compared to Principal Component Analysis (PCA). While SFS includes 
the classifier in the selection routine, the PCA does not use the classification result as a 
feedback. It is based only on the N = 893 observations of the M = 137 features, 

  (1) 

which are combined in the observation matrix 

 (2) 

Note that the features have to be zero-mean, which can be achieved by subtracting the 
estimated mean value for each feature m = 1,…,M. The M × M covariance 
matrix of the features can thus be stated as . According to (Kroschel, 2004), the 
features can be decorrelated by transforming them to a orthonormal basis 
where the basis vectors m = 1,…,M, are determined by solving the deterministic 
equation

 (3) 
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Thus, the basis vectors are the eigenvectors of the covariance matrix . The transformed, 
uncorrelated features  can be calculated by  

  (4) 

where denotes the complex conjugate transpose of . In the PCA, now the eigenvectors 
are sorted in decreasing order of the eigenvalues, and only those eigenvectors are kept as 
new basis vectors whose eigenvalue exceeds a threshold of, in our case, 1% of the maximum 
eigenvalue:

 (5) 

with

(6)

Figure 4 shows the eigenvalues of the covariance matrix based on our observations of 
acoustic features derived from emotional speech. It can be seen that the eigenvalues 
decrease quickly with increasing index. Thus, the first ten components carry already a large 
amount of the information. However, to include 90% of the total eigenvalue sum, at least 

 61 components must be included in the uncorrelated feature set; to include 99%, 
 96 components are required. 

Since such a large number of features is not desirable for the classifier, we preferred the SFS 
method to the PCA method in order to reduce the size of the feature set. Note that SFS also 
reduces the computational demand since only a smaller number of features have to be 
calculated in contrast to PCA where still all features would be necessary to apply Equation 
(5).

Figure 4. Eigenvalues of the covariance matrix derived from 893 observations of 137 acoustic 
features extracted from emotional speech. 
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4. Emotion primitives estimation 

The task of the emotion estimator is to map the acoustic features to the real-valued emotion 
primitives. We analyzed several classifiers: Support Vector Regression, Fuzzy k-Nearest 
Neighbor classifiers, and a rule-based Fuzzy Logic inference method. In the following 
subsections we briefly describe the individual estimators. The desired output is not a 
classification into one of a finite set of categories but an estimation of continuous-valued 
emotion parameters, the primitives i ∈ {valence, activation, dominance}.
The results of these three estimators are discussed in Section 5. 

4.1. Support Vector Regression 

Support Vector Regression (SVR) is a regression method based on Support Vector Machines 
(Vapnik, 1995;  Campbell, 2001; Schölkopf & Smola, 2001). Support Vector Machines are 
applied to a wide range of classification tasks (Abe, 2005). Based on a solid theoretical 
framework, they were shown to not only minimize the empirical training error but, more 
general, the structural risk. The decision function in SVMs is found by the hyperplane which 
maximizes the margin between two classes. Non-linear classification can be applied very 
efficiently by using the so-called kernel trick, i.e., by replacing the inner products that appear 
in the calculation of the decision function by (optionally) non-linear kernel functions. This 
kernel trick replaces a transformation of the features into a higher-dimensional space, linear 
classification in this higher-dimensional space, and re-transformation into the original space.  
In Support Vector Regression the role of the separation margin is inverted, i.e., the aim is to 
find the optimal regression hyperplane so that most training samples lie within an ε-margin 
around this hyperplane. Figure 5 shows a schematic sketch for SVR in which the non-linear 
regression curve was found using the kernel trick. The technical terms included in the figure 
will be described below. First results of using SVR for emotion primitives estimation were 
reported in (Grimm et al., 2007b). 

Figure 5. An example for Support Vector Regression using the kernel trick. 

The mathematical formulation of the problem how to find an optimal regression hyperplane 
using a finite set of training samples can be found in (Vapnik, 1995; Schölkopf & Smola, 
2001). Here we give only a short summary. 
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The goal is to find a function  which maps the m acoustic features 
to the emotion primitive value 

 (7) 

We need three SVR functions to estimate the three emotion primitives separately: 
i ∈ {valence, activation, dominance}. For improved readability we omit the notion of the index 
(i) in the following.  
The easiest solution is a linear function, i.e., a hyperplane in 

  (8) 

where are the parameters of the hyperplane and  denotes the inner 
product. To determine the parameters we need a set of N learning samples 

 and a loss function  to penalize the distance between the 
function’s output  and the (for the training samples well-known) true 

 (9) 

We chose the ε-insensitive loss function  

  (10) 

which assigns zero loss within a margin of width ε around the true value and linear loss for 
larger deviations. This loss function allows for the neglection of a large amount of training 
samples in the calculation of the hyperplane (Smola, 1996). The remaining samples are 
called Support Vectors (see Figure 5). 
Since the structural risk is minimized for the function f with the least complexity, the 
problem can be formulated as 

    for n = 1,…,N 

(11)

It is common and in our applications absolutely necessary to allow some outliers. This can 
be achieved by introducing slack variables  (see Figure 5) and a soft margin parameter C,
which yields the following problem:  
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  for n = 1,…,N. (12) 

This problem can be reformulated using the dual Lagrange function involving the Lagrange 
multipliers  as functions of the slack variables, 
   

(13)

In this maximization task the training samples  only occur as inner products. Since one of 
the Lagrange conditions requires  

(14)

which means that w can completely be expressed as a linear combination of the feature 
vectors (Support Vector Expansion), the target function f can be stated as 

(15)

While (15) is a functional formulation, it is easily applied to any query feature vector v0 with 
unknown emotion primitive values  by evaluating 
It is obvious that both in (13) and (15) the feature vectors only occur as inner products. These 
inner products can be replaced by a (non-linear) kernel function: 

 (16)  
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This replacement expresses the kernel trick mathematically. It allows non-linear regression 
in an efficient way. 
We used the following kernel functions:  

• Radial basis function (SVR-RBF):  

 (17)  

• Polynomial kernel (SVR-Poly): 

 (18)  

Both, the choice of the kernel function and the kernel parameter, is important. If σ in 
SVR-RBF is small, the regression function will follow closely the training samples. For 
σ  = 0.01, e.g., we can observe clear overfitting. The larger σ, the flatter gets the target curve; 
therefore it cannot be chosen too big. We tested for the range of σ ∈ [10-4, 104] and found that 
σ ∈ [2.5, 10] gives good results. We finally chose σ = 3.5.
In the polynomial kernel the parameter d determines the order of the polynomial. The 
higher d, the more complex gets the regression curve. However, we found that, on a search 
interval of d ∈ [1, 10], the best results can be achieved with d = 1. This choice results in a 
polynomial of order 1, i.e., a linear function. 
In addition to the choice of the kernel function, the parameters of the SVR, C and ε, have to 
be set. We used a first, grid-based search on a logarithmic scale and a second, fine-grained 
search in the best region to find those parameters that give the lowest error (Chudoba, 2006).  
The soft margin parameter C has an influence on how many sample vectors are finally used 
for the calculation of the regression curve. The higher C, the more outliers are allowed, and 
the more sample vectors are included as support vectors. Our search region was 
C ∈ [10-4, 104], and the best results were achieved for C ∈ [0.1, 50]. Since this parameter has 
to be regarded jointly with the kernel function parameter, we chose  C = 10 for SVR-RBF and 
C = 0.1 for SVR-Poly, respectively. 
The parameter ε  defines the width of the margin around the regression curve. This 
parameter essentially influences the number of support vectors used. Since, in general, those 
feature vectors are used as support vectors which are lying outside or at least close to the 
margin border, a larger margin yields less support vectors. The number of support vectors is 
computationally relevant because the summation in (15) in practice reduces to the 
summation of the support vectors only. Testing on the range of ε  ∈ [0,1], we decided to 
choose ε = 0.2 for all kernels. 
For all experiments, the libsvm implementation was used (Chang & Lin, 2001). 

4.2. Fuzzy k-Nearest Neighbor estimator 

As an alternative to SVM, the k-Nearest Neighbor method was studied. This method was 
shown to give comparable results on related problems, namely the discrete categorization of 
emotion stereotypes (Yacoub et al., 2003; Dellaert et al., 1996). The k-Nearest Neighbor 
(KNN) method is a distance-based approach. It determines the k closest neighbors of a query 
v = v0 in the feature space and assigns the properties of these neighbors to the query 
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(Kroschel, 2004). Such method can be regarded as spanning a hypersphere S around the 
feature vector v0,

 (19) 

where

 (20) 

is the set of all sample vecors vn, n = 1,…,N, and the radius r is chosen to have exactly k
sample feature vectors lie within this hypersphere, 

 (21) 

Thus, without loss of generality, S can be stated as 

 (22) 

with the indices 
In our case, the properties of the neighbors are the emotion primitive values 
These values are averaged to get the final emotion estimate  for a query feature vector v0,

(23)

Due to this average, all k neighbors have an influence on the estimate. This led us to calling 
the method Fuzzy KNN. 
The parameters to choose are p of the Lp distance in (19) and k, the number of neighbors 
considered. According to (Kroschel, 2004), the vector distance  in (19) is defined as 

(24)

We tested  and found that the results were almost independent of the 
distance norm. Thus, we finally chose p = 2 (Euclidean distance). 
The second design parameter, k, had a greater impact on the results. We tested  

 and found that the error decreased rapidly with increasing k. The error 
remained at a relatively constant level for values of k ≥ 9. Thus, we decided for k = 11 for our 
experiments.

4.3. Rule-based Fuzzy Logic estimator 

A rule-based Fuzzy Logic (FL) estimator has previously been used for automatic emotion 
primitive estimation (Grimm & Kroschel, 2005b; Grimm et al., 2007a). Therefore, it will be 
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described very briefly here. This method can be regarded as the state-of-the art in emotion 
primitive estimation.  
The fuzzy logic captures well the nature of emotions, which in general is fuzzy in 
description and notation. This fuzzy description is reflected in the number of linguistic 
terms which are used to describe feelings, moods, and affective attitudes.  
A fuzzy logic estimator consists of three major elements (Kroschel, 2004): 

• Fuzzification
• Inference 
• Defuzzification 
The fuzzification step transforms the crisp variables, which are the acoustic features in our 
case, into fuzzy, linguistic variables. We transformed each feature into three linguistic 
variables, low, medium, and high, respectively. We assigned membership grades to each of 
these fuzzy variables according to the relative position of the crisp feature value within the 
range between the 10% and the 90% quantiles of the overall feature value distribution 
observed in the training samples. 
The rules in the inference system can be derived from expert knowledge. However, we 
decided to derive them automatically by analysis of the relation between the acoustic 
features and the desired emotion primitives. We used a set of three linguistic, fuzzy 
variables for each primitive: negative, neutral, and positive for valence; calm, neutral, and excited
for activation; and weak, neutral, and strong for dominance. Thus, each fuzzy variable of the 
acoustic features was related to each fuzzy variable of the emotion primitives.  
The individual steps of the inference part are the following (Kroschel, 2004; Grimm et al., 
2007a): First, all features were aggregated using maximum aggregation method. Then, 
inference was performed using the product method; this process determines the conclusion 
drawn from the fuzzy acoustic features onto the fuzzy emotion values. Finally, 
accumulation of the three fuzzy membership contours for each primitive was achieved 
using the maximum method. The result was the fusion of negative, neutral, and positive 
contours into one membership function for valence, etc.
In the last step, the fuzzy emotion values were defuzzified to yield crisp emotion primitive 
values. We used the centroid method for this task. 

5. Results 

This section reports the results of our experiments on estimating the emotion primitives 
conveyed in spontaneous speech. First, the results are compared with respect to the different 
estimators. While these results were already presented very briefly in (Grimm et al., 2007b), 
we provide a more elaborate discussion of these results here. Second, we present the 
learning curves of the different estimators to show the dependence on the data size that is 
necessary for training. 

5.1 Comparison of the emotion estimation results 

All experiments were performed using a 10-fold cross-validation. To assess the estimation 
results we used two different measures:  
• The mean linear error between the emotion estimates and the reference annotated 

manually by the human evaluators, ,
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(25)

• The empirical correlation coefficient between the emotion estimates and the reference, 

(26)

Table 1. summarizes (a) the mean linear error for each estimator, for each emotion primitive 
separately, and (b) the correlation coefficient to measure the tendency in the emotion 
estimates.

The results in Table 1(a) indicate that all primitives can be estimated with a small error in 
the range of 0.13 to 0.18. There was only one exception when valence was estimated using the 
FL estimator (0.27). Considering the range of values, which was [-1,+1], it can be stated that 
the emotion primitives are mostly estimated in the correct region, and, e.g., a very excited 
utterance might get estimated as moderately excited to very excited, but not as very calm. 

(a) Mean Error (b) Correlation Coefficient

Valence Activation Dominance Valence Activation Dominance

SVR-RBF 0.13 0.15 0.14 0.46 0.82 0.79 

SVR-Pol 0.14 0.16 0.15 0.39 0.80 0.77 

FL 0.27 0.17 0.18 0.28 0.75 0.72 

KNN 0.13 0.16 0.14 0.46 0.80 0.78 

Table 1. Mean error and correlation with reference of the emotion primitive estimation. 

The error is thus even better than the human evaluation, which showed on average a 
standard deviation of 0.31 (c.f. Section 2.2). However, it has to be noted that this standard 
deviation also includes the quantization error of the emotion axes due to the finite set of 
values offered to the evaluators. Also the automatic estimation might benefit from the 
relatively large amount of neutral and moderate emotions that yielded better individual 
results than the extreme emotions. 
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The correlation between the estimates and the reference was significantly different for the 
individual emotion primitives, as shown in Table 1(b). The correlation for valence was 
between 0.28 and 0.46 for the different estimators, and it was between 0.72 and 0.82 for 
activation and dominance. It has to be noted that the correlation coefficients for valence are 
only moderately significant at p > 10-3, while all other correlation coefficients are statistically 
significant at p < 10-5. These different significance levels reflect the fact that the distribution 
in the values for valence was much narrower than for activation or dominance. Thus the results 
imply very good recognition results for activation and dominance, and moderate recognition 
results for valence.
Comparing the individual estimation methods, we can say that the best results were 
achieved using the SVR-RBF estimator with errors of 0.13, 0.15, and 0.14, and correlation 
coefficients of 0.46, 0.82, and 0.79 for valence, activation, and dominance, respectively. The 
Fuzzy KNN estimator performed almost as well as the SVR-RBF. The SVR-Poly estimator 
gave worse results for valence in comparison to almost as good results for activation and 
dominance. Similarly, the FL estimator gave even worse results for valence but still very good 
ones for activation and dominance.

Figure 6. Emotion primitives estimation: results in comparison with manually labeled 
human reference. 
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Thus, the kernel-based method outperformed all other methods only marginally, apart from 
the FL method which seems to be clearly the last choice. These differences are probably 
caused by the complexity in the representation of the relation between the acoustic features 
and the emotion primitives. While Fuzzy Logic only uses the rules derived from the 
correlation coefficients, which is a rather coarse generalization, the SVR method provides a 
more complex, nonlinear relation in form of the regression curve in a high-dimensional 
feature space. KNN does not provide such sophisticated abstraction, but uses a huge 
amount of comparison options to choose the neighbors from.  
Thus, on deciding between SVR and KNN, the focus must be set on the computational 
demand: If we have enough computational power to calculate all the distances necessary in 
the KNN method, this might be the choice due to the simplicity in the setup of the classifier. 
Alternatively, if we are forced to have low computational demands at runtime, we might 
decide for SVR-RBF and provide the computational power only once, which is at the instant 
of generating the regression hyperplane. 
As a summary of the results, Figure 6 shows the estimation results using the SVR-RBF 
estimator. In this graph, the emotion primitive values are arranged in ascending order. This 
order is in contrast to the experiment, where we provided random order, but helps in 
grasping the benefits and the limits of the presented method, in particular with respect to 
the mentioned difficulty of having relatively few positive emotions but a wide range of 
activation and dominance values. 
Figure 6 reveals some information about the nature of the errors. Most of the estimates are 
located within a small margin around the references. However, a small number of very high 
or very low primitive values was occasionally underestimated. 

5.2 Learning curves 

In addition to the direct comparison of the estimator results, it is interesting to see the 
amount of training data that is necessary to achieve such results. We analyzed a wide range 
of 50% to 98% of the data to be available for training and compared the estimation results 
for these individual conditions. Figure 7 shows these learning curves for (a) SVR-RBF, (b) 
FL, and (c) KNN. 
It can be seen that the error curves are very different. For the FL estimator, the error curves 
are almost constant over the total range. This result is very interesting since it shows that 
although the FL absolute error was higher than the one using alternative estimators, it is 
more robust considering the necessary amount of training data. Therefore this method 
might be worth using for applications in which few training data is available. 
If we compare the SVR-RBF and the KNN learning curves, we can observe that the error for 
KNN depends more on the training data size than the respective error using SVR. This 
difference can be explained by the nature of learning in these two methods. SVR uses a 
generalizing method that yields a more abstract representation of the training data in form 
of the regression curve parameters. In contrast, KNN uses only an explicit representation of 
a set of training features. Thus, providing a smaller number of training samples directly 
reduces the options for comparison when trying to find the most appropriate neighbors. 
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Figure 7. Learning curves of different estimators for emotion primitive estimation, based on 
the VAM corpus. 

6. Conclusion 

In this chapter we discussed the recognition of emotions in spontaneous speech. We used a 
general framework motivated by emotion psychology to describe emotions by means of 
three emotion “primitives” (attributes), namely valence, activation, and dominance. With these 
emotion primitives, we proposed a real-valued three-dimensional emotion space concept to 
overcome the limitations in the state-of-the-art emotion categorization. We tested the 
method on the basis of 893 spontaneous emotional utterances recorded on a German TV 
talk-show.
For the acoustic representation of the emotion conveyed in the speech signal, we extracted 
137 features. These reflected the prosody and the spectral characteristics of the speech. We 
tested two methods to reduce the problem of large feature sets, Principal Component 
Analysis and Sequential Feature Selection. Thus, we selected the 20 most relevant acoustic 
features that yielded the best recognition results.  
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For the estimation of the emotion primitives, Support Vector Regression, Fuzzy Logic, and 
Fuzzy k-Nearest Neighbor methods were used. We found that the emotion primitives could 
be estimated with a small error of 0.13 to 0.15, where the range of values was [-1,+1]. The 
correlation between the reference annotated manually by the evaluators and the 
automatically calculated estimates was moderate (0.46, valence) to high (0.82/0.79, 
activation/dominance). In comparison to the Fuzzy Logic estimator, which was the baseline, 
the error for valence, activation and dominance estimation could be reduced by 52%, 12% and 
22%, respectively. 
Thus, Support Vector Regression gave the best estimation results, however, closely followed 
by KNN. Note that while SVR is computationally much more demanding for initialization 
(finding the regression hyperplane), the KNN method requires more computational power 
at the actual estimation step due to the distance matrix that has to be calculated. The rule-
based FL algorithm is computationally less demanding but gives clearly inferior results, at 
least for valence. However, when regarding the learning curves of the three estimators, i.e., 
assessing the estimation error as a function of the training data size, it was shown that the 
Fuzzy Logic method gave the most robust results. Thus, in the case of very few training data 
available, the FL method might be an appropriate choice again. 
In our future work we will study the fusion of the emotion primitive estimation with the 
automated speech recognition (ASR). While the emotion recognition might be used to 
parameterize or personalize the ASR unit, the phoneme estimates of the ASR, on return, 
might be used to improve the emotion recognition. Future work will also investigate the 
design of a real-time system using the algorithms that were reported here. The advantage of 
continuous-valued estimates of the emotional state of a person could be used to build an 
adaptive emotion tracking system. Such a system might be capable to adapt to individual 
personalities and long-term moods, and thus finally provide indeed humanoid man-
machine interfaces. 
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1. Introduction 

Language modeling is a crucial component in natural language continuous speech 
recognition, due to the difficulty involved by continuous speech [1], [2]. Language modeling 
attempts to capture regularities in natural language for the purpose of improving the 
recognition performance. Many studies have shown that the word error rate of automatic 
speech recognition (ASR) systems decreases significantly when using statistical language 
models [3], [4], [5]. The purpose of language models (LMs) is to compute the probability 

of a sequence of words . The probability can be expressed as: 
, where is the history or the context of word .

The probability becomes difficult to estimate as the number of words in increases. 
To overcome this problem, we can introduce equivalent classes on the histories in order 
to reduce their cardinality. The n-gram language models approximate the dependence of 
each word (regardless of i) to the n — 1 words preceding it: . The 
probability can then be expressed as: 

The n-gram approximation is based on the formal assumption that language is generated by 
a time-invariant Markov process [6]. 
Word n-gram LMs (mainly 2-gram and 3-gram LMs) are the most commonly used approach 
in language modeling. When enough data is available, word n-gram LMs have proved 
extremely useful in estimating the likelihood of frequently occurring n-grams, (w1, . . . wn). 
When using this approach, estimating the probability of low-frequency and unseen n-grams 
is still inherently difficult. The problem becomes more acute as the vocabulary size increases 
since the number of low-frequency and unseen n-grams events increases considerably. 
Automatic continuous speech recognition systems still make errors especially on unseen 
and rare events. Because of the Zipf's law [7], we will always expect unseen and rare events 
during recognition. Hence, the data sparseness constitutes a crucial point to take into 
account when building language models. 
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Many approaches have been reported to overcome the probability estimation problem of 
low-frequency n-grams. One of them is the class n-gram language models [1], [8]. Using this 
approach, words are partitioned into equivalence classes, and the inter-word transition 
probability is assumed to depend only on the word classes. Class n-gram language models 
are more compact and generalize better on unseen n-grams compared to standard word-
based language models. Nevertheless, for large training corpora, word n-gram language 
models are still better than class-based language models in capturing collocational relations 
between words. 
A better approach is to build a language model that is general enough to better model 
unseen events, but specific enough to capture the ambiguous nature of words. Our solution 
is to hierarchically cluster the vocabulary words, building a word tree. The leaves represent 
individual words, while the nodes define clusters, or word classes: a node contains all the 
words of its descendant nodes. The closer a node is to the leaves, the more specific the 
corresponding class is. At the top of the tree, the root cluster contains all the words in the 
vocabulary. The tree is used to balance generalization ability and word specificity when 
estimating the probability of n-gram events. Then, we build a hierarchical n-gram language 
models that take benefit of the different information in every node of the tree to estimate the 
probability of a word given its context . This
approach allows us to take advantage of both the power of word n-grams for frequent 
events and the predictive power of class n-grams for unseen or rare events. 
One way to benefit from the word class hierarchy is to use the backoff hierarchical class n-
gram language models (HCLMs) that we introduced recently [9], [10], [11], [12]. The backoff 
hierarchical class n-gram language models estimate the probability of an unseen event using 
the most specific class of the tree that guarantees a minimum number of occurrences of this 
event, hence allowing accurate estimation of the probability. This approach is a 
generalization of the well known backoff word n-gram language modeling technique [13]. 
The backoff word n-gram language modeling technique estimates the probability of an 
unseen n-gram using a more general context, which is the (n-l)-gram .
However, when using the backoff hierarchical class n-gram language models, the 
probability of an unseen n-gram is computed according to a more specific context 
than the (n-l)-gram: we use the class of the most distant word followed by the other 
words: . The function F(x) represents the class (parent) of x within the 
hierarchical word tree, where x can be a class itself, or a single word, depending on its 
location in the class hierarchy. 
In this chapter we introduce a novel language modeling technique named linearly 
interpolated hierarchical n-gram language models. This approach combine the power of 
word n-grams for frequent events and the predictive power of class n-grams for unseen or 
rare events. It linearly interpolate different n-gram LMs each one of them is trained on one 
level of the class hierarchy. The model trained on the leaves level (level 0) is the standard 
word n-gram language models. Those language models trained on a level in the class 
hierarchy greater than 0 are in fact the class n-gram language models. The higher the 
number of levels in the class hierarchy is, the more compact and general the class n-gram
language models become. 
In the next section we briefly describe previously published related works. In section III we 
introduce the linearly interpolated hierarchical n-gram language models (LIHLMs). We 
study the properties and parameters defining this model to show how it leads to better 
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estimate the probability of n-gram events. Section IV describes the backoff hierarchical class 
n-gram language modeling approach (HCLMs). The goal is to compute its performance to 
the performance of LIHLMs reported in section III. Section V presents the technique we use 
in building the class hierarchy. Section VI reports the data we used for training and 
evaluation and section VII describes the conducted experiments where we confirm the 
effectiveness of our approach to estimate the likelihood of n-gram events. Section VIII 
concludes the chapter. 

2. Previous works 

The idea of using classes to estimate the probability of unseen events in a backoff word n-
gram model was proposed by several scientists [14], [15]. The basic principle of these 
approaches is to estimate the likelihood of unseen n-grams based on the class n-gram model 
and then, if needed, the (n-l)-grams. The originality of our approach is to use a hierarchical 
representation of the classes rather than an unstructured set of classes. 
L. Bahl et al. proposed a tree-based statistical language model [16] where a linear 
interpolation is used to smooth the relative frequency at each node of the tree. L. Bahl et al. 
use information theoretic measures to construct equivalence classes of the context to cope 
with data sparseness. Using the approach of L. Bahl et al., the likelihood of an n-grams (wi,... 
wn) is computed as the linear interpolation of several word class language models extracted 
from the word class tree. P. Heeman investigated a similar hierarchical language modeling 
approach where POS tags, word identities, and a decision tree technique are used to 
estimate the probability distribution allowing generalization between POS tags and words 
[17]. Their tree-building strategy is based on the approach of L. Bahl et al. [16], and uses 
Breiman's decision tree learning algorithm [18] to partition the context into equivalence 
classes. P. Heeman uses a binary tree where at each node the clustering algorithm find a 
question about the POS tags and left context word identities in order to partition the node 
into 2 leaves. The approaches proposed by L. Bahl et al. in [16] and P. Heeman in [17] have 
some similarity with the technique of LIHLMs we propose. The main difference between 
LIHLMs and the approaches proposed by L. Bahl et al. in [16] and P. Heeman in [17] is in the 
technique we use for the interpolation scheme, the way we select active nodes, and the 
approach we use to build the class hierarchy. Also, the LIHLMs don't use POS information. 
In 2003, one year after we introduced the hierarchical class n-gram approach [19], J. Bilmes 
and K. Kirchhoff published a hierarchical language model [20] where the likelihood of a 
word given its context is computed based on a vector of factors, instead of the word history. 
Factors may represent morphological classes, stems, etc. In the approach we propose, we do 
not use syntactic and morphological features. One advantage of our approach compared to 
those cited before is the use of a data-driven method to build the class hierarchy, which 
eliminate the costly decision tree build step. 
P. Dupont and R. Rosenfeld proposed a multi-dimensional lattice approach where the 
likelihood of a word given a history is estimated based on multi-dimensional hierarchies. 
The strength of their approach lies in its generality and in the dynamic selection of a small 
subset of predictor contexts. An interpolation between these predictor contexts is then used 
to estimate the likelihood of a word given a history. However, the selection of these 
predictor nodes is still an open problem, which makes their approach difficult to use in real 
ASR applications. As stated by P. Dupont and R. Rosenfeld in [21], the reported results are 
preliminary and are based on perplexity only. The HCLMs we proposed in [9] shares some 
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similarities with the two-dimensional lattice technique of P. Dupont and R. Rosenfeld [21], 
where the first dimension is the length of the history equivalence class and the second 
dimension is the position in a word class hierarchy. Compared to P. Dupont and R. 
Rosenfeld, HCLMs do not need to select a subset of predictor contexts. Instead, HCLMs use 
the backoff technique and the most specific class to balances generalization ability and word 
specificity when estimating the likelihood of a word given a history. This makes HCLMs 
less complex and easy to integrate in real-time ASR applications. 
Recently, another tree-based language modeling approach is proposed by P. Xu and F. 
Jelinek [22]. It explores the use of Random Forests in the structured language model, which 
uses rich syntactic information in predicting the next word based on words already seen. 
The goal is to construct Random Forests by randomly growing decision trees using syntactic 
information. Random Forests are a combination of decision tree classifiers originally 
developed for classification purposes. 

3. Linearly interpolated hierarchical n-gram language models 

The conditional probability of a word w given a history h, , is in general obtained by 
combining two components: a discounting model and a redistribution model. Discounting is 
related to the zero-frequency estimation problem [23]. The idea behind discounting is that a 
probability for all the words never observed after the history h must be estimated by 
discounting the n-gram relative frequency: 

(1)

where N(.) denotes the frequency of the argument in the training data. By definition N(h) = 0
implies . Discounting produces a discounted conditional frequency ,
such that: 

(2)

The zero-frequency probability  is then defined as follows: 

(3)

The zero-frequency probability  is redistributed among the set of words never 
observed in the context h. Redistribution of the probability  is performed 
proportionally to a more general distribution , where h’ denotes a more general 
context. 
Using the linear interpolation smoothing technique [24], [2], the conditional probability of a 
word w given a history h, , is estimated as follows: 

 (4) 

where the same scheme applies to the lower-order distribution . The  are such 
that 0 <  1 if N(h) > 0, and  = 1 otherwize. The interpolation parameter is 
estimated using the expectation maximization algorithm [25]. 
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When using classical linearly interpolated word n-gram models, typically the more general 
(n-l)-gram distribution is used to estimate the n-gram distribution. We recursively estimate 
the (n-k)-gram distribution using (n-k-l)-gram distribution until we reach the uniform 
distribution. Linear interpolation can be seen as a general smoothing approach that allows 
the combination of an arbitrary number of distribution or even language models. The most 
known and original version of the linear interpolated trigram (3-gram) language model [1] 
was not defined recursively as described in equation 4. It was presented as a linear 
combination of all order empirical distributions: 

 (5) 

where (i = 1, 2, 3, 4) and .
Hence, using a recursive representation, the classical linearly interpolated word n-gram
language models estimate the conditional probability of a word w given a history h, ,
according to the (n-l)-gram distribution: 

 (6) 

To better explore the power of word n-grams for frequent events and the predictive power 
of class n-grams for unseen or rare events, we propose the linearly interpolated hierarchical 
n-gram language models (LIHLMs). LIHLMs combine discounting and redistribution 
according to the linear interpolation smoothing technique [24], [2]. These models estimate 
the conditional probability of an n-gram , according to more general 
distribution extracted from the class hierarchy: we use the class of the most distant word 

followed by the other words: 

The function F(x) represents the class (parent) of x within the hierarchical word tree, where x
can be a class itself, or a single word, depending on its location in the tree (cf. Section V). Let 

denote the jth parent of word :

The probability  is estimated as follows: 

 (7) 
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where  is recursively estimated according to more general distribution 
by going up one level at a time in the hierarchical word clustering tree: 

(8)

As a result, the whole procedure provides a consistent way to compute the probability of 
any n-gram event by exploring the classes that are in the hierarchical word tree. If the parent 
of the class (respectively, the word ) is the class root, the context becomes the 
last (n-2) words, which is similar to the traditional linearly interpolated word n-gram
models as described in equation 6. 
Based on this definition, the linearly interpolated hierarchical n-gram approach is a 
generalization of the classical linearly interpolated word n-gram language models: word n-
gram language models can be seen as linearly interpolated hierarchical n-gram language 
models with a single level (leaves) in the hierarchical word tree. 

4. Backoff hierarchical class n-gram language models 

The backoff hierarchical class n-gram models are introduced in [9]. The goal of this section is 
to briefly describe this approach in order to compare its performance to the performance of 
the linearly interpolated hierarchical n-gram language models. 
When using the backoff hierarchical class n-gram models, the conditional probability of an 
unseen n-gram  is estimated according to a more specific context than the (n-l)-
gram We use as context the class of the most distant word followed 
by the other words: 

We remind that F(x) denotes the class (parent) of x within the hierarchical word tree. 
The probability  is estimated as follows: 
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(9)

where  as stated before denotes the jth parent of word wi, N(.) denotes the frequency of 
the argument in the training data and  is a normalizing constant guaranteeing 
that all probabilities sum to 1 [13]: 

 (10) 

The  in equation 9 is estimated as follows: 

 (11) 

where the term dN(.) denotes the Turing's discounting coefficient [13]. 
If the event  is not found in the training data (N ( ) = 0), we 
recursively use a more general context by going up one level at a time in the hierarchical 
word clustering tree. This context is obtained by taking the parent of the first class in the 
hierarchy, followed by the n — 2 last words: 

(12)

where the normalizing constant is computed as follows to guarantee that 
all probabilities sum to 1: 



Robust Speech Recognition and Understanding 308

(13)

The procedure provides a consistent way to compute the probability of rare or unseen n-
grams by backing-off along the classes that are defined in the hierarchical word tree. If the 
parent of the class (respectively, the word ) is the class root, the context 
becomes the last n — 2 words, which is similar to the traditional back-off word n-gram 
model [13]. Word n-gram language models are the backoff hierarchical class n-gram 
language models with a single level in the hierarchical word tree. 

5. Hierarchical word clustering algorithm 

The hierarchical approaches we propose relies on the design of a classifier that allows 
finding a parent (class) for a word w. It is important to note that the two hierarchical n-gram
languages describes in the two previous sections are able to integrate any classification 
approach. A better classifier will lead to a more accurate hierarchical model. The Maximum 
Mutual Information (MMI) clustering algorithm proposed by P. Brown et al. in [26] and by 
F. Jelinek in [1] has been widely adopted. Using the MMI approach, the computation 
required to obtain a language model with C classes using a vocabulary of V words is in the 
order of V3. A greedy merge method is also used, based on the MMI theory, and requires an 
order of V2C operations. Several iterations of the algorithm can be performed to improve 
performance. However, when using large vocabularies, this becomes quickly intractable 
given the computational complexity [27]. On the other hand, the minimum discriminative 
information (MDI) clustering approach proposed by S. Bai et al. gives similar results as the 
MMI method, while dramatically reducing the computation [27], as it only involves 
computing less than V2 logarithms; for comparison results between MDI and MMI 
approaches, readers may refer to [27]. Consequently, in our approach we adopted the 
clustering technique of S. Bai et al., which is based on minimum discriminative information. 
The hierarchical word clustering algorithm proceeds in a top-down manner to cluster a 
vocabulary word set V, and is controlled by two parameters: (1) the maximum number of 
descendant nodes (clusters) C allowed at each node, (2) the minimum number of words K in
one class ). In our case, K is set to 2. Starting at the root node, which 
contains a single cluster representing the whole vocabulary, we compute the centroid oi , of 
the entire space (word set). An initial codebook is then built by assigning the C closest 
words to oi, into C clusters, which define the immediate child nodes of the root node [9]. The 
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process is continued recursively on each descendant node to grow the tree. The algorithm 
stops when a predefined number of levels (depth) is reached or when the number of 
proposed clusters for one node Oc is equal to 1 [10]. Each word in the vocabulary constitutes 
a leaf in the tree, words are clustered into classes, and classes are recursively clustered into 
more general sets of classes, until the root. At the top of the tree, the root node is a class 
containing all the words in the vocabulary. A summary of the minimum discriminative 
information methods is presented in the next section, followed by a detailed description of 
the word clustering algorithm. 
A. Minimum Discriminative Information 
The left and right contexts are used to cluster a word set, meaning that words occurring 
frequently in similar contexts should be assigned to the same class. The contextual 
information of a word w, pd {w}, is estimated by the probability of w given its d left and right 
neighboring words. Given a set of V words, in the case of d = 1, we have: 

 (14) 

The terms p1l{w} and p1r{w} denote respectively the left-bigram and right-bigram contextual 
information of word w, given a vocabulary of V words l:

 (15) 

and

 (16) 

The clustering algorithm is based on two principles: (1) words with similar contexts are 
merged into the same cluster; (2) a word cluster is built according to the cluster of its 
neighboring words (contextual information). The contextual information of word w, p{w}, is 
represented by the probability of w given its right and left context bigrams. The problem is 
then to define the similarity of two words in terms of their contextual information. To define 
the similarity of two words w1 and w2 in terms of their contextual information, we use the 
Kullback-Leibler distortion measure D(w1, w2} [6]:

 (17) 

which is also known as relative entropy. The objective of partitioning the vocabulary is to 
find a set of centroids {oc} for clusters {Oc}, c = 1, ... C that leads to the minimum global 
discriminative information: 
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 (18) 

The term B(w) is a constant independent of the partitioning. Hence, R(w) is maximized when 
the global discriminative information is minimized. Each cluster Oc is represented by a 
centroid oc. According to equation 14, p1{w} is defined as a vector of dimension 2 • V, whose 
first V components are based on the left-context bigrams, and last V components are based 
on the last V right-context bigrams. For simplicity, let us drop the left/right indices, and 
represent p1{w} as follows: 

 (19) 

Given equation 19, the centroid of the class Oc = {wi, i = 1 . . . vc} is estimated as follows [28], 
[29]:

where is approximated by [27]: 

(20)

B. Word Clustering Algorithm 
We present in this section how to classify a word set into C classes, under the constraint that 
at least K words should appear in each class Oc. Our approach is based on the K-means
clustering technique [30], [31], where we define centroids and distances specific to words. 
We start at the root note by computing the centroid oi, of the entire space (word set). An 
initial codebook is then built by assigning the C closest words to oi, into C clusters. The 
centroids of each cluster are then re-computed, and the process is iterated until the average 
distortion GDI converges. This process is then recursively applied. The pseudo-code of the 
algorithm is as follows: 
• step 1: start with an initial codebook; 
• step 2: for each wi, i = 1,... V,
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• find the closest class O to wi using Kullback-Leibler distortion measure and add wi

to it [19]. 
• step 3: update the codebook using the minimum distance or nearest neighbor rule [9], 

[28];
• step 4: if GDI > t then go to step 2 

• where t is an experimentally tuned threshold controlling the convergence of the 
process; the current set of clusters may leads to the minimum global discriminative 
information (cf. equation 18). 

• step 5: if then and go to 1, otherwise stop. 
Step 5 is necessary since it is used to control the number of words in a class: if there are too 
few words in a class (N(OC) < K), that class is merged with another one. In practice, only a 
few iterations of the algorithm are required to achieve fairly good results [27]. Since each 
word is characterized by the contextual statistical vector pd{w}, the centroid of each class is 
easily found using equation 20. The advantage of this algorithm is its simplicity in finding 
centroids; the cost of merging words or classes becomes less expensive. Once C classes have 
been defined, the algorithm is recursively applied within each class to grow the tree. 

6. Corpus 

Experiments are performed on the Wall Street Journal 94-96 text corpus. This database is 
divided into training, development and test sets. For language modeling purposes, the 
training set contains 56 million words, and the test set contains approximately 6 million 
words. A development set of 5 million words is also used to tune the different parameters of 
the model, including the depth of the clustering tree. Two vocabulary sizes are used: a first 
one containing 5,000 words (5K) and a second one including 20,000 words (20K). Note that 
the 5K vocabulary leads to about 2% of out-of-vocabulary words on the test data, and in that 
regard differs substantially from the official WSJ 5K lexicon that was designed for a closed-
set evaluation (no OOV words). The 20K vocabulary has a 1.1% out-of-vocabulary rate on 
the test data. In our experiments, we use open vocabulary where the unknown word is part 
of the model [1]. 

7. Experiments 

Our objective is to show that the use of word class hierarchy in language modeling better 
handle the likelihood estimation of n-gram events. We show in this section the performance 
of linearly interpolated hierarchical n-gram language models as well as the performance of 
the backoff hierarchical class n-gram language models. We compare the performance of 
these two techniques to the performance of commonly used methods such as the linearly 
interpolated n-gram language models (LILMs) and the backoff n-gram language models. 
Performance is evaluated in terms of test perplexity and word error rate (WER) using Bell 
Labs' speech recognizer [32]. Both HCLMs and the backoff word n-gram LMs use the 
backing-off smoothing technique to estimate the likelihood of unseen events [13]. Also, both 
LIHLMs and LILMs combine discounting and redistribution according to the linear 
interpolation smoothing technique [24], [2]. 
As a reminder, HCLMs and LIHLMs with a number of levels in the class hierarchy equal to 
0 are in fact the classical backoff word n-gram LMs and LILMs respectively. Hence, we 
believe that it is fair to consider both backoff word n-gram LMs and LILMs as baselines for 
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comparison purpose. We also report in this section comparison results with word class n-
gram (n-class) LMs as well as a linear interpolation between word n-gram and n-class LMs 
[1]. In addition, we investigate how the number of levels defined in the class hierarchy 
impacts the performance of our approach. 
A. Perplexity Experiments 
Perplexity is typically used to measure the performance of language models. It is therefore 
interesting to look at the perplexity obtained by the two hierarchical n-gram models for 
different number of levels in the hierarchy. The number of levels in the hierarchy L
represents the depth of the word class tree. The maximum number of direct descendant of a 
class is fixed to C = 6 (cf. section 5). Experiments carried out with different values of C led to 
similar results [9]. The maximum number of classes generated when building the class tree is 

: e.g., for a word class tree of two levels, the root node is split into a maximum of C
classes and each class is split into C other classes, leading to a maximum of C2 clusters at the 
second level. This number is optimized at each level of the hierarchy by the classification 
algorithm in order to converge to an optimum (cf. section 5-B). 

Figure 1. Trigram and bigram test perplexity on WSJ using 5K vocabulary with different 
number of levels in the class hierarchy 

Figure 1 presents the performance of LIHLMs, HCLMs, LILMs and backoff word n-gram 
LMs when the 5K vocabulary is used. We remind that LILMs and backoff word n-gram LMs 
are respectively the LIHLMs and HCLMs with a number of levels in the class hierarchy 
equal to 0. Experimental results show that we do not need a large number of levels in the 
class hierarchy to improve upon the baseline: three or four levels are enough to achieve a 
good performance compare to baseline models. When using the 5K vocabulary, trigram 
LIHLM improves the baseline backoff word trigram language model by 10% (63.0 vs. 69.1). 
However, a very slight improvement of 3% in terms of perplexity is obtained by the trigram 
LIHLM when compared to trigram HCLM (63.0 vs. 64.6). A similar behavior is obtained for 
bigram events: a 6% improvement of the test perplexity on the whole test set is observed 
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(97.2 for bigram LIHLM vs. 103.0 for backoff word bigram model). A very small 
improvement of 3% is also obtained by the bigram LIHLM when compared to bigram 
HCLM (97.2 vs. 100.3). 
Performance in terms of perplexity when using the 20K vocabulary is presented in Figure 2. 
Results in Figure 2 again show the effectiveness of the LIHLMs in improving the perplexity 
value of the backoff word n-gram LMs: 7% improvement for bigrams (202.8 vs. 216.7) and 
10% improvement for trigrams (127.5 vs. 140.8). The LIHLMs also effectively improves the 
performance of HCLMs by 4% for both bigrams (202.8 vs. 210.6) and trigrams (127.5 vs. 
132.2).

Figure 2. Trigram and bigram test perplexity on WSJ using 20K vocabulary with different 
number of levels in the class hierarchy 

For both the 5K and 20K vocabularies, we notice that backoff word n-gram LMs are doing 
slightly better that classic linearly interpolated LMs. We believe that the difference is 
statistically insignificant, which will not allow us to draw any conclusion. Another 
important point to mention is that in both the 5K and 20K vocabularies, the perplexity value 
of the HCLMs decreased for the first three levels in the class hierarchy and then it starts to 
increase. This observation is not true for the LIHLMs, where the perplexity value achieves 
its optimum with four levels in the class hierarchy and doesn't increase afterward. One may 
conclude that, compared to HCLMs, LIHLMs are less sensitive to the depth of the tree 
(number of levels in the class hierarchy). 
Results reported in Figure 1 and Figure 2 are computed on the test data. We observed the 
same behavior on the development set: with (C = 6, the best performance in terms of 
perplexity on the entire development set is obtained with a maximum level in the class 
hierarchy set to L = 3. On 20K vocabulary, trigram perplexity of HCLMs decreased from 
142.4 for L = 0 (i.e., baseline backoff word n-gram LMs) to 134.6 for L = 3 and then it starts to 
increase. The same behavior is observed on the 5K vocabulary: trigram perplexity of 
HCLMs decreased from 71.0 for L = 0 to 66.7 for L = 3 and then starts to increase. 
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B. Comparison with Word Class n-gram Language Models 
As stated in the introduction, one of the approaches that can overcome the probability 
estimation problem of unseen n-grams event is the class n-gram language models [1], [8]. 
For sparse data, class n-gram language models usually generalize better on unseen n-grams 
than standard word-based language models. Nevertheless, for large training corpus, word 
n-gram LMs are still better in capturing collocational relations between words. To confirm 
this point, we built word class n-gram (n-class) LMs and compared their performance to the 
baseline n-gram models as well as the hierarchical approaches. We also investigate a 
comparison results with linear interpolation of word n-gram and n-class LMs. In the backoff 
n-class models, the conditional probability of the n-gram , is
estimated as follows: 

(21)

where the function F(x) represents the class of x. As stated by J. Goodman in [33], equation 
21 showed to give stronger class model than estimating the conditional probability as 
follows: 

 (22) 

Notice that the hierarchical class n-gram LMs is able to integrate any classification approach 
for building the class hierarchy. In order to make a fair comparison between the proposed 
hierarchical approach and the backoff n-class LMs, we should use the same classification 
technique. Hence, to build the class set, we use the MDI approach (cf. section 5-B) that 
assigns each word to a unique class. We initialize the MDI classifier with a maximum 
number of classes equal to 1200 assuming that one class should contains at least 5 words. 
We present in table I, the perplexity values obtained by the different LMs on the entire test 
set. The hierarchical approach uses a maximum number of direct descendant of a class fixed 
to C = 6 and a number of levels in the hierarchy set to L = 3; both values are tuned on the 
development set (cf. section 7- A). 

5K-WSJ 20K-WSJ
Bigram LMs 
Class 115.2 228.9
Word (Baseline) 103.0 216.7
LI (Word + Class) 102.2 215.8
HCLM 100.3 210.6
LIHLM 97.2 202.8
Trigram LMs 
Class 76.5 154.0
Word (Baseline) 69.1 140.8
LI (Word + Class) 68.2 138.6
HCLM 64.6 132.2
LIHLM 63.0 127.5

Table 1. Perplexity on WSJ of world class n-gram LMs (class), word n-gram LMs (word), 
linear interpolation of word n-gram and n-class LMS (LI), hierarchical class n-gram LMS 
(HCLM), and linearly interpolated hierarchical n-gram LMs (LIHLM) 
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As expected, the perplexity of the baseline word n-gram LMs is better than the class word n-
gram LMs: 216.7 vs. 228.9 for the bigram model and 140.8 vs. 154.0 for the trigram model 
with the 20K vocabulary (similar behavior was observed with the 5K vocabulary). Also, 
compared to the baseline word n-gram LMs, we notice that a linear interpolation of word n-
gram LMs and n-class LMs doesn't led to a considerable improvement (215.8 vs. 216.7 for 
bigram and 138.6 vs. 140.8 for trigram on 20K vocabulary). On both bigram and trigram, 
results show that the proposed hierarchical LMs outperform the other approaches. 
C. Speech Recognition Experiments 
For ASR experiments, the word error rate (WER) on the 5K WSJ has been evaluated on the 
330 sentences of the si_et_05 evaluation set. The 333 sentences of the si_et_20 evaluation set 
were used for the 20K ASR experiment. We used tied-state triphone acoustic models built on 
the WSJ SI-84 database. The speech recognition experiments were performed using the Bell 
Labs ASR system [32]. The ASR system is based on a Viterbi algorithm, where at each node 
in the search the acoustic score is interpolated with the language modeling score. Hence, we 
do not need to modify the decoder structure in order to integrate LIHLMs and HCLMs: we 
only replaced the language modeling score, initially estimated using the trigram language 
model, with the score estimated using LIHLMs and HCLMs respectively. Once the language 
model is integrated to the ASR system, the pruning parameters are re-computed to boost its 
accuracy. We gave equivalent setting to the pruning parameters to make sure that the 
decoder search doesn't favor one model over another. 
Recall that the 5K vocabulary differs from the official WSJ 5K lexicon which was designed 
for a closed-set evaluation. Results presented in Table II show that there is no significant 
improvement in performance between the baseline backoff bigram model, bigram HCLM, 
and bigram LIHLM. These results can be explained by the small number of unseen bigrams 
in this experimental setup and therefore the lack of room for any significant improvement: 
unseen bigrams constitute 4% and 8% of the total bigrams for the 5K and 20K vocabularies
respectively. However, when the trigram model is used, the number of unseen events 
increases to 27% for the 5K vocabulary and to 34% for the 20K vocabulary, leading to 12% 
and 10% reduction of the WER, respectively. We also note that HCLMs and LIHLMs have 
the same ASR performance. Compared to the recognizer using linear interpolation between 
word and class trigram model, the use of hierarchical approaches improves performance by 
6% (11.1% vs. 12.0%) and by 8% (6.7% vs. 7.3%) relative for WSJ-20K and WSJ-5K 
respectively.

5K 20K

bigram trigram bigram trigram
Baseline 
LI (word + class) 
HCLM
LIHLM 

9.3%
9.2%
9.0%
9.0%

7.6%
7.3%
6.7%
6.7%

14.2%
14.1%
13.9%
13.8%

12.4%
12.0%
11.2%
11.1%

Table 2. WER on 5K and 20K vocabularies using word n-gram (baseline), linear interpolation 
between word and class n-gram (LI), hierarchical class n-gram (HCLM), and linearly 
interpolated hierarchical n-gram LMS (LIHLM) respectively 

We think that the effectiveness of our approach may also depend on the quality of the 
acoustic model and the domain on which the recognizer is employed. For instance, if the 
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language model has very low perplexity on unseen events and if the acoustic model is able 
to well discriminate words under these unseen context, then a big portion of the errors 
made by the recognizer are more likely to be accumulated on frequent context. The opposite 
is also true: if the language model has low perplexity on frequent events and the acoustic 
model is able to discriminate words under these frequent events, then errors are more likely 
to be accumulated on low acoustic certainty. Hence, similarly to [9], [10], we would like to 
raise the fact that we may not need to improve the perplexity on the whole data in order to 
reduce the word error rate of ASR systems. It may be sufficient to reduce the perplexity of 
unseen events rather than the frequently seen events, since ASR systems are more sensitive 
to unseen events. 

8. Conclusion 

We have investigated a new language modeling approach called linearly interpolated n-
gram language models. We showed in this chapter the effectiveness of this approach to 
estimate the likelihood of n-gram events: the linearly interpolated n-gram language models 
outperform the performance of both linearly interpolated n-gram language models and 
backoff n-gram language models in terms of perplexity and also in terms word error rate 
when intergrated into a speech recognizer engine. Compared to traditional backoff and 
linearly interpolated LMs, the originality of this approach is in the use of a class hierarchy 
that leads to a better estimation of the likelihood of n-gram events. Experiments on the WSJ 
database show that the linearly interpolated n-gram language models improve the test 
perplexity over the standard language modeling approaches: 7% improvement when 
estimating the likelihood of bigram events, and 10% improvement when estimating the 
likelihood of trigram events. 
Speech recognition results show to be sensitive to the number of unseen events: up to 12% 
reduction of the WER is obtained when using the linearly interpolated hierarchical 
approach, due to the large number of unseen events in the ASR test set. The magnitude of 
the WER reduction is larger than what we would have expected given the observed 
reduction of the language model perplexity; this leads us to an interesting assumption that 
the reduction of unseen event perplexity is more effective for improving ASR accuracy than 
the perplexity associated with seen events. The probability model for frequently seen events 
may already be appropriate for the ASR system so that improving the likelihood of such 
events does not correct any additional ASR errors (although the total perplexity may 
decrease.) Thus, it may be that similar reductions of the perplexity are not equivalent in 
terms of WER improvement. The improvement in word accuracy also depends on the errors 
the recognizer makes: if the acoustic model alone is able to discriminate words under 
unseen linguistic contexts, then improving the LM probability for those events may not 
improve the overall WER. 
Compared to hierarchical class n-gram LMs, we observed that the new hierarchical 
approach is not sensitive to the depth of the hierarchy. As future work, we may explore this 
approach with a more accurate technique in building the class word hierarchy. 
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 1. Introduction 

Prosody refers to the suprasegmental features of natural speech (such as rhythm and 
intonation) that are used to convey linguistic and paralinguistic information (such as 
emphasis, intention, attitude, and emotion). Humans listening to natural prosody, as 
opposed to monotone or foreign prosody, are able to understand the content with lower 
cognitive load and higher accuracy (Hahn, 1999). In automatic speech understanding 
systems, prosody has been previously used to disambiguate syntactically distinct sentences 
with identical phoneme strings (Price et al., 1991), infer punctuation of a recognized text 
(Kim & Woodland, 2001), segment speech into sentences and topics (Shriberg et al., 2000), 
recognize the dialog act labels (Taylor et al., 1997), and detect speech disfluencies (Nakatani 
and Hirschberg, 1994).  None of these applications use prosody for the purpose of 
improving word recognition (i.e., the word recognition module in these applications does 
not utilize any prosody information). Chen et al. (Chen et al., 2003) proposed a prosody 
dependent speech recognizer that uses prosody for the purpose of improving word 
recognition accuracy.  In their approach, the task of speech recognition is to find the 
sequence of word labels W = (w

1
, ,wM )  that maximizes the recognition probability: 

[Ŵ ] = argmax p(O | W ,P) p(W,P)

= argmax p(O | Q,H ) p(Q,H | W ,P) p(W,P),
 (1) 

where P = ( p
1
, , pM )  is a sequence of prosody labels, one associated with each word, 

O = (o
1
, ,oT )  is a sequence of observed acoustic feature vectors, Q = (q

1
, ,qL )  is a sequence 

of sub-word units, typically allophones dependent on phonetic context, and H = (h
1
, ,hL )  is 

a sequence of discrete ``hidden mode'' vectors describing the prosodic states of each 
allophone.  The combination [wm , pm ]  is called a prosody-dependent word label, the 
combination [ql ,hl ] is called a prosody-dependent allophone label, p(O | Q,H )  is a prosody-
dependent acoustic model, p(Q,H | W ,P)  is a prosody-dependent pronunciation model, and 
p(W ,P) is a prosody-dependent language model.  In this framework, word and prosody are 

conditioned on each other and are recognized at the same time. The system described in 
equation (1) has the advantage that both the acoustic model and the language model can be 
potentially improved through their dependence on prosody. 
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In (Chen et al. 2006), the prosody variable pm  takes 8 possible values composed by 2 discrete 
prosodic variables: a variable a that marks a word as either ``a'' (pitch-accented) or ``u'' 
(pitch-unaccented), and a variable b  that marks a word as ``i,m,f,o'' (phrase-initial, phrase-
medial, phrase-final, one-word phrase) according to its position in an intonational phrase. 
Thus, in this scheme, a prosody-dependent word transcription may contain prosody-
dependent word tokens of the form wab .  For example, the sentence ``well, what's next,'' 
uttered as two intonational phrases with two accented words, might be transcribed as 
``wellao what'sui nextaf.''
A prosody dependent language model p(W ,P) that models the joint probability distribution 
of concurrent word and prosody sequences, is different from a standard prosody 
independent language model p(W )  in the sense that not only word context but also 
prosody context affect the prediction of the next possible word and its prosody.  This model 
is useful in at least two respects.  First, it can be used to effectively reduce the search space 
of possible word hypotheses. (Kompe, 1997) have shown that a prosody dependent 
language model can be used to speed up the word recognition process without sacrificing 
accuracy. Second, it is potentially useful in improving word recognition accuracy. Waibel 
(Waibel, 1988) reports that prosodic knowledge sources, when added to a phonetic speaker-
independent word hypothesizer, are able to reduce the average rank of the correct word 
hypothesis by a factor of 3. Arnfield (Arnfield, 1994) gives an example in his dissertation: the 
words ``witch" and ``which", having identical acoustic observations, can be distinguished 
prosodically (``witch" is more likely to be accented than is ``which" because it is a content 
word while ``which" is a function word).  The word to be predicted is more likely to be 
``witch" instead of ``which" if an accent is predicted from the current word-prosody context. 
In the results reported by (Chen et al., 2006), a prosody dependent language model can 
significantly improve word recognition accuracy over a prosody independent language 
model, given the same acoustic model. 
N-gram models can be conveniently used for prosody dependent language modeling. The 
n-gram probabilities are estimated from their maximum likelihood estimators (the relative 
frequency count of the n-grams). For example, the bigram probability p(w j , p j | wi , pi )  (the 
probability of observing token [ w j , p j ]  given token [wi , pi ] ) can be estimated using the 
following equation: 

p(w j , p j | wi , pi ) =
n(w j , p j ,wi , pi )

n(wi , pi )
,  (2) 

where n(⋅)  is the number of the n-grams observed in the training set. Equation (2) treats 
each prosody dependent word token [ w j , p j ]  as a distinct unit, resulting in a recognizer that 
has | p |  times larger vocabulary size than does a standard prosody independent recognizer 
(where | p |  is the number of options for tag pi ).  If any word-prosody combination can 
occur in English, the number of prosody dependent n-grams is equal to | p |

n  times the 
number of prosody independent n-grams.  In practice, the number of possible prosody 
dependent n-grams increases by far less than | p |

n  times, because a considerable amount of 
prosody dependent n-grams never occur in natural English.  Nevertheless, the number of 
possible prosody dependent n-grams still greatly increases as | p |  increases due to the 
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prosody variation induced by high level contextual information and by different speaking 
styles. Hence, robust estimation of prosody dependent language modeling using equation 
(2) requires an increasingly large amount of prosodically labeled data which are normally 
expensive to acquire. When the size of training text is limited, increasing | p |  decreases the 
trainability of the n-gram models and reduces the consistency between the training and test 
text: the accuracy of the estimated probability mass functions (PMFs) decreases due to the 
prosody induced data sparseness and the number of possible unseen prosody dependent n-
grams increases. 
In this chapter, we propose to improve the robustness of prosody dependent language 
modeling by utilizing the dependence between prosody and syntax. There is evidence 
indicating that syntax is a strong conditioning factor for prosody. For example, conjunctions 
(e.g., ``but",``so") occur more frequently at phrase initial positions than at phrase medial or 
final positions in fluent speech; content words (e.g., nouns) have much higher probability of 
being accented than function words (e.g., prepositions, articles). In a corpus based study, 
Arnfield (Arnfield, 1994) proved empirically that although differing prosodies are possible 
for a fixed syntax, the syntax of an utterance can be used to generate an underlying 
``baseline" prosody regardless of actual words, semantics or context. The bigram models 
developed by Arnfield were able to predict prosody from parts-of-speech with a high 
accuracy (91% for stress presence prediction).  The experiments conducted by (Hirschberg, 
1993) and (Chen et al., 2004) also indicate that parts-of-speech can predict the presence of 
pitch accent with accuracies of around 82%-85% on the Radio New Corpus. 
This chapter is organized as following: Section 2 reviews previous research on factored 
language models and provides a Bayesian network view of spoken language that further 
explains our motivation, Section 3 describes our methods for creating prosody dependent 
factored language models, Section 4 reports our experiments on the Radio News Corpus 
and discusses results, and conclusions are given in Section 5. 

2.Background: Factored Language Models 

2.1 Previous work 

The objective of a statistical language model is to accurately predict the next word w j  from 
current history h j = [ w

0
, w j−1

] .  In the past two decades, enormous efforts have been 
reported in the literature to find the factors in h j  that best predict w j  (Rosenfeld, 2000) 
including the use of syntactic and semantic information extracted from h j  (Khudanpur & 
Wu, 2000; Bellegarda, 2000). Language modeling for speech recognition has been shown to 
be a difficult task due to the many sources of variability existing in spoken language 
including disfluency, sentence fragments, dialect, and stylistic and colloquial language use. 
The existence of these intrinsic properties of spoken language (which are quit different from 
written language) have forced researchers to expand the space h j  to include additional 
streams of knowledge. 
One example is the system proposed by Heeman and Allen (Heeman and Allen, 1999), in 
which the word sequences and parts-of-speech (POS) sequences are modeled jointly and 
recognized simultaneously in a unified framework: 

[W̃ , S̃] = argmax p(O | W,S) p(W ,S)

≈ argmax p(O | W ) p(W ,S).
  (3) 
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The language model p(w j ,sj | W
0, j−1

,S
0, j−1

)  can be factored into two component language 
models, which makes it possible to utilize the syntactic knowledge encoded in the joint 
history of word and POS to improve the predictability of the next word (and its POS): 

p(w j ,sj | W
0, j−1

,S
0, j−1

)

= p(w j | W
0, j−1

,S
0, j−1

,s j ) p(sj | W
0, j−1

,S
0, j−1

),
 (4) 

where sj  is the POS of w j , W
0, j−1

 is the word history up to w j−1
, and S

0, j−1
 is the POS history 

up to sj−1
. Heeman used decision trees to cluster the word and POS history into equivalence 

classes. This multi-stream POS-based language model p(W ,S)  achieved a 7% reduction of 
word perplexity over the single stream word-based n-gram language model p(W )  and 
improved the prediction of word and POS simultaneously. Heeman further extended this 
multi-stream language modeling frame work to include more knowledge sources (e.g., 
intonational phrase boundaries, speech repairs, discourse markers) and found that the inter-
dependence among these knowledge sources can further improve the quality of the 
language model for the modeling of conversational spoken language. 
In a different context, Kirchhoff (Kirchhoff et al., 2003) applied the idea of multi-stream 
language modeling to handle the morphological complexity in Arabic text, where she 
modeled multiple streams of word features such as the morphological class ( mi ), patterns 
( pi ) and roots ( ri ) in place of the single stream of words.  For example, represent 
wi = (ri , pi ,mi ) ,

p(wi | wi−1
,wi−2

)

= p(ri , pi ,mi | ri−1
, pi−1

,mi−1
,ri−2

, pi−2
,mi−2

)

= p(ri | pi ,mi ,ri−1
, pi−1

,mi−1
,ri−2

, pi−2
,mi−2

)

p( pi | mi ,ri−1
, pi−1

,mi−1
,ri−2

, pi−2
,mi−2

)

p(mi | ri−1
, pi−1

,mi−1
,ri−2

, pi−2
,mi−2

).

 (5) 

The three factored probability functions in equation (5) can be modeled individually using 
n-grams or other modeling techniques.  Since each word feature has much smaller 
cardinality than the word vocabulary, and is less fractured by the nuances of morphological 
variation, this factored language model can effectively help reduce the data sparseness in 
dialectal Arabic. 
The language models we are proposing can be viewed as an extension to these previous 
works. Rather than modeling POS explicitly in the language model, we propose to model 
prosody explicitly while using POS implicitly to reduce the data sparseness induced by 
prosody. We argue that this method of modeling prosody makes the acoustic models and 
language models fuse more tightly through their interaction with prosody and brings the 
potential of improving both word recognition and prosody recognition performance. 
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2.2 A Bayesian Network View for Spoken Language 

Figure 1. A Bayesian network representing the complex relationship among the acoustic 
observation sequence ( O ), word sequence ( W ), prosody sequence ( P ) and syntax sequence 
( S ) of an utterance. 

To better understand our reasoning behind the idea of prosody dependent speech 
recognition, we plot in Fig. 1 the complex relationship among the sequences of acoustic 
observations O , words W , prosody P  and syntax S  for an arbitrary utterance in terms of a 
Bayesian Network. The dependence of O  over P  is well defined because it is well known 
that prosody affects the acoustic realization of words in systematic ways. For example, 
unaccented vowels tend to be centralized and reduced in a function word, accented vowels 
tend to be longer and less subject to coarticulatory variation (Cho, 2001); accented 
consonants are produced with greater closure duration (DeJong, 1995), greater linguopalatal 
contact (Fougeron & Keating, 1997), longer voice onset time, and greater burst amplitude 
(Cole et al., 2007). Conditioning O  over both P  and W  brings us a framework in which 
prosody induced acoustic variations can be accurately modeled. The dependence of W  over 
S  is well-established and has been used to build various types of POS-based language 
models. The dependence of P  over S  is supported by the experiments of Arnfield and 
others, described at the end of Section 1. The inter-dependence between P  and W  has been 
depicted by a dashed arrow to express the fact that P  can be assumed to be independent of 
W  given S  with no knowledge about the pragmatic context (i.e., there is no reason to 
believe that one noun is more likely to be accented than any other given no pragmatic 
context). This assumption is useful in our later derivation in Section 3. 
Modeling W  and P  jointly in this prosody dependent framework creates a new search 
space in which the candidate word sequences are weighted in terms of their conformability 
with natural prosody. An information-theoretic analysis in (Chen & Hasegawa-Johnson, 
2004; Hasegawa-Johnson et al, 2005; Chen et al., 2006) showed that it is possible for a 
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prosody-dependent speech recognizer to improve word recognition accuracy even if the 
acoustic model and the language model do not separately lead to improvements. Even if 
prosody does not improve the recognition of words in isolation, the likelihood of the correct 
sentence-level transcription may be improved by a language model that correctly predicts 
prosody from the word string, and an acoustic model that correctly predicts the acoustic 
observations from the prosody. In their experiments on the Radio News Corpus (Chen et al., 
2006), as large as 11% word recognition accuracy improvement over a prosody independent 
speech recognizer was achieved by a prosody dependent recognizer that has comparable 
total parameter count. 

3. Method 

In this section, we propose an approach that creates prosody dependent factored language 
models by utilizing the dependence between prosody and syntax. For notational 
convenience and clarity, we used bigram models for our derivation. The equations 
presented in this section can be easily extended to higher order n-gram models. 

3.1 Prosody Dependent Factored Language Model 

The semi prosody dependent bigram probability (the probability of observing a word w j

given the previous prosody dependent word label [wi , pi ] ) can be calculated from the 
prosody independent bigram probability p(w j | wi )  using the following equation: 

p(w j | wi , pi )

=
p( pi ,w j | wi )

p( pi | wi )

=
p( pi | w j ,wi ) p(w j | wi )

p( pi | wi )

≈
p( pi | si ,sj ) p(si ,s j | wi ,w j )p(w j | wi )si , s j

p( pi | si ,s j ) p(si ,s j | wi ,w j ) p(w j | wi )si , s jw j

,

 (6) 

where si  and sj  are the POS of wi  and w j  respectively. The approximation in equation (6) 
assumes that pi  (the prosody on the previous word) is dependent on the POS context but 
independent of the actual word context: 

p( pi | si ,s j ) ≈ p(pi | si ,sj ,wi ,w j ). (7) 

Similarly, the prosody dependent bigram probability (the probability of observing a 
prosody dependent word token [ w j , p j ]  given the previous prosody dependent word token 
[wi , pi ] ) can be calculated from the semi prosody dependent bigram probability 
p(w j | wi , pi ) :
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p(w j , p j | wi , pi )

= p( p j | w j ,wi , pi ) p(w | wi , pi )

= p( p j | sj ,si ,w j ,wi , pi ) p(s j ,si | w j ,wi , pi ) p(w j | wi , pi )
si , s j

≈ p( p j | sj ,si , pi ) p(s j ,si | w j ,wi ) p(w j | wi , pi ).
si , s j

 (8) 

The following approximations are required in deriving equation (8): 

p( p j | si ,s j , pi ) ≈ p( p j | si ,s j ,wi ,w j , pi ), (9) 

and

p(si ,sj | wi ,w j ) ≈ p(si ,s j | wi ,w j , pi ). (10) 

Equation (9) assumes that prosody is dependent on its syntactic context represented by the 
POS of current word and the previous word but independent of the actual words. Equation 
(10) assumes that prosody does not affect the probability distribution of POS given the 
actual word context. This assumption is plausible except for the cases where prosody is used 
to resolve syntactic ambiguities (Price et al., 1991).  In this chapter, we assume that the use of 
prosody to resolve POS ambiguity is statistically rare. 
Equations (6) and (8) provide an approach to calculate the prosody dependent bigram 
probability p(w j , p j | wi , pi )  based on the regular prosody independent bigram probability 
p(w j | wi )  and three additional probability mass functions: p( pi | si ,s j ) , p( p j | si ,s j , pi ) , and 
p(si ,sj | wi ,w j ) . p(si ,sj | wi ,w j )  describes the stochastic mapping between a word pair and 

the associated POS pair. In most cases, this probability is a delta function, meaning that a 
word pair can only be associated with a unique POS pair. In a few cases, it is possible for a 
word pair to have more than one associated POS pairs.  The probability mass functions 
p( pi | si ,s j )  and p( p j | si ,s j , pi )  describe the inter-dependence between prosody and parts-

of-speech, and can be very robustly estimated from a small database due to the small 
cardinality of the POS set and the prosody set. Note that equation (8) is possibly more 
accurate than equation (6) because the approximations are made only in the numerator 
while equation (6) has approximations in both numerator and denominator. 

3.2 Methods for Smoothing the Language Models

Two popular techniques can be used to smooth the resulting language model: the backoff 
scheme and linear interpolation. When a prosody dependent bigram can not be estimated 
from the training data, it can be backed off to a prosody dependent unigram using Katz's 
backoff scheme (Katz, 1987): 

pb (w j , p j | wi , pi ) =
dr p(w j , p j | wi , pi ),  if exists
b(wi , pi ) p(w j , p j ),  else

 
 
 

  
, (11) 

where 0 < dr ≤ 1 is a constant discount ratio and the backoff weight b(wi , pi )  is computed to 
ensure that the bigram probabilities conditioned on [wi , pi ]  sum up to 1: 
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b(wi , pi ) =
1− p(w j , p j | wi , pi )j∈B

1− p( p j | w j )j∈B

, (12) 

where B  is the set of all prosody dependent word labels [ w j , p j ]  whose bigram probabilities 
can be calculated from equations (6) and (8). 
The bigram probabilities calculated from equations (6) and (8) can be interpolated with the 
bigram probabilities estimated directly from the data (equation (2)).  Let pc  be the 
probabilities calculated by equation (6) and (8), and pm  the probabilities estimated by 
equation (2), the interpolated probability pi  can be obtained using: 

pi (w j , p j | wi , pi )

= λpc (w j , p j | wi , pi ) + (1− λ) pm (w j , p j | wi , pi ),
 (13) 

where λ  is a constant weight optimized using an EM algorithm to minimize the cross 
entropy of the interpolated language model over an independent development-test set. 

3.3 Joint Perplexity and Word Perplexity 

The quality of a standard prosody independent language model p(W )  can be measured by 
its perplexity E  over a test set T = [ w

0
,w

1
, ,wN ] :

E(T ) = 2
H(T ) , (14) 

where the cross-entropy H (T )  can be calculated as: 

H (T ) = −
1

N
log

2
p(wk | wk−1

).
k=1

N

 (15) 

Similarly, the quality of a prosody dependent language model p(W ,P)  can be measured by 
its perplexity E p  over the test set T p = [ w

0
, p

0
,w

1
, p

1
, ,wN , pN ]  that contains the same word 

sequence as T  does but is transcribed prosodically: 

E p (T p ) = 2
Hp (T p )

,  (16) 

where H p (T p )  can be calculated as: 

H p (T p ) = − 1

N
log

2
p(wk , pk | wk−1

, pk−1
).

k=1

N

 (17) 

To avoid confusion, we name E  the Word Perplexity, and E p  the Joint Perplexity. 
Obviously, E  and E p  are not directly comparable because they are calculated over different 
hypothesis spaces: E  is an estimate of how many possible words can appear in the next spot 
given current word history, while E p  is an estimate of how many possible prosody 
dependent word tokens can appear in the next spot given current word and prosody 
history.
To directly compare the quality of a prosody dependent language model with that of a 
prosody independent language model, we need to compute the word perplexity for the 
prosody dependent language model. Note that equation (15) can be expanded as 
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H (T ) = − 1

N
log

2

p(W
0,kP0,k )P0,kW0,k−1

p(W
0,k−1

P
0,k−1

)P0,k−1W0,k−2
k=1

N

,  (18) 

where W
0,k = [ w

0
,w

1
, wk ] , P

0,k  includes all possible prosody paths that can be assigned to 
W

0,k , and p(W
0,kP0,k )  is calculated using the estimated prosody dependent language model. 

Note that equation (18) can be computed efficiently using the forward algorithm, one of the 
standard algorithms for HMM. 

4. Experiments and Results 

4.1 The Corpus 

To train prosody dependent speech recognizers, a large prosodically labeled speech 
database is required. The Boston University Radio News Corpus is one of the largest 
corpora designed for study of prosody (Ostendorf et al., 1995). The corpus consists of 
recordings of broadcast radio news stories including original radio broadcasts and 
laboratory broadcast simulations recorded from seven FM radio announcers (4 male, 3 
female).  Radio announcers usually use more clear and consistent prosodic patterns than 
non-professional readers, thus the Radio News Corpus comprises speech with a natural but 
controlled style, combining the advantages of both read speech and spontaneous speech.  In 
this corpus, a majority of paragraphs are annotated with the orthographic transcription, 
phone alignments, part-of-speech tags and prosodic labels. The part-of-speech tags used in 
this corpus are the same as those used in the Penn Treebank.  This tag set includes 47 parts-
of-speech: 22 open class categories, 14 closed class categories and 11 punctuation labels. 
Part-of-speech labeling is carried out automatically using the BBN tagger. The tagger uses a 
bigram model of the tag sequence and a probability of tag given word taken from either a 
dictionary or, in the case of an unknown word, based on features of the word related to 
endings, capitalization and hyphenation.  The tagger was trained on a set of Wall Street 
Journal sentences that formed part of the Penn Treebank corpus. For the labnews stories (a 
subset of the Radio New Corpus recorded without noise in a phonetics laboratory), only 2% 
of the words were incorrectly labeled. 
The prosodic labeling system represents prosodic phrasing, phrasal prominence and 
boundary tones, using the Tones and Break Indices (ToBI) system for American English 
(Beckman & Ayers, 1994).  The ToBI system labels pitch accent tones, phrase boundary 
tones, and prosodic phrase break indices.  Break indices indicate the degree of decoupling 
between each pair of words; intonational phrase boundaries are marked by a break index of 
4 or higher.  Tone labels indicate phrase boundary tones and pitch accents. Tone labels are 
constructed from the three basic elements H, L, and !H.  H and L represent high tone, low 
tone respectively, while !H represents a high tone produced at a pitch level that is stepped 

down from the level of the preceding high tone. There are four primary types of intonational 
phrase boundary tones: L-L%, representing the pitch fall at the end of a declarative phrase 
or sentence; H-L%, representing a fall or plateau at a mid-level pitch such as occurs in the 
middle of a longer declarative dialog turn; H-H%, representing the canonical, upward pitch 
contour at the end of a yes-no question; and L-H%, representing the low-rising contour 
found at the end of each non-final item on a list. The contours !H-L% and !H-H% are down-
stepped variants that may occur following a H* pitch accent and are less frequently 
observed. Seven types of accent tones are labeled: H*, !H*, L+H*, L+!H*, L*, L*+H and 
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H+!H*. The ToBI system has the advantage that it can be used consistently by labelers for a 
variety of styles.  For example, if one allows a level of uncertainty in order to account for 
differences in labeling style, it can be shown that the different transcribers of the Radio 
News Corpus agree on break index with 95% inter-transcriber agreement (Ostendorf et al., 
1995).  Presence versus absence of pitch accent is transcribed with 91% inter-transcriber 
agreement.
In the experiments we report in this chapter, the original ToBI labels are simplified: accents 
are only distinguished by presence versus absence, word boundaries are distinguished by 
those in intonational phrase-final position, and those that are medial in an intonational 
phrase. Applying this simplification, we create prosody dependent word transcriptions in 
which a word can only have 4 possible prosodic variations: unaccented phrase medial 
(``um''), accented phrase medial (``am''), unaccented phrase final (``uf'') and accented phrase 
final (``af''). 

4.2 Perplexity 

The prosodically labeled data used in our experiments consist of 300 utterances, 24944 
words (about 3 hours of speech sampled at 16Khz) read by five professional announcers (3 
female, 2 male) containing a vocabulary of 3777 words. Training and test sets are formed by 
randomly selecting 85% of the utterances for training, 5% of the utterances for development 
test and the remaining 10% for testing (2503 words). 
We first measured the quality of the language models in terms of their perplexity on the test 
set. Four language models are trained from the same training set: a standard prosody 
independent backoff bigram language model LPI, a prosody dependent backoff bigram 
language model LPDM computed using equation (2), a prosody dependent backoff bigram 
language model LPDC1 computed using equation (8) only, and a model LPDC2 computed 
using both equation (6) and equation (8).  The difference between LPDC1 and LPDC2 is that 
in LPDC1, the semi prosody dependent bigram probabilities p(w j | wi , pi )  required by 
equation (8) are estimated directly from training data using their maximum likelihood 
estimators; whereas in LPDC2 they are computed from the prosody independent bigram 
probabilities p(w j | wi )  using equation (6). The models LPDC1 and LPDC2 were linearly 
interpolated with LPDM using equation (13), with interpolation weights λ  optimized over 
the development-test set.  Table I lists the results of this experiment. 

LPI LPDM LPDC1 LPDC2 
Joint Perp.  340 282 235 
Word Perp. 130 60 54 47 
Unseen bigrams 931 1244 1103 956 
Total bigrams 12100 14461 37373 81950 

Table 1. The joint perplexity, word perplexity, number of unseen bigrams in the test set and 
total number of estimated bigrams in the prosody independent language model (LPI), the 
prosody dependent language model estimated using the standard ML approach (LPDM) 
and the prosody dependent language model calculated using the proposed algorithm 
(LPDC1 and LPDC2). 
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Compare the performance among the prosody dependent language models: LPDM, LPDC1, 
and LPDC2. Both LPDC1 and LPDC2 have much smaller joint perplexity than LPDM: the 
joint perplexity of LPDC1 is 17% less than that of LPDM, while that of LPDC2 is 31% 
smaller. Factorial modeling increases the number of bigrams whose probabilities can be 
estimated more accurately than their backed-off unigrams: the number of total estimated 
bigrams increased by 2 and 7 times respectively in LPDC1 and LPDC2, and the number of 
unseen bigrams in the test data reduced by around 25%, approaching the number of unseen 
bigrams in LPI. 
To compare the perplexity of the prosody dependent language models with the prosody 
independent language model LPI, we computed the word perplexity for the prosody 
dependent language models using equation (18). As can be seen in the third row of Table 1, 
word perplexity of LPDC2 is reduced by 64% relative to LPI.  Note that the word 
perplexities of the prosody dependent language models are only weakly comparable with 
that of the prosody independent language models in terms of predicting the word 
recognition performance. The word recognition power of a prosody dependent language 
model is prominent only when it is coupled with an effective prosody dependent acoustic 
model. 

4.3 Word Recognition 

Encouraged by the great reduction in perplexity, we conducted word and prosody 
recognition experiments on the same training and test sets.  Two acoustic models are used in 
this experiment: a prosody independent acoustic model API and a prosody dependent 
acoustic model APD.  All phonemes in API and APD are modeled by HMMs consisting of 3 
states with no skips. Within each state, a 3 mixture Gaussian model is used to model the 
probability density of a 32-dimensional acoustic-phonetic feature stream consisting of 15 
MFCCs, energy and their deltas.  The allophone models in APD contain an additional one-
dimensional Gaussian acoustic-prosodic observation PDF which is used to model the 
probability density of a nonlinearly-transformed pitch stream, as described in (Chen et al, 
2004; Chen et al, 2006).  API contains monophone models adopted from the standard 
SPHINX set (Lee, 1990) and is unable to detect any prosody related acoustic effects.  APD 
contains a set of prosody dependent allophones constructed from API by splitting the 
monophones into allophones according to a four-way prosodic distinction (unaccented 
medial, accented medial, unaccented final, accented final): each monophone in API has 4 
prosody dependent allophonic variants in APD.  Allophone models in APD that are split 
from the same monophone share a single tied acoustic-phonetic observation PDF, but each 
allophone distinctly models the state transition probabilities and the acoustic-prosodic 
observation PDF.  The APD allophones are therefore able to detect two of the most salient 
prosody induced acoustic effects: preboundary lengthening, and the pitch excursion over 
the accented phonemes.  The parameter count of the acoustic-phonetic observation PDF (195 
parameters per state) is much larger than the parameter count of the acoustic-prosodic 
observation PDF (2 parameters per state) or the transition probabilities (1 parameter per 
state); since the acoustic-phonetic parameters are shared by all allophones of a given 
monophone, the total parameter count of the APD model set is only about 6% larger than 
the parameter count of API. 
Five recognizers are tested: a standard prosody independent recognizer RII using API and 
LPI, a semi prosody independent recognizer RID using APD and LPI, a prosody dependent 
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recognizer RDM using APD and LPDM, a prosody dependent recognizer RDC1 using APD 
and LPDC1, and a prosody dependent recognizer RDC2 using APD and LPDC2.  The word 
recognition accuracy, accent recognition accuracy and intonational phrase boundary 
recognition accuracy of these recognizers over the same training and test set are reported in 
Table 2. 

 RII RID RDM RDC1 RDC2 
AM API APD APD APD APD 
LM LPI LPI LPDM LPDC1 LPDC2 
Word 75.85 76.02 77.29 78.27 77.08 
Accent 56.07 56.07 79.59 79.71 80.26 
IPB 84.97 84.97 85.06 85.80 86.62 

Table 2. Percent word, accent, and intonational phrase boundary recognition accuracy for 
recognizers RII, RID, RDM, RDC, and RDC2. 

Overall, the prosody dependent speech recognizers significantly improve the word 
recognition accuracy (WRA) over the prosody independent speech recognizer. RDM 
improved the word recognition accuracy by 1.4% over RII and 1.2% over RID.  RDC1 further 
improved the WRA by 1% over RDM, apparently benefiting from the improved prosody 
language model LPDC1. The pitch accent recognition accuracy (ARA) and the intonational 
phrase boundary recognition accuracy (BRA) are also significantly improved.  Since RII and 
RID classify every word as unaccented and every word boundary as phrase-medial, the 
ARA and BRA listed in RII and RID are the chance levels.  RDM showed a great 
improvement in ARA but only slight improvement in BRA mostly due to the already high 
chance level 84.97%.  RDC2 used the language model LPDC2 that has the smallest 
perplexity.  However, it only achieved improvement over RDM on ARA and BRA (0.7% and 
1.5% respectively), but not on WRA. The failure of LPDC2 to outperform the WRA of 
LPDC1 may not be meaningful: it is well known that perplexity does not always correlate 
with recognition performance.  However, it is possible to speculatively assign some 
meaning to this result.  The flexible class-dependent structure of LPDC2 is able to model a 
number of prosody-dependent bigrams that is seven times larger than the number observed 
in the training data (Table I). It is possible that the approximations in equation (6) do not 
accurately represent the probabilities of all of these bigrams, and that therefore the increased 
flexibility harms word recognition accuracy. 

 5. Conclusion 

In this chapter, we proposed a novel approach that improves the robustness of prosody 
dependent language modeling by leveraging the dependence between prosody and syntax.  
In our experiments on Radio News Corpus, a factorial prosody dependent language model 
estimated using our proposed approach has achieved as much as 31% reduction of the joint 
perplexity over a prosody dependent language model estimated using the standard 
Maximum Likelihood approach. In recognition experiments, our approach results in a 1% 
improvement in word recognition accuracy, 0.7% improvement in accent recognition 
accuracy and 1.5% improvement in intonational phrase boundary (IPB) recognition accuracy 
over the baseline prosody dependent recognizer.  The study in the chapter shows that 
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prosody-syntax dependence can be used to reduce the uncertainty in modeling concurrent 
word-prosody sequences. 
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1.Introduction     

In everyday life, speech is all around us, on the radio, television, and in human-human 
interaction. Communication using speech is easy. Of course, in order to communicate via 
speech, speech recognition is essential. Most theories of human speech recognition (HSR; 
Gaskell and Marslen-Wilson, 1997; Luce et al., 2000; McClelland and Elman, 1986; Norris, 
1994) assume that human listeners first map the incoming acoustic signal onto prelexical 
representations (e.g., in the form of phonemes or features) and that these resulting discrete 
symbolic representations are then matched against corresponding symbolic representations 
of the words in an internal lexicon. Psycholinguistic experiments have shown that listeners 
are able to recognise (long and frequent) words reliably even before the corresponding 
acoustic signal is complete (Marslen-Wilson, 1987). According to theories of HSR, listeners 
compute a word activation measure (indicating the extent to which a word is activated 
based on the speech signal and the context) as the speech comes in and can make a decision 
as soon as the activation of a word is high enough, possibly before all acoustic information 
of the word is available (Marslen-Wilson, 1987; Marslen-Wilson and Tyler, 1980; Radeau et 
al., 2000). The “reliable identification of spoken words, in utterance contexts, before 
sufficient acoustic-phonetic information has become available to allow correct identification 
on that basis alone” is referred to as early selection by Marslen-Wilson (1987). 
In general terms, automatic speech recognition (ASR) systems operate in a way not unlike 
human speech recognition. However there are two major differences between human and 
automatic speech recognition. First of all, most mainstream ASR systems avoid an explicit 
representation of the prelexical level to prevent premature decisions that may incur 
irrecoverable errors. More importantly, ASR systems postpone final decisions about the 
identity of the recognised word (sequence) as long as possible, i.e., until additional input 
data can no longer affect the hypotheses. This too is done in order to avoid premature 
decisions, the results of which may affect the recognition of following words. In more 
technical terms: ASR systems use an integrated search inspired by basic Bayesian decision 
theory and aimed at avoiding decisions that must be revoked due to additional evidence. 
The competition between words in human speech recognition, on the other hand, is not 
necessarily always fully open; under some conditions an educated guess is made about the 
identity of the word being spoken, followed by a shallow verification. This means that the 
winning word might be chosen before the offset of the acoustic realisation of the word, thus 
while other viable competing paths are still available. Apparently, humans are willing to 
take risks that cannot be justified by Bayesian decision theory.  
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At a higher level, i.e., the level of human-human interaction, early decision making plays an 
eminent role as well. This is shown by the extremely efficient turn-taking processes, in 
which listeners take the turn after predicting the moment when turn-switching can take 
place (Garrod & Pickering, 2004), resulting in dialogues with minimal latencies between 
successive turns. Since current ASR systems do not recognise words before their acoustic 
offset, let alone that they would predict the end of an utterance, latencies in turn-taking in 
human-computer interaction are unavoidable, resulting in unnatural dialogues.  
If one wants to build an ASR system capable of early decision making, one needs to develop 
an algorithm that is able to produce a measure analogous to the word activation measure – 
as used by human listeners – that can be computed on-line, as speech is coming in. It is 
important to note that since early recognition involves making decisions before all 
potentially relevant information is available, it introduces the risk of making errors (i.e., 
false alarms of other words than were actually spoken). 
This chapter introduces a novel approach to speech decoding that enables recognising 
polysyllabic words before their acoustic offset. The concept behind this novel approach is 
‘early recognition’, i.e., the reliable identification of spoken words before the end of their 
acoustic realisation, but after the uniqueness point (UP)1 of the word (given a lexicon). The 
restriction to recognition at or after the uniqueness point allows us to focus on acoustic 
recognition, with the  same impact of a language model as in conventional ASR systems, 
which would be comparable – but certainly not identical – to the contexts used in human 
word recognition in Marslen-Wilson’s definition of ‘early selection’.  
Early recognition is dependent on the structure and the contents of the lexicon. If a lexicon 
contains many words that have a UP very late in the word (i.e., only differ in the last one or 
two phones), early recognition (on the basis of acoustic input) is more difficult than when 
the lexicon mainly consists of words which have an early UP (i.e., contain long phone 
sequences after the lexical uniqueness point). At the same time, it is evident that making 
decisions on the basis of only a few phones at the beginning of a long word is more 
dangerous than deciding on the basis of a longer string of word-initial phones. Therefore, 
we will investigate the impact of the number of phones before and after the UP on the 
decision criteria that must be applied for early recognition. This chapter will present 
experiments conducted to optimise the performance of a procedure for making decisions 
before all acoustic information is available and discuss the results. 

2.The recognition system

For conventional speech recognition, it suffices to search for the best-scoring path in the 
search space spanned by the language model, the lexicon, and the acoustic input. In early 
recognition, on the other hand, an additional decision procedure is needed for accepting a 
word as being recognised if its local word activation fulfils one or more criteria. In 
Scharenborg et al. (2003, 2005), we presented a speech recognition system called SpeM 
(Speech-based Model of human word recognition), based on Shortlist (Norris, 1994), that is 
capable of providing on-line dynamically changing ‘word activations’ derived from the log-

                                                                
1 In a lexicon organised in the form of a prefix-tree, the uniqueness point is the phoneme after which a 
path does not branch anymore. 
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likelihood values in conventional ASR systems. SpeM was originally developed to serve as a 
tool for research in the field of HSR.  
SpeM consists of three modules. The first module, the automatic phone recogniser (APR), 
generates a symbolic prelexical representation of the speech signal in the form of a 
(probabilistic) phone graph. The second module, the word search module, parses the graph 
to find the most likely (sequence of) words, and computes for each word its activation based 
on, among others, the accumulated acoustic evidence for that word. During the lexical 
search, SpeM provides a list of the most likely path hypotheses at every phone node in the 
phone graph. The third -decision- module is entered each time after a node in the phone 
graph is processed in the second module. This enables SpeM to recognise and accept words 
before the end of an utterance or phrase. The focus of this paper is on the third module, 
which makes decisions about accepting a word as being recognised if its local word 
activation fulfils one or more criteria. 
The most important difference between SpeM and conventional ASR systems is that the 
search module in SpeM depends in a crucial manner on the availability of some kind of 
prelexical symbolic representation of the speech signal. Consequently, it is not 
straightforward to implement early recognition as presented here in conventional frame-
based ASR systems, since in those systems a prelexical symbolic representation is 
deliberately lacking. This is not to say that computing on-line dynamically varying word 
activation scores is fundamentally impossible in decoders that avoid an explicit prelexical 
representation, but doing so would require a class of algorithms that differ very much from 
SpeM.

2.1 Material and evaluation 

In our evaluation of SpeM’s ability for early decision we focus on polysyllabic content 
words. The reasons for this are twofold. Firstly, function words and short content words 
that are not easy to predict from the (linguistic) context may not be identified by human 
listeners until the word following it has been heard (Grosjean, 1985).  Secondly, short words 
are likely to have a UP that is not before the end of the word since they are often embedded 
in longer words (McQueen et al., 1995), making it a priori impossible to recognise the word 
before its acoustic offset on the basis of only acoustic evidence. 
The training and test data are taken from the VIOS database, which consists of utterances 
taken from telephone dialogs between customers and the Dutch public automatic transport 
timetable information system (Strik et al., 1997). The material to train the acoustic models of 
the APR (AM training material) consists of 25,104 utterances in Dutch (81,090 words, 
corresponding to 8.9 hours of speech excluding leading, utterance internal, and trailing 
silent portions of the recordings). 
A set of 318 polysyllabic station names is defined as focus words. From the VIOS database, 
1,106 utterances (disjoint from the AM training corpus) were selected. Each utterance 
contained two to five words, at least one of which was a focus word (708 utterances 
contained multiple focus words). 885 utterances of this set (80% of the 1,106 utterances) were 
randomly selected and used as the independent test corpus. The total number of focus 
words in this test corpus was 1,463 (563 utterances contained multiple focus words). The 
remaining 221 utterances were used as development set and served to tune the parameters 
of SpeM (see also Section 2.3). The parameter settings yielding the lowest Word Error Rate 
(WER) on the development test set were used for the experiment. The WER is defined as: 
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 WER=(#I+#D+#S)/N 100% (1) 

where #I denotes the number of word insertions; #D the number of word deletions, #S the 
number of word substitutions, and N denotes the total number of words in the reference 
transcription.
The lexicon used by SpeM in the test consisted of 980 entries: the 318 polysyllabic station 
names, additional city names, verbs, numbers, and function words. There are no out-of-
vocabulary words in the test. For each word in the lexicon, one unique canonical phonemic 
representation was available. A unigram language model (LM; see also Section 2.3) was 
trained on the AM training data. This implies that the SpeM decoder only knew about the 
relative frequency of the 980 lexical entries (words), but that it had no means for predicting 
words from the preceding linguistic context – which is good for making the word 
competition as fair as possible.  

2.2 The automatic phone recogniser 

The APR used in this study was based on the Phicos ASR system (Steinbiss et al., 1993), but 
it is easy to build an equivalent module using open source software, such as HTK (Young et 
al., 2002). 37 context-independent phone models, one noise model, and one silence model 
were trained on the VIOS training set. All phone models and the noise model have a linear 
left-to-right topology with three pairs of two identical states, one of which can be skipped. 
For the silence model, a single-state hidden Markov Model is used. Each state comprises a 
mixture of maximally 32 Gaussian densities. The phone models have been trained using a 
transcription generated by a straightforward look-up of the phonemic transcriptions of the 
words in a lexicon of 1,415 entries (a superset of the 980 words in the recognition lexicon), 
including entries for background noise and filled pauses. For each word, the lexicon 
contained only the unique canonical (citation) pronunciation. Thus, potential pronunciation 
variation in the training corpus was ignored while training phone models. 
The ‘lexicon’ used for the phone decoding by the APR consists of 37 Dutch phones and one 
entry for background noise, yielding 38 entries in total (in the lexicon, no explicit entry for 
silence is needed). During decoding, the APR uses a bigram phonotactic model trained on 
the canonical phonemic transcriptions of the AM training material.  
The APR converts the acoustic signal into a probabilistic phone lattice without using lexical 
knowledge. The lattice has one root node and one end node. Each edge (i.e., connection 
between two nodes) carries a phone and its bottom-up evidence in terms of negative log 
likelihood (its acoustic cost). This acoustic cost is directly related to the probability P(X|Ph) 
that the acoustic signal X was produced given the phone Ph.  

2.3 The search module 

The input of the search module consists of the probabilistic phone lattice created by the first 
module and a lexicon represented as a lexical tree. In the lexical tree, entries share common 
phone prefixes (called word-initial cohorts), and each complete path through the tree 
represents the pronunciation of a word. The lexical tree has one root node and as many end 
nodes as there are pronunciations in the lexicon. Nodes that are flagged as end nodes but 
also have outgoing edges indicate embedded words. 
Like a conventional ASR system, SpeM searches for the best-scoring or cheapest path 
through the product graph of the input phone lattice and the lexical tree. It is implemented 
using dynamic programming (DP) techniques, and is time-synchronous and breadth-first. 
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SpeM calculates scores for each path (the total cost), and also a score for the individual 
words on a path (the word cost). The total cost of a path is defined as the accumulation 
along the path arcs of the bottom-up acoustic cost (as calculated by the APR) and several 
cost factors computed in the search module.  
During the recognition process, for each node in the input phone graph, SpeM outputs N-
best lists consisting of hypothesised word sequences and word activation scores (see Section 
3) for each of the hypothesised words  on the basis of the phones in the phone graph (thus 
the stretch of the acoustic signal) that have been processed so far. The order of the parses in 
the N-best list is determined by the total cost of the parses (thus not by the word activation 
scores). Each parse consists of words, word-initial cohorts, phone sequences, garbage, 
silence, and any combination of these, except that a word-initial cohort can only occur as the 
last element in the parse. So, in addition to recognising full words, SpeM is able to recognise 
partial words. In the N-best list, no identical parses exist: Word sequences on different paths 
that are identical in terms of phone symbols, but have different start and end time of the 
words, are treated as the same word sequence (thus timing differences are ignored). That is, 
we only take the order and identity of the words into account for pruning the N-best lists. 
The number of hypotheses in the N-best list is set to 10, so that SpeM will output the 10 most 
likely parses for each node in the input phone graph. Subsequently, the N-best list with the 
word sequences and their accompanying word activation scores is sent to the decision 
module that makes decisions about early recognition. 
The current implementation of SpeM supports the use of unigram and bigram LMs, which 
model the prior probability of observing individual words and of a word given its 
predecessor. In the experiments reported in this paper, only a unigram LM is used. SpeM 
has a number of parameters that affect the total cost and that can be tuned individually and 
in combination. Most of these parameters, e.g., a word entrance penalty (the cost to start 
hypothesising a new word) and the trade-off between the weights of the bottom-up acoustic 
cost of the phones and the contribution of the LM, are similar to the parameters in 
conventional ASR systems. In addition, however, SpeM has two types of parameters that are 
not usually present in conventional ASR systems. The first novel parameter type is 
associated to the cost for a symbolic mismatch between the input lattice and the lexical tree 
due to phone insertions, deletions, and substitutions. Insertions, deletions, and substitutions 
have their own weight that can be tuned individually. Because the lexical search in SpeM is 
phone based, mismatches can arise between symbols in the input phone graph and the 
phonemic transcriptions in the lexical tree. It is therefore necessary to include a mechanism 
which explicitly adjusts for phone-level insertions, deletions, and substitutions. In 
mainstream ASR, on the other hand, the search space is usually spanned by a combination 
of the pronunciation variants in the system’s dictionary and the system’s language model, 
so that explicit modelling of insertions, deletions, and substitutions on the phone-level is not 
necessary. The second novel parameter type is associated to the Possible Word Constraint 
(PWC, Norris et al., 1997). The PWC determines whether a (sequence of) phone(s) that 
cannot be parsed as a word (i.e., a lexical item) is phonotactically well formed (being a 
possible word) or not (see also Scharenborg et al., 2003, 2005). The PWC evaluation is 
applied only to paths that do not consist solely of complete words. Word onsets and offsets, 
utterance onsets and offsets, and pauses count as locations relative to which the viability of 
symbol sequences that are no words (i.e., lexical items) are evaluated. If there is no vowel in 
the sequence between any of these locations and a word edge, the PWC cost is added to the 
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total cost of the path. For example, consider the utterance “they met a fourth time”, where 
the last sound of the word fourth is pronounced as [f]. Because fourf is not stored as a word 
in the lexicon, a potential parse by the recogniser is they metaphor f time. Since f is not a 
possible word in English, the PWC mechanism penalises this parse, and if the cost of the 
substitution of [ ] by [f] is less than the PWC cost, the parse yielding the word sequence 
fourth time will win. At the same time, it is worth mentioning that the PWC enables SpeM to 
parse input with broken words and disfluencies, since it provides a mechanism for handling 
arbitrary phone input (see Scharenborg et al., 2005, for more information).
All parameters in SpeM are robust: Even if they are not optimised in combination, SpeM’s 
output does not change significantly if the value of the parameter that was optimised with 
fixed values of other parameters is changed within reasonable bounds. In this study, the 
parameters were tuned on the independent development set (see Section 2.1), and 
subsequently used for processing the test corpus. 

3. The computation of word activation

An essential element for early decision making is the computation of word activation. The 
measure of word activation in SpeM was originally designed to simulate the way in which 
word activations evolve over time in experiments on human word recognition (Scharenborg 
et al., 2005, 2007). In the computation of the word activation, the local negative log-
likelihood scores for complete paths and individual words on a path are converted into 
word activation scores that obey the following properties, which follow from the concept of 
word activation as it is used in HSR: 
• The word that matches the input best, i.e., the word with the smallest word cost (see 

Section 2.3), must have the highest activation.  
• The activation of a word that matches the input must increase each time an additional 

matching input phone is processed.  
• The measure must be appropriately normalised: Word activation should be a measure 

that is meaningful, both for comparing competing word candidates, and for comparing 
words at different moments in time. 

The way SpeM computes word activation is based on the idea that word activation is a 
measure related to the bottom-up evidence of a word given the acoustic signal: If there is 
evidence for the word in the acoustic signal, the word should be activated. Activation 
should also be sensitive to the prior probability of a word (even if this effect was not 
modelled in the original version of Shortlist (Norris, 1994)). This means that the word 
activation of a word W is closely related to the probability P(W|X) of observing a word W, 
given the signal X and some kind of (probabilistic) LM, which is precisely the cost function 
that is maximised in conventional ASR systems. Thus, it is reasonable to stipulate that the 
word activation Act(W|X) is equal to P(W|X), and apply the same Bayesian formulae that 
form the basis of virtually all theories in ASR to estimate P(W|X). This is why we refer to 
Act(W|X) (or P(W|X)) as the ‘Bayesian activation’.  It is important to emphasise that the 
theory underlying word activation does not require that the sum of the activations of all 
active words should add to some constant (e.g., 1.0, as in probability theory). For the 
purpose of early recognition it suffices to normalise the activation value in such a manner 
that (possibly context dependent) decisions can be made. This too is reminiscent of what 
happens in conventional ASR systems.  
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Since we also want to deal with incompletely processed acoustic input (for early recognition 
of words), Bayes’ Rule is applied to Act(W|X) in which both W and X are evolving over 
time t, and t-steps coincide with phone boundaries:   
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))(())(|)((
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nWPnWtXP
tXnWAct =  (2) 

where W(n) denotes a phone sequence of length n, corresponding to the word-initial cohort 
of n phones of W. So, W(5) may, for example, be /Amst@/, i.e., the prefix (or word-initial 
cohort) of the word ‘amsterdam’ (but also of other words that begin with the same prefix). 
X(t) is the gated signal X from the start of W(n) until time t (corresponding to the end of the 
last phone included in W(n)). P(X(t)) denotes the prior probability of observing the gated 
signal X(t). P(W(n)) denotes the prior probability of W(n).  
As said before, in the experiments reported in this chapter, P(W(n)) is exclusively based on 
the unigram probability of the words and the word-initial cohorts (the unigram probabilities 
for word-initial cohorts are determined by summing over the unigram probabilities of all 
words in the cohort). The (unnormalised) conditional probability P(X(t)|W(n)) in equation 
2, is calculated by SpeM as: 

aTCenWtXP −=))(|)((  (3) 

where TC is the total bottom-up cost associated with the word starting from the beginning 
of the word up to the node corresponding to instant t. TC includes not only the acoustic 
costs in the phone lattice, but also the costs contributed by substitution, deletion, and 
insertion of symbols (like the acoustic cost calculated by the APR, TC is a negative log 
likelihood score). The definition of the total bottom-up cost is such that TC > 0. The value of 
a determines the contribution of the bottom-up acoustic scores to the eventual activation 
values. The a weights the relative contribution of TC to Act(W(n)|X(t)), and therefore 
balances the contribution of P(X(t)|W(n)) and P(W(n)). Thus, a is similar to the ‘language 
model factor’ in standard ASR systems. a is a positive number; it’s numerical value is 
determined such that the three properties of word activation introduced at the start of this 
section hold (for a more detailed explanation of a, see Scharenborg et al., 2007). 
In contrast to conventional ASR systems, in SpeM, the prior P(X(t)) in the denominator of 
equation 2 cannot be discarded, because hypotheses covering different numbers of input 
phones must be compared. The problem of normalisation across different paths is also 
relevant in other unconventional ASR systems (e.g., Glass, 2003). Furthermore, the 
normalisation needed in SpeM is similar to the normalisation that has to be performed in the 
calculation of confidence measures (e.g., Bouwman et al., 2000; Wessel et al., 2001). In order 
to be able to compare confidence measures of hypotheses with unequal length, the 
normalisation must, in some way, take into account the duration of the hypotheses. In 
normalising equation 2, we followed the procedure for normalising confidence measures. 
However, instead of the number of frames, the number of phones is the normalising factor, 
resulting in a type of normalisation that is more phonetically oriented. The denominator of 
equation 2, then, is approximated by 
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where D is a constant (0 < D < 1) and #nodes(t) denotes the number of nodes in the cheapest 
path from the beginning of the word up to the node associated with t in the input phone 
graph. In combination with a, D plays an important role in the behaviour over time of 
Act(W(n)|X(t)). Once the value of a is fixed, the value of D follows from two constraints: 1) 
the activation on a matching path should increase; 2) the activation on any mismatching 
path should decrease (for a more detailed explanation of D, see Scharenborg et al., 2007).  
Our choice to normalise the Bayesian activation by the expression given by equation 4 is 
also based on another consideration. Given the Bayesian paradigm, it seems attractive to use 
a measure with the property that logarithmic scores are additive along paths. If X1 and X2 
are two stretches of speech such that X2 starts where X1 ends, associated with two paths P1 
and P2 in the phone lattice (such that P2 starts where P1 ends), then log(P(X1)) + log(P(X2)) 
= log(P(X1 : X2)) (where ‘:’ means ‘followed by’). By doing so the lengths of X1 and X2 are 
assumed to be independent, which is a plausible assumption.  

4. Early recognition in SpeM

4.1 The performance of SpeM as a standard speech recognition system 

In order to assess SpeM’s ability for early decision, it is essential to know the upper-bound 
of its performance: First of all, if a word is not correctly recognised, it will be impossible to 
analyse its recognition point (RP); secondly, only if the RP of a word lies before the end of 
that word, it can, in principle, be recognised before its acoustic offset during the recognition 
process.  In this paper, the RP is defined as the node after which the activation measure of a 
correct focus word exceeds the activation of all competitors, and remains the highest until 
the end of the word (after the offset of a word, the word’s activation does not change). The 
RP necessarily lies after the UP (since prior to the UP, multiple words (in the word-initial 
cohort) share the same lexical prefix, and therefore cannot be distinguished on the basis of 
the acoustic evidence), and is expressed as the position of the corresponding phone in the 
phonemic (lexical) representation of the word. 
In a first step, the performance of SpeM as a standard ASR system was investigated. The 
WER on the full test set and on the focus words was calculated by taking the best matching 
sequence of words as calculated by SpeM after processing the entire input and comparing it 
with the orthographic transcriptions of the test corpus. The WER obtained by SpeM on all 
words in the test material was 40.4%. Of the 1,463 focus words, 64.0% (936 focus words) 
were recognised correctly at the end of the word. Despite the mediocre performance of 
SpeM as an ASR system, we believe it is still warranted to investigate SpeM on the task of 
early decision, since there is a sufficiently large number of correctly recognised focus words. 
It should be noted that in this study no attempt has been made to maximise the performance 
of the acoustic model set of the APR. However, the results presented in Scharenborg et al. 
(2003, 2005) show that SpeM’s performance is comparable to that of an off-the-shelf ASR 
system (with an LM in which all words are equally probable) when the acoustic model set 
used to construct the phone graph is optimised for a specific task. It is thus quite probable 
that improving the performance of the APR should allow SpeM to reach an ASR 
performance level comparable to a conventional ASR system on the VIOS data set (see 
Scharenborg et al., 2007). 
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Length-UP #Types #Tokens Cumulative 
0 10 30 1,463 
1 44 190 1,433 
2 50 182 1,243 
3 63 450 1,061 
4 50 271 611 
5 39 186 340 
6 38 82 154 
7 17 57 72 
8 3 11 15 
9 2 4 4 

Table 1. The distribution (in #types and #tokens) in number of phones between the UP and 
the length of a word (Length-UP); Cumulative: #focus word tokens that could in principle 
be recognised at position Length-UP. 

4.2 Analysis of the recognition point 

In a second step, to determine SpeM’s upper-bound performance on the task of early 
decision, we investigate how many of the focus words have an RP that lies before the end of 
the word. Table 1 shows the distribution of the distance in number of phones between the 
UP and the end of a focus word. ‘Length-UP’ = 0 means that the UP is at the end of the 
word: Either the word is embedded in a longer word or the words only differ in their last 
phoneme. Columns 2 and 3 show the number of focus word types and tokens with ‘Length-
UP’ phones between the end of the word and the UP. The column ‘Cumulative’ shows the 
number of focus word tokens that could in principle be recognised correctly at ‘Length-UP’ 
phones before the end of a word. For instance, at 8 phones before the end of a word, the 
only words that can in principle be recognised correctly are those that have a distance of 8 or 
more phones between the end of the word and the UP; at 0 phones before the end of a word, 
all words could in principle be identified correctly. From Table 1 it can be deduced that the 
UP of 85.0% of all focus word tokens (1,243/1,463) is at least two phones before the end of 
the word; only 2% of the focus word tokens (30/1,463) have their UP at the end of the word.  
In our analysis of the RP, we only took those focus words into account that were recognised 
correctly, since, obviously, a word that is not recognised correctly does not have an RP. First, 
the path and word hypotheses were ranked using the Bayesian word activation score. 
Subsequently, for each correctly recognised focus word, the node after which the Bayesian 
word activation exceeds the Bayesian word activation of all its competitors, and remains the 
highest until the end of the word is determined. Of the focus words that were recognised 
correctly, 81.1% had their RP before the end of the word (759 of 936 correctly recognised 
focus words; 51.9% of all focus words). 
To understand how much evidence SpeM needs to make an early decision about 
‘recognising’ a word, the RP of all 936 correctly recognised focus words was related to the 
UP and the total number of phones of that word. The results are shown in the form of two 
histograms in Fig. 1. The frequency is given along the y-axis. In the left panel, the x-axis 
represents the distance (in phones) between the UP and the RP of the focus words. N = 0 
means that the word activation exceeded all competitors already at the UP. In the right 
panel, the x-axis represents the position of the RP (in number of phones (N)) relative to the 
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last phone in the canonical representation of the word. Here, N = 0 means that the word 
activation exceeded the competitors only at the last phone of the word. The high frequency 
in the case of N = 3 in the right panel of Fig. 1 is due to an idiosyncratic characteristic of the 
data, which is irrelevant for the task. As can be seen in Table 1, there is a large set of words 
that have their UP three phones before the end of the word (450). 
Combining the information in Fig. 1 and Table 1 shows that although only 2% of the focus 
words have their UP at the end of the word, 19.8% (185/936, see right panel of Fig. 1) of the 
words were only recognised at the end of the word. Apparently, SpeM is not always able to 
recognise a word before its acoustic offset, despite the fact that the UPs in the set of words 
were almost always at least one phone before the end of the word. More interestingly, 
however, from Fig. 1 it can also be deduced that 64.1% (sum of N = 0 and N = 1, see left 
panel of Fig. 1) of the total number of recognised focus words were already recognised at or 
maximally one phone after the UP. Taking into account that 85.0% of the focus words have 
at least two phones after their UP, this indicates that SpeM is able to take advantage of the 
redundancy caused by the fact that many words in the vocabulary are unique before they 
are complete. 
As pointed out at the start of this chapter, psycholinguistic research (Marslen-Wilson, 1987) 
has shown that listeners are able to recognise long and frequent words before their acoustic 
offset. However, this does not imply that this always happens and for all words. There are 
still words (including frequent and long words) that can only be recognised by a listener 
after some of the following context has been heard. The SpeM results showed that the UP 
and RP do not coincide for all focus words that were recognised. SpeM, like listeners, 
occasionally needs information from the following context to make a decision about the 
identity of a word. This can be explained by the fact that a focus word that is correctly 
recognised at the end of an utterance may not match perfectly with the phone sequence in 
the phone graph. An analysis (see Scharenborg et al., 2007) showed that for 34.9% of the 
utterances, the canonical phone transcription of the utterance was not present in the phone 
graph. For these focus words, phone insertion, deletion, and substitution penalties are 
added to the total score of the word and the path. Competing words may have a phonemic 
representation that is similar to the phonemic representation of the correct word sequence. 
In these cases, it may happen that the best matching word can only be determined after all 
information of all competing words is available. 

Figure  1. Left panel: histogram relating the RP to the UP. Right panel: histogram relating the 
RP to the total number of phones in the word for the 936 correctly recognised focus words. 

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9

UP+N phones

#
R

e
c
o

g
n

is
e
d

 t
o

k
e
n

s

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

#Phones before end of word

#
R

e
c
o

g
n

is
e
d

 t
o

k
e
n

s

   0       1       2      3     4      5     6      7        9      8    7      6     5     4     3     2     1      



Early Decision Making in Continuous Speech 343

5. Predictors for reliable on-line early decision making 

In the previous analyses, the RP and thus SpeM’s ability of early decision was investigated 
after the recognition process had taken place. This was done to determine the upper-bound 
of SpeM’s performance on the task of early decision: 936 focus words were recognised 
correctly, while 2% of the focus words have their UP at the end of the word. It can be 
deduced from the right panel of Fig. 1 that, as an upper-bound, 751 (80.2%) correctly 
recognised focus words can be recognised before the acoustic offset of the word. Of course, 
in order to use the concept of early decision in an operational system in order to speed up 
for instance human-computer interaction, a procedure needs to be developed that accurately 
and reliably decides whether a word is considered as recognised before the end of its 
acoustic realisation.  
As stated above, in comparison to integrated search approaches as used in mainstream ASR 
systems, early decision making introduces an additional decision problem that introduces 
additional errors and thus additional risks. Intermediate results are also computed in 
integrated search and therefore might be made available at the output interface of the search 
module, but because these results can still change later on in the recognition process, this is 
not usually done. One exception to this rule are dictation systems that show word 
hypotheses on the screen that are subsequently revised as the search progressed. In the case 
of early decision making as defined in this study, however, a decision made during the 
recognition process cannot be adapted, and is thus final. Early decision making is thus not 
synonymous with fast decision making; early decision making predicts the future.  
The analyses presented in the previous section showed that the Bayesian word activation of 
many polysyllabic content words exceeds the activation of all competitors before the end of 
the words. However, this does not imply that the Bayesian word activation can be safely 
used to perform early decision. We created a decision procedure on the basis of the Bayesian 
word activation and experimented with a combination of absolute and relative values of the 
Bayesian word activation. Additionally, we investigated whether the reliability of early 
decision making is affected by the number of phones of the word that have already been 
processed and the number of phones that remain until the end of the word. The 
performance of that module will be evaluated in terms of precision and recall: 
• Precision: The total number of correctly recognised focus words, relative to the total 

number of recognised focus words. Thus, precision measures the trade-off between 
correctly recognised focus words and false alarms.

• Recall: The total number of correctly recognised focus words divided by the total 
number of focus words in the input. Thus, recall represents the trade-off between 
correctly recognised focus words and false rejects.

As usual, there is a trade-off between precision and recall. Everything else being equal, 
increasing recall tends to decrease precision, while increasing precision will tend to decrease 
recall. We are not interested in optimising SpeM for a specific task in which the relative costs 
of false alarms and false rejections can be established, since in this paper we are mainly 
interested in the feasibility of early recognition in an ASR system. Therefore, we decided to 
refrain from defining a total cost function that combines recall and precision into a single 
measure that can be optimised.  
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Figure 2. Schematic illustration of the process of early decision making. 

5.1 Decision Module 

For the task of early decision making, the SpeM model is expanded with a decision module. 
The input of the decision module consists of the N-best list with the word sequences and 
their accompanying Bayesian word activation scores as created by the search module at each 
point in time when a new symbol is added to the phone graph. The decision module only 
makes a decision about early recognition for focus words. For a focus word to be recognised 
by SpeM, the following three conditions have to be met:  
1. The phone sequence assigned to the focus word is at or beyond the focus word’s UP.  
2. We do not want SpeM to accept a word that happens to have the highest activation 

irrespective of the absolute value of the activation. Therefore, the value of the Bayesian 
word activation of the focus word itself must exceed a certain minimum activation 
(Actmin).  In the experiments described below, various values for Actmin were tested. 

3. Since we do not want SpeM to make a decision as long as promising competitors are 
still alive, the quotient of the Bayesian word activation of the focus word on the best-
scoring path and the Bayesian word activation of its closest competitor (if present) must 
exceed a certain threshold (�). In the experiments, various values for � were tested. 

In the SpeM search, two words are said to be in competition if the paths they are on contain 
an identical sequence of words, except for the word under investigation. Recall that we only 
look at the order and identity of the words (see Section 2.3). Thus, two word sequences on 
two different paths that are identical, but have a different start and end time of the words, 
are treated as the same word sequence, and so do not compete with each other. (Remember 
that we only look at the current word; it does not matter whether the paths on which the 
two competing words lie combine again later on.) Given our definition of ‘competitor’ it is 
not guaranteed that all words always have a competitor, because it is possible that all paths 
in the N-best list are completely disjunct – and so do not share the same history, as is 
required for being competitor in our definition of the term. Absence of a competitor makes 
the computation of � impossible. To prevent losing all words without competitors due to a 
missing value, we accept all focus words without a competitor that appear at least five times 
(at the same position in the word sequence) in the N-best list.   
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Fig. 2 schematically depicts the process of early recognition. The Bayesian activation of 
words grows over time as matching evidence is added. Before the word’s UP, several words 
are consistent with the phone sequence; the difference in activation of the individual words 
in the cohort is caused by the influence of the LM. After a word’s UP, each word has its own 
Bayesian word activation. For the purpose of the experiments in this section, we define the 
decision point (DP) as the point at which a word on the first best path meets the three 
decision criteria described above. 

5.2 � and Actmin as predictors of early recognition 

To determine the effect of the variables introduced in decision criteria 2 and 3, experiments 
were carried out in which their respective values were varied: The value of Actmin was 
varied between 0.0 and 2.0 in 20 equal-sized steps; the value of � was varied between 0.0 
and 3.0 in six equal-sized steps of 0.5. Fig. 3 shows the relation between precision (y-axis) 
and recall (x-axis) for a number of combinations of � and 21 values of Actmin. For the sake of 
clarity, Fig. 3 is limited to three values of �, viz. � = 0.5, 1.5, 2.5; all other values of � show 
the same trend. The left-most symbol on each line corresponds to Actmin = 2.0; the right-most 
one corresponds to Actmin = 0.0. 
The results in Fig. 3 are according to our expectation. Recall should be an inverse function of 
�: The smaller � becomes, the less it will function as a filter for words that have a 
sufficiently high activation, but which still have viable competitors. Similarly for Actmin: For 
higher values of Actmin, fewer focus words will have an activation that exceeds Actmin, and 
thus fewer words are recognised. These results indicate that the absolute and relative values 
of Bayesian activation that were defined as decision criteria seem to work as predictors for 
the early recognition of polysyllabic words.  

5.3 The effect of the amount of evidence for a word on precision and recall 

As pointed out before, in our definition of early recognition a word can only be recognised 
at or after its UP. Thus, words that have an early UP can fulfil the conditions while there is 
still little evidence for the word. This raises the question what the effect is of the amount of 
evidence in support of a word (the number of phones between the start of the word and the 
DP) or of the ‘risk’ (in the form of the number of phones following the DP until the end of 
the word) on precision and recall. In the following analysis this question is investigated. For 
fixed values for Actmin and �, precision and recall are calculated for different amounts of 
evidence, thus different ‘risk’ levels, as a function of the number of phonemes between the 
start of the word and its DP and number of phones between the DP and the end of the word. 
The value for Actmin is set to 0.5, a value that guarantees that we are on the plateau shown in 
Fig. 3; � was set at 1.625 (on the basis of results in Scharenborg et al., 2007). In these 
analyses, we are interested in the number of words that could in principle be recognised 
correctly at a certain point in time. The definitions of precision and recall are therefore 
adapted, such that they only take into account the number of focus word tokens that in 
principle could be recognised. For calculating recall, the total number of correctly 
recognised focus words is divided by the total number of focus words that could in 
principle have been recognised at that position in the word (accumulating to 1,463 focus 
words). Precision is calculated in the same manner: The total number of correctly recognised 
focus words so far is divided by the total number of recognised focus words so far. 
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Figure 3. For three values of �, the precision and recall of 21 values of Actmin are plotted. 
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Figure 4.The x-axes show the number of phones between the DP and the end of the word 
(left panel) and between the start of the word and its DP (right panel); the y-axes show for �
= 1.625 and Actmin =  0.5 the percentage recall (solid lines with crosses +) and precision (solid 
lines with circles o), respectively. 

Fig. 4 shows the results. In the left panel, the x-axis shows the number of phones between 
the DP and the end of the word; the y-axis shows the percentage recall (line with circles o) 
and precision (line with crosses +), respectively. The right panel of Fig. 4 shows on the x-axis 
the number of phones between the start of the word and its DP; the y-axis shows the 
percentage recall (line with circles o) and precision (line with crosses +), respectively. The 
left panel of Fig. 4 clearly shows that precision and recall increase if the number of phones 
remaining after the DP decreases. This is easy to explain, since mismatches in the part of the 
word that is as yet unseen cannot be accounted for in the activation measure, but the risk 
that future mismatches occur will be higher if more phones remain until the end of the 
word. At the same time, recall increases if the DP is later, so that more information in 
support of the hypothesis is available (see right panel of Fig. 4). This too makes sense, since 
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one may expect that a high activation measure that is based on more phones is statistically 
more robust than a similarly high value based on a small number of phones. It should be 
noted, however, that the right panel of Fig. 4 suggests that precision is not dependent on the 
number of phones between the start of a word and its DP: The trade-off between the false 
alarms and the correctly recognised focus words does not change much. 

5.4 Summary 

We investigated a predictor related to the absolute and relative values of the word 
activation, Actmin and �, respectively, for deciding whether a word is considered as 
recognised before the end of its acoustic realisation. The results showed that the predictor 
functions as a filter: The higher the values for the predictor, the fewer words are recognised, 
and vice versa. In this paper, we only presented the results in a form equivalent to ROC 
curves. Selecting the best possible combination of the values of the predictor is 
straightforward once the costs of false alarms and false rejects can be determined. In the 
subsequent analyses, the effect on precision and recall of the amount of evidence for a word, 
in terms of the number of phones of the word that have already been processed and the 
number of phones that remain until the end of the word was investigated. Not surprisingly, 
the results showed that SpeM’s performance increases if the amount of evidence in support 
of a word increases and the risk of future mismatches decreases if there are fewer phones 
left until the end of the word. These results clearly indicate that early recognition is indeed 
dependent on the structure and the contents of the lexicon. If a lexicon contains many (long) 
words that have an early UP, decisions can be made while only little information is known, 
at the cost of increasing the risk of errors. It is left to follow-up research to investigate 
whether the decision thresholds for � and Actmin can be made dependent on the phonemic 
structure of the words on which decisions for early recognition must be made. 
Summarising, we observed that a word activation score that is high and based on more 
phones with fewer phones to go predicts the correctness of a word more reliably than a 
similarly high value based on a small number of phones or a lower word activation score. 

6. Discussion

In the laboratory, listeners are able to reliably identify polysyllabic content words before the 
end of the acoustic realisation (e.g., Marslen-Wilson, 1987). In real life, listeners not only use 
acoustic-phonetic information, but also contextual constraints to make a decision about the 
identity of a word. This makes it possible for listeners to guess the identity of content words 
even before their uniqueness point. In the research presented here, we investigated an 
alternative ASR system, called SpeM, that is able to recognise words during the speech 
recognition process for its ability for recognising words before their acoustic offset – but 
after their uniqueness point – a capability that we dubbed ‘early recognition’. The restriction 
to recognition at or after the uniqueness point allowed us to focus on acoustic recognition 
only, and minimise the impact of contextual constraints. The probability theory underlying 
SpeM makes it possible for an advanced statistical LM to emulate the context effects that 
enable humans to recognise words even before their uniqueness point. Such an LM would 
make SpeM’s recognition behaviour even more like human speech recognition behaviour. 
In our analyses, we investigated the Bayesian word activation as predictor for early 
recognition. The results in Section 5 indicate that the Bayesian word activation can be used 
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as a predictor for on-line early recognition of polysyllabic words if we require that the 
quotient of the activations of the two hypotheses whose scores with first and second rank 
(�) and the minimum activation (Actmin) of the word with the highest activity score both 
exceed a certain threshold. There was, however, a fairly high percentage of false alarms. In 
the subsequent analysis, we found that the amount of evidence supporting a decision affects 
the performance. If the decision point was later in the word, thus based on more acoustic 
evidence in support of a word, the performance in terms of precision and recall improved. 
Furthermore, the risk of future mismatches decreases with fewer phones between the end of 
the word and the decision point, which also improves the performance. The predictor we 
chose has its parallels in the research area that investigates word confidence scores. For 
instance, � is identical to the measure proposed in Brakensiek et al. (2003) for scoring a 
word’s confidence in the context of an address reading system, while � and Actmin are 
reminiscent of the graph-based confidence measure introduced in Wessel et al. (2001). The 
definition of word activation in SpeM resembles the calculation of word confidence 
measures (e.g., Bouwman et al., 2000; Wessel et al., 2001) in that both word activation and 
word confidence require a mapping from the non-normalised acoustic and LM scores in the 
search lattice to normalised likelihoods or posterior probabilities. Conceptually, both word 
activation and word confidence scores are measures related to the ‘probability’ of observing 
a word given a certain stretch of speech (by the human and ASR, respectively). However, in 
contrast to the early decision paradigm presented in this chapter, most conventional 
procedures for computing confidence measures are embedded in an integrated search; 
therefore, they only provide the scores at (or after) a point in an utterance when no new data 
are available that might revise the original scores. 
The capability of recognising words on the basis of their initial part helps listeners in 
detecting and processing disfluencies, such as self-corrections, broken words, repeats, etc. 
(Stolcke et al., 1999). The integrated search used in ASR systems makes it difficult to 
adequately deal with these disfluencies. The incremental search, however, used by SpeM to 
recognise a word before its acoustic offset, in combination with the concept of word 
activation proposed in this study, opens the door towards alternatives for the integrated 
search that is used in almost all current ASR systems. An incremental search combined with 
word activations will be able to detect and process potential problems such as disfluencies 
more accurately and faster. Furthermore, if an incremental search would be incorporated in 
a speech-driven application, the time needed to respond to a speaker can be much shorter. 
This will be beneficial for ease of use of speech-centric interaction applications. 

7. Conclusions and future work

In this chapter, we showed that SpeM, consisting of an automatic phone recogniser, a lexical 
search module, and an early decision mechanism is able to recognise polysyllabic words 
before their acoustic offset. In other words, the results presented in this chapter showed that 
early decision making in an ASR system is feasible. This early decision making property of 
SpeM is based on the availability of a flexible decoding during the word search and on the 
availability of various scores along the search paths during the expansion of the search 
space that can be properly normalised to support decision making. The early recognition 
process is comparable to what human listeners do while decoding everyday speech: Making 
guesses and predictions on the basis of incomplete information.  
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For 81.1% of the 936 correctly recognised focus words (51.9% of all focus words), the use of 
local word activation allowed us to identify the word before its last phone was available, 
and 64.1% of those words were already recognised one phone after the uniqueness point. 
However, the straightforward predictors that we derived from the Bayesian word activation 
appeared to yield relatively many false alarms. Yet, we are confident that the predictive 
power of measures derived from word activation can be improved, if only by making 
decision thresholds dependent on knowledge about the words that are being hypothesised.  
Finally, the reason for starting the research on early recognition to begin with was the 
potential benefits that early recognition promises for improving the speed and naturalness 
of human-system interaction. So far, the results of our work are promising. However, our 
experiments have shown that substantial further research is needed to better understand the 
impact of all the factors that affect and support the ‘informed guessing’ that humans 
perform in day-to-day interaction, and that allows them to predict what their interlocutor is 
going to say and when (s)he will reach a point in an utterance where it is safe to take the 
turn.
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1. Introduction     

With more than 300 audio recitations of the Holy Quran available free on the internet, there 
is an increasing need to synchronize textual information with the audio recitation. The 
synchronized text can contain simply the textual representation of the recited verses or more 
information like the translation to a foreign language and the meaning of difficult verses. 
The general approach used nowadays consists of manually marking the beginning and 
ending of every verse. Taking into account the special way to recite Quran : “The art of 
tajweed”, the manual method required a lot of work and proved to be unable to adapt to 
new recitors .
The goal of this chapter is to try the applicability and effectiveness of a new approach that 
uses common speech recognition techniques to automatically find and delimit verses in 
audio recitations regardless of the recitor. “The art of tajweed” defines some flexible yet 
well-defined rules to recite the Quran creating a big difference between normal Arabic 
speech and recited Quranic verses, thus it is interesting to analyze the impact of this “art” on 
the automatic recognition process and especially on the acoustic model. The study uses the 
Sphinx Framework (Carnegie Mellon University) as a research environment.  

2. The sphinx IV framework 

Sphinx is an open source (since version 2) project, financed by DARPA and developed at the 
Carnegie Melon University CMU in Pittsburgh with the contribution of Sun Microsystems, 
Mitsubishi Electric Research Lab, Hewlett Packard, University of California at Santa Cruz 
and the Massachusetts Institute of Technology. The sphinx-4 framework is a rewrite in java 
of the original sphinx engine. It follows a modular and extensible architecture to suit the 
needs of the researchers (Sphinx Group,2004).  
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Figure 1. The functional bloc diagram of Sphinx-4 

Sphinx-4 (Sphinx Group,2004) is based on HMM (Hidden Markov Model), and provides the 
researcher with a tool: SphinxTrain for the development of Acoustic models. The 
“Configuration Manager” uses an external configuration file to bind, at run-time, each part 
of the system with the corresponding algorithm. This flexibility makes it a practical choice 
for researchers because of the ability to test different algorithms or even develop new ones 
without the need of recompilation of the application. Once properly configured, the 
“FrontEnd” must either receive its input from audio files (batch mode) or directly from the 
microphone (live mode). Although not implemented yet, but the sphinx team envisaged the 
ability to switch between live mode and batch mode at run-time. The “frontend” generates 
the feature vectors (Cepstrum, delta cepstrum and delta delta cepstrum).The generated 
vectors will then be processed by the decoder that uses information from both the language 
model and the acoustic model to generate the search space for the HMM nodes. A number 
of search algorithms can be specified (Breadth-First, Beam Search, Viterbi, A*,…). The result 
of the decoding phase will then be returned to the calling application.  
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3. Holy Quran recitations and acoustic model 

3.1 The “Art of Tajweed” 

The recitation of the holy Quran differs from the normal reading of Arabic text due to a 
special art: “Fan al tajweed”. “Tajweed” is considered as an art because not all recitors will 
perform the same verses in the same way. Furthermore, the same recitor may perform the 
same verses differently due to the flexibility of the laws of tajweed. 
Another word to describe the art of reciting Quran is “Tarteel”. While obeying to the same 
laws of “tajweed”, “tarteel” is generally identified by a faster reading pace in contrast with 
“tajweed” where reading is slower and where there is more focus on the artistic (musical) 
aspect of reading the holy Quran. “Tarteel” is the preferred reading style of recitors from 
Gulf countries while Syrian, Egyptian, Lebanese and other Middle Eastern recitors, prefers 
“tajweed”.
 There is 10 different law sets according to the 10 certified scholars[Hafs, Kaloun, Warsh,….] 
who teached the recitation of the Holy Quran (M.Habash,1998). Furthermore, recitors tend 
to vary the tone of their recitations according to musical “maqams” (The basic number of 
maqams is seven but there are other variations resulted from the combination of different 
maqams). 

3.2 Impact of the “Art of Tajweed” on the acoustic model 

The laws of “tajweed” introduce additional difficulties to the inherently difficult Arabic 
Speech Recognition problem. The most important part in our project was to identify what 
aspects of the laws of tajweed will affect the recognition phase and for which factors. After 
that analysis phase, we assumed that the seven “maqams” does not require any special 
treatment because of the statistical nature of the Hidden Markov Model (HMM). We 
considered only the laws of the art of Tajweed according to Hafs (used in 98% of the 
recitations) and found the following laws to have the most influence on the recognition of a 
specific recitation: 
• Necessary prolongation of 6 vowels 
• Obligatory prolongation of 4 or 5 vowels 
• Permissible prolongation of 2,4 or 6 vowels 
• Normal prolongation of 2 vowels 
• Nasalization (ghunnah) of 2 vowels 
• Silent unannounced letters 
• Emphatic pronunciation of the letter R 
Note that there is also the echoing sound that is produced with some unrest letters but we 
found that it has no effect on the recognition because the echo will be considered as noise 
and thus the noise-canceling filter will eliminate it. 
In order to deal with these rules, we considered the prolongation as the repetition of the 
vowel n-corresponding times. The same consideration was used for the nasalization. The 
emphatic pronunciation of R led us to introduce another phoneme, or voice, that will also be 
used with other emphatic letters such as Kaf, Khaa when they are voweled by a fatha.  
This conclusion can be verified by examining thoroughly the spectrogram of the Quranic 
recitations.
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Figure 2. Spectrogram of a 6 vowels prolongation in "Bismillahi Al-Rahmani Al-Rahim" 

The above spectrogram shows us that the six vowels prolongation of the “I” in “Al-Rahim” 
does not present so much variation, so considering it as the repetition of six “I” is a correct 
assumption.  

Figure 3. Comparaison between 2 "fatha" one emphatic with the letter R (left) and a normal 
with 2 vowels prolongation 

If we compare the emphatic “fatha” and the normal “fatha”, the differences between their 
spectrogram justifies the need to have two different phonemes representing each one of 
them. (All spectrograms were generated by the Open source tool WaveSurfer) 
We can deduce from this study the following set of phonemes:  
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TransliterationAlphabetSymbol 
AlefAA
Ba’B
Ta’T
Emph. Ta’ TO
Tha’TH
JimJ
Ha’H
Emph. Kha’ KH
DalD
Emph. Dad DO
ThalDZ
Emph. Tha’ DZO
ZayZ
Ra’R
SinS
ShinSH
Emph. Sad SO
AynAIN
GhaynGAIN 
Fa’F
Emph. Kaf KO
KefK
Lam L
MimM
Noun N
Ha’HI
WawW
Ye’Y
FathaA
KasraI
Between kasra and fatha E
Emph. fatha )(AO
DammaOU

Table 1. List of selected phonemes 
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The preceding set was then used to train the states of the HMM that corresponds to the 
acoustic model. About 1 hour of audio recitations of Sourate Al-Ikhlass for different recitors 
including normal (with no tajweed) and women performed recitations were used alongside 
with the corresponding dictionary mapping each word to the corresponding symbolic 
representation, to feed the sphinxTrain application that generated the corresponding 
Acoustic model for the application. It is recommended however to have a minimum of 8 
hours of recorded audio in order to get efficient recognition, but we estimated that for the 
scope of our research, the use of only 1 hour is sufficient especially that we will be testing 
the system on a limited vocabulary(only sourate “Al-Ikhlass”). The following table shows an 
excerpt from the dictionary used for the training and recognition phases. 

Bismi B I S M I 
Lahi L L A HI I 
Rahmani R R AO HI M A N I 
Rahim R R AO HI I I M 
Rahim(2) R R AO HI I I I I I I M 
Rahim(3) R R AO HI I I I I M 
Koul KO OU L 
Houwa HI OU W A 

Table 1. Excerpt from the dictionnary of Sourate Al-Ikhlass 

4. Language Model 

As with the majority of speech recognition solutions, a language model is used to increase 
the accuracy of the recognition process. The most important choices is either to create a 
statistical model of the words in a given language (or linguistic context) or to create a 
grammar file. The first approach is most suitable for large vocabulary applications while the 
latter is very well adapted to small ones. In the case of the holy Quran, Creating a statistical 
language model is the best approach but, in our research, we chose to use a grammar file 
based on the Java Speech Grammar Format JSGF specification that is well supported by 
Sphinx-4 because of the relatively small vocabulary that we chose for our test. Furthermore, 
It is imperative to have a high accuracy ratio based on an “all or none” paradigm meaning 
that if an “aya” could not be 100% recognized, it is better to drop it rather than filling it with 
garbage words because of the holiness of the Quran. These JSGF rules are similar to those 
used for conversational systems and are, actually, not suitable for large vocabulary 
continuous speech recognition but we generated them as such to reflect the structure of the 
“Sourat”.

Listing 1. Excerpt from the grammar file 

grammar Quran; 

public <Ikhlass> = (Bismi  Lahi  Rahmani  Rahim | 
                   (Koul  houwa  llahou  Ahad  | Koul houwa llahou Ahadounil |Allahou 
Samad  |Lam Yaled  wa Lam  youlad  |                    wa Lam yakoun  lahou  koufouan 
Ahad)
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5. System Design 

The core recognition process is provided automatically by the sphinx engine using the 
appropriate language and acoustic models. The sphinx framework must be configured 
using an xml based configuration file.  

5.1. Data preparation 

We configured our system with the following pipeline before being processed by the 
recognizer:

Speech segment 

extraction

2-stage 

pre-emphasizer

STFT

Mel filter bank

DCT

Batch CMN

Figure 4. frontend pipeline of the system 

The Speech Segment Extraction bloc labels speech frames as “speech” and “no speech” 
using a threshold that we set to -10db. The pre-emphasis filter consists of a digital network 
that flattens the signal: 

( ) ( ) ( )1~ −−= nasnsns  (1) 

Where a is the pre-emphasis factor 0<a<1 
Although it is often enough to use one pre-emphasis filter, we have found that for some 
audio files the recognition ratio could be increased with the use of a 2-stage pre-emphasis 
filter with different factor values (0.92 and 0.97).  
The Short Time Fourier Transform STFT bloc uses a raised cosine windower to apply the 
Fourier transform on detected speech blocs. We specified the number of point of FFT points 
to 512 points.  
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The Mel Filter Bank bloc transforms the frequency domain to the Mel frequency domain 
that mimics the sensitivity and perception of the human ear by transforming the frequency 
domain from a linear to a non-linear one. This goal is achieved by using a set of 30 
triangular Mel filters where each filter is given by:  
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Figure 5. Representation of the Mel triangular filters 

The DCT bloc applies the Discrete Cosine Transform on the result to extract the Mel 
Frequency Cepstral Coefficients MFCC (When all of the FFT coefficients are real values, 
DCT is often used to calculate the cepstras instead of the inverse FFT). The use of the MFCC 
has proven remarkable results in the field of speech recognition. 
The final Cepstral Mean Normalization CMN operation is used to reduce the distorsion 
effect introduced by the transmission medium (microphone). It consists of subtracting the 
mean vector x  from each vector tx  to obtain the normalized cepstrum vector. This is 
justified by recalling that the cepstral transformation transforms the convolution to addition 
due to the use of the logarithm, thus the mean of the cepstral holds the characteristic of the 
transmission medium (  X. Huang, et al.,2001). 
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5.2. Application Design 

The output of the front-end was then used to feed the sphinx core recognizer, which uses 
the Hidden Markov Models HMM as the recognition tool. 

Figure 6. Class Diagram of the Quranic Recognizer application 

The application uses a multithreaded architecture for better performance.  
QuranRecognizer takes audio files as an input and launches the recognition process. The 
result of the recognition is recorded in a list of type QuranRecord where each entry specifies 
the recognized word and its starting and ending time in the audio file. AudioTool and 
AudioPlayer are used for the playback of the audio files after the recognition process.  
The internal application uses the Observer design pattern in order to notify the main 
application of each result of the detection process. 

Figure 7. Program Flowchart 

Select Audio File 

Wait for the analysis 
start signal 

Initialise Audio 
Player 

Start Recognition End of 
File ?

Yes

Send End signal

NO

Recognize a 
sequence 

Convert 
words to 
Arabic

Save
result 

Send to 
app



Robust Speech Recognition and Understanding 360

The version of SphinxTrain we used didn’t support Unicode characters for text and thus we 
were forced to use transliteration for all the words in our dictionary. At the application 
level, we used a hash map to translate the results of the recognizer into common Arabic 
words. The search algorithm used in the decoder was the simple breadth first combined 
with the beam search.  In the breadth first search algorithm, all the nodes on one level are 
examined before considering any node of the next level, it could thus take a longer time to 
reach the best solution if  

6. Experiments and Results 

We performed a large number of experiments on different individuals: each one was asked 
to recite sourat “Al-Ikhlass” several times and each time we recorded the number of ayates 
that were recognized correctly then a mean recognition ratio for each tester was calculated. 
The global mean is what we are showing in the following tables and the mean per 
individual represents the values shown in the graphs. The testers were chosen from 
different backgrounds without excluding women and children from them.  

Type of Recitation Number of Recitors Mean Recognition Ratio 
Tajweed 20 90% 
Tarteel 20 92% 

Table 2. Test results for professional recitors for sourate Al-Ikhlass 
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Figure 8. Chart illustrating the accuracy for both tarteel(dotted) and tajweed(plain) 
according to each recitor 

The recognition ratio in the case of tarteel is slightly better than in the case of tajweed. One 
possible reason for this could be that the majority of the tarteel recitations available now 
follow the same monotony and the duration (in time) of each phoneme differ slightly from 
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one recitor to another. There is also the extra noise that is caused by the compression of the 
audio files and the law quality of the recordings. Although we have anticipated this by 
using noisy audio files during the training, but the differences in compression ratios 
between the files add a lot of variety for the added noise and thus causing extra errors. 

Gender of recitor Number of Recitors Mean Recognition Ratio 
male 20 90% 

female 20 85% 

Table 3. Test results for normal arabic speaking people for Sourate Al-Ikhlass 

When unskilled persons tested the system (we even tested it on children), it behaved 
astonishingly well even when the recitor was a woman, a case that cannot be encountered in 
real life because it not common to have a woman reciting the Holy Quran. There is also an 
interesting observation drawn from these tests: It is always recommended [6] to train the 
system with more than 500 different voices in order to reach speaker independence. But we 
didn’t train our system with this relatively large number and still we were able to have 
remarkable speaker independence results.  
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Figure 7. Chart illustrating the accuracy for male and female recitors (each tick on the x axis 
represents one recitor) 

7. Conclusion 

The system that we developed showed promising results although it was only tested against 
small Quran’ chapters. We think that the incorporation of morphological knowledge of the 
Arabic language with a more sophisticated statistical model deduced from the full scope of 
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the Holy Quran can lead to a robust universal recognizer for the Arabic language. The 
results that we obtained were far beyond our expectations: It behaved as well accurately 
with children and female voices as well as with male voices. The HMM is know to be poor 
in its representation of the time that the phoneme takes, however, time in our application 
was a very important factor and to resolve this issue, we were forced to represent all the 
variations of each pronunciation, this could prove to be very painful if it is to be applied to 
the whole Quran. Another approach based on a smarter representation of the duration of 
each phoneme may represent a better solution to this problem. But, overall, the system 
proved that it is possible to construct an Automatic delimiter of the verses of the Holy 
Quran; May be a search inside the audio files will emerge one day as an alternative and 
more versatile way to search the Holy Quran. 
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1. Introduction  

An artificial Neural Network (ANN) is a well known universal approximator to model 
smooth and continuous functions (Brown & Harris, 1994).  As ANNs can realize nonlinear 
models, they are flexible in modeling a wide variety of real-world complex applications, 
such as handwriting recognition, speech recognition, fault detection, medical inspection 
(Zhang, 2000), etc.  ANNs being applied for pattern classification can be divided into two 
main categories: static and dynamic.  Static pattern classification problems are usually 
tackled by multi-layer perceptron (MLP), radial basis feed-forward (RBF) networks and 
learning vector quantization (LVQ).  However, limited by its structure of a traditional, a 
feed-forward network cannot model the correlation between the previous time frames and 
the current time frame.  Thus, some dynamic applications, such as speech recognition, time 
varying prediction, dynamic control, etc. are difficult to be realized by static neural 
networks.  Neither can feed-forward neural networks deal with problems without a fix 
dimension of input patterns.  Recurrent Neural Network (RNN) (Engelbrecht, 2002; 
Kirschning et al., 1996; Zhang et al., 1993) and Time Delay Neural Network (TDNN) (Waibel 
et al., 1989) are used to overcome the limitations of feed-forward networks.  They 
dynamically model time series cases; in other words, they are predictor networks that 
predict the next data frame from the current data frame.   
ANNs operate in two stages: learning and generalization.  Learning of a neural network is to 
approximate the behavior of the training data while generalization is the ability to predict 
well beyond the training data (Zhang, 2000).  In order to have a good learning and 
generalization ability, a good tuning algorithm is needed.  In this chapter, Genetic 
Algorithm (GA) is used as the tuning algorithm for training neural networks. 
GA is a directed random search technique (Hanaki et al., 1999; Michalewicz, 1994; Pham & 
Karaboga, 2000) that is widely applied in optimization problems (Hanaki et al, 1999; 
Michalewicz, 1994; Pham & Karaboga, 2000).  It is especially useful for complex 
optimization problems when the number of parameters is large and the analytical solutions 
are difficult to obtain.  GA can help find out the globally optimal solution over a domain.  It 
has been applied in different areas such as fuzzy control (Leung et al., 2004), path planning, 
modeling and classification (Setnes & Roubos, 2000), tuning parameters of neural/neural-
fuzzy networks (Leung et al., 2003; Ling et al., 2003) etc.  A lot of research efforts have been 
spent to improve the performance of GA.  Different selection schemes and genetic operators 
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have been proposed.  Selection schemes such as rank-based selection, elitist strategies, 
steady-state election and tournament selection have been reported (Davis, 1991).  There are 
two kinds of genetic operations, namely crossover and mutation.  Apart from random 
mutation and crossover, other crossover and mutation mechanisms have been proposed.  As 
the crossover mechanisms, two-point crossover, multipoint crossover, arithmetic crossover 
and heuristic crossover have been reported (Davis, 1991; Michalewicz, 1994; Srinivas & 
Patnaik, 1994).  As the mutation mechanisms, boundary mutation, uniform mutation and 
non-uniform mutation can be found (Davis, 1991; Michalewicz, 1994; Srinivas & Patnaik, 
1994).   
In this chapter, a dynamic neural network tuned by an improved GA (Lam et al., 2004) is 
proposed.  New genetic operations (crossover and mutation) will be introduced.  Rules have 
been introduced to the crossover process to make offspring widely spread along the 
domain.  A fast convergence rate can be reached.  A different process of mutation has been 
applied.  The proposed dynamic neural network of architecture shown in Fig. 1 consists of 
two modules: a tuner neural network (TNN) and a classifier recurrent neural network 
(CRNN).  This specific architecture provides a one-input-one-rule property to the network.  
By using the TNN, some parameters can be determined from the input patterns and applied 
to the CRNN for further classification.  In general, a traditional RNN can only have one set 
of fix parameters to model all different input patterns and their time variations owing to the 
limitation of its structure.  In practice, consider the case depicted by Fig. 2; the data sets S1 & 
S2 belong to the class 1 but they are separated far apart, and the data set S3 belong to the 
class 2 in the spatial domain.  When a traditional RNN with an inadequate number of 
parameters is used, the network will only be trained to recognize a data set R between S1 
and S2.  Then, S3 could be misclassified as class 1 as shown in Fig. 2(b).  The recognition 
accuracy will then be lowered.  However, if the number of parameters is large, the number 
of iteration required in the training process will be increased.  In order to reduce the number 
of parameters of the network, we propose the dynamic NN.  On using this network, when 
the input data belongs to S1, the TNN will provide the parameter set 1 for the CRNN to 
handle the data set S1.  When the input data S2 is given, the parameter set corresponding to 
S2 will be used. 
This chapter is organized as follows.  The genetic algorithm with improved genetic 
operations will be briefly described in section 2.  The specific structure of the proposed 
dynamic neural network will be presented in section 3.  In section 4, a Cantonese-digit 
speech recognition system will be discussed.  The results for recognizing thirteen Cantonese 
digits and a conclusion will be given in section 5 and 6 respectively. 
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Figure 1.  Architecture of the proposed dynamic neural network. 
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Figure 2.  (a) Diagram showing 3 data sets in the spatial domain.  (b) Diagram showing the 
feature curves of the 3 sets. 

2. Genetic Algorithm with Improved Genetic Operations 

Genetic algorithms (GAs) are powerful searching algorithms that can be used to solve 
optimization problems.  The standard GA process (Michalewicz, 1994) is shown in Fig. 3.  
First, a population of chromosomes is created.  Second, the chromosomes are evaluated by a 
defined fitness function.  Third, some of the chromosomes are selected for performing 
genetic operations.  Fourth, the genetic operations of crossover and mutation are performed.  
The produced offspring replaces their parents in the population.  This GA process repeats 
until a user-defined criterion is reached.  In this chapter, the standard GA is modified and 
new genetic operators are introduced to improve its performance.  The improved GA 
process is shown in Fig. 4.  Its details will be given as follows. 



Robust Speech Recognition and Understanding 366

Procedure of the standard GA

begin 

τ → 0  // τ: iteration number 

initialize P(τ)  //P(τ): population for iteration τ
              evaluate f(P(τ)) // f(P(τ)):fitness function 

while (not termination condition) do

           begin 

                    τ→τ+1

                    select 2 parents p1 and p2 from P(τ−1)

                    perform genetic operations (crossover and mutation) 

                    reproduce a new P(τ)

                    evaluate f(P(τ))                   

            end 

end

Figure 3. Procedure of the standard GA

Figure 4.  Procedure of the improved GA. 

2.1 Initial Population 

The initial population is a potential solution set P.  The first set of population is usually 
generated randomly. 

{ }sizepop _21 ,,, pppP =  (1) 

Procedure of the improved GA

begin 

τ → 0  // τ: iteration number 

initialize P(τ)  //P(τ): population for iteration τ
 evaluate f(P(τ)) // f(P(τ)):fitness function 

while (not termination condition) do

begin 

τ→τ+1

 select 2 parents p1 and p2 from P(τ−1)

 perform crossover operation according to equations (7) - (10)

perform mutation operation according to equation (14) to generate the offspring os

 // reproduce a new P(τ)

                if random number < pa   // pa: probability of acceptance 

os replaces the chromosome with the smallest fitness value in the 

population

else if  f(os) > smallest fitness value in the P(τ−1)

os replaces the chromosome with the smallest fitness value 

end 

 evaluate f(P(τ))

end

end 
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where pop_size denotes the population size; no_vars denotes the number of variables to be 
tuned;  

jip , i = 1, 2, …, pop_size; j = 1, 2, …, no_vars, are the parameters (genes) to be tuned; 
jparamin  and jparamax  are the minimum and maximum values of the parameter 

jip

respectively for all i.  It can be seen from (1) to (3) that the potential solution set P contains 
some candidate solutions ip  (chromosomes).  The chromosome ip  contains some variables 

jip  (genes). 

2.2 Evaluation 

Each chromosome in the population will be evaluated by a defined fitness function.  The 
better chromosomes will return higher values in this process.  The fitness function to 
evaluate a chromosome in the population can be written as, 

)( iffitness p=  (4) 

The form of the fitness function depends on the application. 

2.3 Selection 

Two chromosomes in the population will be selected to undergo genetic operations for 
reproduction by the method of spinning the roulette wheel (Michalewicz, 1994).  It is 
believed that high potential parents will produce better offspring (survival of the best ones).  
The chromosome having a higher fitness value should therefore have a higher chance to be 
selected.  The selection can be done by assigning a probability qi to the chromosome ip :
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The cumulative probability iq̂  for the chromosome ip  is defined as, 
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The selection process starts by randomly generating a nonzero floating-point number, 
[ ]10∈d .  Then, the chromosome ip  is chosen if ii qdq ˆˆ

1 ≤<−  ( 0ˆ
0 =q ).  It can be observed 

from this selection process that a chromosome having a larger f( ip ) will have a higher 
chance to be selected.  Consequently, the best chromosomes will get more offspring, the 
average will stay and the worst will die off.  In the selection process, only two chromosomes 
will be selected to undergo the genetic operations. 
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2.4 Genetic Operations 

The genetic operations are to generate some new chromosomes (offspring) from their 
parents after the selection process.  They include the crossover and the mutation operations. 

A.  Crossover 

The crossover operation is mainly for exchanging information from the two parents, 
chromosomes p1 and p2, obtained in the selection process.  The two parents will produce 
two offspring.  First, four chromosomes will be generated according to the following 
equations,
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where [ ]10∈w  denotes a weight to be determined by users, ( )21,max pp  denotes the vector 
with each element obtained by taking the maximum among the corresponding element of 
p1 and p2.  For instance,  [ ] [ ]( ) [ ]332132,321max =− .  Similarly, ( )21 ,min pp  gives 
a vector by taking the minimum value.  For instance, [ ] [ ]( ) [ ]121132,321min −=− .
Among 1

cso  to 4

cso , the two with the largest fitness value are used as  
the offspring of the crossover operation.  These two offspring are put  
back into the population to replace their parents. One of the offspring is defined as, 
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ios denotes the index i which gives a maximum value of ( )i
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If the crossover operation can provide a good offspring, a higher fitness value can be 
reached in a smaller number of iteration.  In general, two-point crossover, multipoint 
crossover, arithmetic crossover or heuristic crossover can be employed to realize the 
crossover operation (Michalewicz, 1994).  The offspring generated by these methods, 
however, may not be better than that from our approach.  As seen from (7) to (10), the 
potential offspring after the crossover operation spreads over the domain.  While (7) and 
(10) result in searching around the centre region of the domain (a value of w near to 1 in (10) 

can move 4

cso  to be near 
2

21 pp + ), (8) and (9) move the potential offspring to be near the 
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domain boundary (a small value of w in (8) and (9) can move 2

cso  and 3

cs
o  to be near pmax

and pmin respectively). 

B.  Mutation 

The offspring (13) will then undergo the mutation operation, which changes the genes of the 
chromosome.  Consequently, the features of the chromosomes inherited from their parents 
can be changed.  In general, various methods like boundary mutation, uniform mutation or 
non-uniform mutation (Michalewicz, 1994) can be employed to realize the mutation 
operation.  Boundary mutation is to change the value of a randomly selected gene to its 
upper or lower bound.  Uniform mutation is to change the value of a randomly selected 
gene to a value between its upper and lower bounds.  Non-uniform mutation is capable of 
fine-tuning the parameters by increasing or decreasing the value of a randomly selected 
gene by a weighted random number.  The weight is usually a monotonic decreasing 
function of the number of iteration.  We propose a different process of mutation with details 
as follows.  Every gene of the offspring os of (13) will have a chance to mutate governed by a 
probability of mutation, [ ]10∈mp , which is defined by the user.  This probability gives an 
expected number ( ×mp no_vars × pop_size) of genes that undergo the mutation.  For each 
gene, a random number between 0 and 1 will be generated such that if it is less than or equal 
to mp , the operation of mutation will take place on that gene and updated instantly.  The 
gene of the offspring of (13) is then mutated by: 
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[ ]10∈r  is a randomly generated number; ( ]10∈
kmw  is a weight governing the 
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kmw is varied by the value of 
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serve a fine-tuning purpose.  T is the total number of iteration.  In order to perform a local 

search, the value of weight 
kmw  should be very small as 

T
τ  increases in order to reduce the 

significance of the mutation.  Under this assumption, a monotonic decreasing function 
governing 

kmw  is proposed to be, 
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where [ ]10∈fw  and wτ > 0 are variables to be chosen to determine the initial value and the 
decay rate respectively.  For a large value of wf, it can be seen from (15) and (16) that 
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2.5 Reproduction 

The reproduction process takes place after the genetic operations.  The new offspring will be 
evaluated using the fitness function of (4).  This new offspring will replace the chromosome 
with the smallest fitness value among the population if a randomly generated number 
within 0 to 1 is smaller than [ ]10∈ap , which is the probability of acceptance defined by 
users.  Otherwise, the new offspring will replace the chromosome with the smallest fitness 
value only if the fitness value of the offspring is greater than the fitness value of that 
chromosome in the population.  pa is effectively the probability of accepting a bad offspring 
in order to reduce the chance of converging to a local optimum.  Hence, the possibility of 
reaching the global optimum is kept. 
After the operation of selection, crossover, mutation and reproduction, a new population is 
generated.  This new population will repeat the same process.  Such an iterative process can 
be terminated when the result reaches a defined condition, e.g. the change of the fitness 
values between the current and the previous iteration is less than 0.001, or a defined number 
of iteration has been reached. 

3. Modified Dynamic Neural Network 

Recurrent Neural Network (RNN) is a dynamic network which is commonly used to tackle 
complex dynamic sequential problems, such as time series prediction, dynamic system 
identification and grammatical inference.  With the specific network structure, the temporal 
information can be brought to the next time frame.  As a result, the RNN can process static 
as well as time-varying information.  Elman network, Jordan network (Rabiner & Juang, 
1993), etc. are commonly used RNNs.  They are constructed as closed-loop systems while 
the hidden node outputs or the network outputs are fed back to the network inputs as the 
dynamic information respectively.  However, training a recurrent network to the desired 
behavior is not easy.  It is because there is only a fix set of parameters representing both the 
temporal and static features of the input data sets. 
In order to improve the classifying ability of a traditional RNN, a traditional 3-layer feed-
forward neural network and a recurrent neural network can be combined together as a 
modified network.  A traditional 3-layer feed-forward neural network provides a distinct 
solution to static pattern classification problems (Jang, 1997) and a recurrent network 
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provides a solution to time-varying problems.  The proposed neural network architecture 
employs a feed-forward neural network (rule-base neural network) to offer some rule 
information to the recurrent neural network (classifier recurrent neural network) with 
respect to the input patterns.  Thus, the additional information provided by the rule-base 
neural network can compensate the limitation of the fixed parameter sets. 

3.1 Model of the Modified Dynamic Neural Network 

The proposed modified dynamic neural network consists of two parts, namely the Tuner 
Neural Network (TNN) and the Classifier Recurrent Neural Network (CRNN).  The 
network architecture is shown in Fig.5. 
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Figure 5.  Modified dynamic neural network architecture. 

A. Tuner Neural Network 

The tuner neural network (TNN) is a traditional 3-layer feed-forward neural network that 
provides suitable parameters to the classifier recurrent neural network according to the 
input patterns.  The input-output relationship of the TNN is defined as follows. 
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where γg(t), γc−1(t), and γc(t) are the outputs of the TNN for the t-th data frame; 
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denotes the logarithmic sigmoid function; ωjg, j = 1, 2, … ,h1, denotes the weight of the link 
between the j-th hidden node and the g-th output; h1 is a non-zero positive integer denoting 
the number of hidden nodes; μij, i = 1, 2, …, nin, denotes the weight of the link between the i-
th input node and the j-th hidden node; xi(t) denotes the i-th input of the TNN; μj, denotes 
the weight of the j-th bias term for the hidden layer; ωg, ωc-1, and ωc are the link weights of 
the bias terms for the output layer; nin and c denote the numbers of input and output 
respectively.

B. Classified Recurrent Neural Network 

As shown in Fig. 5, the classifier recurrent neural network (CRNN) is a 3-layer recurrent 
network.  It analyses the input patterns, recurrent information and the information provided 
by the TNN to produce the network outputs.  The input patterns are tokens of short-time 
feature frames.  The feature frames will be fed to the input of the network one-by-one.  The 
outputs of the network will be fed back to the network inputs with one sampling-period 
delay.  The input-output relationship of the CRNN is defined as follows. 
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where yk(t) denotes the k-th output of the CRNN for the t-th data frame; h2 is a non-zero 
positive integer denoting the number of hidden nodes (excluding the bias node); λjk, j = 1,2, 
… ,h2 denotes the weight of the link between the j-th hidden node and the k-th output; ff

ijμ , i
= 1,2, … ,nin denotes the weight of the link between the i-th input and the j-th hidden node; 
γc(t) denotes the last output from the TNN; fb

qjμ , q = 1, 2, …, nout denotes the weight of the 
link between the q-th recurrent input and the j-th hidden node; λk denotes the link weight of 
the k-th bias term for the output layer; tf(⋅) denotes the hidden node activation function and 
is defined as follows. 
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χg, δ and σ g denote the input and the two parameters of the activation function respectively.  
It should be noted that δ and σ g are the outputs of the TNN.  Thus, σ g = γ g, g = 1, 2, ..., h2;
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h2 = c − 2,  and δ =γc−1.  These parameters are given by the TNN to guide the CRNN how to 
handle the input data.  Owing to the dynamic structure of the proposed NN, both the static 
and dynamic properties of the data can be modeled.  Different parameter values change the 
shape of the non-linear activation function (24).  The CRNN performs dynamic adaptation 
to the input frame variations through the recurrent links.  Each frame pattern will have its 
own parameter set.  Owing to the structure of the modified RNN, both static (TNN) and 
dynamic (CRNN) changes of the data are classified at the same time.   

C. Training of the Modified Dynamic Neural Network 

An individual class network training process is employed.  Every data class has its own 
network, where every network has the same structure.  The training process is to train the 
network input frame(s) to match the network temporal output frame(s); where the output 
frame(s) of the network is equal to the network input frame(s).  Thus, the highest fitness 
value can be obtained from the network by using the same class of input data set.  All 
parameters in the modified RNN are trained by the improved GA (Lam et al., 2004). 

4. Speed Recognition System 

Electronic Book (eBook) provides a new trend of reading.  By using eBook, traditional 
reading materials can be enriched.  However, the input method for an eBook reader is 
typically realized by handwritten graffiti recognition through the touch-screen.  In order to 
develop a more natural way for eBook inputs, speech recognition is proposed. 
Speech recognition is a tool to make machines understand the sounds made by the human 
vocal tract, which is called speech.  Speech is an acoustic signal that varies in time.  Every 
speech has its unique characteristics in the frequency domain, called speech features.  
Although a speech frame is characterized by unique features, other factors such as 
background noise, words with similar spectral characteristics (especially common for 
Cantonese words) may affect the recognition accuracy.  A good feature extraction method 
and a high-accuracy classification algorithm are needed to produce a high-performance 
speech recognizer. 
Cantonese speech composes of a chain of mono-syllabic sound.  Each Cantonese-character 
speech is a combined unit of a tone and a syllable.  There are nine possible tones for a 
Cantonese syllable.  Some Cantonese characters share the same vowel, e.g. the Cantonese 
character of “1” (/jat1/) and the Cantonese character of “7” (/cat1/) share the same vowel 
of /a/ (Markowitz, 1996).  It is a difficult task to recognize Cantonese characters that 
requires the discrimination of not only characters with different syllable but also tones of the 
same syllable with high accuracy.  
In general, speech recognition (Rabiner & Juang, 1993) is realized in two stages: speech 
preprocessing and classification.  The preprocessing stage involves segmentation and 
feature extraction.  Segmentation is used to define the boundaries of the temporal speech 
segments that represent the basic phonetic components.  Then, the stationary properties of 
the individual segment can be modeled by some static classification approach.  The dynamic 
properties of the temporal segments can be modeled by some dynamic classification 
approach.  Feature extraction is a technique to find a good representation to a speech signal.  
Normally, the time-domain speech signals will be windowed into speech frames.  From each 
speech frame, the fast Fourier transform is applied to obtain the frequency spectrum.  Based 
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on the frequency spectrum, digital signal analysis techniques will be applied to obtain the 
cepstral coefficients, which describe the features of the speech frame.  Filter-bank analysis 
(Rabiner & Juang, 1993) is often used to analyze the speech frames for extracting features.  
By distributing different band-pass filters in the mel-scale of frequency, which models the 
characteristics of the human ears, the frames of speech feature coefficients can be obtained.  
Using the feature coefficients, we can perform the second step of classification.. 
Speech classification methods can be categorized into 3 types: template matching, acoustic-
phonetic recognition and stochastic processing.  For the template matching technique, 
reference speech units called templates are used to perform the matching process between 
the testing speech units and the templates.  Thus, the testing speech units that produced 
close matching with the reference templates can be identified.  The acoustic-phonetic 
recognition approach is a phoneme level speech recognition approach.  By using this 
approach, the acoustic similarity among the phoneme combinations in a speech will be used 
to identify the input speech.  The stochastic process for speech recognition is similar to the 
template matching process that requires the reference speech units for identifying the input 
speech.  The main difference is that the stochastic process performs a statistical and 
probabilistic analysis matching process, which is not a direct mapping to the reference 
templates.
Two popular Cantonese speech recognition techniques are that using the Hidden Markov 
Model (HMM) and that using the Neural Network (NN) (Rabiner & Juang, 1993; Wu & 
Chan, 1993; Lee et al., 1998).  HMM is one well-known statistical state-sequence recognizing 
approach for speech recognition (Markowitz, 1996).  The states in a HMM structure 
represent the stochastic process, and the directional links between states indicate the 
transitions of flowing from one state to another.  With a different states-and-transitions 
structure for each speech pattern, recognition can be done by matching the testing speech 
unit to the reference models.  The Baum-Welch maximum-likelihood algorithm can be 
employed to compare the probability score between the testing and reference models as the 
likelihood index.  Another verification process for HMM speech recognition is done by the 
Viterbi algorithm, which is a method to determine the nodes and sequence of the testing 
speech unit that closely match the reference models. 
Recently, neural networks (NNs), especially the recurrent neural networks, are commonly 
used for speech recognition. Based on its connectionist modeling technique, non-linear 
functions can be modeled. Thanks to the capability of being a universal approximator 
through training, an NN can be trained to become a classifier for a certain input pattern. 
On applying NNs to realize the classification of speech patterns, we can adopt a static or a 
dynamic pattern classification method.  The static pattern classification method uses a 
conventional 3-layer feed-forward neural network to model each single-character Cantonese 
speech.  The static properties of the speech frames can be analyzed.  However, the input 
vector of the network contains no acoustic feature, and the network is only suitable for 
recognizing speech patterns with a single syllable. 

Since the dynamic properties between speech frames are important for recognizing speech, 
we should consider using recurrent neural networks (RNNs) as the classifiers, and learn the 
relationships between speech frames through the training process.  In practice, an RNN is 
suitable to classify speech with multiple syllables.  However, an RNN consumes more 
computing power than a feed-forward NN.  Owing to the recurrent information fed back, an 
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RNN needs a large number of network parameters so as to cope with the speech frame 
updates and the recurrent information updates for each speech pattern.  As the number of 
parameters is large, a longer training time is needed for an RNN to converge.   
It should be noted that one neural network, feed-forward or recurrent, is needed effectively 
to model one speech pattern.  If we have to recognize a large number of recognition 
vocabularies, a standard structured NN is difficult to achieve a good performance.  It is 
because the trained network parameters are used to model the features of the input patterns.  
When the number of input patterns is large and they are not sufficiently clustered into the 
same class, more network parameters are needed to model them.  A complicated network 
structure will result.  This will degrade the performance of the network in terms of 
computational power, convergence rate and recognition accuracy. 

A.  Speech feature extraction 

The speech patterns are formatted in 8-bit PCM format sampled at 11kHz.  The obtained 
time-domain speech vector ( ) ( ) ( )[ ]samplenosss _21=s  is then windowed by the 128-
sample sliding Hamming windows )(τwh  with 50% overlap to form speech frames.  The 
zero-crossing rate and speech energy have to be found in order to determine whether the 
frames are voiced (sonorant) or unvoiced (non-sonorant).  A speech frame with a high zero-
crossing rate but low speech energy level is defined as the non-sonorant speech frame.  
Conversely, a sonorant speech frame will have a high speech energy level but low zero-
crossing rate.  The process is defined as follows. 
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where En denotes the speech energy of the n-th frame; mn denotes the starting index of the n-
th frame; no_frame denotes the number of frames for a speech signal; Zn denotes the zero-
crossing rate of the n-th frame; no_sample (= 128) denotes the number of time samples of a 
speech frame (i.e. the number elements of a speech frame vector).  As shown in Fig. 6(a), G1,
G2 and G3 indicate the non-sonorant, sonorant and non-sonorant region of a single-syllable 
Cantonese-digit speech.  The starting speech frame of a new group begins when the speech 
energy curve and the zero-crossing curve intersect, provided that the group has more than 
six speech frames (i.e. a duration longer than 40ms); otherwise, no group change will take 
place.  Therefore, the speech signal as shown in Fig. 6(a) gets three groups.  Five groups are 
obtained from a double-syllable Cantonese-number speech as shown in Fig. 6(b).  G1, G3 and 
G5 are the non-sonorant regions due to high zero-crossing rate and low speech energy level. 



Robust Speech Recognition and Understanding 376

While G2 and G4 are the sonorant regions due to high speech energy level and low zero-
crossing rate.  Since a pause has been added after the first syllable, G3 is obtained. 

G1 G2 G3

(a)

G
1

G
2

G
3

G4

G
5

(b)

Figure 6. Acoustic feature groups of (a) single Cantonese digit, (b) double Cantonese digits. 

Fast Fourier Transform (FFT) and uniform filter-bank filtering are then performed to each 
speech frame.  The feature coefficients of each speech frame are defined as follows. 

( ) ( ) ( )[ ] [ ]( ){ })()(12821 ττ nnnnn swhFFTReSfSfSf ==Sf ,  1≤ τ ≤128  (29) 
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where nSf denotes the frequency spectrum of the n-th speech frame; Re{⋅} denotes the real 
part of the argument vector; FFT(⋅) denotes the fast Fourier transform function; 

( ) ( ) ( )[ ]12821 nnnn ssss =  denotes the n-th speech frame in time-domain; wt(⋅) denotes 
the triangular window; α denotes the number of frequency components tackled by each 
band-pass filter; floor(⋅) denotes the floor function which is used to round up a floating point 
number; no_filter denotes the number of band-pass filters; βρ denotes the starting index of 

the β-th band-pass filter; β
nc denotes the mean power output from the β-th band-pass filter 

for the n-th frame; Dn is a vector formed by the magnitude differences between two 
consecutive band-pass filter outputs. 
The neighboring speech frames of the same nature, i.e. voiced/sonorant or unvoiced/non-
sonorant frames, will be grouped together as shown in Fig. 6.  The mean feature coefficient 
of all the speech frames in the same group will be calculated as follows. 
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where ηscoeff denotes η-th speech feature group; Gη denotes the number of speech frames in 
the η-th group; no_group denotes the number of groups that can be segmented from the 
speech.  Thus, the acoustic feature sequence of the speech can be written as Sp
= [ ]groupno _21 scoeffscoeffscoeff , and each element vector is then normalized as input 
to the dynamic variable-parameter neural network in sequence to do the speech recognition. 
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B.  Speech classification  

The inputs of the modified RNN is defined as 
Sp

Sp
x =  where ⋅  denotes the l2 vector norm.  

The objective of the training process for each network is to adjust the parameters so as to 
minimize the error between the network outputs and the desired values, where the desired 
values are the inputs of the network.  The performance of the network is governed by the 
value of fitness, which is a function the error value err : 
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where err is governed by the sum absolute error between the desired output 
[ ]outnddd ηηηη

21=d  and the network output [ ]outnyyy ηηηη
21=y ; ew denotes the 

error-weight vector, sort(⋅) returns a vector that has the argument vector’s elements sorted in 
descending order; ng denotes the number of groups that can be segmented from the speech 
signal.  It should be noted that the desired value will be equal to the input in the 
classification process.  The fitness value will be optimized by the improved GA.  
After the training process of each network has been done, m sets of parameters are obtained.  
In order to classify the target class to which an input pattern belongs, the input pattern will 
be tested simultaneously by all the networks.  Therefore, m fitness values will be produced 
by the networks according to (36).  The class of the network with the highest fitness value is 
the most likely class to which the input pattern belongs.  In other words, the most likely 
word class is given by 
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where dig denotes the word class; no_pat denotes the number of word classes; fitness(⋅)
denotes the fitness value offered by the proposed NN with input ηx  and the dig-th network 
weight set wdig.

5. Simulation Results 

The Cantonese-digit speech recognition is processed as shown in Fig. 7.  Speech signals are 
recorded from a male speaker with a low cost microphone.  Eleven single Cantonese digits 
(0 to 10) and two double Cantonese digits (12 and 20) are used to test the performance of the 
proposed network, where the double Cantonese digits (12 and 20) are mainly used to test 
the sequential classification ability of the proposed recurrent network.  The Cantonese 
syllables for the single digits can be found in 
“http://humanum.arts.cuhk.hk/Lexis/Canton/”.  The syllables of the two double 
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Cantonese digits (12 and 20) are the syllable combinations of (10, 2) and (2, 10) respectively.  
Each Cantonese digit is recorded with 20 repetitions as training data sets and 50 repetitions 
as testing data sets.  The speech signals are then passed to the feature extractor.  

Speech
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Figure 7.  Block diagram of the Cantonese speech recognition system. 

Firstly, the time domain speech signal will be windowed by the 128 hamming sliding 
window with 50% overlap.  Zero-crossing rate and average energy of the speeches are 
calculated to obtain the acoustic speech frames using (25) to (28).  If a speech frame has over 
30% of its maximum zero-crossing rate and the average energy is less than 10% of its 
maximum energy level, the frame will be regarded as non-sonorant; otherwise, it is 
regarded as sonorant.  FFT is then employed to obtain the frequency spectrum of each 
speech frame and the feature coefficients are extracted by using a uniform filter-bank.  12 
feature coefficients will be obtained for each group using (29) to (34).  Finally, the element 
vectors of the normalized acoustic feature sequence (Sp) will become the inputs of the 
modified RNN.   
One network will be used to model one input class on doing the Cantonese digits 
recognition.  The proposed network is a 24-inputs-12-outputs modified recurrent neural 
network.  The element vectors of acoustic feature sequence are fed to the modified RNN 
one-by-one.  Each group will have 12 parameters to represent the temporal speech feature.  
Hence, the network inputs are 12 feature coefficients given from the current speech frame 
and 12 parameters fed back from the outputs of the network at the previous state.  The 
number of recurrent loop(s) is determined by the number of acoustic feature group(s) of the 
speech signal.  The initial feedback values of the recurrent network are set to zeros.  The 
improve GA is used to train all the linked weights, [ ]jk

fb
qj

ff
ijjghij b λμμωμ

1
 for all i, j,

g, q, k, of the modified RNN.  The vector of the linked weights is the chromosome of the 
improved GA.  The control parameters w, pm, wf and wτ, for the improved GA are chosen to 
be 0.5, 0.02, 0.5 and 1 respectively.  The upper and lower bound of the chromosome are 2.0 
and –2.0 respectively.  The number of iteration used for training is 2000.  The initial values of 
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the chromosomes are generated randomly.  The number of hidden nodes used for the 
simulation were (3, 5), (5, 5), (5, 10), (10, 10), (10, 12) and (12, 12) where the first number 
inside the bracket is the number of hidden nodes used in the TNN and the second number 
inside the bracket is the number of hidden nodes used in the CRNN.  The learning process is 
done by a personal computer with Pentium 4, 1.4GHz CPU and 256MB RAM.  The 
simulation results of the 11 single-syllable Cantonese digits are tabulated in Table 1.  The 
performance of sequence recognition is tabulated in Table 2.  The overall performance of the 
proposed method is summarized in Table 3. 

h1,h2 3,5 5,5 5,10 10,10 10,12 12,12 

No. of parameters 259 299 509 634 728 782 

Digit Syllable Performance (%) 

0 ( ) ling4 84 98 92 88 96 84 

1 ( ) jat1 94 96 100 100 98 98 

2 ( ) ji6 98 100 94 100 100 100 

3 ( ) saam1 92 88 88 90 86 86 

4 ( ) sei3 100 100 100 100 100 100 

5 ( ) ng5 98 100 98 100 100 100 

6 ( ) luk6 92 92 94 100 98 88 

7 ( ) cat1 90 86 90 90 86 86 

8 ( ) baat3 86 80 72 94 90 68 

9 ( ) gau2 100 92 96 92 100 92 

10 ( ) sap6 64 66 86 96 78 72 

Table 1.  Recognition performance of 11 Cantonese digits “0” to “10” (test data) by the 
proposed approach. 

h1,h2 3,5 5,5 5,10 10,10 10,12 12,12 

Digit Syllable Performance (%) 

2 ( ) ji6 98 100 94 100 100 100 

10 ( ) sap6 64 66 86 96 78 72 

12 ( ) sap6, ji6 98 90 92 98 86 78 

20 ( ) ji6, sap6 88 90 98 94 98 96 

Table 2.  Recognition performance of the sequential Cantonese digits “2”, “10”, “12” and 
“20” (test data) by the proposed approach. 
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h1,h2 3,5 5,5 5,10 10,10 10,12 12,12 
Testing

Performance (%) 91.1 90.6 92.3 95.5 93.5 88.3 

Training
Performance (%) 98.5 99.6 98.8 99.2 99.2 98.8 

Table 3.  Overall recognition performance of 13 testing and training Cantonese digits by the 
proposed approach. 

The results show that the proposed method provides a fast convergence rate. Only 2000 
times of iteration for each Cantonese digit are sufficient for the training process to obtain 
about 99% accuracy models as shown in Table 3.  This indicates that the structure of the 
TNN can provide useful information for the CRNN in order to reduce the number of 
iteration for training the network.  In order to examine the effects of the network size to the 
network performance, we have tried different combinations of h1 and h2 values.  Referring 
to the results shown in Tables 1 and 3, the best result is obtained when the numbers of 
hidden nodes (h1, h2) are set to (10,10).  The recognition accuracy is 95.5%. The number of 
parameters used in each network at that setting is only 634.  Apart from that, if the number 
of parameters used in each network is reduced to 259, i.e. 41% of the best setting, the 
recognition accuracy can still reach over 91%.  The results demonstrate that the proposed 
network can use much fewer parameters for a drop of only 4% recognition accuracy.  
Considering the performance of the network to some Cantonese digits that have same vowel 
/a/ or /u/ (Lee et al., 1995), the Cantonese digits “1”, “7”, “8”, “10” have the common 
vowel /a/ and “6”, “9” have the common vowel /u/.  By using the proposed method, they 
can be discriminated among each other with accuracy over 90% and 92% respectively.  
However, if the numbers of hidden nodes are set to (10, 12) and (12, 12), the accuracies of the 
network are then dropped to 93.5% and 88.3% respectively.  This is because the numbers of 
parameters used for these two settings are increased to 728 and 782 respectively.  Hence, 
there may be some redundant parameters affecting the network accuracy.  Referring to 
Table 2, the sequence of the speech signals can be well determined by the propose method.  
By using the configuration that produces the best recognition accuracy from Table 1, the 
recognition accuracies of the four Cantonese digits “2”, “10”, “12”, “20” are 100%, 96%, 98% 
and 94% respectively.  Thus, the proposed network can produce high recognition accuracy 
for multi-syllable speech patterns although their syllables are similar.  As a result, the static 
and dynamic feature of the Cantonese digits can be obtained effectively and classified 
clearly by the proposed method. The proposed recognition system is compared with one 
using a 3-layer fully connected neural network with recurrent paths as shown in Fig 8.  The 
recognition system is trained by the improved GA with the same number of iteration for the 
proposed system.  Besides that, the system is trained and tested by the same data patterns.  
The results produced by this network are tabulated from Table 4 to Table 6.  As shown from 
the results, the recognition system produces the highest accuracy when the number of 
hidden node is equal to 22 (804 parameters).  The overall recognition accuracy of this setting 
is 95.4%.  By comparing the best performance of this recognition system to the proposed 
system in terms of the number of parameters used and the recognition accuracy, it can be 
seen that the proposed system requires a smaller number of parameters but offers similar 
recognition accuracy.  It illustrates that the proposed network architecture can improve the 
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recognition ability of the Cantonese-digit speech recognition application.  In addition, the 
associative memory technique can improve the learning ability of the recurrent neural 
network from 98.8% (Table 6) to 99.2% (Table 3). 

h1 8 12 14 16 18 22 
No. of parameters 300 444 516 588 660 804 
Digit Syllable Performance (%) 

0 ( ) ling4 92 92 96 94 96 96 

1 ( ) jat1 94 88 98 96 88 94 

2 ( ) ji6 98 100 100 100 100 100 

3 ( ) saam1 78 84 76 86 90 94 

4 ( ) sei3 96 100 98 98 100 100 

5 ( ) ng5 100 98 100 92 92 100 

6 ( ) luk6 96 96 94 92 96 98 

7 ( ) cat1 90 86 94 88 88 96 

8 ( ) baat3 88 76 86 96 82 92 

9 ( ) gau2 96 84 100 94 100 92 

10 ( ) sap6 46 92 60 78 86 90 

Table 4.  Recognition performance of 11 Cantonese digits “0” to “10” (test data) by the 3-
layer fully connected neural network with recurrent paths.

h1 8 12 14 16 18 22 
Digit Syllable Performance (%) 

2 ( ) ji6 98 100 100 100 100 100 

10 ( ) sap6 46 92 60 34 86 90 

12 ( ) sap6, ji6 94 78 86 80 90 90 

20 ( ) ji6, sap6 94 98 96 98 88 98 

Table 5.  Recognition performance of the sequential Cantonese digits “2”, “10”, “12” and 
“20” (test data) by the 3-layer fully connected neural network with recurrent paths. 

h1 8 12 14 16 18 22 
Testing

Performance (%) 89.4 90.2 91.1 91.7 92 95.4 

Training
Performance (%) 99.6 98.5 98.8 98.8 99.6 98.8 

Table 6.  Overall recognition performance of 13 testing and training Cantonese digits by the 
3-layer fully connected neural network with recurrent paths. 
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Figure 8.  3-layer fully connected neural network with recurrent paths. 

6. Conclusion 

A proposed Cantonese-digit speech recognizer by using a GA-based modified dynamic 
recurrent neural network has been developed.  The structure of the modified neural 
network consists of two parts: a rule-base 3-layer feed-forward neural network and a 
classifier 3-layer recurrent neural network.  The network parameters are trained by an 
improved GA.  With this specific network structure, the dynamic feature of the speech 
signals can be generalized and the parameter values of the network can adapt to the values 
of the input data set.  Cantonese digits 0 to 10, 12 and 20 have been used to demonstrate the 
merits of the proposed network.  By using the proposed dynamic network, the dynamic and 
static information of the speech can be modeled effectively.  Therefore, both single-syllable 
and multi-syllable Cantonese digits can be recognized.   
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1. Introduction 

Voice is used as primary media in the human communication. It is employed not only in 
simple daily communication, but also for the logical discussions and the expression of 
emotion and feelings. Different vocal sounds are generated by the complex movements of 
vocal organs under the feedback control mechanisms using an auditory system. Vocal 
sounds and human vocalization mechanisms have been the attractive researching subjects 
for many researchers so far [1],[2], and computerized voice production and recognition have 
become the essential technologies in the recent developments of flexible human-machine 
interface studies. 
Various ways and techniques have been reported in the researches of sound production. 
Algorithmic syntheses have taken the place of analogue circuit syntheses and became 
widely used techniques [2],[3]. Sound sampling methods and physical model based 
syntheses are typical techniques, which are expected to provide different types of realistic 
vocal sounds [4]. In addition to these algorithmic synthesis techniques, a mechanical 
approach using a phonetic or vocal model imitating the human vocalization mechanism 
would be a valuable and notable objective. 
Several mechanical constructions of a human vocal system to realize human-like speech 
have been reported. In most of the researches [2],[5],[6], however, the mechanical 
reproductions of the human vocal system were mainly directed by referring to X-ray images 
and FEM analysis, and the adaptive acquisition of control methods for natural vocalization 
have not been considered so far. In fact, since the behaviours of vocal organs have not been 
sufficiently investigated due to the  nonlinear factors of fluid dynamics yet to be overcome, 
the control of mechanical system has often the difficulties to be established. 
The author has been developing a mechanical voice generation system together with its 
adaptive learning of the control skill for the realization of a talking robot which imitates 
human vocalization [7]-[11]. The fundamental frequency and the spectrum envelope 
determine the principal characteristics of a sound. The former is the characteristic of a 
source sound generated by a vibrating object, and the latter is operated by the work of the 
resonance effects. In vocalization, the vibration of vocal cords generates a source sound, and 
then the sound wave is led to a vocal tract, which works as a filter to determine the 
spectrum envelope. 
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A motor-controlled mechanical model with vocal cords, a vocal tract and a nasal cavity is 
constructed so far to generate a natural voice imitating a human vocalization. By 
introducing an auditory feedback learning with an adaptive control algorithm of pitch and 
phoneme, the robot is able to autonomously acquire the control method of the mechanical 
system to produce stable vocal sounds imitating human vocalization skill [7],[8]. In this 
chapter, the adaptive control method of mechanical vocal cords and vocal tract for the 
realization of a talking and singing robot is described, together with the singing 
performance with the use of acquired vocalization skill. 

2. Human voice system and voice generation 

Human vocal sounds are generated by the relevant operations of vocal organs such as the 
lung, trachea, vocal cords, vocal tract, nasal cavity, tongue and muscles. In human verbal 
communication, the sound is perceived as words, which consist of vowels and consonants. 
The lung has the function of an air tank, and the airflow through the trachea causes a vocal 
cord vibration as the source sound of a voice. The glottal wave is led to the vocal tract, 
which works as a sound filter as to form the spectrum envelope of the voice. 
The fundamental frequency and the volume of the sound source is varied by the change of 
the physical parameters such as the stiffness of the vocal cords and the amounts of airflow 
from the lung, and these parameters are uniquely controlled when we speak or utter a song. 
On the other hand, the spectrum envelope or the resonance characteristics, which is 
necessary for the pronunciation of words consisting of vowels and consonants, is formed 
based on the inner shape of the vocal tract and the mouth, which are governed by the 
complex movements of the jaw, tongue and muscles. Vowel sounds are radiated by the 
relatively stable configuration of the vocal tract, while the short time dynamic motions of the 
vocal apparatus produce consonants generally. 
The dampness and viscosity of organs greatly influence the timbre of generated sounds, 
which we may experience when we have a sore throat. Appropriate configurations of the 
vocal cords and vocal tract for the production of vocal sounds are acquired as infants grow 
by repeating vocalization and listening through trial and error. 

3. Mechanical model for vocalization 

3.1 Configuration of Mechanical Voice System 

As shown in Figure 1, the mechanical voice system mainly consists of an air compressor, 
artificial vocal cords, a resonance tube, a nasal cavity, and a microphone connected to a 
sound analyzer, which correspond to a lung, vocal cords, a vocal tract, a nasal cavity and an 
audition of a human. 
The air in the compressor is compressed to 8000 hpa, while the pressure of an air from lungs 
is about +200 hpa larger than the atmospheric pressure. A pressure reduction valve is 
applied at the outlet of the air compressor so that the pressure is reduced to be nearly equal 
to the air pressure through the trachea. The valve is also effective to reduce the fluctuation 
of the pressure in the compressor during the operations of compression and depression 
process. The decompressed air is led to the vocal cords via an airflow control valve, which 
works for the control of the voice volume. The resonance tube is attached to the vocal cords 
for the modification of resonance characteristics. The nasal cavity is connected to the 
resonance tube with a sliding valve between them. The sound analyzer plays a role of the 
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auditory system. It realizes the pitch extraction and the analysis of resonance characteristics 
of the generated sound in real time, which are necessary for the auditory feedback control. 
The system controller manages the whole system by listening to the produced sounds and 
generating motor control commands, based on the auditory feedback control mechanism 
employing a neural network learning. 
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Figure 1. Configuration of the talking robot 

3.2 Construction of Resonance Tube and Nasal Cavity 

The human vocal tract is a non-uniform tube about 170mm long in man. Its cross-sectional 
area varies from 0 to 20cm2 under the control for vocalization. A nasal tract with a total 
volume of 60 cm3 is coupled to the vocal tract. Nasal sounds such as /m/ and /n/ are 
normally excited by the vocal cords and resonated in the nasal cavity. Nasal sounds are 
generated by closing the soft palate and lips, not to radiate air from the mouth, but to 
resonate the sound in the nasal cavity. The closed vocal tract works as a lateral branch 
resonator and also has effects of resonance characteristics to generate nasal sounds. Based 
on the difference of articulatory positions of tongue and mouth, the /m/ and /n/ sounds 
can be distinguished with each other. 
In the mechanical system, a resonance tube as a vocal tract is attached at the sound outlet of 
the artificial vocal cords. It works as a resonator of a source sound generated by the vocal 
cords. It is made of a silicone rubber with the length of 180 mm and the diameter of 36mm, 
which is equal to 10.2cm2 by the cross-sectional area as shown in Figure 2 and 3. The silicone 
rubber is molded with the softness of human skin, which contributes to the quality of the 
resonance characteristics. In addition, a nasal cavity made of a plaster is connected to the 
intake part of the resonance tube to vocalize nasal sounds like /m/ and /n/.
By actuating displacement forces by stainless bars from the outside, the cross-sectional area 
of the tube is manipulated so that the resonance characteristics are changed according to the 
transformations of the inner areas of the resonator. DC motors are placed at 5 positions xj ( 
j=1-5) from the intake side of the tube to the outlet side as shown in Figure 2, and the 
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displacement forces Pj(xj) are applied according to the control commands from the motor- 
phoneme controller. 
A nasal cavity is coupled with the resonance tube as a vocal tract to vocalize human-like 
nasal sounds by the control of mechanical parts. A sliding valve as a role of the soft palate is 
settled at the connection of the resonance tube and the nasal cavity for the selection of nasal 
and normal sounds. For the generation of nasal sounds /n/ and /m/, the sliding valve is 
open to lead the air into the nasal cavity as shown in Figure 4(a). By closing the middle 
position of the vocal tract and then releasing the air to speak vowel sounds, /n/ consonant 
is generated. For the /m/ consonants, the outlet part is closed to stop the air first, and then 
is open to vocalize vowels. The difference in the /n/ and /m/ consonant generations is 
basically the narrowing positions of the vocal tract. 
In generating plosive sounds /p/ and /t/, the mechanical system closes the sliding valve 
not to release the air in the nasal cavity. By closing one point of the vocal tract, air provided 
from the lung is stopped and compressed in the tract as shown in Figure 4(b). Then the 
released air generates plosive consonant sounds like /p/ and /t/. 
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Figure 2. Construction of vocal tract and nasal cavity 

Figure 3. Structural view of talking robot 
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Figure 4. Motor control for nasal and plosive sound generation 

3.3 Artificial Vocal Cords and its pitch control 

 (A) Construction of Artificial Vocal Cords 

The characteristic of a glottal sound wave, which determines the pitch and the volume of 
human voice, is governed by the complex behavior of the vocal cords. It is due to the 
oscillatory mechanism of human organs consisting of the mucous membrane and muscles 
excited by the airflow from the lung. Although several researching reports about the 
computer simulations of these movements are available [12], the author have focused on 
generating the wave using a mechanical model [7].
In this study, we constructed new vocal cords with two vibrating cords molded with 
silicone rubber with the softness of human mucous membrane. Figure 5 shows the picture. 
The vibratory actions of the two cords are excited by the airflow led by the tube, and 
generate a source sound to be resonated in the vocal tract. 
Here, assume the simplified dynamics of the vibration given by a strip of a rubber with the 
length of L. The fundamental frequency f is given by the equation 

D
S

L
f

2

1= ,
 (1) 

by considering the density of the material D and the tension S applied to the rubber. This 
equation implies that the fundamental frequency varies according to the manipulations of L, 
S and D.
The tension of rubber can be manipulated by applying tensile force to the two cords. Figure 
6 shows the schematic figures how tensile force is applied to the vocal cords to generate 
sounds with different frequencies. By pulling the cords, the tension increases so that the 
frequency of the generated sound becomes higher. For the voiceless sounds, just by pushing 
the cords, the gap between two cords are left open and the vibration stops. 
The structure of the vocal cords proved the easy manipulation for the pitch control, since the 
fundamental frequency can be changed just by giving tensile force for pushing or pulling 
the cords. 
We constructed three vocal cords with different kinds of softness, which are hard, soft and 
medium. The medium one has two-layered construction: a hard silicone is inside with the 
soft coating outside.  
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Figure 5. Vocal cords 
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(a) Hard vocal cords 
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(b) Soft vocal cords 
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(c) Two-layered vocal cords 

Figure 7. Waveforms and spectra of three vocal cords 

Figure 7 shows examples of sound waves and its spectra generated by the three vocal cords. 
The waveform of the hard cords is approximated as periodic pulses, and a couple of 
resonance peaks are found in the spectrum domain. The two-layered cords generate an 
isolated triangular waveform, which is close to the actual human one, and its power in the 
spectrum domain gradually decreases as the frequency rises. 
In this study, the two-layered vocal cords are employed in the mechanical voice system. 
Figure 8 shows the vocal cords integrated in the control mechanism. 

(B) Pitch Control of Vocal Cords 

Figure 9 shows experimental results of pitch changes using the two-layered vocal cords. The 
fundamental frequency varies from 110 Hz to 250 Hz by the manipulations of a force 
applying to the rubber. 
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The relationship between the applied force and the articulated frequency is not stable but 
tends to change with the repetition of experiments due to fluid dynamics. The vocal cords, 
however, reproduce the vibratory actions of human actual vocal cords, and are also 
considered to be suitable for our system because of its simple structure. Its frequency 
characteristics are easily controlled by the tension of the rubber and the amount of airflow. 
For the fundamental frequency and volume adjustments in the voice system, two motors are 
used: one is to manipulate a screw of an airflow control valve, and the other is to apply a 
tensile force to the vocal cords for the tension adjustment. 

Figure 8. Vocal cords and control mechanism 
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Figure 9. Relation between tensile force and fundamental frequency 

(C) Adaptive Pitch Control 

Not only adjusting but also maintaining the pitch of output sounds is not easy tasks due to 
the dynamic mechanism of vibration, which is easily disturbed by the fluctuations of the 
tensile force and the airflow. Stable output has to be obtained no matter what kind of 
disturbance applies to the system. Introducing an adaptive control mechanism would be a 
good solution for getting such robustness [7],[8].
An adaptive tuning algorithm for the production of a voice with different pitches using the 
mechanical voice system is introduced in this section. The algorithm consists of two phases. 
First in the learning phase, the system acquires a motor-pitch map, in which the relations 

Vocal cords 

Tensile force 
DC motor for 
force control 
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between the motor positions and the fundamental frequencies are described. It is acquired 
by comparing the pitches of output sounds with the desired pitches for the vocalization. 
Then in the performance phase, the robot utters words by referring to the obtained map 
while pitches of produced voices are adaptively maintained by hearing its own outputs. 
Figure 10 shows a schematic diagram of the adaptive pitch learning in the learning phase. 
The algorithm simulates the pitch learning process of a human in practicing singing. The 
algorithmic process of the pitch acquisition in the system controller is shown in the dotted 
lines. The pitch-tuning manager manages the behaviors of all the other units presented in 
the boxes. The system starts its action by receiving a present-position vector vp as a 
command to let the motors move. Actual values of the vector elements can be estimated by 
the work of calculations in the pitch-to-motor translator, which is trained in advance to 
output desired motor positions from pitches of produced sounds according to the relations 
between tensile force and fundamental frequency as shown in Figure 9. 
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Figure 10. Adaptive pitch learning 

First, the system controller starts with setting arbitrary values as a present-position vector to 
send to the vocal system. The fundamental frequency of the generated sound is calculated 
by the sound analyzer of the auditory system which realizes FFT calculations in realtime. 
Since the desired pitches of the produced sounds are assumed to be lower than 500 Hz in 
the vocal system, the sampling frequency is set to 1kHz. The analysis window of 1024 points 
are chosen and the frequency resolution is about 1Hz in this system. After applying the 
Hamming window, the produced sound wave data are fed to the FFT algorithm and the 
fundamental pitch is extracted. To compare with the desired pitch, the difference between 
the two pitches is obtained according to the tuning signal trigger generated by the tuning 
manager. The tuning signal, in the same instant, drives the pitch-to-motor translator to let 
the motors work. As the feedback process repeats, the pitch difference between the target 
pitch and the produced pitch decreases. When the pitch difference becomes smaller than a 
predetermined threshold value, which is currently set to 0.6 Hz, the judgment-signal unit 
arises, so that the present-position vector is associated with the target pitch and stored as the 
motor-pitch map. 
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The results of the pitch learning based on the auditory feedback are shown in Figure 11, in 
which the system acquired the sound pitches from C to G. The system was able to acquire 
vocal sounds with desired pitches. 

3.4 Learning of Vowel and Consonant Vocalization 

The neural network (NN) works to associate the resonance characteristics of sounds with 
the control parameters of the six motors equipped in the vocal tract and the nasal cavity, as 
shown in Figure 12. In the learning process, the network learns the motor control commands 
by inputting 10th order LPC cepstrum coefficients derived from vocal sound waves as 
teaching signals. The network acquires the relations between the sound parameters and the 
motor control commands of the vocal tract. After the learning, the neural network is 
connected in series into the vocal tract model. By inputting the sound parameters of desired 
sounds to the NN, the corresponding form of the vocal tract is obtained.
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Figure 12. Neural network for vocalization learning 

In this study, the Self-Organizing Neural Network (SONN) was employed for the adaptive 
learning of vocalization. Figure 13 shows the structure of the SONN consisting of two 
processes, which are an information memory process and an information recall process. 
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After the SONN learning, the motor control parameters are adaptively recalled by the 
stimuli of sounds to be generated. 
The information memory process is achieved by the self-organizing map (SOM) learning, in 
which sound parameters are arranged onto a two-dimensional feature map to be related to 
one another. 
Weight vector Vj at node j on the feature map is fully connected to the input nodes xi [i =1, ... 
, 10], where 10th order LPC cepstrum coefficients are given. The map learning algorithm 
updates the weight vectors Vj -s. A competitive learning is used, in which the winner c as the 
output unit with a weight vector closest to the current input vector x(t) is chosen at time t in 
the learning. By using the winner c, the weight vectors Vj -s are updated according to the 
rule shown below; 
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Here, || rc - rj || is the distance between units c and j in the output array, and Nc is the 
neighborhood of the node c. α(t) is a learning coefficient which gradually reduces as the 
learning proceeds. σ(t) is also a coefficient which represents the width of the neighborhood 
area.
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Then in the information recall process, each node in the feature map is associated with 
motor control parameters for the control commands of six motors employed for the vocal 
tract deformation, by using the three-layered perceptron. In this study, a conventional back-
propagation algorithm was employed for the learning.  
With the integration of the information memory and recall processes, the SONN works to 
adaptively associate sound parameters with motor control parameters. 
In the current system, 20x20 arrayed map V =[V1 , V2 , ..., V20 x20 ] is used as the SOM. For 
testing the mapping ability, 150 sounds randomly vocalized by the robot were mapped onto 
the map array. After the self-organizing learning, Japanese five vowels vocalized by six 
different people (No.1 to 6) were mapped onto the feature map, which is shown in Figure 
14. Same vowel sounds given by different people were mapped close with each other, and 
five vowels were roughly categorized according to the differences of phonetic 
characteristics. We found that, in some vowel area, two sounds given by two different 
speakers fell in a same unit in the feature map. It means the two different sounds could not 
be separated although they have close tonal features with each other. We propose a 
reinforcement learning algorithm to optimize the feature map. 

3.5 Reinforcement Learning of Japanese Five Vowels by Human Voices 

SONN gave fairly good performance in the association of sound parameters with motor 
control parameters for the robot vocalization, however redundant sound parameters which 
are not used for the Japanese speech are also buried in the map, since the 150 inputted 
sounds were generated randomly by the robot. Furthermore, two different sounds given by 
two different speakers are occasionally fallen in the same unit. The mapping should be 
optimized for the Japanese vocalization. 
The reinforcement learning was employed to establish the feature map optimized. After the 
SONN learning, Japanese five vowel sounds given by 6 different speakers were applied to 
the supervised learning as the reinforcement signal to be associated with the suitable motor 
control parameters for the vocalization. 
Figure 15 shows the result of the reinforcement learning with Japanese 5 vowels. The 
distribution of same vowel sounds concentrates with one another, and the patterns of 
different vowels are placed apart. 

3.6 Reinforcement Learning of Japanese Five Vowels by Human Voices 

After the learning of the relationship between the sound parameters and the motor control 
parameters, we inputted human voices from microphone to confirm whether the robot 
could speak autonomously by mimicking human vocalization. 
Figure 16 shows the comparison of spectra between human vowel vocalization and robot 
speech. The first and second formants F1 and F2, which present the principal characteristics 
of the vowels, were formed as to approximate the human vowels, and the sounds were well 
distinguishable by listeners. 
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Figure 16. Comparison of spectra of Japanese /i/ and /o/ vowel 

We also verified the robot's vocalization motion. In the /a/ vocalization, for example, the 
glottal side was narrowed while the lip side was open, which was the same way as a human 
utters the /a/ sound. In the same manner, features for the /i/ pronunciation were acquired 
by narrowing the outlet side and opening the glottal side. 
The experiment also showed the smooth motion of the vocalization. The transition between 
two different vowels in the continuous speech was well acquired by the SONN learning. 
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Figure 17 shows two experimental results of the temporal motor control values of the vocal 
tract in the speech /ai/ and /iu/, where the motor values are autonomously generated by 
SOM as shown by the dotted arrows in Figure 15. The /a/ vocalization was transited to /i/
vocalization, then /u/ speech smoothly. 
Nasal sounds such as /m/ and /n/ are generated with the nasal resonance under the 
control of the valve between the nasal cavity and the vocal tract. A voiced sound /m/ was 
generated by closing the lip and leading the sound wave to the nasal cavity, then by 
opening the lip and closing the nasal valve, the air was released to the mouth to vocalize /o/
sound.  
Figure 18 shows generated sound waves in the vocalization of /mo/ and /ru/, where the 
smooth transition from consonant sounds to vowel sounds was achieved by the acquired 
articulations.

 (a) Vocalization  /a/ to /i/ (b) Vocalization  /i/ to /u/

Figure 17. Transition of motor control values in vocalization 

     

(a) /ma/ vocalization (b) /ru/ vocalization 

Figure 18.  Results of /mo/ and /ru/ vocalizations 

4. Listening experiments

For the assessment of speech vocalized by the robot, listening experiments were conducted 
and voices were evaluated by questionnaires. 14 able-bodied subjects (9 males and 5 
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females) listened to 11 Japanese words and 1 English word given by the robot, while they 
were watching the motion of the robot vocalization, and answered what they thought it 
said. The results are shown in Table 1. 
The words /Uma/ and /Ai/ were perfectly recognized by all the listeners, and 70.2 % 
recognition was achieved in average. The clarity of /r/ consonants was not enough to be 
distinguished, since the robot is not equipped with a flexible tongue to generate fricative 
sounds, and the sounds were often mis-recognized by the listeners as nasal sounds. Some 
listeners commented that the actual motion of the speech by the robot helped them to 
estimate what it speaks, although the speech itself was not clear enough. 

Words Correct # Listened as 

MonoMane 8 Mamomame, Mamamama 

Raion 8 Airon, Naiyo, Nyanyane 

Inu 9 Nna, Ushi 

Uma 14 - 

Momo 12 Oh-oh- 

Remon 5 Imo, Ranran, Meron 

Meron 9 Remon 

Umi 9 Suna, Ume 

Nami 12 Hami, Ii 

Marimo 10 Mambo, Menzu, Mamma 

Ai 14 - 

Good-bye 8 Umai, Good-night 

Average 9.8 Recognition rate: 70.2% 

Table 1. Results of listening experiments 

5. Singing Performance with Adaptive Control 

The robot is able to sing a song by referring to the acquired maps for controlling its vocal 
organs. The schematic diagram of the singing performance is shown in figure 19. The 
performance-control manager takes charge of two tasks; one is for the performance 
execution presented by bold lines in the figure, and the other is for the adaptive control of 
pitches and phonemes with the auditory feedback during the performance. The score-
information unit stores melody lines as sequential data of pitches, durations, phonemes and 
lyrics.  Figure 20 shows one of the user interfaces , by which a user inputs musical score 
information for the singing performance. 
The singing performance is executed according to the performance signals generated by the 
performance-control manager. The manager has the internal clock and makes a temporal 
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planning of note outputs with the help of the duration information in the score-information 
unit. The note information is translated into present-position vectors by referring to the 
motor-pitch map and the motor-phoneme map. 
During the performance, unexpected changes of air pressure and tensile force cause the 
fluctuations of sound outputs. The adaptive control with the auditory feedback is 
introduced in this mechanical system by hearing the own output voices. The auditory units 
observe errors in the pitch and the phoneme so that the system starts fine tuning of 
produced sounds by receiving the tuning-signal trigger under the control of the 
performance manager. The motor-pitch / motor-phoneme maps are also renewed by the 
map-rewrite signal. The system is able to realize a stable singing performance under the 
adaptive mechanical control using the auditory feedback. 
An experimental result of the singing performance is presented in Figure 21. In spite of the 
unexpected disturbances being applied or the drop of an air pressure in an air pump, the 
system was able to maintain the target pitch. 
The system autonomously performs singing as a robot by generating performance signals 
which are governed by the internal clock in the computer. The robot also makes mimicking 
performance by listening and following a human singer. The auditory system listens to a 
human singer and extracts pitch and phonemes from his voice in realtime. Then the pitch 
and phonemes are translated into motor-control values to let the robot follow the human 
singer. 

Mechanical
Voice System

Auditory System

(Pitch and Spectra 

Extraction) 

Motor-Pitch
   Map 

Performance

Adaptive Control

Performance Ctrl Manager
Score Information

RewriteAdaptive
 Pitch 
Control

Motor-Phoneme 
Map 

Figure 19.  Singing performance with adaptive control 
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Figure 20.  An interface for singing performance 
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Figure 21.  Result of singing performance 

6. Conclusions 

In this paper a talking and singing robot was introduced, which is constructed mechanically 
with human-like vocal cords and a vocal tract. By introducing the adaptive learning and 
controlling of the mechanical model with the auditory feedback, the robot was able to 
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acquire the vocalization skill as a human baby does when he glows up, and generate vocal 
sounds whose pitches and phonemes are uniquely specified. 
The authors are now working to develop a training device for auditory impaired people to 
interactively train the vocalization by observing the robot motion. The mechanical system 
reproduces the vocalization skills just by listening to actual voices. Such persons will be able 
to learn how to move vocal organs, by watching the motions of the talking robot. 
A mechanical construction of the human vocal system is considered not only to have 
advantages to produce natural vocalization rather than algorithmic synthesis methods, but 
also to provide simulations of human acquisition of speaking and singing skills. Further 
analyses of the human learning mechanisms will contribute to the realization of a speaking 
robot, which learns and sings like a human. The proposed approach to the understandings 
of the human behavior will also open a new research area to the development of a human-
machine interface. 
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1. Introduction     

Robots are expected to play a much more active role in our daily lives in the near future. 
Since there are large differences in social aspects between short-term interaction in a 
laboratory and long-term interaction in real life, it is imperative to conduct experiments with 
a robot that interacts with people every day in their real daily lives to develop such robots in 
the future. 
Jijo-2 (Matsui et al., 1997) was developed as an office-conversant robot that informs people 
where a person is, guides them to a room, and so on. Also, a museum guiding robot 
(Burgard et al. 1998) has been developed. They both interacted with people on a daily basis, 
and their interactions were designed to achieve tasks such as providing information about a 
person, guiding a visitor to a room, or explaining displays. However, communication is not 
just for achieving tasks but also for building social relationships. For example, when people 
chat with others, there may be no explicit intention to exchange information; it is just 
conversation. Although such kinds of interaction without explicit intention might seem 
unnecessary, we think they increase familiarity which serves as the basis of smooth 
communication to achieve tasks. This means we will prefer the robot most familiar to us 
when encountering two robots that are functionally identical.  
We call such an interaction that increases familiarity and facilitates communication “social 
interaction.” Our interest is in how to realize such interactions in a robot and what makes an 
interaction a social one. To investigate these issues it is necessary to perform experiments in 
daily life environments. For the first step of our research, we have developed a human-sized 
version of Robovie, Robovie-IV. Robovie-IV features interaction abilities including voice 
chats, which are intended to be “social interactions.” Using Robovie-IV we conducted an 
experiment in which it interacted with people in their daily life in our office environment for 
six months. 
This chapter is arranged as follows. In Section 2, we discuss how to implement daily 
interactions between a human and a robot, and then in Section 3 we discuss the 
requirements for a robot to carry out everyday communication. In Sections 4 and 5 
respectively we briefly introduce the hardware and software architecture of Robovie-IV. 
Section 6 outlines the implementation of the base software for the daily interaction, and 
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Section 7 describes our experiment and observations. Finally, we discuss the results and 
offer conclusions in Section 8. 

2. Daily interaction between humans and robots 

Isbell et al. (Isbell et al., 2001) have realized an agent that can participate in a chat session 
over the Internet. The agent learns how to interact in a chat with rewards given by other 
human participants. Kubota et al. (Kubota et al., 2000), meanwhile, have created an agent 
that chats with people using a type of corpus based on exchanged E-mails on a mailing list 
that discusses drinks. These agents and the method to build the corpus are free from speech 
recognition, speech synthesis (text-to-speech), and so on since electrical texts are given.  
It is still difficult, however, to dictate our daily conversations and to build a usable corpus 
by current voice recognition methods. Also, there are many differences between chats over 
the Internet and our daily face-to-face chats. To the best of our knowledge, there is no 
corpus presently usable for daily human-robot conversation. Consequently, we have 
decided to implement rule-based interactions between a human and a robot including chats.  
There are four modes in human-robot interaction:  
• Mode A) the human makes the first move and does not wait for the robot's reaction; 
• Mode B) the human makes the first move and expects a reaction from the robot;  
• Mode C) the robot makes the first move and does not wait for the human's reaction; and 
• Mode D) the robot makes the first move and expects a reaction from the human. 
Patting a robot's shoulder or head is an example of interaction Mode A. In the case where a 
human passes by without expecting a reaction from the robot, it is not necessary to explicitly 
implement interactions. Approaching, touching, talking to, and making a gesture to the 
other are examples of Modes B and D, while saying "hello” is an example of interaction 
Mode C. We regarded Mode D as most important and mainly implemented the interactions 
where the robot actively tries to talk with a human when the distances between them are 
within a certain range. For Mode B, we mainly implemented reactions in which a human 
touched the robot's skin.  
We classify the interactions in Mode D into four types, according to sensor information: 
• Type1) interactions in which a robot can continue to play regardless of the sensor 

values, without making people feel that there is something wrong with them;
• Type2) interactions that may comprise reactions that rely only on simple sensor 

information; 
• Type3) interactions that need voice recognition, but mis-recognitions do not lead to 

severe discomfort; and 
• Type4) interactions that need voice recognition, and mis-recognitions lead to severe 

discomfort. 
Greetings and performances like a dance are examples of Type1 interactions, and giving 
responses is an example of Type2 interaction. When a person is drinking something, the 
robot might ask “What are you drinking?” Without recognizing the answer, the robot can 
say “I would like to drink it too,” A Type2 interaction does not need voice recognition even 
if the communication type is a chat. Both Type3 and 4 interactions use the result of the voice 
recognition system; the differences are their required recognition accuracy. Suppose the 
robot says “Let's play,” and fails to recognize the person's vocal response of “no,” and  it 
starts to play. The human may feel it is selfish but this is not serious problem. However, if 
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the voice recognition fails for a word used in the robot's response from the robot, the human 
will easily detect the failure. 
We are mainly implementing Type2 and 3 interactions because too many Type1 interactions 
reduces humans' interest in the robot, and Type4 interactions disappoint the human if voice 
recognition fails. For Type4 interactions, we needed to carefully construct a voice 
recognition dictionary in order to reduce the number of failures. 
To talk about current events, we prepared fixed-form rule-based chats that included sensing 
results, chat histories, dates and times, and information from the Internet. For example, how 
many people the robot met today, who it met, current weather, and so on. We incrementally 
added interaction rules to Robovie-IV since we incrementally learned what were expected 
interactions. Robovie-IV had 12 Type1, 11 Type2, 49 Type3, and 2 Type4 interactions at the 
end of the experiment.  

3. Requirements for a communication robot 

What capabilities are necessary for a communication robot? At least the following 
requirements are needed to achieve natural and effective human-robot communication. First 
of all, the robot should be self-contained. Although its computers, database systems, and 
even sensors can be outside its body, it should have mechanisms to perform both verbal and 
nonverbal communication by itself. Furthermore, it should be able to move around with no 
wires for smooth communication because the distance between a person and a robot cannot 
be ignored when attempting to achieve effective communication. Also, it should not have an 
outward appearance that frightens or discomforts people.  
Second is the capability of haptic communication because haptic communication is as 
important as vision and voice. People who are familiar with each other often touch each 
other's hair or hug each other; such haptic interaction reinforces their familiarity. If a 
communication robot equipped with tactile sensors over its entire body could have the same 
haptic interaction capability as human do, the robot would become more familiar, thus 
shortening its communicative distance from people. To study haptic communication, we 
have previously developed two types of humanoid robots, Robovie-IIS and Robovie-IIF, 
that have tactile sensors embedded in a soft skin that covers the robot's entire body 
(Miyashita et al., 2005). These robots were developed based on Robovie-II (Ishiguro et al. 
2001). Fig. 1 shows overall views of Robovie-IIS, Robovie-IIF, and a scene of communication 
with a human. Robovie-IV has tactile sensors based on the technique we used for these 
robots.

         
Figure 1. From left to right, Robovie-IIS, Robovie-IIF, and haptic interaction between 
children and Robovie-IIS. 
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Third is the locomotion mechanism that can generate involuntary motions. Human motion 
can be classified into two types: voluntary and involuntary motion (Bruno, 2002, Zheng, 
1990, Wu 1991). Voluntary motions are a set of motions made to achieve given tasks or 
intentions. Going to a certain place, moving an arm forward for a handshake, vocalization to 
say hello, and reacting to a pat in order to know who did it are such examples. Involuntary 
motions, on the other hand, are a set of incidental motions such as feedback control arising 
in response to physical stimuli from the environment without prior planning or motivation. 
These motions do not correspond to tasks directly but instead consist of motions that make 
the robot appear to behave more naturally. Robovie-III was developed to enable involuntary 
motion for a robot (Miyashita & Ishigruro, 2004). It uses a wheeled inverted pendulum 
mechanism for locomotion. Since the inverted pendulum is controlled by  feedback on its 
posture, involuntary motion of the whole body occurs. In addition to effecting involuntary 
motion, the wheeled inverted pendulum has a unique feature: When some external force is 
applied to the body from its front, it moves backwards. Since its wheels are controlled to 
maintain its posture, it moves backwards to keep the posture as it tilts backwards due to the 
applied force. We also adopt the wheeled inverted pendulum mechanism for Robovie-IV. 
Fourth is human recognition. People expect a robot to be able to find and identify them. 
Many methods for human detection and identification using images have been proposed; 
however, with current computational power and video camera resolution and viewing 
angles, conditions under which those methods work are still limited. Consequently, we 
decided to use a laser range sensor to find human leg candidates and an optical/RF tag 
system for human identification. Robovie-IV finds leg candidates using a laser range sensor, 
verifies the results with its camera, and identifies the detected human with a tag.  
Based on the above discussion, Robovie-IV is designed as a robot 1) whose height is the 
same as a child's; 2) whose whole body is covered with soft, light-colored skin for a soft look 
and touch;  3) with many tactile sensors are embedded in the soft skin; 4) which can move in 
two modes, one is a normal wheeled robot mode with passive casters, and the other is the 
inverted pendulum mode; and 5) which has optical and RF tag readers and laser range 
sensors for human identification.  

4. The hardware Implementation 

Fig. 2 shows front and side views of Robovie-IV. The height of the robot is about 1.1 m, 
which is smaller than the Robovie-II/II-S/II-F models (which are 1.2 m high). As the figure 
shows, it has two arms each with four degrees of freedom, one head with pan, tilt, and roll 
joints, four support wheels (passive casters), two drive wheels, and one jack to enable the 
inverted pendulum state. Robovie-IV is equipped with two video cameras with pan and tilt 
joints, one camera with an omni-directional mirror, a microphone (attached on the omni-
directional mirror as in Fig. 3) and speaker, an optical tag reader (easily detachable, not 
shown in the figure), and an RF tag reader (the system is based on the active tag system 
called Spider by RF Code Inc.). Robovie-IV also features two laser range sensors in the front 
and back, two gyros that sense the same axes (we use two to take the average of their 
outputs in order to reduce random noise, and to detect failure so that the robot does not fall 
over), and 56 tactile sensors. 
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Figure 2.  Front and left-side views of Robovie-IV. Fitted actuators and sensors are shown. 

Figure 3. A microphone, attached on a omni-directional mirror, is located on top of the head 

4 support wheels 
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Figure 4. Arrangement of the skin sensor elements. There are 56 sensors in its soft skin (#16 
is not implemented). 

Fig. 4 displays the arrangement of the sensor elements that are embedded in the soft skin. 
The figure clearly shows that there are tactile sensors under the nose, ears, and in the 
thumbs for Robovie-IV to sense contact to those areas.  
Fig. 5 shows Robovie-IV's hardware architecture. There are four PID motor controllers 
connected to a PC via RS-232 dedicated for wheels, left and right arms, and neck joints. The 
jack and the inverted pendulum are controlled by the motor controller. Two laser range 
sensors and optical and RF tag readers, and cameras with pan/tilt joints are also connected 
to the PC via RS-232. Signals from the tactile sensors are fed to five skin processors. The 
processed signals are then sent to the PC via the RS-422 bus. Images from three cameras are 
captured by a frame grabber installed on the PC. A speaker and a microphone are connected 
to the sound output and input of the PC. Each controller has a SH2 micro-processor 
(Renesas Technology Corp.) and the main computer has a Pentium-M processor that runs at 
2 GHz. The PC can be connected to the sensors via a wireless LAN.  
The flow of sound signals is shown in Fig. 6. The sound signal recorded by a microphone 
(monaural) is fed to two high-pass filters (fc = 100Hz) followed by a low-pass filter 
(fc=2kHz). The LPF’s output is fed to the input of the PC’s sound card. The two HPFs and 
the LPF are 2nd order active filters which consist of OP-amps. The HPFs are used to reduce 
wind noise. The sound signal from the microphone is sampled at a 16kHz sampling rate 
with 16 bits of accuracy by a speech recognition program. The output from the PC is 
amplified and fed to a speaker which is located in the head of Robovie-IV. 
Fig. 7 shows the structure of a tactile sensor element embedded in the soft skin. As the figure 
illustrates, the soft skin consists of four layers. The outside layer is made of thin silicone 
rubber, and the middle layer is made of thick silicone rubber. We use these silicone rubber 
layers to realize humanlike softness. The inner layer is made of urethane foam, which has a 
density lower than that of the silicone rubber; the densities of the urethane foam and the 
silicone rubber are 0.03 g/cm3 and 1.1 g/cm3, respectively. The total density of the soft skin, 
including all layers, is 0.6 g/cm3. Robovie-IV's tactile sensor elements are film-type 
piezoelectric sensors inserted between the thin and thick silicone rubber layers. These film-
type sensors, consisting of polyvinylidene fluoride (PVDF) and sputtered silver, output a 
high voltage proportionate to changes in applied pressure. Since the middle and the inner 
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layers deform easily upon human contact with the skin, the sensor layer can easily detect the 
contact.
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Figure 5. Robovie-IV's hardware architecture. There are four motor controllers, five skin 
processors, and one main computer.  
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Figure 6. The flow of sound signals. The sound signal from a microphone is fed to the PC’s 
on-board sound card via two HPFs and a LPF. The sound from the PC is amplified and fed 
to a speaker. 
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Figure 7. The skin's structure, which consists of four layers. The piezoelectric sensor is 
inserted between the outer and middle layers. 

Figure 8. The drive wheels are connected by a jack to the main body and support wheels. 
The figure shows the inverted pendulum mode. 

Fig. 8 illustrates how the drive wheels, the support wheels, and the jack are connected. The 
support wheels are connected to the main body directly, while the drive wheels are 
connected via the jack. Robovie-IV can select two locomotion modes, with or without 
support wheels, by controlling the jack. With the support wheels, Robovie-IV moves as a 
normal robot with two drive wheels, but without them, it moves in the inverted pendulum 
mode. We use the wheeled inverted pendulum controller proposed by Ha and Yuta (Ha & 
Yuta, 1994).

5. The Software Implementation 

Fig. 9 presents an overview of Robovie-IV's software architecture. The PC's operating 
system is Linux, and a box with bold line in the figure indicates a process running on Linux. 
There are five processes, robovie4, robobase4, robomap4, PostgreSQL, and Julian. The processes 
are connected through named pipes, sockets, and shared memory. The process robovie4
makes decisions for the robot from the internal state, information in the database, and the 
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sensor information gathered and processed by the other processes. Processors on the motor 
controllers control motors as directed by a program called robobase4 running on the PC. 
Process robobase4 handles the communication between controllers and sensors while hiding 
the differences of the protocols from robovie4. Process robomap4 is the one for self-
localization. It receives information from the two laser range sensors and odometry from 
robobase4 and compares this information with the map of the environment. The estimated 
position is returned to robobase4 and sent to robovie4. The PostgreSQL (see 
http://www.PostgreSQL.org/) is a popular database engine. We use the database to store 
and recall co-experiences with humans.  
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Figure 9. Robovie-IV's software architecture. The PC's OS is Linux. There are five processes 
robovie4, robobase4, robomap4, PostgreSQL, and Julian.

The Julian process is that of a grammar-based recognition parser called “Julian.” Julian is a 
modified version of Julius, which is a high-performance, two-pass large-vocabulary 
continuous speech recognition (LVCSR) decoder software for speech-related researchers and 
developers. We have prepared manually designed deterministic finite automata (DFA) 
grammar as the language model and use it for the speech recognition by Julian.  The robovie4
process connects to the Julian process and commands dictionary selection and so on. The 
recognized words are sent back to robovie4.
We adopted a text-to-speech program called CHATR (Campbell & Black, 1996) to produce 
Robovie-IV’s voice. The robobase4 process calls CHATR when it is commanded to utter text 
by the robovie4 process. The synthesized voice is fed to the speaker through the on-board 
sound card in the PC. 
The robovie4 process mainly consists of an event handler written in C++ and tasks written in 
Lua (see http://www.Lua.org/), which is a scripting language that can be embedded in a C 
or C++ program. Tasks written in Lua run in parallel by the collaborative multithreading 
supported by Lua. There are task threads to do dialogue, react to tactile events, track a 
human's face, track legs, and so on. The events from sensor values are detected in the event 
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handler, negating the need to copy an event detection for each task thread. The event 
handler in robovie4 continuously, 
1. collects sensor values from julian and robobase4;
2. detects events;  
3. sends events to task threads;  
4. receives commands from task threads; and  
5. sends commands to robobase4 as in Fig. 9. 
Each of the task thread continuously, 
1. waits for events from the event handler;  
2. reads sensor values sent from julian or robobase4; reads from and writes to the database; 

and
3. decides the next action.  
The dialogue task is responsible for human-robot interactions and controls other task 
threads. In terms of the four modes of human-robot interaction defined earlier, the dialogue 
task does not react to Mode A (human-initiated non-waiting) interactions since no reaction 
is expected. It just records the event, such as someone patting the robot's head. When a 
Mode B (human-initiated waiting) interaction, such as a human approaching the robot, is 
detected, the task tries to take the initiative and move to the interaction Mode D (robot-
initiated waiting) by initiating a dialogue. Although people may feel that the robot 
interacted in Mode C (robot-initiated non-waiting), no Mode C interaction is explicitly 
implemented.
An interaction in Mode D repeats the following until its end. 
1. The robot speaks and makes a gesture,  
2. the robot waits for an answer or reaction from the human, and 
3. the robot reacts according to the answer. 
The Type1 interactions do not have steps 2) and 3). The Type2 interactions do not use the 
result of Julian but just use the fact that the human utterance ends. The Type3 and Type4 
interactions react according to the result of voice recognition. The Type3s do not repeat a 
word which the human uttered, while the Type4s directly include it in the robot's answer.  

6. The daily interactions 

Basically, Robovie-IV repeats (a) moving around, seeking a human to interact with; and (b) 
interaction with the found human until he or she quits the interaction as Fig. 10 shows. 
Robovie-IV detects humans by first finding leg candidates from front laser range-sensor 
values by background subtraction, large sound, or reading of RF-ID tag. The laser range 
sensor measures distances at the height of an ankle. Fig. 11 illustrates the readings of the 
range sensor plotted on the floor map. The circle on the right and the line indicates the 
position and the posture of Robovie-IV from self-localization data based on map matching. 
Clearly, the walls and cartoon boxes are detected by the sensor, whereas distant walls are 
not detected since the sensor's maximum range is 4 m. The two small circles in front of the 
circle representing the robot indicate detected legs. The circle on the left of the robot, 
however, is a falsely detected leg candidate. When a leg candidate is found, Robovie-IV 
rotates itself and gazes in the direction of the leg candidate. If a large skin-colored blob or a 
large blob in a differential image is detected by Robovie-IV's camera, or the tag reader 
detects a valid ID, it assumes the candidate to be a human leg. During interaction, it tracks 
the skin-colored blob at the shortest distance in the direction of the leg candidate and 
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maintains that distance and posture with respect to the leg candidate. The tag reader's 
attenuator is adjusted to detect tags within 1.5m of Robovie-IV. 
Fig. 12 shows the flow of one of Robovie-IV’s typical interaction. Once it has detected a 
human  (Fig. 12 (a)), it will try to interact with him or her. It will say “hi” in Japanese and 
wait for the response (Fig. 10 (a) and 12 (b)). If it does not detect a response it will begin to 
seek another human; otherwise, it will recognize the person as an interaction partner. Then 
it starts a dialogue as in Fig . 10 (b) and Fig. 12(c). It continues by selcting a topic and trying 
to chat with the person. In the chat, it repeats the following sequence of actions: 1) stop 
speech recognition, 2) do a gesture and/or say something, 3) change DFA grammar of Julian
and start speech recognition (not for Type2 interactions), 4) wait for a reply, a reaction, or 
some time to elapse. The end condition of the chat is met when the person says “bye-bye” or 
goes away. Then, it says “bye-bye” and searches for the next person to talk with (Fig. 12 (d).) 
Interaction rules are derived from the Lua program (functions), gestures, and DFA 
grammars for Julian. There are more than 70 interaction rules and Lua codes implemented, 
with more than 5,000 lines of code. There are three branches on average on the conditional 
branches of Type2, 3, and 4 interactions.  

Wander about

Found a human

(legs, large sound, 

or RF-ID tag) 

Stop and say ``hi’’

Got reply

Wait reply

Have a dialogue

Yes

Yes

No

No

Select a topic

Do a gesture and/or 

say something

Wait reply, reaction, or 

time elapse

Stop speech 

recognition

Change DFA grammar and start 

speech recognition

End of topic rule

Met end condition

Say ``bye-bye’’

Yes

Yes

No

No

(a) flow of moving around and 
seeking a human to interact with 

(b) flow of interaction with a human 

Figure 10. Flow of Robovie-IV’s daily interaction. Robovie-IV wander around to search for a 
human to talk with (a) and have a dialogue (b).  



Robust Speech Recognition and Understanding 416

Figure 11. A depth image plotted on the floor map by a laser range  sensor. A circle and a 
line on the right indicate Robovie-IV's  position and posture. Two circles in front of the robot 
are detected  legs. The larger circle to the left of the robot is a false detection. 

1) search for a human to talk with 2) find a human and say “hi” 

3) have a chat 4) say “bye-bye” 

Figure 12. Flow of a typical interaction that Robovie-IV tries to do. 1) it searches for a human 
to talk with, 2) say “hi”, 3) have a chat, and 4) say “bye-bye”.  
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Robovie-IV records the results of interaction to the database. Examples of results include 
with whom it interacted, which rule it used, when the interaction rule started and finished 
being used, the response from the human, how long the human moved, how many times it 
met with a person, and so on. It also records the number of leg candidates, skin-colored 
blobs, and Ids detected by the tag reader in a certain interval. Robovie-IV uses the data in 
the database in order not to repeat same interaction, to say it has met many people today, 
and so on. It also talks about current weather based on the information from the Internet. 

7. Observation of Daily Human Robot Interaction in an Office Environment 

We have conducted a long-term experiment in our office at ATR's IRC laboratory for six 
months. Robovie-IV roamed around the office and interacted in our daily life. In the office 
there were about 100 people including researchers, engineers, and secretaries. The total 
length of the corridor in which Robovie-IV could move was about 150 meters. We 
implemented interactions resembling those of a child in an office who comes along with its 
parent, since the height of the Robovie-IV is about 1.1 m, similar to that of a child. We 
incrementally added interactions and updated other items of software during the 
experiment. Fig. 13 (a) and (b) show a scene in the office and an example of interaction.  
Fig. 14 shows some scenes from the daily experiment,  (a) Robovie-IV trying to 
communicate,  (b) a person patting the robot's head while passing by, (c) two people talking 
to each other, one toying with the robot's nose, (d) a person covering the robot's eyes, and  
(f) Robovie-IV interacting with a person.  In scene (e), following its usual human-seeking 
behavior, Robovie-IV moved into the middle of a conversation in progress.  At this stage, of 
course, Robovie-IV is unable to meaningfully join such a conversation. Robovie-IV did not 
always interact with detected humans as in Fig. 14 (a) because the experimental 
environment was an office and people were busy with their jobs.  Though the novelty of 
having Robovie-IV in the office had worn off, people still noticed it out of the corner of their 
eye while working, indicating that they were still aware of its presence, and that it was 
gradually changing its behavior. Robovie-IV is still under development, but it has become a 
robot that makes its presence felt by people.  

(a) Robovie-IV is roaming in the office at 
ATR's IRC laboratory 

(b) A person is communicating with  
Robovie-IV. The robot is asking if the 

person likes watching baseball 

Figure 13.  Scenes from the experiment in our office. (a) shows Robovie-IV and the office 
that it roamed around. (b) shows an example of interaction 
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(a)Robovie-IV trying to communicate (b)A person patting the robot's head 
while passing by 

(c)  Two people talking to each other, one 
toying with the robot's nose 

(d) A person covering the robot's eyes 

(e) Robovie-IV moving into a conversation 
in progress 

(f) Robovie-IV interacting with a 
person

Figure 14. Some scenes from the daily experiment. 

There still remain some technical issues to be solved. One is the timing to say hello to a 
person passing by. There were cases that he or she would walk away before Robovie-IV 
started its greeting. The second issue is that there are people who are not getting used to 
conversing with Robovie-IV. Julian does not allow overlapping of human and robot voices 
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without external sound processing. Also there is a sweet spot in the microphone where the 
success rate of recognition increases. We do not have answers to deal with these issues yet. 

Furthermore, there are different feelings toward what a robot actually does. When Robovie-
IV asks, “What are you drinking?”, even if a person is not drinking, one would feel it is very 
strange that the robot does not understand the situation. The person might feel that is 
interesting, however, that the robot is making small talk, so he or she answers the question. 
What kinds of interaction increase familiarity and make communication smoother is still 
open question. We think this question will be answered by having more experiment and 
adding more types of interaction.  

8. Fundamental Issues and Conclusions 

An interaction robot communicating with people in everyday life is the key to revealing the 
social relationships of a robot among people. Long-term everyday interactions are necessary 
to observe and analyze the following;  
• Influence of a robot on people's sense of time, e.g. whether a robot's behavior reminds 

us of the current time; for example, if the robot establishes a “habitual” routine of 
behaviors based on the time of day, could it serve to make people aware of the time? 

• The relationship between a robot's task and its preferred social interactions, e.g. what 
kinds of interactions are necessary for a cleaning robot, a secretary robot, a guiding 
robot, or a robot that  carries heavy objects in tandem with a human; 

• Preferred types of human-robot dialogues according to the social relationship and the 
robot's task, e.g. whether simple statements are preferred, colloquial language is 
preferred, or new type of  language emerges; 

• The social role of a robot among people, e.g. whether a robot will be perceived to be 
“alive” in a way that is different from humans, plants, pets, inanimate objects, and so 
on, and what factors contribute to this perception;  

• What kind of social behaviors would be acceptable to different communities.  
We believe our daily experiment is the first step to reveal these fundamental issues.  
In this chapter, we proposed a basic framework for analyzing the daily interactions between 
a human and a robot.  We first discussed the daily interactions between a human and a 
robot.  Human-robot interaction falls into four modes according to who initiates the 
interaction and whether he or she expects a reaction from the other.  Then, we subdivided 
one mode of that interactions, which a robot initiates and expects a reaction from the 
human, into four types according to the sensor information the robot uses. We focused on 
the interactions which require voice recognition but for which misrecognitions do not lead 
to severe discomfort.
Next, we explained what is necessary for a communication robot and introduced the 
hardware and software architectures of Robovie-IV. Robovie-IV has been developed as a 
self-contained robot that fulfills the requirements of a communication robot. That is, it is as 
tall as a human child, its entire body is covered by a soft-skin containing 56 embedded 
tactile sensors, it moves by an inverted pendulum mechanism that causes involuntary 
motions, and it has sensors for human recognition. Finally, we briefly described the current 
status of our ongoing daily experiment in our office and discussed behaviors of the robot 
and how humans relate to it.  



Robust Speech Recognition and Understanding 420

9. Acknowledgement 

This research was supported by the Ministry of Internal Affairs and Communications. 

10. References 

Bruno, H. (2002). Repp.: phase correction in sensorimotor synchronization: nonlinearities in 
voluntary and involuntary responses to perturbations. Human movement science,
Vol. 211, No. 1, (2002) (1-37) 

Burgard, W.; Cremers, A. B., Fox, D. Haehnel, D. Lakemeyer, G. Schulz, D. Steiner, W., & 
Thrun, S. (1998). The interactive museum tour-guide robot, In Proceedigns of the 
Fifteenth National Conference on Artificial Intelligence, 1998 

Campbell, W.N. & Black, A. (1996). Prosody and the selection of source units for 
concatenative synthesis, In: Progress in Speech Synthesis, van Santen, J. et al. (Ed.), 
Springer

Ha, Y. & Yuta, S. (1994). Trajectory tracking control for navigation of   self-contained mobile 
inverse pendulum, In Proceedings of the IEEE/RSJ/GI International Conference on 
Intelligent Robots and Systems 1994, pp. 1875-1882, 1994 

Isbell, C.; Shelton, C. R. Kearns, M. Singh, S. & Stone, P. (2001) A social   reinforcement 
learning agent, In Proceedings of the Fifth   International Conference on Autonomous 
Agents, pp. 377—384,  Montreal,   Canada, 2001, ACM Press 

Ishiguro, H.; Ono, T. Imai, M. Maeda, T. Kanda, T. &  Nakatsu R. (2001). Robovie: A robot 
generates episode chains in our daily life. In Proceedings of the 32nd International 
Symposium on Robotics, pp. 1356—1361, 2001 

Kubota, H.; Nishida, T. & Koda, T. (2000). Exchanging tacit community knowledge by   
talking-virtualized-egos. In Fourth International Conference on   AUTONOMOUS 
AGENTS,  pp. 285—292, 2000 

Lee, A.; Kawahara, T. & Shikano, K. (2001). Julius --- an open source real-time   large 
vocabulary recognition engine, In Proceedings of the European   Conference on Speech 
Communication and Technology, pp.  1691-1694, 2001 

Matsui, T.; Asoh, H. Hara, I. & Otsu, N. (1997). An event-driven architecture for controlling 
behaviours of the office conversant mobile robot, Jijo-2, In Proceedings of the 1997 
IEEE International Conference on Robotics and Automation, pp. 3367—3372, April 1997 

Miyashita, T. & Ishiguro, H. (2004). Human-like natural behaviour generation based on   
involuntary motions for humanoid robots, International Journal of   Robotics and 
Autonomous Systems, Vol. 48, (2004) (203-212) 

Miyashita, T.; Tajika, T. Ishiguro, H. Kogure, K. & Hagita, N. (2005). Haptic   communication 
between humans and robots, In Proceedings of the 12th International Symposium of 
Robotics Research, 2005 

Wu, C. (1991). Analysis of voluntary movements for robotic control, In Proceedings of the 
IEEE International Conference on Robotics and Automation, pp. 326—331, 1991 

Zheng, Y. (1990). A neural gait synthesizer for autonomous biped robots, In   Proceedings of 
the IEEE International Workshop on Intelligent Robots   and Systems, pp. 601—608, 1990 



24

Sound Localization of Elevation using Pinnae 
for Auditory Robots

Tomoko Shimoda, Toru Nakashima, Makoto Kumon,  
Ryuichi Kohzawa, Ikuro Mizumoto and Zenta Iwai 

Kumamoto University  
Japan 

1. Introduction    

Humans perceive sound lags and differences in loudness between their two ears to ascertain 
the location of sounds in terms of azimuth, elevation and interval, etc. Humans and animals 
can determine the direction of sounds using only two ears, by making use of interaural time 
difference (ITD), interaural phase difference (IPD), interaural intensity difference (IID), etc. 
Robots can also use sound localization to detect changes in the environment around them; 
consequently, various sound localization methods for robots have been investigated. Since 
many animals have two ears, two ears seem to be the minimum requirement for 
determining sound localization. 
While most robot’s sound localization systems are based on microphone arrays that consist 
of three or more microphones, several researchers have attempted achieving binaural sound 
localization in robots. Nakashima (Nakashima and Mukai, 2004) developed a system that 
consisted of two microphones with pinnae and a camera that was only utilized in learning. 
By adopting a neural network that estimated the control command, he proposed a method 
utilizing sound signals for guiding the robot in the direction of a sound. Takanishi 
(Takanishi et al., 1993) achieved continuous direction localization of a sound source in the 
horizontal plane. They used the interaural sound pressure difference and the ONSET time 
difference as parameters and proposed a method for achieving two-step direction 
localization in a humanoid head using these parameters. Kumon (Kumon et al., 2003) 
approached the problem using an adaptive audio servo system based on IID as the control 
method for orientating the robots in the direction of the sound source in the horizontal plane 
by using two microphones. 
This chapter describes the use of an audio servo of elevation for achieving sound 
localization using spectral cues caused by pinnae. Here, the term “audio servo” denotes a 
method for simultaneously localizing sound sources and controlling the robot’s 
configuration, in contrast with conventional methods that are based on the “listen-and-
move” principal. The audio servo is characterized by a feedback system that steers the robot 
toward the direction of the sound by combining dynamic motion of the robot with auditory 
ability. In order to achieve this, this chapter proposes a method for detecting instantaneous 
spectral cues, when these cues are not very accurate. Furthermore, controllers that 
compensate for the inaccuracy of the measured signal are also considered. In addition, this 
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chapter considers using sound source separation to detect spectral cues even in a noisy 
environment by attenuating the noise. Sound source separation is achieved using two 
microphones while spectral cues from only a single microphone and a pinna are utilized. 
This chapter is organized as follows. In the next section (Section II) spectral cues caused by 
pinnae and artificial pinnae are briefly introduced. Then, in Section III a robust detection 
method for spectral cues is described. Methods for measuring spectral cues and a filter for 
investigating the relationships between the elevation angle and spectral cues are described. 
Modelling and identification with respect to the relationship between the elevation angle 
and the filtered spectral cues are also presented in this section. This section also describes 
sound source separation. Section IV describes the realization of an audio servo system that 
includes a controller for an auditory robot; its performance and results from experiments are 
also presented. Finally, Section V gives the conclusions and describes future projects. 

2. Spectral Cues 

This section briefly introduces spectral cues, pinnae and their frequency responses. 

2.1 Spectral Cues 

Generally, humans are considered to use frequency domain cues to estimate the elevation of 
a sound source (Garas, 2000). The frequency response varies with respect to the sound 
source direction as a result of the interference that occurs between the sound wave that 
enters the auditory canal directly and the sound wave reflected from the pinnae. In 
particular, spectral peaks and notches produced respectively by constructive and 
destructive interference contain information regarding the elevation of the sound source, 
making it possible to estimate the elevation of a sound source by analyzing them. 

2.2 Robotic Pinnae 

Spectral cues are dependent on the shape of the pinnae. In this chapter, logarithmic-shaped 
reflectors were used as pinnae (see Fig. 1). The pinnae had a depth of 6 (cm) (Lopez-Poveda 
and Meddis, 1996) and were made from 0.5 (mm) thick aluminum sheets. Figure 2 shows a 
photograph of experimental device with the pinnae attached. Figures 3 and 4 show a front 
view and a side view of the experimental device with the pinnae attached, respectively.  

    
Figure 1. Developed Pinnae                                     
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     Figure 2. Photograph of robot with pinnae attached 

Figure 3. Front view of the robot with pinnae      

Figure 4. Side view of the robot with pinnae 

The frequency response of the developed robotic pinna was measured to examine the 
relationship between spectral cues and sound source elevation. The robot’s head was kept 
still while these measurements were made. A loudspeaker was positioned 0.5 (m) in front of 
the robot. The frequency characteristics of the pinnae were measured using time-stretched 
pulses (TSPs). The sound source direction is expressed as follows. The angle is defined as 
being 0 (deg) when the sound source is located directly in front of the robot. When the 
sound source is located below the robot’s head, the angle is denoted by a positive value.  
The results obtained using TSP are shown in Figs. 5(a) to (g). In these results, there are three 
sharp notches (labeled N1, N2 and N3) within the frequency range from 2 (kHz) to 15 (kHz) 
and these notches shift to lower frequencies as the robot turned its head upward. Thus, it 
can be concluded that it is possible to detect the elevation angle of a sound source using 
pinna cues.  
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(a) 45 (deg)                                             (b) 30 (deg) 

     
(c) 15 (deg)                                             (d) 0 (deg) 

     
(e) -15 (deg)                                             (f) -30 (deg) 

(g) -45 (deg)

Figure 5. Frequency responses of the developed pinnae 
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3. Spectral Cues Detection 

3.1 Spectral Cues Extraction 

In what follows, spectral cue candidates are defined as the center points between adjacent 
peaks and notches in a smoothed power spectrum; these candidates are simply referred to 
as spectral cues in this chapter. The following method is adopted to determine the frequency 
of a spectral cue. Firstly, the sound signal is transformed using short-time fast Fourier 
transformation (STFFT) and the frequency response is obtained for each instance of time 
(Fig. 5). Next, this frequency response is smoothed using a zero-phase low-pass filter (LPF). 
An example of dynamic spectral cues is shown in Fig. 6. The ordinate axis represents 
frequency (Hz) and the abscissas axis represents time (s). Each of points represents a 
spectral cue. The sound source was fixed 0.5 (m) in front of the robot, as above, while the 
head was programmed to follow a triangular reference trajectory (Fig. 7). A white signal 
was utilized as the pilot signal instead of a TSP. Although multiple spectral cue candidates 
exist at every instant in Fig. 6, most of them varied with the head motion.  
Unfortunately, not all of the detected candidates corresponded with the head motion, and 
there are some frequency bands in which spectral cues disappear for a specific direction. In 
addition, several adjacent cues had similar frequencies as each other. Hence it is difficult to 
immediately determine the sound source direction for these candidates. In particular, since 
sound signals in a short sampling time were employed, it is possible that the time frequency 
responses could have been degraded due to extraneous noises. Thus an improved robust 
cue detection method is required; such a method is described in following subsection. 

Figure 6. Spectral Cue Candidates obtained by experiment  



Robust Speech Recognition and Understanding 426

Figure 7. Head motion of the robot for the experiment in which the spectral cues of Fig. 6 
were obtained 

Figure 8. Clustered spectral cues produced by the proposed method (corresponds to Fig. 6) 

3.2 Clustering 

The robot’s head motion is continuous owing to its dynamics. Since there is a relationship 
between the spectral cues and sound source direction, it is conceivable that the variation of 
spectral cues due to the motion of the robot’s head is also continuous. Thus, given the values 
of the spectral cues at any particular moment, it should be possible to determine the spectral 
cues for the next time step by searching in their neighborhoods. Based on this supposition, a 
filter for detecting spectral cues from the frequency response for each instant was designed 
as follows.
Let fk denote the vector whose elements represent the spectral cues’ frequencies at time k; fkn

represents the n-th element of this vector. We assume that the frequency of a spectral cue 
remains within a certain range, which is referred to as the scope. The validity of the 
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measured signal is stored in a vector of flags whose i-th element is denoted as dki. We 
assume that the number of cues is given and we denoted it by Nk. The proposed algorithm is 
given as follows.  
<Spectral Cue Clustering> 
1. Given spectral cues at time k.
2. Measure the frequency response at time k+1. Obtain the candidates of the spectral 

cues and denote them by the vector         whose n-th element (        ) represents the 
frequency of the candidate.  

3. Compute the assessment function Jn(r) as follows.  
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positive constant. 

5. If  rkf )1(
ˆ

+   in step 3 lies outside of the scope, let the flag d(k+1)i = 0. Otherwise let dki = 1.
Note that dki will be also updated using the sound separation method described 
below.

6. Return to step 2 by incrementing k by 1.  
Figure 8 shows the clustered spectral cues of Fig. 6 processed using the above method. The 
initial frequencies of cues were defined every 300 (Hz) from 0 (Hz) to 6000 (Hz). Scopes 
were given as ranges of 300 (Hz) around their initial frequencies.  

3.3 Modeling 

In the previous section, an algorithm for detecting spectral cues was proposed. Next, the 
relationship between the filtered spectral cues and the sound source detection is considered 
in order to localize the sound source direction correctly. The simplest model that determines 
the elevation angle from the frequency, the relationship between the filtered spectral cues 
and the sound source direction is introduced. Let e  be the angular difference between the 
sound source and the robot’s head. Let the frequency of the filtered spectral cues and 
coefficients that are identified below be denoted by fi, Ci and Ci0, respectively. The model is 
then expressed mathematically by: 

  (2) 

where di is 1 or 0. 

3.4 Identification 

Just as when measuring the characteristic of the pinnae, the sound source was fixed 
approximately 0.5 (m) in front of the robot. The white signal was generated while the robotic 
head was in motion. The data measured when di was not 0 were used to determine Ci and 
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Ci0. Using these extracted data, Ci and Ci0 are determined such that they minimize the 
following squared residual,

∈

+−
iKk

iii CkfCk ,)))(()(( 2

0θ  (3) 

where Ki represents a set of times when             and (k) defines the direction of the sound 
source computed using the angle of the robot’s head data. 
The elevation angles estimated by the above method with the identified coefficients are 
shown in Fig. 9. The ordinate axis represents the angle of the robot’s head while the 
abscissas axis represents time. The solid line indicates the motion of the robot’s head while 
the points indicate the computed angles; there is good agreement between the two. Figure 9 
was produced using three spectral cues that correspond to the motion of the robot’s head; 
this figure confirms the method used for estimating the elevation angle of the sound source.  

Figure 9. Elevation angle estimated by the model expressed by Eq. (2) 

3.5 Sound Source Separation 

In the previous sections, sound source localization was considered in order to adapt the 
method described above to cases when there is a lot of noise present. Accurate spectral 
information is critical for performing sound localization with spectral cues. In real 
applications, however, spectral information is often contaminated with extraneous noise. It 
is thus necessary to separate the extraneous noise from the target noise and to extract only 
the spectral cues from the target sound source.  
In order to achieve this, horizontal sound source separation with two microphones is 
performed by assuming that the sound source and the extraneous noise do not originate 
from the same median plane. Although this assumption is rather strict, it is acceptable for 
many practical situations. In order to separate horizontal sound sources, Suzuki’s method 
(Suzuki et al., 2005) was adopted; this method focuses on the proportional relationship that 
exists between the IPD and frequency.  

0≠id
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3.5.1 Horizontal sound source separation (Suzuki et al., 2005) 

Consider two microphones installed with a displacement a. When a planar sound wave 
with frequency f propagates in the direction  (see Fig. 10), the phase difference (f) is 
given by  

,
sin

)( f
V

af ξφ =Δ    (4) 

where V represents the speed of sound. Therefore, the relationship between f and  can be 
expressed by

  (5) 

where is given by V/a sin and is treated as a constant. Equation (5) for the case when 
there is only one sound source is depicted in Fig. 11. The ordinate and abscissas axes 
represent the frequency and the phase difference       , respectively. Each data point                 
belongs to a line passing through the origin. Thus line detection can be utilized for 
separating sound sources.  

Figure 10. Diagram showing measurement of IPD using two microphones  

Figure 11. Signal from a single sound source depicted in frequency-IPD space 
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3.5.2 Line Detection  

In line detection, the gradient (                   ) is first computed at each measured point              .                
The angle (    ) of the straight line connecting               is defined as follows.  

.tan 1

0 φ
η

Δ
= − f

(6)

Since the phase difference is circular periodic, shifted values of      ,                        and                        
                        are also taken into consideration as shown in Fig. 12. 

Figure 12. Measured response in frequency and IPD  

In order to determine     , let us consider the relationship between f and        of the measured 
data (Fig. 12). These data are plotted in two dimensions, where the ordinate axis represents 
frequency (f) and the abscissa axis represents phase difference (    ). The space is discretized 
by dividing it into 2n fan-shaped regions whose vertical angles at the origin are given by  

n2/)2( minηπ − . minη  is the vertical angle when the sound source is located just beside the 
robot, or when the phase difference is minimized. 
The line of the sound source is computed by determining the region to which it belongs. 
This is done by counting the numbers of               points that exist in each region. Region j is 
defined by the angle     , which satisfies the condition  

,01 jj ηηη <≤−  (7) 
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Let P(j) represent the number of points in the region j. Given a point ( ), j is expressed as 
follows.  

( ) ,1
2

2
min0

min

+−
−

= ξξ
ξπ
nj   (9) 

where     represents the largest integer that is smaller than X. By using the above 
expressions, P(j) is counted for all data points. For simplicity, in this chapter, the region 
having the most points is taken to be the region of the sound source. Alternative selection 
algorithms are also possible and they should be investigated in the future.  
Consequently, the region that contains spectral cues from the sound source can be 
determined by evaluating the frequency of points in the region having the most data points.  
If this region does not contain the above-mentioned detected spectral cue, then di is set to 0. 
Spectral cues from the sound source are extracted by determining di.

4. Audio Servo 

As mentioned in the introduction, audio servo is a method for simultaneously achieving 
sound localization and configuration control. In this section, measured spectral cues are 
utilized in an audio servo system. The robotic controller is derived first and its performance 
is then evaluated. Finally, an experiment involving this controller and the results obtained 
are described. 

4.1 Controller Design 

Figure 13. Dynamical model of the robot head.  

Figure 13 shows the model for the robotic head; the equations of motion for this model are 
given as follows:  
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where J is the inertia of the upper pulley, J0 is the inertia of the lower pulley, k is the elastic 
constant of the belt, m is the mass of the robot’s head, g is the acceleration of gravity, l is the 
distance from the center of gravity, d is the coefficient of friction factor, and       and         are 
the rotational angles of the robot’s head and the motor shaft, respectively. s is given by 
                 , where r and r0 are the radii of the upper and lower pulleys, respectively. 
The motor torque     is modeled by 

),( 0 uK −−= θτ  (11) 

where K is the feedback gain of the servo system and u is the control input which is defined 
below.
The elevation angle of the sound source is denoted by        and define                 . The output 
is defined by                   and the state of the system as                                           .       is an 
arbitrary positive value and it is given as a small constant below since its exact value is not 
critical. Assuming that || e  is small, the dynamic model of the robot can be approximated 
as:
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where 44×∈ RA , 4
Rb ∈ and 14×∈ Rc  represent  matrices. Δ is a vector of nonlinear functions. 
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The dominant system (A, b, c) of (12) satisfies the almost strictly positive real (ASPR) 
condition which implies that it is possible to achieve high gain output feedback using the 
control objective (Wen, 1988, Kaufman, 1998). Hence, the control input u is given as,  

,Myu −=  (13) 

where M is an appropriate positive constant. It should therefore be possible to align the 
robot with the sound source direction (Kumon et al., 2005).  
Figure 14 shows the result of the experiment when sound separation was used. The ordinate 
axis represents angle from the horizontal plane (deg) and the abscissas axis represents time 
(s). The target sound source was located 16 (deg) above the horizontal plane. After about 10 
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(s), the robot was aligned in the direction of the sound source, although it oscillated about 
the true direction. 
By way of comparison, Fig. 15 shows the result of the experiment when sound separation 
was not employed. It demonstrates that it is necessary to determine the frequency domain 
which contains the spectral cues of the sound source.

Figure 14. Motion of the robot’s head with sound separation    

Figure 15. Motion of the robot’s head without sound separation  

4.2 Controller performance 

In the above experiment, the robot head oscillated about the correct orientation; this aspect 
needs to be improved. When controlling robots based on the location of sound sources, it is 
clearly desirable to precisely locate cues and to accurately determine the relationship 
between cues and physical quantity. However, it is impractical to rely on sufficient 
measurement accuracy when the number of microphones is restricted and when external
noise is present. We therefore evaluated the performance of the audio servo controller by 
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accounting for inaccurate measurements. The performance of the audio servo controller was 
evaluated after the structure of the controller had been modified (13) in order to attenuate 
the effect of noise. 

4.2.1 Controller 

When the effect of observation noise is considered, the system is modeled using the 
following set of equations rather than that of (12),  
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where h is the observation noise and it is assumed to be bounded. When observation noise h
is present, using a higher feedback gain M in (13) does not necessarily improve control 
performance, since it also increases the sensitivity to the observation noise h.
The dead zone is one control technique that can be applied to noisy output signals; it 
disregards the output, or error, if magnitude of the output is smaller than a given threshold. 
The following modified controllers were evaluated by applying the dead zone: 
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Figure 16. Controller (15)                 Figure 17. Controller (16)           Figure 18. Controller (17) 

4.2.2 Experiment and Performance 

The proposed controllers were implemented in the robot and their performances were 
evaluated. In the experiment, the sound source was positioned in front of the robot. The 
initial elevation angle of the sound source was approximately 16 (deg) above the horizontal 
plane. A white signal was generated for about 3 (min), which included the duration of the 
experiment. Three different gains were used for each of the three controllers, namely M=0.1,
0.5, 1.0 for (15) and (16), and L=10, 50, 100 for (17).  
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Figures 19, 20 and 21 show the motion of the robot’s head in these experiments when the 
parameters of the controllers were M=0.5, L=50 and y0=3 (deg), respectively. In all these 
figures, the ordinate axis is the angle of the robot’s head (deg) and the abscissa axe is time (s).  

Figure 19. Result with Controller (15) 

Figure 20. Result with Controller (16) 

Figure 21. Result with Controller (17) 
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Figure 22. Result of Controller (16) for high gain (M=1.0) 

Controller Gain Transient Means Standard  
  Period (s) Error (deg) Deviation (deg) 

(13) with sound 
separation 1.0 8.6  1.6  57.4  

(15) 1.0  9.9  4.5  2.2  
(15) 0.5  10.1  0.7  1.2  
(15) 0.1  47.8  3.3  1.1  

(16) 1.0  5.4  1.0  3.1  
(16) 0.5  14.1  1.8  1.5  
(16) 0.1  78.0  0.8  0.8  

(17) 100  7.2  1.8  2.3  
(17) 50  10.0  0.5  1.6  
(17) 10  50.0  2.3  2.2  

Table 1. Transient Period Error Variance 

All of the results show that the robot’s head was stably oriented toward the sound source. 
However, as the gains M, L increase, oscillations were observed with all the controllers. For 
instance, Fig. 22 shows the case when gain M is 1.0. The mean error angle and variance after 
the robot’s head had been stably oriented toward the target are also shown in this figure. 
Table 1 shows the transient period (s), mean error (deg) and standard deviation (deg) for 
each combination of controller and gain used. When the robot’s head was oriented towards 
the sound source, the estimated angle had a standard deviation 2.1 (deg).  
From Table 1, it can be concluded that all controllers succeeded in controlling the robot’s 
head so that it was oriented toward the sound source and that the dead zone technique was 
effective in attenuating the vibration. However, if a high gain is used to achieve faster 
response, the control performance deteriorates since the robot moves in an oscillating 
manner. On the other hand, if a gray gain is used, it is possible to achieve a better response 
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speed and convergence performance. In particular, it is noteworthy that the deviation 
achieved is better than that for the uncontrolled case. 

Figure 23. Estimation of Sound Source and Angle of Robot's Head  

Figure 23 shows the comparison of the estimated sound source direction and the angle of 
robot’s head. The blue line shows the estimated angle of the sound source and it has a 
standard deviation of 5.0 (deg), while the red line shows the angle of robot’s head and it has 
a standard deviation of 1.5 (deg). Thus the performance of the sound source localization is 
improved if the angle of the robot’s head is utilized rather than the direct estimated signal, 
confirming the effectiveness of the technique.  
In summary, even when the robot’s auditory sensing is inaccurate to some extent, it has 
been demonstrated that the performance of audio servo can be improved by using it in 
combination with an appropriately designed control system. If the use of an actual robot 
head is possible, this technique could be used to improve its sound localization ability by 
using an audio servo. 

5. Conclusion 

In this chapter, by using a system consisting of two microphones and one pinna, a method 
for sound localization using spectral cues was considered. In particular, a robust spectral 
cue detection method was considered and a method for orientating the robot’s head toward 
a sound source was proposed. In addition, this chapter considers the use of sound source 
separation in order to attenuate the effect of noise. The conclusions of this present study are 
summarized as follows:  
• Real robotic pinnae were designed and a robot using the pinnae was developed. 
• In order to realize sound localization with vertical displacement, an algorithm for 

detecting spectral cues using the developed pinnae was proposed.  
• Spectral cue detection was made robust by considering their frequency continuity with 

respect to time. A model for determining the sound elevation angle by measuring 
spectral cues was introduced.  
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• Horizontal sound separation was considered for extracting the sounds of interest in a 
noisy environment so that the robot would recognize the spectral cues of only the 
sound source.  

• Controllers were designed to realize an audio servo using the derived spectral cues by 
the proposed algorithm.  

• The performances of the audio servo controllers were evaluated by accounting for the 
need to allow measurement error when designing the controllers.  

• Experiments were conducted with the developed robot. The results demonstrated the 
ability of the system to orientate the robot’s head in the direction of the sound source.  

While the proposed method was able to localize the sound source vertically, higher 
precision sound localization is needed. In order to achieve this, we intend to extend our 
research as follows: 
• Online identification of coefficients Ci and Ci0 is required for practical applications.  
• Determination of optimal gains and parameters is also required.  
• In this chapter, a white signal was used as the target. However, sound localization of 

other sound sources, such as a human voice, is also needed.   
• In this chapter, sound localization in only the vertical direction is described.  In future 

work, sound localization should also include lateral and distance detection, thus 
making it possible to work in three-dimensional space. 
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1. Introduction

In most of the practical applications of Automatic Speech Recognition (ASR), the input 
speech is contaminated by a background noise. This strongly degrades the performance of 
speech recognizers (Gong, 1995; Cole et al., 1995; Torre et al., 2000). The reduction of the 
accuracy could make unpractical the use of ASR technology in applications that must work 
in real conditions, where the input speech is usually affected by noise. For this reason, 
robust speech recognition has become an important focus area of speech research (Cole et 
al., 1995).
Noise has two main effects over the speech representation: it introduces a distortion in the 
representation space, and it also causes a loss of information, due to its random nature. The 
distortion of the representation space due to the noise causes a mismatch between the 
training (clean) and recognition (noisy) conditions. The acoustic models, trained with speech 
acquired under clean conditions do not model speech acquired under noisy conditions 
accurately and this degrades the performance of speech recognizers. Most of the methods 
for robust speech recognition are mainly concerned with the reduction of this mismatch. On 
the other hand, the information loss caused by noise introduces a degradation even in the 
case of an optimal mismatch compensation.
In this chapter we analyze the problem of speech recognition under noise conditions. Firstly, 
we study the effect of the noise over the speech representation and over the recognizer 
performance. Secondly, we consider two categories of methods for compensating the effect 
of noise over the speech representation. The first one performs a model-based compensation 
formulated in a statistical framework. The second one considers the main effect of the noise 
as a transformation of the representation space and compensates the effect of the noise by 
applying the inverse transformation.

2. Overview of methods for noise robust speech recognition

Usually the methods designed to adapt ASR systems to noise conditions are focused on the 
reduction of the mismatch between training and recognition conditions and can be situated 
in one of these three groups (Gong, 1995; Bellegarda, 1997):
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• Robust representations of speech: if speech is represented with a parameterization 
that is minimally affected by noise, we can assume that the mismatch between training 
and recognition conditions can be ignored.

• Compensation of the noisy speech representation: if we know how the speech represen-
tation is affected by noise, the effect of the noise over the representation of the speech 
can be compensated, and a clean version of the speech representation can be processed 
by the recognizer.

• Adaptation of the clean speech models to the noise environment: taking into account 
the noise statistics, the speech models (trained in the reference clean environment) can 
be adapted to the recognition noisy conditions and the recognition can be performed 
using the noisy speech representation and the models adapted to noise conditions.

Figure 1. Block diagram of a speech recognition system processing clean or noisy speech 
with clean speech models 

If we denote with x the clean speech representation, the effect of the noise produces a 
distortion and converts x into y. As shown in figure 1, the noise produces a mismatch 
between training and recognition conditions since corrupted speech y is recognized using 
clean models x. According to the above classification, methods based on robust 
representation assume that x K- y, which minimizes the impact of recognizing noisy speech y
using clean models x. Compensation and adaptation methods assume that noisy speech y is 
a distorted version of the clean speech y = T(x), where T(-) models the distortion caused by 
noise. Compensation methods estimate for the inverse distortion function T-l (•), and 
provide an estimation of the clean speech as:

  (1) 

and recognition is performed using the estimation of the clean speech x and the clean 
models x. On the other hand, adaptation methods apply the estimated distortion function 
T(-) to the models:

 (2) 

and recognition is performed using the noisy speech y and the estimation of the noisy 
models .
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2.1 Robust parameterizations

For those methods included in this category, speech parameterization is assumed to be in-
dependent of the noise affecting the speech. In order to improve robustness against noise a 
variety of methods have been proposed:
• Application of liftering windows:   In LPC-cepstrum based representations, cepstral 

coefficients are not equally affected by noise. For this reason, the application of liftering 
windows to reduce the contribution of low-order coefficients (i.e. those more affected 
by noise) increases robustness against noise (Junqua & Wakita, 1989; Torre et al., 1997).

• Methods based on auditory models: Some authors have designed parameterizations 
based on human auditory models in order to increase robustness. In this group we can 
find, for example, PLP analysis (Perceptually-based Linear Prediction) (Hermanski et 
al., 1985; Junqua & Haton, 1996), the EIH model (Ensemble-Interval Histogram) (Ghitza, 
1992; Ghitza 1994; Rabiner & Juang, 1993), or the synchronous auditory models like the 
Seneff auditory model 0ankowski et al., 1995) and the SLP (Synchronous Linear 
Prediction) proposed by Junqua 0unqua & Haton, 1996). Compared to LPC-cepstrum, 
parameterizations based on auditory models provides better recognition results under 
noise conditions, where auditory masking or lateral inhibition play an important role in 
speech perception.

• Mel-scaled cepstrum: The Mel-Frequency Cepstral Coefficients (MFCC) (Davis & Mer-
melstein, 1980) provide significant better results than LPC-cepstrum under noise con-
ditions, and similar results to those provided by parameterizations based on auditory 
models, even though with significantly lower computational load (Jankowski et al., 
1995). For this reason, high resolution auditory models are not considered for speech 
recognition applications that must work in real time, and MFCC parameterization is 
one of the most commonly used speech representations for robust speech recognition 
(Moreno, 1996).

• Discriminative parameterizations: Parameterizations based on discriminative criteria 
enhance those features containing more discriminative information, and this improves 
separability among classes. This improves recognition in both, clean and noisy condi-
tions. In this group, Linear Discriminant Analysis (LDA) (Duda & Hart, 1973; 
Fukunaga, 1990) has been successfully applied for robust speech recognition (Hunt et 
al., 1991). Some comparative experiments shows that IMELDA representation 
(Integrated MEL-scaled LDA) are more robust to noise than LPC-cepstrum or MFCC. 
Discriminative Feature Extraction (Torre et al., 1996) has also been successfully applied 
to robust speech recognition (Torre et al., 1997).

• Slow variation removal: Most noise processes varies slowly in time (compared to the 
variations of the speech features).  High-pass filtering of the speech features tends to 
remove those slow variations of the feature vectors representing speech, which 
increases accuracy of speech recognizers under noise conditions.  RASTA processing 
(RelAtive SpecTrAl) performs this high-pass filtering of speech parameterization either 
in the logarithmically scaled power spectra (Hermanski et al., 1993) or in the cepstral 
domain (Mokbel et al., 1993).  Some experiments show that RASTA processing reduces 
error rate when training and recognition conditions are very different, but increases it 
when conditions are similar (Moreno & Stern, 1994). An efficient and simple way to 
remove slow variations of speech parameters is the Cepstral Mean Normalization 
(CMN). CMN provides results close to those of RASTA processing without the 
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undesired degradation observed when training and recognition conditions are similar 
(Anastasakos et al., 1994). Currently, the use of CMN is generalized for robust speech 
parameterizations (Moreno, 1996; Young et al., 1997).

• Inclusion of time derivatives of parameters: Dynamic features or time derivatives (i.e. 
delta-cepstrum and delta-delta-cepstrum) (Furui, 1986) are usually included into the 
speech parameterization since they are not affected by slow variations associated to 
noise. The inclusion of the dynamic features improves the recognizer performance in 
both, clean and noisy conditions (Hernando & Nadeu, 1994).

2.2 Compensation of the noise

Compensation methods provide an estimation of the clean speech parameterization in order 
to reduce the mismatch between training (clean) and recognition (noisy) conditions. This 
way, the clean version of the speech is recognized using models trained under clean 
conditions. In this category, we can find the following methods:
• Parameter mapping:   Based on stereo speech observations (the same speech signal 

acquired under both, clean and noisy conditions) this method estimates a mapping that 
transforms clean into noisy speech parameterizations.  Linear mapping assumes that 
mapping is a linear function that is estimated based on minimum mean squared error 
criterion over the stereo speech observations. Usually stereo observations are obtained 
by adding noise to some clean speech observations (Mokbel & Chollet, 1991).  Some 
authors have proposed non linear mappings (Seide & Mertins, 1994) or mapping based 
on neural networks (Ohkura & Sugiyama, 1991).  The effectiveness of this method is 
limited because in practice there is no stereo speech material available for the estimation 
of the transformation, and clean speech must be contaminated with an estimation of the 
noise in the recognition environment.

• Spectral subtraction: Assumed that noise and speech are uncorrelated signals, and that 
noise spectral properties are more stationary than those of the speech, the noise can be 
compensated by applying spectral subtraction, either on the spectral domain, or in the 
filter-bank domain (Nolazco & Young, 1994). The effectiveness of spectral subtraction 
strongly depends on a reliable estimation of the noise statistics.

• Statistical enhancement: Clean speech can be considered a function of the noisy speech 
and the noise, where the noise parameters are unknown and randomly variable. Under 
this assumption, clean speech parameterization can be estimated in a statistical 
framework (Ephraim, 1992).   Maximum A-Posteriori (MAP) methods computes the 
noise parameters maximizing the a-posteriori probability of the cleaned speech given 
the noisy speech and the statistics of the clean speech. Minimum mean squared error 
methods estimate noise parameters minimizing the distance between cleaned speech 
parameters and clean speech models, given the noisy speech observations. Usually, sta-
tistical enhancement based on an explicit model of the probability distributions of clean 
speech and noise involves numerical integration of the distributions, which implies 
practical problems for real time implementations.

• Compensation based on clean speech models: Under some approaches, compensation is 
formulated from a clean speech model based on a vector quantization codebook (Acero, 
1993) or a Gaussian mixture model (Moreno, 1996; Stern et al., 1997). Under methods 
like CDCN (Codeword-Dependent Cepstral Normalization) (Acero, 1993) and RATZ 
(Moreno, 1996; Stern et al., 1997; Moreno et al., 1998) the transformation associated to 
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noise is computed for each Gaussian (or each region of the vector quantizer). Clean 
Gaussians and the corresponding noisy Gaussians provide an estimation of the clean 
speech from the noisy speech. The VTS (Vector Taylor Series) approach (Moreno, 1996; 
Moreno & Eberman, 1997) computes the correction for each Gaussian taking into 
account its parameters and the statistics of the noise, and performs the compensation 
taking into account the clean and the corresponding noisy Gaussian mixture models.

2.3 Adaptation of the models

The aim of adaptation methods is, as in the previous case, to minimize the mismatch 
between training (clean) and recognition (noisy) conditions. However, in this case, the 
mismatch is minimized by adapting the clean models to noise conditions.
• HMM decomposition: Under this approach, also called Parallel Model Combination 

(PMC) (Gales & Young, 1993; Gales, 1997), noisy speech is modeled with a hidden 
Markov model (HMM) with N X M states, where N states are used to model clean 
speech, and M are used to model the noise.  This way, a standard Viterbi algorithm is 
applied to perform simultaneous recognition of speech and noise.   In the case of non-
stationary noises, several states M can be used to model the noise. In the case of 
stationary noises, one state would be enough to represent the noise. The probability 
distribution of the combined model at each state must take into account that one of the 
clean speech model and the one corresponding to the noise. One of the main drawback 
of this method is the computational load.

• State dependent Wiener filtering: Hidden Markov models allow segmentation of the 
speech signal into quasi-stationary segments corresponding to each state of the HMM. 
This adaptation method includes, for each state of the HMM, a Wiener filter to compen-
sate for the noise effect in the recognition process, or alternatively, a correction of the 
probability distribution to implement the Wiener filtering (Vaseghi & Milner, 1997).

• Statistical adaptation of HMMs: This methods adapts the hidden Markov models to 
noisy conditions under a statistical formulation.  Usually, mean and variances of the 
Gaussians are adapted taking into account stereo speech observations (if available) by 
iteratively maximizing the probability of the noisy speech being generated by the 
adapted models (Moreno, 1996).

• Contamination of the training database: Training with noise speech is obviously the 
most efficient way for adapting models to noise conditions. However, this cannot be 
done in practice because a-priori knowledge of the noise statistics is not available 
during recognition, and perform retraining with noisy speech would require estimation 
of the noise in the sentence to be recognized, contamination of the training database 
with such noise and training the recognizer with the noisy database. Training is a time 
consuming process and this procedure cannot be implemented in real time. However, 
recognition results under retrained conditions can be obtained in laboratory conditions. 
This kind of experiments provides an estimation of the upper limit in performance that 
can be obtained with the best method for robust speech recognition. Training with a 
specific type and level of noise significantly improves recognition performance when 
the speech to be recognized is affected for this kind and level of noise, but usually the 
performance degrades if the training and recognition noises do not match. Usually, if 
training is performed with a variety of noises, robustness improves and performance 
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under noise condition significantly improves. This is the philosophy of multi-condition 
training proposed in the standard Aurora II (Hirsch & Pierce, 2000). 

3. Effect of the noise over the speech representation

3.1 MFCC speech representation

The effect of the noise depends on the speech representation and the type and level of noise. 
Currently, most of the representations for ASR are based on Mel Frequency Cepstral Coeffi-
cients (MFCC). Standard MFCC parameterization usually includes: (1) Pre-emphasis of the 
speech signal, in order to enhance high frequencies of the spectrum. (2) Segmentation of the 
signal into frames, typically with a duration from 20 to 40 msecs, using a Hamming 
window. (3) Using a Filter Bank, the output power in logarithm scale is obtained for each 
filter. These coefficients are known as Filter Bank Outputs (FBO). Usually, the Filter-Bank is 
composed of triangular filters distributed in the Mel frequency scale. (4) By applying a 
Discrete Cosine Transform (DCT), the FBO coefficients are transformed into the cepstral 
coefficients (the MFCC). In the MFCC domain, the correlations among the different 
coefficients is small. Also, high order MFCC parameters are removed in order to ignore the 
fine structure of the spectral shape. (5) Finally, coefficients describing the evolution in time 
of the MFCC parameters ( -cepstrum and -cepstrum) can be included in the 
parameterization. Additionally, the energy of the frame (and the  and  associated 
parameters) are usually be included in the feature vectors representing the speech signal.

3.2 Additive noise in M FCC-based representations

(A) Distortion in the log-filter-bank domain: Let xi and ni be the samples of the speech 
signal and an additive noise, and yi = xi + ni the samples of the noisy speech. The energy of a 
frame can be written as: 

 (3) 

and assuming statistical independence of the noise and speech signals:

 (4) 

This result can be applied to whatever parameter representing an energy of the noisy signal, 
and in particular, to the output energy of each filter of the filter-bank. Let Xb(t), Nb(t) and Yb
(t) be the output energy of the filter b at frame t corresponding to the clean speech, the noise 
and the noisy speech, respectively. The relationship among them is described by:

. (5)

and for the logarithmically scaled output of the filter-bank (xb(t) =log(Xb(t))):

(6)
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This equation describes how additive noise affects log-filter-bank outputs in MFCC based 
parameterizations. Figure 2 represents the effect of the additive noise in this domain. One 
can observe three effects associated to additive noise:
• Additive noise produces a non-linear distortion of the representation space.
• For those regions where noise level is greater than speech level, the log-energy of the 

noisy speech is similar to that of the noise.  In that case, speech signal is masked by 
noise.

For those regions where speech level is greater than noise level, the noisy speech is only 
slightly affected by noise. 
Since MFCC representation is obtained by a linear transformation (usually a discrete cosine 
transform) of the log-filter-bank energies, the above described effects are also present in 
MFCC domain. 

Figure 2. Distortion of the logarithmically scaled energy when a noise with constant level of 
20 dB is added 

(B) Distortion of the probability distributions: The previously described distortion of the 
representation space caused by additive noise also transforms the probability distributions. 
Let px (xb) be a probability density function (pdf) in the clean domain, and nb the noise level 
affecting the clean speech. The pdf in the noise domain can be obtained as:

(7)

where xb(yb, nb) and the derivative can be calculated from equation (6):  

(8)

(9)

Figure 3 represents a Gaussian probability distribution representing clean speech (mean 
15dB; standard deviation 2dB) and the corresponding noisy pdf when speech is 
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contaminated with noise with different levels (0 dB, 5 dB, 10 dB, 15 dB). The following 
effects of the noise over the pdf can be observed: 
• The additive noise causes a displacement of the mean.
• The standard deviation is reduced because the compression caused by noise is not 

uniform (is more important for the region of low energy).
• Due to the non-linear effect of the noise, the noisy pdf is distorted and it is not a 

Gaussian.

Figure 3. Distortion of the probability distributions caused by additive noise. Clean 
Gaussian with μx=15dB and x=2dB. Noise with constant level OdB, 5dB, lOdB and 15dB

The impact of the mismatch caused by noise over classification is evident. Due to the 
distortion of the representation space caused by noise, the pdfs representing clean speech do 
not represent appropriately noisy speech. Let px (x| 1) and px (x| 2) be two pdfs 
representing class 1 and class 2 in the clean domain respectively. Due to the noise, both 
pdfs are distorted, and both clases would be represented by py (y| 1) and py (y| 2) in the 
noisy domain (that can be obtained by equation (7)). As illustrated in figure 4 the optimal 
boundaries are different in the clean and noisy representations. Mismatch is produced 
because noisy speech observations are classified using clean pdfs (and therefore boundary 
associated to clean pdfs), which increases the probability of classification error. In order to 
avoid this mismatch, the noise should be compensated on the speech representation (by 
applying the inverse transformation according to equation (6)) in order to obtain the clean 
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speech xb, or alternatively, the models should be adapted (by applying equation (7)) in order 
to classify noisy speech with noisy models.
In figure 5 the area associated to the classification error in the previous example is shown. 
When the clean boundary is used to classify noisy speech, there is an increment in the error 
probability (this increment is associated to the mismatch). However when the noisy 
boundary is used, the probability error is exactly the same as in the case of clean speech.
(C) Randomness of noise: If noise was a constant level Uf,, the problems of noise 
compensation or noise adaptation would be easy to be solved. Using equation (6), an exact 
clean version of the speech would be obtained (or using equation (7) an exact noisy model 
could be used to classify noisy speech). In both cases, the probability of error would be 
independent of the noise level and similar to that obtained for clean speech (as can be 
observed in figure 4).
However, noise is a random process and therefore, the transformation is a function of 
random and unknown parameters. The energy of the noise cannot be described as a 
constant value nb but as a pdf pn (nb), and therefore, for a given value of the clean speech xb

the noisy speech is not a value yb, but a probability distribution given by:

(10)

where nb (yb, xb) and the partial derivative are given by equation (6):

(11)

(12)

Figure 6 shows a Monte Carlo simulation representing how clean speech observations xb are 
transformed into noisy speech observations yb when noise is considered a random process 
described by a Gaussian distribution with different standard deviations. This figure 
illustrates the effects of the noise due to its randomness:
• For each value of clean speech xb we do not obtain a value of noisy speech yb but a 

probability distribution py(yb|xb).
• For high energies of the clean speech (greater than the noise level) the noisy speech 

distribution is narrow.
• For low energies of the clean speech (compared to the noise level) the noisy speech 

distribution is wider.
• From a noisy speech observation yb an estimation of the corresponding clean speech xb

is not possible. In the best case we could estimate the probability distribution px (xb\yb)
and from it, the expected value xb = E[xb|yb] and the corresponding standard error. In
other words, due to the randomness of the noise, there is an information loss that will 
increase the classification error.

• The information loss is more important as xb is more affected by noise (for xb with low 
energy compared to the noise).

• The information loss is more important as the noise level increases.
When the noise is described as a pdf, the probability distribution of the noisy speech can be 
computed as:
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(13)

and taking into account equations (10), (11) and (12): 

(14)

Figure 7 shows the effect of considering the randomness of the noise over the distribution of 
the noisy speech, obtained by numerical integration of equation (14). It can be observed that 
distributions are wider as the distribution of the noise pdf is wider. This increment in the 
width of py(yb) increases the error probability and causes the information loss associated to 
the randomness of the noise. 

Figure 4. Displacement of the optimal decision boundary due to the noise. Clean distribu-
tions are Gaussians with μ1=10dB, 1=3dB, μ2=15dB, 1=2dB. Clean distributions are con-
taminated with a constant noise of lOdB. Optimal clean boundary at xb =12.5317dB; optimal 
noisy boundary at yb =14.4641dB 
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Figure 5. Classification error for noisy distribution using the optimal decision boundary yb,
and error increment when clean optimal decision boundary xb is used  

Figure 6. Transformation of clean observations into noise observation when 
contaminated with a noise with Gaussian distribution with /zn=20dB and un equal to 
0.25dB, O.SdB, IdB and 2dB 
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3.3 Effects of the noise over recognition performance 

Figure 7. Effect of the randomness of noise over the probability distribution of the noisy speech: 
as the standard deviation of the noise increases, the noisy speech presents a wider distribution 

According to the previous analysis, additive noise has two effects over speech recognition 
performance. On one hand, the distortion of the representation space produces a mismatch 
between training and recognition environments. On the other hand, the noise causes an 
information loss due to its implicit randomness. In order to study the role of each one over 
the error rate, recognition experiments can be performed using clean speech models and 
speech models retrained (using speech contaminated with the same noise affecting in the 
recognition environment). The increment of the error rate in the retrained conditions 
represents the degradation associated to the information loss caused by noise, while the 
increment of the error rate when using clean speech models represent the degradation due 
to both, the mismatch and the information loss. 
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Figure 8. Reference recognition results (word accuracy versus SNR) for the baseline system 
(MFCC with CMN, clean training) and the retrained system 

Figure 8 shows recognition performance for both, clean training and retraining conditions, 
for a connected digit recognition task (database of Spanish connected digits "DIGCON" 
(Torre et al., 2001)). The speech, represented with MFCC (including A and AA associated 
parameters and CMN) has been artificially contaminated with additive Gaussian white 
noise for SNRs ranging from 30 dB to -3 dB. Recognition experiments were carried out using 
a 256 Gaussians Semi-Continuous HMM speech recognizer. As observed in the figure, noise 
degrades performance of speech recognizer, due to both, the mismatch between training 
and recognition conditions and the information loss. The recognition results obtained under 
retraining conditions approaches the best results that could be achieved in the case of 
optimal compensation of speech representation or adaptation of speech models. 

4. Model based compensation of the noise effects 

4.1 Statistical formulation of noise compensation 

Compensation of the noise effect can be formulated in a statistical framework, taking into 
account the probability distribution of the clean speech from a clean speech model. 
This way, the estimation of the clean speech could be obtained as the expected value of 
the clean speech, given the observed noisy speech, the model describing the clean speech 
and the model describing the noise statistics: 

 (15) 

As clean speech model x, a Gaussian mixture model (GMM) in the log-filter-bank domain 
can be trained using clean speech. The model describing the noise n must be estimated 
from the noisy speech to be recognized. Usually the noise is represented as a Gaussian pdf 
in the log-filter-bank domain, and the parameters of the Gaussian are estimated from the 
first frames of the sentence to be recognized, or using the silence periods identified with a 
Voice Activity Detector (VAD). Different methods have been proposed to provide the 
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compensated clean speech under a statistical formulation. In the next section we describe 
the Vector Taylor Series (VTS) approach (Moreno, 1996; Moreno et al, 1997). 

4.2 Vector Taylor Series approach 

The effect of additive noise, described by equation (6), can be rewritten as: 

 (16) 

representing that noisy speech yb(t) is obtained by applying a correction gb(t) to the clean 
speech xb(t), where the correction is: 

(17)

Let us ignore the frame index t for simplicity. We can define two auxiliary functions fb and hb

as:

(18)

(19)

verifying that: 

(20)

(21)

(22)

where go, fo and ho are the functions gb, fb and hb evaluated at xO and nO.

Using the Taylor series approach, we can describe how a Gaussian pdf in the log-filter-
bank domain is affected by additive noise. Let us consider a Gaussian pdf representing clean 
speech, with mean μx (b) and covariance matrix x (b, b'), and let us assume a Gaussian noise 
process with mean μn (b) and covariance matrix n (b, b'). Taylor series can be expanded 
around xO =μx(b) and nO =μn(b). The mean and the covariance matrix of the pdf 
describing the noisy speech can be obtained as the expected values: 

(23)

(24)

and can be estimated as a function of  as: 

(25)

(26)
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where go(b), fo(b) and ho(b) are the functions gb, fb and hb evaluated at x0 =μx(b) and no = μn(b). 
Therefore, the Taylor series approach gives a Gaussian pdf describing the noisy speech from 
the Gaussian pdfs describing the clean speech and the noise. 

Figure 9. Recognition results obtained with VTS for different orders (0, 1 and 2) in Taylor 
series expansion 

If the clean speech is modeled as a mixture of K Gaussian pdfs, the Vector Taylor Series 
approach provides an estimate of the clean speech vector  given the observed noisy speech 
y and the statistics of the noise ( and ) as: 

(27)

where nx,k is the mean of the kth clean Gaussian pdf and P(k|y) is the probability of the noisy 
Gaussian k generating the noisy observation, given by: 

(28)

where P(k) is the a-priori probability of the kth Gaussian and is the kth noisy 
Gaussian pdf (with mean and covariance matrix ) evaluated at y. The mean 
and covariance matrix of the kth noisy Gaussian pdf can be estimated from the noise 
statistics and the kth clean Gaussian using equations (25) and (26). This way, under VTS 
approach, the compensation process involves the following steps: 
1. A Gaussian mixture model (GMM) with K Gaussians in the log-filter-bank domain is 

previously trained using clean speech 
2. The noise statistics are estimated for the sentence to be compensated. 
3. The clean GMM is transformed into the noisy GMM using equations (25) and (26). 
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4. The probability of each Gaussian generating each noisy observation P(k |y) is 
computed using the noisy GMM (equation (28)). 

5. The correction function g(/J-x,ki M"n) associated to each Gaussian of the GMM is 
computed. 

6. The expected value of the clean speech is then computed for each frame using 
equation (27).

Figure 9 shows recognition results for the previously described connected digit task when VTS 
(K=V2&) is applied as noise compensation method. The reference plots correspond to the 
baseline clean trained and retrained systems. The other plots represent the error rate obtained 
when Oth, 1st and 2nd order VTS approach is applied for noise compensation. As can be 
observed, VTS significantly improves recognition performance, even though results are below 
that of the retrained system. Performance improves as the order in the expansion increases. 

5. Non-linear methods for noise compensation 

5.1 Limitations of model-based compensation 

Model-based methods for noise compensation provide an appropriate estimation of the 
clean speech. They benefit from an explicit modelling of the clean speech and noise 
distributions as well as from an explicit modelling of the mechanism of distortion. Other 
effective way to face the noise compensation is to focus on the probability distribution of the 
noisy speech and apply the transformation that converts this distribution into the one 
corresponding to the clean speech. This approach does not take into account the mechanism 
of distortion, and only assumes that the compensated speech must have the same 
distribution as the clean speech. This can be considered as a disadvantage with respect to 
model based procedures (which would provide a more accurate compensation). However, if 
the mechanism of distortion if not completely known, a blind compensation procedure that 
is not restricted by a model of distortion can be useful. That is the case of Cepstral Mean 
Normalization (CMN) or Mean and Variance Normalization (MVN) (Viiki et al., 1998) that 
provides some compensation of the noise independently of the noise process and 
independently of the representation space where they are applied. This way, CMN 
compensates for the effect of channel noise, but is also able to partly reduce the effect of 
additive noise (since one side effect of additive noise is the displacement of the mean of the 
Gaussian pdfs). MVN allows compensation of mean and variance of the distributions, and 
therefore provides a more accurate compensation of additive noise than CMN. 
One of the limitations of CMN and MVN is that they apply a linear transformation to the 
noisy noisy speech representation, and, as described in figure 2 the distortion caused by the 
noise present a non-linear behavior. In order to compensate for the non-linear effect of the 
noise, an extension of CMN and MVN methods has been formulated in the context of 
histogram equalization (HEQ) (Torre et al., 2005). 

5.2 Description of histogram equalization 

Histogram equalization was originally proposed in the context of digital image processing 
(Russ, 1995). It provides a transformation x1 = F (x0) that converts the probability density 
function p0 (x0) of the original variable into a reference probability density function p1(x1) =
pref(x1). This way, the transformation converts the histogram of the original variable into the 
reference histogram, i.e. it equalizes the histogram, as described below. 
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Let x0 be an unidimensional variable following a distribution p0 (x0). A transformation x1 (x0)
modifies the probability distribution according to the expression, 

(29)

where x0(x1) is the inverse transformation of x1 (x0). The relationship between the cumulative 
probabilities associated to these probability distributions is given by, 

(30)

and therefore, the transformation x1 (x0) which converts the distribution p0 (x0) into the 
reference distribution p1(x1) = pref (x1) (and hence converts the cumulative probability 
C0(x0) into C1(x1) = Cref (x1)) is obtained from equation (30) as, 

 (31) 

where is the reciprocal function of the cumulative probability Cref (x1), providing 
the value x1 corresponding to a certain cumulative probability C. For practical 
implementations, a finite number of observations is utilized and therefore cumulative 
histograms are utilized instead cumulative probabilities, and for this reason the procedure is 
named histogram equalization rather than probability distribution equalization. 
The histogram equalization method is frequently utilized in Digital Image Processing in 
order to improve the brightness and contrast of the images and to optimize the dynamic 
range of the grey level scale. The histogram equalization is a simple and effective method 
for the automatic correction of too bright or too dark pictures or pictures with a poor contrast. 

5.3 Noise compensation based on histogram equalization 

The histogram equalization method allows an accurate compensation of the effect of 
whatever non-linear transformation of the feature space assumed that (1) the transformation 
is mono-tonic (and hence does not cause an information loss) and (2) there are enough 
observations of the signal to be compensated for an accurate estimation of the original 
probability distribution. 
In the case of Digital Image Processing, the brightness and contrast alterations (mainly due to 
improper illuminations or non-linearities of the receptors) usually correspond to monotonic 
non-linear transformations of the grey level scale. On the other hand, all the pixels in the 
image (typically between several thousands and several millions) contribute to an accurate 
estimation of the original probability distributions. This makes the histogram equalization 
very effective for image processing. 
In the case of automatic speech recognition, the speech signal is segmented into frames (with 
a frame period of about 10 ms) and each frame is represented by a feature vector. The number 
of observations for the estimation of the histograms is much smaller than in the case of image 
processing (typically several hundreds of frames per sentence) and also an independent 
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histogram equalization should be applied to each component of the feature vector. If the 
method is applied for noise compensation, one should take into account that the more speech 
is considered for the estimation of the histograms the more accurate transformation is 
obtained for the noise compensation. Additionally, the histogram equalization is intended to 
correct monotonic transformations but the random behavior of the noise makes the 
transformation not to be monotonic (which causes a loss of information in addition to the 
mismatch). The noise compensation based on histogram equalization (like the rest of the 
methods for noise compensation) can deal with the mismatch originated by the noise but 
not with the loss of information caused by the random behavior of the noise, and this limits the 
effectiveness of the noise compensation based on histogram equalization (like for other 
compensation methods). 

Figure 10. Effect of the histogram equalization over the representation of the speech for the 
energy coefficient. In the first row, the evolution over time of the energy (at different SNRs) is 
represented before (left) and after (right) histogram equalization, for a sentence. Histograms 
are represented in the second row. Transformations provided by histogram equalization 
procedure are represented in the last row 

Compared to other compensation methods, the histogram equalization presents the advantage 
that it does not require any a-priori assumption about the process affecting the speech 
representation and therefore it can deal with a wide range of noise processes and can be 
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applied to a wide range of speech representations. We have applied the histogram 
equalization to each component of the feature vector representing each frame of the speech 
signal. As reference probability distribution, we have considered a normal probability 
distribution for each component. The histogram equalization is applied as a part of the 
parameterization process of the speech signal, during both, the training of the acoustic models 
and the recognition process. In Figure 10 we show how the histogram equalization method 
compensates the noise effect over the speech representation. We have contaminated the speech 
signal with additive Gaussian white noise at SNRs ranging from 60 dB to 5 dB. In the figure 
we have represented the effect of the noise and the histogram equalization for the energy 
coefficient. As can be observed, the noise severely affects the probability distributions of the 
speech causing an important mismatch when the training and recognition SNRs do not match. 
Histogram equalization significantly reduces the mismatch caused by the noise. However, it 
cannot remove completely the noise effect due to its random behavior. 

Figure 11. Recognition results obtained with different compensation methods, including 2nd 
order VTS (VTS-2), histogram equalization (HEq), and the combination of both (VTS-2-HEq). 
Compensation based on mean and variance normalization has also been included as reference 

5.4 Application of histogram equalization to remove residual noise 

One of the main features of histogram equalization is that no assumption is made with respect 
to the distortion mechanism. This reduces its effectiveness with respect to methods like VTS. 
However, this allow to use histogram equalization in combination with other methods. 
Usually, after applying a compensation method (for example, VTS, spectral subtraction, 
Wiener filtering, etc.) a residual noise is still present. This residual noise is difficult to be 
modeled because the mechanism of distortion becomes more complex than for additive or 
channel noise. In this case, histogram equalization can be applied since no assumption is 
required about the distortion process, and the compensation is performed taking only into 
account the probability distributions of the clean an noisy speech representations. 
In figure 11 recognition results are presented for the previously described recognition task, 
including the reference results (clean training and retraining), histogram equalization, VTS 
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and the combination of both. Results applying Mean and Variance Normalization (MVN) 
have also been included as reference. As can be observed, histogram equalization provides 
better results than reference (CMN) and also better than MNV. This is consistent with the 
fact that histogram equalization can be considered an extension of CMN and MVN. Results 
provided by histogram equalization are worse than those of VTS, which shows that a 
model-based compensation method provides a more accurate compensation of the noise 
noise (particularly in these experiments, where additive Gaussian white noise was 
artificially added and therefore noise distortion match with the model proposed for VTS 
noise compensation). One can also observe that the combination of both, VTS and histogram 
equalization, provides an improvement with respect to VTS, showing that after VTS there is 
a residual noise that can be reduced by histogram equalization. 

6. Conclusions 

In this chapter, we have presented an overview of methods for noise robust speech recognition 
and a detailed description of the mechanism degrading the performance of speech recognizers 
working under noise conditions. Performance is degraded because of the mismatch between 
training and recognition and also because of the information loss associated to the randomness 
of the noise. In the group of compensation methods, we have described the VTS approach (as a 
representative model-based noise compensation method) and histogram equalization (a non-
linear non-model-based method). We have described the differences and advantages of each 
one, finding that more accurate compensation can be achieved with model-based methods, 
while non-model-based ones can deal with noise without a description of the distortion 
mechanism. The best results are achieved when both methods are combined. 
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