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GRAMMATICAL INFERENCE

The problem of inducing, learning or inferring grammars has been studied for decades,
but only in recent years has grammatical inference emerged as an independent field with
connections to many scientific disciplines, including bio-informatics, computational lin-
guistics and pattern recognition. This book meets the need for a comprehensive and unified
summary of the basic techniques and results, suitable for researchers working in these
various areas.

In Part I, the objects of use for grammatical inference are studied in detail: strings
and their topology, automata and grammars, whether probabilistic or not. Part II carefully
explores the main questions in the field: what does learning mean? How can we associate
complexity theory with learning? In Part III the author describes a number of techniques
and algorithms that allow us to learn from text, from an informant, or through interac-
tion with the environment. These concern automata, grammars, rewriting systems, pattern
languages and transducers.

CO L I N D E L A HI G U E R A is Professor of Computer Science at the University of Nantes.
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Preface

Young men should prove theorems, old men should write books.
Godfrey H. Hardy

There is nothing to writing. All you do is sit down at a typewriter and bleed.
Ernest Hemingway

A zillion grammatical inference years ago, some researchers in grammatical inference
thought of writing a book about their favourite topic. If there was no agreement about
the notations, the important algorithms, the central theorems or the fact that the chapter
about learning from text had to come before or after the one dealing with learning from an
informant, there were no protests when the intended title was proposed: the art of inferring
grammars. The choice of the word art is meaningful: like in other areas of machine learn-
ing, what counted were the ideas, the fact that one was able to do something complicated
like actually building an automaton from strings, and that it somehow fitted the intuition
that biology and images (some typical examples) could be explained through language.
This ‘artistic’ book was never written, and since then the field has matured.

When writing this book, I hoped to contribute to the idea that the field of grammatical
inference has now established itself as a scientific area of research. But I also felt I would
be happy if the reader could grasp those appealing artistic aspects of the field.

The artistic essence of grammatical inference was not the only problem needing to be
tackled; other questions also required answers...

Why not call this book ‘grammar induction’?

When one wants to search for the different published material about the topic of this book,
one finds it associated with many different fields, and more surprisingly under a number
of names, such as ‘grammar learning’, ‘automata inference’, ‘grammar identification’, but
principally ‘grammar induction’ and ‘grammatical inference’. Even if this is not formalised
anywhere, I believe that ‘grammar induction’ is about finding a grammar that can explain
the data, whereas grammatical inference relies on the fact that there is a (true or only
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x Preface

possible) target grammar, and that the quality of the process has to be measured relatively
to this target.

Practically this may seem to make little difference, as in both cases what probably will
happen is that a set of strings will be given to an algorithm, and a grammar will have
to be produced. But whereas in grammar induction this is the actual task, in grammatical
inference this is still a goal but more a way of measuring the quality of the learning method,
the algorithm or the learning setting.

In other words, in the case of grammar induction what really matters is the data and the
relationship between the data and the induced grammar, whereas in grammatical inference
the actual learning process is what is central and is being examined and measured, not just
the result of the process.

Is this about learning languages or learning grammars?

Even if historically the task has been associated with that of learning languages (and typi-
cally with that of children acquiring their first language), we will concentrate on learning by
a machine, and therefore (as in any computational task) a representation of the languages
will be essential. Given this first point, a simple study of formal language theory shows
us that not all representations of languages are equivalent. This will justify the choice of
presenting the results with a specific representation (or grammar) system in mind.

Why use terms from formal language theory, like finite automata, when you
could use more generic terms like finite state machines or alternative

terms like hidden Markov models?

Actually, there is a long list of terms referring to the same sort of object: one also finds
Mealy and Moore machines and (weighted) finite state transducers. In some cases these
terms have a flavour close to the applications they are intended for; in others the names
are inheritances of theoretical research fields. Our choice is justified by the fact that there
are always some computable transformations allowing us to transform these objects into
deterministic or non-deterministic finite automata, with or without probabilities. In the
special case of the transducers, separate theory also exists.

By defining everything in terms of automata theory, we aim to use a formalism that is
solidly established and sufficiently general for researchers to be able to adapt the results
and techniques presented here to the alternative theories.

Why not introduce the definitions just before using them?

A generally good idea is to only introduce the definitions one needs at the moment one
needs them. But I decided against this in certain cases; indeed, the theories underlying the
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algorithms and techniques of grammatical inference deserve, at least in certain cases, to be
presented independently:

• Chapter 3 introduces concepts related to strings, and also to distances or kernels over strings. If
the former are well known by formal language theory specialists, this is not always the case with
researchers from other fields interested in grammatical inference. It seemed interesting to have
these definitions in one separate chapter, in order for these definitions to be compared and depend
on each other.

• Most of the material presented in Chapter 4 about grammars and automata can be found in
well-known textbooks, even if providing uniform notations is not customary. When considering
probabilistic finite state automata, this is even worse as the definitions are far from trivial and the
theory is not straightforward. We have also chosen to give here the main algorithms needed to deal
with these objects: parsing, estimating, distances, etc.

• The reader just looking for an algorithm might go directly to the chapter corresponding to the
class of grammar or the type of presentation he is dealing with. But to understand the convergence
issues associated with the algorithm he wants to use, he might want to read Chapter 7 about
learning models, and more specifically be interested in the inclusion of complexity questions in
these models.

• The panorama concerning probabilities and grammatical inference would have been very difficult
to understand if we had not devoted Chapter 10 to this issue: whether we use the distributions to
measure classification errors or to actually learn the grammars that generate them, we try in this
chapter to give a uniform view of the field, of its definitions and of its difficulties.

• For very different reasons, Chapter 6, about combinatorics, groups a number of more or less well-
known results concerning automata, deterministic or non-deterministic, probabilistic or not. These
are usually hardness results and rely on special constructions that we give in this separate chapter.

Did the author invent all these things?

No, of course not. Many scientists have contributed the key ideas and algorithms in this
book. Some are clearly identifiable but others are not, the idea having ‘been around for a
while’ or being the synthesis of thoughts of several people. Moreover, in such a field as this
one, where papers have been written in a great diversity of areas and where up to now no
text book had been produced, it is difficult, if not impossible, to know who has the paternity
of what idea. I have tried to render unto Caesar the things which are Caesar’s, and have
consulted widely in order to find the correct authorships, but there are probably going to
be researchers who will feel that I have wrongfully attributed their result to someone else.
This I hope to have avoided as much as possible and I wish to express my apologies for
not having found the correct sources. A specific choice to increase readability has been to
leave the citations outside the main text. These are discussed at the end of each chapter.

Is the reader right to say that he or she has seen these proofs before?

Yes, of course he or she is right. In some rare cases, our knowledge today of the objects and
the problems allows us to propose alternative proofs that somehow fitted in better. In other
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cases (as duly acknowledged as possible), the original proof seemed unbettered. And for
many reasons, most important of which is usually just the fact that the proof does add that
useful information, I chose to include them, with just the necessary changes of notation.

These do not seem to be the standard notations. Why didn’t the author use the
standard notations?

In such a new field as grammatical inference there is no such thing as standard notations.
Grammatical inference has borrowed notations from many fields: machine learning, formal
language theory, pattern recognition and computational linguistics. These are even, in many
cases, conflicting. Moreover the authors of the many papers all have different backgrounds
and this diversity is reflected in the variety of notations and terms that are used. Choices
had to be made for the book to be readable. I have used notations that could adapt smoothly
to the different grammatical inference settings reported in this book. A chief goal has been
to make algorithmic ideas from one case reusable in another. It is nevertheless fair to say
that this has a price (for example where introducing automata with two types of final states)
and specialists, used to working with their own notations, may be inclined to disagree with
these proposals.

Is this the right moment to write a book on grammatical inference?

That is what I believe. It certainly is not too early, since most of the key questions were
asked by Noam Chomsky or Ray Solomonoff 50 years ago! Mark Gold’s results date back
another 40 years, and Dana Angluin’s first contributions to the field correspond to work
done 30 years ago. The series of conferences known as ICGI have now been running for
more than 15 years. The theme today is present in a number of conferences and the main
algorithms are used in many fields. A noticeable thing is that the field is broadening: more
complex classes of grammars are being learnt, new learning paradigms are being explored
and there are many new applications each year. But no basic books with the main defini-
tions, theorems and algorithms exist. This is an attempt to help register some of the main
results (up to now) to avoid them being rediscovered over and over.

Why exercises?

Even if this is not a text book, since grammatical inference is not being taught in a curricu-
lum, there are lectures in machine learning, text mining, and other courses where formal
languages and generalisation are taught; there have also been attempts to hold lectures on
the topic in summer schools and doctoral schools; moreover, I have received sufficient
encouragement to initiate a list of exercises in order to be able to teach in the near future.
The exercises are intended for this purpose. They are also here to give a flavour of a few of
the interesting questions in the field.
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What about trees and graphs?

The original goal was to cover extensively the field of grammatical inference. This of
course meant discussing in detail tree automata and grammars, giving the main adaptation
of classical string algorithms to the case of trees, and even dealing with those works specific
to trees. As work progressed it became clear that learning tree automata and grammars was
going to involve at least as much material as with strings. The conclusion was reached to
only sketch the specificities here, leaving the matter largely untouched, with everything to
be written. This of course is not justified by the importance of the question, but only by the
editorial difficulty and the necessity to stop somewhere. Of course, after trees will come
the question of graphs. . .

Is this the final book?

No, yet even more preposterously, I hope it to be an initial book. One that allows fellow
researchers to want to write their positions in new books expressing the variety of points
of view of a community made up of colleagues with such different interests, whether in
machine learning, computational biology, statistics, linguistics, speech recognition, web
applications, algorithmics, formal language theory, pattern analysis. . .
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1

Introduction

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.

Albert Einstein

Todos os problemas são insolúveis. A essência de haver um problema é não haver
uma solução. Procurar um facto significa não haver um facto. Pensar é não saber
existir.

Fernando Pessoa, Livro do Desassossego, 107

The problem of inducing, learning or inferring grammars has been studied now for some
time, either as a purely mathematical problem, where the goal is to find some hidden func-
tion, or as a more practical problem of attempting to represent some knowledge about
strings or trees through a typical representation of sets of trees and strings, such as an
automaton or a grammar.

1.1 The field

Historically, one can trace back the problem to three main different sources: the first is
computational linguistics, the second is inductive inference and the third is pattern recog-
nition. The historical lineage, to be fair, requires us to discuss the important contribution
of at least two other fields, not entirely independent of the three historical ones: machine
learning and bio-informatics.

1.1.1 (Computational) linguistics

The key question of language acquisition (meaning the acquisition by a child of its first
language), when considered as a formal language learning task, takes its root in Noam
Chomsky’s pioneering work. The fact that the human being should be able to discover
the syntactic representations of language was key to many of the formalisms introduced
to define formal languages, but also to study grammatical inference. Since that time there
has been continuous research activity linked with all aspects of language learning and
acquisition in the many topics related with computational linguistics.

1



2 Introduction

A special idea of interest that emerged from the early work is identification in the
limit, as the first paradigm for learning languages, possibly because of a strong belief
that probabilities were not a plausible answer. The particular situation is that of identi-
fying a target language from text, i.e. only strings from the language, also called positive
examples.

There is an important thing we should insist on here, which is that one should make a dis-
tinction between language learning and language acquisition: it is generally admitted that
language acquisition refers to the first language a child learns, whereas language learning
covers the learning of another language, given a first language to support the thought and
the learning process.

A second point of interest is that there is a general agreement that negative examples
should not be part of the learning process even if some type of interaction between the
learner and the teacher (through corrections for example) can be added.

A number of problems related with grammatical inference have been addressed in this
field: parsing with formalisms that may be much more complex than grammars from for-
mal language theory, tagging, solving many grammatical tasks. . . An interesting point
concerns the fact that probabilistic settings have not been very popular in computational
linguistics. A notable exception concerns the question of language modelling: language
models intervene when different sequences of individual words or utterances have been
found and one wants to decide which is the one which most probably is an actual sentence
of the chosen language. The normal way to solve this is through some local decisions
(‘given the last two words, the new word is most likely to be. . . ’) but in that case
the long-term dependencies are not taken into account. One of the major challenges to
grammatical inference scientists is to come up with methods that learn these long-term
dependencies.

1.1.2 Inductive inference

Inductive inference is about finding some unknown rule when given some elements of an
infinite presentation of elements. Take for instance the problem of guessing the next ele-
ment of the following increasing sequence: 2, 3, 5,. . . In this ‘game’ one does not actually
need to find the actual function (no one is explicitly asking for that) but it is easy to see
that without getting the function right we will continue to be in a situation of just guessing
as the game goes on: if we don’t find the actual function (or at least a function that is like
the generating device), the task of consistently predicting the next element is impossible.
Notice also that being right just once doesn’t prove anything.

One of the key issues in this example is that we are not only interested in finding some
mechanism – or algorithm – to do the learning, but we will also want to study the param-
eters of the problem: how do we get hold of our data? In this case it just arrives in some
specific order, but that may not be systematically the case. How fast can we learn? How do
we know that we have learnt?
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Inductive inference is the research area interested in these issues. Obviously, the rules of
the game may be very complex as one can play with the different variables of the problem:

• the class of functions,
• the way the data is presented,
• the rules used to measure success.

Grammatical inference is only concerned with a small sub-case of this problem: the class
of functions corresponds to grammars generating or recognising strings, trees, graphs or
other structured objects. On the other hand, all types of presentations may be of interest. In
certain cases we will be given examples and counter-examples; in others, only some strings
that belong to the language. In certain cases the learning algorithm will have to deal with
examples arriving one by one, in some predefined order (or not); in another case we will be
asked for a batch treatment with all the data given at once; and in an interactive setting the
data will be sampled or ‘bought’ by the learning algorithm itself. If anything, motivation
will probably reside in the fact that these presentations may correspond to practical issues.
And more importantly, success will depend on some provable convergence with only a
limited quantity of resources, whether computation time, quantity of examples or number
of accesses to an oracle.

The inductive inference field has continued to introduce and analyse key ideas and has
led to the development of a field known as algorithmic learning theory. The name of the
field is possibly slightly misleading, because in most cases the algorithms are not developed
with an interest in breaking polynomial boundaries but more with the mind set on showing
what is decidable and what is not.

1.1.3 Pattern analysis, pattern recognition

In the problem of recognising handwritten characters (for example the postal codes on an
envelope), we may be given images of each of the possible letters and digits, construct
some sort of a model for each symbol, and then, when a new character is presented, we
can compare the new character to the models and find the model that fits best. This idea
requires robust models, a training phase to set the parameters of the models and some way
to measure how adequate a model is for a given character.

One may also consider that a character, once pixellated, can be described by a string
(if we use either four or eight directions). To take into account the variety of lengths and
the variations of figures, one possibility is to associate with the character ‘A’ a language
of all strings corresponding to this character. Then by parsing a new string, one should be
able to decide if the current written character is an ‘A’ or a ‘B’. There are obviously many
variations of this question, where, for example, the language may include probabilities so
that eventual intersections can be dealt with. There will also be a need to study distances
between strings or between strings and languages to take better decisions.

The above is one of the many attempts to use grammar induction in pattern recognition.
We use here the term grammar induction and not grammatical inference: there is actually
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no reason to believe that there is a hidden grammar to be discovered. In this case we are
only believing that somehow a grammar can represent in a reasonable way a set of strings
corresponding to the letter ‘A’.

A second point one can make is that if the task we describe is a pattern recognition
task, since the induced grammar has a meaning per se, it is tempting to analyse this gram-
mar, and therefore to consider that grammatical inference techniques enable us to discover
intelligible patterns, and thus that they permit us to tackle pattern analysis tasks.

1.1.4 Machine learning

From the inductive inference perspective, classes and paradigms were analysed with a
distinct mathematical flavour.

On the other hand, more pragmatically oriented researchers were working on practi-
cal problems where techniques were tested enabling them to ‘induce’ an automaton or
grammar from some data.

The meeting point was going to be provided by the work done in another field, that of
machine learning.

Machine learning has developed as an important branch of artificial intelligence. The
great idea of machine learning is to enable a system to get better through some form of
interaction with its environment in which new knowledge is extracted from experience and
integrated in the system. Some examples are learning from observation, from examples,
from mistakes, and from interaction with a teacher.

Work consisted of developing ideas, algorithms and even theories of what was learnable
and what was not, whilst at same time considering important applications where very nice
heuristics were not going to provide a suitable answer: provable algorithms were needed,
in which the quantity of necessary information requested in order to be able to learn some
satisfactory function had to be minimal. All the notions associated with the key words in the
previous sentence need to be defined. This led to the introduction of models of learning of
which the probably approximately correct (PAC) model is the best known, and unarguably
the most inspiring.

These efforts to re-understand the learning algorithms through the eyes of complexity
theory (polynomial time and polynomial space required), statistics (given some known
or unknown distribution, can we bound the error the classifying function will make over
unseen data, or can we bound the error over the possibility that our error is very small?)
have also influenced the special problem of learning grammars and automata.

At first, the influence of researchers in the growing field of computational learning theory
(COLT) led to some essential results and analysis around the central problem of learn-
ing deterministic finite state automata (DFA) in the important and specific setting of PAC
learning. The task was proved to be impossible using results on learning from equivalence
queries. The hardness of the minimal consistency problem (for DFA) was proved in 1978;
but the mathematical links between complexity theory and computational learning theory
led to elaboration on that result: the closely related problem of finding a small consistent
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DFA (not more than polynomially larger than the smallest) was proved to be intractable.
This on one hand forbade us to have hopes in Occam approaches but also opened the path
to finding other negative results. These somehow seemed to kill the field for some time by
showing mathematically that nothing was feasible even in the case of what most formal
language theoreticians will consider as the easiest of cases, that of DFA.

The introduction of alternative learning models (like active learning), the capacity of
probabilistic automata and context-free grammars to model complex situations and the
necessity to learn functions with structured outputs allowed a renewal of interest in gram-
matical inference techniques and are some factors indicating that future cross-fertilisation
between grammatical inference and machine learning scientists could be a key to success.

1.1.5 Computational biology

The basic elements in computational biology are strings or sequences describing DNA or
proteins. From these a number of problems require the analysis of sets of strings and the
extraction of rules. Among the problems that have suggested that grammatical inference
could be useful, we can mention the one of secondary structure prediction. Context-free
grammars can describe partly some well-known structures, which has motivated several
attempts in the direction of learning context-free grammars. But, because of the size of
the data, other researchers argued that grammars were going to prove to be too complex
for computational biology. Pattern languages have been favoured by these researchers, and
works in the direction of extracting patterns (or learning pattern languages) have been
proposed.

There are a number of good reasons for wanting to use grammatical inference in this
setting, but also a number of reasons why the results have so far been on the whole
disappointing.

It is clear that we are dealing with strings, trees or graphs. When dealing with strings,
we will typically be manipulating a 4-letter alphabet {A, T,G,C} (standing for the four
basic nucleotides) or a 20-letter alphabet if we intend to assemble the nucleotides 3 by 3
into amino-acids in order to define proteins. There are trees involved in the patterns or in
the secondary structure, and even graphs in the tertiary structure.

Then, on the other hand, the strings are very long, and the combination ‘very long
strings’ + ‘recursivity’ + ‘no noise’ makes the task of learning quite hard. One particu-
larity of formal languages is that, if they do allow recursive definitions, they are not very
robust to noise, especially when the noise is defined through edit operations. There are nev-
ertheless a number of attempts to learn automata, grammars and transducers for biological
applications.

1.1.6 Grammatical inference as an independent field

In 1994 the first International Colloquium in Grammatical Inference took place, arranged
as a follow-up to a workshop that had been organised the year before. From then on,
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grammatical inference has emerged as an independent field. Little by little the conference
acquired its rules and the community organised itself. This did not lead to the researchers
working in the field isolating themselves: terms like grammatical inference and grammar
induction have progressively been accepted in many communities and grammatical infer-
ence is today a meeting point between researchers from many areas, with very different
backgrounds, most of whom have a primary research interest in one of many other fields.
Nevertheless, whether for children’s language acquisition, automatic music composition or
secondary structure prediction (to name just three very different tasks), the objects remain
common and the algorithms can be similar.

1.2 An introductory example

Let us introduce the problems and techniques of grammatical inference through a simple
problem from a multi-agent world, where the goal is to discover the strategy of an adversary
agent.

1.2.1 The problem

Let us consider the following situation: in an interactive world an agent has to negotiate
with (or against) other agents. He or she may be wanting to acquire or sell resources. The
agent’s decisions (to buy or not to buy) will depend on what he or she expects to win but
also on the other agent’s attitude: should he or she keep on negotiating in order to reach a
better price? Is the opponent going to accept the lower price?

Let us suppose that the adversary agent is driven by a finite state machine which
describes its rational strategy (see Figure 1.1 for a trivial first example). The automaton
functions as follows: at any one time the agent is in a given state and will act according
to the label of that state. At the same time the agent discovers the action his or her oppo-
nent makes and moves on to the state reached through reading the action as a label of an

wait

buy

reject

stable down

up

down, stable up

up, down, stable

Fig. 1.1. A primitive rational strategy for a buying situation.
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Table 1.1. The game matrix for the buying game.

buy wait reject

up 5 1 -80

stable 5 -1 -80

down 10 3 -80

edge. The agent is then ready to proceed. Obviously the model is rather primitive and some
sort of non-determinism/probabilistic outcome would be better suited. If we consider the
automaton depicted in Figure 1.1 this agent will start by being doubtful (action wait). If
our first offer is a raise (action up) then the agent will start buying (action buy), but we will
need to raise each turn (action up) for him or her to stick to the buying policy, which is
presumably what we want. If not, the agent will get back into the neutral initial state from
which, if we lower our offer, he or she will actually get into a refusal state (action reject)
in which no more negotiation can take place.

1.2.2 The gain matrix and the rules of the game

But there is more to it than just trying to see what the opponent is doing. Finding the right
action for an optimised immediate gain is one thing; ensuring long-term gain is another!
This is the question we are interested in now. Notice also that the reasons for which the
adversary adopts a particular policy and his own gain are not of direct importance here,
since only our own long-term gain matters.

So the sort of game we are considering is one where each player has to choose between
a finite number of moves or actions. Both players play their move simultaneously. To sim-
plify, if we have players A and B, each player is allowed to play moves from �A and �B

respectively, where � denotes the alphabet, or set of allowed moves.
Each time an event takes place (an event being a simultaneous action by each agent)

there may be a gain or a loss. This is usually represented through a gain table, such as
in Table 1.1 where �A = {up, down, stable} and �B = {buy, wait, reject}: we have
represented what we expect to gain out of an event. For example if simultaneously we
(as player A) raise and our opponent (player B) is neutral (wait), then our gain is of
+1; in all cases if the game is terminated by the opponent (reject state) our loss will be
of -80.

1.2.3 The prisoner’s dilemma

The best known and studied variant of the above game is called the prisoner’s dilemma.
The story can be told as follows:
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Table 1.2. The game matrix.

s a

s 1 5
a 3 0

There has been a crime for which two persons have been arrested. In the morning, the
judge addresses each of the suspects separately: “We believe you are guilty but have no
proof of this. So, we propose the following deal:

If you admit guilt but your colleague does not, then you will be considered as an
informer, get out free and your colleague will be jailed for five years.

If you decide to remain silent, on one hand your colleague might decide to be less stupid
and accept the offer (remember that in this case you will suffer the entire burden alone,
and go to jail for five years!).

If you both plead guilty we won’t need an informer, but you both get a three-year
sentence.

In the very unlikely case where you should both choose to remain silent, we have against
you the fact that you were found doing grammatical inference in the dark, so you will both
suffer a one-year sentence. . . ”

This is a symmetrical game as both the opponents have the same gain matrix represented
in Table 1.2: we will denote being silent by ‘s’, whereas ‘a’ stands for admitting and thus
defecting. By analysing the game it will appear that the Nash equilibrium† is reached when
both players decide to defect (admit), reaching a far from optimal situation in which they
both get imprisoned for three years! The game has been studied extensively in game theory;
a simplified analysis goes as follows:

• Suppose the other person remains silent. Then if I am also silent I get one year in prison, whereas
if I admit I get out free: better to admit.

• Suppose on the contrary he admits. If I am silent I will spend the next five years in prison: better
admitting since in that case it will only be three.

The natural conclusion is therefore to admit, in which case both players reach the bad
situation where they both ‘pay’ three years; if they had cooperated they would get away
with a one-year sentence. The game has been much more thoroughly analysed elsewhere.
We may now ask ourselves what happens when the game is iterated: the goal is only to
score points and to score as many‡ as possible over time. The game is played over and over
against the same opponent.

Suppose now that the opponent is a machine. More specifically interesting to us is the
case where this machine follows a rational strategy. In this case the object is no longer to
win an individual game but to win in the long term. This is defined by means of a gain

† A Nash equilibrium is met when no player can better his situation for the opponent’s current move.
‡ In this case ‘as many’ requires spending as few years as possible in prison!
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function computing the limit of means: the best strategy, against a fixed adversary, will be
the one which has the highest mean gain, for an arbitrarily long game. With this, a finite
number of initial moves which may seem costly will, in the long run, not count. Formally,
the gain of strategy one (S1) playing against strategy two (S2) is defined by first noting that
if both strategies are deterministic, a unique game is described. This unique game is an
infinite string over an alphabet �A × �B : 〈m A

0 ,m B
0 〉, . . . 〈m A

i ,m B
i 〉, . . . where 〈m A

i ,m B
i 〉

is the combination of the i th moves made by players A and B. In such a sequence, let us
denote by G[m A

i ,m B
i ] the gain for player A at step i . This in turn leads to a unique outcome

described by the game matrix: g(S1, S2, i) = ∑
j≤i G[m A

i ,m B
i ].

g(S1, S2) = lim
n→∞

∑
j≤n g(S1, S2, n)

n
Remember that in this setting we are not directly interested in how much our opponent
may make out of the game, only in what we are going to make.

1.2.4 What is a rational strategy?

We will say that a strategy is rational if it is dictated by a Moore machine. Informally
(formal definitions will be given in Chapter 4) a Moore machine is a finite state machine
whose edges are labelled by the actions made by an opponent and whose states have an
output corresponding to our action when in the given situation. Consider for instance the
rational strategy depicted in Figure 1.2. This corresponds to the iterated prisoner’s dilemma
as described above. Then it follows that an agent using this strategy will start by playing a,
independently of anything else (remember that both players play simultaneously, so this is
quite normal).

Now the agent’s next call will depend on our first move. If we are silent, then the agent
follows the transition labelled by s into the middle state: his or her move is deterministi-
cally a result of our move. His or her second action will be to be silent also, since that is
what is indicated in that state. If on the contrary we had defected (action a), then the agent
would have remained in the left-hand state and would repeat a.

Again, from Figure 1.2 it follows that if the first three calls in some game are
〈a, a〉, 〈a, a〉, 〈s, a〉 then the agent using this strategy will necessarily play s as his or
her fourth move since having parsed his or her adversary’s first three moves (the string
aas) the agent is in the central state corresponding to output s.

a s s
s

a

s

a a

s

Fig. 1.2. A rational strategy.
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s a

s 1 5
a 0 3

(a) Gain matrix

a s s
s 5

a 1

s 1

a 0 a 0

s 1

(b) The adversary graph, labelled.

Fig. 1.3. Using the graph to find the best path.

1.2.5 Beating a rational strategy that we know

We suppose that the strategy of the opponent is rational, i.e. it is given by a determinis-
tic finite automaton as above (Figure 1.2). The first question is then: can we imagine an
optimal strategy against it?

Suppose first that we know the opponent’s strategy: then we can use game theory to
compute the winning strategy. Let us consider for that the opponent’s graph in which we
value the edges by our own gain. Take for example the situation from Figure 1.3 and the
strategy represented in Figure 1.2. The edges are weighted according to our values from
the game matrix recalled in Figure 1.3(a). The result is shown in Figure 1.3(b).

What is a winning strategy in this case? As the adversary has imposed moves, it consists
of finding a path that has minimal average weight. As the graph is finite this path is obtained
by finding a cycle of minimum mean weight and finding the path that is best to reach this
cycle. Both problems can be solved algorithmically.

Algorithm 1.1 computes the best strategy (in the sense of our criterion) in polynomial
time. In this case the best strategy consists of being silent even when knowing that the
opponent is going to defect, then being silent once more, and then alternating defection
and silence in order to beat the more natural collaborative approach.

Algorithm 1.1: Best strategy against a rational opponent.

Data: a graph
Result: a strategy
Find the cycle of minimum mean weight;
Find the path of minimum mean weight leading to the cycle;
Follow the path and stay in the cycle

Summarising, if we know the adversary’s strategy, we can run a simple algorithm that
returns our own best strategy against that opponent. All that is now needed is to find the
opponent’s strategy, at least when it is described by an automaton!

So the question we now want to answer becomes: ‘Having seen a game by this opponent
can we reconstruct his strategy?’
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Table 1.3. The data to
learn from: a game.

λ→ a
a → a
as → s
asa → a
asaa → a
asaas → s
asaass → s
asaasss → s
asaasssa → s

a

Fig. 1.4. Automaton obtained after using the information λ→ a.

1.2.6 Reconstructing the strategy

Let us suppose that we have seen a game played by the rational agent (following some
unknown rational strategy). We will leave open for the moment the interesting point of how
we got hold of the data from which we hope to reconstruct the adversary’s strategy, and
what would happen if we had to pay for this data (by playing against him or her, typically).
To simplify the discussion, we suppose the data corresponds to a game between him or her
(the rational agent, player B) and us (player A).

Suppose the game we are looking at went as follows: 〈a, a〉, 〈s, a〉, 〈a, s〉, 〈a, a〉,
〈s, a〉, 〈s, s〉, 〈s, s〉, 〈a, s〉, 〈s, s〉, with the adversary’s moves coming second: first he
or she played a and we played a, next he or she again played a while we played s,. . .

An alternative presentation of the game is given in Table 1.3. Indeed the fact that the
rational agent played a as a fourth move means that this move will be triggered in any
game where our first three moves are a, s and a in that order. Better said, we can associate
to the input string asa the output a. The empty string λ corresponds to the first move: no
previous move has been made. Notice that our last move (we played s) is of no use for
learning: we can’t infer anything from it, since player B did not react to it.

The algorithm we are going to follow is a loose version of a classical grammatical infer-
ence algorithm as described in Chapter 12. We intend only to introduce the key ideas
here.

Step 1 At first, analysing Table 1.3, as our adversary’s first call is a (information λ→ a),
the initial state of his or her automaton is necessarily labelled by a, resulting in the partial
strategy depicted in Figure 1.4. This strategy is partial because it can only cover part of the
situation: in this case it only allows our adversary to play the first move.
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a ?

a

(a)

a

a

(b)

a a
a

(c)

Fig. 1.5. How to parse a → a.

a

a

Fig. 1.6. After Step 2.

Step 2 The next string we want to parse (i.e. to read in the automaton) is a, corresponding
to the information a → a in Table 1.3. This means that we are trying to find an end to the
loose edge depicted in Figure 1.5(a).

There are two possibilities. The first is to create a new state, under the possibly sensible
argument that there is no reason that the state the agent is in after reading a is the same as
before (Figure 1.5(c)). The second is the more risky option of using the same state, taking
the optimistic point of view that if there is nothing to forbid us doing so, we might as well
do it (Figure 1.5(b)). A first point in choosing the second strategy (and thus considering
the strategy depicted in Figure 1.6) is that if we don’t do this now there will be every
reason to create a new state each time the problem is raised, and we will end up with an
enormous automaton that will only be able to parse the learning data without being able
to generalise, i.e. to parse unseen or unknown moves. The principle behind this idea is
sometimes referred to as the Ockham or parsimony principle.

There is a second point here, which concerns the fact that we will want to prove things
about the sort of algorithms we develop. And here we can argue (we will) that if the second
idea (of using just one state) was wrong, then surely we would have noticed this immedi-
ately (with for instance (λ, a) and (a, s) in the data, a loop with a would have created a
conflicting situation: what output should we have in the state?). And if no such conflict
arises, and still it would have been a bad idea to create the loop, then we should consider
blaming the data: there was no information in the data prohibiting the decision we were
certain to make.

We therefore continue reading the data from Table 1.3 with the partial solution depicted
in Figure 1.6, which is consistent with the data seen so far.

Step 3 We now need to parse the next bit of data: as → s. Following the idea from the
previous step, we want to consider the automaton from Figure 1.7.
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a

a,s

Fig. 1.7. A (bad) candidate to try to parse as → s.

a s

a

s

a

Fig. 1.8. Accepting to create a new state to parse as → s.

But this time things don’t work out right: The candidate strategy indicates that the agent,
after seeing a, will answer a, but the data tells us otherwise. So what can we do?

(i) Keep the automaton and see more strings. In this actual case, in fact, the algorithm would halt
and return the strategy corresponding to Figure 1.7 as answer, since this automaton can parse
all the strings. But this is not a convincing answer since the automaton will be playing a all the
time, so it is clearly a wrong model for the strategy of our opponent. Actually, the determinism
of the structure makes it impossible to recover from an early error.

(ii) Consider that we have made an error somewhere and backtrack. We could consider two places to
backtrack to: after Step 1 or after Step 2. The algorithm we are going to follow here is a greedy
algorithm: it will not backtrack, just delete the last choice and consider the next possibility. There
remain plenty of possible lines here that could (or could not) better the algorithm.

At this point we may want to discuss the difference between an algorithm built to mathemat-
ically identify a target and an artificial intelligence algorithm: in a mathematical identification
algorithm the decision to do something will be taken whenever there is no proof that it is a bad
idea to do so. In other words, if we were not supposed to take the decision, we could have hoped
to find a refutation in the data. This is of course an optimistic assumption. On the other hand
an argument closer to artificial intelligence (but also perhaps to common sense) will tell us to
decide if there is evidence for it to be a good idea.

We create a new state and thus are left with the strategy depicted in Figure 1.8.

Step 4 The next string that cannot be parsed is string asa (whose output is a, because
of asa → a). Once again there are three possibilities: automata from Figures 1.9(a),
1.9(b) and 1.9(c). The first is clearly inconsistent with the data since as → s. But in
fact the previous argument is good enough: Do not create a new state if you don’t have to.
Furthermore, checking the possibilities in some predetermined order is essential: if needed,
the information allowing us to discard a choice can then be forced into the learning data.
Obviously an exhaustive beam search could be performed, even if there will be a cost that
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a s a
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a

(c)

Fig. 1.9. How to parse asa → a.
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a s

a

s
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a

(b)

a s s
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s

a

a

s

(c)

Fig. 1.10. How to parse asaass → s.

would be prohibitive for a larger quantity of data. Therefore the automaton represented
in Figure 1.9(b) is kept. It can be noticed that not only can asa be parsed, but also more
strings, for instance asaa and asaas which correspond to asaa → a and asaas → s
in Table 1.3. This also is a typical feature of grammatical inference: one decision can take
care of more than one piece of data.

Step 5 The next string we cannot parse is asaass (→ s). We again have three choices
and can show that the two choices which do not create states (1.10(a), 1.10(b)) fail. We
keep the strategy from Figure 1.10(c).

Step 6 Let us name the states by the smallest string reaching each state: we therefore have
at this point qλ, qs and qss. We label each state by its name and its output. Therefore
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qλ|a qs|s qss|s

a

s

a

a

s

a

Fig. 1.11. Trying δ(qss,a) = qλ.

qλ|a qs|s qss|s

a

s

a

s

a

Fig. 1.12. We now have to deal with δ(qss,s).

qλ|a qs|s qss|s

a

s

s

a

s

a

Fig. 1.13. What the algorithm returns.

(qss|s) corresponds to state qss, which outputs symbol s. At this point we have to decide
what we do with the edge labelled a leaving state qss, which we will denote by δ(qss,a).
This is an equivalent question to asking: how do we parse an a from state qss? Again the
first idea is to try ending this edge in qλ (Figure 1.11).

As this is rejected, δ(qss,a) = qs is then tested (Figure 1.12). This decision is accepted.
After rejecting δ(qss,s) = qλ and δ(qss,s) = qs, the loop δ(qss,s) = qss is

accepted. As all the strings can now be parsed in a consistent manner, the automaton
(Figure 1.13) is returned and the algorithm halts.

It should be noted that the above example is only exactly that, an example. There is
certainly no guarantee that such a short game should allow us to reconstruct the strategy.

1.2.7 Some open problems

A first interesting question (albeit not necessarily for grammatical inference) is to consider
what the ‘better’ strategy would be against an arbitrary adversary. There are a number of
variants here, as ‘better’ could mean a number of things. Out of interest the strategy called
tit for tat (represented in Figure 1.14) is considered the best against an arbitrary adversary.

A second open question is: How do we get hold of the learning data?

• Through observation. In this setting we have to do the best we can with a given set of examples. If
the previous games from which we are learning are meaningful, we can hope to learn the strategy.
But obviously, if the agent has only had to play some specific type of opponent, then we will only
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q1 : s q2 : a

a

s

s

a

Fig. 1.14. Rational strategy tit-for-tat.

qλ| a: 0.5
s: 0.5

q1| a: 0.9
s: 0.1

q2| a: 0.2
s: 0.8

q3| a: 0.7
s: 0.3

a

s

a

s

a

s

Fig. 1.15. A probabilistic strategy.

have a very partial type of information and will quite logically only find out how the player reacts
in certain situations.

• Through exploration. If we are to play against the agent in order to gather the data, we may be
in better condition to learn from him or her. But in this case there will usually be a price to pay,
which can be given by the gain function. The typical situation will be the one where at some point
we have learnt a strategy which, when countered, is giving us an advantage. Suppose for instance
we believe the agent adopts strategy tit for tat (represented by Figure 1.14); then we understand
that the best answer is to play s systematically. But there may be an entirely unsuspected better
strategy that can only be discovered if we are prepared to consistently lose for some long period
of time. For example, after playing a 1000 times in a row, perhaps the player may resign and
consistently play s in all cases allowing us to get the maximum score in the limit by playing a.
The question is then: how do we know, after 999 losing moves of a, that we should do it once
more?

Another open problem is to consider that the strategy is probabilistic. The answer in each
state is the result of some stochastic process. This leads to questions related with Markov
decision processes, as discussed in Chapter 16. Just to get the idea we propose a possible
probabilistic adversary in Figure 1.15. Other questions that arise through the algorithms
concern validation: what can we say about the learnt automaton? How good is it? Is it
provably good? If we can’t say for sure that the automaton is good, perhaps can we say
something about the process with which it was constructed? Could it be good provided the
data was good?

All these are questions that will be addressed in this book.
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1.3 Why is learning grammars hard?

It is one thing to build learning algorithms, and another to be able to state that these work.
There may be objective reasons in given applications to learn a context-free grammar, an
automaton or a pattern, but before being able to use the proposed algorithms we will be
faced with the problems of validation and comparison. To solve these we are also going to
have to answer a certain number of questions.

1.3.1 Some possible questions

Does this algorithm work? Does it always work? When does it not work? What does ‘to
work’ mean?

Do we have enough learning data? Can we put a higher bound on the quantity of data
needed to have some guarantee in a bad case? Or some lower bound on the quantity of
data without which learning is impossible? If we are working with data that is sampled
following some given distribution, can we measure the probability that the data we have is
sufficient for learning?

Do we need some extra bias? If what we are looking for is just going to be impossible to
find, like searching for a needle in a haystack, is there some way we can artificially (or by
making extra hypotheses relevant to the application) reduce the search space in order to
have better hopes of finding something sufficiently good?

Is this algorithm better than the other? In the case where we are given two algorithms
that solve the same grammatical inference problem, how do they compare? What criteria
should be used to compare learning algorithms?

Is this problem easier than the other? If we cannot solve a learning problem, then proving
that it is unsolvable is usually difficult. An alternative is to prove that a problem is at
least as difficult as another. This will call for specific reduction techniques for grammatical
inference.

1.3.2 Some possible answers

There are alternatives as to how to answer the above questions:

Use well-admitted benchmarks. In machine learning, the development of shared tasks and
benchmarks has allowed researchers in the field to make a lot of progress. Algorithms can
be compared against each other and hopefully these comparisons allow engineers to choose
the better algorithm for a given task.
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Build your own benchmarks. There are many possible parameters in a grammar learning
problem: the presentation, the class of grammars, the criteria for success. . . This means
that there are in some sense more problems than available benchmarks. For a simple initial
example, consider the problem of learning finite state automata from positive and negative
data. There certainly is one task which consists of trying to learn automata of 500 states
from as few strings as possible, but there are many variants of at least as much importance
and that will not be tackled by the same techniques. Two examples are: learn when some
of the strings are noisy, and learn smaller automata but with an algorithm that never fails.

Solve a real problem. In all cases, solving a new unsolved problem on true data is mean-
ingful. It will convince researchers and engineers that your techniques are capable of
working on something else than toy examples. But a specific issue in this case will be that
of preprocessing the data, and more importantly, the number of parameters to the prob-
lem make it difficult to measure if the proposed technique can be transferred to another
problem, or even get close.

Mathematical proofs. Obtaining mathematical convergence results is not only going to be
an alternative to the above benchmarking problems. You may also want to be able to say
something more than ‘seems to work in practice’. Being able to characterise the mathemat-
ical properties of a method will allow us to pose conditions, which, if fulfilled, guarantee
success in new tasks.

1.4 About identification, approximation and in a general sense convergence

Suppose that, inspired by the previous discussion, you come up with some technique that
seems to fit a particular problem. That might mean, for example, that you have considered
that linear grammars were exactly what you wanted and that the data available consisted
of strings. Now what? Is the problem solved? Perhaps you have considered computing the
complexity or the run time for your algorithm and you have reached the conclusion that
it was correct, and even if you were given a particularly large set of new strings, your
algorithm would perform correctly. But what would ‘correctly’ mean? Notice that if the
problem is just about finding some grammar that could fit the data then we could argue that
the linear grammar that generates all possible strings is just as good as the candidate you
have come up with.

Consider for a more detailed example the learning sample represented in Figure 1.16(a).
It is composed of two sets: S+ contains the examples, i.e. the strings supposed to be in
the language, and S− contains counter-examples or negative examples, that is, strings that
are not in the language. A learning algorithm for deterministic automata could return the
machine represented in Figure 1.16(b) or 1.16(c) between the infinity of possibilities, even
if we restrict the algorithm to accept the consistent ones only.

What arguments could we come up with to say that the second grammar is better than
the first?
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S+ {aa,b,bb}
S− {a,ab,ba}
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Fig. 1.16. Two possible solutions to a learning problem.

We may be tempted to say that ‘in practice’ the second one is ‘better’. Presumably
‘better’ could measure the number of mistakes we could make, when parsing.

An alternative is to come up with some form of ‘the better grammar is the one which best
explains the data’. This would mean that we would have to avoid a grammar that would
only explain the data seen so far, so we would be able to generalise, but we would at the
same time need to give short descriptions (i.e. derivations) of the data.

Another alternative taking into account both ideas is generally called the minimum
description length (MDL) principle: a solution is measured by summing both the size of
the grammar and the size of the explanations. A good grammar is therefore one which is
small in size and allows us to encode the data in a short way.

Notice that in all these arguments we have decided to measure the quality of the grammar
and this should also somehow measure the quality of the learning process, i.e. the capacity
to repeat this on a new set of unseen data. This is obviously arguable: why should our
algorithm perform well in general if it has done well once? On the other hand, if our
algorithm did not do well on one particular task, could it not be because the task was
indeed particular or the specific data bad?

All these questions are to be discussed in detail in this book and one way to try to answer
these questions involves introducing a target.

1.4.1 A target: from induction to inference

By saying that there is a target, and this target is what we are after, we have replaced an
induction problem by an altogether different problem, of searching for a target, approxi-
mating it or identifying it. But many things have changed and new questions can be raised,
as the target itself now is part of the parameters! Indeed the hardness of the learning task
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can depend on the complexity of the target, and questions linked with teaching (is this
particular target teachable?) now make sense.

1.4.2 Identification or approximation

Now we have a target, and we are given, in some way still to be made precise, some data
to work from. So the question is: how are we going to measure success?

A first school of thought is that success only takes place when the actual target is found.
This leads to the elegant concept of identification in the limit: a language is identified
when the hypothesis made is perfect. There is going to be room for discussion, because
many questions remain:

• Were we lucky? Would the same thing happen if we were given different examples?
• Are we in any sense robust: if we are given more examples after identification, are we not going

to change our mind?
• How do we know that we are correct? Or incorrect?
• As infinite languages can certainly not be represented in extenso, some sort of representation

scheme will have to be chosen. How does the identification depend on this choice?

A second school of thought consists of saying that we could accept to be a little wrong.
As matters stand, we could be a little wrong always or nearly always. Now this is going
to oblige us to define some new measure: that of there being a distribution over the
strings, and that this distribution is going to allow us to define ‘the probability of being
wrong’. Again an elegant setting, called PAC learning has been introduced to match this
idea.

Both settings have opponents, some of the questions raised by these being: Why should
the distribution be stable in time? The fact that we are using our model to classify but
probably also to generate could probably change the actual distribution. Is language sta-
ble? When a child starts learning a language, this language is going to change with
time.

Our feeling is that no paradigm is best. Some fit some situations better; some fit others.
The study of a variety of settings is therefore a necessity.

1.4.3 Grammars and languages

As languages can be infinite, there is no way we can manipulate them directly: we can only
use some representation of languages, typically called grammars. And there is going to be
a point in choosing between several possible ways of defining languages.

Let us consider what is often described as the simplest case, that of regular languages. It
is well known that these can be generated (by left linear or regular grammars), recognised
(by non-deterministic or deterministic finite state automata), and described (by rational
expressions).
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Another related issue is that if we only have information about a language, then the
learning algorithm itself somehow defines (or is related to) some canonical form of
grammar.

More generally, these remarks make us define grammatical inference as learning
grammars given information about the languages.

1.4.4 About being efficient

Once it is admitted that some sort of convergence is needed, we will want to converge
efficiently. If we are talking about induction then the issue will be that of taking an appro-
priate amount of time, when considering the amount of data from which learning should
take place.

But if identification or approximation is required then it is reasonable that the harder the
language is (or the more complex a grammar is for the given language), the more time (and
eventually space) we should be allowed for our task.

There are a number of options for defining variants of fast learning, neither of
which should be considered as definitive. The discussion about these will take place in
Chapter 7:

• Just asking bluntly for learnability to be achieved from any data in time polynomial in the size of
the information is not good enough. There is no way we are going to be sure to have only very
useful information.

• In some cases the basic information needed to learn can be too expensive!

1.5 Organisation of the manuscript

This book is organised into three parts: the first part describes the objects (strings,
automata, grammars. . .), in the second part, we study the convergence criteria, and the
third part contains a survey of many algorithms and techniques that can be used.

Chapter 1 is the present Introduction; we have described the field and those surrounding
it. The key questions are raised: why prove things, what does grammatical inference mean?

What are the typical data for grammatical inference? A number of examples and
applications are presented in Chapter 2.

There is an enormous literature on strings. Even if it would have been possible to just
refer to the normal and usual text books, it seemed reasonable for the manuscript to be
self-contained (as much as possible), to revisit the key definitions and unify the presenta-
tion of those results most needed in grammatical inference in our Chapter 3, called Basic
stringology. There will be a special focus on topological issues: how do we order strings,
how do we compare them? Moreover, the links between string distances and string kernels
are explored.

In Chapter 4, called Representing languages, we present the two first levels of the
Chomsky hierarchy: regular languages and context-free languages. In both cases we
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consider various representations and discuss questions of sizes, problems of parsing and of
normal forms.

In Chapter 5 we introduce Representing distributions over strings: probabilistic finite
automata (and probabilistic grammars) generate distributions over strings. Not only do
we give different definitions, but we study in detail the questions of parsing, eliminat-
ing λ-transitions and computing distances between distributions. Again, the algorithmic
questions will be of utmost importance.

In Chapter 6 (About combinatorics) we group a certain number of combinatorial ele-
ments needed when wanting to write a new algorithm or to analyse an existing one: the
VC dimension of the main classes of automata and some important NP-hardness proofs
like the fact that the problem of finding the minimum consistent DFA is NP-hard. Some
strange automata constructions are also given that can help to understand why learning
automata is hard: transforming clauses into automata, automata whose shortest ‘important’
string is of exponential size. . .

The second part concerns the introduction and analysis of learning models: what
language learning and efficient learning are about, and what can’t be done.

When learning in a non-probabilistic setting, we will need to talk about the convergence
of the learning setting. This typically concerns identification in the limit and its resource-
bounded versions. Thus non-probabilistic learning paradigms are introduced, commented
on and analysed in Chapter 7 (Identifying languages).

Chapter 8 is about Learning from text: we survey the results and techniques allowing us
to learn when presented with unique data from the target language (text). What is learnable
from text and why is a class learnable or not?

Active learning or query learning is dealt with in Chapter 9. We will talk about active
learning when the learner can in some way interact with its environment. We will recall
proofs that learning is impossible given less help from the environment.

Chapter 10 (Learning distributions over strings) deals with the case where there is a
distribution over the set of all strings. The first possibility is that we rely on this distribu-
tion to learn a probably approximately correct grammar, one that will parse correctly most
unseen strings (most referring to the distribution), unless the sampling process during the
learning phase has gone particularly badly. The second option is to suppose that the dis-
tribution itself is generated by a grammar (or an automaton). In that case the convergence
can be obtained through a small error or with probability one. Both settings are analysed
(and negative results are given) in Chapter 10.

The third part is a systematic survey of language learning algorithms and techniques.
Chapter 11 is about Text learners: we mainly study two classes of languages learnable

from text, one where a window of fixed size describes acceptable strings, and the second
where a look-ahead can be used to deal with ambiguity problems. We also study a simple
algorithm for learning pattern languages. Finally, we survey here the ideas allowing us to
learn planar languages.

Informed learners concerns the case where not only are examples given, but also
counter-examples. This is an issue that has attracted a lot of interest, especially when
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what one wants to learn is the class of the DFA. In Chapter 12 we describe two important
algorithms, GOLD and RPNI.

Learning with queries is dealt with in Chapter 13. The most important algorithm in
this setting is called LSTAR, and is used to learn deterministic finite automata from
membership and strong equivalence queries.

Grammatical inference is linked with cognitive questions; furthermore the combinatorial
problems associated with the usual questions are intractable. This justifies that Artificial
intelligence techniques (Chapter 14) have been used in many cases: genetic algorithms,
heuristic searches, tabu methods, minimum description length ideas are some ideas that
have been tried and that we briefly present here.

Learning context-free grammars has been an essential topic in grammatical inference
since the beginning. We study the learnability of context-free grammars (but also of
subclasses) and show some algorithms and heuristics in Chapter 15.

When what we want is to learn a distribution over strings, then it may be the case
that this distribution is represented by an automaton or a grammar. Learning the automa-
ton or the grammar is then the problem. One line of research consists of supposing the
formal syntactic model given and concentrating on estimating the probabilities. Grammat-
ical inference has provided algorithms to learn the structure as well as the probabilities.
Some of these algorithms are described in Chapter 16 about Learning probabilistic finite
automata.

One special case we need to analyse is when the structure of the automata is known and
the task consists of Estimating the probabilities of an automaton or of a grammar. This is
the theme of Chapter 17.

There are many cases where learning one language is not enough, and where we have to
manipulate two languages at the same time. Automatic translation is just one of such tasks.
A very simple translation device is a transducer, which is a finite state machine. We extend
the results on learning finite automata to Learning transducers in Chapter 18.

In each chapter we end by providing a small list of exercises, of variable difficulty. Their
purpose is to allow anyone wanting to check how much they have understood to do so and
also to assist anyone wanting to build a course using grammatical inference. The exercises
also give an idea of some difficulties that are not discussed in the text.

A discussion in three parts ends each chapter: the first is a bibliographical survey of
the theme of the chapter, in which the references corresponding to the main results are
given. The second part concerns some alternative routes to similar problems that have been
taken by researchers. In the third part we comment upon some open problems and research
directions one could take.

1.6 Conclusions of the chapter and further reading

We summarise, recall the key issues and discuss the bibliographical background.
In Section 1.1 we discussed some of the important historical landmarks. Ray Solomo-

noff (Solomonoff, 1960, 1964) is considered as the inspiring figure for work in inductive
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inference, whereas the key questions concerning discovering grammars were first posed by
Noam Chomsky (Chomsky, 1955, 1957).

Mark Gold’s work (Gold, 1967, 1978) around the central question of identifica-
tion in the limit is essential. He put down the definitions of identification in the
limit and then proved some critical results which we will describe in more detail in
Chapter 7.

Jim Horning’s PhD in 1969 (Horning, 1969), called A Study on Grammatical Inference is
important for a number of reasons: it not only states that there is a field called grammatical
inference, but in his PhD one can find several questions still very active today, like the
importance of probabilistic grammars.

When mentioning simplicity and the different principles that learning specialists use for
the introduction of convergence criteria, one should consult (Chaitin, 1966, Kolmogorov,
1967, Rissanen, 1978, Solomonoff, 1964, Wallace & Ball, 1968). A full analysis can
be found in (Li & Vitanyi, 1993). The point of view is also defended from a cognitive
perspective in (Wolf, 2006).

The specific field of structural and syntactic pattern recognition (Bunke & Sanfeliu,
1990, Fu, 1982, Gonzalez & Thomason, 1978, Miclet, 1990, Ney, 1992) rose using ideas
from Kim Sung Fu (Fu, 1974, 1975), relayed by researchers like Laurent Miclet (Miclet,
1986) who developed many new ideas in grammatical inference (which is usually called
grammar induction in this context).

Probabilistic grammars were studied in pattern recognition by Kim Sung Fu (Fu, 1974,
Fu & Booth, 1975), and have been worked on in speech recognition by researchers like Her-
mann Ney (Ney, 1992), Enrique Vidal and Francisco Casacuberta (Casacuberta & Vidal,
2004). As will be shown in Chapter 16 the first algorithms to learn probabilistic automata
were ALERGIA (Carrasco & Oncina, 1994b) and DSAI (Ron, Singer & Tishby, 1994);
similar algorithms using hidden Markov models (HMM) can be found in (Stolcke, 1994,
Stolcke & Omohundro, 1994).

Machine learning scientists have added a lot of extra knowledge to the question of gram-
matical inference. Pioneering work by Dana Angluin (Angluin, 1978, 1980, 1981, 1982,
1987b) allowed us to introduce new algorithms (with queries, for pattern languages or for
reversible languages), but also to visit the intrinsic limits of the field. The introduction
of the PAC learning model (Valiant, 1984) led to research on grammars and automata in
this model. Negative proofs relied on cryptographic limitations (Kearns & Valiant, 1989).
Research also dealt with combinatoric issues following early theoretical work by Boris
Trakhtenbrot and Ya Bardzin (Trakhtenbrot & Bardzin, 1973) and experimental work by
Kevin Lang (Lang, 1992). Other work of specialised interest is that by Ron Rivest and
Robert Schapire (Rivest & Schapire, 1993) on learning from unique (but very long) homing
sequences and different works on learning distributions (Abe & Warmuth, 1992). Lenny
Pitt and Manfred Warmuth worked on proving the intractability of learning deterministic
finite state automata from informed presentations: the results are combinatorial and close to
complexity theory. Through reductions one measures the hardness of the issue (Pitt, 1989,
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Pitt & Warmuth, 1988, 1993). For a survey one can read the books on learning theory
(Kearns & Vazirani, 1994, Natarajan, 1991).

Computational biology has offered challenging problems to grammatical inference sci-
entists. There are certainly different reasons for this: the importance of the data, and the
difficulty to humanly manipulate it. Yasubumi Sakakibara’s survey (Sakakibara, 1997) is
a good starting point for researchers interested in these questions. The problems to be
solved involve prediction (Abe & Mamitsuka, 1997) and modelling (Jagota, Lyngsø &
Pedersen, 2001, Sakakibara et al., 1994). The idea of combining probabilistic context-free
grammars and n-gram models (Salvador & Benedí, 2002) helps to deal with long-term
and short-term dependencies. Alvis Brazma’s work on regular expressions and pattern
languages is another direction (Brazma, 1997, Brazma & Cerans, 1994, Brazma et al.,
1998).

Computational linguistics has been an important field for grammatical inference. Not
only did Noam Chomsky introduce the key notions for formal language theory but he
started asking the questions in terms of discovering grammars. For an introduction of
grammatical inference for linguists, see (Adriaans & van Zaanen, 2004). But syntactic
structures themselves don’t convince most linguists who have been attempting to use more
complex constructions, with richer possibilities for the manipulation of semantics. Makoto
Kanazawa’s book (Kanazawa, 1998) can be used as a starting point.

Another issue, closer to statistics, is that of language modelling (Goodman, 2001), with
some theoretical questions presented in (McAllester & Schapire, 2002). Language models
arise whenever disambiguation is needed. As such the task of building a language model
(or the dual task of using the model) is thus to be seen as a sub-task, or tool in impor-
tant fields like automatic translation (Ferrer, Casacuberta & Juan-Císcar, 2008), speech
recognition or natural language processing. The possibilities of grammatical inference here
were guessed long ago (Baker, 1979, Feldman, 1972), but the more statistical approaches
(Charniak, 1993, 1996) have so far been the better ones. Nevertheless work building lan-
guage models for speech recognition (Chodorowski & Miclet, 1998, García et al., 1994,
Thollard, 2001, Thollard, Dupont & de la Higuera, 2000) has allowed the introduction
of several important ideas. Some grammatical inference systems are actually proposed to
build context-free grammars for computational linguists (Adriaans & Vervoort, 2002, van
Zaanen, 2000).

Grammatical inference, as an independent field, has developed through the organisation
of the international colloquium on grammatical inference (Adriaans, Fernau & van Zaan-
nen, 2002, Carrasco & Oncina, 1994a, de Oliveira, 2000, Honavar & Slutski, 1998, Miclet
& de la Higuera, 1996, Paliouras & Sakakibara, 2004, Sakakibara et al., 2006). Between
the surveys we include (de la Higuera, 2005, Sakakibara, 1997).

The introductory example we propose throughout Section 1.2 is adapted from work
by David Carmel and Shaul Markovich (Carmel & Markovitch, 1998a, 1999), who in a
series of papers try to learn such strategies and also analyse the exploration-exploitation
issues.
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When we described the different data grammatical inference had been tested on, we
mentioned graphs. The very few works about learning graph grammars (López & Sem-
pere, 1998, Oates, Doshi & Huang, 2003) use formalisms that can be found in theoretical
computer science literature (Courcelle, 1991, Mosbah, 1996).

The ideas developed in the section about the hardness of grammatical inference have
been partially introduced in (de la Higuera, 2006a). For the discussion about the relation-
ship between identification and teaching, one can read (de la Higuera, 1997, Goldman &
Kearns, 1995, Goldman & Mathias, 1996).
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The data and some applications

Errors using inadequate data are much less than those using no data at all.
Charles Babbage

It is a capital mistake to theorise before one has data.
Sir Arthur Conan Doyle, Scandal in Bohemia

Strings are a very natural way to encode information: they appear directly with lin-
guistic data (they will then be words or sentences), or with biological data. Computer
scientists have for a long time organised information into tree-like data structures. It is
reasonable, therefore, that trees arise in a context where the data has been preprocessed.
Typical examples are the parse trees of a program or the parse trees of natural language
sentences.

Graphs will appear in settings where the information is more complex: images will be
encoded into graphs, and first-order logical formulae also require graphs when one wants
to associate a semantic.

Grammatical inference is a task where the goal is to learn or infer a grammar (or some
device that can generate, recognise or describe strings) for a language and from all sorts of
information about this language.

Grammatical inference consists of finding the grammar or automaton for a language
of which we are given an indirect presentation through strings, sequences, trees, terms or
graphs.

As what characterises grammatical inference is at least as much the data from which we
are asked to learn, as the sort of result, we turn to presenting some possible examples of
data.

2.1 Linguistic data and applications

In natural language processing tasks, huge corpora are constructed from texts that have
appeared in the press, been published on the web or been transcribed from conversations.
A small but representative example is as follows:

27
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En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho
tiempo que vivía un hidalgo de los de lanza en astillero, adarga antigua, rocín
flaco y galgo corredor. Una olla de algo más vaca que carnero, salpicón las más
noches, duelos y quebrantos los sábados, lantejas los viernes, algún palomino de
añadidura los domingos, consumían las tres partes de su hacienda. El resto della
concluían sayo de velarte, calzas de velludo para las fiestas, con sus pantuflos
de lo mesmo, y los días de entresemana se honraba con su vellorí de lo más fino.
Primera parte del ingenioso hidalgo don Quijote de la Mancha (The begin-
ning of Don Quijote, by Cervantes)

The text can sometimes be tagged with various degrees of information. Sometimes, the
tagging actually gives us the structure of the text, in which case, instead of learning from
strings the task will more probably consist of learning from bracketed strings which cor-
respond to trees. A typical parse tree is represented in Figure 2.1. A corresponding tagged
sentence might be (NP John)(VP (V hit) (NP (Det the) (N ball))). Trees found in
tree banks are transcriptions of natural text that has been tagged and archived in view of
better analysis. The syntactic structure is supposed to help the semantic manipulation.

A number of tasks can be described in computational linguistics. These include the
following, in the case where what we are given is raw text.

• A first task can consist of associating with each word in a sentence its grammatical role. This is
called part-of-speech tagging.

• In order to get a better bracketing of a sentence, the brackets are named, corresponding to their
type (noun phrase, verb phrase). The goal is to find the border of these chunks. The task is usually
called chunking or shallow parsing.

• The task called named entity recognition consists of labelling words into categories, for example
Person or Location.

• Semantic role labelling aims to give a semantic role to the syntactic constituents of a sentence. It
will therefore go one step further than chunking.

S

NP VP

John V NP

hit Det N

the ball

Fig. 2.1. Parse tree for the sentence John hit the ball.
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• Language modelling is another task: the goal is to build a model with which the probability of the
next word in a sentence can be estimated.

• A more complex task is that of predicting if two words are semantically related (synonyms,
holonyms, hypernyms. . . )

2.1.1 Language model learning

In several tasks related to natural language, it is necessary to choose between different
plausible (lexically, or even grammatically) phrases. For example, these may be transcrip-
tions of some acoustic sequence in a speech recognition task or candidate translations of a
text. In order to choose between these candidates one would like to propose the sentence
which seems to be most likely to belong to the intended language. Obviously, there would
also be an acoustic score, or a word-by-word score, and perhaps other elements to take into
account.

For example, when using an automatic translation system, we may have to translate the
sentence: ‘Il fait beau et nous voulons nous baigner.’ Candidate translations may be:

• It makes beautiful and we want us swim
• It is beautiful and we want to swim
• He is beautiful and we want to swim

Each of these translations may come with a score corresponding to the individual transla-
tions of each individual word. What is needed now is to compute a score reflecting whether
the sentence seems to be English or not.

A language model can give us a score of likeliness of transcription. It allows us to some-
how know the score of each sequence inside a language. This can be obtained through
having an estimation of the distribution of all sentences in the chosen language.

A very successful technique is to use a window over a corpus to count which sequences
of length n occur often. By simply counting these occurrences we obtain n-grams. These
can be then used to predict the next word or to give a weight to a sentence.

An interesting alternative is to learn probabilistic automata. This line of research has
been followed by a number of researchers. Some algorithms are described in Chapter 16.

Natural language processing (NLP) is a very active research field. The task is to
build models that can be used at the semantic level in order to understand and cre-
ate natural language. In this field a natural cooperation between linguists and computer
scientists can take place. Between the issues addressed here we have the important ques-
tion of language acquisition: How does a young child learn his or her first language?
The basic model studied is often that of learning from text and will be explored in
Chapter 8.

Another specific point is that it is never of use to learn regular languages as they
do not correspond to good models for natural language. Even if there are arguments
against context-free languages, these are usually preferred. We will explore this question
in Chapter 15.
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2.1.2 Automatic translation

The goal is to translate from one language to the other. In a corpus-based approach, corpora
for both the initial and the target language will be given. But another corpus containing
pairs of strings, one in each language, can also be used.

A typical example might be a pair with a sentence in Gaelic and its translation to English:
(Tha thu cho duaichnidh ri èarr àirde de a coisich deas damh, You are as ugly as the

north end of a southward travelling ox.)
The problems raised in this setting are multiple: to build alignments between the sen-

tences, to learn transducers, but also to have statistical language models not only for both
languages, but also for the pair of languages.

In the case of less frequently spoken languages, one has to face the problem of hav-
ing less data and not being able to rely on statistics. In that case, one can consider the
alternatives of learning through a third language (which may typically be English or a
more abstract language) or considering an active learning approach: an expert might be
interrogated in order to help translate specific sentences.

The case where the two languages use altogether different alphabets is called translit-
eration. A typical issue is that of working on texts written with different alphabets and
attempting to make proper nouns correspond.

Automatic translation has become an increasingly important task. Translation using rule-
based systems is interesting but development of the translation rules by experts is a tedious
and far too expensive task. Therefore constructing these rules automatically from corpora
is an attractive alternative. These automatic translators can take a variety of forms. The
one we are interested in here, being closer to the formal grammar approach, makes use of
transducers. Learning restricted types of transducers is a task for grammatical inference, as
will be seen in Chapter 18.

An interesting point to note is that whereas in natural language there are now very large
corpora for the main languages, this is not the case for less common languages or artificial
languages. In this case the creation of corpora for translations is expensive, and syntactic
methods (like grammatical inference) may hope to have an edge over purely statistical
ones.

2.2 Biological data and applications

Following Wikipedia, ‘deoxyribonucleic acid (DNA) is a nucleic acid that contains the
genetic instructions used in the development and functioning of all known living organisms
and some viruses’. In the DNA is stored the genetic information. The basic units are the
nucleotides, each nucleotide being tagged by one of four types of molecule, called bases.
More abstractly DNA is composed over a four-letter alphabet {A,C, T,G} where A stands
for adenine, C for cytosine, T for thymine and G for guanine. Strings of DNA can measure
up to millions in length, and there are a number of databanks in which such sequences can
be found. See Figure 2.2 for an example. The number of possible problems in which some
form of prediction clustering or classification is needed is ever increasing.
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Fig. 2.2. DNA. (Courtesy of National Human Genome Research Institute)

Proteins are macromolecules made of amino acids. They have most of the active roles
in the cell. Abstractly, proteins are composed over a 20-letter alphabet, each letter being
an amino acid itself made of the concatenation of 3 nucleotides. In the first example below
we present some DNA. The second case corresponds to a protein sequence.

ATGAAGGCTCCCACCGTGCTGGCACCTGGCATTCTG
GTGCTGCTGCTTGTCCTTGGTGCAG

MKAPTVLAPGILVLLLSLVQRSHGECKEALVKSEMNVNM
KYQLPNFTAETP

Trees are used in biology for many purposes. Between the many sorts of trees one can
find in computational biology, phylogenetic (or evolutionary) trees are used to describe the
ways the species have been modified during the ages. They show the evolutionary interrela-
tionships among various species or other entities. Distances over strings (see Section 3.4)
can be used to decide which species are close to one another and to find the genes that
might have mutated over time. An example is represented in Figure 2.3.

Typical tasks in computational biology are to find encoding regions, to classify
sequences, to searching for encoding sections, to align, to discover distance parameters. . .

An important issue in this context is to be able to propose intelligible solutions to the
biologists; this means that algorithms returning just one blackbox classifier might not quite
solve their problem.
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Fig. 2.3. Phylogenetic tree. (Courtesy of NASA)

(a) An eight letter alphabet for images.
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(b) A more elaborate alphabet.

Fig. 2.4. Images.

A specificity of the applications in this field is that the strings under consideration are
very long and therefore the algorithms have to be fast.

2.3 Data and applications in pattern recognition

Images, and more specifically contours of images, can be made by providing either a four-
or an eight-letter alphabet describing direction in the plane. We represent in Figure 2.4(a)
a way to encode a contour with an eight-symbol alphabet, and in Figure 2.4(b) typical
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digits and encodings of these that have been used in several applications of hand-writing
character recognition by means of grammatical inference.

Typical tasks will include automatically extracting patterns for each digit or letter, and
then using these patterns for classification. Automata and grammars can be used as class
representatives.

Graphs are used to represent complex data. Intricate relationships can be described by
graphs when trees or strings are insufficient. The drawback is that many problems that
were easy to solve in the case of trees cease to be so for graphs. This is the case when
testing if two graphs are isomorphic, finding the largest common subgraph, computing a
distance or aligning two graphs. The development of the World Wide Web and the need
for richer semantic descriptions nevertheless makes the use of graphs as data from which
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Fig. 2.5. Two graphs.

Fig. 2.6. Delaunay triangulation.
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to learn important. The hardness of grammatical inference makes the learnability of graph
grammars a nearly untouched problem.

Two very simple graphs are represented in Figure 2.5. In the context of image pro-
cessing, graphs can appear through Delaunay triangulation, that is by selecting a number
of nodes (that can correspond either to zones or to important points in the image), and
then relating the nodes by edges by making use of the topological information. A simple
example is represented in Figure 2.6.

2.4 Data in computer science applications

Parse trees for programs are obtained through compiling a program written in some pro-
gramming language as a result of syntactic analysis. In different tasks of engineering these
parse trees are the basis for learning. An example of a parse tree for an arithmetic expres-
sion is provided in Figure 2.7. A very simple fragment of the parse tree for a program in C
is given in Figure 2.8.

A related task can be to infer the correct syntax of some unknown (or forgotten)
programming language given some instances of programs, and perhaps some additional
information, like the grammar of a language supposed to be close to the target. Automatic
programme synthesis is a field concerned with (re)building the program given its traces.

2.4.1 Inductive logic programming

SLD-trees appear when studying the semantics of a logic program. Given a logic program,
the way the resolution takes place is best described through Selected Literal Definite (SLD)
clause resolution. The trees representing these computations can be used as a basis for
learning in Inductive Logic Programming (ILP). See Figure 2.9 for a trivial example.

Inductive logic programming is an active subfield in machine learning. The goal is to
discover, from data and background knowledge both described in a logical programming
language, the program that could account for the data.
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T * F
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Fig. 2.7. Parse tree for 3+5*2.
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< I >

if < C > then < I L >

a>0 < I >

i=0;

< I L >

< I >

f=1;

< I L >

< I >

while < C > do

i<a

< I L >

< I >

i++;

< I L >

< I >

f*=i;

Fig. 2.8. Parse tree for a small program.

p(b)

q(b) not(r(b))

true

Fig. 2.9. SLD-tree.

There are many difficulties in the task: the encoding of the data is one, the usual noise
one can find is another. But, more than anything else, one should notice that the rich-
ness of representation of the logic programs is much stronger than that of regular (or even
context-free) languages. A number of added biases have therefore to be used if something
interesting is wanted.

2.4.2 Information extraction: automatic wrapper generation

The quantity of structured data available today due to the exponential growth of the World
Wide Web introduces a number of challenges to scientists interested in grammatical infer-
ence. HTML and XML data appear as text, but the text is well bracketed through a number
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of tags that are either syntactic (HTML) and give indications as to how the file should be
represented, or semantic (XML).

Here is a small piece from an XML file:

<book>
<chapter>

<name>Introduction</name>
<length>25 pages</length>
<description>

Motivations about the book
</description>
<exercises>0</exercises>

</chapter>
<chapter>

<name>The Data</name>
<length>18 pages</length>
<description>

Describe some cases where the data is made of strings
</description>
<exercises>0</exercises>

</chapter>
<chapter>

<name>Strings and Languages</name>
<length>35 pages</length>
<description>

Definitions of strings and stringology
</description>
<exercises>23</exercises>

</chapter>
</book>

Between the many problems when working with these files, one can aim to find the
grammar corresponding to a set of XML files.

One very nice application in which grammatical inference has been helpful is that of
building a wrapper automatically (or semi-automatically). A wrapper is supposed to take a
web page and extract from it the information for which it has been designed. For instance,
if we need to build a mailing list, the wrapper would find in a web page the information
that is needed. Obviously, the wrapper will work on the code of the web page: the HTML
or XML file. Therefore, grammatical inference of tree automata is an obvious candidate.

Another feature of the task is that labelling the examples is cumbersome and can be
noisy. The proposal is to do this on the fly, through an interaction between the system and
the user. This will justify in part the rising interest in active learning methods.
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2.5 Other situations

2.5.1 Time series

Time series (Figure 2.10) describe (numerical) data over time. As these data are usually
not symbolic, an effort of discretisation has to be made before using them as strings. In
many cases, the time series depends on a variety of factors. This interdependence usually
makes grammatical inference techniques less reliable for problems linked with such data.

2.5.2 Music pieces and partitions

Music (Figure 2.11) can be represented by strings in many ways, depending on the sort
of encoding one uses, in knowing if one is directly transcribing analogue signals or just
re-encoding a partition. The pitches and lengths of the notes will be the symbols of the
alphabet.

Strings allow us to structure the information along just one axis. An extension used
in many fields inside computer science is by means of trees. We mathematically define
trees and terms in Section 3.3. Music can be seen as a language with each piece being
represented by notes, the encoding of which corresponds to the characters in the alphabet.

A number of problems are of interest: creating models for a composer or a style,
clustering composers and classifying new pieces of music.

30

20

10

0

–10

–20
0 200 400 600 800 1000

Fig. 2.10. Time series. (Courtesy of Wikipedia. Used under the GNU Free Documenta-
tion License)
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Fig. 2.11. Music.

The question of polyphony is also crucial as the melody on its own does not give us all
the information we may want.

This is a field where, typically, probabilistic automata have been learnt, not so much
because of their capacity to adapt as because of the fact that they can then be used to
compose new pieces. Probabilistic automata are studied in Chapter 5, and some learn-
ing algorithms that have been used on musical style recognition tasks are presented in
Chapter 16.

2.5.3 Robotics

An autonomous robot may need to construct a representation of the space in which it is
moving. For this purpose it may move around the room and use its captors. One should
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note that there usually is no reset: the robot will not suddenly get lifted and put back into
its original position to start a new experiment! But we are in a setting where all the prefixes
of the string are meaningful, so the situation is somehow close to the preliminary example
from game theory we have explored in this chapter.

The learning is usually said to be active. This setting is explored in Chapter 9.

2.5.4 Chemical data

Chemical data are usually represented as graphs. But for many reasons, chemists have
proposed linear encodings of these graphs. Two formal chemistry languages can be seen
as examples.

The first, simplified molecular line entry specification (SMILES) is defined as a context-
free language. The strings corresponding to molecules are mostly unambiguous.

The second language is called the IUPAC international identifier. It allows us to define
in the same string various phenomena within the molecule. An example is drawn in
Figure 2.12.

In both cases, three-dimensional information corresponding to the molecules is encoded
into the strings.

2.5.5 User modelling

One may consider the question of trying to anticipate a user’s needs by comparing the
sequence of steps the user is following with prototypes that have been previously learned.
This enables the system to anticipate the user’s needs and desires, which may be a good
commercial strategy.

A typical case corresponds to following a web user’s navigation patterns. The actual
graph of the website is known, and the goal is to predict the next page the user will require.
Cache management or commercial strategy can be two reasons to want to do this.

The data will be strings, but an enormous amount of noise may be present: following an
individual user who may be using proxies and caches of all types or even having a cup of
coffee in the middle of his or her session is not a simple task, especially if privacy issues
(which are essential to consider here) are taken into account.

HC

CHCH

HC

HC

CHCH

HC

Fig. 2.12. SMILES string corresponding to cubane: C12C3C4C1C5C4C3C25.
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2.5.6 Ethology and others

Along with the other tasks on which grammatical inference techniques have been tried,
we can mention some strange ones like ethology (bird-songs, but also mating behaviour
of flies), learning computer programming language dialects for reverse engineering, or
analysis of a driver’s fuel consumption!

2.6 Conclusions of the chapter and further reading

The use of grammatical inference for computational linguistic tasks can be researched inde-
pendently; the historic links can be found in Noam Chomsky’s PhD (Chomsky, 1955), and,
between the surveys linking the fields of grammatical inference and computational linguis-
tics one can find (Adriaans & van Zaanen, 2004, Nowak, Komarova & Niyogi, 2002). The
use of transducers (Mohri, 1997), of Markov models (Saul & Pereira, 1997) or of categorial
grammars (Adriaans, 1992, Costa Florêncio, 2003, Kanazawa, 1998, Tellier, 2005) can be
studied elsewhere. Neural networks have also been applied in this setting (Collobert &
Weston, 2008).

Tree bank grammars have been used for some time (Charniak, 1996). Language acquisi-
tion is studied mainly by linguists. A point of view closer to that of grammatical inference
can be found in (Becerra-Bonache, 2006, Becerra-Bonache & Yokomori, 2004). Language
modelling is a task studied by many authors. Andres Stolcke’s approach (Stolcke, 1994) is
probably the first using probabilistic finite state machines for this.

Automatic translation has used automata called transducers for some time now (Alshawi,
Bangalore & Douglas, 2000a, 2000b). Complex systems have attempted to use syntactic
methods relying on transducers instead of just statistical information (Amengual et al.,
2001, Casacuberta & Vidal, 2004).

Many algorithms for the task of learning transducers for automatic translation have
been developed in Spain (Castellanos, Galiano & Vidal, 1994, Castellanos et al., 1998,
Oncina, 1998, Oncina & Varó, 1996, Vilar, 2000). Transliteration has been investigated via
learning of edit distance weights (Pouliquen, 2008).

Other questions relating to language technologies in which grammar learning issues are
raised include acoustics (Castro & Casacuberta, 1996, Vidal et al., 1988) and morphology
(Roark & Sproat, 2007, Wang & Acero, 2002).

The number of works dealing with formal language approaches to computational lin-
guistics is high. To keep the list short, let us mention the work of Alvis Brazma (Brazma,
1997, Brazma & Cerans, 1994) on learning regular expressions and pattern discovery in
biosequences (Brazma et al., 1998). Work on the many questions that lead from this can be
found in (Lyngsø, Pedersen & Nielsen, 1999, Sakakibara, 1997, Sakakibara et al., 1994,
Salvador & Benedí, 2002, Wang et al., 1999).

In pattern recognition the work on strings and trees and grammatical representations has
taken place in subcommunities (typically the structural and syntaxic pattern recognition
working groups) (Bunke & Sanfeliu, 1990, Fu, 1974, Fu & Booth, 1975, García & Vidal,
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1990, Gonzalez & Thomason, 1978, Lucas et al., 1994). Extensions to graphs have been
studied in (Qiu & Hancock, 1996, Yu & Hancock, 1996).

Grammatical inference has also been used to find programming language dialects: the
tasks consist of building, from programs written in some forgotten dialect, and some back-
ground knowledge about similar languages, the grammar for that program (Dubey, Jalote
& Aggarwal, 2006). Other software engineering tasks have been looked into, such as of
synthesising the behaviour of software (Dupont et al., 2008).

ILP is concerned with finding a first-order logic representation explaining some data
and possibly using a background theory. As this representation can be a program writ-
ten in some logic programming language, the question of learning recursive programs
arises. Work in the field has either used SLD resolutions as data to learn from (Boström,
1996, 1998) or a transformation of the ground data into terms as data (Bernard & de la
Higuera, 2001, Bernard & Habrard, 2001, de la Higuera & Bernard, 2001).

The fact that structured document analysis could be done through grammatical inference
has been studied for some time (Ahonen, Mannila & Nikunen, 1994, Young-Lai & Tompa,
2000). The next step was to attempt to extract information from the World Wide Web
(Hong & Clark, 2001, Kosala et al., 2003).

Also linked with the World Wide Web, research has attempted to learn something from
the navigation of a user, in order perhaps to predict the next page he or she will access or
to better adapt the site to the current user. This is a task for which different grammatical
inference algorithms have been tried (Korfiatis & Paliouras, 2008). Manipulating XML
files has made researchers introduce different types of pattern over semi-structured data
(Arimura, Sakamoto & Arikawa, 2001).

Boris Chidlovskii (Chidlovskii, 2001) extracts schema from XML, as also proposed by
Henning Fernau (Fernau, 2001), whereas an alternative is DTDs (Bex et al., 2006).

One task in which grammatical inference is proving to be particularly useful is that of
wrapper induction: the idea is to find in a web page (or something of the same type) all
arguments of a special sort (Carme et al., 2005, Chidlovskii, 2000, Chidlovskii, Ragetli &
de Rijke, 2000, Crescenzi & Merialdo, 2008, Kosala et al., 2003).

Little work has been done in order to model time series and to predict with grammatical
inference techniques. One notable exception is (Giles, Lawrence & Tsoi, 2001) in which
the value of different currencies are predicted by means of automata learnt by neural net-
work training methods. The links between grammatical inference and compression have
been studied either in a paradigmatic way (Wolf, 1978), or in order to develop a compres-
sion tool that at the same time discovers the structure of the document to be compressed
(Nevill-Manning & Witten, 1997a).

Different representations of music can be used (Lerdahl & Jackendoff, 1983); attempts
to classify musical styles and to create music using grammatical inference have taken place
(Cruz & Vidal, 1998, Cruz-Alcázar & Vidal, 2008, de la Higuera, 2005).

There have been some attempts to link grammatical inference with robotics (Dean et al.,
1992, Reutenauer & Shützenberger, 1995, Ron & Rubinfeld, 1993). The goal has been
to get a robot to construct a map of its environment. The work has actually been more
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interesting towards the theoretical setting (no reset: the robot does not magically come
back to its starting point when needed).

The conversions from graphs representing molecules to strings are described in (James,
2007) for SMILES (James, 2007)) and in (Stein et al., 2006) for IUPAC.

In (Murgue, 2005, Murgue & de la Higuera, 2004), Thierry Murgue tries to learn prob-
abilistic finite automata for web user modelling. Other user navigation pattern extraction
techniques have been used (Borges & Levene, 2000, Castro & Gavaldá, 2008, Korfiatis
& Paliouras, 2008). An alternative approach based again on finite state machines (Poggi
et al., 2007) attempts to anticipate the needs of customers of a travel agency.

Other and future applications include testing systems: testing can be a very expensive
matter and the specifications of these systems can often be described through one type
of automaton or anther. Then grammatical inference can be used to develop a test-set
(Bréhélin, Gascuel & Caraux, 2001), or to check through interaction with the actual chips
used as an Oracle that the specifications are met (Berg, Jonsson & Raffelt, 2006, Raffelt &
Steffen, 2006).

Other security issues have been studied by modelling the systems as automata for infi-
nite strings (Alpern, Demers & Schneider, 1985, de la Higuera & Janodet, 2004, Saoudi
& Yokomori, 1993): indeed since the hope is that the system never crashes, the natural
assumption is that the positive examples are infinitely long.

Let us end this survey of examples by noting that the example presented in Chapter 1
corresponded to a problem where strategies were discovered by learning (Carmel &
Markovitch, 1998a, 1999).
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Basic stringology

The biscuit tree. This remarkable vegetable production has never yet been
described or delineated.

Edward Lear, Flora Nonsensica

Man muss immer generalisieren.
Carl Jacobi

Formal language theory has been developed and studied consistently over the past 50 years.
Because of their importance in so many fields, strings and tools to manipulate them have
been studied with special care, leading to the specific topic of stringology. Usual definitions
and results can therefore be found in several text books.

We re-visit these objects here from a pragmatic point of view: grammatical inference is
about learning grammars and automata which are then supposed to be used by programs
to deal with strings. Their advantage is that we can parse with them, compare them, com-
pute distances. . . Therefore, we are primarily interested in studying how the strings are
organised: knowing that a string is in a language (or perhaps more importantly out of the
language) is not enough. We will also want to know how it belongs or why it doesn’t
belong. Other questions might be about finding close strings or building a kernel taking
into account their properties. The goal is therefore going to be to organise the strings, to
put some topology over them.

3.1 Notations

We start by introducing here some general notations used throughout the book.
In a definition ifdef is a definition ‘if’.
The main mathematical objects used in this book are letters and strings. The simplest

notations will consist of using italics for variables denoting letters and strings with the
letters from the beginning of the alphabet (a, b, c, . . .) reserved for the symbols, and
the rest of the alphabet u, v, . . . , z used for the strings. When using examples, refer-
ence alphabets will be used. The letters intervening in the examples will be denoted
as a,b,c, . . .

45
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Finally when we manipulate letters from two alphabets, one being final (the observable
alphabet) and the other being auxiliary or composed of auxiliary symbols, letters of the
final alphabet will be indicated by a,b,c, . . ., and letters from the auxiliary alphabet by
capital letters A, B,C, . . . Strings over the union of the two alphabets will be denoted by
Greek symbols α, β, γ . . .

3.1.1 Mathematical preliminaries

• Q is the set of all rational numbers.
• N is the set of positive or null integers.
• R is the set of real numbers.
• |X | is the cardinality of any finite set X .
• max(X) is the maximum value in a set X (if it exists) (min(X) being the minimum

value in X ).
• argmaxx∈X {θ(x)} denotes one value in X that yields the maximal value over the set X for

the function θ . Note that whereas unicity is often compulsory, we will not follow this line
here.

• argminx∈X {θ(x)} conversely denotes one value in X that yields the minimal value over the set X
for the function θ .

• [n] = {1, . . . , n} (and for n = 0, [0] = ∅).
• We denote A ⊆ B and A ⊂ B for (respectively) ‘A is a subset of B’ and ‘A is a proper subset

of B’.
• When given a finite set E , a partition of E is a set of subsets of E denoted by 	 = {E1, . . . Ek}

such that on one hand
⋃

i∈[k] Ei = E and on the other ∀i, j ∈ [k], Ei ∩ E j = ∅. A partition
defines an equivalence relation over E : two elements are equivalent for 	 (denoted by x ≡	 y)
if they are in the same class or block of the partition. A partition 	 is finer than a partition 	′ if
x ≡	 y =⇒ x ≡	′ y.

• A multiset is a pair M =< A, cntM > where cntM : A → N \ {0} returns the number of occur-
rences of each element of A in M in M . A is called the support of the multiset: A = support(M).

• We shall denote in extension a multiset as {(a, 2), (b, 3), (c, 1)} or alternatively as �a,a,

b,b,b,c �.
• The cardinality of a multiset written |M | is

∑
a∈A cntM (a). Alternatively � M �=|support(M)| is

the number of different symbols in M .

Example 3.1.1 Let sin : R → R be the sine function. Then we obtain max{sin(x) : x ∈
[0; 2π ]} = 1 whereas argmaxx∈[0;2π ]{sin(x)} = π

2 .
For M = {(a, 2), (b, 3), (c, 1)} we have support(M) = {a,b,c}. Also, |M | = 6 but

� M �=3.

3.1.2 Notation in algorithms

The notation O corresponds to the asymptotic class. O( f (n)) stands for the set of all func-
tions dominated asymptotically by function n → f (n). That means: g ∈ O( f (n)) ⇐⇒
limn→∞ g(n)

f (n) < +∞.
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P is the class of all problems solvable in polynomial time by a deterministic Turing
machine.
NP is the class of all decision problems solvable in polynomial time by a non-

deterministic Turing machine, with the NP-complete problems those hardest in the class
and thus, if P �= NP , not solvable in polynomial time. Problems that are at least as hard as
any NP-complete problem are NP-hard. This concerns not only decision problems, but
any problem (optimisation, search) as hard as any ‘hardest’ problem in NP (for instance
SAT, the satisfiability problem).

Tables used in an algorithm will be denoted as T[x][y] when two dimensional. This
allows us to consider a row in the table as T[x].

3.1.3 Distances and metrics

Let X be the set over which a distance is to be defined. We will primarily be dealing with
the case where X is a set of strings, but this of course need not necessarily be the case.

Definition 3.1.1 A metric over some set X is a function X2 → R+ which has the
following properties:

d(x, y) = 0 ⇐⇒ x = y

d(x, y) = d(y, x)

d(x, y)+ d(y, z) ≥ d(x, z)

The last condition is known as the triangular inequality, and it is interesting to notice
how many so called distances do not comply with it. We choose to use the term distance
for any mapping associating a value to a pair of elements with the general idea that the
closer the elements are, the smaller the distance is. When the properties of Definition 3.1.1
hold, we will use the term metric.

In Rn a number of distances have been well studied. Let x = [x1, . . . , xn] and y =
[y1, . . . , yn] be two vectors; then the Minkovski distance of order k, or k-norm distance, is
denoted by Lk :

Lk(x, y) = (∑
i∈[n] |xi − yi |k

) 1
k .

If now x = [x1, . . . , xn] and y = [y1, . . . , yn],
L∞(x, y) = maxi≤n

{|xi − yi |
}
.

The notation L∞ is well founded since limk→∞ Lk(x, y) = L∞(x, y).
Note the two important special cases where k = 1 and k = 2:

• The variation metric: L1(x, y) = ∑
i∈[n] |xi − yi |, sometimes also called the Manhattan

metric.
• The Euclidean metric: L2(x, y) =

√∑
i∈[n](xi − yi )

2.
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3.2 Alphabets, strings and languages

3.2.1 Alphabets

An alphabet � is a finite non-empty set of symbols called letters. It should be noted
that even if elementary examples are typically given on alphabets of size 2, the prac-
tical issues addressed by grammatical inference in fields like computational linguistics
involve alphabets that can be huge, and in many cases of unknown and unbounded
size.

3.2.2 Strings

A string x over � is a finite sequence x = a1 · · · an of letters. Let |x | denote the length of
x . In this case we have |x | = |a1 · · · an| = n.

The empty string is denoted by λ (in certain books the notation ε is used for the empty
string).

Alternatively a string x of length n can be used as a mapping x : [n] → �: If x =
a1 · · · an we have x(i) = ai , ∀i ∈ [n].

Given a ∈ �, and x a string over�, |x |a denotes the number of occurrences of the letter
a in x .

Given two strings u and v we will denote by u · v the concatenation of strings u and v:
u·v:

[|u|+|v|]→ � with ∀i ∈ [|u|], (u·v)(i) = u(i) and ∀i ∈ [|v|], (u·v)(|u|+i) = v(i).
When the context allows it u · v shall be simply written uv.

We write u R = u(n) · · · u(1) for the reversal of u.
Let �� be the set of all finite strings over alphabet �. We also define:

�+ = {x ∈ �� : |x | > 0}
�<n = {x ∈ �� : |x | < n}
�≤n = {x ∈ �� : |x | ≤ n}

Given a string x , u is a substring (or a factor) of x ifdef there are two strings l and r such
that x = lur . In that case we will also say that x is a superstring of u.

We can count the number of occurrences of a given string u as a substring of a string x
and denote this value by |x |u = ∣∣{l ∈ �� : ∃r ∈ �� ∧ x = lur}∣∣.

u is a subsequence of x ifdef it can be obtained from x by erasing letters from x .
Alternatively: ∀x, y, z, x1, x2 ∈ ��,∀a ∈ �:

• x is a subsequence of x ,
• x1x2 is a subsequence of x1ax2,
• if x is a subsequence of y and y is a subsequence of z then x is a subsequence of z.

Example 3.2.1 Consider x = abbababa; then abb is a prefix of x , and aba is a
suffix of x . Both are substrings of x and so is bab. bbbb is a subsequence of x , but not a
substring.
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Note that:

• Finding the longest common subsequence between u and v is in O(|u| · |v|) time.
• Finding the longest common subsequence of a set of strings is NP-hard.
• Checking if string u is a subsequence (or substring) of string x requires O(|x |) time.

For u, x ∈ ��, u is a subsequence of x ifdef there exist indices i = (i1, . . . i|i|) with
1 ≤ i1 < · · · < i|u| ≤ |x |, such that u j = xi j for j ∈ [|u|]. If u is a subsequence of x in the
positions given by i, we will use u = x(i) as notation. The length of the subsequence l(i)
is i|u| − i1 + 1, and corresponds not to the length of x(i) but to the difference (+1) between
the two extreme positions.

Example 3.2.2 Consider the alphabet� = {a,b,c} and let x be the string abbabacac.
We have |x | = 9. The string x(2, 4, 6, 8) = baaa is a subsequence of length 4, but whose
l(2, 4, 6, 8) in x is 7.

3.2.3 Ordering strings

Suppose we have a total order relation over the letters of an alphabet �. We denote by
≤alpha this order, which is usually called the alphabetical order.

Different orders can be defined over ��:

• The prefix order: x ≤pref y ifdef ∃w ∈ �� : y = xw.
• The lexicographic order: x ≤lex y ifdef x ≤pref y ∨ [

x = uaw : y = ubz ∧ a ≤alpha b
]
.

• The subsequence order: x ≤subseq y ifdef x is a subsequence of y.

A more interesting order is the length-lexicographic order (also sometimes called the
hierarchical or length-lex order). We will order the strings totally according to the hier-
archical order by: if x and y belong to ��, x ≤length-lex y ifdef|x | < |y| ∨ (|x | =
|y| ∧ x ≤lex y

)
.

The first strings, according to the hierarchical order, with � = {a,b} are λ,a,b,
aa,ab,ba,bb,aaa, . . ..

In all cases we associate with each of these orders the strict orders <alpha, <pref, <lex,
and <length-lex. We should pay special attention to the above definitions: although the lexi-
cographic order seems the most natural, common and therefore interesting one, in practice
it suffers from several flaws (see for example Exercise 3.5).

Example 3.2.3 Let � = {a,b,c} with a<alpha b<alpha c. Then aab≤lex ab, but
ab≤lex-length aab. And the two strings are incomparable for ≤pref.

Note that, if <alpha is a total order, then so are <lex and <length-lex.

3.2.4 Languages

A language is any set of strings, so therefore a subset of ��. Operations over languages
include:
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• Set operations (union and intersection)
• Product: L1 · L2 = {uv : u ∈ L1, v ∈ L2}
• Powerset: L0 = {λ}, Ln+1 = Ln · L = L · Ln

• Star: L∗ = ⋃
i∈N Li

The complement of language L is taken, if no precision is given, with respect to ��:
L = {w ∈ �� : w �∈ L}. But notation L1 \ L2 will be used for the complement of L2 in
L1, thus:

L1 \ L2 = L1 ∩ L2 = {x ∈ L1 : x �∈ L2}.

The symmetric difference between two languages L1 and L2 is denoted by L1 ⊕ L2 =
L1 \ L2 ∪ L2 \ L1 = {x ∈ �� : (x ∈ L1 ∧ x �∈ L2) ∨ (x ∈ L2 ∧ x �∈ L1)}.

Example 3.2.4 Let � = {a,b}. We consider languages L1 = {a,ab}, L2 = {λ,b,bb}
and L3 = {a,b}. Then L1 · L2 = {a,ab,abb,abbb} and L∗

2 = {bn : n ∈ N}. Also
L1 \ L3 = {ab} whereas L1 ⊕ L3 = {ab,b}.

We denote by L a class of languages. These will be indexed, in order to be well defined,
by a particular alphabet. When not mentioned, we will suppose the size of this alphabet to
be at least 2.

3.2.5 Prefixes, suffixes and quotients

Let u, v ∈ �∗, u−1v = w such that v = uw (undefined if u is not a prefix of v) and
uv−1 = w such that u = wv (undefined if v is not a suffix of u). Let L be a language and
u ∈ �∗. Then u−1L = {v ∈ �∗ : uv ∈ L} and Lu−1 = {v ∈ �∗ : vu ∈ L}.

Generalising the above notation to languages, if L and M are languages, L−1 M = {v :
∃u ∈ L ∧ uv ∈ M} and L M−1 = {v : ∃ u ∈ M ∧ vu ∈ L}.

Let L be a language. The prefix set of L is PREF(L) = {u ∈ �� : uv ∈ L} and the
suffix set of L is SUFF(L) = {v ∈ �� : uv ∈ L}.

A language is prefix-closed ifdef ∀u, v ∈ ��, uv ∈ L ⇒ u ∈ L . It is suffix-closed ifdef

uv ∈ L ⇒ v ∈ L .
The longest common suffix lcs(L) of L is the longest string u such that each string in L

accepts u as a prefix. Technically, (Lu−1)u = L . The longest common prefix lcp(L) of L
is the longest string u such that u(u−1L) = L .

Example 3.2.5 Let � = {a,b}.
PREF(��) = ��.
ab−1�� = ��.
Let L = {a,aba,abba,bba,bab} and u = a. Then u−1L = {λ,ba,bba} and Lu−1 =
{λ,ab,bb,abb}.
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3.3 Trees and terms

There are several ways of defining trees, depending on the point of view and the use: in
graph theory trees are just a special case of graphs, in data structures trees will often be
binary, and in formal language theory they are usually ranked. We choose here to introduce
only ranked trees: the labels of the nodes are chosen from a ranked alphabet, each symbol
having a unique arity, in which case the order of the subtrees matters.

Well-formed trees are built from a ranked alphabet �. In a ranked alphabet each f in �
has an associated rank given by the arity function ρ : � → N. The maximum value the
arity takes is denoted by rmax= max{ρ( f ) : f ∈ �}. This allows us to partition � into
�0 ∪�1 ∪ · · · ∪�rmax .

A Dewey tree (or empty tree, or tree domain) is a (finite) language (LT ) over an alphabet
[rmax], which verifies, for u, v ∈ [rmax]∗, a, b ∈ [rmax]:
• u · v ∈ LT =⇒ u ∈ LT ;
• u · a ∈ LT and b < a =⇒ u · b ∈ LT .

In order to better separate the addresses (elements of the Dewey tree) and the labels, the
former are represented in bold characters: 112 is an address, whereas a is a label.

Definition 3.3.1 A tree t over a (ranked) alphabet � is a total mapping LT → � where
LT is an empty tree and ∀u ∈ LT ,

∣∣{a ∈ N : ua ∈ LT }
∣∣ = ρ(t (u)). LT is called the

domain of tree t and is denoted by Dom(t).

We use typical notations and terms for trees: nodes, leaves, . . . Examples are shown in
Figures 3.1(a) and 3.1(b). In the first case, what is depicted is the skeleton with as labels,
wrongfully, the addresses of the nodes.

Definition 3.3.2 A tree t is a subtree of t ′ at node u ifdef ∀w ∈ Dom(t), t (w) = t ′(uw).

Definition 3.3.3 A context C[ ] is a tree where exactly one leaf is labelled with a special
symbol $ that does not belong to �. If C[ ] is a context and t is a tree, the tree C[t] is

λ

1 2

11 12 13 21

121

(a) An empty tree.

f

g h

b h a a

a

(b) A tree.

Fig. 3.1. A tree over alphabet {a,b,f,g,h} with its tree domain.
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obtained by substituting the node $ by the tree t . Formally, C[t](u) = C[ ](u) ifdef u
belongs to Dom(C[ ]), and C[t](uv) = t (v) if C[ ](u) =$.

Example 3.3.1

Other definitions are classical and are not recalled technically here:

• a node in the tree comprises an address and a label;
• the root of a tree is the node of address λ;
• a leaf of t is a node whose address is not a proper prefix of another string in Dom(t);
• an internal node is a node that is not a leaf;
• the frontier of a tree is the string composed by concatenating all leaves of the tree when read in

prefixial order;
• the height of a tree is the length of the longest string in the domain of the tree.

Definition 3.3.4 A tree t ′ is a subtree of t at node u ifdef ∀w ∈ Dom(t), t ′(w) = t (uw).

In Example 3.3.1, tree t (Figure 3.2(b)) is a subtree of the tree represented in
Figure 3.2(c).

3.3.1 Defining trees as strings

To manipulate trees there are a number of possibilities: one is to convert them to strings,
and another is to transform them into binary trees, by means of the ‘first son, right brother’
encoding.

A linear description of a tree is obtained with the help of the following notation:

• a is a tree of height 0 (just a leaf, labelled by a);
• f (t1 . . . tk ) is a tree with root labelled by f and with k subtrees t1 . . . tk .

For example tree (a) from Figure 3.3 will be denoted by f(g(a(h(b)g(a b)))).
Another possibility is to describe a tree corresponding to a bracketed string. If you con-

sider string (b(a(a b))), then an alternative representation is given in Figure 3.3(b). We
will prefer the first encoding.

f

g h

b $ a a

(a) A context C .

f

a b

(b) The tree t .

f

g h

b f a a

a b

(c) Tree obtained by substituting $ in the context
C by the tree t .

Fig. 3.2. Contexts and substitutions.
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f

g g

a h a b

b

(a)

.

b .

a .

a b

(b)

Fig. 3.3. Trees.

3.3.2 Associating binary trees to trees

There are many reasons for limiting oneself to binary trees: notations are simpler, and
programs may seem fitted to that case. It is therefore of interest to be able to transform
general trees into binary ones. This is always possible through the following operation:

t → t ′: ∀u ∈ Dom(t)

φ(λ) = λ

φ(0u) = 0φ(u)

φ(au) = 1aφ(u)

t ′(u) = t (φ(u))

Note that ψ is the inverse function which transforms a string in Dom(t ′) into the
corresponding string t → t ′: ∀u ∈ Dom(t)

ψ(λ) = λ

ψ(1n0u) = nψ(u)

t (u) = t ′(ψ(u)).

3.3.3 Extensions

Extensions of strings and trees include:

• Graphs and hypergraphs are even more complex to define by generative means and grammars that
produce them have been studied in specific fields only. Typically a graph is composed of a finite
set of nodes or vertices X and a subset of X2 of edges, but there are variants where the graphs can
be undirected or have multiple edges or hyper-edges.

• Infinite strings are used to model situations in reactive systems. We denote by �∞ the set of all
infinite strings defined as total functions N → �. If L is a subset of �∞ it will be an infinitary
language. In the case where L is an infinitary language, the set of finite prefixes of L is PREF(L) =
{x ∈ �� : xy ∈ L}.
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f

a f a

b g a

b

a g

a

(a) A tree.

f

a

f

ab

g

ab

a

g

a

(b) The corresponding binary tree.

Fig. 3.4. Trees.

3.4 Distances between strings

There are many good reasons to define distances between strings. One may want to capture
the notion that some string is only a slight deformation of another, or want to use this dis-
tance for classification purposes: given a set of strings, find some representative of this set,
i.e. a string to which all the other ones are close. We survey here some of these distances
and discuss their tractability.

Distances over strings can be defined in a number of ways, either by selecting fea-
tures which are then measured, and using a distance over Rn , or by computing directly
the distance over the strings themselves.

3.4.1 Feature distances

A typical (and very successful) approach is to transform a string into a vector in a (usually
high-dimensional) space by extracting some features (or measurable information) about
the string. You can then use a conventional numerical distance over the vectors. The
construction goes as follows:

• Find a finite set of measurable features.
• Compute a numerical vector for x and y (−→x and −→y ). These vectors are elements of some set Rn .
• Use some distance d→ over Rn . Then d(x, y) = d→(−→x ,−→y ).

Example 3.4.1 Let |�| = n. Suppose we order the symbols in� as a1,a2, . . . ,ak . With
each string x over � we associate the vector that counts the number of occurrences of each
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symbol in x : −→x = [|x |a1 , |x |a2 , . . . , |x |ak ]. This is known as the Parikh mapping. With
this, it is possible to use any distance over Rk to compare strings.

An alternative is, using the fact that the number of strings is infinite, to do the same but in
an infinite dimension:

• Find an infinite (enumerable) set of measurable features.
• Compute a numerical vector for x and y (−→x and −→y ). These vectors are elements of R∞.
• Use some distance d→ over R∞.
• d(x, y) = d→(�x, �y).

The difference between the two cases is that the set of values associated with a string is
usually unbounded, but not infinite (only a finite number of values is going to be used for
the computation of the distance).

Example 3.4.2 For strings x and u in �� denote by |x |u the number of occurrences
of string u as a substring of string x . Now order all strings of �� using the hierarchical
order. We can now associate with each string x the infinite vector �x where the coordinate
corresponding to u is |x |u .

For instance, string ababaa is represented by (7, 4, 2, 2, 2, 0, 0, 0, 2, 0, . . .). Note that
the value of |x |λ is arbitrarily set to 1.

We now can use the L∞ distance. Thus, in this case, d(ababaa,bba) = 3.

3.4.2 Modification distances

This class of distances is broadly defined as follows:

• Compute the number of modifications of some type allowing us to change string x to string y.
• Perhaps normalise this distance according to the sizes of x and y or to the number of possible

paths.

Typically, the edit distance (see Section 3.4.4) is of this sort, but when the strings are of
identical length, the Hamming distance is also suitable:

Definition 3.4.1 (Hamming distance) Let x and y be two strings of identical length.

dHamming(x, y) =
∑

i∈[|x |]

∣∣{i : x(i) �= y(i)}∣∣
Example 3.4.3 dHamming(aaba,abab)= 3. Notice that a simple ‘rotation’ of the string
(the first symbol becomes the last) can have dramatic effects: dHamming(ababababab,
bababababa)= 10. A rotation corresponds to imagining that a string is circular, and that
then, somehow, the first symbol in the string becomes the last.
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3.4.3 Similarity distances

Another type of distance can be obtained from similarities instead of from differences. The
general idea goes as follows:

We first compute a similarity between x and y. This will be a positive value
S(x, y) ∈ R+. The idea is that the higher the value, the closer the strings.

We then have at least two options to build a distance:

(i) • If x = y, then d(x, y) = 0.
• If x �= y, then d(x, y) = 2−S(x,y).

This typically is the case for the prefix distance, or the distance on trees defined by the
following similarity:

S(t1, t2) = min{|x | : x ∈ Dom(t1) ∩ Dom(t2) ∧ t1(x) �= t2(x)}
(ii) The second idea is to define d(x, y) = S(x, x)2 − 2S(x, y)S(y, x) + S(y, y)2. This sort of

distance is typically used when we want to transform a kernel into a distance (see Section 3.5,
page 60 about kernels).

3.4.4 The edit distance

Defined by Levenshtein in 1966, there have been many variants, studies and extensions
since then. The idea is to define some simple operations to get from one string to the other.
The basic operations are those corresponding to typographic mistakes (insertion, deletion
and substitution) and we measure the minimum number of these operations needed to
transform one string into another.

Definition 3.4.2 Given two strings x and y in ��, x rewrites into y in one step ifdef one
of the following correction rules holds:

• x = uav, y = uv and u, v ∈ ��, a ∈ � (single-symbol deletion);
• x = uv, y = uav and u, v ∈ ��, a ∈ � (single-symbol insertion);
• x = uav, y = ubv and u, v ∈ ��, a, b ∈ �, (single-symbol substitution).

Example 3.4.4
• abc → ac (one deletion);
• ac → abc (one insertion);
• abc → aec (one substitution).

We will consider the reflexive and transitive closure of this derivation, and x →k y ifdef

x rewrites into y by k operations of single-symbol deletion, single-symbol insertion and
single-symbol substitution.

Given two strings x and y, the Levenshtein or edit distance between x and y denoted by
dedit(x, y) is the smallest k such that x →k y.
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Table 3.1. A cost matrix.

λ a b

λ 0 0.5 0.7
a 0.5 0 1.3
b 0.7 1.3 0

Example 3.4.5 dedit(abaa,aab) = 2. abaa rewrites into aab via (for instance) a
deletion of the ‘b’ and a substitution of the last ‘a’ by a ‘b’.

In the most general case the cost of each operation may not be 1. The cost is then given
by a cost matrix. An example of such a matrix can be found in Table 3.1. Cost matrices
are an important part of the edit distance: if one does understand the point of counting the
number of errors in a text, clearly, in many applications, some errors are more probable
(and thus have less cost) that others. For instance, in biology, certain mutations are easier,
and in copying a text one might make more errors through using one key instead of its
neighbour on the keyboard.

Certain conditions have to be met for the edit distance with costs still to be a metric: the
cost matrix has itself to be symmetric.

With the matrix in Table 3.1 this is the case, but the cost matrix does not respect the
triangular inequality as C[b][a] = 1.3 > C[a][λ] + C[λ][b] = 0.5 + 0.7. We leave the
consequences of this remark as an exercise (Exercise 3.8, page 66).

General algorithm. The definition of the edit distance does not provide us with a direct
algorithm. Indeed using something like ‘recursively trying out all possible operations’ will
end up with an exponential amount of work.

The correct (yet inefficient) formula is:

dedit(xa, yb) = min

⎧⎨⎩
dedit(xa, y)+ C[λ][b]
dedit(x, y)+ C[a][b]

dedit(x, yb)+ C[a][λ]

In the above, C[a][b] refers to the cost of substituting symbol a by symbol b, C[a][λ]
to the cost of erasing symbol a, and C[λ][b] to the cost of inserting symbol b. One way
to compute this efficiently is through dynamic programming. This is what Algorithm 3.1
does.

We show in Table 3.2 an example computation of the edit distance between strings
abbaa and abaacabb for the unit cost matrix (all operations are worth 1). It should
be noticed that the same table can easily be interpreted to find the number of optimal
alignments or paths from one string to the other, or to explore the different optimal
paths.
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Algorithm 3.1: Computing the edit distance.

Data: A cost matrix C[|�| + 1][|�| + 1], two strings x = a1 · · · am and y = b1 · · · bn

Result: d[m][n] = dedit(x, y)
d[0][0] ← 0;
for i : 1 ≤ i ≤ m do d[i][0] ← d[i − 1][0] + C[ai ][λ];
for j : 1 ≤ j ≤ n do d[0][ j] ← d[0][ j − 1] + C[λ][b j ];
for i : 1 ≤ i ≤ m do

for j : 1 ≤ j ≤ n do d[i][ j] ←
min

(
d[i − 1][ j] + C[ai ][λ], d[i][ j − 1] + C[λ][b j ], d[i − 1][ j − 1] + C[ai ][b j ]

)
end
return d[m][n]

Table 3.2. An example computation of the
edit distance for the unitary cost matrix.

a 5 4 3 2 1 2 3 4 5
a 4 3 2 1 2 3 4 5 6
b 3 2 1 2 3 4 5 5 5
b 2 1 1 2 3 4 5 5 6
a 1 1 2 2 3 4 5 6 7
λ 0 1 2 3 4 5 6 7 8

λ b b a a c a b b

Complexity. Time and space of Algorithm 3.1 are in O(|x |.|y|). But an alternative imple-
mentation by one-dimensional vectors is possible, reducing the space complexity to
O(min(|x |, |y|)).

Extensions. The general idea behind the computation of the edit distance can be adapted to
other cases and settings. This may be of interest in particular applications. But in all these
cases the problems of the distance (the fact that it is not easy to compute and in the case of
very long strings it actually becomes extremely complex) remain. Some of the extensions
are as follows:

• We can add other operations such as the inversion of two contiguous symbols: uabv → ubav;
usually the algorithms and results can be adapted.

• Similar algorithms can work (with some extra cost) on circular strings: circular strings can be used
in pattern analysis to represent contours.

• We can compute how far a string is from a set or a language. The definition would then be:
dedit(x, L) = min{dedit(x, y) : y ∈ L}. The next step consists of defining the distance between
two languages: dedit(L1, L2) = min{d(x, y) : x ∈ L1 ∧ y ∈ L2}.

• In practice there are arguments in favour of using a normalised distance and being able to say
that string aaababababababba is closer to aaabababbbababba than a is to b. That is
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Fig. 3.5. Typical cost matrix used for proteins.

why, in many applications variants of this normalised distance are used. But these normalised
distances are problematic: note for instance that if normalising by dividing by the sum of lengths
dN (x, y) = dedit(x,y)|x |+|y| you end up with something that is not a metric:

• dN (ab,aba) = 0.2
• dN (aba,ba) = 0.2
• dN (ab,ba) = 0.5

Therefore we have dN (ab,ba) > dN (ab,aba)+ dN (aba,ba) and the triangular inequality no
longer holds.

• Extending the edit distance to trees and graphs is not straightforward.

Other questions related to the distance are of interest when trying to define, from a given
set of strings, a specific string as representative of the set. We could in this case consider
computing:

• the string median: u = argminc∈��{
∑

x∈S dedit(c, x)} or
• the string centre: u = argminc∈��{maxx∈S dedit(c, x)}.

But finding any of these values is intractable and corresponds to attempting to solve
NP-hard problems.

It should be added that if the edit distance can (with many technical complications)
extend to trees, the extension to graphs poses a problem. Indeed, if we want it to be a
metric, then it would enable us to solve the graph isomorphism problem, which is believed
not to be in P . That is why the computation of the edit distance for graphs is only done by
heuristics.
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3.5 String kernels

Kernels provide us with another way to associate a numerical value to a pair of objects (here
strings). In a certain sense, the value associated does not indicate a closeness between the
objects, but how much they share.

A kernel is a function κ: A × A → R such that there exists a feature mapping φ:
A → Rn , and κ(x, y) =< φ(x), φ(y) >.
< φ(x), φ(y) > represents the dot product (also known as the scalar product):

< φ(x), φ(y) >= φ1(x) · φ1(y)+ φ2(x) · φ2(y) + . . .+ φn(x) · φn(y).
Some important points that we should make are:

• The κ function is explicit, whereas the feature mapping φ may only be implicit. This means that
we need an algorithm to compute κ , whereas this is not necessary for the feature mapping.

• Instead of Rn some other Hilbert space can be used.
• If we build the kernel directly from the feature mapping φ, this one respects the kernel conditions

(known as Mercer conditions: the associated matrix should be semi-definite positive).
• If a semantic can be attached to the function φ, then interpretation of whatever learning results we

obtain is possible. If not, in general, we are left with a black box.
• Another essential issue is algorithmic: the computation of κ(x, y)must be cheap since this is going

to be repeated many times. A typical complexity of O(|x |+|y|) or O(|x |·|y|) is considered correct
in most cases.

Notice that this point is not as trivial as it may seem since the actual definition is κ(x, y) =∑
i∈[n] = φi (x)φi (y), and we do not want this value n to intervene in the complexity. Actually,

for some kernels, n can be infinite! Avoiding computing the kernel through the feature function is
called the kernel trick.

3.5.1 Basic definitions

We give the elements necessary to construct string kernels, used to compare strings in ��.
Adaptations to trees are sometimes possible.

Definition 3.5.1 (String kernel function) A string kernel is a function κ that, for all
x, y ∈ ��, satisfies

κ(x, y) = 〈φ(x), φ(y)〉,
where φ is a mapping from �∗ to an (inner product) feature space F

φ : x → φ(x) ∈ F.

Note that kernels can be combined:

Proposition 3.5.1 Let κ1 and κ2 be kernels. Then the following function is a kernel:

κ(x, y) = κ1(x, y)+ κ2(x, y).

We now introduce some string kernels.
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3.5.2 The Parikh kernel

The Parikh map associates to each string a vector of natural numbers where each
component is the number of occurrences of a symbol of the alphabet in the string.

Definition 3.5.2 (Parikh kernel) The feature space associated with the Parikh kernel is
indexed by �, with the feature mapping:

φP
a (x) = |{i : x(i) = a}| = |w|a, a ∈ �.

The associated kernel is defined as

κ P(x, y) = 〈φP (x), φP (y)〉 =
∑
a∈�

φP
a (x)φ

P
a (y).

Example 3.5.1 Consider the strings bac, baa, cab and bad. Their Parikh kernels are
given in the following table:

φP a b c d

bac 1 1 1 0
baa 2 1 0 0
cab 1 1 1 0
bad 1 1 0 1

So the Parikh kernel between bad and cab has value

κ P (bad,cab) = 1 ∗ 1 + 1 ∗ 1 + 0 ∗ 1 + 1 ∗ 0 = 2.

3.5.3 The spectrum kernel

This corresponds to counting contiguous subsequences, or substrings, of a given length.
The idea is similar to that of the n-grams or the k-testable languages (these are presented
in Section 11.1, page 217).

Definition 3.5.3 (Spectrum kernel) The feature space associated with the spectrum
kernel is indexed by �k , with the feature mapping:

φS,k
u (x) = |x |u, u ∈ �k .

The associated kernel is defined as

κ S,k(x, y) = 〈φS,k(x), φS,k(y)〉 =
∑
a∈�

φS,k
u (x)φS,k

u (y).

Note that of course for k=1 we obtain the Parikh kernel. As an example
κ S,2(aabaaac,baaa) = 8 + 1 (for k = 2).
Complexity of the computation of κ S,k(x, y) is in O(k · |x | · |y|).
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3.5.4 The all k-subsequences kernel

The all k-subsequences kernel computes the dot product of two vectors of which each
component is the number of occurrences of contiguous or non-contiguous subsequences of
length at most k in a string.

We consider all subsequences of length at most k. The goal of this kernel is to grow with
the number of shared subsequences of bounded length. Alternatively, one counts all the
alignments of at most k symbols between the two strings.

Definition 3.5.4 (All k-subsequences kernel) The feature space associated with the
embedding of the all k-subsequences kernel is indexed by I = �≤k , with the component
labelled by u given by

φU,k
u (x) = |{i : u = x(i)}|, u ∈ I,

that is, the count of the number of times the indexing string u occurs as a subsequence in
the string x . The associated kernel is defined by:

κU,k(x, y) = 〈φU,k(x), φU,k(y)〉 =
∑

u∈�≤k

φU,k
u (x)φU,k

u (y).

We will also write: ∀x ∈ ��, φU,k
λ (x) = 1.

Example 3.5.2 All the 2-subsequences in the strings bac, baa, cab and bad are given
in the following table:

φU,2 λ a b c d aa ab ac ad ba bc bd ca cb

bac 1 1 1 1 0 0 0 1 0 1 1 0 0 0
baa 1 2 1 0 0 1 0 0 0 2 0 0 0 0
cab 1 1 1 1 0 0 1 0 0 0 0 0 1 1
bad 1 1 1 0 1 0 0 0 1 1 0 1 0 0

with all other dimensions indexed by other strings of length 2 having value zero.
So the all 2-subsequences kernel between baa and bad has value

κU,2(baa, bad) = 6.

3.5.5 The all-subsequences kernel

We now extend the previous kernel to the case where we do not bound a priori the
size of the subsequences. The all-subsequences kernel associates to each string a vec-
tor where each component is the number of occurrences of contiguous or non-contiguous
subsequences in a string.

This also corresponds to counting the number of alignments between two strings.
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Definition 3.5.5 (All-subsequences kernel) The feature space associated with the
embedding of the all-subsequences kernel is indexed by I = ��, with the component
labelled by u given by

φU
u (x) = |{i : u = x(i)}|, u ∈ I,

that is, the count of the number of times the indexing string u occurs as a subsequence in
the string x . The associated kernel is defined by:

κU (x, y) = 〈φU (x), φU (y)〉 =
∑

u∈��
φU

u (x)φ
U
u (y).

Note that the number of empty alignments is 1, so ∀x ∈ ��, φU
λ (x) = 1.

Example 3.5.3 All the subsequences in the strings bac, baa, cab are given in the
following table:

φU λ a b c aa ab ac ba bc ca cb bac baa cab

bac 1 1 1 1 0 0 1 1 1 0 0 1 0 0
baa 1 2 1 0 1 0 0 2 0 0 0 0 1 0
cab 1 1 1 1 0 1 0 0 0 1 1 0 0 1

with all other dimensions indexed by the (infinitely many!) other strings of �� having
value zero.
So the all-subsequences kernel values for the pairs baa and bac, and aaba and abac,
are

κU (baa, bac) = 1+3+2=6
κU (aaba,abac) = 1 + 7 + 6 + 2 = 16.

3.5.6 The gap-weighted subsequences kernel

The idea of the gap-weighted subsequences kernel is to associate to each string a vector
where each component is a weight which measures the degree of contiguity of the subse-
quence of length k (k fixed) in the string. The goal is to penalise those alignments that use
letters far apart.

Definition 3.5.6 (Gap-weighted subsequences kernel) We consider all contiguous and
non-contiguous subsequences of length k where the gaps are weighted by γ . The feature
space associated with the gap-weighted subsequences kernel of length k is indexed by
I = �k , with the embedding given by

φG
u (x) =

∑
i: u=x(i)

γ l(i), u ∈ �k .
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The associated kernel is defined as

κG,k(x, y) = 〈φG,k(x), φG,k(y)〉 =
∑

u∈�k

φG,k
u (x)φG,k

u (y).

Example 3.5.4 Consider the simple strings bac, baa, cab and bad. Fixing k = 2, the
strings are mapped as follows:

φG,2 aa ab ac ad ba bc bd ca cb

bac 0 0 γ 2 0 γ 2 γ 3 0 0 0
baa γ 2 0 0 0 γ 2 + γ 3 0 0 0 0
cab 0 γ 2 0 0 0 0 0 γ 2 γ 3

bad 0 0 0 γ 2 γ 2 0 γ 3 0 0

with all other coordinates having value zero.
So the gap-weighted subsequences kernel between baa and bad has value

κG,2(baa, bad) = γ 4 + γ 5.

If practically the idea is that the value of γ is less than 1, for theoretical reasons an
interesting value for γ is 2. Complexity of the computation of this kernel is O(k · |x | · |y|).

3.5.7 How do we compute a kernel?

The goal in most cases is obviously to avoid computing all the φu(x) and then using the dot
product. This requires computing the kernel directly. Dynamic programming is typically
used for this. Algorithms for the different kernels presented in this section can be found in
the literature. Just to give the spirit, we present in Algorithm 3.2 the computation of the
all-subsequences kernel.

Note that κ(a1 · · · am, b1 · · · bn) counts the number of good alignments between x =
a1 · · · am and y = b1 · · · bn . And this count can be decomposed into on one hand
those alignments where am is not used (this is then κ(a1 · · · am−1, b1 · · · bn)) and on
the other those alignments where am is used: in this case am is aligned with one of
b1 · · · bn (for example b j with b j = am). We count this in an auxiliary variable, denoted
by Aux[ j].

3.6 Some simple classes of languages

Languages are sets of strings and can be defined in many ways. In the next chapter we will
use grammars and automata to generate or recognise strings, but it is possible to define
simple classes of languages through topological operations.

FIN (�) is the class of all finite languages over an alphabet �.
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Algorithm 3.2: Computing the all-subsequences kernel.

Input: a1 · · · am , b1 · · · bn

Output: K[m][n] = κ(a1 · · · am, b1 · · · bn)

for j ∈ [n] do /* Only the empty alignment */
K[0][ j] ← 1

end
for i ∈ [m] do

last ← 0;
Aux[0] ← 0;
for j ∈ [n] do /* a1 · · · ai , b1 · · · b j */

Aux[ j] ← Aux[last]
end
if ai = b j then Aux[ j] ←Aux[last]+K[i − 1][ j − 1];
last ← j ;
for j ∈ [n] do K[i][ j] ← K [i − 1][ j]+Aux[ j]

end
return K[m][n]

3.6.1 Balls

Let u be a string over an alphabet �. Br (u) = {x ∈ �� : dedit(u, x) ≤ r} is a ball of
strings. r ∈ N is the radius of the ball, and u is the centre of the ball.

We denote by BALL(�) the class of all balls over an alphabet�. Those balls that have
the radius at most as long as the length of the centre are called good balls. The class of all
good balls over an alphabet � is denoted by GB(�).

3.6.2 Cones

Let u be a string over an alphabet �. K (u) = {x ∈ �� : x ≤subseq u} is a cone.
We denote by CONE(�) the class of all cones over an alphabet �.

3.6.3 Co-cones

Let u be a string over an alphabet �. K K (u) = {x ∈ �� : u ≤subseq x} is a cocone.
We denote by COCONE(�) the class of all cocones over an alphabet �.

3.7 Exercises

3.1 Prove that if L is a finite set, then so is PREF(L).
3.2 Compute u−1L and Lu−1 for:
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• L = {a,aba,abba} and u = a,
• L = {a,aba,abba} and u = ab,
• L = �� and u = a,
• L = �� and u = λ.

3.3 Order the following strings for the orders ≤pref, ≤lex, ≤subseq and ≤lex-length: aabab,
bbabacaa, cc, acabaab, baaa.

3.4 Compute the Hamming distance (when possible) and the edit distance (with unit
costs) between the three following strings: ababa, baaaba and babab.

3.5 Prove that the lexicographic order is not Noetherian, i.e. that you can construct a non-
empty set with no minimal element. Alternatively, that there is a strictly decreasing
infinite sequence.

3.6 Let � = {a,b}, prove that ≤lex-length is a good ordering, i.e. that every non-empty
set has a minimal element.

3.7 Prove that the induction principle holds for ≤lex-length, i.e. that given any property P ,
if we can prove ∀y

[∀x ≤lex-length y P(x) =⇒ P(y)
]

then the property P is true on
every element of ��.

3.8 Prove that if the cost matrix does not respect the triangular inequality, Algorithm 3.1
(page 58) may not return the correct value.

3.9 Give an example of a distance over �� for which the triangular inequality does not
hold.

3.10 Prove that the Hamming distance is indeed a metric over each �n .
3.11 Suppose we normalise the Hamming distance by dividing the distance by the length

of x (and with d(λ, λ) = 0). Is this still a metric?
3.12 Extend the Hamming distance to�� by first extending it to the alphabet (�∪{$})∞ as

follows: given any strings u and v in ��, complete u and v to the right by an infinity
of symbols $ and ‘compute’ the Hamming distance between these two strings. Is this
a metric?

3.13 Prove that the prefix distance is indeed a metric. The prefix distance between two
strings is defined as

• if x = y, then dpre f (x, y) = 0,
• if x �= y dpre f (x, y) = 2|lcp(x,y)|.
Recall that the lcp of a set is the longest common prefix of the set.

3.14 Prove that the prefix distance is an ultra-metric, i.e. that the following conditions
hold:

• ∀x, y ∈ ��, dpre f (x, y) ≤ 1,
• ∀x, y, z ∈ ��, dpre f (x, z) ≤ max{dpre f (x, y), dpre f (y, z)}.

3.15 Suppose we normalise the prefix distance by dividing the distance between x and y
by |x | + |y| (and with d(λ, λ) = 0). Is this still a metric?

3.16 Give an example of a distance over �� which uses substrings. Is it a metric?
3.17 Consider using the edit distance normalised by dividing by the length of the smallest

of the two strings: d(x, y) = dedit(x,y)
1+min{|x |,|y|} . Is this a metric?
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3.18 Another possible idea to take into account the lengths is to divide by the product of
both lengths. In order to deal with the special case where one of the strings is the
empty string we have to add one. d(x, y) = dedit(x,y)

1+|x ||y| . Is this a metric?
3.19 Build an algorithm that computes the longest common subsequence of two strings u

and v, and modify this algorithm to check if the longest common sequence is unique
or not.

3.8 Conclusions of the chapter and further reading

3.8.1 Bibliographical background

Most of the definitions and techniques from this chapter can be found in typical text-
books for formal language theory (Harrison, 1978, Hopcroft & Ullman, 1979, Simon,
1999, Sakarovich, 2004). More specifically, the book by Maxime Crochemore et al.
(Crochemore, Hancart & Lecroq, 2007) offers most of what should be known in
stringology.

The mathematical notations and algorithmic conventions we use are standard. The def-
initions concerning alphabets, strings and languages are also well known. Between the
different choices made, we have preferred to write the empty string as λ rather than ε,
because of possible confusion in the context of distribution-free learning. One might also
point out that the λ refers to the German leer, which means empty.

We have very briefly given, as extensions, definitions for the infinitary case because of
some very specific grammatical inference in this setting (de la Higuera & Janodet, 2004,
Maler & Pnueli, 1991, Saoudi & Yokomori, 1993).

In the same sense we have proposed some basic definitions concerning trees.
The study of algorithms for finding patterns in strings is important. Several research

papers deal with the question of finding the longest common subsequence or checking if a
string is a substring of another. A good starting point is (Aho, 1990).

The definitions concerning distances over strings come from a number of places. If
the early definition was by Vladimir Levenshtein (Levenshtein, 1965), the algorithm
was introduced in (Wagner & Fisher, 1974). Discussions concerning the variants can
be found in a number of places including (Crochemore, Hancart & Lecroq, 2001, Gus-
field, 1997, Luzeaux, 1992, Miclet, 1986). The complexity of the algorithm is an issue,
so, for applicative reasons, heuristics have been proposed (Rico-Juan & Micó, 2003).
The cited problem that the median and centre string problems were intractable was
proved in (de la Higuera & Casacuberta, 2000), and there have been several heuris-
tics to try to solve the problem, albeit in an approximative way. But a number of
authors argue that in practice, having to rewrite twice on a string of length 2 is not
the same as having to rewrite twice on a string of length 200 (Navarro, 2002). For
such reasons, several ideas have been proposed to try to relate (in an inverse way) the
lengths of the strings with the distance (de la Higuera & Micó, 2008, Yujian & Bo,
2007).
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The advantages of the distance function being a metric are that alternative algorithms
and data structures can be used for nearest neighbour algorithms (Chávez et al., 2001,
Marzal & Vidal, 1993, Micó, Oncina & Vidal, 1994). The triangular inequality can be used
to avoid certain computations, resulting in more cost-effective algorithms (Rico-Juan &
Micó, 2003).

Section 3.5 closely follows work by Alexander Clark et al. (Clark et al., 2006, Clark,
Florêncio & Watkins, 2006), and the book by John Shawe-Taylor and Nello Christianini
(Shawe-Taylor & Christianini, 2004).

There has been an increasing amount of literature dealing with string kernels. An
association of kernels based on automata has been introduced by Corinna Cortes et al.
(Cortes, Kontorovich & Mohri, 2007).

From a formal language point of view it would seem that a kernel taking into account
the size of the best alignment (and not the number of alignments) would be better. But
it remains to be seen if such a kernel would comply with Mercer’s conditions and if the
computation can be efficient enough. In the same way, counting through an automaton
would be of real help.

3.8.2 Some alternative lines of research

Kernels are an alternative to distances; the links between the two still deserve more atten-
tion. The idea here is to count some similarities. More importantly certain mathematical
properties have to be defined. We discuss these questions briefly in Section 3.5. The rela-
tionship between the edit distance and grammatical inference is not new, and there has been
work on algorithms that try to use the distance as a generalisation criterion (Rulot, Prieto
& Vidal, 1989), with applications to speech recognition (Chodorowski & Miclet, 1998).
Another relationship can be found through parsing and smoothing (Dupont & Amengual,
2000). Using the edit distance to model noise (Tantini, de la Higuera & Janodet, 2006), or
to deal with corrections (Becerra-Bonache et al., 2007) in an active learning setting have
also been investigated.

Rough sets also represent an interesting alternative to represent strings more-or-less in
or more-or-less out of a language. Some studies have been done (Yokomori & Kobayashi,
1994).

3.8.3 Open problems and possible new lines of research

There are still several open questions of research dealing with the topological issues for
strings. For instance, the notions of compactness or of convexity remain to be properly
defined, and proposing rational expressions that somehow preserve this compactness would
be of great help when dealing with noisy settings.

The edit distance has been adapted for trees and graphs, but if in the first case they just
introduce complex but tractable definitions, this is not true for graphs. Also, taking into
account the gaps in between the symbols that are not aligned is an important question.
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Finding new distances and kernels is of interest. Again, as in the kernel discussion,
one has to combine expressive power (the distance and kernel need to measure some-
thing worth measuring) and fast computation. If there are no fast algorithms, at least fast
approximations are required.

A specific question is that of learning the weights of the edit distance. Experimental
approaches (Dupont & Amengual, 2000) and approaches where the weights are probabili-
ties (Oncina & Sebban, 2006) have been looked into. But there is room for more algorithms
for this problem.
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Representing languages

Structures are the weapons of the mathematician.
Bourbaki

It is no coincidence that in no known language does the phrase ‘As pretty as an
airport’ appear.

Douglas Adams

Learning languages requires, for the process to be of any practical value, agreement on a
representation of these languages. We turn to formal language theory to provide us with
such meaningful representations, and adapt these classical definitions to the particular task
of grammatical inference only when needed.

4.1 Automata and finite state machines

Automata are finite state machines used to recognise strings. They correspond to a sim-
plified and limited version of Turing machines: a string is written on the input tape, the
string is then read from left to right and, at each step, the next state of the system is chosen
depending only on the previous state and the letter or symbol being read. The fact that
this is the only information that can be used to parse the string makes the system powerful
enough to accept just a limited class of languages called regular languages. The recogni-
tion procedure can be made deterministic by allowing only one action to be possible at each
step (therefore for each state and each symbol). It is usually nicer and easier to manipulate
these deterministic machines (called deterministic finite automata) because parsing is then
performed in a much more convenient and economic way, and also because a number of
theoretical results only apply to these. On the other hand, non-determinism may be better
suited to model certain phenomena and could also be a partial solution to the difficulties
one has when facing noisy data when learning. There are several definitions of automata in
the literature, so we will use a variant which is of reasonable use for us. In this variant we
admit three sorts of states: accepting states, rejecting states and neutral states, those for
which we cannot decide on acceptance or rejection. The two first types of states are also
called final.

70
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4.1.1 Non-deterministic finite automata

Definition 4.1.1 (NFA) A non-deterministic finite automaton (NFA) is a sextuple A =
〈�, Q, I,FA,FR, δN 〉 where� is an alphabet, Q is a finite set of states, I ⊆ Q is the set of
initial states, FA and FR are the sets of final states, respectively accepting and rejecting,
and δN : Q × (� ∪ {λ})→ 2Q is a transition function.

We will depict the automaton as a graph where the states are nodes labelled by qs where s is
a subscript, usually an integer or a string, and where there is an edge (q1, q2) labelled by a
if q2 ∈ δN (q1,a). Notice that a can be either a symbol from alphabet� or the empty string
λ. The initial states are labelled with an entering arrow, and the final states are marked with
a double circle, when from FA, and with a thicker grey line when from FR.

Example 4.1.1 In Figure 4.1 a 4-state NFA is depicted, with two initial states (q1 and
q2), two final accepting states q2 and q3, and one final rejecting state, q4.

Definition 4.1.2 (LFA
) The language LFA

(A) recognised by the automaton A is
the set of all strings x = a1 · · · an (with ai ∈ � ∪ {λ}) for which there exists a
sequence qi0 , qi1 , . . . , qim of states and a sequence bi1 , . . . , bim of symbols in � ∪ {λ}
and ∀ j ∈ [m], qi j ∈ δN (qi j−1 , bi j ) with bi1 · · · bim = a1 · · · an , qi0 ∈ I and qin ∈ FA.

Definition 4.1.3 (LFR
) The language LFR

(A) recognised by rejection in the automaton
A is the set of strings rejected by A. LFR

(A) is the set of all strings x = a1 · · · an (with
ai ∈ � ∪ {λ}) for which there exists a sequence qi0 , qi1 , . . . , qim of states and a sequence
bi1 , . . . , bim of symbols in � ∪ {λ} and ∀ j ∈ [m], qi j ∈ δN (qi j−1 , bi j ) with bi1 · · · bim =
a1 · · · an , qi0 ∈ I and qin ∈ FR.

We extend the function δN to (Q × ��) → 2Q by defining δN (q, a1 · · · an) as the set of
all q ′ ∈ Q such that there exists a sequence qi0 , qi1 , . . . , qim and a sequence bi1 , . . . , bim

of symbols in � ∪ {λ} and ∀ j ∈ [m], qi j ∈ δN (qi j−1 , bi j ) with bi1 · · · bim = a1 · · · an , and
qi0 = q and qim = q ′.

We will denote by L(A) the language LFA
(A). This emphasises the fact that the defini-

tion, even if mathematically symmetrical, is often used in an asymmetrical way: anything
accepted belongs to the language; everything else doesn’t belong to the language.

q1

q2

q3

q4

a

b

a

a

λ

a

a

b

a

Fig. 4.1. Graphical representation of an NFA.



72 Representing languages

Remarks

• In the above definition, λ-transitions are allowed. These are used to move freely from one state
to another. It will be important to make clear, when using these automata, if such empty string
transitions are allowed or not. These (λ-transitions) are often cumbersome and should, when-
ever possible, be avoided. This can be noted in the above definitions, where, in order to define a
path which reads a string x , several levels of subscripts are necessary. This also has algorithmic
consequences.

• The usual theory for NFA has only one type of accepting state, and a string belongs to the language
as soon as there is one path leading from an initial state to a final state, which reads the string.
We have introduced a definition with two types of final state, because of the particularities of
grammatical inference. A very typical situation arises when we are given some positive examples
(strings that lead to a state in FA), and some negative examples, that lead to some state in FR, but
in that case a lot of states remain uncertain in the sense that at least for the available data, both of
the labels for these unreached states would be consistent. There are even arguments in favour of
considering more than two types of state; this will be discussed at the end of the chapter.

It should be noted that even if FA and FR are disjoint there may be strings belonging to
both LFA

(A) and LFR
(A), which will create a situation of inconsistency.

Definition 4.1.4 (Consistent NFA) An NFA A = 〈�, Q, I,FA,FR, δN 〉 is consistent
ifdef LFA

(A) ∩ LFR
(A) = ∅.

Example 4.1.2 The automaton from Figure 4.1 is not consistent, since string a belongs
both to LFA

(A) and to LFR
(A). An example of a consistent NFA is depicted in Figure 4.2.

The following results are well known:

• Computing whether a string x belongs to LFA
(A) is in O(|x | · |Q|). This can be done through

Algorithm 4.2 which first requires the λ-closure of the NFA to be computed (by Algorithm 4.1).
This closure can be computed off-line instead of during parsing. The algorithm (4.1) corresponds
to finding the transitive closure of a graph. Parsing is done by dynamic programming: the set S of
states reachable by the current prefix is updated with each new symbol. Adapted data structures
allow us to compute in linear time the update of set S.

• Checking if two NFAs are equivalent is P-space complete. A and B are equivalent ifdef they
recognise the same language, i.e. if LFA

(A) = LFA
(B) and LFR

(A) = LFR
(B).
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Fig. 4.2. A consistent NFA.
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Algorithm 4.1: λ-CLOSURE of an NFA.

Data: An NFA : A = 〈�, Q, I,FA,FR, δN 〉, with Q = {q1, . . . , q|Q|}
Result: A Boolean matrix E = [|Q|], [|Q|], with E[i][ j] = true if q j ∈ δN (qi , λ), false if

not.
for i ∈ [|Q|] do

for j ∈ [|Q|] do
if i = j then

E[i][ j] ← true
else

if q j ∈ δN (qi , λ) then E[i][ j] ← true
else E[i][ j] ← false

end
end

end
for k ∈ [|Q|] do

for i ∈ [|Q|] do
for j ∈ [|Q|] do E[i][ j] ← E[i][ j] ∨ (

E[i][k] ∧ E[k][ j])
end

end
return E

Algorithm 4.2: Parsing with an NFA.

Data: An NFA : A = 〈�, Q, I,FA,FR, δN 〉, a string x = a1a2 · · · an

Result: A set of states S reachable from I by reading x
S← I;
E← λ-CLOSURE(A);
for 1 ≤ i ≤ n do

S← {qk ∈ Q : ∃q j ∈ S ∧ E[ j][k]};
S← {qk ∈ Q : ∃q j ∈ S ∧ qk ∈ δN (q j , ai )}

end
S← {qk ∈ Q : ∃q j ∈ S ∧ E[ j][k]};
return S

• Minimising an NFA is an NP-hard problem. This is linked with the fact that there is no natu-
ral tractable normal or canonical form for an NFA. One should be careful with this statement:
obviously there exists a minimum NFA; what is intractable is to build it from an existing NFA.
Here minimality refers to any definition which would associate a canonical and thus unique (up to
isomorphisms, possibly) minimum form to two equivalent automata.
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4.1.2 Deterministic finite automata

A deterministic finite automaton (DFA) is an NFA in which the two non-deterministic
liberties have been eliminated: there is only one initial state and, in each state, reading a
symbol brings us to a unique state. Therefore ∀q ∈ Q,∀a ∈ �, |δN (q, a)| ≤ 1.

The above definition also excludes the use of λ-transitions.
This makes the set notation for the result of the transitions cumbersome, so we will

denote transitions in a slightly different manner:

Definition 4.1.5 (DFA) A deterministic finite automaton (DFA) is a sextuple A =
〈�, Q, qλ,FA,FR, δ〉 where � is an alphabet, Q is a finite set of states, qλ ∈ Q is the
initial state, δ : Q ×� → Q is a transition function, and FA ⊆ Q and FR ⊆ Q are sets of
marked states, called the final accepting and rejecting states (respectively).

It is usual to recursively extend δ to Q × �� → Q: δ(q, λ) = q and δ(q, a.w) =
δ(δ(q, a), w) for all q ∈ Q, a ∈ �,w ∈ �∗. Let LFA

(A) denote the language recognised
by automaton A:

LFA
(A) = {w ∈ �∗ | δ(qλ,w) ∈ FA}.

In the same way:

LFR
(A) = {w ∈ �∗ | δ(qλ,w) ∈ FR}.

We will usually denote by L(A) the language LFA
(A) and in a general way denote by

L the naming function, i.e. the function associating with a finite automaton the language
it recognises.

Definition 4.1.6 A language is regular ifdef it is recognised by a DFA.

It is well-known result that DFA and NFA have an identical expressive power: any lan-
guage recognised by an NFA can also be recognised by a DFA. The result is constructive:
a determinisation algorithm exists, but the resulting DFA can be much larger than the
equivalent NFA.

Definition 4.1.7 We denote by DFA(�) the class of all DFAs over the alphabet � and
by NFA(�) the class of all NFAs over the alphabet �. REG(�) is the family of all
regular languages over the alphabet �.

There are alternative ways of defining regular languages: regular expressions, regular
grammars or systems. Because of the interest in certain fields in manipulating regular
expressions (for instance X-paths and grep expressions) it may be of interest to learn and
manipulate these in a grammatical inference setting.

Definition 4.1.8 Given a DFA A = 〈�, Q, qλ,FA,FR, δ〉 and a state q in Q, we call
marker for q the shortest string (for the lex-length order) that reaches state q: marker(q) =
min≤lex-length{w ∈ �� : δ(qλ,w) = q}.
Markers will allow us to index the states not by numbers, but by strings.
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Fig. 4.3. Graphical representation of a DFA.

Algorithm 4.3: Parsing with a DFA.

Data: A DFA : A = 〈�, Q, qλ,FA,FR, δ〉, a string x = a1a2 · · · an

Result: The state qcurr (if any) reached from qλ by reading x
qcurr ← qλ;
for 1 ≤ i ≤ n do

qcurr ← δ(qcurr , ai )

end
return qcurr

Example 4.1.3 In Figure 4.3 for states q1, q2, q3 and q4, the markers are respectively λ,
a, aa and ab. The states can be renamed qλ, qa, qaa and qab.

Some properties of DFAs are as follows:

• There exist languages for which the smallest NFA is exponentially smaller than the smallest equiv-
alent DFA. A typical well-known example is the language Ln over alphabet {a, b} in which the
nth letter before the end is an ‘a’. Ln is recognised by an NFA with n+1 states but the smallest
DFA recognising Ln needs 2n states. We will discuss these questions of sizes of representations
when defining the learning models, in Section 7.3, page 152.

• Every regular language is recognised by a specific automaton called the minimum canonical
automaton, which is the complete automaton with a minimum number of states. In some cases
this automaton may have one sink state. This is a state qs that is neither accepting nor rejecting
and such that ∀a ∈ �, δ(qs , a) = qs . The construction of this unique (up to state isomorphism,
i.e. renaming of the states) automaton can be done in time O(n log n) where n is the number of
states of the initial DFA. What really is constructed is known as the Myhill-Nerode equivalence:

∀u, v ∈ ��, u ≡ v ⇐⇒ [∀w ∈ �� uw ∈ L ⇔ vw ∈ L]

Note that in the above the language L defines the equivalence classes.
• An issue linked with this is that of the equivalence of automata. If these are DFAs, the problem is

simple: minimise both DFAs, then compare the results. Hence equivalence of DFAs is in P .
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4.1.3 Regular expressions

We introduce briefly regular expressions, also sometimes called rational expressions.
They allow us to define languages (as opposed to ‘recognise’ or ‘generate’).

Definition 4.1.9 Let� be a finite alphabet. We define recursively a regular expression as:

• ∅, �, and a (∀a ∈ �) are regular expressions over �;
• if e1 and e2 are regular expressions over � then so are (e1) · (e2), (e1)+ (e2) and (e1)

∗.

The cumbersome brackets will be disposed of whenever possible. The concatenation
dot (·) is also only used when necessary. Therefore (a) · (b) is denoted more conveniently
by ab. Usual priorities are that ‘∗’ has higher priority than ‘·’ and (then) ‘+’.

Definition 4.1.10 Let � be a finite alphabet. The value of a regular expression is the
language defined recursively as follows:

• value(∅) = ∅,
• value(�) = {λ},
• ∀a ∈ �, value(a) = {a},
• value((e)) = value(e),
• value(e1 · e2) = value(e1)·value(e2),
• value(e1 + e2) = value(e1)∪value(e2),
• value(e∗) = value(e)∗.

Example 4.1.4 ab∗(a + b∗)∗ is a regular expression over {a,b} having as value the
language composed of all strings starting with the symbol ‘a’. It is easy to notice that
many equivalent regular expressions exist.

We denote by REGEXP(�) the set of all regular expressions over the alphabet �.
There exist algorithms allowing us to transform a regular expression into an NFA. These

usually introduce λ-transitions in the process. One can also extract a regular expression
from an automaton. The complexity classes for the usual problems of parsing, minimisation
and equivalence are the same as those for the NFA.

It is known that the class of regular languages contains all languages that can either be
described by a regular expression, or recognised by a finite automaton, which can be either
deterministic or non-deterministic.

4.1.4 A sample as an automaton

A sample is a finite set of data. The sample can be informed in which case it is a pair
〈S+, S−〉 of finite sets of strings. S+ contains the positive examples and S− contains the
negative examples (also called the counter-examples). A sample is non-conflicting when
S+ ∩ S− = ∅. We will only deal with non-conflicting samples.

We may denote a sample 〈S+, S−〉 as a set of labelled strings, the labels being either ‘1’
for the examples or ‘0’ for the counter-examples.
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Fig. 4.4. Two PTAs.

Example 4.1.5 The sample 〈S+, S−〉 with S+ = {aa, aba, bba} and S+ = {ab, bb}
can also be denoted by {(aa, 1), (ab, 0), (bb, 0), (aba, 1), (bba, 1)}.
A sample is made of text if it contains no counter-example.

The prefix tree acceptor of S+ is the DFA〈�, Q, qλ,FA,FR, δ〉 denoted PTA(S+) such
that:

• Q = {qu : u ∈ PREF(S+)},
• ∀ua ∈ PREF(S+) : δ(qu , a) = qua ,
• FA = {qu : u ∈ S+},
• FR = ∅.

The PTA is therefore the smallest DFA which recognises S+, has minimal size FA and FR

for which the transition function δ is injective (i.e. if δ(q, a) = δ(q ′, a) then q = q ′). In
fact, in PTA(S+), FR = ∅. Notice that in this case the DFA is a tree, each state being the
successor of exactly one state (except for the initial state, which has no predecessor).

If furthermore we are given a set S+ and a set S−, PTA(S+, S−) is

• Q = {qu : u ∈ PREF(S+ ∪ S−)},
• ∀ua ∈ PREF(S+ ∪ S−) : δ(qu , a) = qua ,
• FA = {qu : u ∈ S+},
• FR = {qu : u ∈ S−}.
In the case where the PTA is built from both positive and negative strings, then A = PTA
(S+, S−) is again a tree, the smallest such that S+ ⊆ LFA

(A) and S− ⊆ LFR
(A).

In Section 12.1 an algorithm building the PTA is given and studied. But it can easily be
deduced from the above definitions. We depict in Figure 4.4 the PTA built from a sample
〈S+, S−〉, and another one corresponding to only a positive sample.

4.2 Grammars

Automata are devices used to recognise strings. The other classical way of defining
languages is through generative devices called grammars. Parsing is then an essential issue.
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4.2.1 Context-free grammars

Definition 4.2.1 A context-free grammar is a quadruple< �, V, R, N1 > where� is a
finite alphabet (of terminal symbols), V is a finite alphabet (of variables or non-terminals,
denoted by N1,. . . ,Ni ), R ⊂ V × (�∪V )∗ is a finite set of production rules, and N1 (∈ V )
is the axiom.

We will write N → β for the rule (N , β) ∈ R. If α, β, γ ∈ (� ∪ V )∗ and (N , β) ∈ R
we have αNγ ⇒ αβγ . This means that the string αNγ derives (in one step) into the
string αβγ .

∗=⇒ is the reflexive and transitive closure of ⇒. If there exist α0, . . . , αk such that α0 ⇒
. . . ⇒ αk we will write α0

k⇒ αk . We denote by L(G, N ) the language {x ∈ �� : N
∗=⇒

x}. If N1 is the axiom, we shall denote L(G, N1) by L(G) and call this the language
generated by G (from N ). When different rules share a same left-hand side it will be
possible to write these in the shortened way N → α+ β + γ (for rules (N , α), (N , β) and
(N , γ ), for instance).

Definition 4.2.2 Two grammars are equivalent ifdef they generate the same language.

We denote by CFG(�) the class of all context-free grammars using the alphabet �,
whereas CFL(�) is the set of all context-free languages over �.

A derivation T = α0 ⇒ . . . ⇒ αk = u can be represented by a derivation tree where
the root is the non-terminal T and the frontier of the tree reads the string u.

We will not provide here all the definitions concerning derivations and derivation trees,
but we summarise some of the typical notions and questions through an example.

Example 4.2.1 Let G = < {a,b}, {N }, R, N > with N → aN N + b. The language
generated by G starting from N is the Lukaciewitz language:{

w ∈ {a,b}∗ : ∀p, s ∈ {a,b}∗, w = p · s

(
s = λ =⇒ |p|a + 1 = |p|b
s �= λ =⇒ |p|a ≥ |p|b

)}
.

A derivation is N ⇒ aN N ⇒ aaN N N ⇒ aaNaN N N ⇒ aabaN N N
∗=⇒

aababbb. We depict the corresponding derivation tree in Figure 4.5.

Definition 4.2.3 A context-free grammar G =< �, V, R, N1 > is in reduced normal
form ifdef all non-terminals are useful:

∀N ∈ V ∃u ∈ �� :N ∗=⇒ u

∀N ∈ V ∃u, v ∈ �� :N1
∗=⇒ uNv.

Reduced normal forms correspond to the idea that each non-terminal must be reachable
from the axiom and can produce at least one string. It is clear that non-terminals that do
not obey these rules can be eliminated from the grammar without changing the language.
Another extension is to make sure that applying a rule gets us closer to the target string.
That can be done by considering proper normal forms:
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Fig. 4.5. Derivation tree for string aababbb.

Definition 4.2.4 A context-free grammar G =< �, V, R, N1 > is in proper normal
form ifdef all non-terminals (with the possible exception of the axiom) are constructive:

(N , λ) ∈ R or (N , N ′) ∈ R =⇒ N = N1.

In this case the advantage is that there is a relation between the length of the derivation
and the size of the string:

Lemma 4.2.1 If G =< �, V, R, N1 > is in proper and reduced normal form then

w ∈ L(G)⇐⇒ [
N1

k=⇒ w with k ≤ 2|w| − 1
]
.

Two other important normal forms are:

Definition 4.2.5 A context-free grammar G =< �, V, R, N1 > is in quadratic or
Chomsky normal form ifdef R ⊆ V × (

V 2 ∪� ∪ {λ}).
A context-free grammar G =< �, V, R, N1 > is in Greibach normal form ifdef R ⊂

V ×�V ∗.

The above normal forms can be obtained constructively. But they are normal forms, as
opposed to canonical forms: the same language may admit various incomparable normal
forms.

Parsing can be done in cubic time when starting from a grammar in Chomsky normal
form. We provide a general parser in Algorithm 4.4, known as the Cocke-Younger-Kasami
(CYK) algorithm. Alternative algorithms can be found in the literature. The algorithm
computes CYK[i][ j][k] = true ⇐⇒ Ni

∗=⇒ a j · · · ak . The algorithm can be adapted to
context-free grammars not in quadratic normal form, but with more complicated notations.

We summarise the other important results concerning context-free languages and
grammars:

Proposition 4.2.2 The following problems are undecidable:

• Does a given context-free grammar generate ��?
• Does a given context-free grammar generate a regular language?
• Are two context-free grammars equivalent?
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Algorithm 4.4: CYK algorithm.

Data: A context-free grammar G =< �, V, R, N1 > in quadratic normal form, with
V = {N1, N2, . . . , N|V |}, a string x = a1a2 · · · an .

Result: CYK[i][ j][k] = true ⇐⇒ a j · · · ak ∈ L(G, Ni ).
for k ∈ [|x |] do

for j ∈ [k] do
for i ∈ [|V |]] do CYK[i][ j][k] ← false

end
end
for j ∈ [|x |] do

for i ∈ [|V |] do
if (Ni , a j ) ∈ R then CYK[i][ j][ j] ← true

end
end
for m : 1 ≤ m ≤ |x | − 1 do

for j : 1 ≤ j ≤ |x | − m do
for k : j ≤ k < j + m do

for (Ni , Ni1 Ni2) ∈ R do
if CYK[i1][ j][k] ∧ CYK[i2][k + 1][ j + m] then

CYK[i][ j][ j + m] ← true
end

end
end

end
end
return CYK[1][1][n]

We do not provide the classical proofs here but comment upon their meaning for the
problem of inferring or learning grammars. The fact that the equivalence problem is
undecidable means that the shortest string separating two context-free grammars is of
unbounded length; if not we would only have to check strings of length at most the bound
and thus be able to decide equivalence. This in turn means that when intending to learn
one grammar (and not the other) from only short strings, we are facing a problem: we can
be sure not to encounter a small significant string in a reasonable sized learning sample.
Let us call this the curse of expansiveness, which can be illustrated through the following
example:

Example 4.2.2 Let Gn =< {a}, {Ni : i ≤ n}, Rn, N1 > with, for each i < n, the
following rule in Rn : Ni → Ni+1 Ni+1. We also have the rule Nn → a.
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It is easy to show that L(Gn) = a2n−1
. This is therefore a language whose shortest (and

only) string is of length exponential in the size of the grammar!

4.2.2 Linear grammars

To avoid the expansiveness problems one may want to only consider linear grammars:

Definition 4.2.6 A context-free grammar G =<�, V, R, N1> is linear ifdef R ⊂ V ×
(�� V �� ∪��).

A context-free language is linear if it is generated by a linear grammar. Not all context-
free languages are linear. This is the case, for example, of the following product of two
linear languages: {ambmcndn : m, n ∈ N}. Moreover it is undecidable to know whether a
language is linear or not, just as it is to know whether two linear languages are equivalent
or not.

These results justify considering even more restricted classes of linear languages:

Definition 4.2.7 A linear grammar G =<�, V, R, N1> is even linear ifdef

(N , uN ′v) ∈ R =⇒ |u| = |v|.
A linear grammar G =< �, V, R, N1 > is left linear (respectively right linear) ifdef

R ⊆ V × (V �� ∪��) (respectively R ⊆ V × (�� V ∪��)).
It is well known that all regular languages can be generated by both even linear and left

(or right) linear languages. The converse is true for the right and left linear languages but
not for the even linear ones: consider the language {anbn : n ∈ N} which is even linear
but not regular.

We denote by LING(�) the class of linear grammars over the alphabet � and by
LIN (�) the class of linear languages over the alphabet �.

Algorithm CYK (4.4) can be adapted to parse strings with a linear grammar in O(n2)

time.

4.2.3 Deterministic linear grammars

A variety of definitions have been given capturing the ideas of determinism and linearity.

Definition 4.2.8 (Deterministic linear grammars) A linear grammar G =<�, V,
R, N1> is a deterministic linear grammar ifdef

• all rules are of the form (N , aN ′u) or (N , λ) and
• (N , au), (N , av) ∈ R =⇒ u = v with u, v ∈ V ��.

This definition induces the determinism on the first symbol of the right-hand side of the
rules. This extends by easy induction to the derivations: let N

∗=⇒ uN ′v and N
∗=⇒ uN ′′w

then N ′ = N ′′ and v = w.
We denote by DL(�) the set of all languages generated by a deterministic linear

grammar.
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4.2.4 Pushdown automata

Another way of defining context-free languages is through pushdown automata (PDAs).
Informally a PDA is a one-way finite state machine with a stack. Criteria for recognition

can be by empty stack or by accepting states, but in both cases the class of languages is
that of the context-free ones. If the machine is deterministic (in a given configuration of
the stack, with a certain symbol to be read, only one rule is possible) the class of languages
is that of the deterministic languages, denoted as DET L(�). Given a computation of
a PDA, a turn in the computations is a move that decreases the height of the stack and
is preceded by a move that did not decrease it. A PDA is said to be one-turn if in any
computation there is at most one turn.

Theorem 4.2.3 A language is linear if and only if if it is recognised by a one-turn PDA.

4.3 Exercises

4.1 Prove that checking if two NFAs are inconsistent (as in Definition 4.1.4, page 72) is
a P-space complete problem. Remember that testing the inequivalence of two NFAs
is P-space complete.

4.2 Prove Lemma 4.2.1 (page 79).
4.3 How many states are needed in a DFA (or an NFA) recognising all strings that do not

have repeated symbols?
4.4 Prove that DFAs are always consistent, i.e. that a string cannot be accepted and

rejected.
4.5 Propose an algorithm that checks if a grammar is in reduced normal form.
4.6 Propose an algorithm that checks if a grammar is in proper normal form.
4.7 Propose an algorithm that computes a grammar in quadratic normal form equivalent

to a given grammar. How much larger is the new grammar?
4.8 Find a deterministic linear grammar for the palindrome language, which is the set of

all strings w that read the same from left to right as from right to left, i.e. such that
∀i ∈ [|w|], w(i) = w(n + 1 − i).

4.9 Prove that every regular language is even linear.
4.10 Prove that the union of two deterministic linear languages may not be deterministic

linear.

4.4 Conclusions of the chapter and further reading

4.4.1 Bibliographical background

Automata and finite state machines (Section 4.1) have been studied since the 1950s,
where variants were sometimes known as Moore or Mealy machines. The theory is now
well documented and can be found in different textbooks (Harrison, 1978, Hopcroft &
Ullman, 1977, 1979, Sakarovich, 2004, Simon, 1999). The central questions concerning
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equivalence between DFAs and NFAs were solved by Michael Rabin and Dana Scott
(Rabin & Scott, 1959). The links between regular expressions and automata were explored
in a number of places, with Ken Thompson’s method (Thompson, 1968) widely used, even
if it does introduce many λ-transitions.

We have followed here the usual definitions with the exception that we are using two
types of final states, better suited for grammatical inference (even if sometimes cumber-
some). A similar path was followed by François Coste (Coste & Fredouille, 2003) who
argues that automata are classifying functions and can thus have values other than 0 and 1.
The point we make is that when learning DFAs the current formalism always allows us to
decide that ‘anything that is not accepting is rejecting’ after the learning process, but that
if background knowledge tells us otherwise we can just as well decide the opposite.

Between the different sorts of context-free grammars (introduced in Section 4.2), even
linear grammars (Mäkinen, 1996, Sempere & García, 1994, Takada, 1988) and determin-
istic linear grammars have been more extensively studied in the context of grammatical
inference. Deterministic linear grammars were introduced in grammatical inference in
(de la Higuera & Oncina, 2002) (and (de la Higuera & Oncina, 2003) for the probabilis-
tic version), but alternative definitions (Ibarra, Jiang & Ravikumar, 1988, Nasu & Honda,
1969) were introduced earlier. Pushdown automata have not been used that much in gram-
matical inference, but they define the important class of the deterministic languages. A
specific study on these machines can be found in (Autebert, Berstel & Boasson, 1997).

4.4.2 Some alternative lines of research

We have described here some classical ways of describing languages, i.e. sets of strings.
But there are several alternative ways of doing this, with interesting work dealing with
learning in different cases.

Categorical grammars (Costa Florêncio, 2003, Kanazawa, 1998, Tellier, 1998) are used
to associate semantics to syntax directly, and follow very often work by researchers in logic
and in computational linguistics. The idea is to associate the rules with the lexicon: each
word can be used, depending on its type, following some specific pattern. The intricate
mechanisms used to parse and the computational costs involved make these grammars out
of the main line of results presented in this book. Relating these elegant mechanisms with
acute complexity models (MDL principle, Kolmogorov complexity) is a research direction
followed by some (Tellier, 2005).

Regular expressions of different sorts have been elaborated and studied in grammatical
inference (Fernau, 2005), but, in order to avoid facing the difficulties of learning NFAs,
structural restrictions (on the type of operators) have been imposed (Brazma et al., 1998,
Kinber, 2008). There are of course several ways to restrict or enrich the types of regular
expressions we may use. One important idea has consisted of measuring the star height of
an expression as the number of embedded stars one has to use. Adding a complementary
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operation allows us to manipulate infinite languages of star height 0. There have been
separate learnability results for these (Brazma, 1997).

Extensions of the above mechanisms (automata, grammars) to deal with trees and
graphs have been proposed. For the case of tree automata a general survey is (Comon
et al., 1997) and for graph grammars there are a number of possible sources (Courcelle,
1991).

Other extensions consist of not having halting states but states through which the run
must (or must not) pass infinitely often: these define infinitary languages (Büchi, 1960),
and have also been considered in learning settings (de la Higuera & Janodet, 2004, Maler
& Pnueli, 1991, Saoudi & Yokomori, 1993).

In Chapter 18 we will discuss the extension of the final state models to deal with
transducers.

4.4.3 Open problems and possible new lines of research

Between the many interesting lines of research corresponding to studying language mod-
els of use in grammatical inference tasks, we propose one presented originally in (de la
Higuera, 2006b).

We propose to consider the case where the alphabet is ranked, i.e. there is a partial order
over the symbols in the alphabet. The situation arises in a number of settings:

• either when the alphabet is naturally ordered as can be the case in music;
• if the original data are numeric, the normal discretisation loses the proximity/topological issues

that should help and that are contained in the data;
• sometimes the alphabet can consist of subsets of strings, in which case we can also have a relation

which may be a generalisation or subsumption.

We introduce k-edge deterministic finite automata to deal with such languages.
A ranked alphabet 〈�,≤〉 is an alphabet � with a relation ≤� which is a partial order

(reflexive, antisymmetric and transitive) over �. Given a ranked alphabet 〈�,≤〉 and two
symbols a and b in �, with a ≤ b, we denote by [a, b] the set {c ∈ � : a ≤ c ≤ b}.
Example 4.4.1 Here are two possible relations:

• 〈�,≤〉 where � = {0,1,2,3} and 0 < 1 < 2 < 3. This is the case in music or working with
numerical data.

• 〈�,≤〉 where � = {00,01,10,11} and 00 ≤ 01 ≤ 11 and 00 ≤ 10 ≤ 11. This means that
the automaton may not need to be based on a total order.

Definition 4.4.1 (k-edge deterministic finite automaton) A k-edge deterministic finite
automaton (k-DFA) A is a tuple 〈�, Q, qλ,FA,FR, δ〉 where � is a finite alphabet, Q
is a finite set of states, q1 ∈ Q is the initial state, FA ⊆ Q is the set of final accepting
states, FR ⊆ Q is the set of final rejecting states, and δ : Q × � × � → Q is the
total transition function verifying: ∀q ∈ Q, |{a, b : δ(q, a, b) is defined}| ≤ k, and if
δ(q, a1, b1) �= δ(q, a2, b2) then [a1, b1] ∩ [a2, b2] = ∅.
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Fig. 4.6. A 2-edge DFA.

A string x = c1 · · · c|x | belongs to L(A) ifdef there is a sequence of states
qi0 , qi1 , . . . , qi|x | with δ(qi j , a j , b j ) = qi j+1 and a j ≤ c j ≤ b j . And of course qi|x | has
to be a final accepting state.

The extension of δ is done as usual and the language recognised by A, L(A), is {a ∈
�∗ : δ(qλ,w) ∈ FA}.
Example 4.4.2 We represent in Figure 4.6 a 2-edge automaton. Notice that the same
language can also be represented by a 3-edge automaton, but not by a 1-edge automaton.
Here, 102 ∈ L(A).

Clearly any k-edge DFA is also a DFA but the converse is not true. Moreover if k is
fixed, one can easily build (for an alphabet of size more than k) a regular language that
cannot be represented by a k-edge DFA. Also it should be pointed out that the case where
k is the size of the alphabet is of no new interest at all, as it corresponds to a normal DFA.

There are then a number of possible problems concerning these automata: to decide if
a given sample allows at least one k-edge DFA consistent with it, to find some pump-
ing lemma or to study the closure properties. These characterisations would possibly
allow learning algorithms to be designed in the setting where the alphabets are huge but
structured.
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Representing distributions over strings with automata
and grammars

If your experiment needs statistics, you ought to have done a better experiment.
Ernest Rutherford

‘I think you’re begging the question,’ said Haydock, ‘and I can see looming ahead
one of those terrible exercises in probability where six men have white hats and
six men have black hats and you have to work it out by mathematics how likely
it is that the hats will get mixed up and in what proportion. If you start thinking
about things like that, you would go round the bend. Let me assure you of that!’

Agatha Christie, The Mirror Crack’d from Side to Side (1962)
c© Agatha Christie Ltd, A Chorion Company, all rights reserved

Instead of defining a language as a set of strings, there are good reasons to consider the
seemingly more complex idea of defining a distribution over strings. The distribution can
be regular, in which case the strings are then generated by a probabilistic regular grammar
or a probabilistic finite automaton. We are also interested in the special case where the
automaton is deterministic.

Once distributions are defined, distances between the distributions and the syntac-
tic objects they represent can be defined and in some cases they can be conveniently
computed.

5.1 Distributions over strings

Given a finite alphabet �, the set �� of all strings over � is enumerable, and therefore a
distribution can be defined.

5.1.1 Distributions

A probabilistic language D is a probability distribution over ��.
The probability of a string x ∈ �� under the distribution D is denoted by a positive

value PrD(x) and the distribution D must verify∑
x∈��

PrD(x) = 1.

86
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If the distribution is modelled by some syntactic machine A, the probability of x according
to the probability distribution defined by A is denoted PrA(x). The distribution modelled
by a machine A will be denoted DA and simplified to D if the context is not ambiguous.

If L is a language (a subset of ��), and D a distribution over ��, PrD(L)=∑
x∈L PrD(x).
Two distributions D and D′ are equal (denoted by D = D′) ifdef ∀ w ∈ ��, PrD(w) =

PrD′(w).
In order to avoid confusion, even if we are defining languages (albeit probabilistic), we

will reserve the notation L for sets of strings and denote the probabilistic languages as
distributions, thus with symbol D.

5.1.2 About the probabilities

In theory all the probabilistic objects we are studying could take arbitrary values. There
are even cases where negative (or even complex) values are of interest! Nevertheless to fix
things and to make sure that computational issues are taken into account we will take the
simplified view that all probabilities will be rational numbers between 0 and 1, described
by fractions. Their encoding then depends on the encoding of the two integers composing
the fraction.

5.2 Probabilistic automata

We are concerned here with generating strings following distributions. If, in the non-
probabilistic context, automata are used for parsing and recognising, they will be
considered here as generative devices.

5.2.1 Probabilistic finite automata (PFA)

The first thing one can do is add probabilities to the non-deterministic finite automata:

Definition 5.2.1 (Probabilistic finite automaton (PFA)) A probabilistic finite automa-
ton (PFA) is a tuple A=〈�, Q, IP,FP, δP〉, where:

• Q is a finite set of states; these will be labelled q1,. . . , q|Q| unless otherwise stated,
• � is the alphabet,
• IP : Q → Q+ ∩ [0, 1] (initial-state probabilities),
• FP : Q → Q+ ∩ [0, 1] (final-state probabilities),
• δP : Q × (�∪{λ})× Q → Q+ is a transition function; the function is complete: δP(q, a, q ′) = 0

can be interpreted as ‘no transition from q to q ′ labelled with a’. We will also denote (q, a, q ′, P)
instead of δP(q, a, q ′) = P where P is a probability.

IP, δP and FP are functions such that:∑
q∈Q

IP(q) = 1,
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and ∀q ∈ Q,

FP(q)+
∑

a∈�∪{λ}, q ′∈Q

δP(q, a, q ′) = 1.

In contrast with the definition of NFA, there are no accepting (or rejecting) states. As will
be seen in the next section, the above definition of automata describes models that are
generative in nature. Yet in the classical setting automata are usually introduced in order
to parse strings rather than to generate them, so there may be some confusion here. The
advantages of the definition are nevertheless that there is a clear correspondence with prob-
abilistic left (or right) context-free grammars. But on the other hand if we were requiring
a finite state machine to parse a string and somehow come up with some probability that
the string belongs or not to a given language, we would have to turn to another type of
machine.

Figure 5.2 shows a graphical representation of a PFA with four states, Q ={q1, q2,

q3, q4}, two initial states, q1 and q2, with respective probabilities of being chosen of 0.4 and
0.6, and a two-symbol alphabet, � = {a,b}. The numbers on the edges are the transition
probabilities. The initial and final probabilities are drawn inside the state (as in Figure 5.1)
before and after the name of the state. The transitions whose weights are 0 are not drawn.
We will introduce this formally later, but we will also say that the automaton respects the
following set of constraints: {(q1,a, q2), (q1,b, q1), (q2, λ, q3), (q2,b, q4), (q3,b, q3),

(q3,b, q4), (q4,a, q1), (q4,a, q2)}. This means that these are the only transitions with
non-null weight in the automaton.

0.4 : qi : 0.2

Fig. 5.1. Graphical representation of a state qi . IP(qi ) = 0.4, FP(qi ) = 0.2.

0.4 : q1

0.6 : q2 : 0.1

q3 : 0.4

q4 : 0.3

a 0.5 λ 0.5

b 0.4a 0.5

b 0.2b 0.5

a 0.2 b 0.4

Fig. 5.2. Graphical representation of a PFA.
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The above definition allows λ-transitions and λ-loops. In Figure 5.2, there is a
λ-transition between state q2 and state q3. Such λ-transitions make things difficult for pars-
ing. We show in Section 5.2.4 that λ-transitions and λ-loops can actually be removed in
polynomial time without changing the distribution. When needing to differentiate we shall
call the former λ-PFA, and the latter (when λ-transitions are forbidden) λ-free PFA.

Definition 5.2.2 For any λ-PFA A = 〈�, Q, IP,FP, δP〉:
• a λ-transition is any transition labelled by λ,
• a λ-loop is a transition of the form (q, λ, q, P),
• a λ-cycle is a sequence of λ-transitions from δP with the same starting and ending state:
(qi1 , λ, qi2 , P1) . . . (qi j , λ, qi j+1 , Pj ) . . . (qik , λ, qi1 , Pk).

5.2.2 Deterministic probabilistic finite-state automata (DPFA)

As in the non-probabilistic case we can restrict the definitions in order to make parsing
deterministic. In this case ‘deterministic’ means that there is only one way to generate
each string at each moment, i.e. that in each state, for each symbol, the next state is unique.

The main tool we will use to generate distributions is deterministic probabilistic finite
(state) automata. These will be the probabilistic counterparts of the deterministic finite
automata.

Definition 5.2.3 (Deterministic probabilistic finite automata) A PFA A=
〈�, Q, IP,FP, δP〉 is a deterministic probabilistic finite automaton (DPFA) ifdef

• ∃q1 ∈ Q (unique initial state) such that IP(q1) = 1;
• δP ⊆ Q ×� × Q (no λ-transitions);
• ∀q ∈ Q, ∀a ∈ �, | {q ′ : δP(q, a, q ′) > 0}| ≤ 1.

In a DPFA, a transition (q, a, q ′, P) is completely defined by q and a. The above defi-
nition is cumbersome in this case and we will associate with a DPFA a non-probabilistic
transition function:

Definition 5.2.4 Let A be a DPFA. δA : Q × � → Q is the transition function with
δA(q, a) = q ′ : δP(q, a, q ′) �= 0.

This function is extended (as in Chapter 4) in a natural way to strings:

δA(q, λ) = q

δA(q, a · u) = δA(δA(q, a), u).

The probability function also extends easily in the deterministic case to strings:

δP(q, λ, q) = 1

δP(q, a · u, q ′) = δP(q, a, δA(q, a)) · δP(δA(q, a), u, q ′).
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q1

q2 : 0.1

q3 : 0.3

a 0.6
b 0.4

b 0.9

b 0.5

a 0.2

Fig. 5.3. Graphical representation of a DPFA.

But, in the deterministic case, one should note that δP(q, λ, q) = 1 is not referring to
the introduction of a λ-loop with weight 1 (and therefore the loss of determinism), but to
the fact that the probability of having λ as a prefix is 1.

The size of a DPFA depends on the number n of states, the size |�| of the alphabet and
the number of bits needed to encode the probabilities. This is also the case when dealing
with a PFA or λ-PFA.

In the DPFA depicted in Figure 5.3, the initial probabilities need not be represented:
there is a unique initial state (here q1) with probability of being initial equal to 1.

5.2.3 Parsing with a PFA

PFAs are adequate probabilistic machines to generate strings of finite length. Given a PFA
(or λ-PFA) A, the process is described in Algorithm 5.1. For this we suppose we have two
functions:

Algorithm 5.1: Generating a string with a PFA.

Data: a PFA A = 〈�, Q, IP,FP, δP〉, RandomQ , RandomIP

Result: a string x
x ← λ;
q ← RandomIP

(A);
(a, q ′)← RandomQ(q,A);
while a �= H do /* generate another symbol */

x ← x · a;
q ← q ′;
(a, q ′)← RandomQ(q,A)

end
return x
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• RandomQ(q,A) takes a state q from a PFA A and returns a pair (a, q ′) drawn according to the
distribution at state q in PFA A from all pairs in � × Q including the pair (H, q), where H is a
special character not in �, whose meaning is ‘halt’.

• RandomIP
(A), which returns an initial state depending on the distribution defined by IP.

Inversely, given a string and a PFA, how do we compute the probability of the string? We
will in this section only work with λ-free automata. If the automaton contains λ-transitions,
parsing requires us to compute the probabilities of moving freely from one state to another.
But in that case, as this in itself is expensive, the elimination of the λ-transitions (for exam-
ple with the algorithm from Section 5.2.4) should be considered. There are two classical
algorithms that compute the probability of a string by dynamic programming.

The FORWARD algorithm (Algorithm 5.2) computes PrA(qs, w), the probability of
generating string w and being in state qs after having done so. By then multiplying by
the final probabilities (Algorithm 5.3) and summing up, we get the actual probability of
the string. The BACKWARD algorithm (Algorithm 5.4) works in a symmetrical way. It
computes Table B, whose entry B[0][s] is PrA(w|qs), the probability of generating string

Algorithm 5.2: FORWARD.

Data: a PFAA = 〈�, Q, IP,FP, δP〉, a string x = a1a2 · · · an

Result: the probabilities F[n][s] = PrA(x, qs)

for j : 1 ≤ j ≤ |Q| do /* Initialise */
F[0][ j] ← IP(q j );
for i : 1 ≤ i ≤ n do F[i][ j] ← 0

end
for i : 1 ≤ i ≤ n do

for j : 1 ≤ j ≤ |Q| do
for k : 1 ≤ k ≤ |Q| do

F[i][ j] ←F[i][ j]+F[i − 1][k] · δP(qk, ai , q j )

end
end

end
return F

Algorithm 5.3: Computing the probability of a string with FORWARD.

Data: the probabilities F[n][s] = PrA(x, qs), a PFA A
Result: the probability T=PrA(x)
T← 0;
for j : 1 ≤ j ≤ |Q| do T← T+F[n][ j] · FP[ j] ;
return T
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Algorithm 5.4: BACKWARD

Data: a PFA A = 〈�, Q, IP,FP, δP〉, a string x = a1a2 · · · an

Result: the probabilities B[0][s] = PrA(x |qs)

for j : 1 ≤ j ≤ |Q| do /* Initialise */
B[n][ j] ← FP[ j];
for i : 1 ≤ i ≤ n do B[i][ j] ← 0

end
for i : n − 1 ≥ i ≥ 0 do

for j : 1 ≤ j ≤ |Q| do
for k : 1 ≤ k ≤ |Q| do

B[i][ j] ←B[i][ j]+B[i + 1][k] · δP(q j , ai , qk)

end
end

end
return B

Algorithm 5.5: Computing the probability of a string with BACKWARD.

Data: the probabilities B[0][s] = PrA(x |qs), a PFA A
Result: the probability PrA(x)
T← 0;
for j : 1 ≤ j ≤ |Q| do T← T+B[0][ j] · IP[ j] ;
return T

w when starting in state qs (which has initial probability 1). If we then run Algorithm 5.5
to this we also get the value PrA(w).

These probabilities will be of use when dealing with parameter estimation questions in
Chapter 17.

Another parsing problem, that of finding the most probable path in the PFA that
generates a string w, is computed through the VITERBI algorithm (Algorithm 5.6).

The computation of Algorithms 5.2, 5.4 and 5.6 have a time complexity in O(|x | · |Q|2).
A slightly different implementation allows us to reduce this complexity by only visiting
the states that are really successors of a given state. A vector representation allows us to
make the space complexity linear.

In the case of DPFAs, the algorithms are simpler than for non-deterministic PFAs. In
this case, the computation cost of Algorithm 5.6 is in O(|x |), that is, the computational
cost does not depend on the number of states since at each step the only possible next state
is computed with a cost in O(1).
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Algorithm 5.6: VITERBI.

Data: a PFA A = 〈�, Q, IP,FP, δP〉, a string x = a1a2 · · · an

Result: a sequence of states bestpath= qp0 . . . qpn reading x and maximising:
IP(qp0) · δP(qp0 , a1, qp1) · δP(qp1 , a2, qp2) . . . δP(qpn−1 , an, qpn ) · FP(qpn )

for j : 1 ≤ j ≤ |Q| do /* Initialise */
V[0][ j] ← IP(q j );
Vpath[0][ j] ← λ;
for i : 1 ≤ i ≤ n do

V[i][ j] ← 0;
Vpath[i][ j] ← λ

end
end
for i : 1 ≤ i ≤ n do

for j : 1 ≤ j ≤ |Q| do
for k : 1 ≤ k ≤ |Q| do

if V[i][ j] < V[i − 1][k] · δP(qk, ai , q j ) then
V[i][ j] ← V[i − 1][k] · δP(qk, ai , q j );
Vpath[i][ j] ← Vpath[i − 1][ j] · q j

end
end

end
end
bestscore← 0; /* Multiply by the halting probabilities */
for j : 1 ≤ j ≤ |Q| do

if V[n][ j] · FP[ j] >bestscore then
bestscore← V[n][ j] · FP[ j];
bestpath←Vpath[n][ j]

end
end
return bestpath

We compute the probability of string ab in the automaton of Figure 5.4:

PrA(ab) = IP(q1) · δP(q1,a, q2) · δP(q2,b, q3) · FP(q3)

+ IP(q2) · δP(q2,a, q4) · δP(q4,b, q2) · FP(q2)

+ IP(q2) · δP(q2,a, q4) · δP(q4,b, q1) · FP(q1)

= 0.4 · 0.5 · 0.2 · 0.5 + 0.6 · 0.2 · 0.2 · 0.6 + 0.6 · 0.2 · 0.5 · 0

= 0.0344.
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Table 5.1. Details of the computation of B and F for
string ab on Automaton 5.4 by Algorithms
BACKWARD and FORWARD.

State B F

q1 B[2][1] = Pr(λ|0) = 0 F[0][1] = Pr(λ, 1) = 0.4
q2 B[2][2] = Pr(λ|1) = 0.6 F[0][2] = Pr(λ, 2) = 0.6
q3 B[2][3] = Pr(λ|2) = 0.5 F[0][3] = Pr(λ, 3) = 0
q4 B[2][4] = Pr(λ|3) = 0.3 F[0][4] = Pr(λ, 4) = 0

q1 B[1][1] = Pr(b|0) = 0 F[1][1] = Pr(a, 1) = 0
q2 B[1][2] = Pr(b|1) = 0.1 F[1][2] = Pr(a, 2) = 0.2
q3 B[1][3] = Pr(b|2) = 0.06 F[1][3] = Pr(a, 3) = 0
q4 B[1][4] = Pr(b|3) = 0.12 F[1][4] = Pr(a, 4) = 0.12

q1 B[0][1] = Pr(ab|0) = 0.05 F[2][1] = Pr(ab, 1) = 0.06
q2 B[0][2] = Pr(ab|1) = 0.024 F[2][2] = Pr(ab, 2) = 0.024
q3 B[0][3] = Pr(ab|2) = 0.018 F[2][3] = Pr(ab, 3) = 0.04
q4 B[0][4] = Pr(ab|3) = 0 F[2][4] = Pr(ab, 4) = 0

0.4 : q1

0.6 : q2 : 0.6

q3 : 0.5

q4 : 0.3

a 0.5 b 0.2

b 0.2b 0.5

a 0.3b 0.5

b 0.2 a 0.2

Fig. 5.4. A PFA A, PrA(ab) = 0.0344.

We can also trace the BACKWARD and FORWARD computations in Table 5.1. We
obtain:

0.05 · 0.4 + 0.024 · 0.6 + 0.018 · 0 + 0 · 0 =
0.06 · 0 + 0.024 · 0.6 + 0.04 · 0.5 + 0 · 0.3 = 0.0264.

We conclude this section by defining classes of string distributions on the basis of the
corresponding generating automata.
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q1 : 0

q2 : 1
2

q3 : 1
3

a 1
2

a 1
2

a 1
2

a 2
3

Fig. 5.5. A regular distribution that is not deterministic.

Definition 5.2.5 A distribution is regular ifdef it can be generated by some PFA. We
denote by REGP(�) the class of all regular distributions (over alphabet �).

Definition 5.2.6 A distribution is regular deterministic ifdef it can be generated by some
DPFA. We denote by DETP(�) the class of all regular deterministic distributions (over
alphabet �).

Definition 5.2.7 Two PFAs are equivalent ifdef they generate the same distribution.

From the definitions of PFA and DPFA the following hierarchy is obtained:

Proposition 5.2.1 A regular deterministic distribution is also a regular distribution.
There exist distributions which are regular but not regular deterministic.

Proof It can be checked that the distribution defined by the PFA from Figure 5.5 is not
regular deterministic.

5.2.4 Eliminating λ-transitions in a PFA

The algorithms from the previous section were able to parse whenever the PFA contained
no λ-transitions. But even if a specific parser using λ-transitions can be built, it is tedious
to compute with it or to generate strings in a situation where the λ-transitions may even
be more frequent than the other transitions. We prove in this section that λ-transitions are
not necessary in probabilistic finite automata and that there is no added power in automata
that use λ-transitions compared to those that don’t. To do so we propose an algorithm that
takes a λ-PFA as input and returns an equivalent PFA with no more states, but where the
(rational) probabilities may require a polynomial number only of extra bits for encoding.

Remember that a λ-PFA can not only have λ-transitions (including λ-loops), but also
various initial states. Thus IP is a function Q → Q+, such that

∑
q∈Q IP(q) = 1.

Theorem 5.2.2 Given a λ-PFA A representing distribution DA, there exists a λ-free PFA
B such that DA = DB. Moreover B is of total size at most n times the total size of A, where
n is the number of states in A.
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Algorithm 5.7: Transforming the λ-PFA into a λ-PFA with just one initial state.

Input: a λ-PFA : 〈�, Q, IP,FP, δP〉
Output: a λ-PFA : 〈�, Q ∪ {qnew}, IP

′,FP
′, δP′〉 with one initial state

Q′ ← Q ∪ {qnew};
for q ∈ Q do

δP
′(qnew, λ, q)← IP(q);

IP
′(q)← 0

end
IP

′(qnew)← 1;
FP

′(qnew)← 0;
return 〈�, Q ∪ {qnew}, IP

′,FP
′, δP′〉

Proof To convert A into an equivalent PFA B there are two steps. The starting point is
a PFA A = 〈�, Q, IP,FP, δP〉 where the set of states Q is labelled by numbers. We will
update this numbering as we add more states.

Step 1: If there is more than one initial state, add a new initial state and λ-transitions
from this state to each of the previous initial states, with probability equal to that of the
state being initial. Notice that this step can be done in polynomial time and that the result-
ing automaton contains at most one more state than the initial one. This is described by
Algorithm 5.7.

Step 2: Algorithm 5.8 iteratively removes a λ-loop if there is one, and if not, the
λ-transition with maximal extremity. In a finite number of steps, the algorithm terminates.

To prove that in a finite number of steps all λ-transitions are removed, we first associate
with any automaton A the value μ(A) corresponding to the largest number of a state in
which a λ-transition ends.

μ(A) = max{i : qi ∈ Q and δP(q, λ, qi ) �= 0}.
Now let ρ(A) be the number of λ-transitions ending in qμ(A).

ρ(A) = ∣∣{q ∈ Q : δP(q, λ, qμ(A)) �= 0}∣∣.
Finally, the value v(A) = 〈μ(A), ρ(A)〉 will decrease at each step of the algorithm, thus

ensuring the termination and the convergence. In Figure 5.6, we have μ(A) = 3, ρ(A) = 2
and v(A) = 〈3, 2〉.

Algorithm 5.8 takes the current PFA and eliminates a λ-loop if there is one. If not it
chooses a λ-transition ending in the state with largest number and eliminates it.

One can notice that in Algorithm 5.8, new λ-loops can appear when such a λ-transition
is eliminated, but that is no problem because they will only appear in states of smaller
index than the current state that is being considered.
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Algorithm 5.8: Eliminating λ-transitions.

Input: a λ− PFA : 〈�, Q, {q1},FP, δP〉 with only one initial state
Output: a λ-free PFA : 〈�, Q, {q1},FP, δP〉
while there still are λ-transitions do

if there exists a λ-loop (q, λ, q, P) then
for all transitions (q, a, q ′) ((a, q ′) �= (λ, q)) do

δP(q, a, q ′)← δP(q, a, q ′) · 1
1−δP(q,λ,q)

end
FP(q)← FP(q) · 1

1−δP(q,λ,q) ;
δP(q, λ, q)← 0

else /* there are no λ-loops */
let (q, λ, qm) be a λ-transition with m maximal;
foreach (qm, λ, qn, Pλ) do /* n < m */

δP(q, λ, q ′)← δP(q, λ, qn)+ δP(q, λ, qm) · δP(qm, λ, qn)

end
foreach (qm, a, qn, Pa) do /* a ∈ � */

δP(q, a, qn)← δP(q, a, qn)+ δP(q, λ, qm) · δP(qm, a, qn)

end
FP(q)← FP(q)+ δP(q, λ, qm) · FP(qm);
δP(q, λ, qm)← 0

end
end
return 〈�, Q, {q1},FP, δP〉

q1

q2 : 0.4

q3 : 0.2

q4 : 0.5

λ 0.5

a 0.5

λ 0.2

a 0.4

λ 0.2 λ 0.2

a 0.3

λ 0.3

a 0.3

Fig. 5.6. A PFA.
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Therefore the quantity v(A) decreases (for the lexicographic order over N2) at each
round of the algorithm, since a new λ-transition only appears as a combination of a
(q, λ, qm) and a (qm, λ, qn) and n < m with m = μ(A).

As clearly this can only take place a finite number of times, the algorithm converges.
Then we prove that at each step v(A) does not increase (for the lexicographic order),

and that there can only be a finite number of consecutive steps where v(A) remains equal.
Summarising, at each step one of the following holds:

• A λ-loop is erased. Then v(A) is left untouched because no new λ-transition is introduced, but
the number of λ-loops is bounded by the number of states of the PFA. So only a finite number of
λ-loop elimination steps can be performed before having no λ-loops left.

• A λ-transition (that is not a loop) is replaced. This transition is a (q, λ, qm , P) with μ(A) = m.
Therefore only λ-transitions with terminal vertex of index smaller than m can be introduced. So
v(A) diminishes.

Also, clearly, if the probabilities are rational, they remain so.

A run of the algorithm. We suppose the λ-PFA contains just one initial state and is rep-
resented in Figure 5.7(a). First, the λ-loops at states q2 and q3 are eliminated and several
transitions are updated (Figure 5.7(b)).

The value of v(A) is 〈3, 1〉. At that point the algorithm eliminates transition (q4, λ, q3)

because μ(A) = 3. The resulting PFA is represented in Figure 5.8(a). The new value of
v(A) is 〈2, 3〉 which, for the lexicographic order, is less than the previous value.

The PFA is represented in Figure 5.8(b). The new value of v(A) is 〈2, 2〉. Then transition
(q3, λ, q2) is eliminated resulting in the PFA represented in Figure 5.9(a) whose value

q1

q2 : 0.4

q3 : 0.2

q4 : 0.6

λ 0.5

a 0.5

λ 0.5

a 0.1

λ 0.2

a 0.1

λ 0.5

a 0.2

λ 0.2

(a) A PFA.

q1

q2 : 0.75

q3 : 0.4

q4 : 0.6

λ 0.5

a 0.5

a 0.25

λ 0.4

a 0.2
a 0.2

λ 0.2

(b) PFA after eliminating λ-loops.

Fig. 5.7.
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q1

q2 : 0.75

q3 : 0.4

q4 : 0.68

λ 0.5

a 0.5

a 0.25λ 0.4

a 0.2
a 0.24

λ 0.08

(a) PFA after eliminating transition (q4, λ, q3).

q1

q2 : 0.75

q3 : 0.4

q4 : 0.74

λ 0.5

a 0.5

a 0.25

λ 0.4

a 0.2
a 0.26

(b) PFA after eliminating transition (q4, λ, q2).

Fig. 5.8.

q1

q2 : 0.75

q3 : 0.7

q4 : 0.74

λ 0.5

a 0.5

a 0.25

a 0.3

a 0.26

(a) PFA after eliminating transition (q3, λ, q2).

q1 : 0.375

q2 : 0.75

q3 : 0.7

q4 : 0.74

a 0.5

a 0.125

a 0.25

a 0.3

a 0.26

(b) PFA after eliminating transition (q1, λ, q2).

Fig. 5.9.

q1 : 0.375

q3 : 0.7

q4 : 0.74

a 0.5

a 0.125

a 0.3

a 0.26

Fig. 5.10. PFA after simplification.

v(A) is 〈2, 1〉. Finally the last λ-transition is removed and the result is represented in
Figure 5.9(b). At this point, since state q2 is no longer reachable, the automaton can be
pruned as represented in Figure 5.10.

Complexity issues. The number of states in the resulting automaton is identical to the ini-
tial one. The number of transitions is bounded by |Q|2 · |�|. But each multiplication of
probabilities can result in the summing of the number of bits needed to encode each prob-
ability. Since the number of λ-loops to be removed on one path is bounded by n, this also
gives a polynomial bound to the size of the resulting automaton.
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Conclusion. Automatic construction of a PFA (through union operations for example) will
lead to the introduction of λ-transitions or multiple initial states.

Algorithms 5.7 and 5.8 remove λ-transitions, and an equivalent PFA with just one initial
state can be constructed for a relatively small cost.

It should be remembered that not all non-determinism can be eliminated, as it is
known that PFAs are strictly more powerful than their deterministic counterparts (see
Proposition 5.2.1, page 95).

5.3 Probabilistic context-free grammars

One can also add probabilities to grammars, but the complexity increases. We therefore
only survey here some of the more elementary definitions.

Definition 5.3.1 A probabilistic context-free grammar (PCFG) G is a quintuple
< �, V, R, P, N1 >where� is a finite alphabet (of terminal symbols), V is a finite alpha-
bet (of variables or non-terminals), R ⊂ V × (� ∪ V )∗ is a finite set of production rules,
P : R → R+ is the probability function, and N1 (∈ V ) is the axiom.

As in the case of automata, we will restrict ourselves to the case where the probabilities
are rational (in Q ∩ [0, 1]).

Given a PCFG G, a string w, and a left-most derivation d = α0 ⇒ . . .⇒ αk where

α0 = Ni0 = N1,

αk = w,

α j = l j Ni j γ with l j ∈ ��, γ ∈ (� ∪ V )∗, and j < k,

α j+1 = l jβi j γ with (Ni j , βi j ) ∈ R

we define the weight of derivation d as: PrG,d(w) = ∏
0≤ j<k P(Ni j , βi j ) where

(Ni j , βi j ) is the rule used to rewrite α j into α j+1. Notice that it is essential to count
only the left-most derivations in order not to count the same derivation various times.
The quantity PrG,d(w) is the probability of generating string w and of doing this using
derivation d.

Now we sum over all (left-most) derivations: PrG(w) = ∑
d PrG,d(w).

Example 5.3.1 Consider the grammar G = <{a,b}, {N1}, R, P, N1> with R =
{(N1, aN1b), (N1, aN1), (N1, λ)} and the probabilities of the rules given by P(N1, λ) =
1
6 , P(N1, aN1b) = 1

2 and P(N1, aN1) = 1
3 .

Then string aab can be generated through d1 = N1 ⇒ aN1b ⇒ aaN1b ⇒ aab and
d2 = N1 ⇒ aN1 ⇒ aaN1b ⇒ aab. Both derivations have probability PrG,di (aab) =
1
36 , and therefore PrG(aab) = 1

18 .

As with PFAs, we can give the algorithms allowing us by dynamic programming to
effectively sum over all the paths. Instead of using BACKWARD and FORWARD, we
define INSIDE and OUTSIDE, two algorithms that compute respectively PrG(w|N ), the
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Algorithm 5.9: INSIDE.

Data: a PCFG G =< �, V, R, P, N1 > in quadratic normal form, with
V = {N1, . . . , N|V |}, a string x = a1a2 · · · an ,

Result: The probabilities I[i][ j][k] = PrG(a j · · · ak |Ni )

for j : 1 ≤ j ≤ n do /* Initialise */
for k : j ≤ k ≤ n do

for i : 1 ≤ i ≤ |V | do I[i][ j][k] ← 0
end

end
for (Ni , b) ∈ R do

for j : 1 ≤ j ≤ n do
if a j = b then I[i][ j][ j] ← P(Ni , b)

end
end
for m : 1 ≤ m ≤ n − 1 do

for j : 1 ≤ j ≤ n − m do
for k : j ≤ k ≤ j + m − 1 do

for (Ni , Ni1 Ni2) ∈ R do I[i][ j][ j + m] ←
I[i][ j][ j + m]+I[i1][ j][k]·I[i2][k + 1][ j + m − 1] · P(Ni , Ni1 Ni2)

end
end

end
return I

probability of generating string w from non-terminal N , and PrG(uNv), the probability
of generating uNv from the axiom.

Notice that the OUTSIDE algorithm needs the computation of the INSIDE one.
One should be careful when using PCFGs to generate strings: the process can diverge.

If we take for example grammar G= < {a,b}, {N1}, R, P, N1 > with rules N1 → N1 N1

(probability 1
2 ) and N1 → a (probability 1

2 ), then if generating with this grammar, although
everything looks fine (it is easy to check that Pr(a) = 1

2 , Pr(aa) = 1
8 and Pr(aaa) =

1
16 ), the generation process diverges. Let x be the estimated length of a string generated by
G. The following recursive relation must hold:

x = 1

2
· 2x + 1

2
· 1

and it does not accept any solution.
In other words, as soon as there are more than two occurrences of the symbol ‘N1’, then

in this example, the odds favour an exploding and non-terminating process.
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Algorithm 5.10: OUTSIDE.

Data: a PCFG G =< �, V, R, P, N1 > in quadratic normal form, with
V = {N1, . . . , N|V |}, string u = a1a2 · · · an

Result: the probabilities O[i][ j][k] = PrG(a1 · · · a j Ni ak · · · an)

for j : 0 ≤ k ≤ n + 1 do
for k : j + 1 ≤ k ≤ n + 1 do

for i : 1 ≤ i ≤ |V | do O[i][ j][k] ← 0
end

end
O[1][0][n + 1] ← 1;
for e : 0 ≤ e ≤ n do

for j : 1 ≤ j ≤ n − e do
k ← n + 1 − j + e;
for (Ni , Ni1 Ni2) ∈ R do

for s : j ≤ s ≤ k do
O[i1][ j][s] ← O[i1][ j][s] + P(Ni , Ni1 Ni2)·O[i][ j][k]·I[i2][s][k − 1];
O[i2][s][k] ← O[i2][s][k] + P(Ni , Ni1 Ni2)·I[i1][ j + 1][s]·O[i][ j][k]

end
end

end
return O

5.4 Distances between two distributions

There are a number of reasons for wanting to measure a distance between two
distributions:

• In a testing situation where we want to compare two resulting PFAs obtained by two different
algorithms, we may want to measure the distance towards some ideal target.

• In a learning algorithm, one option may be to decide upon merging two nodes of an automaton.
For this to make sense we want to be able to say that the distributions at the nodes (taking each
state as the initial state of the automaton) are close.

• There may be situations where we are faced by various candidate models, each describing a partic-
ular distribution. Some sort of nearest neighbour approach may then be of use, if we can measure
a distance between distributions.

• The relationship between distances and kernels can also be explored. An attractive idea is to relate
distances and kernels over distributions.

Defining similarity measures between distributions is the most natural way of comparing
them. Even if the question of exact equivalence (discussed in Section 5.4.1) is of interest,
in practical cases we wish to know if the distributions are close or not. In tasks involving



5.4 Distances between two distributions 103

the learning of PFAs or DPFAs we may want to measure the quality of the result or of the
learning process. For example, when learning takes place from a sample, measuring how
far the learnt automaton is from the sample can also be done by comparing distributions
since a sample can be encoded as a DPFA.

5.4.1 Equivalence questions

We defined equality between two distributions earlier; equivalence between two models is
true when the underlying distributions are equal. But suppose now that the distributions are
represented by PFAs, what more can we say?

Theorem 5.4.1 Let A and B be two PFAs. We can decide in polynomial time if A and B
are equivalent.

Proof If A and B are DPFAs the proof can rely on the fact that the Myhill-Nerode equiv-
alence can be redefined in an elegant way over regular deterministic distributions, which
in turn ensures there is a canonical automaton for each regular deterministic distribution.
It being canonical means that for any other DPFA generating the same distribution, the
states can be seen as members of a partition block, each block corresponding to state in the
canonical automaton.

The general case is more complex, but contrarily to the case of non-probabilistic objects,
the equivalence is polynomially decidable. One way to prove this is to find a polyno-
mially computable metric. Having a null distance (or not) will then correspond exactly
to the PFAs being equivalent. Such a polynomially computable metric exists (the L2

norm, as proved in the Proposition 5.5.3, page 110) and the algorithm is provided in
Section 5.5.3.

But in practice we will often be confronted with either a sample and a PFA or two
samples and we have to decide this equivalence upon incomplete knowledge.

5.4.2 Samples as automata

If we are given a sample S drawn from a (regular) distribution, there is an easy way to rep-
resent this empirical distribution as a DPFA. This automaton will be called the probabilistic
prefix tree acceptor (PPTA(S)).

The first important thing to note is that a sample drawn from a probabilistic language
is not a set of strings but a multiset of strings. Indeed, if a given string has a very high
probability, we can expect this string to be generated various times. The total number of
different strings in a sample S is denoted by � S �, but we will denote by |S| the total
number of strings, including repetitions. Given a language L , we can count how many
occurrences of strings in S belong to L and denote this quantity by |S|L . To count the
number of occurrences of a string x in a sample S we will write cntS(x), or |S|x . We
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will use the same notation when counting occurrences of prefixes, suffixes and substrings
in a string: for example |S|�� ab�� counts the number of strings in S containing ab as a
substring.

The empirical distribution associated with a sample S drawn from a distribution D is
denoted Ŝ, with PrŜ(x) = cntS(x)|S| .

Example 5.4.1 Let S = {a(3),aba(1),bb(2),babb(4),bbb(1)} where babb(4)
means that there are 4 occurrences of string babb. Then � S �= 5, but |S| = 11 and
|S|b∗ = 3.

Definition 5.4.1 Let S be a multiset of strings from ��. The probabilistic prefix tree
acceptor PPTA(S) is the DPFA 〈�, Q, qλ,FP, δP〉 where

• Q = {qu : u ∈ PREF(S)}.
• ∀ua ∈ PREF(S) : δP(qu , a, qua) = |S|ua��|S|u�� .

• ∀u ∈ PREF(S) : FP(qu) = |S|u|S|u�� .

Example 5.4.2 Let S = {a(3),aba(1),bb(2),babb(4),bbb(1)}. Then the correspond-
ing probabilistic prefix tree acceptor PPTA(S) is depicted in Figure 5.11. The fractions
are represented in a simplified way (1 instead of 4

4 ). This nevertheless corresponds to a
loss of information: 4

4 is ‘different’ statistically than 400
400 ; the issue will be dealt with in

Chapter 16.

The above transformation allows us to define in a unique way the distances between reg-
ular distributions over ��. In doing so they implicitly define distances between automata,
but also between automata and samples, or even between samples.

λ

a : 3
4

b

ab

ba

bb : 2
3

aba : 1

bab

bbb : 1

babb : 1

a 4
11

b 7
11

b 1
4

a 4
7

b 3
7

a 1

b 1

b 1
3

b 1

Fig. 5.11. PPTA for S = {a(3),aba(1),bb(2), babb(4),bbb(1)}.
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5.4.3 Distances between automata

• The most general family of distances is referred to as the Ln distances or distances for the norm
Ln . The general definition goes as follows:

Ln(D,D′) =
⎛⎝ ∑

x∈��
∣∣PrD(x)− PrD′(x)

∣∣n⎞⎠
1
n

.

• For n=1 we get a natural distance also known as the L1 distance, the variation or Manhattan
distance, or distance for the norm L1.

L1(D,D′) =
∑

x∈��
∣∣PrD(x)− PrD′(x)

∣∣.
• And in the special case where n = 2 we obtain:

L2(D,D′) =
√ ∑

x∈��
(PrD(x)− PrD′(x))2.

This is also known as the quadratic distance or the Euclidean distance. Notice that with n = 2 the
absolute values of the definition of Ln vanish, which will allow computation to be easier.

• The following distance (sometimes denoted also as d∗ or dmax) for the L∞ norm is the limit when
n → ∞ of the Ln :

L∞(D,D′) = max
x∈��

∣∣PrD(x)− PrD′(x)
∣∣ .

When concerned with very small probabilities such as those that may arise when an
infinite number of strings have non-null probability, it may be more useful to use loga-
rithmic probabilities. In this way a string with very small probability may influence the
distance because the relative probabilities in both distributions are very different. Suppose
Pr1(x) = 10−7 and Pr2(x) = 10−9, then the effect for L1 of this particular string will be
of 99 · 10−9 whereas for the logarithmic distance the difference will be the same as if the
probabilities had been 10−1 and 10−3.

The logarithmic distance is

dlog(D,D′) = max
x∈��

∣∣ log PrD(x)− log PrD′(x)
∣∣.

But the logarithmic distance erases all the differences between the large and the less
large probabilities. A good compromise is the Kullback-Leibler divergence:

dKL(D,D′)=
∑

x∈��
PrD(x) · log

PrD(x)
PrD′(x)

.

We set in a standard way that 0 log 0 = 0 and 0
0 = 1.

The Kullback-Leibler divergence is the sum over all strings of the logarithmic loss
weighted down by the actual probability of a string. The divergence is an asymmetrical
measure: the distribution D is used twice as it clearly is the ‘real’ distribution, the one that
assigns the weights in the sum.
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It should be noticed that in the case where some string has a null probability in D′, but
not in D, the denominator PrD′(x) is null. As it is supposed to divide the expression, the
Kullback-Leibler divergence is infinite. This is obviously a crucial issue:

• A model that assigns a null probability to a possible string is bad. The KL-measure tells us it is
worse than bad, as no matter what the rest of the distribution looks like, the penalty is infinite and
cannot be compensated.

• A first way to deal with this serious problem is through smoothing: the model is generalised in
order to assign (small) probabilities to events that were not regarded as possible during the learning
phase. The crucial question is how to do this and is a research field in itself.

• The second way consists of using a metric that does not have the inconveniences of the KL-
divergence. This is theoretically sound, but at the same time does not address the practical issues
of assigning a null probability to a possible event.

Rewriting the Kullback-Leibler divergence as

dKL(D,D′) =
∑

x∈��
PrD(x) · log PrD(x)−

∑
x∈��

PrD(x) · log PrD′(x), (5.1)

one can note the first term is the entropy of D and does not depend on D′, and the second
term is the cross-entropy of D given D′. One interpretation (from information theory)
is that we are measuring the difference between the optimal number of bits needed to
encode a random message (the left-hand side) and the average number of bits when using
distribution D′ to encode the data.

5.4.4 Some properties

• Ln (∀n), L∞ are metrics, i.e. they comply with the usual properties: ∀D,D′, ∀d ∈ {Ln,L∞},
1. d(D,D′) = 0 ⇐⇒ D = D′,
2. d(D,D′) = d(D′,D),
3. d(D,D′)+ d(D′,D′′) ≥ d(D,D′′).

• dKL is not a metric (Definition 3.1.1, page 47) but can be adapted to comply with those conditions.
This is usually not done because the asymmetrical aspects of dKL are of interest in practical and
theoretical settings.
It nevertheless verifies the following properties: ∀D,D′,
1. dKL(D,D′) ≥ 0,
2. dKL(D,D′) = 0 ⇐⇒ D = D′.

• Obviously ∀D,D′, L∞(D,D′) ≤ L1(D,D′).
• Pinsker’s inequality states that:

dKL(D,D′) ≥ 1

2 ln 2
L1(D,D′)2.

These inequalities help us to classify the distances over distributions in the following
(informal) way:

dlog � DKL � L1 � . . . � Ln � Ln+1 � L∞.
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This can be read as:

• From left to right we find the distances that attach most to least importance to the relative dif-
ferences between the probabilities. The further to the right, the more important are the absolute
differences.

• If you want to measure closeness of two distributions by the idea that you want to be close
on the important probabilities, then you should turn to the right-hand side of the expression
above.

• If you want all the probabilities to count and to count this in a relative way, you should use
measures from the left-hand side of the expression above.

Alternatively, we can consider a sample as a random variable, in which case we can
consider the probability that a sample of a given size has such or such property. And the
notation PrD( f (Sn)) will be used to indicate the probability that property f holds over a
sample of size n sampled following D.

Lemma 5.4.2 Let D be any distribution on ��. Then ∀a > 1, the probability that a
sample S of size n has

L∞(D, Ŝ) ≤ √
6a(log n)/n

is at least 4n−a.

Essentially the lemma states that the empirical distribution converges (for the L∞
distance) to the true distance.

5.5 Computing distances

When we have access to the models (the automata) for the distributions, an exact com-
putation of the distance is possible in certain cases. This can also solve two other
problems:

• If the distance we are computing respects the conditions d(x, y)= 0 ⇐⇒ x = y and d(x, y)≥ 0,
computing the distance allows us to solve the equivalence problem.

• Since samples can easily be represented by PFAs, we can also compute the distance between
two samples or between a sample and a generator through these techniques. Error bounds
corresponding to different statistical risks can also be computed.

5.5.1 Computing prefixial distances between states

Let A and B be two PFAs (without λ-transitions) with A = 〈�, QA, IPA, FPA, δPA〉 and
B = 〈�, QB, IPB, FPB, δPB〉 with associated probability functions PrA and PrB.

We will denote in a standard fashion by Aq the PFA obtained from A when taking state
q as the unique initial state. Alternatively it corresponds to using function IPA(q) = 1 and
∀q ′ �= q, IPA(q

′) = 0.
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We define now ηq as the probability of reaching state q in A. Computing ηq may seem
complex but is not:

ηq = IPA(q)+
∑

s∈QA

∑
a∈�

ηs · δPA(s, a, q).

In a similar way, we define ηqq ′ as the probability of jointly reaching (with the same
string) state q in A and state q ′ in B. This means summing over all the possible strings
and paths. Luckily, the recursive definition is much simpler and allows a polynomial
implementation by dynamic programming.

By considering on one hand the only zero-length prefix λ and on the other hand the
other strings which are obtained by reading all but the last character, and then the last one,
∀q, q ′ ∈ QA × QB,

ηqq ′ = IPA(q)IPB(q
′)+

∑
s∈QA

∑
s′∈QB

∑
a∈�

ηs,s′ · δPA(s, a, q) · δPB(s′, a, q ′). (5.2)

The above equation is one inside a system of linear equations. A cubic algorithm (in
the number of equations and variables) can solve this, even if specific care has to be taken
with manipulation of the fractions. In certain cases, where the PFAs have reasonably short
probable strings, it can be noticed that convergence is very fast, and a fixed number of
iterations is sufficient to approximate the different values closely.

We will use this result in Section 5.5.3 to compute L2.

5.5.2 Computing the KL-divergence

We recall the second definition of the KL-divergence and adapt it for two DPFAs
(Equation 5.1):

dKL(A,B) =
∑

x∈��
PrA(x) · log PrA(x)−

∑
x∈��

PrA(x) · log PrB(x).

It follows that we need to know how to compute
∑

x∈�� PrA(x) · log PrB(x). Then the
first part of the formula can be computed by simply taking B = A. We denote by PrA(a|x)
the probability of reading a after having read x and by PrA(a|x) the probability of halting
after having read x .

Let us, in the case of DPFAs, show that we can compute
∑

x∈�� PrA(x) · log PrB(x). If
we take any string x = a1 · · · an , we have log PrB(x) =

∑
i∈[n] log PrB(ai |a1 · · · ai−1)+

log PrB(λ|x). Each term log PrB(ai ) therefore appears in every string (and every time)
containing letter ai . We can therefore factorise:∑

x∈��
PrA(x) · log PrB(x) =

∑
x∈��

∑
a∈�

PrA(xa��) · log PrB(a|x)

+
∑

x∈��
PrA(x) · log PrB(λ|x).
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Since A and B are DPFAs, another factorisation is possible, by taking together all the
strings x finishing in state q in A and in state q ′ in B. We recall that ηq,q ′ is the probability
of reaching simultaneously state q in A and state q ′ in B. The value of

∑
x∈�� PrA(x) ·

log PrB(x) is:∑
q∈QA

∑
q ′∈QB

∑
a∈�

ηq,q ′ PrA(a|q) · log PrB(a|q ′)+
∑

q∈QA

∑
q ′∈QB

ηq,q ′FPA(q) · log FPB(q
′).

Since the ηq,q ′ can be computed thanks to Equation 5.2, we can state:

Proposition 5.5.1 Let A, B be two DPFAs. Then dKL(A,B) can be computed in
polynomial time.

This proposition will be the key to understanding algorithm MDI, given in Section 16.7.

5.5.3 Co-emission

If a direct computation of a distance between two automata is difficult, one can compute
instead the probability that both automata generate the same string at the same time. We
define the co-emission between A and B:

Definition 5.5.1 (Co-emission probability) The co-emission probability of A and B is

coem(A,B) =
∑
w∈��

(PrA(w) · PrB(w)) .

This is the probability of emitting w simultaneously from automata A and B. The main
interest in being able to compute the co-emission is that it can be used to compute the L2

distance between two distributions:

Definition 5.5.2 (L2 distance between two models) The distance for the L2 norm is
defined as:

L2(A,B) =
√ ∑
w∈��

(PrA(w)− PrB(w))2.

This can be computed easily by developing the formula:

L2(A,B) =
√

coem(A,A)+ coem(B,B)− 2 coem(A,B).

If we use ηqq ′ (the probability of jointly reaching state q in A and state q ′ in B),

coem(A,B) =
∑
q∈Q

∑
q ′∈Q′

ηqq ′ · FPA(q) · FPB(q
′).

Since the computation of the ηqq ′ could be done in polynomial time (by Equation 5.2,
page 108), this in turns means that the computation of the co-emission and of the L2

distance is polynomial.
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Concluding:

Theorem 5.5.2 If D and D′ are given by PFAs, L2(D,D′) can be computed in polynomial
time.

Theorem 5.5.3 If D and D′ are given by DPFAs, dKL(D,D′) can be computed in
polynomial time.

5.5.4 Some practical issues

In practical settings we are probably going to be given a sample (drawn from the unknown
distribution D) which we have divided into two subsamples in a random way. The first
sample has been used to learn a probabilistic model (A) which is supposed to generate
strings in the same way as the (unknown) target sample does.

The second sample is usually called the test sample (let us denote it by S) and is going
to be used to measure the quality of the learnt model A.

There are a number of options using the tools studied up to now:

• We could use the L2 distance between A and Ŝ. The empirical distribution Ŝ can be rep-
resented by a PPTA and we can compute the L2 distance between this PPTA and A using
Proposition 5.5.1.

• Perhaps the L1 distance is better indicated and we would like to try to do the same with this. But
an exact computation of this distance (between two DPFAs) cannot be done in polynomial time
(unless P = NP), so only an approximation can be obtained.

• The Kullback-Leibler divergence is an alternative candidate. But as D is unknown, again the dis-
tance has to be computed over the empirical distribution Ŝ instead of D. In this case we may
notice that in Equation 5.1 the first part is constant and does not depend on A, so we are really
only interested in minimising the second part (the relative entropy).

• The alternative is to use perplexity instead.

5.5.5 Perplexity

If we take the equation for the KL-divergence, we can measure the distance between a
hypothesis distribution H and the real distribution D. If we only have a sample S of the
real distribution, then it may still be possible to use this sample (or the corresponding
empirical distribution Ŝ) instead of the real distribution D. We would then obtain (from
Equation 5.1):

dK L(Ŝ, H) =
∑

x∈��
PrŜ(x) · log PrŜ(x)−

∑
x∈��

PrŜ(x) · log PrH (x), (5.3)

In the above equation the first term doesn’t depend on the hypothesis. We can therefore
remove it when what we want is to compare different hypotheses. For those strings not in
the sample, the probability in Ŝ is 0, so they need not be counted either.
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Simplifying, we get the estimation of the divergence (DIV) between S and the
hypothesis H :

DIV(S|H) = − 1

|S|
∑
x∈S

cntS(x) log(PrH (x)). (5.4)

This in turn helps us define the perplexity of H with respect to the sample:

P P(S|H) =
[∏

x∈S

PrH (x)

]− cntS (x)|S|

= n

√∏
x∈S

PrH (x)cntS(x). (5.5)

The properties of the perplexity can be summarised as follows:

• Equation 5.4 tells us that the perplexity measures the average number of bits one must ‘pay’ by
using the model H instead of D while coding the sample S.

• From Equation 5.5, the perplexity can be seen as the inverse of the geometric mean of the
probabilities – according to the model – of the sample words.

In practical situations, the following issues must be carefully taken into account:

• Perplexity and entropy are infinite whenever there is a string in the sample for which PrH (x) = 0.
In practice, this implies that the perplexity must be used on a smoothed model, i.e. a model that
provides a non-null probability for any string of ��. One should add that this is not a defect of
using perplexity. This is a normal situation: a model that cannot account for a possible string is a
bad model.

• The perplexity can compare models only when using the same sample S.

5.6 Exercises

5.1 Compute the PPTA corresponding to the sample S ={λ(6),a(2),aba(1), baba(4),
bbbb(1)}.

5.2 Consider the PFA from Figure 5.12. What is the probability of string aba? Of string
bbaba? Which is the most probable string (in ��)?

5.3 Write a polynomial time algorithm which, given a DPFA A, returns the most probable
string in DA.

5.4 Write a polynomial time algorithm which, given a DPFA A and an integer n, returns
mps(A, n), the n most probable string in DA.

5.5 Prove that the probabilistic language from Figure 5.13 is not deterministic.
5.6 Build two DPFAs A and B with n states, each such that {w ∈ �� : PrA(w) > 0

∧PrB(w) > 0} = ∅ yet L2(DA,DB) ≤ 2−n .
5.7 Let D and D′ be two distributions. Prove that ∀α, β > 0 : α+ β = 1, αD+ βD′ is a

distribution.
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Fig. 5.12. A PFA.

q1 : 1 q2 : 0.5

a 0.5 a 0.5

a 0.5

Fig. 5.13. A very simple distribution.

5.8 Consider the PFA from Figure 5.12. Eliminate the λ-transitions from it and obtain an
equivalent λ-free PFA.

5.9 Let S = {a(3),aba(1),bb(2),babb(4),bbb(1)} and call A the PFA from
Figure 5.12. Compute L1(DA,D§) and L2(DA,D§).

5.10 Prove that L1(DA,D§) can be computed, given any sample S and any PFA A.
5.11 Build a PFA An and a string xn for which the VITERBI score of x is less than any

non-null polynomial fraction of PrA(x).
5.12 Write a randomised algorithm which, given a PFA A and a value α > 0 tells us

whether there exists a string w whose probability is at least α.

5.7 Conclusions of the chapter and further reading

5.7.1 Bibliographical background

The main reference about probabilistic finite automata is Azaria Paz’s book (Paz, 1971);
two articles by Enrique Vidal et al., present these automata from an engineering point of
view (Vidal et al., 2005a, 2005b). Extended proofs of some of the results presented here,
like Proposition 5.2.1 (page 95), can be found there.

We have chosen here to use the term ‘probabilistic automata’ uniquely whereas a number
of authors have sometimes used ‘stochastic automata’ for exactly the same objects. This
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can create confusion and if one wants to access the different papers written on the subject,
it has to be kept in mind.

Among the other probabilistic finite state machines we can find hidden Markov mod-
els (HMMs) (Jelinek, 1998, Rabiner, 1989), probabilistic regular grammars (Carrasco &
Oncina, 1994b), Markov chains (Saul & Pereira, 1997), n-grams (Jelinek, 1998, Ney, Mar-
tin & Wessel, 1997), probabilistic suffix trees (Ron, Singer & Tishby, 1994), deterministic
probabilistic automata (Carrasco & Oncina, 1994b) and weighted automata (Mohri, 1997).
These are some names of syntactic objects which have been used to model distributions
over sets of strings of possibly infinite cardinality, sequences, words, phrases but also terms
and trees. Pierre Dupont et al. prove the links between HMMs and PFAs in (Dupont, Denis
& Esposito, 2005), with an alternative proof in (Vidal et al., 2005a, 2005b).

The parsing algorithms are now well known; the FORWARD algorithm is described by
Leonard Baum et al. (Baum et al., 1970). The VITERBI algorithm is named after Andrew
Viterbi (Viterbi, 1967).

Another problem related to parsing is the computation of the probability of all strings
sharing a given prefix, suffix or substring in a PFA (Fred, 2000).

More complicated is the question of finding the most probable string in a distribution
defined by a PFA. In the general case the problem is intractable (Casacuberta & de la
Higuera, 2000), with some associated problems undecidable (Blondel & Canterini, 2003),
but in the deterministic case a polynomial algorithm can be written using dynamic pro-
gramming (see Exercise 5.3). Curiously enough, randomised algorithms solve this question
very nicely with small error.

Several other interesting questions are raised in Omri Guttman’s PhD thesis (Guttman,
2006), for instance the question of knowing how reasonable it can be to attempt to approx-
imate an unknown distribution with a regular one. He proves that for a fixed bounded
number of states n, the best PFA with at most n states can be arbitrarily bad.

In Section 5.2.4 we consider the problem of eliminating λ-transitions; λ-PFAs appear as
natural objects when combining distributions. λ-PFAs introduce specific problems, in par-
ticular, when sequences of transitions labelled with λ are considered. Some authors have
provided alternative parsing algorithms to deal with λ-PFAs (Picó & Casacuberta, 2001).
In that case parsing takes time that is no longer linear in the size of the string to be parsed
but in the size of this string multiplied by the number of states of the PFA. In (Mohri,
Pereira & Riley, 2000) Mehryar Mohri proposes to eliminate λ-transitions by means of
first running the Floyd-Warshall algorithm in order to compute the λ-transition distance
between pairs of edges before removal of these edges. The algorithm we give here can be
found in (Hanneforth & de la Higuera, 2009). Thomas Hanneforth points out (Hanneforth,
2008) that when dealing with A obtained automatically, once the λ-transitions have been
eliminated, there is pruning to be done, as some states can be no longer accessible.

We have only given some very elementary results concerning probabilistic context-free
grammars (Section 5.3). The parsing algorithms INSIDE and OUTSIDE were introduced
by Karim Lari and Steve Young and can be found (with non-trivial differences) in several
places (Casacuberta, 1994, Lari & Young, 1990).
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Several researchers have worked on distances between distributions (Section 5.4). The
first important results were found by Rafael Carrasco et al. (Calera-Rubio & Carrasco,
1998, Carrasco, 1997). In the context of HMMs and with intended bio-informatics appli-
cations, intractability results were given by Rune Lyngsø et al. (Lyngsø & Pedersen, 2001,
Lyngsø, Pedersen & Nielsen, 1999). Other results are those by Michael Kearns et al.
(Kearns et al., 1994). Properties about the distances between automata have been pub-
lished in various places. Thomas Cover and Jay Thomas’ book (Cover & Thomas, 1991)
is a good place for these.

A first algorithm for the equivalence of PFAs was given by Vijay Balasubramanian
(Balasubramanian, 1993). Then Corinna Cortes et al. (Cortes, Mohri & Rastogi, 2006)
noticed that being able to compute the L2 distance in polynomial time ensures that the
equivalence is also testable.

The algorithms presented here to compute distances have first appeared in work initi-
ated by Rafael Carrasco et al. (Calera-Rubio & Carrasco, 1998, Carrasco, 1997) for the
KL-divergence (for string languages and tree languages) and for the L2 between trees and
Thierry Murgue (Murgue & de la Higuera, 2004) for the L2 between strings. Rune Lyngsø
et al. (Lyngsø & Pedersen, 2001, Lyngsø, Pedersen & Nielsen, 1999) introduced the co-
emission probability, which is an idea also used in kernels. Corinna Cortes et al. (Cortes,
Mohri & Rastogi, 2006) proved that computing the L1 distance was intractable; this is also
the case for each Ln with n odd. The same authors better the complexity of (Carrasco,
1997) in a special case and present further results for computations of distances.

Practical issues with distances correspond to topics in speech recognition. In applica-
tions such as language modelling (Goodman, 2001) or statistical clustering (Brown et al.,
1992, Kneser & Ney, 1993), perplexity is introduced.

5.7.2 Some alternative lines of research

If comparing samples co-emission may be null when large vocabulary and long strings are
used. An alternative idea is to compare not only the whole strings, but all their prefixes
(Murgue & de la Higuera, 2004):

Definition 5.7.1 (Prefixial co-emission probability) The prefixial co-emission proba-
bility of A and B is

coempr(A,B) =
∑
w∈��

(
PrA(w�

�) · PrB(w�
�)
)
.

Definition 5.7.2 (L2 pre f distance between two models) The prefixial distance for the
L2 norm, denoted by L2pre f , is defined as:

L2pre f (A,B) =
√ ∑
w∈��

(PrA(w��)− PrB(w��))2



5.7 Conclusions of the chapter and further reading 115

which can be computed easily using:

L2pre f (A,B) =
√

coempr(A,A)+ coempr(B,B)− 2coempr(A,B).

Theorem 5.7.1 L2pre f is a metric over ��.

Proof These proofs are developed in (Murgue & de la Higuera, 2004).

5.7.3 Open problems and possible new lines of research

Probabilistic acceptors are defined in (Fu, 1982), but they have only seldom been
considered in syntactic pattern recognition or in (probabilistic) formal language theory.

One should also look into what happens when looking at approximation issues. Let D1

and D2 be two classes of distributions, ε > 0 and d a distance. Then D1 d-ε approximates
D2 whenever given any distribution D from D1, ∃D ∈ D2 such that d(D,D′) < ε. The
question goes as follows: are regular distributions approximable by deterministic regular
ones? For what value of ε? Along these lines, one should consider distributions represented
by automata of up to some fixed size.

Analysing (in the spirit of (Guttman, 2006)) the way distributions can or cannot be
approximated can certainly help us better understand the difficulties of the task of learning
them.



6

About combinatorics

All generalisations, with the possible exception of this one, are false.
Kurt Gödel

A child of five would understand this. Send someone to fetch a child of five.
Groucho Marx

In order to get a better grasp of the problem of learning grammars, we need to understand
both how the individual objects we are trying to infer are shaped and how the set of these
objects is structured. This will enable us to formally state learnability and non-learnability
results, but also to identify and study the search space and the operators to move around
this space; in turn, this will enable us to develop new heuristics.

The first results are mainly negative: if to learn a grammar you have to solve some
intractable combinatorial problem, then only wild guessing is going to allow you to identify
or infer correctly, but then you are relying on luck, not on convergence probability. This
sort of result is usually obtained by reductions: typically, we show that if a well-known hard
problem can be solved via a learning algorithm (perhaps with some error, so it may depend
on a randomised version), it will mean that something is wrong. The learning algorithm
cannot do what it promises to do.

But working on the combinatorics of automata and grammars also helps us to build intu-
itions that contribute to designing learning processes. Being able to describe the learning
space, or the space where solutions to our learning problems are to be searched for, or the
operators that permit us to modify one automaton into another, will allow us to use search-
ing methods effectively, and more importantly to resort to artificial techniques to look for
items in this space.

6.1 About VC-dimensions

In learning problems, a number of combinatorial dimensions can be associated with
the objects one wants to learn. These dimensions may then provide lower (sometimes
upper) bounds on the number of examples or queries needed to learn. Among the

116
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several dimensions that have been introduced for learning, the best known is the Vapnik-
Chernovakis dimension (also called VC-dimension). This measures the size of the maxi-
mum set of strings that can be shattered by functions of the studied class. A set of size
n is said to be shattered when there is a function for every subset (there are 2n of them)
which accepts the elements of the subset and none from the complement. In the case where
the number of functions is infinite and where every subset can be exactly accepted by a
function, one may want to index these functions by the size of the functions. Since in the
case of grammatical inference the PTA can be used to exactly represent any set of strings,
this will be an issue here.

6.1.1 Why VC-dimensions?

The VC-dimension measures how descriptive and complex the class is. It can be used as a
better parameter to measure the minimum size of a sample needed to guarantee that a con-
sistent solution is approximately correct. We study here the VC-dimension of deterministic
and non-deterministic automata.

Definition 6.1.1 Given a class of grammars G, VC(G) is the size of the largest subset
of strings shattered by G, where a set X = {x1, x2, . . . , xn} is shattered by G ifdef for
every subset Y ⊂ X there exists a grammar G ∈ G such that Y ⊂ L(G) and (X \ Y ) ∩
L(G) = ∅.

The VC-dimension is usually used to obtain bounds for PAC-learning, and is also indica-
tive of the hardness of the learning task in other settings. A finite (or slowly increasing)
VC-dimension can be used to derive PAC-bounds.

6.1.2 VC-dimension of DFA

Proposition 6.1.1 The VC-dimension of the class DFA(�) is infinite. But if we denote
by DFAn(�) the set of all DFAs with at most n states, then VC(DFAn(�)) ∈
O(n log n).

Proof The infinity of VC(DFA(�)) follows from the fact that any finite language is
regular. Hence given any Y ⊆ X , with X as large as one wants, PTA(Y ) can be constructed
recognising exactly Y .

Now consider the class of all DFAs with at most n states, and suppose for simplicity
that the alphabet is of size two. Then one can check that |DFAn(�)| ≤ n2n · 2n2

. This
bound is obtained by considering all the ways one can fill a transition table with n rows
and 2 columns, and all the ways one can label the states as final. By Stirling’s formula that
means that |DFAn(�)| ∈ O(2n log n). So the largest set that can be shattered is of size in
O(n log n).

Conversely we show that this bound can be met by providing such a class of
strings/automata. For simplicity consider the case where n = 2k . Let � = {a,b} and



118 About combinatorics

qλ

qa

qb

qaa

qab

qba

qbb

qaaa

qaab

qaba

qabb

qbaa

qbab

qbba

qbbb

qλ

q1

q0

q11

q01

q10

q00

q111

q011

q101

q001

q110

q010

q100

q000

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a
a

a

a

Fig. 6.1. The DFA to show that the VC-dimension is in O(n log n): It recognises strings
a3 · a · λ, a3 · a · a, a3 · a · aa, aab · a · λ, aab · a · aa, . . .

let X be the set of all strings uav with u ∈ �k and v in {a}<k . This set contains strings of
length between k + 1 and 2k, the first k (= log n) symbols being a or b, the next ones all
being a. The total size of X is therefore 2kk or in other words n log n.

Then any subset Y of X can be recognised by the automaton AY =
〈�, Q, qλ,FA,FR, δ〉 where

• Q = {qu : u ∈ �≤k} ∪ {qv : v ∈ {0, 1}≤k},
• FA = {q1u : u ∈ {0, 1}∗},
• FR = Q \ FA,
• ∀u ∈ �<k , δ(qu ,a) = qua, δ(qu ,b) = qub,
• ∀u ∈ {0, 1}<k , δ(qu1,a) = qu , δ(qu0,a) = qu ,

• ∀u ∈ �k , let wu = c1c2 · · · cn with ci = 1 if uai ∈ Y , 0 if not. Then δ(qu ,a) = qwu .

We illustrate the proposed construction for k = 3 (and so n = 8) and a spe-
cific subset Y = {a4,a5,a6,a2ba,a2ba3,aba,aba2,aba3,ab2a2,ab2a3,ba3,ba4,

b2a2,b2a3,b3a} in Figure 6.1.

The DFA represented in Figure 6.1 is used to show that the VC-dimension of the DFA
is in O(n log n). It is easy to construct, with the same states, an automaton for every subset
of �n × {a} ×�k . Only the central transitions have to be changed to recognise a different
language. Remember that |X | = n log n and the automaton has at most 4n − 2 states.

6.1.3 VC-dimension of NFAs

Proposition 6.1.2 The VC-dimension of NFA(�) is infinite. But if we call NFAn(�)

the set of all languages accepted by automata of at most n states, then we have:
VC(NFAn(�)) ∈ O(n2).
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Fig. 6.2. The NFA to prove that the VC-dimension is in O(n2).

Proof The first item follows as above from the fact that any finite language is regular.
Now consider the class of all NFAs with at most n states, and suppose again for simplic-

ity that the alphabet is of size two. Then |NFAn(�)| ≤ 22n2 · (2n)2. So the largest set
that can be shattered is in O(n2).

Conversely we show that this bound can be met by providing such a class of
strings/automata. Let � = {a,b} and consider the set X of all strings of length 2k + 1
with a as a centre symbol. This set is clearly of size n2 when n = 2k .

Then any subset Y of X can be recognised with the automaton A =
〈�, Q, I,FA,FR, δN 〉 where:

• Q = {qu : u ∈ �≤n} ∪ {qv : v ∈ �≤n},
• I = {qλ},
• FA = {qλ},
• FR = Q \ FA,
• ∀u ∈ �<k , qua ∈ δN (qu ,a), qub ∈ δN (qu ,b),
• ∀v ∈ �<k , qv ∈ δN (q

va,a), qv ∈ δN (q
vb,b),

• ∀uav ∈ Y with |u| = k, |v| = k, qv ∈ δN (qu ,a).

With the above construction only the strings in Y (among all strings in �k × {a} × �k)
are recognised. We therefore have constructed an automaton with 4n − 2 states for each
Y ⊆ X , with |Y | = n2.

The NFA shown in Figure 6.2 recognises strings aaa · a · aaa,aaa · a · aba,aba · a ·
aaa, . . .

6.2 About consistency

In most other learning tasks (from examples and counter-examples), just finding a con-
sistent solution is usually a good way to learn. Indeed many negative results are obtained
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through proving that since the consistency problem is NP-hard, learning is as hard as
solving this hard problem by a randomised algorithm.

This is why the complexity status of the consistency problem is of interest for learning.

6.2.1 The problem of finding the minimum consistent automaton

In the case of grammatical inference, finding a consistent grammar or automaton is not
difficult: the consistency problem is usually trivial. For example, in the case of the DFA,
the PTA is a perfect separator between two non-contradictory sets of strings.

The really interesting problem is therefore not of finding a consistent automaton but of
finding the smallest consistent solution. In this case such an algorithm would be consid-
ered an Occam algorithm (and thus would allow polynomial PAC-learnability results) and
would also identify in the limit.

A simple example that can be given to illustrate this point is the problem of learning
rectangles in a two-dimensional space. If we fit the rectangle tightly to the positive data,
then the error will be small unless the sampling was very bad. And this can easily be
controlled by drawing enough examples. If furthermore the coordinates are integers, it is
easy to see that just solving the consistency problem will identify in the limit.

6.2.2 NP-completeness of the problem of finding the minimum consistent automaton

Finding the minimum consistent DFA can be no easier than the corresponding decision
problem.

Theorem 6.2.1 The following problem is NP-complete:

Name: Smallest consistent DFA (SCD)
Instance: Two sets S+ and S− of strings over some alphabet �, n ∈ N
Question: Does there exist a DFA A with at most n states such that S+ ⊆ L(A)
and S− ∩ L(A) = ∅?

Proof The fact the problem is in NP is clear enough: An automaton with at most n states
can be checked against S+ and S− in polynomial time.

The hardness will be shown in the following.

To prove that the problem is NP-hard we reduce SAT to SCD:

Name: SAT
Instance: A set of variables U = {x1, . . . , xk}, a collection C = {C1, . . . ,Cm}
of clauses over U .
Question: Does there exist an evaluation φ of U that satisfies all clauses?

We start by reducing SAT to a constrained version (called SAT0) where there is the same
number of variables as clauses and where each clause is either purely positive (all literals
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are positive) or purely negative (all literals are negative). A clause is pure if it is either
positive (each literal l j is positive: Ci ∈ CP ⇐⇒ ∀l j ∈ Ci , l j = xk) or negative (each
literal l j is negative: Ci ∈ CN ⇐⇒ ∀l j ∈ Ci , l j = xk).

Name: SAT0

Instance: A set of variables U = {x1, . . . , xn}, a collection C = {C1, . . . ,Cm}
of pure clauses over U , with C = CP ∪ CN .
Question: Does there exists an evaluation φ of U that satisfies all clauses?

It is straightforward to transform a normal clause into two pure clauses by introducing a
new variable: Ci =xi1 ∨ . . . ∨ xi j ∨ xi j+1 ∨ . . . ∨ xim becomes xi1 ∨ . . . ∨ xi j ∨ xim+1 and
xi j+1 ∨ . . . ∨ xim ∨ xim+1 and Ci is satisfied if and only if the two new clauses are both
satisfied.

The obtained set of clauses is equivalent to the initial one in the sense that they are either
both satisfiable or neither one is.

We now reduce SAT0 to SCD.
We construct from U and C as above the following sample over the alphabet� = {a,b}:

• an ∈ S+,
• ∀k : 1 ≤ k < n, ak ∈ S−, an+k ∈ S−,
• ∀Ci ∈ CP , ai−1banb ∈ S+ and ∀x j �∈ Ci , ai−1ban− j+1 ∈ S−,
• ∀Ci ∈ CN , ai−1banb ∈ S− and ∀x j �∈ Ci , ai−1ban− j+1 ∈ S−.

Claim 1 If A is consistent with 〈S+, S−〉, A has at least n+1 states. Indeed it is impossible
to have ai and a j leading to the same state (if i �= j) because ai+n−i ∈ S+, whereas
a j+n−i ∈ S−. So A is certain to have at least states qa, qa2 ,. . . , qan (= qλ).

Claim 2 If the set C of clauses is satisfiable, it is satisfied by a valuation φ. Take
clause Ci , and suppose without loss of generality that it is true thanks to the literal l j

which is either x j or x j . Then we merge state qai−1b with state qa j−1 , and we have
δ(qλ,ai−1ban− j+1) ∈ FA. We therefore (since C is satisfiable) can merge each qai−1b

with at least one qa j−1 corresponding to the variable whose value of x j satisfies clause Ci .

Claim 3 If there is an n-state automaton consistent with the sample, since each prefix ak

corresponds to at least one state, this means that for each Ci , qai−1b is merged with a state
qai−1. Therefore we have δ(qai−1b,a

n− j+1) ∈ FA, so we can choose x j = 1 if Ci ∈ CP ,
x j = 0 if Ci ∈ CN .

Notice that clashes between two merges due to the same variable but corresponding
to opposite values are impossible: if Ci ∈ CP , ai−1banb ∈ S+, and if Ck ∈ CN ,
ak−1banb ∈ S−. So qai−1b and qak−1b cannot be merged.

Claim 4 The reduction is polynomial: the size of 〈S+, S−〉 is at most n2, and it is simple
to construct the learning sample from U and C.

We conclude that SCD is NP-complete.
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Example 6.2.1 In order to illustrate the construction let us consider the following set of
clauses: x1 ∨ x2 ∨ x3 and x2 ∨ x3. The first step consists of building an equivalent system
containing only pure clauses. For this the two new variables x4 and x5 are introduced. The
new (and this time pure) system is:

x1 ∨ x3 ∨ x4

x2 ∨ x4

x2 ∨ x5

x3 ∨ x5

This is converted into the following sample:

S+ = {a5,ba5b,a2ba5b}
S− = {ai : 1 ≤ i < 5} ∪ {ai : 5 < i < 10} ∪

{ba,ba4,aba,aba3,aba5,a2ba2,a2ba3,a2ba5,a3ba2,a3ba4,a3ba5} ∪
{aba5b,a3ba5b}.

The corresponding PTA is represented in Figure 6.3. The question therefore is: can the
states of this PTA be merged in some consistent way so as to give a 6-state DFA? In other
terms, is there a 6-state DFA consistent with the data in the sample?

Using the assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 1, we can build the
DFA represented in Figure 6.4. Notice that state qb is merged with state qλ, using x1 = 1,
state qab is merged with state qa4 , using x4 = 0, state qa2b is merged with state qa2 , using
x2 = 1, and state qa3b is merged with state qa3 , using x3 = 0.

6.2.3 Related questions

But the previous result itself is insufficient to conclude that learning DFAs is impossi-
ble. A typical approach in learning theory consists of compressing the data in some way.
This does not require finding the smallest consistent solution but finding a small consistent
solution. Yet this is also going to prove difficult since there are non-approximation results:
finding a DFA (only) polynomially larger than the smallest consistent DFA is NP-hard
(given the polynomial in advance). Even the seemingly much simpler problem of decid-
ing if, given two sets of strings S+ and S−, there exists a DFA A with just two states
such that S+ ⊆ L(A) and S− ∩ L(A) = ∅ is NP-complete. Note here that for this
last result to hold, the size of the alphabet should not be fixed and is a parameter to the
problem.

Another line of very negative results concerns linking learning DFAs with deciphering.
In a public key setting the deciphering problem can be thought of as having access to
the encoding scheme (as a black box) and therefore being able to, in some way, query
the solution through membership queries. PAC predicting DFA can be reduced from the
problem of inverting RSA encryption functions: an algorithm capable of obtaining some
representation of a DFA whose error can be bounded in a PAC way could be transformed
to decrypt RSA.
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Fig. 6.3. The PTA obtained by the proposed construction from clauses x1 ∨ x2 ∨ x3 and
x2 ∨ x3.
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Fig. 6.4. A DFA with six states accepting S+ and rejecting S−.

6.3 The search space for the DFA learning problem

A successful way to rely on the many heuristic methods introduced in artificial intelligence
is to describe the space in which the goal lies, propose operators to move around the space
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and an objective (or fitness) function that will tell us in some way how good the current
solution is. There are then many alternative ways to search this space: some of these are
described in Chapter 14.

We explore here some attempts to define the search space for the automata learning
problem.

6.3.1 Typical approach

We will not argue here the fact that given a learning sample < S+, S− >, a learner
should return a consistent solution. There may be cases where this would not be the right
approach, namely when the data is suspected of being noisy. We mention works in this
setting elsewhere (see Section 7.6, page 166).

So if we are interested in talking about the different possible solutions, we want to
answer a first question:

Given two sets of strings S+ and S−, how many consistent DFAs can we find?
Let us analyse this question with the following example:

Example 6.3.1 Suppose we are given the following sample with alphabet � = {a,b}:
S+ = {b,aab,aaaba,bbaba}
S− = {ba,abba,baaa}
What are the correct solutions, if by correct we mean those consistent with the sample?

The answer to the above question is that any regular language L such that
{b,aab,aaaba,bbaba} ⊆ L ⊆ �� \{ba,abba,baaa} will do!

The first answer to our question is therefore disappointing as the number of possible
candidates is infinite.

In order to reduce this search space we need to add an extra bias.

6.3.2 The partition lattice

We first define an equivalence relation between automata: two states will be equivalent
when they are in the same block. Let A = 〈�, Q, I,FA,FR, δN 〉 be a non-deterministic
finite automaton and 	 be a partition over the set of states Q. This partition induces an
equivalence relation on the states, denoted by ≡	.

Definition 6.3.1 The quotient automaton A/	 = 〈�, Q, I,FA,FR, δN 〉 is defined as:

• Q = Q/	 is the set of equivalence classes defined by the partition 	,

• δN is a function Q × � → 2Q such that ∀q, q ′ ∈ Q, ∀a ∈ �, q ′ ∈ δN (q, a) ifdef
∃q ∈ q ∃q ′ ∈ q ′ : q ′ ∈ δN (q, s),

• I is the set of equivalence classes to which belongs at least one state in I,
• FA is the set of equivalence classes to which belongs at least one state q in FA,
• FR is the set of equivalence classes to which belongs at least one state q in FR.
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Fig. 6.6. A maximal canonical automaton and a universal automaton for S+ =
{a,ab,aaa}.

Example 6.3.2 We have represented in Figure 6.5(a) a finite automaton, and in
Figure 6.5(b) the quotient automaton A/	.

In a complete lattice there are two extreme elements. In this case these are the maximal
canonical automaton and the universal automaton.

Definition 6.3.2 (Maximal canonical automaton) Given a sample S+ = {x1, . . . xn},
MCA(S+) is the NFA A = 〈�, Q, I,FA,FR, δN 〉, where:

• Q ← {qi
u : u ∈ PREF(xi ) ∧ u �= λ} ∪ {qλ},

• δN (q
i
u , a) = {qi

ua : ua ∈ PREF(xi )}, ∀i ∈ [n],∀a ∈ �,
• δN (qλ, a) = {qi

a : a ∈ PREF(xi )}, ∀i ∈ [n],∀a ∈ �,
• ∀i ∈ [n], qi

xi
∈ FA,

• FR = Q \ FA,
• If λ ∈ S+, qλ ∈ FA else qλ ∈ FR,
• I = {qλ}.

An MCA is therefore a star-shaped NFA with one branch per string in S+, except for the
empty string (if it belongs to S+). We represent the MCA for sample S+ = {a,aaa,ab}
in Figure 6.6(a).
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Fig. 6.7. The lattice for the derived automata built on MCA({b,ab}).

Definition 6.3.3 (Universal automaton) The universal automaton (UA) over an alphabet
� is the smallest automaton accepting all strings of ��.

The universal automaton is the simplest of automata: it is deterministic, with just one
state, and accepts everything. There is, of course, no rejecting state. The UA for alphabet
{a,b} is represented in Figure 6.6(b).

We define the following relation on the set of all possible quotient automata of an
automaton:
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Definition 6.3.4 Let A = 〈�, Q, I,FA,FR, δN 〉 be an automaton and	1 and	2 be two
partitions of Q. We say that A/	2 derives from A/	1, denoted A/	2 � A/	1, ifdef 	1

is finer than 	2.

A partition is finer than another if it has more classes and if being equivalent in the finer
partition implies the same in the coarser one. This relation is a partial order on the set of
all possible quotient automata of a given automaton and we have the following property:

Proposition 6.3.1 If an automaton A/	 j derives from an automaton A/	i then
L(A/	i ) ⊆ L(A/	 j ).

Proof Let u = a1 · · · an in LFA
(A). There is a path qi0 , a1, qi1 , . . . , qin−1 , an, qin in A.

By construction qi0a1 . . . anqin is a path in A. Furthermore qi0 ∈ I and qi0 ∈ FA.

Proposition 6.3.2 The set of all non-deterministic quotient automata of an NFA A
together with the partial order � is a complete lattice denoted by LAT(A) for which A
and the universal automaton are respectively the null element and the universal element.

Proof Each partition of the states of A defines a point in the lattice. Note also that we can
have different points and automata corresponding to an identical language.

6.3.3 Structural completeness

If the number of automata consistent with a given sample is infinite (as seen in Example
6.3.1, page 124), one might wonder if all these automata make sense. Take for instance the
case where the alphabet consists of a, b and c but in the positive examples only letters
a and b are seen. Unless there is some external additional knowledge to tell us that extra
generalisation to unseen letters (and specifically to c) is a good idea, one can legitimately
take the bias that only those letters seen in the learning sample should be mentioned in the
learnt solution.

Not only does this bias make sense, but it is necessary in order to achieve identification.
We can be more precise in the case of DFAs by stating that we are only interested in

automata that:

• use each transition at least once when parsing the learning sample,
• are able to parse the learning sample,
• have at least one string of the learning sample ending in each final state.

Notice that although the definition is of structural completeness of an automaton with
respect to a sample, the definition can be written in a symmetrical way:

Definition 6.3.5 (Structural completeness for a DFA) Let A be a deterministic finite
automaton, A = 〈�, Q, qλ,FA,FR, δ〉, and S+ be a finite set of strings over �.
A is structurally complete with respect to S+ (and S+ is structurally complete with
respect to A) ifdef
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• ∀q ∈ FA, ∃w ∈ S+ : δ(qλ,w) = q ,
• ∀w ∈ S+, w ∈ L(A),
• ∀q ∈ Q, ∀a ∈ � such that δ(q, a) is defined, ∃w ∈ S+ : w = uav and δ(qλ, u) = q .

The bias we were considering therefore consists of only searching for DFAs for which
the sample is structurally complete! Notice that the set of final rejecting strings FR plays
no part in this construction. An alternative definition incorporating this set is of course
possible:

Definition 6.3.6 (Symmetrical structural completeness for a DFA) Let A be a deter-
ministic finite automaton, A = 〈�, Q, qλ,FA,FR, δ〉, and 〈S+, S−〉 be a finite sample
over �.
A is symmetrically structurally complete with respect to 〈S+, S−〉 (and 〈S+, S−〉 is
symmetrically structurally complete with respect to A) ifdef

• ∀q ∈ FA, ∃w ∈ S+ : δ(qλ,w) = q ,
• ∀q ∈ FR, ∃w ∈ S− : δ(qλ,w) = q ,
• ∀w ∈ S+, w ∈ LFA

(A),
• ∀w ∈ S−, w ∈ LFR

(A),
• ∀q ∈ Q, ∀a ∈ � such that δ(q, a) is defined, ∃w ∈ S+ ∪ S− : w = uav and δ(qλ, u) = q .

Example 6.3.3 Suppose our learning sample is:
S+ = {ab,bbab}
S− = {λ,b,aba,abb,aaba}.
Then the automaton depicted in Figure 6.8 is not structurally complete: notice that
the transition (qb,a, qλ) is not exercised and the final state qa is never used as such.
If the sample also contained string abaa then this automaton would be structurally
complete.

Structural completeness, as defined above, can be extended with care to the non-
deterministic setting. But this cannot be done directly, as shown in Figure 6.10(b). To
make things slightly simpler we choose to restrict the NFAs to those with a unique initial
state. The idea is that each transition and each accepting state in the NFA are validated by
at least one string in the sample, but that a string is used in only one path!

qλ

qa

qb

a

b

b

a
b

Fig. 6.8. A DFA that is not structurally complete with respect to the sample
{(ab, 1), (bbab, 1), (λ, 0), (b, 0), (aba, 0), (aaba, 0)}.
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Fig. 6.9. This NFA is strongly structurally complete for the sample S+ =
{aab,baab,bb}.

Definition 6.3.7 (Strong structural completeness)
Let A be a non-deterministic finite automaton with a unique initial state qλ, A =
〈�, Q, {qλ},FA,FR, δN 〉, and S+ = {x1, . . . , xn} a finite set of strings over �.
A is strongly structurally complete with respect to S+ (and we will say that S+ is
strongly structurally complete with respect to A) ifdef there exists a surjective function
φ : PREF(S+)× [n] → Q such that φ(ua, i) ∈ δN (φ(u, i), a), and

• ∀q ∈ FA, ∃xi ∈ S+ : φ(xi , i) = q ,
• ∀(q, a, q ′) ∈ δN : ∃xi = uav ∈ S+ and φ(u, i) = q .

Example 6.3.4 The following sample is strongly structurally complete for the NFA
represented in Figure 6.9. S+ = {aab,baab,bb, }, with φ given as follows:

• φ(λ, 1) = φ(λ, 2) = φ(λ, 3) = qλ,
• φ(a, 1) = q1, φ(aa, 1) = q1, φ(aab, 2) = q4,
• φ(b, 2) = q3, φ(ba, 2) = q1, φ(baa, 2) = q2, φ(baab, 2) = q2,
• φ(b, 3) = q3, φ(bb, 3) = q4.

And φ complies with the rules from Definition 6.3.7. Notice that what φ is doing is
showing that each element of the NFA is justified by some separate piece of data.

In the above definition it is essential that a parse validates each state of an NFA. This
will avoid cases like the one represented in Figure 6.10(b), in which the automaton is not
strongly structurally complete for the sample S+ = {aa,bb,cc} (see Proposition 6.3.4
for details). This may also mean that if strings are present in the set more than once (these
are then multisets), different automata become structurally complete.

6.3.4 Defining the search space by structural completeness

Once we have admitted that structural completeness could be our added bias, the one that
could restrict our search space, we will then only consider biased solutions to our problem,
that is DFAs for which the structural completeness condition holds. But the space consist-
ing only of DFAs does not have the combinatorial qualities we are searching for, so we
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Fig. 6.10. The MCA cannot be the correct starting point for structural completeness.

consider the more general space of all NFAs (with one initial state) for which the strong
structural completeness holds. This search space is then a partition lattice and we have the
following theorem:

Theorem 6.3.3 Every DFA in LAT(MCA(S+)) is structurally complete for S+.
Every NFA in LAT(MCA(S+)) is strongly structurally complete for S+.

Proof It is easy to see that any NFA derived from MCA(S+) is strongly structurally
complete as the function φ is constructed easily during the merging process.

In Figure 6.7 the search space corresponding to a sample S+ = {a,ab} is represented.
One should be careful with the converse:

Proposition 6.3.4 There exists a sample S+ and an NFA A (with just one state) such that
A is structurally complete with S+ yet does not belong to LAT(MCA(S+)).

Proof One can build a sample S+ and an NFA A such that:

• ∀q ∈ FA, ∃xi ∈ S+ : q ∈ δN (qλ, xi ),
• ∀q ∈ Q, ∀a ∈ � such that ∃x, y ∈ �� : q ∈ δN (qλ, x, q) and xay ∈ L(A), ∃xi ∈ S+ : xi =

uav and q ∈ δ(qλ, u).

and A is not in LAT(MCA(S+)).
Let S+ = {aa,bb,cc}. MCA(S+) is represented in Figure 6.10(a). Now consider the

NFA represented in Figure 6.10(b). It is easy to see that it is structurally complete but
cannot be obtained as a quotient of the MCA, and nor can any other automaton equivalent
to it.

Theorem 6.3.5
Every DFA structurally complete for S+ is in LAT(MCA(S+)).
Every NFA strongly structurally complete for S+ is in LAT(MCA(S+)).
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Proof We only need to prove the second part. If A is strongly structurally complete for
S+ there exists a function φ as in Definition 6.3.7. Then the partition corresponding to φ is
such that states qi

u and q j
w are in the same class if φ(u, i) = φ(w, j).

We are obviously defining here the search space as the set of all possible non-
deterministic finite state automata. But since in most cases we are looking for a
deterministic automaton we have the following corollary:

Proposition 6.3.6 The smallest DFA consistent with a sample 〈S+, S−〉 is in
LAT(PTA(S+)).

This suggests strategies adopted by most algorithms that learn automata: start from
PTA(S+) and explore the corresponding lattice of solutions using the merging operation.
S− is used to control the generalisation.

Such strategies have been followed in the case of RPNI (Algorithm 12.4), but also using
some of the heuristics proposed in Chapter 14.

The approach consisting of an exhaustive exploration of the lattice is going to be difficult
as the size of the partition lattice grows far too fast with the size of the sample, as the
following formula tells us:

Let E be a set with n elements; the number of partitions of E is given by the Bell
number:

ω(0) = 1
ω(n + 1) = ∑n

p=0

(n
p

)
ω(n).

For instance, ω(16) = 10,480,142,147. The size of the partition lattice is therefore going
to be far too big to consider possible success by systematic exploration.

6.4 About the equivalence problem and its relation to characteristic sets

The equivalence problem consists of checking if two grammars/automata are equivalent,
i.e. if they recognise or generate the same language.

For intuitive reasons the problem is important to grammatical inference: indeed, a gram-
matical inference algorithm is essentially attempting to build a canonical grammar for a
given language. Being able to do this would give us a way around the equivalence prob-
lem: one might consider generating data from two different grammars and then checking
if the algorithm has inferred the same thing. Obviously, things are not quite that simple,
and the intended proof is very loose. But a more technical proof can be obtained for a spe-
cific learning paradigm (POLY-CS learnability), in which a class will be called POLY-CS
learnable if each grammar in the class admits a polynomial characteristic sample, such
that once this sample is included in the learning data, the algorithm will always return
the correct grammar. Being POLY-CS learnable by an informant means that the learning
algorithm learns from positive and negative examples. The necessary definitions are given
in Section 7.3.3.
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Theorem 6.4.1 If the equivalence problem for G is undecidable, then G is not
POLY − CS learnable by an informant.

Proof Given any polynomial p() there exist two grammars G1 and G2 indistinguishable
by strings of size less than p(‖G1‖ + ‖G2‖); if not the equivalence problem would be
decidable. Suppose (for contradiction) that each admits a polynomial characteristic sample:
call these respectively 〈S1+, S1−〉 for G1 and 〈S2+, S2−〉 for G2. Then what language is
inferred from 〈S1+ ∪ S2+, S1− ∪ S2−〉? Notice that both G1 and G2 are consistent with
〈S1+ ∪ S2+, S1− ∪ S2−〉.
Corollary 6.4.2 For any alphabet � of size at least 2, the classes CFG(�), LIN (�)

and NFA(�) are not POLY − CS learnable.

Proof Indeed the equivalence problem is undecidable for context-free grammars and for
linear grammars. In the case of NFA(�) the equivalence problem is P-space complete,
which allows us to use the same argument as in the proof of Theorem 6.4.1.

6.5 Some remarkable automata

We introduce now some constructions that are of particular use in grammatical inference:
how to encode parity functions into DFAs, and SAT instances into NFAs. We also show an
NFA whose ‘important’ string is of exponential size.

6.5.1 Parity automata

A parity function is a Boolean function pu : Bn → B. It is defined by a Boolean vector
u (which we will interpret as a string of length n). The function pu takes a string w as an
argument and returns the parity of the number of bits equal to ‘1’ thatw has in the positions
indicated by u. Formally pu(w) = ∑n

i=1(ui · wi ) mod 2.
Informally, if the number of 1s in the specified positions is even, the result is ‘0’, and

the string is accepted. For example take n=8, and u = 10011011. Then string 11111111
does not belong to L since pu(11111111) = (1 · 1)+ (1 · 0)+ (1 · 0)+ (1 · 1)+ (1 · 1)+
(1 · 0) + (1 · 1) + (1 · 1) mod 2 = 5 mod 2 = 1. On the other hand pu(01010101) =
(0 · 1) + (1 · 0) + (0 · 0) + (1 · 1) + (0 · 1) + (1 · 0) + (0 · 1) + (1 · 1) mod 2 = 2
mod 2 = 0.

These functions are known to be hard to learn in noisy settings: it can be proved that
above a certain level of noise, and under cryptographic assumptions, no algorithm can
learn parity functions with the guarantee of only a small error.

Another way to express this is that the language recognised by a parity automaton is
such that given any string in the language, there are as many chances of remaining inside
the language as of getting out of it, as soon as even a bit of noise is added. The sort of noise
considered can be noise on labels, on the bits in the string, noise through either the edit
distance or the Hamming distance. . .
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Fig. 6.13. The parity function automaton encoding function p1101.

The construction of a DFA corresponding to a parity function is done by building blocks
corresponding to the positions that count and those that don’t. This is shown in Figure 6.11,
with the block corresponding to the non-parity position in Figure 6.11(a), and the one
corresponding to the parity position in Figure 6.11(b). The parity automaton when joining
the blocks is of the type shown in Figure 6.12.

In Figure 6.13 we show the parity function automaton corresponding to selected first,
second and fourth bits, that is, to string 1101. Notice that string 1111 is rejected whereas
1001 is accepted.

6.5.2 From SAT to NFA

We show here how to reduce an instance of SAT to an NFA such that there is an equivalent
NFA with n states if and only if the instance of SAT is satisfiable. We first associate to each
clause a sub-automaton. Recall that SAT is defined as:

Name: SAT
Instance: A set of variables U = {x1, . . . , xk}, a collection C1, . . . ,Cm of
clauses over U .
Question: Does there exist an evaluation φ of U that satisfies all clauses?
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Fig. 6.14. A DFA that rejects only strings satisfying the clause x1 ∨ x3 ∨ x4. State q0 is
not drawn.

Let us first illustrate the reduction through an example: let n = 4 and Ci the clause
x1 ∨ x3 ∨ x4. We associate with this clause the automaton depicted in Figure 6.14.

More generally, we first build for each clause Ci a DFA that rejects exactly the strings
of length n corresponding to a set of values that satisfy the clause.

We construct the automaton corresponding to a clause Ci as follows: Ai = 〈�, Qi , qi
0,

Fi
A
,Fi

R
, δi

N 〉 where

• Qi = {qi
k : k ≤ n} ∪ {qi

k : k ≤ n},
• Fi

R
= {qn},

• Fi
A
= Q \ Fi

R
,

• ∀ j < n

• if x j ∈ Ci , δi (qi
j , 1) = qi

j+1,

• if x j �∈ Ci , δi (qi
j−1, 0) = qi

j+1,

• if x j ∈ Ci , δi (qi
j , 0) = qi

j+1,

• if x j �∈ Ci , δi (qi
j , 1) = qi

j+1,

• ∀ j < n, δi (qi
j , 1) = qi

j+1, δi (qi
j , 0) = qi

j+1.

The m DFAs are then associated into a unique NFA by adding a single initial node qI

and allowing us to read a ‘1’ from qI to each initial node qi
0. It is straightforward to see

that the new automaton does not accept a string 1w, with w of length n, if and only if w is
the string writing of a valuation that satisfies all clauses. Indeed, in that case the different
parses will all end in the rejecting states of each small automaton.

From this construction, a number of results concerning NFAs follow: for instance, the
equivalence problem is NP-hard.

As a further illustration, we represent the automaton used to encode the set of clauses
(x1 ∨ x3), (x1 ∨ x3 ∨ x4), (x1 ∨ x2 ∨ x3 ∨ x4) in Figure 6.15.

In this case string 1100 is rejected, so the set of clauses is satisfiable.

6.5.3 A very long string

From the previous constructions it may seem that the fact that SAT instances can be
encoded into NFAs helps us understand why the equivalence problem for NFAs is hard.
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Fig. 6.15. An NFA that rejects strings satisfying clauses (x1 ∨ x3), (x1 ∨ x3 ∨ x4),
(x1 ∨ x2 ∨ x3 ∨ x4).
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Fig. 6.16. Automata for (a5)∗ and �� \(a5)∗.

Since the equivalence problem is in itself linked to various inference problems, this is
indeed alarming.

But there is worse to come. We show now an automaton for which the smallest string not
in the language is of exponential length with the size of the automaton. By doing this we
illustrate why the equivalence problem for NFAs is not necessarily in NP . In the following
we will only even require a one-symbol alphabet.

We first note (Figure 6.16) how to build an automaton that recognises (ap)∗
(Figure 6.16(a)), and �� \(ap)∗ (Figure 6.16(b)), for any value of p (and of particular
interest are the prime numbers). We now extend this construction by taking for a set of
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Fig. 6.17. An automaton whose smallest ‘interesting string’ is of exponential length.

prime numbers {p1, p2,. . . , pn} the automaton that recognises all non-empty strings that
are neither multiples of p1, nor of p2. . . nor of pn . This NFA can be constructed as proposed
in Figure 6.17, and has 1 + ∑n

i=1 pi states. But the smallest string not accepted by this
automaton is ak with k = ∏n

i=1 pi . Indeed
∏n

i=1 pi is the smallest non-null integer which
is a multiple of each pi . This value grows exponentially with the size of the automaton.

This means that if a string is needed (in a characteristic sample) to distinguish this
automaton from one that recognises ��, an exponentially long string is needed.

6.6 Exercises

6.1 Compute the size of the lattice corresponding to an MCA with 5, 10, and 20 states.
6.2 What is the VC-dimension of balls? Good balls? Cones? Co-cones?
6.3 What is the VC-dimension of linear languages?
6.4 Prove that in the lattice LAT(PTA(S+)), there can be several equivalent automata.

Find a sample S+ for which there are an exponential number of NFAs but a linear
number of different languages.

6.5 Build (as in Section 6.5.2) the NFA corresponding to the clause x1 ∨ x2 ∨ x3 ∨ x5.
6.6 Give conditions over NFAs such that any NFA complying with these conditions

admits a strongly structurally complete sample which is a set (and not a multiset).
6.7 Prove that any ball Bk(x) (corresponding to the set of all strings at edit distance at

most k from string x) can be represented by an NFA which has at most k(|x | + 1)
states. See Sections 3.4.4 and 3.6.1 for the definitions.
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6.8 Consider the PTA corresponding to the sample S+ = {a,aa,ab,bba}. How large is
the lattice LAT(PTA(S+))? How many elements from this lattice are deterministic?

6.9 Prove that the number of DFAs in LAT(PTA(S+)) can be exponential in |PTA(S+)|.
6.10 The proof from Section 6.5.2 can be adapted to the probabilistic case. This allows

us to prove, for instance, that finding the most probable string for a PFA is NP-
hard. Following the construction represented in Figure 6.14 (page 134), build a PFA
whose most probable string is (when it exists) one that is the encoding of a satisfying
assignment.

6.7 Conclusions of the chapter and further reading

6.7.1 Bibliographical background

In Section 6.1 we discussed the VC-dimension. Detailed proofs and further discussions
concerning the links with learning can be found in (Ishigami & Tani, 1997, Natarajan,
1991).

The essential question of consistency (Section 6.2) corresponds to results usually rea-
sonably well known to grammatical inference scientists, but the proofs are rarely mastered.
It is clear to all that finding the minimum consistent DFA ‘looks like’ a variant of a graph
colouring problem, but the full extent of the hardness is less clear. There were two historical
proofs of this, by E. Mark Gold (Gold, 1978) and Dana Angluin (Angluin, 1978), through
different techniques. The proof we give of Theorem 6.2.1 is adapted from (Gold, 1978).
Since it was later proved that Occam algorithms which provided some sort of compression
of the data (not just the ideal one) could also PAC-learn, it was important to have a nega-
tive result to this approach. This was obtained by Lenny Pitt and Manfred Warmuth, who
proved that finding a DFA (only) polynomially larger than the smallest consistent DFA
is NP-hard (Pitt & Warmuth, 1993). This allows us to state that PAC-predicting DFAs
is as difficult as inverting the RSA encryption function (Kearns & Valiant, 1989, Pitt &
Warmuth, 1988).

The search space for the DFA learning problem (Section 6.3) was introduced by King-
Sun Fu and Taylor Booth (Fu & Booth, 1975), and further looked into by Laurent Miclet
(Miclet, 1990), and Pierre Dupont et al. (Dupont, Miclet & Vidal, 1994) who define an
automaton to be structurally complete with respect to a sample, with a very different flavour
from Definition 6.3.5 (page 127) given here. There are problems (shown here in Proposition
6.3.4) with the classical definition. We should notice that in pattern recognition the data
are what matter, and therefore a point of view directed by the data would consider the
automata to depend on the data. Plausibly, a researcher thinking in terms of convergence
of the algorithm would consider the question of only being able to learn a target automaton
if the sample is structurally complete.

Previous work by King-Sun Fu and Taylor Booth (Fu & Booth, 1975) consisted of
defining the operators enabling us to move around the lattice. The special part played by
the PTA in grammatical inference has led to various alternatives where for instance the
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PTA may contain both the examples and the counter-examples (Coste & Nicolas, 1998a,
de Oliveira & Silva, 1998). Reducing the size of the lattice (Coste et al., 2004, Kermorvant
& de la Higuera, 2002, Kermorvant, de la Higuera & Dupont, 2004) has been another line
of research: typically the goal is to find some property prohibiting specific merges. In this
way the lattice is the one of all admissible partitions, some partitions being declared illegal
for all sorts of reasons: background knowledge, co-learning or just added bias. This idea
was already present in Jose Oncina and Miguel Angel Varó’s work on learning transducers
(Oncina & Varó, 1996).

In Section 6.4 we relate the equivalence problem and the size of the characteristic sam-
ples. Theorem 6.4.1 was proved in (de la Higuera, 1997) using techniques and results from
the teaching model introduced by Sally Goldman and David Mathias (Goldman & Mathias,
1996). Teaching issues correspond to exploring the idea that something difficult to teach is
presumably going to be difficult to learn.

The remarkable automata described in Section 6.5 come from a variety of papers. Parity
automata (Kearns et al., 1994) were introduced to show a class that could not be learnt
from noisy data. The SAT to NFA construction was used to prove that the decoding prob-
lem (related to finding the best translation in a stochastic transducer) was not tractable
(Casacuberta & de la Higuera, 1999). The NFA that has an exponentially long string as
characteristic was introduced in (de la Higuera, 1997). This construction has been used to
show that NFAs were not identifiable from polynomial time and data. The same automaton
can be adapted to the probabilistic setting to show that the most probable string for a PFA
can be of exponential length.

6.7.2 Some alternative lines of research

The combinatorial properties of automata and grammars are studied in many fields and
not all their results have reached researchers in grammatical inference. There certainly is
much to be learnt from the specialists in formal language theory, and particularly by those
applying formal models to biology.

There are also intricate issues dealing with combinatorics when looking into the edit
distances and the string kernels. We have not discussed here the case of trees and graphs,
for which the combinatorics are going to prove harder than in the case of strings. One of
the key combinatorial problems is that of isomorphism. In the case of strings, this is of
course not even an issue. For trees, if the ordering of the siblings is not important, then it
becomes an interesting question, and it is supposed to be intractable in the case of graphs.

6.7.3 Open problems and possible new lines of research

There are many researchers working on alternative implementations of automata as these
are essential objects in a number of fields. Yet there still are a number of open research
problems in combinatorics over automata.
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Techniques to explore the lattice in a faster way are needed, and so are algorithms to test
consistency in a faster way. In fact, consistency is a key issue and one can argue that the
representations of languages should perhaps be made around a fast consistency check.

If consistency corresponds to comparing a sample with a grammar or an automaton,
compatibility concerns two non-terminals or states we want to merge. Here again, a fast
check of compatibility would greatly accelerate grammatical inference algorithms.

Alternative proofs of the hardness of the consistency problem would be of help, in order
to better understand what is really hard.

The size and number of characteristic samples are also good indicators of the hardness of
learning; if there are many small characteristic samples, the odds may favour one of these
being present in a learning sample. A formal study of these issues remains to be done.

The definition of strong structural completeness presented here is different from the one
presented usually (and which would correspond to Definition 6.3.5). Yet our Definition
6.3.7 is probably not very useful in practice, as it is unclear that there is a polynomial time
algorithm which, given a sample S+ and an NFA A, tells us if A is strongly structurally
complete for S+ or not. In fact, the problem can be conjectured to be NP-complete.

A curious problem consists of relating the edit distance with automata. A ball of strings
can easily be represented by a small NFA (see Exercise 6.7) but it remains unclear how
large the corresponding DFA should be. Most authors (de la Higuera, Janodet & Tantini,
2008, Navarro, 2002, Schulz & Mihov, 2002) conjecture that the size of the smallest DFA
recognising the language Bk(x) can be exponential in k and |x |, but a formal proof is still
needed.





PART II

What Does Learning a Language Mean?





7

Identifying languages

On ne sait prévoir que des répétitions et comprendre, c’est dégager le quelque
chose qui se répète.

Antoine de Saint-Exupery, Carnets, 1953

Namely, in interesting identification problems, a learner cannot help but make
errors due to incomplete knowledge. But, using an ‘identification in the limit’
guessing rule, a learner can guarantee that he will be wrong only a finite number
of times.

E. Mark Gold (Gold, 1967)

Grammatical inference is concerned with learning language representations from informa-
tion, which can be text, examples and counter-examples, or anything really that should
provide us insight about the elements of the language being sought. If the problem can
sometimes be stated in such an informal way and there are many papers presenting
heuristics and ideas allowing us to extract some grammar or automaton from all types
of information, theoretical properties of convergence of the algorithms are usually desired.
This therefore requires more precise definitions.

7.1 Introductory discussion

Convergence is defined by not just finding some grammar but the grammar, which means
considering that the problem is about searching for a hidden grammar, i.e. one defined a
priori, or at least one equivalent to this ideal one. Obviously, in practice, such a hidden
grammar may not exist, but the assumption is needed to study the convergence of the
algorithms.

Yet, apart from very special cases, the information the learner gets is about the language
generated, recognised or represented by the grammar, not about the grammar itself. For
instance, it is usually normal to have access to strings produced by a context-free grammar
but not to the parses that have produced these strings.

A further point is that there is now experimental evidence that theoretically founded
algorithms work better: when competitions for learning automata, grammars or transducers
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have been won, the common feature is that the winning algorithm was based on some theo-
retically founded idea, even if tuning with powerful heuristics and careful implementation
were also required.

7.1.1 The setting

There are some problems whose tractability is of great importance in grammatical infer-
ence. We present these problems in the general setting where L is a language class, G is a
class of representation of objects in this class and L : G → L is the naming function, i.e.
L(G) (with G ∈ G) is the language denoted, accepted, recognised or represented by G.

For example we may be considering regular languages over an alphabet�, and these can
be represented by DFAs, NFAs or regular expressions. In this case we would talk about the
class REG(�) represented by DFA(�), NFA(�) or REGEXP(�).

It should be noted that in the above setting the language class is given with reference to
some set alphabet �.

7.1.2 Some decision problems that are central here

The first problem concerns the fact that given some language class L and some represen-
tation of objects in this class G, the following membership problem is decidable:

Given w ∈ �� and G ∈ G, is w ∈ L(G)?

For example, if we are working on context-free grammars, since there are pars-
ing algorithms (for example CYK, page 80), the membership problem is, in that case,
decidable.

The second problem is the equivalence problem:

Given G and G ′ in G, do we have G ≡ G ′, i.e. L(G) = L(G ′)?

Continuing with the example, it is known that the equivalence problem is undecidable
for context-free grammars, whereas it is decidable in the case of finite automata, with an
important difference in complexity depending on whether the automaton is deterministic
or not.

When we use the term ‘decision problems’ we should add that we consider these under
the point of view of complexity theory, not just of computability. In the above we can think
of classes of languages as being the regular languages or the context-free languages, and
classes of representations, in turn, as being those of context-free grammars, deterministic
finite state automata or regular expressions. The situation of these two decision problems
with respect to the main classes of language representations is summarised in Table 7.1.
In each case we denote by n the size of the grammar, measured by the number of states in
the case of automata, and measured as the length of the pattern or of the regular expression,
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Table 7.1. Status of problems for different classes of language
representations. Here, m is the length of the input string and n is
the size of the grammar.

Membership problem Equivalence problem

DFA(�) O(m) O(n log n)

N FA(�) O(n · m) P-space complete

REGEX P(�) O(n · m) P-space complete

PAT T ERN S(�) NP-hard decidable (if non-erasing)

CFG(�) O(m3) undecidable

LIN (�) O(m2) undecidable

or the number of rules in a context-free grammar, and by m the length of the input string for
the membership problem. We discuss these sizes in Section 7.3.1 (page 152). The results
hold for an alphabet � of size at least two and note that the complexities we indicate can
be optimised in certain cases. Recall that most classes have been defined in Chapter 4; pat-
terns and pattern languages denoted by PAT T ERNS (�) are studied in Section 11.3
(page 230).

7.1.3 Why we need targets

An attractive notion is that of considering machine learning as a field where good ideas can
be tested and lead to algorithms, and where learning is something natural, like for human
beings, where only experience will tell if what we have learnt is correct or not. Yet this
idea conveys a number of problems:

(i) What about reproducibility? How do we know that the method or algorithm we have used is
in some sense going to reproduce the results in another setting or on another set of data? What
conditions does the new setting need for our algorithm to work?

(ii) If we do use the method/algorithm, it will be on a given set of data, or using some form of
knowledge. Have we got enough data/knowledge for us to believe that what we have learnt is
meaningful? Suppose, for instance, that the learning algorithm returns a DFA with 1,000,000
states when given just a bunch of short strings to learn from. One might consider that something
has gone wrong.

(iii) If someone else comes up with a new method/algorithm, and gets better results over the data
we had experimented on, does this mean that his or her method is better? Or does it only mean
that it is better on this particular set of data?

(iv) If we have tried for six months to learn in a particular setting and after six months we have not
found anything convincing, should we consider that the task is impossible or that we are the
one person incapable of producing a learning algorithm for this task?

None of these questions can reach an entirely convincing answer through benchmarking,
if what we are looking for is a generalisable, characterisable method. Thus some form of
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convergence towards a correct answer needs to be defined and studied. In which case we
could hope to answer the previous questions as follows:

(i) If we have a learning algorithm which, given data complying with conditions C , converges
towards a correct answer for any language in L, then we can use C as a bias and state that our
algorithm can learn a biased language.

(ii) We can study the convergence rate of our algorithm and then hope to put some upper or lower
bound on the amount of data needed for convergence towards a correct answer to hold.

(iii) A formal framework allows us to compare methods: which one has the stronger bias? Which
one needs the most data to converge?

(iv) A formal framework allows us to state that some problems are just impossible to solve, or that
the quantity and quality of data in a particular setting are insufficient.

The trick we will use is to consider that the problem we are really interested in is
not about discovering some rules (that are not necessarily present) that would somehow
explain the data, but about identifying some hidden target rules. The first problem then
is that there are many learning situations where there is no rule nor language belonging
to the intended class (the one we are voluntarily restricting ourselves to) to be found. A
typical example is that of natural language: over the years there have been lengthy discus-
sions concerning the question of deciding whether natural language is context-free or not.
Therefore, studying the learnability of context-free grammars in an identification situation
may seem to be the wrong approach. Another example corresponds to the case where, due
to experimental circumstances, the data are corrupted and therefore the target cannot be
found, because it would actually be inconsistent with the data. So we have to admit that
the hypothesis of a hidden target does have drawbacks.

These criticisms have motivated the introduction of an alternative formalism for conver-
gence where there seems to be no target: the idea is just to induce a grammar from the data
in such a way as to minimise some statistical criterion (a measure of the errors to be com-
mitted over unseen data, for instance). But again, whether explicitly or implicitly, there is
somewhere, hidden, an ideal solution that we can call a target.

We will not debate further here, and we propose a simple idea:

• The issue is not about if there is a hidden grammar to be found or not. The issue is about believing
there is: deciding that there is a context-free grammar consists of adding the bias and searching for
a biased solution.

• If you have decided to learn some particular form of functions or grammars from the data, it is
reasonable and necessary to believe there is such a grammar or function to be found.

7.2 Identification in the limit and variants

We follow lines close to complexity theory, which is a field where reductions are a powerful
tool allowing us to reduce one problem to another, which means that solutions for one
problem can be used to solve another one in a systematic way.
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In most works concerned with identification in the limit, definitions are irksome and
comparisons are hard due to a general lack of common notions and notations. We propose
a general definition and use it to derive reduction results with a categorical flavour.

7.2.1 The learning setting

There are four questions that have to be settled in order to describe a language learning
task:

(i) The first concerns the sort of languages that we are expecting to have to learn. The task
will clearly not be the same if we are thinking about finite languages or about context-free
languages.

(ii) The second is about the way we intend to represent the languages. The issue will not be so
much about learning, but about sizes of what we want to learn and what we are manipulating. It
is well known that a regular language like Ln = {x ∈ �� : ∃m ∈ N∧ x = (a + b)ma(a + b)n}
can be represented by a regular expression or an NFA of size polynomial in n, whereas the same
language when represented by a DFA requires an exponential (in n) number of states. This has
two implications:
• The first is that there is no generally accepted definition of a natural representation. Even

using Kolmogorov complexity we would only reach relative definitions.
• Using a class where representatives are larger will mean that as the size of the represen-

tation is usually linked with the inherent complexity of the language, we will be allowed
more resources (examples, computation time) to learn grammars from these classes. There
is therefore an advantage in using the less condensed classes in that more resources will be
allowed in order to learn the same language! But this advantage may be unfair. We discuss
these issues in Section 7.3 (page 152).

(iii) The third question is about what information will be available to us. This can be strings from the
language, labelled strings indicating if they belong to the language (and are called examples)
or not (and then they are called counter-examples), but also other pieces of information about
the language: noisy strings, prefixes, substrings. . .

(iv) The fourth item is the presentation protocol: how are the examples presented? Do they follow
some particular order? Are they all there? How much time are we allowed to learn with and how
should convergence be reached? Questions of sampling are also important, in a probabilistic
setting (we will discuss this in Chapter 10).

We formalise these notions now:

Definition 7.2.1 Let L be a class of languages. A presentation is a function φ : N → X
where X is some set. For a given task the set of all admitted presentations for L is denoted
by Pres(L), which is a subset of

[
N → X

]
.

In some way these presentations denote languages from L, i.e. there exists a function
YIELDS: Pres(L)→ L.

If L = YIELDS(φ) then we will say that φ is a presentation of L .
We also denote by Pres(L) the set {φ ∈ Pres(L) : YIELDS(φ) = L}.
A presentation mode refers to the way in which set X is built and to what the valid

presentations are.
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Let us comment upon the above definition:

• A presentation is an enumeration of elements in some set. This set can be �� if we are learning
from text, but can be something entirely different: basically, set X is the set in which the elements
of information are chosen. With this definition one should not think of presentations as text or
informant (which we will define now), but in a broader sense as a sequence of information of
some type that hopefully informs us about the language we are to learn.

• Pres(L) is the set of all admissible presentations for a given class of languages and a given task. It
should comprise, for example, all possible enumerations of each language L in L in a text learning
task.

• YIELDS is an implicit and non-constructive function. It depends on the class of presentations and
the class of languages. For example, we would use YIELDS(φ)={φ(n) : n ∈ N} in the case of
learning a language from text.

Here are some examples of possible presentations of a language L:

Example 7.2.1
• TEXT(L)=

{
φ : N → �� : φ(N) = L}. Some care is needed to deal with the empty language: as

the presentation is a total function, one possibility is to introduce a special symbol # which does
not belong to L and which, when presented, has the intended meaning ‘nothing’.

• ORDERED_TEXT(L) is the set of ordered presentations of a language L:
{
φ : N → �� :

φ(N) = L and (i < j =⇒ φ(i) ≤�� φ( j))
}
. Note that the order ≤�� we choose to use has to

be specified.
• INFORMANT(L)=

{
φ : N → �∗ × {0, 1} : φ(N) = L × {1} ∪ L × {0}}.

• PREFIXES(L) is the set of all presentations by prefixes of a language L:
{
φ : N → �∗ × {0, 1} :

φ(N) = PREF(L)× {1} ∪ PREF(L)× {0}} where L ⊆ �∞.

Definition 7.2.2 Let L be a class of languages and Pres(L) be the set of presenta-
tions for L, with associated function YIELDS. The setting is said to be valid when given
two presentations φ and ψ , whenever their range is equal (i.e. if φ(N) = ψ(N)) then
YIELDS(φ) = YIELDS(ψ).

If a setting is not valid, L is not going to be identifiable from Pres(L), (see Exercise 7.4).
For learnability to be studied we need to choose some representation scheme for L.

We consider a class of grammars G with a surjective (or onto) naming function
L : G → L.

We will use the generic term grammar for a representation of a language.
In the same way as above we may, with slight abuse of notation, consider presentations

of a grammar G as Pres(G) = Pres(L(G)).

Definition 7.2.3 Given a presentation φ we denote the set {φ( j) : j ≤ n} by φn . Given
a presentation φ we denote by G � φ(n) (conversely G � φ(n)) when φ(n) is consistent
with L(G).

Consistency holds when the current hypothesis may still be the target, i.e. the new
information (φ(n)) does not contradict the current hypothesis.
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Fig. 7.1. The learning setting.
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Fig. 7.2. The learning setting for DFAs from an informant.

Definition 7.2.4 A learning algorithm A is a program that takes the first n elements of
a presentation and returns a grammar as output: A : {φi : i ∈ N, φ ∈ Pres(L)} → G.

We summarise these notions in Figure 7.1.
A particular instance of the triangular representation of the learning setting is represented

in Figure 7.2. The function YIELDS is as follows: YIELDS(φ) = {w ∈ �� : ∃i ∈ N
(w, 1) = φ(i)} = �� \{w ∈ �� :� ∃i ∈ N (w, 0) = φ(i)}.

Even if this setting has a clear flavour of online or incremental learning, the idea is not
to limit the definition to that setting. Indeed, with given data, algorithm A will learn a
grammar. The incremental description of the above process just tells us how the algorithm
performs with more data and time.

A more important question is raised by the possibility that the learning problem may be
randomised, in which case, given the initial elements of a presentation, it may not return the
same grammar each time it is run. In Chapter 16 this will not be a problem since we will be
working in a probabilistic environment, but here we are still requiring deterministic results.
This means that the type of randomisation the learner is allowed is only limited. We will
study these questions in Exercise 7.8 and discuss these issues only when needed, but we
will suppose that unless otherwise mentioned the learning algorithms under consideration
are deterministic.

Example 7.2.2 Let L be the class of singleton languages over alphabet � = {a,b} and
Pres(L) be the class of presentations by counter-examples of this class:

φ ∈ Pres(L)⇐⇒ ∃w ∈ �� : φ(N) = �� \{w}.

Obviously, if φ(N) = �� \{w} then we will have: YIELDS(φ) = {w}.



150 Identifying languages

7.2.2 The definition of identification

Even if the information the learner receives concerns the languages, the learning algorithm
returns a grammar. We therefore present our definitions and results, as much as possible,
in terms of grammars. This requires a first simplification: we write Pres(G) for Pres(L),
where G and L are as in Definition 7.2.4.

Definition 7.2.5 G is identifiable in the limit from Pres(G) ifdef there exists a learning
algorithm A such that for all G ∈ G and for any presentation φ of L(G) (belonging to
Pres(G)), there exists a rank n such that for all m ≥ n, L(A(φm)) = L(G), and A(φm) =
A(φn).

Notice that the above definition does not force us to learn the target grammar but
only to learn a grammar equivalent to the target. Furthermore there is a point from
which the learner does not change its mind. This is different from what is known
as behaviourally correct identification, where only semantic identification is required,
i.e. the last condition(∀m ≥ n, A(φm) = A(φm)) is not needed.

Example 7.2.3 Continuing with the previous example, it is easy to see that the algorithm
A such that A(φn) = min≤lex-length{u ∈ �� : u �∈ φn} will identify G in the limit. To prove
this, consider some particular singleton language {w} and any presentation by counter-
examples of {w} (as in Example 7.2.2). This means that every u (with u ≤lex-lengthw)
appears in the presentation a first time at some rank nu = min{k ∈ N : f (k) = u}.
Since ≤lex-length is a good order, there is only a finite number of such u smaller than w and
therefore the following quantity is well defined: Nw = max{nu ∈ N : u <lex-length w}.

Notice that in the definition above (and in the rest of this book) we have chosen to
identify grammars, not languages. In the case where just identification in the limit is
wanted, without taking into account complexity issues, it usually does not matter if we
learn languages instead of grammars. But as soon as one is interested in the actual cost
of the identification, the way the target and the hypotheses are encoded is essential. Def-
inition 7.2.5 corresponds to what is known as behaviourally correct identification: notice
that the learning algorithm may in fact switch grammars indefinitely often, provided the
corresponding language does not change.

When needed we will say that the associated class of languages is identifiable in the
limit.

Let us call the convergence point of a presentation for a given algorithm the moment the
algorithm has converged on that presentation:

Definition 7.2.6 The value CONV(A, φ) is the smallest n such that ∀ j ≥ n, L(A(φ j )) =
YIELDS(φ). This is the convergence point of the presentation, for this learner.

Example 7.2.4 In the previous example (7.2.3), we have CONV(A, φ) = Nw where
YIELDS(φ) = {w}.
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The following lemma states simply that if two presentations supposed to differ have not
done so (yet) then one has not reached its convergence point.

Lemma 7.2.1 Given any deterministic learner A for a class L, and two presenta-
tions φi and φj of two languages Li and L j (in L), φi

n =φj
n =⇒ max

(
CONV(A, φi),

CONV(A, φj)
)
> n.

Proof Since the algorithm is deterministic, while it has the same data to learn from, it
will return the same grammar.

Notice that if we accepted randomised learners, this key lemma would also hold: one of
the two runs cannot have converged ‘for sure’ after having seen the same elements.

From this definition E. Mark Gold’s well-known results can be derived:

Theorem 7.2.2 Any recursively enumerable class of recursive languages is identifiable
in the limit from an informant.

Proof Let L be a recursively enumerable class of recursive languages. As the class is
recursively enumerable we can effectively generate grammars G0, . . . ,Gn, . . . Remember
also that since the languages are recursive, the question w ∈ L(G) is decidable. Then
Algorithm 7.1 clearly identifies in the limit.

Definition 7.2.7 A super-finite language class is a class that contains all finite languages
and at least one infinite language.

This is the case, for example, of the class of regular languages or of the context-free
languages.

Theorem 7.2.3 No super-finite class of languages is identifiable in the limit from text.

Proof Now take a class of languages that is super-finite and consider first the (there is at
least one) infinite language L∞, and then the sequence of languages L0, . . . , Ln, . . . with
L0 = {x0}, Li+1 = Li ∪ {xi }, Li ⊂ L∞ and L∞ = ⋃

i∈N Li .
Now suppose for the sake of contradiction that we have an identifying algorithm A, for

a correct class of grammars G.
We now construct a family of valid text presentations as follows: given a presentation φ0

of L0, let i0 = CONV(A, φ0). We build a presentation φ1 of L1 where ∀ j ≤ i0, φ
1( j) =

φ0( j) and φ1(i0 + 1) = x1. Again denote i1 = CONV(A, φ1).
The same process can be repeated indefinitely: we build a presentation φk of Lk where

∀ j ≤ ik−1, φ
k( j) = φk–1( j) and φk(ik−1 + 1) = xk .

Now consider the presentation φ ∞ such that φ ∞(i) = φk(i) with k = min{ j ∈ N :
j ≤ ik}.

A does not converge from this presentation, which is a presentation of L∞, because by
construction A(φ ∞(i)) = A(φk(i)) = Lk .
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Algorithm 7.1: Learning a recursively enumerable class.

Data: a presentation φ
Result: –
while TRUE do

print the smallest Gm consistent with φn ;
n ← n + 1

end

7.3 Complexity aspects of identification in the limit

If identification in the limit tells us that we will eventually find what we were looking for,
it neither tells us how we know when we have found it nor how long it is going to take.

7.3.1 About the sizes of representations

We first need to define the sizes of the objects we are manipulating. These ought to be
defined in a way consistent with what is usually done in complexity theory.

Intuitively, the size of an object from class G is (polynomially linked to) the number of
bits in a reasonable encoding of the object.

Let us examine what is an encoding and furthermore a reasonable one: an encoding for
G is an injective function ξ : G → {0, 1}∗. It is usually a good idea to be able to decode,
i.e. to have another function γ : {0, 1}∗ → G such that γ ◦ ξ is the identity function.
An encoding ξ is reasonable if there is a polynomial relationship between the number of
encodings and the number of objects encoded. In other words, even if some strings do not
encode anything, and if others may encode redundantly, we want a sufficient fraction (a
polynomial fraction) of the encodings to correspond to different objects, here languages.
More precisely there should exist a polynomial p() such that, for all but a finite number of
values of n: ∣∣{G ∈ G : |ξ(G)| ≤ n}∣∣ ≥ p

(
1

2n

)
.

This means, in other words, that with n bits at least a strictly increasing polynomial
number of grammars can be encoded.

On the other hand, the above is not entirely satisfactory: all these grammars could in
fact be equivalent to each other, and therefore only a logarithmic (in 2n) number of lan-
guages would be encoded with at most n bits. Therefore, more correctly we will say that
an encoding ξ is reasonable ifdef∣∣{L ∈ L : ∃G ∈ G : L(G) = L ∧ |ξ(G)| ≤ n}∣∣ ≥ p

(
1

2n

)
.

In the equation above it is important to understand the idea: an encoding is reasonable if
there is a non-trivial polynomial link between the number of encodings of size n and the
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number of different languages represented by encodings of size n. Following this, in order
to measure sizes we define the following quantities:

• ‖G‖ is the size of a grammar (related polynonomially to |ξ(G)|),
• |φn | is the number of items in the first (φ(0), . . . , φ(n)) elements of a presentation (therefore n+1)
• ‖φn‖ is the number of symbols in the first n+1 elements of a presentation (number of bits, in the

case of a binary alphabet)
• |L| = min{‖G‖ : L(G) = L ,G ∈ G}. The ‘size’ of a language is the size of the smallest grammar

of the considered class that can generate it.

Practically, this justifies the sizes proposed in Table 7.1 (page 145). The size of an
automaton, whether deterministic or not, can be the number of states, the size of a pat-
tern or of a rational expression can be its length, and the size of a context-free grammar
can be the number of non-terminal symbols if the grammar is in quadratic normal form, or
this number multiplied by the length of the longest right-hand side of a rule if not.

7.3.2 Counting only time

The question now is to define what efficient identification should mean. In computer sci-
ence, ‘efficient’ is usually linked with the polynomial complexity classes. But in the case
of identification in the limit, there are several ways to count.

The first definition is by far too optimistic and can only be used on very limited classes of
language with extremely precise presentations since the idea is to want to identify as soon
as a polynomial quantity of information has been presented to the learner. It implies that
all the necessary information is given early: this is a far too strong constraint. Indeed with
no additional constraint if there are two languages which cannot be differentiated through
one element of presentation, then it suffices to present that element an exponential (in the
size of the largest language) number of times for no identification to take place. Again, we
are considering the problem for a language class L, a grammar class G and presentations
which are functions in [N → X].
Definition 7.3.1 (Overall polynomial time) An algorithm A is said to have overall poly-
nomial time ifdef there exists a polynomial p() such that ∀G ∈ G, ∀n ≥ p(‖G‖), ∀φ ∈
Pres(L(G)), L(A(φn)) = L(G).

The next definition just states that to produce its next hypothesis the algorithm only
requires polynomial time. In this case what can happen is that any identifying algorithm
can be transformed into a polynomial update time learner through the following trick. Let
the learner not only compute its solution but also count the time it is using; if at step n the
learner notices that the computation of the hypothesis takes too long (longer than the time
allowed at that point), the learner returns the previous hypothesis. It will then continue its
computation as soon as a new item of data is provided and it gives the learner an extra
time allowance. In this case the moment at which convergence is reached will certainly be
postponed, but identification in the limit is no problem.
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Definition 7.3.2 (Polynomial update time) An algorithm A is said to have polynomial
update time ifdef there is a polynomial p() such that, for every presentation φ and every
integer n, constructing Hn = A(φn) requires O(p(‖φn‖)) time.

A curious alternative (discussed in Exercise 7.15) is to accept that the time can be poly-
nomial in the size of the previous hypothesis (‖A( fn−1)‖) and the size of the new example
(| f (n)|).

7.3.3 Counting the number of examples

An alternative to bounding the number of examples needed to identify is to bound the
number of good examples a learner needs. A ‘good example’ is one a teacher would want
to show the learner:

Definition 7.3.3 (Polynomial characteristic sample) A grammar class G admits poly-
nomial characteristic samples ifdef there exist an algorithm A and a polynomial p() such
that ∀G ∈ G, ∃CS ⊆ X,

‖CS‖ ≤ p(‖G‖) ∧
∀φ ∈ Pres(L(G)), ∀n ∈ N : CS ⊆ φn =⇒ L(A(φn)) = L(G).

Such a set CS is called a characteristic sample of G for A. If such an algorithm A exists,
we say that A identifies G in the limit in CS polynomial time.

What is implied is that there is a sufficiently small set (of polynomial size), called
the characteristic sample, or sometimes the teaching sample, which, when included in a
presentation, makes the learner identify. We make a few additional points here:

• The first point is that the sample is only characteristic for a specific learner. The existence of a
general characteristic sample (usually called a tell tale set) is also a question worth considering
(see Exercise 7.6, page 169).

• The second point is that the size of the characteristic sample should be counted as a polynomial
function of the number of bits needed to encode it. This is due to the possibility of being pre-
sented with very long strings. Therefore just counting the number of strings is not enough (see
Exercise 7.7, page 169).

• If from an identification point of view having a characteristic sample of unmanageable size is
clearly a problem, this is not so from a learning perspective: what is wrong with learning a
logarithmically small grammar from a sample, one that would compress the data enormously?

7.3.4 Counting the number of implicit errors

In the above definitions, what causes problems and delay in identifying seems to be the
presence of useless non-informative examples. An example that comes to reinforce the
current hypothesis should perhaps not count negatively towards identification.
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Definition 7.3.4 (Implicit prediction errors) Given a learning algorithm A and a pre-
sentation φ, A makes an implicit prediction error (IPE) at time n ifdef A(φn−1) � φ(n).

An algorithm that changes its mind when the current hypothesis is seen as an error with
the new presented element is said to be consistent.

Algorithm A makes a polynomial number of implicit prediction errors ifdef there is
a polynomial p() such that, for each grammar G and each presentation φ of L = L(G),∣∣{k ∈ N : A(φk) � φ(k + 1)}∣∣ ≤ p(‖G‖).
Combining ideas, one gets:

Definition 7.3.5 An algorithm A identifies a class G in the limit in IPE-polynomial
time ifdef

• A identifies G in the limit,
• A has polynomial update time,
• A makes a polynomial number of implicit prediction errors.

Note that neither condition is implied by the other two.

7.3.5 Counting the number of mind changes

A nice alternative to counting the number of errors is that of counting the number of
changes of hypothesis one makes. On its own, this is meaningless (why change?), but
if combined with identification in the limit the definition makes sense:

Definition 7.3.6 (Polynomial number of mind changes) Given a learning algorithm A
and a presentation φ, we say that A changes its mind at time n ifdef A(φn) �= A(φn−1).

An algorithm that never changes its mind when the current hypothesis is consistent with
the new presented element is said to be conservative.

Algorithm A makes a polynomial number of mind changes (MCS) ifdef there is a
polynomial p() such that, for each grammar G and each presentation φ of L = L(G),∣∣{k ∈ N : A(φk) �= A(φk+1)}

∣∣ ≤ p(‖G‖).
Combining ideas, one gets:

Definition 7.3.7 An algorithm A identifies a class G in the limit in MC-polynomial
time ifdef

• A identifies G in the limit,
• A has polynomial update time,
• A makes a polynomial number of mind changes.

Here also, neither condition is implied by the two others.
Finally, it is easy to see that a consistent algorithm makes at least as many mind changes

than implicit prediction errors, whereas a conservative algorithm makes at least as many
implicit prediction errors as mind changes. So we deduce the following theorem:
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Theorem 7.3.1 If A identifies the class G in the limit in MC-polynomial time and is
consistent, then A identifies G in the limit in IPE-polynomial time.
Conversely, if A identifies G in the limit in IPE-polynomial time and is conservative, then
A identifies G in the limit in MC-polynomial time.

7.4 Commuting diagrams

As in many fields, it is of interest to provide a technique enabling us to derive a learning
algorithm for a new class or a new type of presentation from a known learning algorithm.

A learning/identifying situation can be understood by stating the class of languages
under study, the representations one is interested in and the sort of presentations one admits.

Let LA and LB be two classes of languages represented by grammars from (respec-
tively) the grammar classes GA and GB.

We denote by LA (respectively LB) the surjective mapping GA → LA (respectively
LB : GB → LB).

Given a surjective mapping ζG : GA → GB, we denote by ζL a (surjective) mapping
LA → LB for which Diagram 7.1 commutes.

GA
ζG−−−−→ GB

LA
⏐⏐ ⏐⏐ LB

LA
ζL−−−−→ LB

(7.1)

Hence ζL is the only mapping such that:

ζL ◦ LA = LB ◦ ζG

Example 7.4.1 There is clearly the possibility of transforming a DFA into a context-
free grammar, whose language is obtained also as the image by the identity of the regular
language. Such a grammar is usually called regular.

DFA(�) ζG−−−−→ CFG(�)

LA
⏐⏐ ⏐⏐ LB

REG(�) ζL−−−−→ CFL(�)
We now concentrate on presentations. Suppose the presentations of LA are functions in
[N → X], whereas those of LB are functions in [N → Y],

LA
ζL−−−−→ LB

YIELDS
!⏐⏐ !⏐⏐YIELDS

Pres(LA)
ζP−−−−→ Pres(LB)

(7.2)
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Again we need diagram (7.2) to commute. Given a surjective mapping ζL : LA → LB,
we denote by ζP a (surjective) mapping Pres(LA) → Pres(LB) for which the diagram
commutes. So we have:

ζL ◦ YIELDS = YIELDS ◦ ζP.

Function ζP transforms a presentation of one language into a presentation of another.
Note that this does not mean a point-by-point transformation: one element of the first
transformation can be transformed by ζP into a finite sequence in the second.

Example 7.4.2 One can transform the learning setting of finite languages from text into
a setting where one wants to learn co-finite languages (the complement being finite) from
counter-examples.

FIN (�)
ζL−−−−→ CO−FIN (�)

YIELDS
!⏐⏐ !⏐⏐YIELDS

TEXT(FIN (�))
ζP−−−−→ CO-TEXT(FIN (�))

As a presentation may not be a computable function, describing the computation aspects
of function ζP is as follows:

Definition 7.4.1 A reduction of presentations is a function ζP : Pres(LA)→ Pres(LB).
The reduction is computable ifdef there exists a computable function ζP : X → 2Y such
that

⋃
i∈N ζP(φ(i)) = ψ(N) where ζP(φ) = ψ .

Note that ζP is a mathematical function that takes a presentation (which is also a
function) and transforms it into a function. But in order to talk about its computational
properties we have to reduce or transform the first presentation into the second one point-
to-point. So ∀ i ∈ N, ζP(φ(i)) is a finite set. ζP is therefore the description at each point of
function ζP. We will say that ζP is polynomial ifdef there exists a polynomial p() for which
given any presentation φ, we have ∀ i ∈ N, ‖ζP(φ(i))‖ ≤ p(‖φ(i)‖), and furthermore
there is a polynomial time algorithm allowing us to build ζP(φ(i)) given φ(i).

Example 7.4.3 Suppose as above that φ is a presentation of a language by ordered text.
If ψ is a presentation by informant of the same language, the transformation consists, with
every new string that is presented, of adding this string to the positive examples and adding
all intermediate strings between the last presented string and this new string to the set of
negative examples. It can be checked that the result is a complete presentation by informant
of the language. In this case ζP is computable but not polynomial (unless the alphabet is
only of size one).

Definition 7.4.2 A reduction of presentations ζP : Pres(LA) → Pres(LB) such that
ζP(φ) = ψ is polynomial ifdef there exists a polynomial function ζP : X → 2Y such that⋃

i∈N ζP(φ(i)) = ψ(N).
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Now combining both diagrams we have:

GA
ζG−−−−→ GB

LA
⏐⏐ ⏐⏐ LB

LA
ζL−−−−→ LB

YIELDS
!⏐⏐ !⏐⏐YIELDS

Pres(LA)
ζP,ζP−−−−→ Pres(LB)

(7.3)

Theorem 7.4.1 Let LA, LB, GA GB, ζL and ζG be as in Definition 7.4.2 and
Diagram 7.3.

If GB is identifiable in the limit from Pres(LB), and there exists a computable function
ζM : GB → GA such that ζG ◦ ζM = Id, and ζP is a computable reduction, then GA is
identifiable in the limit from Pres(LA).

Before proving the theorem it will be more useful to represent the situation as follows:

GA
ζM←−−−− GB

LA
⏐⏐ ⏐⏐ LB

LA
ζL−−−−→ LB

YIELDS
!⏐⏐ !⏐⏐YIELDS

Pres(LA)
ζP,ζP−−−−→ Pres(LB)

Proof Let A2 be a learning algorithm that identifies GB from a presentation in Pres(LB).
Consider algorithm A1 below (Algorithm 7.2), which takes the n first items (φn) and then
executes:

Algorithm 7.2: Reduction between presentations.

Data: a presentation φn

Result: a grammar
ψm ←− ⋃

i≤n ζP(φ(i));
GB ←− A2(ψm);
GA ←− ζM(GB);
return GA

As ζP is computable, the set ψm can be constructed.
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Also if ζP and ζM can be computed by polynomial time algorithms, then A1 is polyno-
mial time if A2 is. This can be extended with care to definitions of polynomial learning
such as those from Section 7.3.

We visit in the following sections different results obtained by using the reduction
technique.

7.4.1 With more, get more

Our first example is very simple. The idea is just that any class we can learn from text is also
learnable from an informant. Surprisingly, this may not be true if complexity considerations
are taken into account.

GA
I d←−−−− GA

LA
⏐⏐ ⏐⏐ LA

LA
I d−−−−→ LA

YIELDS
!⏐⏐ !⏐⏐YIELDS

INFORMANT(LA)
ζP,ζP−−−−→ TEXT(LA)

ζP : �∗ ∪ {0, 1} → 2�
∗
, ζP(w, 0) = ∅, and ζP(w, 1) = {w}. Hence any class

identifiable from text is also identifiable from an informant.

7.4.2 About safe languages

Safe languages are languages of infinitary strings. In substance, a language is safe when
the limits of all the prefixes are themselves in the language. As an example suppose strings
anbω belong to L (∀n ∈ N), then, for the language to be safe, string aω should belong too.

Definition 7.4.3 An ω-language L is safe ifdef

∀w ∈ �ω, (∀u ∈ PREF(w), ∃v ∈ �ω such that u.v ∈ L) =⇒ w ∈ L .

It can be easily shown that this definition is equivalent to:

∀w ∈ �ω,PREF(w) ⊆ PREF(L) =⇒ w ∈ L

or even by taking the negation of the last line:

∀w ∈ �ω,w /∈ L =⇒ (∃u ∈ PREF(w) such that ∀v ∈ �ω, u.v /∈ L).

Definition 7.4.4 A Büchi automaton is a quintuple A = 〈Q, �, δ, F, q1〉 where � is
an alphabet, Q is a finite set of states, q1 ∈ Q is an initial state, δ : Q × � → 2Q is
a transition function and F ⊆ Q is a set of marked states. These states are distinguished
from the others but not ‘final’, as the strings are infinite.
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A run of A on an ω-string u is a mapping ρu : N → Q such that:

• ρu(0) = q1 and
• ρu(i + 1) ∈ δ(ρu(i), ui ), for all i ∈ N.

Note that ρu is undefined if at some point, ρu(i) is undefined.

Definition 7.4.5 An ω-string u is accepted by A ifdef there exists a state of F which
appears infinitely often in a run of A on u. Let L(A) be the set of all accepted ω-strings
by A. We can show that an ω-language L is ω-regular ifdef L = L(A) for some Büchi
automaton A.

A Büchi automaton is deterministic ifdef |δ(q, a)| ≤ 1 for all states q and letters a.
A DB-machine is a deterministic Büchi automaton where F = Q. As the automaton

need not be complete, the strings that are not accepted are those that simply cannot be
parsed through the automaton.

Theorem 7.4.2 L is a safe ω-regular language if and only if L is recognised by a DB-
machine.

Let SAFE(�) denote the class of all safe ω-regular languages, and DB(�) the class
of DB-machines over the alphabet �. The learning problem we are interested in is that
of learning DB-machines from positive and negative examples. If we are to consider that
asking for infinite examples is too much, let us suppose that we want to learn from finite
prefixes: a positive prefix is one that has at least one good continuation, and a negative one
is a string which, whatever comes next, will not be accepted.

One can prove by building a new algorithm that safe languages are identifiable from
such prefixes. But the result can be reached in a much simpler way through Theorem 7.4.1:

DB(�) χ←−−−− DFA(�)

LA
⏐⏐ ⏐⏐ LB

SAFE(�) ζL−−−−→ REG(�)

YIELDS
!⏐⏐ !⏐⏐YIELDS

PREF-INF(SAFE(�)) ζP,ζP−−−−→ INFORMANT(REG(�))

ζP(u, l) = {(w, l) ∈ �� : w ∈ PREF(u)}, and ζL and χ are the natural transformations.
Details of the transformations are not given, but these can be reconstructed.

7.4.3 Even linear grammars

Even linear languages and grammars have been analysed in the context of grammatical
inference in several papers.
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Definition 7.4.6 (Linear context-free grammars) A context-free grammar G =
〈�, V, P, S〉 is a linear grammar ifdef P ⊂ V × (�∗V �� ∪��).

Definition 7.4.7 (Even linear context-free grammars) A context-free grammar G =
〈�, V, P, S〉 is an even linear grammar ifdef P ⊂ V × (�V� ∪� ∪ {λ}).

Thus languages like the set of all palindromes, or the language {anbn : n ∈ N}, are even
linear without being regular.

We denote by ELG(�) and ELL(�) the classes of even linear grammars and even
linear languages for an alphabet �. Given an alphabet �, we denote by d(�) the alphabet
composed of symbols

(a1
a2

)
where a1, a2 ∈ � × (� ∪ {#}), with # a symbol not in �.

ELG(�) ζM←−−−− DFA(d(�))

L

⏐⏐ ⏐⏐ L

ELL(�) I d−−−−→ REG(d(�))

YIELDS
!⏐⏐ !⏐⏐YIELDS

INFORMANT(ELL(�)) ζP,ζP−−−−→ INFORMANT(REG(d(�)))

ζP takes a string of even length a1a2 · · · a2n and returns
( a1

a2n

)( a2
a2n−1

) · · · (an−1
an

)
or a string of

odd length a1a2 · · · a2n+1 and returns
( a1

a2n+1

) · · · (an−1
an+1

)(an
#

)
.

ζM transforms a DFA over alphabet � × (� ∪ {#}) into an even linear grammar over �.

Example 7.4.4 Let G = 〈�, V, P, N1〉 be an even linear grammar with

• � = {a,b},
• V = {N1, N2},
• P = {N1 → aT b, N1 → bN2a, N2 → aN1a, N2 → a, N2 → b}.
Then ζP takes string abbabbaab and returns string

(a
b

)(b
a

)(b
a

)(a
b

)(b
#

)
.

The learning algorithm we might use may then return from an informed sample the
automaton depicted in Figure 7.3, which can be transformed into a grammar equivalent to
the above.

q1

q2

q3

(a
b

)
,
(b
a

)

(a
a

)
(a

#
)

(b
#
)

Fig. 7.3. A DFA learnt from data transformed by ζP.
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7.4.4 Trees

As the theory for trees has very often developed in a parallel way to that on strings, it is
very tempting to present a reduction like that of Diagram 7.4, which would allow us to
learn a grammar for trees by transforming the tree data into strings, then using our string
grammar algorithm, and finally transforming the string grammar into a tree grammar.

T G(�) ζM←−−−− DFA(�)

L

⏐⏐ ⏐⏐ L

T L(�) I d−−−−→ REG(�)

YIELDS
!⏐⏐ !⏐⏐YIELDS

Pres1
ζP,ζP−−−−→ Pres2

(7.4)

But the above construction only works for very simple classes of language: The
expressive power of trees is much stronger than that of strings.

7.5 Active learning

In the above formalism the presentations were uncontrolled by the learner. The most we
could hope for was a fair deal: if the data were to be labelled then the labelling should be
correct (at least in a non-noisy setting) and if specified, the presentations had to comply
with some completeness condition. For instance, imposing that φ(N) = L ensured that in
the limit no essential piece of data was missing. There is nevertheless a case for wanting to
be able to control the data we receive further, and this for at least two reasons:

• The first reason is that if, when placing ourselves in the most favourable conditions, we still cannot
learn, we should be able to derive negative results for the general case.

• The second reason is that there may be realistic situations where we might be able to choose the
data. This is the case in testing, in situations where robots may want to explore or interact with
their environment. Another related setting appears when there may be too much data around, and
then learning is going to depend on interactively choosing the data. This is clearly the case when
wanting to learn from web data.

7.5.1 The Oracle

An Oracle is just some abstract machine that knows the target and answers some queries.
An Oracle (she) is generally supposed to be perfect: she can answer any specific query
(provided the learning algorithm is allowed to ask it). She can even answer queries that
a concrete machine would not be able to cope with and therefore solve undecidable
problems. The ability of the Oracle is determined by the learning setting.
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In some cases the Oracle may have various possible answers. In this case she should be
allowed to give any admissible answer. As our goal when studying Oracle learning is to
consider worst case scenarios, we will always have to suppose the Oracle is giving us the
least informative of all possible answers.

In this sense, the analysis will be similar to that made in complexity theory. The best case
is of hardly any interest, mainly because the Oracle could be tempted to collude and give us
the answer through a very specially encoded example. The second possibility would be to
consider an average response by the Oracle. This requires a distribution over the possible
responses and brings us into an altogether different setting. Remarkably, the key problem
is that of having access to an unknown distribution: one can for instance wonder what a
‘typical’ distribution of web pages can look like. The worst case analysis may seem to
correspond to a very unlikely situation, but it does give us an upper bound on the effort
needed.

7.5.2 Some queries

There are many types of query one can make to an Oracle. Some are natural in the sense that
there is at least some application with a biological, mechanical or cognitive instantiation
of these queries; others are defined to build negative results only.

• Membership queries (MQs) are made by asking the Oracle if a given string is in the target language
or not. The Oracle answers YES or NO. Extensions of these membership queries are correction
queries, where the Oracle answers YES or returns a close string in the language, and extended
membership queries where for a given string, the probability of this string being in the language
is returned. An extended prefix language query is made by submitting to the Oracle a string w.
The Oracle then returns the probability p(w�∗). It can be noticed that an extended membership
query for a string w can be simulated through |w| + 1 extended prefix language queries.

• Equivalence queries can be strong (EQ) or weak (WEQ). They are in both cases made by
proposing some hypothesis to the Oracle. The hypothesis is a grammar representing the unknown
language. When the query is weak, the Oracle just answers YES or NO. When it is strong the
Oracle has, in the negative case, to return a counter-example. A counter-example is a string in the
symmetric difference between the target language and the submitted hypothesis.

• Subset queries (SSQ) are usually strong: a hypothesis language is submitted (by proposing a
grammar). The Oracle answers YES if the hypothesis language is included in the target language,
and returns a counter-example from the hypothesis and not in the target language if not. Superset
queries can be defined in a similar way.

• Sampling queries (EX) exist in various forms. In all cases we have to suppose the existence of
a distribution, known or unknown but permanent, over the strings. Then we can sample from the
positive examples only, from the negative examples only, from the set of all strings, or even from
a subset of strings having some particularity. A specific sampling query is made by submitting
a pattern: the Oracle draws a string that matches some chosen pattern sampled according to the
distribution D. Specific sampling queries are intended to fit the idea that the user can ask for
examples matching some pattern he is interested in.
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For example, a specific sampling query for a�∗b requires an example starting with a and
ending with b, sampled following the distribution induced by D over a�� b.

For a given task we will only be allowed to ask some sort of queries. We will denote this
set by QUER. For instance:

• QUER = {MQ}. In this situation the learner is to identify with the help of membership queries
only.

• QUER = {MQ,EQ}. The learner can ask both membership and strong equivalence queries. This
query combination is known as an MAT (minimally adequate teacher).

7.5.3 Polynomial learning with queries

When learning with an Oracle, the goal is to bound the number of queries needed to
identify. This number should be:

• Polynomial in the size of the target. Obviously, complex languages (or better said, languages
whose description is complex) will need more questions than simpler ones.

• Polynomial in the amount of information received. If in the case of membership queries the Oracle
only requires one bit to give her answer, things are more complex when the Oracle has to return a
string (for example in the case of a counter-example to an equivalence query). This is a tricky mat-
ter: as the Oracle can return a counter-example that is worse to us, without this, an exponentially
long counter-example would not allow us to learn in polynomial time. Just reading the string is
itself too long! It should be noted that the amount of information received varies with time, so we
should measure this at every step for the algorithm. Indeed we can imagine (in certain settings) a
learning algorithm that would use too many resources to learn correctly, but then defer the moment
of returning the correct solution and ‘gain’ extra resources by querying in such a way that a very
long counter-example is returned, thus justifying a posteriori the resources spent.

Formally, let QUER be a fixed set of queries, G be a grammar class and A be a learning
algorithm. Suppose that to identify G, algorithm A makes on a particular run ρ queries
Q1, . . . ,Qn . We denote by LQ(ρ, i) the length of the longest counter-example (or infor-
mation) returned by the queries Q1, . . . ,Qi in ρ, and RT(ρ, i) the running time of A before
interrogating the Oracle with query Qi . LQ(ρ, n + 1) and RT(ρ, n + 1) refer to the values
of LQ and RT at the end of the entire run ρ.

Definition 7.5.1 A class of grammars is polynomially identifiable with queries from
QUER ifdef there exists an algorithm A and a polynomial p() for which ∀G ∈ G, A
identifies G in the limit, and, for any valid run ρ with n queries, we have

∀i ≤ n + 1, RT(ρ, i) ≤ p(‖G‖, LQ(ρ, i)).

In the above definition, we first consider that the learning algorithm A identifies in the
limit any target from correct answers by the Oracle. The complexity limitations are that at
any moment, the time needed by the algorithm to build its next hypothesis is polynomially
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bounded by the size of the longest piece of information it has received so far, and the size
of the target.

There are several other definitions that seem possible, but one should steer clear of at
least the following problems:

• The definition should allow that the Oracle returns unbounded information
• The definition should take into account the complexity during the run: it should not allow a learner

to spend a lot, then make queries at the end that it can solve easily in order to have a global runtime
polynomial with the information received.

7.5.4 Approximate fingerprints

The typical technique to prove negative learning results is by approximate fingerprints. The
basic proof method goes as follows. Let Hn be a set of hypotheses of size 2n . Suppose that
given any query there is an answer the Oracle can make (of size at most polynomial in n)
such that the amount of hypotheses eliminated due to that answer is only a polynomial in
n. Then it is clear that with only a polynomial number of queries there will always remain
more than one hypothesis (actually most of them!) consistent with all the answers seen
so far. Therefore, the class is not identifiable in the limit. We will again write ‘L � a’ to
indicate that the information a is inconsistent with the language L .

Theorem 7.5.1 Let L be a class containing at least 2n different languages. Now
suppose that for every query q from QUER the Oracle gives an answer a such that∣∣{L ∈ L : L � a}∣∣ < p(n). Then the class L is not polynomially identifiable with queries
from QUER.

Proof The number of hypotheses that are consistent with all the information received
after having asked a polynomial (r(n)) number of queries is at least 2n − r(n) · p(n) which
remains exponential in n.

It should be noted that the technique says nothing about the way the class is encoded. It
relies only on the fact that there are simply too many grammars consistent with the answers
to the queries. In this sense the technique is information-theoretic.

Example 7.5.1 Let L be the class of all finite languages over {a, b}. We consider Hn the
class of all singletons and prove that we cannot learn Hn by membership queries. Indeed
the Oracle answers MQ(w) with no and eliminates just one language ({w}).

7.5.5 The halving algorithm

But information-theoretic arguments should be handled with care. The following puz-
zling algorithm (Algorithm HALVING, 7.3) seems to imply that learning with equivalence
queries is always possible. Let �n be the set of all strings of size n and let H be the set of
all possible candidate languages.
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Algorithm 7.3: HALVING.

Data:
Result: a grammar G
H ← ∅;
while not EQ(H) do

Let w be the counter-example for EQ(H);
if w ∈ L(H) then

l ← 0
else

l ← 1
end
Eliminate from H the languages that disagree with (w, l) ;
H ← {

x ∈ �� : |L ∈ H : x ∈ L| ≥ |H|
2

}
end
return H

Algorithm 7.3 makes an equivalence query based on a majority vote: the hypothesis lan-
guage H contains exactly those strings that belong to at least half of the possible hypothesis
languages. Therefore whatever counter-example we get is going to allow us to eliminate
at least half of the hypotheses: if the counter-example is a string w labelled ‘1’, this string
doesn’t belong to H so therefore belongs to less than half of the languages. Conversely,
if the string is a w with label ‘0’, it belongs to H and therefore to at least half of the lan-
guages left. Obviously, in general, these unlimited equivalence queries do not exist. It is
usually required that equivalence queries are proper (i.e. are made inside the solution class)
in order to avoid problems of this type.

7.5.6 How to obtain positive results

There is no general technique to learn with queries, because of the variety of queries
one may be allowed to use, but there is one key algorithm. The most important positive
result is that DFAs are learnable with membership and strong equivalence queries. The
algorithm (LSTAR) is discussed in Chapter 9. There are also practical reasons for studying
this setting, as it corresponds to problems that appear in many interactive applications.

7.6 Learning with noise

As a consequence of the negative results described in the previous sections, learning gram-
mars in a noisy setting is going to be a very hard task, since we must add the difficulty of
learning in a reasonable amount of time to the fact that the noisy conditions are even more
challenging. Whereas in other areas of machine learning and pattern recognition there are
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many methods and results allowing us to work in cases where the data may be imperfect,
this is not (yet?) the case in grammatical inference. One of the few hopes to do anything
of use in this case is to learn probabilistic automata instead, even if this corresponds to
tackling an altogether different problem (see Chapter 16).

7.6.1 Systematic noise

As a first approach to learning with noisy data we introduce a model of noise called sys-
tematic: each item of data will appear in the presentation with all its noisy variants, a noisy
variant being the string to which up to n edit operations have been added. Intuitively the
intended type of noise can be described by a spot of paint on which a heavy object is
pressed. The spot of paint will then become a blur. In an ideal world this blur is a disk.
Note that the edit distance is used because in most applications this is what best models
noise.

It is reasonable to study this kind of noise in the paradigm of identification in the limit.
A first straightforward result is that if once noise is added two languages are not dis-
tinguishable from each other, then the class of languages is not resistant to systematic
noise.

It is easy to notice that this is the case for the class of the regular languages, and in a
broader way for all usual classes of languages in the Chomsky hierarchy.

The fact that parity functions can be represented as DFAs can convince us easily that they
are ill-suited to deal with noise. Parity functions are formally defined in Chapter 6. They are
functions {0,1}n → {0,1} defined by a string u in {0,1}n with fu(w) = ∑

i≤n(ui ∧ wi )

mod 2. Interestingly each function can be described by a DFA with at most 2n + 1 states
(the construction is given in Section 6.5.1, page 132).

These difficulties are also an argument in favour of considering classes of languages
defined outside the Chomsky hierarchy.

Definition 7.6.1 (Noisy presentation) A noisy presentation of a language is a presen-
tation φ : N → X with which is associated a function isnoise : X → {0, 1} indicating if a
particular element of the presentation is noise or not.

For example a noisy text is just a text presentation of the language to which its noise is
added. The noise function N is then a function �� → 2�

�
. An N -noisy text presentation

of a language L is therefore a φ : N → �� such that φ(N) = N (L). We can then give a
simple preliminary result:

Proposition 7.6.1 Let L be such that there exist L1 and L2 in L with L1 �= L2 but
N (L1) = N (L2). Then L is not identifiable in the limit from N-noisy text.

The proof is trivial since in this case any presentation valid for L1 is also valid for L2.
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7.6.2 Statistical noise

In a classification problem, the noise can be on the labels: some positive examples are
wrongfully labelled as negative, whereas on the contrary some strings that should be in S−
are labelled as if they belonged to S+.

There are very few results in this setting. On the negative side it is known that even if
only a very small fraction of strings of length at most 2n + 1 are missing, the problem of
finding the correct DFA with n states is NP-hard. So obviously this is a strong indication
of the hardness of working with wrongly labelled strings.

On the positive side there have been attempts, with techniques from artificial intelli-
gence, to solve the problem with varying quantities of noise. One alternative then is, in the
state-merging algorithms, to allow a merge when the quantity of errors made is under a
certain threshold.

Statistical noise corresponds to the case where either the strings can appear randomly
or the labels can be wrong, depending on some distribution. In the case of noise over the
labels it is essential to deal with permanent noise. Otherwise, re-sampling tends to solve the
problem. Again, one of the difficulties concerns the classes of language: if the languages
offer no robustness to noise, then learning is going to be hard. The better chances are with
classes that are topologically sound, like balls of strings.

7.6.3 Learning the noise model

Noise over strings is very often modelled by using the edit distance, the parameters of
which are supposed to reflect how close one symbol is to another. Indeed there are many
reasons to suggest that the weights between the symbols are not equal, but then the question
of obtaining the cost matrix is posed.

If we are given this cost matrix, the noise model can also be used for parsing. The
different parsers proposed in Chapters 4 and 5 can be adapted in order to parse taking the
distance into account. This allows us to define alternative languages: the sets of all strings
at distance at most k, called balls of strings. In the probabilistic case, the distance allows
us to smooth the language model.

But how do we get hold of this cost matrix? There may be some hope with heuristics,
but there is another way around the problem: instead of learning the weights, learn proba-
bilities! The idea is to suppose that the noise model is given by a probabilistic transducer
(transducers are studied in Chapter 18). The transducer is then used by feeding a first string
as input and parsing it in a probabilistic way, with possibly different outputs. The weights
can be learnt in such a way as to define the probability that string w is rewritten into
string w′.

The setting is important, with a certain number of interesting questions that deserve
attention:

• How well suited is the best transducer to model non-probabilistic edit noise?
• How do we get hold of learning pairs? Can we simulate these from data that are noisy in all cases?
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• A transducer can also handle the fact that the edit weights can have different values at the beginning
or at the end of a string. Therefore, learning transducers (see Chapter 18 for some ideas) is an
alternative approach.

7.7 Exercises

7.1 What conditions should the presentation function φ meet when learning from
counter-examples only?

7.2 What conditions should the presentation function φ meet when learning from
substrings only?

7.3 Consider learning by prefixes as proposed in Example 7.2.1 (page 148). Show that
the same string can appear both as positive and as negative. Propose a limitation over
the class of languages in order to avoid this problem.

7.4 Prove that if there can be two presentations that in the limit give the same language
but do not yield a unique language, identification in the limit is impossible.

7.5 Prove that identification in the limit from text is always possible if L is a finite set.
7.6 Let us say that a learning algorithm A is an identification algorithm for a class G(�)

ifdef A identifies G(�) in the limit. Let us now consider the set A(G(�)) of all identi-
fication algorithms for a class G(�). A universal characteristic sample for A(G(�))
is a sample UC S such that ∀A ∈ A(G(�)), ∀G ∈ G, ∀φ ∈ Pres(L(G)), ∀n ∈ N :
UC S ⊆ φn =⇒ L(A(φn)) = L(G).

Prove that in the case where G is the class of DFAs there is no finite universal
characteristic sample.

7.7 Suppose we used the following definition of characteristic samples for learning from
text:

Definition 7.7.1 (Polynomial characteristic sample (2)) A class G admits polyno-
mial characteristic samples ifdef there exists an algorithm A and a polynomial p()
such that ∀G ∈ G, ∃CS ⊆ X ∀φ ∈ Pres(L(G)), ∀n ∈ N : (|CS| ≤ p(‖G‖) ∧ CS ⊆
φn
) =⇒ L(A(φn)) = L(G).

The difference between this definition and Definition 7.3.3 (page 154) relies on
the fact that the size of the sample is now only counted as the number of strings it
contains: the length of these strings is no longer an issue.

Prove (by producing a convenient, albeit artificial) class, that this definition is
weaker than Definition 7.3.3.

7.8 Propose a randomised algorithm to learn CONE(�). Prove that this algorithm,
given any presentation, has a convergence point.

7.9 Prove that if an algorithm does not have a convergence point for some presentation,
it does not identify in the limit. What do you think of this definition?

7.10 Prove that BALL(�) (Section 3.6.1, page 65) is not identifiable in the IPE, MC and
CS settings.
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7.11 Prove that GB(�) (Section 3.6.1, page 65) is identifiable in the IPE, MC and CS
settings.

7.12 Prove that CONE(�) (Section 3.6.2, page 65) is identifiable in the IPE, MC and CS
settings.

7.13 Prove that COCONE(�) (Section 3.6.3, page 65) is identifiable in the IPE, MC
and CS settings.

7.14 Prove that if we restrict only to conservative and consistent learning algorithms, then
the IPE and MC classes coincide.

7.15 There are various definitions of incremental identification. This is one:

Definition 7.7.2 An algorithm A incrementally identifies grammar class G in the
limit ifdef given any T in G, and any presentation φ of L(T ), there is a rank n such
that if i ≥ n, A(φ(i),Gi ) ≡ T .

Prove that DFA(�) are not incrementally identifiable in the limit.
7.16 Using Definition 7.7.2, find a (simple) class that is incrementally identifiable in the

limit.
7.17 Let us call a presentation infinitely redundant ifdef every element appears infinitely

often. For example an infinitely redundant text presentation is a φ for L , such that
given any w in L , the number of i ∈ N for which φ(i) = w is infinite. How can
incremental learning of balls of strings now become possible?

7.18 Adapt Definition 7.7.2 to the case of learning with a fixed (instead of one) number of
examples in memory.

7.8 Conclusions of the chapter and further reading

7.8.1 Bibliographical background

The introduction of this chapter (Section 7.1) is built from different surveys of the liter-
ature and most specifically those by Yasubumi Sakakibara (Sakakibara, 1997) and Colin
de la Higuera (de la Higuera, 2005). Alternatively a presentation of the field for theoreti-
cians can be found in (Fernau & de la Higuera, 2004) whereas a presentation for linguists
is (Adriaans & van Zaanen, 2004). Satoshi Kobayashi also discusses these questions in
(Kobayashi, 2003).

Between the elements we used to back up the point about why theory should be
preferred, we mentioned the fact that grammatical inference competitions had provided
evidence to this respect. The best known competitions are: the ABBADINGO compe-
tition (Lang & Pearlmutter, 1997), the GOWACHIN challenge (Lang, Pearlmutter &
Coste, 1998), the OMPHALOS competition (Starkie, Coste & van Zaanen, 2004b) and
the TENJINNO competition (Clark, 2006, Starkie, van Zaanen & Estival, 2006). A com-
petition involving noisy data also was organised inside the community working on genetic
algorithms (Lucas, 2004).
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Section 7.2 is an attempt to cover the main results in identification in the limit, without
entering in the algorithmic details. There have been two main lines of direction to study
convergence in a formal manner: Gold’s model of learning called identification in the limit,
with two main variants: learning from text and learning from an informant (Gold, 1967,
1978). From these pioneer works alternative models have been proposed adding complex-
ity constraints (de la Higuera, 1997), the possibility of interrogating an Oracle (Angluin,
1987a) or probabilistic issues. We may notice that the exposition here is through four crite-
ria to define the problem, whereas more classically (Angluin & Smith, 1983, Gold, 1978)
five have been proposed. The fifth (which we do not use) is about the type of learner we
have, which could be machine or human.

We concentrate in Section 7.3 on the first model and follow lines close to complexity the-
ory where reductions can be found allowing us to reduce one problem to another. By doing
this we follow the work by Lenny Pitt and Manfred Warmuth (Pitt & Warmuth, 1988). The
question of polynomial learning is also of interest. A first discussion has taken place in
(Pitt, 1989), with discussions and further ideas in (de la Higuera, 1997) and (Yokomori,
2003). Many results relating the different classes of polynomial learning can be found in
(de la Higuera, Janodet & Tantini, 2008).

Definition 7.2.5 is by E. Mark Gold (Gold, 1967). The insufficiencies of this definition
alone were shown in (Pitt, 1989). Another definition which is shown to be insufficient by
Lenny Pitt (Pitt, 1989) is Definition 7.3.2.

Definition 7.3.3 can be tracked back to several sources. It is de facto used in
(Gold, 1978), formalised in the teaching setting by Sally Goldman and David Mathias
(Goldman & Mathias, 1996), and studied in a systematic way in (de la Higuera, 1997).

Definitions 7.3.4 and 7.3.7 are also variations of definitions by Nick Littlestone
(Littlestone, 1987), or by Lenny Pitt (Pitt, 1989) or Takashi Yokomori (Yokomori, 1995,
2003).

The commuting diagrams presented in Section 7.4 were introduced in (de la Higuera,
2005, Tantini, de la Higuera & Janodet, 2006). The safe languages are defined in (Alpern,
Demers & Schneider, 1985) and their learnability (without reductions) is proved in (de la
Higuera & Janodet, 2004). Even linear languages and grammars have been analysed in
the context of grammatical inference in many papers, for instance (Koshiba, Mäkinen &
Takada, 1997, Mäkinen, 1996, Sempere & García, 1994, Takada, 1988). There have been
many results over learning from strings that have been adapted to the case where the data
are trees. A very limited list can be found in (Fernau, 2002, Knuutila & Steinby, 1994,
Sakakibara, 1987, 1990).

We shall study active learning in detail in Chapter 9. The main landmarks are the papers
by Dana Angluin (Angluin, 1981, 1987a, 1987b, 1990). Most of the different results pre-
sented in Section 7.5 are all due to her work even if the formalism we propose here to
deal with the complexity aspects is new. Between the special sorts of query we men-
tion, extended membership queries were introduced in (Bergadano & Varricchio, 1996)
and extended prefix language queries in (de la Higuera & Oncina, 2004). The relation-
ships between PAC learning, equivalence queries and active learning have been studied in
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(Angluin & Kharitonov, 1991, Gavaldà, 1993). Jose Balcázar et al. have studied the query
complexities for different combinations of queries (Balcázar et al., 1994a, 1994b).

Learning in noisy settings (Section 7.6) corresponds to work by Frédéric Tantini (Tantini,
de la Higuera & Janodet, 2006) for the systematic noise, and by Marc Sebban and Jean-
Christophe Janodet for the classification noise (Sebban & Janodet, 2003). There have
also been attempts to learn a transducer to model the probabilistic edit distance (Bernard,
Janodet & Sebban, 2006, Oncina & Sebban, 2006).

7.8.2 Some alternative lines of research

There are several alternative lines of research. The main one is followed by researchers
in inductive inference, and specifically in algorithmic learning theory. Yet concrete
complexity issues have not been explored.

7.8.3 Open problems and possible new lines of research

The paradigms described in this chapter are still not fully understood. Between the many
possible open research lines, let us mention:

• The question of reducing from strings to trees is puzzling. There are many papers with complex
proofs to export a result on learning classes of strings to an equivalent one on trees. Yet there is no
general transformation. Is there one? Can we show an example where something is feasible with
strings but not with trees?

• Relating the models to each other is important. Where are the implications?
• Several researchers (Castro, 2001, Watanabe, 1994) have noticed that expecting exponentially long

counter-examples in query learning was a problem. In the same sense, one can argue that some
grammars are too small for strings: if the grammar is of logarithmic size in the size of the basic
strings it generates, we will say that this grammar does not have characteristic samples. Developing
a nice model for this is of real interest.

• Noise is a topic where little has been studied theoretically. There is room for new classes of lan-
guages, motivated by topological questions, by algorithmic considerations and, if possible, based
on the knowledge we have of formal language theory.

• Correction queries were introduced as a nice alternative to equivalence queries (Becerra-Bonache,
2006, Becerra-Bonache, Horia Dediu & Tîrnauca, 2006, Becerra-Bonache & Yokomori, 2004).
These are a compromise between equivalence and membership queries. Along the same lines,
studying alternative types of query is of interest.
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Learning from text

No quería componer otro Quijote -lo cual es fácil- sino el Quijote. Inútil agregar
que no encaró nunca una transcripción mecánica del original; no se proponía
copiarlo. Su admirable ambición era producir unas páginas que coincidieran pal-
abra por palabra y línea por línea con las de Miguel de Cervantes. Mi empresa
no es difícil, esencialmente leo en otro lugar de la carta. Me bastaría ser inmortal
para llevarla a cabo.

Jorge Luis Borges, Pierre Menard: autor del Quijote, Ficciones c© 1995.
Maria Kodama. All rights reserved.

Apart from the fascinating (and phoney) linguistic challenge (could a computer,
like the young Tarzan of the Apes, learn a language by simply reading books
written in it?), it has an interesting position in syntactic pattern recognition.

Laurent Miclet (on grammatical inference) on (Miclet, 1990)

Learning from text consists of inferring from a presentation of examples that all
come from the target language. The learner is asked to somehow generalise from the
data it sees while not having counter-examples that would help it refrain from over-
generalising.

8.1 Identification in the limit from text

Learning from text is considered by many to be the essence of language learning. It is in a
sense the initial problem, the one with least constraints, and the one that, once we show it
cannot be solved, allows us to consider making the problem easier by adding some helpful
information like negative examples, knowledge about the structure or the possibility to
interrogate an Oracle.

We survey the problem, give alternative ways of seeing it and give conditions that have
to be met for learning to be possible. We also discuss the issue of polynomial learning
from text.

173
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8.1.1 Why is this a hard problem?

Given only text, that is, strings from a language, guess this language.

This can be considered as the most pure problem of grammatical inference or at the very
least as the basic problem from which the others are derived. In many cases the other
questions are specialisations of this one; they could be called learning with extra help.

Furthermore there are arguments, in many applications, that negative information or
added bias are not always available. Take the very much discussed question of language
acquisition by children: while it is clear that text is presented to the child (by the mother),
it is quite unreasonable to hope for labelled negative examples, especially if we require a
presentation of all possible counter-examples. Even if this point deserves a longer discus-
sion (one alternative being to describe an interactive learning setting where some sort of
corrections are given, which should be returned in an exploratory dialogue), the general
agreement is that learning from text is the paradigm in which we should study language
acquisition.

Another argument is that even in those cases where negative data may exist, there are
many reasons to believe that these negative strings arrive in a biased way: it is obviously
not the same to learn from near-misses as from random strings that are not in the language.
Taking again the case of language acquisition, a negative example could be a string that
is slightly wrong, ‘this is me car’, a string in a different language, ‘ceci est ma voiture’,
a random set of words that cannot be parsed, ‘car when cooking whereas’, or even any
sequence of symbols, ‘gyilgfcliq saauas cfjaeafea’.

Another point worth discussing concerns the type of convergence that we may want or
hope for. Identification in the limit is in this case the better candidate, but trying to add com-
plexity criteria is again going to be an issue. PAC learning is possible but not very exciting
as noted in Section 10.4: only positive data are given for the inference yet positive and neg-
ative data could be used in testing. As soon as there are instances of data for which there are
two different consistent minimal (for inclusion) languages, this proves to be impossible.

8.1.2 About languages and grammars

Most of the results in this section have been obtained inside the algorithmic learning theory
community and by inductive inference specialists. In many cases the words ‘grammar’ and
‘language’ are interchangeable. We will try to avoid following this trend as we are not
only concerned by learnability but also by ‘efficient’ learnability, and in this case we will
consider with care the question of the representations of the languages.

Adapting from Section 7.2:

Definition 8.1.1 Let L be a class of languages over an alphabet�. A TEXT presentation
of a language L is a function φ : N → �� where φ(N) ∈ L. If L = φ(N) then we will say
that φ is a presentation of L .

TEXT(L) = {φ : N → �� : φ(N) = L}.
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Note that in the above definition we have not included the special case of the empty lan-
guage, for which we either have to allow partial functions or the presentation of a special
symbol not in �.

Remember that L is the naming function; it takes a grammar G and returns a language
L(G) in the class L.

Definition 8.1.2 A class of languages L is identifiable in the limit from text ifdef there
is an algorithm A for which, given any language L and any presentation φ in TEXT(L),
there exists a rank n such that ∀i ≥ n, L(A(φi )) = L and A(φi ) = A(φn).

In the above definition the class of grammars concerned is implicit. If explicit, we can
rewrite this as follows:

Definition 8.1.3 A class of grammars G is identifiable in the limit from text ifdef

there is an algorithm A for which, given any grammar G in G and any presentation
φ in TEXT(L(G)), there exists a rank n such that ∀i ≥ n, L(A(φi )) = L(G) and
A(φi ) = A(φn).

We will use both definitions, but will prefer the second one when dealing with com-
plexity issues that depend usually on the type of grammars under scrutiny. In both
definitions, not using the restriction that ∀i ≥ n, A(φi ) = A(φn) leads to the definition of
behaviourally correct identification: the algorithm may switch indefinitely often between
various equivalent descriptions of the language.

8.1.3 The main results, grammar-independent

We proved in Section 7.2 (Theorem 7.2.3, page 151) that no super-finite class of languages
is identifiable in the limit from text. A class is super-finite if it contains all the finite lan-
guages and at least one infinite one. The goal of this section is to generalise this result, and,
more importantly, to try to understand the reasons for which it holds, mainly in order to get
around it.

We first provide negative results which show that learning from text is going to be an
arduous task. These do not depend on a specific representation of the languages. The first
two theorems indicate that constructive proofs may not be available:

Theorem 8.1.1 (Non-union theorem) Let L1 and L2 be two classes of languages, each
identifiable from text. Then L1 ∪ L2 may not be identifiable from text.

Proof Let L1 = FIN (�) be the set containing all finite languages over some alphabet
� and L2 = {��}. L1 and L2 are identifiable from text but not L1 ∪ L2.

Theorem 8.1.2 (Non-concatenation theorem) Let L1 and L2 be two classes of
languages, each identifiable from text. L1 · L2 may not be identifiable from text.

Proof Let L1 = FIN (�) as above and L2 = {��, {λ}}. Then both L1 and L2 are
identifiable from text but L1 · L2 is not.

We turn now to finding necessary conditions for identification in the limit from text.
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Definition 8.1.4 (Limit point) A class L of languages has a limit point ifdef there exists
an infinite sequence Ln, n ∈ N of languages in L such that L0 � L1 � . . . � Ln � . . .,
and there exists another language L in L such that L = ⋃

n∈N Ln .
L is called a limit point of L.

Clearly the class of all regular languages has a limit point since one can consider an infinite
sequence of finite languages, and this is the case for any super-finite class.

Theorem 8.1.3 If L admits a limit point, then L is not identifiable from text.

Proof In the proof of Theorem 7.2.3 (page 151) L∞ is the limit point.

Note that the absence of a limit point is a necessary condition for learnability; for
sufficient conditions, strong computability constraints are required, among others (see
Exercise 8.4).

Definition 8.1.5 (Accumulation point) A class L of languages has an accumulation
point L ifdef L = ⋃

n∈N Sn where S0 ⊆ S1 ⊆ . . . ⊆ Sn ⊆ . . ., and given any n ∈ N there
exists a language L’ in L such that Sn ⊆ L ′ � L .

The language L is called an accumulation point of L.

Clearly, if L is a limit point then it is also an accumulation point. In both cases we will
also say that the associated class of grammars G has a limit or an accumulation point. Not
having an accumulation point means that given any increasing sequence of examples there
is always a moment where the target is one of the smallest consistent languages.

But this can also be a sufficient condition. To prove this we need to rely on a grammar
formalism. We leave this question to the next section.

In the above theorems and definitions the goal, to prove non-identifiability, is to build an
infinite sequence of languages such that identification of at least one of these languages is
impossible. If a learning algorithm takes the risk of naming a language, that means that no
inductive bias is possible: why should the learner want to ‘skip’ all the smaller languages
and reach directly for the larger one?

Definition 8.1.6 (Infinite elasticity) A class of languages L has infinite elasticity
ifdef there exists an infinite sequence of languages L1, . . . , Li , . . . in L, and an infi-
nite sequence of strings x0, x1, . . . , xi , . . . such that ∀ i ∈ N, {x0, . . . , xi } ⊆ Li and
xi+1 �∈ Li .

Theorem 8.1.4 If L admits a limit point, it has infinite elasticity.

Proof The proof is straightforward.

Definition 8.1.7 (Finite elasticity) L has finite elasticity ifdef it does not have infinite
elasticity.
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Again, this will be used to state that a class is identifiable, but will still depend on a gram-
mar representation for the class of languages. And an even stricter restriction allows us to
obtain positive results even more nicely:

Definition 8.1.8 (Finite thickness) L has finite thickness ifdef given any non-empty set
X , the number of languages in L that contain X is finite.

If a class has finite thickness, identification from text will be possible as soon as (1) L is
recursively enumerable, and (2) we have grammars for each language in L.

Definition 8.1.9 Let L be a class of languages. A set TL ⊆ L is a tell-tale set for language
L ifdef ∀L ′ ∈ L, TL ⊆ L ′ =⇒ L ′ �⊂ L .

Notice that a tell-tale set is a set defined by a language, whereas a characteristic sample
depends also on the learning algorithm. Notice also that a tell-tale set is not the set for
which the minimum language containing it is the target, but only for which the target is a
minimal language in the class of all languages containing this set. Furthermore, we do not
(contrarily to the original definition) require the tell-tale set to be computable.

Proposition 8.1.5 A language L in L has a tell-tale set if and only if L is not an
accumulation point of L.

Proof If a language L is an accumulation point, then given any finite set S of strings in
L , there is another language L ′ in L with S ⊆ L ′ � L . Therefore there is no tell-tale set.

Conversely let L be a language without a tell-tale set. Then it means that for any
finite subset S of L , there exists a language L S with S ⊆ L S � L , i.e. we can always
build a smaller language containing any set, so no set can be a tell-tale. This enables the
construction of an accumulation point.

8.1.4 Grammar-dependent results

For sufficient conditions for polynomial identification to be expressed we will have to use
grammars, since computation issues are at stake. So let us suppose that we have associated
with the class of languages L a class of grammars G, for which the membership problem
(w ∈ L(G)?) is decidable.

Suppose we have an algorithm that given a positive sample can always return the
smallest consistent solution for that sample, in the following sense:

Definition 8.1.10 MINCONS is an algorithm which, given a sample S, returns the min-
imal grammar G in M for a good total order <G, where M is the set of smallest (for
language inclusion) consistent grammars, i.e. those such that if S ⊆ L(G ′) ⊆ L(G) then
L(G ′) = L(G).

Notice that we require that the algorithm MINCONS returns a grammar corresponding
to a language such that there is no smaller one that contains the sample, and furthermore
which is the smallest grammar for some well-defined (Noetherian) order.



178 Learning from text

If G (with corresponding class of languages L), which admits a MINCONS algorithm,
is algorithmically minimisable, the following two theorems hold:

Theorem 8.1.6 If G is algorithmically minimisable and has finite elasticity, then G is
identifiable in the limit from text.

Proof If G has finite elasticity, then MINCONS identifies G in the limit.

It should be added that without the condition that the class of grammars is algorithmically
minimisable, identification remains possible.

Theorem 8.1.7 Let G be algorithmically minimisable. G admits an accumulation point
if and only if G is not identifiable from text.

Proof We can use the proof of Theorem 7.2.3 (page 151), to show that G is not identifiable
from text.

Conversely suppose the class has no accumulation point. Then every sequence S0 ⊆
S1 � . . . � Sn � . . . is either finite or, if it is infinite, then there is a point n where there is
only one language L such that Sn ⊆ L . If we have an algorithm that can find a minimally
consistent language, we are done.

One way to learn is to associate with each language some typical examples, in such a
way that we have some enumeration of the languages and the algorithm returns the first
(for the enumeration) language for which all the typical examples have been seen. This
leads to the following definition:

Definition 8.1.11 (Characteristic sets) Let L be a class of languages and L ∈ L. Let A
be a learning function that identifies L from text. Let L ∈ L.

Then CS ⊂ �� is a characteristic set for 〈L ,A〉 ifdef for any presentation
φ ∈ TEXT(L), ∀n ∈ N, CS ⊆ φn =⇒ L(A(φn)) = L .

The same definition, if centred on grammars, becomes:

Definition 8.1.12 (Characteristic sets (grammars)) Let G be a class of grammars and
G ∈ G. Let A be a learning function that identifies G from text.

Then CS ⊂ �� is a characteristic set for 〈G,A〉 ifdef for any presentation
φ ∈ TEXT(G), ∀n ∈ N, CS ⊆ φn =⇒ L(A(φn)) = L(G).

Note that in the case of learning from text, we can use characteristic set for character-
istic sample.

The above definition deserves to be discussed. No condition is put on the way the exam-
ples should be chosen or even on some inclusion relation between the languages and the
characteristic sets. Furthermore the characteristic set obviously depends on the algorithm
we are using: take an algorithm that decides to reject every odd example and learn only
from the even ones. This algorithm would not be able to use the same characteristic set as
one that uses all the data. We leave as an exercise (8.3) to prove that there is no universal
characteristic set.
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Example 8.1.1 Let � = {a,b} and consider the class FIN (�) represented by finite
sets of strings. Consider the algorithm RETURNSAMPLE which returns as a grammar the
exact set of strings seen so far. Then the characteristic sample is the exact set of strings
composing the language.

We can relate characteristic samples to identification in the limit:

Theorem 8.1.8 A language class L is identifiable in the limit by an algorithm A if and
only if each language in the class has a characteristic sample for 〈L ,A〉.

To prove Theorem 8.1.8, we need Lemma 8.1.9 which tells us that the order in which
the presentation is given does not matter for identification.

Definition 8.1.13 An order-independent learner A is a learning algorithm such that
∀n ∈ N, ∀φ, ψ ∈ TEXT(L), if φn = ψn , A(φn) = A(ψn).

Remember that φn is the set of the first n elements from presentation φ, so φn = ψn

corresponds to set (and therefore order-independent) equality.

Lemma 8.1.9 If a class of languages L is identifiable from text, then it is identifiable by
an order-independent learner.

Proof Let A1 be eventually an order-dependent learner. We construct a new learner A2

that reads its input, reorders it in some total order, eliminates repetitions, runs A1 on this
data and returns the result. It is easy to see that identification will be reached by A2, which
is no longer order-dependent.

Proof [of Theorem 8.1.8] If L admits characteristic sets, the associated algorithm A1

identifies in the limit. Conversely, if L is identifiable from text, it is also (by Lemma 8.1.9)
identifiable by some order-independent algorithm A2. And consider any set Y such that A2

does not make any further mind changes. Then this set is characteristic.

Theorem 8.1.10 If L is identifiable in the limit then every language in L admits a tell-
tale set.

Proof If a language does not admit a tell-tale set, it is an accumulation point by
Proposition 8.1.5, and we can conclude by using Theorem 8.1.7.

Example 8.1.2 Let us consider five simple classes of languages over a fixed alphabet �
of size at least 2. In each case the associated grammars are implicit:

• SIN GLE(�) is the set of all singleton languages, i.e. Lu = {u}.
• ABO(�) is the set of the ‘all but one’ languages Lu , where for each u in �, Lu = �� \{u}.
• FIN (�) is the set containing all finite languages over �.
• Let K (u) = {x ∈ �� : x ≤sub-seq u}. CON E(�) = {K (u) : u ∈ ��}.
• Similarly let K K (u) = {x ∈ �� : u ≤sub-seq x}. COCON E(�) = {K K (u) : u ∈ ��}.

Some of the above classes were discussed in Section 3.6.
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Table 8.1. Some classes and their status for learning from text.

Class Accumulation
point

Finite
elasticity

Finite
thickness

Tell-tale
sets

Characteristic
sets

FIN (�) No No No Yes Yes
SIN GLE(�) No Yes Yes Yes Yes
ABO(�) No Yes No Yes Yes
CON E(�) No No No Yes Yes
COCON E(�) No Yes Yes Yes Yes

It can be easily checked that if we consider the definitions of finite thickness, finite
elasticity, characteristic sets, tell-tale sets and accumulation points, one obtains the results
represented in Table 8.1.

8.1.5 Polynomial aspects

There are a number of ways of bounding the resources: one can ask for only a polynomial
(in the size of the target) number of examples before identification. We can want to only
change our mind a small number of times or even only make a number of errors that is
reasonable before converging.

More precisely, suppose we are given a learning algorithm and we want to measure the
quality of the algorithm. Then we should be able to limit:

• the complete runtime of the algorithm, over a typical example or over a worst case,
• the runtime of the algorithm when needing to update the hypothesis, i.e. to get from A( fn) to

A( fn+1),
• the size of the characteristic set,
• the number of implicit prediction errors,
• the number of mind changes.

This leads to a number of definitions, for instance the one already defined in the general
case (as Definition 7.3.7, page 155):

Definition 8.1.14 An algorithm A identifies from text a class G of grammars in the limit
in POLY-IPE time ifdef

• A identifies in the limit G from text,
• A has polynomial update time,
• A makes a polynomial number of implicit prediction errors.

Note that the process of counting implicit prediction errors, sizes of characteristic sets,
or mind changes depends on the intended application. One should naturally count whatever
resource is going to be expensive.
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8.2 Exercises

8.1 Propose a learning algorithm that identifies in the limit from text a specific class,
but that does not admit characteristic samples. Hint: consider a learner that is order-
dependent, i.e. that will be influenced by the order in which it sees the examples.

8.2 The following version of a definition of infinite elasticity (to be compared with
Definition 8.1.6, page 176) was proposed in the literature:

Definition 8.2.1 (Infinite elasticity 2) A class of languages L has infinite elas-
ticity ifdef there exists an infinite ascending chain of languages L0 � L1 � · · · �
Ln � . . . .

A class would again have finite elasticity if it did not have infinite elasticity. Let
us call this form of finite elasticity restricted finite elasticity. Find a class that has
restricted finite elasticity but that cannot be identified in the limit from text. Hint: one
may want to use as a starting point the set of the ‘all but one’ languages ABO(�)
introduced in Example 8.1.2, page 179.

8.3 Prove that as soon as a class of languages is non-trivial, there is no universal charac-
teristic set, i.e. one from which any identifying algorithm will identify each language
as soon as the corresponding set has been presented.

8.4 Find a class that admits accumulation points but not limit points.
8.5 Let BLC(�) be the class Ln = {w ∈ �� : |w| ≤ n}. Find an algorithm that identifies

BLC(�) in the limit from text.
8.6 Prove that the algorithm from Exercise 8.5 works in polynomial update time.
8.7 Prove that the algorithm from Exercise 8.5 does not admit a polynomial characteristic

sample.
8.8 Prove that the algorithm from Exercise 8.5 makes an exponential number of implicit

prediction errors, and also an exponential number of mind changes.
8.9 Prove that BALL(�) and GB(�) (see page 65) are both identifiable in the limit

from text.
8.10 Prove that BALL(�) cannot be identified by a polynomial number of mind changes,

nor of implicit prediction errors.

8.3 Conclusions of the chapter and further reading

8.3.1 Bibliographical background

The approach followed here has concentrated on the algorithmic (and complexity-related)
aspects of learning from text. The alternative approach, closer to the computability issues,
uses the notation TXTEX for the class of language families that are identifiable in the limit
from text.

Identification from text (Section 8.1) was introduced in E. Mark Gold’s seminal paper
(Gold, 1967). A lot of work in the field has been done by researchers in the field of inductive
inference, and more specifically in that of algorithmic learning theory. There have been a lot
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of variants. We have chosen here to present things through the questions of complexity
theory.

The general picture of identification in the limit from text we have given here is
chiefly based on Christophe Costa Florêncio’s PhD (Costa Florêncio, 2003) and on Satoshi
Kobayashi’s ideas as expressed in (Kobayashi, 2003). Other sources for this brief pre-
sentation are Takashi Yokomori’s analysis (Yokomori, 2004), and Dana Angluin and Carl
Smith’s survey (Angluin & Smith, 1983). Theorem 8.1.6 (page 178) is usually attributed to
Keith Wright (Wright, 1989) who also introduced the definition of infinite elasticity, later
corrected by Tatsuya Motoki et al. (Motoki, Shinohara & Wright, 1991). Theorem 8.1.7
(page 178) is by Shyam Kapur (Kapur, 1991).

Henning Fernau generalised a number of such results by introducing the elegant notion
of function distinguishability (Fernau, 2000, 2002): if the language admits a (special
sort of) function to sort out the cases of non-determinism, then learning from text is
easier.

The results on characteristic sets are to be compared with Dana Angluin’s definition of
tell-tale sets (Angluin, 1980) or Lenore and Manuel Blum’s definition of locking sequences
(Blum & Blum, 1975). The flavour here is more that of grammatical inference, along the
lines of (de la Higuera, 1997).

Theorem 8.1.10 is by Dana Angluin, who introduced the tell-tale sets (page 179), even
if her definition also takes into account computability aspects (Angluin, 1980).

Section 8.1.5 describes work on polynomial identification from text: actually too little
has been studied in this setting, two notable exceptions being papers by Takashi Yokomori
(Yokomori, 2003, 2005).

8.3.2 Some alternative lines of research

The inductive inference community has obtained a variety of results in the setting of iden-
tification from text. The classes of grammars under scrutiny are sometimes more artificial,
but one can find ideas concerning how to do one-shot learning (the learner has to say ‘halt’
when it knows it has learned), or how to refute (the learner has to declare, when necessary,
that no concept in the class is going to be acceptable) (Angluin & Smith, 1983, Jain et al.,
1999, Osherson et al., 1997).

A particular issue arises when probabilities are introduced. One can either draw a dis-
tribution over the presentations or over the examples themselves. Typically, the definition
of identification in the limit will include the addendum ‘with probability one’. We will
explore some of these ideas in Chapter 10. Other lines of research have been followed in
(Zeugmann, 2006) and in the inductive inference papers.

8.3.3 Open problems and possible new lines of research

Identification in the limit and the polynomial variants may be of use when trying to study
complexity for online and incremental problems. The key question of being able to study
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complexity issues in problems that do not fit the traditional model (‘here is the data, this is
the decision or optimisation problem you have to solve, solve it’) may be able to receive
at least a partial answer through more effort on the question of polynomial identification
in the limit. Indeed, there is a mixture of short-term goals (do as well as you can with the
data available at that point) and long-term goals.
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Active learning

No one can tell you how to do it. The technique must be learned the way I did it,
by failures.

John Steinbeck, Travels with Charlie

Similarly, a responsive informant could answer questions involving non-
terminals, or instead of responding ‘No’ could give the closest valid string.

Jim Horning (Horning, 1969)

There are several situations where the learning algorithm can actively interact with its
environment. Instead of using given data, the algorithm may be able to perform tests, create
new strings, and find out how far he may be from the solution. The mathematical setting to
do this is called active learning, where queries are made to an Oracle.

In this chapter we cover positive and negative aspects of this important paradigm in
grammatical inference, but also in machine learning, with again a special focus on the case
of learning deterministic finite automata.

9.1 About learning with queries

In Section 7.5 we introduced the model of learning from queries (or active learning) in
order to produce negative results (which could then also apply to situations where we have
less control over the examples) and also to find new inference algorithms in a more helpful
but credible learning setting.

9.1.1 Why learn with queries?

Active learning is a paradigm first introduced with theoretical motivations but that for a
number of reasons can today be considered also as a pragmatic approach.

Some of the theoretical reasons for introducing the model are:

• To propose a model sufficiently general to cover most cases, not only situations where precise
questions are asked to the environment (like ‘does this string belong?’) but also where asking for

184
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a new example is an action. Indeed, even if this is not the chosen way, sampling can be seen as a
dialogue with an Oracle.

• To make use of additional information that can be measured; if the initial setting is that of imposed
data, here we consider that asking some specific questions is allowed, but the type of question and
the size of the answers should be measured.

• To explain thus the difficulty of learning certain classes: if you can prove that the number of queries
to be asked is too large, then learning with imposed examples is going to be at least as hard.

• To discover new algorithms making use of this new information.

On the other hand, there are a number of reasons for believing that this setting is not just
theoretical:

• In specific applications, testing is possible. For instance, this is the case of circuit testing, where the
automaton may represent a circuit and the testing data would be the input sequences to the circuit,
chosen with the idea to do as few (expensive) tests as possible. This is also the case in robotics
where the robot can perform some experiment in order to interrogate its environment/Oracle before
taking decisions or building some map of its situation.

• In World Wide Web applications, we may want to consider the Web as a formidable Oracle, and
search engines as the means to use queries, even very elaborate ones.

• There are more and more situations where there is too much data, or where the labelling of the
data is too expensive. A typical situation is that of automatic translation: the task of translating
an individual sentence may not require the construction and use of a huge bilingual corpus. In
an approach closer to transductive learning, it may be easier to obtain the translation through the
labelling of just some sentences.

• In modelling language acquisition situations where children learn from their parents, the mother
can be described in the paradigm of learning from an Oracle or active learning. This can be
extended to other situations where interaction with a partner or a teacher is part of the learning
process.

To ensure better readability, and also to pinpoint the mother-child learning setting, we will
call the Oracle a she and the learner a he.

9.1.2 Some types of queries

The active learning paradigm is based on the existence of an Oracle which can be seen in
principle as a device that:

• knows the language and has to answer correctly,
• can only answer queries from a given set of queries.

When the Oracle finds herself in a situation where various legal answers are possible, if
she is asked to sample following a given distribution, she does so. In all other cases, she
does not handle probabilities: there is no distribution over the possible answers she may
give. But then, if we want to analyse if convergence of the learning algorithm is possible
or not, we should rely on a worst-case policy: the Oracle does not ‘want’ to help.
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Different types of queries (corresponding to Oracles that will be more or less powerful)
have been defined in the literature. The main ones in the non-probabilistic setting are:

• Membership queries: MQ. A membership query is made by proposing a string to the Oracle, who
answers YES if the string belongs to the language and NO if not. We will denote this formally by:

MQ : �� → {YES,NO}
• Equivalence queries (weak): WEQ. A weak equivalence query is made by proposing a grammar

G to the Oracle. The Oracle answers YES if the grammar is equivalent to the target and NO if not:

WEQ : G → {YES,NO}
• Equivalence queries (strong): EQ. A strong equivalence query is made by proposing a grammar

G to the Oracle. The Oracle answers YES if the grammar is equivalent to the target and returns a
string in the symmetrical difference between the target and L(G) if not:

EQ : G → {YES} ∪��

• Subset queries: SSQ. A subset query is made by proposing a grammar G to the Oracle. The Oracle
answers YES if L(G) is a subset of the target language and returns a string from L(G) that is not
in the target language if not:

SSQ : G → {YES} ∪��

9.1.3 Correct learning with queries

Describing a problem of learning with queries requires defining precisely how the lan-
guages are represented and what the admissible queries are. It will also be necessary, when
using queries where the Oracle might return some counter-example, to count the length of
this counter-example as the size of the data and not as the result. This can be argued and
may seem strange, but is required if one wants to have an independent Oracle.

This point should be taken seriously (and has been by the different researchers working
in the field). Some alternative ideas that might be worth considering are:

• One may want to only consider strings of bounded length as counter-examples: the Oracle should
try to return one such string if possible.

• One should also be careful with not wanting to allow some tricky strategy where an equivalence
query can be made with the sole objective of gaining time, not information!

We will therefore present our results in terms of classes of grammars (or representations)
with the intended meaning that:

• The language identified or learnt is the one corresponding (L(G)) to the learnt grammar G.
• If a grammar G is the target then learning an equivalent grammar G′ corresponds to completing

the identification task successfully.

We first describe the interactive active learning process. We define a class of grammars
G and the sort of queries we are allowed to make (and that therefore the Oracle will have
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to answer). We call this class of queries QUER. Typically if the learner is only allowed
to make membership queries, we will have QUER = {MQ}. Given a run of our learn-
ing algorithm, we can break this run into the different phases leading from one query to
the next. Let us call query point the moment (defined by an integer corresponding to the
number of queries made up to that point) before a new query is made. We can count:

• the overall runtime,
• the length of the longest counter-example seen at some given query point,
• the update runtime, consisting of the time spent from one query point to the next.

Correct learning can be defined as follows:

Definition 9.1.1 A class G is identifiable in the limit with queries from QUER ifdef

there exists an algorithm A such that given any grammar G in G, A identifies G in the
limit, i.e. returns a grammar G ′ equivalent to G and halts.

Definition 9.1.2 Let ρ be a run of a learner A. Let 〈r1, r2, . . . rm〉 be the sequence of
replies to queries 〈q1, q2, . . . qm〉 the Oracle makes during run ρ. We will say that A is
polynomially bounded ifdef there exists a polynomial p(, ) which given any target gram-
mar G and any run ρ, at any query point k of the run, denoting the runtime before that
point by tk , we have:

• k ≤ p
(‖G‖,max{|ri | : i < k})

• |qk | ≤ p
(‖G‖,max{|ri | : i < k})

• tk ∈ O(
p(‖G‖,max{|ri | : i < k})

In other words at any query point k of the run, indicating the moment before query qk is
made, the number of queries made, the computation time spent up to then and the size of
the next query are all bounded by the size of the target and the length of longest information
returned by the Oracle up to that point.

Definition 9.1.3 A class G is polynomially identifiable in the limit with queries from
QUER ifdef there exists a polynomially bounded learner A which given any grammar G
in G, identifies G.

In the above definition a couple of elements need to be discussed:

• The length of the information (usually a counter-example) returned by the Oracle is a parameter
(not a result) for the complexity of a learner. Indeed, the Oracle can choose to return any consistent
result. But if this result is exponentially longer than the size of the encoding of the target, we should
still be allowed to read it and deal with it.

• There is the possibility of building a degenerate learning algorithm if the complexity is only mea-
sured at the end of the run of the algorithm: one could choose to spend time freely, identify
the correct target and make a query where the only possible answer is exponentially long, thus
allowing a posteriori polynomial time.
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9.2 Learning from membership queries alone

In the previous section we used algorithm LSTAR to prove that DFAs were learnable when
we could access an Oracle that answered membership and strong equivalence queries. A
reasonable question is to try to learn with less powerful queries. We prove here that mem-
bership queries alone are insufficient to learn DFAs. In fact, we prove the stronger result
that we can also use subset queries and weak equivalence queries, without doing much
better.

The intuition is to keep in mind lock automata: these automata recognise just one string
of length n. With a two-letter alphabet there are 2n such automata, each of size n. It is easy
to see that to discard the 2n − 1 other automata, one will need 2n − 1 queries. . .

Lemma 9.2.1 If a class L contains a non-empty set L∩ and n sets L1, . . . , Ln such that
∀i, j ∈ [n] Li ∩ L j = L∩, any algorithm using membership, weak equivalence and subset
queries needs in the worst case to make n–1 queries.

Proof The Oracle will answer each query as follows:

• To MQ(x) with x in L∩, YES, and the learner cannot discard any language.
• To MQ(x) with x in Li \ L∩, NO, and only language Li can be discarded by the learner.
• To WEQ(L∩), NO, and only language L∩ can be discarded by the learner.
• To WEQ(Li ), NO, and only language Li can be discarded.
• To SSQ(L∩), YES, and no language can be discarded.
• To SSQ(Li ), NO, with counter-example xi from Li \ L∩ and only language Li can be discarded.

Corollary 9.2.2 DFA(�) cannot be identified by a polynomial number of membership,
weak equivalence and subset queries.

Proof Let us consider L∩ = ∅, and Li = {mi } where mi is the number i written in base 2
over n bits using alphabet {0,1}. Therefore, as this class is of size 2n + 1 and corresponds
exactly to the situation covered by Lemma 9.2.1, a total of 2n membership queries, subset
queries and weak equivalence queries will be needed to learn.

9.3 Learning from equivalence queries alone

The goal of this section is to give the approximate fingerprints proof (see Section 7.5.4)
that equivalence queries alone are insufficient for tractable learning of DFAs. The result,
as a corollary, applies to more complex classes. The proof is due to Dana Angluin, and is
as instructive as the result itself.

Theorem 9.3.1 DFA(�) cannot be identified by a polynomial number of strong
equivalence queries.

The rest of the section is devoted to the proof of Theorem 9.3.1. Let us first describe the
idea.
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The goal is to make use of approximate fingerprints: let us consider for each value of n,
a special class of languages (represented by automata of size n) Hn over a fixed alphabet
� = {a,b}.

We aim to build two languages In and En (indexed by an integer n) where In contains
strings that belong to all languages in Hn and En contains strings that belong to only very
few languages in Hn .

Then given any candidate language C (perhaps not in Hn), and given any polynomial
r (), with an integer n sufficiently large, we can always find a string w of length less than
r(n) such that: ∣∣∣∣{L ∈ Hn : [w ∈ In ⇐⇒ w ∈ L]}

∣∣∣∣ < |Hn|
r(n)

Answering NO to EQ(C) and returning w as a counter-example therefore will result in
only eliminating a sub-polynomial fraction of Hn , i.e. those automata that are consistent
with C on this particular string.

By sub-polynomial fraction we mean a fraction of Hn : we intend that by repeating this
process a polynomial number of times, there will always be too many candidates left for
identification to take place.

We now start the technical proof of Theorem 9.3.1.

Proof We build Hn as follows:

L(i, n) = {ucvcw : u ∈ �i−1, c ∈ �, v ∈ �n−1, w ∈ �n−i }, i ∈ [n]

Note: L(i, n) is accepted by a DFA with 3n + 1 states (see Figure 9.1). We also notice
that there are only n languages L(i, n), for a given value of n. We continue the construction
as follows. By concatenating n of these L(i, n) we get languages that only contain strings
of length 2n2:

Hn = {L(i1, n)L(i2, n) · · · L(in, n)}, ∀ j ∈ [n], i j ∈ [n]

Each language L(i1, n)L(i2, n) · · · L(in, n) is accepted by a DFA which has 3n2 − 1
states. The number |Hn| of such languages is nn .

0
�i−1

a

b

�n−1

�n−1

a

b

�n−i

Fig. 9.1. The automaton for L(i, n).
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We now consider In , the intersection of all the languages in Hn . The strings in this
language have the property of coinciding, in each of the n substrings, in each of the n
positions. Thus:

In = {x1x1x2x2 · · · xn xn : ∀i, xi ∈ �n}
Now notice that if querying with a language C whose intersection with In is not In ,

all the Oracle has to do is answer with a string from In \ C and no language in Hn is
eliminated.

Notice also that In can be recognised by a DFA (it is a finite language). But it can be
easily proved that this DFA has to have an exponential number of states.

We now turn to defining En .
Let dHamming be the Hamming distance (used in this case because all strings have identi-

cal length, see Definition 3.4.1, page 55). We build En as a set containing strings that are
‘far away’ from strings in In .

En =
{

x1 y1x2 y2 · · · xn yn : ∀i ∈ [n], xi ∈ �n yi ∈ �n ∧ dHamming(xi , yi ) >
n

4

}
En contains strings that are far (for the Hamming distance) from strings in In .

Furthermore since a string xy belongs to L(i, n) only if x(i) = y(i) we have:

∀w ∈ En,

∣∣∣∣{L ∈ Hn : w ∈ L}
∣∣∣∣ ≤ (

3n

4

)n

Therefore since the size of Hn is exponentially larger than the above quantity†, En is
defined as required, and if an equivalence query EQ(A) is made for L(A) ∩ En �= ∅ the
Oracle can return a string from En and only a sub-polynomial fraction of languages in Hn

is eliminated.
The situation is summarised in Figure 9.2: a DFA that would recognise all strings from

In and none from En would be of exponential size.

In

L(A) En

Fig. 9.2. The impossible situation: no automaton with the behaviour of A can be of
polynomial size.

† nn is exponentially larger than
(

3n
4

)n
because

(
3n
4

)n

nn =
(

3
4

)n
.
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Formally:

Let r() be any polynomial. There exists n such that given any DFA A with
r(n) states,

• either ∃w ∈ En : w ∈ L(A),
• or ∃w ∈ In : w �∈ L(A).

To prove this we make three claims:

Claim 1. ∀w ∈ �n, ∃c < 1 : |{x ∈ �n : dHamming(x, w) ≤ n
4 }| < 2cn .

From this it follows that there are fewer than 2cn strings close to w.

Claim 2. Given any polynomial r(), there exists n such that if A is a complete DFA of size
less than r(n) with In ⊆ LA and qi is any state of A, then ∃x, y ∈ �n, dHamming(x, y) > n

4
such that δ(qi , x) = δ(qi , y).

The reason for this is that there are 2n strings of size n and since the DFA is complete,
given any state qi there is another state q j reached by at least 2n

r(n) strings. And since
2n

r(n) > 2cn , then necessarily two of these strings are at distance at least n
4 from each other.

Claim 3. Let A be a DFA of size less than r(n) such that In ⊆ LA. Then LA ∩ En �= ∅.
Indeed from Claim 2, ∃x1, y1 ∈ �n, d(x1, y1) >

n
4 and δ(qλ, x1) = δ(qλ, y1).

Then δ(qλ, x1x1) = δ(qλ, x1 y1) = q1. By induction, ∀i, ∃xi , yi ∈ �n ,
dHamming(xi , yi ) >

n
4 such that δ(qi−1, xi ) = δ(qi−1, yi ).

Therefore δ(qi−1, xi xi ) = δ(qi−1, xi yi ) = qi

Concluding: ∃x1, .., xn, y1, .., yn ∈ �n , with ∀i ≤ n dHamming(xi , yi ) >
n
4 such that

δ(qλ, x1x1x2x2 · · · xn xn) = δ(qλ, x1 y1x2 y2 · · · xn yn).
And since x1x1x2x2 · · · xn xn ∈ In ⊆ LA then x1 y1x2 y2 · · · xn yn ∈ LA.

Corollary 9.3.2 DFA(�) cannot be polynomially identified in the limit with a
polynomial number of prediction errors when learning from an informant.

Proof [sketch] A prediction error (see Definition 7.3.4, page 155) is made when the new
string is inconsistent with the current hypothesis. If we could make only a polynomial
number of prediction errors we could deduce an algorithm that identifies with a polynomial
number of strong equivalence queries.

9.4 PAC active learning results

There is a general agreement that equivalence queries play the same part as a structurally
complete sample (all rules of the grammar are exercised), but also as the error parameter
ε in PAC learning. The idea therefore is to use the learning algorithm LSTAR but replace
the equivalence queries by sampling: if on a random sample the target automaton and
the hypothesis automaton coincide, then (with high confidence) the error, if any, must be
very low.
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We can trade off equivalence queries for sampling queries in exchange for a small mis-
take. We will also need to discuss the issue that sampling queries may be just as difficult
to get hold of.

It can be noted that equivalence queries are used in the algorithm LSTAR in order to
check at each moment where the algorithm has come up with a closed and consistent
solution whether this solution is the correct one. An attractive alternative is to use sampling
in order to have some sort of a statistical equivalence query. The algorithm would work
as follows: at each moment an equivalence query is required, draw instead m labelled
examples x1, . . . , xm and check if the current hypothesis labels them in the same way as
the target does (the true labelling). If ∀i ∈ [m] xi ∈ L(G) ⇐⇒ xi ∈ L(GT ) then the
error is most likely small. . . but just how small? We want this error to be at most ε. Let
us suppose for contradiction that the true error is more than ε. Then the probability of
selecting randomly one example where G and GT coincide is less than 1 − ε and the
probability of selecting randomly m examples where G and GT coincide (all the time) is
now less than (1 − ε)m .

But now we have the following bound: (1 − ε)m ≤ e−εm . So by bounding this value by
δ we have:

δ ≥ e−εm ⇐⇒ ln δ ≥ −εm

⇐⇒ ln

(
1

δ

)
≤ εm

⇐⇒ m ≥ 1

ε
ln

(
1

δ

)
Therefore, by sampling at least 1

ε
ln( 1

δ
) labelled examples and testing them against the

current hypothesis, the algorithm can make a stochastic equivalence query.
But the number of equivalence queries is unknown in practice when the learner starts,

and therefore the algorithm has no control over the δ parameter. In order to make sure the
total confidence is at least 1− δ, the size of each sample (or of the calls to EX()) should be

at least mi = 1
ε

(
ln
(

1
δ

)
+ i ln 2

)
. By doing this, one ensures that the confidence parameter

δ is at most
∑

i>0(1 − ε)mi .

9.5 Exercises

9.1 An equivalence query is called proper if it has to be made with a function from the
class under inspection. Does the proof from Section 9.3 hold for improper equivalence
queries?

9.2 What happens if the Oracle returns the smallest counter-example? Write an algorithm
for the case of DFAs.

9.3 Learn balls (see Section 3.6.1) of strings with equivalence queries and/or membership
queries.
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9.4 Definition 9.1.2 (page 187) still seems to leave a loophole as the total number of
queries is not bounded a priori. Is it possible to build an algorithm that uses this to
make many more queries than necessary and nevertheless learn?

9.5 A correction query (CQ) is made by presenting a string to the Oracle. She will answer
YES if the string is in the target language, and return a correction of the string if
not. A suffix correction is the shortest string W V (for the lex-length order) in L that
admits w as a prefix. For example, given the DFA from Figure 13.9, the correction
of string ba is itself whereas the correction of b is ba. If no correction is possible
(i.e. if w�� ∩L = ∅) the Oracle answers NO. Prove that 0-reversible languages (see
Section 11.2) are learnable from suffix correction queries.

9.6 Build an example where correction queries don’t help over membership queries: prove
that DFA(�) may need an exponential number of suffix correction queries.

9.6 Conclusions of the chapter and further reading

Active learning is becoming an increasingly important topic, partly because researchers
have shifted from considering this as a purely theoretical question to studying it as a very
pragmatic one!

9.6.1 Bibliographical background

The model of learning from queries is due to Dana Angluin, who introduced it (Angluin,
1987b) and presented the first negative proofs (Angluin, 1987a), and also the algorithm
LSTAR (see Chapter13) (Angluin, 1990).

The different hardness proofs of Sections 9.2 and 9.3 are due to Dana Angluin. For the
case of the membership queries only, this can be found in (Angluin, 1987b). The proof of
the non-learnability of the DFA with equivalence queries only can be found in (Angluin,
1990): we have followed it closely.

In that paper Dana Angluin introduced the combinatorial notion of approximate finger-
prints, of independent interest: these correspond to a subset of hypotheses out of which
only a small fraction can be excluded, given any counter-example, resulting in the neces-
sity of using an exponential number of equivalence queries to isolate a single hypothesis.
Ricard Gavaldà furthered this study in (Gavaldà, 1993).

Lenny Pitt (Pitt, 1989) used this result to prove the intractability of the task of identifying
DFAs with only a polynomial number of prediction errors. This result is Corollary 9.3.2.

The links between learning with queries and PAC learning have been studied in a number
of papers including. A combinatorial point of view of learning with queries was initiated in
(Balcázar et al., 1994a), and an overview of results related with dimensions can be found
in (Angluin, 2004).

Most studies are based on the general idea that the Oracle is some perfect machine.
Indeed, Dana Angluin (Angluin, 1987a) actually proposed techniques to implement the
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Oracle. A contrario, one can thing of an Oracle as something quite different from a
deterministic machine. Some examples of this approach are as follows:

• Learning neural networks (Giles, Lawrence & Tsoi, 2001): An alternative approach to learning
from sequences is to train recurrent neural networks (Alquézar & Sanfeliu, 1994). But once these
are learnt, they need to be interpreted or else we are left with black boxes. One way to do this is to
use the black box/neural network as an Oracle.

• Learning test sets (Bréhélin, Gascuel & Caraux, 2001) and testing hardware (Hagerer et al., 2002)
are other activities where there is an unsuspected Oracle: the actual electronic device we are test-
ing can be physically tested, by entering a sequence. The device will then be able to answer
a membership query. Note that in that setting equivalence queries will usually be simulated by
sampling.

• System SQUIRREL (Carme et al., 2005) is used for wrapper induction. The system will interro-
gate the (human) user who will mark web pages. The marking will be used by SQUIRREL to learn
a (sort of) tree automaton. The markings correspond to equivalence queries.

• The World Wide Web can also be seen as an Oracle. The knowledge is there, you cannot expect it
to be sampled for you, nor to use it all. Interrogating the web in order to pick the useful information
for learning is becoming an important task.

• In the field of robotics, a generally important task is that of building a map. For that, the robot is
allowed to explore and therefore to interact with the environment (Rieger, 1995, Rivest & Schapire,
1993).

The real problem is with the equivalence queries which cannot be simulated. A common
mistake is to take the argument, ‘you can trade off the equivalence queries for a (δ, ε) pair
in the PAC framework’. But this is not exactly true. You can only do this if you have access
to another Oracle that can sample the set of all strings according to the distribution. If one
takes the above applications as examples, doing this sampling is actually going to be a
really hard problem. There is therefore the need to suppress equivalence queries and find
some alternative to learn from membership queries only, or from some form of membership
queries.

9.6.2 Some alternative lines of research

Active learning, in a broad sense, corresponds to the capacity of learning by choosing one’s
examples. In the machine learning literature, it is more often related with the fact that the
learner can change in some way the distribution it is working with. There is therefore still
a gap to be bridged between the two conceptions of active learning, and so there is a lot of
room for further research.

9.6.3 Open problems and possible new lines of research

There are a number of lines of research that might be investigated. And the interest in many
applications towards active learning means that this is to be a very active field of research
indeed. To name just a few, we may want to consider some of these with high priority:
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(i) Prove that neither context-free grammars nor non-deterministic finite automata can be learnt by
a minimally adequate teacher (MAT). A related result is that it can be proved that these are not
learnable with membership queries in a PAC setting (Angluin, 2004).

(ii) Provide a reasonable definition of noisy membership queries, or fuzzy membership queries that
would somehow tell us (in a consistent way) that a string probably/possibly belongs to the target
language, and devise a learning algorithm for an interesting class of languages.

(iii) In the case of robotics, the customary approach is to learn a map (which can, in a simplified way,
be a graph) of an area. What happens when there are several robots (a swarm) who intend to
learn this map in a cooperative way? Work on distributed versions of active learning algorithms
can be of help for this (Balcázar et al., 1994a).

(iv) Learn negotiation protocols. This problem was formally proposed in (de la Higuera, 2006b):

Consider the situation where two adversaries have to negotiate something. The goal
of each is to learn the model of the opponent while giving away as little information as
possible. The situation can be modelled as follows:

Let L1 be the language of adversary 1 and L2 be the language of adversary 2. We suppose
here that the languages are regular and can be represented by deterministic finite automata
with respectively n1 and n2 states. The goal for each is to learn the common language, i.e.
language L1 ∩ L2.

The rule is that each adversary can only query the opponent by asking questions from
his own language. This means that when player 1 names string w, then w ∈ L1. In turn,
the adversary will state whether or not string w belongs to language L2.

The goal of each adversary is to identify language L1 ∩ L2. This means that the protocol
goes as follows:

• Player 1 announces some string w from L1. Player 2 answers YES if this string belongs to L2, NO

otherwise.
• From this answer player 1 may update his hypothesis H1 of language L1 ∩ L2.
• From the information w ∈ L1, player 2 may update his hypothesis H2 of language L1 ∩ L2
• Player 2 announces some string w from L2.
• And so on. . .

From this setting there are a number of problems to be solved:

• A good learning algorithm for this task can be defined in alternative ways. One can want to be
uniformly better than an adversary, or than all the adversaries. . . Propose definitions of ‘good
learning’.

• What happens if both opponents ‘agree’ on a stalemate position, i.e. are satisfied with an identical
language L which in fact is a subset of the target?

• What is a good strategy? Can identification be avoided? Are there any ‘no win’ situations? Are
there strategies that are so close to one another (corresponding to what Dana Angluin called ‘lock
automata’) that through membership queries alone, learning is going to take too long?

• Using the definition above, find a winning algorithm in the case where n1 = n2.

And, along similar lines to (Carmel & Markovitch, 1998a), one may adapt this theoret-
ical analysis to consider learning the strategy of the adversary (see also the introductory
example in Chapter 1); if we notice the adversary is daring/cautious, do we have a better
strategy?
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Learning distributions over strings

El azar tiene muy mala leche y muchas ganas de broma.
Arturo Perez Reverte

All knowledge degenerates into probability.
David Hume, A Treatise on Human Nature, 1740

If we suppose that the data have been obtained through sampling, that means we have (or
at least believe in) an underlying probability over the strings. In most cases we do not have
a description of this distribution, and we describe three plausible learning settings.

The first possibility is that the data are sampled according to an unknown distribution,
and that whatever we learn from, the data will be measured with respect to this distribu-
tion. This corresponds to the well-known PAC-learning setting (probably approximately
correct).

The second possibility is that the data are sampled according to a distribution itself
defined by a grammar or an automaton. The goal will now no longer be to classify strings
but to learn this distribution. The quality of the learning process can then be measured
either while accepting a small error (most of the time, since a particular sampling can have
been completely corrupted!), or in the limit, with probability one. One can even hope for a
combination of both these criteria.

There are other possible related settings that we only mention briefly here: an important
one concerns the case where the distribution in the PAC model is computable, without
being generated by a grammar or an automaton. The problem remains a classification
question for which we have only restricted the class of admissible distributions. This
responds in part to a common attack against the PAC model, namely that wanting to
beat any distribution is too hard and the reason why there are so few positive results.
This leads to definitions based on Kolmogorov complexity, usually called Simple-PAC
or PAC-S: a good distribution is (in a very simplified view) one where the simple strings
have higher probability, whereas the complex ones (those that are incompressible) have
very low probability.

A common feature in all cases is that the distribution does not change over time.
Another common feature is that the learning algorithm has to learn a grammar given a

confidence parameter δ and an error parameter ε. The error parameter ε will measure how

196
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far from the ideal solution we should accept to be. Obviously the smaller this parameter,
the more examples and time the learner should be allowed in order to meet the bound.
Typically, these resources will be functions of 1

ε
. On the other hand one can never be sure

that the sampling process is significant. Obviously, we will only sample a finite number
of times, and therefore, we can expect to be unlucky from time to time. This is taken into
account by the confidence parameter δ. Inside δ we will put the probability that sampling
has gone wrong. Again, the smaller the δ, the more resources the learner will need.

10.1 About sampling

The first problem about sampling is that it may not be that easy to do! There are many
situations where there is a distribution over the strings, but just ‘picking a string’ is not that
easy. Let us suppose nevertheless for the moment that this is not the case and that we are
in a context where sampling is possible.

From a theoretical point of view let us imagine we are sampling by using a PFA. This
defines a distribution over strings so it seems that it would be easy to use the PFA. But,
unless the underlying language is finite, the generation process only terminates with prob-
ability one! Indeed, since a string is generated character by character, there is a loop in the
PFA (if the underlying language is infinite) and therefore the probability of adding another
character is not null. Indeed, the probability of generating an infinitely long string is zero,
but the problem remains.

We will therefore have to make a distinction between learning using probabilistic queries
(such as EX) and learning using exact queries (for instance if we interrogate the Oracle and
ask for the probability of a given string).

In the case of learning from strings, when sampling, we have to deal with several
different issues: the cost, the distribution and being able to specialise the queries.

Even if in practice, sampling may have a cost, we will consider that sampling is done
through using a very simple query EX(), which returns in O(1) a string, with its label; the
length of this string therefore only intervenes when we read it. Again, by doing this we
are not addressing the difficult question of the generating process terminating only with
probability one. The position we choose is more practical than theoretical.

If we have access to different distributions, we will indicate which one we use when
sampling as follows: EXD() gets a new example using the distribution D.

We are going to sample examples which will be used to learn from. In the case of strings,
there is always the risk (albeit often small) of sampling a string too long to account for in
polynomial time. In order to deal with this problem, we can sample from a distribution
restricted to strings shorter than a specific value given by the following lemma:

Lemma 10.1.1 Let D be a distribution over ��. Then given any ε > 0 and any δ > 0,
with probability at least 1 − δ we have: if we draw, following distribution D, a sample
S of size |S| at least 1

ε
ln 1

δ
, the probability that a new string x is longer than any string

seen in the sample is less than ε. Formally, if we write μS = max{|y| : y ∈ S}, then
PrD(|x | > μS) < ε.
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Proof Remember that the sample can be considered as a random variable. Denote by με
the smallest integer such that the probability of a randomly drawn string being longer than
με is PrD(�>με ) < ε.

A sufficient condition for PrD(|x | > μS) < ε to hold is that we take a sample large
enough to be nearly sure (i.e. with probability at least 1 − δ) of having at least one string
longer than με . On the contrary, the probability of having all n strings in S of length
bounded by με is at most (1−ε)n . Using the fact that (1−ε)n > δ implies that n < 1

ε
ln 1

δ
,

it follows that it is sufficient to take n > 1
ε

ln 1
δ

to have a convenient value of μS .

The above result should not mislead us to believe that we have gone from distribution-free
learning to a setting where the distributions are controlled. We are just indicating that if we
are asked to learn for a given pair ε, δ then we can test (for δ/2 and ε/2) in order to get a
bound we can work with. That means that at the end of the learning process the errors will
sum up and we will get the desired result over all strings in ��.

There are usually two ways of describing a distribution learning algorithm. The first con-
sists of supposing the sample is already present, that it has randomly been drawn according
to the distribution. In that case we should learn from there, and the sample being part of the
data, it is reasonable to consider tractability issues depending on the size of this sample. In
practical settings this is usually what the algorithms do, and we will present them in that
way for the task of learning probabilistic automata (in Chapter 16) and for that of estimat-
ing the parameters of an automaton or a grammar (in Chapter 17). The second possibility
(which we will follow in this chapter) is that the learning algorithm starts from nothing and
that sampling is part of the learning process. This allows a better measure of the hardness
of the learning problems (which is the goal here). It should be added that both paradigms
can reduce to each other, at the price of technical details.

The algorithm can query an Oracle: It may ask for an example randomly drawn accord-
ing to the distribution D. The query will be denoted EX(). When the Oracle is only
being queried for a positive example of a language we will write POS-EX(). Finally, if
we pass a value m bounding the length of the admissible strings, we will write EX(m)
(or POS-EX(m)) and the Oracle will return a string drawn from D(L), D(�≤m) or from
D(L ∩ �≤m), where we denote by D(L) the restriction of distribution D to the strings in
L: PrD(L)(x) = PrD(x)

PrD(L) if x ∈ L , 0 if not. PrD(L)(x) is undefined if L is the empty set.
This idea is extended to the notion of specific sampling (which we discussed briefly in

Chapter 7, page 163), consisting of sampling for a string that has a chosen property.

10.2 Some bounds

A soon as an underlying distribution exists over ��, we can consider sampling and the first
important question is:

How good is my sample?
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Now the question in itself is ill-posed: is a sample of 500 heads and 500 tails good or bad
for an unbiased coin? In other words, once the sample is there, where is the randomness?

The correct question is therefore a priori:

How good is my sample going to be?

This means that when measuring statistical properties related to a sample, we will
consider the sample as a random variable.

The next issue is to measure this, and we will have to use distances. The key idea is to be
able to say that the sample is with high probability going to be representative, in which case
learning should be able to take place. We recall here some of the main sampling bounds
used in machine learning.

Chernov additive bounds measure the probability that in a sample randomly drawn from
a distribution D, if we are measuring some event of probability p over this sample, then
we have

∀ε > 0, ∀n ∈ N, PrD

(
f

n
− p > ε

)
< e−2nδ2

where the sample is of size n and the observed frequency is f . Notice that the test is
one-sided only.

The Hoeffding bound is derived as follows. For the observed frequency f (over n trials)

of a Bernoulli variable of probability p, given some value δ > 0 and ε =
√

1
2n log 2

δ
, then

with probability greater than 1 − δ, ∣∣∣∣p − f

n

∣∣∣∣ < ε (10.1)

If we now turn our attention to the size of a sample with respect to δ and ε, we can rewrite
the above as follows. If we sample at least n > 1

2ε2 log 2
δ

elements, then with probability
greater than 1 − δ: ∣∣∣∣p − f

n

∣∣∣∣ < ε

Practically, we may be given two samples extracted from the same distribution, and
we want to measure if (with high probability) these two samples come from the same
distribution or not. We cannot do this without prior knowledge of the parameters, but if we
have two samples of respective sizes n1 and n2 over which the observed frequencies of the
event are respectively f1 and f2, we can use:∣∣∣∣ f1

n1
− f2

n2

∣∣∣∣ < ε

which is true with probability at least 1 − δ, with ε =
√

1
n1+n2

log 2
δ
.

Suppose now we have a distribution D over ��, and suppose we sample n strings fol-
lowing D. We denote such a sample by XD,n , which can therefore be used as a random
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variable. Then the empirical distribution corresponding to this random variable is denoted
X̂D,n .

Consider now some testable property φ over a set of strings. We want to measure how
close X̂D,n is to D using φ as a measure. This means that in the above equations we use
|XD,n|φ instead of f and |XD| instead of n, where the notation |XD,n|φ measures the
number of times property φ is verified in sample XD,n (see Section 5.4.2, page 103).

10.3 PAC-learning languages

The question here is not to learn underlying distributions, but to learn a classifier in a world
where the strings belong (or not) to a language and there is a distribution over the strings,
a distribution that will be followed both when we sample strings to learn from and when
we have to sample strings to check if whatever we have learnt is of any value.

The combinatorial results from Chapter 6 imply that exact polynomial identification is
very often too hard to obtain for most classes of grammars; this might still leave room
for approximate learning. The PAC paradigm has been widely used in machine learning to
provide a theoretical setting for this.

Definition 10.3.1 (ε-good hypothesis) Let G be the target grammar and H be a hypoth-
esis grammar over �. Let D be a distribution over ��. We say, for ε > 0, that H is an
ε-good hypothesis with respect to G ifdef PrD

(
x ∈ L(G)⊕ L(H)

) ≤ ε.

A learning algorithm is now asked to learn a grammar given a confidence parameter δ
and an error parameter ε. The algorithm must also be given an upper bound on the size of
the target grammar and on the length of the examples it is going to get (perhaps using an
extra sample built thanks to Lemma 10.1.1, page 197).

Definition 10.3.2 (Polynomially PAC-learnable) Let G be a class of grammars. G is
PAC-learnable ifdef there exists an algorithm A with the following property:

For each n in N, for every grammar G in G of size at most n, for every distribution D
over ��, for every ε > 0 and δ > 0, if A is given access to EX(m), m and n, ε and δ then,
with probability at least 1 − δ, A outputs an ε-good hypothesis with respect to G.

If A runs in time polynomial in 1
ε
, 1
δ
, |�|, m and n we say that G is polynomially

PAC-learnable.

Notice that in order to deal with the unbounded length of the examples we have implic-
itly used an ε′ = ε

2 and a fraction of δ to compute m and accepted an error of at most ε′
over all the strings of length more than m, and then used EX(m) instead of EX().

10.4 PAC-learning from text

In certain cases it may even be possible to PAC-learn from positive examples only. In this
setting, during the learning phase, the examples are sampled following POS-EX() whereas
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during the testing phase the sampling is done following EX(), but in both cases the distri-
bution is identical. Again we can sample using POS-EX(m), where m is obtained by using
Lemma 10.1.1 at little additional cost. It is easy to see that if in a class there are two lan-
guages L1 and L2 such that L1 ∩ L2 is not in the class, then the class is not polynomially
PAC-learnable from text.

Lemma 10.4.1 If L contains two languages L1, L2 such that L1 ∩ L2 �= ∅ and
L1 ∩ L2 �∈ L, then L is not PAC-learnable from text.

Proof Let w1 be a string in L1 − L2, w2 be a string in L2 − L1 and w3 be a string in
L1 ∩ L2. We now consider the distribution D1 where PrD1(w1) = PrD1(w3) = 1

2 and the
distribution D2 where PrD2(w2) = PrD2(w3) = 1

2 . It is easy to see that learning L1 from
D2 and learning L2 from D1 will necessarily reach an identical result. But when testing,
the error will be, in one of the two cases, of at least 1

2 .

Note that Lemma 10.4.1 is given in terms of languages (and not grammars), because the
actual representations are not at stake.

10.5 Identification in the limit with probability one

If we are attempting to learn distributions represented by probabilistic finite automata or
grammars, we have the alternatives either to try to measure success through approximation
and therefore to learn a distribution close to the intended distribution, or to try to identify
the distribution. In this case we are going to follow the distribution itself, and we will hope
to obtain results with probability one: the idea is that it is impossible, in the long run, to
get empirical distributions too far away from the theoretical one.

Identification in the limit with probability one should be understood as follows:
when given an increasing sequence of strings (constituting the sample at each moment),
identification can only be avoided for a finite period of time. Just like in the case
of identification in the limit, the actual moment at which identification will be
achieved is usually not guaranteed. We comment immediately upon some important
points:

• Why say ‘identification with probability one’? This is better understood if we argue that in the
limit, the probability of having an amazingly long sequence of bad luck decreases to zero, i.e.
the probability ad infinitum of having some bizarre event like only heads is 0. Therefore, the
complement, or the probability of not having an amazing sequence of events, is one. This also can
be understood as saying that even if some event with probability p can be avoided for a very long
time, this cannot be the case forever.

• Again this should primarily be read as a necessary condition. Even if identification in the
limit with probability one does not involve the learning algorithm performing well in prat-
ice, on the other hand not having this property always means that some bias is not correctly
described.
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We introduce some notations first. Suppose we have a learning algorithm A, attempting to
learn a distribution D. Let ρ be a run of this algorithm. This run consists of iterating:

(i) having a current hypothesis Hi−1,
(ii) making a query to the Oracle,

(iii) receiving the i-th answer wi from the Oracle,
(iv) adding this string to the current sample S,
(v) updating the hypothesis and building Hi .

The first hypothesis is H0 and the first example is w1.

Definition 10.5.1 (Identification in the limit with probability one) A class of prob-
abilistic grammars G is identifiable in the limit with probability one ifdef there exists
an algorithm A that for any grammar G in G, uses EXDG () to build a series of hypothe-
ses H0, H1, . . . Hn . . . With probability one, for all but a finite number of values of n,
L(Hn) = L(G).

We will also say that A identifies G in the limit with probability one.
The key lemma necessary to derive results in the limit and with probability one is the

following, based on the iterated logarithm:

Lemma 10.5.1 Let φ be a property over ��. Let D be a distribution over �� and p be
the probability that φ holds on a string randomly drawn following D. Let c be a constant

(c > 1) and let I (n) =
√

6c(log n)
n .

Then, if we consider a random variable X corresponding to a sample of size n, sampled
following D, with X̂D,n the empirical distribution built from X,

• with probability at least 1 − n−c,
• with probability one and for all but a finite number of values of n,

L∞
(
|X̂D,n |φ

n
, p

)
≤ I (n)

The first part of this lemma was introduced as Lemma 5.4.2, page 107.

10.5.1 Identifying probabilities

If one is measuring some event and is counting how often the event is realised, the
fraction number of successes

number of trials is of course going to vary with time. Therefore, to identify
a fraction, one should return some other value than just the direct estimation. From
Lemma 10.5.1 above, we can build a test that is false infinitely often for all but the correct
fraction.

Thus if we have a way of enumerating all fractions, we can identify any fraction. This
is the goal of Algorithm 10.1. We leave the construction of function NEXT_FRACTION
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Algorithm 10.1: Enumeration identification algorithm.

Input: a property φ : �� → {0, 1}
Output: PrD(φ(x))
a ← 0;
b ← 0;
while true do

x ← EXD();
a ← a + φ(x);
b ← b + 1;
i ← 0;
j ← 1;

while L∞( a
b ,

i
j ) >

√
12(log b)

b do
〈i, j〉 ← NEXT_FRACTION(〈i, j〉)

end
print i

j

end

to Exercise 10.2, page 210: this function has to produce, one after another, all the
possible fractions. Note that Algorithm 10.1 never halts and just prints, after each
query, the first fraction in the enumeration acceptably close to the recorded relative
frequency.

An alternative to enumeration is to explore the set of all probabilities in a different
manner. We use Stern-Brocot trees for this in Algorithm 10.2. Stern-Brocot trees are intro-
duced to represent the set of all fractions in normal forms. The number of these fractions
is of course infinite, but the spirit of the construction can be understood in Figure 10.1.
The idea is that more and more complex fractions can be obtained through summing both
numerators and both denominators of two consecutive fractions. This operation can be
performed generation after generation. In the first generation the process starts with 0

1
and 1

1 . The median 0+1
1+1 is built and the three fractions, once ordered, are 0

1 , 1
2 and 1

1 .

With the same operation in between two consecutive fractions we next obtain 0
1 , 1

3 , 1
2 ,

2
3 and 1

1 . The rest of the process is best described in Figure 10.1. Let us note that it
can be proved that any fraction (between 0 and 1) will be generated at some point or
another.

Algorithm 10.2 identifies in the limit any fraction in ]0, 1[. If we want to add rationals 0
and 1, two lines specific for these cases have to be added before the loop.

Note that the Stern-Brocot encoding allows us to encode fractions as strings. This can be
done by means of Algorithm 10.3. For example, the encoding corresponding to fraction 2

7
is string llr. Algorithm 10.3 encodes rational numbers in ]0, 1[, but an extension to cope
with all fractions is easy to implement.



204 Learning distributions over strings

0
1

1
1

1
2

1
3

2
3

1
4

2
5

3
5

3
4

1
5

2
7

3
8

3
7

4
7

5
8

5
7

4
5

Fig. 10.1. The first fractions using Stern-Brocot trees.

Algorithm 10.2: STERN-BROCOT identification.

Input: z, n
Output: estimation of z

n
a1 ← 0;
b1 ← 1;
a2 ← 1;
b2 ← 1;
while

∣∣ z
n − a1+a2

b1+b2

∣∣ > I (n) do /* Too far from a nice fraction */

if z
n >

a1+a2
b1+b2

then
a1 ← a1 + a2;
b1 ← b1 + b2

else
a2 ← a1 + a2;
b2 ← b1 + b2

end
end
return a1+a2

b1+b2

10.5.2 Complexity issues in identification with probability one

The first definition we shall discuss has led to the implicit definition of polynomial identi-
fication that has been used in the literature. It basically states that identification has to be
obtained by using an algorithm that has polynomial runtime. It therefore does not put any
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Algorithm 10.3: Encoding a fraction as a string.

Input: a pair of integers z and n corresponding to the fraction z
n

Output: a string over {l,r}
a1 ← 0;
b1 ← 1;
a2 ← 1;
b2 ← 1;
s ← λ;
while z

n �= a1+a2
b1+b2

do
if z

n >
a1+a2
b1+b2

then
a1 ← a1 + a2;
b1 ← b1 + b2;
s ← s · l

else
a2 ← a1 + a2;
b2 ← b1 + b2;
s ← s · r

end
end
return s

requirement on the number of examples needed for the identification to take place. This
does not mean that a polynomial number of examples may be sufficient. We will refer to
this definition as weak polynomial identification:

Definition 10.5.2 (Weak polynomial identification in the limit with probability one)
A class of probabilistic grammars G is weakly polynomially identifiable in the limit with
probability one ifdef there is an algorithm A and a polynomial p for which, for any grammar
G in G:

1 A identifies G in the limit with probability one,
2 A works in time polynomial with the size of the learning data obtained through sampling.

Notice that the quantity of sampling required to learn is not made precise in the above
definition. This leads to a serious flaw:

Theorem 10.5.2 Let G be a recursively enumerable class of grammars for which the
distance L∞ is computable (i.e. we can compute L∞(S,G) for any sample S). G is weakly
polynomially identifiable in the limit with probability one.
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Proof We sketch the proof as follows. Suppose we have a simple enumerative algorithm,
without any polynomial limitations. Then we use this simple enumerative algorithm to find
the first grammar consistent with the current sample S in the following sense:

CONSISTENT(S,G) = L∞(S,G) < I (|S|), with I (n) =
√

6a(log n)

n
.

It is easy to see that this enumerative algorithm will identify the target in the limit with
probability one, since with probability one each of the (finite number of) grammars that
appear before the target in the enumeration will be inconsistent with the sample an infinite
number of times. And the actual target grammar will (because of Lemma 10.5.1, page 202)
be consistent all but a finite number of times.

But then, obviously, this algorithm is not polynomial! To make the algorithm fit with
the complexity constraints, we just make the algorithm keep track of the time it is entitled
to from the current examples. The algorithm then computes as far as it can go with that
time and returns whatever solution it has reached at that point. With the next example the
algorithm is given more time and can continue the computation further. There is a point
where the algorithm will converge.

Corollary 10.5.3 DPFA(�) is weakly polynomially identifiable in the limit with
probability one.

An alternative definition which would bound the overall time is as follows:

Definition 10.5.3 (Strong polynomial identification in the limit with probability one)
A class of probabilistic grammars G is strongly polynomially identifiable in the limit with
probability one ifdef there are an algorithm A and two polynomials p and q for which, for
any grammar G in G and any δ > 0:

1 A identifies G in the limit with probability one,
2 A works in time in O(p(‖support(S)‖, 1

δ )), where S is a learning sample,

3 if |S| ≥ q(‖G‖, 1
δ ), A computes with probability at least 1 − δ a representation H such that

L(H) = L(G).

The above definition takes into account two aspects. As before, the algorithm is required
to identify in the limit and to work in time polynomial in the total lengths of the
strings in the sample; furthermore, with high probability, identification is expected from
a polynomial number of examples only.

We prove now that even in the case where we have only to choose one probability out of
n, identification requires a number of strings that is too large. The argument is independent
of the encoding of the grammars and of the priorities. Put simply it says that if you want to
distinguish with high certainty between n probabilities, you are going to have to work from
a sample of size exponential in n. To do so we do not make any assumption on the way
the learning algorithm is to use the information it receives. Let us consider n probabilistic
languages D1, D2,. . . , Dn over a set of only two strings, x and y: precisely PrDi (x) = pi

and PrDi (y) = 1 − pi . We have also ∀i, j ≤ n, pi �= p j .
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Proposition 10.5.4 Let L be a class of distributions that contains distributions D1,
D2,. . . , Dn as above, let G be a grammar class for L, let A be any algorithm that identifies
G with probability one and m be an integer. Given any polynomial p(), there is a Di in
L such that the probability that A(XDi ,m) returns a grammar H with L(H) = Di is at
most 1

p(m) .

Proof [sketch] In the above definition, the algorithm may be randomised. One should
note that the different distributions are all binomials and an algorithm is certain to make
errors between Di and D j every time the samples coincide. This corresponds to computing
an upper bound on the tails of the binomials. In order for A to distinguish each binomial
with probability at least 1 − δ, it needs an exponential number of strings in n.

The above proposition seems to leave room for polynomial sampling to be sufficient in
order to achieve identification in the limit with probability one, and do this with probability
at least 1− δ, but we should remember that the number of samples here is polynomial with
the number of possible probabilities. And if in a reasonable encoding scheme these are
encoded in base 2, then we have a problem, since the number of different probabilities that
can be encoded with k bits is 2k .

As this applies to regular languages when represented by DPFA, we have as a corollary:

Theorem 10.5.5 DPFA(�) is not strongly polynomially identifiable in the limit with
probability one.

In Section 10.9.3 we will propose restricting the number of possible probabilities in
order to overcome this obstacle.

10.6 PAC-learning distributions

In the previous section, the criterion of identification with probability one suffers from the
same problems as identification in the limit in the non-probabilistic setting: from a given
sample it is not only impossible to know if identification has taken place, but even how
far from being correct we are. In order to do better we turn to the PAC setting, which
can be adapted to the problem of learning distributions: errors are no longer counted as
misclassifications, but as distances between the expected probabilities and the real ones.

In turn, if we don’t access the real (target) probabilities, these can be estimated from a
sample.

Definition 10.6.1 (ε-good hypothesis) Let G be the target probabilistic grammar and H
be a hypothesis grammar. Let Lα be a distance between distributions. We say, for ε > 0,
that H is a Lα-ε-good hypothesis with respect to G ifdef Lα

(
L(G),L(H)

) ≤ ε.

Note the importance of the choice of the distances:

Definition 10.6.2 (Polynomial Lα-PAC-learnable distributions) Let G be a class of
probabilistic grammars. G is Lα-PAC-learnable ifdef there exists an algorithm A with the
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following property: For every grammar G in G of size at most n, for every ε > 0 and
δ > 0, if A is given access to EX(m), m and n, ε and δ then with probability at least 1 − δ,
A outputs a Lα-ε-good hypothesis with respect to G. If A runs in time polynomial in 1

ε
, 1
δ
,

|�|, m and n we say that G is polynomially Lα-PAC-learnable.

The above definition’s power will very much depend on the distance you use. For
instance, using L∞:

Proposition 10.6.1 DPFA(�) is polynomially L∞-PAC-learnable.

Proof This is a consequence of Lemma 10.5.1. Let us consider the simple algorithm
RETURNPTA (see Section 5.4.2, page 103) which, given a learning sample, constructs
a DPFA that represents exactly the empirical distribution corresponding to the sample.
Obviously, RETURNPTA is no good at identifying DPFAs. Nevertheless RETURNPTA will
polynomially L∞-PAC-learn DPFAs as, with high probability, the distance according to
norm L∞ between the empirical distribution and the target distribution converges very fast.

On the other hand, it can be shown that the above result is no longer true when the
distance is taken according to another norm. For instance, for the norms L1 and L2, a
language which shares the mass of probabilities in a uniform way over an exponential
number of strings will not be closely approximated by the empirical distribution drawn
from only a polynomial number of strings.

We will not prove the following proposition here:

Proposition 10.6.2 DPFA(�) is not polynomially L1-PAC-learnable.

10.7 Learning distributions with queries

We first adapt the definitions from Section 7.5 about active learning to the case of learning
distributions with probabilistic queries.

Definition 10.7.1 A class G is identifiable in the limit with probability one with queries
from QUER ifdef there exists an algorithm A such that ∀G ∈ G, A identifies G in the limit
with probability one, i.e. returns with probability one a grammar G ′ equivalent to G and
halts.

And the polynomial aspects are taken into account by the following definition (adapted
from Section 7.5.3):

Formally, let QUER be a fixed set of queries, G be a grammar class and A be a learning
algorithm. Suppose that to identify G, algorithm A makes on a particular run ρ queries
Q1, . . . ,Qn . We denote by LQ(ρ, i) the length of the longest counter-example (or infor-
mation) returned by the queries Q1, . . . ,Qi in ρ, and RT(ρ, i) the running time of A before
interrogating the Oracle with query Qi . LQ(ρ, n + 1) and RT(ρ, n + 1) refer to the values
of LQ and RT at the end of the entire run ρ.
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Definition 10.7.2 A class of grammars is polynomially identifiable in the limit with
probability one with queries from QUER ifdef there exists an algorithm A and a polynomial
p() for which ∀G ∈ G, A identifies G in the limit with probability one, and, for any valid
run ρ with n queries, we have

∀i ≤ n + 1, RT(ρ, i) ≤ p(‖G‖, LQ(ρ, i)).

Let ρ be a run of a learner A. Let 〈r1, r2, . . . , rm〉 be the sequence of replies to queries
〈Q1,Q2, . . . ,Qm〉 the Oracle makes during run ρ. We will say that A is polynomially
bounded ifdef there exists a polynomial p(, ), which, with probability one, when given any
target grammar G, any run ρ, at any query point k of the run, denoting the runtime up to
that point by tk , we have:

• |Qk | ≤ p(‖G‖,max{|ri | : i < k}),
• tk ∈ O(p(‖G‖,max{|ri | : i < k})).

10.7.1 Extended membership queries

An extended membership query is made by providing to the Oracle a string x . The Oracle
then has to return the probability of x .

It is easy to show that DPFAs are learnable from extended membership queries only if
DFAs are learnable from membership queries, which is known not to be the case as shown
in Section 9.2.

Theorem 10.7.1 DPFA(�) is not identifiable in the limit with probability one by a
polynomially bounded learner from extended membership queries only.

Proof If not, DFA(�) would be identifiable from membership queries. We transform a
completed DFA A = (Q, �, δ, qλ, F) into a DPFA B = (Q′, �′, δP, q ′

λ,FP) as follows:

• Q′ = Q ∪ {q f };
• �′ = � ∪ {′+′,′ −′};
• ∀q ∈ Q, δP(q,

′ +′) = q f , δP(q,
′ −′) = q f ,

∀q ∈ Q, ∀a ∈ �, δP(q, a) = δ(q, a);
• q ′λ = qλ;
• ∀q ∈ Q, FP(q) = 0, FP(q f ) = 1;

• ∀q ∈ Q, ∀a ∈ �, FP(q, a) = 1
2·|�| , ∀a ∈ �, FP(q f , a) = 0,

if q ∈ F then FP(q,
′ +′) = 1

2 , FP(q,
′ −′) = 0,

if q �∈ F then FP(q,
′ +′) = 0, FP(q,

′ −′) = 1
2 .

The above construction is made from a completed DFA, i.e. a DFA to which eventually an
extra non-final state has been added and is reached by all absent transitions. This ensures

that through the construction we have w ∈ L A ⇔ PrB(w+) = (2·|�|)−|w|
2 . An extended

membership query therefore gives us the same information on the underlying DPFA as a
membership query would.
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10.7.2 Extended prefix language queries

An extended prefix language query is made by submitting to the Oracle a string w.
The Oracle then returns the probability Pr(w��). It can be noticed that an extended
membership query can easily be simulated through |�| extended prefix language
queries.

Theorem 10.7.2 DPFA(�) is not identifiable in the limit with probability one by a
polynomially bounded learner from extended prefix language queries only.

Proof Let w ∈ �n and consider the following probabilistic language Dw: ∀x ∈ �n, x =
w ⇒ pDw

(x) = 0, x �= w ⇒ pDw
(x) = 1

2n , pDw
(wa) = 1

2n . For all other strings
pDw

(x) = 0.
This language is recognised by a DPFA with at most 2n + 2 states. Call Ln the set of

all languages Dw with w ∈ �n . Now let the Oracle answer each extended prefix language
query ‘x’ with the quantity 1

2|x | if |x | ≤ n, 0 if not. Then it is straightforward that in the
worst case 2n queries are needed.

10.8 Exercises

10.1 Compute, for ε = 0.1 and δ = 0.1, the values of n derived from the Hoeffding bound
and the Chernov additive bound.

10.2 Write the algorithm NEXT_FRACTION that can enumerate all fractions, used in
Algorithm 10.1 (page 203).

10.3 Compute how many examples are needed to separate two probabilities. Given δ > 0,
how large does a sample have to be in order to tell with probability at least
1 − δ if we are facing one probability or the other? Obviously, if we can choose
the two probabilities, the question can be trivial. But what happens in a general
case?

10.4 Consider the following game. Player 1 chooses k coins, each with its bias (the proba-
bility of ‘heads’). Then he gives the coins to Player 2 who chooses one of these coins
and gives it back to Player 1. Player 1 must now toss the coin as many times as he
needs and when he is sure, with probability at least 1−δ that he knows which coin he
has, he must name it. How should Player 1 choose the coins for k=2, 3 and 4? What
about the general case?

10.5 Derive from the preceding exercise the minimum number of tosses Player 1 has to
make. Note that this gives you the detailed proof of Proposition 10.5.4.

10.6 Give an algorithm that learns DPFAs from both extended membership queries and
distribution equivalence queries. A distribution equivalence query would be an
equivalence query over distributions, of course.

10.7 Prove that the Stern-Brocot encoding of strings is reasonable in the sense of
Definition 7.3.1.
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10.9 Conclusions of the chapter and further reading

10.9.1 Bibliographical background

Learning probabilistic grammars was what allowed Ray Solomonoff to introduce his ideas
concerning the questions of inductive inference which led to his definitions of intrinsic
complexity (Solomonoff, 1997). Jim Horning (Horning, 1969) proved that probabilistic
context-free grammars were identifiable with probability one and also proposed an alter-
native empirical algorithm, relying on finding a (context-free) grammar giving a good
compromise between the quality of the probabilities and its simplicity. This approach was
followed several times since, with for example algorithm MDI by Franck Thollard et al.
(Thollard, Dupont & de la Higuera, 2000).

The bounds we give and use in Section 10.2 are standard in computational learning the-
ory (Kearns & Vazirani, 1994). It should be noted that they are the simplest ones, and that
further work on these questions would deserve stronger bounds, but also a more detailed
analysis of the properties of the distributions one generates with automata. There are many
papers and books on the topic of statistical machine learning where this sort of information
can be found. PAC-learning is presented in Section 10.4.

An important PAC study concerning the problem of approximating distributions, writ-
ten by Naoki Abe and Manfred Warmuth (Abe & Warmuth, 1992), shows that even the
seemingly simpler problem of estimating the probabilities correctly, given the structure
provided by a finite non-deterministic automaton, is hard.

When the structure is unknown, even for the case of DFAs, most results are negative:
Michael Kearns and Leslie Valiant (Kearns & Valiant, 1989) linked the difficulty of learn-
ing DFAs with that of solving cryptographic problems believed to be intractable (a nice
proof is published in Michael Kearns and Umesh Vazirani’s book (Kearns & Vazirani,
1994)). Another testimony of the hardness of approximation can be found when examin-
ing the different competitions that have been organised for grammatical inference: in each
case an error of 1% was allowed, but didn’t seem to help.

The model has been adapted by taking into account only certain types of distributions
and simple PAC-learning has been considered with more success (Denis, 2001, Denis &
Gilleron, 1997). If languages are defined in another way (through equations, these are then
sometimes called semi-linear sets), one can obtain some positive PAC-like results (Abe,
1995).

The question of identification in the limit with probability one is studied in (Angluin,
1988). The analysis in this setting of the well-known algorithm ALERGIA is given in
(Carrasco & Oncina, 1994b, 1999, de la Higuera, 1998). Adaptation to a special class of
context-free grammars is in (de la Higuera & Oncina, 2003), where it is also noted that
weak polynomial identification in the limit (Definition 10.5.2, page 205) is insufficient. An
alternative analysis can be found in (de la Higuera & Oncina, 2004).

Stern-Brocot trees were used in (de la Higuera & Thollard, 2000) to identify the prob-
abilities of a DPFA. They were introduced in the nineteenth century (Brocot, 1861, Stern,
1858), and then used in computer science (Graham, Knuth & Patashnik, 1994).
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Theorem 10.5.2 is based on work by Lenny Pitt and Dana Angluin (Angluin, 1988, Pitt,
1989).

Proposition 10.6.2 is proved in Omri Guttman’s thesis (Guttman, 2006), as an exten-
sion of a result by Michael Kearns et al. (Kearns et al., 1994) in the case of using
KL-divergence. In both cases the proof relies on parity functions (presented in the
non-probabilistic setting in Section 6.5.1).

Positive results in PAC-learning DPFAs depend on many parameters. The question of
dealing with edges in the automaton used by too few strings, and also the question of
dealing with the unbounded length of the strings one can get through sampling, are dealt
with in different ways (Guttman, Vishwanathan & Williamson, 2005, Palmer & Goldberg,
2005, Thollard & Clark, 2004).

There are few results mixing queries and PAC-learning. Whereas membership queries
allow PAC-learning DFAs (Angluin, 1987a), it is proved, under cryptology assumptions,
that this is neither the case for NFAs nor context-free grammars (Angluin & Kharitonov,
1991).

We presented in Section 10.7 some results concerning learning distributions with
queries. Most results are from (de la Higuera & Oncina, 2004). Alternative sources are
(Bergadano & Varricchio, 1996, Guttman, Vishwanathan & Williamson, 2005).

10.9.2 Some alternative lines of research

Simple-PAC and PACS are two lines of research that have been explored, but for different
reasons have not prospered. The PACS and simple PAC settings mentioned in the introduc-
tion of the chapter rely on work by Ming Li and Paul Vitanyi (Li & Vitanyi, 1991, 1993).
One can also read the papers about PACS by Jorge Castro and David Guijarro (Castro &
Guijarro, 2000), or François Denis et al. (Denis, 2001, Denis & Gilleron, 1997, Denis,
d’Halluin & Gilleron, 1996).

One crucial question before using a bias in learning distributions is to see how far off we
are going to be, even if we are successful in learning. The question therefore becomes:
given a target from one class of distributions, how bad is the closest distribution in a
different class? Initial results by Omri Guttman (Guttman, 2006) show that for a regular
distribution to approximate an arbitrary distribution over strings, the size of the automaton
may have to be exponentially large.

10.9.3 Open problems and possible new lines of research

The importance of using one distance instead of another has only recently started to be
understood. Exploratory papers on this topic are (Guttman, Vishwanathan & Williamson,
2005, Palmer & Goldberg, 2005, Thollard & Clark, 2004). These have led the authors
to state conditions for restricted classes of DPFAs to be PAC-learnable. But the question
concerning the entire class of the DPFAs is open.
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Specific sampling queries. Extended membership queries were introduced in
(Bergadano & Varricchio, 1996): the learning algorithm may ask for the value p(x) on
strings x of its choice.

We may consider refining the concept to the case where the answer to the query can be an
approximate answer, obtained through a particular form of sampling. A specific sampling
query is made by submitting a pattern π : the Oracle draws a string matching pattern π
sampled according to the distribution D. Specific sampling queries are intended to fit the
idea that the user can ask for examples matching some pattern he or she is interested in.

For example, the specific sampling query (a�� b) requires an example starting with a
and ending with b, sampled following the distribution induced by D(a�� b). We suggest
that these queries could be explored in an attempt to help us learn the class of DPFAs.

Fixing the number of probabilities. We suggest limiting the set of probabilities of the
automaton in order to be able to obtain positive learning results. The idea here is to
learn DPFAs but where the probabilities are chosen inside a fixed set. A typical definition
could be:

Definition 10.9.1 (K −DPFA) A K −DPFA A is a DPFA (Q, �, δP, qλ,FP, P), where
all probabilities (transition and final) are from a set PK = { i

K : 0 ≤ i ≤ K }.
The idea here is that, the variance having diminished, the class of K − DPFAs might

now be learnable in a variety of settings. More precisely we conjecture that the class is
PAC-learnable for the distances L1 and L2.
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Text learners

L’homme est à la recherche d’un nouveau langage auquel la grammaire d’aucune
langue n’aura rien à dire.

Guillaume Apollinaire

The method that will be used is equivalent to finding a PSL (context free phrase
structure language, Chomsky (1956)) that in some sense best ‘fits’ the set [α1].
The measure of goodness of fit will be the product of the a-priori probability
of the language selected and the probability that the language selected would
produce [α1] as a set of acceptable sentences.

Ray Solomonoff (Solomonoff, 1964)

From the results of the previous section, it appears quite clear that DFAs cannot be
identified in the limit from text. At which point, if the chosen task is indeed to learn
DFAs from text, we need either some help (perhaps some extra information about the
strings or some structure) or else we will have to add an extra bias and reduce the class of
automata.

It should be noted that adding more bias consists also of adding some more information
(something like ‘we know that the automaton has this property’).

11.1 Window languages

It is well known that regular languages correspond to the class of languages that can be
parsed using a bounded memory. But what happens is that this memory is bounded a
priori. We may consider the subclass of languages for which parsing uses only a memory
of size k, meaning that the next letter to be read will depend only on the knowledge of the
k − 1 previous characters.

Formally, this means that the following holds for some k:

∀l, l ′ ∈ ��,∀w ∈ �≥k, lw ∈ L ⇐⇒ l ′w ∈ L .

Better said, the prefixes l and l ′ can be ‘forgotten’.
A language L for which the above equation holds will be called a k-testable language.

217



218 Text learners

Definition 11.1.1 A regular language L is a k-testable language ifdef given every pair
of strings lw and l ′w in �� such that l, l ′, w ∈ ��, |w| ≥ k, the following holds:
lw ∈ L ⇐⇒ l ′w ∈ L .

It should be noted that for strings of length less than k nothing is said. But then for a
fixed k there are only a finite number of such strings.

11.1.1 Definition of k-testable machine

To recognise k-testable languages, as introduced in Definition 11.1.1 above, we need
special machines:

Definition 11.1.2 Given k > 0, a k-testable machine (k − T SS) is a 5-tuple Zk =
〈�, I, F, T,C〉 with:

• � a finite alphabet,
• I, F ⊆ �k−1 (prefixes of length k − 1 and suffixes (or finals) of length k − 1),
• C ⊆ �<k (short strings),
• T ⊆ �k (allowed segments).

Definition 11.1.3 Given a k-testable machine, the k-testable language recognised by
Zk = 〈�, I, F, T,C〉 is L(Zk) = (I �� ∩�� F −��(�k − T )��) ∪ C .

In words, this means that the only admissible strings are those either corresponding
exactly to strings in C , or those whose prefix of length k − 1 is in I , whose suffix of length
k − 1 is in F , and where all substrings of length k belong to T . In other words there are
two types of strings: those of length less that k and defined exactly as such in C and those
longer than k for which �k − T defines the prohibited segments. The key idea is to use as
a parser a window of size k to reject the strings that at some moment do not comply with
these conditions.

Definition 11.1.4 k −T SSG(�) is the class of all k-testable machines over alphabet �.
k − T SSL(�) = {L ⊆ �� : L is k − T SS}.

Given a k − T SS machine, a DFA recognising the language generated is constructed
by Algorithm 11.1. The algorithm just converts the prefixes of the sets I and C into strings
and makes final the states corresponding to the elements in F . More interesting is the way
set T is used: this set contains strings of length k, whereas the states in the DFA correspond
to strings of length (at most) k − 1. So the algorithm makes two states out of each string u
in T : one is u(1)−1 · u and the other is u · u(|u|)−1. A transition labelled by u(|u|)−1 links
these two states.

Example 11.1.1 The automaton from Figure 11.1 recognises the language a +
aa∗b(ab)∗. The language is clearly 3 − T SS but is not 2 − T SS: with a window of
size only two, we would not be able to avoid substring bb. The meaning of state qab is no
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Algorithm 11.1: Building a DFA from a k − T SS machine.

Input: a k − T SS machine 〈�, I, F, T,C〉
Output: a DFA 〈�, Q, qλ, FA, δ〉
Q ← ∅;
FA ← ∅;
for pu ∈ I ∪ C, p, u ∈ �� do Q ← Q ∪ {qp};
for au ∈ T, a ∈ �, u ∈ �� do Q ← Q ∪ {qu};
for ua ∈ T, a ∈ �, u ∈ �� do Q ← Q ∪ {qu};
for pau ∈ I ∪ C, a ∈ �, p, u ∈ �� do δ(qp, a) = qpa ;
for aub ∈ T, a, b ∈ �, u ∈ �� do δ(qau, b) = qub;
for u ∈ F ∪ C do FA ← FA ∪ {qu};
return 〈�, Q, qλ, FA, δ〉

qλ qa qaa qab qbaa a

b

b

a

b

a

Fig. 11.1. A DFA corresponding to the 3−T SS machine Z3 = 〈{a,b}, I = {aa,ab},
F = {ab}, C = {a}, T = {aaa,aab,aba,bab〉}.

longer that δ(qλ,ab) = qab but rather that the only string of length 2 that reaches state
qab is (reached from any state) string ab.

11.1.2 Properties of the k-testable languages

The hierarchy of k − T SS languages has the following properties:

Proposition 11.1.1
• If L is finite then L ∈ k − T SS where k = 1 + max{|u| : u ∈ L}.
• k − T SS(�) ⊂ [k + 1] − T SS(�).
• There are regular languages that are not k − T SS (for any k).

Proof
• All finite languages are in k − T SS(�) if k is large enough: let L be a finite language with

k > max{|u| : u ∈ L}. Then the machine Zk = 〈�, I, F, T,C〉 with I = PREF(L), F = T = ∅
and C = L accepts exactly L .

• (bak)∗ ∈ [k + 1] − T SS(�) but (bak)∗ �∈ k − T SS(�).
• Consider the language described by the regular expression a�� a + b�� b. This language is not

k − T SS (for any k).
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Algorithm 11.2: Ak−T SS.

Input: a sample S
Output: a k − T SS machine 〈�, I (S), F(S), T (S),C(S)〉
� is the alphabet used in S;
I (S)← �k−1 ∩ PREF(S);
C(S)← �<k ∩ S;
F(S)← �k−1 ∩ SUFF(S);
T (S)← �k ∩ {v : uvw ∈ S};
return 〈�, I (S), F(S), T (S),C(S)〉

11.1.3 The algorithm

Learning k-testable languages is really only about finding the prefixes, substrings and
suffixes that occur in the data.

This can be done through the simple Algorithm Ak−T SS, 11.2.

11.1.4 Running the algorithm

Let us run Algorithm 11.2 on an example:

Example 11.1.2 Let S = {a,aa,abba,abbbba} be our learning sample and suppose
we choose k = 3. We will discuss the issue of how we should choose k later. It follows by
construction that:

• � = {a,b}
• I (S) = {aa,ab}
• F(S) = {a,aa}
• T (S) = {abb,bbb,bba}
• C(S) = {a,aa}

Building the corresponding automaton using Algorithm 11.1 once the machine is given
is straightforward (see Figure 11.2).

Hence A3−T SS(S) = a + aa + abbb∗a.

Example 11.1.3 In Figure 11.3 we show the corresponding automata for k = 1, k = 2
and k > 6.

11.1.5 Some properties of the algorithm

Proposition 11.1.2 Ak−T SS(S) is the smallest k − T SS language that contains S.

Proof If there is a smaller one, some prefix, suffix or substring has to be absent.
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qλ qa

qaa

qab qba

qbb

a

a

b

b

b

a

Fig. 11.2. Automaton learnt from sample S = {a,aa,abba,abbbba}.

qλ a,b

(a) k=1.

qλ qa

qaa

qab qba

qbb

a

a

b

b

b

a

(b) k = 2.

qλ qa

qaa

qab qabb

qabba

qabbb qabbbb qabbbba

a a

b

b

a

b
b a

(c) k > 6.

Fig. 11.3. Alternative automata learnt from the sample S = {a,aa,abba,abbbba}.

Proposition 11.1.3
• A[k+1]−T SS(S) ⊆ Ak−T SS(S),
• ∀k > max{|x | : x ∈ S}, Ak−T SS(S) = S,
• If Y ⊆ S, then Ak−T SS(Y ) ⊆ Ak−T SS(S).

Proof Let Ik+1 (resp. Fk+1 and Tk+1) denote the sets obtained by A[k+1]−T SS(S) and
Ik (resp. Fk and Tk) those by Ak−T SS(S). There are fewer allowed prefixes (resp. suffixes
or substrings) in Ik+1 (resp. Fk+1 and Tk+1) than in Ik (resp. Fk and Tk). Therefore, the
smaller the value of k, the more the algorithm generalises. The second point is a direct
consequence of the construction provided in Proposition 11.1.1. The third item corresponds
to the fact that the algorithm simply counts what it sees. Therefore, if during learning, a
prefix, a suffix or a substring is found, the algorithm generalises further.
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Proposition 11.1.4 Ak−T SS identifies any k − T SS language in the limit from
polynomial data, is consistent and conservative and admits polynomial characteristic
samples.

Proof Once all the prefixes, suffixes and substrings have been seen, the correct automa-
ton is returned. Identification in the limit is then an easy consequence of the fact that the
language is the smallest.

Let us denote in a standard way by ‖Zk‖ the size of a k-testable machine: This corre-
sponds to the sum of the lengths of the different strings in I , F , C or T . The algorithm is
conservative because if the current machine can parse a new string, that means that all the
substrings of this string are in the machine, so nothing will be added. On the other hand, if
it cannot parse, then some substring is missing which the algorithm will add.

Proposition 11.1.5 (Complexity issues)
• The runtime of A[k]−T SS(S) is in O(‖S‖).
• Every k − T SS language admits a characteristic set of size linear with ‖Zk‖.
• Algorithm A[k]−T SS makes ‖Zk‖ implicit prediction errors.

Proof
• Algorithm A[k]−T SS parses the data from left to right.
• The characteristic set must contain strings that exercise all the substrings and the prefixes and

suffixes.
• Even if the algorithm is not incremental per se it can be easily considered as such. A prediction

error is made whenever the current machine can’t parse a new example. In this case something is
added to either I , F , or T . And the number of such additions is bounded by ‖Zk‖.

It should be noted that defining a k-testable language through the prohibited substrings
would lead to complexity problems: remember that the number of strings of length k over
an alphabet containing at least two symbols is exponential in k.

11.1.6 Conclusion

Algorithm 11.2 is very simple and straightforward, yet a number of questions remain to be
solved:

• There is no room for noise in the scheme: a substring that appears just once and that is
completely wrong (with many absent substrings) will introduce many states in the resulting
automaton.

• Variants where we count the number of occurrences of each substring lead to statistical models
called n-grams; they are also comparable with the spectrum kernels described in Definition 3.5.3
(page 61).

• How to choose k is a crucial issue. Choose too small a k and there is a risk of over-generalisation.
Choose too large a k and inversely one may not generalise enough.
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• One can use counter-examples to find the smallest k, i.e. to control generalisation (see
Exercise 11.8).

• The size of the alphabet is also of great importance: if the size is too small, the resulting automaton
(whose number of states is at most |�|k ) may be too small. Having too large an alphabet may result
in having to deal with problems of sparseness of data.

11.2 Look-ahead languages

We introduce another subclass of the regular languages for which positive results can
also be obtained: the k-reversible languages. The class is composed of regular languages
that can be accepted by a DFA such that its reverse is deterministic with a look-ahead
of k.

11.2.1 Definition of reversible languages

When reversing the arrows in a DFA we obtain an NFA. This NFA is where the k-
reversibility property is best understood. We therefore give the definitions in the context of
non-deterministic automata. On the other hand, as we are not working with negative data,
we do not need to have rejecting states (see page 71), so we will take FR = ∅. Thus we
will not represent the rejecting states (FR).

Definition 11.2.1 (Reversal automaton) Let A = 〈�, Q, I,FA, δN 〉 be an NFA. The
reversal automaton of A, AT , is the NFA 〈�, Q,FA, I, δ

T
N 〉 with δT

N (q, a) = {q ′ ∈ Q :
q ∈ δN (q ′, a)}.

We now define as k-successors of a given state the strings of length k that correspond to
‘live’ paths in the NFA, when parsing from that state.

Definition 11.2.2
• u is a k-successor of q ifdef |u| = k and δ(q, u) �= ∅,

• u is a k-predecessor of q ifdef |u| = k and δT (q, uT ) �= ∅,
• SUCCk(q) (respectively PREDk(q)) is the set of all k-successors of q (respectively all

k-predecessors of q).

Note that λ is a 0-successor and 0-predecessor of any state.

Definition 11.2.3 Two states q and q ′ in an NFA A = 〈�, Q, I,FA, δN 〉 are
k-ambiguous ifdef SUCCk(q) ∩ SUCCk(q ′) �= ∅.

Two states are therefore k-ambiguous whenever there is a common possible path of length
k starting from each. It means that one cannot disambiguate by just looking at the following
k symbols. Note that in Figure 11.4, states q1 and q3 are k-ambiguous for any value of k.
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q1

q2

q3

q4

q5

a

b

a

b

a
a a

Fig. 11.4. An NFA: bb is a 2-successor of q1 but not of q3. a is a 1-successor of q4. aa
is a 2-predecessor of q4 but not of q2.

Definition 11.2.4 An NFA A = 〈�, Q, I,FA, δN 〉 is deterministic with look-ahead k
ifdef given any two different states q and q ′ in Q, such that either q, q ′ ∈ I or q, q ′ ∈
δN (p, a) (for some p in Q), q and q ′ are not k-ambiguous.

In other words, any two states which may result in a conflicting non-deterministic
situation should not be k-ambiguous.

Example 11.2.1 The automaton represented in Figure 11.4 is not deterministic with
look-ahead 1 because b ∈ SUCC2(q1) and b ∈ SUCC2(q3) with q1, q3 ∈ Q. But
it is deterministic with look-ahead 2. We can compute the SUCC2 sets: SUCC2(q1) =
{aa, bb}, SUCC2(q2) = {aa}, SUCC2(q3) = {ba}, SUCC2(q4) = {aa, ab} and
SUCC2(q5) = {aa}. The two ambiguous situations arise between q1 and q3 on one hand
and between q3 and q5 on the other.

Definition 11.2.5 A is k-reversible ifdef A is deterministic and AT is deterministic with
look-ahead k.

An alternative definition can be given using predecessor sets and thus without using the
reversal automaton:

Definition 11.2.6 A is k-reversible ifdef A is deterministic and

∀q, q ′ ∈ FA, q �= q ′ ⇒ PREDk(q) ∩ PREDk(q
′) = ∅,

δ(q, a) = δ(q ′, a), q �= q ′ ⇒ PREDk(q) ∩ PREDk(q
′) = ∅.

Example 11.2.2 We show in Figure 11.5 the case of a 3-reversible automaton. Notice
that it is not 2-reversible since PRED2(q2) ∩ PRED2(q5) = {aa} and both q2 and q5 are
final. On the other hand we can compute the PRED3 sets: PRED3(q1) = PRED3(q3) =
∅, PRED3(q2) = {aaa}, PRED3(q4) = {aab, abb, bab, bbb} and PRED3(q5) =
{aaa, baa}. The ambiguous situations arise between q2 and q5 on one hand (because they
are both final) and between the pairs (q1, q2) (because δ(q1,a) = δ(q2,a)) and (q4, q5)

(because δ(q4,b) = δ(q5,b)). Each ambiguous pair is tested and an empty intersection of
the predecessor sets is found.

What makes a DFA not be k-reversible is the violation of one of the rules.
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q1

q2

q3

q4
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Fig. 11.5. A DFA that is 3-reversible.

q

q ′

u
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(a) 2 final states.

q

q ′

a

a

u

u

(b) 2 states that are successors of a state.

Fig. 11.6. Prohibited patterns, for |u| = k.

Definition 11.2.7 Two states q, q ′ violate the k-reversibility condition ifdef

• they violate the determinism condition: ∃q ′′ ∈ Q : q, q ′ ∈ δ(q ′′, a),
• or they violate the look-ahead condition:

• q, q ′ ∈ FA ∧ ∃u ∈ �k : u is k-predecessor of both,
• ∃u ∈ �k , δ(q, a) = δ(q ′, a) and u is k-predecessor of both q and q ′.

We will call two such states violators.
The idea is to be able, through a look-ahead of length k, to decide what the next

state should be. The prohibited situations are depicted in Figures 11.6(a) and 11.6(b).
Therefore, for each value of k, there are languages that admit k-reversible automata as
recognisers.

Definition 11.2.8
k − REVG(�) is the class of all k-reversible automata over the alphabet �.
k − REVL(�) = {L(A) : A ∈ k − REVG(�)}.

It should be noted that, similarly to the case of the k-testable languages, there is a hier-
archy of k − REVL(�), and there are also languages that are not k-reversible (given any
value of k).
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Proposition 11.2.1 (Properties of the k-reversible languages)
Given any alphabet �,

• k − REVL(�) � (k + 1)− REVL(�).
• There is a language L over � such that ∀k ∈ N, L �∈ k − REVL(�).

Proof First, it is clear that using a look-ahead of length k + 1 is going to allow us to
recognise at least the same languages that could be recognised with a look-ahead of size k.

Now, let us suppose without loss of generality that a ∈ �. One can check that the finite
language {ak,ak+1} belongs to k + 1 − REVL(�), but {ak,ak+1} �∈ k − REVL(�).

Finally, given any integer k, {an : n mod 3 �= 0} �∈ k − REVL(�).

11.2.2 Learning k-reversible automata

One way to learn k-reversible automata from text is to take as a starting point the PTA
that corresponds exactly to the sample, and then merge states that are breaking the vio-
lation conditions. The key idea of the algorithm we now present is that the order in
which the merges are performed does not matter! So the algorithm works by just merging
states that do not comply with the conditions for k-reversibility. There is actually a better
order in which the states of the PTA should be visited: the breadth-first order. Algorithm
Ak−REV (11.4) tracks the violating pairs and merges them, until there are no more such
pairs. At each moment, the algorithm solves the non-determinism violations first. The
merging algorithm (MERGE, Algorithm 11.3) is studied in more detail in Section 12.2.2.

Notice that testing the k-reversibility conditions on a DFA consists of updating the sets
of k-predecessors of each state. Notice also that each pair of states needs only to be checked
once.

Algorithm 11.3: MERGE.

Input: an NFA : A = 〈�, Q, {qi },FA, δN 〉, q1, q2 ∈ Q, with q2 �= qi

Output: NFA : A = 〈�, Q, {qi },FA, δN 〉 in which q1 and q2 have been merged into q1

for q ∈ Q do
for a ∈ � do

if q2 ∈ δN (q, a) then δN (q, a)← δN (q, a) ∪ {q1};
if q ∈ δN (q2, a) then δN (q1, a)← δN (q1, a) ∪ {q}

end
end
if q2 ∈ I then I ← I ∪ {q1};
if q2 ∈ FA then FA ← FA ∪ {q1};
Q ← Q \ {q2};
return A
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Algorithm 11.4: Ak−REV: k-reversible automata learning.

Input: k ∈ N, S a sample of a k-reversible language L
Output: A, a k-reversible automaton recognising S
A ← PTA(S);
repeat

changed← false;
if ∃q, q ′, p ∈ Q, q �= q ′, ∃a ∈ �, {q, q ′} ⊂ δN (p, a) then

A ← MERGE(A, q, q ′);
changed← true

end
if not(changed) and ∃q, q ′ ∈ F : PREDk(q) ∩ PREDk(q ′) �= ∅ then

A ← MERGE(A, q, q ′);
changed← true

end
if not(changed) and ∃q, q ′ ∈ Q, q �= q ′, ∃a ∈ � : δN (q, a) ∩ δN (q ′, a) �=
∅ ∧ PREDk(q) ∩ PREDk(q ′) �= ∅ then

A ← MERGE(A, q, q ′);
changed← true

end
until not(changed) ;
return A
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Fig. 11.7. Starting the run.

11.2.3 A run example of Algorithm Ak−REV

Let S = {a,aa,abba,abbabba} and k = 2. We start by building the prefix tree acceptor
(Figure 11.7).

We can then notice that the pair (qabba, qabbabba) is violating: indeed both states are
final and have ba as common predecessor. Therefore the algorithm merges these two states
leading to the automaton represented in Figure 11.8.

States qabb and qabbabb are violating (Figure 11.8); the algorithm merges them, leading
to automaton depicted in Figure 11.9.
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Fig. 11.8. After merging qabba and qabbabba.
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Fig. 11.9. After merging qabb and qabbabb.
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Fig. 11.10. After merging qab and qabbab.

Now states qab and qabbab are the violating pair and the algorithm merges them, leading
to a new automaton (Figure 11.10).

The algorithm halts and returns the automaton from Figure 11.10 which is 2-reversible.
It can be noticed that if k=1, further merges are necessary, such as for instance qa and qaa.

11.2.4 Properties

We study here the convergence of the algorithm. First we give some more properties
concerning the k-reversible languages:

Proposition 11.2.2 A (regular) language L is k-reversible if and only if ∀u1, u2, v ∈ ��,
(u1v)

−1L ∩ (u2v)
−1L �= ∅ and |v| = k =⇒ (u1v)

−1L = (u2v)
−1L.

Proof The proposition states that if two strings are prefixes of a string of length at least k,
then the strings are Nerode-equivalent. This corresponds to a rewriting of Definition 11.2.6.
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The key lemma for the proof of the algorithm is that no bad merge can be made:

Lemma 11.2.3 Let L be a k-reversible language, let S be a positive sample of L, and let
u and v be two prefixes of strings in S such that u �≡L v. Then in Ak−REV(S), δ(qλ, u) �=
δ(qλ, v).

Proof Let us suppose this is not true. We consider the first merge made concerning two
non-equivalent (in the target) prefixes u and v. Clearly this merge cannot be due to deter-
minism: if not then u = u′a and v = v′a and both u′ and v′ end in the same state; yet
u′ �≡ v′ (since u �≡ v). But in that case this would not be the first bad merge.

This merge is therefore made as a consequence of the second violation condition. We
can suppose the automaton (before merging) is deterministic. But therefore PREDk(qu) ∩
PREDk(qv) �= ∅. Let z ∈ PREDk(qu) ∩ PREDk(qv). Consider two strings xz and yz
such that δ(q0, xz) = δ(q0, u) and δ(q0, yz) = δ(q0, v). Both strings exist because of
the definition of PREDk . Now by Proposition 11.2.2 this means that xz ≡L yz. And by
transitivity either u = v (absurd) or an earlier wrong merge has been made.

A simple result is that the higher the value of k, the further Algorithm Ak−REV
generalises:

Proposition 11.2.4 ∀S ⊂ ��, L(Ak−REV(S)) ⊆ L(A[k+1]−REV(S)).

Proof Clearly if you can disambiguate with a look-ahead of size k, then you can also do
it with a look-ahead of size k + 1. Necessarily the successor sets cannot conflict, because
they would already have been conflicting for k.

It is also easy to see that the resulting automaton is always k-reversible.

Proposition 11.2.5 ∀k ≥ 0, ∀S ⊂ ��, Ak−REV(S) is a k-reversible automaton.

Proof Notice that if the automaton is not k-reversible, then there exists a pair of violators
that can be merged.

And one may conclude:

Theorem 11.2.6 Ak−REV(S) is the smallest k-reversible automaton whose language
contains S. The class k − REVG(�) is identifiable in the limit from text.

Proof The second proposition is a direct corollary of the first, by using Theorem 8.1.6,
page 178. The first depends on the fact that the order in which the merges are made does
not change the final result, which is a consequence of Lemma 11.2.3. In turn, this is due to
the fact that the non-violation condition corresponds to an equivalence relation.

Proposition 11.2.7 (Complexity issues)
• The time complexity of Ak−REV is in O(k · ‖S‖3).
• Every k − REV automaton admits a characteristic set of size linear in the size of the target

automaton.
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Proof
• We suppose we have a data structure allowing us to keep track of the sets PREDk(q). In order

to avoid exponential growth of these sets, one can choose to represent them piecewise: clearly
PRED0(q) = {λ} and PREDk(q) =

[ ∪q ′:q∈δN (q ′,a) PREDk−1(q
′)
] · a. Using the Union-Find

algorithm allows us to update (each time a merge is done) the PREDk(q) sets in near-linear time
(in O(k · ‖S‖) and also to see if the intersection of two sets is empty or not (k-ambiguity). Testing
if two states are violators is in O(n). The number of possible merges is in O(‖S‖2) but the number
of total merges that will be made is in O(‖S‖).

• A characteristic set can be built by introducing strings for the violation of the k-reversibility con-
ditions to be noticed, on the first states the algorithm encounters. Lemma 11.2.3 tells us that no
wrong merge can take place.

Even if the algorithm Ak−REV (11.4) is not incremental per se it can be considered as
such: new strings will result only in more merges being made. Again, key Lemma 11.2.3
shows that no wrong merge takes place.

11.3 Pattern languages

In a very different way from grammars and automata, we can use descriptions of the lan-
guages to define pattern languages. For example, patterns are strings containing symbols
and variables that allow us, through a matching process, to define complex classes of lan-
guages. We introduce here a very simple form of pattern languages, and show how these
can be learnt from text.

11.3.1 Definitions

Let � be an alphabet and X = {x0, x1, . . . xi , . . .} be an infinite set of variables.

Definition 11.3.1 A pattern π is a string over � ∪ X . The size of a pattern is the length
of this string.

A matching is a function σ : X → ��. Given a pattern π of size n (π = π(1) · · ·π(n))
and a matching σ , σ(π) = σ(π(1)) · · · σ(π(n)) where σ is extended to � by σ(a) =
a, ∀a ∈ �, a string w = a1 · · · an fits a pattern π if there is a matching σ : X → ��

such that σ(π) = w.
The language defined by the pattern π , denoted by L(π), is the set of all strings over the

alphabet � that fit π .

Example 11.3.1 Consider the pattern π = x3abx17x3b. It defines a language over
an alphabet that contains at least symbols a and b: notice it is important to know the
alphabet as the same pattern does not define the same language if � = {a,b} or if
� = {a,b,c}. Let us suppose here that � = {a,b}. The length of the pattern is 6. The
pattern x0abx1x0b is equivalent to π . The following strings fit the pattern π : aabaab,
bababb and bbaabaabbab.
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It should be noted that when λ is not allowed to be the image by σ of any xi , the pattern is
called non-erasing. In both cases (erasing and non-erasing patterns), checking if a string
fits a particular pattern is NP-hard.

The equivalence problem is very simple in the non-erasing case: two patterns are equiv-
alent if and only if they are equal, up to renaming of the variables. Somewhat surprisingly,
the difficult question with patterns is not equivalence but inclusion: the question of knowing
whether L(π1) ⊂ L(π2) is undecidable for patterns.

Also, most positive learning results hold in the case of non-erasing patterns; this
will justify that we restrict our analysis here to the non-erasing setting. We denote
by PAT T ERNS(�) the class of non-erasing pattern languages over an alphabet
�. Note that the class is both of languages and grammars, as there is a one-to-one
correspondence.

11.3.2 Learning pattern languages

Theorem 11.3.1 PAT T ERNS(�) is identifiable in the limit from text.

Proof Let s be one of the shortest strings in a sample S. Then |π | = |s|. So we know
the length of the pattern. Now if we take other shortest strings in S, we can easily decide
which positions correspond to a constant and which to a variable. The last operation corre-
sponds to finding those positions that are occurrences of a same variable. This is done by
Algorithm PATTERN_LEARNER (11.5) which identifies patterns in the limit because as
soon as a characteristic sample is included, the returned pattern is unique (up to a renaming
of the variables). The characteristic set contains strings of minimal length, and for every
variable position i there should be in the set at least two strings w and y with w(i) �= y(i).
Also, for each pair of positions i and j corresponding to two different variables, there
should be at least one string w in the characteristic set such that w(i) �= w( j). One should
note that if a characteristic sample is not included, the returned solution is only guaranteed
to be consistent with strings of minimal length.

Algorithm PATTERN_LEARNER (11.5) is not at all optimal, but can be used as basis
for other pattern language learners.

11.3.3 A run of the algorithm PATTERN_LEARNER

Let � = {a,b,c} and S = {abcbb, aabba, aacbbac, aaaba, acbbbac}.
The algorithm first selects the shortest strings only: Y = {abcbb, aabba, aaaba}.

Therefore the length of the pattern is 5.
The algorithm then selects the constant positions, again by only examining set Y . Since

here the first letter of all strings is a and the fourth letter in all strings (of Y ) is b, this
means that the pattern is something like ax?x?bx?.
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Algorithm 11.5: PATTERN_LEARNER.

Input: a sample S
Output: a non-erasing pattern π
m ← min{|s| : s ∈ S};
Y ← ∅;
for s ∈ S do /* Use only the shortest strings */

if |s| = m then Y ← Y ∪ {s}
end
j ← 1;
for i : 1 ≤ i ≤ m do /* Find the constants */

if |{y(i) : y ∈ Y }| = 1 then π [i] ← y(i) else
π [i] ← z j ;
Pos[ j] ← i ;
j ++

end
end
for k : 1 ≤ k < j do /* Find the common variables */

for l : 2 ≤ l ≤ j do
if ∀y ∈ Y, y(Pos[k]) = y(Pos[l]) then π [pos[l]] ← zk

end
end
return π

The third step of the algorithm consists of attempting to match the different variables.
Here, since in all strings (again of Y ), the second symbol is equal to the fifth, the pattern
ax0x1bx0 is built and finally returned.

Note that this pattern could be inconsistent with the rest of the data but since the
question of knowing if a string fits a pattern is NP-hard, there is no way around this
problem.

11.4 Planar languages

We defined several string kernels in Section 3.5. The idea now is to use them to learn
languages. Clearly the classes of languages defined by kernels will not fit perfectly into
the Chomsky hierarchy, because through kernels we are essentially counting things, not
generating strings.

A language will correspond to a point in the feature space, which is a high (and possibly
infinite) dimensional vector space.

If we are given only text, then we may want to consider the set of images of the exam-
ples in the feature space, then apply techniques from linear algebra (like extracting the
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Eigen-vectors) and computing the smallest (in dimension) hyper-planes containing the
images of all the points.

We can then, at least implicitly, take the pre-images of the hyperplanes as languages,
and say that these are the inferred languages.

Example 11.4.1 Suppose the learning sample consists of

S+{aabca,abaac,bbacaaa}
If we use the Parikh kernel, we would like to learn the following equation:

xa − xb − xc = 1

This in turn corresponds to the language:

{w ∈ {a,b,c}∗ : |w|a − |w|b − |w|c = 1}
Given that we can do this for any string kernel κ , we call these κ-planar languages. More

formally, given a string kernel κ and its associated feature map φ : �� → H , where H is
the feature space (some Hilbert space), we can define:

Definition 11.4.1 (κ-planar language) A language L ⊆ �� is κ-planar ifdef there is a
finite set of strings {u1, . . . , un} such that L = {w ∈ �� : ∃α1 . . . αn ∈ R :∑i∈[n] αi = 1
∧ φ(w) = ∑

i∈[n] αiφ(ui )}.
Definition 11.4.2 (Hyper-plane) For any language L ⊆ �∗ the hyper-plane defined
by (all affine combinations of) L is:

H(L)={h ∈ H : ∃n > 0, w1, . . . , wn ∈ L , α1, . . . , αn ∈R such that
∑

i ∈ [n] αi = 1,∑
i∈[n] αiφ(wi ) = h}.
H(L) is the smallest hyper-plane that contains the image of L . Notice that L can be

finite or infinite.

Definition 11.4.3 (Pre-image of hyper-plane) The language L̂ is defined as the pre-
image of this hyper-plane:

L̂ = {w ∈ �� : φ(w) ∈ H(L)}
Example 11.4.2 Consider the language over � = {a,b} :

Lab = {u ∈ �� : |u|a = |u|b}
This language contains all strings such that the number of a is equal to the number of
b. aabb, abaababb belong to Lab. If we consider the Parikh kernel and the associated
feature map, we can see that:

φP (Lab) = {(x, x) : x ≥ 0}
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We have φP (aabb) = (2, 2) and φP (abaababb) = (4, 4). Clearly, these points lie in a
hyper-plane which is a line in the feature space R2. Moreover, the pre-image of the minimal
hyper-plane containing all the points of the language is exactly Lab. Therefore, Lab can
be represented as a one-dimensional hyper-plane in this feature space. Lab is a κ-planar
language for the Parikh kernel.

A way around the hardness of learning context-free languages is to avoid them altogether.
In this case an interesting approach is through learning planar languages (Clark et al.,
2006), using kernel methods (Shawe-Taylor & Christianini, 2004). Typically the idea is to
count something (for example the number of occurrences of some symbol, as in the Parikh
map (Parikh, 1966)), then to compute (via solving linear algebra problems in the dual
space) the smallest hyper-plane containing the examples. For example the typical context-
free language {anbn : n ∈ N} can be described through just two equations : |u|a = |u|b
and |u|ba = 0. Nevertheless this example may be over-simplifying: in general the num-
ber and complexity of the equations we may obtain are much greater. Note that the idea
here is to make use of an alternative definition of languages: instead of through genera-
tion (grammars) or through recognition (automata), languages are defined by description
(Salomaa, 2005). A close approach was followed by Naoki Abe (Abe, 1995): the languages
were also defined by equations, but the setting was that of learning from an informant and
PAC-learning results were obtained.

11.5 Exercises

11.1 Run Ak−T SS for k = 1, 2, 3 and 15, with S = {ab,abab,abababab}.
11.2 Run Ak−T SS for k = 1, 2, 3 and 4, with S = {ab, ababba, abbababab,

baababa,aaba,baabaab}.
11.3 Compute the complexity in time and space of Ak−T SS.
11.4 Prove that (bak)∗ ∈ [k + 1] − T SS(�) but (bak)∗ �∈ k − T SS(�).
11.5 Propose a class that is not k − T SS whatever the value of k.
11.6 Prove that identification of k-testable languages by Ak−T SS can be done with only

a polynomial number of implicit prediction errors. Prove that algorithm Ak−T SS
has only a polynomial number of mind changes.

11.7 Prove that identifying the entire class of testable languages (i.e. the union for all k)
is impossible from positive examples only.

11.8 Let S+ be a positive example and x be one negative example. Prove that there is
a value p for which k < p =⇒ x ∈ Ak−T SS(S+). Deduce an algorithm that
identifies in the limit the entire class of testable languages (i.e. the union of the
k − T SS(�) for all k) from text and just one negative example.

11.9 Prove that learning the entire class of testable languages, from positive and negative
examples, is possible but not with polynomial time (consider implicit prediction
errors, mind changes or characteristic samples).

11.10 Construct a language L that is not k-reversible, ∀k ≥ 0.
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11.11 Prove that the class k − REVL of all k-reversible languages is not identifiable in
the limit from text.

11.12 Run Ak−REV on S = {aa,aba,abb,abaaba,baaba} for k=0, 1, 2, 3.
11.13 Prove that identification in the limit from text is always possible if L is a finite set.
11.14 Run Ak−REV for k = 1, 2, 3, and 15, and S = {ab,abab,abababab}
11.15 Compute the complexity of Ak−REV.
11.16 Run algorithm PATTERN_LEARNER (11.5) on S = {abaaaa, abaaaaa,

bbbabb, abaaba, baabaaa}.
11.17 Build a characteristic sample for the pair 〈π, A〉 where A is algorithm PAT-

TERN_LEARNER (11.5) and π = ax0ax1x1bx2bax0.

11.6 Conclusions of the chapter and further reading

11.6.1 Bibliographical background

The testable languages we introduce in Section 11.1 are usually called k-testable in the
strict sense (García & Vidal, 1990, García, Vidal & Oncina, 1990), k-testable or even local.
The differences are technical.

Look-ahead languages as defined in Section 11.2 were introduced by Dana Angluin
(Angluin, 1982) where they are called k-reversible, but as shown by Henning Fernau (Fer-
nau, 2003) there is a general pattern here that can be used as soon as you have some way to
solve non-determinism when parsing the strings from left to right. We have chosen to use
the original class here but Henning Fernau’s elegant generalisation should be looked into
if variants are needed.

The algorithm from Section 11.2 has been applied, for instance by Boris Chidlovskii
(Chidlovskii, 2000) for wrapper generation. Using Henning Fernau’s extension (Fernau,
2003), Valter Crescenzi and Giansalvatore Mecca define and learn a subclass of regular
languages, called the prefix mark-up languages, that abstract the structures usually found
in HTML (Crescenzi & Mecca, 2004).

Yasubumi Sakakibara built an extension for context-free grammars whose tree language
is k-reversible (Sakakibara, 1992). Adaptations to tree languages (Besombes & Marion,
2004b, Oates, Desai & Bhat, 2002) or even to graph grammars (Oates, Doshi & Huang,
2003) have also been done.

Different authors propose learning these automata and then estimating the probabili-
ties as an alternative to learning stochastic automata. A difficult practical matter is that of
choosing k (see Chapter 17 for some techniques). If counter-examples exist, then these can
be used to decide (see Exercise 11.12). Alternatively, part of the learning sample can be
put aside and used for validation: it is then reasonable to choose the largest k such that the
validation set is recognised.

Pattern languages (Section 11.3) were introduced by Dana Angluin, whose original class
we have chosen to reproduce here (Angluin, 1979, 1987b). There have been numerous
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papers on pattern languages since, including, just to cite a few, (Erlebach et al., 1997,
Koshiba, 1995, Mitchell et al., 1999, Rossmanith & Zeugmann, 1998).

11.6.2 Some alternative lines of research

As mentioned above, there have been many works on learning pattern languages. The
formalism is simple and the classes of languages are rich. Nevertheless, in general the
membership problem is NP-hard. One should turn to the abundant literature inside
the algorithmic learning theory community for further details. The specific problem of
learning pattern languages with more complex types of queries has been studied (Lange &
Zilles, 2003), with extensions to correction queries in (Kinber, 2008, Tirnauca, 2008).

One problem with k-testable languages is that for small alphabets and small values of
k the languages are not very interesting. An alternative to augmenting the size of the win-
dow is to augment the size of the alphabet! The idea can be to consider that an a at the
beginning of the string is different from an a at the end of the string. This idea was fol-
lowed by researchers working in pattern recognition on the morphic generator (Castro &
Casacuberta, 1996, Vidal et al., 1988).

11.6.3 Open problems and possible new lines of research

One of the key advantages of the k-testable language learning algorithm is that it is fast:
computation takes place in linear time. As today the quantity of available data is becoming
larger and larger, it would seem that this is a good argument in favour of this algorithm.
But the fixed size of the window is one obstacle, and so are the difficulties imposed by a
noisy setting.

Work done by Henning Fernau in trying to generalise these ideas (Fernau, 2000, 2002)
is another direction to be followed. He characterises the properties necessary to be able to
obtain a class identifiable in the limit from text. Combining these ideas with complexity
considerations, new classes of automata might be able to be introduced.
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Informed learners

Understanding is compression, comprehension is compression!
Greg Chaitin (Chaitin, 2007)

Comprendo. Habla de un juego donde las reglas no sean la línea
de salida, sino el punto de llegada ¿No?

Arturo Pérez-Reverte, el pintor de batallas

‘Learning from an informant’ is the setting in which the data consists of labelled strings,
each label indicating whether or not the string belongs to the target language.

Of all the issues which grammatical inference scientists have worked on, this is prob-
ably the one on which most energy has been spent over the years. Algorithms have been
proposed, competitions have been launched, theoretical results have been given. On one
hand, the problem has been proved to be on a par with mighty theoretical computer sci-
ence questions arising from combinatorics, number theory and cryptography, and on the
other hand cunning heuristics and techniques employing ideas from artificial intelligence
and language theory have been devised.

There would be a point in presenting this theme with a special focus on the class of
context-free grammars with a hope that the theory for the particular class of the finite
automata would follow, but the history and the techniques tell us otherwise. The main
focus is therefore going to be on the simpler yet sufficiently rich question of learning
deterministic finite automata from positive and negative examples.

We shall justify this as follows:

• On one hand the task is hard enough, and, through showing what doesn’t work and why, we will
have a precious insight into more complex classes.

• On the other hand anything useful learnt on DFAs can be nicely transferred thanks to reductions
(see Chapter 7) to other supposedly richer classes.

• Finally, there are historical reasons: on the specific question of learning DFAs from an informed
presentation, some of the most important algorithms in grammatical inference have been invented,
and many new ideas have been introduced due to this effort.

The specific question of learning context-free grammars and languages from an informant
will be studied as a separate problem, in Chapter 15.

237
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12.1 The prefix tree acceptor (PTA)

We shall be dealing here with learning samples composed of labelled strings:

Definition 12.1.1 Let � be an alphabet. An informed learning sample is made of two
sets S+ and S− such that S+ ∩ S− = ∅. The sample will be denoted as S = 〈S+, S−〉.
We will alternatively denote (x, 1) ∈ S for x ∈ S+ and (x, 0) ∈ S for x ∈ S−. Let
A = 〈�, Q, qλ,FA,FR, δ〉 be a DFA.

Definition 12.1.2 A is weakly consistent with the sample S= 〈S+, S−〉 ifdef

∀x ∈ S+, δ(qλ, x) ∈ FA and ∀x ∈ S−, δ(qλ, x) �∈ FA.

Definition 12.1.3 A is strongly consistent with the sample S= 〈S+, S−〉 ifdef

∀x ∈ S+, δ(qλ, x) ∈ FA and ∀x ∈ S−, δ(qλ, x) ∈ FR.

Example 12.1.1 The DFA from Figure 12.1 is only weakly consistent with the sample
{(aa, 1), (abb, 0), (b, 0)} which can also be denoted as:

S+ = {aa}
S− = {abb,b}.

String abb ends in state qλ which is unlabelled (neither accepting nor rejecting), and string
b (from S−) cannot be entirely parsed. Therefore the DFA is not strongly consistent. On
the other hand the same automaton can be shown to be strongly consistent with the sample
{(aa, 1), (aba, 1)(abab, 0)}.

A prefix tree acceptor (PTA) is a tree-like DFA built from the learning sample by taking
all the prefixes in the sample as states and constructing the smallest DFA which is a tree
(∀q ∈ Q, | {q ′ : δ(q ′, a) = q}| ≤ 1}), strongly consistent with the sample. A formal
algorithm (BUILD-PTA) is given (Algorithm 12.1).

An example of a PTA is shown in Figure 12.2.
Note that we can also build a PTA from a set of positive strings only. This corresponds

to building the PTA (〈S+,∅〉). In that case, for the same sample we would get the PTA
represented in Figure 12.3.

qλ

qa

qaa

qab

a a

b

a

b

b

a

Fig. 12.1. A DFA.
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Algorithm 12.1: BUILD-PTA.

Input: a sample 〈S+, S−〉
Output: A = PTA(〈S+, S−〉) = 〈�, Q, qλ,FA,FR, δ〉
FA ← ∅;
FR ← ∅;
Q ← {qu : u ∈ PREF(S+ ∪ S−)};
for qu·a ∈ Q do δ(qu, a)← qua ;
for qu ∈ Q do

if u ∈ S+ then FA ← FA ∪ {qu};
if u ∈ S− then FR ← FR ∪ {qu}

end
return A

qλ

qa

qb

qaa

qab

qbb

qaba

qbba

qabab

a

b

a

b

b

a b

a

Fig. 12.2. PTA ({(aa, 1), (aba, 1), (bba, 1), (ab, 0), (abab, 0)}).

qλ
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qb

qaa

qab

qbb

qaba

qbba
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b

a

b
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a

Fig. 12.3. PTA ({(aa, 1), (aba, 1), (bba, 1)}).

In Chapter 6 we will consider the problem of grammatical inference as the one of
searching inside a space of admissible biased solutions, in which case we will introduce a
non-deterministic version of the PTA.

Most algorithms will take the PTA as a starting point and try to generalise from it
by merging states. In order not to get lost in the process (and not undo merges that
have been made some time ago) it will be interesting to divide the states into three
categories:
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qλ
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qb
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qbb
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qbba

qabab

a

b

a

b
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a b

a

Fig. 12.4. Colouring of states: RED = {qλ, qa}, BLUE = {qb, qaa, qab}, and all the
other states are WHITE.
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b
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b

b
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Fig. 12.5. The DFA Aqab .

• The RED states which correspond to states that have been analysed and which will not be revisited;
they will be the states of the final automaton.

• The BLUE states which are the candidate states: they have not been analysed yet and it should be
from this set that a state is drawn in order to consider merging it with a RED state.

• The WHITE states, which are all the others. They will in turn become BLUE and then RED.

Example 12.1.2 We conventionally draw the RED states in dark grey and the BLUE ones
in light grey as in Figure 12.4, where RED = {qλ, qa} and BLUE = {qb, qaa, qab}.
We will need to describe the suffix language in any state q, consisting of the language
recognised by the automaton when taking this state q as initial. We denote this automaton
formally by Aq with L(Aq) = {w ∈ �� : δ(q, w) ∈ FA}. In Figure 12.5 we have used the
automaton A from Figure 12.1 and chosen state qab as initial.

12.2 The basic operations

We first describe some operations common to many of the state merging techniques. State
merging techniques iteratively consider an automaton and two of its states and aim to
merge them. This will be done when these states are compatible. Sometimes, when notic-
ing that a particular state cannot be merged, it gets promoted. Furthermore at any moment
all states are either RED, BLUE or WHITE. Let us also suppose that the current automaton
is consistent with the sample. The starting point is the prefix tree acceptor (PTA). Ini-
tially, in the PTA, the unique RED state is qλ whereas the BLUE states are the immediate
successors of qλ.
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qλ qa qaa
a a

(a) PTA({aa, 1), (λ, 0)}.

qλ qaa

a

a

(b) After merging qλ and qa.

qλ

a

(c) After merging
qλ, qa and qaa.

Fig. 12.6. Incompatibility is not a local affair.

There are three basic operations that shall be systematically used and need to be studied
independently of the learning algorithms: COMPATIBLE, MERGE and PROMOTE.

12.2.1 COMPATIBLE: deciding equivalence between states

The question here is of deciding if two states are compatible or not. This is the same as
deciding equivalence for the Nerode relation, but with only partial knowledge about the
language. As obviously we do not have the entire language to help us decide upon this, but
only the learning sample, the question is to know if merging these two states will not result
in creating confusion between accepting and rejecting states. Typically the compatibility
might be tested by:

q �A q ′ ⇐⇒ LFA
(Aq) ∩ LFR

(Aq ′) = ∅ and LFR
(Aq) ∩ LFA

(Aq ′) = ∅.
But this is usually not enough as the following example (Figure 12.6) shows. Consider

the three-state PTA (Figure 12.6(a)) built from the sample S = {(aa, 1), (λ, 0)}. Deciding
equivalence between states qλ and qa through the formula above is not sufficient. Indeed
languages L(Aqλ) and L(Aqa) are weakly consistent, but if qλ and qa are merged together
(Figure 12.6(b)), the state qaa must also be merged with these (Figure 12.6(c)) to preserve
determinism. This results in a problem: is the new unique state accepting or rejecting?

Therefore more complex operations will be needed, involving merging, folding and then
testing consistency.

12.2.2 MERGE: merging two states

The merging operation takes two states from an automaton and merges them into a single
state. It should be noted that the effect of the merge is that a deterministic automaton (see
Figure 12.7(a)) will possibly lose the determinism property through this (Figure 12.7(b)).
Indeed this is where the algorithms can reject a merge. Consider for instance automa-
ton 12.8(a). If states q1 and q2 are merged, then to ensure determinism, states q3 and q4

will also have to be merged, resulting in automaton 12.8(b). If we have in our learning
sample string aba (in S−), then the merge should be rejected.

Algorithm 12.2 is given an NFA (with just one initial state, for simplicity), and two
states. It updates the automaton.
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(a) Before merging states q1 and q2.
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q3

q4
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a

(b) After merging the states.

Fig. 12.7. Merging two states may result in the automaton not remaining deterministic.
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(a) Before merging states 1 and 2.

q q1 q3

q5

q6

a,b a
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b

(b) After merging the states recursively (from
1 and 2).

Fig. 12.8. About merging.

Algorithm 12.2: MERGE.

Input: an NFA : A = 〈�, Q, I,FA,FR, δN 〉, q1 and q2 in Q, with q2 �∈ I
Output: an NFA : A = 〈�, Q, I,FA,FR, δN 〉 in which q1 and q2 have been merged into

q1

for q ∈ Q do
for a ∈ � do

if q2 ∈ δN (q, a) then δN (q, a)← δN (q, a) ∪ {q1};
if q ∈ δN (q2, a) then δN (q1, a)← δN (q1, a) ∪ {q}

end
end
if q2 ∈ I then I ← I ∪ {q1};
if q2 ∈ FA then FA ← FA ∪ {q1};
if q2 ∈ FR then FR ← FR ∪ {q1};
Q ← Q \ {q2};
return A

Since non-deterministic automata are in many ways cumbersome, we will attempt
to avoid having to use these to define merging when manipulating only deterministic
automata.

12.2.3 PROMOTE: promoting a state

Promotion is another deterministic and greedy decision. The idea here is that having
decided, at some point, that a BLUE candidate state is different from all the RED states, it
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Algorithm 12.3: PROMOTE.

Input: a DFA : A = 〈�, Q, qλ,FA,FR, δ〉, a BLUE state qu , sets RED, BLUE

Output: a DFA : A = 〈�, Q, qλ,FA,FR, δ〉, sets RED, BLUE updated
RED ← RED ∪ {qu};
for a ∈ � : qua is not RED do add qua to BLUE;
return A

should become RED. We call this a promotion and describe the process in Algorithm 12.3.
The notations that are used here apply to the case where the states involved in a promotion
are the basis of a tree. Therefore, the successors of node qu are named qua with a in �.

12.3 Gold’s algorithm

The first non-enumerative algorithm designed to build a DFA from informed data is due
to E. Mark Gold, which is why we shall simply call this algorithm GOLD. The goal of
the algorithm is to find the minimum DFA consistent with the sample. For that, there are
two steps. The first is deductive: from the data, find a set of prefixes that have to lead to
different states for the reasons given in Section 12.2.2 above, and therefore represent an
incompressible set of states. The second step is inductive: alas, after finding the incom-
pressible set of states, we are not done because it is not usually easy or even possible to
‘fold in’ the rest of the states. Since a direct construction of the DFA from there is usually
impossible, (contradictory) decisions have to be taken. This is where artificial intelligence
techniques might come in (see Chapter 14) as the problems one has to solve are proved to
be intractable (in Chapter 6).

But as more and more strings become available to the learning algorithm (i.e. in the
identification in the limit paradigm), the number of choices left will become more and
more restricted, with, finally, just one choice. This is what allows convergence.

12.3.1 The key ideas

The main ideas of the algorithm are to represent the data (positive and negative strings) in
a table, where each row corresponds to a string, some of which will correspond to the RED

states and the others to the BLUE states. The goal is to create through promotion as many
RED states as possible. For this to be of real use, the set of strings denoting the states will
be closed by prefixes, i.e. if quv is a state so is qu . Formally:

Definition 12.3.1 (Prefix- and suffix-closed sets) A set of strings S is prefix-closed
(respectively suffix-closed) ifdef uv ∈ S =⇒ u ∈ S (respectively if uv ∈ S =⇒ v ∈ S).

No inference is made during this phase of representation of the data: the algorithm is
purely deductive.
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The table then expresses an inequivalence relation between the strings and we should
aim to complete this inequivalence related to the Nerode relation that defines the language:

x ≡ y ⇐⇒ [∀w ∈ �� xw ∈ L ⇐⇒ yw ∈ L
]
.

Once the RED states are decided, the algorithm ‘chooses’ to merge the BLUE states
that are left with the RED ones and then checks if the result is consistent. If it is not, the
algorithm returns the PTA.

In the following we will voluntarily accept a confusion between the states themselves
and the names or labels of the states.

The information is organised in a table 〈STA,EXP,OT〉, called an observation table,
used to compare the candidate states by examining the data, where the three compo-
nents are:

• STA ⊂ �� is a finite set of (labels of) states. The states will be denoted by the indexes (strings)
from a finite prefix-closed set. Because of this labelling, we will often conveniently use string
terminology when referring to the states. Set STA will therefore both refer to the set of states and
to the set of labels of these states, with context always allowing us to determine which.

We partition STA as follows: STA = RED ∪ BLUE. The BLUE states (or state labels) are those
u in STA such that uv ∈ STA =⇒ v = λ. The RED states are the others. BLUE = {ua �∈ RED :
u ∈ RED} is the set of states successors of RED that are not RED.

• EXP ⊂ �� is the experiment set. This set is closed by suffixes, i.e. if uv is an experiment, so is v.
• OT : STA × EXP → {0, 1, ∗} is a function that indicates if making an experiment in state qu is

going to result into an accepting, a rejecting or an unknown situation: the value OT[u][e] is then
respectively 1,0 or ∗. In order to improve readability we will write it as a table indexed by two
strings, the first indicating the label of the state from which the experiment is made and the second
being the experiment itself:

OT[u][e] =

⎧⎪⎨⎪⎩
1 if ue ∈ L
0 if ue �∈ L
∗ otherwise (not known).

Obviously, the table should be redundant in the following sense. Given three strings u, v
and w, if OT[u][vw] and OT[uv][w] are defined (i.e. u, uv ∈ STA and w, vw ∈ EXP), then
OT[u][vw] = OT[uv][w].

Example 12.3.1 In observation table 12.1 we can read:

• STA = {λ,a,b,aa,ab} and among these RED = {λ,a}.
• OT[aa][λ] = 0 so aa �∈ L .
• On the other hand we have OT[b][λ] = 1 which means that b ∈ L .
• Note also that the table is redundant: for example, OT[aa][λ] = OT[a][a] = 0, and similarly

OT[λ][a] = [a][λ] = ∗. This is only due to the fact that the table is an observation of the data. It
does not compute or invent new information.

In the following, we will be only considering legal tables, i.e. those that are based on
a set STA prefix-closed, a set EXP suffix-closed and a redundant table. Legality can be
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Table 12.1. An observation table.

λ a b

λ 0 ∗ 1
a ∗ 0 0
b 1 1 ∗
aa 0 0 ∗
ab 0 ∗ ∗

Algorithm 12.4: GOLD-check legality.

Input: a table 〈STA,EXP,OT〉
Output: a Boolean indicating if the table is legal or not
OK← true;
for s ∈ STA do /* check if STA is prefix-closed */

if PREF(s) �⊂ STA then OK← false
end
for e ∈ EXP do /* check if EXP is suffix-closed */

if PREF(e) �⊂ EXP then OK← false
end
for p ∈ STA do /* check if all is legal */

for e ∈ EXP do
for p ∈ PREF(e) do

if [sp ∈ STA ∧ OT[s][e] �= OT[sp][p−1e] then OK← false
end

end
end
return OK

checked with Algorithm 12.4. The complexity of the algorithm can be easily improved
(see Exercise 12.1). In practice, a good policy is to stock the data in an association table,
with the string as key and the label as value, and to manipulate in the observation table just
the keys to the table. This makes the legality issue easy to deal with.

Definition 12.3.2 (Holes)
A hole in a table 〈STA,EXP,OT〉 is a pair (u, e) such that OT[u][e] = ∗.

A hole corresponds to a missing observation.

Definition 12.3.3 (Complete table)
The table 〈STA,EXP,OT〉 is complete (or has no holes) ifdef ∀u ∈ STA, ∀e ∈
EXP, OT[u][e] ∈ {0, 1}.
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λ a

λ 0 1
a 1 0
b 1 0
aa 0 0
ab 1 0

(a) An observation table,
which is not closed, because
of row aa.

λ a

λ 0 1
a 1 0
b 0 1
aa 0 1
ab 1 0

(b) A complete and closed
observation table.

Fig. 12.9.

Definition 12.3.4 (Rows)
We will refer to OT[u] as the row indexed by u and will say that two rows OT[u] and OT[v]
are compatible for OT (or u and v are consistent for OT) ifdef �e ∈ EXP : (OT[u][e] = 0
and OT[v][e] = 1

)
or
(
OT[u][e] = 1 and OT[v][e] = 0

)
. We denote this by u �OT v.

The goal is not going to be to detect if two rows are compatible, but if they are not.

Definition 12.3.5 (Obviously different rows)
Rows u and v are obviously different (OD) for OT (we also write OT[u] and OT[v]
are obviously different) ifdef ∃e ∈ EXP : OT[u][e], OT[v][e] ∈ {0, 1} and OT[u][e] �=
OT[v][e].
Example 12.3.2 Table 12.1 is incomplete since it has holes. Rows OT[λ] and OT[a] are
incompatible (and OD), but row OT[aa] is compatible with both OT[λ] and OT[a].

12.3.2 Complete tables

We now consider the ideal (albeit unrealistic) setting where there are no holes in the table.

Definition 12.3.6 (Closed table)
A table OT is closed ifdef ∀u ∈ BLUE, ∃s ∈ RED : OT[u] = OT[s].
The table presented in Figure 12.9(a) is not closed (because of row aa) but Table 12.9(b)
is. Being closed means that every BLUE state can be matched with a RED one.

12.3.3 Building a DFA from a complete and closed table

Building an automaton from a table 〈STA,EXP,OT〉 can be done very easily as soon as
certain conditions are met:

• The set of strings marking the states in STA is prefix-closed,
• The set EXP is suffix-closed,
• The table should be complete: holes correspond to undetermined pieces of information,
• The table should be closed.
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λ a

λ 0 1
a 1 0
b 1 0
aa 0 1
ab 1 0

(a) The observation
table.

a b

qλ qa qa

qa qλ qa

(b) The transition
table.

qλ qa

a,b

a

b

(c) The automaton.

Fig. 12.10. A table and the corresponding automaton.

Once these conditions hold we can use Algorithm GOLD-BUILDAUTOMATON (12.5)
and convert the table into a DFA.

Algorithm 12.5: GOLD-BUILDAUTOMATON.

Input: a closed and complete observation table (STA,EXP,OT)
Output: a DFA A = 〈�, Q, qλ,FA,FR, δ〉
Q ← {qr : r ∈ RED};
FA ← {qwe : we ∈ RED ∧ OT[w][e] = 1};
FR ← {qwe : we ∈ RED ∧ OT[w][e] = 0};
for qw ∈ Q do

for a ∈ � do δ(qw, a)← qu : u ∈ RED ∧ OT[u] = OT[wa]
end
return 〈�, Q, qλ,FA,FR, δ〉

Example 12.3.3 Consider Table 12.10(a). We can apply the construction from
Algorithm 12.5 and obtain Q = {qλ, qa}, FA = {qa}, FR = {qλ} and δ is given by
the transition table 12.10(b). Automaton 12.10(c) can be built.

Definition 12.3.7 (Consistent table) Given an automaton A and an observation table
〈STA,EXP,OT〉, A is consistent with 〈STA,EXP,OT〉 when the following holds:

• OT[u][e] = 1 =⇒ ue ∈ LFA
(A),

• OT[u][e] = 0 =⇒ ue ∈ LFR
(A).

LFA
(A) is the language recognised by A by accepting states, whereas LFR

(A) is the
language recognised by A by rejecting states.

Theorem 12.3.1 (Consistency theorem) Let 〈STA,EXP,OT〉 be an observation
table closed and complete. If STA is prefix-closed and EXP is suffix-closed then
GOLD-BUILDAUTOMATON(〈STA,EXP,OT〉) is consistent with the information in
〈STA,EXP,OT〉.
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Proof The proof is straightforward as GOLD-BUILDAUTOMATON builds a DFA
directly from the data from 〈STA,EXP,OT〉.

12.3.4 Building a table from the data

The second question is that of obtaining a table from a sample. At this point we want the
table to be consistent with the sample, and to be just an alternative representation of the
sample. Given a sample S and a set of states RED prefix-closed, it is always possible
to build a set of experiments EXP such that the table 〈STA,EXP,OT〉 contains all the
information in S (and no other information!). There can be many possible tables, one cor-
responding to each set of RED states we wish to consider. And, of course, in most cases,
these tables are going to have holes.

Algorithm 12.6: GOLD-BUILDTABLE.

Input: a sample S = 〈S+, S−〉, a set RED prefix-closed
Output: table 〈STA,EXP,OT〉
EXP ← SUFF(S);
BLUE ← RED ·� \ RED;
for p ∈ RED ∪ BLUE do

for e ∈ EXP do
if p.e ∈ S+ then OT[p][e] ← 1
else

if p.e ∈ S− then OT[p][e] ← 0 else OT[p][e] ← ∗
end

end
end
return 〈STA,EXP,OT〉

Algorithm GOLD-BUILDTABLE (12.6) builds the table corresponding to a given
sample and a specific set RED.

Example 12.3.4 Table 12.2 constructed for the sample S = {(aa, 1), (bbaa, 1),
(aba, 0)} and for the set of RED states {λ,a} is given here. We have not entered the ‘∗’
symbols to increase readability (i.e. an empty cell denotes a symbol ∗).

12.3.5 Updating the table

We notice the following:

Proposition 12.3.2 If ∃t ∈ BLUE such that OT[t] is obviously different from any OT[s]
(with s ∈ RED), then whatever way we fill the holes in 〈STA,EXP,OT〉, the table will not
be closed.
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Table 12.2. GOLD-BUILDTABLE({(aa, 1), (bbaa, 1), (aba, 0)}), {λ, a}).
λ a aa ba aba baa bbaa

λ 1 0 1
a 1 0
b 1
aa 1
ab 0

In other words, if one BLUE state is obviously different from all the RED states, then
even guessing each ∗ correctly is not going to be enough. This means that this BLUE state
should be promoted before attempting to fill in the holes.

12.3.6 Algorithm GOLD

The general algorithm can now be described.
It is composed of four steps requiring four sub-algorithms:

(i) Given sample S, Algorithm GOLD-BUILDTABLE (12.6, page 248) builds an initial table with
RED = {λ}, BLUE = � and E = SUFF(S).

(ii) Find a BLUE state obviously different (OD) with all RED states. Promote this BLUE state to
RED and repeat.

(iii) Fill in the holes that are left (using Algorithm GOLD-FILLHOLES). If the filling of the holes
fails, return the PTA (using Algorithm BUILD-PTA (12.1, page 239)).

(iv) Using Algorithm GOLD-BUILDAUTOMATON (12.5, page 247), build the automaton. If it is
inconsistent with the original sample, return the PTA instead.

12.3.7 A run of the algorithm

Example 12.3.5 We provide an example run of Algorithm GOLD (12.7).
We use the following sample:

S+ = {bb,abb,bba,bbb}
S− = {a,b,aa,bab}.

We first build the observation table corresponding to RED = {λ}.
Now, Table 12.3 is not closed because of row OT[b]. So we promote qb and update the

table, obtaining Table 12.4.

Table 12.3. The table for S+ = {bb,abb,bba,bbb}
S− = {a,b,aa,bab} and RED = {λ}.

λ a b aa ab ba bb abb bab bba bbb

λ 0 0 0 1 1 0 1 1
a 0 0 1
b 0 1 0 1 1
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Algorithm 12.7: GOLD for DFA identification.

Input: a sample S
Output: a DFA consistent with the sample
RED ← {λ};
BLUE ← �;
〈STA,EXP,OT〉 ← GOLD-BUILDTABLE(S,RED);
while ∃x ∈ BLUE such that OT[x] is OD do

RED ← RED ∪ {x};
BLUE ← BLUE ∪ {xa : a ∈ �};
for u ∈ STA do

for e ∈ EXP do
if ue ∈ S+ then OT[u][e] ← 1
else if ue ∈ S− then OT[u][e] ← 0
else OT[u][e] ← ∗

end
end

end
OT ← GOLD-FILLHOLES(OT);
if fail then return BUILD-PTA(S)
else

A ← GOLD-BUILDAUTOMATON(〈STA,EXP,OT〉);
if CONSISTENT(A,S) then return A
else return BUILD-PTA(S)

end

Table 12.4. The table for S+ = {bb,abb,bba,bbb}
S− = {a,b,aa,bab} and RED = {λ,b}.

λ a b aa ab ba bb abb bab bba bbb

λ 0 0 0 1 1 0 1 1
b 0 1 0 1 1
a 0 0 1
ba 0
bb 1 1 1

But Table 12.4 is not closed because of OT[bb]. Since qbb is obviously different from
both qλ (because of experiment λ) and qb (because of experiment b), we promote qbb and
update the table to Table 12.5.

At this point there are no BLUE rows that are obviously different from the RED rows.
Therefore all that is needed is to fill the holes. Algorithm GOLD-FILLHOLES is now used
to make the table complete.
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Table 12.5. The table for S+ = {bb,abb,bba,bbb}
S− = {a,b,aa,bab} and RED = {λ,b,bb}.

λ a b aa ab ba bb abb bab bba bbb

λ 0 0 0 1 1 0 1 1
b 0 1 0 1 1
bb 1 1 1
a 0 0 1
ba 0
bba 1
bbb 1

Table 12.6. The table for S+ = {bb,abb,bba,bbb}
S− = {a,b,aa,bab} after running the first phase of
GOLD-FILLHOLES.

λ a b aa ab ba bb abb bab bba bbb

λ 1 0 0 0 1 1 0 1 1
b 0 0 1 0 1 1
bb 1 1 1
a 0 0 1
ba 0
bba 1
bbb 1

Table 12.7. The table for S+ = {bb,abb,bba,bbb}
S− = {a,b,aa,bab} after phase 2 of GOLD-FILLHOLES.

λ a b aa ab ba bb abb bab bba bbb

λ 1 0 0 0 1 1 1 1 0 1 1
b 0 0 1 1 0 1 1 1 1 1 1
bb 1 1 1 1 1 1 1 1 1 1 1
a 0 0 1
ba 0
bba 1
bbb 1

This algorithm first fills the rows corresponding to the RED rows by using the informa-
tion contained in the BLUE rows which are compatible (in the sense of Definition 12.3.4).
In this case there are a number of possibilities which may conflict. For example, we have
a �OT λ but also a �OT b. And we are only considering pairs where the first prefix/state
is BLUE and the second is RED.

We suppose that in this particular case, the algorithm has selected a �OT b, ba �OT λ,
bba �OT λ and bbb �OT bb. This results in building first Table 12.6. Then all the holes
in the RED rows are filled by 1s (Table 12.7).
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Table 12.8. The complete table for S+ = {bb,abb,bba,bbb}
S− = {a,b,aa,bab} after running GOLD-FILLHOLES.

λ a b aa ab ba bb abb bab bba bbb

λ 1 0 0 0 1 1 1 1 0 1 1
b 0 0 1 1 0 1 1 1 1 1 1
bb 1 1 1 1 1 1 1 1 1 1 1
a 0 0 1 1 0 1 1 1 1 1 1
ba 1 0 0 0 1 1 1 1 0 1 1
bba 1 0 0 0 1 1 1 1 0 1 1
bbb 1 1 1 1 1 1 1 1 1 1 1

Algorithm 12.8: GOLD-FILLHOLES.

Input: a table 〈STA,EXP,OT〉
Output: the table OT updated, with holes filled
for p ∈ BLUE do /* First fill in all the RE D lines */

if ∃r ∈ RED : p �OT r then /* Find a compatible RE D */
for e ∈ EXP do

if OT[p][e] �= ∗ then OT[r ][e] ← OT[p][e]
end

else
return fail

end
end
for r ∈ RED do

for e ∈ EXP do if OT[r ][e] = ∗ then OT[r ][e] ← 1
end
for p ∈ BLUE do /* Now fill in all the BL U E lines */

if ∃r ∈ RED : p �OT r then /* Find a compatible RE D */
for e ∈ EXP do

if OT[p][e] = ∗ then OT[p][e] ← OT[r ][e]
end

else
return fail

end
end
return 〈STA,EXP,OT〉

The second part of the algorithm again visits the BLUE states, tries to find a compatible
RED state and copies the corresponding RED row. This results in Table 12.8.

Finally, the third part of Algorithm 12.8 fills the remaining holes of the BLUE rows. This
results in Table 12.8.
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(a) The ‘safe’ information.
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(b) Guessing the missing information.

Fig. 12.11. The final filling of the holes for GOLD.

Next, Algorithm GOLD-BUILDAUTOMATON (12.5) is run on the table, with the
resulting automaton depicted in Figure 12.11(b). The DFA accepts aa which is in S+,
therefore the PTA is returned instead.

One might consider that GOLD-FILLHOLES is far too trivial for such a complex task
as that of learning automata. Indeed, when considering Table 12.5 a certain number of safe
decisions about the automaton can be made. These are depicted in Figure 12.11(a). The
others have to be guessed:

• equivalent lines for a could be λ and b (so qa could be either qλ or qb),
• possible candidates for bba are λ and bb (so qbba could be either qλ or qbb),
• possible candidates for bbb are λ and bb (so qbbb could be either qλ or qbb).

In the choices above not only should the possibilities before merging be considered, but
also the interactions between the merges. For example, even if in theory both states qa and
qbba could be merged into state qλ, they both cannot be merged together! We will not enter
here into how this guessing can be done (greediness is one option).

Therefore the algorithm, having failed, returns the PTA depicted in Figure 12.12(a). If it
had guessed the holes correctly an automaton consistent with the data (see Figure 12.12(b))
might have been returned.

12.3.8 Proof of the algorithm

We first want to prove that, alas, filling in the holes is where the real problems start. There
is no tractable strategy that will allow us to fill the holes easily:

Theorem 12.3.3 (Equivalence of problems) Let RED be a set of states prefix-closed,
and S be a sample. Let 〈STA,EXP,OT〉 be an observation table consistent with all the
data in S, with EXP suffix-closed.
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(a) The PTA.

qλ

qb qbb

b

a

a

b

a,b

(b) The correct solution.

Fig. 12.12. The result and the correct solution.

The question:

Name: Consistent
Instance: A sample S, a prefix-closed set RED

Question: Does there exist a DFA = 〈�, Q, qλ,FA,FR, δ〉 with Q = {qu :
u ∈ RED}, and if ua ∈ RED, δ(qu, a) = qua, consistent with S?

is equivalent to:

Name: Holes
Instance: An observation table 〈STA,EXP,OT〉
Question: Can we fill the holes in such a way as to have 〈STA,EXP,OT〉
closed?

Proof If we can fill the holes and obtain a closed table, then a DFA can be constructed
which is consistent with the data (by Theorem 12.3.1). If there is a DFA with the states of
RED then we can use the DFA to fill the holes.

From this we have:

Theorem 12.3.4 The problem:

Name: Minimum consistent DFA reachable from RED

Instance: A sample S, a set RED prefix-closed such that each OT[s]
(s ∈ RED) is obviously different from all the others with respect to S, and a
positive integer n
Question: Is there a DFA = 〈�, Q, qλ,FA,FR, δ〉 with the conditions
{qu : u ∈ RED} ⊆ Q, |Q| = n, consistent with S?

is NP-complete.
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And as a consequence:

Corollary 12.3.5 Given S and a positive integer n, the question:

Name: Minimum consistent DFA
Instance: A sample S and a positive integer n
Question: Is there a DFA with n states consistent with S?

is NP-complete.

Proof We leave the proofs that these problems are NP-hard to Section 6.2 (page 119).
Proving that either of the problems belongs to NP is not difficult: simply producing

a DFA and checking consistency is going to take polynomial time only as it consists of
parsing the strings in S.

On the positive side, identification in the limit can be proved:

Theorem 12.3.6 Algorithm GOLD, given any sample S = 〈S+, S−〉:
• outputs a DFA consistent with S,
• admits a polynomial-sized characteristic sample,
• runs in time and space polynomial in ‖S‖.

Proof
• Remember that in the worst case the PTA is returned.
• The characteristic sample can be constructed in such a way as to make sure that all the states

are found to be OD. The number of such strings is quadratic in the size of the target automaton.
Furthermore it can be proved that none of these strings needs to be of length more than n2. It should
be noted that for this to work, the order in which the BLUE states are explored for promotion
matters. If the size of the canonical acceptor of the language is n, then there is a characteristic
sample CSL with ‖CSL‖ = 2n2(|�| + 1), such that GOLD(S) produces the canonical acceptor
for all S ⊇ CSL .

• Space complexity is in O(‖S‖·n)whereas time complexity is in O(n2 ·‖S‖). We leave for Exercise
12.5 the question of obtaining a faster algorithm.

Corollary 12.3.7 Algorithm GOLD identifies DFA(�) in POLY-CS time.

Identification in the limit in POLY-CS polynomial time follows from the previous
remarks.

12.4 RPNI

In Algorithm GOLD, described in Section 12.3, there is more than a real chance that after
many iterations the final problem of ‘filling the holes’ is not solved at all (and perhaps
cannot be solved unless more states are added) and the PTA is returned. Even if this is
mathematically admissible (since identification in the limit is ensured), in practice one
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would prefer an algorithm that does some sort of generalisation in all circumstances, and
not just in the favourable ones.

This is what is proposed by algorithm RPNI (Regular Positive and Negative Inference).
The idea is to greedily create clusters of states (by merging) in order to come up with a
solution that is always consistent with the learning data. This approach ensures that some
type of generalisation takes place and, in the best of cases (which we can characterise by
giving sufficient conditions that permit identification in the limit), returns the correct target
automaton.

12.4.1 The algorithm

We describe here a generic version of Algorithm RPNI. A number of variants have
been published that are not exactly equivalent. These can be studied in due course.
Basically, Algorithm RPNI (12.13) starts by building PTA(S+) from the positive data
(Algorithm BUILD-PTA (12.1, page 239)), then iteratively chooses possible merges,
checks if a given merge is correct and is made between two compatible states (Algorithm
RPNI-COMPATIBLE (12.10)), makes the merge (Algorithm RPNI-MERGE (12.11)) if
admissible and promotes the state if no merge is possible (Algorithm RPNI-PROMOTE
(12.9)).

The algorithm has as a starting point the PTA, which is a deterministic finite automaton.
In order to avoid problems with non-determinism, the merge of two states is immediately
followed by a folding operation: the merge in RPNI always occurs between a RED state
and a BLUE state. The BLUE states have the following properties:

• If q is a BLUE state, it has exactly one predecessor, i.e. whenever δ(q1, a1) = δ(q2, a2) = q , then
necessarily q1 = q2 and a1 = a2.

• q is the root of a tree, i.e. if δ(q, u · a)=δ(q, v · b) then necessarily u = v and a = b.

Algorithm 12.9: RPNI-PROMOTE.

Input: a DFA A = 〈�, Q, qλ,FA,FR, δ〉, sets RED,BLUE ⊆ Q, qu ∈ BLUE

Output: A,RED,BLUE updated
RED ← RED ∪ {qu};
BLUE ← BLUE ∪ {δ(qu, a), a ∈ �};
return A,RED,BLUE

Algorithm RPNI-PROMOTE (12.9), given a BLUE state qu , promotes this state to RED

and all the successors in A of this state become BLUE.
Algorithm RPNI-COMPATIBLE (12.10) returns YES if the current automaton cannot

parse any string from S− but returns NO if some counter-example is accepted by the current
automaton. Note that the automaton A is deterministic.
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Algorithm 12.10: RPNI-COMPATIBLE.

Input: A, S−
Output: a Boolean, indicating if A is consistent with S−
for w ∈ S− do

if δA(qλ,w) ∩ FA �= ∅ then return false
end
return true

Algorithm RPNI-MERGE (12.11) takes as arguments a RED state q and a BLUE state q ′.
It first finds the unique pair (q f , a) such that q ′ = δA(q f , a). This pair exists and is unique
because q ′ is a BLUE state and therefore the root of a tree. RPNI-MERGE then redirects
δ(q f , a) to q. After that, the tree rooted in q ′ (which is therefore disconnected from the
rest of the DFA) is folded (RPNI-FOLD) into the rest of the DFA. The possible interme-
diate situations of non-determinism (see Figure 12.7, page 242) are dealt with during the
recursive calls to RPNI-FOLD. This two-step process is shown in Figures 12.13 and 12.14.

Algorithm 12.11: RPNI-MERGE.

Input: a DFA A, states q ∈ RED, q ′ ∈ BLUE

Output: A updated
Let (q f , a) be such that δA(q f , a) = q ′;
δA(q f , a)← q;
return RPNI-FOLD(A, q, q ′)

Algorithm RPNI (12.13) depends on the choice of the function CHOOSE. Provided it is
a deterministic function (such as one that chooses the minimal 〈u, a〉 in the lexicographic
order), convergence is ensured.

The RED states

qλ

q

q f

q ′
a

Fig. 12.13. The situation before merging.
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Algorithm 12.12: RPNI-FOLD.

Input: a DFA A, states q, q ′ ∈ Q, q ′ being the root of a tree
Output: A updated, where subtree in q ′ is folded into q
if q ′ ∈ FA then FA ← FA ∪ {q};
for a ∈ � do

if δA(q ′, a) is defined then
if δA(q, a) is defined then

A ←RPNI-FOLD(A, δA(q, a), δA(q ′, a))
else

δA(q, a)← δA(q ′, a);
end

end
end
return A

The RED states

qλ

q

q f

q ′

a

Fig. 12.14. The situation after merging and before folding.

12.4.2 The algorithm’s proof

Theorem 12.4.1 Algorithm RPNI (12.13) identifies in the limit DFA(�) in POLY-CS
time.

Proof We use here Definition 7.3.3 (page 154). We first prove that the algorithm computes
a consistent solution in polynomial time. First note that the size of the PTA (‖PTA‖ being
the number of states) is polynomial in ‖S‖. The function CHOOSE can only be called at
most ‖PTA‖ number of times. At each call, compatibility of the running BLUE state will
be checked with each state in RED. This again is bounded by the number of states in the
PTA. And checking compatibility is also polynomial.

Then to prove that there exists a polynomial characteristic set we constructively add
the examples sufficient for identification to take place. Let A = 〈�, Q, qλ,FA,FR, δ〉
be the complete minimal canonical automaton for the target language L . Let <CHOOSE

be the order relation associated with function CHOOSE. Then compute the minimum
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Algorithm 12.13: RPNI.

Input: a sample S = 〈S+, S−〉, functions COMPATIBLE, CHOOSE
Output: a DFA A = 〈�, Q, qλ,FA,FR, δ〉
A ← BUILD-PTA(S+);
RED ← {qλ};
BLUE ← {qa : a ∈ � ∩ PREF(S+)};
while BLUE �= ∅ do

CHOOSE(qb ∈ BLUE);
BLUE ← BLUE \ {qb};
if ∃qr ∈ RED such that RPNI-COMPATIBLE(RPNI-MERGE(A, qr , qb), S−) then

A ← RPNI-MERGE(A, qr , qb);
BLUE ← BLUE ∪ {δ(q, a) : q ∈ RED ∧ a ∈ � ∧ δ(q, a) �∈ RED};

else
A ← RPNI-PROMOTE(qb,A)

end
end
for qr ∈ RED do /* mark rejecting states */

if λ ∈ (L(Aqr )
−1S−) then FR ← FR ∪ {qr }

end
return A

distinguishing string between two states qu, qv (MD), and the shortest prefix of a state
qu (SP):

• MD(qu , qv) = min<CHOOSE{w ∈ �� : (δ(qu , w) ∈ FA ∧ δ(qv, w) ∈ FR

) ∨ (
δ(qu , w) ∈

FR ∧ δ(qv, w) ∈ FA

)}.
• SP(qu) = min<CHOOSE{w ∈ �� : δ(qλ,w) = qu}.
RPNI-CONSTRUCTCS(A) (Algorithm 12.14) uses these definitions to build a character-
istic sample for RPNI, for the order <CHOOSE, and the target language.

MD(qu, qv) represents the minimum suffix allowing us to establish that states qu and
qv should never be merged. For example, if we consider the automaton in Figure 12.15,
in which the states are numbered in order to avoid confusion, this string is aa for q1

and q2.
SP(qu) is the shortest prefix in the chosen order that leads to state qu . Normally this

string should be u itself. For example, for the automaton represented in Figure 12.15,
SP(q1) = λ, SP(q2) = a, SP(q3) = aa and SP(q4) = b.

12.4.3 A run of the algorithm

To run RPNI we first have to select a function CHOOSE. In this case we use the lex-length
order over the prefixes leading to a state in the PTA. This allows us to mark the states once
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Algorithm 12.14: RPNI-CONSTRUCTCS.

Input: A = 〈�, Q, qλ,FA,FR, δ〉
Output: S = 〈S+, S−〉
S+ ← ∅;
S− ← ∅;
for qu ∈ Q do

for qv ∈ Q do
for a ∈ � such that L(Aqv ) ∩ a�� �= ∅ and qu �= δ(qv, a) do

w ← MD(qu, qv);
if δ(qλ, u · w) ∈ FA then

S+ ← S+ ∪ SP(qu) · w; S− ← S− ∪ SP(qv)a · w
else S− ← S− ∪ SP(qu) · w; S+ ← S+ ∪ SP(qv)a · w

end
end

end
return 〈S+, S−〉

q1

q2

q3

q4

a a

b

a

b

b

b

a

Fig. 12.15. Shortest prefixes of a DFA.

and for all. With this order, state q1 corresponds to qλ in the PTA, q2 to qa, q3 to qb ,q4 to
qaa, and so forth.

The data for the run are:

S+ = {aaa,aaba,bba,bbaba}
S− = {a,bb,aab,aba}

From this we build PTA(S+), depicted in Figure 12.16.
We now try to merge states q1 and q2, by using Algorithm RPNI-MERGE with values

A, q1, q2. Once transition δA(q1,a) is redirected to q1, we reach the situation represented
in Figure 12.17.

This is the point where Algorithm RPNI-FOLD is called, in order to fold the subtree
rooted in q2 into the rest of the automaton; the result is represented in Figure 12.18.
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Fig. 12.16. PTA(S+).
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Fig. 12.17. After δA(q1,a) = q1.
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Fig. 12.18. After merging q2 and q1.
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Fig. 12.19. The PTA with q2 promoted.

The resulting automaton can now be tested for compatibility but if we try to parse
the negative examples we notice that counter-example a is accepted. The merge is thus
abandoned and we return to the PTA.

State q2 is now promoted to RED, and its successor q4 is BLUE (Figure 12.19).
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Fig. 12.20. Trying to merge q3 and q1.
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Fig. 12.21. After the folding.
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Fig. 12.22. Trying to merge q3 and q2.

So the next BLUE state is q3 and we now try to merge q3 with q1. The automaton in
Figure 12.20 is built by considering the transition δA(q1,b) = q1. Then RPNI-FOLD(A,
q1, q3) is called.

After folding, we get an automaton (see Figure 12.21) which again parses counter-
example a as positive.

Therefore the merge {q1, q3} is abandoned and we must now check the merge between
q3 and q2. After folding, we are left with the automaton in Figure 12.22 which this time
parses the counter-example aba as positive.

Since q3 cannot be merged with any RED state, there is again a promotion: RED =
{q1, q2, q3}, and BLUE = {q4, q5}. The updated PTA is depicted in Figure 12.23.

The next BLUE state is q4 and the merge we try is q4 with q1. But a (which is the
distinguishing suffix) is going to be accepted by the resulting automaton (Figure 12.24).
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Fig. 12.23. The PTA with q3 promoted.
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Fig. 12.24. Merging q4 with q1 and folding.
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Fig. 12.25. Automaton after merging q4 with q3.

The merge between q4 and q2 is then tested and fails because of a now being parsed.
The next merge (q4 with q3) is accepted. The resulting automaton is shown in Figure 12.25.

The next BLUE state is q5; notice that state q6 has the shortest prefix at that point, but
what counts is the situation in the original PTA. The next merge to be tested is q5 with q1:
it is rejected because of string a which is a counter-example that would be accepted by
the resulting automaton (represented in Figure 12.26). Then the algorithm tries merging q5

with q2: this involves folding in the different states q8, q10 and q11. The merge is accepted,
and the automaton depicted in Figure 12.27 is constructed.

Finally, BLUE state q6 is merged with q1. This merge is accepted, resulting in the
automaton represented in Figure 12.28.

Last, the states are marked as final (rejecting). The final accepting ones are correct, but
by parsing strings from S−, state q2 is marked as rejecting (Figure 12.29).
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Fig. 12.26. Automaton after merging q5 with q1, and folding.
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Fig. 12.27. Automaton after merging q5 with q2, and folding.
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Fig. 12.28. Automaton after merging q6 with q1.
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Fig. 12.29. Automaton after marking the final rejecting states.

12.4.4 Some comments about implementation

The RPNI algorithm, if implemented as described above, does not scale up. It needs a lot of
further work done to it before reaching a satisfactory implementation. It will be necessary
to come up with a correct data structure for the PTA and the intermediate automata. One
should consider the solutions proposed by the different authors working in the field.



12.5 Exercises 265

The presentation we have followed here avoids the heavy non-deterministic formalisms
that can be found in the literature and that add an extra (and mostly unnecessary) difficulty
to the implementation.

12.5 Exercises

12.1 Algorithm 12.4 (page 245) has a complexity in O(|STA|2 + |STA| · |E |2). Find an
alternative algorithm, with a complexity in O(|STA| · |E |).

12.2 Run Gold’s algorithm for the following data:

S+ = {a,abb,bab,babbb}
S− = {ab,bb,aab,b,aaaa,babb}

12.3 Take RED = {qλ}, EXP = {λ,b,bbb}. Suppose S+ = {λ,b} and S− = {bbb}.
Construct the corresponding DFA, with Algorithm GOLD-BUILDAUTOMATON
12.5 (page 247). What is the problem?

12.4 Build an example where RED is not prefix-closed and for which Algorithm GOLD-
BUILDAUTOMATON 12.5 (page 247) fails.

12.5 In Algorithm GOLD the complexity seems to depend on revisiting each cell in OT
various times in order to decide if two lines are obviously different. Propose a data
structure which allows the first phase of the algorithm (the deductive phase) to be in
O(n · ‖S‖) where n is the size (number of states) of the target DFA.

12.6 Construct the characteristic sample for the automaton depicted in Figure 12.30(a)
with Algorithm RPNI-CONSTRUCTCS (12.14).

12.7 Construct the characteristic sample for the automaton depicted in Figure 12.30(b),
as defined in Algorithm RPNI-CONSTRUCTCS (12.14).

12.8 Run Algorithm RPNI for the order relations ≤alpha and ≤lex-length on

S+ = {a,abb,bab,babbb}
S− = {ab,bb,aab,b,aaaa,babb}.

12.9 We consider the following definition in which a learning algorithm is supposed to
learn from its previous hypothesis and the new example:

q1

q2

q3

a

b

b

a

ab

(a)

q1

q2

q3

a

a

b

a

b

b

(b)

Fig. 12.30. Target automata for the exercises.
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Definition 12.5.1 An algorithm A incrementally identifies grammar class G in
the limit ifdef given any T in G, and any presentation φ of L(T ), there is a rank n
such that if i ≥ n, A(φ(i),Gi ) ≡ T .

Can we say that RPNI is incremental? Can we make it incremental?
12.10 What do you think of the following conjecture?

Conjecture of non-incrementality of the regular languages. There exists no
incremental algorithm that identifies the regular languages in the limit from an
informant. More precisely, let A be an algorithm that given a DFA Ak , a current
hypothesis, and a labelled string wk (hence a pair 〈wk, l(wk)〉), returns an automa-
ton Ak+1. In that case we say that A identifies in the limit an automaton T ifdef for
no rank k above n, Ak �≡ T .

Note that l(w) is the label of string w, i.e. 1 or 0.
12.11 Devise a collusive algorithm to identify DFAs from an informant. The algorithm

should rely on an encoding of DFAs over the intended alphabet �. The algorithm
checks the data, and, if some string corresponds to the encoding of a DFA, this
DFA is built and the sample is reconsidered: is the DFA minimal and compatible for
this sample? If so, the DFA is returned. If not, the PTA is returned. Check that this
algorithm identifies DFAs in POLY-CS time.

12.6 Conclusions of the chapter and further reading

12.6.1 Bibliographical background

In Section 12.1 we have tried to define in a uniform way the problem of learning DFAs
from an informant. The notions developed here are based on the common notion of the
prefix tree acceptor, sometimes called the augmented PTA, which has been introduced by
various authors (Alquézar & Sanfeliu, 1994, Coste & Fredouille, 2003). It is customary to
present learning in a more asymmetric way as generalising from the PTA and controlling
the generalisation (i.e. avoiding over-generalisation) through the negative examples. This
approach is certainly justified by the capacity to define the search space neatly (Dupont,
Miclet & Vidal, 1994): we will return to it in Chapters 6 and 14.

Here the presentation consists of viewing the problem as a classification question and
giving no advantage to one class over another. Among the number of reasons for preferring
this idea, there is a strong case for manipulating three types of states, some of which are of
unknown label. There is a point to be made here: if in ideal conditions, and when conver-
gence is reached, the hypothesis DFA (being exactly the target) will only have final states
(some accepting and some rejecting), this will not be the case when the result is incorrect.
In that case deciding that all the non-accepting states are rejecting is bound to be worse
than leaving the question unsettled.

The problem of identifying DFAs from an informant has attracted a lot of attention:
E. Mark Gold (Gold, 1978) and Dana Angluin (Angluin, 1978) proved the intractability of
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finding the smallest consistent automaton. Lenny Pitt and Manfred Warmuth extended this
result to non-approximability (Pitt & Warmuth, 1993). Colin de la Higuera (de la Higuera,
1997) noticed that the notion of polynomial samples was non-trivial.

E. Mark Gold’s algorithm (GOLD) (Gold, 1978) was the first grammatical inference
algorithm with strong convergence properties. Because of its incapacity to do better than
return the PTA the algorithm is seldom used in practice. There is nevertheless room for
improvement. Indeed, the first phase of the algorithm (the deductive step) can be imple-
mented with a time complexity of O(‖S‖ · n) and can be used as a starting point for
heuristics.

Algorithm RPNI is described in Section 12.4. It was developed by Jose Oncina and
Pedro García (Oncina & García, 1992). Essentially this presentation respects the original
algorithm. We have only updated the notations and somehow tried to use a terminology
common to the other grammatical inference algorithms. There have been other alter-
native approaches based on similar ideas: work by Boris Trakhtenbrot and Ya Barzdin
(Trakhtenbrot & Bardzin, 1973) and by Kevin Lang (Lang, 1992) can be checked for
details.

A more important difference in this presentation is that we have tried to avoid the non-
deterministic steps altogether. By replacing the symmetrical merging operation, which
requires determinisation (through a cascade of merges), by the simpler asymmetric folding
operation, NFAs are avoided.

In the same line, an algorithm that doesn’t construct the PTA explicitly is presented in
(de la Higuera, Oncina & Vidal, 1996). The RED, BLUE terminology was introduced in
(Lang, Pearlmutter & Price, 1998), even if does not coincide exactly with previous defini-
tions: in the original RPNI the authors use shortest prefixes to indicate the RED states and
elements of the kernel for some prefixes leading to the BLUE states. Another analysis of
merging can be found in (Lambeau, Damas & Dupont, 2008).

Algorithm RPNI has been successfully adapted to tree automata (García & Oncina,
1993), and infinitary languages (de la Higuera & Janodet, 2004).

An essential reference for those wishing to write their own algorithms for this task is
the datasets. Links about these can be found on the grammatical inference webpage (van
Zaanen, 2003). One alternative is to generate one’s own targets and samples. This can be
done with the GOWACHIN machine (Lang, Pearlmutter & Coste, 1998).

12.6.2 Some alternative lines of research

Both GOLD and RPNI have been considered as good starting points for other algorithms.
During the ABBADINGO competition, state merging was revisited, the order relation
being built during the run of the algorithm. This led to heuristic EDSM (evidence driven
state merging), which is described in Section 14.5.

More generally the problem of learning DFAs from positive and negative strings has
been tackled by a number of other techniques (some of which are presented in Chapter 14).
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12.6.3 Open problems and possible new lines of research

There are a number of questions that still deserve to be looked into concerning the problem
of learning DFAs from an informant, and the algorithms GOLD and RPNI:

Concerning the problem of learning DFAs from an informant. Both algorithms we
have proposed are incapable of adapting correctly to an incremental setting. Even if a first
try was made by Pierre Dupont (Dupont, 1996), there is room for improvement. Moreover,
one aspect of incremental learning is that we should be able to forget some of the data we
are learning from during the process. This is clearly not the case with the algorithms we
have seen in this chapter.

Concerning the GOLD algorithm. There are two research directions one could recom-
mend here. The first corresponds to the deductive phase. As mentioned in Exercise 12.5,
clever data structures should accelerate the construction of the table with as many
obviously different rows as possible.

The second line of research corresponds to finding better techniques and heuristics to fill
the holes.

Concerning the RPNI algorithm. The complexity of the RPNI algorithm remains loosely
studied. The actual computation which is proposed is not convincing, and empirically,
those that have consistently used the algorithm certainly do not report a cubic behaviour. A
better analysis of the complexity (joined with probably better data structures) is of interest
in that it would allow us to capture the parts where most computational effort is spent.

Other related topics. A tricky open question concerns the collusion issues. An alternative
‘learning’ algorithm could be to find in the sample a string which would be the encoding
of a DFA, decode this string and check if the characteristic sample for this automaton is
included. This algorithm would then rely on collusion: it needs a teacher to encode the
automaton. Collusion is discussed in (Goldman & Mathias, 1996): for the learner-teacher
model to be able to resist collusion, an adversary is introduced. This, here, corresponds to
the fact that the characteristic sample is to be included in the learning sample for identifica-
tion to be mandatory. But the fact that one can encode the target into a unique string, which
is then correctly labelled and passed to the learner together with a proof that the number
of states is at least n, which has been remarked in a number of papers (Castro & Guijarro,
2000, Denis & Gilleron, 1997, Denis, d’Halluin & Gilleron, 1996) remains troubling.
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Among the more interesting remaining theoretical questions are: inference in the
presence of noise, general strategies for interactive presentation and the inference
of systems with semantics.

Jerome Feldman (Feldman, 1972)

La simplicité n’a pas besoin d’être simple, mais du complexe resserré et
synthétisé.

Alfred Jarry

We describe algorithm LSTAR, introduced by Dana Angluin, which has inspired several
variants and adaptations to other classes of languages.

13.1 The minimally adequate teacher

A minimally adequate teacher (MAT) is an Oracle that can give answers to membership
queries and strong equivalence queries. We analysed in Section 9.2 the case where you
want to learn with less.

The main algorithm that works in this setting is called LSTAR. The general idea of
LSTAR is:

• find a consistent observation table (representing a DFA),
• submit it as an equivalence query,
• use the counter-example to update the table,
• submit membership queries to make the table closed and complete,
• iterate until the Oracle, upon an equivalence query, tells us that the correct language has been

reached.

The observation table we use is analogous to that described in Section 12.3, so we will
use the same formalism here.

13.1.1 An observation table

An observation table is a specific tabular representation of an automaton. An example is
given in Table 13.1(a).
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λ a

λ 0 1
a 1 0
b 1 0
aa 0 1
ab 1 0

(a) An observation table.

qλ qa

a,b

a

b

(b) The corresponding automaton.

Fig. 13.1. The observation table and the corresponding automaton.

The meaning of the table can be made reasonably clear. By concatenating the name of
a row r with the name of a column c we get a string rc. The string is in the language
if the corresponding cell OT[r ][c] contains a 1, and is not if it is a 0. If the table com-
plies with certain conditions of consistency, an automaton can easily be extracted from the
table. The automaton corresponding to Table 13.1(a) is depicted in Figure 13.1(b). We for-
mally describe a procedure allowing us to extract a DFA from a table (when possible) in
Section 13.1.2.

An observation table is a triple 〈STA,EXP,OT〉 where:

• STA = RED ∪ BLUE is a set of strings, denoting labels of states,
• RED ⊂ �∗ is a finite set of states,
• EXP ⊂ �∗ is the experiment set,
• BLUE = RED ·� \ RED is the set of states successors of RED that are not RED,
• OT : STA × EXP → {0, 1, ∗} is a function such that:

• OT[u][e] =

⎧⎪⎨⎪⎩
1 if ue ∈ L
0 if ue �∈ L
∗ otherwise (not known).

Again, to simplify, RED and BLUE will be sets of strings also used to label the states.
There are a number of key ideas one wants to understand in order to grasp this

algorithm.

Definition 13.1.1 (Holes) A hole in a table 〈STA,EXP,OT〉 is a pair (u, e) such that
OT[u][e] = ∗.

A table is complete ifdef it has no holes.

The problem with incomplete tables is that we do not have all the information needed
to extract a DFA from a table. In Section 12.3 (page 243) this was the key problem and no
satisfying solution was given. Consider for instance Table 13.2(a). There are several holes
that could be filled in various manners. For example, the hole corresponding to OT[ab][b]
indicates that there is no fixed or known value for δ(qab,b). In order to build a DFA from
this incomplete table, we notice that δ(qab,b) could just as well be qλ as qab. The situation
is represented Figure 13.2(b).
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λ a b

λ 1 1
a 1 1 0
ab 0 0
b 1 1
aa 1 1
aba 0 1 0
abb 1

(a) An incomplete table.

qλ

qaa

qab

b

qb

b

qaa
a

qaba

a

qabb
b

(b) The corresponding automaton.

Fig. 13.2. The automaton corresponding to an incomplete table.

λ a

λ 0 0
a 0 0
aa 0 0
aab 1 0
b 1 0
ab 1 0
aaba 0 0
aabb 1 0

(a) The observation
table.

a b

qλ qλ qb

qb qλ qb

(b) The transition
table.

qλ qb

b

a

a b

(c) Automaton.

Fig. 13.3. An automaton and a table.

13.1.2 Building a DFA from a complete and closed table

Building an automaton from a table 〈STA,EXP,OT〉 can be done very easily if certain
conditions are met:

• The set of strings marking the states in STA must be prefix-closed,
• The set EXP is suffix-closed,
• The table must be complete and therefore have no holes,
• The table must be closed.

If these conditions hold we can use Algorithm LSTAR-BUILDAUTOMATON (13.1,
similar to Algorithm 12.5, page 247).

Example 13.1.1 Consider Table 13.3(a). We can apply the construction from
Algorithm 13.1 and obtain Q = {qλ, qa}, FA = {qa}, FR = {qλ} and δ given by the
transition table 13.3(b). Then the automaton 13.3(c) can be built.
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Algorithm 13.1: LSTAR-BUILDAUTOMATON.

Input: a closed and complete observation table (STA,EXP,OT)
Output: DFA 〈�, Q, qλ,FA,FR, δ〉
Q ← {qu : u ∈ RED ∧ ∀v < u OT[v] �= OT[u]};
FA ← {qu ∈ Q : OT[u][λ] = 1};
FR ← {qu ∈ Q : OT[u][λ] = 0};
for qu ∈ Q do

for a ∈ � do δ(qu, a)← qw ∈ Q : OT[ua] = OT[w]
end
return 〈�, Q, qλ,FA,FR, δ〉

13.1.3 Consistency

Definition 13.1.2 (Consistent table) Given an automaton A and an observation table
〈STA,EXP,OT〉, A is consistent with 〈STA,EXP,OT〉 when the following holds:

• OT[u][e] = 1 =⇒ ue ∈ LFA
(A),

• OT[u][e] = 0 =⇒ ue ∈ LFR
(A).

Remember that LFA
(A) is the language recognised by A by accepting states, whereas

LFR
(A) is the language recognised by A by rejecting states.

Theorem 13.1.1 (Consistency theorem) Let 〈STA,EXP,OT〉 be an observation
table, closed and complete. If STA is prefix-closed and EXP is suffix-closed
then LSTAR-BUILDAUTOMATON(〈STA,EXP,OT〉) is consistent with the data in
〈STA,EXP,OT〉.
Proof LSTAR-BUILDAUTOMATON(〈STA,EXP,OT〉) is built from the data from
〈STA,EXP,OT〉.
Completing the table by submitting membership queries should allow us to solve some of
the ambiguity issues, even if not all of them.

13.1.4 Tables with no holes

We consider here the case where there are no holes in the table. To reach this situation, we
will have filled the holes by using membership queries.

Definition 13.1.3 (Equivalent prefixes and rows) Two prefixes u and v are equivalent
ifdef OT[u] = OT[v]. We will denote this by u ≡EXP v.

The next definition is similar to Definition 12.3.6 (page 246).
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λ a

λ 0 1
a 1 0
b 1 0
aa 0 1
ab 1 1

(a) A table that is not closed,
because of row ab.

λ a

λ 0 1
a 1 0
ab 1 1
b 1 0
aa 0 1
aba 1
abb

(b) Closing the table.

Fig. 13.4. Closing a table.

Definition 13.1.4 (Closed table) A table 〈STA,EXP,OT〉) is closed ifdef given any row
u of BLUE there is some row v in RED such that u ≡EXP v.

Checking if the table is closed is straightforward. But what can the algorithm do once it
has found that the table is not closed? Let s be the row (of BLUE) that does not appear
in RED, add s to RED, and ∀a ∈ �, add sa to BLUE. This corresponds to the promotion
introduced in Section 12.2.3 (page 242).

By repeating this until the table is closed, we are done. Notice that the number of
iterations is bounded by the size of the automaton.

Example 13.1.2 In Gold’s algorithm (Section 12.3) all the RED states were obviously
different from each other. Moreover, a state was moved to the upper part of the table only
when this condition was met. Because of the lack of control the learner has over the Oracle,
this is not the case here.

An inconsistent table is one from which an automaton cannot be extracted. This is dif-
ferent from Section 12.3: in this case it is possible to have RED prefixes/states that seem
equivalent and need separating.

Definition 13.1.5 A table is consistent ifdef every equivalent pair of rows in RED remains
equivalent in STA after appending any symbol.
OT[s1] = OT[s2] =⇒ ∀a ∈ �, OT[s1a] = OT[s2a].
What do we do when we have an inconsistent table? If it is inconsistent, then let a ∈ � be
the symbol for which OT[s1] = OT[s2] but OT[s1a] �= OT[s2a]. Let e be the experiment
for which the inconsistency has been found (OT[s1a][e] �= OT[s2a][e]). Then by adding
experiment ae to the table, rows OT[s1] and OT[s2] are different. Indeed, OT[s1][ae] �=
OT[s2][ae].
Example 13.1.3 Table 13.5(a) is inconsistent: rows a and ab look the same, but, upon
experiment a they fail to be equivalent, since rows aa and aba are different. Therefore
column (and experiment) aa is added, resulting in Table 13.5(b).
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λ a

λ 0 1
a 1 0
ab 1 0
b 1 0
aa 0 1
aba 0 0
abb 1 0

(a) An inconsistent table
(because of a and ab).

λ a aa

λ 0 1 0
a 1 0 1
ab 1 0 0
b 1 0
aa 0 1
aba 0 1
abb 1 0

(b) The table has become con-
sistent.

λ a

λ 0 1
a 1 0
ab 1 0
b 1 0
aa 0 1
aba 0 1
abb 1 0

(c) A consistent table.

Fig. 13.5. Consistency.

On the other hand, Table 13.5(c) is consistent, since we have not only OT[a] = OT[ab],
but also OT[aa] = OT[aba] and OT[ab] = OT[abb].

Once the learner has built a complete, closed and consistent table, it can con-
struct the DFA using Algorithm LSTAR-BUILDAUTOMATON and make an equivalence
query!

Obviously, if the Oracle returns a positive answer to the algorithm’s equivalence query, it
can halt. If she returns a counter-example (u), then the learner should add as RED states all
the prefixes of u, and complete the BLUE section accordingly (with all strings pa (a ∈ �)
such that p is a prefix of u but pa is not). In this way at least one new RED line obviously
different from all the others will have been added.

13.2 The algorithm

Algorithm LSTAR (13.2) can now be described. First the observation table is ini-
tialised by Algorithm LSTAR-INITIALISE (13.3). This consists of building one RED

row (λ) and as many BLUE rows as there are symbols in the alphabet. Then the itera-
tive construction begins. When the table is not closed an extra row is added (Algorithm
LSTAR-CLOSE (13.4)), when it is inconsistent an extra column is added (Algorithm
LSTAR-CONSISTENT (13.5)). At every moment, membership queries are made to fill in
the holes. When we are ready and the table is closed and consistent, an equivalence query
is made and if unsuccessful, new rows are added (Algorithm LSTAR-USEEQ (13.6)).

13.2.1 A run of LSTAR

We run LSTAR over an example. We start with the empty table, in which RED = {λ}
and EXP = {λ}. A first membership query is made with string λ. The answer is YES.
Then a and b are added to BLUE and the membership queries a and b are made. Suppose
again the answers are YES. The corresponding Table 13.6(a) is closed and complete, so an
equivalence query is made for the automaton depicted in Figure 13.6(b).
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Algorithm 13.2: LSTAR Learning Algorithm.

Input: –
Output: DFA A
LSTAR-INITIALISE;
repeat

while 〈STA,EXP,OT〉 is not closed or not consistent do
if 〈STA,EXP,OT〉 is not closed then
〈STA,EXP,OT〉 ← LSTAR-CLOSE(〈STA,EXP,OT〉);
if 〈STA,EXP,OT〉 is not consistent then
〈STA,EXP,OT〉 ← LSTAR-CONSISTENT(〈STA,EXP,OT〉)

end
Answer← EQ(〈STA,EXP,OT〉);
if Answer �= YES then
〈STA,EXP,OT〉 ← LSTAR-USEEQ(〈STA,EXP,OT〉, Answer)

until Answer= YES ;
return LSTAR-BUILDAUTOMATON(〈STA,EXP,OT〉)

Algorithm 13.3: LSTAR-INITIALISE.

Input: –
Output: table 〈STA,EXP,OT〉
RED ← {qλ};
BLUE ← {qa : a ∈ �};
EXP ← {λ};
OT[λ][λ] ← MQ(λ);
for a ∈ � do OT[a][λ] ← MQ(a);
return 〈STA,EXP,OT〉

Let abb be the negative counter-example returned by the Oracle. The table is updated
to Table 13.7(a). The table now closed and the holes can be filled through membership
queries, yielding Table 13.7(a).

But Table 13.6(a) is not closed as rows OT[a] and OT[ab] coincide whereas rows
OT[a · b] and OT[ab · b] do not. Experiment b is the reason for this, so it is added as
an experiment and the new Table 13.7(c) has to be completed. Table 13.7(d) is therefore
obtained, which is now closed and complete and can be transformed into an automaton that
will be proposed as an equivalence query (Figure 13.8).

We suppose this time the equivalence query is met with a positive answer so we halt.
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Algorithm 13.4: LSTAR-CLOSE.

Input: a table 〈STA,EXP,OT〉
Output: table 〈STA,EXP,OT〉 updated
for s ∈ BLUE such that ∀u ∈ RED OT[s] �= OT[u] do

RED ← RED ∪ {s};
BLUE ← BLUE \ {s};
for a ∈ � do BLUE ← BLUE ∪ {s · a};
for u, e ∈ �� such that OT[u][e] is a hole do OT[u][e] ← MQ(ue)

end
return 〈STA,EXP,OT〉

Algorithm 13.5: LSTAR-CONSISTENT.

Input: a table 〈STA,EXP,OT〉
Output: table 〈STA,EXP,OT〉 updated
find s1, s2 ∈ RED, a ∈ � and e ∈ EXP such that OT[s1] = OT[s2] and
OT[s1 · a][e] �= OT[s2 · a][e];
EXP ← EXP ∪ {a · e};
for u, e ∈ �� such that OT[u][e] is a hole do OT[u][e] ← MQ(ue);
return 〈STA,EXP,OT〉

Algorithm 13.6: LSTAR-USEEQ.

Input: a table 〈STA,EXP,OT〉, string Answer
Output: table 〈STA,EXP,OT〉 updated
for p ∈ PREF(Answer) do

RED ← RED ∪ {p};
for a ∈ � : pa �∈ PREF(Answer) do BLUE ← BLUE ∪ {pa}

end
for u, e ∈ �� such that OT[u][e] is a hole do OT[u][e] ← MQ(ue);
return 〈STA,EXP,OT〉

13.2.2 Proof of the algorithm

The algorithm LSTAR clearly terminates. Since every regular language admits a unique
minimal DFA, let us suppose, without loss of generality, that the target is this minimum
DFA with n states. But since any DFA consistent with a table has at least as many states
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λ

λ 1
a 1
b 1

(a) A consistent table.

0

a,b

(b) The automaton corresponding to the
Table 13.6(a).

Fig. 13.6. Consistency.

λ

λ 1
a 1
ab

abb 0
b 1
aa

aba

abba

abbb

(a) Table after
equivalence query
returned abb (as not
in L).

λ

λ 1
a 1
ab 1
abb 0
b 1
aa 1
aba 1
abba 0
abbb 0

(b) Membership
queries are made:
Table is not closed.

λ b

λ 1 1
a 1 1
ab 1 0
abb 0 0
b 1
aa 1
aba 1
abba 0
abbb 0

(c) Adding a column to
make the table closed.

λ b

λ 1 1
a 1 1
ab 1 0
abb 0 0
b 1 0
aa 1 1
aba 1 1
abba 0 0
abbb 0 0

(d) The table after fill-
ing the holes is closed and
consistent.

Fig. 13.7. Running LSTAR.

qλ qab qabb

b

a

b

a a,b

Fig. 13.8. Automaton after running LSTAR.

as different rows in RED, and if a table is closed and consistent then the construction of
a consistent DFA is unique, therefore the table can only grow ‘vertically’ until it has n
different rows.

Now, each closure failure adds one different row to RED, and each inconsistency failure
adds one experiment, which also creates a new row in RED. Each counter-example also
adds one different row to RED (notice that many rows can appear because of the prefixes,
but what matters is that at least one appears that is different from the others). Every time
the table is not consistent or an equivalence query is met by a counter-example, at least one
new row is introduced. Furthermore, the number of steps between two such events is also
finite. So the total number of these operations is bounded.
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Now, for correction, if the algorithm has built a table with n obviously different rows in
RED, and n is the size of the minimal DFA for the target, then it is the target.

The algorithm therefore is correct and terminates.
Let us now study the complexity of LSTAR:

• At most n experiments will be made (including λ), since an experiment necessarily introduces a
new different row. So |EXP| ≤ n.

• For the same reasons at most n equivalence queries are made.
• The number of membership queries is bounded by the total size of the table, which is at most n

(the number of experiments/columns), multiplied by the number of lines (≤ nm where m is the
length of the longest counter-example returned by the Oracle).

Therefore the total number of queries made is at most n2m. A computation of this number
at each step of the algorithm is possible and gives similar results: the table only grows with
the size of the counter-examples returned by the Oracle.

13.2.3 About implementation issues

One difficulty with the implementation of LSTAR comes from maintaining the redundancy.
Actually it is not necessary to implement the actual table. A better idea is to manage three
association tables:

• A first table MQ contains the result of the membership queries. It can be consulted in constant
time to know whether a particular string has been queried or not, and if it has, whether or not it
belongs to the language.

• A second table PREF contains the different names of the rows, and for each row, the status: is it
RED or BLUE?

• A third table just contains the different experiments.

The actual observation table is only simulated by a function OT(u, v) which will return
the value MQ[uv].

13.3 Exercises

13.1 Run algorithm LSTAR on the automaton from Figure 13.9. You will need to simulate
the Oracle too!

13.2 Replace the equivalence queries with the use of sampling query EX() in the above.
What values of mi should you consider?

13.3 It was suggested in Section 9.4 (page 191) that equivalence queries can be replaced by
sampling. Write the algorithm allowing us to actually simulate the equivalence query.

13.4 If one chooses to sample instead of making equivalence queries, one problem is: what
do we do with all the examples that did fit the hypothesis until a counter-example
was found? One alternative is to enter all this information into the observation table.
Another is to ignore it. Which is better? Why?
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0
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2

b

a
b

a

b

a

Fig. 13.9. A target automaton.

13.4 Conclusions of the chapter and further reading

In Chapter 9 we discussed a number of implications of active learning. In particular,
negative results were given.

13.4.1 Bibliographical background

Algorithm LSTAR was is due to Dana Angluin (Angluin, 1990) and was later adapted for
a robotics scenario by Ron Rivest and Robert Schapire (Rivest & Schapire, 1993), and has
led to a number of variants (both in description and in the combination between the mem-
bership and equivalence queries (Balcázar et al., 1994b, Kearns & Vazirani, 1994). We
have concentrated in this chapter on DFAs. In the case of context-free grammars the nega-
tive proofs by Dana Angluin and Michael Kharitonov (Angluin & Kharitonov, 1991) with
MATs are related to cryptographic assumptions. On the other hand, if structural informa-
tion is available, Yasubumi Sakakibara proves the learnability of the class of context-free
grammars in this model (Sakakibara, 1990). Learning balls of strings from different types
of queries has also been studied (de la Higuera, Janodet & Tantini, 2008).

Returning to the DFA case, it should be noticed that the Oracle has no reason to
return the counter-example the learner really needs. A more helpful setting was studied
in (Birkendorf, Boeker & Simon, 2000).

Other studies contemplate the fact that the Oracle is somehow bounded. In practice, it
may be difficult to imagine that the Oracle has the resources to return an exponentially long
example; furthermore, if the learner can find a hypothesis correct only over the strings of
reasonable length, this may be sufficient. These questions are discussed in (Castro, 2001,
Watanabe, 1994).

13.4.2 Some alternative lines of research

The model has received considerable attention and there are many papers on learning with
different sorts of queries. Yasubumi Sakakibara (Sakakibara, 1987) learns context-free
grammars from queries. Takashi Yokomori (Yokomori, 1996) learns two-tape automata
from both queries and counter-examples, and also non-deterministic finite automata from
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queries in polynomial time but depending on the size of the associated DFA (Yokomori,
1994). Juan-Manuel Vilar extends queries to translation tasks in (Vilar, 1996), and Oded
Maler and Amir Pnueli (Maler & Pnueli, 1991) learn Büchi automata from queries over
infinite strings.

A recent idea is that of combining membership queries and equivalence queries in
some way. Correction queries (Beccera-Bonache, Bibire & Horia Dediu, 2005, Becerra-
Bonache, Horia Dediu & Tîrnauca, 2006) correspond to strings that the learner hypothe-
sises as being in the language. The Oracle then presents some correction of the string if
the string does not belong to the language. There are many ways of defining such correc-
tions, some being more theoretical and others (using the edit distance) closer to possible
applications (Becerra-Bonache et al., 2008, Kinber, 2008, Tirnauca, 2008). Again, as in
other questions, the problem of correctly defining a topology over the languages is of cru-
cial importance, as the sort of correction one would expect is one of a string close to the
queried string.

In practice, getting hold of equivalence queries is considered to be the hardest of prob-
lems. One way around this is to sample. An evolutionary algorithm following this line is
proposed in (Bongard & Lipson, 2005).

One can also consider the case where the Oracle can answer probabilistic queries. We
visit this question in the corresponding chapters (Chapter 10 for some negative results, and
Chapter 16 for some positive ones). A typical idea is to introduce specific sampling queries
in order to learn probabilistic machines (de la Higuera & Oncina, 2004).

13.4.3 Open problems and possible new lines of research

We proposed in Section 9.6.3 some problems relating to learning with queries. More gen-
erally, there are a number of reasons for which inventing new query-learning algorithms or
making the existing ones more efficient (not just in time, but also in number of queries) are
important issues, and our feeling is that more research in this area should be encouraged.



14

Artificial intelligence techniques

Si al cabo de tres partidas de póquer no sabes todavía quien es el tonto, es que el
tonto eres tú.

Manuel Vicent

The training program of an artificial intelligence can certainly include an
informant, whether or not children receive negative instances.

E. Mark Gold (Gold, 1967)

In the different combinatorial methods described in the previous chapters, the main engine
to the generalisation process is something like:

‘If nothing tells me not to generalise, do it.’

For example, in the case where we are learning from an informant, the negative data
provide us with the reason why one should not generalise (which is usually performed by
merging two states). In the case of learning from text, the limitations exercised by the extra
bias on the grammar class are what avoid over-generalisation.

But as a principle, the ‘do it if you are allowed’ idea is surely not the soundest. Since
identification in the limit is achieved through elimination of alternatives, and an alternative
can only be eliminated if there are facts that prohibit it, the principle is mathematically
sound but defies common sense.

There are going to be both advantages and risks to considering a less optimistic point of
view, which could be expressed somehow like:

‘If there are good reasons to generalise, then do it.’

On one hand, generalisations will be justified through the fact that there is some positive
ground, some good reason to make them. But on the other hand we will most often lose
the mathematical performance guarantees. It will then be a matter of expertise to decide
if some extra bias has been added to the system, and then to know if this bias is desired
or not.

Let us discuss this point a little further. Suppose the task is learning DFAs from text,
and the algorithm takes as a starting point the prefix tree acceptor, then performs different

281
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merges between states whenever this seems like a good idea. In this case the ‘good idea’
might be something like ‘if it contributes to diminishing the size of the automaton’. Then
you will have added such a heavy bias that your learning algorithm will always return the
universal automaton that recognises any string! Obviously this is a simple example that
would not fool anyone for long. But if we follow on with the idea, it is not difficult to come
up with algorithms whose task is to learn context-free grammars, but whose construc-
tion rules are such that only grammars that generate regular languages can be effectively
learnt!

As, when dealing with these heuristics, the option of identification does not make sense,
it is going to be remarkably difficult to decide when a given algorithm has such a hidden
bias and when it does not.

On the other hand, there are a number of reasons for which researchers in artificial intel-
ligence have worked thoroughly in searching for new heuristics for grammatical inference
problems:

• The sheer size of the search spaces makes the task of interest. When describing the set of admissi-
ble solutions as a partition lattice (see Section 6.3.4), the size of this lattice increases in a dramatic
way (defined by the Bell formula) with the size of the positive data.

• We also saw in Chapter 6 that the basic operations related with the different classes of grammars
and automata were intractable: the equivalence problem, the ‘smallest consistent’ problem.

• Furthermore the challenging nature of the associated NP-hard problems is also something to
be taken into account. Even if NP is in theory a unique class, there are degrees of approxima-
tion that can be different from problem to problem, and it is well known by scientists working
on the effective resolution of NP-hard problems that some can be tackled easier than others,
at least in particular instances, or that the size of the tractable instances of the problem may
vary from one problem to another. In the case of learning DFAs, the central problem concerns
finding the ‘minimum consistent DFA’, a problem for which only small instances seem to be
tractable by exhaustive algorithms, ‘small’ corresponding to less than about 30 states in the
target.

• A fourth reason is that the point of view we have defended since the beginning, that there is a
target language to be found, can in many situations not be perfectly adapted. In the case where we
are given a sample and the problem is to find the smallest consistent grammar, this corresponds
to trying to solve an intractable but combinatorially well-defined problem; there are finally cases
where the data are noisy or where the target is moving.

The number of possible heuristics is very large, and we will only survey here some of
the main ideas that have been tried in the field.

14.1 A survey of some artificial intelligence ideas

We will comment at the end of the chapter that more techniques could be tested; indeed
one could almost systematically take an artificial intelligence text book, choose some meta-
heuristic method for solving hard problems, and then try to adapt it to the task of learning
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grammars or automata. We only give the flavour of some of the better studied ideas here.
In the next sections we will describe the use of the following techniques in grammatical
inference:

• genetic algorithms,
• Tabu search,
• using the MDL principle,
• heuristic greedy search,
• constraint satisfaction.

We aim here to recall the key ideas of the technique and to show, in each case, through
a very brief example, how the technique can be used in grammatical inference. The goal
is certainly not to be technical nor to explain the finer tuning explanations necessary in
practice, but only to give the idea and to point, in the bibliographical section, to further
work with the technique.

14.2 Genetic algorithms

The principle of genetic algorithms is to simulate biological modifications of genes and
hope that, via evolutionary mechanisms, nature increases the quality of its population. The
fact that both bio-computing and grammatical inference deal with languages and strings
adds a specific flavour to this approach here.

14.2.1 Genetic algorithms: general approach

Genetic algorithms maintain a population of strings that each encode a given solution to
the learning problem, then by defining the specific genetic operators, allow this population
to evolve and better itself (through an adequacy to a given fitness function).

In the case where the population is made of grammars or automata supposed to somehow
better describe a learning sample, a certain number of issues should be addressed:

(i) What is the search space? Does it comprise all strings describing grammars or only those that
correspond to correct ones?

(ii) How do we build the first generation?
(iii) What are the genetic operators? Typically some sort of mutation should exist: a symbol in the

string can mutate into another symbol. Also a crossing-over operator is usually necessary: this
operation takes two strings and mixes them together in some way to obtain the siblings for the
next generation.

(iv) What happens when, after an evolution, the given string does not encode a solution any more?
One may consider having stopping sequences in the string so that non-encoding bits can
be blocked between these special sequences. This is quite a nice idea leading to interesting
interpretations about what is known as junk DNA.

(v) What fitness function should be used? How do we compare the quality of two solutions?
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TTAGCCTTC

TTTGCCTTC

Fig. 14.1. Mutation.

TTATCCGT
TAGGCTTC

TTAT CCGT
TAGG CTTC

TTAT CTTC
TAGG CCGT

TTATCTTC
TAGGCCGT

Fig. 14.2. Crossing-over.

There are also many other parameters that need tuning, such as the number of gener-
ations, the number of elements of a generation that should be kept, quantities of genetic
operations that should take place, etc.

Mechanisms of evolution are essentially of two types (at the gene level): mutation and
crossing-over.

Mutation consists of taking a string and letting one of the letters be modified. For
example, in Figure 14.1, the third symbol is substituted. When implemented, the oper-
ation consists of randomly selecting a position, and (again randomly) modifying this
symbol.

Crossing-over is more complex and involves two strings. They both get cut into two sub-
strings, and then the crossing-over position takes place, with an exchange of the halves. In
some cases the position where the strings is cut has to be the same. We give an example
of this in Figure 14.2: two strings are divided at the same position (here after the fourth
symbol), then crossing-over takes place.
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14.2.2 A genetic algorithm in grammatical inference

We show here a simple way of implementing the different points put forward in the pre-
vious section for the specific task of learning NFAs from positive and negative examples.
We are given a sample 〈S+, S−〉.

(i) What is the search space? We consider the lattice as defined in Section 6.3, containing all NFAs
strongly structurally complete with 〈S+, S−〉. Each NFAs can therefore be represented by a
partition of the states over MCA(S+). There are several ways to represent partitions as strings.
We use the following formalism: let |E | = n, and 	 be a partition, 	 = {B1, B2, . . . , Bk}, of
E . We associate with the partition 	 the string w	 : w	( j) = m ⇐⇒ j ∈ Bm .

For example, the partition {{1, 2, 6}, {3, 7, 9, 10}, {4, 8, 12}, {5}, {11}} is encoded by the
string w	=(112341232253).

(ii) How do we generate the first generation? We randomly start from MCA(S+) (see Defini-
tion 6.3.2, page 125), make a certain number of merges, obtaining in that way a population
of NFAs, all in the lattice and all (weakly) structurally complete.

(iii) What are the genetic operators? Structural operators are structural mutation and structural
crossing-over over the strings w	. We illustrate this in Example 14.2.1.

(iv) What happens when, after an evolution, the given string does not encode a grammar any more?
This problem does not arise here, as the operators are built to remain inside the lattice.

(v) What fitness function should be used? Here the two key issues are the number of strings from S−
accepted and the size of the NFA. We obviously want both as low as possible. One possibility
is even to discard any NFA such that L(A) ∩ S− �= ∅.

Example 14.2.1 We start with an MCA for the sample S+ = {aaaa,abba,baa} as
represented in Figure 14.3. Consider an element of the initial population obtained by
using the partition represented by string w	 = (112341232253). This NFA is drawn in
Figure 14.4(a). Then if the second position is selected and the 1 is substituted by a 4
in string w	, we obtain string (142341232253). Building the corresponding partitions is
straightforward.

Now a crossing-over between two partitions is shown in Figure 14.5. The partitions are
encoded as strings, which are cut and mixed, resulting in two different partitions.

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

a

a

b

a

b

a

a

b

a

a

a

Fig. 14.3. The MCA for S+ = {aaaa,abba,baa}.
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q1 q2

q3q4

q5

a

a,b

b
a

b
a

a

a
a

a

(a) The NFA for w	 = (112341232253).

q1 q2

q3q4

q5

b

b
a,b aa

a

a

a a

(b) The NFA after the mutation of 1
to 4 in position 2.

Fig. 14.4. A mutation operation for an NFA.

{{1, 2, 6}, {3, 7, 9, 10}, {4, 8, 12}, {5}, {11}}
{{1, 3, 5}, {2}, {4, 6, 7, 8, 12}, {9, 10, 11}}

(112341232253)
(121313334443)

(11234123+2253)
(12131333+4443)

(11234123+4443)
(12131333+2253)

{{1, 2, 6}, {3, 7}, {4, 8, 12}, {5, 9, 10, 11}}
{{1, 3, 5}, {2, 9, 10}, {4, 6, 7, 8, 12}, {11}}

Fig. 14.5. Crossing-over with partitions.

14.3 Tabu search

When searching in large spaces, hill-climbing techniques try to explore the space progres-
sively from a starting point to a local optimum, where quality is measured through a fitness
function. As the optimum is only local, to try to explore the space further, different ideas
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Algorithm 14.1: TABU.

Input: a sample S = 〈S+, S−〉, a fitness function v, an integer kmax, an initial NFA A
Output: an NFA
k ← 0;
T ← ∅;
A∗ ← A;
while k �= kmax do

build R, the set of admissible transitions that can be added or removed;
select r in R \ T , such that the addition or deletion of r to or from A realises the
maximum of v on S;
add or delete r from A;
if v(A) > v(A∗) then A∗ ← A;
TABU-UPDATE(T , r );
k ← k + 1

end
return A∗

Algorithm 14.2: TABU-UPDATE(T , r ).

Input: the Tabu list T , its maximal size m, the new element r
Output: T
if CARD(T ) = m then delete its last element;
Add r as the first element of T ;
return T

have been proposed, one of which corresponds to using Tabu lists, or lists of operations
that are forbidden, at least for a while.

14.3.1 What is Tabu search?

Tabu search also requires the definition of a search space, then the definition of some local
operators to move around this space: each solution has neighbours and all these neighbours
should be measured, the best (for a given fitness function) being kept for the next iteration.
The idea is to iteratively try to find a neighbour of the current solution, that betters it. In
order to avoid going through the same elements over and over, and getting out of a local
optimum, a Tabu list of the last few moves is kept, and the algorithm chooses an element
outside this list.

There is obviously an issue in reaching a local optimum for the fitness function. To get
out of this situation (i.e. where all the neighbours are worse than the current solution) some
sort of major change has to be made.
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This sort of heuristic depends strongly on the tuning of a number of parameters. We will
not discuss these here as they require us to take into account a large number of factors (size
of the alphabet, the target, . . .).

14.3.2 A Tabu search algorithm for grammatical inference

The goal is to learn regular languages, defined here by NFAs, from an informant. An induc-
tive bias is proposed: the number of states in the automaton (or at least an upper bound of
this number) is fixed. The search space is the set of all NFAs with n states, and the neigh-
bour relation is given by, from one NFA to another, the addition or the removal of just one
transition.

(i) What is the search space? The search space is made of λ-NFAs with n states, of which one
(qA) is accepting and all the others are rejecting. Furthermore qA is reachable by λ-transitions
only, and λ-transitions can only be used for this. There is no transition from qA. An element in
this space is represented in Figure 14.6.

(ii) What are the local operators? Adding and removing a transition. If a transition is added, it has
to comply with the above rules. For example, in the automaton represented in Figure 14.6, any
of the transitions could be removed, and transitions could be added connecting states q1, q2 and
q3, or λ-transitions leading to state qA.

(iii) What fitness function should be used? We count here the number of strings in S correctly
labelled by the NFA. We introduce a very simple fitness function v which will just parse the
sample and return the number of errors.

(iv) How do we initialise? In theory, any n-state automaton complying with the imposed rules would
be acceptable.

We denote:

• A∗ is the best solution reached so far,
• T is the Tabu list of transitions that have been added or removed in the last m moves,
• kmax is an integer bounding the number of iterations of the algorithm,
• Q is a set of n − 1 states, qA �∈ Q is the unique accepting state,
• the rules by triples: R = Q × � × Q ∪ Q × {λ} × {qA}. Therefore (q, a, q ′) ∈ R ⇐⇒ q ′ ∈
δN (q, a).

q1

q2

q3

qA

a

b

λ

λ

a
b

Fig. 14.6. A Tabu automaton.
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14.4 MDL principle in grammatical inference

The minimum description length (MDL) principle states that the best solution is one that
minimises the combination of the encoding of the grammar and the encoding of the data
when parsed by the grammar.

But the principle obeys to some very strict rules. To be more exact, the way both the
grammar and the data should be encoded depends on a universal Turing machine, and has
to be handled carefully.

14.4.1 What is the MDL principle?

The MDL principle is a refinement of the Occam principle. Remember the Occam principle
tells us that between various hypotheses, one should choose the simplest. The notion of
‘simplest’ here refers to some fixed notation system. The MDL principle adds the fact that
simplicity should also be measured in the way the data are explained by the hypothesis.
That means that the simplicity of a hypothesis (with respect to some data S) is the sum of
the size of the encoding of the hypothesis and the size of the encoding of the data where
the encoding of the data can be dependent on the hypothesis.

As a motivating example, take the case of a sample containing strings abaa,
abaaabaa, and abaaabaaabaaabaa. A learning algorithm may come up with either
of the two automata depicted in Figure 14.7. Obviously the left-hand one (Figure 14.7(a))
is easier to encode than the right-hand one (Figure 14.7(b)). But on the other hand the first
automaton does not help us reduce the size of the encoding of the data, whereas using the
second one, the data can easily be encoded as something like {1, 2, 4}, denoting the number
of cycles one should make to generate each string.

14.4.2 A simple MDL algorithm for grammatical inference

To illustrate these ideas let us try to learn a DFA from text. We are given a positive
sample S+.

qλ

a,b

(a) A very simple DFA.

qλ

qa

qab

qaba

a b

aa

(b) A more complex one.

Fig. 14.7. Two candidates for the sample S+ = {abaa,abaaabaa,abaaabaaab
aaabaa}.
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Algorithm 14.3: MDL.

Input: S+ function CHOOSE
Output: A = 〈�, Q, qλ,FA,FR, δ〉
A ← Build-PTA(S+);
RED ← {qλ};
current_score ← ∞;
BLUE ← {qa : a ∈ � and S+ ∩ a�� �= ∅};
while BLUE �= ∅ do

qb ← CHOOSE(BLUE);
BLUE ← BLUE \ {qb};
if ∃qr ∈ RED : sc(MERGE(qr , qb,A),S+)<current_score then

A ←MERGE(qr , qb,A);
current_score ← sc(A,S+)

else
A ← PROMOTE(qb,A)

end
end
for qr ∈ RED do

if L(Aqr ) ∩ S+ �= ∅) then FA ← FA ∪ {qr }
end
return A

Let us define the score of an automaton as the number of states of the DFA multiplied
by the size of the alphabet. This is of course questionable, and should only be considered
for a first approach; since this size is supposed to be compared with the size of the data, it
is essential that the size is fairly computed. Ideally, the size should be that of the smallest
Turing machine whose output is the automaton. . .

Then, given a string w and a DFA A, we can encode the string depending on the number
of choices we have at each stage. For example, using the arguments discussed above for
the automata from Figure 14.7, we just have to encode a string by the numbers of its
choices every time a choice has to be made. We therefore associate with each state of A
the value ch(q) = log

(|{a ∈ � : δ(q, a) is defined}|) if q �∈ FA. If q ∈ FA then ch(q) =
log

(
1 + |{a ∈ � : δ(q, a) is defined}|), since one more choice is possible. The value ch

corresponds to the size of the encoding of the choices a parser would have in that state. So
in the automaton 14.7(b), we have ch(qλ) = log 2, ch(qa) = ch(qab) = ch(qaba) = log 1 = 0.
The fact that no cost is counted corresponds to the idea that no choice has to be made and
is also consistent with log 1 = 0.

From this we define the associated value ch(w) = ch(qλ,w) which determines the size
of the encoding of the path followed to parse string w, which depends on the recursive
definition: ch(q, λ) = ch(qλ) and ch(q, a · w) = ch(q) + ch(δA(q, a), w).
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Table 14.1. Computations of all the ch(x),
for the PTA and the different automata

‖A‖ a a2 b2 a3

12 1 + log 3 2 + log 3 1 + log 3 3 + log 3

6 2 log 3 3 log 3 2 log 3 4 log 3

2 2 log 3 3 log 3 2 log 3 4 log 3

1 2 3 3 4

‖A‖ b2a a4 ab2a b4

12 1 + log 3 3 + log 3 1 + log 3 1 + log 3

6 2 log 3 5 log 3 3 log 3 2 log 3

2 3 log 3 5 log 3 4 log 3 3 log 3

1 4 5 5 5

qλ

qa

qb

qa2

qab

qb2

qa3

qab2

qb2a

qb3

qa4

qab2a

qb3

a

b

a

b

b

a

b

a

b
b

a

a

Fig. 14.8. PTA(S+) where S+ = {a,a2,b2,a3,b2a,a4,ab2a,b4}.

We can now, given a sample S+ and a DFA A, measure the score sc of A and S+,
(denoted by sc(A, S+)) as ‖A‖ · |�| +∑

w∈S+ch(w), where ‖A‖ is the number of states
of A.

We can build a simple state-merging algorithm (Algorithm MDL, 14.3) which will
merge states until it can no longer lower the score. The operations MERGE and PROMOTE
are as in Chapter 12.

The training sample is S+ = {a,a2,b2,a3,b2a,a4,ab2a,b4}. From this we build
PTA(S+), depicted in Figure 14.8. We compute the score of the running solution and we
get 13 log(2) + 8 log(3) for the derivations, and 26 for the PTA. The total is therefore
sc(A, S+) = 39 + 8 log(3) ≈ 51.68.

The exact computations of the ch(x) can be found in Table 14.1. Merging qa with qλ
is tested; this requires recursive merging (for determinisation). The resulting automaton
is represented in Figure 14.9. The new automaton has values ch(qλ) = ch(qb2 ) = log 3,
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qλ qb qb2

qb2a

qb3 qb4

a

b
b

a

b
b

Fig. 14.9. We merge qa with qλ.

qλ qb

a

b

b

Fig. 14.10. The returned solution.

and ch(qb) = ch(qb2a) = ch(qb3 ) = ch(qb4 ) = log 1 = 0. So sc(A, S+) can be computed as:
6 · 2+ 23 log(3) < 36+ 11 log(3) (roughly 48.45 against 51.68), so the merge is accepted.

We try to merge qb with qλ and obtain the universal automaton whose score is 2 for the
DFA + 31 log(3). This gives a score of 51.13, which is more than the score of our current
solution (with six states). Therefore the merge is rejected. qb is promoted and we test
merging qab with qλ. After determinisations we obtain the two-state automaton depicted
in Figure 14.10. The score of this DFA is 43.68, which is better than the current best. Since
no more merges are possible, the algorithm halts with this DFA as the solution.

Note that by taking a different scoring scheme, the result would have been very different
(see Exercises 14.7 and 14.8).

14.5 Heuristic greedy state merging

When we described RPNI (Section 12.4), we presented it as a deterministic algorithm.
Basically, the order in which the compatibilities are checked is defined right from the
start. Moreover, as soon as two states are mergeable, they are merged. This is clearly an
optimistic point of view, and there may be another, based on choosing the best merge.

But one should remember that RPNI identifies in the limit. This may well no longer be
the case if we use a heuristic to define the best possible merge: one can usually imagine a
(luckily counter-intuitive) distribution that will make us explore the lattice the wrong way.

14.5.1 How do greedy state-merging algorithms work?

The general idea of a greedy state-merging algorithm is as follows:

• choose two states,
• perform a cascade of forced merges until the automaton is deterministic,
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• if this automaton accepts some sentences from S−, backtrack and choose another couple,
• if not, loop until no merging is possible.

Now how are the moves chosen? Consider the current automaton for which RPNI has to
make a decision: what moves are allowed?

There are two possibilities:

• merging a BLUE with a RED,
• promoting a BLUE to RED and changing all its successors that are not RED to BLUE.

Promotion takes place when a BLUE state can be merged with no RED state. This means
that this event (similar to having a row obviously different in Gold’s algorithm) has to be
systematically checked.

But once there are no possible promotions, the idea is to do better than RPNI and, instead
of greedily checking in order to find the first admissible merge, to check all possible legal
merges between a BLUE state and a RED state, compute a score for each merge, and then
choose the merge with the highest score.

14.5.2 Evidence driven state merging (EDSM)

The evidence-driven approach (see Algorithm 14.4) consists of computing for every pair
of states (one BLUE, the other RED) the score of that merge as the number of strings that
end in the same state if that merge is done. To do that, the strings from S+ and S− have

Algorithm 14.4: EDSM-COUNT.

Input: A, S+, S−
Output: the score sc of A
for q ∈ Q do tp[q] ← 0 ; tn[q] ← 0 ;
for w ∈ S+ do tp[δA(qλ,w)] ← tp[δA(qλ,w)] + 1;
for w ∈ S− do tn[δA(qλ,w)] ← tn[δA(qλ,w)] + 1;
sc← 0;
for q ∈ Q do

if sc�= −∞ then
if tn[q] > 0 then

if tp[q] > 0 then sc← −∞ else sc← sc+tn[q]-1
else

if tp[q] > 0 then sc← sc+tp[q]-1
end

end
end
return sc
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Algorithm 14.5: EDSM A.

Input: S = 〈S+, S−〉, functions COMPATIBLE, CHOOSE
Output: A = 〈�, Q, qλ,FA,FR, δ〉
A ← BUILD-PTA(S+); RED ← {qλ}; BLUE ← {qa : a ∈ � and S+ ∩ a�� �= ∅};
while BLUE �= ∅ do

promotion← false;
for qb ∈ BLUE do

if not promotion then
bs ← −∞;
atleastonemerge← false;
for qr ∈ RED do

s ←EDSM-COUNT(MERGE(qr , qb,A),S+, S− );
if s > −∞ then atleastonemerge← true
if s > bs then bs ← s; qr ← qr ; qb ← qb

end
if not atleastonemerge then /* no merge is possible */

PROMOTE(qb,A); promotion← true;
end

end
end
if not promotion then /* we can merge */

BLUE ← BLUE \ {qb}; A ←MERGE(qr , qb,A)
end

end
for x ∈ S+ do FA ← FA ∪ {δ(qλ, x)};
for x ∈ S− do FR ← FR ∪ {δ(qλ, x)};
return A

to be parsed. If, by doing that merge, a conflict arises (a negative string is accepted or a
positive string is rejected) the score is −∞. The merge with the highest score is chosen.

The corresponding algorithm (Algorithm EDSM, 14.5) is given with a specific count-
ing scheme (Algorithm EDSM-COUNT, 14.4). The merging function is exactly the one
(Algorithm 12.11) introduced in Section 12.4.

Example 14.5.1

S+ = {a,aaa,bba,abab}
S− = {ab,bb}

Consider the DFA represented in Figure 14.11. States qλ and qa are RED, whereas states
qb and qab are BLUE.
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qλ

qa
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Fig. 14.11. The DFA before attempting a merge.
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Fig. 14.12. The DFA after the promotion of qab.

State qab is now selected and the counts are computed:

• EDSM-COUNT(MERGE(qλ, qab,A)) = −∞, because this consists of merging qab with qabab.
• EDSM-COUNT(MERGE(qa, qab,A)) = −∞, because this consists of merging qa with qab.

Therefore a promotion takes place: since we have a BLUE which can be merged, the
DFA is updated with state qab promoted to RED (see Figure 14.12).

Suppose instead state b was selected. The counts are now different:

• EDSM-COUNT(MERGE(qλ, qb,A)) = 2
• EDSM-COUNT(MERGE(qa, qb,A)) = 3

In this case, the merge between qa and qb would be selected.

There are different ways to perform the possible operations but what characterises the
evidence-driven state-merging techniques is that one should be careful to always check
first if some promotion is possible.

A different idea is to use a heuristic to decide before testing consistency in what order
the merges should be checked. This is of course cheaper, but the problem is that promotion
is then hard to detect. In practice this approach (called data-driven) has not proven to be
successful, at least in the deterministic setting. When trying to learn probabilistic automata,
it seems that data-driven state merging is a good option.

14.6 Graph colouring and constraint satisfaction

The PTA can be seen as a graph for which the goal is to obtain a colouring of the nodes
respecting a certain number of conditions. These conditions can be described as constraints,
and again the nodes of the graph have to be valued in a way satisfying a set of constraints.
Alas these constraints are dynamic (some constraints will depend on others).
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There are too many options to mention them all here; we just describe briefly how we can
convert the problem of learning a DFA from an informed sample 〈S+, S−〉 into a constraint
satisfaction question.

We first build the complete prefix tree acceptor PTA(S+, S−) using Algorithm 12.1,
page 239. Let us suppose the PTA has m states.

Now consider the graph whose nodes are the states of the PTA and where there is an edge
between two nodes/states q and q ′ if they are incompatible, i.e. they cannot be merged.
Then the problem is to find a colouring of the graph (no two adjacent nodes can take the
same colour) with a minimum number of colours.

An alternative problem whose resolution can provide us with a partition is that of
building cliques in the graph of consistency.

Technically things are a little more complex, since the constraints are dynamic: choosing
to colour two nodes with a given colour corresponds to merging the states, with the usual
problems relating to determinism.

Nevertheless there are many heuristics that have been tested for these particular well-
known problems.

Let us model the problem further. We consider (given the PTA) m variables
X1, . . . , Xm , and n possible values 1,. . . ,n, corresponding to the n states of the tar-
get automaton (which supposes we take an initial gamble on the size of the intended
target).

One can describe three types of constraints:

• global constraints: qi ∈ FA, q j ∈ FR =⇒ Xi �= X j ,
• propagation constraints: Xk �= Xl ∧ δ(qi , a) = qk ∧ δ(q j , a) = ql =⇒ Xi �= X j ,
• deterministic constraints: δ(qi , a) = q j ∧ δ(qk , a) = ql =⇒ [

Xi = Xk =⇒ X j = Xl
]
.

Note that the deterministic constraints are dynamic: they will only be used when the
algorithm starts deciding to effectively colour some states.

Among the different systems used to get around such constraints, conflict diagnosis
(using intelligent backtracking) has been used.

Example 14.6.1 Consider the PTA represented in Figure 14.13. Then a certain number
of initial global constraints can be established. If we denote by 〈Xi , X j 〉 the constraint: “qi

qλ

qa

qb

qaa

qab

qbb

qaba

qbba

qabab

a

b

a

b

b

a b

a

Fig. 14.13. PTA ({(aa, 1) (aba, 0) (bba, 1) (ab, 0) (abab, 1)}).
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qbb
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a

b

a

Fig. 14.14. PTA ({(aa, 1) (aab, 0) (bba, 0) (ab, 0) (abab, 1)}).

and q j cannot be merged”, we have by taking all pairs of states, one being accepting and
the other rejecting:

Initial constraints: 〈Xaa, Xab〉, 〈Xaa, Xaba〉, 〈Xabab, Xab〉, 〈Xabab, Xaba〉, 〈Xbba,

Xab〉, 〈Xbba, Xaba〉.
We can now represent some of the propagation constraints, where we use the rule

〈Xua, Xva〉 =⇒ 〈Xu, Xv〉.
This, when propagated, gives us 〈Xa, Xab〉, 〈Xab, Xbb〉, 〈Xa, Xb〉, 〈Xa, qaba〉,

〈Xλ, Xab〉.

14.7 Exercises

14.1 Write the different missing algorithms for the genetic algorithms.
14.2 Find a difficult language to identify with a genetic algorithm.
14.3 The definition of the value function v for the Tabu search method is very naive. Can

we do better?
14.4 Find a difficult language to identify with the Tabu search algorithm, using a fixed k.
14.5 If the target is a complete automaton, then the MDL algorithm will perform poorly.

Why?
14.6 What would be a good class of DFAs for the MDL algorithm? Hint: one may want

to have large alphabets but only very few transitions. A definition in the spirit of
Definition 4.4.1 (page 84) may be a good idea.

14.7 Using the same data as in Section 14.4, run the MDL algorithm with a score function
that ignores the size of the alphabet, i.e. sc(A, S+)) = ‖A‖ +∑

w∈S+ch(w).
14.8 Conversely, let us suppose we intend to represent the automaton as a table with three

entries (one for the alphabet and two for the states). Therefore we could choose
sc(A, S+)) = ‖A‖2 · |�| +∑

w∈S+ch(w).
14.9 In Algorithm EDSM, the computation of the scores is very expensive. Can we com-

bine the data-driven and evidence-driven approaches in order to not have to compute
all the scores but to be able to discover the promotion situations?

14.10 In Algorithm EDSM, once sc(q,q ′,A) is computed as −∞, does it need to be
recomputed? Is there any way to avoid such expensive recomputations?

14.11 Build the set of constraints corresponding to the PTA represented in Figure 14.14.



298 Artificial intelligence techniques

14.8 Conclusions of the chapter and further reading

14.8.1 Bibliographical background

Some of the key ideas presented in the first section of this chapter have been discussed in
(de la Higuera, 2006a).

The question of the size of the DFA is a real issue. Following along the lines of the
ABBADINGO competition (Lang & Pearlmutter, 1997), many authors were keen on find-
ing algorithms working with targets of a few hundred states, but there has also been a
group of researchers interested in considering the purely combinatoric problem of finding
the smallest DFA and coming up with some heuristics for this case (de Oliveira & Silva,
2001).

Section 14.2 on genetic algorithms is based on work by many researchers but
especially (Dupont, 1994, Sakakibara & Kondo, 1999, Sakakibara and Muramatsu,
2000). Research in this area has taken place both from the grammatical inference per-
spective and from the genetic algorithms perspective. It is therefore essential, when
wanting to study this particular topic, to look at the bibliography from both areas.
An attempt to use genetic algorithms (using the term coevolutionary learning) in
an active setting was made by Josh Bongard and Hod Lipson (Bongard & Lipson,
2005).

The MDL principle is known under different names (Rissanen, 1978, Wallace & Ball,
1968). In grammatical inference some key ideas were introduced by Gerard Wolff (Wolff,
1978). More recently his work was pursued by Pat Langley and Sean Stromsten (Langley,
1995, Langley & Stromsten, 2000) and by George Petasis et al. (Petasis et al., 2004a). New
ideas, in the case of learning DFAs with MDL, are by Pieter Adriaans and Ceriel Jacobs
(Adriaans & Jacobs, 2006).

Section 14.3, concerning Tabu search, is based on work by Jean-Yves Giordano (Gior-
dano, 1996). A more general presentation of Tabu search can be found in Fred Glover’s
book (Glover & Laguna, 1997).

The main results concerning algorithm EDSM correspond to work done by
Nick Price and Kevin Lang during or after the ABBADINGO competition (Lang,
1999, Lang, Pearlmutter & Price, 1998). The cheaper (but also worse) data-driven
approach was used by Colin de la Higuera et al. (de la Higuera, Oncina & Vidal,
1996)

Section 14.6 is based on work by Alan Biermann (Biermann, 1971), Arlindo de Oliveira
and João Marques Silva (de Oliveira & Silva, 1998), and François Coste (Coste & Nicolas,
1998a, 1998b).

Pure heuristics are problematic in that they can introduce an unwanted, undeclared added
bias. Typically if the intended class of grammars is different from the one that is really
going to be learnt, something is wrong.

An interesting alternative is to base a heuristic on a provably convergent algorithm.
There is still the necessity to study what is really happening in this case, but a prudent
guess is that somehow one is keeping control of the bias.
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14.8.2 Some alternative lines of research

• A very different approach to learning context-free grammars has been followed in system
SYNAPSE by Katsuhiko Nakamura and his colleagues (Nakamura & Matsumoto, 2005): the
goal there is to learn the CYK parser directly and inductively. The system is in part incremental.
Along similar lines, genetic algorithms have been tried, with the same goal of learning the parser
(Sakakibara & Kondo, 1999, Sakakibara & Muramatsu, 2000).

• Neural networks have been used in grammatical inference with varying degrees of success. Among
the best known papers are those by René Alquézar and Alberto Sanfeliu, Lee Giles, Mikel Forcada
and their colleagues (Alquézar & Sanfeliu, 1994, Carrasco, Forcada & Santamaria, 1996, Giles,
Lawrence & Tsoi, 2001). In some cases a mixture of numerical and symbolic techniques were
used, the symbolic grammatical inference allowing us to better find the parameters for the recurrent
network and conversely the network allowing us to decide compatibility of states. An important
question is that of extracting an automaton from a learnt neural network, so as to avoid the black-
box effect. In this case, we can be facing an interesting task of interactive learning in which the
neural network can play the part of the Oracle.

14.8.3 Open problems and possible new lines of research

There is obviously a lot of work possible, once the limits of provable methods are well
understood. Let us discuss a certain number of elements of reflection:

• The GOLD algorithm gives an interesting basis for learning as it redefines the search space. This
should be considered as a good place to start from. Moreover, the complexity of the algorithm can
be considerably reduced through a careful use of good data structures.

• Use of semantic information in real tasks should be encouraged. This semantic information needs
to be translated into syntactic constraints that in turn could improve the algorithms.

• EDSM is a good example of what should be done: the basis is a provable algorithm (RPNI) in
which the greediness is controlled by a common sense function instead of by an arbitrary order.
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Learning context-free grammars

Too much faith should not be put in the powers of induction, even when aided
by intelligent heuristics, to discover the right grammar. After all, stupid people
learn to talk, but even the brightest apes do not.

Noam Chomsky, 1963

It seems a miracle that young children easily learn the language of any environ-
ment into which they were born. The generative approach to grammar, pioneered
by Chomsky, argues that this is only explicable if certain deep, universal features
of this competence are innate characteristics of the human brain. Biologically
speaking, this hypothesis of an inheritable capability to learn any language means
that it must somehow be encoded in the DNA of our chromosomes. Should
this hypothesis one day be verified, then linguistics would become a branch of
biology.

Niels Jerne, Nobel Lecture, 1984

Context-free languages correspond to the second ‘easiest’ level of the Chomsky hierarchy.
They comprise the languages generated by context-free grammars (see Chapter 4).

All regular languages are context-free but the converse is not true. Among the languages
that are context-free but not regular, some ‘typical’ ones are:

• {anbn : n ≥ 0}. This is the classical text book language used to show that automata cannot count
in an unrestricted way.

• {w ∈ {a,b}∗ : |w|a = |w|b}. This language is a bit more complicated than the previous one. But
the same argument applies: You cannot count the a’s and the b’s nor the difference between the
number of occurrences of each letter.

• The language of palindromes: {w ∈ {a,b}∗ : |w| = n, ∧ ∀i ∈ [n] w(i) = w(n − i + 1)} =
{w ∈ {a,b}∗ : w = wR}.

• Dyck, or the language of well-formed brackets. The language of all bracketed strings or balanced
parentheses is classical in formal language theory. If just working on one pair of brackets (denoted
by a and b), it is defined by the rewriting system 〈{ab % λ}, λ〉, i.e. by those strings whose
brackets all disappear by deleting iteratively every substring ab. The language is context-free and
can be generated by the grammar 〈{a,b}, {N1}, R, N1〉 with R = {N1 → aN1bN1; N1 → λ}.
This known as Dyck1, because it uses only one pair of brackets. And for each n, the language
Dyckn , over n pairs of brackets, is also context-free.

300
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• The language generated by the grammar 〈{a,b}, {N1}, R, N1〉 with R ={N1→aN1 N1; N1→b}
is called the Lukasiewicz language.

It has been suggested by many authors that context-free grammars are a better model for
natural language than regular grammars, even if it is also admitted that a certain number of
constructs can only be found in context-sensitive languages.

There are other reasons for wanting to learn context-free grammars: these appear in
computational linguistics or in the analysis of web documents where the tag languages
need opening and closing tags. In bio-informatics, also, certain constructs of the secondary
structure are context-free.

15.1 The difficulties

When moving up from the regular world to the context-free world we are faced with a
whole set of new difficulties.

Do we learn context-free languages or context-free grammars? This is going to be
the first (and possibly most crucial) question. When dealing with regular languages (and
grammars) the issue is much less troublesome, as the Myhill-Nerode theorem provides us
with a nice one-to-one relationship between the languages and the automata. In the case
of context-freeness, there are several reasons that make it difficult to consider grammars
instead of languages:

• The first very serious issue is that equivalence of context-free grammars is undecidable. This is
also the case for the subclass of the linear grammars. As an immediate consequence there will be
the fact that canonical forms will be unavailable, at least in a constructible way. Moreover, the
critical importance of the undecidability issue can be seen in the following problem:

Suppose class L is learnable, and we are given two grammars G1 and G2 for languages in L.
Then we could perhaps generate examples from L(G1) and learn some grammar H1 and do the
same from L(G2) obtaining H2. Checking the syntactic equality between H1 and H2 corresponds
in an intuitive way to solving the equivalence between G1 and G2. Moreover the fact that the
algorithm constructs in some way a normal and canonical form, since it depends on the examples,
is puzzling. The question we raise here is: ‘Can we use a grammatical inference algorithm to solve
the equivalence problem?’.

This is obviously not a tight argument. But if one requires ‘learnable’ to mean ‘have charac-
teristic samples’ then the above reasoning at least proves that the so-called characteristic samples
have to be uncomputable.

• A second troubling issue is that of ‘expansiveness’: in certain cases the grammar can be expo-
nentially smaller than any string in the language. Consider for instance the grammar Gn =
〈{a}, {Nk : k ∈ [n]}, Rn, N1〉 with Rn = ⋃

i<n{Ni → Ni+1 Ni+1} ∪ {Nn → a}. Then

the only string in the language L(Gn) is a2n−1
which is of length 2n−1. There is therefore an

exponential relation between the size of the grammar and the length of even the shortest strings
the grammar can produce. If we take a point of view where learning is seen as a compression
question, then compressing into logarithmic size is surely not a problem and is most recommend-
able. But on the other hand if the question we ask is “what examples are needed to learn?”, then
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we face a problem. In the terms we have been using so far, the characteristic samples would be
exponential.

• When studying the learnability of regular languages, there is an important difference between
learning deterministic representations and non-deterministic ones. In the case of context-
freeness, things are even more complex as there are two different notions related to
determinism.

The first possible notion corresponds to ambiguity: a grammar is ambiguous if it admits ambigu-
ous strings, i.e. strings that have two different derivation trees associated. It is well known that
there exist inherently ambiguous languages, i.e. languages for which all grammars have to be
ambiguous. All reasonable questions relating to ambiguity are undecidable, so one cannot limit
oneself to the class of the unambiguous languages, nor check the ambiguity of an individual
string.

The second possible notion is used by deterministic languages. Here, determinism refers to the
determinism of the pushdown automaton that recognises the language. There is a well-represented
subclass of the deterministic languages for which, furthermore, the equivalence problem is decid-
able. There have been no serious attempts to learn deterministic pushdown automata, so we will
not enter this subject here.

• Intelligibility is another issue that becomes essential when dealing with context-free grammars.
A context-free language can be generated by many very different grammars, some of which
fit the structure of the language better than others. Take for example the grammar (based on
the Lukasiewicz grammar) 〈{a,b}, {N1, N2}, R, N1〉 with R = {N1 → aN2 N2; N2 → b;
N1 → aN2; N1 → λ}. Is this a better grammar to generate the single-bracket lan-
guage? An equivalent grammar would be the grammar in Chomsky (quadratic) normal form:
〈{a,b},{N1, N2, N3, A, B}, R, N1〉 with R = {N1 → λ + N2 N3; N2 → AN1; N3 → B N1;
A → a; B → b}.

The point we are raising is that there is really a lot of semantics hidden in the structure defined
by the grammar. This gives yet another reason for considering that the problem is about learning
context-free grammars rather than context-free languages!

15.1.1 Dealing with linearity

As regular languages, linear languages and context-free languages all share the curse of not
being learnable from positive examples, an alternative is to reduce the class of languages
in order to obtain a family that would not be super-finite, but on the other hand would be
identifiable.

Definition 15.1.1 (Linear context-free grammars) A context-free grammar G =
(�, V, R, N1) is linear ifdef R ⊂ V × (�∗V�∗ ∪�∗).

Definition 15.1.2 (Even linear context-free grammars) A context-free grammar G =
(�, V, R, N1) is an even linear grammar ifdef R ⊂ V × (�V� ∪� ∪ {λ}).

Thus languages like {anbn : n ∈ N}, or the set of all palindromes, are even linear
without being regular. But using reduction techniques from Section 7.4, we find a clear
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relationship with the regular languages. Indeed the operation allowing us to simulate an
even linear grammar by a finite automaton is called a regular reduction:

Definition 15.1.3 (Regular reduction) Let G = (�, V, R, N1) be an even linear gram-
mar. We say that the NFA A = 〈�R, Q, q1, qF ,∅, δR〉 is the regular reduction of
G ifdef

• �R = {〈ab〉 : a, b ∈ �} ∪�,
• Q = {qi : Ni ∈ V } ∪ {qF },
• δR(qi , 〈ab〉) = {q j : (Ni , aN j b) ∈ R},
• ∀a ∈ �, δR(qi , a) = {qF : (Ni , a) ∈ R},
• ∀i such that (Ni , λ) ∈ R, qF ∈ δR(qi , λ).

Theorem 15.1.1 Let G be an even linear grammar and let R be its regular reduction.
Then a1 · · · an ∈ L(G) if and only if 〈a1an〉〈a2an−1〉 · · · ∈ L(R).

Proof This is clear by the construction of the regular reduction, but more detail can be
found in the construction presented in Section 7.4.3 (page 160).

The corollary of the above construction is that any technique based on learning the
class of all regular languages or subclasses of regular languages can be transposed to
subclasses of even linear languages. For instance, in the setting of learning from positive
examples only, positive results concerning subclasses of even linear languages have been
obtained.

Very simple grammars are a very restricted form of grammar that are not linear but are
strongly deterministic. They constitute another class of context-free grammars for which
positive learning results have been obtained. They are context-free grammars in a restricted
Greibach normal form:

Definition 15.1.4 (Very simple grammars) A context-free grammar G = (�, V, R, N1)

is a very simple grammar ifdef R ⊂ (V × �V ∗) and for any a ∈ � (A, aα) ∈ R ∧
(B, aβ) ∈ R =⇒ [A = B ∧ α = β].
Lemma 15.1.2 (Some properties of very simple grammars)

Let G = (�, V, R, N1) be a very simple grammar, let α, β ∈ V+ and let
x ∈ �+, u, u1, u2 ∈ �∗. Then:

• N1
∗=⇒ xα ∧ N1

∗=⇒ xβ ⇒ α = β (forward determinism),
• α

∗=⇒ x ∧ β ∗=⇒ x ⇒ α = β (backward determinism),
• N1

∗=⇒ u1α
∗=⇒ u1x ∧ N1

∗=⇒ u2β
∗=⇒ u2x ⇒ u−1

1 L = u−1
2 L.

Very simple grammars are therefore deterministic both for a top-down and a bottom-up
parse. Moreover, a nice congruence can be extracted, which will prove to be the key to
building a succesful identification algorithm. One should point out that they are neverthe-
less quite limited: each symbol in the final alphabet can only appear once in the entire
grammar.
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Example 15.1.1 The grammar G = (�, V, R, N1) (with � = {a,b,c,d,e,f}) is a
very simple grammar:

N1 → aN1 N2 + f

N2 → bN2 + c + dN3 N3

N3 → e

The language generated by G can be represented by the following extended regular
expression: anf

(
b∗(c + dee)

)n .

Theorem 15.1.3 The class of very simple grammars can be identified in the limit from
text by an algorithm that

• has polynomial update time,
• makes a polynomial number of implicit prediction errors and mind changes.

Proof [sketch] Let us describe the algorithm. In a very simple grammar for any a ∈ �
there is exactly one rule of shape (N , aα) ∈ R, so the number of rules in the grammar
is exactly |�| and there are at most |�| non-terminals. The algorithm goes through three
steps:

Step 1 For each a ∈ � and making use of equations in Lemma 15.1.2, determine the left part of the
only rule in which a appears.

Step 2 As there is exactly one rule for each terminal symbol, the rules applied in the parsing of any
string are known. Then, we can construct an equation, for each training string, that relates
the length of the string and the lengths of the right part of the rules used in the derivation of
the string. We now solve the system of equations to determine the length of the right-hand
side of each rule.

Step 3 Simulating the parse for each training string, we determine the order in which the rules are
applied and the non-terminals that appear on the right-hand side of the rules.

We run the sketched algorithm on a simple example. Suppose the data consists of
the strings {afbc,f,afbbc,aec,afbdee}. Step 1 will allow us to cluster the let-
ters into three groups: {b,c,d}, {a,f} and {e,g}. Indeed since we have N1

∗=⇒
afbα

∗=⇒ afbc ∧ N1
∗=⇒ afbβ

∗=⇒ afbbc we deduce that α = β and that
the left-hand side of the rules for b and c are identical. Now for step 2 and simplify-
ing we can deduce that the rules corresponding to c, e and f are all of length 1 (so
Ne ← e). It follows that the rule for letter b is of length 2 and those for a and d
are of length 3. We can now materialise this by bracketing the strings in the learning
sample:

{(af(bc)), (f), (af(b(bc))), (aec), (af(b(dee)))}
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And by reconstruction we get the fact that the rules are:

N1 → aN1 N2 + f

N2 → bN2 + c + dN3 N3

N3 → e

One should note that the complexity will rise exponentially with the size of the alphabet.

15.1.2 Dealing with determinism

It might seem from the above that the key to success is to limit ourselves to linear
grammars, but if we consider Definition 7.3.3 the results are negative:

Theorem 15.1.4 For any alphabet � of size at least two, LIN (�) cannot be identified
in the limit by polynomial characteristic samples from an informant.

Proof Consider two linear languages. At least one string of their symmetric difference
should appear in the characteristic sample in order to be able to distinguish them. But
the length of the smallest string in the symmetric difference cannot be bounded by any
polynomial in the size of the grammar since deciding if two linear grammars are equivalent
is undecidable.

It should be noted that this result is independent of the sort of representation that is used.
Further elements concerning this issue are discussed in Section 6.4.

Corollary 15.1.5 For any alphabet � of size at least two, CFG(�) cannot be identified
in the limit by polynomial characteristic samples from an informant.

We saw in Chapter 12 that DFAs were identifiable in the limit by polynomial char-
acteristic samples (POLY-CS polynomial time) from an informant. So if we want to
get positive results in this setting, we need to restrict the class of linear grammars
further.

Deterministic linear grammars provide a non-trivial extension of the regular grammars:

Definition 15.1.5 (Deterministic linear grammars) A deterministic linear context-
free grammar G = (�, V, R, N1) is a (linear) grammar where R ⊂ × (� V�∗ ∪ {λ})
and (N , aα), (N , aβ) ∈ R ⇒ α = β.

Definition 15.1.6 (Deterministic linear grammar normal form)
A deterministic linear grammar G = (�, V, R, N1) is in normal form ifdef

(i) G has no useless non-terminals,
(ii) ∀(N , aN ′w) ∈ R, w = lcs(a−1LG(N )),

(iii) ∀N , N ′ ∈ R, LG(N ) = LG(N
′)⇒ N = N ′.

Remember that lcs(L) is the least common suffix of language L . Having a nice normal
form allows us to claim:
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Theorem 15.1.6 The class of deterministic linear grammars can be identified in the limit
in polynomial time and data from an informant.

Proof [sketch] The algorithm works by an incremental (by levels) construction of the
canonical grammar.

The algorithm maintains a queue of non-terminals to explore. At the beginning, the
start symbol is added to the grammar and to the exploration queue. At each step, a
non-terminal (N ) is extracted from the queue and a terminal symbol (a) is chosen
in order to further parse the data. From these a new rule is proposed, based on the
second condition of Definition 15.1.6 of the normal form for deterministic linear gram-
mars: N → aN?w. Each time a new rule is proposed the only non-terminal that
appears on its right-hand side (N?) is checked for equivalence with a non-terminal in
the grammar. We denote this non-terminal by N? in order to indicate that it is still to be
named.

If a compatible non-terminal is found, the non-terminal in the rule is named after it.
If no non-terminal is found, a new non-terminal is added to the grammar (correspond-
ing to a promotion) and to the exploration list. In both cases the rule is added to the
grammar.

By simulating the run of this algorithm over a particular grammar, a characteristic
sample can be constructed.

We run the sketched algorithm on an example. Let the learning sample consist of the sets
S+ = {abbabb,bba,babbaaa,aabbabbbb, baabbabbaa} and S− = {b}.

The first non-terminal is N1 and the first terminal symbol we choose is a. Therefore
a rule with profile N1 → aN?w is considered. First, string w is sought by computing
lcs({bbabb,abbabbbb})= bb.

Therefore rule N1 → aN?bb is suggested as a starting point (N1 being the axiom).
Can non-terminal N? be merged with N1? Since rule N1 → aN1bb does not create a
conflict, the merge is accepted and the rule is kept. Thus the current set of rules is N1 →
aN1bb; N1

∗=⇒ bba + babbaaa + baabbabbaa.
Now terminal symbol b is brought forward and the different elements of the cor-

responding rule N1 → bN?w have to be identified. We start with w which is
lcs({ba,abbaaa,aabbabbaa}) so a. Again adding rule N1 → bN1a is considered but
the resulting grammar (with rules N1 → aN1bb; N1 → bN1a; N1

∗=⇒ b+aabbabba)
would generate string b which is in S−.

So the current grammar is {N1 → aN1bb; N1 → bN2a; N2
∗=⇒ b + abbaaa +

aabbabba}. We compute lcs({bbaaa,aabbabba}) = a. Therefore N2 → aN?a is
accepted. We are left with b (this leads to the rule N2 → b) and finally the grammar
contains the following rules:

N1 → aN1bb + bN2a

N2 → aN1a + b
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15.1.3 Dealing with sparseness

A string is the result of many rules that have all got to be learnt in ‘one shot’. In a certain
sense, there is an all or nothing issue here: hill climbing seems to be impossible, and the
number of examples needed to justify the set of all rules can easily seem too large.

Moreover, from string to string (in the language) local modifications may not work. This
can be measured in the following way: given two strings u and v in L , the number of
modifications one needs to make to string u in order to obtain string v is going to be such
that one will not be able to use the couple (u, v) to learn an isolated rule which allows us
to get from u to v.

15.2 Learning reversible context-free grammars

In Section 11.2 (page 223), we introduced a class of look-ahead languages. Learning could
take place by eliminating the sources of ambiguity through merging. This was done in the
context of the regular languages. We now show how this idea can also lead to an algorithm
for context-free languages, even if we will need some extra information about the structure
of the strings.

15.2.1 Unlabelled trees or skeletons

In practice the positive data from which we will usually be learning from cannot be trees,
labelled at the internal nodes. It will either just consist of the strings themselves or, in a
more helpful setting, of bracketed strings. As explained in Section 3.3.1 (page 52), these
correspond to trees with unlabelled internal nodes.

Definition 15.2.1 Let G = 〈�, V, R, N1〉 be a context-free grammar. A skeleton for
string α (over � ∪ V ) is a derivation tree with frontier α and in which all internal nodes
are labelled by a new symbol ‘?’.

In Figure 15.1(a) we represent a parse tree for aaba, and in Figure 15.1(b) the
corresponding skeleton.

15.2.2 K -contexts

Definition 15.2.2 Let G = 〈�, V, R, N1〉 be a context-free grammar. A k-deep
derivation in G is a derivation

Ni0 ⇒ α1 Ni1β1

⇒ α1α2 Ni2β2β1

k=⇒ α1α2 · · ·αk−1αk Nikβkβk−1 · · ·β2β1

where ∀l ≤ k, αl , βl ∈ (� ∪ V )∗.
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N1

a N1 N2

a N1 N2

b λ

a N2

λ

(a) A parse tree.

?

a ? ?

a ? ?

b λ

a ?

λ

(b) The corresponding skeleton.

Fig. 15.1. A parse tree for aaba and the corresponding skeleton. Some of the grammar
rules are N1 → aN1 N2, N1 → b, N2 → aN2 and N2 → λ.

Intuitively, this corresponds to a tree with just one long branch of length k.

Definition 15.2.3 Let G = 〈�, V, R, N1〉 be a context-free grammar and Ni , N j be two
non-terminal symbols in V . N j is a k-ancestor of Ni ifdef there exists a k-deep derivation
of N j into αNiβ, (α, β ∈ (� ∪ V )∗).

We define these as sets, i.e. k-ancestors(N ) is the set of all k-ancestors of non-terminal N .

Example 15.2.1 From Figure 15.1(a), we can compute:

• 2-ancestors(N1) = {N1}, 2-ancestors(N2) = {N1, N2},
• 1-ancestors(N1) = {N1}, 1-ancestors(N1) = {N1, N2}.

Now a k-context is defined as follows:

Definition 15.2.4 Let G = 〈�, V, R, N1〉 be a context-free grammar with a specific
non-terminal Ni in V . The k-contexts of Ni are all trees built as follows:

(i) Let t be the derivation tree for a derivation N j
k=⇒ αNiβ

∗=⇒ uNiv where derivation N j
k=⇒

αNiβ is a k-deep derivation and α
∗=⇒ u and β

∗=⇒ v, with u, v ∈ ��.
(ii) Let z$ be the address of Ni in t (t (z$) = Ni , |z$| = k).

(iii) We build the k-context c[t, z$] as a tree of domain Dom(t) \ {z$au : a ∈ N, u ∈ N∗} and such
that c[t, z$] : Dom(t)→ � ∪ V ∪ {λ, $, ?}, with:

• c[t, z$] = $
• c[t, u] =? if u1 ∈ Dom(t) (i.e. if u is an internal node of the tree)
• c[t, u] = t (u) if not.

Example 15.2.2 Consider the grammar with rules N1 → aN1 N2, N1 → b, N2 → aN2

and N2 → λ. We show in Figure 15.2(a) a parse tree t , and the corresponding 2-context
c[t, 11] in Figure 15.2(b).

Note that a non-terminal can have an infinity of k-contexts, but only one 0-context, which
is always $.
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N1

a N1 N2

λa N1

b

N2

λ

(a) A parse tree t .

?

a ? ?

λa $ ?

λ

(b) A 2-context.

Fig. 15.2. A parse tree t and the 2-context c[t, 11].

In practice we will not be given a grammar from which one would compute the k-
contexts. Instead, a basic grammar is constructed from a learning sample. This will
allow us to be sure that the number of k-contexts remains finite. We thus denote by
k-contexts(S+, Ni ) the set of all k-contexts of the non-terminal Ni with respect to the
sample S+.

15.2.3 K -reversible grammars

From the above we now define k-reversible grammars:

Definition 15.2.5 A context-free grammar G is k-reversible ifdef the following two
properties hold:

(i) If there exist two rules Nl → αNiβ and Nl → αN jβ then Ni = N j (invertibility condition).
(ii) If there exist two rules Ni → α and N j → α and there is a k-context common to Ni and N j ,

then Ni = N j (reset-free condition).

To say that a language is k-reversible (for some k) is nevertheless not that informative; if
being k-reversible implies strong rules over the type of grammars, this is not true for the
languages:

Theorem 15.2.1 For any context-free language L, there exists a k-reversible grammar G
such that L(G) = L.

Proof [sketch] The above result is already true even for fixed k = 0. One can transform
any context-free grammar into a 0-reversible one, even if the transformation process can
be costly. It should be noted that the above theorem says nothing about sizes. The corre-
sponding grammar can in fact be of exponential size in the size of the original one.

15.2.4 The algorithm

The first step consists of building, from a sample of unlabelled trees, an initial grammar.
Basically it consists of converting the unlabelled trees into derivation trees where a unique
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Algorithm 15.1: INITIALISE-K-REV-CF.

Data: A positive sample of unlabelled strings S+, k ∈ N
Result: A grammar G = (�, V, R, N1) such that L(G) = ⋃

t∈S+Frontier(t)
V ← ∅;
for t ∈ S+ do

t (λ)← N1;
for u ∈ Dom(t) do

if t (u) = ‘?’ then t (u)← N u
t ; V ← V ∪ {N u

t }
end
for u ∈ Dom(t) do

if u1 ∈ Dom(t) then /* u is an internal node */
m ← max{i ∈ N : ui ∈ Dom(t)};
R ← R ∪ {t (u)→ t (u1) . . . t (um)}

end
end

end
return G

non-terminal (the axiom) is used to label every root of the trees in the sample S+. All other
internal nodes are labelled by non-terminals that are used exactly once. Algorithm K-REV-
CF (15.2) first calls Algorithm INITIALISE-K-REV-CF (15.1) and then uses the labelled
trees to merge the non-terminals until a k-reversible grammar is obtained.

In Algorithm K-REV-CF (15.2), the MERGE function is very simple: it consists of
taking two non-terminals and merging them into just one. All the occurrences of each
non-terminal in all the rules of the grammar are then replaced by the new variable.

Algorithm 15.2: K-REV-CF.

Data: A positive sample of unlabelled strings S+, k ∈ N
Result: A k reversible grammar G = (�, V, R, N1)

INITIALISE-K-REV-CF(S+, k);
while G not reset-free and G not invertible do

if ∃(Nl → αNiβ) ∈ R ∧ (Nl → αN jβ) ∈ R
then MERGE(Ni , N j ); /* not reset-free */
if ∃i, j ∈ [|V |], ∃α ∈ (� ∪ V )∗ : (Ni → α) ∈ R∧
(N j → α) ∈ R ∧ k-context(S+, Ni ) ∩ k-contexts(S+, N j ) �= ∅
then MERGE(Ni , N j ); /* not invertible */

end
return G
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15.2.5 Running the algorithm

Consider the learning sample containing trees:

• ?(?(b b ?(a b)a)?(b a))

• ?(?(a b)a)

• ?(b a b ?(a b))

• ?(b b ?(a b)a)

• ?(?(b a)?(b a))

The first step (running Algorithm 15.1) leads to renaming the nodes labelled by ‘?’:

• N1(N2(b b N3(a b)a)N4(b a))

• N1(N5(a b)a)

• N1(b a b N6(a b))

• N1(b b N7(a b)a)

• N1(N8(b a)N9(b a))

The corresponding trees are represented in Figure 15.3.
There are six 1-contexts, shown in Figure 15.4(a–f).
With each non-terminal are associated its k-contexts. Here, and with k=1,

• 1-contexts(N1)= ∅
• 1-contexts(N2)={?($?(b a))} (1-context (e))

N1

N2 N4

b ab b N3 a

a b

(a)

N1

N5

a b

a

(b)

N1

b a b N6

a b

(c)

N1

b b N7

a b

a

(d)

N1

N8 N9

b a b a

(e)

Fig. 15.3. After running Algorithm INITIALISE-K-REV-CF.
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?

b a b $

(a)

?

b b $ a

(b)

?

$ a

(c)

?

? $

b a

(f)

?

$ ?

b a

(e)

?

? $

b b ? a

a b

(d)

Fig. 15.4. 1-contexts.

• 1-contexts(N3)={?(b b $ a)} (1-context (b))
• 1-contexts(N4)={?(?(b b ?(a b)a)$)} (1-context (d))
• 1-contexts(N5)={?($ a)} (1-context (c))
• 1-contexts(N6)={?(b a b $)} (1-context (a))
• 1-contexts(N7)={?(b b $ a)} (1-context (b))
• 1-contexts(N8)={?($ ?(b a))} (1-context (e))
• 1-contexts(N9)={?(?(b a)$)} (1-context (f))

Now suppose we are running Algorithm 15.2 with k = 1.

• The initial grammar is
N1 → N2 N4 + N5a + babN6 + bbN7a + N8 N9; N2 → bbN3a; N3 → ab; N4 → ba;

N5 → ab; N6 → ab; N7 → ab; N8 → ba; N9 → ba.
• Since we have the rules N3 → ab and N7 → ab, and N3 and N7 share a common 1-context,

the grammar is not reset-free, so N3 and N7 are merged (into N3). At this point our running
grammar is

N1 → N2 N4 + N5a + babN6 + bbN3a + N8 N9; N2 → bbN3a; N3 → ab; N4 → ba;
N5 → ab; N6 → ab; N8 → ba; N9 → ba.

• The algorithm then discovers that for N1 and N2 the invertibility condition doesn’t hold, so they
are merged, resulting in the grammar

N1 → N1 N4+N5a+babN6+bbN3a+N8 N9; N3 → ab; N4 → ba; N5 → ab; N6 → ab;
N8 → ba; N9 → ba.

• At this point the algorithms halts. One can notice that the grammar can be simplified without
modifying the language.
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15.2.6 Why the algorithm works

The complexity of the algorithm is clearly polynomial in the size of the learning sample.
Moreover,

Theorem 15.2.2 Algorithm 15.1 identifies context-free grammars in the limit from
structured text and admits polynomial characteristic samples.

We do not give the proof here. As usual, the tree notations make things extremely
cumbersome. But some of the key properties are as follows:

Properties 15.2.3
• The order in which the merges are done doesn’t matter. The resulting grammar is the same.
• Complexity is polynomial (for fixed k) with the size of the sample.
• The algorithm admits polynomial characteristic samples.

15.3 Constructive rewriting systems

An altogether different way of generating a language is through rewriting systems. It is
possible to define special systems by giving a base and a rewrite mechanism, such that
b ∈ L , and if w ∈ L then R(w) ∈ L .

These systems can be learnt from text or from an informant depending on the richness
of the class of rewriting systems considered.

15.3.1 The general mechanism

Let� be an alphabet, B a finite subset of�� called the base, and R a set of rules: (��)n →
�� which is some constructive function.

We expect that a certain number of properties hold. Informally,

• the smallest string(s) in L should be in B,
• from two strings u and v such that R(u) = v one should be able to deduce something about R,
• if the absence in L of a string is needed to deduce rules from R then an informant will be needed.

Obviously other issues are raised here that we have seen in previous sections: when
attempting to learn a rule, this rule should not be masked by a different rule that is somehow
learnt before. The question behind this remark is of the existence of a normal form.

It should be noted that this type of mechanism avoids the difficult question of non-
linearity. The difference in size between two positive examples (strings) u and v, such that
v is obtained by applying R once to v, is going to be small.

15.3.2 Pure grammars

A typical case of learning constructive rewriting systems concerns inferring pure gram-
mars from text. Pure grammars are basically context-free grammars where there is just one
alphabet: the non-terminal and terminal symbols are interchangeable.
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Definition 15.3.1 (Pure grammars) A pure grammar G = (�, R, u) is a triple where
� is an alphabet, R ⊂ �×�� is the set of rules and u is a string from�� called the axiom.

Derivation is expressed as in usual context-free grammars. The only difference is that
the set of variables and the set of terminal symbols coincide.

Example 15.3.1 Let G = (�, R,b) with � = {a,b}, R = {b → abb} and the axiom
is b. The smallest strings in L(G) are b, abb, aabbb, ababb. It is easy to see that L(G)
is the Lukasiewicz language.

The fact that there is only one alphabet means that in the long term, the different strings
involved in a derivation will appear in the sample. This (avoiding the curse of expansive-
ness) allows learning pure grammars to become feasible, even from text. Some restrictions
to the class of grammars nevertheless have to be added in order to obtain stronger results,
like those involving polynomial bounds.

Definition 15.3.2
A pure grammar G = (�, R, u) is monogenic ifdef u

∗=⇒ w → w′ means that there are
unique strings v1 and v2 such that w = v1xv2, w′ = v1 yv2 and (xy) ∈ R.

A pure grammar G is deterministic ifdef for each symbol a in � there is at most one
production with a on the left-hand side.

A pure grammar G is k-uniform ifdef all rules (l, r) in R have |r | = k.
A language is pure if there is a pure grammar that generates it. It is deterministic if there

is a pure deterministic grammar that generates it. And it is k-uniform if there is a pure
k-uniform grammar that generates it.

Let us denote, for an alphabet �, by PURE(�), PURE − DET (�) and
PURE-k-UNIFORM(�) the classes respectively of pure, pure deterministic and
k-uniform languages over �.

Example 15.3.2 The Lukasiewicz language, if we consider the pure grammar with the
unique rule b → abb, is clearly monogenic and deterministic. It also is 3-uniform,
trivially.

Theorem 15.3.1 The class PURE(�) of all pure languages over the alphabet � is not
identifiable in the limit from text.

Proof It is easy to notice that with any non-empty finite language L over � we can
associate a pure grammar of the form G = (� ∪ {a}, R,a), with as many rules (a, w) as
there are strings w in L . Notice that symbol a does not belong to �. In this case we have
L = L(G) \ {a}. And since one can also generate infinite languages, the theorem follows
easily using Gold’s results (Theorem 7.2.3, page 151).

Theorem 15.3.2 The class PURE-k-UNIFORM(�) of all k-uniform pure lan-
guages over the alphabet � is identifiable in the limit from text.
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Proof We provide a non-constructive proof. Finding the axiom is easy (the smallest
string) and so is finding the k (i.e. by looking at the differences between the lengths of
the strings). Then since the number of possible rules is finite, the class therefore has finite
thickness and is learnable from text.

The above result does not directly give us an algorithm for learning (such an algorithm is
to be built in Exercise 15.9). To give a flavour of the type of algorithmics involved in this
setting, let us run an intuitive version of the intended algorithm. Given a learning sample
S+, we can build a pure grammar as follows:

Suppose the learning data are {a,bab,cac,bccaccb,cbcacbc}. The axiom is
found immediately and is a since it is the shortest string. k is necessarily 3. Then bab
is chosen and is obtained from the axiom by applying the rule a →R bab. The sample is
simplified and is now {cac,bccaccb, cbcacbc}. The rule a →R cac is invented to
cope with cac. The set of rules is now capable of generating the entire sample.

15.4 Reducing rewriting systems

An alternative to using context-free grammars, which are naturally expanding (starting
with the axiom), is to use reducing rewriting systems. The idea is that the rewriting system
should eventually halt, so, in some sense, the left-hand sides of the rules should be larger
than the right-hand sides. With just the length, this is not too difficult, but the class of
languages is then of little interest.

In order to study a class containing all the regular languages, but also some others,
we introduce delimited string-rewriting systems (SRS). This class, since it contains all
the regular languages, will require more than text to be learnable. We therefore study the
learnability of this class from an informant.

The rules of delimited string-rewriting systems allow us to replace substrings in strings.
There are variants where variables are allowed, but these usually give rise to extremely
powerful classes of languages, so for grammatical inference purposes we concentrate on
simple variable free rewriting systems.

15.4.1 Strings, terms and rewriting systems

Let us introduce two new symbols $ and £ that do not belong to the alphabet � and will
respectively mark the beginning and the end of each string. The languages we are con-
cerned with are thus subsets of $�∗£. As for the rewrite rules, they will be made of pairs
of terms partially marked; a term is a string over alphabet {$, £}∪�. Such strings have the
restriction that the symbol $ may only appear in first position whereas symbol £ may only
appear in last position. Each term therefore belongs to (λ + $)��(λ + £). We denote this
set by T(�).

Formally, T(�) = $�� £ ∪ $�� ∪�� £ ∪�� = ($ + λ)��(£ + λ).
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The forms of the terms will constrain their use either to the beginning, or to the end, or
to the middle, or even to the string taken as a whole.

Terms in T(�) can be of one of the following types:

• (Type 1.) w ∈ �� (used to denote substrings) or
• (Type 2.) w ∈ $�� (used to denote prefixes) or
• (Type 3.) w ∈ �� £ (used to denote suffixes) or
• (Type 4.) w ∈ $�� £ (used to denote whole strings).

Given a string w in T(�), the root of w is the string $−1w£−1, $−1w, w£−1 and w,
respectively.

We define a specific order relation over T(�):

u <DSRS vifdefroot(u) <lex-length root(v) ∨[
root(u) = root(v) ∧ type(u) < type(v)

]
Example 15.4.1 � = {a,b}. Then $a£, $aab£ and $£ are strings in $�∗£. aa, $b£ and
$baa£ are terms (elements of T(�), of respective types 1, 2, 3 and 4). The root of both
$aab£ and $aab£ is aab.

Finally, we have ab <DSRS $ab <DSRS ab£ <DSRS $ab£ <DSRS ba.

We can now define the rewriting systems we are considering:

Definition 15.4.1 (Delimited string-rewriting system)
• A rewrite rule ρ is an ordered pair of terms ρ = (l, r), generally written as ρ = l % r . l is called

the left-hand side of R and r its right-hand side.
• We say that ρ = l % r is a delimited rewrite rule ifdef l and r are of the same type.
• By a delimited string-rewriting system (DSRS), we mean any finite set R of delimited rewrite

rules.

The order <DSRS extends to rules: (l1, r1) <DSRS (l2, r2) ifdef l1 <DSRS l2 ∨ [
l1 =

l2 ∧ r1 <lex-length r2
]
.

A system is deterministic ifdef no two rules share a common left-hand side.
Given a system R and a string w, there may be several rules that seem to be applicable

uponw. Nevertheless only one rule is eligible. This is the rule having the smallest left-hand
side, for the order <DSRS. Formally, a rule ρ = l % r is eligible for string w if

∃u, v ∈ T(�) : w = ulv

∀u′l ′v′ : ∃ρ′ = l ′ % r ′, l <DSRS l ′

One should note that the same rule might be eligible in different places. We systemati-
cally privilege the leftmost position.

Example 15.4.2 With system ({ab % λ; ba % λ}, $£), if we consider string
$ababbaba£, both rules ab % λ and ab % λ can be used, and each in various positions.
The eligible rule is the first and it must be used in the leftmost position, therefore:

$ababbaba£ % $abbaba£
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Given a DSRS R and two strings w1, w2 ∈ T(�), we say that w1 rewrites in one
step into w2, written w1 %R w2 or simply w1 % w2, ifdef there exists an eligible rule
(l % r) ∈ R for w1, and there are two strings u, v ∈ (λ+ $)��(λ+ £) such that w1 = ulv
and w2 = urv, and furthermore u is shortest for this rule.

A string w is reducible ifdef there exists w′ such that w % w′, and irreducible otherwise.

Example 15.4.3 Again for system ({ab % λ; ba % λ}, $£), string $ababa£ is reducible
whereas $bbb£ is not.

The constraints on $ and £ are such that these symbols always remain in their typical
positions during the reductions at the beginning and the end of the string.

Let %∗
R (or simply %∗) denote the reflexive and transitive closure of %R. We say that w1

reduces to w2 or that w2 is derivable from w1 ifdef w1 %∗
R w2.

Definition 15.4.2 (Language induced by a DSRS) Given a DSRS R and an irreducible
string e ∈ ��, we define the language L(R, e) as the set of strings that reduce to e using
the rules of R:

L(R, e) = {w ∈ �� : $w£ %∗
R $e£}

Deciding whether a string w belongs to a language L(R, e) or not consists of trying to
obtain e from w by a rewriting derivation. We will denote by APPLYR(R, w) the string
obtained by applying the different rules in R until no more rules can be applied. We extend
the notation to a set of strings:

APPLYR(R, S) = {R(w) : w ∈ S}
Example 15.4.4 This time let us consider the Lukasiewicz language which can be rep-
resented by the system ({abb % b}, $b£). But there is an alternative system: ({$ab % $;
aab % a}, $b£).

Let us check that for either system, string aababbabb can be obtained as an element
of the language:

$aababbabb£ % $aabbabb£ % $ababb£ % $abb£ % $b£

$aababbabb£ % $aabbabb£ % $ababb£ % $abb£ % $b£

Let |R| be the number of rules of R and ‖R‖ be the sum of the lengths of the strings R
is involved in: ‖R‖ = ∑

(l%r)∈R |lr |.
Here are some examples of DSRS and associated languages:

Example 15.4.5 Let � = {a,b}.
• L({ab % λ}, λ) is the Dyck language. Indeed, since this single rule erases substring ab, we get

the following example of a derivation:

$aabbab£ % $aabb£ % $ab£ % $£

• L({ab % λ;ba % λ}, λ) is the language {w ∈ �� : |w|a = |w|b}, because every rewriting step
erases one a and one b.
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• L({aabb % ab; $ab£ % $£}, λ) = {anbn : n ≥ 0}. For instance,

$aaaabbbb£ % $aaabbb£ % $aabb£ % $ab£ % $£

Notice that the rule $ab£ % $£ is necessary for deriving λ (the last derivation step).
• L({$ab % $}, λ) is the regular language (ab)∗. Indeed,

$ababab£ % $abab£ % $ab£ % $£

We claim that given any regular language L there is a system R such that L(R) = L .
The fact that the rules can only be applied in a left-first fashion is a crucial reason for this.
One can associate with every state in the DFA rules rewriting to the shortest string that
reaches the state for the lex-length order.

15.4.2 Algorithm LARS

The algorithm we present (Learning Algorithm for Rewriting Systems) generates the possi-
ble rules among those that can be applied over the positive data, tries using them and keeps
them if they do not create inconsistency (using the negative sample for that). Algorithm
LARS (15.4) calls the function NEWRULE (15.3), which generates the next possible rule
to be checked.

Algorithm 15.3: NEWRULE.

Input: S+, rule ρ
Output: a new rule (l, r)
returns the first rule for <DSRS after ρ such that �� l �� ∩L �= ∅

For this, one should choose useful rules, i.e. those that can be applied on at least one
string from S+. One might also consider useful a rule that allows us to diminish the size
of the set S+: a rule which, when added, has the property that two different strings rewrite
into an identical string. The goal of usefulness is to avoid an exponential explosion in the
number of rules to be checked. The function CONSISTENT (15.5) checks that by adding
the new rule to the system, one does not rewrite a positive example and a negative example
into a same string.

The goal is to be able to learn any DSRS with LARS. The simplified version proposed
here can be used as basis for that, and does identify in the limit any DSRS. But, a formal
study of the qualities of the algorithm (as far as mind changes and characteristic samples)
is beyond the scope of this book.
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Algorithm 15.4: LARS.

Input: S+, S−
Output: R
R ← ∅;
ρ ← NEWRULE(S+, (λ, λ));
while |S+| > 1 do

if LARS-CONSISTENT(S+,S−,R ∪ {ρ}) then
R ← R ∪ {ρ};
S+ ← APPLYR(R, S+);
S− ← APPLYR(R, S−)

end
ρ ← NEWRULE(S+, r)

end
w ← min(S+);
return 〈R, w〉

Algorithm 15.5: LARS-CONSISTENT.

Input: S+,S−,R
Output: a boolean indicating if the current system is consistent with (S+,S−)
if ∃x ∈ S+, y ∈ S− : APPLYR(R, x) = APPLYR(R, y) then

return false
else

return true
end

15.4.3 Running LARS

We give an example run of algorithm LARS on the following sample: S+ = {abb,b,
aabbb,abababb}, and S− = {λ,a,ab,ba,bab,abbabb}. LARS tries the following
rules:

• The smallest rule for the order proposed is a % λ, which fails because ab and ba would both
rewrite, using this rule, into b; but ab ∈ S− and b ∈ S+.

• The next rule is $a % $, which fails because ab would again rewrite into b.
• No other rule based on the pair (a, λ) is tried, because the rule would apply to no string in S+. So

the next rule is b % λ, and fails because b rewrites into λ.
• Again $b % $, b£ % £ and $b£ % $£ all fail because b would rewrite into λ.
• b % a, fails because b rewrites into a.
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• $b % $a, fails because b rewrites into a.
• ab % λ is the next rule to be generated; it is rejected because bab would rewrite into b.
• $ab % $ is considered next and is this time accepted. The samples are parsed using this rule and

are updated to S+ = {b,aabbb} and S− = {λ,a,ab,ba,bb,bab}.
• Rules with left-hand side ba, bb, aaa and variants are not analysed, because they cannot apply

to S+.
• The next rule to be checked (and rejected) is aab % λ but then aabbb would rewrite into bb

which (now) belongs to S−.
• Finally, aab % a is checked, causes no problem, and is used to parse the samples obtaining

S+ = {b} and S− = {λ,a,ab,ba,bb,bab}. The algorithm halts with the system ({$ab % $;
aab % a}, $b£).

15.5 Some heuristics

The theoretical results about context-free grammar learning are essentially negative and
state that no efficient algorithm can be found that can learn the entire class of the context-
free languages in polynomial conditions, whether we want to learn with queries, from
characteristic samples or in the PAC setting.

This has motivated the introduction of many specific heuristic techniques. It would be
difficult to show them all, but some ideas are also given in Chapter 14. In order to present
different approaches, we present here only two lines of work. The first corresponds to the
use of minimum length encoding, the second to an algorithm that has not really been used
in grammatical inference, but rather for compression tasks.

15.5.1 Minimum description length

We presented the minimum description length principle in a general way, but also for
the particular problem of learning DFAs, in Section 14.4. The principle basically states
that the size of an encoding should be computed as the sum of the size of the model
(here the grammar) and the size of the object (here the strings) when encoded by the
grammar.

We present the ideas behind an algorithm called GRIDS whose goal is to learn a context-
free grammar from text.

The starting point is a grammar that generates the sample exactly, with exactly one rule
N1 → w per string w in the sample.

Then iteratively, the idea is to try to better the score of the current grammar by trying
one of the two following operations:

• A creating operation takes a substring of terminals and non-terminals, invents a new non-terminal
that derives into the string, and replaces the string by the non-terminal in all the rules. This operator
does not modify the generated language.

• A merging operation takes two non-terminals and merges them into one; this operator can
generalise the generated language.
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Example 15.5.1 Suppose the current grammar contains:

• N1 → aN2ba

• N2 → N3ba

Then the merging operation could replace these rules by:

• N1 → aN2ba

• N2 → N2ba

whereas the creating operation might replace the rules by:

• N1 → aN2 N4
• N2 → N3 N4
• N4 → ba

Iteratively each possible merge/creation is tested and a score is computed: the score takes
into account the size of the obtained grammar and the size of the data set, when generated
by the grammar. The best score that betters the current score indicates which operation, if
any, determines the new grammar.

The way the score is computed is important: it has to count the number of bits needed
to optimally encode the candidate grammar, and the number of bits needed to encode (also
optimally) a derivation of the text for that grammar. This should therefore take into account
that a given non-terminal can have various derivations or not. Some initial ideas towards
using the MDL can be found in Section 14.4, for the case of automata.

15.5.2 Grammar induction as compression

The idea of defining an operator over grammars that allows us to transform one grammar
into another has also been used by an algorithm that, although not of grammar induction
(there is no generalisation), is close to the ideas presented here. Moreover, the structure
found by this algorithm can be used as a first step towards inferring a context-free grammar.
The algorithm is called SEQUITUR and is used to compress (without loss) a text by finding
the repetitions and structure of this text. The idea is to find a grammar that exactly generates
one string, i.e. the text that should be compressed. If the grammar encodes the text in less
symbols than the text length, then a compression is performed.

Two conditions have to be followed by the resulting grammar:

• each rule (but the ‘initial’ one) of the grammar has to be used at least twice,
• there can be no repeated substring of length more than one.

Example 15.5.2 The following grammar is accepted. Notice that each non-terminal is
used just once in the left-hand side of a rule, and that all non-terminals, with the exception
of N1, are used at least twice.

• N1 → N2 N3 N4 N2
• N2 → aN3bN5
• N3 → N5aN4
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• N4 → baN5
• N5 → ab

The algorithm starts with just one rule, called the N1 rule, which is N1 → λ. SEQUITUR
works sequentially by reading one symbol of the text at a time, adds it to the N1 rule and
attempts to transform the running grammar by either:

• using an existing rule,
• creating a new rule,
• deleting some rule that is no longer needed.

Some of these actions may involve new actions taking place.
There is little point in giving the code of SEQUITUR because on one hand the algorith-

mic ideas are clear from the above explanation, but on the other hand, the implementation
details are far beyond the scope of this section, although they are essential in order to keep
the algorithm quasi-linear.

Let us instead run SEQUITUR on a small example.

Example 15.5.3 Suppose the entry string is aaabababaab.

• The initial grammar is N1 → λ, corresponding to having read the empty prefix of the entry
string. SEQUITUR reads the first letter of the input (a). The current grammar therefore becomes
N1 → a. Nothing more happens (i.e. the grammar is accepted to far).

• SEQUITUR reads the next symbol (a). The total input is now aa. The current grammar becomes
N1 → aa.

• The next symbol is read (input is aaa). The grammar is updated to N1 → aaa.
• Another symbol is read (input is aaab). The grammar is therefore updated to N1 → aaab. No

transformation of the grammar is so far possible.
• The next symbol (a) is read for a total input of aaaba. The current grammar becomes N1 →

aaaba.
• The next symbol (b) is read. Input is now aaabab. The current grammar becomes N1 →

aaabab, but substring ab appears twice. So a new non-terminal is introduced and the grammar
is N1 → aaN2 N2, N2 → ab.

• Another symbol is read. Input is now aaababa. The current grammar becomes N1 →
aaN2 N2a, N2 → ab.

• Another symbol is read. Input is now aaababab. The current grammar becomes N1 →
aaN2 N2ab, N2 → ab, but rule N2 → ab can be used, so we have N1 → aaN2 N2 N2, N2 →
ab.

• Another symbol is read. Input is now aaabababa. The current grammar becomes N1 →
aaN2 N2 N2a, N2 → ab.

• Another symbol is read. Input is now aaabababaa. The current grammar becomes N1 →
aaN2 N2 N2aa, N2 → ab.

• Another symbol is read. Input is now aaabababaab. The current grammar becomes N1 →
aaN2 N2 N2aab, N2 → ab. We can now apply rule N2 → ab and obtain N1 →
aaN2 N2 N2aN2, N1 → ab but now aN2 appears twice so we introduce N3 → aN2 and the
grammar is N1 → aN3 N2 N2 N3, N2 → ab, N3 → aN2.

• As the string is entirely parsed, the algorithm halts.
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15.6 Exercises

15.1 Is the following grammar G very simple deterministic?
G = 〈�, V, R, N1〉, � = {a,b,c,d}, V = {N1, N2, N3, N4}, R = {N1 → bN2

+aN2 N4; N2 → cN2 N2 + d; N3 → aN3b; N4 → ab}.
15.2 Complete Theorem 15.1.3: does the proposed algorithm for very simple determin-

istic grammars have polynomial characteristic samples? Does it make a polynomial
number of mind changes?

15.3 Consider the learning sample containing trees:

• N1(N2(b b N3(a b)a)N3(b a))

• N1(N3(a b)a)

• N1(b a bN3(a b))

• N1(b b N2(a b)a)

• N1(N3(b a)N2(b a))

Take k=1 and k=2. What are the k-ancestors of N3 that we can deduce from the
sample? Draw the corresponding k-contexts of N3.

15.4 Why can we not deduce from Theorem 15.2.1 that context-free grammars are
identifiable from text?

15.5 Is the following grammar G = 〈�, V, R, N1〉 k-reversible? For what values of k?
� = {a,b}, V = {N1, N2, N3, N4}, R = {N1 → bN2 + aN4 + bab; N2 →
aN2bN2 + a; N3 → a + b; N4 → aN3bN2 + ab}.

15.6 Find a context-free grammar for which the corresponding 0-reversible grammar is
of exponential size.

15.7 Learn a pure grammar (see Section 15.4) from the following sample: S+ =
{aba,a3ba3,a6a6}. Suppose the grammar is k-uniform.

15.8 Learn a pure grammar from the sample S+ = {aba,a3ba3,a6a6}. Suppose the
grammar is deterministic.

15.9 Write a learning algorithm corresponding to the proof of Theorem 15.3.2. What is
its complexity? Prove that it admits polynomial characteristic samples.

15.10 Run algorithm SEQUITUR over the following input texts. What sort of grammatical
constructs does SEQUITUR find? Which are the ones it cannot find?

w1 = aaaabbbb

w2 = a256b256

w3 = (ab)256

15.7 Conclusions of the chapter and further reading

15.7.1 Bibliographical background

The discussion about whether natural language is context-free has been going on since
the class of context-free languages was invented (Chomsky, 1957). For a more grammati-
cal inference flavour, see (Becerra-Bonache, 2006, Roark & Sproat, 2007). The discussion
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about the specific difficulties of learning context-free grammars relies mostly on work by
Rémi Eyraud (Eyraud, 2006) and Colin de la Higuera (de la Higuera, 2006a). There are few
negative results corresponding to learning context-free grammars. Dana Angluin conjec-
tured that these were not learnable by using an MAT and the proof appears in (Angluin &
Kharitonov, 1991). Colin de la Higuera (de la Higuera, 1997) proved that polynomial
characteristic sets were of unboundable size.

A first line of research has consisted of limiting the class of context-free grammars
to be learnt: even linear grammars (Takada, 1988), deterministic linear grammars (de la
Higuera & Oncina, 2002) and very simple grammars (Yokomori, 2003) have been proved
learnable in different settings.

Much work has been done on the problems relating to even linear grammars (Koshiba,
Mäkinen & Takada, 1997, Mäkinen, 1996, Sempere & García, 1994, Sempere & Nagaraja,
1998, Takada, 1988, 1994). Positive results concerning subclasses of even linear languages
have been obtained when learning from text (Koshiba, Mäkinen & Takada, 2000). Takashi
Yokomori (Yokomori, 2003) introduced the class of simple deterministic grammars and
obtained the different results reported here.

The special class of deterministic linear languages was introduced by Colin de la
Higuera and Jose Oncina (de la Higuera & Oncina, 2002). The class was later adapted
in order to take probabilities into account (de la Higuera & Oncina, 2003).

The algorithm for learning k-reversible grammars is initially due to Yasubumi Sakak-
ibara (Sakakibara, 1992), based on Dana Angluin’s algorithm for regular languages
(Angluin, 1982). Further work by Jérôme Besombes and Jean-Yves Marion (Besombes &
Marion, 2004a) and Tim Oates et al. (Oates, Desai & Bhat, 2002) is used in this presenta-
tion. The proof of Theorem 15.2.1 is constructive but beyond the scope of this book. It can
be found in the above cited papers.

Pure grammars are learnt by Takeshi Koshiba et al. (Koshiba, Mäkinen & Takada, 2000)
whereas the work we describe on the rewriting systems is by Rémi Eyraud et al. (Eyraud,
de la Higuera & Janodet, 2006). In both cases the original ideas and algorithms have been
(over) simplified in this chapter, and many alternative ideas and explanations can be found
in the original papers.

Based on the MDL principle, Gerry Wolf (Wolf, 1978) introduced an algorithm called
GRIDS whose ideas were further investigated by Pat Langley and Sean Stromsten (Lan-
gley & Stromsten, 2000), and then by George Petasis et al. (Petasis et al., 2004a).
Alternatively, the same operators can be used with a genetic algorithm (Petasis et al.,
2004b), but the results are no better.

Algorithm SEQUITUR is due to Craig Nevill-Manning and Ian Witten (Nevill-
Manning & Witten, 1997a). Let us note that (like in many grammar manipulation pro-
grammes) it relies on hash tables and other programming devices to enable the algorithm
to work in linear time. Experiments were made by SEQUITUR over a variety of sequen-
tial files, containing text or music: compression rates are good, but more importantly, the
structure of the text is discovered. If one runs SEQUITUR on special context-free gram-
mars (such as Dyck languages) results are poor: SEQUITUR is good at finding repetitions
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of patterns, but not necessarily at finding complex context-free structures. On the other
hand, in our opinion, no algorithm today is good at this task.

The question of the relationship between learning (and specifically grammar learning)
and compression can also be discussed. SEQUITUR performs a lossless compression: no
generalisation, or loss, takes place. One can argue that other grammar induction techniques
also perform a compression of the text (the learning data) into a grammar. But in that case
it is expected that the resulting language is not equal to the initial text. Now the questions
that arise from these remarks are: is there a continuum between the SEQUITUR type of
lossless compression techniques and the GRIDS type of compression with loss techniques?
In other words could we tune SEQUITUR to obtain a generalisation of the input text, or
GRIDS to obtain a grammar equivalent to the initial one? How do we measure the loss
due to the generalisation, in such a way as to incorporate it into the learning/compression
algorithm?

15.7.2 Some alternative lines of research

If to the idea of simplifying the class of grammars we add that of using queries, there
are positive results concerning the class of simple deterministic languages. A language is
simple deterministic when it can be recognised by a deterministic push-down automaton
by empty store, that only uses one state. All languages in this class are thus necessarily
deterministic, λ-free and prefix.

Hiroki Ishizaka (Ishizaka, 1995) learns these languages using 2-standard forms: his
algorithm makes use of membership queries and extended equivalence queries.

There have been no known positive results relating any form of learning with usual
queries and the entire class of context-free languages. It is shown that context-free
grammars have approximate fingerprints and therefore are not learnable from equiva-
lence queries alone (Angluin, 1990), but also that membership queries alone (Angluin &
Kharitonov, 1991) are insufficient even if learning in a PAC setting (under typical cryp-
tographic assumptions), and it is conjectured (Angluin, 2001) that an MAT is not able to
cope with context-free languages.

If one reads proceedings of genetic algorithms or evolutionary computing conferences
dating from the seventies or eighties, one will find a number of references concerning gram-
matical inference. Genetic algorithms require a linear encoding of the solutions (hence here
of the grammars) and a careful definition of the genetic operators one wants to use, usually
a crossing-over operator and a mutation operator. Some (possibly numerical) measure of
the quality of a solution Is also required.

The mutation operator takes a grammar, modifies a bit somewhere and returns a new
grammar. The crossing-over operator would take two grammars, cut these into two halves
and build two new grammars by mixing the halves (Wyard, 1994). One curious direction
(Kammeyer & Belew, 1996) to deal with this issue is to admit that in that case, parts of the
string will not be used to encode any more, and would correspond to what is known as junk
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DNA. Other ideas correspond to very specific encodings of the partitions of non-terminals
and offer resistant operators (Dupont, 1994, Sakakibara & Kondo, 1999). Yasubumi
Sakakibara et al. (Sakakibara & Kondo, 1999, Sakakibara & Muramatsu, 2000) represented
the grammars by parsing tables and attempted to learn these tabular representations by a
genetic algorithm.

Among the several pragmatic approaches, let us mention the BOISDALE algorithm
(Starkie & Fernau, 2004) which makes use of special forms of grammars, SYNAPSE
(Nakamura & Matsumoto, 2005) which is based on parsing, LARS (Eyraud, de la Higuera
& Janodet, 2006) which learns rewriting systems, and Alexander Clark’s (Clark, 2004)
algorithm (which won the 2004 OMPHALOS competition (Starkie, Coste & van Zaanen,
2004a)) concentrates on deterministic languages. An alternative is to learn a k-testable
tree automaton, and estimate the probabilities of the rules (Rico-Juan, Calera-Rubio &
Carrasco, 2002). An earlier line of research is based on exhaustive search, either by use
of a version space approach (Vanlehn & Ball, 1987), or by using operators such as the
Reynolds cover (Giordano, 1994).

There have also been some positive results concerning learning context-free languages
from queries. Identification in the limit is of course trivially possible with the help of
strong equivalence queries, through an enumeration process. A more interesting positive
result concerns grammars in a special normal form, and when the queries will enable
some knowledge about the structure of the grammar and not just the language. The
algorithm is a natural extension of Dana Angluin’s LSTAR algorithm (Angluin, 1987a)
and was designed by Yasubumi Sakakibara (Sakakibara, 1990) who learns context-free
grammars from structural queries (a query returns the context in which a substring is
used).

In the field of computational linguistics, efforts have been made to learn context-free
grammars from more informative data, such as trees (Charniak, 1996), following theoreti-
cal results by Yasubumi Sakakibara (Sakakibara, 1992). Learning from structured data has
been a line followed by many: learning tree automata (Fernau, 2002, Habrard, Bernard &
Jacquenet, 2002, Knuutila & Steinby, 1994), or context-free grammars from bracketed data
(Sakakibara, 1990) allows to obtain better results, either with queries (Sakakibara, 1992),
regular distributions (Carrasco, Oncina & Calera-Rubio, 2001, Kremer, 1997, Rico-Juan,
Calera-Rubio & Carrasco, 2002), or negative information (García & Oncina, 1993). This
has also led to different studies concerning the probability estimation of such grammars
(Calera-Rubio & Carrasco, 1998, Lari & Young, 1990).

A totally different direction of research has been followed by authors working with cat-
egorial grammars. These are as powerful as context-free grammars. They are favoured by
computational linguists who have long been interested in working on grammatical mod-
els that do not necessarily fit into Chomsky’s hierarchy. Furthermore, their objective is
to find suitable models for syntax and semantics to be interlinked, and provide a logic-
based description language. Key ideas relating such models with the questions of language
identification can be found in Makoto Kanazawa’s book (Kanazawa, 1998), and discus-
sion relating this to the way children learn language can be found in papers by a variety
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of authors, for instance Isabelle Tellier (Tellier, 1998). The situation is still unclear, as
positive results can only be obtained for special classes of grammars (Forêt & Le Nir,
2002), whereas, here again, the corresponding combinatorial problems (for instance that of
finding the smallest consistent grammar) appear to be intractable (Costa Florêncio, 2002).

The situation concerning learnability of context-free grammars has evolved since 2003
with renewed interest caused by workshops (de la Higuera et al., 2003), and more impor-
tantly by the OMPHALOS context-free language learning competition (Starkie, Coste &
van Zaanen, 2004b), where state of the art techniques were unable to solve even the easiest
tasks. The method (Clark, 2007) that obtained best results used a variety of information
about the distributions of the symbols, substitution graphs and context. The approach is
mainly empirical and does not provide a convergence theorem.

About mildly context-sensitive languages, we might mention Leo Becerra et al. (Oates
et al., 2006): these systems can learn languages that are not context-free. But one should
be careful: mildly context-sensitive languages usually do not contain all the context-free
languages. A related approach is through kernels: semi-linear sets (Abe, 1995) and planar
languages (Clark et al., 2006) are alternative ways of tackling the problem.

15.7.3 Open problems and possible new lines of research

Work on learning context-free grammars is related to several difficult aspects: language
representation issues, decidability questions, tree automata. . . Yet the subject is obviously
very much open with several teams working on the question. Among the most notable open
questions, here are some that are worth looking into:

(i) In the definition of identification in the limit from polynomial time and data, the size of a set
of strings is taken as the number of bits needed to encode the set. If we take, as some authors
propose (Carme et al., 2005), the size of the set as the number of strings in the sample, then it
is not known if context-free grammars admit characteristic samples of polynomial size.

(ii) The question of learning probabilistic context-free grammars is widely open with very few
recent results, but no claim that these may be learnable in some way or another. Yet these
grammars are of clear importance in fields such as computational biology (Jagota, Lyngsø &
Pedersen, 2001) or linguistics (Charniak, 1996). In a way, these grammars would bridge the gap
between learning languages and grammars, as the very definition of a probabilistic context-free
language requires a grammar.

(iii) Another question that has been left largely untouched is that of learning pushdown automata.
Yet these provide us with mechanisms that would allow us to add extra bias: the determinism
of the automata, the number of turns, and the number of symbols in the stack can be controlled.

(iv) As may be seen in the section about pure grammars, there are several open questions and prob-
lems to be solved in that context: what is identifiable and what is not? What about polynomial
bounds? The reference paper where these problems are best described is by Takeshi Koshiba
et al. (Koshiba, Mäkinen & Takada, 2000).

(v) A curious problem is that of learning a context-free language L which is the intersection
between another context-free language LC and a regular language L R , when the context-free
language is given (de la Higuera, 2006b).
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(vi) Finally, an interesting line of research was proposed in (Sakakibara & Muramatsu, 2000),
where the learning data were partially structured, i.e. some brackets were given. Although
the purpose of the paper was to prove that the number of generations of the genetic learning
algorithm was lower when more structure was given, the more general question of how much
structure is needed to learn is of great interest.

(vii) Most importantly, there is a real need for good context-free grammar-learning algorithms.
There are three such algorithms used in computational linguistics (Adriaans & van Zaanen,
2004) we have not described here, in part because they rely on too many different complex
algorithmic mechanisms:

• Algorithm EMILE, by Pieter Adriaans and Marco Vervoort (Adriaans & van Zaanen, 2002)
relies on substitutability as its chief element: can a string be substituted by another? Is a
context equivalent to another? Graph clustering techniques are used to solve these questions.

• Algorithm ABL (alignment-based learning) by Menno van Zaanen (van Zaanen, 2000) relies
on aligning the different sentences in order to then associate non-terminals with clusters of
substrings.

• Algorithm ADIOS, by Zach Solan et al.(Solan et al., 2002) also represents the information
by a graph, but aims to find the best paths in the graphs.

• The key idea of substitutability (which is essential in the above works) is studied in more
detail by Alexander Clark and Rémi Eyraud (Clark & Eyraud, 2007). Two substrings are
congruent if they can be replaced by each other in any context. This allows us, by discover-
ing this congruence, to build a grammar. This powerful mechanism enables us to assemble
context-free grammars, and corresponds to one of the most promising lines of research in
the field.
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Learning probabilistic finite automata

En efecto, las computadoras parten del sofisma, políticamente inaceptable, de
que dos y dos son cuatro. Su conservadurismo es feroz en este respeto.

Pablo de la Higuera, In, Out, Off. . . ¡Uf!

The promiscuous grammar has high a priori probability, but assigns low prob-
ability to the data. The ad-hoc grammar has very low a priori probability, but
assigns probability one to the data. These are two extreme grammar types: the
best choice is usually somewhere between them.

Ray Solomonoff (Solomonoff, 1997)

A language is a set of strings, and a string either belongs to a language or does not. An
alternative is to define a distribution over the set of all strings, and in some sense the proba-
bility of a string in this set is indicative of its importance in the language. This distribution,
if learnt from data, can in turn be used to disambiguate, by finding the most probable
string corresponding to a pattern, or to predict by proposing the next symbol for a given
prefix.

We propose in this chapter to investigate ways of learning distributions representable
by probabilistic automata from strings. No extra knowledge is usually provided. In par-
ticular the structure of the automaton is unknown. The case where the structure is known
corresponds to the problem of probability estimation and is discussed in Chapter 17.

We only work in this chapter with deterministic probabilistic finite automata. Positive
learning results for distributions defined by other classes of grammars are scarce; we never-
theless comment upon some in the last section of the chapter. Definitions of the probabilis-
tic automata can be found in Chapter 5, whereas the convergence criteria were introduced
and discussed in Chapter 10, where also a number of negative results were studied.

16.1 Issues

There are a number of reasons for which one may want to learn a probabilistic language and
it should be emphasised that these reasons are independent and therefore do not necessarily
add up.

329
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16.1.1 Dealing with noise

If the task is about learning a language in a noisy setting, the algorithms presented in
earlier chapters for learning from text, from an informant or with an Oracle have been
shown not to be suited. Probabilities offer what looks like a nice alternative: why not learn
a probabilistic language in which (hopefully) the weights of the strings in the language will
be big and if any noisy string interferes in the learning process the probability of this string
will be small and therefore not penalise the learnt hypothesis too much?

But then, and this is a common mistake, the probabilities we are thinking about in this
noisy setting correspond to those indicating whether or not a string belongs to the language.
The classes of probabilistic languages to be learnt (see Chapter 5) do not use this idea of
stochasticity (one should look into fuzzy automata for this, a class for which there are very
few learning results).

16.1.2 Prediction

There are situations when what is really important is the symbol and not the string itself.
An important and typical question will then be:

Having seen so far abbaba, what is the next symbol?

If we are able to access a distribution of probabilities over �� (and thus the notation
PrD(w) makes sense), we are able to deduce a distribution over � in a given context. If
we denote by PrD(a|w) the probability of generating an a after having generated w when
following distribution D (and Pr(a|w) when the distribution is clear),

PrD(a|w) = PrD(wa��)

PrD(w��)

The converse is also true: if prediction is possible, then we can use the chain rule in
order to define an associated distribution over�n , for each value of n, and also�� provided
the probability of halting given a string is also defined. For this we usually introduce the
symbol $ used to terminate strings (strings will be in the set �� $). Formally, given a string
a1a2 . . . an$,

PrD(w$) = Pr(a1|λ) · Pr(a2|a1) · · · Pr(ai+1|a1 · · · ai ) · · · Pr(an|a1 · · · an−1) · Pr($|w)

16.2 Probabilities and frequencies

If the goal is to learn probabilistic finite automata, in practice we have no access to prob-
abilities, but to frequencies. We will be told that in the sample, 150 out of the 500 strings
start with the letter a, not that 3

10 of the strings in the language start with a.
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The first crucial issue is that even if mathematically 1
2 = 500

1000 , this does not fit the
picture when we think of the fraction as a relative frequency. More precisely, if this frac-
tion is supposed to indicate the empirical probability of an event, then the first fraction
would mean ‘we have made two tests and out of these two, one was heads’, whereas
the second fraction is supposed to indicate that 1000 tests were done and 500 resulted in
heads.

The difference is that if wanting to say something like, ‘I guess we get heads half of the
time’, there are probably more reasons to say this in the second case than the first.

The second point is that the automaton the learning algorithm will manipulate during the
inference process should both keep track of the frequencies (because of the above reasons)
and have an easy and immediate probabilistic interpretation.

For this reason, we introduce a new type of automaton, which we call a frequency finite
automaton (FFA).

We will call frequency the number of times an event occurs, and relative frequency the
number of times an event occurs over the number of times it could have occurred.

Definition 16.2.1 A deterministic frequency finite automaton (DFFA) is a tuple A =
〈�, Q, I f r ,F f r , δ f r 〉 where

• � is the alphabet,
• Q is a finite set of states
• I f r : Q → N (initial-state frequencies); since the automaton is deterministic there is exactly one

state qλ for which I f r (q) �= 0,
• F f r : Q → N (final-state frequencies),
• δ f r : Q ×� × Q → N is the transition frequency function,
• δA : Q ×� → Q is the associated transition function.

The definition is intended to be adjusted to that of a DPFA (Definition 5.2.3, page 89).
The notation δ f r (q, a, q ′) = n can be interpreted as ‘there is a transition from q to q ′
labelled with a that is used n times’. Obviously, because of determinism, there is at most
one state q ′ such that δ f r (q, a, q ′) > 0, and this state is such that q ′ = δA(q, a).

There is a relationship, analogous to what can be found in flow diagrams, between the
frequencies of the transitions leading to a state and those leaving a state:

Definition 16.2.2
A DFFA A = 〈�, Q, I f r ,F f r , δ f r , δA〉 is said to be consistent or well defined ifdef

∀q ∈ Q, I f r (q)+∑
q ′∈Q
a∈�

δ f r (q ′, a, q) = F f r (q)+∑
q ′∈Q
a∈�

δ f r (q, a, q ′).

When the DFFA is well defined, the number of strings entering and leaving a given
state is identical. We denote by FREQ(q) the total number both of entering strings and of
leaving strings at state q.
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Algorithm 16.1: CONSTRUCTING a DPFA from a DFFA.

Input: a DFFA A = 〈�, Q, I f r ,F f r , δ f r , δA〉
Output: a DPFA B = 〈�, Q, qλ,FP, δP, δB〉
for q ∈ Q do /* Final probabilities */

FREQ[q] ← F f r (q);

for a ∈ � do FREQ[q] ← FREQ[q] + δ f r (q, a, δA(q, a)) FP(q)← F f r (q)
FREQ[q] ;

for a ∈ � do

δP(q, a, q ′)← δ f r (q,a,q ′)
FREQ[q] ;

δB(q, a)← δA(q, a)
end

end
return B

Definition 16.2.3 ∀q ∈ Q,

FREQ(q) = I f r (q)+
∑
q ′∈Q
a∈�

δ f r (q
′, a, q)

= F f r (q)+
∑
q ′∈Q
a∈�

δ f r (q, a, q ′).

In Definition 16.2.2, consistency is defined as maintaining the flows: any string that enters
a state (or starts in a state) has to leave it (or end there). If this condition is fulfilled, the
corresponding PFA can be constructed by Algorithm 16.1.

Example 16.2.1 We depict in Figure 16.1 an FFA (16.1(a)) and its associated PFA
(16.1(b)).

On the other hand, we will sometimes need to compare frequencies over an FFA. But for
this we would have to be able to associate with an FFA a sample in order to say something
about the sample. But this is usually impossible, even if the automaton is deterministic
(see Exercise 16.1). If the automaton is not deterministic, the situation corresponds to that
of estimating the probabilities of a model given a sample. This crucial question will be
discussed in more detail in Chapter 17.

When needed, since the transformation from a DFFA to a DPFA is straightforward with
Algorithm 16.1, if we denote for a given FFA A the corresponding PFA by B, PrA(w) =
PrB(w). Therefore we will be allowed to compute directly, for a DFFA A, the probability
of any string.

If concentrating on a specific state q of an FFA A, we will denote by PrA,q(w) the
probability of string w obtained when parsed (on the associated PFA from state q with
initial probability one). Formally: let B = FFA_TO_PFA(A) = 〈�, Q, IP,FP, δP, δA〉,
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100 qλ| 40 qa| 30

qb| 25 qaa| 5

a 60

b 50 a 5
b 25

a 50

b 45

(a) DFFA.

1 qλ| 4
15 qa| 1

2

qb| 5
24 qaa| 1

a 2
5

b 1
3 a 1

12

b 5
12

a 5
12

b 3
8

(b) DPFA.

Fig. 16.1. FFA to PFA.

PrA,q(w) = PrC,q(w) where C = 〈�, Q, IPq ,FP, δP, δC〉 and IPq(q) = 1, ∀q ′ �=
q, IPq(q

′) = 0.

Example 16.2.2 In the DPFA A represented in Figure 16.1(b), PrA,qλ(ab) = PrA(ab)=
1 · 2

5 · 5
12 · 5

24 = 5
144 whereas PrA,q2(ab)=1 · 5

12 · 1
3 · 5

24 = 25
864 .

16.3 State merging algorithms

As in the case of learning finite state automata, the best studied algorithms to learn
probabilistic automata rely on state merging.

16.3.1 From samples to FFAs

Definition 16.3.1 Let S be a multiset of strings from ��. The frequency prefix tree
acceptor FPTA(S) is the DFFA : 〈�, Q, I f r ,F f r , δ f r , δA〉 where
• Q = {qu : u ∈ PREF(S)},
• I f r (qλ) = |S|,
• ∀ua ∈ PREF(S), δ f r (qu , a, qua) = |S|ua�� ,
• ∀ua ∈ PREF(S), δ(qu , a) = qua ,
• ∀u ∈ PREF(S), F f r (qu) = |S|u .

For example, in Figure 16.2, we have represented the FPTA built from the sample
S, which is a multiset of size 100. S = {(λ, 53), (a, 12), (b, 15), (aa, 4), (ab, 5),
(ba, 2), (bb, 2), (aaa, 2), (aab, 1), (abb, 1), (bba, 2), (bbb, 1)}.

16.3.2 Merging and folding

As in Chapter 12, we describe algorithms that start with a prefix tree acceptor and
iteratively try to merge states, with a recursive folding process.
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100 qλ : 53

qa : 12

qb : 15

a 25

b 22

qaa : 4

qab : 5

a 7

b 6

qba : 2

qbb : 2

a 2

b 5

qaaa : 2

qaab : 1

a 2

b 1

qabb : 1b 1

qbba : 2

qbbb : 1

a 2

b 1

Fig. 16.2. An FPTA constructed from 100 strings.

Given a DFFA the merging operation takes two states q and q ′, where q is a RED state
and q ′ = δ(q f , a) is a BLUE state, the root of a tree. This also means that δ(q f , a) �= qλ.
The operation is described by Algorithm STOCHASTIC-MERGE (16.2). First, transition
δA(q f , a) is redirected to q. Then the folding of the tree rooted in q ′ into the automaton at
state q is recursively called.

Algorithm 16.2: STOCHASTIC-MERGE.

Input: an FFA A, 2 states q ∈ RED, q ′ ∈ BLUE

Output: A updated
Let (q f , a) be such that δA(q f , a) = q ′;
n ← δ f r (q f , a, q ′);
δA(q f , a)← q;
δ f r (q f , a, q)← n;
δ f r (q f , a, q ′)← 0;
return STOCHASTIC-FOLD(A, q, q ′)

For the resulting automaton to be deterministic, recursive folding is required. In this case
Algorithm STOCHASTIC-FOLD (16.3) is used.

The situation is schematically represented in Figures 16.3(a) and 16.3(b): suppose we
want to merge state q ′ (BLUE) with state q (RED). First q f is the unique predecessor of q ′,
and the transition from q f labelled by a (and used n times) is redirected to q. The folding
can then take place.

Example 16.3.1 Let us examine the merge-and-fold procedure with more care on an
example. Suppose we are in the situation represented in Figure 16.4. We want to merge
state qaa with qλ.
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The RED states

qλ

q

q f

q ′
a n

(a) The situation before merging.

The RED states

qλ

q

q f

q ′

a n

(b) The situation after merging and before folding.

Fig. 16.3. Merge-and-fold.

Algorithm 16.3: STOCHASTIC-FOLD.

Input: a DFFA A, 2 states q and q ′
Output: A updated, where subtree in q ′ is folded into q
F f r (q)← F f r (q)+ F f r (q ′);
for a ∈ � such that δA(q ′, a) is defined do

if δA(q, a) is defined then
δ f r (q, a, δA(q, a))← δ f r (q, a, δA(q, a))+ δ f r (q ′, a, δA(q ′, a));
A ←STOCHASTIC-FOLD(A, δA(q, a), δA(q ′, a))

else
δA(q, a)← δA(q ′, a);
δ f r (q, a, δA(q, a))← δ f r (q ′, a, δA(q ′, a))

end
end
return A

Once the redirection has taken place (Figure 16.5), state qaa is effectively merged
(Figure 16.6) with qλ (leading to modification of the values of FREQA(qλ), δ f r (qλ,a)
and δ f r (qλ,b)). Dashed lines mark the recursive merges that are still to be done.

Then (Figure 16.7) qaaa is folded into qa, and finally qaab into qb. The result is
represented in Figure 16.8.
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100 qλ| 40 qa| 30

qb| 25

qaa| 1

qaaa| 2

qaab| 1 qaabb| 1
a 60

b 50

a 5

b 25
a 50

a 2

b 2

b 1

Fig. 16.4. Before merging qaa with qλ and redirecting transition δA(qa,a) to qλ.

100 qλ| 40 qa| 30

qb| 25

qaa| 1

qaaa| 2

qaab| 1 qaabb| 1

a 60

b 50

a 5

b 25
a 50

a 2

b 2

b 1

Fig. 16.5. Before folding qaa into qλ.

100 qλ| 41 qa| 30

qb| 25

qaaa| 2

qaab| 1 qaabb| 1

a 62

b 52

a 5

b 25
a 50

b 1

Fig. 16.6. Folding in qaa.

100 qλ| 41 qa| 32

qb| 25

qaab| 1 qaabb| 1

a 62

b 52

a 5

b 25
a 50

b 1

Fig. 16.7. Folding in qaaa.
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100 qλ| 41 qa| 32

qb| 26 qaabb| 1

a 62

b 52

a 5

b 25
a 50

b 1

Fig. 16.8. Folding in qaab.

16.3.3 Deciding equivalence

The next difficult problem is that of deciding if two states qu and qv should be merged. This
usually corresponds to testing in an automaton if the two distributions obtained by using
the same automaton but changing the initial frequency function are equivalent (better said,
if they are equivalent when taking into account the fact that these two distributions are only
approximately described by samples).

So the question is really about deciding if two states of a given DFFA A =
〈�, Q, I f r ,F f r , δ f r , δA〉 (one BLUE and one RED) should be merged, which really means
discovering from both the sampling process and the merges that have been done up to that
point if DA,qu and DA,qv are sufficiently close. One possibility is to use here the results
and algorithms described in Section 5.4 where we studied distances between distributions,
and in a way, this is what is done.

16.3.4 Equivalence on prefixes

Let us describe the key idea behind the test used by Algorithm ALERGIA, which will be
described in detail in Section 16.4. Obviously, if the two distributions given by automata
A1 and A2 (whether PFA or FFA) are equivalent, then we should have:

∀w ∈ ��, PrA1(w) = PrA2(w)

or at least, when testing over random samples, these observed relative frequencies should
be sufficiently close:

∀w ∈ S, PrA1(w) ≈ PrA2(w)

But this is not going to be possible to test, partly because the number of strings is infinite,
but mainly because the values involved can be very small whenever the distribution is over
many different strings.

A better idea is to compare the prefixes:

∀w ∈ �� PrA1(w�
�) ≈ PrA2(w�

�)
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This test will be used (over a finite sample) but it should be noted that it can mean having
to test on all possible strings w; so we want to do this in such a way as to keep the number
of tests small (and somehow bounded by the size of the sample).

16.3.5 Added bias

A second altogether different way of testing if two distributions are similar corresponds
to taking the bet (we call it bias) that there will be a distinguishing string. This idea will
be exploited in Algorithm DSAI, described in Section 16.5. Note that the above quantities
should diminish at exponential rate with the length of the prefixes. This means that if the
difference between two states depends on a long prefix, we may not have enough informa-
tion in the sample to be able to notice this difference. In order to deal with this problem, we
can hope that two states are different because of some string which has different probabili-
ties when reading from each of these states. We call this a distinguishing string. Obviously
if it is normal that such distinguishing strings exist, the bias lies is in believing that the
difference of probabilities is large.

Definition 16.3.2 Given μ > 0, a DPFA (or DFFA) A = 〈�, Q, qλ,FP, δP〉 is μ-
distinguishable ifdef for every pair of different states qu and qv in Q there exists a string
w in �� such that |PrA,qu (w)− PrA,qv (w)| ≥ μ.

This means that one can check, during the merge-and-fold process, if two states are μ-
distinguished or not. It should be noted that if two states are μ-distinguishable, then every
time we want to merge two states qu and qv , with high enough probability there is a string
w such that |PrAqu

(w)− PrAqv
(w)| > μ.

In order for this test to make sense, a threshold (denoted by t0) will be used. The thresh-
old provides a limit: how many strings entering the BLUE state are needed in order to
have enough statistical evidence to consider making a merge? Only states having enough
evidence will be checked.

An important question concerns the future of those states that do not meet this quantity.
There are a number of possibilities, some more theoretically founded (like just merging all
the remaining states at the end of the learning process in one unique state), and some using
all types of heuristics. We shall not specifically recommend any here.

16.3.6 Promoting

Just as in the RPNI case, promotion takes place when the current (BLUE) state can be
merged with no red state (RED). In that case, first the BLUE state is promoted and becomes
RED. Then all the successors of the RED states that are not RED themselves become BLUE.
Notice also that no frequencies are modified.

In practice it is possible to avoid exploring all the states in order to redefine the
colourings, as, usually, only the successors of the promoted state can change to BLUE.
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16.3.7 Withdrawing

There is, in the case of probabilistic automata learning, a last operation that didn’t make
much sense when working with non-probabilistic automata. At some moment the algorithm
may have to take a decision about a state (or an edge) used by very few strings. This may
seem like a trifling (there is not much data so even if we made a mistake it could seem it
would not be a costly one), but this is not true: to take an extreme example suppose that
just one string is generated from a state, perhaps an with n very large (much larger than
the actual size of the sample). Then making a mistake and perhaps merging this state with
some RED state can change the frequencies in a far too drastic way because the same string
will be folded many times into the automaton. For details, see Exercise 16.2.

This phenomenon deserves to be analysed with much more care, but for the moment we
will just solve the question by using a threshold t0 with each algorithm: if the amount of
data reaching a BLUE state is less than the threshold, then the state (and all its successors)
is withdrawn. It remains in the FFA to maintain consistency, but will not be checked for
merging.

16.4 ALERGIA

In Chapter 12 we described Algorithm RPNI. Algorithm ALERGIA (16.6) follows the
same ideas: a predefined ordering of the states, a compatibility test and then a merging oper-
ation. The general algorithm visits the states through two loops and attempts (recursively)
to merge states.

16.4.1 The algorithm

Algorithm 16.4: ALERGIA-TEST.

Input: an FFA A, f1, n1, f2, n2, α > 0
Output: a Boolean indicating if the frequencies f1

n1
and f2

n2
are sufficiently close

γ ← ∣∣ f1
n1

− f2
n2

∣∣;
return

(
γ < (

√
1

n1
+
√

1
n2
) ·
√

1
2 ln 2

α

)

The compatibility test makes use of the Hoeffding bounds. The algorithm ALERGIA-
COMPATIBLE (16.5) calls the test ALERGIA-TEST (16.4) as many times as needed, this
number being finite due to the fact that the recursive calls visit a tree.

The basic function CHOOSE is as follows: take the smallest state in an ordering that has
been done at the beginning (on the FPTA). But it has been noticed by different authors that
using a data-driven approach offered better guarantees. The test that is used to decide if
the states are to be merged or not (function COMPATIBLE) is based on the Hoeffding test
made on the relative frequencies of the empty string and of each prefix.
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Algorithm 16.5: ALERGIA-COMPATIBLE.

Input: an FFA A, two states qu , qv , α > 0
Output: qu and qv compatible?
Correct← true;
if ALERGIA-TEST(FPA(qu), FREQA(qu), FPA(qv), FREQA(qv), α) then
Correct← false;
for a ∈ � do

if ALERGIA-TEST(δ f r (qu, a), FREQA(qu), δ f r (qv, a), FREQA(qv), α) then
Correct← false

end
return Correct

Algorithm 16.6: ALERGIA.

Input: a sample S, α > 0
Output: an FFA A
Compute t0, threshold on the size of the multiset needed for the test to be be statistically
significant;
A ← FPTA(S) ;
RED ← {qλ} ;
BLUE ← {qa : a ∈ � ∩ PREF(S)} ;
while CHOOSE qb from BLUE such that FREQ(qb) ≥ t0 do

if ∃qr ∈ RED : ALERGIA-COMPATIBLE(A, qr , qb, α) then
A ← STOCHASTIC-MERGE(A, qr , qb)

else
RED ← RED ∪ {qb}

end
BLUE ← {qua : ua ∈ PREF(S) ∧ qu ∈ RED} \ RED

end
returnA

The quantities that are compared are:

F f r (q)

FREQ(q)
and

F f r (q ′)
FREQ(q ′)

and also for each symbol a in the alphabet �,

δ f r (q, a)

FREQ(q)
and

δ f r (q ′, a)

FREQ(q ′)
.
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Table 16.1. The data.

λ 490 abb 4 abab 2 aaaaa 1
a 128 baa 9 abba 2 aaaab 1
b 170 bab 4 abbb 1 aaaba 1
aa 31 bba 3 baaa 2 aabaa 1
ab 42 bbb 6 baab 2 aabab 1
ba 38 aaaa 2 baba 1 aabba 1
bb 14 aaab 2 babb 1 abbaa 1
aaa 8 aaba 3 bbaa 1 abbab 1
aab 10 aabb 2 bbab 1
aba 10 abaa 2 bbba 1

qλ| 1
2 qb| 2

3

a 1
4

b 1
4

b 1
9

a 2
9

Fig. 16.9. The target.

16.4.2 Running the algorithm

Running probabilistic automata learning algorithms in a clear and understandable way is a
difficult task: on one hand the targets should be meaningful and therefore contain cycles,
and on the other hand the samples should be large enough to offer statistical evidence for
the decisions that are taken by the algorithm. This results in a number of states in the FPTA
much too large to be represented graphically.

In order to explain the way ALERGIA works, we shall use a sample of 1000 strings
of (artificially) bounded length (just in order to make things simpler, but without loss of
generality). The sample is represented in Table 16.1. The target, supposed to have gen-
erated the sample, is represented in Figure 16.9. The starting point is the DFFA given in
Figure 16.10. State qλ is RED and states qa and qb are BLUE.

Parameter α is arbitrarily set to 0.05. We choose 30 as a value for the threshold t0. In
theory, the value can be computed: it corresponds to a value for which both errors (to make
a wrong merge or not to merge at all) can be bounded (see Section 16.9).

ALERGIA tries merging qa and qλ, which means comparing 490
1000 with 128

257 , 257
1000 with

64
257 , 253

1000 with 65
257 , . . .

For example,
∣∣ δ f r (qλ,a)

FREQAq (qλ)
− δ f r (qa,a)

FREQAqa
(qa)

∣∣ =
∣∣ 257

1000 − 64
257

∣∣ = 0.008 is less than
(√ 1

1000 +√
1

257

)√ 1
2 ln 2

α
which for α = 0.05 is about 0.1277.

The merge is accepted and the new automaton is depicted in Figure 16.11.
The algorithm tries merging qb (the only BLUE state at that stage) and qλ. This fails

after comparing
F f r (qλ)

FREQ(qλ)
= 661

1340 and
F f r (qb)

FREQ(qb)
= 222

339 (giving in the test 0.162 (for the
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1000 qλ : 490

qa : 128

qb : 170

a 257

b 253

qaa : 31

qab : 42

a 64

b 65

qba : 38

qbb : 14

a 57

b 26

qaaa : 8

qaab : 10

a 15

b 18

qaba : 10a 14

qabb : 4b 9

qbaa : 9

qbab : 4

a 13

b 6

qbba : 3

qbbb : 6

a 5

b 7

qa4 : 2

qa3b : 2

a 4

b 3

qa2ba : 3

qa2b2 : 2

a 5

b 3

qaba2 : 2

qabab : 2

a 2

b 2

qab2a : 2

qab3 : 1

a 4

b 1

qba3 : 2

qba2b : 2

a 2

b 2

qbaba : 1

qbab2 : 1

a 1

b 1

qb2a2 : 1

qb2ab : 1

a 1

b 1

qb3a : 1a 1

qa5 : 1

qa4b : 1

a 1

b 1
qa3ba : 1a 1

qa2ba2 : 1

qa2bab : 1

a 1

b 1
qa2b2a : 1

a 1

qab2a2 : 1

qab2ab : 1

a 1

b 1

Fig. 16.10. The full FPTA, with coloured states.

1000 qλ : 660

a 341

qb : 225
b 340

qba : 52

a 77

qbb : 20

b 38

qbaa : 12a 16

qbab : 7b 9

qbba : 6a 10

qbbb : 7b 8

qba3 : 2

qba2b : 2

a 2

b 2

qbaba : 1a 1

qbab2 : 1b 1

qb2a2 : 2a 2

qb2ab : 2b 2

qb3a : 1a 1

Fig. 16.11. After merging qa and qλ.
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1000 qλ : 660

a 341

qb : 225
b 340

qba : 52

a 77

qbb : 20

b 38

qbaa : 12a 16

qbab : 7b 9

qbba : 6a 10

qbbb : 7b 8

qba3 : 2

qba2b : 2

a 2

b 2

qbaba : 1a 1

qbab2 : 1b 1

qb2a2 : 2a 2

qb2ab : 2b 2

qb3a : 1a 1

Fig. 16.12. Promoting qb.

1000 qλ : 660

a 341

qb : 291
b 340

a 95

qbb : 29
b 49

qbba : 7a 11

qbbb : 8b 9

qb2a2 : 2a 2

qb2ab : 2b 2

qb3a : 1a 1

Fig. 16.13. After merging qba and qb.

1000 qλ : 698 qb : 302

a 354

b 351

a 96

b 49

Fig. 16.14. Merging qbb and qλ.

γ ) against 0.111). So state qb gets promoted; the current automaton is represented in
Figure 16.12.

The algorithm now tries merging qba and qλ. This fails when comparing 660
1341 with

52
77 . The difference between the two relative frequencies is too large, and when algorithm
ALERGIA-TEST is called (with, as before, a value for α of 0.05), the result is negative.

The algorithm now tries merging qba and qb. This merge is accepted, partly because
there is little information to tell us otherwise. The new automaton is depicted in
Figure 16.13.

We now try merging qbb and qλ. This is also accepted. The new automaton is depicted
in Figure 16.14.
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qλ| 1
2 qb| 2

3

a 1
4

b 1
4

b 1
9

a 2
9

(a) The target.

qλ| 698
1403 qb| 302

447

a 354
1403

b 351
1403

b 49
447

a 96
447

(b) The result.

Fig. 16.15. Comparing the target and the result.

Only two states are left. By using Algorithm DFFA_TO_DPFA (16.1) we obtain
the DPFA represented in Figure 16.15(b), which can be compared with the target
(Figure 16.15(a)). One should notice how little the bad merges have been avoided, in a
relatively simple case. This tends to show that the number of examples needed to run the
algorithm in reasonable conditions has to be much larger.

16.4.3 Why ALERGIA works

We do not intend to prove the properties of algorithm ALERGIA here. These can be
found (albeit for a more theoretical version of the algorithm) in different research papers.
Nevertheless we can state the following facts:

Proposition 16.4.1 Algorithm ALERGIA identifies any DPFA in the limit with probabil-
ity one and runs in time polynomial in ‖S‖.

The compatibility test is in fact much cheaper than the one for RPNI. No merges need
to be done before the test. Therefore this can be done through counting and in time lin-
ear with the size of the tree rooted in the BLUE node. This is the reason for which the
data-driven approach described in Section 14.5.2 (page 293) has been used with good
results.

Since this is done inside a double loop, the overall complexity is very excessively
bounded by a cubic polynomial. Users report that the practical complexity is linear.

Convergence is much more of a tricky matter. There are two issues here:

• The first is to identify the structure.
• The second is to identify the probabilities. This can be done through different techniques, such as

Algorithm 10.2 for Stern-Brocot trees (page 204).

There have been many variants of algorithm ALERGIA with modifications of:

• the order of the merges,
• the statistical test which is used,
• the way we deal with the uncertain states.
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16.5 Using distinguishing strings

A different test can be used provided an extra bias is added: given a DPFA A, two
states q and q ′ are said to be μ-distinguishable if there exists a string x such that∣∣PrA,q(x)− PrA,q ′(x)

∣∣ ≥ μ where PrA,q(x) is the probability of generating x by A
when taking q as the initial state. This is equivalent to saying

L∞(DA,q ,DA,q ′) ≥ μ

The chosen bias corresponds to believing that when things are different, this should be
so for explainable or visible reasons: at least one string should testify to why there are
two states instead of one. One may sometimes relax this condition in several ways, for
instance by asking this to be true only for states that themselves have a fair chance of being
reached.

When trying to detect this in an algorithm, it means that we decide upon a merge by
testing:

Does there exist in �� a string x such that∣∣PrA,q(x)− PrA,q ′(x)
∣∣ ≥ μ?

Notice that again it is an ‘optimistic’ argument: a decision of merging is taken when
there is nothing saying it is a bad idea to do so.

16.5.1 The algorithm

We describe here an algorithm we call DSAI (Distinguishing Strings Automata
Inference), of which several variants exist. The one we present here is simple, but in
order to obtain convergence results, one should be prepared to handle a number of extra
parameters.

The idea is, given a RED state qr and a BLUE state qb (which is visited a minimum
number of times), to compute L∞(DA,qr ,DA,qb ). If this quantity is less than μ

2 the two
states are compatible and are merged. A state that is not reached enough times is kept until
the end in order to avoid an accumulation of small errors.

In the version presented here, these less important states are just kept as a tree. For
obvious reasons, merging together all the states reached a number of times inferior to the
threshold may be a better strategy.

In general, computing L∞ between two deterministic DPFAs or FFAs is not simple.
But in this case the computation is between a DFFA and an FPTA. Let k be the number
of strings in the FPTA with root qb. Let us denote by Sb the set of all strings x such that
PrA,qb (x) �= 0. Note that k < |Sb| ≤ |S|. L∞(DA,qr ,DA,qb ) is either reached by a string
x in Sb, and there are only a finite number of such strings, or by one of the k + 1 most
probable strings for DA,qr . We denote this set by mps(Aqr , k + 1).
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Algorithm 16.7: DSAI-COMPATIBLE.

Input: an FFA A, two states q ∈ RED and q ′ ∈ BLUE, μ > 0
Output: a Boolean indicating if q and q ′ are compatible
for x ∈ �� : PrA,q ′(x) �= 0 do

if
∣∣PrA,q(x)− PrA,q ′(x)

∣∣ > μ
2 then return false

end
for each x in mps(Aqr , k + 1) do

if PrA,q ′(x) > μ
2 then return false

end
return true

Algorithm 16.8: DSAI.

Input: a sample S, μ > 0
Output: an FFA A
Compute t0, threshold on the size of the multiset needed for the test to be be statistically
significant;
A ← FPTA(S) ;
RED ← {qλ} ;
BLUE ← {qa : a ∈ PREF(S)} ;
while CHOOSE qb from BLUE such that FREQ(qb) ≥ t0 do

if ∃qr ∈ RED : DSAI-COMPATIBLE(A, qr , qb, μ) then
A ← STOCHASTIC-MERGE(A, qr , qb)

else
RED ← RED ∪ {qb}

end
BLUE ← {qua : ua ∈ PREF(S) ∧ qu ∈ RED} \ RED

end
return A

Given a DPFA A and an integer n, one can compute in polynomial time the set of the n
most probable strings in DA (see Exercise 5.4).

Therefore, in this case, since qb is a BLUE state, and therefore the root of a tree, DSAI-
COMPATIBLE computes this distance (L∞(DA,qr ,DA,qb )).

Algorithm DSAI (16.8) is structured similarly to ALERGIA.
The key idea is that on one hand, if two states are not to be merged, the distinguishing

string exists and will be seen, and, on the other hand, if the two states compared correspond
in fact to the same state in the target, then the μ bound is sufficiently big to avoid reaching
the wrong conclusion by ‘bad luck’.
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Table 16.2. The data.

λ 490 abb 4 abab 2 aaaaa 1
a 128 baa 9 abba 2 aaaab 1
b 170 bab 4 abbb 1 aaaba 1
aa 31 bba 3 baaa 2 aabaa 1
ab 42 bbb 6 baab 2 aabab 1
ba 38 aaaa 2 baba 1 aabba 1
bb 14 aaab 2 babb 1 abbaa 1
aaa 8 aaba 3 bbaa 1 abbab 1
aab 10 aabb 2 bbab 1
aba 10 abaa 2 bbba 1

1000 qλ : 490

qa : 128

qb : 170

a 257

b 253

qaa : 31

qab : 42

a 64

b 65

qba : 38

qbb : 14

a 57

b 26

qaaa : 8

qaab : 10

a 15

b 18

qaba : 10a 14

qabb : 4b 9

qbaa : 9

qbab : 4

a 13

b 6

qbba : 3

qbbb : 6

a 5

b 7

qa4 : 2

qa3b : 2

a 4

b 3

qa2ba : 3

qa2b2 : 2

a 5

b 3

qaba2 : 2

qabab : 2

a 2

b 2

qab2a : 2

qab3 : 1

a 4

b 1

qba3 : 2

qba2b : 2

a 2

b 2

qbaba : 1

qbab2 : 1

a 1

b 1

qb2a2 : 1

qb2ab : 1

a 1

b 1

qb3a : 1a 1

qa5 : 1

qa4b : 1

a 1

b 1
qa3ba : 1a 1

qa2ba2 : 1

qa2bab : 1

a 1

b 1
qa2b2a : 1

a 1

qab2a2 : 1

qab2ab : 1

a 1

b 1

Fig. 16.16. The FPTA, with coloured states.

16.5.2 Running the algorithm

We run the algorithm DSAI on the same sample as in Section 16.4.2. The sample, of size
1000, is recalled in Table 16.2, whereas the FPTA is recalled in Figure 16.16.
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1000 qλ : 660

a 341

qb : 225
b 340

qba : 52

a 77

qbb : 20

b 38

qbaa : 12a 16

qbab : 7b 9

qbba : 6a 10

qbbb : 7b 8

qba3 : 2

qba2b : 2

a 2

b 2

qbaba : 1a 1

qbab2 : 1b 1

qb2a2 : 2a 2

qb2ab : 2b 2

qb3a : 1a 1

Fig. 16.17. After merging qa and qλ.

The starting point is represented in Figure 16.16.
We set μ to 0.2 and the threshold has value t0 = 30. This means that each time the

difference between the two relative frequencies is less than μ/2, we are reasonably sure
that this is because the two probabilities are not further apart than μ, and therefore they are
identical.

Algorithm DSAI then tries merging qa and qλ. This corresponds to computing
L∞(DA,qλ ,DA,qa). The maximum value of |PrAqλ

(x)− PrAqa
(x)| is obtained for x = λ

and is 0.008. The merge is accepted.
The new automaton is depicted in Figure 16.17.
DSAI tries merging qb and qλ. But for string λ we have PrAqλ

(λ) = 660
1341 , PrAqb

(λ) =
225
340 and the difference is 0.170 which is more than μ

2 . State qb is therefore promoted.
The algorithm now tries merging qba and qλ. This fails because |PrAqλ

(λ) −
PrAqba

(λ)| = 0.675 − 0.492 >
μ
2 . But the possible merge between qba and qb is

accepted (the largest difference is again for string λ, with 0.014). The new DFFA is
represented in Figure 16.18. We now try merging qbb and qλ. This is accepted, since
L∞(DA,qλ ,DA,qbb) = |PrAqλ

(λ)− PrAqbb
(λ)| = 0.044.

The final automaton is shown in Figure 16.19 (DFFA on the left, DPFA on the right).
The result is exactly the same as that returned by ALERGIA. But, of course, this need

not be so in general.

16.5.3 Why it works

In the literature, a version of Algorithm DSAI, in which the merges are only tested if they
do not introduce cycles, is proved to have a number of features, of which some are positive
PAC learning properties. Their results do not extend to the general case where there is no
condition set on the topology of the automata.
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1000 qλ : 660

a 341

qb : 225
b 340

qba : 52

a 77

qbb : 20

b 38

qbaa : 12a 16

qbab : 7b 9

qbba : 6a 10

qbbb : 7b 8

qba3 : 2

qba2b : 2

a 2

b 2

qbaba : 1a 1

qbab2 : 1b 1

qb2a2 : 2a 2

qb2ab : 2b 2

qb3a : 1a 1

Fig. 16.18. After merging qba and qb.

1000 qλ : 698 qb : 302

a 354

b 351

a 96

b 49

(a) The DFFA.

qλ| 698
1403 qb| 302

447

a 354
1403

b 351
1403

b 49
447

a 96
447

(b) The DPFA.

Fig. 16.19. After merging qba and qλ.

Nevertheless, we do have the following result provided some small changes are made:

Proposition 16.5.1 Algorithm DSAI identifies any μ-distinguishable DPFA in the limit
with probability one and runs in polynomial time.

Proof If we fix the threshold, with the number of strings increasing, the tests are going
to return true for all but a finite number of values. Then, with techniques studied in earlier
sections, the probabilities can be identified instead of being estimated.

The complexity of the algorithm is clearly polynomial with the size of the sample.

16.6 Hardness results regarding ALERGIA and DSAI

16.6.1 A difficult target for ALERGIA and DSAI

Let us note two things concerning the approaches presented in Sections 16.4 and 16.5.
Limiting oneself to acyclic automata offers an important theoretical advantage. This allows
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one to effectively consider that the strings have been randomly and independently sampled
(which is a necessary condition for the statistical tests considered). On the other hand, in
the case of ALERGIA, from the moment a merge has introduced a cycle, the same string is
going to be used over and over. Intuitively this is probably not a bad thing, as the example
is going to reinforce, if anything, the next set of tests.

In both cases convergence is achieved, but in the second case identification is met from
a polynomial number of examples. Yet the μ parameter is important. It is then not too
difficult to find a class of languages for which everything will fail. This family is indexed
by an integer n, and consists of languages generated by the (indexed) probabilistic grammar
Gn which generates:

• if |u| < n PrG(u) = 0,
• if |u| = n and m ∈ a�∗ PrG(u) = 2−n ,
• if |u| = n and m ∈ b�∗ PrG(u) = 0,
• if |u| = n + 1 and m ∈ a�∗ PrG(u) = 0,
• if |u| = n + 1 and u ∈ b�∗ PrG(u) = 2−n+1,
• if |u| > n + 1 and u ∈ �∗ PrG(u) = 0.

We represent in Figure 16.20 the automaton corresponding to the case where n = 5.
States 1 and 2 are not μ-distinguishable, or better said are only so for values of μ that

increase exponentially with n, yet the different languages are very different. So an expo-
nential number of examples will be needed for identification (of the structure) to take
place.

16.6.2 The equivalence problem revisited

Finally let us attempt to generalise here both approaches in a common way, by using
the intersection with regular sets. When studying algorithms ALERGIA and DSAI, the
outside structure is similar, and only the compatibility test changes. Each time a state
merging algorithm takes a decision concerning compatibility of two states q and q ′,
we are attempting to compare the distributions when using q and q ′ as initial states.
In one case (ALERGIA), we do this by testing prefixes, and in the case of Algorithm
DSAI we are testing the significant strings. In other words, we are selecting a lan-
guage L , and computing the value

∣∣PrA,q(L)− PrA,q ′(L)
∣∣. This value is compared

with some other value depending on the evidence, typically by using the Hoeffding
bounds.

qλ qb qa qa2 qa3 qa4 : 1
b|0.5

a|0.5

a,b|0.5 a,b|0.5 a,b|0.5a,b|0.5 a,b|0.5

Fig. 16.20. A probabilistic automaton that is hard to learn, for n = 5.
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In the case of ALERGIA, L is either just one string or a set u��. In the case of DSAI,
L is just one string.

A generalised test therefore consists of:

(i) Select some regular language L

(ii) Using the Hoeffding bounds, compare
∣∣PrA,q (L)− PrA,q ′(L)

∣∣ with
(√ 1

FREQ(q) +√
1

FREQ(q ′)
) ·√ 1

2 ln 2
α .

16.7 MDI and other heuristics

Algorithms ALERGIA and DSAI decided upon merging (and thus generalisation) through
a local test: substring frequencies are compared and if it is not unreasonable to merge,
then merging takes place. A more pragmatic point of view could be to merge when-
ever doing so is going to give us an advantage. The goal is of course to reduce the size
of the hypothesis while keeping the predictive qualities of the hypothesis (at least with
respect to the learning sample) as good as possible. For this we can use the likelihood (see
Section 5.5.5). The goal is to obtain a good balance between the gain in size and the loss
in perplexity.

Attempting to find a good compromise between these two values is the main idea of
algorithm MDI (Minimum Divergence Inference).

16.7.1 The scoring

These ideas follow those presented in the MDL-inspired algorithms (see Section 14.4), so
we need to define a score for an automaton that would somehow reflect the balance we
have described. This can be done with respect to the learning sample by computing the
perplexity of the sample (see Section 5.5.5, page 110) and dividing it by the size of the
automaton, when counting the number of states.

score(S,A) =
∑
w∈S cntS(w) log PrAw

‖A‖
We defined and studied these measures in Section 5.5.5. Optimising the denominator

will lead to merging, whereas the optimum perplexity is obtained by the FPTA(S).

16.7.2 The algorithm

The structure of the algorithm is similar to that used by the algorithms presented in the
previous sections, but we modify the compatibility test. Algorithm MDI (16.10) uses the
function MDI-COMPATIBLE (Algorithm 16.9).
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Algorithm 16.9: MDI-COMPATIBLE.

Input: an FFA A, two states q and q ′, S, α > 0
Output: a Boolean indicating if q and q ′ are compatible
B ←STOCHASTIC-MERGE(A, q, q ′);
return

(
score(S,B) < α

)

Algorithm 16.10: MDI.

Input: a sample S, α > 0
Output: an FFA A
Compute t0, the threshold on the size of the multiset needed for the test to be be
statistically significant;
A ← FPTA(S) ;
RED ← {qλ} ;
BLUE ← {qa : a ∈ PREF(S)} ;
current_score← score(S,FPTA(S));
while CHOOSE qb from BLUE such that FREQ(qb) ≥ t0 do

if ∃qr ∈ RED : MDI-COMPATIBLE(qr , qb,A, S, α) then
A ← STOCHASTIC-MERGE(A, qr , qb)

else
RED ← RED ∪ {qb}

end
BLUE ← {qua : ua ∈ PREF(S) ∧ qu ∈ RED} \ RED

end
return A

The key difference is that the recursive merges are to be made inside Algorithm MDI-
COMPATIBLE (16.9) and before the new score is computed instead of in the main
algorithm.

Several variants of MDI can be tried: one may prefer trying several possible merges
and keeping the best, or using a parameter α that can change in time and depend on
the quantity of information available. Of course, the score function can also be modified.
Different things that need finer tuning: instead of taking the sum of the logarithms of the
probabilities, one may want to take the perplexity directly.

A difficult question is that of setting the tuning parameter (α): if set too high, merges
will take place early, which will perhaps include a wrong merge, prohibiting later neces-
sary merges, and the result can be bad. On the contrary, a small α will block all merges,
including those that should take place, at least until there is little data left. This is the safe
option, which leads in most cases to very little generalisation.
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16.7.3 Why it works

MDI is known to work in practice, and it tends to work better than the algorithms we
described earlier. On the other hand, no convergence property has been proved.

One of the key features of MDI is that the computation of the new scores (after a
particular merge) can be done incrementally, which allows complexity to be kept low.

16.8 Exercises

16.1 Consider the FFA represented in Figure 16.21. Build two samples from which this
FFA can be obtained.

16.2 Suppose we have a sample containing the string a1000 and the strings b, bb and
bbb each appearing 100 times. Build the FPTA corresponding to this sample
and merge state qa with state qλ. What has happened? How can we avoid this
problem?

16.3 Compute the number of examples needed in a Hoeffding test to allow for an error ε
of 0.05 and δ = 0.01. What happens if you wish to decrease ε to 0.01?

16.4 Construct the FFA corresponding to a 3-state automaton ({q1, q2, q3}) with sample
{aab,aba,bbb(3)} and for the two following sets of constraints:
C1 = {(q1,a, q2), (q2,a, q3), (q3,a, q1), (q1,b, q2), (q2,b, q3), (q3,a, q3)}
C2 = {(q1,a, q2), (q1,a, q3), (q2,a, q2), (q3,b, q3), (q2,a, q1), (q3,b, q1)}

16.9 Conclusions of the chapter and further reading

16.9.1 Bibliographical background

The first work in learning probabilistic grammars is due to Jim Horning (Horning, 1969),
who put up the setting and showed that with enumeration algorithms, identification with
probability one was possible. Among the other early papers, probabilistic automata and
their theory are described by Azaria Paz in his book (Paz, 1971). Dana Angluin made an
important (even if unpublished) contribution in her study on identification with probability
one (Angluin, 1988). In the mid-nineties a variety of results were shown: Andreas Stol-
cke (Stolcke, 1994) proposed a method not only of estimating the probabilities but also
of learning the structure of hidden Markov models. Naoki Abe and Manfred Warmuth
exposed the hardness of learning or approximating distributions (Abe & Warmuth, 1992);
the results are combinatorial: given a set of constraints, estimating probabilities is a hard
problem.

2 qλ : 0 qa : 3
a 2

a 3

Fig. 16.21. What is the sample?
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The DFFAs introduced in this chapter are inspired by the multiplicity automata that have
been used in grammatical inference (Beimel et al., 2000, Bergadano & Varricchio, 1996).
Only the semantics are different.

The ideas from Section 16.4 come from (Carrasco & Oncina, 1994b): ALERGIA was
invented by Rafael Carrasco and Jose Oncina. They proved the convergence of a sim-
pler version of that algorithm, called RLIPS (Carrasco & Oncina, 1999). An extension of
ALERGIA by Colin de la Higuera and Franck Thollard not only identifies the structure,
but also the actual probabilities (de la Higuera & Thollard, 2000).

Extensions of ALERGIA to the tree case was done by the same authors in (Carrasco,
Oncina & Calera-Rubio, 2001). Another extension to deal with the richer class of
probabilistic deterministic linear languages can be found in (de la Higuera & Oncina,
2003). The same authors propose a study of the learnability of probabilistic languages
for a variety of queries in (de la Higuera & Oncina, 2004).

Among the applications of algorithms that learn DPFAs, one can find text and docu-
ment analysis (Young-Lai & Tompa, 2000), and web page classification (Goan, Benson &
Etzioni, 1996).

The use of distinguishing strings (Section 16.5) was introduced by Dana Ron et al.
(Ron, Singer & Tishby, 1995). Another specificity of this algorithm (and we have not
followed this here) is to learn only acyclic automata. In fact the reason for this lies more
in the necessity of a proof. In order to do this, two states qu and qv will be immediately
declared incompatible if |u| �= |v|. There have been several results following this paper.
Improvements in (Guttman, 2006, Palmer & Goldberg, 2005, Thollard & Clark, 2004)
concerned the different parameters that are needed in order to obtain PAC type results, but
also on the bounds and the fact that acyclic conditions can be dropped. An incremental
version was proposed in (Gavaldà et al., 2006).

Algorithm MDI (Section 16.7) was invented by Franck Thollard et al. and used since
then on a variety of tasks, with specific interest in language modelling (Thollard, 2001,
Thollard & Dupont, 1999, Thollard, Dupont & de la Higuera, 2000).

16.9.2 Some alternative lines of research

A different approach is that of considering that the strings do not come from a set but
from a sequence (each string can only be generated once). This has been analysed in (de la
Higuera, 1998).

There are of course alternative ways to represent distributions over strings: recurrent
neural networks (Carrasco, Forcada & Santamaria, 1996) have been tried, but com-
parisons with the direct grammatical-based approaches have not been made on large
datasets.

We have concentrated here on deterministic automata, but there have been several
authors attempting to learn non-deterministic probabilistic finite automata.

A first step has consisted of studying the class of the probabilistic residual finite state
automata, introduced by Yann Esposito et al. (Esposito et al., 2002), and finding the



16.9 Conclusions of the chapter and further reading 355

probabilistic counterparts to the residual finite state automata introduced by François Denis
et al. (Denis, Lemay & Terlutte, 2000, 2001).

The richness of the class of the probabilistic finite automata has led to the introduction
by François Denis et al. (Denis, Esposito & Habrard, 2006, Habrard, Denis & Esposito,
2006) of the innovative algorithm DEES that learns a multiplicity automaton (the weights
can be negative) by iteratively solving equations on the residuals. Conversion to a PFA is
possible.

Christopher Kermorvant (Kermorvant, de la Higuera & Dupont, 2004) learns DPFAs
with additional knowledge. On trees (Rico-Juan, Calera-Rubio & Carrasco, 2000) Rico
et al. learn k-testable trees and then compute probabilities.

Omri Guttman’s thesis (Guttman, 2006, Guttman, Vishwanathan & Williamson, 2005)
and published work add a geometric point of view to the hardness of learning PFAs.

We left the hard question of smoothing untouched in the discussion. The idea is that
after using any of the algorithms presented within this chapter, there will usually be strings
whose probability, when parsing with the resulting PFA, is going to be 0. This is source
of all kinds of problems in practice. Pierre Dupont and Juan-Carlos Amengual (Dupont &
Amengual, 2000), and also Franck Thollard (Thollard, 2001), studied this difficult question
to which there still is a lot of room for answers.

16.9.3 Open problems and possible new lines of research

There are a number of directions one can follow and problems to be solved in this field:

(i) Fuzzy automata have sometimes also been called probabilistic automata (Rabin, 1966). In these,
what is computed is not the weight of a string in the language but the probability that a string
belongs to a language. The probability is thus that of being recognised, not of being generated.
If there have been some (a few) attempts to learn such objects, there have not been (to our
knowledge) any systematic results here.

(ii) A central question in this section has been that of taking the decision to merge, or not, two
states. This has depended on the idea the learner has that the two states are equivalent, an idea
based on the information it has at that moment, i.e. the fact that some earlier merges have been
done and the samples. But this in turn leads to a natural question: given two samples S and S′,

qλ|0.5

qa|0.3

qb|0.4

qaa|0.9

a

b

a

b

a
b

Fig. 16.22. Graphical representation of a deterministic MDP.



356 Learning probabilistic finite automata

have they been produced by the same automaton? An answer to this question (obviously taking
specific bias) is necessary in order to better understand what is feasible and what is not. Work
in the statistical community deserves to be looked into for this reason.

(iii) Learning probabilistic context-free grammars is an open question. There were some early stud-
ies (Horning, 1969, Maryanski, 1974), some heuristics, often relying on constructing a grammar
and then estimating the probabilities using the INSIDE-OUTSIDE algorithm (see Section 17.5,
page 367) but no ‘usable’ algorithm exists.

(iv) Markov decision processes (MDPs) are used in reinforcement learning. They allow us to use
finite state machines to manipulate probabilities in an active learning setting.

Definitions A POMPD (partially observable Markov decision process) is defined by a set of
states Q, an input alphabet �, an initial state qλ and two functions:

• A probabilistic transition function δ : Q × � × Q → R+ with ∀q ∈ Q,∑
q∈Q,a∈� δ(q, a, q ′) = 1.

• A probabilistic reward function r : Q → R.

A POMPD is deterministic if the function δ is deterministic, i.e. if ∀q ∈ Q, ∀a ∈ �, ∃q ′ ∈
Q such that δ(q, a, q ′) = 1. See Figure 16.22 for an example of a MDP. Notice that the
rewards are also used as a goal function. POMPDs are used to model a situation: the ‘learning’
problem is then to construct the best strategy, given a POMPD. The other question, of finding
the POMPD from some data (perhaps in a setting close to the one used in the introduction, page
6) has so far been left untouched.



17

Estimating the probabilities

We cannot seriously propose that a child learns the values of 109 parameters in
a childhood lasting only 108 seconds.

George A. Miller and Noam Chomsky (Miller & Chomsky, 1963).

Par exemple, il arrive qu’après les douze chiffres du milieu sortent les douze
derniers chiffres ; deux fois, mettons, le coup porte sur ces douze derniers chiffres
et passe aux douze premiers. Une fois qu’il est tombé sur les douze premiers, il
revient sur les douze du milieu ; trois, quatre fois de suite, les chiffres du milieu
sortent, puis ce sont de nouveau les douze derniers ; après deux tours, on retombe
sur les premiers, qui ne sortent qu’une fois, et les chiffres du milieu sortent trois
fois de suite ; cela continue ainsi pendant une heure et demie ou deux heures.
Un, trois et deux ; un, trois et deux. C’est très curieux.

Fedor Dostoïevski, Le joueur.

Let us suppose we are given a sample and an automaton. By automaton we mean the struc-
ture or at least some constraints on the number of states and some restrictive syntactical
conditions on the transitions we are allowed to use. We are interested in finding a system-
atic way of converting the automaton into a probabilistic generator such as those we studied
in Chapter 5. It would also be interesting to be able to do something similar for grammars
instead of automata. Moreover we would like the probabilities of the automaton or of the
grammar to be best suited to that sample, which, we hope, is supposed to be representative
because it is generated randomly.

So the problem is not really any longer about finding the best automaton or grammar
for a given sample, but about tuning the numerical parameters in the best way so that the
chosen grammar or automaton works best.

Let us denote by G the set of all probabilistic machines that fit our set of syntac-
tic constraints. Typically G contains automata that all share the same set of transitions
but differ on the numerical parameters. We are searching, in G, for the best suited
grammar.

The first question is: ‘What does best suited mean?’ If we suppose that the sample (S)
has been drawn following the distribution we wish to model, then we might like to have
the automaton or grammar that maximises the probability of drawing this sample. This

357
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corresponds to finding the model with maximum likelihood. The best parameters, for this
criterion, are those which maximise the probability that the sample S is indeed generated
by the probabilistic grammar.

We may therefore consider that the problem is about finding the grammar in G such that
PrG(S) is maximum. In other words:

argmaxG∈G{PrG(S)} (17.1)

But the problem with Expression 17.1 is that the probability of a sample is the sum of the
probabilities of the strings that belong to it. Since each string in the sample is independently
drawn, this would be a very incorrect way of measuring the probability of generating this
sample exactly (see Exercises 17.4 and 17.5 for example): if we take the sum, we will be
tempted to just provide a set of values such that the most frequent string receives the entire
mass of probabilities.

Therefore a more correct expression is:

argmaxG∈G{
∏
x∈S

PrG(x)
cntS(x)} (17.2)

where cntS(x) denotes the number of occurrences of string x in multiset S.
There is an implicit bias in the above: we are supposing no prior regarding the proba-

bilities. Of course, there can be applications where the probabilities are bounded or to be
chosen inside a finite set, in which case the problem should be solved in a different way.

17.1 The deterministic case

A first case is easy to settle straight away: if we are given a DFA structure over which we
are to estimate the probabilities and the language is therefore supposed to be generated by
a DPFA, then each string in the sample has a unique parse that can be used to compute
the probability of each transition or derivation rule by counting. For that, we just use the
underlying DFA to parse the examples, count how many times each transition is used (by
frequencies) and transform this deterministic FFA into a DPFA. This process was described
in Section 16.2. The same arguments can be used if the automaton or the grammar is
unambiguous, that is, if each string in the sample can be associated with a unique parse,
but with more care.

Let us suppose that each string in the sample admits a unique parse. Precisely, if we are
given a sample S and denote (as in Section 5.4.2, page 103) by |S|c the number of times
condition c is met when parsing S, we will use the following notations:

• |S|(�q) =
∑

x∈S cntS(x) · |{u ∈ �� : ∃v ∈ �� uv = x ∧ δ(qλ, u) = q}|: the number of times
state q is reached.

• |S|(↓q) =
∑

x∈S: δ(qλ,x)=q cntS(x): the number of times state q is used as a final state.
• |S|(↪→q,a,q ′) =

∑
x∈S cntS(x) · |{u ∈ �� : ∃v ∈ �� ∃a ∈ � uav = x ∧ δ(qλ, u) = q ∧ δ(q, a) =

q ′}|: the number of times transition (q, a, q ′) is used by the sample.
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Note that in each case, the number of times a transition or a state is used can actually be
a larger value than the number of strings in the sample. Each of the above values can then
be computed simply by counting. We can directly compute:

PrA(q, a, q ′) = |S|(↪→q,a,q ′)
|S|(�q)

(17.3)

and also

FPA(q) =
|S|(↓q)

|S|(�q)
(17.4)

So we build a DPFA from this by converting the relative frequencies. It can be shown
(in the case of a DPFA, an unambiguous PFA or a PCFG) that the use of Equations 17.3
and 17.4 allow us to reach the DPFA with maximum likelihood.

Example 17.1.1 We depict in Figure 17.1 a sample (Figure 17.1(a), each string appears
with its frequency in the sample) with the deterministic structure, or set of constraints the
sample is to be parsed on (Figure 17.1(b)). Using Equations 17.3 and 17.4 the associated
FFA is obtained (Figure 17.1(c)) and the resulting DPFA (Figure 17.1(d)) can easily be
obtained.

λ 20
a 20
b 10
aa 15
abb 10
baa 15
bab 10

(a) Sample.

qλ qa

qb qaa

a

b a

b

a

b

(b) DFA structure.

100 qλ| 20 qa| 35

qb| 30 qaa| 15

a 60

b 45 a 15

b 10

a 25

b 10

(c) A deterministic FFA.

1 qλ| 4
25 qa| 7

12

qb| 6
13 qaa| 1

a 12
25

b 9
25 a 1

4

b 1
6

a 5
13

b 2
13

(d) The corresponding DPFA.

Fig. 17.1. Obtaining a DPFA from a sample and a DFA.
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17.2 Towards non-determinism

Let us now consider a slightly more difficult case. Suppose for the same sample used
in Example 17.1.1 we want to find the set of probabilities matching a non-deterministic
automaton, or a context-free grammar. Clearly, the simple counting arguments don’t work.

In theory, in an NFA we can put probabilities on all the transitions. But the knowledge
we may have about the structure may again consist of imposing the constraint that some
edges have a null value.

Definition 17.2.1 A (PFA) constraint is a NFA A = 〈�, Q, I,FA,FR, δN 〉. We say that
the PFA B = 〈�, Q, IP,FP, δP〉 respects the constraint A ifdef ∀q, q ′ ∈ Q, ∀a ∈ �,

• IP(q) > 0 =⇒ q ∈ I,
• FP(q) > 0 =⇒ q ∈ FA,
• δP(q, a, q ′) > 0 =⇒ (q, a, q ′) ∈ δN .

One can notice that the set FR pays no part here as we are dealing with positive examples
only.

Example 17.2.1 In Figure 17.2(b) a PFA constraint is represented. The PFA from
Figure 17.3(a) respects the constraint (17.2(b)), whereas the right hand side PFA (17.3(b))
does not.

Suppose the sample is represented on the left (Figure 17.2(a)). Then clearly string baa
admits three different parses.

The problem with non-determinism or ambiguity is that we may not be able to associate
a path in the automaton to a string in the sample. Therefore, it is no longer just about
counting. One should notice the difference with parsing: when we parse, all the paths are
counted to sum up and give the probability of a string, whereas when the string is generated
only one particular path has been used. So we cannot attribute the weight of the parse to any
particular transition or rule since we only have access to the information that the string has
been generated, and not how it has been generated. The problem is therefore much harder.

λ 20
a 20
b 10
aa 15
abb 10
baa 15
bab 10

(a) Sample.

q1 q2

q3

a

a,b a,b

a,b

a

(b) Constraint.

Fig. 17.2. A context NFA for a given sample.
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1 q1|0 q2|0.5

q3|0.2

a 0.2

b 0.8 a 0.3

a 0.2

b 0.3

a 0.5

(a) A compatible PFA.

1 q1|0.3 q2|0.5

q3|0.2

a 0.2

a 0.5 b 0.3

a 0.5

a 0.2

b 0.3

(b) An incompatible PFA.

Fig. 17.3. Two PFAs for constraint in Figure 17.2(b).

17.3 The EM algorithm

So we now suppose that the underlying structure is ambiguous (some strings can have
various possible generations). Given information about which derivation has been used, the
computation would be easy, but we do not have access to that information. In fact, inferring
this information would work just as well to solve our problem, since we could then return
to the previous method, and convert the FFA into a PFA (or deal with probabilistic context-
free grammars).

The general method used to infer the weights is called expectation maximisation (EM).
The goal is to optimise the maximum likelihood (ML):

argmaxG∈G
∏
x∈S

{PrG(x)
cntS(x)}

where G is the set of all grammars consistent with the given constraints.
The idea is to start with an initial set of weights, and use these with the sample S to

update the weights of the rules by using, instead of the strings, random variables associated
with each string and with each possible parse.

To be as general as possible we will say that a string x has n different parses or
explanations ex,1, . . . , ex,n and call Explanations(x) the set {ex,1, . . . , ex,n}.

An explanation will be a path in a PFA or a derivation in a context-free grammar. We
associate with each explanation ex,i the random variable zx,i indicating whether the expla-
nation ex,i was followed or not. The expected value of zx,i given a current grammar G can
be computed as follows:

E[zx,i ] = Pr(zx,i = 1)

= Pr(ex,i is the real explanation)

= Pr(ex,i |G)∑
ex, j∈Explanations(x) Pr(ex, j |G)
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Therefore, if we can generate all the possible explanations, the equation above can be
used to produce estimated counts. These can be used to update the different probability
weights used in the grammar. This leads to iterating:

• the expectation step, consisting of using the weights to estimate the counts,
• the maximisation step, consisting of using the counts to produce new weights.

17.3.1 General remarks

Iterating the expectation step and the maximisation step is guaranteed to lead to a local
maximum (or saddle point) in the likelihood surface.

But, both for non-deterministic automata and for context-free grammars, the number of
possible explanations can be exponential with the length of the string; therefore, generating
the different explanations is far too expensive. A dynamic programming technique allows
us to avoid this generation and to compute the parameters, and therefore to implement the
EM algorithm. In the first case this is known as the BAUM-WELCH algorithm; in the
second the algorithm is called inside-outside.

Notice that the expected counts have to be initialised to some arbitrary value. And
in this sort of heuristic problem, the initialisation value is in fact an important question
which we will have to return to later. Since the guarantee is only that a local maximum is
reached, heuristics might allow us to be able to escape the local maximum, or hope to visit
alternative ones.

There are a variety of heuristic approaches for escaping a local maximum such as using,
for example, several different random initial estimates, or applying simulated annealing.

17.4 The Baum-Welch algorithm

The BAUM-WELCH algorithm uses the EM computations and deals with probabilis-
tic finite state machines. Let A be the constraint. Let S be a finite sample of training
strings assumed to be drawn from a regular distribution D. The problem is to estimate
the probabilistic parameters IP, δP and FP of A in such a way that DA approaches Ŝ.

The expectation step can now be done as follows in this context. Let x =
a1 · · · ai · · · a|x |. We estimate the count ĉx (↪→ q, ai , q ′) as

Pr(q|a1 · · · ai−1) · δP(q, ai , q ′) · PrAq′ (ai+1 · · · a|x |)∑
s∈Q
s′∈Q

Pr(s|a1 · · · ai−1) · δP(s, ai , s′) · PrAs′ (ai+1 · · · a|x |)
(17.5)

In the same way, we estimate ĉx (↓ q):

Pr(q|a1 · · · an) · δP(q)∑
s∈Q Pr(s|a1 · · · an) · δP(s) (17.6)
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Note:

• Pr(q|a1 · · · ai−1) denotes the probability of being in state q after reading a1 · · · ai−1. This is also
called the forward probability and is computed by the FORWARD algorithm (Algorithm 5.2, page
91).

• PrAq′ (ai+1 · · · a|x |) is the probability, of computing string ai+1 · · · a|x | when starting from state

q ′. This is known as the backward probability, which is computed by the BACKWARD algorithm
(Algorithm 5.4, page 92).

This has to be done for each symbol ai in each string in S. The number of occurrences
of each string in the sample (which is a multiset!) also has to be taken into account.

17.4.1 The algorithm

The computations can be combined into the BAUM-WELCH algorithm. This algorithm
iteratively runs the expectation phase (17.1) and the maximisation phase (17.2). In the
algorithms, we have chosen to mix the algorithmic tables with the notations we have been
using. We have also supposed that the initial values correspond to the constraints: a value
equal to 0 enforces the absence of the transition, or the fact that the state cannot be initial or
final. This may not be what is wanted, in which case a slightly modified (but more complex)
algorithm should be designed. Extra care should in any case be taken when attempting to
implement it.

Initially, the PFA A has to respect the imposed constraints. Dynamic programming is
used in order to compute the different possible paths.

The actual convergence of the algorithm can be to a local maximum, which has no
reason to be close to the optimum. Only by trying out several initial values for the different
parameters can we hope to better the results, but theory tells us that there exist cases where
only luck with the initial choices will allow us to obtain a correct estimation.

The time and space complexities of the BAUM-WELCH algorithm are respectively
O(| Q | ·B ·∑x∈S | x |) and O(| Q | ·maxx∈S | x |), where B is the average number of
transitions per state (branching factor) of A.

There is a weak convergence result: it can be shown that, if the distribution is generated
by some PFA A with the same structural component as the one we are using (meaning that
if the constraints are correct, then the BAUM-WELCH algorithm is guaranteed to return a
distribution D which approaches DA as the size of the sample grows to infinity).

On the other hand (see Exercise 17.6) if the constraints are bad, no parameter setting
will allow us to obtain a good estimation.

17.4.2 An example run

We give a small run of the first two steps of the BAUM-WELCH algorithm in the case of
a very simple automaton.
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Algorithm 17.1: Algorithm BAUM-WELCH (expectation step).

Data: a PFA A, a sample S
Result: The different counts ĉS(↪→ q, a, q ′), ĉS(� q) and ĉS(↓ q)
for q ∈ Q do

ĉS(↓ q)← 0;
ĉS(� q)← 0;
for q ′ ∈ Q do

for a ∈ � do ĉS(↪→ q, a, q ′)← 0;
end

end
for x = a1a2 · · · an ∈ support(S) do

Nbocc← cntS(x);
for q ∈ Q do /* Computation of BACKWARD and FORWARD */

F[0][q] ← IP(q);
B[n][q] ← FP(q);
for i ∈ [n] do

F[i][q] ← 0;
B[n − i][q] ← 0;
for q ′ ∈ Q do F[i][q] ←F[i][q]+F[i − 1][q ′] · δP(q ′, ai , q);
B[n − i][q] ←B[n − i][q]+B[n − i + 1][q ′] · δP(q, an−i+1, q ′)

end
end
Total← 0; /* Total corresponds to PrA(x) */
for q ∈ Q do Total← Total+F[n][q] · FP(q);
for i ∈ [n] do

for q ∈ Q do
for q ′ ∈ Q do

Val ← Nbocc · F[i−1][q]·δP(q,ai ,q ′)·B[i][q ′]
Total ;

ĉS(↪→ q, ai , q ′)← ĉS(↪→ q, ai , q ′)+ Val;
ĉS(� q ′)← ĉS(� q ′)+ Val

end
end

end
for q ∈ Q do

ĉx (↓ q)← ĉx (↓ q)+ Nbocc · F[n][q]·FP(q)
Total ;

ĉS(� q)← ĉS(� q)+ Nbocc · B[0][q]·IP(q)
Total

end
end
return(ĉS(↪→), ĉS(↓), ĉS(�))
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Algorithm 17.2: Algorithm BAUM-WELCH (maximisation step).

Data: a PFA A, the estimated counts ĉS(↪→ q, a, q ′), ĉS(� q) and ĉS(↓ q)
Result: PFA A updated.
for q ∈ Q do /* Compute in Val the number of times we enter a
state during parsing */

Val[q] ← 0
end
for q ∈ Q do

FP(q)← ĉS(↓q)
ĉS(�q) ;

for a ∈ � do
for q ′ ∈ Q do

δP(q, a, q ′)← ĉS(↪→q,a,q ′)
ĉS(�q) ;

Val[q ′] ← Val[q ′] + ĉS(↪→ q, a, q ′)
end

end
end

for q ∈ Q do IP(q)← ĉS(�q)−Val[q]
ĉS(�q) ;

return A

In this example, to keep things visible, we have a one-letter alphabet, and just one initial
state. Suppose we have a (very small) learning sample S = {(λ, 2), (a, 3), (aa, 1)}. Sup-
pose now that the constraints are that the structure is described by the graph represented in
Figure 17.4(a). We use as an initialisation the weights given in Figure 17.4(b).

We compute separately the BACKWARD and FORWARD tables (Table 17.1). Then the
estimated counts are recomputed (Table 17.2). In each case, the number of occurrences of
each string in the sample is used.

The values of the estimated counts for each transition and state are as follows:

FREQ(q1) = ĉS(↪→ q1,a, q1)+ ĉS(↪→ q1,a, q2)+ ĉS(↓ q1) = 924

95

q1 q2

a

a

a

(a) The structure.

1 q1| 1
3 q2| 1

2

a 1
3

a 1
3

a 1
2

(b) Initialisation.

Fig. 17.4. An example structure and initialisation for BAUM-WELCH.
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Table 17.1. FORWARD and BACKWARD computations.

x cntS(x) i B[|x | − i][q1] B[|x | − i][q2] F[i][q1] F[i][q2] Pr(x)

λ 2 0 1
3

1
2 1 0 1

3

a 3 0 1
3

1
2 1 0

1 5
18

1
4

1
3

1
3

5
18

aa 1 0 1
3

1
2 1 0

1 5
18

1
4

1
3

1
3

2 19
108

1
8

1
9

5
18

19
108

Table 17.2. The estimated counts.

Rule λ + a + aa

ĉx (↪→ q1,a, q1) = 2
5 + 14

19 = 354
95

ĉx (↪→ q1,a, q2) = 3
5 + 15

19 = 246
95

ĉx (↪→ q2,a, q2) = 9
19 = 9

19

ĉx (↓ q1) = 1 + 2
5 + 4

19 = 324
95

ĉx (↓ q2) = 3
5 + 15

19 = 246
95

FREQ(q2) = c↪→q2,a,q2 + c↓q2 = 291

95

FP(q1) = 324

95
/

924

95
= 0.351

δP(q1,a, q1) = 354

95
/

924

95
= 0.383

δP(q1,a, q2) = 246

95
/

924

95
= 0.266

FP(q2) = = 246

95
/

291

95
= 0.845

δP(q2,a, q2) = 9

19
/

291

95
= 0.155

A new PFA (Figure 17.5) can be built and compared with the original one. The algorithm
has not converged yet. Several other iterations are needed.
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q1| 324
924 q2| 246

291

a 354
924

a 246
924

a 45
291

(a) The new PFA (fractions).

q1|0.351 q2|0.845

a 0.383

a 0.266

a 0.155

(b) The new PFA (floats).

Fig. 17.5. An example structure and initialisation for BAUM-WELCH.

17.5 The INSIDE-OUTSIDE algorithm

The EM approach has also been adapted to estimate the probabilities of a context-free
grammar. This is called the INSIDE-OUTSIDE algorithm.

For a string x and a non-terminal N , let xi, j be the substring between positions i and j .
Let Pr(xi, j |N ) indicate the probability that N derives into xi, j . We define:

• the INSIDE probability βN (i, j) = Pr(xi, j | N ),
• the OUTSIDE probability αN (i, j) = Pr(x1,i−1 N x j+1,|x | | N1).

The INSIDE probability βN (i, j) is the probability for non-terminal N to derive string
xi, j , whereas the OUTSIDE probability is the probability for string x1,i−1 N x j+1,|x | to be
derived from the start symbol. We represent the situation by Figure 17.6.

The expectation and maximisation steps are implemented as follows (for a rule N →
N1 N2):

ĉx (N → N1 N2|x) =
j=|x |∑
j=2

i= j−1∑
i=1

k= j−1∑
k=i

βN1(i, k)βN2(k + 1, j)αN (i, j)Pr(N → N1 N2)

N

N1

a1 ai−1 a j+1 an

Probability is outside

Probability is inside

N

ai a j

Fig. 17.6. INSIDE and OUTSIDE.
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q1

q2

q3

a

b

Fig. 17.7. A set of constraints represented as an automaton.

Now the estimation for each x ∈ S of the new probability corresponding to the rule
N → N1 N2 is as follows:∑ j=|x |

j=1

∑i= j−1
i=1

∑k= j
k=i βN1(i, k)βN2(k + 1, j)αN (i, j)∑

i< j βN (i, j)αN (i, j)

Evaluating this equation requires time in O(n3), to which must be added the time needed
for computing values of α and β. Total runtime is again cubic.

17.6 Exercises

17.1 Write the algorithm which computes |S|(�q), for a given DPFA.
17.2 Write the algorithm which computes |S|(↓q), for a given DPFA.
17.3 Write the algorithm which computes |S|(↪→q,a,q ′), for a given DPFA.
17.4 Let S = {(a, 5), (b, 1)} and suppose the constraints are that the structure is the

automaton represented in Figure 17.7. If we try to maximise PrA(S), what set of
weights should you select?

17.5 Consider a sample X containing once a, three times b and six times c. Suppose the
goal is to put a probability on the only possible rules N1 → a, N1 → b and N1 → c.
What is the solution to argmaxG∈G{PrG(S)}? What is the solution to
argmaxG∈G{

∏
x∈X PrG(x)}?

17.6 Suppose the sample is generated by the PFA represented in Figure 17.8(a). Suppose
that the constraint is given by the NFA represented in Figure 17.8(b). What is the best
PFA you can hope for when using Algorithm BAUM-WELCH?

17.7 Consider the structure depicted in Figure 17.9(a). Suppose the sample consists
of {(λ, 5), (a, 5), (a2, 5), (a3, 5), (a5, 5)}. Run Algorithm BAUM-WELCH on this
sample, with initial probabilities as in Figure 17.9(b), then as in Figure 17.9(c).

17.8 Adjust the probabilities from automata 17.10(a) and 17.10(b) given the sample S =
{(a, 10), (b10, 1)}.

17.7 Conclusions of the chapter and further reading

A typical way of obtaining a probabilistic grammar or automaton is by providing a structure
(the graph or the set of rules) and then attempting to find a set of parameters (the initial,



17.7 Conclusions of the chapter and further reading 369

q1

q2

q3| 1
2

1

a 1 a 1

a 1
2

(a) The target.

q1 q2

a

a

a

a

(b) The constraint.

Fig. 17.8. A wrong set of constraints.

q1 q2

a

a

a

(a) The constraint.

q1|0 q2| 1
2

a 1
2

a 1
2

a 1
2

(b) First initialisation.

q1|1 q2|0

a 0

a 0

a 1

(c) Second initialisation.

Fig. 17.9. Different initialisations for BAUM-WELCH.

q1|0 q2|1

b 1
2

a 1
2

(a) First initialisation.

q1|1

q2| 1
2

q3| 1
2

a 1
2

b 1
2

b 1
2

(b) Second initialisation.

Fig. 17.10. Different initialisations for BAUM-WELCH.

final and transition probabilities in the case of an automaton; the probability of each rule in
the case of a grammar). The best-known technique to achieve this is by the EM algorithm
which starts with an initial set of parameters, then computes the probabilities of the strings
using these initial parameters (called counts) and then uses these counts as new parameters.
The actual implementation of this idea is called the BAUM-WELCH algorithm in the case
of PFAs and INSIDE-OUTSIDE in the case of PCFGs.

17.7.1 Bibliographical background

The fact that the optimisation problem (Equation 17.3) is quite simple if the given
automaton is deterministic was first noticed by Charles Wetherell (Wetherell, 1980). The
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expectation maximisation ideas were first presented for hidden Markov models and PFAs
by (Baum, 1972, Baum et al., 1970). Convergence issues of the algorithm are discussed in
(Chaudhuri & Rao, 1986).

One alternative is to use the maximum path instead of the total probability in the function
to be optimised: this allows us to use a simpler algorithm, called the Viterbi re-estimation
algorithm. This is discussed by Francisco Casacuberta in (Casacuberta, 1996a), while re-
estimation algorithms for other criteria different from ML can be found in (Casacuberta,
1995a, 1995b, Picó & Casacuberta, 2000, 2001).

The problem itself of obtaining the optimum is probably NP-hard, as partly shown in
(Abe & Warmuth, 1992). That is why only local-optimum solutions to the optimisation
problem (Equation 17.3) are possible.

The INSIDE-OUTSIDE algorithm, described in Section 17.5, is based on work by James
Baker, and popularised by Karim Lari and Steve Young (Baker, 1979, Lari & Young, 1990,
1991). A careful analysis can be found in (Casacuberta, 1994, 1995b).

The relation between the probability of the optimal path of states and the probability of
generating a string has been studied in (Sánchez, Benedí & Casacuberta, 1996).

The work presented in this chapter depends strongly on having the structure of the
automaton or the grammar to work with. This assumption is sometimes taken as a sine
qua non to learning probabilistic languages. Alternatively, many authors will argue that an
alternative path consists of taking as a starting point a complete graph with as many states
as needed (whatever that means), and using the EM from there. Obviously this approach
only makes sense if we accept the bias that the structure is indeed small. Yet there are many
applications where this should not be the case.

We have presented in Chapter 16 the alternative approach consisting of learning both the
structure and the probabilities.

17.7.2 Some alternative lines of research

As the finite state models become more and more complex, the algorithms for estimating
the probabilities have been adapted. There are EM algorithms for a variety of tasks, which
can profit from better knowledge of the structure. Obviously, we should mention here that
all the approaches in this chapter rely on the heavy assumption that the correct structure
is provided. We have discussed in Chapter 16 the alternative approach of learning the
probabilities and the structure at the same time.

17.7.3 Open problems and possible new lines of research

One important question that is not settled is to know how bad the estimation can be. Bet-
ter said, given a target automaton, given a sample, and given either correct or incorrect
knowledge of the structure, how good is the best possible estimation going to be?
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Alternatively, a worst case analysis would be of help and one would be interested in
designing a target for which EM is going to fail by quite a lot.

Among the open lines of research corresponding to estimating probabilities, one obvi-
ously concerns speeding up the INSIDE-OUTSIDE algorithm. This algorithm is widely
used in practice, but there have been few systematic studies of its robustness.
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Learning transducers

Pulpo a Feira, Octopus at a party
Anonymous, From a menu in O Grove, Galicia

Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so übersetzen
sie es in ihre Sprache, und dann ist es alsbald etwas anderes.

Johann Wolfgang von Goethe, Maximen und Reflexionen

18.1 Bilanguages

There are many cases where the function one wants to learn doesn’t just associate a label
or a probability with a given string, but should be able to return another string, perhaps
even written using another alphabet. This is the case in translation, of course, between
two ‘natural’ languages, but also of situations where the syntax of a text is used to extract
some semantics. And it can be the situation in many other tasks where machine or human
languages intervene.

There are a number of books and articles dealing with machine translation, but we
will only deal here with a very simplified setting consistent with the types of finite
state machines used in the previous chapters; more complex translation models based on
context-free or lexicalised grammars are beyond the scope of this book.

The goal is therefore to infer special finite transducers, those representing subsequential
functions.

18.1.1 Rational transducers

Even if in natural language translation tasks the alphabet is often the same for the two
languages, this needs not be so. For the sake of generality, we will therefore manipulate
two alphabets, typically denoted by � for the input alphabet and � for the output one.

Definition 18.1.1 (Transduction) A transduction from �� to �� is a relation t ⊆
��×��.

372
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Even if it is defined as a relation, we choose to give it a direction (from �� to ��) to
emphasise the asymmetric nature of the operation. Therefore, transductions are defined by
pairs of strings, the first over the input alphabet, and the other over the output alphabet.

A first finite state machine used to recognise transductions is the rational transducer:

Definition 18.1.2 (Rational transducer) A rational transducer is a 5-tuple T =〈Q, �,
�, qλ, E〉:
• Q is a finite set of states,
• �,� are the input and output alphabets,
• qλ ∈ Q is the unique initial state,
• E ⊂ (Q ×��×��×Q) is a finite set of transitions.

Rational transducers can be used like usual finite state machines; they recognise transduc-
tions. Given a transducer T =〈Q, �, �, qλ, E〉, the transduction recognised by T , denoted
by tT is the set of all pairs that one can read on a path starting in state qλ. If we want to use
a different initial state (say q), the transduction will be denoted by tTq .

Note that rational transducers have no final states; the parse can halt in any state.
Since these are finite state machines, they will be drawn as such. Each transition will be
represented by an edge labelled by a pair x :: y.

Definition 18.1.3 (Translation) The string y is a translation of the string x ifdef x =
x1 · · · xn , y = y1 · · · yn (xi ∈ ��, yi ∈ ��,∀i ∈ [n]) and there is a sequence of states
qi0 , . . . , qin such that ∀ j ∈ [n], (qi j−1 , x j , y j , qi j ) ∈ E , with qi0 = qλ.

In Figure 18.1 a very simplified rational transducer to translate from French to English is
represented. Note that in the above definition the x j and y j are substrings, not individual
symbols. Notation x :: y gives an idea of determinism that is sometimes desirable and that
we will build upon in the next section.

18.1.2 Sequential transducers

Following on from the earlier definition, the next step consists of reading the input symbols
one by one and in a deterministic way.

qλ

le :: the

la :: the

ballon :: λ

balle :: λ

balle :: λ

rouge :: red ball

jaune :: yellow ball

Fig. 18.1. Rational transducer.
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Definition 18.1.4 (Sequential transducers) A sequential transducer T =〈Q,�,�,qλ,E〉
is a rational transducer such that E⊂Q×�×��×Q and ∀(q, a, u, q ′), (q, a, v, q ′′) ∈ E
⇒ u = v ∧ q ′ = q ′′.

In the definition above, the transition system has become deterministic. This will allow us
to do two things:

• Associate with E a new function τE such that τE (q, a) = (v, q ′) for (q, a, u, q ′) ∈ E . Let us
also associate with E the two projections τ1 : Q ×� → �� and τ2 : Q ×� → Q, with
(q, a, w, q ′) ∈ E ⇐⇒ τE (q, a) = (w, q ′), τ1(q, a) = w, and τ2(q, a) = q ′.

In the same way as with deterministic automata, we can extend τE to a function Q × � →
��×Q and write τE (q, λ) = (λ, q) and τE (q, a ·u) = (

τ1(q, a)·τ1(τ2(q, a), u), τ2(τ2(q, a), u)
)

• Name as usual each state by the shortest prefix over the input alphabet that reaches the state.

Example 18.1.1 The transducer represented in Figure 18.1 is not sequential because the
inputs are strings and not symbols. In this case an alternative sequential transducer can
be built, but this is not the general case because of the possible lack of determinism. The
finite state machine from Figure 18.2 is a sequential transducer. One has, for instance,
τE (q1, 0101) = (0111, qλ).

Properties 18.1.1
• The transduction produced by a sequential transducer is a relation t over��×�� that is functional

and total, i.e. given any x ∈ �� there is exactly one string y ∈ �� such that (x, y) ∈ t .
With the better adapted functional notation: a transduction t is a total function: �� → ��.

• The sequential transductions preserve the prefixes, i.e. t (λ) = λ and ∀u, v ∈ ��, t (u) ∈
PREF(t (uv)).

We can deduce from the above properties that not all finite transductions can be produced
by a sequential transducer. But some computations are possible: for instance in Figure 18.2
we present a transducer that can ‘divide’ by 3 an integer written in base 2. For example,
given the input string u = 100101 corresponding to 37, the corresponding output is
t (u) = 001100, which is a binary encoding of 12. The operation is the integer division;
one can notice that each state corresponds to the rest of the division by 3 of the input
string.

In order to be a bit more general, we introduce subsequential transducers, where a string
can be generated at the end of the parse.

qλ q1 q10

1 :: 0

1 :: 1

0 :: 0

0 :: 1

0 :: 0 1 :: 1

Fig. 18.2. Sequential transducer dividing by 3 in base 2.
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18.1.3 Subsequential transducers

We only add to the previous definition a new function σ , called the state output, which in
any state can produce a string when halting in that state.

Definition 18.1.5 (Subsequential transducer) A subsequential transducer is a 6-tuple
〈Q, �, �, qλ, E, σ 〉 such that 〈Q, �, �, qλ, E〉 is a sequential transducer and σ : Q → ��

is a total function.

The transduction t : �� → �� is now defined as t (x) = t ′(x)σ (q) where t ′(x) is the trans-
duction produced by the associated sequential transducer and q is the state reached with
the input string x . We again denote by tT (q) the transduction realised by the transducer T
using q as the initial state: tT (q) ⊆ ��×��.
Definition 18.1.6 (Subsequential transducer) A transduction is subsequential ifdef

there exists a subsequential transducer that recognises it.

Intuitively, a subsequential transduction is one that can be produced from left to right
using a bounded amount of memory, in the same way as a regular language is composed of
strings recognised by a device reading from left to right and also using bounded memory.
But it also corresponds to an optimistic (and thus naive) parse: the associated function has
to be total, and thereby, translation on the fly is always possible (since we know it is not
going to fail).

Example 18.1.2 A first example is that of multiplication by any number in any base. The
case where we are in base 2 and we multiply by 3 is represented in Figure 18.3. In this
example we have: τ(qλ,1) = (1, q1), τ1(q1,0) = 1, and τ2(q1,1) = q11.

Example 18.1.3 Another example is that of the replacement of a pattern by a special
string. Here we give the example of pattern abaa in Figure 18.4.

A third example concerns the translation from numbers written in English to Roman
numerals. We do not explicit the rather large transducer here, but hope to show that indeed a
bounded memory is sufficient to translate all the numbers less than 5000, like ‘four hundred
and seventy three’ into ‘CDLXXIII’.

On the other hand, it is easy to show that not all transductions can be recognised by
subsequential transducers. A typical example of a transduction that is not subsequential

qλ : λ q1 : 1 q11 : 10

1 :: 1

0 :: 1

1 :: 0

0 :: 0

0 :: 0 1 :: 1

Fig. 18.3. Subsequential transducer multiplying by 3 in base 2. For input 101, output
is 1111.
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qλ : λ qa : a qab : ab qaba : aba qabaa : λ
a :: λ

b :: λ
a :: λ

a :: u

b :: abb b :: ab

b :: b a :: λ
a :: a

b :: b

Fig. 18.4. Transducer replacing in each string the first occurrence of abaa by string u.
All other symbols remain identical.

concerns reversing a string. Suppose we would like to consider the transduction containing
all pairs of strings (w, wR) where wR is the string w written in reverse order, i.e. for
w = abcd, wR = dcba. We can use a traditional pumping lemma from formal language
theory to prove that this transduction is not subsequential.

18.2 OSTIA, a first algorithm that learns transducers

The first algorithm to learn transducers, we introduce OSTIA (Onward Subsequential
Transducer Inference Algorithm), a state-merging algorithm based on the same ideas as
Algorithms RPNI (page 256) ALERGIA (page 339). The algorithm builds a special prefix-
tree transducer, and from there, through both state-merging operations and advancing the
translations as early as possible, a transducer is obtained (in polynomial time), which both
is consistent with the learning data and is the correct transducer each time a characteristic
sample is contained in the learning sample.

18.2.1 Incomplete transducers

Even if the goal is to learn total functions, we need to be able to denote the fact that in a
given state, the information is still unknown. We therefore add to �� a new symbol, ⊥, to
indicate that the information is still unknown. We denote by �̂� the set �� ∪{⊥}.

The symbol ⊥ should be interpreted as the empty set: when searching for a common
prefix between ⊥ and other strings, ⊥ plays no part (it is neutral for the union). On the
other hand, if we want to concatenate ⊥ with another string, ⊥ is absorbent. Summarising,

∀u ∈ �̂�⊥ · u = u · ⊥ = ⊥
∀A ∈ 2�̂

�
lcp(A ∪ {⊥}) = lcp(A).

18.2.2 The prefix-tree transducer

Like in the other state-merging techniques, the starting point for the algorithms is a tree-like
finite state machine, called a prefix-tree transducer (PTT). There are two steps to building
this machine. We use the new symbol, ⊥, to indicate that the information is still unknown.
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Algorithm 18.1: BUILD-PTT.

Input: a sample S, finite subset of ��×��
Output: a PTT : T = 〈Q, �, �, qλ, E, σ 〉
Q ← {qu : u ∈ PREF({x : (x, y) ∈ S})};
for qu·a ∈ Q do τ(qu, a)← (λ, qu·a);
for qu ∈ Q do

if ∃w ∈ �� : (u, w) ∈ S then σ(qu)← w else σ(qu)← ⊥
end
return T

Proposition 18.2.1 Given any finite set of input-output pairs S ⊂ ��×��, one can build
a prefix-tree transducer 〈Q, �, �, qλ , E, σ 〉 where:

• Q = {qw : (ww′, v) ∈ S},
• E = {(qw, a, λ, qwa) : qw, qwa ∈ Q},
• σ(qu) = {v ∈ �̂� : (u, v) ∈ S}.
such that the transduction described by S is generated by it.

The trick is to only translate a string by using the function σ . This makes the proof of
Proposition 18.2.1 straightforward by using Algorithm 18.1.

18.2.3 Advancing: onward transducers

The next important notion is that of advancing: the idea is to privilege translation as soon
as possible. This gives us a normal form for transducers.

Definition 18.2.1 (Onward transducer) A transducer is onward ifdef ∀q ∈ Q, ∀a ∈ �,
lcp

({u : (q, a, u, q ′) ∈ E} ∪ {σ(q)}) = λ.

Remember that lcp(W ) designs the longest common prefix of set W . We only have to
figure out how to deal with the value ⊥. Since ⊥ means that the information is unknown,
we always have lcp({⊥, u}) = u.

This means that the output is assigned to the transitions in such a way as to be pro-
duced as soon as we have enough information to do so. For example, the transducer from
Figure 18.5(a) is not onward, since some prefixes can be advanced. The transducer from
Figure 18.5(b) represents the same transduction, and is this time onward.

Unless lcp({w ∈ �� : ∃x ∈ �� such that (x, w) ∈ tT }) = λ, any transducer can be
made onward. If this is not the case, this means that all output strings have a common
prefix. This prefix can easily be removed before starting and we can therefore suppose that
we are always in the situation where lcp({w ∈ �� : ∃x ∈ �� such that(x, w) ∈ tT }) �= λ.
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qλ : 1 qa : 01

qaa : 1

qab : λ

a :: λ
a :: 000

b :: 0

a :: λ

(a) Before advancing. lcp(qa) = lcp({01, 000, 0}) = 0

qλ : 1 qa : 1

qaa : 1

qab : λ

a :: 0

a :: 00

b :: λ
a :: λ

(b) After advancing. Now lcp(qa) = λ.

Fig. 18.5. Making a transducer onward.

Algorithm 18.2: ONWARD-PTT.

Input: a PTT : T = 〈Q, �, �, qλ, E, σ 〉, q ∈ Q, u ∈ ��
Output: an equivalent onward PTT : T = 〈Q, �, �, qλ, E, σ 〉, a string f = lcs{qu}
for a ∈ � do

if τ2(q, a) ∈ Q then (T , q, w)←ONWARD-PTT(T , τ2(q, a), a);
τ1(q, a)← τ1(q, a) · w

end
f ← lcp

({τ1(q, a)} ∪ {σ(q)});
if f �= λ then

for a ∈ � do τ1(q, a)← f −1τ1(q, a);
σ(q)← f −1σ(q)

end
return (T ,q,f)

18.2.4 The onward PTT

Building an onward prefix-tree transducer from a general prefix-tree transducer is easy.
Algorithm ONWARD-PTT takes three arguments: the first is a PTT T , the second is

a state q and the third a string f such that f is the longest common prefix of all out-
puts when starting in state q. When first called in order to make the PTT onward, f
should of course be λ and q should be set to qλ. The value returned is a pair (T , f ).
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qλ : 1 qa : ⊥

qaa : 1

qab : λ

a :: λ
a :: 000

b :: 0

a :: λ

(a) Before advancing. lcp(qa) = lcp({⊥, 000, 0}) = 0

qλ : 1 qa : ⊥

qaa : 1

qab : λ

a :: 0

a :: 00

b :: λ
a :: λ

(b) After advancing. Now lcp(qa) = λ.

Fig. 18.6. Making a transducer onward: the case with ⊥.

T is the corresponding onward PTT rooted in u, and f is the prefix that has been
forwarded.

18.2.5 A unique onward normal form

Theorem 18.2.2 For any subsequential transduction there exists an onward sub-
sequential transducer with a minimum number of states which is unique up to
isomorphisms.

Proof We only sketch the proof, which consists of studying the equivalence relation ≡T
over �� based on the transduction tT , where, if we write lcps(u) = lcp{x ∈ �� : ∃y ∈ ��
∧(uy, x) ∈ tT },

u ≡T v ifdef ∀z ∈ ��, (uz, lcps(u)u′) ∈ tT ∧ (vz, lcps(v)v′) ∈ tT =⇒ u′ = v′.

In the above lcps(u) is a unique string in �� associated with u, corresponding to: transla-
tions of any string starting with u all start with lcps(u). One can then prove that this relation
has finite index. Furthermore, a unique (up to isomorphism) subsequential transducer can
be built from ≡T .

18.3 OSTIA

The transducer learning algorithm OSTIA (18.7) makes use of Algorithm OSTIA-MERGE
(18.5), which will merge the different states and, at the same time, ensure that the result is
onward. The merging algorithm is a merge-and-fold variant: it first computes the longest
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common prefix of every two outputs it is going to have to merge, and then makes the
necessary merges.

The first thing we need to be able to check is if two state outputs are identical (or one is
⊥). Formally, we can use Algorithm OSTIA-OUTPUTS (18.3) for this.

Algorithm 18.3: OSTIA-OUTPUTS.

Input: w,w′ ∈ �̂�
Output: a string
if w = ⊥ then return w′
else if w′ = ⊥ then return w
else if w = w′ then return w
else return fail

18.3.1 Pushing back

Yet sometimes, we might miss some possible merges because of the onward process. The
idea is then that if we can have another symmetrical process (called pushing back) that will
somehow differ the outputs, a merge may still be feasible.

We first describe the idea using the simple example represented in Figure 18.7.
Typically ⊥ just absorbs any pushed-back suffix. This corresponds to running Algorithm

OSTIA-PUSHBACK (18.4).
Let us explain a little about Algorithm OSTIA-PUSHBACK. It takes as inputs two

transitions both labelled by the same symbol a (one starting in state q1 and the other in
state q2) and returns a transducer equivalent to the initial one in which the output has
been unified. This is done by pushing back whatever uncommon suffixes the algorithm
finds. There are cases where, due to loops, the result is that we don’t have τ1(q1, a) =
τ2(q2, a).

q1 : 0

q2 : 0

q3 : 0

q4 : λ

q5 : λ

q6 : 1

a :: 1

a :: 10

b :: 1

c :: 1

(a) Before pushing back. q1 and q2 can’t be merged.

q1 : 0

q2 : 0

q3 : 0

q4 : 0

q5 : λ

q6 : 1

a :: 1

a :: 1

b :: 1

c :: 01

(b) After pushing back on (q2,a, 10, q4). String 0
has been pushed back. q1 and q2 can now be merged.

Fig. 18.7. Pushing back.
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Algorithm 18.4: OSTIA-PUSHBACK.

Input: a transducer T , two states q1, q2, a ∈ �
Output: T updated
u ← lcs{τ1(q1, a), τ1(q2, a)};
u1 ← u−1τ1(q1, a);
u2 ← u−1τ1(q2, a);
τ1(q1, a)← u;
τ1(q2, a)← u;
for b ∈ � do

τ1(τ2(q1, a), b)← u1 · τ1(τ2(q1, a), b);
τ1(τ2(q2, a), b)← u2 · τ1(τ2(q1, a), b)

end
σ(τ2(q1, a))← u1 · σ(τ2(q1, a));
σ(τ2(q2, a))← u2 · σ(τ2(q2, a));
return T

18.3.2 Merging and folding in OSTIA

The idea is to adapt the merge-and-fold technique introduced in Chapter 12, which we
already used in the stochastic setting (Chapter 16).

We can now write Algorithm OSTIA-MERGE:

Algorithm 18.5: OSTIA-MERGE.

Input: a transducer T , two states q ∈ RED, q ′ ∈ BLUE

Output: T updated
Let q f , a and w be such that (q f , a, w, q ′) ∈ E ;
τ(q f , a)← (w, q);
return OSTIA-FOLD(T , q, q ′)

This algorithm calls OSTIA-FOLD:

Example 18.3.1 Let us run this merge-and-fold procedure on a simple exampe. Consider
the transducer represented in Figure 18.8. Suppose we want to merge state qaa with state
qλ. Notice that qaa is the root of a tree.

We first redirect the edge (qa,a, 1, qaa), which becomes (qa,a, 1, qλ) (Figure 18.9).



382 Learning transducers

Algorithm 18.6: OSTIA-FOLD.

Input: a transducer T , two states q and q ′
Output: T updated, where subtree in q ′ is folded into q
w ←OSTIA-OUTPUTS(σ(q), σ (q ′));
if w = fail then

return fail
else

σ(q)← w;
for a ∈ � do

if τ(q ′, a) is defined then
if τ(q, a) is defined then

if τ1(q, a) �= τ1(q ′, a) then /* due to loops */
return fail

else
T ←OSTIA-PUSHBACK(T , q, q ′, a);
T ←OSTIA-FOLD(T , τ2(q, a), τ2(q ′, a))

end
else

τ(q, a)← τ(q ′, a)
end

end
end
return T

end

qλ : 0 qa : 1

qb : 0

qaa : 0

qaaa : λ

qaab : ⊥ qaabb : λ
a :: 1

b :: 1

a :: 1

b :: λ
a :: 1 a :: 11

b :: 1

b :: 1

Fig. 18.8. Before merging qaa with qλ and redirecting transition τ2(qa,a) to qλ.

We now can fold qaa into qλ. This leads to pushing back the second 1 on the edge
(qaa,a, 1, qaaa). The resulting situation is represented in Figure 18.10.

Then (Figure 18.11) qaaa is folded into qa, and finally qaab into qb. The result is
represented in Figure 18.12.
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qλ : 0 qa : 1

qb : 0

qaa : 0

qaaa : λ

qaab : ⊥ qaabb : λ

a :: 1

b :: 1

a :: 1

b :: λ
a :: 1 a :: 11

b :: 1

b :: 1

Fig. 18.9. Before folding qaa into qλ.

qλ : 0 qa : 1

qb : 0

qaaa : 1

qaab : ⊥ qaabb : λ

a :: 1

b :: 1

a :: 1

b :: λ
a :: 1

b :: 1

Fig. 18.10. Folding in qaa.

qλ : 0 qa : 1

qb : 0

qaab : ⊥ qaabb : λ

a :: 1

b :: 1

a :: 1

b :: λ
a :: 1

b :: 1

Fig. 18.11. Folding in qaaa.

18.3.3 Properties of the algorithm

Algorithm OSTIA works as follows. First a PTT is built. Then it is made onward by running
Algorithm ONWARD-PTT (18.2). There are two nested loops. The outer loop visits all
BLUE states, whereas the inner loop visits the RED states to try to find a compatible state.
The algorithm halts when there are only RED states left.

At each iteration, a BLUE state is chosen and compared with each of the RED states. If no
merge is possible, the BLUE state is promoted to RED and all its successors become BLUE.
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qλ : 0 qa : 1

qb : 0 qaabb : λ

a :: 1

b :: 1

a :: 1

b :: 1
a :: 1

b :: 1

Fig. 18.12. Folding in qaab.

Algorithm 18.7: OSTIA.

Input: a sample S ∈ ��×��
Output: T
T ← ONWARD-PTT(BUILD-PTT(S));
RED ← {qλ};
BLUE ← {qa : (au, v) ∈ S};
while BLUE �= ∅ do

choose q in BLUE;
if ∃p ∈ RED : OSTIA-MERGE(T , p, q) �= fail then

T ← OSTIA-MERGE(T , p, q)
else

RED ← RED ∪ {q}
end
BLUE ← {p : (q, a, v, p) ∈ E, q ∈ RED} \ RED

end
return T

Properties 18.3.1
• Algorithm OSTIA identifies in the limit any (total) subsequential transduction.
• The complexity is O(n3(m + |�|)+ nm|�|) where

• n is the sum of the input string lengths,
• m is the length of the longest output string.

Proof The proof closely follows the one for RPNI. We only sketch the main elements:

• Identification in the limit is ensured as soon as a characteristic sample is given, which avoids all
the inconvenient merges.

• The complexity bound is estimated very broadly. In practice it is much less.
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qλ : λ qa : 1

a :: λ

b :: 01

b :: 1 a :: 0

Fig. 18.13. The target.

qλ : ⊥

qa : 1
a :: λ

qb : 1

b :: λ

qaa : 01
a :: λ

qab : ⊥

b :: λ

qaaa : 001
a :: λ

qaba : ⊥
a :: λ

qabab : 0101

b :: λ

Fig. 18.14. The PTT constructed from S = {(a, 1), (b, 1), (aa, 01), (aaa, 001),
(abab, 0101)}.

18.3.4 A run of algorithm OSTIA

Suppose we want to identify the transducer represented in Figure 18.13 using OSTIA.
The target transducer takes as input any sequence of symbols from � = {a,b}, and
replaces each a which is not followed by another a, by a 0. If not a becomes 0 and b
becomes 1.

Typical examples (which make the learning sample), are (a, 1), (b, 1), (aa, 01),
(aaa, 001), (abab, 0101).

We first use Algorithm BUILD-PTT (18.1) and build the corresponding PTT represented
in Figure 18.14. Algorithm ONWARD-PTT (18.2) is then called and we obtain the onward
PTT (Figure 18.15).

The first merge that we test is between the state qa (which is BLUE) and the unique RED

state qλ; the merge is rejected because the finals λ and 1 are different, so the states cannot
be merged together. So qa is promoted.

OSTIA then tries to merge qb with qλ; this merge is accepted, and the new transducer is
depicted in Figure 18.16.

The next attempt is to merge qaa with qλ; this merge is rejected again because the finals
λ and 1 are incompatible. Note that you cannot push back on the finals.

So in the transducer represented in Figure 18.16, OSTIA merges qaa with qa . It is
accepted and the automaton represented in Figure 18.17 is built.
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qλ : ⊥

qa : 1
a :: λ

qb : λ

b :: 1

qaa : 1
a :: 0

qab : ⊥

b :: 0101

qaaa : λ
a :: 01

qaba : ⊥
a :: λ

qabab : λ

b :: λ

Fig. 18.15. Making the PTT onward.

qλ : λ qa : 1a :: λ

b :: 1
qaa : 1

a :: 0

qab : ⊥

b :: 0101

qaaa : λ
a :: 01

qaba : ⊥
a :: λ

qabab : λ

b :: λ

Fig. 18.16. After merging qb and qλ.

qλ : λ qa : 1a :: λ

b :: 1 a :: 0

qab : ⊥

b :: 0101 qaba : ⊥
a :: λ

qabab : λ

b :: λ

Fig. 18.17. After merging qaa and qa.

The next (and last) BLUE state is qab, which OSTIA tries to merge with qλ. The merge is
accepted. There are some pushing back operations that get done (and that we do not detail
here).

The algorithm halts since there are no BLUE states left. The result is the target.
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18.4 Identifying partial functions

It is easy to see that the OSTIA algorithm cannot identify partial functions, i.e. those
that would not have translations for each input string. For that, just take a function that
for a given regular language L translates w into 1 if w ∈ L , and has no translation for
strings outside L . If we could identify these functions, the algorithm would also be capa-
ble of identifying regular languages from text, which is impossible (see Theorem 7.2.3,
page 151).

Yet if one wants to use a transducer for a problem of morphology or of automatic transla-
tion, it is clear that total functions make little sense: not every random sequence of symbols
should be translated. Furthermore, the absence of some input strings should be used to the
advantage of the learning algorithm. As it is, this is not the case: the absence of an input
string will mean the absence of an element forbidding a merge, in which case the (bad)
merge will be made.

In order to hope to learn such partial functions, we therefore need some additional
information. This can be of different sorts:

• using negative samples,
• using knowledge about the domain, or about the range of the function.

18.4.1 Using negative samples

We just explain the idea. The algorithm is given two samples: one contains transductions,
i.e. pairs of strings in ��×��, and the second contains strings from �� that do not admit
translation. The algorithm is adapted so that, when checking if a merge is possible, we
should check if one of the prohibited strings has obtained a translation. If not, the merge is
rejected. Hence, more possibilities of rejecting strings exist.

The definition of characteristic sample can clearly be adapted to this setting.

18.4.2 Using domain knowledge

In Algorithm OSTIA (18.7) the function must be total. For straightforward reasons (see
Exercise 18.2) it is impossible to identify partial functions in the limit. But if we are given
the domain of the partial function then this can be used as background or expert knowledge
in the learning function. Moreover, if the domain is a regular language, then the trans-
ducer has to respect the structure of the language in some way. This can be used during
the learning phase: indeed, when seeking to merge two states, not only should the trans-
ductions correspond (or not be inconsistent), but also the types of the two states should
coincide.

Example 18.4.1 Let us consider the subsequential transducer represented in
Figure 18.18(a). Let us suppose that the learning sample contains the strings (a, 1), (b, 1),
(abab, 0101) and the information that the domain of the function is (ab + b)∗(a + λ)∗.
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qλ : λ qa : 1

a :: λ

b :: 01

b :: 1

(a) The target.

q0 q1

a

b

b

(b) The domain.

Fig. 18.18. Target and domain for OSTIA−D.

q0
λ : λ

q1
a : 1

a : λ

q0
b : 1

b : λ q0
ab : λ

b : λ q0
aba : λ

a : λ

q0
abab : 0101

b : λ

Fig. 18.19. The PTT labelled by the domain.

Then, the DFA recognising the domain of the language can be represented as in
Figure 18.18(b). The initial point of the adapted algorithm consists of labelling the PTT
with the indexes of the DFA corresponding to the domain. This is done in Figure 18.19.
From there, a merge will only be tested between states that share the same superscript. For
example the merge between q0

λ and q1
a won’t even be tested.

18.5 Exercises

18.1 Build the PTT for {(abba, abba), (abaaa, aa), (bbaba,bba), (aa, aa)}.
18.2 Prove that learning partial subsequential transducers is hard: they cannot be identified

in the limit. Hint: consider transducers that translate every string into λ.
18.3 Run OSTIA on the following sample {(aa, a), (aaa,b), (baa, a)}.
18.4 Suppose we know that the domain of the function contains only those strings of

length at most 4. What is learnt?
18.5 Run OSTIA on the PTT from Figure 18.19, then run the adapted version using the

domain information.

18.6 Conclusions of the chapter and further reading

18.6.1 Bibliographical background

Transducers were introduced by Marcel-Paul Schützenberger and studied by a number
of authors since then (Reutenauer & Schützenberger, 1991, 1995), with Jean Berstel’s
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book being the reference (Berstel, 1979). Mehryar Mohri has been advocating similari-
ties between the different types of finite state machines, and has been defending the point
of view that transducers represent the initial object, in the sense that a DFA (or NFA) can
be seen as a machine for a transduction over��×{0, 1}, multiplicity automata as machines
for transductions over ��×R and PFAs the same over ��×(R ∩ [0; 1]) (Mohri, 1997).
Applications of transducers to natural language processing are still unclear, some special-
ists believing the mechanisms of a transducer to be too poor to express the subtleties of
language. Conversely, Brian Roark and Richard Sproat (Roark & Sproat, 2007) argue that
nearly all morphological rules can be described by finite state transducers. Applications
to machine translation were done by Enrique Vidal, Francisco Casacuberta and their team
(Amengual et al., 2001, Casacuberta & Vidal, 2004).

The algorithm OSTIA that we describe in this chapter was designed by Jose Oncina,
Pedro García and Enrique Vidal (Oncina, García & Vidal, 1993). The different extensions
described in Section 18.4 are called OSTIA-N for the one that uses negative examples
and OSTIA-D for the algorithm that makes use of domain knowledge. The domain ver-
sion (Algorithm 18.4.2, page 387) was introduced by Jose Oncina and Miguel Angel Varó
(Oncina & Varó, 1996). Similar ideas were explored later by Christopher Kermorvant et al.
(Coste et al., 2004, Kermorvant & de la Higuera, 2002, Kermorvant, de la Higuera &
Dupont, 2004) in more general grammatical inference settings under the name of ‘learning
with help’.

A version of OSTIA with queries was written by Juan Miguel Vilar (Vilar, 1996).
Making OSTIA practical has been an important issue. Using dictionaries and word align-
ments has been tested (Vilar, 2000). This also allowed probabilities to be added to the
transducers.

Theoretical results concerning stochastic transducers can be found in (Casacuberta &
de la Higuera, 2000): some decoding problems are proved to be NP-hard, but these
hold specifically in the non-deterministic setting. Results follow typically from results
concerning probabilistic automata.

Among the hardest attempts to learn difficult transducers, Alex Clark won the Tenjinno
competition in 2006 by using OSTIA and several other ideas (Clark, 2006).

18.6.2 Some alternative lines of research

There are of course many alternative approaches than building finite state machines for
translation tasks.

Learning probabilistic transducers is an important topic: these can be used to define
stochastic edit distances (Bernard, Janodet & Sebban, 2006). Tree transducers are also
important as they can be used with XML. Another crucial issue is that of smoothing, for
which little is known. Researchers attempting to learn wrappers need to learn a function
that transforms a tree into another, where the important information is made clear (Carme
et al., 2005).
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18.6.3 Open problems and possible new lines of research

Machine translation tools are going to be increasingly important over the next years. But
as shown during the Tenjinno competition, effort has to be made in many directions if
transducer learning can be successfully used in applications.

An important area that deserves more attention is extending the definitions and
algorithms to the probabilistic case.
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A very small conclusion

On two occasions I have been asked [by members of Parliament], ‘Pray,
Mr. Babbage, if you put into the machine wrong figures, will the right answers
come out?’ I am not able rightly to apprehend the kind of confusion of ideas that
could provoke such a question.

Charles Babbage

“Was it all inevitable, John?” Reeve was pushing his fingers across the floor of
the cell, seated on his haunches. I was lying on the mattress. “Yes,” I said. “I think
it was. Certainly, it’s written that way. The end of the book is there before the
beginning’s hardly started.”

Ian Rankin, Knots and Crosses

When ending this manuscript, the author decided that a certain number of things had been
left implicit in the text, and could perhaps be written out clearly in some place where this
would not affect the mathematical reading of the rest.

Let us discuss these points briefly here.

19.1 About convergence

Let us suppose, for the sake of argument, that the task we were developing algorithms for
was the construction of random number generators. Suppose now that we had constructed
such a generator, that given a seed s would return an endless series of numbers. Some of
the questions we may be faced with might be:

• Is 25 more or less random than 17?
• Is 23 random?
• If in a practical situation my generator gives me the number 999999, should I decide this number

is not random at all and therefore re-run the generator until a truly random number appears?

These questions are, of course, not the ones one should be considering when working with
random numbers (remember they play an important part in encrypting those safe buys you
make on the internet!). No one would dream of not establishing a mathematical proof of
the generator.

391
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Now let’s return to grammatical inference and accept that our goal is to learn (or infer, or
induce) a grammar from data about a language. Concretely, we are often given some text
and have to work from it. Then, what is sometimes done is to extract some grammar from
the text, say something about the fact that it is small, that we have followed some sound
principle to extract this grammar, and that therefore we have learnt.

The point we make here is not that we haven’t learnt. We possibly have, for that matter.
The argument is that there is an alternative to looking at the data and the result: looking
at the learning algorithm per se, showing some general property about it, the conditions
needed for it to work, the biases we are using. This is all done a priori. Then one has to
consider if what one knows about the data fits with this, and one can then hope to use the
algorithm in these conditions.

One of the key ideas defended in this manuscript has been that this is precisely what
grammatical inference is about: without being able to say something precise about the
convergence of the algorithm, we are not learning.

19.2 About complexity

We have developed here many ideas concerning the complexity of language and grammar
learning. As can be seen throughout the pages, there still is a lot of work to be done.

A partial conclusion we have reached during the writing of the manuscript, but also
through discussion with many experts from very different fields, is that in this setting there
is no unique definition of complexity. Several definitions exist and don’t coincide.

What we still believe in is that we should know how to count, in different ways, in order
to better match the problems that we can be facing.

There may be another issue with the questions regarding complexity for learning prob-
lems. Traditional complexity theory has been used for classical problems, where the data
are given all at once and some function has to be optimised or some criterion has to be met.
Yet there are many applications, today, where the data are obtained little by little and the
algorithms are supposed to both optimise some immediate criterion and some long-term
one. This is clearly the case in machine learning but also appears in a number of fields: in
networks, in video streaming, in all adaptative interfaces...

The feeling we have is that the ideas studied in grammatical inference and summarised
in this text can perhaps be used to participate in the building of a new complexity theory,
able to take these issues into account.

19.3 About trees and graphs and more structure

We have left untouched (or nearly untouched) the question of learning from data that would
be more structured than strings. There are many researchers working on learning tree gram-
mars and tree automata. In some cases the work consists of adapting a string language
inference algorithm to suit the tree case, but in many others the problems are new and
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novel algorithms are needed. Furthermore, in practice, in many cases the tree structures
allow us to model the data in a much more accurate fashion.

The graph extension is more troublesome. If clearly graphs are used in modelling tasks,
and it is therefore of interest to be able to have graph generators and recognisers, the
amount of basic graph problems that are immediately intractable is fearsome: graph iso-
morphism, graph matching or alignment, finding the common subgraph, checking if one
graph is a subgraph of another. But despite these difficulties, moving from strings to both
trees and graphs is undoubtedly the path to be followed.

19.4 About applications

We have presented far too few applications in this manuscript. One reason for this is that
the point of view one may have is going to become outdated most rapidly if using the
applications too closely. The fact that new tools exist to manipulate automata with (today)
a few million states means that problems that seemed unreachable yesterday have now
become interesting.

A final word says that an algorithm that may be bad for application one may be well
suited for application two. This of course is true not only for grammatical inference. One
encouraging characteristic of grammatical inference is that these two applications can be
set in such different fields, ranging from reverse engineering to linguistics, from automatic
translation to computational biology, or from robotics to ethology.

19.5 About learning itself

A view defended by some is that learning is about compressing; a compression with loss,
where the loss itself corresponds to the gain in learning.

Throughout the book we have viewed algorithms whose chief goal was to get hold of
enormous amounts of data and somehow digest this into a simple set of rules which in turn
allowed us to somehow replace the data by the grammar. In other words, the feeling we
have reached is that learning is all about forgetting.
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deterministic linear, 81

even linear, 81
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pure, 314
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from queries, 187
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with probability one, 202

ifdef, 45

implicit prediction error, 155
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INSIDE probability, 367
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string, 60
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consistent, 148
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text, 148
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problem
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correction, 163, 193
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sampling, 163
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state
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string, 48

distinguishing, 338

k-predecessor

k-predecessor, 223

k-successor, 223

longest common prefix, 50

longest common suffix, 50

shortest prefix, 259

subsequence, 48

substring, 48
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SSQ, 163

SUCCk , 223

support, 46
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table
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