

Communications
in Computer and Information Science 41

Cerstin Mahlow Michael Piotrowski (Eds.)

State of the Art
in Computational
Morphology

Workshop on Systems and Frameworks
for Computational Morphology, SFCM 2009
Zurich, Switzerland, September 4, 2009
Proceedings

13

Volume Editors

Cerstin Mahlow
University of Zurich
Zurich, Switzerland
E-mail: mahlow@cl.uzh.ch

Michael Piotrowski
University of Zurich
Zurich, Switzerland
E-mail: mxp@cl.uzh.ch

Library of Congress Control Number: Applied for

CR Subject Classification (1998): J.5, H.3.1, F.4.2, F.4.3, I.2.7, H.5.2

ISSN 1865-0929
ISBN-10 3-642-04130-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04130-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12745241 06/3180 5 4 3 2 1 0

Preface

From the point of view of computational linguistics, morphological resources are the
basis for all higher-level applications. This is especially true for languages with a rich
morphology, such as German or Finnish. A morphology component should thus be
capable of analyzing single word forms as well as whole corpora. For many practical
applications, not only morphological analysis, but also generation is required, i.e., the
production of surfaces corresponding to specific categories.

Apart from uses in computational linguistics, there are also numerous practical ap-
plications that either require morphological analysis and generation or that can greatly
benefit from it, for example, in text processing, user interfaces, or information re-
trieval. These applications have specific requirements for morphological components,
including requirements from software engineering, such as programming interfaces or
robustness.

In 1994, the First Morpholympics took place at the University of Erlangen-
Nuremberg, a competition between several systems for the analysis and generation
of German word forms. Eight systems participated in the First Morpholympics; the
conference proceedings [1] thus give a very good overview of the state of the art in
computational morphology for German as of 1994.

Today, 15 years later, some of the systems that participated in the Morpholympics
still exist and are being maintained. However, there are also new developments in the
field of computational morphology, for German and for other languages. Unfortunately,
publications on morphologic analysis and generation are spread over many different
conferences and journals, so that it is difficult to get an overview of the current state
of the art and of the available systems. One of our goals for the Workshop on Systems
and Frameworks for Computational Morphology (SFCM 2009) was therefore to bring
together researchers, developers, and maintainers of morphology systems for German
and of frameworks for computational morphology from academia and industry, in order
to produce an up-to-date overview of available systems for German.

As in many areas of computational linguistics, there are rule-based and statistical
approaches to morphological analysis; SFCM 2009 focused on systems and frameworks
based on linguistic principles and providing linguistically motivated analyses and/or
generation on the basis of linguistic categories.

One factor for this decision was our own experience in implementing rule-based
morphological analyzers, so we know that they are able to deliver detailed, structured
analyses (see [2]). The possibility to draw upon the morphological processes of inflec-
tion, derivation, and compounding involved when analyzing or generating word forms,
the respective parse and generation trees, and certain elements of the category, is, in our
view, a potential advantage when compared with statistically created results.

VI Preface

The second and deciding factor is that, based on the results of Morpho Challenge1,
we have come to the conclusion that statistical morphological analyzers are not yet
able to deliver the quality of results required for practical applications. In the Morpho
Challenge morpheme analysis task, the analyses proposed by the participants’ algo-
rithms are compared against a linguistic gold standard. At Morpho Challenge 2008
[3], the best system for German achieved an F-measure of 54.06%. The best recall
value was 59.51% (this system achieved 49.53% precision), the best result for preci-
sion was 87.92% (with 7.44% recall).2 These figures are much too low to consider the
systems as suitable for use in most types of applications, and in interactive applications
in particular. If we compare the results of Morpho Challenge with the figures reported
from the First Morpholympics [4], the decision to focus on rule-based systems suggests
itself.

In the call for papers for this workshop we asked for contributions on actual, work-
ing systems and frameworks of at least prototype quality. To ensure fruitful discus-
sions among workshop participants, we asked that submissions on concrete morphology
systems should be for German; submissions on morphological frameworks were con-
sidered relevant if the framework can be used to implement components for different
languages.

The workshop thus had three main goals:

– To stimulate discussion among researchers and developers and to offer an up-to-
date overview of available systems for German morphology which provide deep
analyses and are suitable for generating specific word forms.

– To stimulate discussion among developers of general frameworks that can be used
to implement morphological components for several languages.

– To discuss aspects of evaluation of morphology systems and possible future com-
petitions or tasks, such as a new edition of the Morpholympics.

Based on the number of submissions and the number of participants at the workshop
we can definitely state that the topic of the workshop has met with great interest from the
community, both from academia and industry. We received 16 submissions, of which
9 were accepted after a thorough review by the members of the Program Committee
and additional reviewers. The peer review process was double-blind, and each paper
received at least three reviews.

The discussions after the talks and during the demo sessions, as well as the final
plenum, showed the interest in and the need and the requirements for further efforts in
the field of computational morphology. We will maintain the website for this workshop
at http://sfcm2009.org. Here you can find additional material not included in
the proceedings. If there is a follow-up to this workshop—whether in a similar format
or in the form of a competition—it will also be announced on this site.

1 Morpho Challenge is a shared task and conference for the evaluation of statistical morpholog-
ical components based on unsupervised machine-learning.

2 See http://www.cis.hut.fi/morphochallenge2008/ for details. The results of
Morpho Challenge 2009 were not yet available at the time of this writing.

Preface VII

This book starts with a theory-oriented paper by Thomas Hanneforth (“Using
Ranked Semirings for Representing Morphology Automata”), proposing complex
weight structures to represent morphological analyzers.

The following three papers report on frameworks: Johannes Handl, Besim Kabashi,
Thomas Proisl, and Carsten Weber (“JSLIM – Computational Morphology in the Frame-
work of the SLIM Theory of Language”) present a recent implementation of the SLIM
theory, based on Left-Associative Grammar [5]. This framework allows the imple-
mentation of morphological analyzers and generators for different languages. Krister
Lindén, Miikka Silfverberg, and Tommi Pirinen (“HFST Tools for Morphology – An
Efficient Open Source Package for Construction of Morphological Analyzers”) present
a recent implementation of Two-Level Morphology [6]. Both frameworks (JSLIM and
HFST) are intended to be distributed as open-source software, and both papers report
on actually implemented systems for several languages with a coverage permitting the
analysis of real-world texts. This is a very positive trend, which—we hope—will en-
courage the development of concrete analyzers and generators using the knowledge of
the community and coordinating the efforts. Thomas Hanneforth (“fsm2 – A Script-
ing Language for Creating Weighted Finite-State Morphologies”) reports on a scripting
language for creating and manipulating morphological analyzers for different languages
based on weighted semirings.

The following three papers report on morphological systems for German. Andrea
Zielinski, Christian Simon, and Tilman Wittl (“Morphisto – Service-Oriented Open
Source Morphology for German”) present their recent efforts in developing an open-
source analyzer and generator for German. It was initially developed within the TextGrid
project—a modular platform for collaborative textual editing for researchers in philol-
ogy, linguistics, and related fields. Morphisto is based on SMOR and the SFST tools
[7], offering a comprehensive free lexicon. Heinz Dieter Maas, Christoph Rösener, and
Axel Theofilidis (“Morphosyntactic and Semantic Analysis of Text: The MPRO Tag-
ging Procedure”) present further details of a system which already participated in the
first Morpholympics in 1994. MPRO is still maintained and being used in several ap-
plications. Similarly, the system presented by Pius ten Hacken (“Word Manager”) has
been maintained for more than 15 years and is being used in various environments.

The last two papers deal with unknown words. The first one, by Stephan Bopp and
Sandro Pedrazzini (“Morphological Analysis Using Linguistically Motivated Decom-
position of Unknown Words”) is a practical application of Word Manager described
in the preceding paper. While Bopp and Pedrazzini concentrate on the decomposition
of complex German compounds using an existing morphological system, the paper of
Krister Lindén and Jussi Tuovila (“Corpus-based Lexeme Ranking for Morphological
Guessers”) is concerned with adding new words to the lexicon of a morphological com-
ponent. Their approach is intended to help the lexicographer by providing automatically
generated suggestions for lexemes.

In summary, these contributions show that high-quality research is being conducted
in the area of rule-based computational morphology, and that there are further develop-
ments of mature systems, new implementations based on established theoretical frame-
works, and new approaches to the problems of morphology. We also see a trend towards
open-source developments, which we find very promising. Open-source projects allow

VIII Preface

the collaboration of researchers interested in morphological systems which fulfill high
demands on performance and quality. It should not be necessary to develop a mor-
phological analyzer from scratch if one is needed for a project. Making high-quality
morphological resources freely available will help to advance the state of the art and
allow the development of high-quality real-world applications. Useful applications will
demonstrate to a broad audience that computational morphology (and natural language
processing in general) is not an esoteric boondoggle, but an actual science with tangible
benefits for society, which are good reason for publicly funding research in this area.

We would like to thank the authors for their contributions to the workshop and to
this book. We also thank the reviewers for their effort and for their constructive feed-
back, encouraging and helping the authors to improve their papers. The submission and
reviewing process and the compilation of the proceedings was supported by the Easy-
Chair system. We thank Stefan Göller, the editor of the series (“Communications in
Computer and Information Science”) (CCIS), and Springer for publishing the proceed-
ings of SFCM 2009. We are grateful for the financial support given by the Institute of
Computational Linguistics at the University of Zurich and by the German Society for
Computational Linguistics and Language Technology (GSCL). Last, but not least, we
thank Roland Hausser for encouraging us to organize the SFCM 2009 workshop as an
almost successor of the First Morpholympics in 1994, and Norbert Fuchs for providing
many helpful hints during the entire organization process.

July 2009 Cerstin Mahlow
Michael Piotrowski

References

1. Hausser, R.: Linguistische Verifikation. Dokumentation zur Ersten Morpholympics.
Niemeyer, Tübingen (1996)

2. Mahlow, C., Piotrowski, M.: SMM: Detailed, structured morphological analysis for Spanish.
Polibits. Computer science and computer engineering with applications (39) (2009)

3. Kurimo, M., Varjokallio, M.: Unsupervised morpheme analysis evaluation by a comparison
to a linguistic gold standard – Morpho Challenge 2008. In: Workshop of the Cross-Language
Evaluation Forum (CLEF 2008). (2008)

4. Lenders, W., Bátori, I., Dogil, G., Görz, G., Seewald, U.: Stellungnahme der Jury für die
Morpholympics 94. In Hausser, R., ed.: Linguistische Verifikation. Dokumentation zur Ersten
Morpholympics 1994. Niemeyer, Tübingen (1996) 15–24

5. Hausser, R.: Foundations of Computational Linguistics: Human-Computer Communication
in Natural Language. 2nd rev. and ext. edn. Springer, Heidelberg (2001)

6. Koskenniemi, K.: Two-Level Morphology: A General Computational Model for Word-Form
Recognition and Production. PhD thesis, University of Helsinki (1983)

7. Schmid, H., Fitschen, A., Heid, U.: A German computational morphology covering derivation,
composition, and inflection. In: IVth International Conference on Language Resources and
Evaluation (LREC 2004). (2004) 1263–1266

Organization

The Workshop on Systems and Frameworks for Computational Morphology (SFCM
2009) was organized by Cerstin Mahlow and Michael Piotrowski. The workshop was
held at the University of Zurich.

Program Chairs

Cerstin Mahlow University of Zurich, Switzerland
Michael Piotrowski University of Zurich, Switzerland

Program Committee

Simon Clematide University of Zurich, Switzerland
Thomas Hanneforth University of Potsdam, Germany
Roland Hausser Friedrich-Alexander University of Erlangen-Nuremberg,

Germany
Lauri Karttunen PARC, Palo Alto, USA
Kimmo Koskenniemi University of Helsinki, Finland
Winfried Lenders University of Bonn, Germany
Krister Lindén University of Helsinki, Finland
Anke Lüdeling Humboldt University Berlin, Germany
Cerstin Mahlow University of Zurich, Switzerland
Günter Neumann DFKI Saarbrücken, Germany
Michael Piotrowski University of Zurich, Switzerland
Helmut Schmid University of Stuttgart, Germany
Angelika Storrer University of Dortmund, Germany
Martin Volk University of Zurich, Switzerland
Shuly Wintner University of Haifa, Israel
Andrea Zielinski FIZ Karlsruhe, Germany

Additional Reviewers

Bruno Cartoni University of Geneva, Switzerland
Johannes Handl Friedrich-Alexander University of Erlangen-Nuremberg,

Germany
Besim Kabashi Friedrich-Alexander University of Erlangen-Nuremberg,

Germany
Thomas Proisl Friedrich-Alexander University of Erlangen-Nuremberg,

Germany

X Organization

Luzius Thöny University of Zurich, Switzerland
Carsten Weber Friedrich-Alexander University of Erlangen-Nuremberg,

Germany

Local Organization

Cerstin Mahlow University of Zurich, Switzerland
Michael Piotrowski University of Zurich, Switzerland
Nancy Renning University of Zurich, Switzerland

Sponsoring Institutions

Institute of Computational Linguistics, University of Zurich
German Society for Computational Linguistics and Language Technology (GSCL)

Table of Contents

Using Ranked Semirings for Representing Morphology Automata 1
Thomas Hanneforth

JSLIM – Computational Morphology in the Framework of the SLIM Theory
of Language . 10

Johannes Handl, Besim Kabashi, Thomas Proisl, and Carsten Weber

HFST Tools for Morphology – An Efficient Open-Source Package for
Construction of Morphological Analyzers . 28

Krister Lindén, Miikka Silfverberg, and Tommi Pirinen

fsm2 – A Scripting Language for Creating Weighted Finite-State
Morphologies . 48

Thomas Hanneforth

Morphisto: Service-Oriented Open Source Morphology for German 64
Andrea Zielinski, Christian Simon, and Tilman Wittl

Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging
Procedure . 76

Heinz Dieter Maas, Christoph Rösener, and Axel Theofilidis

Word Manager . 88
Pius ten Hacken

Morphological Analysis Using Linguistically Motivated Decomposition of
Unknown Words . 108

Stephan Bopp and Sandro Pedrazzini

Corpus-Based Lexeme Ranking for Morphological Guessers 118
Krister Lindén and Jussi Tuovila

Author Index . 137

Using Ranked Semirings for Representing Morphology
Automata

Thomas Hanneforth

Department for Linguistics, University of Potsdam, Germany

Abstract. We propose a class of complex weight structures called ranked
semirings for the compact representation of morphological analysers based on
weighted finite-state automata. In an experiment, we compare this compact rep-
resentation with the conventional representation based on letter transducers.

1 Introduction

Using finite-state transducers has a long-standing tradition in computational morphol-
ogy, since their formal properties allow for creating complex systems in a modu-
lar fashion. Most systems are based on a variant of finite-state transducer, called
letter transducer. A letter transducer (henceforth LFST) is a finite-state transducer
T = 〈Q,Σ ,Γ ,q0,F,E〉 with input alphabet Σ and output alphabet Γ , where the set of
transitions E is defined as a subset of Q× (Σ ∪{ε})× (Γ ∪{ε})×Q. That means that
only single symbols (in opposition to strings) or ε may label a transition between two
states. This restriction – which doesn’t limit the generative capacity compared to un-
restricted finite-state transducers – facilitates the efficient implementation of these au-
tomata, since alphabet symbols are most often represented as integers which can be very
efficiently processed. Furthermore, the avoidance of strings or symbol vectors leads to
simpler algorithms for composition and intersection of automata.

On the other hand, letter transducers tend to be less compact and efficient. In compu-
tational morphology systems (CMS), the analyses computed for a given input word are
in general much longer than the input word itself. Typically, the CMS will insert mor-
pheme boundaries and enrich the input with morpho-syntactic information like word
class, features, etc. In a letter transducer, where a transition can only emit a single
symbol, the length difference between input and output is usually compensated by in-
serting input-ε-transitions.1 Even in certain circumstances where it is guaranteed to
move these input-ε-transitions towards the end of an accepting path2, they nevertheless
increase the amount of non-deterministic computation. Figure 1 shows a LFST for the
German definite and indefinite articles.3 Furthermore, optimisation transformations like
determinisation and minimisation become harder and less advantageous:

1 In Two-Level-systems ([1]) which are based on parallel intersection of letter transducers which
represent different constraints, ε is disallowed and a regular symbol (e.g., "0") with a special
meaning is used instead.

2 For example, for acyclic transducers representing lexicons.
3 This LFST is already optimised by using the encoded minimization technique: symbol pairs

are treated as symbols taken from a new alphabet; after that, the LFST is determinised and
minimised as an ordinary finite-state acceptor.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 1–9, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 T. Hanneforth

0

10

Fig. 1. Letter transducer for German articles

– Determinisation of string transducers (see [2]) (of which letter transducers are a
special case) is based on an extended powerset construction which keeps track –
for every component state in the state set – of the symbols already outputted and
the symbols to be outputted later (the delayed symbols). While computing a tran-
sition from state set P to state set Q for an input symbol a in the equivalent deter-
ministic FST, the determinisation algorithm can safely output the longest common
prefix of all the delayed symbol strings w for a pair 〈p,w〉 in state set P, each one
concatenated with the output symbols of the a-transitions leaving state p in the
non-deterministic FST. (see [2] for details). In many practical cases encountered in
morphology processing, this prefix v = v1 . . .vk is no longer a single symbol. When
being restricted to letter transducers, the only possible solution is to output the first
symbol v1 of v together with the input symbol a and then output the rest of v by
using input-ε-transitions. Again, this move make the resulting LFST technically
non-deterministic and increases its size unnecessarily.

– Minimisation reduces the space requirements of a finite-state transducer by col-
lapsing equivalent path suffixes. Minimisation is mainly based on a equivalence
transformation called pushing ([3]) in which output strings are pushed as far as
possible towards the initial state of the transducer. Technically, for each state p
of the transducer, an (output) string potential Pot[p] is computed with the help of a
distance computation algorithm. After that, the output w of each transition p

a−→ q of
the original machine is reweighted based on the string potentials of p and q. Again,
we are faced with a similar problem as in the determinisation case above: the need

Using Ranked Semirings for Representing Morphology Automata 3

may arise to output more than a single symbol when following the transition, even
if the original FST has been a letter transducer.

The article is structured as follows: Section 2 will provide the necessary technical defi-
nitions, while Section 3 introduces a complex weight structure for weighted finite-state
automata called ranked semiring. The article concludes with an experiment and a dis-
cussion on implementational issues.

2 Definitions

Readers familiar with the subject of semiring-weighted finite-state automata may skip
this section.

Before we start to define weighted automata, we need a suitable weight structure for
them.

Definition 1 (Semiring). An algebraic structure K = 〈W,⊕,⊗,0,1〉 is a semiring [4]
if it fulfills the following conditions:

1. 〈W,⊕,0〉 is a commutative monoid with 0 as the identity element for ⊕.
2. 〈W,⊗,1〉 is a monoid with 1 as the identity element for ⊗.
3. ⊗ distributes over ⊕:

∀x,y,z ∈W : x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z) (left distributivity)
∀x,y,z ∈W : (y⊕ z)⊗ x = (y⊗ x)⊕ (z⊗ x) (right distributivity)

4. 0 is an annihilator for ⊗: ∀w ∈W,w⊗ 0 = 0⊗w = 0.

Commonly used semirings are for example the tropical semiring

T = 〈R+
0 ∪ {+∞},min,+,+∞,0〉 for positive real numbers and the Viterbi semiring

V = 〈[0 . . .1],max, ·,0,1〉 for probabilities.

In the following, a semiring K is identified with its carrier set W .

Definition 2 (Semiring properties). Let K = 〈W,⊕,⊗,0,1〉 be a semiring.

– K is called idempotent if ∀a ∈ K : a⊕a = a.
– K has the path property if ∀a,b ∈ K : a⊕b = a or a⊕b = b.

Weighted finite-state automata are an extension to classical finite-state automata ([5])
in which transitions and final states are augmented with weights taken from a semiring.

Definition 3 (Weighted finite-state acceptor). A weighted finite-state acceptor
(henceforth WFSA, cf. [6])
A = 〈Σ ,Q,q0,F,E,λ ,ρ〉 over a semiring K is a 7-tuple with

1. Σ , the finite input alphabet,
2. Q, the finite set of states,
3. q0 ∈ Q, the start state,
4. F ⊆ Q, the set of final states,
5. E ⊆ Q× (Σ ∪{ε})×K ×Q, the set of transitions,
6. λ ∈ K , the initial weight and
7. ρ : F → K , the final weight function mapping final states to elements in K .

4 T. Hanneforth

The following definition functionally relates strings accepted (or generated) by a WFSA
with semirings weights:

Definition 4 (Weight associated with a string). Given a WFSA A, let a path π =
t1t2 . . .tk be a sequence of adjacent transitions. Let Π(q,x, p) for x ∈ Σ∗ be the set
of paths from state q ∈ Q to state p ∈ Q such that the concatenation of input symbols in
each π ∈ Π(q,x, p) equals x. Let ω(π) the ⊗-multiplication of all transitions weights in
a path π: ω(π) = w[t1]⊗w[t2]⊗ . . .⊗w[tk]. The weight associated with an input string
x ∈ Σ∗ wrt a WSFA A – denoted by �x�A – is computed by the following equation:

�x�A =
⊕

q∈F,
π∈Π (q0,x,q)

λ ⊗ω(π)⊗ρ(q)

In definition 4, weights along a path π are combined with the ⊗-operation, that is, they
are multiplied in the Viterbi semiring or added in the tropical semiring. Different paths
π for the input x are then combined with the ⊕-operation, which for example computes
the maximum in the Viterbi semiring or the minimum in the tropical semiring. The
requirement that ⊕ is commutative (see definition 1) ensures that the order in which the
paths π are processed is irrelevant. Note that the ⊕-operation in definition 4 plays only
a role if there are several accepting paths for input string x, that is, if the WFSA A is
non-deterministic.

We have now everything at hand to define more complex semiring structures.

3 Ranked Semirings

Morphology outputs are most often strings, that is, symbol sequences, over an output
alphabet Δ . To treat them as weights, we need to define a suitable semiring structure for
them. One possibility is a string semiring S = 〈Δ∗ ∪{s∞},∧, ·,s∞,ε〉 [2]. The abstract
addition operation ⊕ is mapped to the computation of the longest common prefix –
denoted by∧ – of two strings; for example: ARTDEF#sg∧ART DEF#pl = ARTDEF#.
The identity element of ∧ is s∞, that is, ∀x ∈ Δ∗ : x∧ s∞ = x (that means every string
x ∈ Δ∗ is a prefix of s∞). Note that ∧ is idempotent, that is, for every string x, x∧x = x.
As already discussed in the previous section, the longest common prefix operation ∧
is very useful for computing maximal outputs during determinisation and for realising
outputs as early as possible (pushing).

The place of the abstract multiplication operation ⊗ is filled in S by string concate-
nation · with the empty string ε as the identity element.

Parametrising definition 4 with S , we arrive at a WFSA in which string weights are
concatenated along a path in the WSFA, as desired:

�x�A =
∧

q∈F,
π∈Π (q0,x,q)

λ ·ω(π) ·ρ(q) (1)

Characteristic for morphological analysis systems is the fact that in many cases input
words are mapped to several analyses. For example, the German definite article die

Using Ranked Semirings for Representing Morphology Automata 5

has 8 different analyses which differ in gender, number and case. Allowing that would
result in a nondeterministic WFSA with degraded efficiency. Furthermore, in the case
of several accepting paths for a word w, equation 1 would compute ∧ over all strings
weights along the different paths for w. In the example case of the article die, only the
longest common prefix d ARTDEF of all of them would be the result4.

To solve this problem, it was proposed in [2] to allow a maximum of p different
outputs at a final state q of a WFSA. This leads to the definition of p-subsequential
WFSAs, that is, deterministic WFSAs where the output function ρ is altered in the
following way:

ρ : F → (Δ∗)k,1 ≤ k ≤ p. (2)

Equation 1 needs to be changed to reflect the new definition of ρ correctly:

�x�A =
⋃

q∈F,v∈ρ(q)
π∈Π(q0,x,q)

{λ ·ω(π) · v} (3)

A second solution is to keep definition 4 and “raise” the definition of the semiring in an
appropriate way. We will pursue this possibility later.

In many applications, analyses computed by CMSs need to be ranked somehow. In
[7] and [8], it was proposed to measure the morphological complexity of a word by
counting the occurrences of different morpheme boundary symbols inside an analysis.
The analysis with the lowest score, that is, with the smallest number of morpheme
boundaries, is then selected. Technically, this is achieved by creating a weighted letter
transducer over the tropical semiring and assigning penalty weights to the boundary
symbols, either dependent on the morphological construction or globally. After having
looked up a word in the transducer, a best path operation ([6]) is performed. Since
the abstract multiplication operation of the tropical semiring corresponds to addition,
penalties along a path are added.

Another possibility is enriching the morphology transducer with probabilities com-
puted from a corpus by using the Viterbi semiring.

To compare weights with each other, is is necessary to define some order amongst
them. Idempotent semirings have an associated order called the natural order (see [6]).
If K is an idempotent semiring, for any two elements x and y ∈K , we define: x ≤K y
if x⊕y = x. It can be easily verified that ≤K defines a partial, that is, reflexive, transitive
and antisymmetric order.

Example 1 (Natural order in idempotent semirings)

– In the tropical semiring T , 2 ≤T 5, since 2 min 5 = 2
– In the Viterbi semiring V , 0.75 ≤V 0.5, since 0.75 max 0.5 = 0.75
– In the string semiring S , cat ≤S cats, since cat ∧ cats = cat

If an idempotent semiring K has in addition the path property, a WFSA over K can
be used in best path operations. Remember that the path property says that for any two
weights x and y ∈ K , x⊕ y = x or x⊕ y = y. That is, the ⊕-comparison of two weights

4 We treat d as the lemma of all German definite article forms der, die, das, etc.

6 T. Hanneforth

x and y computed along two paths in a WSFA A either yields the path corresponding to
x or the path corresponding to y.

Observe that the string semiring does not have the path property, as already discussed
above.

It is possible to define complex semirings Ki by combining simpler semirings. If
the resulting semiring should be useful for best path operations, a ranking among the
individual sub-semirings must be settled. The following definition of a ranked tuple
semiring accomplishes that:

Definition 5 (Ranked tuple semiring). Let Ki be idempotent semirings (1≤ i ≤ k) for
some constant k ≥ 1.

Let −→x = 〈x1,x2, . . .xk〉 and −→y = 〈y1,y2, . . .yk〉 be two semiring tuples, with xi,yi ∈
Ki. Define a new structure

−→
K = 〈K1 ×K2 × . . .×Kk,

−→⊕ k,
−→⊗ k,0k,1k〉 where:

1. 0k = 〈0K1 , . . . ,0Kk〉
2. 1k = 〈1K1 , . . . ,1Kk〉
3. −→x −→⊗ k

−→y = 〈x1 ⊗K1 y1, . . . ,xk ⊗Kk yk〉
4.

−→x −→⊕ k
−→y =

{−→x ∃ j ≤ k,∀i,1 ≤ i < j : xi = yi ∧ x j ⊕K j y j = x j−→y otherwise

Items 1. to 3. in definition 5 are straightforward. The definition of the ⊕-operation con-
stitutes some sort of lexicographic natural order over the k-tuples. As can immediately
be seen from the definition of

−→⊕ k, the ranked tuple semiring is idempotent by letting
−→y = −→x . Moreover, if the sub-semirings have the path property,

−→
K will have it too.

Example 2 demonstrates the effect of
−→⊕ k.

Example 2 (
−→⊕ k). Consider a complex semiring T ×T ×T :

– 〈2,3,4〉 −→⊕ 3 〈2,3,2〉 = 〈2,3,2〉
– 〈1,2,3〉 −→⊕ 3 〈3,2,1〉 = 〈1,2,3〉
– 〈1,2,3〉 −→⊕ 3 〈1,2,3〉 = 〈1,2,3〉

Ranked tuple semirings allow arbitrary combinations of idempotent sub-semirings, for
example, for counting and weighting morphemes (with tropical semirings) or maximis-
ing probabilities (with Viterbi semirings).

Since the class of string semirings does not have the path property, we may handle a
string sub-semiring within a ranked tuple semiring in two possible ways:

1. Reintroduce subsequentiality and change eq. (3) accordingly.
2. Keep definition 4 defining the weight of an input string and define a new class of

ranked string semirings with tuple sets as weights.

We will explicate the last point in greater detail.
As already discussed, since morphological analysis systems need to map input words

to sets of (complex) analyses, the weights in a ranked string semiring must be sets of
pairs 〈S ,K 〉. Accordingly, the carrier set of the ranked string semiring must consist
out of all subsets of S ×K , that is, its powerset.

Using Ranked Semirings for Representing Morphology Automata 7

Definition 6 (Ranked string (powerset) semiring). Let
−→
K = 〈W,⊕−→

K
,⊗−→

K
,0,1〉 be a

ranked tuple semiring.

A ranked string semiring
−→
S is a structure 〈2S×−→

K ,⊕
S×−→

K
,⊗

S×−→
K

, /0,{〈ε,1〉}〉
with (X, Y ∈ 2S×−→

K):

X ⊗
S×−→

K
Y = {〈uw,v⊗−→

K
z〉 | 〈u,v〉 ∈ X ∧〈w,z〉 ∈ Y}

X ⊕
S×−→

K
Y = {〈u,v⊕−→

K
w〉 | ∃u : 〈u,v〉 ∈ X ∧〈u,w〉 ∈Y}

∪{〈u,v〉 ∈ X | ¬∃w : 〈u,w〉 ∈Y}
∪{〈u,w〉 ∈Y | ¬∃v : 〈u,v〉 ∈ X}

Example 3 (⊕S×T). Consider a S ×T -semiring.
{〈ab,5〉,〈a,3〉} ⊕S×T {〈ab,2〉,〈b,1〉}= {〈ab,2 min 5〉,〈a,3〉,〈b,1〉} =
{〈ab,2〉,〈a,3〉,〈b,1〉}

Theorem 1 (
−→
S is an idempotent semiring).

Nevertheless, in practice, solution 1 above is pursued, in which a simpler ranked S ×−→
K -semiring is used (as opposed to 2S×−→

K in definition 6) and the problem of multiple
string outputs is delegated to a p-subsequentiality mechanism.

0

10

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0 0
0

0

Fig. 2. 8-subsequential S ×T -WFSA Adet for the German articles

8 T. Hanneforth

Figure 2 shows an optimal 8-subsequential WFSA over a S ×T -semiring, again
for the system of German articles. To demonstrate the effect of the tropical semiring
even for non-complex words as articles, we associate an arbitrary penalty score of 2.5
for article word forms starting with an uppercase letter (remember that in German,
every word at the beginning of a sentence starts with an uppercase letter).5 The WFSA
demonstrates nicely the effect of weight pushing: while following the transition labeled
with d from 0 to 1, the complex weight (d ARTDEF,2.5) is immediately outputted,
since all paths starting with this transition share this weight as a longest common prefix
weight.

As can be already seen from this tiny example, the resulting p-subsequential WFSA
is much smaller: while the LFST has 33 states, the WFSA has only 16.

4 Experiments

For the experiment, we choose a lexicon of 47,000 geographic names including names
of cities, countries, rivers, etc. taken from the lexicon pool of the TAGH morphology
[8]. Each lexicon entry includes besides the name class an attribute indicating the se-
mantic class following the LexikoNet framework [9]. To this lexicon, a geographic
name grammar was applied allowing optional prefixation of lexicon entries having
specific semantic classes. For example, country and continent names may take pre-
fixes indicating the cardinal direction: Süd+Ost+Afrika (Southern Eastern Africa) or
Nord+Deutschland (Northern Germany). Other possible prefixes are for example Ober
(Upper), Unter (Lower) and Zentral (Central). To distinguish lexicalised prefix com-
pound names (for example Ostberlin) from spontaneous prefixation, the name grammar
assigns each occurrence of the boundary symbol + a penalty score.

Name lexicon and grammar were compiled into two different types of automata: the
first one is a weighted LFST over the tropical semiring, the second a 6-subsequential
WFSA over a S ×T semiring.

Table 1 shows the sizes of the resulting finite-state automata. Both automata were
constructed within the FSM<2.0> framework ([10]) and optimised for speed: to the
LFST, ε-normalisation, transducer determinisation and encoded minimisation was ap-
plied; the string WFSA was determinised and minimised. Both automata are acyclic
and accept around 245,000 geographic name forms.

As can be seen from the table, by using the WFSA, the number of states is reduced
by nearly 82% and the number of transitions by over 75%.

Table 1. Sizes of the two versions of the geographic name analyser

Automaton type # states # transitions # final states # input ε # output ε

LFST over T 318,050 455,341 1 99,496 1,895
WFSA over S ×T 57,675 110,158 4,304 - -

5 Multiple outputs at the final states are indicated by dashed arrows.

Using Ranked Semirings for Representing Morphology Automata 9

5 Conclusion and Further Work

We showed that the use of a complex weight structure in combination with weighted
finite state automata with multiple outputs can drastically reduce the size of CMS com-
ponents. Of course, using variable length strings as weights in a WFSA comes with
a certain prize, since they typically involve dynamic memory and speed optimisations
which increase the memory consumption.6

However, there is the possibility of further implementational optimisations. The
string WFSA from the experiment has 117,030 occurrences of weights (associated with
the transitions and the final states), among them are 39,513 occurrences of the triv-
ial weight 〈ε,0〉. The number of distinct weights is 30,506. By storing these distinct
weights in a central table and replacing each weight occurrence w with the index of w
in the table, the memory consumption can be significantly reduced.

References

1. Koskenniemi, K.: Two-level morphology: A general computational model for word-form
recognition and production. In: Proceedings of COLING 1984, Stanford University, Califor-
nia, pp. 178–181 (1984)

2. Mohri, M.: Finite-state transducers in language and speech processing. Computational Lin-
guistics 23, 269–311 (1997)

3. Mohri, M.: Minimization algorithms for sequential transducers. Theoretical Computer Sci-
ence 234, 177–201 (2000)

4. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoret-
ical Computer Science, vol. 5. Springer, Heidelberg (1986)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Company,
Reading (1979)

6. Mohri, M.: Semiring Frameworks and Algorithms for Shortest-Distance Problems. Journal
of Automata, Languages and Combinatorics 7, 321–350 (2002)

7. Volk, M.: Choosing the right lemma when analysing german nouns. In: Multilinguale Cor-
pora: Codierung, Strukturierung, Analyse. 11. Jahrestagung der GLDV. Frankfurt, pp. 304–
310 (1999)

8. Geyken, A., Hanneforth, T.: Tagh: A complete morphology for german based on weighted
finite-state automata. In: Yli-Jyrä, A., Karttunen, L., Karhumäki, J. (eds.) FSMNLP 2005.
LNCS (LNAI), vol. 4002, pp. 55–66. Springer, Heidelberg (2006)

9. Geyken, A., Schrader, N.: LexikoNet, a lexical database based on role and type hierarchies.
In: Proceedings of LREC (2006)

10. Hanneforth, T.: FSM<> 2.0 – C++ library for manipulating (weighted) finite automata
(2004), http://www.ling.uni-potsdam.de/fsm

6 For example, C++ string implementations like the one used in STLPort
(http://stlport.sourceforge.net) apply a short string optimisation where short
strings (e.g., up to 16 characters) are held in a static buffer, thereby avoiding allocation of
dynamic memory, but also wasting bytes for even shorter strings.

http://www.ling.uni-potsdam.de/fsm

JSLIM – Computational Morphology in the Framework
of the SLIM Theory of Language

Johannes Handl, Besim Kabashi, Thomas Proisl, and Carsten Weber

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Germanistik und Komparatistik

Professur für Computerlinguistik
Bismarckstr. 6, 91054 Erlangen

{jshandl,kabashi,tsproisl,cnweber}@linguistik.uni-erlangen.de

Abstract. JSLIM is a software system for writing grammars in accordance with
the SLIM theory of language. Written in Java, it is designed to facilitate the
coding of grammars for morphology as well as for syntax and semantics. This
paper describes the system with a focus on morphology. We show how the sys-
tem works, the evolution from previous versions, and how the rules for word
form recognition can be used also for word form generation.1 The first section
starts with a basic description of the functionality of a Left Associative Grammar
(LAG) and provides an algebraic definition of a JSLIM grammar. The second
section deals with the new concepts of JSLIM in comparison with earlier imple-
mentations. The third section describes the format of the grammar files, i. e. of
the lexicon, of the rules and of the variables. The fourth section broaches the sub-
ject of the reversibility of grammar rules with the aim of an automatic word form
production without any additional rule system. We conclude with an outlook on
current and future developments.

Introduction

The NLP system JSLIM is the latest in a sequences of implementations within the
framework of the SLIM2 theory of language, which was introduced in [2]. The theory
models the cycle of natural language communication, consisting of the hearer mode, the
think mode, and the speaker mode. Providing the basis for human-machine communi-
cation, it uses the data structure of flat (non-recursive) feature structures called proplets
and the time-linear algorithm of Left Associative Grammar (LAG)[3].

1 The aim of the paper is to give a gentle introduction to the way grammars are written in JSLIM.
The more technical aspects of the system, i. e. its scalability, the time required for analysis and
generation, an evaluation of the system based on corpora, and a comparison of JSLIM to other
existing systems, are the topic of a forthcoming paper.

2 SLIM is an acronym for Surface compositional Linear Internal Matching, i. e. for the basic
principles on which the theory is based [1, p. 30].

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 10–27, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

JSLIM – Computational Morphology in the Framework of the SLIM Theory 11

JSLIM builds on the experiences made in the earlier systems Malaga and JLAG.3 The
present implementation is designed to free the grammar writer from all unnecessary
work, thus simplifying development and upscaling. This is achieved by a declarative
syntax for writing the rules. Implicit category value checks render the explicit inser-
tion/deletion of values by means of imperative statements obsolete.

Currently, rules can be applied at different levels of the grammar. This allows an
easier encapsulation of paradigmatic morphologic phenomena, e. g. inflection. The lex-
icon entries are flat, i. e. the nesting of feature structures as in Malaga is not permitted,
though nesting can be simulated by means of symbolic references. These changes al-
low the extensive use of templates which considerably reduce the size of the lexicon and
which improve its performance, readability and maintainability. The declarative syntax
for inflectional and derivational combinations is bidirectional in that it may be used not
only for the analysis of inflectional and derivational forms, but also for their generation.

1 Foundations

This section briefly describes the fundamental principles on which the system is built.
First we explain the way an LAG works and on which principles it is based. Then we
give the algebraic definition of a JSLIM grammar, because it works slightly different
from the definition of an LAG given in [2, pp. 186–187].

1.1 LAG and SLIM

Grammar does not tell us how language must be constructed in order to fulfil
its purpose, in order to have such-and-such an effect on human beings. It only
describes and in no way explains the use of signs. [6, p. 138]

The purpose of a grammar is therefore not to understand language but to find means by
which to describe it. One of the most evident properties of natural language is its lin-
earity in time. Therefore, LA-grammar uses a strictly time-linear derivation order.4 [3]
describes LAG as a bottom-up left-associative parsing scheme as illustrated in figure 1.
In each derivation step, the sentence start, i. e. the part of the input already parsed, is
combined with the next word, which in the case of morphological analysis corresponds
to the next allomorph of the input. The number of combination steps required to suc-
cessfully parse an input therefore corresponds to the number of allomorphs of the input
minus one.
3 The system Malaga [4] is quite elaborate and allows the construction of a grammar. Written in

C, it provides a language for grammar rules and a single lexicon with nested feature structures.
However, the style of the code requires programming experience. Also, the complexity of the
lexicon entries makes the grammar less readable and upscaling more difficult. The next system,
called JLAG, was implemented by [5] as an attempt to apply the paradigm of object-oriented
programming to NLP. Coding became even more difficult and it never left the prototype state.
As in Malaga the main problem was that the grammar writer was burdened with too much
work and too little work was done by the system.

4 It is the topic of the SLIM theory of language to model a real understanding of language.

12 J. Handl et al.

⎡

⎢⎢⎢⎢⎢⎣

sur: Sommer
cor: Sommer
cat: (m-gp-d)
sem: (m sgpl)
flx: CAdler

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

sur: nacht
cor: nacht
cat: (f)
sem: (f sg)
flx: CHand

⎤

⎥⎥⎥⎥⎥⎦

⇓⎡

⎢⎢⎢⎢⎢⎣

sur: Sommer | nacht
cor: Sommernacht
cat: (f)
sem: (f sg)
flx: CHand

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

sur: s
cor: s
cat: (fug)

⎤

⎥⎥⎥⎥⎥⎦

⇓⎡

⎢⎢⎢⎢⎢⎣

sur: Sommer | nacht | s
cor: Sommernachts
cat: (stem)
sem: ()
flx:

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

sur: träum
cor: traum
cat: (pstem)
sem: (m pl)
flx: CBach

⎤

⎥⎥⎥⎥⎥⎦

⇓⎡

⎢⎢⎢⎢⎢⎣

sur: Sommer | nacht | s | träum
cor: Sommernachtstraum
cat: (pstem)
sem: (m pl)
flx: CBach

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

sur: e
cor: e
cat: (flx)

⎤

⎥⎥⎥⎥⎥⎦

⇓
Result of morphological analysis:⎡

⎢⎢⎢⎢⎢⎣

sur: Sommer | nacht | s | träum | e
cor: Sommernachtstraum
cat: (p-d)
sem: (m pl)
flx: CBach

⎤

⎥⎥⎥⎥⎥⎦

.

.

������������
e

�����������

.

������������
träum

�����������

.

�����������
s

�����������

Sommer

�����������
nacht

�����������

Fig. 1. The bottom-up left associative analysis and derivation order of an LA-grammar

1.2 The Algebraic Description of a JSLIM Grammar

According to [7, p. 4] a JSLIM grammar G’ is defined as an 8-tuple

(W ′,A′,C′,LX ′,CO′,RP′,ST ′
S,ST ′

F)

Thereby

1. W ′ is a finite set of surfaces
2. A′ is a finite set of attribute names
3. C′ is a finite set of category segments
4. LX ′ ⊂W ′ × (A′ ×C′∗)+ is a finite set called the lexicon
5. CO′ = (co′0, . . .co′n−1) is a finite set of total recursive functions called categorical

operations of the form

P(FS)×FS → P(FS) (1)

Thereby, FS ⊂ (A′ ×C′∗)+ and P(FS) is the function to generate the power set for
a given set. Let co∈CO′ and co({ f s0, . . . , f sn−1}, f sn) ∈P(FS) with f si ∈ FS for
i ≤ 0 < n. Let FSc = {M ⊆ P(FS) : |M| = c}. There exists an m < n,k < n with

JSLIM – Computational Morphology in the Framework of the SLIM Theory 13

co

(
k−1⋃

i=0

{ f si}∪
n−1⋃

i=k

{ f si}, f sn

)
=

m−1⋃

i=0

{ f s′i}∪
n−1⋃

i=k

{ f si} (2)

0 ≤ k < ck = const (3)

1 ≤ m ≤ k + 1 (4)

∀(M ∈ FSn−1−k) : co(
k−1⋃

i=0

{ f si}∪M, f sn) =
m−1⋃

i=0

{ f s′i}∪M (5)

where f s′i ∈ FS for i ≤ 0 < m.
6. RP′ = (rp′0 . . . rp′n−1) is a sequence of the same length

with rp′i ⊆ {i|0 ≤ i < n}, called rule packages
7. ST ′

S ⊆ (A′ ×C′∗)∗ ×RP′∗ is a finite set called start states
8. ST ′

F ⊆ (A′ ×C′∗)∗ ×RP′∗ is a finite set called final states

The definition is in accordance with the definition given in [2, p. 187]. However, feature
structures are used instead of a category list to represent sentence start and next word.
An LAG which works on feature structures was already defined in [8, pp. 37–38], but
the concept of categorical operations has changed. One of the recent innovations re-
garding LAGs was to postulate a sentence start which is no longer coded in the form
of a hierarchical data structure, but in the form of a set of flat feature structures. As
a consequence, it is possible to access single values not only by using the underlying
hierarchy of the data structure but also by using various – mainly syntactic-semantic –
relations between the feature structures.5

Although those changes are fundamental as far as syntax is concerned they have little
impact on morphological analysis where the sentence start is still coded into one single
feature structure. I. e. in morphology we have the special case that both sets, sentence
start and resulting set, always have a cardinality of one.

2 Applied Techniques

In this section, the newer concepts of JSLIM are presented. One of those concepts is the
idea of undirected programming.6 The idea is to specify rules as bijective functions, so
that they can be executed in either direction. Here we only briefly cover the declarative
syntax used in JSLIM, but we will go into more detail in section 4. We then investigate
the techniques of indirection7 and common subtree sharing, as they have an impact on

5 This facilitates the way rules can be written and provides the grammar developer with new
means of how to express constraints in the rules. [9] showed that rules for sentences with
gapping and coordination can be modelled more accurately by exploiting word order.

6 The most famous example of a programming language which allows undirected programming
is Prolog. It is widely known among linguists for allowing easy coding of natural language
grammars by using the definite clause grammar (DCG) notation. Although it is not the in-
tention of the developers to create a new logic programming language, Prolog had a certain
influence on the design of the rule syntax.

7 Indirection has been widely used before, e. g. for constraint parsers, but never in combination
with an LAG.

14 J. Handl et al.

the storage and design of the lexicon.8 The technique of common subtree sharing is also
applied to the parsing process, e. g. for the internal representation of the parsing state.

2.1 Undirected Programming and Declarative Syntax

In JSLIM, a declarative syntax can be used to code inflection. Listing 1 illustrates the
declension table of the German noun ‘Bach’ (creek) as it is coded in JSLIM. A table
definition starts with the keyword table and the table name. The first letter of the
table name must be an upper case letter. The table name is followed by a colon and the
signature of the table. The signature defines, which attributes9 of the combined feature
structures are changed by one of the combination rules defined within the table body.
The body comprises several rows with implication arrows. The left side of the arrow
specifies the category values of sentence start and next word, whereas the right side
specifies the resulting category values. The signature helps to investigate the attributes
and the feature structure to which the values belong. To avoid the repetitive specification
of the same category values for the sentence start, a semicolon can be put at the end of
the last combination definition to indicate that the next definition will reuse the missing
values from the current. A full stop, in contrast, indicates that the category values of the
current definition are not reused.

table C_Bach: [cat ,sem] [sur] => [cat ,sem]
(m-g) (m sg) es => (mg) (m sg) ; # Baches

s => (mg) (m sg) ; # Bachs
e => (md) (m sg) . # Bache

(pstem)(m pl) e => (p-d)(m pl) . # Bäche
(p-d) (m pl) n => (pd) (m pl) . # Bächen

Listing 1. A morphological rule in JSLIM

Hence, the above table definition defines the following combination steps illustrated
in figure 2. This definition is declarative as it does not enforce by any means in what
way the modifications have to be performed, but merely describes them.

2.2 Indirection

When developing a morphology for a natural language one of the first tasks of the de-
veloper is to somehow code the conjugation and declension tables. Although it is quite
a simple task for an experienced traditional linguist to do so on a sheet of paper, it is not
so clear at first sight how to perform this task within the framework of Left Associative

8 The techniques of common subtree sharing, DAGs and suffix trees have been frequently used
to reduce the size of lexica, inter alia in the field of chart parsers. The elegance of the approach
of using templates as presented here is that the grammar developer benefits directly from the
compact storage, as the continuous support through all the stages of parsing eases the building
and maintenance of the lexicon.

9 A description of the used attributes can be found in [1, p. 335]. The values of the attributes are
coded using a distinctive (instead of an exhaustive) categorization [2, p. 244] [1, pp. 335–337].

JSLIM – Computational Morphology in the Framework of the SLIM Theory 15

[
cat: (m-g)
sem: (m sg)

]
◦
[

sur: es
]
⇒

[
cat: (mg)
sem: (m sg)

]
Baches

[
cat: (m-g)
sem: (m sg)

]
◦
[

sur: s
]

⇒
[

cat: (mg)
sem: (m sg)

]
Bachs

[
cat: (m-g)
sem: (m sg)

]
◦
[

sur: e
]

⇒
[

cat: (md)
sem: (m sg)

]
Bache

[
cat: (pstem)
sem: (m pl)

]
◦
[

sur: e
]

⇒
[

cat: (p-d)
sem: (m pl)

]
Bäche

[
cat: (p-d)
sem: (m pl)

]
◦
[

sur: n
]
⇒

[
cat: (pd)
sem: (m pl)

]
Bächen

Fig. 2. A morphological rule in JSLIM

Grammar. An inflectional form is a combination of a stem with an inflectional affix. To
restrict possible combinations of stems and flexives, the agreement conditions have to
be coded into the category values of the combined parts. There are four possibilities to
achieve this.

1. A naive approach would be to store a paradigm feature flag in the stem as well
as in the inflectional suffix. This would reduce the inflectional check to a simple
agreement check based on those two flags. The disadvantage of this approach is
that, though agreement checks could be realized very efficiently, e. g. via a bitmap,
the suffixes would become rather complicated, as suffixes are normally used in
more than one paradigm, and difficult to code and to maintain. E. g. changing the
paradigm feature of one paradigm also requires the paradigm feature flag of the
inflectional endings of this paradigm to be changed which may inflict side-effects
on other paradigms. Creating suffix entries for each paradigm is also no satisfactory
solution, as this has a negative impact on the runtime.

2. The stem approach tries to restrict the combination of stem and inflectional affix
mainly by focusing on the category of the stem. The disadvantage of this approach
is obvious. As inflectional properties of the whole paradigm are coded into every
single lexicon entry, storage is extremely redundant.

3. The affix approach tackles the problem from the other end. Instead of storing the
inflectional properties of the paradigm in the stems, those properties are coded into
the affixes. This avoids redundant storage of information but unnecessarily compli-
cates the affix entries. A possible solution would be to multiply the lexicon entries
of the affixes to simplify their categories. However, this has a noticeable negative
impact on the run-time, as all these lexicon entries must be matched for a single
combination with this affix.

4. Like the stem approach, the indirection approach accesses inflectional properties
of the paradigm via the stem. However, the indirection approach is an improvement
over the stem approach in so far as the information is only referenced, but not stored
directly. The information itself is coded into a table, which is defined externally.

16 J. Handl et al.

JSLIM supports all three approaches. However, the grammar developer is encouraged
to use the indirection approach. In the next paragraph that approach is described in
more detail.

⎡

⎢⎢⎣

sur: Bach
cat: (m-g)
sem: (m sg)
flx: CBach

⎤

⎥⎥⎦

⎡

⎢⎢⎣

sur: Bäch
cat: (pstem)
sem: (m pl)
flx: CBach

⎤

⎥⎥⎦

Fig. 3. Allomorphs of the German noun ‘Bach’ (creek)

We code the allomorphs of a word as illustrated in figure 3. The lexicon entries con-
tain an attribute for the surface (sur), attributes for the syntactic and semantic categories
(cat and sem), and an attribute for inflection (flx). The value of the latter is a reference
to the table defined earlier in listing 1. When the parser tries to combine the stem with
an inflectional affix,10 this trial is redirected to the table CBach which can be accessed
via the attribute flx. Stem and inflectional affix become the so-called arguments of the
table, i. e. a lookup in the table is performed, if an applicable combination rule can be
found. In the case of a successful lookup the combination rule is applied, otherwise the
table lookup fails and, as a consequence, the rule application also fails. Therefore, it
is much easier to handle inflection by means of indirection, as matching is reduced to
a simple test of whether the inflectional affix is allowed in the paradigm. No complex
category checks are required.

2.3 Common Subtree Sharing

Reducing the memory needed by a system can be critical when trying to improve its
performance. If a simple value requires much space and has to be stored multiple times,
the easiest method to reduce the amount of memory needed is to store the value only
once and then reference it. Though this may drastically reduce the amount of memory
needed, still much memory is wasted for the pointers. Better results can be achieved by
applying this principle of single storage to compound values. As illustrated in figure 4
and figure 5, most of the data structures used in JSLIM can be regarded as directed
acyclic graphs. Those data structures bear a close resemblance to trees, with few nodes
at the upper layers and almost all the nodes at the bottom layers. Besides, the co-domain
of the values at the lower levels is quite restricted.11 Therefore, the technique of com-
mon subtree sharing can be applied.

To allow the sharing of common values in the lexicon, values can be marked ex-
plicitly in the base lexicon and in the allo12 lexicon. We will go into more detail in the
next section. The notation reflects the way lexicon entries are stored internally. A lexi-
con entry is stored in the form of a 3-tuple which consists of the surface, the base form

10 Inflectional affixes can easily be marked as such by an adequate category value.
11 An exception are the values of the surface and base form attributes, which of course are spe-

cific.
12 Following a tradition of former systems, JSLIM uses an allo lexicon and allo rules [10].

JSLIM – Computational Morphology in the Framework of the SLIM Theory 17

state

ss.1 ss.2

sur noun cat sem mdr wrd sur ad j cat sem mdd wrd

der @1 1 jung|e jung e pos 2

e′ m′ s3 de f

Fig. 4. Inclusion hierarchy of a parser, cf. [7, p. 55]

n0
1 2

n1

surnoun cat sem mdrwdr

n4

sur ad j
cat sem

mdd

wrd

der @1 n2
1

2
3

n3

1

1 jung|e jung n5

1

n6

1

2

e′ m′ s3 de f e pos

Fig. 5. Graph of a parsing state, cf. [7, p. 55]

⎡

⎢⎢⎢⎢⎢⎣

sur : der
noun : @1
cat : (e’ m’ s3)
sem : (def)
mdr : (jung)
wrd : 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

sur : jung | e
adj : jung
cat : (e)
sem : (pos)
mdd : @1
wrd : 2

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

sur : Mann
noun : Mann
cat : (m-g)
sem : (m sg)
mdr : ()
wrd : 3

⎤

⎥⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎢⎣

sur : der
noun : Mann
cat : (s3)
sem : (m sg def)
mdd : (jung)
wrd : 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

sur : jung | e
adj : jung
cat : (e)
sem : (pos)
mdd : Mann
wrd : 2

⎤

⎥⎥⎥⎥⎥⎦

Fig. 6. Parser state when executing DET+N, cf. [7, p. 54]

n0

1

n′0
1

n1 n′1

der @1 n3 n4 1 n′3 n′4

e′ m′ s3 de f

Fig. 7. Flat copy of a parser state, cf. [7, p. 56]

18 J. Handl et al.

and a reference to a template which contains the additional values, normally shared with
other entries.13

Sharing of common values of parser states is advisable, in so far as during a deriva-
tion ambiguity arises in (almost) every parsing algorithm from time to time. Ambigui-
ties are normally handled by creating a new branch for each reading. The drawback of
this approach is that it might not be possible to copy the temporary result of the deriva-
tion in constant time if it is coded in the current state. This, however, can be guaranteed
if just flat copies are created and the depth of the graph is limited by a constant. How-
ever, the parser has to take care that no side effects are created. An example of copying
a state in constant time is shown in figure 7. All values which will be modified by the
action described in figure 6 are copied.

3 The JSLIM Grammar Files

In this section, the grammar files of a JSLIM grammar are briefly described. The focus
lies on showing the differences to earlier and different implementations.14

3.1 The Lexicon

There are several ways of coding lexicon entries due to the following reasons:

– Depending on the state of a project the priorities may vary. While developing a
grammar, the main focus might be the fast creation of a lexicon. Later on, it will
probably shift to the readability, maintainability and space efficiency of the lexicon.

– Normally, a lexicon is not constructed by hand but by scripts which migrate existing
lexica, or fill a lexicon with data extracted from corpora. Depending on the struc-
ture of the original data, conversion into one format might be easier to accomplish
than into another possible format. And as long as the different formats are easily
interchangeable, there is no reason why to restrict the lexicon to a single format.

– Normally, constructing a morphology component is a bottom-up process. First, a
lexicon with a representative of each paradigm is needed to test inflection. Then,
the lexicon is filled. Therefore it may be easiest, to start with a rather simple lexicon
as long as it can also be automatically converted into a template based lexicon.

The different types of lexicon entries are described below.
Plain old lexicon entries are the simplest kind of lexicon entries. They are mainly

used for lexicon prototyping. Their structure reminds us of the style used in [13]. All
entries are coded separately. Although at first sight this might seem to be the best and
easiest choice, plain old lexicon entries render the lexicon definition highly redundant
as common values are not shared. An example for plain old lexicon entries is given in
listing 2.

[sur: lern , cor: lernen , cat: (n’ v), sem: (pres), ...]

Listing 2. A plain old lexicon entry for ‘lernen’ (to learn)

13 By applying that technique, the amount of required memory can be considerably reduced, as
was shown by the Italian morphology implemented by [11].

14 A more detailed explanation of the grammar files can be found in [12].

JSLIM – Computational Morphology in the Framework of the SLIM Theory 19

The purpose of the instance notation is to avoid the above mentioned redundancy of
categorical value. This aim is achieved with the help of templates. A template looks like
an ordinary feature structure but is prefixed by the string !template. A feature struc-
ture can be marked as an instance of the last defined template by prefixing it with !+. A
template followed by three instances is illustrated in listing 3. It is possible to override
attribute values specified in the template by specifying them again in an instance. This
style may be helpful for small to medium sized lexica, but only to a lesser extent for
very large lexica.

!template [cat: (n’ v), sem: (pres), ...]
!+[sur: lern , cor: lernen]
!+[sur: erb , cor: erben]
!+[sur: schenk , cor: schenken] ...

Listing 3. The instance notation for ‘lernen’, ‘erben’ (to inherit), ‘schenken’ (to make a gift)

The sequence notation can be used if feature structures differ in only one attribute
value. Instead of specifying instances, the attribute to be added and the list of corre-
sponding values are specified. For each value in the list an entry is added to the lexicon
consisting of all the values specified by the last template in addition to the indicated
attribute value pair. This style, however, is only possible if the entries belonging to
a certain template differ in only one attribute value. This may be the case for a base
form lexicon, but certainly not for the allo lexicon. In the latter, surface and base form
attributes are word form specific and will differ in the majority of cases.

!template [flx: C_lernen , all: A_lernen]
!+ sur cor: lernen erben ...

Listing 4. The sequence notation

A variant of the sequence notation is the regexp notation. It can be used in the
case of instances differing in more than one attribute while all the attribute values are
derivable from one value by means of regular expressions. This notation allows attribute
names to be followed by regular expressions (see listing 5).

!template [cat: (n’ a’ v), sem: (pres), ...]
!+ sur /(.+)en/\$1/ cor: lernen erben ...

Listing 5. The regexp notation

The column notation is the most compact one. It avoids the repeated declaration of
attribute names and thus not only reduces the lexicon size but also increases processing
speed: This kind of entry can be read in very efficiently as number and type of the
attributes to be added is known in advance. Therefore, this is the preferred style for
very large lexica.

!template [cat: (n’ a’ v), sem: (pres), ...]
![sur cor]
lern lernen
erb erben ...

Listing 6. The column notation

20 J. Handl et al.

3.2 The Allomorph Method

Like the previous implementations of the LAG system (see [10, pp. 103–104]) JSLIM
uses the allomorph method presented in [14, pp. 255–256]:

The allomorph method uses two lexica, called the elementary lexicon and the
allomorph lexicon, whereby the latter is automatically derived from the former
by means of allo-rules before run-time. [...] During run-time, the allomorphs of
the allomorph lexicon are available as precomputed, fully analyzed forms [...],
providing the basis for a maximally simple segmentation: the unknown surface
is matched from left to right with suitable allomorphs - without any reduction
to morphemes.

Hence, the lexicon of the base forms coded in the above described notations merely
serves as input for the allo rules to create the allo lexicon. Though, we will show in
the next section, that the structure of the base form lexicon is preserved within the allo
lexicon.

3.3 Allo Rules

Allo rules are coded in a declarative manner using the afore mentioned table notation
(see section 2.1) and indirection. I. e. a reference to the allo rule is coded within the lex-
icon entry of the base form. Listing 7 shows the allo rule for the German noun ‘Bach’.
Allo rules are executed before run-time to create the allo lexicon [10]. The approach
presented here is an improvement over earlier systems in which the allomorphs of a
base form had to be generated by applying all allo rules.15

!template [cat: (n’ a’ v), sem: (pres), ...]
![sur cor]
lern lernen
erb erben ...
table A_Bach: [cor] => [sur ,cor ,cat ,sem]
/(.*?)([AOUaou])(u?[^aouäöü]*)/ => /$0/ /$0/ (m-g) (m sg) ;

=> /$1$2"$3/ /$0/ (pstem) (m pl) .

Listing 7. Allo rule for the German noun ‘Bach’

3.4 Allo Lexicon

In previous implementations the template structure of the lexicon files could not be
maintained by the allo generator. The allo generator expanded the templates and the
corresponding template instances. The output of the generator was a sequence of com-
plete feature structures. Hence, templates were merely used to ease the coding of lexi-
con entries. This way of proceeding, however, is inefficient a) as far as the execution of
the allo rules is concerned and b) with respect to further parser passes, e. g. the loading
of the allo lexicon. An advantage of storing the allo table as an attribute value is that
the allo rules which are needed can be called directly from the feature structure of the

15 The generated allomorphs still contain a reference to the allo table. The purpose of this will be
explained in section 4.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 21

base form (indirection). It is therefore clear before run-time which allo rules have to be
applied to which lexeme. What is more, the expansion of the templates can be avoided.
The allo generator processes templates as follows: If a template contains an attribute
all, the semantics of the allo rule is split into two parts: One affects the template and
the other merely affects the template instance. The result of the generation therefore
consists of one or more modified templates, one for every allo rule, each followed by a
sequence of (probably) modified instances (see listing 8).

!+[all: A_Bach , flx: C_Bach]
!+ cor: Aalkorb Abbrand Abbruch Abdampf ... Bach ...

⇓ ⇓ ⇓

!+[all: A_Bach , flx: C_Bach , cat: (m-g), sem: (m sg)]
!+ sur cor: Aalkorb Abbrand Abbruch Abdampf ... Bach ...

!+[all: A_Bach , flx: C_Bach , cat: (pstem), sem: (m pl)]
![sur cor]
Aalkörb Aalkorb
Abbränd Abbrand
Abbrüch Abbruch
Abdämpf Abdampf
...
Bäch Bach
...

Listing 8. Generation of the allo lexicon

3.5 Combi Rules

Combi rules define when two allomorphs can be combined. Normally, combi rules del-
egate most of the work to the tables which are referenced by the combined parts.16

Figure 9 illustrates the rule used for inflection. A rule starts with its rule name, here
STEM+FLX, followed by its rule package, i. e. by the set of follow-up rules. The sen-
tence start pattern asserts that the sentence start is a stem. This is enforced by the
declaration of the attribute flx. That the next word is an inflectional affix is ensured by
the category value (flx) in the next word pattern. The value *F of the attribute flx
triggers a table look-up with the feature structure which matches the sentence start and
the feature structures which matches the next word as its argument.

STEM+FLX {STEM+FLX}

[cat: _, flx: *F] [cat: (flx)] => [...] [-]

Listing 9. Morphology rule for inflection

The rule is only applied, if the table look-up succeeds. The result of the look-up
defines the way the two features structures are changed. The result patterns after the

16 This is an example of indirection as described in section 2.2.

22 J. Handl et al.

implication arrow can also be used to specify the way the two feature structures are
changed. The pattern [...] indicates, that the features structure which matches the
sentence start pattern remains unchanged within the sentence start. The pattern [-]
means, that the feature structure which matches the next word pattern is excluded from
the resulting sentence start.

3.6 Variables

For the patterns to become more abstract, variables can be used. For example, the rule
in listing 9 contains the predefined anonymous variable _, which can be the placeholder
for an arbitrary value. A variable can have a predefined data type and a co-domain as is
illustrated in figure 10. The variable CAT has the data type string and may be bound
to the values {s1’, s13’, ...}.17

string CAT <- {s1 ’ s13 ’ s2 ’ s3 ’ s3p2 ’ p13 ’ p2 ’ m-g mg md ...}

Listing 10. Definition of the variable CAT

4 Word Form Generation

Word form generation deals with the creation of word forms from various inputs, be
it a direct human request or the parameter values of the internal and external sensors
of a robot. The application spectrum ranges from providing suggestions within a spell
checker to the creation of a speaking robot. It is our goal to reuse the rules used for word
form analysis for word form generation. This requires that the allowed combinations of
lexicon entries are defined as a bijective function. The tables used in JSLIM can be seen
as bijective functions in so far as they map a sequence of attribute values to another
sequence of attribute values and are therefore reversible. If inflection is coded by means
of tables, the code for the analysis can also be used for generation. As there is ongoing
research in this field [15]. we cannot present a complete word form generation system
with conceptualization and linearization. But we show that it is possible to generate
a surface form for a given lemma and a given category – a process that is sometimes
referred to as surface generation.

4.1 Surface Generation

We distinguish two cases of surface generation: a) the generation of a complete
paradigm and b) the generation of a single word form. The first case may be of in-
terest to check the correctness of a grammar, whereas the second case is needed for
natural language production in the speaker mode.

17 The grammar developer can also define constraints between pairs of variables. This feature is
particularly expedient for specifying the agreement conditions in a syntax but is rarely used in
morphology.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 23

4.2 Generation of a Paradigm

To generate a complete paradigm for a base form, only an allomorph of the stem is
needed.18 To generate the complete paradigm the following steps are performed.

1. Look up the lexicon entry of the provided allomorph.
2. The allomorphy of the base form is specified in the attribute all of the lexicon entry,

the value of which is a reference to a table. Apply that table to the allomorph. The
circumstance that the rules in the table are applied to the allomorph and not to the
base form, is negligible due to the fact that the application of the rules only depends
on the base form of an entry. That base form is the value of the attribute cor and
is the same for all allomorphs of a given stem. Besides, the category values are all
changed by the applied rule, hence their particular values are insignificant.

3. Each allomorph has an attribute flx with an inflection table as its value. For each
rule in the table, we look up the inflectional affix and execute the combination rule
with the stem and the affix as its arguments. As it is possible to combine a stem with
more than one inflectional affix, we repeat this step until no rule matches anymore.

We provide an example to illustrate the process of generating all word forms of a
paradigm in more detail.

Example. Let ‘geb’ be the allomorph of a word form for which the paradigmatic forms
shall be generated. The four allomorphs of the morpheme are ‘geb’ (Präsens), ‘gib’
(Präsens), ‘gab’ (Imperfekt) and ‘gäb’ (Konjunktiv 2). The first trivial step is to per-
form a lexical look-up for the allomorph ‘geb’, which returns the corresponding feature
structure as illustrated in figure 8a.

Listing 11 shows the allo table which is used to create the allomorphs of the mor-
pheme ‘geb’.

table A_geben : [cor] => [sur ,cat ,sem]
/(.+)e(.+) en/ => /$1e$2/ (n’ v) (pres) ; # geb

=> /$1i$2/ (i’ v) (pres) ; # gib
=> /$1a$2/ (s13 ’ v) (ipf) ; # gab
=> /$1ä$2/ (n’ v) (k2) . # gäb

Listing 11. The table for the allomorphy of the German verb ‘geben’ (to give)

The application of the table is shown in figure 8b. The four allomorphs of the mor-
pheme ‘geb’, namely ‘geb’, ‘gib’, ‘gab’ and ‘gäb’, are created on the basis of the allo-
morph ‘geb’. It is evident from the syntax of the rule that applying the table to different
allomorphs of the same morpheme will not change the result, as the attribute values of
the resulting feature structures are set by the respective applied rule. Listing 12 shows
the inflection table of the generated allomorphs.19

18 The stem morpheme is accessed via the surface of one of its allomorphs as an allo lexicon is
used.

19 Normally, only one inflection table is used for one paradigm. This, however, is solely a design
decision and by no means obligatory.

24 J. Handl et al.

a) Lookup b) Generation of the allomorphs

geb
⇓⎡

⎢⎢⎢⎢⎢⎢⎣

sur: geb
cor: geben
cat: (n’ v)
sem: (pres)
all: A_geben
flx: C_geben

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

sur: geb
cor: geben
cat: (n’ v)
sem: (pres)
all: A_geben
flx: C_geben

⎤

⎥⎥⎥⎥⎥⎥⎦
⇒

⎡

⎢⎢⎢⎢⎢⎢⎣

sur: geb
cor: geben
cat: (n’ v)
sem: (pres)
all: Ageben
flx: Cgeben

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

sur: gib
cor: geben
cat: (i’ v)
sem: (pres)
all: Ageben
flx: Cgeben

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

sur: gab
cor: geben
cat: (n’ v)
sem: (ipf)
all: A_geben
flx: C_geben

⎤

⎥⎥⎥⎥⎥⎥⎦
. . .

c) Execution of the combi rules

table C_geben: [cat,sem] [sur] => [cat,sem]
...
(i’ v)(ipf) st => (s2’ v)(ipf)
...

⎡

⎢⎢⎢⎢⎢⎢⎣

sur: gab
cor: geben
cat: (n’ v)
sem: (ipf)
all: A_geben
flx: C_geben

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

sur: st
⎤

⎥⎥⎥⎥⎥⎥⎦
⇒

⎡

⎢⎢⎢⎢⎢⎢⎣

sur: gab|st
cor: geben
cat: (s2’ v)
sem: (ipf)
all: A_geben
flx: C_geben

⎤

⎥⎥⎥⎥⎥⎥⎦

Fig. 8. Generation of a paradigm

table C_geben: [cat ,sem] [sur] => [cat ,sem]
(n’ v) (pres) e => (s1’ v) (pres) ; # geb -e

en => (p13 ’ v) ; # geb -en
t => (p2’ v) . # geb -t

(i’ v) (pres) st => (s2’ v) (pres) ; # gib -st
t => (s3’ v) . # gib -t

(s13 ’ v)(ipf) st => (s2’ v) ; # gab -st
en => (p13 ’ v)(ipf) ; # gab -en
t => (p2’ v) . # gab -t

(n’ v) (k2) e => (s13 ’ v)(k2) ; # gäb -e
est => (s2’ v) ; # gäb -est
en => (p13 ’ v) ; # gäb -en
t => (p2’ v) . # gäb -t

Listing 12. The table for the conjugation of the verb ‘geben’

For each generated allomorph the attribute values are matched with the left sides
of the rules. In case of a match, we append the surface of the inflectional affix to the
surface of the allomorph and perform the category changes defined by the rule.

4.3 Conditions for the Approach to Work

For surface generation to work, the following conditions must hold:

1. All categorical values are created by allo rules based on the value of the attribute of
the base form.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 25

2. The allo tables are stored as attribute values of the allomorphs. The alternative
would be to read in the base form lexicon which would be impractical.

3. The inflection tables are stored as attribute values of the allomorphs. The alternative
would be to try all inflection rules on a stem which would be impractical.

4. Allomorphy and inflection are coded only by means of tables. This is necessary as
the tables allow different access orders as needed for generation.

These conditions must also hold for generating a single word form. However, they can
easily be fulfilled without losing generative capacity and they rather facilitate lexicon
design than hamper it. Hence, generation based on the rules for analysis is always
possible.

Algorithm 1. generate(A ,F ,v)
1: for all a in A do
2: if matches(rightside(a),v) then
3: return 〈a〉
4: end if
5: end for
6: for all f in F do
7: if matches(rightside(f ,v)) then
8: if ⊥ �= (r = generate(A ,F ,leftside(f))) then
9: return r + 〈a〉

10: end if
11: end if
12: end for
13: return ⊥

4.4 Generation of a Single Word Form

If all forms of a paradigm can be generated, it is possible to generate a single form by
first generating the paradigm and then using a filter. The obvious disadvantage, however,
is a lot of overhead. By using the following algorithm it is possible to use the tables to
generate only a single word form of a given category:

1. Indicate the word form to be generated by providing an allomorph of the stem and
one or more attribute values of the word form to create, e. g. geb and [cat: (s2’
v), sem: (ipf)].20

2. Look up the lexicon entry for the provided allomorph. This step is exactly the same
as when generating a complete paradigm in figure 8a.

3. Determine the set of inflection rules for the allomorphs of the stem. If the allo rule
does not change the inflection table (normal case), it can be taken directly from
the lexicon entry. Otherwise, it can be investigated by looking at the right side of
the rules of an allo table, as this is where they may be set. As the signature of
the table A_geben in figure 11 does not contain the attribute flx, the referenced
inflection table will not change when generating the allomorphs of the stem geb
and can therefore be taken from an arbitrary allomorph.

20 A filter can be used to allow a more flexible input which map more general user inputs to
attribute values used in the paradigm.

26 J. Handl et al.

4. For all allo rules, check if the result of one of these allo rules matches the provided
category values. If it matches, the word form can be generated by applying the allo
rule. E. g. if the provided attribute values were [cat: (s13’ v), sem: (ipf)],
a matching form of geben could be created by executing the third row of the table
specified in figure 11.

5. If the provided category values do not match any right hand side of an allo rule,
check the inflection rules. If the right hand side of one of the inflection rules
matches, the word form can be generated by applying that rule. Other inflection
rules and at least one allo rule must be applied and the result of those applications
must match the left side of the matching inflection rule. Therefore, we continue
recursively with step 3, but use the values of the left side of the inflection table
instead of the provided category values. E. g. let the specified attribute values of the
verb geben be [cat: (s2’ v), sem: (ipf)]. As these values do not occur on
the right side of any rule in the table A_geben, the desired word form cannot be
created by merely applying an allo rule. However, the values would match the right
side of the fourth row in the table C_geben (cf. figure 12). Hence, we memorize
that this rule has to be applied and try to find a way to generate the word form with
the category values [cat: (s13’ v), sem: (ipf)], i. e. with the values of the
left side of the applicable row.

Let A be the set of allo rules of the word form, F the set of inflection rules, and v
the specified values. Let leftside be a function which returns the values of the left
side of a combination rule except the next word, and rightside be the function which
returns the right side of the combination rule. The algorithm is illustrated more formally
in Alg. 1.

5 Conclusion

In this article, we presented the JSLIM system of automatic word form recognition and
production. It has been shown how the current implementation uses techniques bor-
rowed from computer science, e. g. common subtree sharing, undirected programming,
and indirection. The combination of indirection and undirected programming in the
form of tables seems to be an elegant approach for handling word form recognition as
well as word form generation.

Currently, the morphological system is evaluated on the basis of a multitude of
medium-scale grammars for different languages21 and optimized for an increased per-
formance. Further development will include extensive tests on corpora and a tighter
integration of the morphology with the syntactic-semantic components.

References

1. Hausser, R.: A Computational Model of Natural Language Communication: Interpretation,
Inference, and Production in Database Semantics. Springer, Heidelberg (2006)

2. Hausser, R.: Foundations of Computational Linguistics. Springer, Heidelberg (1999)

21 This comprises the building of grammars with an average lexicon size of about 80000–100000
entries for languages like German, Italian, French and Polish.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 27

3. Hausser, R.: Complexity in left-associative grammar. Theoretical Computer Science 106,
283–308 (1992)

4. Beutel, B.: Malaga 7.12. User’s and Programmer’s Manual. Technical report, Friedrich-
Alexander-Universität Erlangen-Nürnberg (1995),
http://home.arcor.de/bjoern-beutel/malaga/malaga.pdf (June 4, 2009)

5. Kycia, A.: Implementierung der Datenbanksemantik für die natürlichsprachliche Kommu-
nikation. Master’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2004)

6. Wittgenstein, L.: Philosophical Investigations. Basil Blackwell Ltd., Oxford (1953)
7. Handl, J.: Entwicklung einer abstrakten Maschine zum Parsen von natürlicher Sprache. Mas-

ter’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2008)
8. Schulze, M.: Ein sprachunabhängiger Ansatz zur Entwicklung deklarativer, robuster LA-

Grammatiken mit einer exemplarischen Anwendung auf das Deutsche und das Englische.
PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2004)

9. Kapfer, J.: Inkrementelles und oberflächenkompositionales Parsen von Koordinationselipsen.
PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2009)

10. Schüller, G., Lorenz, O.: LA-Morph - Ein linksassoziatives Morphologiesystem. In: Linguis-
tische Verifikation, pp. 103–119 (1994)

11. Weber, C.: Implementierung eines automatischen Wortformerkennungssystems für das
Italienische mit dem Programm JSLIM. Master’s thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg (2007)

12. Weber, C., Handl, J., Kabashi, B., Proisl, T.: Eine erste Morphologie in JSLIM (in progress).
Technical report, Friedrich-Alexander-Universität Erlangen-Nürnberg (2009),
http://www.linguistik.uni-erlangen.de/clue/fileadmin/docs/jslim/
morphology_docu.pdf (June 4, 2009)

13. Lorenz, O.: Automatische Wortformenerkennung für das Deutsche im Rahmen von Malaga.
Master’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (1996)

14. Hausser, R.: Modeling natural language communication in database semantics. In: Proceed-
ings of the APCCM, vol. 96, Australian Computer Science Inc. CIPRIT (2009)

15. Kabashi, B.: Sprachproduktion im Rahmen der SLIM-Sprachtheorie. PhD thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg (in progress, presumably 2009)

http://home.arcor.de/bjoern-beutel/malaga/malaga.pdf
http://www.linguistik.uni-erlangen.de/clue/fileadmin/docs/jslim/morphology_docu.pdf
http://www.linguistik.uni-erlangen.de/clue/fileadmin/docs/jslim/morphology_docu.pdf

HFST Tools for Morphology – An Efficient Open-Source
Package for Construction of Morphological Analyzers

Krister Lindén, Miikka Silfverberg, and Tommi Pirinen

Department of General Linguistics, University of Helsinki, Finland

Abstract. Morphological analysis of a wide range of languages can be imple-
mented efficiently using finite-state transducer technologies. Over the last 30
years, a number of attempts have been made to create tools for computational
morphologies. The two main competing approaches have been parallel vs. cas-
caded rule application. The parallel rule application was originally introduced
by Koskenniemi [1] and implemented in tools like TWOLC and LEXC. Cur-
rently many applications of morphologies could use dictionaries encoding the
a priori likelihoods of words and expressions as well as the likelihood of rela-
tions to other representations or languages. We have made the choice to create
open-source tools and language descriptions in order to let as many as possible
participate in the effort. The current article presents some of the main tools that
we have created such as HFST-LEXC, HFST-TWOLC and HFST-COMPOSE-
INTERSECT. We evaluate their efficiency in comparison to some similar tools and
libraries. In particular, we evaluate them using several full-fledged morphologi-
cal descriptions. Our tools compare well with similar open source tools, even if
we still have some challenges ahead before we can catch up with the commercial
tools. We demonstrate that for various reasons a parallel rule approach still seems
to be more efficient than a cascaded rule approach when developing finite-state
morphologies.

1 Introduction

Morphological analysis of a wide range of languages can be implemented efficiently
using finite-state technologies based on finite-state transducers. Our goal is to imple-
ment efficient tools for creating and manipulating finite-state transducer morphologies
for different uses and purposes. The task is daunting and we cannot do it alone.

Over the last 30 years, a number of attempts have been made to create tools for com-
putational morphologies and some of them have withstood the test of time better than
others. A major effort that has shaped the landscape and incorporated many lasting ideas
is the morphological development tools created by Xerox. It started with the insight that
we can use transducers to describe or encode phonological processes and relate various
levels of linguistic abstraction using tools like TWOLC introduced by Koskenniemi and
Karttunen [1,2,3]. To efficiently compile large-scale lexicons into transducers, we need
special lexicon compilers like LEXC described by Karttunen [4,5].

Such tools do not solve all the problems. Writing full-scale dictionaries in LEXC
may well be compared to having programmers write sophisticated applications in C
without access to any of the modern high-level libraries. It is possible, but unless it is

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 28–47, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

HFST Tools for Morphology 29

done in some principled way, one may easily end up with spaghetti-code that is difficult
to maintain. This is not the fault of the lexicon compiler, but the general programming
solution is to create several descriptions that are small and independent, i.e. modular.
With this insight and as computers became more powerful, the initial calculus that was
conceived for abstract objects like automata and transducers in TWOLC and LEXC was
expanded and migrated into the lexical programming environment XFST documented
by Beesly and Karttunen [6], where smaller lexical modules for various purposes can
be tailored and combined using finite-state calculus operations.

The previous effort is well-worth studying, but currently additional ideas have es-
tablished themselves such as weighted transducers for modeling aspects of language
that deal with preferences or trends rather than strict rules or on/off phenomena. Many
applications of morphologies could use dictionaries encoding the a priori likelihoods
of words and expressions as well as the likelihood of their relations to phonetic repre-
sentations or their lexical relations to other words in the same language or in different
languages. The efforts to explore weighted finite-state transducers for natural language
processing are ongoing in information retrieval, speech processing and machine trans-
lation to name a few of the main application areas involved.

Since we do not pretend that we could develop all the morphologies for all the lan-
guages ourselves, or even all the aspects of the tools needed to develop these morpholo-
gies, we have made the choice to create open-source tools and language descriptions.
We hope as many as possible will participate in the effort by developing the tools further
for common needs and special purposes.

In addition to the open source tools, we also encourage the commercial use of the
final transducers created by the tools by providing runtime software1 that is free for
commercial purposes. Eventually this will allow software applications simply to select
the appropriate transducer in order to process a language correctly allowing the pro-
grammer to ignore special characteristics of individual languages.

Recently, a number of open-source finite-state processing environments have emerged,
e.g. for unweighted transducers there are the SFST–Stuttgart Finite-State Transducer
Tools2 by Schmid [7], foma: a finite-state machine toolkit and library3 by Huldén, etc.,
and for weighted transducers there are Vaucanson4 by Lombardy et al. [8], OpenFST
Library5 by Allauzen et al. [9], etc. These are valuable contributions to the open source
software that we can build on.

Our particular goal currently is in providing the basic facilities for efficiently de-
veloping, compiling and running morphologies with or without weights. To achieve
our goal, we decided to create a unified API6, which is capable of interfacing various
weighted and unweighted finite-state transducer libraries allowing us to incorporate
new libraries as needed. Currently, we have interfaces to SFST and OPENFST. On

1 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstRuntimeInterface
2 http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
3 http://foma.sourceforge.net/
4 http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Vaucanson
5 http://www.openfst.org/
6 http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
documentation.shtml

https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstRuntimeInterface
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
http://foma.sourceforge.net/
http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Vaucanson
http://www.openfst.org/
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/documentation.shtml
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/documentation.shtml

30 K. Lindén, M. Silfverberg, and T. Pirinen

top of the unified API, we created a set of basic tools7, e.g. HFST-TWOLC, HFST-
LEXC, HFST-COMPOSE-INTERSECT, HFST-TEST, HFST-LOOKUP, etc. With these
tools, we created or used real full-fledged morphological descriptions of different lan-
guages from different language-families8, e.g. English, Finnish, French, Northern Sámi
and Swedish. We used the morphological descriptions for testing the functionality of
the tools and for evaluating the performance of the different libraries through a unified
interface on the morphological development and compilation tasks.

The current article presents some of the main tools that we have created: HFST-
LEXC in section 2, HFST-TWOLC in section 3 and HFST-COMPOSE-INTERSECT

in section 4. For each tool, we present the main theoretical underpinnings of the im-
plementation and illustrate them with some examples. We highlight the main design
decisions that influenced the efficiency of the implementation and how, if at all, our
implementations differ from their namesakes. In section 5, we briefly present the mor-
phological descriptions that we use for demonstrating and comparing the efficiency of
the implementation. In section 6, we evaluate the performance of our tools for parallel-
rule application and compare them with the performance of the foma LEXC compiler
and the Xerox tools, as well as the cascaded rule compiler of SFST. In section 7, we
discuss the test results and present some aspects of future research and development. In
section 8, we draw the conclusions.

2 HFST-LEXC

A lexicon compiler is a program that reads sets of morphemes and their morphotactic
combinations in order to create a finite-state transducer of a lexicon. This finite state
transducer was called a lexical transducer by Karttunen [5]. The lexical transducer may
be further adjusted with e.g. phonological rules. The example for our lexicon compiler
is set by LEXC of Xerox [6]. In LEXC, morphemes are arranged into named sets called
sub-lexicons. Each entry of a sub-lexicon is a pair of finite possibly empty strings9 sep-
arated by ’:’ and associated with the name of a sub-lexicon called a continuation class.

Below, we highlight the main design decisions that influenced the efficiency of the
implementation and the main theoretical underpinning of compiling a LEXC descrip-
tion into a finite-state transducer. Our morphology example outlines the nominal inflec-
tion of four Finnish nouns as shown in listing 1. This example is a highly simplified
version of the actual morphology.

There are at least three time consuming parts of the HFST-LEXC compilation pro-
cess. First the compiler needs to parse the strings representing the entry morphemes.
Traditionally LEXC allows multiple characters in a single symbol. The problem of find-
ing the optimal partition of a string when compiling it into a finite-state transducer is
optimizing the tokenization algorithm. The tokenization is discussed in section 2.1. The
set of entries in each sub-lexicon form a union. There are a few alternative strategies
for creating unions, which are briefly outlined in section 2.2. The combining of sub-
lexicons is described in section 2.3 on morphotax.

7 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome
8 http://www.ling.helsinki.fi/kieliteknologia/tutkimus/omor/index.shtml
9 Entries of regular expression form are not covered here to simplify the presentation, but a full

definition of an entry in this formalism allows an entry to be a regular language.

https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/omor/index.shtml

HFST Tools for Morphology 31

Multichar_Symbols

+noun +1 +a +d +h +m +AV+ +AV- +AVA +AVD +AVH +AVM
+all +gen +ptv +sg ~A ~K ~P

LEXICON Root
akku+noun+1+a:ak~Ku+AVA N1b "battery ";
alku+noun+1+d:al~Ku+AVD N1b " beginning";
kumpu+noun+1+h:kum~Pu+AVH N1b "heap";
kyky+noun+1+m:ky~Ky+AVM N1b " capability";

LEXICON N1b
NounSg ;
NounPtvA ;

LEXICON NounPtvA
+sg+ptv:~A+AV+ Ennd ;

LEXICON NounSg
+sg+gen:n+AV- Ennd ;
+sg+all:l+AV-le Ennd ;
:n+AV- Compounding ;

LEXICON Compounding
Root ;

LEXICON Ennd
;

Listing 1. A simplified HFST-LEXC lexicon for some Finnish nouns

2.1 Efficient Tokenizing of a Sub-lexicon Entry

Lexicon entries are tokenized using a simple left-to-right longest match tokenizer algo-
rithm. The entry is tokenized by going through the entry string, position by position,
and looking up the longest symbols available using a very simple greedy tokenizer. If
the tokenizer is incremental, it memorizes new tokens as it parses the input assuming
that multicharacter tokens have been declared in advance. An alternative, but less effi-
cient, strategy is to determine all the tokens in a separate pass in order to compose the
entry string with a tokenizer-transducer implementing a greedy left-to-right matching
or some other strategy to achieve the desired partitionings.

2.2 Efficient Union of Sub-lexicon Entries

The finite-state form of a sub-lexicon is a union of entry transducers. Building a union
of entry transducers is a relatively straight-forward process. However, iteratively taking
the union of n entries with the n+1th entry is not ideal. A faster approach, given that all
our entries are simple finite strings is to build the sub-lexicon transducer as one large
prefix tree, trie. Each entry starts with a label of the sublexicon it belongs to and ends
with a label of its continuation class.

2.3 Efficient Implementation of Morphotax over Sublexicons

The strategy for combining sub-lexicons can be described with operations on finite-
state algebra using named auxiliary symbols with overgenerating combinations which

32 K. Lindén, M. Silfverberg, and T. Pirinen

are filtered by composition to achieve legal combinations. This is further described in
the next subsection. An optimized strategy for making the sub-lexicon combinations
is to minimize the trie into an acyclic transducer, after which the sublexicon labels
can be dropped by replacing the transitions of the entry final sublexicon labels with
transitions to the target states of the entry initial sublexicon labels creating a possibly
cyclic transducer.

Combining Sublexicons using Standard Finite-State Transducer Algebra. We as-
sume all standard finite state operations to be known. For an introduction, see Beesly
and Karttunen [6]. We use the following notation:∪ is union,∩ is intersection, ◦ is com-
position, juxtaposition is concatenation. Latin characters represent symbols of language
and the ε symbol is used for a zero-length string. Capital Greek letters Σ ,Γ represent
subsets of an alphabet. We define Σ = {a,b, . . .} as a subset of the alphabet used for
representing the morphophonology of the language in LEXC definitions. Γ is the al-
phabet of the auxiliary symbols used in our rules in the morphotax implementation. We
assume that Σ ∪Γ = /0. We use the symbol J ∈ Σ for joiners to delimit and combine
morphemes in our morphotax. A joiner for an entry with a continuation class named x
is denoted as Jx and a joiner for a sub-lexicon named y is denoted as Jy.

We introduce the compilation of lexicons using the example-lexicon in listing 1.
A single entry in a sub-lexicon, i.e., a line of code in a LEXC file, is referred to as a

morpheme denoted by M . A morpheme can be a subset of the language Σ� appended
with the joiner of a continuation class (1).

M = Σ� J (1)

E.g. the LEXC string entry akku:ak∼Ku+AVA with a continuation class N1b becomes
a k k:∼K u:+AVA ε:JN1b.

A sub-lexicon L defined by (2) is a union of morphemes as specified in section 2.2.

L = J
⋃

Mx∈M

(Mx) (2)

E.g. the lexicon named Root consisting of akku and alku with continuation class N1b
becomes JRoot (a k k u JN1b | a l k u JN1b).

We create a filter F defined by (3) for legal morpheme combinations by pairing up
adjacent joiners.

F =
⋃

Jx∈J

(Jx Jx) (3)

To account for the special starting lexicon and the special ending lexicon, we define
JRoot ∈ J and J# /∈ J. The root lexicon can be used in continuation classes as a target,
e.g. for the compounding mechanism, but the end lexicon is not available as a lexicon
name, so it is not part of the regular morphotax. To accommodate this, we extend the
filter definition to F ′ as in (4).

F ′ = JRoot (Σ� F)� Σ� J# (4)

HFST Tools for Morphology 33

This allows us to create the final transducer R with only legal combinations of sub-
lexicons by composition (5).

R =
⋃

Lx∈L

(Lx)� ◦ F ′ (5)

E.g., for the sublexicons Root, N1b, NounSg, and Ennd in listing 1, and their entries
akku and +sg+all:lle, we get the disjunction of lexicons L�, which we filter using L�◦F ′
as shown in figure 1.

L� = (JRoot a k k u JN1b | JN1b JNounSg |
JNounSg +sg : l +all : l ε :e JEnnd | JEnnd J#)�

F = JRoot JRoot | JN1b JN1b | JNounSg JNounSg | JEnnd JEnnd
L� ◦F ′ = JRoot a k k u JN1b JN1b JNounSg

JNounSg +sg : l +all : l ε :e JEnnd JEnnd J#

Fig. 1. Filtering a single path in HFST-LEXC with a morphotax filter

Finally, all the symbols in Γ are removed. While this is trivial, it introduces some
indeterminism in the final transducer, which would otherwise have been introduced
by building direct epsilon arcs. Its influence on the performance is further detailed in
section 6.

According to our experiments, attaching weights to each entry works without modi-
fication of the lexicon compilation method.

3 HFST-TWOLC

Two-level rules are parallel constraints on symbol-pair strings governing the realiza-
tions of lexical word-forms as corresponding surface-strings. They were introduced by
Koskenniemi [1] and have been used for modeling the phonology of numerous natu-
ral languages. HFST-TWOLC is an accurate and efficient open-source two-level rule
compiler. It compiles grammars of two-level rules into sets of finite-state transducers.
The rules are represented as regular-expression operations closely resembling familiar
phonological re-write rules both to appearance and semantics.

The most widely known two-level rule-compiler existing at the moment is the Xerox
Two-Level Rule Compiler (later TWOLC) presented by Karttunen el al. [3]. It is pro-
prietary software, which imposes some limitations upon its use. The HFST-TWOLC
compiler has been designed to be an open-source substitute for the TWOLC compiler
and has a syntax and semantics very similar to those of the TWOLC compiler. Hence
existing two-level grammars, designed to compile under the TWOLC compiler, require
very few modifications to compile correctly under HFST-TWOLC.

Besides being an open-source program, HFST-TWOLC also has other benefits com-
pared with the TWOLC compiler. Resolution of rule-conflicts is an important part of
compiling two-level grammars. We know of at least one instance, where the TWOLC
compiler resolves rule-conflicts in an incorrect way (see section 3.2). It also compiles

34 K. Lindén, M. Silfverberg, and T. Pirinen

epenthesis rules in a way, which denies the grammar-writer the full expressive power of
two-level rules (see section 3.2). In HFST-TWOLC we have been able to remedy these
shortcomings by compiling the rules with the generalized restriction-operation (later
GR-operation), presented by Yli-Jyrä and Koskenniemi [10]. It allows compilation of
two-level rules in a uniform way and makes conflict-resolution easy to tackle, while
still permitting efficient compilation.

In section 3.1, we demonstrate the syntax and semantics of a two-level grammar-
file using a small example from Finnish morphology. The example grammar maps the
lexical forms given by the example lexicon in listing 1, presented in section 2, into
surface-forms.

It is not possible to demonstrate all features of HFST-TWOLC in this article, but we
try to highlight the few most important differences to show that it is easy to migrate
from the TWOLC compiler to HFST-TWOLC.

We use the GR-operation to compile the grammar-rules in HFST-TWOLC. In sec-
tion 3.2, we explain how the different types of two-level rules are compiled. Rule-
conflicts and their resolution are covered in section 3.2.

3.1 An Example Grammar

An input-file for HFST-TWOLC consists of five parts: the Alphabet, the Rule-variables,
the Sets, the Definitions and the Rules. The file-format has been modeled on the format
used by the TWOLC compiler, and all parts of the grammar are present also in the
TWOLC compiler except for the part declaring rule-variables. There are a few other
differences, as well, most of which we will mention below. A complete list of known
differences can be found in the HFST-TWOLC documentation10.

The Alphabet. The alphabet of a two-level grammar contains all lexical symbols spec-
ified in the HFST-LEXC grammar together with their possible surface realizations. In
the example grammar in listing 2, the alphabet contains all letters used in Finnish words
together with the vowel-harmony archphoneme ~A, the gradation morphophonemes ~K
and ~P, as well as, the gradation-markers +AV+, +AV-, +AVA, +AVD, +AVH, +AVM.

All symbols in the grammar may be arbitrary strings of UTF-8 characters, but char-
acters like +, ~ or white-space, which bear special meanings for the compiler need to be
escaped using the escape-character %.

The letters in the example-grammar of listing 2 always correspond to themselves
on the surface. The gradation-markers always correspond to zero and the archphoneme
~A and the morphophonemes ~K and ~P have various surface-realizations. E.g. ~A is
always realized as either a or ä.

Each valid pair of a lexical symbol and its surface-correspondence has to be listed in
the alphabet. This differs from the TWOLC compiler, where pairs may be omitted from
the alphabet, if they are identity-pairs or are already constrained by some rule. Forcing
the grammar-writer to declare all symbol-pairs, may result in some extra work, but it
also prevents the creation of inadvertent pairs.

10 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstTwolC

https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstTwolC

HFST Tools for Morphology 35

Alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Å Ä Ö
a b c d e f g h i j k l m n o p q r s t u v w x y z å ä ö
%+AV %+:0 %+AV%-:0 %+AVA:0 %+AVD:0 %+AVH:0 %+AVM:0
%~A:a %~A:ä
%~K:k %~K:0 %~K:v
%~P:p %~P:m ;

Rule -variables

Cm Cs Cw ;

Sets

Gradations = %+AV%+ %+AV%- %+ AVA %+ AVD %+AVH %+ AVM ;
BackVowels = a o u A O U ;
UpperCaseVowels = A E I O U Y Å Ä Ö ;
LowerCaseVowels = a e i o u y å ä ö ;

Vowels = UpperCaseVowels LowerCaseVowels ;

Definitions

AlphaSeq = [\Gradations :]* ;
NonVowelSeq = [\: Vowels]* ;

Rules

"~K:0 Gradation "
%~K:0 <=> _ AlphaSeq Gradations :0 AlphaSeq %+AV%-:0 ;

"%~K:v and %~P:m Gradation "
Cs:Cw <=> _ AlphaSeq Cm:0 AlphaSeq %+ AV%-:0 ;

where Cs in (%~K %~P)
Cw in (v m)
Cm in (%+ AVM %+AVH) matched ;

"Vowel Harmony "
%~A:a <=> :BackVowels NonVowelSeq _ ;

Listing 2. An example HFST-TWOLC grammar governing the surface realizations of the forms
presented in the example lexicon in listing 1

Declaring all symbol-pairs in HFST-TWOLC is mandatory, as we have not yet im-
plemented an other-symbol like the one in Xerox TWOLC [3] using the HFST interface.
Besides the grammar-formalism, this also affects the compile-time for rules, which be-
comes more dependent on the number of symbol-pairs in the grammar.

36 K. Lindén, M. Silfverberg, and T. Pirinen

The Rule-Variables. Like the XEROX compiler, HFST-TWOLC supports defining a
set of similar two-level rules using a rule-schema with variables. During the compilation
of the grammar, each schema is compiled into actual two-level rules, by substituting the
variables with the values specified for them. All rule-variables, which are used in the
grammar, need to be declared in the Rule-variables section.

The Sets. It is often convenient to name some classes of symbols, which are used in
many rules. E.g. the class BackVowels in the example-grammar in listing 2, which con-
tains all vowel-segments used in the grammar. The sets in HFST-TWOLC and TWOLC
are very similar constructs.

In HFST-TWOLC, the Cartesian product of sets, or a set and a symbol, is always
limited to the set of symbol-pairs declared in the alphabet. E.g. the equivalent expres-
sions BackVowel:BackVowel and BackVowel will only accept the pairs a:a, o:o,
u:u, A:A, O:O and U:U. Although it is conceivable, that they would accept e.g. the pairs
a:U and A:O, they will not, since the pairs have not been declared.

All sets have to be declared in the sets section of the grammar. Of the five sets we
have defined in the example grammar, the first four are defined directly using a symbol
sequence. The fifth set Vowels is defined as the union of the sets SmallVowels and
BigVowels.

The Definitions. Like character-sets, also regular expressions may be stored under a
name and accessed later using that name. Named regular expressions are called defini-
tions and may be used freely in the rules. Sets and previous definitions can be used in
the definition of a new definition. The definitions in HFST-TWOLC and TWOLC are
identical.

The Rules. A two-level grammar constrains the surface-realizations of lexical forms.
The constraints are given as two-level rules, whose joint effect determines the set of
valid correspondences for each lexical form. Each of the rules governs one realization
of a lexical symbol in a context given by a regular expression of pairs of a lexical and
surface symbol.

The syntax and semantics of rules in HFST-TWOLC and TWOLC are very similar11.
Except for surface-restrictions concerning epsilon, i.e. epenthesis rules, the rules also
work the same way.

An example of a rule is the rule governing vowel-harmony in our example grammar

"Vowel Harmony"
%~A:a <=> :BackVowels NonVowelSeq _ ;

It states that the archphoneme ~A has to be realized as a, if the surface-vowel immedi-
ately preceding it is a back-vowel. It also disallows the pair ~A:a in all other contexts.

The rule accepts the first correspondence in table 1 since the vowel preceding ~A
is y, which is not a back-vowel. It disallows both of the latter correspondences. In the
second correspondence ~A is realized as a, even though the preceding surface-vowel is

11 http://www.xrce.xerox.com/competencies/content-analysis/fsCompiler/
fssyntax.html

http://www.xrce.xerox.com/competencies/content-analysis/fsCompiler/fssyntax.html
http://www.xrce.xerox.com/competencies/content-analysis/fsCompiler/fssyntax.html

HFST Tools for Morphology 37

Table 1. Symbol-pair correspondences for demonstrating the vowel-harmony rules

k y ~K y ~A k y ~K y ~A k u m ~P u ~A
k y k y ä k y k y a k u m p u ä

not a back-vowel. This violates the => direction of the rule. In the third correspondence,
~A is realized as ä, but the preceding surface-vowel is u, which is a back-vowel. This
violates the <= direction of the rule.

HFST-TWOLC allows a set of rules to be defined using variables or by giving a
set of rule-centers. E.g. the rule which defines the basic constraint of gradation in our
example grammar is a rule with three variables: Cs, Cv and Cm.

"%~K:v and %~P:m Gradation "
Cs:Cw <=> _ AlphaSeq Cm:0 AlphaSeq %+ AV%-:0 ;

where Cs in (%~K %~P)
Cw in (v m)
Cm in (%+ AVM %+AVH) matched ;

Listing 3. Rule defining the basic constraint of gradation

Like ordinary alphabet-symbols, variables may be used both in the center of a rule and
in its contexts.

When a rule with variables is compiled, it is split into sub-rules. These are obtained
by substituting real alphabet symbols for the variables. The possible values of variables
are listed in the where-clause following the rule.

3.2 Compiling the Rules and Resolving Rule-Conflicts

HFST-TWOLC compiles two-level rules, given as regular expressions of pairs, into
finite-state transducers. All two-level rules may be constructed from simple surface-
requirements, context-restrictions and surface-prohibitions. The compilation reduces
the two-sided rules and rules with variables into combinations of such simple construc-
tions, or subrules.

After compilation, the subrules are intersected, so that finally equally many rule-
transducers are produced as there were original two-level rules. Intersecting the subrules
of the two-level grammar rules takes up a considerable portion of the compile-time of
the grammar.

Compilation of the rules is preceded by a phase called conflict-resolution, which
modifies rule-contexts in order to prevent harmful interactions between the rules. After
conflict-resolution the modified rule-set may be compiled as usual.

We use the GR-operation of Yli-Jyrä and Koskenniemi [10] to compile rules. Both
compiling rules and conflict-resolution is simplified using the operation.

The compilation in HFST-TWOLC differs from TWOLC when epenthesis rules are
compiled. As Yli-Jyrä and Koskenniemi [10] point out, epenthesis rules may be com-
piled as any other surface-requirement rules using the GR-operation. This increases the
expressive power of the two-level grammar as explained below.

38 K. Lindén, M. Silfverberg, and T. Pirinen

A general restriction of the pair-alphabet Σ is an expression W
n�⇒ W ′, where the

precondition W and postcondition W ′ are unions of expressions of the form V1 �V2 �
... � Vn ⊂ Σ∗(� Σ∗)n, where � /∈ Σ is a special marker-symbol and each Vi is a regular

language of the alphabet Σ . Such an expression is compiled into a regular expression
using the GR-operation as in (6).

Σ∗ −delete�(W −W ′) (6)

The operation delete� in (6) rewrites each marker-symbol � into epsilon and leaves all
other symbols intact.

We do not need the full expressive power of the GR-operation. Instead we use a

restricted version W
2�⇒ W ′, which is limited to compiling rules with one center and a

number of contexts with a right and a left part. Hence we operate on preconditions and
postconditions with two diamonds, i.e. W,W ′ ⊆ Σ∗ �Σ∗ �Σ∗.

We discuss compiling one rule first and then conflict-resolution, although logically
conflict-resolution is done first and then the rules are compiled. This is easier to explain,
because conflict-resolution is highly dependent on the way the rules are compiled.

Compiling One Rule. Yli-Jyrä and Koskenniemi [10] explain how ordinary two-level
rules can be compiled using the GR-operation. We use slight variations of the same
methods.

Surface-requirement rules and context-restriction rules need to be compiled in
different ways. Surface-prohibition rules can be compiled in a similar manner as surface-
requirement rules and double-sided rules are compiled, by intersecting the two direc-
tions of the rule.

The general restriction corresponding to the context-restriction rule a:b⇒⋃n
i=0 Li _ Ri

is given by (7).

Σ∗ � a:b�Σ∗ 2�⇒
n⋃

i=0

Li �Σ∗ �Ri (7)

The surface-requirement rule requires an auxiliary definition. We define the inverse
projection [x:] of the input-symbol x using (8). Here x may be any of the input-symbols
of pairs in Σ , including epsilon.

[x:] = {x:y | x:y ∈ Σ} (8)

The general restriction corresponding to the surface-requirement rule a:b⇐⋃n
i=0 Li _ Ri

is given by (9).
(

Σ∗ � [a:]−a:b �Σ∗ ∩
n⋃

i=0

Li �Σ∗ �Ri

)
2�⇒ /0 (9)

The general restriction corresponding to the surface-prohibition rule a:b ⇐ ⋃n
i=0 Li _ Ri

is similar. It is given by (10).

(
Σ∗ � a:b �Σ∗ ∩

n⋃

i=0

Li �Σ∗ �Ri

)
2�⇒ /0 (10)

HFST Tools for Morphology 39

Using the GR-operation, epenthesis rules have the same semantics as other surface-
requirement rules. The rule 0:a ⇐ b _ b rejects the correspondences bb and b0:cb, but
accepts b0:ab.

The TWOLC compiler compiles epenthesis rules in a different way than HFST-
TWOLC. In TWOLC, the rule 0:a ⇐ b _ b becomes equivalent to the expression Σ∗ −
(Σ∗bbΣ∗), which means that bb is rejected, but b0:cb is accepted, provided that the pair
0:c is declared in the alphabet Σ . This makes it impossible to interpret one epenthesis
rule as a special case of another epenthesis rule.

E.g. we might want the pair 0:v between two vowels, but the pair 0:w between two
like vowels. This can be expressed by the rules

0:v ⇐ Vowel _ Vowel ; and 0:w ⇐Vx _ Vx, Vx ∈ Vowel ;

In HFST-TWOLC conflict resolution modifies the context of the more general rule. A
correspondence with 0:t between like vowels becomes disallowed, but a correspondence
with 0:s between like vowels is allowed. In the TWOLC compiler this is not possible.

Resolving Rule-Conflicts. Rule-conflicts are situations where different rules require a
lexical string to be realized in different ways. Since each correspondence of a lexical
string and surface string needs to be accepted by all rules in a two-level grammar, such
lexical strings are filtered by the grammar. Using the GR-operation to compile the rules
allows separating the processes of conflict-resolution and rule-compilation. Previously,
these may have been more entangled, which would explain, why the conflict resolution
of the XEROX compiler sometimes works in an unexpected way (see example below).

Like TWOLC, HFST-TWOLC only handles two kinds of conflicts: right-arrow con-
flicts and left-arrow conflicts. Right-arrow conflicts occur between context-restrictions
with the same center-pair. Left-arrow conflicts occur between surface-requirements
with centers having the same lexical symbol, but different surface-symbols.

Consider the rules

a:b ⇒ x _ ; and a:b ⇒ y _ ;

These are in right-arrow conflict with each other. Like Xerox TWOLC, HFST-TWOLC
interprets both rules as permissions and replaces them with one rule, whose context is
the union of the contexts of the conflicting rules. Joining the contexts is easy when the
rules are compiled using the GR-operation.

A left-arrow conflict is resolvable exactly when one of the rule-contexts is a sub-
context of the other. A trivial example of a resolvable left-arrow conflict is given by the
rules

a:b ⇐{d, e} _ ; and a:c ⇐ d _ ;

Here the alphabet Σ consists of the pairs a:b, a:c, d and e. This is resolved by replac-
ing the more general context with the difference of that context and the more specific
context as given by (11), where we have written the contexts as generalized restriction
contexts.

(Σ∗{d, e} �Σ∗ �Σ∗)− (Σ∗d �Σ∗ �Σ∗) = Σ∗e�Σ∗ �Σ∗ (11)

40 K. Lindén, M. Silfverberg, and T. Pirinen

This example does not compile as expected under TWOLC. Conflict-resolution results
in a grammar, which rejects all lexical strings containing a or e.

Right-arrow conflict-resolution may result in large rule-contexts which may be time-
consuming to determinize. Left-arrow conflict resolution requires testing all pairs of
surface-restriction rules concerning the same lexical symbol. This means that the worst-
case time-requirement is quadratic w.r.t. to the number of rules in the grammar.

4 HFST-COMPOSE-INTERSECT

A lexicon compiled using HFST-LEXC and a grammar of two-level rules compiled us-
ing HFST-TWOLC are combined using the program HFST-COMPOSE-INTERSECT. It
is an implementation of the intersecting composition algorithm presented by Karttunen
[5]. The result of the operation is equivalent to the composition of the lexicon-transducer
with the intersection of the rule-transducers.

Karttunen [5] observed that the intersection of the rule-transducers alone may be
extremely large and computing it may take a long time, whereas intersecting composi-
tion allows the lexicon to restrict the intersection of the rule-transducers. This reduces
compilation time significantly.

Although computers have become considerably faster since 1994 and they have more
memory, computing the intersection of the rule-transducers can still be very space-
consuming. We intersected the rule-transducers of the two-level implementation of
OMORFI12, i.e. Pirinen’s [11] morphological analyzer for Finnish. Without the inter-
secting composition, the rule intersection took eleven hours using the same machine
we used for conducting our other performance-tests. Hence we believe that intersecting
composition is still a necessary operation when developing full-scale two-level mor-
phological analyzers.

5 Full-Scale Morphological Analyzers Using HFST Morphological
Tools

We test the performance of the HFST tools by building three full-scale morphological
analyzers of varying complexities for French, Finnish, and Northern Sámi. All of them
highlight different aspects of the compilation process. To verify the correctness of the
compilation results, we analyzed corpora using the lexical transducers.

The French analyzer was built from the existing morphological full-form lexicon
Morphalou13. The lexicon was translated into the LEXC format and it contains some
550000 entries in a single lexicon. Each entry represents a word form and its analysis.
We chose this lexicon for testing HFST-LEXC with a large number of real entries.

The Finnish analyzer has two implementations, i.e. the version using the SFST com-
piler format of OMORFI which is Pirinen’s [11] original analyzer for Finnish, and a
reformulated version using a LEXC lexicon and a TWOLC grammar format. The re-
formulation was done manually by converting the morpheme sets of the original code

12 http://kitwiki.csc.fi/kitwiki/Main/OMorFiHome
13 http://www.cnrtl.fr/lexiques/morphalou/

http://kitwiki.csc.fi/kitwiki/Main/OMorFiHome
http://www.cnrtl.fr/lexiques/morphalou/

HFST Tools for Morphology 41

into LEXC sublexicons and rewriting the phonological rules from replace cascades into
TWOLC rule sets. While care has been taken to ensure the similarity of the implemen-
tations, it should be noted that the versions are not totally equivalent. We still think they
are close enough for a meaningful comparison of the two approaches.

The Northern Sámi analyzer is an original LEXC and TWOLC based morphological
analyzer developed in the Divvun Project14. It is a full-fledged analyzer developed to-
tally independently of the HFST project and it has both a large number of sublexicons
and a large number of rules.

The characteristics of the analyzers of the three languages are summarized in table 2.
The first three of the columns summarize the HFST-LEXC lexicons stating the numbers
of sublexicons, lexicon-entries and symbols used in the lexicons. The remaining three
columns summarize the HFST-TWOLC grammars. They state the numbers of symbol-
pairs, rules and subrules in the double-sided rules and rules with variables. The example
for French has no entries in the last three columns, since it has no two-level grammar.

Table 2. Some numbers characterizing the lexicons and two-level grammars we used for testing

HFST-LEXC HFST-TWOLC
Language Sublexicons Entries Symbols Pairs Rules Subrules

French 1 553158 87 — — —
Finnish 213 94278 301 169 12 76
Northern Sámi 870 105503 428 313 105 555

6 Performance Evaluation

The goal of the performance evaluation is to see how far we still have to go before
we reach industrial-strength performance. Additionally, we wish to see how the perfor-
mance of the LEXC and TWOLC approach with parallel-rules compares to the approach
with cascaded-rules. To achieve these goals, we compare HFST with some other open
source tools and an industrial strength implementation by Xerox. By compiling the ana-
lyzers mentioned in the previous section, we can also collect performance figures on real
full-fledged morphologies for identifying the most significant remaining bottle-necks in
our tools.

The HFST-LEXC and HFST-TWOLC tools mimic many of the Xerox LEXC and
TWOLC functionalities, so the input-files for the HFST tools require very small modi-
fications in order to compile using the Xerox tools, and vice versa. This makes it is easy
to compare the performance of the HFST tools with the Xerox versions.

As the Finnish OMORFI analyzer has two almost identical versions: one using replace-
rules for the SFST compiler and one using two-level rules for the LEXC and TWOLC
tools, we are able to compare the efficiency of the two approaches to building morpho-
logical analyzers. We can do this because both approaches are built on top of the same
underlying SFST software library with tools specialized for each approach.

14 http://www.divvun.no

http://www.divvun.no

42 K. Lindén, M. Silfverberg, and T. Pirinen

Below, we have five tables summarizing the results of the performance tests. The
first table 3 compares the total compile times of the analyzers using the HFST tools, the
Xerox tools, the foma LEXC tool and the SFST compiler. For foma, only the compile-
time for the analyzer of French is given, as foma only comes with a LEXC15 interface.
For the SFST compiler, only the compile-time for the Finnish lexicon is given, as our
only implementation with cascaded rules is for Finnish.

Table 3. Total compile-times using HFST tools, foma LEXC, SFST compiler and Xerox tools
to compile lexical transducers. Times are in seconds.

Language HFST tools foma LEXC SFST compiler Xerox tools

French 19.06 s 16.87 s — 5.46 s
Finnish 14.44 s — 1682.04 s 1.83 s
Northern Sámi 228.20 s — — 24.61 s

The following three tables 4, 5 and 6 give the HFST compile-times for the analyzers
of Finnish, French and Northern Sámi. The times have been broken down into sub-
phases of the compilation in order to see where the bottle-necks are. The phases are
explained below the tables.

Table 4. HFST-LEXC performance broken into the different phases of the compilation process.
Times are in seconds.

Language 1 2 3 4 Total

French 5.82 s 1.45 s 0.11 s 11.67 s 19.06 s
Finnish 1.08 s 0.27 s 0.32 s 6.50 s 8.17 s
Northern Sámi 1.02 s 0.44 s 2.27 s 15.94 s 19.67 s

1. The entry parsing and tokenization (cf. Sect 2.1)
2. Union of entries (cf. Sect 2.2)
3. Morphotactic filtering (cf. Sect 2.3)
4. Other phases (minimizing results, etc.)

Finally, table 7 gives an indication of the maximal memory consumption during the
lexicon compilations using the HFST tools and the Xerox tools.

All tests were conducted on an Intel computer with a Xeon E5450 64 bit 3.00 GHz
CPU and 64 GB of memory. For the HFST tools, the times were extracted using the C
language clock function. For other tools, the GNU time command was used. In order
to monitor the memory consumption, we used the GNU top command.

HFST has both a weighted and an unweighted implementation, but the current tests
were performed using only the unweighted implementation of HFST, i.e. in practice
we used the unweighted SFST library implementation of the HFST tools.

15 Foma also has an XFST interface.

HFST Tools for Morphology 43

Table 5. HFST-TWOLC performance broken into the different phases of the compilation process.
Times are in seconds.

Language 1 2 3 Total

Finnish 0.11 s 0.05 s 1.41 s 1.57 s
Northern Sámi 2.27 s 1.43 s 27.12 s 30.82 s

1. Reading the input-file and creating auxiliary data-structures. Compiling rule-contexts into
transducers.

2. Identifying and resolving rule-conflicts.
3. Combining contexts and centers of single surface-requirements and context-restrictions. In-

tersecting subrules of rules with variables and double-sided rules, in order to form the final
rule-transducers. Minimizing and storing the rule-transducers.

Table 6. HFST-COMPOSE-INTERSECT performance broken down into the different phases of
the compilation process. Times are in seconds.

Language 1 2 3 4 Total

Finnish 0.19 s 2.80 s 1.05 s 0.65 s 4.70 s
Northern Sámi 2.18 s 154.14 s 21.01 s 0.38 s 177.71 s

1. Reading lexicon-transducer and rule-transducers.
2. Computing intersecting composition.
3. Determinizing and minimizing the result of the operation.
4. Storing the minimized result of the operation.

Table 7. Maximum space required using HFST and Xerox utilities to compile the transducers.
Space indications are in megabytes (MB).

Language HFST-LEXC HFST-TWOLC HFST-COMPOSE-INTERSECT

French 596 MB — —
Finish 181 MB 13 MB 48 MB
Northern Sámi 180 MB 291 MB 1090 MB (1.1 GB)

Language Xerox LEXC Xerox TWOLC

French 85 MB — —
Finnish 28 MB 3 MB —
Northern Sámi 13 MB 12 MB —

7 Discussion and Future Research

In this section, we discuss the evaluation results and suggest some further lines of re-
search and development of the tools that the evaluation figures seem to indicate. Com-
paring the total compilation times for HFST tools, Xerox tools, foma LEXC and SFST
compiler, shows that HFST is still a magnitude slower than the Xerox tools. However,

44 K. Lindén, M. Silfverberg, and T. Pirinen

HFST compares well with, foma, the other open-source tool. The decrease in compile-
time for the Finnish lexicon, when parallel-rules are used, is considerable by improving
performance with almost two magnitudes. Most importantly, using the HFST tools is
sufficiently quick not to slow down the development of full-scale morphological ana-
lyzers. Even large morphological analyzers like the analyzers for French compile in less
than a minute and Northern Sámi in less than ten minutes.

7.1 HFST-LexC Performance

Comparing the HFST-LEXC compilation times for French and Northern Sámi given in
table 4, we see that the entry parsing and tokenization as well as the uniono of entries
is almost linear. The lexicon for French has about five times as many entries as the
lexicons for Finnish and for Northern Sámi. This is a result of the tokenization and
trie-union described in section 2, which speeds up the building of sublexicons.

We also see that the number of sublexicons influences the morphotactic filtering
in the HFST-LEXC compile-time. The lexicon for French only has one sub-lexicon,
whereas the lexicon for Northern Sámi has 870 sub-lexicons and the Finnish lexicon is
inbetween.

There is one main part that dominates the time consumption in table 4, i.e. the final
determinization and minimization. The determinization and minimization of the final
result consumes 60–80% of the compile-time of the lexicons. We use a standard al-
gorithm which may have a more efficient implementation for cyclic structures in the
competing software libraries.

7.2 HFST-TwolC Performance

Examining the HFST-TWOLC compile-times for Finnish and Northern Sámi shows,
that the last phase, i.e. combining contexts and intersecting subrules, takes up approx-
imately 90% of the compile-time. The compile-time for this phase depends heavily on
the intersection, subtraction and determinization algorithms used when implementing
the HFST API.

In HFST, we have not yet implemented an other-symbol like the one in the Xerox
TWOLC presented by Karttunen [3], the rule-transducers encode a number of unnec-
essary transitions. This slows down intersection, difference and determinization among
other operations. It is probably the single most important factor slowing down HFST-
TWOLC. Like intersection, intersecting composition is also affected by the lack of an
other-symbol, since intersecting composition is sensitive to the number of transitions in
the rule-transducers.

7.3 Parallel Rules vs. Cascaded Rules

It is interesting to see, that the two-level HFST-LEXC and HFST-TWOLC approach to
compiling the OMORFI analyzer for Finnish is so much more efficient than the cascade
of replace-rules, which constitutes the SFST implementation of OMORFI. We know,
that the difference lies in the approach to compiling the lexicon and the rules, as the
unweighted HFST morphology tools ultimately perform their transducer operations
using the SFST library, even if this happens through the HFST API.

HFST Tools for Morphology 45

One possible reason for the speed-up is that HFST-LEXC and HFST-TWOLC are
more constrained environments than the SFST utility fst-compiler by Schmid [7],
which is used for compiling the SFST version of the OMORFI analyzer. We suspect
that the great liberty in constructing rules using SFST may tempt the user to indulge in
unnecessarily unconstrained ways of expressing replacements with a very local area of
application. This manifests itself among other things as an increased compile-time.

Converting the LEXC and TWOLC version of the Finnish lexicon from the SFST
lexicon compiler files took approximately a week of manual work. While doing this,
we were able to slightly modify and improve the rules in order to remove some of
the incorrect readings that were coming through as analyses of the Finnish cascaded
rule analyzer, which had not been corrected before. This also indicates that the parallel
rule set may be easier to test and debug than the cascaded rules, but first and foremost
it confirms the well-known effect that a reduced compile-time is very significant for
the development process as it allows an increased number of test cycles during a fixed
time-span.

7.4 The Other-Symbol

We have demonstrated, that the morphology tools HFST-LEXC, HFST-TWOLC and
HFST-INTERSECT-COMPOSE provide a realistic open-source alternative for construct-
ing morphological analyzers in the two-level framework. Still, there is room for im-
provement, as the performance of the Xerox tools show.

Currently the performance of both HFST-TWOLC and HFST-INTERSECT-
COMPOSE correlates strongly with the number of symbol pairs in the alphabet of the
two-level grammar. A significant optimization for these HFST tools would be the in-
troduction of an other-symbol, which can represent the class of pairs bearing no special
meaning to a rule. Such a symbol would decrease the number of transitions in rule-
transducers. In case the number of symbol-pairs of the alphabet is large, this has a
significant impact on the performance of both HFST-TWOLC and HFST-INTERSECT-
COMPOSE. In practice, the introduction of the other-symbol makes both tools insensi-
tive to the number of symbols in the alphabet of the grammar. We believe, that this may
help us achieve rule compile-times closer to those of Xerox.

7.5 Future Directions

In our future research, we intend to look at various aspects of and methods for in-
tegrating the creation and use of weighted transducers in morphologies. It is already
possible to compile both weighted two-level lexicons and grammars using HFST tools.
These can be combined into weighted lexical transducers using the weighted version
of HFST-INTERSECT-COMPOSE. It is also possible to adjoin meaningful weights to
lexicon-entries in HFST-LEXC. Currently HFST-TWOLC only provides a way to com-
pile weighted rules with zero-weights. However, even this small beginning allows us to
combine weighted lexicons and two-level grammars using weighted intersecting com-
position. We are currently working on useful ways to attach weights to two-level rules
with applications for weighted two-level grammars.

46 K. Lindén, M. Silfverberg, and T. Pirinen

We were able to compare the performance of a cascaded rule approach with a par-
allel rule approach using the same underlying finite-state library. However, using our
full-fledged morphologies, we could also compare different underlying finite-state li-
braries on real compilation tasks in order to compare different algorithms and their
implementations. A future task, would be to compare the performance of e.g. the SFST
library with that of OPENFST. Our preliminary evaluation results show that efficient
and well-suited determinization and minimization algorithms have a significant impact
on the real-world morphology compilation task.

8 Conclusions

We have chosen to create open-source tools and language descriptions in order to let
as many as possible participate in the effort of providing morphological analyzers for
the languages of the world. The current article present some of the main tools that
we have created based on our unified API for finite-state libraries. The tools include
HFST-LEXC, HFST-TWOLC and HFST-COMPOSE-INTERSECT. We have evaluated
the efficiency of the current implementations in comparison with some of the similar
tools and libraries available using several full-fledged morphological descriptions. Our
tools compare well with other similar open source tools, even if we still have some
challenges ahead before we can catch up with the commercial tools. We demonstrate
that for various reasons a parallel rule approach seems to be more efficient than the
cascaded rule approach when developing finite-state morphologies.

Acknowledgments

We are grateful to the Finnish Academy and to the Finnish Ministry of Education for
funding the project. We are also grateful to Erik Axelson for implementing the HFST
interface and to Kimmo Koskenniemi and Anssi Yli-Jyrä for many fruitful discussions
as well as to the anonymous reviewers for their comments.

References

1. Koskenniemi, K.: Two-Level Morphology: A General Computational Model for Word-Form
Recognition and Production. University of Helsinki, Department of General Linguistics
(1983)

2. Karttunen, L., Koskenniemi, K., Kaplan, R.: A Compiler for Two-Level Phonological Rules.
CSLI Publications (1987),
http://www2.parc.com/istl/members/karttune/publications/archive/
twolcomp.pdf

3. Karttunen, L.: Two-Level Rule Compiler, Technical Report ISTL-92-2, Xerox Palo Alto
Research Center (1992),
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/
docs/twolc-92/twolc92.html

4. Karttunen, L.: Finite-State Lexicon Compiler. Technical Report, ISTL-NLTT2993-04-02,
Xerox Palo Alto Research Center, Palo Alto, California (1993)

http://www2.parc.com/istl/members/karttune/publications/archive/twolcomp.pdf
http://www2.parc.com/istl/members/karttune/publications/archive/twolcomp.pdf
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html
http://www.xrce.xerox.com/competencies/content-analysis/fssoft/docs/twolc-92/twolc92.html

HFST Tools for Morphology 47

5. Karttunen, L.: Constructing Lexical Transducers. In: The Proceedings of the 15th Interna-
tional Conference on Computational Linguistics COLING 1994, I, pp. 406–411 (1994)

6. Beesley, K., Karttunen, L.: Finite State Morphology. CSLI Publications, Stanford (2003),
http://www.fsmbook.com

7. Schmid, H.: A programming language for finite state transducers. In: Yli-Jyrä, A., Karttunen,
L., Karhumäki, J. (eds.) FSMNLP 2005. LNCS (LNAI), vol. 4002, pp. 308–309. Springer,
Heidelberg (2006)

8. Lombardy, S., Régis-Gianas, Y., Sakharovitch, J.: Introducing Vaucanson. Theoretical Com-
puter Science 328, 77–96 (2004)

9. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A general and efficient
weighted finite-state transducer library. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS,
vol. 4783, pp. 11–23. Springer, Heidelberg (2007), http://www.openfst.org

10. Yli-Jyrä, A., Koskenniemi, K.: Compiling Generalized Two-Level Rules and Grammars.
In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI),
vol. 4139, pp. 174–185. Springer, Heidelberg (2006)

11. Pirinen, T.: Suomen kielen äärellistilainen automaattinen morfologia avoimen lähdekoodin
menetelmin. Master’s thesis, Helsingin yliopisto (2008)

http://www.fsmbook.com
http://www.openfst.org

fsm2 – A Scripting Language for Creating Weighted
Finite-State Morphologies

Thomas Hanneforth

Department for Linguistics, University of Potsdam, Germany

Abstract. The present article describes fsm2, a software program which can be
used interactively or as a script interpreter to manipulate weighted finite-state
automata with around 100 different commands. fsm2 is based on FSM<2.0> –
an efficient C++ template library to create and algebraically manipulate weighted
automata. fsm2 is particularly well suited to create morphological analysers on
the basis of weighted automata.

1 Introduction

fsm2 is a simple XFST-style interpreter [1] for FSM<2.0>, an efficient C++ template
library to create and algebraically manipulate weighted automata. Like XFST it is based
on a stack machine, that is, most fsm2-commands manipulate finite-state automata on a
stack. The notable differences to XFST are:

1. The regular expression syntax is adopted from AT&T’s LexTools [2].
2. All finite-state machines are always (sometimes trivially) weighted with an alge-

braic weight structure called a semiring (see Section 2).
3. All higher-level operations in FSM<2.0> (on regular expressions, grammars, lex-

icons, etc.) are based on a symbol specification. So, the first step in the fsm2-
interpreter will consist in almost every case in loading a symbol specification file
(see Section 4.1).

4. FSM<2.0> and its interpreter fsm2 are open source.

The article is organised as follows: Section 2 introduces some formal notions concern-
ing weighted automata, while Section 3 focuses on some of the operations supported by
fsm2. Section 4 shows fragments of fsm2 code for creating a weighted morphological
analyser for German nouns. A short conclusion is given in Sec. 5.

2 Formal Background

Finite-state automata in FSM<2.0> are weighted with an algebraic structure called a
semiring.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 48–63, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 49

Definition 1 (Semiring). A structure K = 〈W,⊕,⊗,0,1〉 is a semiring [3] if it fulfills
the following conditions:

1. 〈W,⊕,0〉 is a commutative monoid with 0 as the identity element for ⊕.
2. 〈W,⊗,1〉 is a monoid with 1 as the identity element for ⊗.
3. ⊗ distributes over ⊕:

∀x,y,z ∈W : x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z) (left distributivity)
∀x,y,z ∈W : (y⊕ z)⊗ x = (y⊗ x)⊕ (z⊗ x) (right distributivity)

4. 0 is an annihilator for ⊗: ∀w ∈W,w⊗ 0 = 0⊗w = 0.

In the following, we will identify a semiring K with its carrier set W .

Definition 2 (Semiring properties)
Let K = 〈W,⊕,⊗,0,1〉 be a semiring.

– K is called idempotent if ∀a ∈ K : a⊕a = a.
– K has the path property if ∀a,b ∈ K : a⊕b = a or a⊕b = b.
– K is called commutative if ∀a,b ∈ K : a⊗b = b⊗a.

With the definition of a semiring at hand, it is possible to define weighted finite-state
automata:

Definition 3 (Weighted finite-state acceptor). A weighted finite-state acceptor (hence-
forth WFSA, [4]) A = 〈Σ ,Q,q0,F,E,λ ,ρ〉 over a semiring K is a 7-tuple with

1. Σ , the finite input alphabet,
2. Q, the finite set of states,
3. q0 ∈ Q, the start state,
4. F ⊆ Q, the set of final states,
5. E ⊆ Q× (Σ ∪{ε})×K ×Q, the set of transitions,
6. λ ∈ K , the initial weight and
7. ρ : F → K , the final weight function mapping final states to elements in K .

An extension to WFSAs are weighted finite-state transducers (WFST). Weighted finite-
state transducers have a second alphabet Γ of output symbols and a slightly extended
definition of the transition set: E ⊆ Q× (Σ ∪{ε})× (Γ ∪{ε})×K ×Q.

The following definition functionally relates strings accepted (or generated) by a
WFSA to semiring weights1:

Definition 4 (Weight associated with a string). Given a WFSA A, let a path π =
t1t2 . . .tk be a sequence of adjacent transitions. Let Π(q,x, p) for x ∈ Σ∗ be the set
of paths from state q ∈ Q to state p ∈ Q such that the concatenation of input symbols in
each π ∈ Π(q,x, p) equals x. Let ω(π) the ⊗-multiplication of all transitions weights in
a path π: ω(π) = w[t1]⊗w[t2]⊗ . . .⊗w[tk]. The weight associated with an input string
x ∈ Σ∗ wrt a WSFA A – denoted by �x�A – is computed by the following equation:

1 For weighted transducers, the definition is extended to a pair of strings �〈x,y〉�.

50 T. Hanneforth

�x�A =
⊕

q∈F,
π∈Π (q0,x,q)

λ ⊗ω(π)⊗ρ(q)

Definition 4 means that weights along an accepting path (leading to a final state) are
combined by abstract multiplication. If there are several paths for some input string x –
in this case the WFSA is called ambiguous – the weights of all those paths are combined
additively. Since the ⊕-operation is required to be commutative, the order in which the
paths are combined is not relevant. Section 3.1 will shortly discuss some of the most
commonly used semirings and their applications.

3 Features of fsm2

This section shows some of the capabilities of fsm2 and its underlying software library.

3.1 Semirings

Table 1 summarises the semirings currently predefined in fsm2.2

Table 1. Predefined semirings in fsm2

Semiring name Symbol Definition Comments

tropical T 〈R+
+∞,min,+,+∞,0〉

real R 〈R,+, ·,0,1〉
log L 〈R∞,⊕log,+,∞,0〉 x⊕log y = −ln(e−x +e−y)
string S 〈Γ ∗ ∪{s∞},∧, ·,s∞,ε〉 x∧y = longest common pre-

fix of x and y
arctic A 〈R−∞,max,+,−∞,0〉
Viterbi V 〈[0,1],max, ·,0,1〉
string×tropical S ×T
tropical×tropical T ×T

The standard semiring is the tropical semiring which is chosen for applications for
which the notion of a distance is important. For example, it can be used for edit dis-
tance calculations and also for assigning penalties in morphological grammars to mea-
sure morphological complexity ([5]). Since in the tropical semiring, the ⊕-operation in
definition 4 corresponds to the computation of a minimum, among a set of competing
analyses the one with the minimal distance or the minimal penalty score is chosen.

The Viterbi and real semirings are of great importance for all kinds of HMM-style
statistical language processing to compute forward/backward or maximum probabilities
of input strings (see [6] for details).

2 The actually available semirings depend on compilation options in the Makefile of fsm2.

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 51

The string semiring treats (output) strings as weights. Although the string semiring
is not commutative and string weighted finite automata can thus not be combined with
intersection and composition, the string semiring is very useful for compactly repre-
senting big finite-state transducers, for example, morphological analysers, especially
when extended with the possibility of associating several output strings (analyses) with
an input string3 (see the next section for an example).

Finally, the tuple semiring T ×T is a ranked semiring, that is, it is idempotent and
has the path property and is thus suitable to allow best path operations ([4]) on WFSA
with weights which are pairs of real numbers. The fsm2-framework allows (flat) weight
tuples with up to 10 component semirings.

Semirings in fsm2 are changed with the semiring command. Typing for example
semiring tsr_x_tsr switches the system to the T ×T -semiring.

3.2 Weighted Operations

Algebraic Operations. The fsm2-interpreter supports the full set of algebraic opera-
tions defined on WFSAs and WFSTs (see [8]). Table 2 gives an overview of the fsm2-
commands associated with these operations.

Table 2. Commands for algebraic operations in fsm2

Command Meaning Applies to

union Union WFSA, WFST
concat Concatenation WFSA, WFST
star Star closure WFSA, WFST
plus Plus closure WFSA, WFST
complement Complementation Unweighted FSA
intersect Intersection WFSA over commutative

semirings
compose Composition WFST over commutative

semirings
crossproduct Cross product of two WFSAs WFSA over commutative

semirings
difference Difference of a WFSA and a FSA WFSA
project 1st, 2nd projection WFST
reverse Reversal WFSA, WFST
substitute Substitution of WFSAs into a WFSA WFSA
bestpath Find the best path WFSA, WFST over idempo-

tent semirings with the path
property

Equivalence Transformations. Equivalence transformations are operations which
change or optimise the topology of a weighted automaton without changing its weighted
language or relation according to definition 4.

3 See Hanneforth: Using ranked semirings for representing morphology automata, in this
volume.

52 T. Hanneforth

Table 3 summarises the equivalence transformations supported by fsm2.

Table 3. Commands for equivalence operations in fsm2

Command Meaning Applies to

rmepsilon Removes ε/ε : ε-transitions WFSA, WFST
determinize Weighted acceptor/transducer determinisation, depending

on the type of FSM
WFSA, WFST

minimize Minimises WFSAs WFSA
synchronize Tries to synchronise input and output symbols WFST
epsnormalize Tries to move output-ε-transitions towards the final states

to reduce nondeterministic computation
WFST

optimize For WFSAs, ε-removal, weighted determinisation and
minimisation; for WFSTs, ε-removal and encoded deter-
minisation/minimisation

WFSA, WFST

push weights Pushes weights towards the initial or final states WFSA, WFST
collect-weights Combines transitions with the same source & destina-

tion state and same labels by applying ⊕ to the transition
weights

WFSA, WFST

connect Removes inaccessible states and transitions with 0-weight WFSA, WFST
sort Sorts transitions by input/output label or weight WFSA, WFST

Although not all finite-state transducers and weighted finite-state acceptors can be de-
terminised (see [9]), the encoded minimisation technique implemented in the optimize-
command can nevertheless be used to make the FSM faster and/or smaller. Encoded
minimisation treats the symbol pairs of a transducer and the symbol-weight pair of a
weighted acceptor as a symbol taken from a new alphabet to obtain a weighted or un-
weighted acceptor. This machine is then determinised and minimised and afterwards
decoded back by using the original encoding mapping.

Recent versions of FSM<2.0> started to support WFSAs with multiple outputs for
semirings not having the path property, for example, the string semiring or tuple semir-
ings which have the string semiring as a component.

A special case of that type of WFSA are p-subsequential WFSAs, that is, WFSAs
with a deterministic transition function and a final weight function ρ which is defined
as follows:

ρ : F → (Δ∗)k,1 ≤ k ≤ p. (1)

That means that a final state q can emit up to p different semiring weights, for example
strings in the case of a string semiring.

Figure 1 shows a 8-subsequential S ×T -WFSA for the German definite articles.
Determinisation and minimisation of p-subsequential WFSAs is already fully supported
in fsm2; ε-removal is currently restricted to WFSAs with a special topology.4

4 This is caused by the inadequacy (to a certain extent) of the string semiring for that purpose.

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 53

Fig. 1. p-subsequential S ×T -WFSA for the German articles

The symbolic part of the features of fsm2 – that is, the capability of defining and
compiling lexicons, grammars, replacement rules, etc. – is illustrated in the next section
by means of an example taken from morphology processing.

4 Creating Morphological Analysers with fsm2

This section demonstrates the different symbolic formalisms integrated into fsm2 by
means of creating a weighted analyser for German nouns. The method used here is
adapted from [5].

4.1 Symbol Signatures

Internally, all weighted automata work with 4-byte-integers as input/output alphabets.
To allow symbolic computation, a symbol signature puts symbols and their internal
integer representation in an one-to-one-mapping. The format of fsm2’s signature files is
largely borrowed from LexTools [2]. Currently, there are two basic types of definitions
in a symbol signature:

1. Type – subtype definitions
2. Category definitions

54 T. Hanneforth

Listing 1 shows a fragment of a symbol signature.

Supertypes
Lowercase a b c d e f g h i j k l m ...
Uppercase A B C D E F G H I J K L M ...
Letter Lowercase Uppercase
Boolean yes no

Morphosyntactic features
Case acc dat gen nom
Gender fem masc neut
Number sg pl

Morphological features
NICSg ic_sg_none ic_sg1 ic_sg2 ic_sg3 ic_sg4 ...
NICPl ic_pl_none ic_pl1 ic_pl2 ic_pl3 ic_pl4 ...
StemType def flex deko
DecoActive Boolean
Bound Boolean
Boundary # ~ = -

Morphological categories
Category : NSTEM Gender NICSg NICPl StemType DecoActive Bound
Category : NINFL Number Case NICSg NICPl
Category : NSUFFIX Gender

Syntactic categories
Category : NN Gender Number Case

Listing 1. Fragment of a symbol signature for German noun morphology

Besides some definitions of super types like Letter and Case, the fragment showed
in listing 1 basically defines two kinds of categories: morphological categories like
NSTEM on the one hand and syntactic ones like NN on the other. NSTEM describes a noun
stem morphologically, that is, associates it with information concerning gender, inflec-
tional classes, type of stem, etc. The definition of the category NINFL does something
similar for nominal inflectional affixes. On the other hand, the category NN defines a
syntactic class (here taken from the STTS tagset [10]). The purpose of a morphology
system is to provide a mapping from combinations of morphological categories to syn-
tactic ones.

Subtype definitions can be nested and may form an acyclic inheritance hierarchy.
All symbols defined in the symbol signature, whether category, sub- or super type, may
be used in symbolic expressions. Additionally, a number of special symbols like <?>
(default symbol), <phi> (failure symbol), <bos> (beginning of string), and <eos>
(end of string) are added automatically. Symbol signatures are loaded in fsm2 with
the load symspec command; fsm2 supports signature files in both ASCII and UTF-8
format.

4.2 Lexicons

Lexicons are simply treated as implicit disjunctions of regular expressions. Listing 2
shows a lexicon for some German noun stems based on the symbol signature of
listing 1.5

5 The operator : denotes the cross product operation. The full set of regular expression operations
can be found in Table 4 in the appendix.

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 55

(Haus : Häus) [NSTEM Gender=neut NICSg=ic_sg1 NICPl=ic_pl3 StemType=flex|deko Bound=no DecoActive=yes]
(Haus : Haus) [NSTEM Gender=neut NICSg=ic_sg1 NICPl=ic_pl3 StemType=def |deko Bound=no DecoActive =yes]
(Tür : Tür) [NSTEM Gender=fem NICSg=ic_sg4 NICPl=ic_pl2 Bound=no DecoActive =yes]
(Holz : Holz) [NSTEM Gender=neut NICSg=ic_sg1 NICPl=ic_pl3 StemType=def |deko Bound=no DecoActive =yes]
(Holz : Hölz) [NSTEM Gender=neut NICSg=ic_sg1 NICPl=ic_pl3 StemType=flex|deko Bound=no DecoActive=yes]

Listing 2. Lexicon for some German noun stems

The lexicon fragment in listing 2 defines three noun lemmas Haus (house), Tür (door),
and Holz (wood). Since nouns in German show allomorphic variation like stem umlaut,
Haus, and Holz give rise to the definition of the stems Häus and Hölz, respectively.
The feature StemType associated with a stem indicates whether it can be used in the
singular (def), plural (flex) or in compounds or derived words (deko). Note that there
are no allomorphs for Tür, thus its StemType feature is left underspecified.

Figure 2 shows the lexicon after being compiled into a finite-state transducer.6 Note
that it would be possible to assign unigram probabilities taken from a corpus already to
the stems in the lexicon along the lines of [11], [12] or [13].

Fig. 2. Transducer for the noun lexicon fragment

For the nominal affixes, we create another lexicon where affixes are associated with
morphosyntactic features and information about their inflectional classes. Listing 3
shows the affixes needed for the stems of listing 2. Note that some affixes have no
overt form and consist solely out of feature specifications.

[NINFL Number=sg Case=nom|acc|dat NICSg=ic_sg1]
s [NINFL Number=sg Case=gen NICSg=ic_sg1]

[NINFL Number=sg NICSg=ic_sg4]

en [NINFL Number=pl NICPl=ic_pl2]
er [NINFL Number=pl Case=nom|acc|gen NICPl=ic_pl3]
ern [NINFL Number=pl Case=dat NICPl=ic_pl3]

[NINFL Number=pl NICPl=ic_pl9]

Listing 3. Some inflectional affixes for noun stems

4.3 Grammars

The next step is to formulate constraints for the cooccurrence of noun stems and inflec-
tional affixes: stems and affixes have to agree in the feature values of the inflectional
classes (feature NICSg and NICPl). The traditional way – employed by XFST and its
lexicon compiler lexc – is to divide all lexical material into equivalence classes and use

6 Lexicons are processed with the load lexicon command.

56 T. Hanneforth

the follow class mechanism to specify which classes can follow a given class. By follow-
ing that approach, the linguist implicitly defines a finite-state automaton representing
the allowed sequences of class members.

We think that encoding these kinds of automata manually is a tedious task. Instead,
we believe that the more natural way of achieving the desired effect is to use a grammar.
fsm2 supports a restricted form of weighted context-free grammar, as described in [14]7.

Since in this section we follow the simple penalty score approach adopted from [5]
to measure morphological complexity, we use a weighted grammar over the tropical
semiring.

Listing 4 shows a fragment of a weighted grammar for German nouns.

[NOUN] -> [FIRSTPART]* ([SIMPLENOUN]|[DERIVEDNOUN])

[FIRSTPART] -> [STEM] [NSTEM DecoActive=yes StemType =deko] ([-]?) [#] <10>
[FIRSTPART] -> ...

[SIMPLENOUN] -> [STEM] [NSTEM NICSg=ic_sg1 StemType =def Bound=no] \
[AFFIX] [NINFL Number=sg NICSg=ic_sg1]

[SIMPLENOUN] -> [STEM] [NSTEM NICSg=ic_sg4 StemType =def Bound=no] \
[AFFIX] [NINFL Number=sg NICSg=ic_sg4]

[SIMPLENOUN] -> [STEM] [NSTEM NICPl=ic_pl2 StemType =flex Bound=no] \
[AFFIX] [NINFL Number=pl NICPl=ic_pl2]

[SIMPLENOUN] -> [STEM] [NSTEM NICPl=ic_pl3 StemType =flex Bound=no] \
[AFFIX] [NINFL Number=pl NICPl=ic_pl3]

[DERIVEDNOUN] -> [STEM] [NSTEM StemType =deko DecoActive=yes Bound=no] \
[~] chen [NSUFFIX] <5> \
[AFFIX] [NINFL NICSg=ic_sg1 NICPl=ic_pl9]

[DERIVEDNOUN] -> ...

Listing 4. Fragment of a weighted grammar for nouns

The first grammar rule defines the basic form of a noun in German: zero or more
occurrences of some first part (“Erstglieder”) followed by a simple inflected noun or an
inflected noun which is created by deriving other categories like verbs, adjectives, etc.
The second rule says that an admissible first part of a noun may be another noun stem,
followed by a strong morpheme boundary # (with an optional hyphen in between). This
rule is weighted with an arbitrary penalty score of 10.8 Of course, there are a lot of other
possibilities here in German: the first part may be a derived noun, a verb, an adjective
or a proper name.

The next four rules state the restrictions between noun stems and inflectional affixes
by constraining stem and affix to the same inflection class.9 Moreover, the plural rules
require that the stem must have the value flex for the StemType feature, resulting in the
choice of the correct allomorphic stem in the plural forms (for example, Hölzern instead

7 Basically, a finite-state automaton cannot handle self-embedding.
8 Again, some more sophisticated approaches based on the probabilities of the individual con-

structions may be adopted.
9 Unfortunately, there is currently no variable-based agreement operation in fsm2. Introducing

variables into grammar rules where the right-hand side can be an arbitrary regular expression
(even with complementation or difference) is not an easy task.

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 57

of *Holzern). The nonterminals STEM and AFFIX simply function as placeholders for
the actual grapheme representations of the stems and affixes, resp.

The last rule for DERIVEDNOUN gives a example how to derive a noun with the
diminutive suffix chen. Again, an arbitrary cost of 5 is assigned to this rule which also
introduces a weak morpheme boundary ∼.

The grammar is then compiled into a WFSA with the load grammar command.
Basically, there are two ways to combine lexicons and grammars, which are both

based on the corresponding closure properties of (weighted) regular languages and re-
lations (see [15]):

1. Substitution
2. Intersection/composition

A (regular) substitution is a mapping from symbols of some alphabet Σ to a regular
subset of Γ ∗ for some other alphabet Γ . In our grammar example, it would be possible
to compile all grammar rules with the same left-hand side symbol into a WFSA and
then substitute all categories and grammar nonterminals with the automata defined by
lexicons or other grammar rules.10

We choose here to follow the second approach based on intersection. For that pur-
pose, we first take the union of all lexical material; this encompasses the lexicons for
stems and affixes, but also the morpheme boundaries. Afterwards, we take the closure
of this union:

LexicalMaterial ≡ (NStems∪NA f f ixes∪MorphBoundaries∪ . . .)∗ (2)

LexicalMaterial is then combined with the WFSA for the noun grammar – to which
the two rules [STEM] -> [Letter]+ and [AFFIX] -> [Letter]* were added – by
composition:

NOUNS0 ≡ LexicalMaterial ◦NounGrammar (3)

4.4 Replacement Rules

Equations (2) and (3) already define the basic input/output relation of the morphological
analyser. The next steps consists in formatting the input and output “tapes” of the WFST:

1. The input tape is restricted to letters. Some regular allomorphic processes like
Schwa-insertion, etc. may be triggered by juxtaposing certain stems and affixes.
Additionally, in compounds, word-internal noun stems must be written in lower-
case letters.

2. On the output tape, the last occurrence of an instance of the categories NSTEM and
NSUFFIX is mapped to the syntactic category NN. This formalises the right-hand
head rule in German. All other pure morphological categories and features are
deleted afterwards. Syntactic features like gender, number and case are not affected
by the deletions

10 In fact, the grammar compilation algorithm described in [14] works exactly in this way for the
symbols defined within the same grammar.

58 T. Hanneforth

Both tasks can be easily accomplished by using replacement rules. Listing 5 shows
some of the rules for formatting the input tape of the analyser.

[Lowercase] => [Uppercase] / ([<bos >] | [-][#]) _

[Uppercase] => [Lowercase] / [#] _

[NSTEM]|[NINFL]|[NSUFFIX]|[Boundary] -> []

Listing 5. Input formatting

The first two rules are parallel replacement rules, that is, every upper or lowercase
letter is replaced by its corresponding counterpart (the correspondence is defined by the
order of the subtypes for a given super type in the symbol specification). The first rule
says that every noun at the beginning of a word or after a word internal hyphen must be
capitalised. The second rule says that all other word-internal occurrences of noun stems
must be written in lowercase letters. The last rule is an unconditional replacement rule
which deletes all categories and boundary symbols from the input tape.11

The rules for formatting the output tape are defined in a similar fashion12 and are
shown in listing 6.

[NSTEM] -> [] / _ (([-]?) [#]) | [~]

[Letter]+ -> [] / [NSTEM] _ [NINFL]

[Boolean]|[NICSg]|[NICPl]|[StemType]|[-]|[_NINFL] -> []

[_NSTEM]|[_NSUFFIX] -> [_NN]

Listing 6. Output formatting

The first rule in listing 6 deletes all NSTEM-categories which are followed by a mor-
pheme boundary, while the second rule deletes all overt affixes occurring between
NSTEMs and NINFLs. The third rule deletes all remaining morphological categories and
features. Finally, the last rule rewrites the remaining instances of NSTEM and NSUFFIX
to the category marker NN.

The two sets of formatting rules are compiled with the load contextrules com-
mand into finite-state transducers FormatInput and FormatOut put, resp. Both are com-
bined with the outcome of eq. (3) by (weighted) composition:

NOUNS ≡ (NOUNS0 ◦FormatInput)−1◦FormatOut put (4)

Eq. (4) first applies FormatInput to NOUNS0. Afterwards, the resulting WFST is in-
verted (−1-operation) and then composed with FormatOut put.

4.5 Scripts and Functions

The commands for all the operations described above may be put in a fsm2-script, as
depicted in listing 7.

11 The rules modeling the allomorphic variation were omitted to keep the example simple.
12 A complete list of the the (weighted) replacement rules defined in fsm2 can be found in Table

5 in the appendix.

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 59

load symspec example
semiring tropical

load lexicon nlex
load lexicon ninfl
load lexicon nsuffix
regex "[Boundary]"
union 4
closure

load grammar ngram
compose

load contextrules format_input
compose
invert

load contextrules format_output
compose
optimize ilabel

lookup-file "words.txt" > results

Listing 7. Script constructing the WFST for nouns

The last command lookup-file takes a text file with a single word per line, looks
up the word in the WFST and writes the results to another file.

The script language of fsm2 also incorporates some simple functions (with or without
parameters) to structure complex scripts.

Figure 3 shows the WFST which is the result of the script in listing 7.13

As expected, this WFST is cyclic, allowing arbitrary long nominal compounds. Since
in the tropical semiring, the penalty scores reflecting the complexity of a word are added
along a path, a compound like Holzhaustürchens (wood house door dim.) is mapped to
a result string

Holz#Haus#Tür∼chen[NN Gender=neut Number=sg Case=gen] (5)

with weight 10 + 10 + 5 = 25.
Since morphological analysers typically segment an input word in every possible

way and may create a number of over-complex analyses, a subsequent n-best-path op-
eration can to used to choose the n-best analyses.

5 Conclusion and Further Directions of fsm2

The present article introduced fsm2, a efficient scripting language for creating and ma-
nipulating weighted finite-state automata over different semirings. Since the underlying
C++ framework FSM<2.0> has been developed for several years, every possible effort
was made to make the operations as fast and robust as possible.14 FSM<2.0> can handle
weighted automata with several million states and transitions, the size of the automata

13 Identity transitions of the form a : a were collapsed to a single a-transitions. The trivial 1-
weight of the tropical semiring (e.g., 0) has been removed from the transitions.

14 Both FSM<2.0> and fsm2 can be downloaded from www.ling.uni-potsdam.de/fsm

60 T. Hanneforth

Fig. 3. The morphological analyser for nouns as a WFST

is only limited by the available memory. The compilers for the symbolic formalisms –
lexicons, grammars and replacement rules – are also very efficient. The lexicon com-
piler compiles approximately 10,000 lines of a typical lexicon per second. Grammars

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 61

with several hundred rules are usually compiled in less than one second. The optimisa-
tion functions – ε-removal, determinisation, pushing and minimisation – are also very
efficient and take even for big automata only a couple of seconds in the typical case.

Symbol specifications can be precompiled to support symbol sets with several hun-
dred thousands symbols (useful for example for language-modeling tasks where every
word constitutes an alphabet symbol).

The list of semirings in Table 1 can be expanded by providing a new C++ semiring
class and registering it in fsm2.

Future versions of fsm2 will include:

– More semirings, for example the unification semiring ([16]) and the matrix semir-
ing ([15]).

– Commands supporting language modeling, for example creation of backoff ([17])
and interpolation language models ([18]), smoothing, class based language mod-
els, probabilistic taggers, etc.

– Commands for creating automata for pattern matching, for example, for suffix and
failure transition automata ([19]).

– Support for p-subsequentiality for all algebraic operations.
– A fast incremental lexicon compiler for star-free lexicons creating already min-

imised automata ([20]).
– A mechanism for using variables within categories.
– Support for multi-core CPUs. This requires reworking nearly all algebraic opera-

tions to take advantage from 4 or 8 core CPUs which are now ubiquitous.

Acknowledgments. The author would like to thank the Department of Computational
Linguistics at the University of Zurich, especially Manfred Klenner, Simon Clematide,
and Michael Hess. The first version of fsm2 evolved from an ERASMUS stay of the
author at the institute in autumn 2007.

References

1. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI, Stanford (2003)
2. Roark, B., Sproat, R.: Computational Approaches to Syntax and Morphology. Oxford Uni-

versity Press, Oxford (2007)
3. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoret-

ical Computer Science, vol. 5. Springer, Heidelberg (1986)
4. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. Journal of

Automata, Languages and Combinatorics 7(3), 321–350 (2002)
5. Geyken, A., Hanneforth, T.: TAGH: A complete morphology for german based on weighted

finite-state automata. In: Yli-Jyrä, A., Karttunen, L., Karhumäki, J. (eds.) FSMNLP 2005.
LNCS (LNAI), vol. 4002, pp. 55–66. Springer, Heidelberg (2006)

6. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Prentice Hall Series in Artificial
Intelligence. Prentice Hall, Upper Saddle River (2000)

7. Hanneforth, T.: Using ranked semirings for representing morphology automata. In: Mahlow,
C., Piotrowski, M. (eds.) Proceedings of SFCM. Springer, Heidelberg (to appear)

8. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H. (eds.) Hand-
book of Weighted Automata. Springer, Heidelberg (2009)

62 T. Hanneforth

9. Mohri, M.: Finite-state transducers in language and speech processing. Computational Lin-
guistics 23(2), 269–311 (1997)

10. Schiller, A., Teufel, S., Stöckert, C., Thielen, C.: Guidelines für das Tagging deutscher
Textcorpora mit STTS. Technical report, Institut fur maschinelle Sprachverarbeitung,
Stuttgart (1999)

11. Schiller, A.: German compound analysis with fsc. In: Yli-Jyrä, A., Karttunen, L., Karhumäki,
J. (eds.) FSMNLP 2005. LNCS (LNAI), vol. 4002, pp. 239–246. Springer, Heidelberg (2006)

12. Junczys-Dowmunt, M.: Influence of accurate compound noun splitting on bilingual vocabu-
lary extraction. In: Storrer, A., Geyken, A., Siebert, A., Würzner, K.M. (eds.) Selected Papers
from the 9th Conference on Natural Language Processing KONVENS 2008, Berlin, Mouton
de Gruyter, pp. 91–104. Mouton de Gruyter, Berlin (2008)

13. Lindén, K., Pirinen, T.: Weighted finite-state morphological analysis of Finnish compound-
ing with hfst-lexc. In: Jokinen, K., Bick, E. (eds.) NODALIDA 2009 Conference Proceed-
ings, pp. 89–95 (2009)

14. Mohri, M., Pereira, F.C.N.: Dynamic compilation of weighted context-free grammars. In:
Proceedings of ACL 1998, pp. 891–897 (1998)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Company,
Reading (1979)

16. Amtrup, J.W.: Efficient finite state unification morphology. In: COLING 2004: Proceedings
of the 20th international conference on Computational Linguistics, Morristown, NJ, USA,
vol. 453. Association for Computational Linguistics (2004)

17. Katz, S.M.: Estimation of probabilities from sparse data for the language model component
of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing 35(3),
400–401 (1987)

18. Jelinek, F.: Statistical Methods for Speech Recognition. In: Language, Speech and Commu-
nication. MIT Press, Cambridge (1997)

19. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Com-
munications of the Asscociation for Computing Machinery 18(6), 333–340 (1975)

20. Daciuk, J., Watson, B.W., Mihov, S., Watson, R.E.: Incremental construction of minimal
acyclic finite-state automata. Computational Linguistics 26(1), 3–16 (2000)

fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies 63

Appendix

Table 4. Built-in regular expression operators

Operator Type Meaning

! RE Prefix Complement
$ RE Prefix Contains operator
RE * Postfix Star closure
RE + Postfix Plus closure
RE ? Postfix Optionality
RE /1 Postfix First projection
RE /2 Postfix Second projection
RE /r Postfix Reversal
RE /b Postfix Best path
RE /pw Postfix Push weights towards initial state
RE /pl Postfix Push labels towards initial state
RE /e Postfix Remove epsilon transitions
RE /d Postfix Determinise
RE /m Postfix Minimise
RE Infix Operatorless concatenation
RE | RE Infix Disjunction
RE & RE Infix Intersection
RE - RE Infix Difference
RE : RE Infix Cross product
RE @ RE Infix Composition
RE /i TYPE Infix Ignore
RE /iff RE Infix Iff-suffix-then-prefix operator

Table 5. Replacement operators

Operator Meaning

alpha -> beta Obligatory replacement of an instance of alpha by an
instance of beta

alpha -> beta / gamma _ delta Obligatory replacement of an instance of alpha by an
instance of beta if alpha is preceded by an instance of
gamma and followed by an instance of delta

alpha -> left ... right Obligatory bracketing of alpha with left and right
alpha @-> beta Longest match replacement of alpha by beta
alpha @-> left ... right Longest match bracketing of alpha with left and

right
supertype1 => supertype2 Obligatory replacement of each direct subtype of

supertype1 with the corresponding direct subtype of
supertype2

Morphisto: Service-Oriented Open Source Morphology
for German

Andrea Zielinski1, Christian Simon2, and Tilman Wittl3

1 FIZ Karlsruhe, Germany
andrea.zielinksi@fiz-karlsruhe.de

2 Albert-Ludwigs-Universität Freiburg, Germany
simonc@informatik.uni-freiburg.de

3 Ruprecht-Karls-Universität Heidelberg, Germany
wittl@cl.uni-heidelberg.de

Abstract. This paper presents the current activities surrounding Morphisto, an
open source morphological analyzer/generator for German, based on the SMOR-
based SFST tools. Morphisto was designed as a user-friendly application within
the eHumanities project TextGrid. It comprises a minimal lexicon component that
works in tandem with SMOR and is now being extended within the ELEXIKO
project. Additional tools for the management of lexical data and services built on
top of the finite state transducer are also integrated as Web Services in the grid,
so that all resources can be shared readily among lexicographers, linguists, and
finite-state developers.

Keywords: Computational German Morphology, Finite State Transducer, Grid,
SFST.

1 Introduction

This paper aims at summarizing the main features of Morphisto, developed within
TextGrid [1], a grid-based infrastructure for scholarly text-processing. It follows the
goals and desiderata for a common research infrastructure for natural language process-
ing based on finite-state technology in terms of generality, extensibility and availability
[2]. As is well known, finite-state transducers are the first choice in computational mor-
phology: They are declarative, can be used bidirectionally for analysis and generation,
and are efficient in time and space. Our motivation for designing Morphisto was as
follows:

– There are legacy restrictions which prevent all (at least known to us) morphological
tools from open-source usage. This is especially true for the lexicon, which is the
essential component of a morphological system for sophisticated real-life applica-
tions.

– There is a need for an easy-to-use tool that provides a user-friendly interface, par-
ticularly for non-professional users. The burden to install, update or even compile
transducers on a local machine is not feasible in the context of eHumanities com-
puting.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 64–75, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Morphisto: Service-Oriented Open Source Morphology for German 65

– For many NLP-applications, the lexicon has to be adapted. Therefore, an integrated
data management program for easily extending the lexicon is essential.

– For many automatic annotation tasks, the quality of the morphological analysis is
crucial. Therefore, additional components (i.e., functions for disambiguation and
structural analysis) are integrated into the framework.

Outline: Initially, we will describe the general approach founded in SMOR and SFST
as well as how we empirically evaluated the tool using a blind test. Secondly, we will
present details about improving the Morphological Analyzer. In particular, we will show
a recent extension of Morphisto, namely a disambiguation function that can be used to
prune the number of analyses due to overgeneration. Thirdly, we will discuss how we
adopted Morphisto for usage within real or research applications: TextGrid and elexiko.
Within the elexiko project, the focus lies on establishing a gold-standard analysis for
German morphology. Within TextGrid, however, the basic challenge is on the technical
integration side.

2 Design of Morphisto

We based our work on the finite state toolkit SFST [3] that is distributed under an open-
source compatible license. It builds on previous work done in DMOR [4] and DeKo
[5] and comes with an elaborate set of rules for German inflection, compounding and
derivation, as well as a minimal lexicon of approximately 1,000 example entries. Our
aim was to cover the 30,000 most frequent words in the German language, and the
DeReWo list1 of lemmas, compiled from the DeReKo corpus2 provided by the IDS
Mannheim has been chosen as the training set.

The coverage of SMOR has been extended by (semi)automatic extraction of mor-
phological information from the free edition published by the “Digitale Bibliothek”3.

The word class statistics for the Morphisto lexicon is given in Table 1.
The construction of a large computational lexicon that can be freely distributed and

that covers a large part of Standard Modern-German is described in [6], where also the
standardized exchange format for the conversion to and from other finite state platforms
is shown together with a database scheme.

3 Baseline: Test Results and Statistics

For our training set, we used the DeReWo list of 30,000 most frequent German words.
The least frequent terms from this list have been seen <100 times in the COSMAS cor-
pus. The Morphisto transducer lexicon is minimal in the sense that only those entries
have been included that are needed to analyze our training set. The final (minimal) Mor-
phisto transducer lexicon comprises approximately 18,200 entries, all of them manually

1 http://www.ids-mannheim.de/kl/derewo/ DeReWo List and User Documentation
© IDS, Mannheim, 2007

2 http://www.ids-mannheim.de/kl/projekte/korpora/
3 Adelung – Grammatisch-kritisches Wörterbuch der Hochdeutschen Mundart, available from
http://www.zeno.org/Adelung-1793

http://www.ids-mannheim.de/kl/derewo/
http://www.ids-mannheim.de/kl/projekte/korpora/
http://www.zeno.org/Adelung-1793

66 A. Zielinski, C. Simon, and T. Wittl

Table 1. Frequency of Morphological Units in the Transducer Lexicons

Lexicon Morphisto

Basestems 17,339

– Nouns 7,833
– Proper Nouns 1,053
– Verb stems 4,300
– Adjectives 3,178
– Adverbs 781
– Closed Word Classes 190

Derivation Stems 67

Compound Stems 181

Prefix Stems 213

Suffix Stems (Derivation Rules) 410

checked. Some material from the IDS Fremdwörterbuch (dictionary of foreign words)
has been integrated into the transducer lexicon and rule set. Most word formation affixes
described in grammis4 are now included in our rule set. Compiling a transducer lexicon
with approx. 18,200 entries together with the grammar rules takes approximately 2:50 h
compiled on a dual-core Pentium D 3.4 Ghz with 8 GB RAM running a Linux 2.6.16
kernel for x86_64 architecture.

The transducer performed best on our training set, the DeReWo lemma list, with a
precision of almost 95%.

In our second test, we randomly selected subsets of 100 words in different frequency
ranges from the isowordlistde_DE file provided by the open-source spelling checker
ispell [7]. This list contains more than 225,833 German word forms unknown to Mor-
phisto, including complex word formations. The test results are shown in Table 2. In
this case, 159 out of 1,000 word forms (15.9%) could not be analyzed at all (’no re-
sult’). All in all, for 83.5% of the word forms a satisfactory analysis was provided by
the transducer Morphisto, which is comparable to the results presented in [8].

More detailed results are given in Table 3, which also shows the number of correct,
missing and spurious readings, e.g., the precision and recall rates.5 Only for 6 out of
1,000 word forms the analysis was not correct (false positives). For instance, the Ger-
man word ‘allernächster’ (very next), has been analyzed as NN-NN compound ‘All’
(universe) and ‘Ler’ (shade) (which is incorrect) followed by superlative of ‘nah’ (near)
(which is correct). As a result of the prefix ‘aller’ (of all) not being stored in the lexicon,
the correct analysis is missing.

Another source of error are ambiguous constituents which form part of a com-
pound. For example, the compound noun Rechtsempfinden (sense of justice) could
have been derived from the adjective modifier rechts (right) or the noun modifier Recht
(law/justice).

4 http://hypermedia.ids-mannheim.de/pls/public/gramwb.ansicht
5 Precision = Correct

Correct+Spurious ∗100% and Recall = Correct
Correct+Missing ∗100%.

http://hypermedia.ids-mannheim.de/pls/public/gramwb.ansicht

Morphisto: Service-Oriented Open Source Morphology for German 67

Table 2. Test Results on Unknown ispell Words

Unknown Total Not Rate
Words Analyzed Analyzed (%)

F0 1 0 100.00
F3 5 0 100.00
F5 23 1 95.67
F7 62 6 90.32
F9 179 25 86.03
F11 179 22 87.71
F13 179 9 94.97
F15 179 11 93.85
F17 179 24 86.59
F19 179 22 87.71
F21 179 31 82.68
F23 179 35 80.45
F25 179 39 78.21

∑ 1702 225 83.47 (Avg)

Table 3. Test Results on ispell

FC Correct Spurious Missing Precision (%) Recall (%)

F0 1 1 0 100.00 100.00
F16 160 8 17 95.24 90.40
F17 155 8 25 95.09 86.12
F18 147 10 22 93.63 82.12
F19 154 9 22 94.48 86.03
F20 151 16 28 90.42 84.36

∑ 768 52 114 94.81 (Avg) 88.17 (Avg)

4 Improving the Morphological Analyzer

4.1 Handling Overgeneration: Which Is the Best Candidate?

For many applications (annotation, spell checking, etc.), it is desirable to automatically
determine the most likely morphological analysis of a given word. Even without con-
sidering the context, humans often conceive only one reading for seemingly ambiguous
words.

Currently Morphisto produces about 5 analyses on average. While derivation
can, to some extent, be guided by grammatical rules, the process of compounding
is almost unrestricted in German morphology. The large number of analyses is of-
ten due to the following kinds of errors: different segmentations (e.g., ‘West-europa’

68 A. Zielinski, C. Simon, and T. Wittl

(Western Europe) vs. ‘Weste-ur-opa’ (vest-ur-grandpa)), ambiguous constituents (e.g.,
der/die ‘Chile-Kiefer’ (jaw/pine)) or different levels of decomposition (e.g., ‘Füller’
(pen) vs. ‘Füll-er’ (fill-er)).

Consider the example ‘Parkverbot’. Morphisto returns the following analyses:

(a) parken<V>Verbot<+NN> (to park + interdiction)
(b) Park<NN>Verbot<+NN> (park/garden + interdiction)

In our corpus, the combination <V>Verbot<+NN> is predominant. The distributional
properties of language reveal that certain constituents are more often combined with
one type of constituents than with others.

The following approaches have been followed for disambiguating morphological
analyses: Schmid [9] presents an algorithm based on head-lexicalised probabilistic
context-free grammars. The probabilities of the terminal symbols and production rules
are estimated from a training corpus and a given CFG, using the inside outside algo-
rithm, which is computationally very expensive. Geyken and Hanneforth [10] devel-
oped the tool TAGH based on weighted finite-state-automata. The probability of any
path through the transducer is the product of the probabilities associated with each edge
on the path, calculated as a cost function on each segmentation or derivation step. The
more analysis steps the lower the overall probability.

Our approach is based on a Markov model that assigns a probability distribution
over possible analyses in a postprocessing step, allowing for the ranking of analyses.
We computed a bigram model out of a set of 10,000 manually selected valid analyzed
words, randomly chosen from the elexiko word list. More precisely, our disambigua-
tion algorithm has learnt the lexical and conditional wordclass probabilities (bigrams)
from a manually annotated corpus of correct analyses, which contains information on
the segmentation, lemma and PoS. All hypotheses are then scored and ranked accord-
ing to the bigram model, using the Viterbi algorithm for calculating the probability of
constituent sequences.

In figure 1, we show the disambiguation of ‘Kochmütze’ (toque) based on a HMM.
From the following two analyses

(a) koch<V>Mütze<+NN> and
(b) Koch<NN>Mütze<+NN>

returned by Morphisto, our algorithm correctly chose the second analysis (b).
Our approach disambiguates analyses of two possible candidates with an average

precision of ≈ 64%, analyses of three candidates are disambiguated by an average pre-
cision of ≈ 48,8% and for those in four ways ambiguous, there was an average precision
of ≈ 55%.

We noticed two main types of disambiguation errors. The first problem is data sparse-
ness, which can be handled by smoothing. The second problem is due to the fact that
our model does not take into account the structuring of constituents. We are thinking
about extending our PoS-based model, so that the semantic relatedness between Head-
Modifier pairs can be expressed. This can be achieved by using semantic classes like
WordNet.

Morphisto: Service-Oriented Open Source Morphology for German 69

NN PREF

SUFF V

+NN

Pt(ti|ti−1) = C(ti−1,ti)
C(ti−1)

meister
winter
hilfs
koch

koch
ε
topf
mütze

aus

ung

koch
Pw(wi|ti) = C(ti,wi)

C(ti)bild

Fig. 1. Hidden Markov Model for disambiguation with transition probability Pt and lexical prob-
ability Pw

5 Applications

5.1 Integration into the TextGrid Workbench

TextGrid offers an Eclipse-based rich-client platform as development environment for
all text-centered scientific disciplines. Collaborative work is supported by the grid,
where resources (storage and computing power) can be shared easily among scien-
tists over the net. Additional functionality is provided through a series of web services,
among them Morphisto, that can be easily used from within the working environment.
In fact, the German analyzer Morphisto marks a cornerstone in TextGrid, as it addresses
linguists, philologists, and lexicographers alike. Moreover, the Morphisto web services
will be used in a number of different applications in TextGrid. A general overview on
the TextGrid architecture is shown in Figure 2.

5.2 Lemmatization and Morphological Analysis

Morphisto can be used to analyse in batch mode where the input is either plain text, a
tokenized word list, or XML-encoded text. The tool produces either a ‘simple’ anno-
tation or a TEI-style annotation. Moreover, single words can be analysed interactively.
For instance, when working on a file in an (XML-)editor, the user can double-click
on a word, and then the Morphisto New High German lemmatizer is called upon or,
alternatively, a look-up function on historic forms is performed.

5.3 Generating Wordforms for Elexiko

Within the German ELEXIKO project [11], a corpus-based lexicon project that aims
to build up rich lexicographic resources, lexicographers try to induce morpho-syntactic

70 A. Zielinski, C. Simon, and T. Wittl

Fig. 2. TextGrid Architecture

information (semi)automatically by using Morphisto. For instance, the elexiko lemma
list covering 300,000 word entries has to be enriched with the corresponding inflectional
paradigm. To this end, the paradigm of a complex lemma is, as far as possible, derived
from the corresponding head element. Finally, each entry will be reconfirmed by the
lexicographer and it will be then stored in the database.

5.4 Deriving the Structure of Complex Entries

Another application on top of Morphisto is the automatic generation of hierarchically
structured morphological trees. The algorithm delivers suggestions for the right/left-
branching structure of complex words, which are to be confirmed by the lexicographer
and added into the elexiko database. To this end, a user-interface for correcting false
analyses has been built.

Approaches to semi-automatic detection of internal word structures have been fol-
lowed in [12]. Here, a machine-learning approach with feature vectors for each right
and left context indicating possible segmentation boundaries is proposed. Marek [13]
uses a weighted finite-state approach with probabilities trained on a decomposed and
bracketed list of compounds from CELEX. The first system achieves an accuracy of ap-
prox. 87% correctly segmented words, while Marek’s system reports on a recognition
rate of 96%.

In contrast to the systems mentioned above, our task is simpler. It relies on the given
Morphisto analysis, such that problems related to linking elements/ alternations be-
tween constituents as well as inflections can be ignored.

Morphisto: Service-Oriented Open Source Morphology for German 71

Fig. 3. TextGrid XML-Editor with Integrated Lemmatizer Function

Our method works bottom-up and computes the tree structure in two main steps.
In the first step, the Morphisto analysis is split up and the routine tries to build the
tree structure by attaching all suffixes and prefixes recursively from the inside out. The
second step starts when there are no more nodes to be added. To complete the tree
structure, the routine looks at which constituents can be put together, by looking up the
word in the elexiko lemma-list. If there is more than one possible way for creating a new
node, the constituent that occurs more often in the list is chosen. This step is repeated
until there are just two nodes left. These last two nodes are simply connected to the root
node.

1. 2.

NN

Eisen

NN

Bahn

+NN

NN

Gesell

Suff

schaft

NN

NN

Eisen

NN

Bahn

+NN

NN

Gesell

Suff

schaft

Fig. 4. First and second step of the routine (Eisen-Bahn occurs more often than Bahn-Gesellschaft
(zero times))

72 A. Zielinski, C. Simon, and T. Wittl

In [14] the test results are presented in more detail. We want to show that routine in
an example in Figure 4.

Eisen<NN>Bahn<NN>Gesell<NN>schaft<SUFF><+NN>

6 Technical Aspects: Morphological Analysis in the Grid

From the very beginning, Morphisto was meant to be an integral part of the philologi-
cal toolchain provided by TextGrid for everyday use in eHumanities tasks. However, in
compliance with the grid philosophy, it was not supposed to be shipped with the philo-
logical workbench TextGridLab as a piece of software that runs locally on the work-
station consuming precious memory space. Instead, it was meant to be a web service
running on a geographically distant grid server, which is accessible from within the
philological working environment through a graphical user interface. And this proce-
dure has payed off: All SFST compact format based automatons used by Morphisto
in conjunction with TextGrid have a total size of ca. 150 MB (24 MB alone for the
standard DeReWo-based MORPHISTO automaton as distributed open-source over the
Internet). Furthermore, these automatons can be read and processed by the SFST tools
only (mainly fst-infl2, fst-mor), which would have required platform-dependent bina-
ries of the SFST tools for every platform, plus a Java binding. But by implementing a
document-style web service complying with the WSDL 1.16 standard using Python 2.4
in conjunction with ZSI 2.0 and SOAPpy7, we could provide easy, platform-independent
access to Morphisto on a high-performance Linux machine to all clients capable of
WSDL web services. That way, we could easily integrate Morphisto into the Eclipse
rich-client application, TextGridLab, by implementing an Eclipse plugin that uses the
Java version of Axis28 to access the Morphisto Web Service.

But on the server side we were faced with obstacles grounded especially in perfor-
mance and concurrency. We had to make it possible for the web services to take multiple
requests for single-word or batch lemmatization/morphological analysis and at the same
time providing a quick response. Depending on the input type and the desired configu-
ration, we follow two different strategies: calling the fst-infl2 command from the SFST
toolkit or calling the lemmatizer daemon.

The first strategy mainly applies to large, pre-tokenized input files. The SFST com-
mand fst-infl2 reads a specified automaton in compact format, and an input file with
German word tokens runs the tokens through the automaton and produces an output file
with the results. Although this strategy requires a certain amount of time for reading the
automaton and post-processing the output, it is still the fastest way for input files with
at least 1,000 word tokens without any special configuration options. There are certain
configuration options (e.g., “Use Guesser for Unknown Wordforms” or “Use Fuzzy

6 W3C: Web Services Description Language (WSDL) 1.1.W3C Note 15 March 2001, available
from http://www.w3.org/TR/wsdl

7 Zolera SOAP Infrastructure (ZSI) and SOAPpy are available from the Python Web Services
Project at http://pywebsvcs.sourceforge.net

8 Axis2/Java is available from the The Apache Software Foundation at http://ws.apache.
org/axis2

http://www.w3.org/TR/wsdl
http://pywebsvcs.sourceforge.net
http://ws.apache.org/axis2
http://ws.apache.org/axis2

Morphisto: Service-Oriented Open Source Morphology for German 73

Fig. 5. Configuration option of Morphisto in TextGrid

Search”, cf. Figure 5 for available configuration options of the Morphisto web service)
that require the web service to interact with the analysis process: If the first processing
of the wordform yields no result, the input will be routed through a different automaton.
That procedure is not possible with fst-infl2 in its original form. However, we managed
to patch fst-infl2, such that it is possible for the Python web-service to “chat” with fst-
infl2 via the standard input and standard output on UNIX machines. This method has
been useful for processing TEI input files and annotating them with Morphisto output.

For small input files, it is not efficient to load an automaton into memory and pro-
cess merely one single word form. For theses situations, we have devised a daemon that
communicates via a UNIX socket port on the server with the web service. The advan-
tage of this second strategy is that the time-consuming task of reading automatons from
a file is done only once – at startup of the daemon – and can be avoided at each request.
However, this method has proven to be not all efficient for processing large input files.
This may be mainly due to two reasons: Firstly, the inter-process communication be-
tween daemon and web-services uses the TCP-protocol9 for flow control. In contrast to
UDP10, which was tested in prior experiments, it has proven to work reliably. Secondly,
the daemon is written in Python and depends on Toni Arnold’s Python binding for the
C++ based SFST toolkit11 for reading automatons and applying the queried wordforms

9 RFC 793: Transmission Control Protocol (TCP), available from http://tools.ietf.org/
html/rfc793

10 RFC 768: User Datagram Protocol (UDP), available from http://tools.ietf.org/html/
rfc768

11 Toni Arnold’s Python binding for SFST is available from https://gna.org/projects/
pysfst

http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
https://gna.org/projects/pysfst
https://gna.org/projects/pysfst

74 A. Zielinski, C. Simon, and T. Wittl

Fig. 6. Integration of Morphisto into TextGrid

on them. Maybe, the effort of developing a C++-based solution in the first place would
have payed off in the long run in terms of performance and elegance. And yet, also in
this case Python allowed us to come up with a solidly working solution in very little
development time. Especially the asyncronous chat module has solved our concurrency
issues we used to experience earlier12.

For a schematic of how Morphisto is integrated in TextGrid, please see Figure 6.

7 Summary and Outlook

This paper presented the design of Morphisto as an integrated web service within the
eHumanities platform TextGrid as well as recent developments in terms of specific ap-
plications of Morphisto. The development of Morphisto continues as an open-source
project hosted at Google Code13. Everybody with a non-commercial interest in Mor-
phisto is welcome to participate and contribute. At present, the ELEXIKO project
makes the effort of manually enhancing the Morphisto lexicon and slowly building up
a collection of gold standard analyses for complex German wordforms. The integration
of the disambiguation function into Morphisto by use of a weighted finite state trans-
ducer is currently under development. Moreover, we plan to use semantic criteria for
disambiguation based on WordNet classes.
12 Documentation for asynchat is available in the Python Standard Library Reference at http://

www.python.org/doc/2.5.4/lib/lib.html
13 http://code.google.com/p/morphisto

http://www.python.org/doc/2.5.4/lib/lib.html
http://www.python.org/doc/2.5.4/lib/lib.html
http://code.google.com/p/morphisto

Morphisto: Service-Oriented Open Source Morphology for German 75

References

1. Gietz, T., et al.: TextGrid and eHumanities. In: Sloot, P. (ed.) IEEE Conference on e-Science
and Grid Computing, Amsterdam, December 4-6, p. 133. IEEE Computer Soceity, Los
Alamitos (2006)

2. Yli-Jyrä, A.: Toward a Widely Usable Finite-State Morphology Workbench for Less Studied
Languages – Part I: Desiderata. Nordic Journal of African Studies 14(4), 479–491

3. Schmid, H.: A Programming Language for Finite State Transducers. In: Yli-Jyrä, A., Kart-
tunen, L., Karhumäki, J. (eds.) FSMNLP 2005. LNCS (LNAI), vol. 4002, pp. 308–309.
Springer, Heidelberg (2006)

4. Schiller, A.: Deutsche Flexions- und Kompositionsmorphologie mit PC-KIMMO. In:
Hausser, R. (ed.) Linguistische Verifikation. Dokumentation zur ersten Morpholympics 1994
(1996)

5. Heid, U., Säuberlich, B., Fitschen, A.: Using Descriptive Generalisations in the Acquisition
of Lexical Data for Word Formation. In: Proceedings of the 3rd Conference on Language
Resources and Evaluation, Las Palmas de Gran Canaria, Spain, vol. IV, pp. 86–92 (2002)

6. Zielinski, A., Simon, C.: Morphisto: An Open-Source Morphological Analyzer for German.
In: Proceedings of the FSMNLP 2008, pp. 177–184 (2008)

7. Jacke, B.: Deutsches Wörterbuch für Ispell, Myspell und Hunspell nach den neuen
Rechtschreibregeln (2006), http://www.j3e.de/ispell/igerman98/

8. Schmid, H., Fitschen, A., Heid, U.: SMOR: A German Computational Morphology Covering
Derivation, Composition, and Inflection. In: Proceedings of the IVth International Confer-
ence on Language Resources and Evaluation (LREC 2004), Lisbon, Portugal (2004)

9. Schmid, H.: Disambiguation of Morphological Structure Using a PCFG. In: Proceedings of
the Human Language Technology Conference and the Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP 2005), Vancouver, Canada (2005)

10. Geyken, A., Hanneforth, T.: TAGH: A Complete Morphology for German based on Weighted
Finite State Automata. In: Yli-Jyrä, A., Karttunen, L., Karhumäki, J. (eds.) FSMNLP 2005.
LNCS (LNAI), vol. 4002, pp. 55–66. Springer, Heidelberg (2006)

11. Klosa, A., Schnörch, U., Storjohann, P.: ELEXIKO: Lexical and Lexicological, Corpus-based
Hypertext Information System at the Institut für deutsche Sprache, Mannheim. In: Proceed-
ings of the 12th Euralex International Congress (2006)

12. Daelemans, W., van den Bosch, A.: Memory-Based Language Processing. Cambridge Uni-
versity Press, Cambridge (2005)

13. Marek, T.: Analysis of German Compounds Using Weighted Finite State Transducers, Bach-
elor thesis, University of Tübingen (2006)

14. Wittl, T.: German Morphological Disambiguator based on statistical data. In: Proceedings of
TaCoS 2009 (forthcoming, 2009)

http://www.j3e.de/ispell/igerman98/

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 76–87, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Morphosyntactic and Semantic Analysis of Text:
The MPRO Tagging Procedure

Heinz Dieter Maas, Christoph Rösener, and Axel Theofilidis

IAI (Institute for Applied Information Science)
Martin-Luther-Str. 14

D-66123 Saarbrücken, Germany
{dieter,chrisr,axel}@iai.uni-sb.de

Abstract. The MPRO system is a package of programs developed by the Insti-
tute for Applied Information Science (IAI) to perform morphological, syntactic
and semantic analysis for several languages. Especially for German the MPRO
system is a very efficient and robust language software tool. The linguistic
analysis within the system is split up into several sub-tasks. In this paper we
will present the general MPRO tagging procedure and its sub-tasks in some de-
tail. We will take a closer look at the single program modules and their particu-
lar output. The function of each module is described in detail together with the
possible parameters of the features given in the particular output. Furthermore
the description of each module is enriched with manifold practical examples to
demonstrate the functionality of the system. Finally some possible areas of ap-
plication of the MPRO software package are stated.

1 Overview

MPRO is a program package developed by the IAI [7] which is able to perform mor-
phological analysis for a dozen languages, mainly German, English, French and Span-
ish [8]. The analysis results can be the basis for parsing, spell checking and grammar
checking, tagging, indexing, abstracting and other text mining routines.

As a major improvement of MPRO during the last four years, a large-coverage
lemma dictionary has been set up that is looked up during morphological analysis
complementary to the morpheme dictionary. On this basis, accuracy of morphological
analysis has been improved in different respects, as we will show.

The MPRO process is split up into the following sub-tasks:

• Module LESEN: Reading and normalization of the input text, identification of
sentence boundaries and recognition of character strings which are presumed to be
word forms. These strings are submitted to different analysis modules including
morphological analysis. LESEN needs a lexical data-base.

• Module LEXNP: Addition of information with respect to possible fixed phrases
(NPs). LEXNP uses a special dictionary (available only for German).

• KOMPLETT: This program treats a very special and rather frequent German phe-
nomenon, namely the deletion of a head or a non-head in a coordination of com-
pound nouns. KOMPLETT tries to reconstruct the deleted element.

 Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging Procedure 77

• KORRIGIERE: If LESEN cannot analyse a character string, it will be marked as an
unknown word. KORRIGIERE determines whether such a string is possibly a mis-
spelled word and tries to propose a spelling correction. The program needs a list of
word forms and the lexical data-base used in LESEN.

All these modules are programmed in C and can run under UNIX and Windows. We
will present below the single modules and their output in some detail.

2 The MPRO Tagging Procedure

2.1 The Module LESEN

LESEN expects 'normal' text, i.e., an ASCII file in plain text or HTML format. When
treating an HTML text, LESEN uses a file referred to as “sgmlmarks” which lists the
so-called “internal tags”, e.g., <i>, or <u>. These tags relate to words in some
way and do not interrupt a sentence, whereas unknown tags are considered as “exter-
nal” and mark the beginning or the end of a sentence. Special tags listed in
“sgmlmarks” may be annotated with specific instructions regarding the processing of
the tag content. For instance, the instruction oneword: can be used to treat the tag
content as a single word unit. In addition, LESEN knows about all kinds of entities for
the transliteration of special characters (like ü for ü or for a non-
breaking space) in texts of both HTML and plain text format.

After the text is “purified”, i.e., tags are given an internal representation and spe-
cial characters are transliterated, we use blanks and tabs for the segmentation of char-
acter strings. If a string contains punctuation marks, the segmentation continues. All
resulting segments and combinations thereof might be “words”. Which particular
combinations should be tested, is determined on the basis of pattern descriptions con-
tained in a file called “structurerules”. This file also comprises patterns for the recog-
nition and handling of special objects like e-mail addresses or dates.

For further analysis, a function (“lookup_lex”) is called which takes as input a
string (and a pointer to all existing lexical resources for the language treated) and
returns either “unknown” or a set of structures which describe the linguistic properties
of the string. This function is used at different places in LESEN. For instance, we may
be forced at some point in the analysis procedure to split an unknown word and to
analyse the pieces in order to find out that there is a blank missing between two
words, for instance, when a digit and a unit are written with no blank as in 50mph.

The function lookup_lex fulfils the following subtasks:

• Find a word in the cache storage (used for efficient performance). If found, break.
• Find a word in the word form dictionary morph.fph (covering closed class

elements, e.g., articles or prepositions, as well as fixed phrases)
• Find a word in the user dictionary user.fph
• Identify a word by means of morphological analysis
• Put the result into the cache

With regard to the special dictionary morph.fph there exists a function which identi-
fies sequences of words as (non-inflecting) fixed expressions. Such sequences are
considered as one word, e.g., all day long and for example in English, afin que and au
bout de in French, or ab sofort and ab und zu in German.

78 H.D. Maas, C. Rösener, and A. Theofilidis

The information resulting from the analysis steps sketched above is represented as
a set of feature bundles (FBs), where an FB is a sequence of attribute-value pairs. If
the set contains more than one FB, the word is ambiguous as is illustrated by the fol-
lowing set of partial FBs for English sample:

{ori=sample,snr=1,wnra=1,wnrr=1,pctr=no,pctl=no,last=ye
s,gra=small,c=verb,vtyp=inf,lu=sample,w=1,cs=v,ds=sampl
e,ls=sample,s=nil,ts=sample,t=sample}
{ori=sample,snr=1,wnra=1,wnrr=1,pctr=no,pctl=no,last=ye
s,gra=small,c=verb,vtyp=fiv,tns=pres,lu=sample,w=1,cs=v
,ds=sample,ls=sample,s=nil,ts=sample,t=sample}
{ori=sample,snr=1,wnra=1,wnrr=1,pctr=no,pctl=no,last=ye
s,gra=small,c=noun,nb=sg,case=nom;acc,s=act,lu=sample,w
=1,cs=n,ds=sample,ls=sample,ts=sample,t=sample,ehead={c
ase=nom;acc,nb=sg}}

The following features which reflect textual, contextual or graphical properties are
always present in an FB:

• ori: The word form of the text, as it was submitted to lookup_lex or a concatenation
of word forms if this entity was recognized as a fixed phrase.

• snr: Sentence number.
• wnra: Absolute word number (numbering throughout the text).
• wnrr: Relative word number (numbering starting anew for each sentence).
• pctr: Value ‘yes’, if the next unit is a punctuation mark.
• pctl: Value ‘yes’, if the preceding unit is a punctuation mark.
• last: Marks the last word of a sentence, if its value is ‘yes’ (otherwise ‘no’).
• gra: Shows the graphics of the word, e.g., only lower case letters; one upper case

letter followed by lower case letters; only upper case letters; only digits; letters and
digits mixed; other characters.

• hyphen: Indicates whether the word contains a hyphen.

Other features are assigned on the basis of lexicon lookup and morphological
analysis.

3 Morphological Analysis

“Morphological analysis” is a program within LESEN which contains general mor-
phological rules for the different languages in the form of subroutines. All kinds of
word formation patterns (compounding, derivation, prefixation, inflection) are cov-
ered. A large number of operations are language independent, but there also exist
rules explicitly designed for specific languages.

3.1 The Lexical Database lexdb

Morphological analysis co-operates with different types of lexica which are main-
tained in a larger lexical database called lexdb. On the one hand, this lexical database
includes minor types of entries such as those for inflectional and derivational endings
or prefixes. The majority of entries, however, is of one of the following two major
types:

 Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging Procedure 79

• simple lexeme encoding the morphological characteristics of one or more stem
morphemes; among the entries of this type are also a large quantity of toponyms
and other names

• complex lexeme representing a word resulting from word formation processes such
as compounding, derivation, or prefixation, and being characterized by its internal
morphological structure as is delivered by morphological analysis based on LESEN

The German lexdb currently contains more than 736,000 entries, among which are
almost 120,000 entries representing simple lexemes, i.e., morphological entries. All
entries are represented as feature bundles as is illustrated by the following (partially
depicted) entries for the German nouns Apfel and Baum ‘apple’ and ‘tree’.

{string=apfel,c=n,g=m,lng=germ,s=thing&ed,m={stem=apfel
,f=fs−no,a={ig=na},fuge=0};{stem=äpfel,f=no−f0n,n={chen
=dim},fuge=0},mstru={g=m,ds=apfel,t=apfel,ss=thing&ed},
wf={form=Apfel;Apfels;Äpfel;Äpfeln}}
{string=baum,c=n,g=m,lng=germ,s=tree,m={stem=baum,f=fs_
es_e−no,fuge=0};{stem=bäum,f=no−fe,n={chen=dim,ge0=set}
,fuge=e},mstru={g=m,ds=baum,t=baum,ss=tree},wf={form=Ba
um;Baumes;Baums;Bäume;Bäumen}}

As opposed to the subsequently shown entries, the above entries are of type simple
lexeme. As their main characteristic, they comprise the feature m={…} which en-
codes the morphological properties of the two allomorphic stems apfel and äpfel resp.
baum and bäum (cf. below for more details).

The following entries for the German compound Apfelbaum ‘apple tree’ and the
derived (diminutive) noun Äpfelchen ‘small apple’, on the other hand, are typical
examples of entries of type complex lexeme. Representing a compound respectively a
derivation, they do not comprise the feature m={…}, whereas the feature
mstru={…} reveals their complex morphological structure:

{string=apfelbaum,c=n,g=m,lng=germ,mstru={g=m,gs=m#m,ds
=apfel#baum,t=apfel#baum,ss=thing&ed#tree},wf={form=Apf
elbäume;Apfelbäumen;Apfelbaum;Apfelbaums}}
{string=äpfelchen,c=n,g=n,lng=germ,mstru={g=n,ds=apfel~
chen,t=äpfelchen,ss=thing&ed},wf={form=Äpfelchen}}

The lexical database lexdb is elaborated and maintained by lexicographers, but it is
not directly accessed during the morphological analysis procedure. For runtime use, it
is instead transformed into two distinct dictionaries: the morphological dictionary
morpho and the lemma dictionary lemwb.

3.2 The Dictionaries morpho and lemwb

The dictionary morpho is a transformation of the set of simple lexemes. Only mor-
phological information is transferred into morpho. Thus, for instance the entry for
Apfel shown above will be transformed into the following two entries to be used at
runtime:

80 H.D. Maas, C. Rösener, and A. Theofilidis

{string=apfel,lu=apfel,c=n,g=m,lng=germ,s=thing&ed,f=fs
−no,a={ig=na},fuge=0}
{string=äpfel,lu=apfel,c=n,g=m,lng=germ,s=thing&ed,f=no
−f0n,n={chen=dim},fuge=0}

Each such entry describes how the respective stem (now shown in the feature
string) behaves morphologically, i.e., we find information about inflectional para-

digms (e.g., f=fs−no or f=no−f0n), possible derivations (e.g., a={ig=na}
producing the adjective apfelig or n={chen=dim} producing the diminutive noun
Äpfelchen) and binding elements (e.g., fuge=0 used for compounding as in Apfel-
baum). Beyond these basic types of features you also find indications on the use of
prefixes, morphological negation elements etc.

To reduce overgeneration we can also prohibit prefixes or certain nonsensical
compounds by means of special features. Moreover, many entries have etymological
and semantic information which, however, is only partly used in analysis.

The dictionary lemwb, on the other hand, is a transformation of both simple and
complex lexemes. All information valid at lexeme (not morpheme) level is transferred
into lemwb entries.

{string=apfel,c=n,g=m,lng=germ,s=thing&ed,mstru={g=m,ds
=apfel,t=apfel,ss=thing&ed}}
{string=apfelbaum,c=n,g=m,lng=germ,mstru={g=m,gs=m#m,ds
=apfel#baum,t=apfel#baum,ss=thing&ed#tree}}

Note that information concerning inflection or other morphological features need not
be represented in lemwb entries since, during morphological analysis, this informa-
tion is propagated from the respective head element, be it a stem as, for instance,
baum in Apfelbaum, or a derivational ending as, for instance –chen in Äpfelchen.

The benefit obtained from the lemwb dictionary will become apparent when we
consider the morphological analysis procedure in some more detail.

3.3 Morphological Analysis Procedure

An input string is analyzed by a sequence of operations:

• Segmentation of the input string. This results in a coherent graph with one start and
one end node. The arcs are marked by strings which were found in the morphologi-
cal dictionary. The segmentation procedure uses a list of “wrong” pairs of strings
which helps to avoid segmentations that will never produce a result, e.g.,

...
abs|tand
abt|ei
abt|eil
...

• Lookup of the strings in the morpho dictionary, assignment of the information
found.

• Application of the analysis rules, e.g., for derivation, compounding, inflection.

 Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging Procedure 81

Analysis rules are functions with one, two or three arguments. They check the entry
conditions and produce one intermediate result or nothing. As the input is normally
ambiguous, all rules are tentatively applied to all sub-paths of the graph with one, two
or three elements. A positive result is added to the graph, and therefore the new object
will be treated as well in further processing.

For instance, by application of a general compounding rule taking two stem mor-
phemes as arguments we obtain the following intermediate result from analysing the
German compound noun form "Apfelbäume":

...
<0>Apfelbäum−n<9>:{c=n,g=m,lng=germ,s=tree,lu=apfelbaum
,f=no-fe,fuge=e,w=2,cs=n#n,gs=m#m,t=
apfel#baum,ts=apfel#baum,ds=apfel#baum,ls=
apfel#baum,lngs=germ#germ,lexfound=yes,zf=
Apfelbaum,ss=thing&ed#tree,lexical={lu=apfelbaum,c=n}}
...

Such intermediate results of morphological analysis are not immediately inserted into
the graph, but are first looked up in the lemwb dictionary. If you consider the feature
bundle for the partial analysis of "Apfelbäume", you will see the feature 'lex-
found=yes' as a trace of this intermediate result being successfully looked up in
lemwb.

Successful lookup in the lemwb dictionary may have several effects contributing
to an increased accuracy of morphological analysis:

• Morphological features that are propagated by default in analysis rules can be
overwritten by encoding additional information in lemwb entries in the feature
m2={}. For instance, restrictions on compounding elements (feature fuge) can be
relaxed at compound level. Whereas the noun Hund requires –e or –s as
compounding element, the compound Schäferhund also allows the null-element:

{string=schäferhund,c=n,g=m,lng=germ,m2={fuge=0;e;s},ms
tru={g=m,gs=m#m,ds=schaf~er#hund,t=schäfer#hund,ss=agen
t&isto#animal}}

• Furthermore, a whole range of second order morphological phenomena can only be
effectively handled at the level of lemwb entries. To give just two examples:

Unless the adjective zurechnungsfähig is lexicalized, the negated form
unzurechnungsfähig can only be handled at the level of compounding, since there
is no word like Unzurechnung; thus the lemwb entry with the respective m2-
feature:

{string=zurechnungsfähig,c=a,lng=germ,m2={neg=un},mstru
={gs=f#u,ds=zu_$rechnen~ung#fähig,t=zurechnung#fähig,ss
=ation#a}}

82 H.D. Maas, C. Rösener, and A. Theofilidis

Unless the verb menschlichen is lexicalized, the prefixations entmenschlichen and
vermenschlichen can only be handled at the level of derivation; thus the lemwb en-
try for the adjective menschlich with the respective m2-feature:

{string=menschlich,c=a,lng=germ,m2={v={ent_0=remove,ver
_0=turn},mstru={ds=mensch~lich,t=menschlich,ss=agent}

• Finally, entries in the lemwb dictionary may be marked as nonsensical (non-
sense=yes) such that respective analysis results will be deleted when matching.
For instance, the analysis corresponding to the following entry which represents a
nonsensical compound analysis of Emailleurin will be discarded to the benefit of
obtaining only the analysis corresponding to the derivational analysis of Email-
leurin shown next:

{string=emailleurin,c=n,g=m,lng=germ,syn={s=mat},mstru=
{g=m,gs=f#m,ds=emaille#urin,t=emaille#urin,ss=mat#mat},
nonsense=yes}
{string=emailleurin,c=n,g=f,lng=fr,syn={s=agent&isto},m
stru={g=f,ds=emaille~eur~in,t=emailleurin,ss=agent&isto
}}

When the rule system can no longer produce results, the graph is checked for arcs
starting with the in-node and ending with the out-node. All these arcs contain the final
result(s) for the string analyzed. If there is no such result, the morphological analysis
of the input string failed.

As mentioned, the results of morphological analysis are represented as a set of fea-
ture bundles, as shown above. In what follows we list a few features produced by
morphological analysis:

Features for Nouns

• Attribute c: Category. In this case the value is noun.
• Attribute g: Gender. Values are m (masculine), f (feminine) and n (neuter).
• Attribute nb: Number. Values are sg and plu.
• Attribute case: Case. Values are nom, gen, dat and acc.

If values are ambiguous, they may be combined as a disjunction. In fact, the values
depend partly on the language, e.g., Russian has more cases, French fewer genders,
etc.

Features for Adjectives

• Attribute c: Category. In this case the value is adj.
• Attribute deg: Degree. Values are base, comp and sup.

Depending on the language, case, number, gender, and inflectional type (strong vs.
weak inflection, for German) will be encoded in respective features. German adjec-
tives with null-ending are considered adverbs (they can function as adverbs or as
predicatives).

 Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging Procedure 83

Features for Verbs

• Attribute c: Category. In this case the value is verb.
• Attribute vtyp: Subtype. Values are fiv (finite), inf (infinitive), ptc1 (present parti-

ciple), ptc2 (past participle), izu (infinitive with infixed zu, for German), impera-
tive , ger (gerund) and others, depending on the language.

• Attribute tns: Tense. Values may be pres, past, imp, pret, fut, depending on the
language.

• Attribute nb: Number (as for nouns).
• Attribute per: Person. Values are 1, 2, and 3.
• Attribute mode: Mood. Values are ind (indicative), subj (subjunctive), etc.

Category-Independent Features. There exist some category-independent features
which we introduce here with reference to the partially depicted feature structure
obtained by analysis of the word Polyvinylchloride:

{ori=Polyvinylchloride,lu=polyvinylchlorid,c=noun,nb=pl
u,case=nom;gen;acc,g=n,s=mat,lng=neolat,w=3,ts=poly#vin
yl#chloride,t=poly#vinyl#chlorid,cs=a#n#n,gs=u#n#n,ds=p
oly#vinyl#chlor~id,ls=poly#vinyl#chlor,lngs=lat#neolat#
gr,ss=a#mat#mat}

• The attribute lu shows the citation form of the word (lexical unit); it serves as a
lookup key to the lemwb dictionary

• The attribute s describes the semantics of the compound word as a whole. The value
mat means, that Polyvinylchlorid is a (non-edible) material.

• The attribute lng gives etymological information.
• The attribute w describes how many elements constitute a word (in our case 3). If w

> 1, the word is a compound.

A group of features describes the word structure and its semantics. Parts characteriz-
ing the elements of a compound are separated by # in the feature value:

• The attributes ts and t show the surface segmentation of the word and the corre-
sponding lexical unit elements.

• The attribute cs indicates the categories per element of a word; in our example, a
for adjective and n for noun.

• The attribute gs indicates the gender per element of a word; in our example, u for
unspecified and n for neuter.

• The attribute ds indicates the derivational structure per element of a word; in our
example, the element chlorid is derived from the root form chlor; derivational ele-
ments are attached by ~.

• The attribute ls indicates the root words of the elements of a word
• The attribute lngs indicates the etymology of the elements of a word
• The attribute ss indicates the semantics of the elements of a word

If desired, morphological analysis can return a feature called lexical which keeps
track of partial compounds that have matched during lookup in the lemwb dictionary.
On this basis it can be revealed that Polyvinylchloride is, in fact, ambiguous.

84 H.D. Maas, C. Rösener, and A. Theofilidis

• 1st result: lexical={lu=polyvinylchlorid,c=n};{lu=vinylchlorid,c=n}
• 2nd result: lexical={lu=polyvinylchlorid,c=n};{lu=polyvinyl,c=n}

3.4 The Module LEXNP

LEXNP is totally language-independent. It uses only information found in a special
dictionary representing multi-word structures. The program tries to find a piece of text
matching a dictionary entry which describes, e.g., a noun phrase. As a result, all the
FBs matched receive additional information. Existing features cannot be overwritten.

This procedure can be used for preparing the basis of checking capitalization
within multi-word units, e.g., das Rote Meer ‘Red Sea’ is correct in German, although
Rote is an adjective and should be written with a lower case letter. Inversely we could
indicate that in das rote Meer the word rote should be capitalized.

3.5 The Module KOMPLETT

KOMPLETT is used for the analysis of German texts only. In German we frequently
find the phenomenon of deletion of pieces of compounds, if they are co-ordinated.
Graphically the missing element is represented by a hyphen. Examples:

• Firmen- und Privatkapital (Firmenkapital)
• Unternehmensplanung und -steuerung (Unternehmenssteuerung)
• raum- und zeitbezogene, raum- und zeitbezogen (raumbezogen)
• Vor- und Nachlaufachse (Vorlaufachse)
• auf- und zugeklappte (aufgeklappte)

If a word ends with a hyphen, the program checks whether the next word is a coordi-
nator and examines the following word. If it starts with a hyphen, on the other hand,
the text to its left hand side is checked. If the incomplete word in question can be
completed, the result is stored in its FB and the two co-ordinated words receive a
feature showing that they form a co-ordinated pair. The incomplete word receives a
new lu-feature, e.g., lu=firmen- is changed to lu=firmenkapital. The
word structure (the features t, ts, ds etc.) is also changed accordingly. If a word can-
not be completed, this may lead to an error message in a grammar checker.

The conditions under which the completion process is performed is in fact much
too restrictive. If the text is Firmen- und auch Privatkapital, we will not get a result
for Firmen-. Moreover, the module does not use the lexical database and no morpho-
logical analysis checks the results. Therefore it may happen that the reconstructed
word is wrong.

3.6 The Module KORRIGIERE

KORRIGIERE is designed for computing proposals for wrongly spelled words. It
uses a table called wordvar, a huge list of correct words (called wfkorr, more than
one million entries) and the whole morphology procedure with the dictionaries de-
rived from lexdb.

 Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging Procedure 85

KORRIGIERE starts to work if it finds a word with the feature state=
unknown. However, if such a word is preceded by a word marked as a title or a first
name, it is not treated, because it is probably a family name. If a piece of text between
hyphens or citation marks contains unknown words, a check is done to determine
whether this might be a citation in a foreign language. If this seems to be true, all the
words of this unit will be marked by the feature foreign=yes, and consequently
the procedure will not attempt to correct such words.

Below we show by means of an example, how the correction process works. The
word in question is the misspelled Kernpyhsik.

• Check if the word can be found in the cache storage for names or already treated
words. If so, break.

• We use the table wordvar for producing variants of the word:
Kernpyhsik (i.e., the original)
Kermpyhsik
Kernpühsik
Kernpyhsirk
Kempyhsik
Kernpyhsyk
Kernpyhsiek

• All these words (except the first one, the original) are looked up in the word list
wfkorr. Sometimes one of them is found, a proposal is therefore identified and the
correction process can stop. In our example, none is found in wfkorr.

• The word variants are submitted to morphological analysis. As we get no result (all
variants are wrong) we must continue.

• Now we try to analyze the variants by loosening the restrictions concerning the
compounding elements encoded by the feature fuge. Again, no result is obtained
for our example.

• Now we try to find a similar word (for all variants) in wfkorr, looking at the first
letters of each word. We find Kernphysik with a similarity of 100 with respect to
the original, and Kernphysiker and Kernphysiken with a similarity of 76. The com-
parison process uses a similarity function which returns values with a maximum of
100.

• We also try to find a similar word by inverting the variants (i.e., the original Kern-
pyhsik becomes kishypnreK). The results are Kernphysik (similarity=100) and
Kryophysik (similarity=63).

• Results with too low similarities are discarded. Especially for short words we may
get several results. In our example the only good result is Kernphysik.

• The good results are re-analyzed, because they have to conform to the orthography
rules (e.g., Germany/Austria/Switzerland, progressive vs. conservative spelling or
for English British/American). In our example nothing needs to be changed.

• At the end the program modifies the original FB. state=unknown is replaced
by state=proposal (or state=ff for a word with a wrong compounding
element) and the attribute ns contains all proposals ordered according to their simi-
larity. The results are put into a cache storage.

86 H.D. Maas, C. Rösener, and A. Theofilidis

The final result is:

{ori=Kernpyhsik,c=noun,lu=Kernpyhsik,s=n,ds=kernpyhsik,
ls=kernpyhsik,w=1,ehead={case=nom;gen;dat;acc,nb=sg;plu
,g=m;f;n,infl=weak;strong;null},lng=germ,wnra=1,snr=1,g
ra=cap,pctr=no,pctl=no,last=yes,wnrr=1,state=proposal,n
s=Kernphysik}

An example where the original unknown word is recognized by loosening the restric-
tions for compounding elements is Terminsänderung (s is wrong). This produces:

{ori=Terminsänderung,c=noun,lu=Terminsänderung,s=n,ds=t
erminsänderung,ls=terminsänderung,w=1,ehead={case=nom;g
en;dat;acc,nb=sg;plu,g=m;f;n,infl=weak;strong;null},lng
=germ,wnra=1,snr=1,gra=cap,pctr=no,pctl=no,last=yes,wnr
r=1,state=ff,ns=Terminänderung}

4 Conclusion

The MPRO software package performs a deep morphological, syntactic and semantic
analysis of given texts. Especially for the German language it provides a detailed
output of features. Some modules of the system even treat very special German phe-
nomena, e.g., the deletion of a head or a non-head in a coordination of compound
nouns. Furthermore the system proposes spelling corrections for German, if the ana-
lysed character string is marked as an unknown word. By providing these detailed
results there are many conceivable usage scenarios for the MPRO system. On the one
hand the analysis results can be the basis for parsing, spell checking and grammar
checking systems [4] and also for tools to check style [9], gender [1,2] or the usage of
controlled languages (e.g., Simplified English). On the other hand the output of the
system can be used not only for tagging but also for linguistically intelligent indexing
and abstracting [6]. In addition to this, the software could even be used in language
learning [5], machine translation [3] and to support linguistically intelligent informa-
tion retrieval [10] and other text mining routines.

References

1. Carl, M., Garnier, S., Haller, J., Altmayer, A., Miemietz, B.: Gendercheck in German
Texts. In: Proceedings of the International Conference on Language, Politeness and Gen-
der, Nordica, Helsinki (2004)

2. Carl, M., Garnier, S., Haller, J., Altmayer, A., Miemietz, B.: Controlling Gender Equality
with Shallow NLP Techniques. In: Proceedings of COLING 2004, vol. II, pp. 820–826
(2004)

3. Carl, M., Way, A. (eds.): Recent Advances in Example-Based Machine Translation. Klu-
wer, Dordrecht (2003)

4. Bibliographisches Institut & F. A. Brockhaus AG, Duden Verlag Mannheim, books and
software (2009),

 http://www.duden.de/produkte/index.php?suchwort=Software

 Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging Procedure 87

5. Garnier, S., Tall, Y., Fissaha, S., Haller, J.: Development of NLP tools for CALL based on
Learner Corpora (German as a foreign Language). In: Archer, et al. (eds.) Proceedings of
the 2003 Corpus Linguistics Conference, UCREL technical paper no. 16, pp. 246–252.
UCREL, Lancaster (2003)

6. Haller, J., Schmidt, P.: AUTINDEX – Automatische Indexierung. Zeitschrift für Biblio-
thekswesen und Bibliographie: Sonderheft 89, 104–114 (2006)

7. Maas, H.-D.: MPRO – Ein System zur Analyse und Synthese deutscher Wörter. In:
Hausser, R. (ed.) Linguistische Verifikation. Dokumentation zur Ersten Morpholympics
1994, pp. 141–166. Niemeyer, München (1996)

8. Maas, H.-D.: Multilinguale Textverarbeitung mit MPRO. In: Lobin, G., et al. (eds.) Eu-
ropäische Kommunikationskybernetik heute und morgen. KoPäd, München (1998)

9. Reuther, U.: CLAT – Qualität von Anfang an! In: Terminologie von Anfang an. DTT-
/tekom-Tagungsakte. tekom, Weimar (2006)

10. Rösener, C.: Die Stecknadel im Heuhaufen. Natürlichsprachlicher Zugang zu Voll-
textdatenbanken. Peter Lang, Frankfurt am Main (2005)

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 88–107, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Word Manager

Pius ten Hacken

Swansea University, Department of Modern Languages,
Singleton Park, Swansea SA2 8PP, UK
p.ten-hacken@swansea.ac.uk

Abstract. Word Manager (WM) is a system for the specification and use of
morphological knowledge. It is based on a problem analysis that departs from
the usual distinction between a rule component and a lexicon. Instead, it inte-
grates rules and lexical knowledge for morphology in an expert workbench
from which components for the performance of certain operational tasks (e.g.
analysis or lemmatization). The WM formalism and specification environment
have been developed in such a way that the support for individual tasks is opti-
mized. The rule formalism incorporates separate rule types for inflection, word
formation, and spelling (i.e. where morphology is not purely concatenative) in
the WM core. Phrase Manager includes rules for clitics, periphrastic inflection,
and multi-word units. These rules make it possible to encode also German
separable verbs adequately. Lexicographic specification is distinct from rule
specification and exploits the rules to increase speed and consistency. WM
components have been used in various environments.

1 Introduction

Word Manager (WM) is a system for morphological dictionaries. A morphological
dictionary is a database in which lexical knowledge is organized according to mor-
phological rules. In order to understand this concept fully, it is essential to see the
underlying analysis of the problem of Natural Language Processing (NLP). Therefore
section 2 is devoted to the problem analysis. WM has a number of different rule types,
each adapted to the specific function they have. They are described in section 3. It is
well known that the main source of poor quality in the specification of lexical data-
bases is the lack of adequate support in coding. For this reason, the WM specification
and maintenance environment has been developed in such a way that each type of
user is optimally supported in their task. The implementation of this idea is described
in section 4. Finally, section 5 gives an overview of currently available resources.

2 Problem Analysis

Traditionally, NLP systems are divided into a rule component and a lexicon compo-
nent. The lexicon specifies information about the units of a language, typically words,
and the rules indicate how words can be combined and manipulated. Such an organi-
zation tends to lead to a duplication of information, as can be illustrated on the basis
of the sentences in (1).

 Word Manager 89

(1) a. Die Waffenruhe hielt nur wenige Stunden.
‘The truce only held for a few hours.’

b. Alphons hielt ein Buch in der Hand.
‘Alphons held a book in his hand.’

c. Beatrice hielt nicht viel von ihrem Chef.
‘Beatrice did not think much of her boss.’

The three sentences in (1) all contain the verb form hielt. In each case, it is the simple
past of the verb halten. However, syntactically and semantically the occurrences are
very different. In (1a) halten is intransitive, in (1b) it is transitive, and in (1c) it has
both a direct object and a bound preposition von. These three syntactic frames corre-
late with three different meanings. Obviously, three different entries for halten are
necessary, but each of them will have to state that the past tense is hielt. If each entry
includes this information, this leads to undesirable redundancy. Following standard
linguistic analysis, e.g. [1], we would like to say that there is a single lexeme halten
with different senses. This situation is typical for a large proportion of the vocabulary
and can be represented as in figure 1.

Fig. 1. The Bow-Tie Model for the lexeme halten with selected verb forms and senses

The central idea in WM is that it is preferable to treat the mappings 1 and 2 in
figure 1 separately in NLP. In such an approach, a highly reusable component for
mapping 1 can be developed, whereas the distinction between different syntactic and
semantic senses in mapping 2 is left to a different component. In this context, it is
worth noting that the details of the mapping in 1 are much less theory-dependent than
the details of the mapping in 2, so that in mapping 1 it is much easier to foresee the
type of output that will be required by client systems.

The full scope of mapping 1 does not only refer to the verb forms and the lexeme,
but also to the inflectional classes involved. Whereas standard approaches, e.g. [2],
use inflectional class to refer to a system such as that of Latin conjugations and de-
clensions, in WM this approach is generalized so that all lexemes belong to an inflec-
tional class. In German, two main inflectional classes can be distinguished, strong
verbs including halten and weak verbs such as sagen (‘say’).

Apart from the inflection of lexemes, mapping 1 also encompasses word forma-
tion. In the case of halten, the inflectional pattern with the vowel change in the past is
no longer productive, but derived verbs, e.g. behalten (‘keep’) and zurückhalten
(‘withhold’), have the same endings and the same vowel alternation as halten. A
proper coverage of mapping 1 has to represent this relationship.

Since the 1980s, a well-known problem in NLP has been the ‘lexical bottleneck’. As
documented in, for instance, [3] and [4], various approaches to the reusability of lexical
resources were explored to solve this problem. These approaches can be divided into

90 P. ten Hacken

two classes, one concerned with the reuse of existing lexical resources, the other with
the creation of new, flexible resources of a high quality. WM clearly falls into the latter
category, because it develops new lexical resources. If existing resources are used in
the development of a WM database, they are not automatically transformed into (part
of) the WM database.

A less common way of classifying approaches to the lexical bottleneck is adopted
in [5]. Whereas most systems and projects assume a traditional division between lexi-
con and rule components and concentrate on the reusability of the lexicon, WM takes
a division into the two mappings of figure 1 as its starting point. As a result, the reus-
able resources are not so much the lexicons as such, but rather resources for the de-
velopment of task-based components. This difference is also highlighted in [6]. These
task-based components combine relevant parts of lexical knowledge and rules in the
underlying reusable database.

The reason for preferring task-based components as the scope of reusability over
full lexicons is the different type of interface adjustment that is necessary. In general,
whenever a reusable resource is reused in practice, slight adjustments will have to be
made to adapt it to the use in a new environment. In the more traditional approach of
reusable lexicons, special morphological, syntactic, and semantic assumptions made
in the client project have to be taken into account. This means that each dictionary
entry has to be adapted to the theoretical decisions taken in the different rule compo-
nents. If the reusable resources are WM databases, however, they contain not only
morphological information about the lexical entries, but also the rules adapted to this
information. The match between entries and rules means that the scope for theoretical
discrepancies is much smaller. The entire component of knowledge is treated as a
coherent package, so that projects using WM for their morphology can, for instance,
start their analysis from lexemes. As such, the resources provided by WM are not
comparable to the combination of a reusable lexicon and a morphological processor.
An essential property of WM databases is that the rules and the entries are integrated
in a way that will be elaborated below.

3 Rule Types

The purpose of WM is to provide all the necessary information for the mapping be-
tween word forms and lexemes, as indicated in figure 1. In operational terms, this
mapping corresponds to lemmatization or morphological analysis when going from
word form to lexeme or to morphological generation when going from lexeme to
word form. The mapping task is divided into two main components according to
whether text words, i.e. words as delimited by spaces and punctuation marks, corre-
spond to word forms directly or not. In the latter case, text words can be split or com-
bined. The former type of mapping is covered by WM core, whereas the latter type is
performed by Phrase Manager (PM).

There are three basic rule types in WM core, IRules, WFRules, and SRules. Their
syntax and use are described in detail in [7]. WM adopts a strict distinction between
inflection and word formation. In linguistic theory, this distinction has been and still is
controversial. Whereas [8], for instance, defends the distinction, [9] argues against it.
Intuitively, the distinction is clear, at least in prototypical cases. Inflection is the adap-
tation of a lexeme to a particular syntactic environment, whereas word formation is the

 Word Manager 91

creation of a new lexeme. When we know that sagen is a German verb, we expect that
it has forms for the first, second, and third person singular and plural in the present and
past tense. The existence of besagen (‘mean’), entsagen (‘renounce’), and versagen
(‘fail’), however, cannot be predicted automatically. The central difference is that in-
flection is paradigmatic, whereas word formation operates on a case by case basis.
Formalizing this distinction, [10] proposes an operational definition with tests.

3.1 IRules: Inflectional Classes

The formalism of IRules in WM exploits the paradigmatic nature of inflection. IRules
combine sets of formatives. Formatives correspond roughly to the linguistic concept
of morpheme. They consist of a (possibly empty) form and a set of features, but
unlike morphemes, a formative does not have to have a meaning. Formatives are the
basic units combined in a word form. Combining formatives means that their forms
are concatenated. (2) lists the word forms of sagen in the present indicative.

(2) a. sag-e (1 singular)
b. sag-st (2 singular)
c. sag-t (3 singular)
d. sag-en (1 plural)
e. sag-t (2 plural)
f. sag-en (3 plural)

The word forms in (2) are divided into formatives and accompanied by the person and
number features. The statement that produces the forms in (2) is (3).

(3) (ICat V-Stem) (ICat V-Suffix)(Mod Ind)(Temp Pres)

The formula in (3) is part of the RIRule of weak verbs in German. It concatenates two
classes of formatives and generates the word forms of the present indicative as illus-
trated in (2). The first class of formatives is designated by a single feature, the second
class by a combination of three features. The attribute ICat is used in WM for all
information that is necessary to designate (inflectional) formatives but that should not
end up as information about the word form produced. The second formative designa-
tion in formula (3) identifies the six endings in (2). These endings constitute a class
listed and fully specified in the inflection component. The first part of (3) constrains
the possible stems, but does not specify their form. In the inflection component,
it is an underspecified formative. The individual instantiations are specified by the
lexicographer.

IRules are descriptions of inflectional classes. Their central part is the word forms
section, which consists of a sequence of statements such as (3) generating all word
forms of a lexeme. In addition, the citation forms section identifies one (or more) word
forms as the name of the lexeme. It also consists of a statement such as (3). The para-
digms section is optional. It can be used to group forms together independently of the
formulae used to generate them. An example of a lexeme where this is useful is the
present tense indicative of French regular verbs in -ir, e.g. finir (‘finish’), listed in (4).

92 P. ten Hacken

(4) a. fin-is (1 singular)
b. fin-is (2 singular)
c. fin-it (3 singular)
d. fin-iss-ons (1 plural)
e. fin-iss-ez (2 plural)
f. fin-iss-ent (3 plural)

The singular forms in (4a-c) have two formatives, whereas the plural forms in (4d-f)
have a meaningless formative -iss- between the stem and the ending. Therefore, the
best way to generate the forms in (4) is to use one statement, concatenating two for-
matives, for the singular and another, concatenating three formatives, for the plural.
By specifying a paradigm (Mod Ind)(Temp Pres), we can still retrieve all
forms in (4) as a single paradigm.

There are two types of IRules, regular (RIRules) and irregular (IIRules). For
RIRules, the lexicographer can add lexemes to the class. For IIRules, the linguist
specifies all relevant lexemes. German weak verbs are encoded as an RIRule, whereas
strong verbs such as halten are encoded as an IIRule.

3.2 SRules: Changes in Formatives

SRules or Spelling Rules are used in WM in all cases where the form of a formative
has to be changed. They are divided into ISRules for inflection and WFSRules for
word formation. Both the function and the formalism of SRules are inspired by two-
level rules as used in two-level morphology, [11], [12]. The main difference between
the two is that SRules can refer to the features as well as the form of a formative. In
(5), the SRules for some word forms in the paradigm of halten are given.

(5) a. “.*[dt]” (ICat V-Stem) “([st].*)/e\1” (ICat V-
Suffix)

b. “(.*)#A..#(.*)/\1ä\2” (ICat V-Stem) (Mod
Ind)(Temp Pres)(Pers 2nd)(Num SG)|(Mod Ind)(Temp
Pres)(Pers 3rd)(Num SG)

c. “(.*)#.y.#(.*)/\1ie\2” (ICat V-Stem) (Temp Impf)

The SRule in (5a) is responsible for the insertion of the -e- in the second person plural
of the indicative haltet. The rule specifies two sets of formatives following each other.
They are separated by a tab in the specification. The first formative in the sequence is
a verb stem ending in -d or -t. It is only given as context. The second formative is
specified as a verbal suffix starting with s or t. The slash in the string specification
separates input and output. The backslash followed by a number copies across brack-
eted terms from the input, numbered from left to right. In the second formative of
(5a), the output consists of e followed by the first bracketed term before the slash.

The SRule in (5b) is used to change the stem vowel in the second and third person
singular of the present indicative, hältst and hält. One striking feature of (5b) in com-
parison with two-level rules is that the second formative is only indicated by means of
its features. This is an advantage, because the stem vowel change is independent of
the form of the ending. As indicated by (2c) and (2e), both the third person singular
and the second person plural have an ending -t. However, whereas the former ends up

 Word Manager 93

as hält, the latter is haltet. The same use of features can be observed in (5c), where the
stem vowel change from halt to hielt is generally stated for the past tense.

The stem vowel change itself is stated in the first formative of (5b) and (5c). The
strategy adopted here is not imposed by the WM formalism, but it is a perspicuous
and effective way of stating the semi-regular alternations in strong verbs. It exploits
the distinction between lexical form and surface form familiar from two-level mor-
phology. In the lexical form, the stem vowel is replaced by a sequence of three
symbols unambiguously indicating the different shapes the vowel can take. The first
symbol indicates the second and third person singular of the present indicative, the
second symbol the past tense and the third the past participle. These three symbols are
surrounded by ##. The parts of the stem preceding and following the stem vowel are
matched by the (.*). These parts are copied across by the \1 and \2 after the slash. (5b)
only addresses the first symbol between ## and leaves the others unspecified. Simi-
larly, (5c) only addressed the second symbol.

ISRules can be stated at three different levels of generality. The most specific level
is that of the individual entry. An example is the rule removing the final stem conso-
nant of haben (‘to have’) in the third person singular of the present indicative hat.
Rules such as (5b) and (5c) are stated at the level of the IRule. They apply to all
strong verbs. Rules that apply to more than one inflectional class, such as (5a), which
applies both to weak and to strong verbs, are stated generally for the entire database.
More general SRules apply before more specific ones. The sequence of SRule appli-
cations for hält is illustrated in (6).

(6) a. “h#Aya#lt” “t”
b. “h#Aya#lt” “et”
c. “h#Aya#lt” “”
d. “hält” “”

(6a) represents the basic lexical form of the two formatives. In (6b), the general
ISRule (5a) has applied. This is corrected by a more specific rule deleting -et for
strong verbs with an alternation of a/ä or e/i (e.g. gelten, gilt ‘be valid’), which pro-
duces (6c). Finally, the application of (5b) leads to (6d).

3.3 WFRules: Word Formation Rules

The treatment of word formation in WM is based on the assumption that word forma-
tion creates a new lexeme by applying a rule to one or more existing lexemes. Unlike
inflection, this process is not paradigmatic, but applied on a case by case basis when
the need arises to name a new concept. This approach is in line with classical genera-
tive theories such as word-based morphology, [13], and a-morphous morphology, [8].

Word formation processes can be divided into suffixation, prefixation, conversion,
compounding, and a number of minor classes. The distinctions between these classes
do not play a major role in the way they are modeled in WM. The main formal dis-
tinction is the one between WFFormatives and IFormatives. IFormatives are the for-
matives that exist in inflection. They provide the base to which WFRules apply.
WFFormatives are formatives that are specific to word formation. These are usually
affixes. In terms of this model, suffixation and prefixation can be described as

94 P. ten Hacken

combining an IFormative and a WFFormative, compounding as combining two IFor-
matives, and conversion as operating on a single IFormative.

WFRules have to specify their input and their output. In (7), we find the specifica-
tion of the input and output of the rule for the verb-to-verb prefixation producing
versagen (‘fail’) and behalten (‘keep’).

(7) a. source
1 (WFCat V-Prefix.Non-Detachable)
(Cat V)(?IRule No-Detachable-Prefix) >
 2 (ICat V-Stem)

b. target
(?IRule ?)
 1 2 (ICat V-Stem)

The source section of a WFRule identifies and numbers the formatives to be com-
bined. In (7a), the first formative is a prefix of the class including ver- and be-, the
second a verb stem. (7a) excludes verb stems with detachable prefixes, because they
are morphologically impossible, cf. *bezurückhalten. By means of ?IRule, (7a)
covers stems from both RIRules (e.g. versagen) and IIRules (e.g. behalten). The
target section has the function of specifying the order of the components in the new
formative and assigning it to an IRule. In (7b), the prefix+stem combination is a new
verb stem. The IRule is not directly specified by (7b), because (?IRule ?) refers
to any IRule. However, the propagation sign > in (7a) passes the IRule of the original
verb stem on to the result. Therefore, versagen is regular like sagen and behalten is a
strong verb with the same vowel change as halten.

It is not difficult to see on the basis of (7) how other word formation processes can
be covered in WM. Suffixation, e.g. Haltung (‘posture’), has the WFFormative fol-
low the IFormative. The suffix -ung also determines the syntactic category, the gen-
der, and the IRule, all of which can be specified in the target. Compounding, e.g.
Gasthaus (‘inn’, lit. ‘guest-house’), combines two IFormatives and propagates syntac-
tic features and IRule from the second. This will automatically produce the correct
plural Gasthäuser. A so-called ‘linking element’, e.g. -s- in Kriegsende (‘end of the
war’, lit. ‘war-s-end’), is a separate formative. Although this is not imposed by the
formalism, in the German WM database there are separate rules for each linking ele-
ment. This solution is most practical in lexicographic specification. The treatment of
conversion, e.g. Tanz (‘danceN’) and tanzen (‘danceV’), is in line with [14] in the
sense that there is no zero affix involved and the process is directional. The -en end-
ing in the verb tanzen is an inflectional ending for the infinitive, so that the stem is the
same in both words. There is therefore only a single IFormative in the source of the
relevant WFRule. As a consequence, the features and IRule of the result have to be
specified as properties of the target class of the WFRule.

As mentioned in section 3.2, SRules are divided into ISRules and WFSRules. The
distribution of work between the two is such that WFSRules only bring about changes
in the string that occur in the word formation process. There is no need to specify that
behalten has a past tense behielt, because this will follow from (7). As (7) refers the
resulting stem to the same IRule as halten, the ISRules in (5) will apply to behalten as
well. WFSRules are only necessary for cases such as Tänzer (‘dancer’). Here the

 Word Manager 95

nominalization with the suffix -er triggers the umlaut. The base verb tanzen does not
have an umlaut whereas Tänzer has an umlaut throughout its paradigm.

3.4 Phrase Manager

Whereas core WM rule types can be used to model mapping 1 in the Bow-Tie model
in figure 1 in all cases in which word forms correspond to text words, there are also
cases where there is a mismatch between word forms and text words. These cases are
covered by Phrase Manager (PM), of which [15] gives a full description. PM includes
mechanisms for three types of phenomena: clitics, periphrastic inflection, and phrases.
In the case of clitics, a text word is split. In periphrastic inflection, two or more text
words are combined as a word form of a single-word lexeme. The mechanism for
phrases caters for multi-word lexemes.

In German, the most prominent case in which PM has to be used is the one of sepa-
rable verbs, e.g. zurückhalten (‘withhold’). The problems these verbs pose for the
recognition of the word form and lexeme can be illustrated by the examples in (8).

(8) a. Camille hält die Informationen zurück.
‘Camille withholds the information.’

b. Dorothée weiß, dass Camille die Informationen zurückhält.
‘Dorothée knows that Camille withholds the information.’

c. Es ist ungerecht, diese Informationen zurückzuhalten.
‘It is unfair to withhold this information.’

German has a basic word order SOV, which is found in subordinate clauses as in (8b).
In main clauses, German has a verb-second rule that moves the inflected part of the
verb to the position after the first constituent. As shown in (8a), this typically leaves
the particle of separable verbs stranded in final position. The infinitive in German is
marked by the particle zu, which attaches between the prefix and the main part of the
separable verb, as in (8c). The most attractive analysis of the data in (8) is that they
involve a lexeme zurückhalten, which consists of two parts that may be separated in
certain syntactic contexts. This lexeme may also serve as input to word formation
rules, e.g. Zurückhaltung (‘restraint’). The formation of separable verbs is highly
productive. About 47% of the almost 19,000 verbs in the WM dictionary database for
German belong to this class, although the recent spelling reform, cf. [16], reduces this
number slightly. Here, I will concentrate only on the use of PM in the coverage of
these verbs. [17] gives a more complete analysis.

Clitic rules are used to split up a text word. Their simplest context of use is in cases
such as (9), in Italian.

(9) Voglio comprarlo
‘I-want to-buy-it’

When an Italian infinitive has a pronoun as its object, the two are written together. In
(9), comprarlo has to be split into comprare (‘buy’) and lo (‘it’) before assigning each
to a lexeme. The CRule performing this operation has the form of (9).

96 P. ten Hacken

(10) (Cat V)(Mod Inf)(Temp Pres) + (CElement
Pron.Single.Cit-Form) = (CElement Pron.Single.Cit-
Form), (Cat V)

The rule in (10) states that an infinitive written together with a clitic pronoun corre-
sponds to the clitic pronoun followed by the verb. The specification that lo is a second
person singular pronoun is made in the list of CElements. The CRule for zurückzuhal-
ten in (8c) is (10).

(11) %separable + (CElement Conjunct.zu) + (Cat V)(Mod
Inf)(Temp Pres) = (CElement Conjunct.zu),
%separable + (Cat V)

There are two main differences between (10) and (11). First, (11) not only splits the
form zurückzuhalten into the three elements zurück, zu, and halten, but also recom-
bines them into zu and zurückhalten. Second, the separable particle has a special
status. The infinitive in (10) and (11) is a form arising in core WM. That is to say,
when (11) is applied to zurückzuhalten, the system checks that there is a verb halten.
The pronoun in (10) and zu in (11) are CElements. CElements are exhaustively listed
in the Clitics component of PM. For the separable part of separable verbs, no such
characterization exists. Whatever is left after the infinitive and zu have been removed
will be taken to be a separable part of the verb.

For the combination of hält and zurück in (8a), two steps have to be made. First,
the two elements have to be identified as belonging together. Then, they have to be
combined into a single word form. The first of these steps is performed by a PIClass.
A PIClass takes as its input a sentence and checks whether certain elements are found
together in this sentence. It then refers these elements to a particular periphrastic in-
flection rule. The PIClass does not rely on parsing. It only states conditions on the
morphological analysis and the order of elements in the sentence. The PIClass for
separable verbs states that a verb form and a separable particle have to be found, with
the verb form preceding the particle. The two elements may be separated by interven-
ing material, e.g. “die Informationen” in (8a). The periphrastic inflection rule associ-
ated with this PIClass is (12).

(12) (Cat V)^(Mod Inf)^(Mod Part) + %separable =
(POS 1)(CFORM 2+1)(PERC 1)(Cat V)

The rule in (12) has the same general form as the CRules in (10) and (11). In the part
preceding the “=”, the elements are identified. The verb is specified as not being an in-
finitive or participle. The rule is only meant to apply in cases such as (8a), where a verb-
second rule has moved the inflected verb form to the position after the first constituent. A
relevant example where (12) does not apply because of this restriction is (13).

(13) Das Auto zu parken ist ein Problem.
‘The car to park is a problem’, i.e. Parking the car is a problem.

In (13) the infinitive parken (‘parkV’) is not combined with ein into a form of ein-
parken (‘get into a parking space’), because when parken is analysed as an infinitive,

 Word Manager 97

it is not in the scope of (12). The part after the “=” specifies the result. When (12)
applies to (8a) after the relevant PIClass has identified hält and zurück, the two ele-
ments will be put together at the position of hält in the string. Their citation form is
the citation form of zurück followed by the citation form of halten. The features of the
resulting form are the features of hält, i.e. 3rd person singular present indicative.

Apart from their use in the analysis of separable verbs, CRules are also used in
German for contractions such as vom (‘of the’), analysed as von and dem. This is a
closed class of items. PIClasses are also used for combinations of an auxiliary verb
and an infinitive or participle, e.g. in (14).

(14) Eugen ist nach Hause gegangen.
‘Eugen is to home gone’, i.e. Eugen has gone home.

The PIClass for perfect auxiliaries will select ist and gegangen and hand them over to
a periphrastic inflection rule that will combine them into a form of gehen (‘go’) with
the person and number features and the position in the sentence of ist, while adding
the feature (Temp Perf).

PHClasses can be used to encode multi-word units as lexemes. They work in a way
similar to PIClasses, but of course they do not refer to periphrastic inflection rules.
They also have a more elaborate system to indicate the variability of the individual
elements, the possibility of inserting elements not part of the multi-word unit, and the
possibility of varying the order of the elements in the multi-word unit. For the latter, a
special rule type Transformations has been devised. The formalism does not distin-
guish between idioms, collocations, formulae, and other multi-word units. The appli-
cation of PHClasses raises a range of theoretical questions concerning the delimitation
of lexemes from syntactic combination and the boundary between instances of and
allusions to multi-word units. The PHClass mechanism has been tested for German,
but no large scale encoding of German multi-word units has been undertaken.

3.5 Interaction of Rules

The best starting point for a discussion of the interaction of the rule types is the analy-
sis of a sentence by a WM-based morphology component in which all rule types have
been implemented. This is represented in figure 2.

The rule types discussed in sections 3.1-3.4 are represented as white boxes in
figure 2. The small double arrows in the figure connect rule types that collaborate
closely and use each other’s results. The large black-and-white arrows indicate the
main flow of control in analysis.

The most basic rule type is the IRule. It is impossible to use WM without using
IRules, whereas all other rules can at least technically be left unspecified. If only core
WM is used, the input unit is taken to be a text word. If PM rule types are specified,
the input is the maximal domain in which all elements to be combined in PIClasses
and PHClasses must be realized. Normally, one can assume that a sentence is the right
domain, but WM does not check whether the input is a sentence, a smaller constitu-
ent, or just a sequence of words.

98 P. ten Hacken

Fig. 2. Interaction of rule types in Word Manager in analysis

Every text word in the input will be assigned to one or more analyses. CRules will
split text words when they apply, adding their result to the existing version. After the
application of CRules including (11) to (8c), the result passed on to the IRules is (15).

(15) a. Es ist ungerecht, diese Informationen zurückzuhalten.
b. Es ist ungerecht, diese Informationen zu zurückhalten.

The application of the IRules will eliminate (15a), because zurückzuhalten does not
exist as a word form. The IRules produce all morphological analyses of each of the
word forms. The form diese in (15b) is analysed as the nominative or accusative of
the feminine singular or the plural of dieser (‘this’). It is not considered the task of
WM to choose among these analyses, because such a choice belongs to mapping 2 in
figure 1.

The application of PIClasses and PHClasses adds possible analyses, but does not
eliminate any. As a consequence, the output of the analysis of (8a) will correspond to
the two sequences in (16).

(16) a. Camille hält die Informationen zurück.
b. Camille zurückhält die Informationen.

For each of (16a-b), each word form will be accompanied by the set of possible in-
flectional analyses. On purely morphological grounds it is impossible to eliminate
(16a). However, given the possibilities to eliminate the false recognition of einparken
in (13), the existence of an analysis such as (16b) makes it highly probable that it is
the right one. Therefore, it is worth presenting it as the preferred option. The possibili-
ties of doing so depend on the way the system is used in practice.

4 Development Environment

The quality of resources depends to a large extent on the properties of the environment
in which they are developed. If the formalism makes a natural way of expression pos-
sible and a variety of tools to check for consistency and correctness is available, many

 Word Manager 99

errors can be avoided. Therefore, WM puts a lot of emphasis on the user-friendliness
of the development environment. In the development of large morphological dictionar-
ies, three stages can be distinguished, each of which has its own requirements.

• Linguistic specification: description of the morphological rules of a language.
• Lexicographic specification: description of the lexicon of a language in terms of the

morphological rules.
• Specification of a lexical tool: deriving an operational component for a particular

task from the lexical database.

For each of these development stages, WM provides separate interfaces with opti-
mized support for the relevant tasks.

4.1 The Linguist’s Interface

The task of the linguist in WM is to specify a morphological rule database for a lan-
guage. A morphological rule database contains a model of the rule system that is
subsequently used as a basis for lexicographic specification. This means that in speci-
fying the rules, the linguist has to decide for each rule whether it is productive or not.
If a rule is productive, it is encoded as regular and the lexicographer will be able to
add new entries to it. All other rules are considered as closed classes, to be described
exhaustively by the linguist.

It is worth elaborating what exactly it means to encode, for instance, German
strong verbs as a closed class. Verbs such as sagen are encoded in an RIRule whereas
verbs such as halten are encoded in an IIRule. The IIRule will contain all instances of
relevant verbs as hard-coded entries. However, it need not contain behalten or
zurückhalten. These verbs are not specified as entries of the IIRule covering halten,
but as entries of the RWFRules deriving them from halten. They are regular as the
result of prefixation, in the same way as versagen and absagen (‘cancel’) are derived
from sagen in a regular way. The IIRule only has to contain all simple strong verbs,
not the ones based on the application of WFRules.

The support provided in the Linguist’s Interface consists of properties of three
main types. The first type is related to the specification environment, the second to
compilation, and the third to browsers.

The specification environment is organized as a hierarchy of windows that can be
manipulated by draw-out menus and shortcut keys. At the top of the hierarchy is the
Document Window, shown in figure 3. This window has the name of the rule database
at the top and buttons for different rule types below. The buttons are divided into
three parts, with general controls at the top, core WM in the middle, and PM at the
bottom. Rule types that serve the classification of lexical entries are ordered in tree
windows. This concerns inflection, word formation, clitics, and classes (PIClass and
PHClass combined). Rule types that only serve to record changes to word forms or
entries are listed in text windows. This concerns spelling rules, periphrastic inflection,
and transformations changing the order of words in multi-word units.

In text windows, for instance the spelling window, rules of the type illustrated in
(5) are simply typed or pasted. Each SRule has to be preceded by a unique name. As
an example of a tree window, I will discuss the window for inflection, illustrated in
figure 4. Other tree windows work in substantially the same way.

100 P. ten Hacken

Fig. 3. WM Document Window for the German database

Fig. 4. Inflection window of the German database

In figure 4, The inflection window of the German database is shown. Only the part
for verbs is expanded. The parts for other syntactic categories are “collapsed”, as
indicated by their being in bold. A toggle command for “collapse/expand” can be
selected from the Edit menu or activated by a shortcut key. There are four IRules for
verbs. They are text windows in which up to five parts can be delimited. Citation-
forms and word-forms consist of statements such as (3). Paradigms group the word
forms. The optional part ISRules lists rule-specific spelling rules. Finally, a list of
sample entries is given. For IIRules this list should be exhaustive. The full name of
the IRule consists of all features of its path.

IFormatives are specified in IFormative windows. These are leaf nodes that are not
specified as rules. In figure 4, V-stems and detachable prefixes are underspecified,

 Word Manager 101

whereas suffixes and prefixes are fully specified IFormatives. The difference between
these is only visible after opening the windows. Fully specified IFormative windows
list the formatives, whereas underspecified IFormative windows only give features
and leave the specification of strings to the lexicographer. As the path constitutes the
full name, the names for regular and irregular suffixes are not identical. Statements
such as (3) need not use the full name to refer to stems and suffixes, because they are
relative to an inflection unit. An inflection unit is the lowest level of the tree that con-
tains IRule(s) and IFormative windows. In figure 4, regular verbs and irregular verbs
are separate inflection units.

The specification of the nodes in the tree is governed by commands such as New
Son and New Brother in the Edit menu. It is also possible to cut or copy and paste
nodes and to edit node names. Thus, when the inflection unit for regular verbs has
been specified as in figure 4, the node (ICat V-Regular) can be copied and
pasted as a brother to itself. This clone can then be used as a starting point for encod-
ing irregular verbs. Only minor adjustments to the node names have to be made and a
substantial part of the text of the IRule and IFormative windows can be reused.

Compilation is the process by which the specification of information in a formalism
is transformed into a module that actually works. In WM, it is also used to check that
the specification is correct. It is not possible, of course, to guess the intended analysis
and signal each divergence from it. However, in many cases it is possible to identify
whether an analysis as it is written in the formalism is plausible or not. This idea has
been implemented in two ways. First, the syntactic definition of the formalism, the
rules for what can be written in it, has been chosen so as to enforce consistent use. An
example is a missing closing bracket or the lack of a citation form statement. Viola-
tions of the syntax result in error messages that must be solved before a working mod-
ule is produced. In addition, a number of semantic constraints have been formulated.
Their violation results in a warning message. Warning messages usually indicate an
unintended effect, because what is produced is implausible. An example is when in a
WFRule like (7), ?IRule matches only RIRules and no IIRules. When compilation
produces warnings but no error messages, the resulting module is functional.

In order to enable the compiler to check all conditions, it is necessary to apply each
rule during compilation. For this reason, all rules have to have at least one example.
There is no maximum of these examples. Thus, the RIRule for regular verbs specifies
a number of entries that are used to illustrate WFRules. The RIRule for verbs with
detachable prefix does not specify any entries directly, because it is applied when the
output of the WFRule forming such complex verbs as absagen is referred to it.

In order to check the overall consistency of the specification, the compiler has to know
which forms are allowed. This amounts to a full ‘declaration’ of possible forms and fea-
tures. For the application of the SRules in (5), the entry for the second person plural end-
ing in haltet has to specify the forms as in (17a) and the stem of halten as in (17b).

(17) a. “t” “t” “et”
b. “h#Aya#lt” “halt” “hält” “hielt”

In both specifications in (17), the lexical form is followed by a list of all permitted
surface forms after application of SRules. In (17a), the lexical form is identical to the
most common surface form, whereas in (17b) the lexical form encodes the vowel

102 P. ten Hacken

alternation of the stem. The characters used in the lexical and surface forms of forma-
tives are declared in the windows lex char and surf char listed in figure 3. These char-
acters are initialised to contain all lower case characters, but umlaut characters have to
be added for German, and # and A have to be added to lex char for the specification in
(17b). For analogous reasons, all features are declared in feat dom in figure 3. Here
the compiler will present the linguist with a list of undeclared attribute-value pairs and
the linguist has to decide which of these are correct. In this way, it can be avoided that
both (Num SG) and (Num Sing) are used in the same database. The window
under feat dep in figure 3 offers the possibility to specify further conditions to be
tested in compilation, for instance that every noun has a gender feature.

A substantial effort has been invested in making the error and warning messages
given by the compiler understandable to linguists. Two main techniques have been
used. The first is to open the relevant window where an error has been spotted. The
second is to identify the linguistic coding problems of errors and formulate the mes-
sages in linguistic rather than computational terms.

After compilation, the rule database can be explored with three types of browser,
the general entity browser, the lexeme browser, and the tree browser. The general
entity browser can retrieve classes of rules, formatives, or entries on the basis of their
type and their features. Possible queries include, for instance, to retrieve all WFRules
with prefixing or all fully specified WFFormatives associated with prefixing. Depend-
ing on the type of entity it can then show entries, formatives, or rules associated with
one of the entities on the list. This browser is good when the aim is to retrieve
whether a particular phenomenon has been covered and which example has been
chosen for it. At any point, a shortcut exists to the lexeme browser and to the relevant
rule windows where the specification can be modified.

The lexeme browser gives all information related to a single lexeme L. This in-
cludes the word forms and paradigms, the creation and generation history, etc. For
each word form of L the way it is built up from formatives and the application of
ISRules can be shown. The creation history does the same for the application of
WFRules and WFSRules building L, whereas the generation history lists the lexemes
built from L. The WFCluster option represents creation and generation histories
graphically.

The tree browser takes the set of entries of the database as its point of departure
and offers different ways of partitioning this set. Each IRule and WFRule is consid-
ered as a class. These classes are structured in a way corresponding to the tree struc-
ture as exemplified in figure 4, so that we can also access all regular verbs or all
verbs. In addition, entry features (e.g. auxiliary haben or sein for verbs, gender for
nouns) and WFFormatives (affixes) can be used to delimit the target set of lexemes.
These criteria can be subordinated to each other. In this way it is possible to find out,
for instance, how many verbs there are and how they are distributed over word forma-
tion rules. For each class, the full list of entries can be retrieved. The tree browser is
more interesting to use on a complete dictionary database.

The intended workflow in linguistic specification is to work in small, cyclic steps.
One could for instance first specify an RIRule for regular verbs without detachable
prefix with one example entry, together with IFormative windows for stems, suffixes
and the prefix ge-. The next step is compiling this partial database. Then the result is
inspected with the browsers, in particular the lexeme browser. If everything is correct,

 Word Manager 103

the node for regular verbs can be copied to serve as a template for the irregular verbs.
In this way, the rule database grows incrementally, using the existing parts as a tem-
plate after validation.

4.2 The Lexicographer’s Interface

The linguist and the lexicographer have clearly distinguished tasks in WM. Whereas
the linguist needs a powerful formalism to state a relatively small number of rules as a
description of the morphological rule system of a language, the lexicographer needs
an environment in which a large number of lexical entries can be specified efficiently
and consistently. The Lexicographer’s Interface in WM offers such an environment
by exploiting the rule database specified before. As described in more detail by [18]
for English and Italian, lexicographic specification is the classification of lexical en-
tries in terms of the rules in the rule database.

The Lexicographer’s Interface assumes that a complete, compiled rule database is
available. The lexicographer works with a list of words to be entered. The first deci-
sion to be made is whether the word to be entered is a simple entry or the result of a
word formation rule. Let us assume we have fühlen (‘feel’) on the list. This is a sim-
ple entry which is not used as an example in the rule database, i.e. it is not hard-
coded. Therefore, we select “Add Simple Entries” from the menu. We get a menu that
first of all asks us to select an RIRule. As fühlen is a verb, we can restrict the list of
rules to the ones for verbs and only two rules remain, the ones for verbs with and
without detachable prefix. IIRules are not available in the Lexicographer’s Interface.

On selecting the RIRule for verbs without detachable prefix, other parts of the
specification window are highlighted. We can now ask WM to give us some example
entries. If we do this, the specification of information for, for instance, sagen will be
filled into the remaining fields. We can choose how many example entries are given
and which entry is used to fill the fields. For fühlen we can now overwrite the infor-
mation for sagen so that we are less likely to make errors than if we had to start with
empty fields. However, for an experienced lexicographer, examples will only be nec-
essary for difficult entries.

On completing the form, we press “Generate/Add” and WM generates a virtual en-
try. We see a lexeme browser for fühlen and can explore the virtual entry with the
same functionality as in a lexeme browser in the Linguist’s Interface. The only differ-
ence is that it has an Add button. We can now decide whether to add this entry or to
close the browser and delete the virtual entry. The latter step will return us to the
window for specifying simple entries, where we can change the values we entered the
first time.

Let us now consider how to enter behalten. As this is a complex verb, we select a
different specification window, “Add Complex Entries”. This window lets us specify
all the information we need to make WM generate behalten by the application of a
WFRule. First, we are asked to select a RWFRule. As with RIRules for simple en-
tries, we can restrict the number of rules listed, e.g. to derivation rules or to rules
deriving verbs from verbs. In our case, we need the rule for non-detachable prefixes.
WM now expects us to identify the formatives to be combined. It offers a pull-out
menu with all relevant WFFormatives for this rule, i.e. all non-detachable verbal
prefixes, from which we select be. For the stem, we can either enter it manually or ask

104 P. ten Hacken

WM to search for halten and select the result. After specifying all source formatives
and the RWFRule, we can now press “Generate Target” to produce the stem of the
new lexeme. This stem has the form °beh#Aya#lt. This may seem daunting, but as
lexicographers we do not have to interpret or manipulate it. We can simply press
“Generate/Add” so that WM will produce a lexeme browser for a virtual entry behal-
ten. On the basis of this information on what the entry would be like, we can then
decide whether to add it or not.

As illustrated by these examples, the Lexicographer’s Interface activates the rules
in the rule database on the basis of information specified by the lexicographer to gen-
erate new entries. This approach to lexicographic specification has the advantage that
all new entries are possible words in view of the existing entries and rules of the lan-
guage. The way the information is presented means that a detailed understanding of
the rules and their operation is not necessary for lexicographic specification.

A detail that has been left out of the above description is that the German WM rule
database states the feature dependency that a verb needs to specify its auxiliary. In the
case of fühlen, this can be taken over from the example entry selected as a template.
For behalten it must be specified manually. In the development of WM the complica-
tions of calculating this feature were judged not to outweigh the burden of manual
specification. If the feature is missing, pressing the “Generate/Add” button will pro-
duce an error message asking for its specification. The Lexicographer’s Interface also
allows for the specification of optional entry features.

Apart from the addition of features, the Lexicographer’s Interface also offers the
possibility of specifying entry-specific ISRule and WFSRules. This makes it possible
to adjust forms where necessary. What is not possible in the Lexicographer’s Inter-
face, however, is to change what is specified in the rule database. This entails that if
an error is detected in a rule, or if a rule was forgotten in the linguistic specification,
or if there is an error in a hard-coded entry used as an example for the benefit of the
compiler, the lexicographer cannot correct this. The entries created in the Lexicogra-
pher’s Interface have to be exported, the rule database modified and compiled, and the
exported entries re-imported to amend any rules. This procedure is the price to be paid
for the quality ensurance and support offered by the general setup of the system.

4.3 The Developer’s Interface

A WM dictionary database can be a useful device in, for instance, linguistic research, in
particular in combination with the tree browser. However, it is not primarily intended to
be used as a stand-alone device. In line with the distribution of labour illustrated in
figure 1, the idea is to produce operational components, so-called lexical tools, based on
the WM dictionary database. A lexical tool is a dedicated, self-contained Finite-State
Transducer (FST). It performs a particular task for which all the relevant information is
taken from the WM dictionary database and encoded in the FST. Whereas the WM
dictionary database is large and flexible in the information it contains, but bound to a
restricted software and hardware environment, lexical tools derived from it are small,
efficient, and can be generated for any platform and environment.

The derivation of a lexical tool is an operation that is only performed once for a
particular task and WM dictionary database. The interface to enter the specifications
for the FST consists of an algorithm with documentation that indicates which type of

 Word Manager 105

information has to be entered where. It is meant to be used by specialist software
engineers. [19] and [20] describe this in more detail.

Generic applications for which lexical tools have been developed are lemmatiza-
tion, morphological analysis, and morphological generation. In lemmatization, the
input is an inflected word form and the output is the lexeme(s) the word form can
belong to. Morphological analysis also returns the features of the word form in the
lexeme. The analysis can be purely inflectional or also involve word formation rules
for relevant lexemes. Morphological generation starts from a lexeme and returns the
set of word forms and/or derived lexemes.

An interesting application is the generative spell checker. This tool works as a
normal spell checker as far as words are documented in the WM database. For non-
found words, it tries to produce them by applying word formation rules. As com-
pounds in German are written together, this procedure eliminates a substantial part of
the overflagging of normal German spell checkers.

4.4 Evaluation of the Development Environment

The structure of the development environment is based on the design philosophy of
WM, which can be summarized as making as few expressive options available as
necessary. The split between the Linguist’s Interface and the Lexicographer’s Inter-
face is founded on the assumption that the two types of specification are different in
crucial respects. A WM linguist works meticulously on a fairly narrow set of rules,
whereas a WM lexicographer has to work through large numbers of entries effi-
ciently. It is not normally expected that these tasks are performed by the same person.
Writing and editing rules requires a much deeper understanding of the morphology of
the language and of the WM formalism.

There are a number of advantages of this split. It is easier to specify lexical entries,
and much of the existing resources in WM would probably not have existed if the peo-
ple specifying entries would have to learn the entire rule formalism. It is also easier to
avoid inconsistencies. More than one person can work in the specification of lexical
entries, but if they had the power to change rules this would be extremely dangerous. In
the development of the English and Italian lexicon databases, described in [18], the
organization of the work was such that changes to the rules occurred very rarely and did
not result in the loss of much time. Therefore, in the perception of the people working in
this project, the slight inconvenience of having to wait with the encoding of certain
entries was clearly outweighed by the substantial advantage of being able to specify
entries with so little effort while maintaining linguistic consistency.

5 Available Resources and Their Use

The general philosophy underlying WM is that it is better to invest a lot of effort in a
high-quality resource than to produce a poor resource on-the-cheap. This is reflected
in the nature of the development process, which involves rule databases, dictionary
databases, and lexical tools.

Rule databases for core WM have been developed for German, Italian, and Eng-
lish. Of these, the Italian one is well-documented in [21]. It can stand as an example

106 P. ten Hacken

for the general approach. Subsequent changes have occurred in particular in the
treatment of neo-classical word formation, cf. [22], and in exocentric and synthetic
compounds, cf. [23] and [24]. In addition, the mechanism for separable verbs in Ger-
man is documented in [17]. This involves PM components as well. A more complete
PM rule database for English is described by [25], but it is not fully compatible with
later changes to the English core WM rule database. The rule databases are not avail-
able as such, because their main purpose is to serve as input for dictionary databases.

Dictionary databases have been developed for German, Italian, and English. The
German database contains over 230000 lexemes. The Italian and English databases,
whose development is documented in [18], contain approximately 50000 lexemes
each. A number of free applications give access to these databases, though not in a
way that they can be modified or extended. Access is through the use of lexical tools
derived from the dictionary databases.

Lexical tools have been used to produce the information available on
www.canoo.net. This information is useful for learners of German or anyone with
morphological queries. Another use of lexical tools is in the ELDIT language learning
environment, described in [26]. The integration of lexical tools in research projects
such as these is arguably the most typical use of WM. However, there are also com-
mercial users, including Google, Neue Zürcher Zeitung, and Zingarelli, who bought
licences to use WM resources in information retrieval, hyphenation. and other tasks.
An important advantage of WM lexical tools is that they can cover all of morphology,
including periphrastic forms and particle verbs, in a single tool.

References

1. Matthews, P.H.: Morphology: An Introduction to the Theory of Word Structure. Cam-
bridge University Press, Cambridge (1974)

2. Aronoff, M.H.: Morphology by Itself: Stems and Inflectional Classes. MIT Press, Cam-
bridge (1994)

3. Atkins, B.T.S., Zampolli, A. (eds.): Computational Approaches to the Lexicon. Clarendon,
Oxford (1994)

4. Walker, D.E., Zampolli, A., Calzolari, N. (eds.): Automating the Lexicon: Research and
Practice in a Multilingual Environment. Oxford University Press, Oxford (1995)

5. ten Hacken, P.: Two Perspectives on the Reusability of Lexical Resources. McGill Work-
ing Papers in Linguistics 14, 39–49 (1999)

6. ten Hacken, P.: ‘Representing Computational Dictionaries in Dedicated Formalisms.
DATR, Word Manager’. In: Gouws, R.H., Heid, U., Schweickard, W., Wiegand, H.E.
(eds.) Dictionaries. An International Encyclopedia of Lexicography. Mouton de Gruyter,
Berlin (to appear)

7. Domenig, M., ten Hacken, P.: Word Manager: A System for Morphological Dictionaries.
Olms, Hildesheim (1992)

8. Anderson, S.R.: A-Morphous Morphology. Cambridge University Press, Cambridge
(1992)

9. Booij, G.: Against Split Morphology. In: Booij, G., van Marle, J. (eds.) Yearbook of Mor-
phology 1993, pp. 27–49. Kluwer, Dordrecht (1993)

10. ten Hacken, P.: Defining Morphology: A Principled Approach to Determining the Bounda-
ries of Compounding, Derivation, and Inflection. Olms, Hildesheim (1994)

 Word Manager 107

11. Koskenniemi, K.: Two-Level Morphology: A General Computational Model for Word-
Form Recognition and Production. University of Helsinki, Department of General Linguis-
tics Publications No. 11 (1983)

12. Karttunen, L. (ed.): KIMMO: A Two Level Morphological Analyzer. Texas Linguistic Fo-
rum 22, 163–278 (1983)

13. Aronoff, M.H.: Word Formation in Generative Grammar. MIT Press, Cambridge (1976)
14. Don, J.: Morphological Conversion. LEd & OTS, Utrecht (1993)
15. Pedrazzini, S.: Phrase Manager: A system for Phrasal and Idiomatic Dictionaries. Olms,

Hildesheim (1994)
16. Johnson, S.: Spelling Trouble? Language, Ideology and the Reform of German Orthogra-

phy. Multilingual Matters, Clevedon (2005)
17. ten Hacken, P., Bopp, S.: Separable Verbs in a Morphological Dictionary for German. In:

Coling – ACL 1998: Proceedings of the Conference, Université de Montréal, pp. 471–475
(1998)

18. ten Hacken, P.: Word Formation and the Validation of Lexical Resources. In: González
Rodríguez, M., Paz Suárez Araujo, C. (eds.) LREC 2002: Third International Conference
on Language Resources and Evaluation – Proceedings, pp. 935–942 (2002)

19. Pedrazzini, S., ten Hacken, P.: Centralized Lexeme Management and Distributed Diction-
ary Use in Word Manager. In: Schröder, B., Lenders, W., Hess, W., Portele, T. (eds.)
Computers, Linguistics and Phonetics between Language and Speech, Proceedings of the
4th Conference on NLP, Konvens 1998, Bonn, Germany, pp. 365–370. Lang, Frankfurt am
Main (1998)

20. Pedrazzini, S.: The Finite State Automata’s Design Patterns. In: Champarnaud, J.-M.,
Maurel, D., Ziadi, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 213–219. Springer, Heidel-
berg (1999)

21. Bopp, S.: Computerimplementation der italienischen Flexions- und Wortbildungsmor-
phologie. Olms, Hildesheim (1993)

22. Petropoulou, E., ten Hacken, P.: Neoclassical word formation in WM electronic dictionar-
ies. In: Braasch, A., Povlsen, C. (eds.) Proceedings of the Tenth Euralex International
Congress, Copenhagen, Denmark, August 13–17, pp. 169–174 (2002)

23. ten Hacken, P.: Phrasal Elements as Parts of Words. In: Hajičová, E., Kotesovcova, A.,
Mirosky, J. (eds.) Proceedings of CIL17, CD-ROM. Matfyzpress, Prague (2003)

24. ten Hacken, P.: Phrases in Words. In: Tschichold, C. (ed.) English Core Linguistics, pp.
185–203. Lang, Bern (2003)

25. Tschichold, C.: Multi-Word Units in Natural Language Processing. Olms, Hildesheim
(2000)

26. ten Hacken, P., Abel, A., Knapp, J.: Word Formation in an Electronic Learners’ Diction-
ary. International Journal of Lexicography 19, 243–256 (2006)

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 108–117, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Morphological Analysis Using Linguistically
Motivated Decomposition of Unknown Words

Stephan Bopp and Sandro Pedrazzini

Canoo Engineering AG, Kirschgartenstrasse 5,
4051 Basel, Switzerland

{stephan.bopp,sandro.pedrazzini}@canoo.com

Abstract. Integrating the decomposition of unknown morphologically complex
words can enhance the recognition rates of morphological analyzers. Using lin-
guistically motivated strategies for this decomposition leads to even more
expressive results. The approach described here uses word formation rules and
filtering techniques to analyze and decompose words that are not contained in
the underlying dictionary database. The average recognition rate of our German
analyzers, applied to our test corpus, increased from 91% to 95,4%. Together
with the current implementation, further future decomposition strategies will be
presented.

Keywords: Morphological analysis, controlled word decomposition, finite state
tools.

1 Introduction

The load of electronically available textual information that has to be treated in one
way or another is still growing rapidly. Finding the relevant information in large cor-
puses and knowledge bases is costly both in terms of time and resources. Every step
that helps to automate such tasks provides a significant reduction of costs. In a text,
a search term may occur in many different forms, e.g., in regional spelling, as an
inflected word form, etc. That is why their normalization requires sophisticated mor-
phological techniques such as recognition of spelling variants and mapping of in-
flected forms onto their respective base forms.

It is crucial that such techniques are based on large dictionaries – the quality of the
analysis is directly proportional to the size and quality of the dictionary. But however
large a dictionary database may be, in languages like German new words are created
every single day through word composition and word derivation. Therefore, we do
not only need large dictionaries, but also rules that cover these highly productive
word formation processes (see [8]). We need tools for the decomposition of unknown
complex words into known word elements. By “unknown word” we mean a word
form not contained in the underlying dictionary database, i.e., a word form that cannot
be recognized directly.

If these tools provide additional grammatical information, which, in a language
like German, is deducible from the known base components, the quality of the mor-
phological analysis can be enhanced even further. This paper describes morphological

 Morphological Analysis Using Linguistically Motivated Decomposition 109

tools that handle the recognition of words that are not contained in the dictionary by
using techniques of controlled word decomposition.

1.1 Word Manager Dictionary Database

The underlying dictionary database is Word Manager (WM), a system for the specifi-
cation, use and maintenance of morphological dictionary databases as described in [4]
and [6]. A WM database describes the morphology of a language by means of com-
prehensive sets of rules for inflection and word formation (and spelling). Dictionary
entries are specified by assigning a word stem to an inflection rule that generates their
entire inflectional paradigm. If they are morphologically complex, they are assigned
to a word formation rule. Word formation rules create new lexemes by combining
existing lexemes with each other or with word formation affixes into a new stem,
which is then assigned to a specific inflection rule. Therefore, for each lexeme con-
tained in a WM database all inflected word forms are known and, if applicable, also
how it has been created.

The WM database for German currently contains more than 250.000 entries. 89%
of these entries are morphologically complex, i.e., composed of or derived from the
11% of base entries. This illustrates not only the highly generative character of the
German language but also the potential of exploiting word formation rules.

1.2 WMTrans Finite State Transducers

To deploy WM dictionary databases within applications that need morphological
information, the lexicon entries are compiled into finite state transducers (WMTrans).
The production of WMTrans Finite State Transducers for Word Manager data is
carried out by the WMTrans Finite State Transducer Framework: based on a specifi-
cation of the target transducer’s input and output, the corresponding transducer is
generated automatically. A whole range of WMTrans products have been and can be
developed: recognizers, lemmatizers, analyzers and generators for inflection and word
formation, and combinations of them, for different vocabulary sizes.

2 Analysis of Unknown Words through Controlled
Decomposition

2.1 The Unknown Word Transducers

The Unknown Word Transducers are derived from the WM dictionary database de-
scribed above. The word formation rules used in WM to create new entries are, so to
speak, applied reversely for the analysis of unknown words: Since these word forma-
tion rules define how word stems and affixes may be combined into new words, they
can also be used to split up unknown strings into grammatically correct combinations
of known stems and affixes.

However, if one simply applies the whole set of WM word formation rules with all
WM entries, the analysis of unknown words tends to result in far to many, and worse,
inadmissible decompositions. Within the framework of the Unknown Word Trans-
ducers, the analysis is carried out in a controlled environment containing the follow-
ing elements:

110 S. Bopp and S. Pedrazzini

• a set of word formation rules and affixes,
• a set of admissible base words,
• a set of postfilters for the elimination of incorrect analyses.

These elements are applied in the following order:

• recognition of known words, i.e., words contained in the WM dictionary
• application of the word formation rules with the set of admissible base words
• application of postfilters

Figure 1 illustrates the data generation for the Unknown Word Analyzer and the text
processing at runtime.

Fig. 1. Data Generation for the Unknown Word Analyzers (left) and runtime analysis (right)

2.2 Defining the Set of Word Formation Rules and Affixes

The generation history of the more than 250.000 entries in the WM dictionary as well
as a large text corpus analysis were at the basis of the selection of the most relevant
word formation rules and affixes. Out of almost 500 rules (counting each affix as one
rule) only about 150 were chosen:

• Unproductive rules and affixes forming only few words were excluded, assum-

ing that no (or hardly any) new words are likely to be formed with them; e.g.,
the noun-forming suffix e (Stärke, Schwäche, Härte, Größe).

• Some rules and affixes were excluded because their rate of undesired analyses is
much higher than their rate of correct results. Examples include the adjective
forming suffix -[e]n (golden, silbern, graniten) and all word formation rules for
conversion (zero-derivation; e.g., adjective-to-verb conversion: dicht/dichten,
sicher/sichern).

 Morphological Analysis Using Linguistically Motivated Decomposition 111

• Word formation rules are not allowed to be applied recursively, i.e., only one
word formation rule may be applied for the segmentation of a string. Exceptions
are some of the most productive combinations of word formation rules. For exam-
ple, it is allowed to apply two rules for German noun+noun-compounding for the
segmentation of a string: “Hausbeleuchtungsmonteur” = [[Haus+Beleuchtung]
+s+Monteur].

2.3 Defining the Set of Admissible Base Words

The set of admissible word forms contains all strings that may be used for the seg-
mentation of unknown strings. Excluding irrelevant base words on different levels can
reduce the number of undesired analyses:

• Exclusion of word classes: only nouns, adjectives, verbs and adverbs are al-
lowed, i.e., all other word classes are excluded.

• Exclusion of lexemes: entire lexemes with all their inflected word forms are ex-
cluded, e.g., the uncommon noun “Lichen” (lichen, in the sense of a disease)
because it is homonymous with inflected forms of the diminutive suffix -lich.

• Exclusion of word forms: specific word forms are excluded, e.g., certain stems
of irregular verbs which are homonymous with nouns: “schloss”, “spross”,
“zwang”.

• Exclusion of graphical forms: all two and three letter words are excluded except
for the most common ones like e.g., “Ei”, “Öl”, “See”, “neu”.

2.4 Deleting Undesired Results

The introduction of the prefilters described above reduces significantly the number of
inadmissible decompositions, but the restricted sets of relevant Word Formation rules
and admissible base words still produce some wrong and undesired results. Many of
them are intercepted and deleted by postfilters. By means of the result string, the word
formation rule applied, and other information, a postfilter defines which (types of)
results are cancelled from the list of analyses.

Example 1: German nouns ending in -heit are always followed by the linking element s
when in first position of a compound. A postfilter deletes all analyses that do not meet
this condition. Therefore, only the first result of the analysis of Gesundheitsorte is
passed on to the final list of results: 1) “Gesundheit+s+orte”; 2) “Gesundheit+sorte”.

Example 2: The adverb gratis may only be combined with nouns. A postfilter only
accepts compounds with gratis in first position if the word in second position is a
noun: “gratis+lieferung” (free delivery) is accepted, “gratis+geliefert” (delivered free
of charge) is rejected. The latter must be written in two words. In this manner, postfil-
ters can also be used for spell checking of unknown words. See paragraph 3.2.

112 S. Bopp and S. Pedrazzini

2.5 Results of the Analysis

It is possible to customize the output of the Unknown Word Transducers to the needs
of specific client applications. It contains any, a combination, or all of the following
types of information for every analyzed word:

• citation form (infinitive of verbs, nominative singular of nouns, etc.)
• word class (noun, adjective, verb, etc.)
• word form features (number, case, person, etc.)
• inflection class
• segmentation (the segments are separated by a + sign)
• word formation rule applied
• citation form and word class of the base lexemes used for the segmentation

Table 1. Possible analyzer output for query “Gesundheitsortes” (health place, i.e., health spa)

Query: Gesundheitsortes
Cit-Form: Gesundheitsort

Grammatical Features: (Cat N)(Gender M)(Num Sing)(Case Genitive)
Inflection Rule: RIRule N-Regular es/e

Segmentation: gesunheit+s+ortes
Word Formation Rule: WFRule Compounding N-Compound N+s+N

Base Elements: Gesundheit (Cat N)
s (WFCat Linking-Element)
Ort (Cat N)

Note that the results of this controlled decomposition of non-lexicalized words

contain more than “only” the citation form and the word-class of the analyzed word
plus an indication of the base elements. They also provide detailed information on the
inflection class of the analyzed lexeme, which word formation process has formed it,
and the grammatical features of the initially unknown word form encountered in the
input text.

The inflection information delivered as a part of the result of the analysis also al-
lows to generate the whole inflection paradigm of the recognized word.

3 Current Implementation of the Unknown Word Analyzers

The implementation of the Unknown Word products has been realized through a
combination of finite state machines (FSMs). The information needed is derivable
from the WM database. It consists of:

• complete inflection paradigms for lexicalized words, i.e., all inflected word
forms of the words contained in the WM database,

• information about stems, endings and orthographical surface variants,
• word formation elements such as affixes and linking elements,
• word formation rules describing the derivation and word formation processes

for German, English and Italian.

 Morphological Analysis Using Linguistically Motivated Decomposition 113

3.1 The Finite State Components

The information mentioned above is translated into optimized regular expressions and
then distributed to three finite state components:

• Inflection transducer: This is the tool for the analysis of known word. It en-
sures high processing speed by avoiding unnecessary segmentation and analy-
sis. It also maps the segments detected during the unknown word analysis to
lexicalized words.

• Surface finite state automaton: This automaton codes all possible word
elements specified in the WM dictionary. It contains all stems with their
orthographical variants as well as all word formation elements (affixes, link-
ing elements). It segments an unknown string and then outputs a list of all
possible segmentations.

• Word formation rules transducer: This transducer handles the information on
word formation rules. It matches the segmentations delivered by the surface fi-
nite state automaton to a specific word formation rule. By means of these rules
is also computes specific features of the analyzed word, i.e., its word class for
the Unknown Word Lemmatizer, its grammatical features for the more sophisti-
cated Unknown Word Analyzer, as well as the new citation form.

These finite state components are integrated in the Unknown Word applications. The
output of the surface finite state automaton is used as input for the analysis of the
word formation rules transducer.

In some cases, the output of the surface finite state automaton consists of a long list
of segmentations. In order to reduce the set of segmentations and to improve the per-
formance of the process, some heuristics are applied before the segmentations are
passed on to the word formation rule transducer. One heuristic determines that the
segmentation with the smallest number of segments is the most likely one to be cor-
rect. For example:

Of the two detected segmentations of Gründungskapital only the one with fewer
segments is passed on for further analysis: “gründung+s+kapital” (initial capital liter-
ally foundation capital) vs. “grün+dung+s+capital” (green manure capital).

Exceptions to this general heuristic are frequent with compounds containing link-
ing elements. These exceptions are handled by another heuristic:

Both of the segmentations of Examenstage are possible words and therefore passed
on for further analysis: “examen+stage” (examination apprenticeship) and “ex-
amen+s+tage” (examination days).

3.2 Processing Levels

Two different processing levels handle the recognition of unknown words:

Data Generation Level: As shown above, the word formation data is generated by
means of the Word Manager authoring tool that allows us to tune the word formation
rules and base elements needed for the Unknown Word Analyzer. Fine-tuning is

114 S. Bopp and S. Pedrazzini

based on cycles of rule selection and analysis of a text corpus of several millions of
words. Through prefiltering (see paragraphs 2.2 and 2.3), many elements that are
irrelevant for unknown word recognition can be identified and eliminated.

Runtime Level: Undesired decompositions occurring in spite of the prefiltering are
eliminated by postfilters (see paragraph 2.4) at runtime. The framework provides a
full range of possibilities for the definition of filters necessary to maximize the preci-
sion of word analysis:

• On the level of the segmentation, defined as regular expression. Example: De-
lete all analyses with the segmentation “*ung + los” (nouns ending in -ung
obligatorily take s when combined with the suffix –los. See below for a more
precise filter definition)

• On the level of the word formation rule. Example: Delete all results with
(WFRule Adv+Adj) and the segmentation “gratis + *”.

• On the single component level. Example: Delete all results “*ung + los”, if
the first element is a noun, has a citation form “*ung”, and inflects with the in-
flection class -/e.

It is also possible to use postfilters for the spell checking of unknown words. We use
postfilters in particular for composed and derived words that were affected by the
German spelling reform. The filters deal with cases like words written in one or two
words (old: spazierengehen – new: spazieren gehen) and orthographic changes related
to word formation (old: Schnellieferung – new: Schnelllieferung). In these cases, the
postfilters add relevant spelling information to the matching results instead of simply
deleting them. The postfilters are specified in XML and read at load time.

Table 2. Sample Analyses of complex words using the Unknown Word Lemmatizer and Analyzer

Query Result using WMTrans
Unknown Word Lemmatizer

Result using WMTrans Unknown
Word Analyzer

hingekrochen Cit-Form: hinkriechen
Class: verb

Cit-Form: hinkriechen
Class: verb
Form: past participle
Segmentation: hin+gekrochen
WFRule: Derivation.V-To-V.Prefixing
hin = prefix
kriechen = verb

aggressionsfreieres Cit-Form: aggressionsfrei
Class: adjective

Cit-Form: aggressionsfrei
Class: adjective
Form: degree comparative, -es
Segmentation: aggression+s+freieres
WFRule: Compounding. N+A.N+s+A
Aggression = noun
s = linking element
frei = adjective

 Morphological Analysis Using Linguistically Motivated Decomposition 115

3.3 Unknown Word Products and Their Output

We have developed three different types of products for the analysis of unknown
Words: Recognizers, Lemmatizers and Analyzers. A public Java API allows the inte-
gration of all these products into other programs.

• The Unknown Word Recognizer indicates whether or not an input string is a
known word form or a possible correct ad hoc word form.

• The Unknown Word Lemmatizer provides additional information on citation
form and word class.

The Unknown Word Analyzer delivers a full range of (parameterizable) information
on grammatical features, inflection class, word formation rule applied, segmentation,
base words with their word class(es).

3.4 Recognition Rates

We used our Unknown Word Lemmatizer for the analysis of a test corpus containing
several millions of words. The test corpus includes a broad range of text types, i.e.,
fiction, newspaper texts, scientific and technical documents. The current version of
the Unknown Word Lemmatizer recognizes an average of 95.4% of words occurring
in the test corpus. Most of the words belonging to the 4,6% of unknown words are
proper names, foreign words in quotes and uncommon technical terms. While the
results are significantly above average for common descriptive writings, they are
lower for technical reports and short newspaper articles containing more proper
names and foreign language quotes.

Table 3 shows a comparison between the WMTrans Lemmatizer, recognizing only
lexicalized words, and the WMTrans Unknown Word Lemmatizer, which recognizes
both lexicalized and non-lexicalized words. The table shows that the range of
unknown words can be reduced by up to 77% if controlled word decomposition is
applied.

Table 3. Remaining Unrecognized Words [not] using Unknown Word Recognition1

Text Type

WMTrans
Lemmatizer

WMTrans
Unknown Word
Lemmatizer

Avantgarde 7.3% 4.4%
Die Zeit 7.5% 4.4%
Science 1 16.5% 3.8%
Science 2 14.7% 6.3%
NZZ 9.1% 3.5%
Medical 17.2% 8.1%
Der Spiegel 10.3% 4.8%
Vop 6.4% 1.8%

1 The percentage of unknown words includes proper names, foreign words, etc.

116 S. Bopp and S. Pedrazzini

4 Further Steps

We plan further recognition strategies for our Unknown Word Analyzers, always
considering the important trade-off between improvement of recognition rate and
avoidance of over-recognition.

In the current version, if one segment is not recognized, the whole compound word
is rejected (not recognized). There are, however, special cases where it is clear which
parts are known and which are not known: words written with a hyphen like the word
Schönheits-Contest (considering Contest as unknown). Here, we could enhance the
Unknown Word Analyzers in such a way that it is able to analyze this type of ”semi-
known” compounds and deliver a meaningful result.

Recognizing such an element when written in one word without a hyphen has
turned out to be a big cause of over-recognition. Some heuristics in this context are
needed and are currently under study.

Table 4. Analysis of words with hyphen, with an unknown segment

Query Explanation Analysis
Schönheits-
Contest

Only the first element
is recognized, the
second is considered
unknown

Schönheits-Contest
Schönheit = (Cat N)...
s = Linking-Element
Contest = unknown
Schönheits-Contest = Unknown Compound (with
Element “Schönheit”)

Contest-
Gewinners

The second element is
known, the first
element is unknown

Contest = unknown
Gewinner = (Cat N)(Gender M)(Num SG)(Case
Genitive)(CompElement 2)
Contest-Gewinners = (Cat N)(Gender M)(Num
SG)(Case Genitive)

5 Conclusion

This paper has shown that morphological analysis of German can be significantly im-
proved by the integration of tools for the decomposition of unknown words based on
word formation rules and filtering techniques. Not only the number of recognized
words increases considerably, but also the quality of the information that can be pro-
vided for initially “unknown” words. An interesting added feature consists in the
possibility to generate the entire paradigm of the recognized “unknown” words.

The analyzers are available as WMTrans products that support most of the com-
mon platforms. The product range includes morphological components for English
and Italian. WMTrans products are being used by private enterprises as well as public
institutions in diverse domains such as content managing, product cataloguing, con-
struction of electronic dictionaries (e.g., [9]), references in online dictionaries (e.g.,
[3, 7, 11]), and e-learning projects (e.g., [1, 5]). The search function in the online
German language site Canoo.net ([2]) is another application that is based on
WMTrans Unknown Word products.

 Morphological Analysis Using Linguistically Motivated Decomposition 117

References

1. Abel, A.: ELDIT (Elektronisches Lernerwörterbuch Deutsch-Italienisch) und elexiko: Ein
Vergleich. In: Klosa, A. (ed.) Lexikografische Portale im Internet (= OPAL-Sonderheft
1/2008, hrsg. vom Institut für Deutsche Sprache Mannheim), pp. 175–189. Mannheim
(2008)

2. Canoo.net: German dictionaries and grammar, http://www.canoo.net
3. DIX: Deutsch-Spanisch Wörterbuch, http://dix.osola.com/
4. Domenig, M., ten Hacken, P.: Word Manager: A System for Morphological Dictionaries.

Georg Olms Verlag, Hildesheim (1992)
5. Eldit: http://www.eurac.edu/eldit
6. ten Hacken, P., Domenig, M.: Reusable Dictionaries for NLP: The Word Manager Ap-

proach. Lexicology 2, 232–255 (1996)
7. Leo, http://dict.leo.org
8. Lüdeling, A., Fitschen, A.: An Integrated Lexicon for the Analysis of Complex Words. In:

Proceedings of EURALEX 2002, Copenhagen (2002)
9. OWID: elexico, http://www.owid.de/elexiko_/index.html

10. Pedrazzini, S.: Periphrastic Inflection Clustering for Term Extraction. In: Proceedings of
the Seventh International Symposium on Communication and Applied Linguistics, Edito-
rial Oriente, Santiago de Cuba (2001)

11. Pons: Das Online-Wörterbuch in fünf Sprachen, http://www.pons.eu

Corpus-Based Lexeme Ranking for Morphological
Guessers

Krister Linden and Jussi Tuovila

University of Helsinki, Helsinki, Finland

Abstract. Language software applications encounter new words, e.g., acronyms,
technical terminology, loan words, names or compounds of such words. To add
new words to a morphological lexicon, we need to determine their base form and
indicate their inflectional paradigm. A base form and a paradigm define a lex-
eme. In this article, we evaluate a lexicon-based method augmented with data
from a corpus or the internet for generating and ranking lexeme suggestions for
new words. As an entry generator often produces numerous suggestions, it is im-
portant that the best suggestions be among the first few, otherwise it may become
more efficient to create the entries by hand. By generating lexeme suggestions
with an entry generator and then further generating some key word forms for the
lexemes, we can find support for the lexemes in a corpus. Our ranking methods
have 56–79% average precision and 78–89% recall among the top 6 candidates,
i.e., an F-score of 65–84%, indicating that the first correct entry suggestion is
on the average found as the second or third candidate. The corpus-based rank-
ing methods were found to be significant in practice as they save time for the
lexicographer by increasing recall with 7–8% among the top candidates.

1 Introduction

New words are constantly finding their way into daily language use. This is particu-
larly prominent in rapidly developing domains such as biomedicine and technology.
The new words are typically acronyms, technical terminology, loan words, names or
compounds of such words. They are likely to be unknown by most hand-made morpho-
logical analyzers. In many applications, hand-made guessers are used for covering the
low-frequency vocabulary or the strings are simply added as such.

Mikheev [1,2] pointed out that words unknown to the lexicon present a substan-
tial problem for part-of-speech tagging, and he presented a very effective supervised
method for inducing English guessers from a lexicon and an independent training cor-
pus. Oflazer et al. [3] presented an interactive method for learning morphologies and
pointed out that an important issue in the wholesale acquisition of open-class items is
that of determining which paradigm a given citation form belongs to.

Recently, unsupervised acquisition of morphologies from scratch has been studied
as a general problem of morphology induction in order to automate the morphology

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 118–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Corpus-Based Lexeme Ranking for Morphological Guessers 119

building procedure. For overviews, see Wicentowski [4] and Goldsmith [5]. If we do
not need a full analysis, but only wish to segment the words into morph-like units, we
can use segmentation methods like Morfessor [6]. For a comparison of some recent
successful segmentation methods, see the Morpho Challenge [7].

Although unsupervised methods have some advantages for less-studied languages,
for the well-established languages, we have access to fair amounts of lexical train-
ing material in the form of analyses in the context of more frequent words. Espe-
cially for Germanic and Finno-Ugric languages, new words tend to be compounds of
acronyms and loan words with existing words. For these languages, there are already
large-vocabulary descriptions available. In English, compound words are written sep-
arately or the junction is indicated with a hyphen, but in other Germanic languages
and in the Finno-Ugric languages, there is usually no word boundary indicator within a
compound word. It has previously been demonstrated by Lindén [8] that already train-
ing sets as small as 5000 word forms and their manually determined base forms will
give a reasonable result for guessing base forms of new words by analogy. The exper-
iments were performed on a set of languages representing different language families,
i.e., English, Finnish, Swedish and Swahili.

In addition, there are a host of large but shallow hand-made morphological descrip-
tions available, e.g., the Ispell collection of dictionaries [9] for spell-checking purposes,
and many well-documented morphological analyzers are commercially available, e.g.,
[10]. It has also been demonstrated by Lindén [11] that there is a simple but efficient
way to derive an entry generator from a full-scale morphological analyzer implemented
as a finite-state transducer. Such an entry generator can be used as a baseline for more
advanced entry guessing methods.

Using the entry generator developed by Lindén [11], we can generate lexeme candi-
dates, i.e., base form and paradigm combinations, for new words with the entry gener-
ator and then further generate key word forms for the lexeme candidates. Using these
lexeme candidates with key word forms, a person with native skills can select the cor-
rect entry for a new word. With this method, we encoded a set of words based on an
open source dictionary project with a different encoding scheme than ours1. We se-
lected all the words that were unknown to our lexicon and used the entry generator to
encode the new words according to the guidelines of The Research Institute for the Lan-
guages of Finland [12] used in our lexicon. The reclassification took approximately 20
hours of work during which a list of 11026 new entries was created. As the words had
been categorized, we were able to take advantage of the existing categories to guide the
process, but a number of systematic mismatches and ambiguities between the two en-
coding schemes exist. The work was a considerable speed-up compared to hand-coding
the words from scratch, but manually disambiguating between lexeme candidates is
still tedious work, and it motivated the current research to find additional methods for
speeding up the encoding task.

In this article, we propose and evaluate new methods for ranking lexeme suggestions
for a word form of a new word by generating lexeme candidates, i.e., base form and
paradigm combinations, with an entry generator and then further generating key word

1 http://joukahainen.puimula.org/

120 K. Linden and J. Tuovila

forms2 for the lexeme candidates in order to find support for the lexemes in a corpus
to weed out irrelevant lexeme suggestions. In section 2, we outline the directly related
previous work. In section 3, we describe the new methods. In section 4, we present the
training and test data. In section 5, we evaluate the model. In section 6, we discuss the
method and the test results in light of the existing literature and some similar methods.

2 Lexicon-Based Entry Generator

To create entries for a morphological analyzer from previously unseen words and word
forms, we need an entry generator. Ideally, we can use information that is already avail-
able in some existing morphological description to encode new entries in a similar
fashion. Below, we briefly outline a general method for creating lexicon-based entry
generators that was introduced by Lindén [11]. In his article, Lindén demonstrates that
the method works well for English, Finnish and Swedish.

Assume that we have a finite-state transducer lexicon T which relates base forms,
b(w) , to word forms, w . Let w belong to the input language LI and b(w) to the output
language LO of the transducer lexicon T . Our goal is to create an entry generator for
word forms that are unknown to the lexicon, i.e., we wish to provide the most likely
base forms b(u) for an unknown input word u. In order to create an entry generator, we
first define the left quotient and the weighted universal language with regard to a lexical
transducer. For a general introduction to automata theory and weighted transducers, see
e.g., [13].

We can regard the left quotient as the set of postfixes of L1 that complete words from
L2 such that the resulting word is in L1 . If L1 and L2 are formal languages, the left
quotient of L1 with regard to L2 is the language consisting of strings w such that xw is
in L1 for some string x in L2 . Formally, we write the left quotient as in (1).

L1\L2 = {a|∃x((x ∈ L2)(xa ∈ L1))} (1)

If L is a formal language with alphabet Σ , a universal language, U , is a language con-
sisting of strings in Σ∗. The weighted universal language, W , is a language consisting
of strings in Σ∗ with weights p(w) assigned to each string. For our purposes, we define
the weight p(w) to be proportional to the length of w. We define a weighted universal
language as in (2).

W = {w|∃w(w ∈ Σ∗)} (2)

with weights p(w) = C|w|, where C is a constant.
A finite-state transducer lexicon, T , is a formal language relating the input language

LI to the output language LO. The pair alphabet of T is the set of input and output
symbol pairs related by T . An identity pair relates a symbol to itself.

2 In highly inflecting languages like Finnish, it is not feasible to generate all word forms of a
paradigm, as a noun can have more than 2000 word forms and a verb more than 10000 forms.
A paradigm can be identified by a small set of inflected forms. This strategy is often used in
lexicons intended for language learners to identify or illustrate verb paradigms for irregular
verbs, e.g., in Romance or Germanic languages.

Corpus-Based Lexeme Ranking for Morphological Guessers 121

We create an entry generator, G, for the lexicon T by constructing the weighted
universal language W for identity pairs based on the alphabet of L1 concatenating it
with the left quotient of T with regard to the universal language U of the pair alphabet
of T as shown in (3).

G(T) = WT\U (3)

Lindén [11] proves that it is always possible to create an entry generator, G(T) =
WT\U , from a weighted lexical transducer T .

The model is general and requires no information in addition to the weighted lexicon
from which the entry generator is derived. Therefore Lindén suggests that it be used
as a baseline for other entry generator methods. For a sample output from the entry
generator, see table 1.

3 Corpus-Based Lexeme Ranking

Assume that we have a morphological entry generator that generates a set of base form
and paradigm combinations for out-of-vocabulary word forms. Each base form and
paradigm combination defines a lexeme. In order to automatically score the lexemes
suggested by the entry generator, we generate key word forms of the lexemes and look
for the word forms in a corpus. Generally a lexeme whose key word forms are well-
attested, i.e., many forms are in use and each form is used repeatedly, is more likely
to be correct than a lexeme whose key word forms cannot be found or have only a
few documented instances. Rare forms may even be spelling errors. By scoring all the
lexemes provided by the entry generator, we can order the lexemes in descending order
of support.

We have an unknown word form, w, for which we generate a set of lexeme candidates
U = {l1, l2, l3, . . . ln}. Each lexeme candidate, li, is defined by its set of word forms, from
which we choose a set of key word forms, Ki = {k1,k2,k3, . . .km}, for scoring support
of the lexeme.

We define a method for scoring the possible lexemes of an unknown word form by
defining the probability, P(li|w), of a lexeme, li, when given an unknown word form, w.
Since we cannot directly estimate the conditional probability of a lexeme with regard to
a word form from a corpus of running text, we use Bayes’ rule as in (4) to reformulate
the conditional probability.

P(li|w) =
P(li,w)
P(w)

=
P(w|li)∗P(li)

P(w)
(4)

The most likely lexeme l is provided by (4) by finding the li which maximizes the
equation, in which P(w) can be regarded as a constant. We then get (5) for l.

l = argmax
li

P(w|li)∗P(li) (5)

We have P(w|li) which is the probability of the original word form for a lexeme can-
didate, i.e., the probability that w is an inflected form of a lexeme candidate li, and
the probability P(li) of the lexeme in a large corpus. As a lexeme is defined by its set

122 K. Linden and J. Tuovila

of word forms, the probability of a lexeme in a corpus is the sum of the probabilities
of its word forms in the corpus. We simplify the equation by assuming that the key
word forms of a lexeme are sufficient to estimate the probability of the lexeme with
the remaining word forms contributing a negligible constant addition, i.e., for a highly
inflecting language, the key word forms should be chosen so that they represent a sig-
nificant portion of the probability mass of the word forms of the lexeme. We sum over
the key word forms and get (6),

l = argmax
li

∑
k∈Ki

P(w|li)∗P(k, li), (6)

where P(k, li) is the probability that a word form k belongs to lexeme li. To further sim-
plify the equation, we assume that the conditional probability of the original word form
in a suggested lexeme P(w|li) is constant for our purposes, as no lexemes are suggested
in which w could not appear as some inflected form, even if it may not be among the
key word forms3. As a consequence of the assumption, the most likely lexeme l only
depends on the innermost term of our equation, which further simplifies to (7).

l = argmax
li

∑
k∈Ki

P(k, li), (7)

To find the most likely lexeme, l, it is necessary to estimate the joint probability P(k, li)
that a key word form k co-occurs with lexeme li in a corpus.

3.1 Estimating Lexeme Likelihoods

In order to determine the likelihood that a word form co-occurs with a lexeme, we will
look at three different methods for estimating this likelihood from a corpus. All three
methods essentially regard the lexemes as small documents and the intention is to rank
the documents, i.e., the lexemes, by their support in the corpus.

Key Word Indicator. The most basic method assumes that all key word forms are
equally likely to appear in a lexeme. We define an indicator, I(k), which is 1 or 0 de-
pending on whether the word form k appears in the corpus or not. We call the basic
method the key word indicator scoring and defined it in (8).

P(k, li) =
I(k)
|Ki| , (8)

3 The even distribution of word forms in a lexeme is an oversimplification seemingly contra-
dicting our previous assumption about key word forms representing the core probability mass.
For consistency, we should have exploited the fact that a word form w, which is not among the
key word forms, is relatively infrequent in the suggested lexeme by giving the lexeme a lower
probability. In practice, we could have taken it into account, e.g., by filtering out lexeme sug-
gestions that did not contain the original word form w among the key word forms effectively
giving such lexeme suggestions 0 probability.

Corpus-Based Lexeme Ranking for Morphological Guessers 123

where |Ki| is the number of key word forms that we investigate4 for the lexeme li.
If we always considered the same number of word forms for each lexeme, |Ki| could
be ignored. For some languages, it may be possible to look at all the word forms of
a lexeme, but for some highly inflecting languages it is practical to use only a few
key word forms for each lexeme. The number of key word forms may depend on the
paradigm of the lexeme or even on the competing lexeme candidates in which case |Ki|
is needed as a normalizing factor.

Key Word Frequency. In order to better take into account the fact that a frequent
word form is more significant for a lexeme than an infrequent one, which may even
be a spelling error, we also consider the frequency, F(k), of a word form k. However,
it is unlikely that the importance of a word form is directly proportional to the fre-
quency, so we consider the logarithm of the frequency. In addition, we need to smooth
the frequency function by adding one, which creates a frequency scoring that mimics
the indicator function for zero frequency key words, where log(1) = 0 and grows mono-
tonically for larger frequencies. We thereby get a scoring method defined in (9) that is
a variation of the term frequency for documents in information retrieval. We call this
method the key word frequency scoring.

P(k, li) =
log(F(k))
|Ki| ∗C

, (9)

where C is a normalizing constant proportional to the logarithm of the number of tokens
in the corpus. The constant has no effect on the ranking, but it serves to normalize the
scoring into a probability distribution.

Key Word Frequency with Inverse Lexeme Frequency. A word form k may simul-
taneously belong to the set of word forms Ki of several candidate lexemes li. To take
into account the distinctiveness of each key word form, we calculate a score similar to
the inverse document frequency in information retrieval. The inverse lexeme frequency,
il f (k), is equal to the logarithm of the number of lexeme candidates, n, divided by the
number of candidates |k ∈ Ki| in which k is a key word form. The distinctiveness score
or the inverse lexeme frequency of a key word form is defined in (10).

il f (k) = log
n

|k ∈ Ki| , (10)

The key word frequency method is scaled with the distinctiveness score to yield (10).
We call this method the key word frequency with inverse lexeme frequency scoring.

P(k, li) =
log(F(k))
|Ki| ∗C

∗ il f (k), (11)

4 The connection with the joint probability P(k, li) is not obvious in the formula, however, the
same key word form may affect two lexemes differently, e.g., the English word form works can
be seen as one out of four forms of a verb but as one out of two forms of a noun contributing
a different probability mass to each of the lexemes.

124 K. Linden and J. Tuovila

The scoring methods can be used with any data that reflects the occurrences of key
words. Although we refer to the source of word frequency data as a corpus, the method
can be used with other data sources as well. As is described in section 5, we have suc-
cessfully tested the methods using both corpus material and page frequencies returned
by a web search engine. In theory, the scoring methods should work with any data
source that reflects the occurrence of words in language use.

4 Training and Test Data

To test our methods for corpus-based ranking of lexemes generated by a lexical entry
generator, we use the entry generator for Finnish created by Lindén [11] and imple-
mented with the Helsinki Finite-State Technology tools [14]. In 4.1, we briefly describe
the lexical resources used for the finite-state transducer lexicon, which was converted
into an entry generator.

Words unknown to the lexicon were drawn from a language-specific text collection.
The correct entries for a sample of the unknown words were manually determined. In
4.2, we describe the text collections and, in 4.3, the samples used as test data. In 4.4,
we describe the evaluation method and characterize the baseline.

4.1 Lexical Data for the Transducer Lexicon and Entry Generator

Lexical descriptions relate look-up words to other words and indicate the relation be-
tween them. A morphological finite-state transducer lexicon relates a word in dictionary
form to all of its inflected forms. For an introduction, see e.g., [15].

Our current Finnish morphological analyzer was created by [16] based on the Finnish
word list Kotimaisten kielten tutkimuskeskuksen nykysuomen sanalista [12], which con-
tains 94110 words in base form. Of these, approximately 43000 are non-compound
base forms with paradigm information. The word list consists of words in citation form
annotated with a paradigm and possibly a gradation pattern. There are 78 paradigms
and 13 gradation patterns. For example, the entry for käsi ’hand’ is käsi 27 referring to
paradigm 27 without gradation, whereas the word pato ’dam’ is given as pato 1F indi-
cating paradigm 1 with gradation pattern F. From this description, a lexical transducer
is compiled with a cascade of finite-state operations. For nominal paradigms, i.e., nouns
and adjectives, inflection includes case inflection, possessive suffixes and clitics creat-
ing more than 2000 word forms for each nominal. For the verbal inflection, all tenses,
moods and personal forms are counted as inflections, as well as all infinitives and par-
ticiples and their corresponding nominal forms creating more than 10000 forms for each
verb. In addition, the Finnish lexical transducer also covers nominal compounding.

This finite-state transducer lexicon was converted into an entry generator using the
procedure outlined in section 2.

4.2 Data Collections for Word Counts

To test the general applicability of our scoring methods, we decided to use two different
data sources. The first data source is a large text data collection of Finnish and the

Corpus-Based Lexeme Ranking for Morphological Guessers 125

second data source is the generally available search engine Google restricted to Finnish
documents, which represents an even larger text collection.

The first data source is the Finnish Text Collection, which is an electronic document
collection of the Finnish language. It consists of 180 million running text tokens. The
corpus contains news texts from several current Finnish newspapers. It also contains
extracts from a number of books containing prose text, including fiction, education and
sciences. Gatherers are the Department of General Linguistics, University of Helsinki;
The University of Joensuu; and CSC Scientific Computing Ltd. The corpus is available
through CSC [www.csc.fi]. We used this text collection to provide frequency counts of
word forms.

The second data source, i.e., Google on Finnish documents currently5 indexes ap-
proximately 152 million documents, which provided the document counts, i.e., they are
not direct word frequency counts, but the word frequency is of course reflected in the
number of documents that the word appears in.

4.3 Test Data Collections

To test how well the scoring methods are able to rank the best lexeme among the top
lexeme candidates for a new and previously unseen word, we used two different test
word collections, for which the correct base form and paradigm combinations had been
determined manually.

To test the methods, we used the test data collection developed by Lindén [11], which
is a set of word forms drawn from the Finnish Text Collection. In order to extract word
forms that represent relatively infrequent and previously unseen words, 5000 word and
base form pairs had been drawn at random from the frequency rank 100001–300000. To
get new words, only word forms that were not recognized by the lexical transducer were
kept. However, from this test data, strings containing numbers, punctuation characters,
or only upper case characters were also removed, as such strings require other forms
of preprocessing in addition to some limited morphological analysis. Of the randomly
selected strings, 1715 represented words not previously seen by the lexical transducer.
For these strings, correct entries were created manually. Of these, only 48 strings had
a verb form reading. The rest were noun or adjective readings. Only 43 had more than
one possible reading.

A sample of the word forms from the first data set are: ulkoasultaan ’of its ap-
pearance’, kilpailulainsäädännön ’legal framework on competition’, epätasa-arvoa ’in-
equality’, euromaan ’of a country using the euro’, työvoimapolitiikka ’labor policy’,
pariskunnasta ’according to the married couple’, vastalausemyrskyn ’of the objection
storm’, liioitellun ’of the exaggerated’, ruuanlaiton ’of the cookery’, valtaannousun ’of
the ascent to power’, suurtapahtumaan, ostamiaan ’the ones that they bought’, . . .

In table 1, we see an example of the word form ulkoasultaan and the suggested base
forms and paradigms as they have been generated by the entry generator and expanded
with key word forms in order for a scoring method to determine the best lexeme for a
morphological entry.

Using the entry generator developed by Lindén [11], we developed a larger second
test data collection based on the words of the Finnish open source dictionary project

5 February, 2009 by searching for ja ’and’ in Finnish documents.

126 K. Linden and J. Tuovila

Joukahainen6. We selected the words in the Joukahainen word list that were not in-
cluded in the lexical data for the Finnish entry generator. Based on the existing lexical
encoding of the Joukahainen project and the entry generator, the new words were en-
coded according to the guidelines of The Research Institute for the Languages of Fin-
land [12] used in the entry generator. A list of 11026 new entries was created as test
data. As the data came from an open-source word-list project, the words were all in
base form.

Table 1. Word form ulkoasultaan ’of its appearance’ and the key word forms of the lexemes
suggested by the entry generator. The English glosses are added in the table for readability.

ulkoasu 1 noun ’appearance’
ulkoasu ulkoasun ulkoasua ulkoasuun ulkoasut
ulkoasujen ulkoasuja ulkoasuihin

ulkoasu 2 noun ’appearance’
ulkoasu ulkoasun ulkoasua ulkoasuun ulkoasut
ulkoasujen∼ulkoasuitten∼ulkoasuiden
ulkoasuja∼ulkoasuita ulkoasuihin

ulkoasullata 73 I verb ’to stuff from the outside’
ulkoasullata ulkoasultaan ulkoasultasi ulkoasultaisi
ulkoasullannee ulkoasullatkoon ulkoasullannut ulkoasullattiin

ulkoasu 21 noun ’appearance’
ulkoasu ulkoasun ulkoasuta ulkoasuhun ulkoasut
ulkoasuiden ulkoasuita ulkoasuihin

4.4 Evaluation Measures, Baselines and Significance Test

We report our test results using recall and average precision at maximum recall. Recall
means all the word forms in the test data for which an accurate base form suggestion is
produced. Average precision at maximum recall is an indicator of the amount of noise
that precedes the intended paradigm suggestions, where n incorrect suggestions before
the m correct ones give a precision of 1/(n + m), i.e., no noise before a single intended
base form per word form gives 100% precision on average, and no correct suggestion
at maximum recall gives 0% precision. The F-score is the harmonic mean of the recall
and the average precision. We will use only the recall and average precision among the
top 6 candidates, as the output is intended for human post processing. In general, this
will give us a lower, i.e., more conservative, recall than considering all candidates.

The random baseline for Finnish is that the correct entry is one out of 78 paradigms
with one out of 13 gradations, i.e., a random correct guess would on the average end up
as guess number 507.

As suggested by Lindén [11], we use the automatically derived entry generator from
section 4.1 as a baseline. Using his test data, the test results will be directly comparable
to the baseline provided in table 2 with recall 82%, average precision 76% and the
F-score 79%.

6 http://joukahainen.puimula.org/

Corpus-Based Lexeme Ranking for Morphological Guessers 127

Table 2. Baseline for Finnish entry generator on infrequent word forms

Rank Frequency Percentage

#1 1140 66.5 %
#2 186 10.8 %
#3 64 3.7 %
#4 17 1.0 %
#5 4 0.2 %
#6 2 0.1 %
#7-∞ 302 17.6 %

Total 1715 100.0 %

We also ran the entry generator directly on the base forms of our test data from the
Joukahainen word collection in order to get the baseline provided in table 3 indicating
66% average precision and 72% recall with an F-score of 69%.

Table 3. Baseline for Finnish entry generator on list of new base forms

Rank Frequency Percentage

#1 6043 54.8 %
#2 1196 10.8 %
#3 482 4.4 %
#4 157 1.4 %
#5 64 0.6 %
#6 11 0.1 %
#7-∞ 3073 27.9 %

Total 11026 100.0 %

The significance of the difference between the baselines and the tested scoring meth-
ods is determined with matched pairs. The Wilcoxon Matched-Pairs Signed-Ranks Test
indicates whether the changes in the ranking differences are statistically significant. For
large numbers the test is almost as sensitive as the Matched-Pairs Student t-test even if
it does not assume a normal distribution of the ranking differences.

5 Evaluation

We test how well the lexeme scoring methods outlined in section 3 are able to select
the best lexemes for a new word form using the test data described in section 4.2. Word
forms representing previously unseen words were used as test data in the experiment.
The generated entries are intended for human post-processing, so the first correct entry
suggestion should be among the top 6 candidates, otherwise the ranking is considered a
failure.

If a ranking method ranks several candidates with the same score, a stable sorting
algorithm will keep the original order of the lexemes. To test the effect of the proposed

128 K. Linden and J. Tuovila

corpus-based ranking methods independently from the ordering given by the entry gen-
erator, the order of the entries generated from the entry generator were randomized
before they were submitted to the corpus-method so as not to bias the corpus-method
with the ranking order of the entry generator. We did five randomized runs for each
evaluation and took the average of the ranking results.

In 5.1, we test the lexeme scoring with counts from the Finnish text corpus on the set
of infrequent word forms. In 5.2, we test the scoring methods using page counts from
the internet based on the Google search engine for the same set of word forms. In 5.3,
we test the scoring methods on the set of new base forms using counts from the Finnish
text corpus.

5.1 Corpus-Based Lexeme Ranking of Word Forms

We evaluate the lexeme ranking method on base forms and paradigms generated by the
lexicon-based entry generator from the test set of infrequent word forms using word
counts from the Finnish Text Collection described in section 4.2. In table 4, we see the
precision, recall and F-score of the three scoring methods.

Table 4. Precision, Recall and F-score of scoring methods

Method Precision Recall F-Score

key word indicator 79 % 89 % 84 %
key word frequency 72 % 84 % 78 %
key word frequency with ilf 76 % 87 % 81 %

The key word indicator scoring performed best and ranked a correct entry among
the top 6 candidates for 89% of the test data as shown in table 5, which corresponds to
an average position of 1.96 for the first correct entry with 89% recall and 79% average
precision, i.e., an 84% F-score. All methods were statistically very highly significantly
different using the corpus count data.

Table 5. Ranks of all the first correct lexeme suggestions using a text collection

Rank Frequency Percentage

#1 1184 69.0%
#2 229 13.4%
#3 71 4.1%
#4 24 1.4%
#5 15 0.9%
#6 7 0.4%
#7-∞ 185 10.8%

Total 1715 100.0%

Corpus-Based Lexeme Ranking for Morphological Guessers 129

5.2 Page Count-Based Lexeme Ranking of Word Forms

We also evaluate the lexeme ranking method on base forms and paradigms generated
by the lexicon-based entry generator from the test set of infrequent word forms using
the World-Wide Web page counts for pages retrieved over a period of some weeks from
Google for key words of the paradigms. We retrieved the data from pages which Google
gave a Finnish language code. We used this as a way to verify the ranking methods on
an independent data collection. In table 6, we see the precision, recall and F-score of
the three scoring methods.

Table 6. Precision, Recall and F-score of scoring methods

Method Precision Recall F-Score

key word indicator 68% 88% 77%
key word frequency 73% 83% 78%
key word frequency with ilf 74% 83% 78%

The key word frequency scoring with inverse lexeme frequency had the best overall
performance and ranked a correct entry among the top 6 candidates for 83% of the test
data as shown in table 7, which corresponds to an average position of 2.4 for the first
correct entry with 83% recall and 74% average precision, i.e., an 78% F-score. The
difference to the pure frequency method was not statistically significant. However, the
key word indicator scoring had the best recall of 88%. The difference to the winning
method was statistically significant on the lowest significance level.

Table 7. Ranks of all the first correct lexemes using page counts from the World-Wide Web

Rank Frequency Percentage

#1 1114 65.0%
#2 139 8.1%
#3 63 3.7%
#4 58 3.4%
#5 32 1.9%
#6 20 1.2%
#7-∞ 289 16.9%

Total 1715 100.0%

5.3 Corpus-Based Lexeme Ranking of Base Forms

We evaluate the lexeme ranking method on base forms and paradigms generated by the
lexicon-based entry generator for base forms in our subset of the Joukahainen word list
using counts from the Finnish Text Collection described in section 4.2. In table 8, we
see the precision, recall and F-score of the three scoring methods.

130 K. Linden and J. Tuovila

Table 8. Precision, Recall and F-score of scoring methods

Method Precision Recall F-Score

key word indicator 56% 78% 65%
key word frequency 50% 71% 59%
key word frequency with ilf 51% 72% 59%

The key word indicator scoring performed best and ranked a correct entry among the
top 6 candidates for 78% of the test data as shown in table 9, which corresponds to an
average position of 3.1 for the first correct entry with 78% recall and 56% average pre-
cision, i.e., an 65% F-score. The indicator scoring was highly statistically significantly
better than the two other scoring methods, which had no statistical difference between
them.

Table 9. Ranks of all the first lexemes using counts from the text collection

Rank Frequency Percentage

#1 4198 38.0%
#2 2038 18.5%
#3 1018 9.2%
#4 687 6.2%
#5 381 3.5%
#6 296 2.7%
#7-∞ 2418 21.9%

Total 11026 100.0%

5.4 Significance

All the ranking methods of the lexemes from the morphologicalentry generator were sta-
tistically highly significantly better than the random baselines according to the Wilcoxon
Matched-Pairs Signed-Ranks Test. The difference between the two winning methods,
i.e., the key word indicator scoring and the key word frequency scoring with inverse
lexeme frequency, were statistically significant on all the test data collections.

The improvement in the recall of 6–7% percentage points from the baseline model
on two separate test data collections using the corpus word counts is also significant in
practice as we counted words below the 6th position as out-of-reach. This means that
a significant number of additional correct classifications were now visible to the native
speaker doing the entry revising.

6 Discussion

In this section, we discuss the results and give a brief overview of some related work.
In 6.1, we compare our test results with previous efforts. In 6.2, we discuss some future
work.

Corpus-Based Lexeme Ranking for Morphological Guessers 131

6.1 Discussion of Results

The problem when dealing with relatively low-frequency words is that an approach
based on generating additional word forms of the lexemes may not contribute much.
It may well be that the word form we are trying to classify is the only instance of the
lexeme in the corpus. In that sense, turning to the internet for help seems like a good
idea. It turned out that three times as many7 of the generated word forms could be found
on the internet as we were able to find in the 182 million word data collection of Finnish
words.

It is interesting to note how the smaller amount of data affected the preference for the
key word indicator scoring function. One reason for the good performance of the word
forms using the text collection is of course that the new words and the text collection
were ideally matched, when the new words were drawn from the same collection as
the counts. However, this is not a severe limitation. New words are usually drawn from
known text collections. That is often one of the purposes for collecting the texts in
the first place. However, also when the lexemes from an independent data collection
are ranked with the same kind of word counts, it turns out that the key word indicator
scoring is the most successful. As can be seen, the precision drops below that of the
baseline suggesting that the additional lexemes that become visible to the lexicographer
do not make it all the way to the top. Currently, we believe that this is due to the smaller
size of the corpus and the fact that it may be slightly cleaner. In order for the frequency
scoring to become more effective than the indicator scoring, we need a sufficiently large
number of word forms for which a word count is available.

Using the Google data, the frequency ranking becomes more effective. The explana-
tion for this seems to be that a larger number of word forms for each paradigm slightly
reduces the distinctions between some of the best lexeme suggestions. This makes it
interesting to use the more fine-grained frequency scoring which can be further scaled
to emphasize the distinctiveness of the key word forms.

Sometimes a misspelling may have been more common than a correctly spelled
word. For example, the sixth highest scoring word in our material was seuraavä, with
approx. 21000000 page counts, while its correctly spelled form, seuraava, had almost
500000 page counts less. This was in most cases corrected by a higher average fre-
quency of the remaining key word forms in the correct lexeme. Sometimes the incorrect
lexemes happened to contain a homonym of some frequently occurring word, which
raised the score of the lexeme above that of the correct lexeme candidate.

The fact that as a source for ranking entries, the corpus data fared slightly better than
the internet may in our case also be attributable to the fact that Finnish word forms in the
frequency range 100000–300000 may not be so rare after all due to the rich morphology
and productive compounding mechanism of Finnish.

The larger test data collection was definitely less suited to the text collection. It also
had a lower baseline to begin with indicating that base forms may not be the ideal
words to classify with an entry generator that has been created for generating entries
for any inflection. However, when constructing the test data we could benefit from the
base forms by automatically discarding lexeme suggestions that did not have the input
base form among the key word suggestions, e.g., if we know that we are looking for an

7 Data retrieved in December, 2008.

132 K. Linden and J. Tuovila

entry for the English base form swimming, good lexeme candidates like swim V can be
mechanically discarded in favor of swimming N. This option was not used when testing
the performance of the ranking methods, as we wanted to evaluate their contributions
independently.

It remains to be seen how the base form data collection would perform using Google
page counts. Would the higher frequency counts for more key word forms favor a more
sensitive scoring method in the same way as it did on the smaller test data collection?
As the methods were statistically significantly different on the smaller data set, we have
reason to believe that this prediction will hold.

From a practical point of view, we were able to significantly reduce the workload of
encoding lexical entries as much of the task can now be accomplished automatically by
suggesting only those lexemes for which there is at least some support in the corpus in
addition to the word form being investigated. However, a significant practical change is
that assigning base forms and paradigms to words which previously required an expert
lexicographer can now be accomplished by a native speaker making a choice between
a very limited set of lexeme suggestions.8

6.2 Comparison with Similar or Related Efforts

A related idea of expanding key word forms of paradigms to identify new words and
their paradigms has been suggested by Forsberg et al. [17]. However, their approach was
to automatically deduce rules for which they could find as much support as was logi-
cally possible in order to make a safe inference. This leads to safely extracting words
that already have a number of word forms in the corpus, i.e., mid or high-frequency
words, which for all practical purposes have most likely already been encoded and are
readily available in public domain morphological descriptions like the Ispell dictionar-
ies [9] or more advanced descriptions like the Finnish dictionary Kotimaisten kielten
tutkimuskeskuksen nykysuomen sanalista [12]. It should be noted that Forsberg et al.
[17] drew the conclusion that it is recommendable that a linguist writes the extraction
rules. In addition, they used an even smaller corpus than we did. This indicates that
their reliance on an approach that is most similar to our key word indicator scoring
will probably be less effective when the corpus-size increases, requiring their linguist
to write additional constraints for the extraction rules.

The approach suggested by Mikheev [1,2] aims at solving the issue of unknown
words in the context of part-of-speech taggers. However, in that context the problem
is slightly simpler as the guesser only needs to identify a likely part of speech, not the
base form and the full inflectional paradigm of a word. He suggests an automatic way of
extracting prefix and postfix patterns for guessing the part of speech. A related approach
aiming at inducing paradigms for words and inflectional morphologies for 30 different
languages is suggested by [4].

Since there is a growing body of translated text even for less studied languages, there
are interesting approaches using multi-lingual evidence for inducing morphologies, see,
e.g., Yarowsky and Wicentowski [18]. This approach is particularly fruitful if we can
benefit from the similarities of closely related languages.

8 For a demo of the classification interface, see http://www.ling.helsinki.fi/cgi-bin/omor/
omorfi-cgidemo.py

Corpus-Based Lexeme Ranking for Morphological Guessers 133

If we cannot find enough support for any particular lexeme for a given word form,
e.g., if the word is too infrequent so that there are no other inflections than the original
word form, we need a way to make inferences based on related or similar strings. We
need to make inferences based on the analogy with already known words as suggested,
e.g., by Goldsmith [5] or Lindén [8,11,19].

6.3 Future Work

The current study aimed at evaluating the effect of corpus evidence in isolation. We have
reason to believe that an approach which combines the output of the entry generator
with the methods evaluated in this article, e.g., by relying on the ordering suggested by
the entry generator when the corpus evidence does not distinguish between the ranks of
the lexeme suggestions is an effective way of combining the corpus evidence with the
entry generator. This essentially means that the entry generator functions as fall-back
when there is a lack of corpus evidence.

Currently we only extract inflectional information in the form of lexical entries, even
if the context of a new word also contributes other types of lexical information such
as part of speech, argument structure and other more advanced types of syntactic and
semantic information.

It is important to note that our experiment verifies that the lexeme ranking can be
performed using page counts instead of word counts with a sufficiently large document
corpus, which is by no means self-evident. Many of the word forms will refer to the
same pages, which also opens up avenues for future research. One could perhaps use
page counts for a combination of the base form with some other word form of a lexeme
in order to reduce the noise by searching directly for pages with combinations of several
key word forms.

The Internet in addition to page counts also provides some context for a word form.
Essentially this means that we have access to the local semantic context of a word. The
Internet is an ever-changing medium and any linguistic data derived form it is subject
to change. The challenge is to harness this evidence to distill the information inherent
in large numbers while still adapting to the significant changes in language use.

7 Conclusions

We have proposed and successfully tested new methods for ranking lexemes generated
for word forms of new words using additional corpus evidence for key word forms of
the lexemes suggested by an entry generator. We tested the model on Finnish, which is
a highly inflecting language with a considerable set of inflectional paradigms and stem
change categories. A key finding was that the ranking functions that can better take into
account fine-grained words counts seems likely to perform better on larger and perhaps
inevitably more noisy corpora. We tested the effects of the methods independently from
the prior ranking by the entry generator. The methods can be combined to provide
optimal performance.

Our corpus-based ranking methods have 56–79% average precision and 78–89%
recall among the top 6 candidates, i.e., an F-score of 65–84%, indicating that the first

134 K. Linden and J. Tuovila

correct entry suggestion is on the average found in positions 1.9–3.1. The ranking meth-
ods based on corpus evidence were found to be significant in practice by increasing the
recall among the top 6 candidates with 7–8%, which saves the lexicographer some work
when reducing the need to create entries from scratch.

Acknowledgments

We are grateful to the Finnish Academy. We are also grateful to Inari Listenmaa, who
used her native language skills to evaluate the entry generator by revising entries for
new words from the Joukahainen word list.

References

1. Mikheev, A.: Unsupervised Learning of Word Category Guessing Rules. In: Proc. of the 34th
Annual Meeting of the Association for Computational Linguistics (ACL 1996), pp. 327–334
(1996)

2. Mikheev, A.: Automatic Rule Induction for Unknown-Word Guessing. Computational Lin-
guistics 23(3), 405–423 (1997)

3. Oflazer, K., Nirenburg, S., McShane, M.: Bootstrapping Morphological Analyzers by Com-
bining Human Elicitation and Machine Learning. Computational Linguistics 27(1), 59–85
(2001)

4. Wicentowski, R.: Modeling and Learning Multilingual Inflectional Morphology in a Mini-
mally Supervised Framework. PhD Thesis. John Hopkins University, Baltimore, USA (2002)

5. Goldsmith, J.A.: Morphological Analogy: Only a Beginning (2007),
http://hum.uchicago.edu/~jagoldsm/Papers/analogy.pdf

6. Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V., Varjokallio,
M., Arisoy, E., Saraçlar, M., Stolcke, A.: Morph-based speech recognition and modeling
of out-of vocabulary words across languages. ACM Transactions on Speech and Language
Processing 5(1), article 3 (2007)

7. Kurimo, M., Creutz, M., Turunen, V.: Overview of Morpho Challenge in CLEF 2007. In:
Working Notes of the CLEF 2007 Workshop, pp. 19–21 (2007)

8. Lindén, K.: A Probabilistic Model for Guessing Base Forms of New Words by Analogy.
In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 106–116. Springer, Heidelberg
(2008)

9. Kuenning, G.: Dictionaries for International Ispell (2007),
http://www.lasr.cs.ucla.edu/geoff/ispelldictionaries.html

10. Lingsoft, Inc.: Demos, http://www.lingsoft.fi/?doc_id=107&lang=en
11. Lindén, K.: Guessers for Finite-State Transducer Lexicons. In: CICling-2009, 10th Inter-

national Conference on Intelligent Text Processing and Computational Linguistics, Mexico
City, Mexico, March 1- 7 (2009)

12. Kotimaisten kielten tutkimuskeskuksen nykysuomen sanalista. Research Institute for the
Languages of Finland (2007), http://kaino.kotus.fi/sanat/nykysuomi/

13. Sakarovitch, J.: Éléments de théorie des automates. Vuibert, Paris (2003)
14. HFST: Helsinki Finite-State Technology (2008),

http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/index.shtml

15. Koskenniemi, K.: Two-Level Morphology: A General Computational Model for Word-Form
Recognition and Production. PhD Thesis. Department of General Linguistics, University of
Helsinki, Publication No. 11 (1983)

http://hum.uchicago.edu/~jagoldsm/Papers/analogy.pdf
http://www.lasr.cs.ucla.edu/geoff/ispelldictionaries.html
http://www.lingsoft.fi/?doc_id=107&lang=en
http://kaino.kotus.fi/sanat/nykysuomi/
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/index.shtml

Corpus-Based Lexeme Ranking for Morphological Guessers 135

16. Pirinen, T.: Open Source Morphology for Finnish using Finite-State Methods (in Finnish).
Technical Report. Department of Linguistics, University of Helsinki (2008)

17. Forsberg, M., Hammarström, H., Ranta, A.: Morphological Lexicon Extraction from Raw
Text Data. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS
(LNAI), vol. 4139, pp. 488–499. Springer, Heidelberg (2006)

18. Yarowsky, D., Wicentowski, R.: Minimally Supervised Morphological Analysis by Multi-
modal Alignment. In: Proceedings of the 38th Annual Meeting of the Association for Com-
putational Linguistics (2000)

19. Lindén, K.: Entry Generation by Analogy—Encoding New Words for Morphological Lexi-
cons. Northern European Journal of Language Technology (May 2009)

Author Index

Bopp, Stephan 108

Handl, Johannes 10
Hanneforth, Thomas 1, 48

Kabashi, Besim 10

Lindén, Krister 28, 118

Maas, Heinz Dieter 76

Pedrazzini, Sandro 108
Pirinen, Tommi 28
Proisl, Thomas 10

Rösener, Christoph 76

Silfverberg, Miikka 28
Simon, Christian 64

ten Hacken, Pius 88
Theofilidis, Axel 76
Tuovila, Jussi 118

Weber, Carsten 10
Wittl, Tilman 64

Zielinski, Andrea 64

	front-matter.pdf
	Using Ranked Semirings for Representing Morphology Automata
	Introduction
	Definitions
	Ranked Semirings
	Experiments
	Conclusion and Further Work

	JSLIM – Computational Morphology in the Framework of the SLIM Theory of Language
	Foundations
	LAG and SLIM
	The Algebraic Description of a JSLIM Grammar

	Applied Techniques
	Undirected Programming and Declarative Syntax
	Indirection
	Common Subtree Sharing

	The JSLIM Grammar Files
	The Lexicon
	The Allomorph Method
	Allo Rules
	Allo Lexicon
	Combi Rules
	Variables

	Word Form Generation
	Surface Generation
	Generation of a Paradigm
	Conditions for the Approach to Work
	Generation of a Single Word Form

	Conclusion

	HFST Tools for Morphology – An Efficient Open-Source Package for Construction of Morphological Analyzers
	Introduction
	HFST-LexC
	Efficient Tokenizing of a Sub-lexicon Entry
	Efficient Union of Sub-lexicon Entries
	Efficient Implementation of Morphotax over Sublexicons

	HFST-TwolC
	An Example Grammar
	Compiling the Rules and Resolving Rule-Conflicts

	HFST-Compose-Intersect
	Full-Scale Morphological Analyzers Using HFST Morphological Tools
	Performance Evaluation
	Discussion and Future Research
	HFST-LexC Performance
	HFST-TwolC Performance
	Parallel Rules vs. Cascaded Rules
	The Other-Symbol
	Future Directions

	Conclusions

	fsm2 – A Scripting Language for Creating Weighted Finite-State Morphologies
	Introduction
	Formal Background
	Features of fsm2
	Semirings
	Weighted Operations

	Creating Morphological Analysers with fsm2
	Symbol Signatures
	Lexicons
	Grammars
	Replacement Rules
	Scripts and Functions

	Conclusion and Further Directions of fsm2

	Morphisto: Service-Oriented Open Source Morphology for German
	Introduction
	Design of Morphisto
	Baseline: Test Results and Statistics
	Improving the Morphological Analyzer
	Handling Overgeneration: Which Is the Best Candidate?

	Applications
	Integration into the TextGrid Workbench
	Lemmatization and Morphological Analysis
	Generating Wordforms for Elexiko
	Deriving the Structure of Complex Entries

	Technical Aspects: Morphological Analysis in the Grid
	Summary and Outlook

	Morphosyntactic and Semantic Analysis of Text: The MPRO Tagging Procedure
	Overview
	The MPRO Tagging Procedure
	The Module LESEN

	Morphological Analysis
	The Lexical Database lexdb
	The Dictionaries morpho and lemwb
	Morphological Analysis Procedure
	The Module KOMPLETT
	The Module KORRIGIERE

	Conclusion
	References

	Word Manager
	Introduction
	Problem Analysis
	Rule Types
	IRules: Inflectional Classes
	SRules: Changes in Formatives
	WFRules: Word Formation Rules
	Phrase Manager
	Interaction of Rules

	Development Environment
	The Linguist’s Interface
	The Lexicographer’s Interface
	The Developer’s Interface
	Evaluation of the Development Environment

	Available Resources and Their Use
	References

	Morphological Analysis Using Linguistically Motivated Decomposition of Unknown Words
	Introduction
	Word Manager Dictionary Database
	WMTrans Finite State Transducers

	Analysis of Unknown Words through Controlled Decomposition
	The Unknown Word Transducers
	Defining the Set of Word Formation Rules and Affixes
	Defining the Set of Admissible Base Words
	Deleting Undesired Results
	Results of the Analysis

	Current Implementation of the Unknown Word Analyzers
	The Finite State Components
	Processing Levels
	Unknown Word Products and Their Output
	Recognition Rates

	Further Steps
	Conclusion
	References

	Corpus-Based Lexeme Ranking for Morphological Guessers
	Introduction
	Lexicon-Based Entry Generator
	Corpus-Based Lexeme Ranking
	Estimating Lexeme Likelihoods

	Training and Test Data
	Lexical Data for the Transducer Lexicon and Entry Generator
	Data Collections for Word Counts
	Test Data Collections
	Evaluation Measures, Baselines and Significance Test

	Evaluation
	Corpus-Based Lexeme Ranking of Word Forms
	Page Count-Based Lexeme Ranking of Word Forms
	Corpus-Based Lexeme Ranking of Base Forms
	Significance

	Discussion
	Discussion of Results
	Comparison with Similar or Related Efforts
	Future Work

	Conclusions

	back-matter.pdf

