

C O M P U T A T I O N A L S E M A N T I C S WITH
F U N C T I O N A L P R O G R A M M I N G

Computational semantics is the art and science of computing meaning in natural
language. The meaning of a sentence is derived from the meanings of the individual
words in it, and this process can be made so precise that it can be implemented
on a computer. Designed for students of linguistics, computer science, logic and
philosophy, this comprehensive text shows how to compute meaning using the
functional programming language Haskell. It deals with both denotational meaning
(where meaning comes from knowing the conditions of truth in situations),and
operational meaning (where meaning is an instruction for performing cognitive
action). Including a discussion of recent developments in logic, it will be invaluable
to linguistics students wanting to apply logic to their studies, logic students wishing
to learn how their subject can be applied to linguistics, and functional programmers
interested in natural language processing as a new application area.

J A N V A N E I J C K is a Senior Researcher at CWI, the Centre for Mathematics and
Computer Science in Amsterdam, and Professor of Computational Linguistics at
Uil-OTS, the Research Institute for Language and Speech, Utrecht University.

C H R I S T I N A U N G E R is based in the Semantic Computing Group in the Cognitive
Interaction Technology Center of Excellence at the University of Bielefeld.

COMPUTATIONAL SEMANTICS WITH
FUNCTIONAL PROGRAMMING

J A N V A N EIJCK A N D C H R I S T I N A U N G E R

CAMBRIDGE
U N I V E R S l T Y PRESS

C A M B R I D G E U N I V E R S I T Y P R E S S
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

Sao Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521757607

© J a n van Eijck and Christina Unger 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-76030-0 Hardback
ISBN 978-0-521-75760-7 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

Contents

Foreword page ix
Preface xiii

1 Formal Study of Natural Language 1
1.1 The Study of Natural Language 1
1.2 Syntax, Semantics, and Pragmatics 3
1.3 The Purposes of Communication 5
1.4 Natural Languages and Formal Languages 8
1.5 What Formal Semantics is Not 10
1.6 Computational Semantics and Functional Programming 11
1.7 Overview of the Book 12
1.8 Further Reading 14

2 Lambda Calculus, Types, and Functional Programming 15
2.1 Sets and Set Notation 15
2.2 Relations 17
2.3 Functions 19
2.4 Lambda calculus 22
2.5 Types in Grammar and Computation 27
2.6 Functional Programming 30
2.7 Further reading 31

3 Functional Programming with Haskell 33
3.1 The Programming Language Haskell 33
3.2 Using the Book Code 34
3.3 First Experiments 35
3.4 Type Polymorphism 39
3.5 Recursion 40
3.6 List Types and List Comprehension 41
3.7 List processing with map and filter 43

v

vi Contents

3.8 Function Composition, Conjunction, Disjunction, Quantification 44
3.9 Type Classes 45
3.10 Strings and Texts 47
3.11 Finnish Vowel Harmony 52
3.12 Identifiers in Haskell 55
3.13 User-defined Data Types and Pattern Matching 56
3.14 Application: Representing Phonemes 60
3.15 Further Reading 62

4 Formal Syntax for Fragments 63
4.1 Grammars for Games 63
4.2 A Fragment of English 68
4.3 A Language for Talking about Classes 71
4.4 Propositional Logic 72
4.5 Predicate Logic 75
4.6 Predicate Logical Formulas in Haskell 79
4.7 Adding Function Symbols 82
4.8 Further Reading 84

5 Formal Semantics for Fragments 87
5.1 Semantics of Sea Battle 87
5.2 Semantics of Propositional Logic 92
5.3 Propositional Reasoning in Haskell 94
5.4 Semantics of Mastermind 97
5.5 Semantics of Predicate Logic 100
5.6 Semantics of Natural Language Fragments 105
5.7 An Inference Engine with a Natural Language Interface 106
5.8 Further Reading 123

6 Model Checking with Predicate Logic 125
6.1 Linguistic Form and Translation Into Logic 125
6.2 Predicate Logic as Representation Language 127
6.3 Representing a Model for Predicate Logic 133
6.4 Evaluating Formulas in Models 139
6.5 Evaluating Formulas with Structured Terms 143
6.6 Further Reading 147

7 The Composition of Meaning in Natural Language 149
7.1 Rules of the Game 149
7.2 Quantification 150
7.3 The Language of Typed Logic and Its Semantics 164
7.4 Reducing Expressions of Typed Logic 168
7.5 Typed Meanings for Natural Language 173

Contents vii

7.6 Implementing Semantic Interpretation 175
7.7 Handling Ambiguity 180
7.8 Further Reading 182

8 Extension and Intension 183
8.1 Sense and Reference, Intension and Extension 183
8.2 Intensional Interpretation 187
8.3 Intensional Constructs 192
8.4 Intensionalization 195
8.5 Intensional Models from Extensional Models 201
8.6 Further Reading 202

9 Parsing 205
9.1 Talking About Parse Trees 205
9.2 Recognizing and Parsing Context-Free Languages 211
9.3 Parsers and Parser Combinators 214
9.4 Features and Categories 223
9.5 Lexical Lookup and Scanning 226
9.6 Parsing Categories 235
9.7 Handling Extractions 239
9.8 Adding Semantics 251
9.9 Further Reading 260

10 Handling Relations and Scoping 261
10.1 Interpreting NP Lists 261
10.2 Generalized Relations 264
10.3 Boolean Algebras of Relations 269
10.4 Flexible Types for NP Interpretations 271
10.5 Scope Reversal of Quantifiers 272
10.6 Interpreting Verbs as Arbitrary Arity Relations 273
10.7 Relational Interpretation of NPs 276
10.8 Quantifier Scoping 278
10.9 Underspecified Logical Form 280
10.10 Further Reading 285

11 Continuation Passing Style Semantics 287
11.1 Continuation Passing Style Programming 287
11.2 Continuations as Abstractions over Context 289
11.3 Continuizing a Grammar 292
11.4 Implementing a Continuized Grammar 296
11.5 Scope Reversal by Means of Continuations 299
11.6 Further Reading 301

viii Contents

12 Discourse Representation and Context 303
12.1 The Dynamics of Pronoun Linking 303
12.2 Abstraction over Context 308
12.3 Continuizing the Account 312
12.4 Implementing Discourse Representation 313
12.5 From Structure Trees to Dynamic Interpretation 322
12.6 Salience 329
12.7 Implementing Reference Resolution 333
12.8 Further Reading 349

13 Communication as Informative Action 351
13.1 Knowledge and Communication 351
13.2 Reasoning About Knowledge and Ignorance 355
13.3 A Language for Talking About (Common) Knowledge 357
13.4 Presuppositions and Common Knowledge 360
13.5 Adding Public Change 364
13.6 Yes/No Questions and Their Answers 366
13.7 Epistemic Model Checking 368
13.8 Further Reading 385

Afterword 387
Bibliography 389
Index 397

Foreword

The view of computational semantics that informs and drives this book is one that
sees the computation of linguistic meaning as that of computing logically trans-
parent representations of meaning from “raw linguistic data”, linguistic input as it
reaches a recipient when he hears something or reads it, and to which he has to
attach a sense. The book abstracts away from the differences between hearing and
reading in that it assumes that the “raw data” have already been preprocessed as
strings of words. Such computations of meaning are generally assumed to involve
the computation of structure at several levels, minimally at a level of syntactic form
and then, via the syntactic structure obtained at that level, of the semantic repre-
sentation. This implies that in order to do computational semantics properly you
need proficiency in at least three things: (i) proficiency in computation (you need
to be proficient in the use of at least one suitable programming language), (ii) pro-
ficiency in syntax, and (iii) proficiency in semantics, in the more narrow sense in
which semantics is understood by many linguists, but also in a broader sense.

The message this book drives home is that computing semantic representations
from “raw data” isn’t all there is to computational semantics. Computing semantic
representations wouldn’t be of much use to us if, once we have constructed them,
there wouldn’t be anything we could do with them. But of course there is. One
thing we do with the semantic representations we construct from linguistic input
is to employ them as premises, usually in conjunction with representations we
already have, and that often come from other sources (e.g. from what we have
seen with our own eyes). In this way the new representation may yield additional
information, information that follows neither from the information we already had,
nor from the new representation when taken by itself. Or the new representation
may be instrumental in practical reasoning, help us to develop a better idea of how
we should proceed in order to get what we want. It is because we use semantic
representations in these inferential ways that they must be “logically transparent”:

ix

x Foreword

they must be in a form on which the inference mechanisms of formal logic must
have a purchase.

There is also something else that we can do with the semantic representations
we get from what we hear or read: we evaluate them against models of the world.
These can be models that we have put together on the basis of, say, what we learn
by seeing, hearing, or touching. “Model checking”, i.e., checking whether what
a semantic representation says about a given model or data structure obtained in
some such way is true or false, is no less important than drawing inferences from
it. Model checking is implicit in what speakers do when they choose sentences to
describe the models or data structures about which they want to say something, and
it is what the recipient of an utterance does when he has independent access to the
model or data structure that he assumes the speaker is talking about, for instance
in situations where the speaker is making a comment on something which they are
both looking at.

The importance of model checking and of the inferential uses we make of lan-
guage may be plain enough in any case. But how important they really are comes
even more dramatically into focus in connection with developing language skills
for robots, which can tell us about things that they can see but we cannot, or that
must be able to communicate with us when we are jointly working on a common
task. Such uses of semantic representations are what makes them worth having
in the first place. A computational semantics that tells us how representations get
built, but has nothing to say about what is done with them would hardly be worth
having.

This book adds accounting for the uses of semantic representations to the Com-
putational Semantics task list, thus making the agenda more ambitious than it
would have been in any case by a good stretch. As far as I know no one has so
far made an attempt to address this amplified agenda within the scope of a sin-
gle text. This is one respect in which the present book breaks new ground, both
conceptually, as a presentation of what computational semantics, defined by this
agenda, is actually like, and pedagogically, by introducing the readers to the vari-
ous different items on this agenda and showing them how each of those items can
be tackled and what is needed for that.

The book’s third novelty is that it starts without any presuppositions. Nothing
is assumed beyond common sense: no programming skills, no knowledge of syn-
tax, no knowledge of semantics, no knowledge of natural language processing of
any sort. The book begins by introducing the basics of Haskell, the programming
language that is used throughout. Haskell is a member of the family of functional
programming languages and suitable for the theoretical purposes of this book be-
cause of its exceptional transparency. The use of Haskell in an introduction to
computational semantics is a departure from the widespread use of Prolog in intro-

Foreword xi

ductions to symbolic natural language processing. The authors motivate this choice
by pointing out that much of symbolic computational linguistics consists, like so
many other types of computational problems, in defining the right data structures
and the right functions that map one data structure (the one that presents the prob-
lem) into another (the one that presents its solution).

Indeed, the first applications that are shown in the book are non-linguistic, and
chosen solely for the purpose of giving the reader a good grasp of how Haskell
works and what can be done with it. From these first applications there is a gradual
progress, via applications that involve elementary forms of language processing
(such as word counts in texts), to applications that belong to computational se-
mantics proper. One important benefit of this way of easing into the subject is
that it makes the reader aware of how much language processing has in common
with problem solving and data processing tasks that do not involve language. On
the face of it such an awareness might sit awkwardly with the cherished view of
many linguists that our ability to acquire and use language is unique among the
cognitive capacities we have; but I do not think that there is likely to be any real
conflict here. As demonstrated amply by the diversities of the actual algorithms
and programs presented in this book, what similarities between linguistic and non-
linguistic processing there are still leaves plenty of room for the cognitive distinct-
ness and uniqueness of those algorithms that characterise the computational aspects
of the human language capacity.

Although the book starts from scratch, and presupposes nothing beyond com-
mon sense, it nevertheless manages to penetrate into some of the more advanced
areas of computational semantics: the final chapters present continuation seman-
tics, discourse representation theory, and a system of dynamic epistemic logic that
serves as a first step in the direction of a full-fledged computational theory of verbal
communication. And yet, this wide span notwithstanding, the book complies with
current demands on texts in computational linguistics in that it presents for every
bit of theory that it introduces a Haskell implementation, which the reader can run
herself and play with, if she downloads the relevant, freely available supporting
software. The same goes for the numerous implementation-related exercises. This
means that the diligent student of this book will, by the time she gets to the end
of it, have not only learned a good deal about syntax and semantics, but have also
acquired much of that which distinguishes the computational from the theoretical
linguist.

All this goes to make this book into the important and innovative contribution
to the field of computational semantics that I think it is. Most important of all is
the influence that I believe and hope it will have on coming generations of compu-
tational linguists, by instilling in them the elements of sophisticated programming
expertise at the same time as introducing them to many aspects of theoretical lin-

xii Foreword

guistics, and conveying some of that passion for the structural aspects of language
that makes theoretical linguistics a must and (sometimes) a source of satisfaction
for the true linguist. It has been pointed out again and again that the practical po-
tential of computational linguistics, and of computational semantics as an essential
part of it, is immense. Still, it is fair to say that the practical achievements of com-
putational semantics have so far been quite limited. The reasons for that, I think,
are two-fold. Automated symbolic processing of natural language is notoriously
brittle: even where it is clear what the system should compute, it often lacks the
necessary resources, in particular wide coverage lexicons with substantive seman-
tic information and world knowledge in accessible form. But in many cases the
problem goes deeper. We still haven’t even properly understood yet what it is that
should be computed. These are hard problems, which will be solved – to the extent
that they can be solved at all – only by people who have the combination of skills
that are presented and taught here as parts that naturally fit into a coherent whole.

HANS KAMP

Professor of Formal Logic
and Philosophy of Language,
University of Stuttgart

Preface

This book on applications of logic in the semantic analysis of language pays the
reader the compliment of not assuming anything about what he or she knows (in
particular, no specific logical knowledge or experience with programming is pre-
supposed), while making very flattering assumptions about his or her intelligence
and interest in the subject matter.

The method used throughout in the book is the pursuit of logical questions and
implementation issues occasioned by concrete examples of formally defined lan-
guage fragments. At first, no distinction is made between formal and natural lan-
guage; in the first chapter it is explained why. At the end of the text the reader
should have acquired enough knowledge and skills for the development of (at least
the semantic part of) fairly serious Natural Language Processing applications. The
reader who makes it to the end of the book will also find that he or she has acquired
considerable programming skills, and will have learned how to put a wide variety
of logical systems to use for natural language analysis.

Throughout the text, abstract concepts are linked to concrete representations in
the functional programming language Haskell. Haskell is a language that is well
suited for our purposes because it comes with a variety of very easy to use inter-
preters: Hugs, GHCi, and Helium. Haskell interpreters, compilers, and documen-
tation are freely available from the Internet.† Everything one has to know about
programming in Haskell to understand the programs in the book is explained as
we go along, but we do not cover every aspect of the language. Further on we will
mention various good introductions to Haskell. The only thing we do assume is that
the reader is able to retrieve the appropriate software from the Internet, and that he
or she is acquainted with the use of a text editor for the creation and modification
of programming code.

The book is intended for linguists who want to know more about logic, including

† See http://www.haskell.org

xiii

xiv Preface

recent developments in dynamic logic and epistemic logic, and its applicability
to their subject matter, for logicians with a curiosity about applications of their
subject to linguistics, and for functional programmers who are interested in a new
application domain for their programming skills.

This text has quite a long prehistory. The prefinal version of this book grew out
of a series of lectures the first author gave at UiL OTS in the fall of 2000, for a
mixed audience of linguists and formal semanticists. This was extended with ma-
terial from a tutorial at the LOLA7 Pecs Summer School of 2002, with the results
of an implementation project for Theta Theory at UiL OTS, Utrecht, in the fall of
2002 (follow-up to a course on Theta Theory that the first author co-taught with
Tanya Reinhart), and with examples from a natural language technology course
developed in collaboration with Michael Moortgat.

This manuscript would have remained only an Internet resource if Helen Barton,
CUP editor in charge of linguistics and humanities, had not made a Spring visit to
UiL OTS in 2008, in enthousiastic pursuit of suitable textbook manuscripts. And
it would not have turned into the book you are now reading if it weren’t for an
intellectual support group, the reading group, which met up with the authors once
every two weeks, September through December 2008, for feedback. We really owe
its members a lot. The rock solid core of the group consisted of Arno Bastenhof,
Gianluca Giorgolo, Jeroen Goudsmit and Andres Löh, who were always there.
They kept us on track with their support and with their keen eye for failings of the
draft chapters under discussion. The members of the outer shell of the group, who
also made important contributions, were Marta Castella, Anna Chernilovskaya,
Stefan Holdermans, Matthijs Melissen, and Hanna de Vries. An early version of
the manuscript also had two anonymous Cambridge University Press readers, who
encouraged us to carry on with the project and gave valuable feedback.

There is a web page devoted to this book, at address

http://www.computational-semantics.eu,

where the full code given in the various chapters can be found. Suggestions and
comments on the text can be sent to the first author, at email address jve@cwi.nl,
and will be very much appreciated.

Acknowledgements Many thanks to the reading group; the names of the members
were mentioned above. Helen Barton, commissioning editor at CUP, was support-
ive and encouraging throughout, and CUP production editor Rosina Di Marzo gave
us generous help in the final stage of production. Thanks also to Herman Hendriks
for acting as an oracle on references, to Michael Moortgat for pleasant cooperation
with the first author in teaching various natural language technology courses, to
Rick Nouwen for joint work with the first author on implementations of pronomi-

Preface xv

nal reference algorithms, to Albert Visser for illuminating discussions on dynamic
semantics, life and everything, to Krzysztof Apt and Willemijn Vermaat for advice
on LATEX matters, to the course participants of the first author’s UiL OTS courses, to
the participants in the 2002 Pecs Summer School Tutorial, and to Nicole Gregoire
and Rianne Schippers, members of the 2002 Theta Theory implementation group
for pleasant discussions. Theo Janssen made a number of useful suggestions con-
cerning presentation. Aarne Ranta gave valuable advice, as did Doaitse Swierstra.
Harm Brouwer, Matteo Capelletti, Daniël de Kok, Nickolay Kolev, Greg Matheson,
Stefan Minica, Patrick O’Neill, Jim Royer, and Ken Shirriff sent us corrections via
email. Yoad Winter, Makoto Kanazawa, and Reinhard Muskens corresponded with
us about issues of intensionalization. Shalom Lappin tried out a version of the book
in a course, which resulted in numerous update requests, inspiring editorial sugges-
tions and bug reports. Finally, we thank Hans Kamp for having graced the book
with a foreword.

JAN VAN EIJCK, Amsterdam
CHRISTINA UNGER, Bielefeld

1
Formal Study of Natural Language

Summary
This chapter introduces computational semantics as the art and science of comput-
ing meanings for the expressions of a language. The chapter starts with a general
overview of the formal study of language. The broad areas of syntax, semantics
and pragmatics are distinguished, and the concept of meaning is discussed. Since
the book will focus on language as a tool for describing states of affairs and for
conveying information, and since logicians have designed special purpose tools for
just these tasks, logic will be important to us. The chapter emphasizes the similar-
ities between natural languages and the formal languages that have been designed
by logicians and computer scientists. The chapter ends with a discussion of the
usefulness of (functional) programming for computational semantics, and with an
overview of the rest of the book.

1.1 The Study of Natural Language
Language is one of the most remarkable capacities of human beings and one of the
distinctive features that set us apart from other inhabitants of this planet. Human
languages are sophisticated systems for manipulating information-encoding sym-
bols, and for composing sounds into structured expressions such as words, phrases,
and sentences. These expressions can then serve in numerous ways for commu-
nicative actions like information exchange, persuading and deceiving, expressing
thoughts, reasoning, and much more.

Linguistics is the scientific study of human language. To make linguistics into a
science it is necessary to specify the object of study. In his book Syntactic Struc-
tures (1957) the linguist Noam Chomsky made the influential proposal to identify
a human language with the set of all correct (or: grammatical) sentences of that
language. This idealization abstracts from cognitive limitations of language users.
Chomsky called the ability of language users to recognize the members of this set,

1

2 Formal Study of Natural Language

at least in principle, competence, and he distinguished this from performance, the
actual abilities of language users, affected by conditions like memory limitations,
distraction, and errors. In this book we will make the same distinction. We will
focus on studying competence and therefore assume that a particular language is
given to us as a set of sentences.

What exactly makes us competent speakers of our language? What is linguistic
knowledge? It is certainly something we have only limited access to. For most
speakers of a language the rules and regularities of their native tongue are implicit.
They know how to apply them correctly, but when asked to state them, they usually
are at a loss. Explicit descriptions of the rules and regularities of a language are
called grammars. Grammars can be viewed as models of our language competence.

How grammars are represented as a cognitive device in the brain of the language
user, we have no way of knowing. As a matter of fact, grammars can be repre-
sented in very different ways. In everyday life we encounter them, for example in
dictionaries, in online language references, and in textbooks for learning foreign
languages. Their design differs with their purpose. Grammars for language learn-
ers usually follow pedagogical guidelines and may oversimplify rules. Grammars
used in linguistics usually aim to be as explicit and complete as possible. They
may start with specifying basic elements such as sounds, words, and meanings.
They then state rules for how to combine these into more complex structured ex-
pressions. Usually there are various representation levels, in accordance with the
subdisciplines of grammar theory:

• Phonology explores what the smallest meaning-distinguishing units (sounds)
are and how they are combined into the smallest meaning-carrying units (mor-
phemes).

• Morphology is concerned with how morphemes are combined into words.
• Syntax studies how words are combined into phrases and sentences.
• Semantics investigates meanings of basic expressions and how meaning is as-

signed to complex expressions based on the meaning of simpler expressions and
syntactic structure.

In this book, we will not be concerned at all with phonology, and we will also
ignore most aspects of morphology. We will concentrate on linguistic form at
the level of phrases and sentences. That means we will start with words as basic
building blocks. The main task then will be to develop a grammar that provides us
with notions of syntactic well-formedness and syntactic structure, and allows us to
develop the notion of meaning for well-formed structures. Thus, our grammars

• should be capable of building exactly those expressions that are well-formed in
the language of our choice,

1.2 Syntax, Semantics, and Pragmatics 3

• should determine the constituents of complex linguistics expressions, as well as
their internal structure,

• and should allow us to assign appropriate meanings to syntactically well-formed
expressions, on the basis of their structure.

In other words, the notion of syntactic well-formedness allows us to determine
whether a particular expression is indeed a well-formed expression of a given cat-
egory, and to determine its internal structure. The structure in turn will help us to
relate the linguistic forms to the extralinguistic world (what they are about).

1.2 Syntax, Semantics, and Pragmatics
A basic trichotomy in the study of language is that between syntax, semantics,
and pragmatics. Roughly speaking, syntax concerns the form aspect of language,
semantics its meaning aspect, and pragmatics its use. Developing insight about the
semantics of a language presupposes knowledge of the syntax of that language;
study of language use presupposes knowledge about both syntax and semantics. It
is not surprising, then, that for lots of languages we know more about their syntax
and semantics than about pragmatic aspects of their use. Here are approximate
definitions of the three notions:

Syntax is the study of strings and the structure imposed on them by grammars
generating them.

Semantics is the study of the relation between strings and their meanings, i.e. their
relation with the extralinguistic structure they are about.

Pragmatics is the study of the use of meaningful strings to communicate about
extralinguistic structure in an interaction process between users of the lan-
guage.

In a slogan: syntax studies Form, semantics studies Form + Content, and pragmat-
ics studies Form + Content + Use. In this chapter we will examine what can be
said about this trichotomy in concrete cases.

It is a matter of stipulation what is to be taken as ‘form’ in natural language. In
the following we will concentrate on written language, more specifically on well-
formed sentences. Thus, we will look at languages as sets of strings of symbols
taken from some alphabet.

This choice makes it particularly easy to bridge the gap between formal and
natural languages, for formal languages can also be viewed as sets of strings. The
difference between natural and formal languages lies in the manner in which the
sets of strings are given. In the case of formal languages, the language is given
by stipulative definition: a string belongs to the language if it is produced by a

4 Formal Study of Natural Language

grammar for that language, or recognized by a parsing algorithm for that language.
A parsing algorithm for C, say, can be wrong in the sense that it does not comply
with the International Standard for the C programming language, but ultimately
there is no right or wrong here: the way in which formal languages are given is a
matter of definition.

In the case of natural languages, the situation is quite different. A proposed
grammar formalism for a natural language (or for a fragment of a natural language)
can be wrong in the sense that it does not agree with the intuitions of the native
speakers of the language. Whether a given string is a well-formed sentence of
some language is a matter to be decided on the basis of the linguistic intuitions of
the native speakers of that language.

Once a grammar for a language is given, we can associate structures with sen-
tences. For natural languages, native speakers have intuitions about which con-
stituents of a sentence belong together, and a natural language grammar will have
to comply with these judgements. This might constitute an argument for consider-
ing constituent trees rather than strings as the forms that are given.

Still other choices are possible, depending on one’s aim. If one considers the
problem of natural language recognition, one might consider strings of phonemes
(smallest distinctive units of sound of a language) as the basic forms. If one wants
to allow for uncertainty in language recognition, the basic forms become lists of
words with the possibility of choice, so-called word lattices (with full proof and
fool proof listed on a par as alternatives), or phoneme lattices (strings of phonemes
involving the possibility of choice). Maybe we can attach probabilities to the
choices. And so on. And so on.

An alternative road to meaning is pointing, or direct demonstration, arguably the
starting point of basic concept learning. One’s views of the principles of concept
learning tend to be coloured by philosophical bias, so let us not get carried away
by speculation. Instead, here is an account of first-hand experience. This is how
Helen Keller, born deaf-mute and blind, learnt the meaning of the word water from
her teacher, Miss Sullivan:

We walked down the path to the well-house, attracted by the fragrance of the honeysuckle
with which it was covered. Some one was drawing water and my teacher placed my hand
under the spout. As the cool stream gushed over one hand she spelled into the other the
word water, first slowly, then rapidly. I stood still, my whole attention fixed upon the
motions of her fingers. Suddenly I felt a misty consciousness as of something forgotten –
a thrill of returning thought; and somehow the mystery of language was revealed to me. I
knew then that “w-a-t-e-r” meant the wonderful cool something that was flowing over my
hand. That living word awakened my soul, gave it light, hope, joy, set it free!

[Kel02, p. 34]

1.3 The Purposes of Communication 5

Explanations of meaning fall in two broad classes: meaning as knowing how
and meaning as knowing that. If we say that Johnny doesn’t know the meaning
of a good spanking, we refer to operational meaning. If Helen Keller writes that
water means the wonderful cool something that was flowing over her hand, then
she refers to meaning as reference, or denotational meaning.

Usually the two are intertwined. Suppose we ask you directions to the Opera
House. You might say something like: ‘Turn right at the next traffic light and you
will see it in front of you.’ Understanding the meaning of this involves being able
to follow the directions (being able to work out which traffic light counts as the
‘next’ one, which direction is ‘right’, and being able to recognize the building in
front). Phrased in terms of ‘being able to work out . . . ’, ‘being able to recognize
. . . ’, this is meaning as knowing how. Being able to understand the meaning of
the directions also involves being able to distinguish correct directions from wrong
directions. In other words, the directions classify situations, with me being po-
sitioned at some location in some town, facing in a particular direction: in some
situations the directions provide a description which is true, in other situations a
description which is false. This is denotational meaning.

Denotational meaning can be formalized as knowledge of the conditions for truth
in situations. Operational meaning can be formalized as algorithms for performing
(cognitive) actions. The operational semantics of plus in the expression seven plus
five is the operation of adding two natural numbers; this operation can be given as
a set of calculating instructions, or as a description of the workings of a calculating
machine. The distinction between denotational and operational semantics is basic
in computer science, and often a lot of work is involved in showing that the two
kinds match.

Often operational meaning is more fine-grained than denotational meaning. For
instance, the expressions seven plus five and two times six both refer to the natural
number twelve, so their denotational meaning is the same. But they have different
operational meaning, for the recipe for adding seven and five is different from the
recipe for multiplying two and six.

1.3 The Purposes of Communication
The most lofty aim of communication is to use language as a tool for collective
truth finding. But language is also a tool for making your fellow citizens believe
things, or for confusing your enemies. Even if two language users agree on non-
deception, this does not exclude the use of irony.

A very important use of language, and one that we will be concerned with a lot
in the following pages, is as a tool for describing states of affairs and as a reasoning
tool. This is a use which formal languages and natural language have in common.

6 Formal Study of Natural Language

Formal languages are often designed as query tools or reasoning tools, or at least
as tools for formal reconstructions of reasoning processes. Therefore, they are a
natural focus point for the formal study of language.

One can look at it like this. Suppose we want to use language to communicate
basic facts, like ‘the sun is shining’, ‘it is cold’, ‘it is raining’, and so on. If you
want to deny such a fact, you need to be able to say a thing like ‘it is not cold’. You
might also wish to express your uncertainty about which of two facts is the case,
so you might like to say ‘either it is cold or it is raining’. Similarly, you might like
to say ‘it is cold and it rains’, or: ‘if it rains, then it is cold.’ So the ingredients
of just about the simplest kind of communication are: basic facts, negations, con-
junctions, disjunctions, and implications. A fragment of natural language that has
only these is already quite useful. In fact, the usefulness of this simple fragment
has been evident to logicians for a long time. The study of what can be expressed
in this fragment is called propositional logic or Boolean logic, after the British
mathematician George Boole (1815–1864).

To see how propositional logic can be used to express what goes in simple com-
municative discourses, suppose we want to talk about basic facts a, b. Suppose you
know nothing about whether these facts are true or not. Then for you there are
four possibilities: both facts are true, both facts are false, the first fact is true and
the second one is false, or the first fact is false and the second one is true. Now
we tell you ‘a or b’. If you believe us, this will allow you to rule out one of the
four possibilities, the possibility where both a and b are false. Or if you take our
statement in the exclusive sense, it will even allow you to rule out two of the four
possibilities. Your knowledge has grown by elimination of possibilities.

Exercise 1.1 We have seen that (complete) ignorance about the truth or falsity of two facts
can be modelled as uncertainty between four possibilities. Now suppose there are ten basic
facts. How many possibilities would that give? How about the general case of n basic
facts?

If you just want to study simple factual information exchange, it makes sense to
focus on the fragment of natural language that can be translated into propositional
logic. But suppose you want to be more explicit about expressing relations be-
tween things. If you wish to declare your love to someone, say, then stating a basic
proposition like ‘there is love’ is maybe not articulate enough. You might wish
to say something more daring, like ‘I love you.’ Talk like this expresses relations
between subjects and objects. You can use pronouns like ‘I’ and ‘you’, but also
proper names. You can still do the propositional stuff, like disjunctions, negations,
but you can also express quantificational facts. You can use the power of quantifi-
cation to add to your romantic declaration, strengthening it to ‘I love no-one but
you’. You are now in the realm that is called predicate logic.

1.3 The Purposes of Communication 7

You can say interesting things with predicate logic, at least if you know how to
use it, for predicate logic is very expressive. We will see below that predicate logic
gets us a long way in expressing the meanings of natural language statements. Still
more expressive is typed higher-order logic, which will also be used extensively in
this book. In typed logic you can say more abstract (but still romantic) things like
‘To love someone like you makes me very happy.’ Finally, at the end of the book,
we will have a look at the logic of knowledge, or epistemic logic. This will shed
light on the meaning of statements like ‘I am not completely sure whether I still
love you.’ It will also allow us to give an abstract picture of how communication by
means of declarative statements leads to growth of knowledge, in subtle ways. We
will study growth of audience knowledge about what the speaker knows, but also
growth of speaker knowledge about audience knowledge about speaker knowledge,
and so on.

Logic is a field that has made tremendous progress by focussing on well-defined
formal languages, such as the example languages above, and studying their proper-
ties in depth. It is possible to view logical languages like the language of proposi-
tional logic or the language of predicate logic as fragments of natural language, by
focussing at the specific set of sentences of natural language that can be translated
into the logical language. This is going to be an important method in this book.
This method of fragments, of taking things step by step, was first proposed for nat-
ural language analysis by logician and philosopher Richard Montague (1930–1971)
in the 1970s, when he made the following famous statement:

There is in my opinion no important theoretical difference between natural languages and
the artificial languages of logicians; indeed, I consider it possible to comprehend the syn-
tax and semantics of both kinds of languages within a single natural and mathematically
precise theory.

[Mon74b, p. 222]

Montague’s pioneering work has shown how natural languages can be formally
described using techniques borrowed from logic. It introduced tools to compute
meanings in a systematic way and gave rise to a whole tradition of formal seman-
tics, a very general term covering logical approaches to natural language semantics.

Our ultimate goal is to form an adequate model of parts of our language compe-
tence. Adequate means that the model has to be realistic in terms of complexity and
learnability. We will not be so ambitious as to claim that our account mirrors real
cognitive processes, but what we do claim is that our account imposes constraints
on what the real cognitive processes can look like. In the rest of this chapter, we
are going to explore the means that will help us fulfilling this goal.

8 Formal Study of Natural Language

1.4 Natural Languages and Formal Languages
English, Swedish, Russian, and Hindi are natural languages. The language of pri-
mary school arithmetic, the language of propositional logic, and the programming
language Haskell are formal languages. But the distinction is not absolute, since
we can find cases in between, like Esperanto. In order to see whether we can draw
a dividing line, let us look at some crucial design features of human languages.

• Duality of patterning (or double articulation): The construction of linguistic
content can be analyzed on two structural levels. One is the level containing the
smallest meaningful units of language: morphemes or words, like cat. However,
they are not minimal but on another level are made of a small set of speech
sounds, the so-called phonemes. These do not carry a meaning themselves but
only differentiate meaningful units, e.g. /k/ and /m/, that distinguish between cat
and mat.

• Recursion: Structural patterns in sentences or phrases can repeat themselves. A
common noun bird can be modified to a complex common noun green bird, this
can be modified again, to form small green bird, and again, to form beautiful
small green bird.

• Contextuality: What a phrase or sentence means is determined in part by the
context in which the phrase is used.

Exercise 1.2 Pollard and Sag, in their textbook [PS94], give the following example of the
use of recursion to extend sentences:

• Sentences can go on.
• Sentences can go on and on.
• Sentences can go on and on and on.
• Sentences can go on and on and on and on.
• . . .

Can you give a concise description of this recursion pattern?

Exercise 1.3 Does it follow from the example in Exercise 1.2 that there are infinitely many
English sentences? Or does it follow that English sentences can have infinite length? Or
both?

The properties of duality of patterning, recursion, and contextuality set human
languages apart from communicative systems of animals, such as bee dancing.
They are responsible for the creative economy of language, because they allow us
to build and understand infinitely many sentences using only finitely many sounds
and rules – a precondition for enabling children to learn language as quickly and
easily as they do.

Another key notion when talking about properties of human languages is compo-
sitionality. The so-called principle of compositionality will concern us a lot in what

1.4 Natural Languages and Formal Languages 9

follows. This principle is usually attributed to the German mathematician Gottlob
Frege (1848–1925). What it says is that the meaning of a complex expression de-
pends on the meanings of its parts and the way they are combined syntactically.
This formulation is quite vague, however, because nothing is said yet about what
meanings are, what counts as a part of an expression, and what kind of dependence
we are talking about. In order to make sense, the principle has to be specified with
respect to these matters. Moreover, it is meaningful only when understood against
the background of further requirements on a semantic theory, for example the re-
quirement that meaning assignment is systematic. Such a systematic account will
capture the fact that once we know the meaning of white unicorn and brown elk,
we also know what brown unicorn and white elk mean.

Compositionality does not occur in our list of the crucial properties of human
languages listed above, because we assume that it is primarily a matter of method-
ology. The question is not whether natural languages satisfy the principle of com-
positionality, but rather whether we can and want to design meaning assembly in a
way that this principle is respected. Setting up the representation of meaning in a
compositional way has the merit of elegance, but it is not always straightforward.
A recurring difficulty is the context-dependence of natural language meaning. To
state the meaning of a pronoun, information is needed about the context in which
the pronoun occurs. Something similar holds for presuppositions. In such cases,
there are in general two kinds of reactions. The easy way out is to give up on
compositionality. The other kind of reaction is to enrich and extend our semantic
theory in ways that allow us to capture seemingly non-compositional phenomena
in a compositional way. We will return to these matters in due time, when we take a
closer look at pronoun resolution, in Chapter 12, and at presupposition, in Chapter
13.

Besides natural languages, there are other symbol-manipulating systems that
also show some of the properties listed above, for example the language of pred-
icate logic and high-level programming languages like C, LISP, and Haskell. But
these apparently lack other properties of human languages. For example, they
lack the whole pragmatic dimension that human languages employ: deception,
irony, conveying information without explicitly stating it, and capabilities like cre-
ating and understanding metaphors. Formal languages also lack the flexibility of
human languages induced by vagueness together with heavy use of context and
background knowledge. These differences, in fact, are the reason why natural lan-
guages are well-suited for efficient inter-human communication, whereas formal
languages excel for doing mathematics and for interacting with computers.

These important differences become visible if we focus on the way natural lan-
guages and formal languages are used. The differences disappear from view if we
look at languages as sets of sentences. When we focus on fragments of natural

10 Formal Study of Natural Language

languages and describe their grammar in a formal way, we are, in fact, doing just
the same as when describing formal languages.

1.5 What Formal Semantics is Not
A widespread prejudice against formal semantics for natural language is that it is
just an exercise in typesetting. You explain the meaning of and in natural language
by saying that the meaning of Toto barked and Dorothy smiled equals A and B,
where A is the meaning of Toto barked and B is the meaning of Dorothy smiled. It
looks like nothing is gained by explaining and as and.

The answer to this is that and refers to an operation one is assumed to have
grasped already, namely the operation of taking a Boolean meet of two objects
in a Boolean structure. Assuming that we know what a Boolean structure is, this
is a real explanation, and not just a typesetting trick. On the other hand, if one
is just learning about Boolean structures by being exposed to an account of the
semantics of propositional logic, it may well seem that nothing happens in the
semantic explanation of propositional conjunction.

A well known story about the linguist Barbara Partee has it that she once ended a
course on Montague semantics with the invitation to her students to ask questions.
As this was the end of the course, they could ask any question, however vaguely
related to the subject matter. So a student asked: ‘What is the meaning of life?’ And
Partee said: ‘To answer that question we just have to see how Montague would treat
the word life. He would translate it into his intensional logic as the constant life’,
and he would use a cup operator to indicate that he was referring to the meaning,
i.e. the extension in all possible worlds. So the answer to your question is: the
meaning of life is ^life’. Any other questions?’

The core of the problem is that it is hard to avoid reference to meaning by means
of symbols anyway. Compare the process of explaining the meaning of the word
bicycle to someone who doesn’t speak English. One way to explain the meaning of
the word is by drawing a picture of a bicycle. If your pupil is familiar with bicycles,
the meaning will get across once he or she grasps that the drawing is just another
way to refer to the actual meaning. The drawing itself is just another symbol, for
® is just another way to refer to bicycles. In the same way and is just another
symbol for Boolean meet.

One of the things that make the study of language from a formal point of view so
fascinating is that we can borrow insights from the formal sciences – mathematics,
logic, and theoretical computer science – just like linguistics also borrows insights
from psychology, philosophy, and so on. Formal insights and tools can be used
for modelling language competence in a clear and precise framework, that finally
allows us to implement natural language in a machine. Whether this is helpful

1.6 Computational Semantics and Functional Programming 11

depends on one’s aims. When we decide to concern ourselves with the processing
of language by means of computers, formal methods are indispensable, because
we cannot rely on informal insights of the language user, for computers do not
learn languages the way humans do. To put meanings into a computer, we have
to represent meanings exactly and compactly. To this end we are going to use
meaning representations in a formal language, which has the advantages of being
unambiguous and precise, and which also gives us the possibility to prove our
claims and supplies us with a tool for reasoning.

In contrast with the situation with informal studies, we will forge the conceptual
tools for our study ourselves, by means of formal definitions. These definitions are
meant to be taken very literally. Time and again it will prove necessary to remind
oneself of the definitions to understand the analysis. In this respect formal study is
quite different from reading novels. The formal approach to language invites you
to chew, and chew, and chew again, to arrive at proper digestion. If you are not yet
used to reading things written in formal style, you might have the feeling that the
explanations go too fast for you. This is not your fault, and besides, the remedy is
easy: simply remind yourself to proceed more slowly.

1.6 Computational Semantics and Functional Programming
The approach to natural language semantics that was propagated by Richard Mon-
tague – sometimes called the Montagovian program – has proved very fruitful in
the past three decades. More recently, in the last decade and a half, a discipline
of so-called functional programming has developed that is a natural fit for the ap-
proach of Montague. Like Montague grammar, functional programming is based
on the so-called typed lambda calculus.

Now, why, indeed, should linguists have to acquire programming skills at all?
Functional programming is a useful skill for linguists not only because of the dove-
tail fit with Montague grammar, but also because it allows illuminating experiments
with linguistic rule formats. Implementing a rule system forces the linguist to be
fully precise about the rules he or she proposes. You will find that once you are
well-versed in functional programming, your programming efforts will give you
immediate feedback on your linguistic theories.

There are basically two things that machines are used for in computational se-
mantics. One is automatizing the construction of meaning representations. The
other one is operating on the results. Possible operations are model checking
(or model building) and performing inference tasks. Such operations are essen-
tial for Natural Language Processing applications, e.g. for searching for informa-
tion within documents or databases (information retrieval), as implemented in web
search engines, for developing and implementing dialogue systems or question-

12 Formal Study of Natural Language

answering systems, and in the long run also for having machines performing arti-
ficial intelligence tasks.

But besides these practical applications, there are also benefits that arise from
the process of automatizing the construction of meaning representations. In this
context, the choice of functional programming is not accidental. With Haskell,
the step from formal definition to program is particularly easy. This presupposes,
of course, that you are at ease with formal definitions. Our reason for combining
training in reasoning and computational linguistics with an introduction to func-
tional programming is that they can mutually be fruitful for each other. On the one
hand, the Haskell programs will serve as concrete illustrations of the things that
computational semantics allows you to compute. And on the other hand, being
forced to be fully explicit about the semantic theory you want to implement can
give you insights in how to refine and improve your theory. Also, since program-
ming languages like Haskell rest on a solid formal basis, implementing a semantic
theory offers an easy way to check that it is correct and that it does what it is sup-
posed to do (or what you expect it to do). We hope to show you in the course of the
book how Haskell can help in reflecting on the formal semantics you want to use.
After all, computational semantics is to a large extent not only the science but also
the art of processing meaning by computer.

Most current work on computational semantics uses Prolog, a language based on
predicate logic and designed for knowledge engineering. We have decided to steer
away from this tradition. Prolog programs are meant to be implementations of logi-
cal predicates, but there is a snag. To make Prolog into a full-fledged programming
language, control operators had to be added, such as ‘assert’, ‘retract’, and ‘cut’.
Without the power of this control the language is simply not expressive enough, but
the control effects make Prolog programs often hard to understand and debug, and
they spoil the logical purity. Unlike the logic programming paradigm, the func-
tional programming paradigm allows for logical purity. Functional programming
can yield implementations that are remarkably faithful to formal definitions. At
this stage this is just a statement of a claim, of course, but the rest of the book
can be viewed as an illustration of this claim. Our use of Haskell imposes no lim-
itations on us, by the way. If one needs Prolog-like features, Haskell can easily
provide them, as is demonstrated by the embedding of Prolog in Haskell in [SS99].

1.7 Overview of the Book
Although this book focuses on semantics, we cannot avoid saying a thing or two
about syntax. We will be agnostic about the general format of natural language
syntax, and try to get by with the simplest formalisms that allow us to make our
points about semantics. This means that we will rely on context-free rewriting

1.7 Overview of the Book 13

rules wherever possible. In the spirit of the method of fragments, we believe that
syntactic formalisms should not be complicated without necessity.

Many of our fragments will in fact be fragments of formal languages, but as
our fragments grow larger, the dividing line between the formal languages and
the mini-fragments of natural language will get blurred. Formal languages are
indispensable in computational semantics anyway, as representation languages for
meaning. In the choice of meaning representation languages we will also try to
work with the simplest possible candidate that will allow us to illustrate what we
have to say about natural language meaning. In the course of the book, we will
discuss the syntax and semantics of simple games, the syntax and semantics of
propositional logic and predicate logic, the syntax and semantics of various typed
logics, and the syntax and semantics of propositional epistemic logic, i.e. the logic
of propositional knowledge.

Chapter 2 gives an overview of the computational formalisms that we are going
to use: set notation, lambda calculus, types, and functional programming. Next, in
Chapter 3, the reader will get a crash course in functional programming. Chapter
4 presents a number of syntactic fragments, and Chapter 5 treats the semantics of
those fragments in a precise way, including implementations, except for the seman-
tics of predicate logic. Chapter 6 treats the important topic of model checking for
predicate logic. This will introduce the reader to what it means to relate expres-
sions of a language fragment to appropriate structures in the outside world. It will
also give a first example of systematic translation from syntactic form into logical
form, where logical form appears in the shape of the syntax of predicate logic. In
Chapter 7 we take a more systematic look at the process of meaning composition,
and at the typed logical tools needed for this. Chapter 8 treats the important dis-
tinction between extension and intension of expressions, allowing us to construct
plausible meanings for intensional constructs like ‘fake princess’ and ‘wanting to
catch a dwarf.’ Chapter 9 covers the whole road from syntactic analysis (natural
language parsing) to translation into logical form. The next Chapter, 10, devel-
ops the theme of relational interpretation; this leads to a type-theoretic account
of the process of operator scoping. The Chapter ends with the development of a
framework for underspecified logical form. Chapter 11 gives an introduction to
an alternative perspective on the process of constructing natural language meaning
representations, by means of so-called continuation passing style processing. A
more specific example of this is given in Chapter 12, where pronoun linking and
reference resolution are analysed in the context of a general theory of discourse
representation and context. The final Chapter, 13, broadens the scope still further,
and sketches the outlines of a general theory of communication as informative ac-
tion, thus linking the area of natural language semantics to that of pragmatics. It
will turn out that presupposition and the notion of the appropriateness of answers

14 Formal Study of Natural Language

to questions can be analysed in the context of the communicative uses of natural
language. In this connection we will discuss concepts such as common knowledge
between speaker and audience, to analyse what happens when declarative state-
ments of natural language are made in front of an audience, and we will look at
declarations and questions as communicative actions of different kinds.

1.8 Further Reading
The important distinction between competence and performance is from Chomsky
[Cho57]. A classic textbook on the application of logical methods to the study of
language is Reichenbach [Rei47]. A beautiful book on historical and philological
aspects of the evolution of word meaning is C.S. Lewis [Lew60]. The viewpoint
that the real mystery in the understanding of natural language lies in the way human
beings grasp meanings of single words can be found in Plato’s dialogue Cratylus.
Percy’s [Per83] has a particularly amusing version of this. Helen Keller [Kel02]
gives a moving account of the process of awakening by grasping the concept of
language.

An excellent introduction to what the principle of compositionality involves is in
[Gam91a]. See [Jan97] for further information, and [BJ07] for recent discussion.

An accessible introduction to Montague grammar is [DWP81]. Many of the key
papers in formal semantics are collected in [PP02]. Foundations of computational
semantics are discussed in [FL05]. Broad coverage of topics in logic and language
can be found in [BtM97]. An overview of developments in semantics of natural
language is given in [Lap97].

2
Lambda Calculus, Types, and Functional Programming

Summary
This chapter explains the basics of formal notation, lambda calculus, type theory,
and functional programming.

2.1 Sets and Set Notation
All mathematical and logical concepts we will come across in the course of the
book can be defined in terms of the fundamental concept of a set. We will thus
start by introducing some basic set theory.

A set is a collection of definite, distinct objects. This is too vague for a definition,
but unfortunately we cannot do better, and fortunately that does not matter. Let us
give some examples of sets instead. Our first example is the set of words in the
third edition of the Oxford Advanced Learner’s Dictionary of Current English.
Other examples are the set of colours of the Dutch flag, or the set of letters of the
Greek alphabet. Yet another example is the set of even natural numbers greater
than seven. And so on.

The elements of a set are also called its members. To indicate that a is an element
of a set A we write a ∈ A. To deny that a is an element of a set A we write
a /∈ A. The symbol ∈ is the symbol for membership. The elements of a set can
be anything: words, colours, people, numbers. The elements of a set can also
themselves be sets. The set consisting of the set of even natural numbers and the
set of odd natural numbers is an example. This set has two members; each of these
members has an infinite number of members.

To check whether two sets are the same one has to check that they have the
same members. The fact that membership is all there is to set identity, or that sets
are fully determined by their members, is called the principle of extensionality. It
follows that to check that two sets A and B are identical, one has to check two

15

16 Lambda Calculus, Types, and Functional Programming

things: (i) does it hold that every element a of A is also an element of B, and (ii)
does it hold that every element b of B is also an element of A?

To specify a set, there are several methods: give a list of its members, as in
‘the set having the numbers 1, 2, and 3 as its only members’, give some kind of
semantic description, as in ‘the set of colours of the Dutch flag’, or separate out a
set from a larger set by means of a suitable restriction. This last method is called
the method of set comprehension. Here is an example: the even natural numbers
are the natural numbers with the property that division by 2 leaves no remainder.
We can express this by means of the multiplication operator, as follows:

E = {2n | n ∈ N}.

The braces are also used to list the members of a finite set:

D = {red,white, blue}.

Mentioning a set element more than once does not make a difference. The set

{white, blue,white, red}

is identical to the set D, for it has the same members.
Another way of specifying sets is by means of operations on other sets. An

example is the following definition of the odd natural numbers:

O = N− E.

Here N − E is the set of all elements of N that are not members of E. Equivalent
definitions are the following:

O = {n ∈ N | n /∈ E}

or

O = {n | n ∈ N, n /∈ E}

or

O = {2n+ 1 | n ∈ N}.

Some important sets have special names. N is an example. Another example is Z,
for the set of integer numbers. Yet another example is the set without any members.
Because of the principle of extensionality there can be only one such set. It is called
∅, or the empty set.

If every member of a set A is also a member of set B we say that A is a subset
of B, written as A ⊆ B. If A ⊆ B and B ⊆ A then it follows by the principle of
extensionality that A and B are the same set. Conversely, if A = B then it follows
that A ⊆ B and B ⊆ A.

2.2 Relations 17

Exercise 2.1 Explain why ∅ ⊆ A holds for every set A.

Exercise 2.2 Explain the difference between ∅ and {∅}.

The complement of a set A, with respect to some fixed universe U with A ⊆ U ,
is the set consisting of all objects in U that are not elements of A. A universe set
U is also called a domain. The complement set U −A is written as A. It is defined
as the set {x | x ∈ U, x /∈ A}. For example, if we take U to be the set N of natural
numbers, then the set of even numbers is the complement of the set of odd numbers
and vice versa.

Exercise 2.3 Check that A = A.

2.2 Relations
Usually, we are not only interested in meaningful collections of objects but also
in the ways in which objects are related to each other. Examples of how objects
can be related are numerous, ranging from family relations between people, like
motherhood, being married, or being the brother of someone’s sister-in-law, to
mathematical relations between numbers, like divisibility or being twin primes.

Formally, we can describe a relation between two sets A and B as a collection
of ordered pairs (a, b) such that a ∈ A and b ∈ B. An ordered pair is, as the
name already gives away, a collection of two distinguishable objects, in which the
order plays a role. E.g. we use (Bonnie,Clyde) to indicate the ordered pair that has
Bonnie as its first element and Clyde as its second element.

The notation for the set of all ordered pairs with their first element taken from
A and their second element taken from B is A × B. This is called the Cartesian
product of A and B. A relation between A and B is a subset of A×B.

The Cartesian product of the sets A = {a, b, . . . , h} and B = {1, 2, . . . , 8}, for
example, is the set

A×B = {(a, 1), (a, 2), . . . , (b, 1), (b, 2), . . . , (h, 1), (h, 2), . . . , (h, 8)}.

This is the set of positions on a chess board. And if we multiply the set of chess
colours C = {White,Black} with the set of chess figures,

F = {King,Queen,Knight,Rook,Bishop, Pawn},

we get the set of chess pieces C×F . If we multiply this set with the set of chess po-
sitions, we get the set of piece positions on the board, with ((White,King), (e, 1))
indicating that the white king occupies square e1. To get the set of moves on a chess
board, take ((C×F)×((A×B)×(A×B))), and read ((White,King), ((e, 1), (f, 2)))

18 Lambda Calculus, Types, and Functional Programming

as ‘white king moves from e1 to f2’, but bear in mind that not all moves in
((C × F)× ((A×B)× (A×B))) are legal in the game.

Exercise 2.4 Take A to be the set {Kasparov,Karpov,Anand}. Find A × A. This is
sometimes also denoted by A2.

As an example of a relation as a set of ordered pairs consider the relation of
authorship between a set A of authors and a set B of books. This relation associates
with every author the book(s) he or she wrote. It can be represented as a set, e.g.
{(L. Frank Baum, The Wonderful Wizard of Oz), (Jan Weirich, Fimfarum), (Michael
Ende, The Neverending Story), (Michael Ende, Momo), . . .}.

Sets of ordered pairs are called binary relations. We can easily generalize this to
sets of triples, to get so-called ternary relations, to sets of quadruples, and so on.
An example of a ternary relation is that of borrowing something from someone.
This relation consists of triples, or: 3-tuples, (a, b, c), where a is the borrower, b
is the owner, and c is the thing borrowed. In general, an n-ary relation is a set of
n-tuples (ordered sequences of n objects). We use An for the set of all n-tuples
with all elements taken from A.

Unary relations are called properties. A property can be represented as a set,
namely the set that contains all entities having the property. For example, the
property of being divisible by 3, considered as a property of integer numbers, cor-
responds to the set {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.

An important operation on binary relations is composition. If R and S are binary
relations on a set U , i.e. R ⊆ U2 and S ⊆ U2, then the composition of R and S,
notation R ◦ S, is the set of pairs (x, y) such that there is some z with (x, z) ∈
R and (z, y) ∈ S. E.g. the composition of {(1, 2), (2, 3)} and {(2, 4), (2, 5)} is
{(1, 4), (1, 5)}.

Exercise 2.5 What is the composition of {(n, n+ 2) | n ∈ N} with itself?

Another operation on binary relations is converse. If R is a binary relation,
then its converse (or: inverse) is the relation given by Ř = {(y, x) | (x, y) ∈ R}.
The converse of the relation ‘greater than’ on the natural numbers is the relation
‘smaller than’ on the natural numbers. If a binary relation has the property that
Ř ⊆ R, then R is called symmetric.

Exercise 2.6 Show that it follows from Ř ⊆ R that R = Ř .

If U is a set, then the relation I = {(x, x) | x ∈ U} is called the identity relation
on U . If a relation R on U has the property that I ⊆ R, i.e. if every element of U
stands in relation R to itself, then R is called reflexive. The relation ≤ (‘less than
or equal’) on the natural numbers is reflexive, the relation < (‘less than’) is not.

2.3 Functions 19

The relation A2 − I is the set of all pairs (x, y) ∈ A2 with x �= y. If A is the set
of chess players {Kasparov,Karpov,Anand}, then A2− I gives the relation where
each player plays against each of the other players (once with white, once with
black – assuming that the order indicates that the first player plays with white).

A relation R is called transitive if it holds for all x, y, z that if (x, y) ∈ R and
(y, z) ∈ R, then also (x, z) ∈ R. To say that the relation of friendship is transitive
boils down to saying that it holds for anyone that the friends of their friends are
their friends.

Exercise 2.7 Which of the following relations are transitive?

(1) {(1, 2), (2, 3), (3, 4)}
(2) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)}
(3) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}
(4) {(1, 2), (2, 1)}
(5) {(1, 1), (2, 2)}

The next exercise shows that transitivity can be expressed in terms of relational
composition.

Exercise 2.8 Check that a relation R is transitive if and only if it holds that R ◦R ⊆ R.

Exercise 2.9 Can you give an example of a transitive relation R for which R ◦ R = R
does not hold?

2.3 Functions
Functions are relations with the following special property: for any (a, b) and (a, c)
in the relation it has to hold that b and c are equal. Thus a function from a set A
(called domain) to a set B (called range) is a relation between A and B such that
for each a ∈ A there is one and only one associated b ∈ B. In other words, a
function is a mechanism that maps an input value to a uniquely determined output
value. Looking at the relation author of from above, it is immediately clear that it
is not a function, because the input Michael Ende is not mapped to a unique output
but is related to more than one element from the set B of books.

Functions are an important kind of relation, because they allow us to express
the concept of dependence. For example, we know that the gravitational potential
energy of a wrecking ball depends on its mass and the height we elevate it to, and
this dependence is most easily expressed in a functional relation.

Functions can be viewed from different angles. On the one hand, they can be
seen as sets of data, represented as a collection of pairs of input and output values.
This tells us something about the behaviour of a function, i.e. what input is mapped

20 Lambda Calculus, Types, and Functional Programming

to which output. As an example, consider the following conversions between tem-
perature scales.

Kelvin Celsius Fahrenheit
0 −273.15 −459.67 (absolute zero)
273.15 0 32 (freezing point of water)
310.15 37 98.6 (human body temperature)
373.13 99.98 211.96 (boiling point of water)
505.9 232.8 451 (paper auto-ignites)

The function converting temperatures from Kelvin to Celsius can be seen as a set of
pairs {(0,−273.15), . . .}, and the function converting temperatures from Celsius
to Fahrenheit as a set {(−273.15,−459.67), . . .}. Determining the output of the
function, given some input, simply corresponds to a table lookup. Any function
can be viewed as a – possibly infinite – database table. This is called the exten-
sional view of functions. Another way to look at functions is as instructions for
computation. This is called the intensional view of functions. In the case of tem-
perature conversion the intensional view is more convenient than the extensional
view, for the function mapping Kelvin to Celsius can easily be specified as a simple
subtraction:

x �→ x− 273.15.

This is read as ‘an input x is mapped to x minus 273.15’. Similarly, the function
from Celsius to Fahrenheit can be given by

x �→ x× 9

5
+ 32.

For example, if we have a temperature of 37 degrees Celsius and want to convert it
to Fahrenheit, we replace x by 37 and compute the outcome by multiplying it with
9
5 and then adding 32:

37× 9

5
+ 32 → 66.6 + 32 → 98.6.

The example shows that the intensional view of functions can be made precise
by representing the function as an expression, and specifying the principles for
simplifying (or: rewriting) such functional expressions. Rewriting functional ex-
pressions is a form of simplification where part of an expression is replaced by
something simpler, until we arrive at an expression that cannot be simplified (or:
reduced) any further. This rewriting corresponds to the computation of a function.
For example, the function converting Celsius to Fahrenheit applied to the input 37
is the expression 37× 9

5 + 32. This expression denotes the output, and at the same

2.3 Functions 21

time it shows how to arrive at this output: First, 37 × 9
5 is rewritten to 66.6, ac-

cording to the rewriting rules for multiplication. The result of this simplification is
66.6 + 32, which is then rewritten to 98.6, in accordance with the rewriting rules
for addition.

Functions can be composed, as follows. Let g be the function that converts
from Kelvin to Celsius, and let f be the function that converts from Celsius to
Fahrenheit. Then f · g is the function that converts from Kelvin to Fahrenheit, and
that works as follows. First convert from Kelvin to Celsius, then take the result
and convert this to Fahrenheit. It should be clear from this explanation that f · g is
defined by

x �→ f(g(x)),

which corresponds to

x �→ (x− 273.15)× 9

5
+ 32.

Exercise 2.10 The successor function s : N → N on the natural numbers is given by n �→
n+ 1. What is the composition of s with itself?

A special function which is simple yet very useful is the characteristic function
of a set. The characteristic function of subset A of some universe (or: domain) U is
a function that maps all members of A to the truth-value True and all elements of
U that are not members of A to False. E.g. the function representing the property
of being divisible by 3, on the domain of integers, would map the numbers

. . . ,−9,−6,−3, 0, 3, 6, 9, . . .

to True, and all other integers to False. Characteristic functions characterize mem-
bership of a set. Since we specified relations as sets, this means we can represent
every relation as a characteristic function.

Exercise 2.11 ≤ is a binary relation on the natural numbers. What is the corresponding
characteristic function?

Exercise 2.12 Let f : A → B be a function. Show that the relation R ⊆ A2 given by
(x, y) ∈ R if and only if f(x) = f(y) is an equivalence relation (reflexive, transitive, and
symmetric) on A.

In natural language semantics, relations are pervasive, because a lot of lexical
items express relations: transitive verbs like love express binary relations, ditransi-
tive verbs like give express ternary relations, adjectives like nice express properties,
and so on. However, what we are mainly interested in is not how to exactly capture
all the meaning components of these lexical items. Instead we want to concentrate

22 Lambda Calculus, Types, and Functional Programming

on how the meanings of expressions are combined, so as to compose the meaning
of bigger expressions. For capturing meaning assembly in natural languages, we
will consider meanings of expressions not as relations but as their characteristic
functions. Until now we have considered mostly extensional properties of func-
tions, i.e. which objects they map to which other objects. To consider intensional
properties of functions, i.e. the way functions are built up and how they combine,
mathematical logic knows a simple and powerful tool: the lambda calculus. In the
next section, we are going to give you an overview of what it is and how it works.
It will be one of the main tools in the remainder of the book, because it provides us
with a means to inspect the structure of functions.

2.4 Lambda calculus

We already talked about functions informally. Now we want to take up a more
formal stance, by means of a short introduction to the so-called lambda calculus or
λ-calculus. The lambda calculus was developed by the mathematician and logician
Alonzo Church in the 1930s as a proposal for a precise definition of the notion of
mechanical computation, more in particular of the notion of a computable function.
Around the same time, Alan Turing, mathematician and founder of computer sci-
ence, developed a different notion of computable function in terms of computation
on an abstract machine (later called a Turing machine). These notions turned out to
be equivalent: both kinds of computations define the same class of functions, now
called the recursive functions. See [Chu36, Tur36, BB00].

Church intended the lambda calculus as a foundation of constructive mathemat-
ics. As such his proposal was not entirely successful, but the notion of functional
computation turned out to be extremely useful in theoretical computer science.
Later, in the 1960s, the seminal work of Richard Montague showed the way to-
wards beautiful applications of lambda calculus in linguistics. The linguist Barbara
Partee testified to this when she once remarked: ‘Lambdas have changed my life.’

To motivate the notation of the lambda calculus, consider a mathematical ex-
pression like x2 + y. This can be thought of as a function on x (considering y
as fixed) or as a function on y (considering x as fixed), or perhaps as a function
on x and y together. The lambda calculus provides a notation for distinguishing
between these possibilities.

In the lambda calculus functions are represented by means of so-called function
abstraction. To see how this works, first consider the notation x �→ x2 + y. This
can be thought of as the function mapping x to x2 + y, for some fixed y. To make
a clear distinction between the bound variable x and the unbound variable y we

2.4 Lambda calculus 23

introduce an explicit variable binder, and we write:

λx �→ x2 + y.

This is sometimes written with a dot instead of the arrow, as λx.x2 + y. Clearly,
the name of the variable is not important: λz �→ z2 + y would indicate the same
function. The lambda operator indicates that λx �→ x2 + y is a function that
depends on one parameter, x, and given some instantiation of x as input, it will
return the result of doing the calculation x2 + y for that input. The variable x that
represents the input is bound by the lambda operator λ.

As it turns out, this representation by means of lambda binding offers a general
way to write functions. In case a function takes several arguments, such as the
function for adding a number to the square of another number, we can use two
bound variables, and represent the function as λxλy �→ x2 + y. Now look at what
happens when we apply this function to an argument, say the argument 3.

(λxλy �→ x2 + y) 3 → λy �→ 32 + y

We start with a function of two arguments, feed it its first argument, and end up
with a function of one argument, namely the function for incrementing with 32.

For applying a function to its argument we use juxtaposition: if F is a function
expression and A is an argument expression, then (F A) denotes the application
of F to A.

The actual computation that takes place when the application of F to A is com-
puted depends on the form of F . If F is an abstraction it will have the form
λx �→ E, and E will contain occurrences of the variable x that are bound by
the lambda operator. The application of λx �→ E to A can now be computed by
replacing these occurrences of x in E by occurrences of A. Look at the example
(λx �→ x2 + 1) 3. This simplifies to 32 + 1, which is the result of replacing x in
x2 + 1 by 3.

So these are the things we want to talk about in our calculus. Formally, we
will build the set of expressions in the calculus from an infinite set of variables
using application and abstraction. Our definition of the language of the lambda
calculus will be our first example of a definition using abstract grammar notation
for defining formal languages. The grammar defines expressions E by indicating
how E can be rewritten. The notation for ‘can be rewritten as’ is ::=.

E ::= v

E ::= (E E)

E ::= (λv �→ E)

24 Lambda Calculus, Types, and Functional Programming

This can be abbreviated by means of the symbol | for ‘or’:

E ::= v | (E E) | (λv �→ E).

This notation is called Backus-Naur Form, or BNF, and a grammar written in
BNF is called a BNF grammar or context-free grammar. (‘Context-free’ expresses
the fact that expressions can be rewritten without regard to the context in which
they occur.) What the grammar for lambda calculus says is that you can build
expressions, denoted by E, in three ways:

• First, you can take any variable and this itself will be an expression. For this to
make sense we will also have to specify what variables can look like, of course.
Here is one possible way to do this:

v ::= x | v�.

This states that a variable is either the character x, or an already built variable
suffixed by �. This generates the variables x, x�, x��, x���, . . ., which serve as the
basic building blocks of expressions. Starting from them, we can build more
complex expressions in the following two ways.

• If you already have built two expressions, their juxtaposition is also an expres-
sion. This is called function application.

• If you have built an expression, then prefixing a λ and a variable also yields an
expression. This is called function abstraction.

• Finally, nothing else is an expression.

Here is an example. We can start with the variable x and abstract over it to get
the expression (λx �→ x). Next, we can take another variable x� and apply the
function (λx �→ x) to it. This gives the expression ((λx �→ x) x�). By contrast,
the string (fλx) is not a well-formed expression of our lambda calculus.

For convenience, we will not only use variables as basic building blocks but also
constants for natural numbers, arithmetic operators like +,×, strings like Dorothy,
and so on, without specifying them further at this point. We will also often write
x, y, z for variables, instead of x, x�, x��, and so on. Finally, we will omit parenthe-
ses when there is no danger of confusion.

So we will usually write expressions like λx �→ x+42 and λy �→ Dorothy likes y.
And note that we are actually cheating in doing so. Officially, the expressions in
our language are defined in prefix form: write the function first, followed by the
arguments it is applied to. So we should have written ((+ x) 42) instead of x+42.
Having said this, we will continue to be sloppy with notation in the interest of
readability. Instead of λx �→ λy �→ x + y we will write λxλy �→ x + y, or even
λxy �→ x+ y. But you should keep in mind that all this is only syntactic sugar.

Now that we have defined our language, we also want to make precise how the

2.4 Lambda calculus 25

outcome of function application is arrived at, i.e. what happens with an expression
of form (F A). For that, we define a reduction rule, which we actually already
saw at work a bit earlier. Remember that we said that application of a function to
an argument means that we substitute the parameter the function depends on by
the argument. So for computing (λx.x + 42) 5, we would replace x by 5 and get
5 + 42. This is stated for the general case by the following reduction rule:

(λx �→ E) A → E[x := A],

where E[x := A] means that every occurence of x in the expression E is replaced
by A.

Let us walk through an example to see how to build and use functions in the
lambda calculus. Consider the string things as being composed of the stem and the
suffix: thing++s. Here ++ is string concatenation. We will see it again later, in
Chapter 3. By means of abstraction we can get a function for pluralization:

λx �→ x++ s.

Applying this function to nouns gives their plural forms, as in (2.1) and (2.2).

(λx �→ x++ s) ship → ships (2.1)
(λx �→ x++ s) dragon → dragons (2.2)

Now we can also abstract over the plural suffix and produce a general suffixation
function:

λyλx �→ x++ y.

We can use this, for example, to create a function for building the past form of verb
stems:

(λyλx �→ x++ y) ed = λx �→ x++ ed.

This is way too naive, of course, but it illustrates how we can use functions. Two
examples are given in (2.3) and (2.4).

(λx �→ x++ ed) walk → walked (2.3)
(λx �→ x++ ed) laugh → laughed (2.4)

If we are not careful, simplifying lambda expressions by means of substitution
can easily produce errors. Consider, e.g., what happens when we want to simplify
the following expression:

(λyλx �→ x+ y) x. (2.5)

26 Lambda Calculus, Types, and Functional Programming

Note the difference between ++ and +: ++ expresses concatenation of strings; +
expresses addition of numbers.

Following the instructions given above, reduction of (2.5) will yield λx �→ x+x,
the function for adding a number to itself. To see why this is strange, observe that

(λyλz �→ z + y) x,

where the same function is applied to x, yields λz �→ z+x, the function for adding
x to a given number. This is what the result of application should be; the problem
with λx �→ x+ x is that the argument x gets accidentally captured by the lambda
operator λx.

There are several ways to prevent accidental capture of variables. One way is
to insist that bound variables are always distinct from free variables in an expres-
sion (this forbids (λyλx �→ x + y) x, for x occurs both bound and free), and that
binders always bind variables that do not yet have bound occurrences (this forbids
λx �→ ((λx �→ x2) x), for not all bound occurrences of x are bound by the same
lambda operator). We will choose to rename variables in case they would be acci-
dentally captured by some operation (cf. Section 4.7 for some further discussion
in the context of predicate logic, and Section 7.4 for renaming variables in lambda
calculus).

Up to now we applied functions only to basic objects and also abstracted only
over basic objects. But function abstraction and application as defined are com-
pletely general. This means that functions can also take functions as arguments.
They can even be applied to themselves. This might seem a bit arcane at first sight,
but it is not. Our calculus is a purely syntactic device for building and manipulating
expressions. There is no strict distinction between data – i.e. objects like numbers
and strings – and functions. They all are expressions, so they can all be used to
build other expressions. Hence a function like our pluralization function can also
be the input to another function. Imagine we have a function λf �→ (f dragon).
As input it takes a function and then it applies that function to the string dragon.
To this function, we can feed the pluralization function as an argument:

(λf �→ f dragon) (λx �→ x++ s)
→ (λx �→ x++ s) dragon
→ dragons

Exercise 2.13 Another example for a higher-order function is λfλx �→ f (f x), which
applies some function twice to some given input. Put it to work by reducing the following
expression:

(λfλx �→ f (f x)) (λy �→ 1 + y).

Exercise 2.14 One aspect of the lambda calculus we have seen is that reductions need not

2.5 Types in Grammar and Computation 27

come to an end but can go on infinitely. To see this, observe the reduction behaviour of the
expression (λx �→ x x) (λx �→ x x). And if you want things to get wilder, also look at the
reduction behaviour of (λx �→ x x x) (λx �→ x x x).

Let us briefly turn to natural language semantics. We can now represent the
meaning of a transitive verb such as likes as a two-place function

λxλy �→ y likes x,

with likes being the characteristic function for the relation of liking. I.e., x likes y
would return True if x indeed likes y, and False otherwise. This is what makes
formal semantics look like an exercise in typesetting. Therefore keep in mind that
we do not specify the lexical meaning of a word or phrase but only with what other
expressions it can combine and the role it plays in a bigger expression. This is what
makes lambda calculus a suitable tool for compositional semantics: it allows us to
illustrate how the semantic derivation of a sentence proceeds in accordance with
the sentence’s syntactic structure, as is sketched very roughly in the following tree.

S
Dorothy likes Toto

NP
Dorothy

VP
λy �→ y likes Toto

V
λxλy �→ y likes x

NP
Toto

(2.6)

This way of thinking about semantic composition is pervasive in formal semantics
nowadays. It goes back to the work of Richard Montague in a time when it was
commonly believed to be impossible to capture the meaning of natural languages
in a formal way. We will come back to this in much more detail later in the book.

2.5 Types in Grammar and Computation
With the lambda calculus above, every expression may be applied to every other
expression. This way we can build a lot of terms that are not sensible at all, such
as 4 (λf �→ f dragons), i.e. the number 4 applied to the function that maps some
function f to its application to dragons. Or assume that we have an English-to-
Swedish dictionary. It can be viewed as a function from English words to Swedish
words. Then we might want to classify words according to the language they be-
long to, in order to express that it is a function that takes English words as input
(which implies that you cannot look up Italian or Czech words), and that the output

28 Lambda Calculus, Types, and Functional Programming

will be a Swedish word (which implies that you will not get a Japanese or Arabic
translation).

For allowing only sensible expressions and applications, we will introduce types.
Types play the role of classifying our expressions, such that we can label the ex-
pression λx �→ x+42 as being a function that takes a number as input and produces
a number as output.

We specify types by the following BNF rule:

τ ::= b | (τ → τ).

Here b is a placeholder for whatever basic types we assume, e.g. Z for integers.
We will return to what basic types we assume a bit later in this section. The BNF
specification tells us that these basic types are types, and that from them, we can
build more complex types of form τ → τ . These will be types for functions. For
example, Z → Z would be the function type that is appropriate for the function
λx �→ x+ 42.

Now, each lambda expression is assigned a type. This is written as E : τ , stand-
ing for ‘E is an expression of type τ .’ The types for lambda expressions are speci-
fied as follows:

Variables: For each type τ we have variables for that type, e.g. x : τ , x� : τ , and
so on.

Abstraction: If x : δ and E : τ , then (λx �→ E) : δ → τ .
Application: If E1 : δ → τ and E2 : δ, then (E1 E2) : τ .

The first clause ensures that we have variables at our disposal for all types. Basic
types could be e for entities and t for truth values. It is customary to use different
fonts for variables of different types, e.g. x : e, p : t, Y : e → t, and so on.

The second clause tells us how to type an abstraction. We would, for example,
express the property of being happy as a function λx �→ (happy x), with x being
a variable of type e. Once applied to an argument of type e, this function should
return a truth-value, telling us whether the entity is happy or not. So the body of
the function is of type t. According to the rule in in the second clause, the function
expression is of type e → t – a function that takes an argument of type e and then
returns a value of type t.

The clause for application is equally straightforward. If we apply the function
λx �→ (happy x) of type e → t to peter, an object of type e, this application will
have type t.

Exercise 2.15 Assign types to the lambda expressions in example (2.6) on page 27.

Exercise 2.16 What about the term (λx �→ x x) (λx �→ x x) from exercise 2.14 above?
Can you find a type for it?

2.5 Types in Grammar and Computation 29

In programming, types are a way of grouping similar values, like numbers,
strings, etc. The general typing scheme for a function is

f :: a -> b

Here, a -> b is the type of f, where f is a program (or: instruction) that defines
the function. The types we will encounter in Haskell are basic types denoted by
the type constants Int (the type of integers), Bool (the type of truth-values), Char
(the type of characters), as well as type variables a,b, . . . , which stand for arbitrary
types, list types [a], and function types a -> b. For example, f :: a -> Bool

reads as ‘for all types a, f is an instruction for a function that takes a value of type
a and returns a Boolean value’. We will get to know them better as we move along.
Moreover, Haskell allows user-defined data types, which are very useful and which
we will look at in more detail in section 3.13.

Types in the lambda calculus and in programming actually have a lot in common
with syntactic categories in grammars. For example, basic types can be thought of
as corresponding to terminal categories in phrase-structure grammars, like NP for
noun phrases. They categorize expressions that are, in some sense, complete, and
that constitute the primary bearers of meaning. Function types, on the other hand,
categorize incomplete expressions like verb phrases. Their meaning is derivative
in the sense that it consists in their contribution to the meaning of the expressions
they appear in.

Consider the following very simple phrase-structure rule.

S −→ NP VP

Reading it from right to left, it says that given an expression of category NP and an
expression of category VP, we can form an expression of category S. If we think of
the categories as types, we can read the rule as follows: If a : NP and b : VP, then
a ++ b : S. That is, if we have an expression a of type NP and an expression b of
type VP, then their concatenation a++ b is of type S.

An approach to grammars from this point of view is categorial grammar, which,
in its simplest form, goes back to the Polish logician Kazimierz Ajdukiewicz. It
captures the same information as phrase-structure rules by assigning function types
to grammatical expressions. For example, a VP would be of type NP → S, i.e. the
type of a function that takes something of type NP as input and gives something
of type S as output. In other words, a VP is an expression that combines with
an expression of type NP and then yields and expression of type S. Accordingly,
the type of a transitive verb would be NP → (NP → S), i.e. a transitive verb
is an expression that combines with two expressions of type NP and produces an
expression of type S.

For combining expressions, we have the general rule that an expression of cate-

30 Lambda Calculus, Types, and Functional Programming

gory A can combine with an expression of category A → B into an expression of
category B. Thus, a simple derivation of the sentence in (2.6) looks as follows.

DorothyNP ++(likesNP→(NP→S) ++ TotoNP)
= DorothyNP ++(likes Toto)NP→S

= (Dorothy likes Toto)S

Exercise 2.17 Adjectives are words that combine with nouns to form complex nouns. For
example, friendly combines with the noun wizard to form the noun friendly wizard. So,
adjectives are of type N → N.

friendlyN→N ++wizardN = (friendly wizard)N

Find a type for the adverbial very, such that we can build expressions like very friendly
wizard and very very friendly wizard. (Hint: assume these expressions are structured as
(very friendly) wizard and (very (very friendly)) wizard.)

2.6 Functional Programming
Programs and subroutines within programs are actually very similar to functions.
They take parameters as arguments and return a result. For example, a program for
calculating the prime factors of some number takes an integer as input and returns
a list of integers. The difference to functions, however, is that programs can have
side effects. Side effects are changes in the state of the system besides the output
that the function returns and that remain after the procedure has returned. They
can consist in a change of variable names, in writing some intermediate result to a
database, and so on. For example, the Ruby program

x = 4 ; x += 2

first assigns the value 4 to the variable x, then changes this assignment to x + 2.
So after execution of the program the variable x evaluates to 6.

There are basically two things about computation: the evaluation of an expres-
sion and the change of state that this evaluation brings about. Imperative program-
ming focuses on the state and how to modify it with a sequence of commands.
In contrast to this, declarative programming focuses on the evaluation itself. In
the case of functional programming, computation corresponds to the evaluation of
functions. This becomes clear already by looking at the basic syntax of Haskell:

E ::= x | E E | λx -> E | let x = E in E.

It is not by accident that it looks a lot like the syntax of lambda calculus. In-
deed, functional programming languages actually are lambda calculi, though usu-
ally more sophisticated than the one we saw earlier.

2.7 Further reading 31

Now, what does all this have to do with natural language analysis? There are
at least two ways to answer this. The very straightforward answer is that we want
to automatize the association of natural language expressions with semantic rep-
resentations, and that lambda calculus happens to be a suitable tool for combining
semantic representations. Since Haskell basically is an executable lambda calculus,
functional programming is a very useful tool to implement formal semantics. The
way from theory to implementation is short and easy. Usually it is quite straight-
forward to translate a piece of natural language analysis into Haskell code. This is
not only of great use for writing an implementation but also for reflecting on the
analysis itself.

Another way of connecting functional programming and linguistic theory goes
far beyond practical reasons. It claims that once we formalized natural languages,
they can actually be seen as programming languages themselves: they form a col-
lection of instructions on how to build complex expressions from simple ones along
with their meaning. And just as side effects in programming are state changes that
reach beyond the functional core, linguistic phenomena defying compositionality
can be seen as side effects of the computation of meaning. This analogy opens
the door for using insights from programming language theory for handling non-
compositional phenomena in natural language semantics; it is executed by Chung-
chieh Shan in his dissertation [Sha05]. We will see more on this perspective in
Chapter 11.

The best way of learning is still by doing, for as the common saying goes: se-
mantics is not a spectator sport. That’s why we will give you an introduction to
Haskell and then right away dive into implementing fragments. But before do-
ing so, let us again emphasize the gist of this chapter and the reason for doing
computational semantics with Haskell: reducing expressions in lambda calculus,
evaluating a program (i.e. function) in Haskell, and composing the meaning of a
natural language sentence are, in a way, all the same thing.

2.7 Further reading
An illuminating introduction to the lambda calculus is [BB00]. The standard ref-
erence is [Bar84]. [Han04] is a textbook that stresses the practical applications
of lambda calculus. Earlier work in computational semantics for natural language
typically uses Prolog as a computational tool. See [Als92] for a description of an
influential full-fledged computational engine written in Prolog. The standard – and
truly excellent – textbook for Prolog-based computational semantics is [BB05]. An
early plea for functional programming as a tool for natural language interpretation
is [FL89], and a recent survey of natural language processing with lazy functional
programming is [Fro06].

3
Functional Programming with Haskell

Summary

In this chapter we introduce the computational toolset that we are going to use
throughout the book: the programming language Haskell. No prior knowledge
of programming is assumed; you will learn everything you need to know about
Haskell and (functional) programming as we go along.

3.1 The Programming Language Haskell

As a functional programming language, Haskell is a member of the Lisp family, as
are Scheme, ML, Occam, Clean, and Erlang. It was designed to form a standard
for functional programming languages and was named after the mathematician and
logician Haskell B. Curry. We already mentioned that it is based on the lambda
calculus, just like the other family members. In fact, Haskell is so faithful to its
origins that it is purely functional, i.e. functions in Haskell do not have any side
effects. (However, there is a way to perform computations with side effects, like
change of state, in a purely functional fashion. We will come across this later on in
the book, but it will not be of concern for us now.)

Three very important characteristic features of Haskell are the following. First,
functions are first-class citizens. This means that functions may be passed as argu-
ments to other functions and also can be returned as the result of some function.
Second, functions are permitted to be recursive. The significance of this we will
see in Section 3.5. And third, arguments of functions are only evaluated when
needed, if at all. This is called lazy evaluation and it allows the use of infinite
and partially-defined data structures. We will see some examples of infinite lists in
Section 3.6.

33

34 Functional Programming with Haskell

3.2 Using the Book Code

In order to run the programs in this book, you need a so-called interpreter or
compiler. An interpreter is a system that allows you to execute function defini-
tions interactively. The two most widely used for Haskell are Hugs and GHCi.
The former can be downloaded from http://haskell.org/hugs/, and the latter
comes with the Glasgow Haskell Compiler (GHC), which can be found at http://
haskell.org/ghc/ and at http://hackage.haskell.org/platform/. Both
Hugs and GHCi will cater for your needs. GHCi is slowly but surely becoming
the standard, but it may be a good idea to install both, for the two interpreters give
slightly different error messages, and if the feedback of one interpreter baffles you,
the other one may give you a better hint. If the error messages of both Hugs or
GHCi confuse you, you might want to try Helium, a Haskell interpreter designed
for learning Haskell, with better error messages than either Hugs or GHCi. See
http://www.cs.uu.nl/helium/. (But be aware that it does not yet support all
Haskell features that we will use in this book.)

Haskell code will be typeset in frames, in dark grey typewriter font. It
constitutes the chapter modules, with exception of code that defines functions that
are already predefined by the Haskell system or somewhere else in the chapter.
This code defined elsewhere is shaded light grey. Typewriter font is also used
for pieces of interaction with the Haskell interpreter, but these illustrations are not
framed.

Subparts of bigger programs are usually collected in modules, each of which sits
in an own file. This way you can easily use old code when writing new programs.
The following lines declare the Haskell module for the code of this chapter. This
module is called FPH.

module FPH

where

import Data.List

import Data.Char

We import the predefined modules List and Char, which provide useful func-
tions for handling lists and characters as well as strings. The Data in front of the
module names serves to indicate the place of these modules in Haskell’s module
hierarchy. The effect of the imports is that the functions defined in the imported
modules become available for use as ingredients in the functions that we want to

3.3 First Experiments 35

define ourselves. All the book source and chapter modules can be found at the
book website: http://www.computational-semantics.eu.

3.3 First Experiments
We assume that you succeeded in retrieving a Haskell interpreter and that you
managed to install it on your computer. When you start it, you will get a prompt
that looks as follows in the case of Hugs:

Prelude>

or

Hugs.Base>

And like this in the case of GHCi and Helium:

Prelude>

This string is the prompt when no user-defined files are loaded. If this prompt is
shown, only the predefined functions from the Haskell Prelude are available; these
definitions are given in the online Haskell report.† If you want to quickly learn a lot
about how to program in Haskell, you should get into the habit of consulting this
file regularly. The definitions of all the standard operations are open source code,
and are there for you to learn from. The Haskell Prelude may be a bit difficult to
read at first, but you will soon get used to the syntax.

Online user manuals for Hugs and GHCi can be found on the Internet.‡ The
most important commands to know in the beginning are:

• :l � file name � for loading a file or module
• :r for reloading the currently loaded file
• :t � expression � for displaying the type of an expression
• :q for quitting the interpreter.

You can use the interpreter as a calculator. Let’s calculate the number of seconds
in a leap year. A leap year has 366 days, each day has 24 hours, each hour has 60
minutes, and each minute has 60 seconds, so this is what we get:

Prelude> 366 * 24 * 60 * 60

31622400

† http://www.haskell.org/onlinereport/standard-Prelude.html
‡ At http://cvs.haskell.org/Hugs/pages/hugsman/index.html for Hugs, and at http://www.
haskell.org/ghc/docs/latest/html/users_guide/ghci.html for GHCi.

36 Functional Programming with Haskell

Exercise 3.1 Try out a few calculations using * for multiplication, + for addition, - for
subtraction, ^ for exponentiation, / for division. By playing with the system, find out what
the precedence order is among these operators.

Parentheses can be used to override the built-in operator precedences:

Prelude> (2 + 3)^4

625

Exercise 3.2 How much is 2^3^4? Does the interpreter read this as (2^3)^4 or as
2^(3^4)?

We can also define our own functions. We use a function square, after having
told the interpreter what we mean by it, using the reserved keywords let and in:

Prelude> let square x = x * x in square 3

9

We could also write the square function by means of lambda abstraction and simply
apply this lambda expression to the desired argument.

Prelude> (\ x -> x * x) 4

16

Usually, however, we define functions not in a single line at the prompt but in a
module in a text file, and we give them names and proper type declarations. The
definition of the square function could be the following piece of text in a file (in
fact, the following lines are part of the code of the Chapter module, which you can
find as FPH.hs on the book website):

square :: Int -> Int

square x = x * x

The intention is that variable x stands proxy for a number of type Int. The
result, the squared number, also has type Int. The function square is a function
that, when combined with an argument of type Int, yields a value of type Int.
This is precisely what the type indication Int -> Int expresses.

In Haskell it is not strictly necessary to always give explicit type declarations.
For instance, the definition of square would also work without the type decla-
ration, since the system can infer the type from the definition. However, it is
good programming practice to give explicit type declarations even when this is
not strictly necessary. These type declarations are an aid to understanding, and
they greatly improve the digestibility of functional programs for human readers.
Moreover, by writing down the intended type of a function you constrain what you

3.3 First Experiments 37

can implement, for you rule out all definitions that take arguments or yield values
that do not agree with the type declaration. If you try to write a definition with such
a type conflict, the interpreter will immediately reject it.

To load and use the chapter code, simply start up the interpreter with hugs FPH

or ghci FPH, or explicitly load the module with :l FPH.

Prelude> :l FPH

FPH> square 7

49

FPH> square (-3)

9

FPH> square (square 7)

2401

FPH> square (square (square 7))

5764801

Let us briefly look at three other types that we are going to use quite often: types
for characters and strings, and the so-called Boolean type. The Haskell type of
characters is Char. Strings of characters have type String, which is an abbrevia-
tion for [Char], a list of characters. Similarly, lists of integers have type [Int].
The empty string (or the empty list) is []. Examples of characters are ’a’, ’b’
(note the single quotes) and an example of a string is "Hello World!" (note the
double quotes). In fact, "Hello World!" can be seen as an abbreviation of the
following character list:

[’H’,’e’,’l’,’l’,’o’,’ ’,’W’,’o’,’r’,’l’,’d’,’!’]

This in turn can be seen as shorthand for the result of putting ’H’ in front of the
list that results from putting ’e’ in front of the list . . . in front of the list that results
from putting ’!’ in front of the empty list, as follows:

’H’:’e’:’l’:’l’:’o’:’ ’:’w’:’o’:’r’:’l’:’d’:’!’:[]

Exercise 3.3 The colon : in the last example is an operator. Can you see what its type is?

Since strings have type String, properties of strings have type String -> Bool.
(Recall that properties are unary relations, which can be seen as characteristic func-
tions of sets, i.e. functions from elements of the set to truth values.) ‘ Here is a
simple property, the property of being a word that contains an ’h’:

hword :: String -> Bool

hword [] = False

hword (x:xs) = (x == ’h’) || (hword xs)

38 Functional Programming with Haskell

This definition uses pattern matching: (x:xs) is the prototypical non-empty
list. More on this in Sections 3.6 and 3.13 below.

What the definition of hword says is that the empty string is not an hword, and
a non-empty string is an hword if either the head of the string is the character h,
or the tail of the string is an hword. Note that the function hword is called again
from the body of its own definition. We will encounter such recursive function
definitions again and again in the course of this book.

As you can see, characters are indicated in Haskell with single quotes. The
following calls to the definition show that strings are indicated with double quotes:

FPH> hword "shrimptoast"

True

FPH> hword "antiquing"

False

The type Bool of Booleans (so-called after George Boole) consists of the two
truth-values True and False. If we say that an expression is of type Boolean, we
mean that the expression is either true or false, i.e. that it denotes a truth value.
Boolean expressions can be combined with the logical operators for negation, con-
junction, and disjunction. Here are the Haskell versions:

• Conjunction is &&.
• Disjunction is ||.
• Negation is not.

The type of negation is Bool -> Bool. The types of the prefix versions of con-
junction and disjunction are given by:

• (&&) :: Bool -> Bool -> Bool.
• (||) :: Bool -> Bool -> Bool.

Note that the parentheses () change an infix operator into a prefix operator. To ex-
press ‘bright and beautiful’ in Haskell, we can either say bright && beautiful

or (&&) bright beautiful. In general, if op is an infix operator, (op) is the
prefix version of the operator. Thus, 2^10 can also be written as (^) 2 10. In
general, if op is an infix operator, (op x) is the operation resulting from applying
op to its right hand side argument, (x op) is the operation resulting from applying
op to its left hand side argument, and (op) is the prefix version of the operator
(this is like the abstraction of the operator from both arguments). Thus (^2) is the
squaring operation, (2^) is the operation that computes powers of 2, and (^) is
exponentiation. Functions like these are called sections.

Exercise 3.4 Which property does (>3) denote? And which property does (3>) denote?

3.4 Type Polymorphism 39

We can also change a prefix operator into an infix operator by using backticks.
As an example, assume we define a function plus x y = x + y. Instead of call-
ing it with plus 2 3, we can also call it with 2 ‘plus‘ 3. We will use backticks
very often with the function elem, introduced in Section 3.9 below.

3.4 Type Polymorphism
One of Haskell’s characteristics is a polymorphic type system. For example, the
Haskell Prelude contains the following definition of the identity function:

id :: a -> a

id x = x

This function can be applied to objects of any type. Applied to an argument,
it just returns that argument. Since the type of the argument does not matter, we
say that the id function is polymorphic. In the type declaration of id, a is a type
variable. The use of a indicates that any type will fit. So, instances of id’s type are
Bool -> Bool, Int -> Int, String -> String, but also

(String -> Bool) -> (String -> Bool)

and so on.

FPH> id 42

42

FPH> id "Jabberwocky"

"Jabberwocky"

FPH> (id hword) "Jabberwocky"

False

Type polymorphism, and the use of a, b as type variables, allow us to define
polymorphic types for properties and relations. The polymorphic type of a property
is a -> Bool. The polymorphic type of a relation is a -> b -> Bool. The
polymorphic type of a relation over a single type is a -> a -> Bool.

If a is a type, [a] is the type of lists over a. Since it does not matter which
type a is, [a] is a polymorphic type. The type of the concatenation function (++)

illustrates this:

FPH> :t (++)

(++) :: [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works for lists in
general.

40 Functional Programming with Haskell

FPH> [2,3] ++ [4,7]

[2,3,4,7]

FPH> "Hello " ++ "world!"

"Hello world!"

3.5 Recursion
Point your webcam at your computer screen. What do you see? A computer screen,
with on it a picture of a computer screen, with on it This is an example of
recursion.

A recursive definition is a definition that refers to itself, while avoiding an infinite
regress. Let us make this precise for the case of the recursive screen picture. A
screen picture is either (i) a tiny blob showing nothing, or (ii) a screen showing a
screen picture. The case of the tiny blob showing nothing is the base case. The
case of the screen showing a screen picture is the recursive case.

Definition by recursion is important in mathematics, programming, and linguis-
tics. A recursive function is a function that calls itself, but without infinite regress.
To ensure that the recursion will eventually stop, we have to give a base case, a case
that can be computed without calling the function. Keep in mind that recursive def-
initions always have a base case. As an example for recursion, recall Exercise 1.2.
Here is a Haskell version.

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

The following storytelling function gives another example of recursion.

story :: Int -> String

story 0 =

"Let’s cook and eat that final missionary, and off to bed."

story k =

"The night was pitch dark, mysterious and deep.\n"

++ "Ten cannibals were seated around a boiling cauldron.\n"

++ "Their leader got up and addressed them like this:\n’"

++ story (k-1) ++ "’"

3.6 List Types and List Comprehension 41

Line ends are encoded as \n. This is the linefeed control character. To display
the story on the screen we will use an output function that executes the linefeeds:
putStrLn. To loop the function story five times, we say

FPH> putStrLn (story 5)

Exercise 3.5 What happens if you ask for putStrLn (story (-1))? Why?

Exercise 3.6 Why is the definition of ‘GNU’ as ‘GNU’s Not Unix’ not a recursive defini-
tion?

3.6 List Types and List Comprehension
An important operation is :, which prepends an element to a list.

FPH> :t (:)

(:) :: a -> [a] -> [a]

Note that the type of (:) is more general than you probably guessed when you
answered Exercise 3.3. There, we talked about combining a character with a string
to produce a new string. Here, we talk about combining an element of any type
whatsoever (call it a) with a list of elements of that same type into a new list of
elements of that type.

The expression (x:xs) is used to denote the prototypical non-empty list. The
head of (x:xs) is the element x of type a, the tail is the list xs of type [a].
According functions are defined in the Haskell Prelude as follows:

head :: [a] -> a

head (x:_) = x

tail :: [a] -> [a]

tail (_:xs) = xs

The underscores _ indicate anonymous variables that can be matched by any-
thing of the right type. Thus, in (x:_), the underscore _ matches any list, and
in (_:xs), the underscore _ matches any object. The important list patterns for
pattern matching are:

• the list pattern [] matches only the empty list,
• the list pattern [x] matches any singleton list,
• the list pattern (x:xs) matches any non-empty list.

42 Functional Programming with Haskell

These patterns are used again and again in recursive definitions over list types.
It is common Haskell practice to refer to non-empty lists as x:xs, y:ys, and so

on, as a useful reminder of the facts that x is an element of a list of x’s and that xs
is a list.

Lists in computer science are an approximation of the mathematical notion of
a set. The important differences are that multiplicity (whether a certain element
occurs once or more than once) matters for lists but not for sets, and that order
of occurrence matters for lists but not for sets. Two sets that contain the same
elements are the same, but not so for lists. The sets {1, 2}, {2, 1}, and {1, 1, 2} are
all identical, but the lists [1,2], [2,1], and [1,1,2] are all different.

Lists can also be given by not enumerating all their elements but by indicating
the range of elements: [n..m] is the list bounded below by n and above by m. For
example, the list [1..423] are all numbers from 1 to 423, and the list [’g’..’s’]
are all characters from g to s. Of course, it only works for objects that are ordered
in a way that Haskell knows. In general, the ordered types are the types in class
Ord. The data types in this class are the types on which functions <= (less than or
equal), >= (greater than or equal), < (less than), and > (greater than) are defined.
Predefined instances of class Ord are numerical types and characters. (For more

on type classes, see Section 3.9.)
By use of .., we can also work with infinite lists, e.g. [0..] denotes the list

of all positive natural numbers. When keying in [0..] at the interpreter system
prompt, the interpreter will start printing the list of all natural numbers starting
from 0. This display will go on until you abort it with Ctrl-c or your computer runs
out of memory, for Haskell knows arbitrary size integers.

Infinite lists are where lazy evaluation matters. Since Haskell does not evaluate
an argument unless it needs it, it can handle infinite lists as long as it has to compute
only a finite amount of its elements. If you, for example, ask for take 5 [0..],
the interpreter will only consider the first five elements of the infinite list of natural
numbers and give you [0,1,2,3,4].

And there is yet another way to form lists, which is analogous to set comprehen-
sion. The latter says that if A is a set and P is a property, then {x | x ∈ A, P (x)}
is the set of all objects from A that satisfy P . List comprehension is the list coun-
terpart of that; it is written as [x | x <- A, P x]. Here are some examples:

FPH> [n | n <- [0..10], odd n]

[1,3,5,7,9]

FPH> [odd n | n <- [0..10]]

[False,True,False,True,False,True,False,True,False,True,False]

FPH> [square n | n <- [0..10]]

[0,1,4,9,16,25,36,49,64,81,100]

3.7 List processing with map and filter 43

FPH> [x ++ y | x <- ["use","faith"], y <- ["ful","less"]]

["useful","useless","faithful","faithless"]

3.7 List processing with map and filter

The function map takes a function and a list and returns a list containing the results
of applying the function to the individual list members. Thus, if f is a function of
type a -> b and xs is a list of type [a], then map f xs will return a list of type
[b].

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

For example, map (+ 1) [0..9] will add 1 to each number in [0..9], so it
will give the list of numbers from 1 to 10. Another example is the following one:

FPH> map ("un" ++) ["friendly","believable"]

["unfriendly","unbelievable"]

Accordingly, map hword will produce a list of truth values.

FPH> map hword ["fish","and","chips"]

[True,False,True]

The filter function takes a property and a list, and returns the sublist of all list
elements satisfying the property. It has the type (a -> Bool) -> [a] -> [a].
Here a again denotes an arbitrary type. Indeed, one can filtrate strings, or lists of
integers, or lists of whatever, given a property of the right type: String -> Bool

for strings, Int -> Bool for integers, and so on. Here is the definition of the
filter function:

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

A new programming element is the use of guarded equations by means of the
Haskell condition operator |. A definition with a list of guarded equations such as

foo t | condition_1 = body_1

| condition_2 = body_2

| otherwise = body_3

44 Functional Programming with Haskell

is read as follows:

• in case condition_1 holds, foo t is by definition equal to body_1,
• in case condition_1 does not hold but condition_2 holds, foo t is by defi-

nition equal to body_2,
• and in case none of condition_1 and condition_2 hold, foo t is by defini-

tion equal to body_3.

Of course, you can specify as many conditions as you want to.
The first line of the definition of filter p (x:xs) handles the case where the

head of the list (x:xs) satisfies property p. The second line applies otherwise, i.e.
it covers the case where the head of the list (x:xs) does not satisfy property p.

The filter function can be applied as follows:

FPH> filter even [1..10]

[2,4,6,8,10]

FPH> filter hword ["fish","and","chips"]

["fish","chips"]

3.8 Function Composition, Conjunction, Disjunction, Quantification

In Section 2.3 of the previous chapter, we introduced function composition. We
wrote f · g for the composition of the two functions f and g, i.e. for applying f
after g. To illustrate this again, assume that we have a Dutch-to-English dictio-
nary and an English-to-French dictionary. These can be viewed as a function g for
translating Dutch words into English words, and a function f for translating En-
glish words into French words. E.g. g(haas) will give hare, and f(ant) will give
fourmi. Now we can simply combine the two dictionaries into a Dutch-to-French
dictionary by first looking up the meaning of a Dutch word in English, and then
look up the French meaning of the result. Thus, if we want to know the French
word for Dutch haas, we first find g(haas) = hare, and next, f(hare) = lièvre.

Composing two functions f and g means that f is applied to the result of g:
(f · g)(x) = f(g(x)). In Haskell, we use the operator (.) instead of · and write
f . g. For that to make sense, the result type of g should equal the argument
type of f, i.e. if f :: b -> c, then g :: a -> b. Under this typing, the type of
f . g is a -> c. This is used, for example, in the Haskell Prelude to define odd

as not . even.
Thus, the operator (.) that composes two functions has the following type and

definition:

3.9 Type Classes 45

(.) :: (b -> c) -> (a -> b) -> a -> c

(f . g) x = f (g x)

In Section 3.3 we saw the Haskell versions of && and || of the logical operators
conjunction and disjunction. The conjunction operator && is generalized to lists of
Booleans by the predefined function and.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && (and xs)

And the disjunction operator || is generalized to lists of Booleans by the prede-
fined function or.

or :: [Bool] -> Bool

or [] = False

or (x:xs) = x || (or xs)

These generalized Boolean operations are used for stating the definitions of the
list quantification operators any and all (these are also predefined in the Haskell
Prelude):

any, all :: (a -> Bool) -> [a] -> Bool

any p = or . map p

all p = and . map p

They can be used for checking whether all elements of a list satisfy a property,
or any elements of the list, respectively.

FPH> all hword ["fish","and","chips"]

False

FPH> any hword ["fish","and","chips"]

True

3.9 Type Classes
Consider the function (\ x y -> x /= y). At first sight, this is just a check for
inequality. Let us check its type.

46 Functional Programming with Haskell

Exercise 3.7 Check the type of the function (\ x y -> x /= y) in Haskell. What do
you expect? What do you get? Can you explain what you get?

Exercise 3.8 Is there a difference between (\ x y -> x /= y) and (/=)?

Exercise 3.9 Check the type of the function composition all . (/=). If you were to
give this function a name, what name would be appropriate?

Exercise 3.10 Check the type of the function composition any . (==). If you were to
give this function a name, what name would be appropriate?

The exercises show that the Haskell interpreter puts a constraint on the types of
all functions that somehow involve equality or inequality. Why is this? Because
not all types of things are testable for equality. Numbers and strings are examples
of types that can be tested for equality, but functions generally are not.

Exercise 3.11 How would you go about testing two infinite strings for equality?

The predefined Haskell functions elem and notElem that check whether an
object is an element of a list are only defined for types that allow for equality
tests. They have type Eq a => a -> [a] -> Bool. In this type specification,
Eq a => specifies a as a type in the Eq class, i.e. as a type for which equality (==)
and inequality (/=) are defined. Here is what happens if you try to use elem with
a function:

FPH> elem not [not]

ERROR - Cannot infer instance

*** Instance : Eq (Bool -> Bool)

*** Expression : not ‘elem‘ [not]

Let us look at another type constraint. The predefined Haskell function min

computes the minimum of two objects. If we check its type, we find that it is
min :: Ord a => a -> a -> a. It indicates that a is constrained to be a type
for which ‘less than’ and ‘less than or equal’ are defined (Haskell (<) and (<=)).

We can also have types that have more than one constraint. Constraints are
combined by means of parentheses: (Eq a,Ord a) => a is the class of types for
which equality and an ordering are defined, and so on.

Exercise 3.12 Use min to define a function minList :: Ord a => [a] -> a for com-
puting the minimum of a non-empty list.

Exercise 3.13 Define a function delete that removes an occurrence of an object x from
a list of objects in class Eq. If x does not occur in the list, the list remains unchanged. If x
occurs more than once, only the first occurrence is deleted.

How would you need to change delete in order to delete every occurence of x?

3.10 Strings and Texts 47

Now we can define a function srt that sorts a list of objects (in class Ord, i.e., in
a class for which (<) and (<=) are defined) in order of increasing size, by means
of the following algorithm:

• An empty list is already sorted.
• If a list is non-empty, we put its minimum in front of the result of sorting the list

that results from removing its minimum.

Note that this sorting procedure can be viewed as a kind of dual to insertion sort
(where you sort by going through a list and construct a new, sorted list by inserting
each item from the old list at the correct position in the new list). The implementa-
tion is an exercise for you.

Exercise 3.14 Define a function srt :: Ord a => [a] -> [a] that implements the
above. Use the function minList from Exercise 3.12.

Another type class, that we will use very often throughout the book, is Show. It
contains all types that can be printed on the screen. We will see some usage of it in
Section 3.13.

3.10 Strings and Texts
Consider the following differences:

Prelude> "Hello World!"

"Hello World!"

Prelude> putStr "Hello World!"

Hello World!

Prelude> show "Hello World!"

"\"Hello World!\""

The double quotes " and " serve to indicate that what is between them is a string.
The command putStr displays its string argument, but without the enclosing dou-
ble quotes. The command show quotes its argument, by putting double quotes
around it, and treating the inner quotes as part of the string. These inner quotes
have changed function from string markers to characters. The double quote char-
acter is a so-called escaped "; it is rendered in Haskell as \".

In Section 3.5 we saw Haskell’s linefeed character \n. The following example
shows how putStr executes linefeeds:

FPH> putStr "Hello\nWorld!"

Hello

World!

48 Functional Programming with Haskell

Exercise 3.15 Try to figure out what the following Haskell program does, without actually
running it. Next, save the program in a file xxx.hs, and run it as a script, by means of the
command runhugs xxx.hs or runghc xxx.hs, from the command prompt, to check
your guess. If you run a Haskell program as a script, its main function will get executed.

main = putStrLn (s ++ show s)
where s = "main = putStrLn (s ++ show s) \n where s = "

Our next example for manipulating strings is a program reversal for the rever-
sal of a string, which is of type String -> String. The instruction for reversal
explains how lists of characters are reversed. A useful description is the following:

• For reversing the empty string, you have to do nothing (the reversal of the empty
string is the empty string).

• For reversing a string consisting of a first element x followed by a tail, first
reverse the tail, and next put x at the end of the result of that.

We can render this string reversal instruction in Haskell as the following function
(not the most efficient implementation, but effiency does not concern us here):

reversal :: String -> String

reversal [] = []

reversal (x:t) = reversal t ++ [x]

You can try this out, as follows:

FPH> reversal "Chomsky"

"yksmohC"

FPH> reversal (reversal "Chomsky")

"Chomsky"

Next, we want to consider some examples of shallow text processing, using two
of Shakespeare’s sonnets as text material.

3.10 Strings and Texts 49

sonnet18 =

"Shall I compare thee to a summer’s day? \n"

++ "Thou art more lovely and more temperate: \n"

++ "Rough winds do shake the darling buds of May, \n"

++ "And summer’s lease hath all too short a date: \n"

++ "Sometime too hot the eye of heaven shines, \n"

++ "And often is his gold complexion dimm’d; \n"

++ "And every fair from fair sometime declines, \n"

++ "By chance or nature’s changing course untrimm’d; \n"

++ "But thy eternal summer shall not fade \n"

++ "Nor lose possession of that fair thou owest; \n"

++ "Nor shall Death brag thou wander’st in his shade, \n"

++ "When in eternal lines to time thou growest: \n"

++ " So long as men can breathe or eyes can see, \n"

++ " So long lives this and this gives life to thee."

sonnet73 =

"That time of year thou mayst in me behold\n"

++ "When yellow leaves, or none, or few, do hang\n"

++ "Upon those boughs which shake against the cold,\n"

++ "Bare ruin’d choirs, where late the sweet birds sang.\n"

++ "In me thou seest the twilight of such day\n"

++ "As after sunset fadeth in the west,\n"

++ "Which by and by black night doth take away,\n"

++ "Death’s second self, that seals up all in rest.\n"

++ "In me thou see’st the glowing of such fire\n"

++ "That on the ashes of his youth doth lie,\n"

++ "As the death-bed whereon it must expire\n"

++ "Consumed with that which it was nourish’d by.\n"

++ "This thou perceivest, which makes thy love more strong,\n"

++ "To love that well which thou must leave ere long."

To split a string consisting of several lines separated by linefeed characters, use
lines sonnet73. This function creates a list of strings.

We will now develop a simple counting tool, for counting characters and words
in a piece of text. Instead of defining two different counting functions, one for
words and one for text, it is more convenient to define a single polymorphic func-

50 Functional Programming with Haskell

tion that can count any data type for which equality tests are possible, i.e. which
are in class Eq.

The counting function we are after has type Eq a => a -> [a] -> Int. What
this means is that for any type a that is an instance of the Eq class, the function has
type a -> [a] -> Int.

We should be able to use count for counting the number of ’e’ characters in the
string "temperate", for counting the number of "thou" occurrences in Sonnet
18, and so on.

We define count as the following straightforward function.

count :: Eq a => a -> [a] -> Int

count x [] = 0

count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

Here are examples of using the count function, employing the predefined func-
tions toLower for converting characters to lowercase, and words for splitting lines
into words. You should check out their definitions in the Haskell Prelude.

FPH> count ’e’ sonnet18

63

FPH> [count x (map toLower sonnet18) | x <- [’a’..’w’]]

[40,5,9,20,63,10,10,31,27,0,1,23,23,33,44,4,0,29,42,40,13,5,5]

FPH> count "thou" (words sonnet18)

3

FPH> count "thou" (words (map toLower sonnet18))

4

Here is a function that calculates the average of a list of integers: the average of
m and n is given by m+n

2 ; the average of a list of k integers n1, . . . , nk is given by
n1+···+nk

k . In general, averages are fractions, so the result type of average should
not be Int but the Haskell data type for fractional numbers, which is Rational.
There are predefined functions sum for the sum of a list of integers, and length

for the length of a list. The Haskell operation for division / expects arguments
of type Rational (or, more precisely, of a type in the class Fractional, and
Rational is in that class), so we need a conversion function for converting Ints
into Rationals. This is done by toRational. The function average can now be
written as:

3.10 Strings and Texts 51

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Haskell allows a call to the error operation in any definition. This is used to
break off operation and issue an appropriate message when average is applied to
an empty list. Note that error has a parameter of type String.

Exercise 3.16 Write a function to compute the average word length in Shakespeare’s son-
nets 18 and 73. You can use filter (‘notElem‘ "?;:,.") to get rid of the interpunc-
tion signs. The predefined function length (from the List module) gives the length of a
list.

Suppose we want to check whether a list xs1 is a prefix of a list xs2. Then the
answer to the question prefix xs1 xs2 should be either yes (true) or no (false),
i.e. the type declaration for prefix should be:

prefix :: Eq a => [a] ->[a] -> Bool.

Prefixes of a list ys are defined as follows:

• [] is a prefix of ys.
• If xs is a prefix of ys, then x:xs is a prefix of x:ys.
• Nothing else is a prefix of ys.

Here is the code for prefix that implements this definition:

prefix :: Eq a => [a] -> [a] -> Bool

prefix [] ys = True

prefix (x:xs) [] = False

prefix (x:xs) (y:ys) = (x==y) && prefix xs ys

Exercise 3.17 Write a function sublist that checks whether xs1 is a sublist of xs2. The
type declaration should be:

sublist :: Eq a => [a] -> [a] -> Bool.

The sublists of an arbitrary list ys are given by:

(1) If xs is a prefix of ys, xs is a sublist of ys.
(2) If ys equals y:ys’ and xs is a sublist of ys’, xs is a sublist of ys.
(3) Nothing else is a sublist of ys.

52 Functional Programming with Haskell

In order to remove duplicates from a list, the items in the list have to belong to a
type in the Eq class, the class of data types for which (==) is defined. It is standard
to call the function for duplicate removal nub:

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (\ y -> (y /= x)) xs)

The code below uses the built-in Haskell function sort (from the List mod-
ule); sort xs sorts the list xs in increasing order. The code provides utilities for
analysing Shakespeare’s sonnets. cnt sonnet18 will give a word count for the
words occurring more than once in the sonnet.

preprocess :: String -> String

preprocess = (map toLower) . filter (‘notElem‘ "?;:,.")

process :: String -> [String]

process = sort . nub . words

cnt :: String -> [(String,Int)]

cnt sonnet = [(x,n)| x <- (process.preprocess) sonnet,

n <- [count x (words (preprocess sonnet))],

n > 1]

3.11 Finnish Vowel Harmony
Vowel harmony is a phonological process by which vowels come to share certain
features. Consider the case of Finnish, which has the back vowels a,o,u, the front
vowels ä, ö, y, and the neutral vowels i, e. A Finnish word may contain only back
(and neutral) vowels or contain only front (and neutral) vowels.†

pouta ‘fine weather’
koti ‘home’
pöytä ‘table’

Back and front vowels are furthermore vowel harmony inducing. That is, if a stem
contains only back vowels, then the suffix also contains only back vowels; if the

† Data are taken from Ringen and Heinämäki [RH99].

3.11 Finnish Vowel Harmony 53

stem consists of front vowels, the suffix vowels assimilate to being front. Here are
some examples, taken from essive case formation.

pouta ++ na→ poutana
koti ++ na→ kotina

pöytä ++ na→ pöytänä

This can be captured in a simple way by a function inspired by Forsberg [For07,
p. 13], that changes the vowels of the suffix according to whether the stem vowels
are front or back vowels. One small detail: the character ‘ä’ is not standard ASCII,
but is part of the Latin 1 supplement of the ASCII character set. It has decimal code
228. The character ‘ö’ has decimal code 246. These characters can be referred to
in Haskell as ’\228’ and ’\246’, or chr(228) and chr(246), respectively.

aUml,oUml :: Char

aUml = chr(228)

oUml = chr(246)

appendSuffixF :: String -> String -> String

appendSuffixF stem suffix = stem ++ map vh suffix

where vh | or [elem c "aou" | c <- stem] = back

| or [elem c [aUml,oUml,’y’] | c <- stem] = front

| otherwise = id

front :: Char -> Char

front s | s == ’a’ = aUml

| s == ’o’ = oUml

| s == ’u’ = ’y’

| otherwise = s

back :: Char -> Char

back s | s == aUml = ’a’

| s == oUml = ’o’

| s == ’y’ = ’u’

| otherwise = s

Haskell has two ways to locally define auxiliary functions, the where and let

constructions. The where construction is illustrated in the definition given above

54 Functional Programming with Haskell

of appendSuffixF. This can also be expressed with let, as in the following al-
ternative version of that definition:

appendSuffixF stem suffix =

let vh | or [elem c "aou" | c <- stem] = back

| or [elem c [aUml,oUml,’y’] | c <- stem] = front

| otherwise = id

in stem ++ map vh suffix

The let construction uses the reserved keywords let and in.

Exercise 3.18 What type does the function vh have?

Next consider Swedish.† Swedish nouns form the plural according to one of five
declination classes.

• Nouns of the first class end in a and their plural is formed by appending the
suffix -or. When this suffix is appended to the stem, the last vowel of the stem is
deleted. Examples for this are:

flicka ++ or → flickor ‘girls’
blomma ++ or → blommor ‘flowers’

• Nouns of the second class end in e and the plural suffix is -ar. Again, when
appending it, the last vowel of the stem is deleted.

pojke ++ ar → pojkar ‘boys’

• Ignoring the possible suffix -ar, nouns of the third class form the plural with the
suffix -er if the stem ends in a consonant, and with -r if the stem ends in a vowel.

rad ++ er → rader ‘rows’
ko ++ r → kor ‘cows’

• Nouns of the fourth class form the plural simply by appending -n.

äpple ++ n → äpplen ‘apples’

• Nouns of the fifth class remain unchanged.

hus → hus ‘houses’

† For a comprehensive book about Swedish morphology, see, e.g., [Hel78].

3.12 Identifiers in Haskell 55

Here is a data type DeclClass for the declination classes (this uses a facility of
Haskell to define your own data types, more about which in Section 3.13).

data DeclClass = One | Two | Three | Four | Five

We will use this to write a function

swedishPlural :: String -> DeclClass -> String

for plural declination of Swedish nouns. We will assume the following set of
Swedish vowels:

oSlash,aRing :: Char

oSlash = chr(248)

aRing = chr(229)

swedishVowels = [’a’,’i’,’o’,’u’,’e’,’y’,aUml,aRing,oUml,oSlash]

The solution uses a case construction and pattern matching on the shape of
DeclClass. It also uses the function init that removes the last element from a
list.

swedishPlural :: String -> DeclClass -> String

swedishPlural noun d = case d of

One -> init noun ++ "or"

Two -> init noun ++ "ar"

Three -> if (last noun) ‘elem‘ swedishVowels

then noun ++ "r"

else noun ++ "er"

Four -> noun ++ "n"

Five -> noun

3.12 Identifiers in Haskell
As the reader may have noticed already from the code examples in this chapter,
Haskell uses the distinction between upper and lower case to tell two kinds of
identifiers apart:

• Variable identifiers are used to name functions. They have to start with a lower-
case letter. Examples are

56 Functional Programming with Haskell

map, swedishVowels, list2OnePlacePred, foo_bar.

• Constructor identifiers are used to name types and their inhabitants. Constructor
identifiers have to start with an upper-case letter. An example of a type con-
structor is Bool, and examples of data constructors are True, False, the two
constructors that make up the type Bool.

Functions are operations on data structures; constructors are the building blocks of
the data structures themselves (trees, lists, Booleans, and so on).

Names of functions always start with lower-case letters, and may contain both
upper- and lower-case letters, but also digits, underscores, and the prime symbol ’.
The following reserved keywords have special meanings and cannot be used to
name functions.

case class data default deriving do else

if import in infix infixl infixr instance

let module newtype of then type where

The character at the beginning of a word is treated as a lower-case character;
all by itself is a reserved word for the wild card pattern that matches anything.
And there is one more reserved keyword that is particular to Hugs: forall,

for the definition of functions that take polymorphic arguments. See the Hugs
documentation for further particulars.

3.13 User-defined Data Types and Pattern Matching
Besides the predefined data types like Int, Char, and Bool, you can define data
types yourself. Imagine, for example, we want to implement our own data structure
for subjects and predicates as sentence ingredients.

data Subject = Chomsky | Montague deriving Show

data Predicate = Wrote String deriving Show

The data type Predicate is built from another data type; in fact, the data type
declaration specifies Wrote as a function from strings to predicates:

FPH> :t Wrote

Wrote :: String -> Predicate

Note that we added deriving Show to the specification of our data types. This
puts these data types in the Show class and tells Haskell to print its instances exactly
like they are given. Another way would be to tell Haskell that these data types are

3.13 User-defined Data Types and Pattern Matching 57

instances of the Show class and then define a show function for them ourselves.
This is useful if we want a data type to be displayed in a certain way. We will do
that below for the data type Sentence.

We would like to use these data types to construct a more complex data type, say
a Sentence. For this we use a data constructor S, as follows:

data Sentence = S Subject Predicate

type Sentences = [Sentence]

The last line defines a type synonym. We added it simply to illustrate this ab-
breviated way of talking about types. This is exactly like String was defined as
[Char].

The specification of Sentence says that the data type has the form of a tree.
Such trees are familiar in linguistics. Linguists would display a sentence tree as:

S

Subject Predicate

But maybe we do not want it to get displayed like a tree. In order to display
instances of the Sentence type in a natural way, we can tell Haskell explicitly
how to display a value of the type.

instance Show Sentence where

show (S subj pred) = show subj ++ " " ++ show pred

We can specify functions for constructing predicates and sentences:

makeP :: String -> Predicate

makeP title = Wrote title

makeS :: Subject -> Predicate -> Sentence

makeS subj pred = S subj pred

Here they are in action:

FPH> makeS Chomsky (makeP "Syntactic Structures")

Chomsky Wrote "Syntactic Structures"

58 Functional Programming with Haskell

The Booleans True and False are an example of a so-called enumerated datatype
in Haskell. The two items True and False are called data constructors. The fol-
lowing standard definition of not uses pattern matching on these data to define
negation.

not :: Bool -> Bool

not True = False

not False = True

Another kind of pattern matching on data occurs with the structured datatype of
lists:

null :: [a] -> Bool

null [] = True

null (_:_) = False

The pattern [] is matched by the empty list, and the pattern (_:_) is matched
by any non-empty list. The underscore _ is called a wild card pattern. It matches
anything. So (_:_) stands for anything that can be constructed with :, and it
follows that (_:_) matches any non-empty list.

Here is another example from the Haskell Prelude:

last :: [a] -> a

last [x] = x

last (_:xs) = last xs

last [] = error "Prelude.last: empty list"

Pattern matching in Haskell takes place top to bottom. The top equation is tried
first. When there is a match, this equation is applied, otherwise the next equation
is tried for a match, and so on. The following alternative way to write the last

function illustrates this:

myLast :: [a] -> a

myLast [x] = x

myLast (_:xs) = myLast xs

myLast _ = error "myLast: empty list"

The pattern used in myLast _ always matches, but because it is at the bottom of
the list of patterns, it will only be selected in case the list is empty.

3.13 User-defined Data Types and Pattern Matching 59

Data constructors may have arguments, as in the following example of a datatype
for colours:

data Colour = RGB Int Int Int deriving Show

The deriving Show guarantees that we can display colour values on screen,
by means of show, which converts colour values to strings. But a string like
"RGB 0 0 0" is not very informative. Pattern matching on the data allows us to
get a more illuminating string description of colours. The following showColour

function converts certain ‘special’ colour values to informative names, while rely-
ing on the ordinary show function for the other cases:

showColour :: Colour -> String

showColour (RGB 0 0 0) = "black"

showColour (RGB 255 255 255) = "white"

showColour (RGB 255 0 0) = "red"

showColour (RGB 0 255 0) = "green"

showColour (RGB 0 0 255) = "blue"

showColour (RGB 255 255 0) = "yellow"

showColour (RGB 0 255 255) = "cyan"

showColour (RGB 255 0 255) = "magenta"

showColour c = show c

There is a close connection between constructing a value, e.g., constructing the
value RGB 0 0 0, by applying a constructor to a number of arguments, and pat-
tern matching on a value. RGB 0 _ _ matches all colours that have no red in them,
RGB _ _ 0 matches all colours that have no blue in them, and so on. Pattern
matching can be viewed as kind of reversal of the construction process. It is be-
cause we know how particular values are constructed that we can pattern match on
them. Here is another example:

redAlert :: Colour -> String

redAlert c@(RGB r _ _) = case r of

0 -> show c ++ " has no red"

_ -> show c ++ " has red"

60 Functional Programming with Haskell

The pattern c@(RGB r _ _) in this definition is called an as-pattern. What it
means is: bind the value of c to whatever matches what comes after the @.

3.14 Application: Representing Phonemes
Now, let us turn to a more serious example. We saw a simple implementation of
Finnish vowel harmony with string manipulation. This is not satisfying from a
linguistic point of view, because phonological processes like vowel harmony don’t
seem to be simple string replacement rules, but instead are driven by phonological
features. Thus, an implementation of vowel harmony would be more adequate
if phonemes are represented as feature bundles, especially when vowel harmony
shows more complex patterns. We can do this by defining data structures like the
following.

data Feature = F Attr Value deriving (Eq,Show)

data Attr = Back | High | Round | Cons deriving (Eq,Show)

data Value = Plus | Minus deriving (Eq,Show)

type Phoneme = [Feature]

Representing phonemes with features proves helpful when considering more
complex vowel harmony systems, like the one in Yawelmani, an extinct variety
of the Yokuts language of California. Yawelmani has the surface vowels i u e o a
(ignoring the distinction between short and long vowels). They can be represented
as being of type phoneme, i.e., as lists of features:

yawelmaniVowels = [i,a,o,u,e]

i = [F Cons Minus, F High Plus,

F Round Minus, F Back Minus]

a = [F Cons Minus, F High Minus,

F Round Minus, F Back Plus]

o = [F Cons Minus, F High Minus,

F Round Plus, F Back Plus]

u = [F Cons Minus, F High Plus ,

F Round Plus, F Back Plus]

e = [F Cons Minus, F High Minus,

F Round Minus, F Back Minus]

3.14 Application: Representing Phonemes 61

Since we are concerned with vowels only, we will represent consonants simply
as:

c = [F Cons Plus]

The surface form of these phonemes can be generated by a function realize of
type Phoneme -> Char.

realize :: Phoneme -> Char

realize x | x == i = ’i’

| x == a = ’a’

| x == o = ’o’

| x == u = ’u’

| x == e = ’e’

| x == c = ’c’

The vowel harmony in Yawelmani has the following shape: suffix vowels agree
in backness and roundedness with the stem vowel. However, trigger and target
of this harmony have to be of the same height. Thus, high stem vowels condition
harmony on high suffix vowels but not on low ones, and low stem vowels condition
harmony only on low suffix vowels, cf. the following examples taken from [CK97]:

xil ++ hin → xilhin ‘tangles’
dub ++ hin → dubhun ‘leads by the hand’

xat ++ al → xatal ‘might eat’
bok’ ++ al → bok’ol ‘might find’

xat ++ hin → xathin ‘eats’
bok’ ++ hin → bok’hin ‘finds’

xil ++ al → xilal ‘might tangle’
dub ++ al → dubal ‘might lead by the hand’

Exercise 3.19 Write a function

appendSuffixY :: [Phoneme] -> [Phoneme] -> [Phoneme]

that captures the vowel harmony in Yawelmani. You can use the following auxiliary func-
tions for extracting the value of a certain feature in a phoneme, and for matching a certain
feature in a phoneme with a certain value.

62 Functional Programming with Haskell

fValue :: Attr -> Phoneme -> Value
fValue attr [] = error "feature not found"
fValue attr ((F a v):fs) | attr == a = v

| otherwise = fValue attr fs

fMatch :: Attr -> Value -> Phoneme -> Phoneme
fMatch attr value fs = map (match attr value) fs

where match a v f@(F a’ v’) | a == a’ = F a’ v
| otherwise = f

3.15 Further Reading
The Haskell homepage http://www.haskell.org provides links to everything
about Haskell that you might want to know, including information on how to down-
load the latest version and the online tutorial. Among the tutorials on Haskell that
can be found on the Internet, [DI07] and [HFP96] are recommended. The defini-
tive reference for the language is [PJ03]. Recommended textbooks on functional
programming in Haskell are [Bir98], [Tho99], and [Hut07], and the more recent
[OSG08]. A textbook that bridges the gap between reasoning and functional pro-
gramming is [DE04].

Stringology is a nickname for string algorithms; a nice book devoted to this
subject is [CR02]. Lists are the fundamental data type of the programming lan-
guage Lisp. An illuminating textbook on Lisp is [Gra93], and a splendid book on
programming concepts in general, using the Lisp dialect Scheme, is [AS96].

4
Formal Syntax for Fragments

Summary
In this chapter we present definitions of some example languages: languages for
playing simple games, logical languages, fragments of programming languages,
and fragments of natural language. When we turn to the semantics of natural lan-
guage fragments in the following chapters, we will use predicate logic as a basic
tool. As a preparation for this, we introduce propositional and predicate logic, look
at how they can be used to represent the meaning of natural language sentences,
and show how to implement their syntax in Haskell.

4.1 Grammars for Games
Certain games can be played with a very limited linguistic repertoire. An example
is Sea Battle (or: Battleship), which is played by two people on two pads of paper,
each containing two square grids. The grids each contain 10×10 squares, identified
by letter and number.

A B C D E F G H I J
10
9
8
7
6
5
4
3
2
1

63

64 Formal Syntax for Fragments

The grids of each player are made invisible to the opposite player. The game begins
by each player distributing his fleet over one of his grids. Each player disposes of
a float of ships, each ship occupying a number of adjacent squares on the grid,
either horizontally or vertically: a battleship (5 squares), a frigate (4 squares), two
submarines (3 squares each), and a destroyer (2 squares). Before the game starts,
the ships are positioned on a grid by each player, without overlap (two ships cannot
occupy the same square). This grid is also used for recording enemy shots. The
other grid is for recording shots fired at the enemy.

Here is a typical start situation for one half of the battlefield: the battleship
occupies squares D4, E4, F4, G4, H4, the frigate squares B4, B5, B6, B7, the
first submarine G7, G8, G9, the second submarine A9, B9, C9, and the destroyer
squares H1 and I1.

A B C D E F G H I J
10
9 � � � �
8 �
7 � �
6 �
5 �
4 � � � � � �
3
2
1 � �

A grammar for the language of the game is given below. We state it in BNF no-
tation, with rewriting (or: nonterminal) symbols written in boldface and terminal
symbols or strings written in italics. The grammar rules consist of a rewrite symbol
followed by −→ followed by a number of alternatives separated by |. Recall that
this means that the rewrite symbol can produce any of the alternatives listed in the
right-hand side of the rule.

column −→ A | B | C | D | E | F | G | H | I | J
row −→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

attack −→ column row
ship −→ battleship | frigate | submarine | destroyer

reaction −→ missed | hit ship | sunk ship | lost battle
turn −→ attack reaction

To be fully precise we have to say that the language defined by Sea Battle con-

4.1 Grammars for Games 65

sists of all strings one can get by rewriting the start symbol turn, and repeating the
rewrite process until only terminal symbols are left. An example should make this
clear:

turn ⇒ attack reaction ⇒ attack missed ⇒ column row missed ⇒

⇒ B row missed ⇒ B 2 missed.

Here ⇒ is short for ‘rewrites in one step to’. Another example:

turn ⇒ attack reaction ⇒ attack hit ship ⇒ column row hit ship ⇒

⇒ B row hit ship ⇒ B 3 hit ship ⇒ B 3 hit battleship.

The ‘rewrites in one step’ relation is formally defined as the smallest relation
satisfying the following. If A −→ α is a production of the grammar (i.e. α is
one of the alternatives listed at the right-hand side of the rule with A at the left-
hand side), and βAγ is a list of symbols, with β,γ both consisting of zero or more
terminals and rewrite symbols, then βAγ ⇒ βαγ.

The symbol for ‘rewrites in zero or more steps to’ is ⇒∗. We call this the re-
flexive transitive closure of ⇒. In the example we have: turn ⇒∗ B 2 missed.

The expression B 2 missed does happen to fit the situation of the figure above,
but this has nothing to do with the syntax of the language. It is a matter of seman-
tics, and we will turn to that in the next chapter.

A possible extension of the grammar is a rule for a complete game between two
players:

game −→ turn | turn game.

Exercise 4.1 Revise the grammar in such a way that it is made explicit in the grammar
rules that the game is over once one of the players is defeated.

The exercise illustrates the fact that semantic desiderata may influence the syntactic
design. And this is not all. The rule ‘do not attack the same position twice’, for
instance, is not a part of syntax or semantics, but of pragmatics: whoever plays the
game in order to win will comply with it.

For the Haskell implementation, first declare the module:

module FSynF where

import Data.List

66 Formal Syntax for Fragments

Here is one possible way of rendering the Battleship language in Haskell. We
declare a type synonym Column for columns, and use the Haskell data type Int

for rows. An attack is a pair consisting of a column and a row. The data type
Ship enumerates the war vessel types, the data type Reaction lists the possible
reactions, and the type for Turn gives pairs consisting of an attack and a reaction.

data Column = A’ | B’ | C’ | D’ | E’

| F’ | G’ | H’ | I’ | J’

deriving (Eq,Ord,Show,Enum)

type Row = Int

type Attack = (Column,Row)

data Ship = Battleship | Frigate | Submarine | Destroyer

deriving Show

data Reaction = Missed | Hit Ship | Sunk Ship | LostBattle

deriving Show

type Turn = (Attack,Reaction)

We use A’ for A, and so on, because we will need A for other purposes (see
below, on page 133).

The deriving phrase at the end of each data declaration is there to ensure that
the data type gets some appropriate properties. The phrase deriving Show guar-
antees that the datatype can be displayed on screen exactly as it was defined. The
phrase deriving Eq ensures that equality is defined for a datatype. The phrase
deriving (Eq,Ord,Show) ensures that equality, ordering, and display are de-
fined for it.

Note that declaring the data types for playing the game does not say anything at
all about how the game is to be played.

Another very simple language is the language of Mastermind. Mastermind is a
code-breaking game for two players. One of them (the code maker) decides on a
row of four coloured pegs, with the colours picked from a fixed range. The other
player (the codebreaker) tries to guess the colour pattern. After each guess that
is made the code maker gives feedback as to its correctness. A feedback reaction
consists of a sequence of black and white pegs: a black one for each peg of the
right colour in the right place, and a white one for each additional peg of the right
colour, but in a wrong place. If the secret code is red, blue, green, yellow, and the

4.1 Grammars for Games 67

guess is green, blue, red, orange, then the feedback consists of one black, for blue
occurs in the right place, and two whites, for both green and red occur in the guess,
but in the wrong positions. Next, guesses and feedback alternate until the pattern
is discovered. The challenge is to guess the pattern in the least number of tries.

A grammar for Mastermind looks as follows. We use an extended BNF notation
(called EBNF) with curly brackets enclosing items that are repeated zero or more
times.

colour −→ red | yellow | blue | green | orange
answer −→ black | white

guess −→ colour colour colour colour
reaction −→{ answer}

turn −→ guess reaction
game −→ turn | turn game

Exercise 4.2 Revise the grammar in order to guarantee that a game has at most four turns.

Exercise 4.3 Write your own grammars for chess and bingo.

All these example grammars have the property that they generate infinite lan-
guages.

Exercise 4.4 Check this. Next, change the definition of reaction in the grammar of Exer-
cise 4.2 to ensure that the revised grammar generates a finite language.

A possible Haskell representation for the language of Mastermind is given be-
low. In the interest of flexibility we implement colour patterns and answer se-
quences as lists.

data Colour = Red | Yellow | Blue | Green | Orange

deriving (Eq,Show,Bounded,Enum)

data Answer = Black | White deriving (Eq,Show)

type Pattern = [Colour]

type Feedback = [Answer]

Again, the implementation of the data type for Mastermind games tells us noth-
ing about how these games are to be played. We will say more about this in the
next chapter, when we discuss the semantics of these fragments.

68 Formal Syntax for Fragments

If one is lenient enough one might consider these example languages as frag-
ments of English. Conversely, it is also very simple to write a grammar for a
language which has English contained in it as a fragment:

character −→ A | · · · | Z | a | · · · | z | | , | . | ? | ! | ; | :
string −→ character | character string

The set of all strings, according to this definition, contains the set of sentences of
written English.

Note, by the way, that we have tacitly introduced · · · as a new abbreviation.
This is strictly for human consumption: if a computer is supposed to read this, we
have to explain how. But we all have learnt the alphabet at primary school, and
the abbreviation relies on this common knowledge. It is extremely tedious to write
prose meant for human consumption without tacitly relying on such background
knowledge. In computer programming, one has to make all these shortcuts explicit,
of course. This may be why people with a talent for human relationships – and a
skill for seeking common ground – find it often difficult to relate to computers, and
vice versa. It should be noted, by the way, that Haskell is rather smart at guessing
what ellipsis means:

FSynF> [’A’..’Z’]

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

If we want to be on good terms with computers, functional programming is a handy
tool for communication.

Exercise 4.5 Give a grammar for strings which also generates the empty string. Use � as
a symbol for the empty string. (In Haskell, the empty string is given by "" or [].)

In the next section we will turn to a more serious fragment of English.

4.2 A Fragment of English
Suppose we wish to write grammar rules for sentences of English like the follow-
ing:

The girl laughed. (4.1)
No dwarf admired some princess that shuddered. (4.2)
Every girl that some boy loved cheered. (4.3)
The wizard that helped Snow White defeated the giant. (4.4)

What we need is a rule for the subject–predicate structure of sentences, a rule for
the internal structure of noun phrases, a rule for common nouns with or without

4.2 A Fragment of English 69

relative clauses, and that is just about it. The following grammar copes with the
examples:

S −→ NP VP
NP −→ Snow White | Alice | Dorothy | Goldilocks | Little Mook | Atreyu

| DET CN | DET RCN
DET −→ the | every | some | no

CN −→ girl | boy | princess | dwarf | giant | wizard | sword | dagger
RCN −→ CN that VP | CN that NP TV

VP −→ laughed | cheered | shuddered
| TV NP | DV NP NP

TV −→ loved | admired | helped | defeated | caught
DV −→ gave

This is very basic and much too crude, of course, but it should give an idea of what
a grammar for a fragment of English might look like.

Exercise 4.6 Extend this fragment with adjectives happy and evil.

Exercise 4.7 Extend the fragment with preposition phrases, in such a way that the sentence
A dwarf defeated a giant with a sword is generated in two structurally different ways, while
there is only one way to generate A dwarf defeated Little Mook with a sword.

Exercise 4.8 Extend the fragment with complex relative clauses, where the relative clause
can be a sentence conjunction. The fragment should generate, among other things, the sen-
tence: The dwarf that Snow White helped and Goldilocks admired cheered. What problems
do you encounter?

For the record, here is one way to define (a slight extension of) this language
fragment in Haskell. Some of the stuff, such as the adjective Fake and the attitude
verbs Wanted and Hoped, is thrown in for purposes of illustrating intensionality.
See below, Section 8.3.

data Sent = Sent NP VP deriving Show

data NP = SnowWhite | Alice | Dorothy | Goldilocks

| LittleMook | Atreyu | Everyone | Someone

| NP1 DET CN | NP2 DET RCN

deriving Show

70 Formal Syntax for Fragments

Fig. 4.1. Example structure tree

S

NP

DET

the

RCN

CN

dwarf

That

that

NP

Snow White

TV

helped

VP

TV

admired

NP

DET

every

CN

princess

data DET = The | Every | Some | No | Most

deriving Show

data CN = Girl | Boy | Princess | Dwarf | Giant

| Wizard | Sword | Dagger

deriving Show

data ADJ = Fake deriving Show

data RCN = RCN1 CN That VP | RCN2 CN That NP TV

| RCN3 ADJ CN

deriving Show

data That = That deriving Show

data VP = Laughed | Cheered | Shuddered

| VP1 TV NP | VP2 DV NP NP

| VP3 AV To INF

deriving Show

data TV = Loved | Admired | Helped

| Defeated | Caught

deriving Show

data DV = Gave deriving Show

data AV = Hoped | Wanted deriving Show

4.3 A Language for Talking about Classes 71

data INF = Laugh | Cheer | Shudder | INF TINF NP deriving Show

data TINF = Love | Admire | Help | Defeat | Catch

deriving Show

data To = To deriving Show

The way to look at this is as a definition of syntactic structures. The structure for
The dwarf that Snow White helped admired every princess is given in Figure 4.1.

The problem of using the grammar for mapping the string The dwarf that Snow
White helped admired every princess to this syntactic structure is an instance of the
parse problem for this grammar. We will say more about this in Chapter 9.

4.3 A Language for Talking about Classes

To see that even very simple fragments of English can be useful, consider the fol-
lowing interaction language for a so-called inference engine. An interactive infer-
ence engine is a program that handles interaction with a knowledge base (a kind of
smart database). The interaction language in our case is a tiny fragment of English
that allows questions and statements about classes.

Questions (or: queries) are of the form

Q ::= Are all PN PN?

| Are no PN PN?

| Are any PN PN?

| Are any PN not PN?

| What about PN?

Statements are of the form

S ::= All PN are PN.

| No PN are PN.

| Some PN are PN.

| Some PN are not PN.

That’s all. The intention is that the knowledge base can be extended by means
of statements, and queried by means of questions. We will not attempt to constrain
the shape of the plural nouns PN. In Section 5.7 a semantics for this fragment will
be given, which puts it to use.

72 Formal Syntax for Fragments

4.4 Propositional Logic
Our next example is a grammar for propositional logic, where we use

p, q, r, p�, q�, r�, p��, q��, r��, . . .

to indicate atomic propositions.

atom −→ p | q | r | atom�

F −→ atom | ¬F | (F ∧ F) | (F ∨ F).

Here ¬ is the symbol for not, ∧ the symbol for and, and ∨ the symbol for or.
Some formulas generated by this grammar are ¬¬¬p���, ((p ∨ p�) ∧ p���), and

(p∧ (p�∧p���)). The brackets force unique readability. Without those brackets, one
wouldn’t know whether to read p ∧ p� ∨ p�� as

F

F

F

p

∧ F

p�

∨ F

p��

or as F

F

p

∧ F

F

p�

∨ F

p��

This structural ambiguity does affect the meaning, just as for the English sen-
tence She was young and beautiful or depraved.

The formal definition of the language of propositional logic makes it possible to
reason about the properties of the language in a formal way. For this we use the
following principle:

Theorem 4.1 (Principle of Structural Induction) Every formula of propositional
logic has property P provided

Basic step: Every atom has property P .
Induction step: If F has property P , then so does ¬F ; if F1 and F2 have property

P , then so do (F1 ∧ F2) and (F1 ∨ F2).

To see this, let P � be the set of all propositional formulas with property P . Then
the basic step and the induction step together ensure that all propositional formu-
las are members of P �. But this just means that every propositional formula has
property P .

This can be used as follows:

Proposition 4.2 Every propositional formula has equal numbers of left and right
parentheses.

4.4 Propositional Logic 73

Proof Basic step: atoms do not have parentheses at all, so it holds vacuously that
they have the same numbers of left and right parentheses.

Induction step: If F has the same numbers of left and right parentheses, then so
does ¬F , for no parentheses are added. If F1 and F2 both have equal numbers of
left and right parentheses, then so do (F1 ∧ F2) and (F1 ∨ F2), for both numbers
are increased by one.

Of course, as a proposition this is not very interesting. The interest is in the
proof method. The same holds for the next result.

Proposition 4.3 Propositional formulas are uniquely readable (have only one parse
tree).

Proof Basic step: If F is an atom, then F has only one parse tree.
Induction step: If F has only one parse tree, then ¬F has only one parse tree

too. If F1 and F2 have only one parse tree each, then the same holds for (F1 ∧ F2)
and (F1 ∨ F2).

Note the use of so-called metasymbols F1 and F2 in the reasoning above. Meta-
symbols come in handy whenever one wants to talk about the general form of a
formula. A formula of the form (F1 ∧ F2) is called a conjunction, a formula of the
form (F1 ∨ F2) a disjunction, and a formula of the form ¬F a negated formula.

Sometimes the ‘official’ way of writing formulas is a bit clumsy. We will usually
write p2 for p��, q3 for q���, and so on. Also, we will often omit parentheses when this
does not result in ambiguity. Furthermore, propositional conjunction is associative,
so (p ∧ (q ∧ r)) means the same as ((p ∧ q) ∧ r). Therefore, there is no harm in
writing (p∧ q∧ r) or even p∧ q∧ r for both. Disjunction is also associative, so we
will also write (p ∨ (q ∨ r)) and ((p ∨ q) ∨ r) as p ∨ q ∨ r. And so on, for longer
conjunctions and disjunctions.

While we are at it, it is useful to introduce the following abbreviations. We
will write F1 → F2 for ¬(F1 ∧ ¬F2). A formula of the form F1 → F2 is called
an implication and read as ‘F1 implies F2’ or ‘if F1, then F2’. Also, we write
F1 ↔ F2 for (F1 → F2) ∧ (F2 → F1). A formula of the form F1 ↔ F2 is called
an equivalence.

The logical connectives ¬,∧,∨,→,↔ were designed to correspond to the nat-
ural language connectives not, and, or, if. . . then, and if and only if. For example,
the sentence

If it rains and the sun is shining, then there will be a rainbow. (4.5)

can be represented as the propositional formula (p∧ q) → r, with p, q, and r being

74 Formal Syntax for Fragments

the atomic propositions It rains, The sun is shining, and There will be a rainbow,
respectively.

Exercise 4.9 Translate the following sentences into propositional logic, making sure that
their truth conditions are captured. What shortcomings do you encounter?

The wizard polishes his wand and learns a new spell, or he is lazy. (4.6)
The peasant will deal with the devil only if he has a plan to outwit him. (4.7)
If neither unicorns nor dragons exist, then neither do goblins. (4.8)

Exercise 4.10 The logical connective ∨ is inclusive, i.e. p ∨ q is true also if both p and q
are true. In natural language, however, or is usually used exclusively, as in

You can either have ice cream or candy floss, but not both. (4.9)

Define a connective ⊕ for exclusive or, using the already defined connectives.

It is possible to write formulas for propositional logic which are uniquely read-
able, but without using parentheses. The solution is to use prefix or postfix notation.
Prefix notation is sometimes called Polish notation. Here is a grammar for prefix
formulas of propositional logic:

P −→ atom | ¬ P | ∧ P P | ∨ P P.
This definition generates, for example, ¬¬¬p, ∧ ∨ pqr, ∧p ∨ qr.

Exercise 4.11 Use the principle of structural induction to prove that the formulas of propo-
sitional logic in prefix notation are uniquely readable.

It is also possible to put the operators after their operands; this gets us reverse
Polish notation or postfix notation:

R −→ atom | R ¬ | R R ∧ | R R ∨ .

When implementing the syntax of propositional logic in Haskell, it is possible
to make use of the predefined list syntax. We can promote the conjunction and dis-
junction operators to functions that create formulas from formula lists, as follows:

data Form = P String | Ng Form | Cnj [Form] | Dsj [Form]

deriving Eq

instance Show Form where

show (P name) = name

show (Ng f) = ’-’: show f

show (Cnj fs) = ’&’: show fs

show (Dsj fs) = ’v’: show fs

4.5 Predicate Logic 75

Note that this is Polish notation, and that the types of Ng, Cnj, and Dsj are as
follows:

FSynF> :t Ng

Ng :: Form -> Form

FSynF> :t Cnj

Cnj :: [Form] -> Form

FSynF> :t Dsj

Dsj :: [Form] -> Form

Here are some example formulas:

form1, form2 :: Form

form1 = Cnj [P "p", Ng (P "p")]

form2 = Dsj [P "p1", P "p2", P "p3", P "p4"]

And this is how they get displayed:

FSynF> form1

&[p,-p]

FSynF> form2

v[p1,p2,p3,p4]

Exercise 4.12 Implement a function opsNr for computing the number of operators in a
formula. The type is opsNr :: Form -> Int. The call opsNr form1 should yield 2.

Exercise 4.13 Implement a function depth for computing the depth of the parse tree of a
formula. The type is depth :: Form -> Int. The call depth form1 should yield 2.

Exercise 4.14 Implement propNames :: Form -> [String] for collecting the list of
names of propositional atoms that occur in a formula. Make sure the resulting list is sorted
and without duplicates.

4.5 Predicate Logic
There are many aspects of natural language that propositional logic cannot express.
For example, when translating the sentences (4.10) and (4.11) into propositional
logic, the connection between their meanings is lost because they would have to be
represented as completely different proposition constants p and q.

Every prince saw a lady. (4.10)
Some prince saw a beautiful lady. (4.11)

76 Formal Syntax for Fragments

To capture some of the internal structure of sentences like this, in particular the
role of predication and quantifiers, we now turn to predicate logic. Predicate logic
is an extension of propositional logic with structured basic propositions and quan-
tifications.

• A structured basic proposition consists of an n-ary predicate followed by n vari-
ables.

• A universally quantified formula consists of the symbol ∀ followed by a variable
followed by a formula.

• An existentially quantified formula consists of the symbol ∃ followed by a vari-
able followed by a formula.

• Other ingredients are as in propositional logic.

Other names for predicate logic are first-order logic or first-order predicate logic.
‘First-order’ indicates that the quantification is over entities (objects of the first
order).

We will now give a formal definition of the language of predicate logic, on the
assumption that predicates combine with at most three variables. More formally,
we assume that the predicates have arity less or equal to 3. What this means is
that we can refer to one-place relations or properties (such as the property of be-
ing happy, or being an even number), to two-place relations (such as the relation
‘greater than’ between numbers, or the relation ‘older than’ between people), and
to three-place relations (such as the relation of giving, which has a subject, an ob-
ject and a recipient or indirect object), but not to relations with more than three
arguments. Relations with more than three arguments are hardly ever needed, any-
way.

Here is the definition of the language of predicate logic with infinitely many
one-placed predicates, infinitely many two-placed predicates, and infinitely many
three-placed predicates:

v −→ x | y | z | v�

P −→ P | P�

R −→ R | R�

S −→ S | S�

atom −→ P v | R v v | S v v v
F −→ atom | (v = v) | ¬F | (F ∧ F) | (F ∨ F) | ∀ v F | ∃ v F.

The following strings are examples of formulas of this predicate logical language:

• ¬P �x
• (Px ∧ P �x��)

4.5 Predicate Logic 77

• ((Px ∧ P �x��) ∨Rxx��)

• ∀xRxx

• ∃x(Rxx� ∧ Sxyx)

• ∀x∀x�¬((x = x�) ∧ ¬(x� = x))

Exercise 4.15 Prove that the formulas of this language have the property of unique read-
ability.

The symbol ∀ is the symbol for universal quantification; it means ‘for all’.
The symbol ∃ expresses existential quantification; it means ‘there exists’. Thus,
∀xRxx means that everything bears the R relation to itself, and ∀x∃x�Rxx� means
that for everything there is something which is R-ed by that first thing. Incidentally,
this paraphrase shows that the variable notation is quite handy. More information
about the semantics of first-order predicate logic will be given in Chapters 5 and 6.

Exercise 4.16 Give a BNF grammar for a predicate logical language with infinitely many
predicate letters for every finite arity. (Hint: use ���P,���P �,���P ��, . . . for the set of three-place
predicate letters, and so on.)

Again, it is convenient to be lenient about notation. We will use

x, y, z, x1, y1, z1, x2, y2, z2, . . .

for individual variables, and

P,R, S, P1, R1, S1, P2, R2, S2, . . .

for predicate symbols, plus the conventions for omitting parentheses when they
are not essential for disambiguation. We will also use the abbreviations F1 → F2

for formulas of the form ¬(F1 ∧ ¬F2), and F1 ↔ F2 for formulas of the form
(F1 → F2) ∧ (F2 → F1).

In talking about predicate logical formulas we want to be able to distinguish
between the variable occurrences that are bound by a quantifier in that formula and
the occurrences that are not. Binding is a syntactic notion, and it can simply be
stated as follows: in a formula ∀xF (or ∃xF), the quantifier occurrence binds all
occurrences of x in F that are not bound by an occurrence of ∀x or ∃x inside F .

Alternatively, we can define it in terms of properties of syntax trees: an occur-
rence of ∀x (or ∃x) in a formula F binds an occurrence of x in F if in the syntax
tree for F the occurrence ∀x (or ∃x) c-commands x, and inside F there are no other
occurrences of ∀x or ∃x that c-command x. The notion of c-command is defined as
follows: node a in a syntax tree c-commands (i.e. ‘constituent’-commands) node b
in that tree if the first branching node above a dominates b, where a node a dom-
inates node b in a syntax tree if there is a downward path through the tree leading

78 Formal Syntax for Fragments

from a to b (with a = b in the limit case). We will look at trees and relations
between tree nodes in more detail in Chapter 9.

As an example, consider the formula Px ∧ ∀x(Qx → Rxy). Here is its syntax
tree:

Px ∧
∀x

Qx → Rxy
The first occurrence of x is free, because it is not c-commanded by a quantifier;

the other occurrences of x are bound, because they are c-commanded by ∀x. In
such a case we also say that that occurrence of x is in the scope of the quantifier
occurrence ∀x or ∃x.

An occurrence of x is bound in F if there is some quantifier occurrence that
binds it, it is free otherwise.

Exercise 4.17 Give the bound occurrences of x in the following formula.

∃x(Rxy ∨ Sxyz) ∧ Px

A predicate logical formula is called open if it contains at least one variable oc-
currence which is free; it is called closed otherwise. A closed predicate logical
formula is also called a predicate logical sentence. Thus, (Px ∧ ∃xRxx) is an
open formula, but ∃x(Px ∧ ∃xRxx) is a sentence.

Now we can have a go at representing the sentences (4.10) and (4.11) from
earlier, here repeated for convenience as (4.12) and (4.13):

Every prince saw a lady. (4.12)
Some prince saw a beautiful lady. (4.13)

The first sentence is ambiguous between two readings. Either it holds for every
prince that he saw some lady, which corresponds to the formula

∀x(Prince x → ∃y(Lady y ∧ Saw x y)),

or there is one specific lady that every prince saw. This reading corresponds to the
formula

∃y(Lady y ∧ ∀x(Prince x → Saw x y)).

The second sentence does not give rise to ambiguity but can straightforwardly be
represented as

∃x∃y(Prince x ∧ Lady y ∧ Beautiful y ∧ Saw x y).

4.6 Predicate Logical Formulas in Haskell 79

Note that universally quantified statements are translated with → as main con-
nective, while in the existentially quantified statements we made use of ∧. Think
about why this is so. We will come back to this issue in Section 5.5 (more specifi-
cally, in Exercise 5.17 on page 102).

4.6 Predicate Logical Formulas in Haskell

In this section we will give a formal definition of the language of predicate logic
in Haskell. Once we have data types for terms and formulas, we can study the
problem of specifying a semantic interpretation for them.

Haskell lists allow for an elegant solution to the arity problem. We simply com-
bine predicates with lists of variables, letting the length of the list determine the
arity of the predicate. This way, we allow the same relation symbol to occur with
different arities, but there is no harm in this. (Indeed, it is common practice to do
this in programming languages like Prolog and Erlang.)

As a first step towards a Haskell implementation of the data type of predicate
logical formulas, we modify the syntax given in the previous section by giving
basic predicates a list argument, and by defining conjunctions and disjunctions as
operators on lists of formulas, as follows:

v −→ x | y | z | v�

vlist −→ [] | v : vlist
P −→ P | P�

atom −→ P vlist
F −→ atom | v = v | ¬F | ∧Flist | ∨Flist | ∀ v F | ∃ v F

Flist −→ [] | F : Flist

We start out with a data type for variables. It is convenient to give a variable both
a name and an index. The indices will be needed for picking fresh variables in
Chapter 6.

type Name = String

type Index = [Int]

data Variable = Variable Name Index deriving (Eq,Ord)

Variables are the type of object that can be shown on the screen. We therefore
put them in the Show class, and define a function for showing them:

80 Formal Syntax for Fragments

instance Show Variable where

show (Variable name []) = name

show (Variable name [i]) = name ++ show i

show (Variable name is) = name ++ showInts is

where showInts [] = ""

showInts [i] = show i

showInts (i:is) = show i ++ "_" ++ showInts is

Some example variables, that we will use later on:

x, y, z :: Variable

x = Variable "x" []

y = Variable "y" []

z = Variable "z" []

In the definition of formulas we let conjunction and disjunction operate on lists
of formulas, and we use prefix notation for implications and equivalences. To
start with, we will assume that all terms are variables, but we will modify this in
the next section. It therefore make sense to define a so-called parametrized data
type or abstract data type, where we use a type variable for the terms occurring in
formulas. This gives:

data Formula a = Atom String [a]

| Eq a a

| Neg (Formula a)

| Impl (Formula a) (Formula a)

| Equi (Formula a) (Formula a)

| Conj [Formula a]

| Disj [Formula a]

| Forall Variable (Formula a)

| Exists Variable (Formula a)

deriving Eq

The construct Atom String [a] corresponds to predicate constants named by
String, with a list of terms (or more general values of type a) as arguments. For
example, R(x, y) would be represented as Atom "R" [x,y].

The function for showing formulas assumes that we use terms that are them-
selves showable. This is indicated by means of a type class constraint Show a.

4.6 Predicate Logical Formulas in Haskell 81

instance Show a => Show (Formula a) where

show (Atom s []) = s

show (Atom s xs) = s ++ show xs

show (Eq t1 t2) = show t1 ++ "==" ++ show t2

show (Neg form) = ’~’ : (show form)

show (Impl f1 f2) = "(" ++ show f1 ++ "==>"

++ show f2 ++ ")"

show (Equi f1 f2) = "(" ++ show f1 ++ "<=>"

++ show f2 ++ ")"

show (Conj []) = "true"

show (Conj fs) = "conj" ++ show fs

show (Disj []) = "false"

show (Disj fs) = "disj" ++ show fs

show (Forall v f) = "A " ++ show v ++ (’ ’ : show f)

show (Exists v f) = "E " ++ show v ++ (’ ’ : show f)

Why we chose to display Conj [] as "true" and Disj [] as "false" will
become clear when we look at their semantics in the next chapter on page 94.

Here are some example formulas of type Formula Variable:

formula0 = Atom "R" [x,y]

formula1 = Forall x (Atom "R" [x,x])

formula2 = Forall x

(Forall y

(Impl (Atom "R" [x,y]) (Atom "R" [y,x])))

These get displayed as follows:

FSynF> formula0

R[x,y]

FSynF> formula1

Ax R[x,x]

FSynF> formula2

Ax Ay (R[x,y]==>R[y,x])

Formula formula1 expresses that the R relation is reflexive, while formula2

expresses that R is symmetric.

Exercise 4.18 Write a function closedForm :: Formula Variable -> Bool that checks
whether a formula is closed. (Hint: first write a function that collects the list of free vari-
ables of a formula. The closed formulas are the ones with an empty free variable list.)

82 Formal Syntax for Fragments

Exercise 4.19 Implications and equivalences can be considered as abbreviations, for they
can be defined in terms of negation and conjunction. Write a function

withoutIDs :: Formula Variable -> Formula Variable

that replaces each formula by an equivalent one without occurrences of Impl or Equi.

Exercise 4.20 Each formula of predicate logic is equivalent to a formula in so-called nega-
tion normal form, where negations only occur in front of atoms. The recipe is to ‘push’
negations through quantifiers by means of ¬∀xF ≡ ∃x¬F and ¬∃xF ≡ ∀x¬F , and
through disjunctions and conjunctions by means of the so-called laws of De Morgan:
¬(F1 ∧ F2) ≡ ¬F1 ∨ ¬F2 and ¬(F1 ∨ F2) ≡ ¬F1 ∧ ¬F2. ¬¬F ≡ F can be used
for getting rid of double negations. Write a function

nnf :: Formula Variable -> Formula Variable

for transforming a formula into negation normal form. (Hint: use the function from the
previous exercise for getting rid of implication and equivalence operators.)

4.7 Adding Function Symbols
One would hope that predicate logic is powerful enough to express the equations
of primary school arithmetic. The above definition does not quite give us that
expressive power, however, for we have only allowed for simple terms (terms that
are either constants or variables), while an arithmetical term like ((5 + 3) × 4)
is a complex expression. Just adding the term forming operators + and × is not
the best solution, for we want our predicate logical language to be general enough
to also apply to other domains than the domain of natural numbers. So instead
of introducing a name for the sum and product operations, we introduce names
for arbitrary operations — just like we have introduced names for arbitrary two-
place relations instead of introducing a name for the ‘smaller than’ relation. Names
for arbitrary operations are called function constants and are intended to represent
functions.

In the above data type for formulas it is assumed that all terms are variables. The
following data type for terms caters for variables plus functional terms. Functional
terms with an empty variable list are the individual constants of the language. We
will later use them as denotations for proper names.

Again we start with a version of the syntax of terms that uses lists:

t −→ v | f tlist
f −→ f | f�

tlist −→ [] | t : tlist

This allows for complex terms like f [x] and f ��[f �[x], f ���[x, f [z]]].

4.7 Adding Function Symbols 83

Exercise 4.21 Give a parse tree for the term f ��[f �[x, y], f ���[z, z, f [x]]].

Again, we will write f �, f ��, . . . as f1, f2, and so on.
Here is an implementation of a data type for terms:

data Term = Var Variable | Struct String [Term]

deriving (Eq,Ord)

Here is the declaration of Term as an instance of the Show class:

instance Show Term where

show (Var v) = show v

show (Struct s []) = s

show (Struct s ts) = s ++ show ts

Let us define some examples of variable terms:

tx, ty, tz :: Term

tx = Var x

ty = Var y

tz = Var z

A term t is free for variable v in formula F if every free occurrence of v in F
can be replaced by t without any of the variables in t getting bound. For example,
y is free for x in (Px → ∀xPx), but the same term is not free for x in (∀yRxy →
∀xRxx). Similarly, g(x, y) is not free for x in (∀yRxy → ∀xRxx).

Being free for a variable v in a formula is an important notion, for a term with
this property can be substituted for free occurrences of v without an unintended
change of meaning. As an example for a substitution that changes the meaning,
consider the open formula (∀yRxy → ∀xRxx). If we replace the free occurrence
of x in this formula by y we get a closed formula: (∀yRyy → ∀xRxx). The
result of the substitution is a sentence: a variable which originally was free has got
captured. This kind of accident we would like to avoid.

If a term t is free for a variable v in a formula F we can substitute t for all free
occurrences of v in F without worrying about variables in t getting bound by one
of the quantifiers in F . If, on the other hand, t is not free for v in F , we can always
rename the bound variables in F to ensure that substitution of t for v in F has the
right meaning. Although g(y, c) is not free for x in (∀yRxy → ∀xRxx), the term
is free for x in (∀zRxz → ∀xRxx), which is a so-called alphabetic variant of

84 Formal Syntax for Fragments

the original formula. An alphabetic variant of a formula is a formula which only
differs from the original in the fact that it uses different bound variables.

The function isVar checks whether a term is a variable:

isVar :: Term -> Bool

isVar (Var _) = True

isVar _ = False

The functions varsInTerm and varsInTerms give the variables that occur in a
term or a term list. Variable lists should not contain duplicates; the function nub

cleans up the variable lists.

varsInTerm :: Term -> [Variable]

varsInTerm (Var v) = [v]

varsInTerm (Struct s ts) = varsInTerms ts

varsInTerms :: [Term] -> [Variable]

varsInTerms = nub . concat . map varsInTerm

Now that we have Term, we can use Formula Term for formulas with structured
terms.

Exercise 4.22 Implement a function varsInForm :: Formula Term -> [Variable]
that gives the list of variables occurring in a formula.

Exercise 4.23 Implement a function

freeVarsInForm :: Formula Term -> [Variable]

that gives the list of variables with free occurrences in a formula.

Exercise 4.24 Implement a function openForm :: Formula Term -> Bool that checks
whether a formula is open (see Section 4.5).

4.8 Further Reading
Formal language theory is the theory behind syntactic fragments. See, e.g., [Révon].
Formal language theory started with [Cho59], where the so-called Chomsky hier-
archy of formal languages is defined. Chomsky himself drew the conclusion that
the formalism of context-free grammars (the key formalism underlying the frag-
ments above) is inadequate for a full description of natural language, as natural
languages exhibit phenomena that are provably beyond the generative capacity of

4.8 Further Reading 85

context-free grammar rules. This motivated Chomsky’s adoption of transformation
rules. A formal study of generative grammar formalisms is taken up in [Rog98].
Somewhat surprisingly, many linguistics faculties do not offer any training in for-
mal language theory. Linguistics students who are interested in it are advised to
shop around for courses in the computing science departments of their universities,
where the topic is in the core curriculum.

5
Formal Semantics for Fragments

Summary

The semantics of all the example languages from the previous chapter, except for
the case of the natural language fragment, is given in formal detail, with a word or
two about pragmatics thrown in here and there for good measure. Again we will
use Haskell to make the step from formal definitions to working implementations.

5.1 Semantics of Sea Battle

To specify the semantics of Sea Battle, we should first know something about the
extralinguistic reality that the game is about. And in the second place we should
find out how to describe the way in which the expressions which are part of the
game relate to that reality.

The reality of Sea Battle is made up of a set of states of the game board. In
fact, there are two game boards, one for each player, but for simplicity we confine
attention to one of these. A game state is a board with positions of ships indicated
on it, and marks indicating the fields on the board that were under attack so far in
the game. For example:

A B C D E F G H I J
10
9 � � � X �
8 X �
7 � X �
6 � X
5 �
4 � � � � � �
3
2
1 � �

87

88 Formal Semantics for Fragments

The meaning of an attack is given by a state change. For example, the meaning
of the attack B5 for the state just given can be specified as follows:

B5−→

A B C D E F G H I J
10
9 � � � X �
8 X �
7 � X �
6 � X
5 �X
4 � � � � � �
3
2
1 � �

The complete meaning of the attack B5 can be given by a function from ‘in-
put’ states to ‘output’ states that for every input state of the game board returns
that state adorned with an extra X at position B5 as output state. The Haskell
implementation will make this clear.

When declaring the module, we import the modules List and FSynF, as well as
the function toUpper from the module Char.

module FSemF where

import Data.List

import Data.Char (toUpper)

import FSynF

A grid is simply a list of coordinates. The example grid with the ship positions
from the picture above would be the following.

type Grid = [(Column,Row)]

exampleGrid :: Grid

exampleGrid = [(A’,9),

(B’,4),(B’,5),(B’,6),(B’,7),(B’,9),

(C’,9),(D’,4),(E’,4),(F’,4),

(G’,4),(G’,7),(G’,8),(G’,9),

(H’,1),(H’,4),(I’,1)]

The example grid with the attacks so far is this:

5.1 Semantics of Sea Battle 89

attacks :: Grid

attacks = [(F’,9),(E’,8),(D’,7),(C’,6)]

A game state is represented as a number of grids, for the ship positions and for
the attacks. It will be convenient to have a separate grid for each ship. Let us
assume a battleship occupies five squares on the grid (adjacent, and either in the
same row or on the same column), a frigate four, a submarine three, and a destroyer
two. Here is how the ships are distributed in the example above:

battleship, frigate, sub1, sub2, destroyer :: Grid

battleship = [(D’,4),(E’,4),(F’,4),(G’,4),(H’,4)]

frigate = [(B’,4),(B’,5),(B’,6),(B’,7)]

sub1 = [(A’,9),(B’,9),(C’,9)]

sub2 = [(G’,7),(G’,8),(G’,9)]

destroyer = [(H’,1),(I’,1)]

A state consists of a list of ship positions together with a grid with an account of
the squares that have been under attack so far.

type State = ([Grid],Grid)

Our example state is:

shipsDistrib :: [Grid]

shipsDistrib = [battleship,frigate,sub1,sub2,destroyer]

exampleState = (shipsDistrib,attacks)

Of course, we have to check whether a state is legal. Two ships cannot be at
the same place, and the ships all have to be at adjacent squares in a single row or
column. Here is a check for the first part:

noClashes :: State -> Bool

noClashes (distrib,_) = nodups (concat distrib)

where nodups [] = True

nodups (x:xs) = notElem x xs && nodups xs

The next exercise invites you to write a check for the second part:

90 Formal Semantics for Fragments

Exercise 5.1 Write a check lineupOK :: State -> Bool to make sure that all ships in
a state are on adjacent squares in a single row or column.

The Sea Battle reactions missed, hit, sunk, and defeated are interpreted as fol-
lows. Given a state and the position of the last attack, any of these reactions gives
the value ‘true’ (= 1) or ‘false’ (= 0). We can express this as a function F from
S×P ×R to {0, 1}, where S is the set of states of the game, P the set of positions,
and R the set of reactions (so S × P × R is the set of triples consisting of a state,
a position and a reaction).

F (s, p,missed) =

�
1 if there is no ship at position p in state s,
0 otherwise.

F (s, p, hit) =

�
1 if there is a ship at position p in state s,
0 otherwise.

F (s, p, sunk) =

1 if there is a ship at position p in state s
which is covered by X’s everywhere but at p,

0 otherwise.

F (s, p, defeated) =

1 if there is a ship at position p in state s
which is covered by X’s everywhere but at p,
while all other ships are covered everywhere,

0 otherwise.

This can be implemented as follows:

hit :: Attack -> State -> Bool

hit pos (gs,_) = elem pos (concat gs)

missed :: Attack -> State -> Bool

missed pos = not . (hit pos)

defeated :: State -> Bool

defeated (gs,g) = all (‘elem‘ g) (concat gs)

For example:

FSemF> defeated exampleState

False

FSemF> hit (B’,5) exampleState

True

FSemF> hit (A’,4) exampleState

False

5.1 Semantics of Sea Battle 91

Exercise 5.2 Implement a Boolean function sunk for indicating whether a particular at-
tack sinks a ship of a particular type in a state. The type is

sunk :: Attack -> Ship -> State -> Bool.

The function that updates the state with a record of a new attack is given by:

updateBattle :: Attack -> State -> State

updateBattle p (gs,g) = (gs, insert p g)

Note that it follows from the semantic clauses for defeated, hit, and sunk that if
a certain attack is a defeating attack, then it is also a sinking attack, and that if a
certain attack is a sinking attack, it is also a hitting attack. It follows from this that
the game rule ‘Always react to an attack with a truthful statement’ does not in all
cases determine the appropriate reaction.

Game rules like this are within the province of pragmatics. The rudiments of a
systematic treatment of this field were given by Paul Grice [Gri75], a philosopher
of language, with his observation that language users should try to fit their own
and their partners’ contributions to spoken communication into a coherent whole
by means of the following global principles (also called Gricean Maxims):

Cooperation Try to adjust every contribution to the spoken communication to
what is perceived as the common goal of the communication at that point
in the interaction.

Quality Aspire to truthfulness. Do not say anything that you do not believe to be
true. Do not say anything for which you have inadequate support.

Quantity Be as explicit as the situation requires, no more, no less.
Mode of Expression Don’t be obscure, don’t be ambiguous, aspire to conciseness

and clarity.

As you can see, this is prescriptive in the vague way that all exhortations to behave
well tend to be. Also, there is some overlap between the principles. Finally, the
principles employ notions like truth and informativeness which are key notions of
semantics. In this sense, pragmatics does indeed presuppose semantics.

But however vague they are, Grice’s maxims are applicable to the Sea Battle ex-
ample. The semantics of Sea Battle gives a very precise measure for informative-
ness of reactions. For why is the reaction sunk (when it is true) more informative
than the reaction hit (also true in that same situation)? Because the reaction sunk
applies truthfully to a strictly smaller set of game states, in other words, because
this reaction excludes a larger number of states. The same holds for the relation
between defeated and sunk. It follows from the principle of cooperation, based on
insight in the goal of the utterance of letting the other player know where he or

92 Formal Semantics for Fragments

she stands, that in a situation where sunk applies the reaction hit is inappropriate.
This same conclusion can also be argued for on the basis of the maxim of quan-
tity, which states that the game demands maximally informative reactions at every
stage.

Exercise 5.3 What more can be said about the pragmatics of Sea Battle in terms of Grice’s
maxims?

5.2 Semantics of Propositional Logic
The first issue we must address for the semantics of propositional logic is: what
are the extralinguistic structures that propositional logical formulas are about? Our
answer to this is: pieces of information about the truth or falsity of atomic proposi-
tions. This answer is encoded in so-called valuations, functions from the set P of
proposition letters to the set {0, 1} of truth values. If V is such a valuation, then V
can be extended to a function V + from the set of all propositional formulas to the
set {0, 1}. In the following definition of V +, and further on in the book, we use
the abbreviation iff for if and only if.

V +(p) = V (p) for all p ∈ P,
V +(¬F) = 1 iff V +(F) = 0,
V +(F1 ∧ F2) = 1 iff V +(F1) = V +(F2) = 1
V +(F1 ∨ F2) = 1 iff V +(F1) = 1 or V +(F2) = 1

Exercise 5.4 Let V be given by p �→ 0, q �→ 1, r �→ 1. Give the V + values of the
following formulas:

(1) ¬p ∨ p
(2) p ∧ ¬p
(3) ¬¬(p ∨ ¬r)
(4) ¬(p ∧ ¬r)
(5) p ∨ (q ∧ r)

Another way of presenting the semantics of the propositional connectives is by
means of truth tables, which specify how the truth value of a complex formula is
calculated from the truth values of its components.

F1 F2 ¬F1 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2
1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

5.2 Semantics of Propositional Logic 93

It is not difficult to see that there are formulas F for which the V + value does not
depend on the V value of F . Formulas F with the property that V +(F) = 1 for
any V are called tautologies. The common notation for ‘F is a tautology’ is |= F .
Formulas F with the property that V +(F) = 0 for any V are called contradictions.

Exercise 5.5 Explain why the negation of a tautology is always a contradiction, and vice
versa.

A formula F is satisfiable if there is at least one valuation V with V +(F) = 1.
A formula F is called contingent if it is satisfiable but not a tautology.

Exercise 5.6 Which of the following are satisfiable? If a formula is satisfiable, you should
also give a valuation which satisfies it.

(1) p ∧ ¬q
(2) p ∧ ¬p
(3) p → ¬p

Clearly, every tautology is satisfiable, but not every satisfiable formula is a tautol-
ogy.

Two formulas F1 and F2 are called logically equivalent if V +(F1) = V +(F2)
for any V . Notation for ‘F1 and F2 are logically equivalent’ is F1 ≡ F2.

Further on, we will often ignore the distinction between a valuation V and its
extension V +, and we will refer to both as V .

Exercise 5.7 Which of the following are true?

(1) ¬¬p ≡ p
(2) p → q ≡ ¬p ∨ q
(3) ¬(p ↔ q) ≡ ¬p ∧ q

Note that it follows from the definition of logical equivalence that all tautologies
are logically equivalent to one another, and so are all contradictions.

Formulas P1, . . . , Pn logically imply formula C (P for premise, C for conclu-
sion) if every valuation which makes every member of P1, . . . , Pn true also makes
C true. Notation for ‘P1, . . . , Pn logically implies C’ is P1, . . . , Pn |= C.

Exercise 5.8 Which of the following are true?

(1) p |= p ∨ q
(2) p → q |= ¬p → ¬q
(3) ¬q |= p → q
(4) ¬p, q → p |= ¬q

Exercise 5.9 Show that the following principle of contraposition is true:

F1 |= F2 iff ¬F2 |= ¬F1.

94 Formal Semantics for Fragments

5.3 Propositional Reasoning in Haskell

Exercise 4.14 asked you to collect the names of the proposition letters occurring in
a propositional formula. Here is the solution:

propNames :: Form -> [String]

propNames (P name) = [name]

propNames (Ng f) = propNames f

propNames (Cnj fs) = (sort.nub.concat) (map propNames fs)

propNames (Dsj fs) = (sort.nub.concat) (map propNames fs)

A valuation for a propositional formula is a map from its variable names to the
Booleans. The following function generates the list of all valuations over a set of
names:

genVals :: [String] -> [[(String,Bool)]]

genVals [] = [[]]

genVals (name:names) = map ((name,True) :) (genVals names)

++ map ((name,False):) (genVals names)

The list of all valuations for a propositional formula is given by:

allVals :: Form -> [[(String,Bool)]]

allVals = genVals . propNames

For evaluation of propositional formulas in the implemented format, we should
ask ourselves what is a reasonable convention for the truth of Cnj []. A conjunc-
tion is true if all its conjuncts are true. This requirement is trivially fulfilled in case
there are no conjuncts. So Cnj [] is always true. Similarly, a disjunction is true if
at least one disjunct is true. This requirement is never fulfilled in case there are no
disjuncts. So Dsj [] is always false. In the implementation we can use all for
conjunctions and any for disjunctions.

eval :: [(String,Bool)] -> Form -> Bool

eval [] (P c) = error ("no info about " ++ show c)

eval ((i,b):xs) (P c)

| c == i = b

| otherwise = eval xs (P c)

5.3 Propositional Reasoning in Haskell 95

eval xs (Ng f) = not (eval xs f)

eval xs (Cnj fs) = all (eval xs) fs

eval xs (Dsj fs) = any (eval xs) fs

Tautologies are formulas that evaluate to True for every valuation:

tautology :: Form -> Bool

tautology f = all (\ v -> eval v f) (allVals f)

A propositional formula was called satisfiable if there is a propositional valua-
tion that makes the formula true.

satisfiable :: Form -> Bool

satisfiable f = any (\ v -> eval v f) (allVals f)

Contradictions are formulas that evaluate to True for no valuation. Clearly, a
formula is contradiction if it is not satisfiable:

contradiction :: Form -> Bool

contradiction = not . satisfiable

We get:

FSemF> contradiction form1

True

FSemF> tautology (Ng form1)

True

FSemF> satisfiable form2

True

FSemF> satisfiable (Ng form2)

True

A propositional formula F1 implies another formula F1 if every valuation that
satisfies F1 also satisfies F2. From this definition we get the following proposition.

Proposition 5.1 F1 implies F2 iff F1 ∧ ¬F2 is a contradiction.

The implementation is straightforward:

96 Formal Semantics for Fragments

implies :: Form -> Form -> Bool

implies f1 f2 = contradiction (Cnj [f1,Ng f2])

Exercise 5.10 Extend the check for propositional implication to the case with a list of
premisses. The type is impliesL :: [Form] -> Form -> Bool.

Exercise 5.11 Implement a check for logical equivalence between propositional formulas.
The type is propEquiv :: Form -> Form -> Bool.

The semantics for propositional logic can also be given in update format. First
fix a set of relevant valuations. This is the current state. Then define an update
function that leaves only those valuations that satisfy a given formula.

update :: [[(String,Bool)]] -> Form -> [[(String,Bool)]]

update vals f = [v | v <- vals, eval v f]

Updating the state of all relevant valuations with a contradiction leaves nothing,
updating with a tautology takes nothing away:

FSemF> allVals form1

[[("p",True)],[("p",False)]]

FSemF> update (allVals form1) form1

[]

FSemF> update (allVals form1) (Ng form1)

[[("p",True)],[("p",False)]]

Updating the state of all relevant valuations with a contingent formula takes some-
thing away, updating with its negation takes the complement away:

FSemF> length (allVals form2)

16

FSemF> length (update (allVals form2) form2)

15

FSemF> length (update (allVals form2) (Ng form2))

1

Exercise 5.12 Instead of the data type [(String,Bool)] for valuations, we might as
well simply have used [String], with presence or absence in the list indicating truth or
falsity. Reimplement the semantics of propositional formulas using this data type.

5.4 Semantics of Mastermind 97

5.4 Semantics of Mastermind
The semantics of Mastermind can be viewed as an example application of proposi-
tional logic. In the grammar for Mastermind of Section 4.1 it is assumed that there
are five colours (red, yellow, blue, green, orange) and four positions. According to
the language definition, colours may be repeated.

Exercise 5.13 How many possible settings are there for this game? And how many possi-
ble settings are there if colour repetition is forbidden?

For an analysis in terms of propositional logic, use propositional formulas for
the encoding, with proposition letters r1 for ‘red occurs at position one’, and so on.

Exercise 5.14 Find a formula of propositional logic that expresses that all positions have
exactly one colour.

Assume the initial setting is red, yellow, blue, blue. The problem is solved as
soon as the correct formula r1∧y2∧b3∧b4 is logically implied by the formulas that
encode the information about the rules of the game and the information provided
by the answers to the guesses.

Note that again there is a role for pragmatics in this game. The pragmatic rule
‘ask for relevant information’ would forbid to make a guess that is already ruled
out by answers to earlier guesses.

Let us turn to the implementation. The key element in the semantics of Master-
mind is the computation that determines appropriate reactions to a guess. The guess
is compared with the secret pattern, and the appropriate reaction is returned. To
compute the reaction, first the elements that occur at the same position are counted,
next the elements that occur somewhere are counted, and finally the counts are
combined. Note that we do not forbid repetition of colours.

samepos :: Pattern -> Pattern -> Int

samepos _ [] = 0

samepos [] _ = 0

samepos (x:xs) (y:ys) | x == y = samepos xs ys + 1

| otherwise = samepos xs ys

occurscount :: Pattern -> Pattern -> Int

occurscount xs [] = 0

occurscount xs (y:ys)

| y ‘elem‘ xs = occurscount (delete y xs) ys + 1

| otherwise = occurscount xs ys

98 Formal Semantics for Fragments

reaction :: Pattern -> Pattern -> [Answer]

reaction secret guess = take n (repeat Black)

++ take m (repeat White)

where n = samepos secret guess

m = occurscount secret guess - n

Let’s fix a pattern:

secret = [Red,Blue,Green,Yellow]

Here is a check of the results:

FSemF> secret

[Red,Blue,Green,Yellow]

FSemF> reaction secret [Blue,Red,Yellow,Orange]

[White,White,White]

FSemF> reaction secret [Green,Blue,Red,Yellow]

[Black,Black,White,White]

FSemF> reaction secret secret

[Black,Black,Black,Black]

As in the case of propositional logic, we can now give a Mastermind update
function that updates a current list of possible arrangements with the information
conveyed in a reaction.

In updating the list of possible patterns, given a particular reaction, we have to
keep all patterns that generate the same reaction and discard the rest.

updateMM :: [Pattern] -> Pattern -> Feedback -> [Pattern]

updateMM state guess answer =

[xs | xs <- state, reaction xs guess == answer]

For playing an actual Mastermind game, we need a way to convert strings to
colour sequences.

string2pattern :: String -> Pattern

string2pattern = convertP . (map toUpper)

5.4 Semantics of Mastermind 99

convertP :: String -> Pattern

convertP [] = []

convertP (’ ’:xs) = convertP xs

convertP (’R’:xs) = Red : convertP xs

convertP (’Y’:xs) = Yellow : convertP xs

convertP (’B’:xs) = Blue : convertP xs

convertP (’G’:xs) = Green : convertP xs

convertP (’O’:xs) = Orange : convertP xs

Finally, here is an implementation of a Mastermind game. For simplicity, we
have assumed that secret contains the secret colour pattern. The function playMM
uses some I/O-tricks that we are not going to explain at this point: see the Haskell
documentation for further illumination.

playMM :: IO ()

playMM =

do

putStrLn "Give a sequence of four colours from RGBYO"

s <- getLine

if (string2pattern s) /= secret

then

let answer = reaction secret (string2pattern s) in

do

putStrLn (show answer)

putStrLn "Please make another guess"

playMM

else putStrLn "correct"

You can try this out by loading the code from this chapter, and typing playMM at
the system prompt. Here is a sample of what you will get:

FSemF> playMM

Give a sequence of four colours from RGBYO

rgyo

[Black,White,White]

Please make another guess

Give a sequence of four colours from RGBYO

gboy

[Black,Black,White]

Please make another guess

100 Formal Semantics for Fragments

Give a sequence of four colours from RGBYO

rbgo

[Black,Black,Black]

Please make another guess

Give a sequence of four colours from RGBYO

rbgy

correct

Exercise 5.15 Find out from the Haskell documentation how to generate random colour
patterns using the Random module. Modify the function playMM so that it generates a new
secret colour pattern at the beginning of each game.

Hint: here is an auxiliary function you can use, provided the module System.Random
is loaded:

getColours :: IO [Colour]
getColours = do

i <- getStdRandom (randomR (0,4))
j <- getStdRandom (randomR (0,4))
k <- getStdRandom (randomR (0,4))
l <- getStdRandom (randomR (0,4))
return [toEnum i,toEnum j, toEnum k, toEnum l]

This will give you a list of four colours, but wrapped inside the I/O-monad. To get the
list out, use a do construct with an action secret <- getColours inside, and use the
secret inside the do construct.

Exercise 5.16 A guess that contradicts the information that was already supplied earlier
on in the game is a stupid guess. Modify the game function so that it can recognize stupid
guesses and let the user know about them, while taking care to keep the responses polite,
of course.

5.5 Semantics of Predicate Logic
The semantics of predicate logic is static again. For convenience we limit ourselves
to a language fragment with just three predicate letters P,R, S, where P is a one-
place predicate, R is a two-place predicate, and S is a three-place predicate.

How should an extralinguistic structure for the constants P,R, S look? Such a
structure should at least contain a domain of discourse D consisting of individual
entities, with an interpretation for P , for R and for S. These interpretations are
given by a function I . We need an I with I(P) ⊆ D, I(R) ⊆ D × D, and
I(S) ⊆ D × D × D. Here D × D (which is sometimes written as D2) the set
of all pairs of elements from D, and D ×D ×D (also written as D3 sometimes)
the set of all ordered triples of elements from D. (Recall the definition of the

5.5 Semantics of Predicate Logic 101

Cartesian product from Section 2.2.) Figure 5.5 gives an example of a domain with
a possible I(P) and I(R). Shading marks objects with property P , → indicates
that two objects are R-related, a ←→ link indicates that the R-relation runs in both
directions, and loops indicate that an object is R-related to itself.

1 3

2

A set of relation symbols, with their arities given, specifies a predicate logical
language L. A structure M = (D, I) consisting of a non-empty domain D with
an interpretation function for the relation symbols of L is called a model for L.
We will always assume that the domain D of a model is non-empty. Looking at
the example case above, the language is given by the relation symbols P and R.
In Figure 5.5 we numbered the nodes, so we can say that the domain consists of
the set {1, 2, 3}. The interpretation function I is given by I(P) = {1, 3} and
I(R) = {(1, 1), (1, 2), (2, 2), (3, 1), (3, 2)}.

Given a structure with interpretation function M =(D, I), we can define a val-
uation for the predicate logical formulas, provided we know how to deal with the
values of individual variables. Let V be the set of variables of the language. A
function g : V → D is called a variable assignment or valuation.

We use g[v := d] for the valuation that is like s except for the fact that v
gets value d (where g might have assigned a different value). For example, let
D = {1, 2, 3}, and let V = {v1, v2, v3}. Let g be given by g(v1) = 1, g(v2) =
2, g(v3) = 3. Then g[v1 := 2] is the valuation that is like g except for the fact that
v1 gets the value 2, i.e. the valuation that assigns 2 to v1, 2 to v2, and 3 to v3.

102 Formal Semantics for Fragments

Let M be a model for language L, let g be a variable assignment for L in M , let
F be a formula of L. Now we are ready to define the notion M |=g F , for F is
true in M under assignment g, or: g satisfies F in model M .

M |=g Pv iff g(v) ∈ I(P)
M |=g R(v1, v2) iff (g(v1), g(v2)) ∈ I(R)
M |=g S(v1, v2, v3) iff (g(v1), g(v2), g(v3)) ∈ I(S)
M |=g (v1 = v2) iff g(v1) = g(v2)
M |=g ¬F iff it is not the case that M |=g F.
M |=g (F1 ∧ F2) iff M |=g F1 and M |=g F2

M |=g (F1 ∨ F2) iff M |=g F1 or M |=g F2

M |=g ∀vF iff for all d ∈ D it holds that M |=g[v:=d] F
M |=g ∃vF iff for at least one d ∈ D it holds that M |=g[v:=d] F

What we have presented just now is a recursive definition of truth for predicate
logical formulas.

If we evaluate closed formulas (formulas without free variables), the assignment
g becomes irrelevant, so for a closed formula F we can simply put M |= F iff
there is some assignment g with M |=g F .

Exercise 5.17

(1) Show that ∀x(Ax ∧Bx) means something stronger than All A are B.
(2) Show that ∃x(Ax → Bx) means something weaker than Some A are B.

Exercise 5.18 Translate the following sentences into predicate logic, making sure that
their truth conditions are captured.

Someone walks and someone talks. (5.1)
No wizard cast a spell or mixed a potion. (5.2)
Every balad that is sung by a princess is beautiful. (5.3)
If a knight finds a dragon, he fights it. (5.4)

Exercise 5.19 Let M be the model pictured in Figure 5.5. Which of the following state-
ments are true?

(1) M |= ∃x(Px ∧Rxx)
(2) M |= ∀x(Px → ∃yRxy)
(3) M |= ∀x(∃yRyx → Rxx)

A predicate logical sentence F is called logically valid if F is true in every model.
Notation for ‘F is logically valid’ is |= F . From the convention that the domains
of our models are always non-empty it follows that |= ∀xF → ∃xF , for all F with
at most the variable x free.

5.5 Semantics of Predicate Logic 103

Exercise 5.20 Which of the following statements are true?

(1) |= ∀xPx ∨ ∃x¬Px
(2) |= ∃x∃yRxy → ∃x∃yRyx
(3) |= ∀xRxx → ∀x∃yRxy
(4) |= ∃xRxx → ∀x∃yRxy

The truth definition makes essential use of assignments, and still, in the exercises
so far, where we have looked only at closed formulas, truth or falsity does not
depend on which assignment we use. One might think, therefore, that we can do
without assignments altogether if we confine ourselves to defining the truth values
of the closed formulas of predicate logic.

The trouble is that when we apply the truth definition above to a sentence, e.g.
to the sentence ∀x(Px → ∃yRxy), then the clause for dealing with the universal
quantifier makes reference to the notion of truth for the formula (Px → ∃yRxy),
which is an open formula. In order to determine whether this is true we have to be
told which object x denotes. The situation is entirely analogous to the interpretation
of natural language sentences:

Every master has an apprentice. (5.5)
He has an apprentice. (5.6)

To determine the truth of (5.6) we have to be told who is the referent of the pronoun
he.

Exercise 5.21 Here is a function that substitutes a name a for a variable v in a term t, with
notation tva:

cva := c

vva := a

uv
a := u for u different from v

Use this to define a function that substitutes a name a for all free occurrences of a variable
v in a formula F . Use F v

a for the result.

Exercise 5.22 Assume that we can extend the language with a set A of proper names for
objects, in such a way that every object in D is named by an element from A, by means
of an extension I � of the interpretation function I of the model. In other words, we have
for all d ∈ D that there is some d̂ ∈ A with I �(d̂) = d. Give an alternative truth definition
for predicate logic that does not use assignments, but these extra names, plus the notion of
substituting names from A for variables. Use the function F v

d̂
that you defined in Exercise

5.21.

In order to extend the truth definition to structured terms (terms containing func-
tion symbols), we have to assume that the interpretation function I knows how to

104 Formal Semantics for Fragments

deal with a function symbol. If f is a one-place function symbol, then I should
map f to a unary operation on the domain D, i.e. to a function I(f) : D → D. In
general it holds that if f is an n-place function symbol, then I should map f to an
n-ary operation on the domain D, i.e. to a function I(f) : Dn → D. We use C for
the set of zero-place function symbols; these are the constants of the language, and
we have that if c ∈ C then I(c) ∈ D.

Instead of the assignment function g for variables we now need a value function
g for functional terms, defined as follows (note the recursion in the definition):

g I,g(t) =

I(t) if t ∈ C,
g(t) if t ∈ V,
I(f)(g I,g(t1), . . . , g I,g(tn)) if t has the form f(t1, . . . , tn).

This value function is used in the truth definition, but we leave the details to you:

Exercise 5.23 Write out the truth definition for predicate logical languages with function
constants.

An important aim of any logic language is to study the process of valid reasoning
in that language. Every logical language comes with an appropriate notion of ‘valid
consequence’ for that language. Intuitively, when can we draw a conclusion C
from premises P1, . . . , Pn? When it is inconceivable that the premises are true and
the conclusion false, or in other words when the truth of the premises brings the
truth of the conclusion in its wake.

Now that we have a fully precise notion of truth for predicate logic we can use
this to make the intuitive notion of valid consequence fully precise too. We say that
a predicate logical sentence C logically follows from a predicate logical sentence
P (P for premise and C for conclusion; we also say that P logically implies C)
if every model which makes P true also makes C true. Notation for ‘P logically
implies C’ is P |= C.

How do we judge statements of the form P |= C (where P,C are closed formu-
las of predicate logic)? It is clear how we can refute the statement P |= C, namely
by finding a counterexample. A counterexample to P |= C is a model M with
M |= P but not M |= C, or in abbreviated notation: M �|= C. Here are some
example questions about valid consequence in predicate logic.

Exercise 5.24 Which of the following statements hold? If a statement holds, then you
should explain why. If it does not, then you should give a counterexample.

(1) ∀xPx |= ∃xPx
(2) ∃x∃yRxy |= ∃xRxx
(3) ∃y∀xRxy |= ∀x∃yRxy

5.6 Semantics of Natural Language Fragments 105

We can make this slightly more general by allowing sets of more than one
premise.

Assume that P1, . . . , Pn, C are closed formulas of predicate logic. We say that C
logically follows from P1, . . . , Pn, or, formally, that P1, . . . , Pn |= C, if for every
model M for the language with the property that M |= P1 and . . . and M |= Pn it
is the case that M |= C.

Exercise 5.25 Which of the following hold?

(1) ∀x∀y(Rxy → Ryx), Rab |= Rba
(2) ∀x∀y(Rxy → Ryx), Rab |= Raa

This was not too difficult, but still, models for predicate logical languages can
be extremely complex, so the fact that in some particular case we cannot find a
counterexample does not always tell us that the conclusion follows logically from
the premises. The jump from premises to conclusion may be too dangerous. It is
for this reason that logicians have proposed systems of reasoning where the jumps
from premise to conclusion are decomposed into smaller jumps, until the jumps
become so small that we can easily check their correctness. The implementation
of the semantics of predicate logic will be taken up in Chapter 6.

5.6 Semantics of Natural Language Fragments

Now what about the meanings of the sentences in our simple fragment of English?
Using what we know now about the meanings of predicate logical formulas, and
assuming we have predicate letters available for the nouns and verbs of the frag-
ment, we can easily translate the sentences generated by the example grammar into
predicate logic. Assume the following translation key:

lexical item translation type of logical constant
girl Girl one-place predicate
boy Boy one-place predicate
princess Princess one-place predicate
dwarf Dwarf one-place predicate
giant Giant one-place predicate
wizard Wizard one-place predicate
sword Sword one-place predicate
dagger Dagger one-place predicate

106 Formal Semantics for Fragments

laughed Laugh one-place predicate
cheered Cheer one-place predicate
shuddered Shudder two-place predicate
loved Love two-place predicate
admired Admire two-place predicate
helped Help two-place predicate
defeated Defeat two-place predicate
gave Give three-place predicate
Snow White s individual constant
Alice a individual constant
Dorothy d individual constant
Goldilocks g individual constant
Little Mook m individual constant
Atreyu y individual constant

Then the translation of Every boy loved a girl could become:

∀x(Boy x → ∃y(Girl y ∧ Love x y)).

Exercise 5.26 Check with the truth definition for predicate logic that this translation ex-
presses the correct meaning (if we disregard the past tense, that is).

Exercise 5.27 Give predicate logical translations for the following sentences from the
fragment:

Every girl that laughed helped a boy. (5.7)
No giant that shuddered defeated every dwarf. (5.8)
Every princess loved every dwarf that defeated a giant. (5.9)
Every boy admired a girl that no wizard helped. (5.10)

Still, there is a sense in which these predicate logical translations do not ‘count’ as
a semantic account of the sentences in the example grammar. The trouble is that
one has to understand English in order to check that the translations are correct. In
other words, one has to know the meanings of the sentences already. In Section
6.2 an account of the semantics of this and similar fragments will be presented that
‘counts’.

5.7 An Inference Engine with a Natural Language Interface
In this final section we turn to the task of building a natural language inference en-
gine, using the fragment for talking about classes from Section 4.3. This fragment
uses the so-called Aristotelean quantifiers, and it can be seen as an implementation
of the theory of quantification originating with the Greek philosopher Aristotle

5.7 An Inference Engine with a Natural Language Interface 107

(384 BC–322 BC). In his theory of the syllogism Aristotle studied the following
inferential pattern:

Quantifier1 CN1 VP1

Quantifier2 CN2 VP2

Quantifier3 CN3 VP3

An example is the valid syllogism BARBARA:

All A are B
All B are C
All A are C

Syllogistic theory focusses on the quantifiers in the so called Square of Opposition;
see Figure 5.1.

Fig. 5.1. The Square of Opposition

All A are B No A are B

Some A are B Not all A are B

The quantifiers in the square express relations between a first and a second ar-
gument. Both arguments denote sets of entities taken from some domain of dis-
course. The quantified expressions in the square are related across the diagonals by
external (sentential) negation, and across the horizontal edges by internal (or verb
phrase) negation. It follows that the relation across the vertical edges of the square
is that of internal plus external negation; this is the relation of so-called quanti-
fier duality. Because Aristotle assumes that the domain of discourse is non-empty,
the two quantified expressions on the top edge of the square cannot both be true;
these expressions are called contraries. Similarly, the two quantified expressions
on the bottom edge cannot both be false: they are so-called subcontraries. Next,
Aristotle interprets his quantifiers with existential import: All A are B and No A
are B are taken to imply that there are A. Under this assumption, the quantified
expressions at the top edge of the square imply those immediately below them.
The universal affirmative quantifier all implies the individual affirmative some and

108 Formal Semantics for Fragments

the universal negative no implies the individual negative not all. The universal and
individual affirmative quantifiers are said to be of types A and I, respectively, from
Latin Aff Irmo, the universal and individual negative quantifiers of type E and O,
from Latin NEgO. The Medieval mnemonics for the Aristotelean syllogisms derive
from these abbreviations: Barbara is the name of the syllogism with two universal
affirmative premisses and a universal affirmative conclusion, and so on.

Our application will be a slight extension of Aristotelian logic, for we consider
the case where there is a whole knowledge base of possible premises, instead of
just two. Our knowledge base will be as simple as it can get. The two relations
we are going to model in the knowledge base are that of inclusion ⊆ and that of
non-inclusion �⊆.

• All A are B is expressed by inclusion, as A ⊆ B.
• No A are B is expressed by inclusion in the complement, as A ⊆ B.
• Some A are not B is expressed by non-inclusion, as A �⊆ B.
• Some A are B is expressed by non-inclusion in the complement, as A �⊆ B. Note

that this is equivalent to A ∩B �= ∅.

A knowledge base is a list of triples

(Class1,Class2,Boolean)

where (A,B,True) expresses that A ⊆ B, and (A,B,False) expresses that A �⊆
B.

The rules of the inference engine are the following. Let �A be given by: if A is of
the form C, then �A = C, otherwise �A = A. Let A =⇒ B express A ⊆ B. That is,
=⇒ is a syntactic symbol that is semantically interpreted as the subset relation. In
one of the rules below we will reverse the direction of the arrow and write A =⇒ B
as B ⇐= A. Let A �=⇒ B express A �⊆ B.

Computing the subset relation from a knowledge base K is done with the fol-
lowing rules:

(A,B,�) ∈ K
A =⇒ B

A =⇒ B
�B =⇒ �A

A =⇒ B B =⇒ C
A =⇒ C

Computing the non-subset relation from the knowledge base is done with:

(A,B,⊥) ∈ K
A �=⇒ B

A �=⇒ B

�B �=⇒ �A
A ⇐= B B �=⇒ C C ⇐= D

A �=⇒ D

Next we need an axiom (a rule without a premise) to express reflexivity of ⊆:

A =⇒ A

5.7 An Inference Engine with a Natural Language Interface 109

Finally, we will follow Aristotle in reading the classes with existential import,
so we assume that classes are non-empty:

A not of the form C
A �=⇒ �A

The following two exercises are about checking soundness and completeness
of our inference engine. They ensure that its syntax (i.e. the expressions of form
A =⇒ B and A �=⇒ B together with the above inference rules) and its semantics
(i.e. subset relations between classes) correspond.

Exercise 5.28 An inference system is called sound if all conclusions that can be derived
are valid, i.e. if all axioms are true and all inference rules preserve truth. Show that the
inference system for Aristotelian syllogistics is sound.

Exercise 5.29 An inference system is called complete if it can derive all valid conclusions
from a set of premisses. In other words: if A =⇒ B does not follow from a knowledge
base, then there is a class model for the knowledge base where A �⊆ B, and if A �=⇒ B
does not follow from a knowledge base, then there is a class model for the knowledge base
where A ⊆ B. Show that the inference system for Aristotelian syllogistics is complete.

We now turn to the application. For convenience, we put the code in a separate
module. We will need to read natural language sentences from a file and write them
back, so we import the I/O-module System.IO.

module InfEngine where

import Data.List

import Data.Char

import System.IO

In our implementation we use [(a,a)] for relations. Here is a convenient type
synonym:

type Rel a = [(a,a)]

If R ⊆ A2 and x ∈ A, then xR := {y ∈ A | (x, y) ∈ R}. This is called a right
section of a relation.

rSection :: Eq a => a -> Rel a -> [a]

rSection x r = [y | (z,y) <- r, x == z]

110 Formal Semantics for Fragments

Eq a indicates that a is in the equality class. This is needed because of the
equality test == inside the function definition.

The next concept we need is that of the composition of two relations R and S on
A. Recall that the composition R ◦ S is defined as the set of pairs

{(x, z) | there is some y ∈ A with (x, y) ∈ R and (y, z) ∈ S}.

Here is the Haskell implementation:

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Also recall that a relation R is transitive if it holds for all x, y, z that if (x, y) ∈ R
and (y, z) ∈ R, then also (x, z) ∈ R. If a relation is not transitive, then it can
always be made into a transitive relation by adding pairs. The transitive closure of
a relation R is by definition the smallest transitive relation S with R ⊆ S.

Exercise 5.30 Find the transitive closures of the example relations in Exercise 2.7.

Recall that a relation R on A is reflexive if I ⊆ R, where I is the identity relation
on R, i.e. I = {(x, x) | x ∈ A}. The reflexive transitive closure of a relation R is
by definition the smallest reflexive and transitive relation S with R ⊆ S.

Exercise 5.31 Find the reflexive transitive closures of the example relations in Exercise
2.7 on page 19.

To compute the reflexive transitive closure of R, we proceed as follows. We start
from I , and compute relations R�, R��, and so on, by checking whether composing
R with the present stage of the relation yields anything new. If this is the case,
we add the new pairs and go on. If it is not the case, we know that the relation is
reflexive and transitive, and we stop. This process of gradually adding new stuff
until nothing changes is called a fixed point construction. A fixpoint of a function
F is an argument S for which F (S) = S. The least fixpoint of F is the smallest S
for which this happens. Think of S as the present state of the relation that extends
R, and think of F as the result of adding the pairs in R ◦ S to S. The code is much
shorter than the explanation.

5.7 An Inference Engine with a Natural Language Interface 111

rtc :: Ord a => [a] -> Rel a -> Rel a

rtc xs r = lfp (\ s -> (sort.nub) (s++(r@@s))) i

where i = [(x,x) | x <- xs]

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

Now we are ready to define a knowledge base of classes of things. We assume
that each class has an opposite class. For example, the opposite class of the class
of mammals is the class of non-mammals, and the opposite class of the class of
non-mammals is the class of mammals.

data Class = Class String | OppClass String

deriving (Eq,Ord)

instance Show Class where

show (Class xs) = xs

show (OppClass xs) = "non-" ++ xs

opp :: Class -> Class

opp (Class name) = OppClass name

opp (OppClass name) = Class name

The two relations we are going to model in the knowledge base are that of inclu-
sion ⊆ and that of non-inclusion �⊆. In terms of these we can express ‘all A are B’
as A ⊆ B, ‘no A are B’ as A ⊆ B, ‘some A are not B’ as A �⊆ B, and ‘some A are
B’ as A �⊆ B. Note that A �⊆ B is equivalent to A ∩ B �= ∅. Since everything we
need can be expressed in terms of inclusion and non-inclusion, a knowledge base
can look like this:

type KB = [(Class,Class,Bool)]

A triple (c,c’,True) expresses that class c is included in class c’, and likewise
(c,c’,False) expresses that c is not included in c’.

Next, we need data types for statements and queries, to interact with the knowl-
edge base. We will put them in a single data type, and define a function for distin-
guishing the declarative statements from the queries below.

112 Formal Semantics for Fragments

data Statement =

All Class Class | No Class Class

| Some Class Class | SomeNot Class Class

| AreAll Class Class | AreNo Class Class

| AreAny Class Class | AnyNot Class Class

| What Class

deriving Eq

For ease of reading, we define a show function for statements:

instance Show Statement where

show (All as bs) =

"All " ++ show as ++ " are " ++ show bs ++ "."

show (No as bs) =

"No " ++ show as ++ " are " ++ show bs ++ "."

show (Some as bs) =

"Some " ++ show as ++ " are " ++ show bs ++ "."

show (SomeNot as bs) =

"Some " ++ show as ++ " are not " ++ show bs ++ "."

show (AreAll as bs) =

"Are all " ++ show as ++ show bs ++ "?"

show (AreNo as bs) =

"Are no " ++ show as ++ show bs ++ "?"

show (AreAny as bs) =

"Are any " ++ show as ++ show bs ++ "?"

show (AnyNot as bs) =

"Are any " ++ show as ++ " not " ++ show bs ++ "?"

show (What as) = "What about " ++ show as ++ "?"

Classification of statements into interrogative and declarative is done by:

isQuery :: Statement -> Bool

isQuery (AreAll _ _) = True

isQuery (AreNo _ _) = True

isQuery (AreAny _ _) = True

isQuery (AnyNot _ _) = True

isQuery (What _) = True

isQuery _ = False

5.7 An Inference Engine with a Natural Language Interface 113

It will turn out useful to define the negation of a question:

neg :: Statement -> Statement

neg (AreAll as bs) = AnyNot as bs

neg (AreNo as bs) = AreAny as bs

neg (AreAny as bs) = AreNo as bs

neg (AnyNot as bs) = AreAll as bs

Now the real action starts. We use the reflexive transitive closure operation to
compute the subset relation from the knowledge base.

subsetRel :: KB -> [(Class,Class)]

subsetRel kb = rtc

(domain kb) ([(x,y) | (x,y,True) <- kb]

++ [(opp y,opp x) | (x,y,True) <- kb])

This uses the following function for getting the domain of a knowledge base:

domain :: [(Class,Class,Bool)] -> [Class]

domain = nub . dom where

dom [] = []

dom ((xs,ys,_):facts) =

xs : opp xs : ys : opp ys : dom facts

The supersets of a particular class are given by a right section of the subset
relation. I.e. the supersets of a class are all classes of which it is a subset.

supersets :: Class -> KB -> [Class]

supersets cl kb = rSection cl (subsetRel kb)

Computing the non-subset relation from the knowledge base, i.e. the set of class
pairs {(A,B) | A �⊆ B}, is a bit more involved, for we have to take care of
existential import.

114 Formal Semantics for Fragments

nsubsetRel :: KB -> [(Class,Class)]

nsubsetRel kb = s @@ r @@ s

where

r = nub ([(x,y) | (x,y,False) <- kb]

++ [(opp y,opp x) | (x,y,False) <- kb]

++ [(Class xs,OppClass xs) |

(Class xs,_,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,Class ys,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,OppClass ys,_) <- kb])

s = [(y,x) | (x,y) <- subsetRel kb]

The non-supersets of a class are given by a right section:

nsupersets :: Class -> KB -> [Class]

nsupersets cl kb = rSection cl (nsubsetRel kb)

By now we have all that we need to query a knowledge base. Query by means
of yes/no questions is simple:

derive :: KB -> Statement -> Bool

derive kb (AreAll as bs) = bs ‘elem‘ (supersets as kb)

derive kb (AreNo as bs) =

(opp bs) ‘elem‘ (supersets as kb)

derive kb (AreAny as bs) =

(opp bs) ‘elem‘ (nsupersets as kb)

derive kb (AnyNot as bs) = bs ‘elem‘ (nsupersets as kb)

Recall that the backticks turn the prefix operator elem into an infix operator (cf.
p. 39).

Caution is needed with the use of this function. Note that there are three possi-
bilities:

• derive kb query is true. This means that the statement corresponding to the
query is derivable, hence true.

• derive kb (neg query) is true. This means that the negation of the statement
corresponding to the query is derivable, hence true. So the answer to query is
‘No’.

5.7 An Inference Engine with a Natural Language Interface 115

• neither derive kb query nor derive kb (neg query) is true. This means
that the knowledge base does not have the answer to query.

Open queries (‘How about A?’) are slightly more complicated. We should take
care to select the most natural statements to report on a class:

• A ⊆ B is expressed with ‘all’,
• A ⊆ B is expressed with ‘no’,
• A �⊆ B is expressed with ‘some not’,
• A �⊆ B is expressed with ‘some’.

This defines a function from facts in the knowledge base to appropriate state-
ments:

f2s :: (Class,Class,Bool) -> Statement

f2s (as, Class bs, True) = All as (Class bs)

f2s (as, OppClass bs, True) = No as (Class bs)

f2s (as, OppClass bs, False) = Some as (Class bs)

f2s (as, Class bs, False) = SomeNot as (Class bs)

Exercise 5.32 Write a function that filters the facts from a knowledge base that mention a
class A or its opposite. Next, use this to define a function

report :: Class -> KB -> [Statement]

that gives an exhaustive report of a particular class, as a list of statements.

Instead of just listing relevant facts from the knowledge base, we will give an
exhaustive account of what is known about a class:

tellAbout :: KB -> Class -> [Statement]

tellAbout kb as =

[All as (Class bs) | (Class bs) <- supersets as kb,

as /= (Class bs)]

++

[No as (Class bs) | (OppClass bs) <- supersets as kb,

as /= (OppClass bs)]

Next, a bit of pragmatics comes in: we will not tell Some A are B if the stronger
statement All A are B also holds. Note that All A are B is stronger than Some A are
B because of the assumption of existential import.

116 Formal Semantics for Fragments

++

[Some as (Class bs) | (OppClass bs) <- nsupersets as kb,

as /= (OppClass bs),

notElem (as,Class bs) (subsetRel kb)]

Similarly, we do not tell Some A are not B if No A are B also holds.

++

[SomeNot as (Class bs) | (Class bs) <- nsupersets as kb,

as /= (Class bs),

notElem (as,OppClass bs) (subsetRel kb)]

To build a knowledge base we need a function for updating an existing knowl-
edge base with a statement. But note that the result may be inconsistent. To cater
for that possibility, we use the Haskell data type Maybe. This data type is useful
in cases like this, where we are not sure whether a function is successful. If the
function is successful, we want an updated knowledge base. If it is not, we want to
get an indication of failure. The Maybe data type gives us just this. It is defined in
the Standard Prelude as follows:

data Maybe a = Nothing | Just a

The following definition of the update function illustrates its use. The update
function checks for possible inconsistencies. E.g. a request to add an A ⊆ B fact
to the knowledge base leads to an inconsistency if A �⊆ B is already derivable.

update :: Statement -> KB -> Maybe (KB,Bool)

update (All as bs) kb

| bs ‘elem‘ (nsupersets as kb) = Nothing

| bs ‘elem‘ (supersets as kb) = Just (kb,False)

| otherwise = Just (((as,bs,True):kb),True)

A request to add A ⊆ B leads to an inconsistency if A �⊆ B is already derivable.

5.7 An Inference Engine with a Natural Language Interface 117

update (No as bs) kb

| bs’ ‘elem‘ (nsupersets as kb) = Nothing

| bs’ ‘elem‘ (supersets as kb) = Just (kb,False)

| otherwise = Just (((as,bs’,True):kb),True)

where bs’ = opp bs

Similarly for the requests to update with A �⊆ B and with A �⊆ B:

update (Some as bs) kb

| bs’ ‘elem‘ (supersets as kb) = Nothing

| bs’ ‘elem‘ (nsupersets as kb) = Just (kb,False)

| otherwise = Just (((as,bs’,False):kb),True)

where bs’ = opp bs

update (SomeNot as bs) kb

| bs ‘elem‘ (supersets as kb) = Nothing

| bs ‘elem‘ (nsupersets as kb) = Just (kb,False)

| otherwise = Just (((as,bs,False):kb),True)

With the use of this function for updating a knowledge base with a statement,
we can build a knowledge base from a list of statements. Again, this process can
fail, and once more we indicate this by means of Maybe.

makeKB :: [Statement] -> Maybe KB

makeKB = makeKB’ []

where

makeKB’ kb [] = Just kb

makeKB’ kb (s:ss) = case update s kb of

Just (kb’,_) -> makeKB’ kb’ ss

Nothing -> Nothing

It is time we turn our attention to parsing the natural language expressions of our
inference engine. Here is a preprocessing function for strings, to prepare them for
parsing:

preprocess :: String -> [String]

preprocess = words . (map toLower) .

(takeWhile (\ x -> isAlpha x || isSpace x))

118 Formal Semantics for Fragments

The predicate isAlpha checks whether the character is an alphabetic charac-
ter, and isSpace is true only for whitespace characters. The function takeWhile

takes elements from an input list until the condition fails. The preprocess func-
tion will map a string to a list of words:

InfEngine> preprocess "Are any sailors drunk?"

["are","any","sailors","drunk"]

This function can be used in a simple parser for statements:

parse :: String -> Maybe Statement

parse = parse’ . preprocess

where

parse’ ["all",as,"are",bs] =

Just (All (Class as) (Class bs))

parse’ ["no",as,"are",bs] =

Just (No (Class as) (Class bs))

parse’ ["some",as,"are",bs] =

Just (Some (Class as) (Class bs))

parse’ ["some",as,"are","not",bs] =

Just (SomeNot (Class as) (Class bs))

And for queries:

parse’ ["are","all",as,bs] =

Just (AreAll (Class as) (Class bs))

parse’ ["are","no",as,bs] =

Just (AreNo (Class as) (Class bs))

parse’ ["are","any",as,bs] =

Just (AreAny (Class as) (Class bs))

parse’ ["are","any",as,"not",bs] =

Just (AnyNot (Class as) (Class bs))

parse’ ["what", "about", as] = Just (What (Class as))

parse’ ["how", "about", as] = Just (What (Class as))

parse’ _ = Nothing

To illustrate the use of this, here is a function that parses a text and constructs a
knowledge base from the resulting statements:

5.7 An Inference Engine with a Natural Language Interface 119

process :: String -> KB

process txt = maybe [] id (mapM parse (lines txt) >>= makeKB)

This uses the maybe function, for getting out of the Maybe type. Instead of
returning Nothing in case the parse or the knowledge base construction process
fails, this returns an empty knowledge base.

maybe :: b -> (a -> b) -> Maybe a -> b

maybe _ f (Just x) = f x

maybe z _ Nothing = z

Here is an example piece of text:

mytxt = "all bears are mammals\n"

++ "no owls are mammals\n"

++ "some bears are stupids\n"

++ "all men are humans\n"

++ "no men are women\n"

++ "all women are humans\n"

++ "all humans are mammals\n"

++ "some men are stupids\n"

++ "some men are not stupids"

And a knowledge base that is constructed from this text:

InfEngine> process mytxt

[(men,stupids,False),(men,non-stupids,False),

(humans,mammals,True),(women,humans,True),

(men,non-women,True),(men,humans,True),

(bears,non-stupids,False),(owls,non-mammals,True),

(bears,mammals,True)]

Now suppose we have a text file of declarative natural language sentences about
classes on disk, accessible under a particular name. Here is how to turn that into a
knowledge base.

120 Formal Semantics for Fragments

getKB :: FilePath -> IO KB

getKB p = do

txt <- readFile p

return (process txt)

Constructing a knowledge base from a text file involves reading from this file,
so it involves an input/output action. IO is a type constructor that indicates this. So
the type IO KB indicates that there is some I/O-action going on with knowledge
bases. An easy way of listing I/O-actions is by using do, which is an expression
that evaluates, in order, the I/O-computations it contains. Let us have a closer
look at the I/O-computations in our example above. The function readFile is
of type FilePath -> IO String, i.e. it returns the entire contents of a file as a
single string, wrapped into an IO to indicate that we performed some I/O-action.
The line txt <- readFile p binds the name txt to the value returned by the
I/O-computation readFile p. It also removes the IO-wrapping, so xs is a value
of type String and not IO String. The second line inside the do-expression
constructs the knowledge base and wraps it inside an I/O-action.

And here is how to write a knowledge base to a text file on disk. This time the
result is of type IO (), the type of I/O-action without result.

writeKB :: FilePath -> KB -> IO ()

writeKB p kb = writeFile p (unlines (map (show.f2s) kb))

We now have all the ingredients to put our inference engine in action. We define
an input/output process that reads a knowledge base from disk – it is assumed that a
file called kb.txt exists in the working directory – and start an interaction process.
Interaction goes on until the user inputs an empty line (by just hitting the return
key). The interaction is implemented as an infinite chat loop. Inside the loop, the
keyboard input is parsed. If it is an empty line, the loop ends. If the input is not
parsable as as statement, the user gets feedback to that effect. If the input parses
as a statement which is a query, the query is answered with ‘Yes’, ‘No’, or ‘I don’t
know’, as the occasion demands. If the input parses as a declarative statement,
the system checks for consistency with the knowledge base, acts accordingly, and
gives appropriate feedback to the user.

5.7 An Inference Engine with a Natural Language Interface 121

chat :: IO ()

chat = do

kb <- getKB "kb.txt"

writeKB "kb.bak" kb

putStrLn "Update or query the KB:"

str <- getLine

if str == "" then return ()

else do

case parse str of

Nothing -> putStrLn "Wrong input.\n"

Just (What as) -> let

info = (tellAbout kb as, tellAbout kb (opp as)) in

case info of

([],[]) -> putStrLn "No info.\n"

([],negi) -> putStrLn (unlines (map show negi))

(posi,negi) -> putStrLn (unlines (map show posi))

Just stmt ->

if isQuery stmt then

if derive kb stmt then putStrLn "Yes.\n"

else if derive kb (neg stmt)

then putStrLn "No.\n"

else putStrLn "I don’t know.\n"

else case update stmt kb of

Just (kb’,True) -> do

writeKB "kb.txt" kb’

putStrLn "OK.\n"

Just (_,False) -> putStrLn

"I knew that already.\n"

Nothing -> putStrLn

"Inconsistent with my info.\n"

chat

Finally, we wrap the whole thing into a main function inside a Main module:

module Main where

import InfEngine

main :: IO ()

main = do putStrLn "Welcome to the Knowledge Base."

chat

122 Formal Semantics for Fragments

This code can be used with an interpreter, but it can also be compiled into a
separate program with a Haskell compiler. Assuming you have the GHC Haskell
compiler installed and you have a Unix/Linux system, this works as follows.† The
knowledge base in the coderun below was read from kb.txt, available from the
book website.

$ ghc --make Main

[1 of 2] Compiling InfEngine (InfEngine.hs, InfEngine.o)

[2 of 2] Compiling Main (Main.hs, Main.o)

Linking Main ...

$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

OK.

Update or query the KB:

No owls are mammals.

I knew that already.

Update or query the KB:

Are any owls stupids?

I don’t know.

Update or query the KB:

Not all owls are stupids.

Wrong input.

Update or query the KB:

What about owls?

No owls are bears.

No owls are mammals.

Update or query the KB:

† For Windows systems the procedure is similar. See your GHC documentation.

5.8 Further Reading 123

All owls are mammals.

Inconsistent with my info.

Update or query the KB:

And so on.

5.8 Further Reading
Grice [Gri75] gives the classical account of pragmatics. An excellent textbook
on pragmatics is Levinson [Lev83]. A good introduction to logic for linguists
is Gamut [Gam91a]. More mathematically oriented introductions are Van Dalen
[Dal83] and Enderton [End72]. Logic textbooks with good explanations of the
many connections to applications in computer science are [Bur98] and [HR04].
The idea for the natural language inference engine in Section 5.7 is taken from
http://rubyquiz.com (Quiz # 37). The Aristotelian class language is a sim-
ple example of a concept description language; see the first and second chapter
[NB02, BN02] of the Description Logic Handbook [BCM+02] for more informa-
tion. Connections between Aristotelian logic and predicate logic are discussed
in [Łuk51]. Extensions of the Aristotelian fragment are given in [PH04] and
[Mos08].

6
Model Checking with Predicate Logic

Summary
In this chapter, we show how predicate logic can be employed as a semantic rep-
resentation language, or, in the idiom of linguists, as a language for logical form.
Next, we demonstrate how models of predicate logic are defined as Haskell data
types. Finally, we turn to the problem of interpreting predicate logical languages
in appropriate models. In the end we will have an indirect interpretation procedure
for our natural language fragment, which consists of two steps: first, we construct
a logical form from a natural language expression, and second, we evaluate this
logical form with respect to a model.

module MCWPL where

import Data.List

import FSynF

import Model

6.1 Linguistic Form and Translation Into Logic

‘I see nobody on the road,’ said Alice. ‘I only wish I had
such eyes,’ the King remarked in a fretful tone. ‘To be able
to see Nobody! And at that distance too!’

Lewis Carroll, Alice in Wonderland

From the sentence Alice walked on the road it follows that someone walked
on the road, but from No one walked on the road it does not follow that some-
one walked on the road. Therefore, logicians such as Gottlob Frege (1848–1925),

125

126 Model Checking with Predicate Logic

Bertrand Russell (1872–1970), Alfred Tarski (1902–1983), and Willard Van Orman
Quine (1908–2000) have maintained that the structure of these two sentences must
differ, and that it is not enough to say that they are both compositions of a subject
and a predicate.

The logicians who used first-order predicate logic to analyse the logical struc-
ture of natural language were struck by the fact that the logical translations of
natural language sentences with quantified expressions did not seem to follow the
linguistic structure. In the logical translations, the quantified expressions seemed
to have disappeared. The logical translation of (6.1) does not reveal a constituent
corresponding to the quantified subject noun phrase.

Every dwarf loved Goldilocks. (6.1)
∀x(Dwarf x → Love x g) (6.2)

In the translation (6.2) the constituent every dwarf has disappeared; it is contextu-
ally eliminated. Frege remarks that a quantified expression like every dwarf does
not give rise to a concept by itself (eine selbständige Vorstellung), but can only be
interpreted in the context of the translation of the whole sentence. Considering this
particular example, the literal paraphrase of (6.2) is:

All objects in the domain of discourse have the property of either not being dwarves or
being objects who loved Goldilocks.

In this restatement of sentence (6.1) the phrase every dwarf does not occur any
more.

The logical properties of sentences involving quantified expressions (and de-
scriptions, analysed in terms of quantifiers) suggested indeed that the way a simple
noun phrase such as a proper name combines with a predicate is logically different
from the way in which a quantified noun phrase or a definite description combines
with a predicate. This led to the belief that the linguistic form of natural language
expressions was misleading.

The application of the logical tools of abstraction and reduction of the lambda
calculus allow us to see that this conclusion was unwarranted. Using translation of
natural language in expressions of typed logic we will see that natural language
constituents correspond to typed expressions that combine with one another as
functions and arguments. After full reduction of the results, quantified expressions
and other constituents may have been contextually eliminated, but this elimination
is a result of the reduction process, not of the supposed misleading form of the
original natural language sentence. Thus, while fully reduced logical translations
of natural language sentences may be misleading in some sense, the fully unre-
duced original expressions are not.

As an example of the way in which the tools of lambda calculus smooth logical

6.2 Predicate Logic as Representation Language 127

appearances, consider the logic of the combination of subjects and predicates. In
the simplest cases (like Goldilocks laughed) one could say that the predicate takes
the subject as an argument. But this does not work for quantified subjects (as in
no one laughed). All is well, however, when we say that the subject always takes
the predicate as its argument, and make this work for simple subjects by logically
raising their status from argument to function. Using lambda expressions, this is
easy enough: we translate Goldilocks not as the constant g, but as the expression
λP �→ P g. This expression denotes a function from properties to truth values, so
it can take a predicate translation as its argument. The translation of no one is of
the same type: λP �→ ¬∃x(Person x ∧ P x). Before reduction, the translations
of Goldilocks laughed and no one laughed look very similar. These similarities
disappear only after both translations have been reduced to their simplest forms.

In the next section, we demonstrate this by constructing predicate logic formu-
las as translations of the natural language sentences produced by the fragment from
Section 4.2. This translation is the first step for interpreting natural language ex-
pressions indirectly. The next step, taken up in the remaining sections, is to assign
the formulas in predicate logic a model-theoretic object as denotation. This way,
the represented natural language expression is given a model-theoretic interpreta-
tion. En route, we will see limitations of this procedure. Finally, the next chapter
will show that the detour via translation into a logical language is not necessary, but
that we can give a direct interpretation of natural language expressions. There we
will also talk about quantifiers and noun phrase denotations in much more detail.

6.2 Predicate Logic as Representation Language
Predicate logic gives us representations for two types: the type of entities is rep-
resented by terms (recall the definition of the data type Term on page 83), and the
type of truth values by formulas (recall the definition of the data type Formula on
page 80). Let us call the type of predicate logical formulas LF.

type LF = Formula Term

Assuming that we deal with a fragment that generates declarative sentences with
meanings that can be represented with predicate logic, it is reasonable to give the
type LF to representations of sentences.

To translate the fragment from Section 4.2 into predicate logic, all we have to do
is find appropriate translations for all the categories in the grammar of the fragment.
But the first rule, S −→ NP VP, already presents us with a difficulty. In looking
for NP translations and VP translations, should we represent NP as a function that
takes a VP representation as argument, or vice versa?

128 Model Checking with Predicate Logic

In any case, VP representations will have a functional type, for VPs denote prop-
erties. A reasonable type for the function that represents a VP is Term -> LF. If
we feed it with a term, it will yield a logical form. Proper names now can get the
type of terms. Take the example Goldilocks laughed. The verb laughed gets rep-
resented as the function that maps the term x to the formula Atom "laugh" [x].
Therefore, we get an appropriate logical form for the sentence if x is a term for
Goldilocks,

A difficulty that we already mentioned at the end of the last section is that phrases
like no boy and every girl do not fit into this pattern. But we also mentioned that
we can solve this if we assume such phrases translate into functions that take VP
representations as arguments. Let us first find a representation for everyone. In-
tuitively, this combines with a VP representation to yield a logical form express-
ing that every individual in the domain satisfies the property expressed by the VP.
But we know how to express this in predicate logic, for we have the universal
quantifier. An appropriate translation for everyone would be a function of type
(Term -> LF) -> LF. If we feed it a VP representation (an expression of type
Term -> LF), it yields a logical form. Presumably, the translation of everyone
should run Forall v (p v), where p is of type Term -> LF. The only remain-
ing difficulty is finding an appropriate variable for v, but we will solve that problem
when we come to it. For now, the upshot of the discussion is that in the LF rep-
resentation of a [S NP VP] structure, the NP representation should be the function
and the VP representation the argument. This gives us:

lfSent :: Sent -> LF

lfSent (Sent np vp) = (lfNP np) (lfVP vp)

Next, NP-representations are of type (Term -> LF) -> LF.

lfNP :: NP -> (Term -> LF) -> LF

lfNP SnowWhite = \ p -> p (Struct "SnowWhite" [])

lfNP Alice = \ p -> p (Struct "Alice" [])

lfNP Dorothy = \ p -> p (Struct "Dorothy" [])

lfNP Goldilocks = \ p -> p (Struct "Goldilocks" [])

lfNP LittleMook = \ p -> p (Struct "LittleMook" [])

lfNP Atreyu = \ p -> p (Struct "Atreyu" [])

lfNP (NP1 det cn) = (lfDET det) (lfCN cn)

lfNP (NP2 det rcn) = (lfDET det) (lfRCN rcn)

Verb phrase representations are of type Term -> LF.

6.2 Predicate Logic as Representation Language 129

lfVP :: VP -> Term -> LF

lfVP Laughed = \ t -> Atom "laugh" [t]

lfVP Cheered = \ t -> Atom "cheer" [t]

lfVP Shuddered = \ t -> Atom "shudder" [t]

Assume that representations of transitive verbs have type (Term,Term) -> LF,
where the first term slot is for the subject, and the second term slot for the object.
Accordingly, the representations of ditransitive verbs have type

(Term,Term,Term) -> LF

where the first term slot is for the subject, the second one is for the indirect object,
and the third one is for the direct object. The result should in both cases be a
property for VP subjects. This gives us:

lfVP (VP1 tv np) =

\ subj -> lfNP np (\ obj -> lfTV tv (subj,obj))

lfVP (VP2 dv np1 np2) =

\ subj -> lfNP np1 (\ iobj -> lfNP np2 (\ dobj ->

lfDV dv (subj,iobj,dobj)))

Representations for transitive verbs are:

lfTV :: TV -> (Term,Term) -> LF

lfTV Loved = \ (t1,t2) -> Atom "love" [t1,t2]

lfTV Admired = \ (t1,t2) -> Atom "admire" [t1,t2]

lfTV Helped = \ (t1,t2) -> Atom "help" [t1,t2]

lfTV Defeated = \ (t1,t2) -> Atom "defeat" [t1,t2]

The representation for the ditransitive verb gave is:

lfDV :: DV -> (Term,Term,Term) -> LF

lfDV Gave = \ (t1,t2,t3) -> Atom "give" [t1,t2,t3]

Representations for common nouns have the same type as those for VPs.

lfCN :: CN -> Term -> LF

lfCN Girl = \ t -> Atom "girl" [t]

lfCN Boy = \ t -> Atom "boy" [t]

130 Model Checking with Predicate Logic

lfCN Princess = \ t -> Atom "princess" [t]

lfCN Dwarf = \ t -> Atom "dwarf" [t]

lfCN Giant = \ t -> Atom "giant" [t]

lfCN Wizard = \ t -> Atom "wizard" [t]

lfCN Sword = \ t -> Atom "sword" [t]

lfCN Dagger = \ t -> Atom "dagger" [t]

The type of the logical form translation of determiners indicates that the transla-
tion takes a determiner phrase and two arguments for objects of type Term -> LF

(logical forms with term holes in them), and produces a logical form. In the case
of quantifiers, the first argument of type Term -> LF is the restriction, and the
second one is the scope. We will talk about this in the next chapter.

lfDET :: DET -> (Term -> LF) -> (Term -> LF) -> LF

In the translation of determiners we hit on a limitation of the present approach.
As we will see in Section 7.2, some determiners do not admit a translation into
predicate logic. This holds for the determiner most, for example. Determiners such
as at least n and at most n do have predicate logical translations, but the logical
forms become very cumbersome. We will postpone the treatment of those deter-
miners until the next chapter and for now concentrate on the ones in our fragment:
every, no, the, some, and a. The translation of these determiners should be done
with some care, for it involves the construction of a logical form where a variable
gets bound. To ensure proper binding, we have to make sure that the newly intro-
duced variable will not get accidentally bound by a quantifier already present in
the logical form. But if we reflect on how variables get introduced, we see that
variables will always appear together with their binders, and that no binding is vac-
uous. So we are done if we collect the binding occurrences of indices. For that we
define functions bInLF and bInLFs.

bInLF :: LF -> [Int]

bInLF (Atom _ _) = []

bInLF (Eq _ _) = []

bInLF (Neg lf) = bInLF lf

bInLF (Impl lf1 lf2) = bInLFs [lf1,lf2]

bInLF (Equi lf1 lf2) = bInLFs [lf1,lf2]

6.2 Predicate Logic as Representation Language 131

bInLF (Conj lfs) = bInLFs lfs

bInLF (Disj lfs) = bInLFs lfs

bInLF (Forall (Variable _ [i]) f) = i : bInLF f

bInLF (Exists (Variable _ [i]) f) = i : bInLF f

bInLFs :: [LF] -> [Int]

bInLFs = nub . concat . map bInLF

To compute a fresh variable index, we need to pick an index outside this list. All
variables will get introduced by means of the same mechanism, so if we start out
with variables of the form Variable "x" [0], and only introduce new variables
of the form Variable "x" [i] for non-negative integers i, we can assume that
all variables occurring in our logical form will have the shape Var "x" [i] for
some non-negative integer i. One final subtlety is that we add 0 to the list of indices
to ensure that the list will be non-empty. This is needed because the list is fed to
maximum, which expects a non-empty argument.

freshIndex :: [LF] -> Int

freshIndex lfs = i+1

where i = maximum (0:(bInLFs lfs))

fresh :: [Term -> LF] -> Int

fresh preds = freshIndex (map ($ dummy) preds)

where dummy = Struct "" []

Now, here is lfDET for the quantifiers some, every, and no:

lfDET Some p q = Exists v (Conj [p (Var v), q (Var v)])

where v = Variable "x" [fresh[p,q]]

lfDET Every p q = Forall v (Impl (p (Var v)) (q (Var v)))

where v = Variable "x" [fresh[p,q]]

lfDET No p q = Neg (Exists v (Conj [p (Var v),q (Var v)]))

where v = Variable "x" [fresh[p,q]]

For the representation of the definite determiner, we will for now use the theory
of definite descriptions proposed by Bertrand Russell [Rus05]. Russell proposed
to translate The king of France is bald as the conjunction of there is exactly one
person who is king of France and that person is bald. This can be expressed as

132 Model Checking with Predicate Logic

follows in predicate logic, slightly compressed.

∃x∀y((King y ↔ x = y) ∧ Bald x)

Using this for the fragment at hand gives:

lfDET The p q = Exists v1 (Conj

[Forall v2 (Equi (p (Var v2))

(Eq (Var v1) (Var v2))),

q (Var v1)])

where

i = fresh[p,q]

v1 = Variable "x" [i]

v2 = Variable "x" [i+1]

We use Conj to conjoin the logical form for a common noun and the logical
form for a relative clause into a logical form for a complex common noun.

lfRCN :: RCN -> Term -> LF

lfRCN (RCN1 cn _ vp) = \ t -> Conj [lfCN cn t, lfVP vp t]

lfRCN (RCN2 cn _ np tv) = \ t -> Conj [lfCN cn t,

lfNP np (\ subj -> lfTV tv (subj,t))]

Let us define some examples:

lf1 = lfSent (Sent (NP1 Some Dwarf)

(VP1 Defeated (NP1 Some Giant)))

lf2 = lfSent (Sent (NP2 The (RCN2 Wizard

That Dorothy Admired))

Laughed)

lf3 = lfSent (Sent (NP2 The (RCN1 Princess

That (VP1 Helped Alice)))

Shuddered)

This gives us:

MCWPL> lf1

E x1 conj[dwarf[x1],Ex2 conj[giant[x2],defeat[x1,x2]]]

MCWPL> lf2

E x1 conj[conj[wizard[x1],admire[Dorothy,x1]],laugh[x1]]

MCWPL> lf3

6.3 Representing a Model for Predicate Logic 133

E x1 conj[Ax2 (conj[princess[x2],

help[x2,Alice]]<=>x1==x2),shudder[x1]]

We now have representations of declarative natural language sentences as for-
mulas of predicate logic. In the following sections, we will show how to check
whether these formulas are true. For this, we first need to specify a model, i.e.
a domain of entities and interpretations of proper names and predicates, and then
describe how to evaluate formulas with respect to this model.

6.3 Representing a Model for Predicate Logic

module Model where

import Data.List

All we need to specify a first-order model in Haskell is a domain of entities and
suitable interpretations of proper names and predicates. We start by constructing a
small example domain of entities consisting of individuals A, . . . , Z, by declaring
a data type Entity.

data Entity = A | B | C | D | E | F | G

| H | I | J | K | L | M | N

| O | P | Q | R | S | T | U

| V | W | X | Y | Z | Unspec

deriving (Eq,Show,Bounded,Enum)

The special entity Unspec will play an important part in our account of under-
specified relations. It will allow us to define relations with some argument places
unspecified.

The clause deriving (Eq,Bounded,Enum,Show) is there to enable us to do
equality tests on entities (Eq), to refer to A as the minimum element and Unspec as
the maximum element (Bounded), and to enumerate the elements (Enum). Because
Entity is a bounded and enumerable type, we can put all of its elements in a finite
list:

entities :: [Entity]

entities = [minBound..maxBound]

To display the entities on the screen, we also put the entities in the class Show.

134 Model Checking with Predicate Logic

Now, proper names will simply be interpreted as entities.

snowWhite, alice, dorothy, goldilocks, littleMook, atreyu

:: Entity

snowWhite = S

alice = A

dorothy = D

goldilocks = G

littleMook = M

atreyu = Y

Common nouns such as girl and dwarf as well as intransitive verbs like laugh
and shudder are interpreted as properties of entities. Transitive verbs like love are
interpreted as relations between entities.

For properties and relations on the domain Entity, we could use a general type
[Entity] -> Bool. Although this would allow us to talk about relations of all
arities in a unified way, it would not be very useful for composition of meaning
in the next chapter, because in syntax a transitive verb first combines with a direct
object and then with a subject, and a ditransitive verb combines with an indirect
and a direct object, and then with a subject. Thus we want verbs to denote functions
from entities to Bool that take their arguments one by one. We thus define types
for one-place, two-place, and three-place predicates as follows.

type OnePlacePred = Entity -> Bool

type TwoPlacePred = Entity -> Entity -> Bool

type ThreePlacePred = Entity -> Entity -> Entity -> Bool

Since it is very natural to think about one-place predicates as lists, namely the
list of entities for which the predicate holds, we define a conversion function, that
converts a list of entities into a one-place predicate, i.e. a function from entities to
truth values.

list2OnePlacePred :: [Entity] -> OnePlacePred

list2OnePlacePred xs = \ x -> elem x xs

This function allows the specification of one-place predicates in terms of lists of
entities.

6.3 Representing a Model for Predicate Logic 135

girl, boy, princess, dwarf, giant, wizard, sword, dagger

:: OnePlacePred

girl = list2OnePlacePred [S,A,D,G]

boy = list2OnePlacePred [M,Y]

princess = list2OnePlacePred [E]

dwarf = list2OnePlacePred [B,R]

giant = list2OnePlacePred [T]

wizard = list2OnePlacePred [W,V]

sword = list2OnePlacePred [F]

dagger = list2OnePlacePred [X]

With the predicates defined so far, we can also define other predicates like being
a person or a thing: a person is a boy, girl, princess, dwarf, giant, or wizard, and
a thing is everything which is neither a person nor the special object Unspec. It
is also convenient to have men and women: we assume that the women are the
princesses and that the men are the dwarfs, giants, and wizards.

child, person, man, woman, male, female, thing :: OnePlacePred

child = \ x -> (girl x || boy x)

person = \ x -> (child x || princess x || dwarf x

|| giant x || wizard x)

man = \ x -> (dwarf x || giant x || wizard x)

woman = \ x -> princess x

male = \ x -> (man x || boy x)

female = \ x -> (woman x || girl x)

thing = \ x -> not (person x || x == Unspec)

Since intransitive verbs also denote properties, their meanings are represented as
OnePlacePred as well.

laugh, cheer, shudder :: OnePlacePred

laugh = list2OnePlacePred [A,G,E]

cheer = list2OnePlacePred [M,D]

shudder = list2OnePlacePred [S]

Let us now turn to transitive verbs. We said that they denote relations between

136 Model Checking with Predicate Logic

entities, so we want to represent them as two-place predicates. Analogous to one-
place predicates, it is convenient to think of two-place predicates as lists of pairs,
namely the pairs for which the predicate holds. In order to represent the mean-
ing of transitive verbs using pairs, we will make use of the predefined function
curry. Currying is the conversion of a function of type ((a,b) -> c) to one of
type a -> b -> c, i.e. it converts a function that takes a pair as argument into a
function that takes the elements of the pair as separate arguments.

curry :: ((a,b) -> c) -> a -> b -> c

curry f x y = f (x,y)

The converse operation is called uncurrying. Just like the programming lan-
guage Haskell, these operations are named after one of the inventors of lambda cal-
culus, the logician Haskell B. Curry. Uncurrying is also predefined in the Haskell
Prelude, like this:

uncurry :: (a -> b -> c) -> ((a, b) -> c)

uncurry f p = f (fst p) (snd p)

fst :: (a,b) -> a

fst (x,y) = x

snd :: (a,b) -> b

snd (x,y) = y

We use currying in the definition of the following two-place predicates.

love, admire, help, defeat :: TwoPlacePred

love = curry (‘elem‘ [(Y,E),(B,S),(R,S)])

admire = curry (‘elem‘ [(x,G) | x <- entities, person x])

help = curry (‘elem‘ [(W,W),(V,V),(S,B),(D,M)])

defeat = curry (‘elem‘ [(x,y) | x <- entities,

y <- entities,

dwarf x && giant y]

++ [(A,W),(A,V)])

Meanings of ditransitive verbs can be represented as three-place predicates in
the same way as transitive verbs were represented as two-place predicates. The

6.3 Representing a Model for Predicate Logic 137

only additional technical detail we have to take care of is that our currying function
only works for pairs so far. It can be defined for triples straightforwardly.

curry3 :: ((a,b,c) -> d) -> a -> b -> c -> d

curry3 f x y z = f (x,y,z)

Now, the denotation of give can be given as follows.

give :: ThreePlacePred

give = curry3 (‘elem‘ [(T,S,X),(A,E,S)])

Exercise 6.1 Consider the verbs help and defeat, and the noun phrases Alice, Snow White,
every wizard, and a dwarf. Check for each sentence of the form [S NP (V NP)] using these
verbs and noun phrases whether that sentence is true or false in this model.

The entity Unspec can be used for defining underspecified relations. For exam-
ple, we can add a verb kill to our fragment and interpret it as a three-place relation,
with the first argument giving the agent, the second argument the victim, and the
third argument the instrument. In cases where there is no instrument or agent, we
leave the argument unspecified. Now the meaning of kill can be given as:

kill :: ThreePlacePred

kill = curry3 (‘elem‘ [(Y,T,F),(Unspec,D,X),

(Unspec,M,Unspec)])

What this entry says is that Atreyu killed the giant with the sword, Dorothy was
stabbed (leaving unspecified who stabbed her), and Little Mook just died.

Using Unspec as a way of leaving arguments implicit can be exploited in a more
general way than we did above. One example of this are passives. Passivization is
a process of argument reduction: the agent of an action is dropped. Without going
into detail of subtle properties of passive constructions, we can specify a semantic
passivization function like this:

passivize :: TwoPlacePred -> OnePlacePred

passivize r = \ x -> r Unspec x

Exercise 6.2 Check how passivize works by applying it to the predicates admire and

138 Model Checking with Predicate Logic

help. Also note that (passivize admire) G returns False, although we want it to
return True. Why is that? And how can you fix it?

Exercise 6.3 As is already clear from the type, this function only works for two-place
predicates. Define another passivization function that works for three-place predicates.

Passivization is not the only example for argument reduction in natural lan-
guages. Another case is an analysis of reflexive pronouns as it can be found, for
example, in Daniel Büring’s book on Binding Theory [Bür05, pp. 43–45]. Un-
der this view, reflexive pronouns like himself and herself differ semantically from
non-reflexive pronouns like him and her in that they are not interpreted as indi-
vidual variables. Instead, they denote argument reducing functions. Consider, for
example, the following sentence:

Snow White admired herself. (6.3)

The reflexive herself is interpreted as a function that takes the two-place predicate
admired as an argument and turns it into a one-place predicate, which takes the
subject as an argument and expressing that this entity admires itself. This can be
achieved by the following function self.

self :: (a -> a -> b) -> a -> b

self p = \ x -> p x x

Note that applying self to a function of type TwoPlacePred will yield a func-
tion of type OnePlacePred. For example, applying self to the two-place pred-
icate λy x �→ Admire x y yields the one-place predicate λx �→ Admire x x.
Applying this to Snow White will give Admire s s.

This approach to reflexives has two desirable consequences. The first one is that
the locality of reflexives immediately falls out. Since self is applied to a predicate
and unifies arguments of this predicate, it is not possible that an argument is unified
with a non-clause mate. So in a sentence like (6.4), herself can only refer to Alice
but not to Snow White.

∗ Snow White thinks that Alice admired herself. (6.4)

The second one is that it also immediately follows that reflexives in subject position
are out.

∗ Herself admired Snow White. (6.5)

Given a compositional interpretation, we first apply the predicate admired to Snow
White, which gives us the one-place predicate λx �→ Admire x s. Then trying to

6.4 Evaluating Formulas in Models 139

apply the function self to this will fail, because it expects a two-place predicate.
In other words, there are no two argument position left, which could be unified.

Exercise 6.4 When considering ditransitive verbs like introduce and give, we see that a
reflexive can be both the direct and the indirect object.

Alice introduced herself to the rabbit. (6.6)
Little Mook gave the figs to himself. (6.7)

Define functions self3DO and self3IO of type ThreePlacePred -> TwoPlacePred
that unify the subject with the direct and indirect object, respectively.

After this little digression, let us turn back to our task of giving an indirect in-
terpretation for our natural language fragment. Up to now we specified how to
represent models for predicate logic. The next thing to do is to evaluate formulas
with respect to these models.

6.4 Evaluating Formulas in Models
We now turn to the problem of the evaluation of formulas of predicate logic with
respect to a model. Two of the ingredients we need are interpretation functions
and variable assignments. An interpretation function is a function from relation
names to appropriate relations in the model. We will not distinguish accord-
ing to the arity of the relation, but let an interpretation be a function of the type
String -> [a] -> Bool. For this type it is convenient to have a type synonym:

type Interp a = String -> [a] -> Bool

In our specific case we will use interpretation functions of type Interp Entity,
i.e. String -> [Entity] -> Bool.

Here is an example interpretation function for some one-place and two-place
relation symbols:

int0 :: Interp Entity

int0 "Laugh" = \ [x] -> laugh x

int0 "Cheer" = \ [x] -> cheer x

int0 "Shudder" = \ [x] -> shudder x

int0 "Love" = \ [x,y] -> love y x

int0 "Admire" = \ [x,y] -> admire y x

int0 "Help" = \ [x,y] -> help y x

int0 "Defeat" = \ [x,y] -> defeat y x

int0 "Give" = \ [x,y,z] -> give z y x

140 Model Checking with Predicate Logic

Now, the evaluation of the formula Forall x (Atom "Love" [x,x]) in the
model specified in Section 6.3, with respect to interpretation function int0, should
yield False, for in the example model it is not the case that the love relation is
reflexive.

To bring this about, we have to implement the evaluation function given in Sec-
tion 5.5. This uses variable assignments g. In the implementation, these have type
Variable -> Entity, or more generally Variable -> a. It pays to declare a
data type for variable assignments (or: variable lookup functions).

type Lookup a = Variable -> a

The crucial notion is g[x := d], for the assignment that is like g, but with x
interpreted as d. Here are its type and its definition:

change :: Lookup a -> Variable -> a -> Lookup a

change g x d = \ v -> if x == v then d else g v

As an example for a variable assignment, here is a definition of the assignment
that maps every variable to object A.

ass0 :: Lookup Entity

ass0 = \ v -> A

The function that is like ass0, except for the fact that y gets mapped to B, is
given by:

ass1 :: Lookup Entity

ass1 = change ass0 y B

Before we give an implementation of the evaluation function for predicate logic,
we must emphasize the crucial difference between defining an evaluation function
for predicate logic and implementing such a definition. Implementations allow us
to check the value of a formula in a model. But it is unreasonable to expect to be
able to check the evaluation of arbitrary formulas in arbitrary models. Take the
famous Goldbach conjecture as an example. This conjecture – from a letter that
Christian Goldbach wrote to Leonhard Euler in 1742 – says that every even natural
number can be written as the sum of two primes. It can easily be stated in predicate

6.4 Evaluating Formulas in Models 141

logic as follows:

∀x∃y∃z(2 ∗ x = y + z ∧ Prime y ∧ Prime z). (6.8)

This uses function symbols ∗ and + for multiplication and addition, and a predicate
symbol Prime for being a prime number. The predicate Prime can be defined in
predicate logic using a binary relation symbol < for ‘smaller than’ and a binary
relation symbol Div for ‘divisibility’ (where Div x y expresses that x is a proper
divisor of y):

¬∃d(1 < d ∧ d < y ∧ Div d y).

Exercise 6.5 Give an equivalent formula that just uses 0, s, ∗,+, <, i.e. show how Div d y
can be defined in predicate logic with 0, s, ∗,+, < (with s for the successor function).

Although the interpretations of < and Div are easy to check for given natural
numbers, it is unreasonable to expect an implementation of an evaluation function
for predicate logic to check whether formula (6.8) is true. The Goldbach conjecture
is one of the many open problems of the theory of natural numbers. At the moment
of writing, nobody knows whether it is true or not, because nobody has been able
to provide a proof or a counterexample, although the conjecture has been verified
for numbers up to 4× 1014.

We will make two assumptions about the domain of evaluation. In the first place,
we will assume that tests for equality are possible on the domain. In Haskell ter-
minology: the type a of our domain should be in the class Eq. Secondly, we will
assume that the domain can be enumerated, and we will use this domain as an
argument to the evaluation function.

Note that our example domain of entities on page 133 satisfies these require-
ments. However, the domain of non-negative integers satisfies the requirements
as well. Indeed, the requirements are not enough to guarantee termination of the
evaluation function for all possible arguments.

Let us look at how to implement an evaluation function. It takes as its first
argument a domain, as its second argument an interpretation function, as its third
argument a variable assignment, as its fourth argument a formula, and it yields a
truth value. It is defined by recursion on the structure of the formula. The type of
the evaluation function eval reflects the above assumptions.

eval :: Eq a =>

[a] ->

Interp a ->

Lookup a ->

Formula Variable -> Bool

142 Model Checking with Predicate Logic

The evaluation function is defined for all types a that belong to the class Eq. The
assumption that the type a of the domain of evaluation is in Eq is needed in the
evaluation clause for equalities. The evaluation function takes a universe (repre-
sented as a list, [a]) as its first argument, an interpretation function for relation
symbols (Interp a) as its second argument, a variable assignment (Lookup a)
as its third argument, and a formula as its fourth argument. The definition is by
structural recursion on the formula:

eval domain i = eval’ where

eval’ g (Atom str vs) = i str (map g vs)

eval’ g (Eq v1 v2) = (g v1) == (g v2)

eval’ g (Neg f) = not (eval’ g f)

eval’ g (Impl f1 f2) = not ((eval’ g f1) &&

not (eval’ g f2))

eval’ g (Equi f1 f2) = (eval’ g f1) == (eval’ g f2)

eval’ g (Conj fs) = and (map (eval’ g) fs)

eval’ g (Disj fs) = or (map (eval’ g) fs)

eval’ g (Forall v f) = and [eval’ (change g v d) f |

d <- domain]

eval’ g (Exists v f) = or [eval’ (change g v d) f |

d <- domain]

We can check the claim that the formula Forall x (Atom "Love" [x,x])

from above makes about the model from Section 6.3, as follows. (The interpreta-
tion function int0 was given on page 139, and the assignment ass0 was given on
page 140.)

MCWPL> eval entities int0 ass0 (Forall x (Atom "Love" [x,x]))

False

For checking that the formula Atom "R" [x,y] holds for the interpretation of
"R" as < on the non-negative integers and for an assignment that maps x to 1 and
y to 2, we need an interpretation in the type Int:

int1 :: String -> [Int] -> Bool

int1 "R" = rconvert (<)

where

rconvert :: (a -> a -> Bool) -> [a] -> Bool

rconvert r [x,y] = r x y

6.5 Evaluating Formulas with Structured Terms 143

Here is an appropriate assignment:

ass2 :: Variable -> Int

ass2 v = if v == x then 1 else if v == y then 2 else 0

Now suppose we want to evaluate the formula

Forall x (Exists y (Atom "R" [x,y])) (6.9)

in the infinite domain of non-negative integers. This domain can be listed in
Haskell as [0..]. Because Haskell is a lazy functional programming language,
we can use infinite lists as arguments to functions. Recall from Chapter 3 that
the laziness consists in the fact that arguments are only evaluated when needed,
and as far as needed. The elements of [0..] will be accessed one at a time, and
only at a point where they are actually needed. So we can check the open formula
Atom "R" [x,y] in the domain [0..], with respect to a fixed variable assign-
ment:

MCWPL> eval [0..] int1 ass2 (Atom "R" [x,y])

True

However, checking the claim that the closed formula (6.9) makes about the non-
negative integers, with R interpreted as the ‘less than’ relation, is not a feasible
matter, for the evaluation procedure will keep on trying different numbers.

6.5 Evaluating Formulas with Structured Terms
The previous section dealt with evaluation for formulas of type Formula Variable.
In this section we turn to the general case, and write an evaluation function for for-
mulas of type Formula Term.

As in the case of the interpretation of relation symbols, it is useful to have a
general type for the interpretation of function symbols. We will use the following
abbreviation:

type FInterp a = String -> [a] -> a

Here is an example interpretation for function symbols, for the case where our
domain of entities consists of integers. Let us define a constant term zero as a
name for the integer 0.

zero = Struct "zero" []

144 Model Checking with Predicate Logic

The interpretation function has to ensure that the name points to the right entity.
We also provide interpretations of the one-place successor function s, and of the
two-place functions plus and times.

fint1 :: FInterp Int

fint1 "zero" [] = 0

fint1 "s" [i] = succ i

fint1 "plus" [i,j] = i + j

fint1 "times" [i,j] = i * j

In Haskell, the type Int is bounded by primMinInt (for the smallest integer
that gets represented, which is −2147483648) and primMaxInt (for the greatest
integer that gets represented, which is 2147483648).

For the case where the domain consists of objects of type Entity, we get
FInterp Entity. Before we can turn to evaluation of formulas, we have to lift
valuation functions from type Lookup a to type Term -> a, given appropriate
interpretations for function symbols. Again, it is useful to have an abbreviation:

type TVal a = Term -> a

Lifting from Lookup a to TVal a is done with recursion on the structure of
terms, as follows:

liftLookup :: FInterp a -> Lookup a -> TVal a

liftLookup fint g (Var v) = g v

liftLookup fint g (Struct str ts) =

fint str (map (liftLookup fint g) ts)

Finally, we are ready to extend the semantic evaluation function from the previ-
ous section to the present case. The evaluation function takes one extra argument,
for the function symbol interpretation. Here is its type:

evl :: Eq a =>

[a] ->

Interp a ->

FInterp a ->

Lookup a ->

Formula Term -> Bool

6.5 Evaluating Formulas with Structured Terms 145

And here is the definition:

evl domain i fint = evl’ where

lift = liftLookup fint

evl’ g (Atom str ts) = i str (map (lift g) ts)

evl’ g (Eq t1 t2) = lift g t1 == lift g t2

evl’ g (Neg f) = not (evl’ g f)

evl’ g (Impl f1 f2) = not ((evl’ g f1) &&

not (evl’ g f2))

evl’ g (Equi f1 f2) = evl’ g f1 == evl’ g f2

evl’ g (Conj fs) = and (map (evl’ g) fs)

evl’ g (Disj fs) = or (map (evl’ g) fs)

evl’ g (Forall v f) = and [evl’ (change g v d) f |

d <- domain]

evl’ g (Exists v f) = or [evl’ (change g v d) f |

d <- domain]

As an example, we evaluate the formula Exists x (Atom "R" [zero,tx])

in the domain of the natural numbers, i.e., the non-negative integers. For this,
we need a relation symbol interpretation, a function symbol interpretation, and a
variable assignment. For the first, let us take int1, for the second fint1, and for
the third the variable assignment that maps every variable to 0. Finally, we need to
specify the domain as a list. Under this interpretation, the formula expresses that
there is a number greater than 0. And surely, this evaluates as True:

MCWPL> evl [0..] int1 fint1 (\ (Variable _ _) -> 0)

Exists x (Atom "R" [zero,tx])

True

The formula Exists x (Atom "R" [tx,zero]), on the other hand, should
yield False under interpretation int1, but in fact the evaluation procedure will
not terminate, because in order to check this formula, the evaluation procedure
will keep on trying candidates from the infinite list [0..]. Even in cases where
there are solutions, it may take a long time before the right candidate or the right
tuple of candidates has been found. This suggests that it makes sense to perform
model checking in an interactive fashion, so that the user can state that there are no
solutions for certain queries, and influence the choice of suitable referents for free
variables for certain other queries.

Here is an example of a formula with nested quantifiers:

146 Model Checking with Predicate Logic

formula3 = Forall x (Forall y (Impl (Atom "R" [tx,ty])

(Exists z

(Conj [Atom "R" [tx,tz],

Atom "R" [tz,ty]]))))

This gets displayed as follows:

MCWPL> formula3

Ax Ay (R[x,y]==>Ez conj[R[x,z],R[z,y]])

Exercise 6.6 What does formula3 express, assuming that R is interpreted as <? Is this
formula true on the natural numbers? Is it true on the rational numbers (the numbers that
can be written as n

m , with n and m integers and m �= 0)?

Again, we cannot expect to get an answer to the query

MCWPL> evl [0..] int1 fint1 (\ (Variable _ _) -> 1) formula4

in feasible time, if formula4 is the following formula:

formula4 = Impl (Atom "R" [tx,ty])

(Exists z

(Conj [Atom "R" [tx,tz],

Atom "R" [tz,ty]]))

The evaluation procedure will keep trying different values for z, and never find
one that yields true.

Now let us try this on the model from Section 6.3, with R interpreted as the defeat
relation. Here is an appropriate interpretation function.

int3 :: String -> [Entity] -> Bool

int3 "R" = \ [x,y] -> defeat y x

Since formula4 does not contain function symbols, it does not matter which
function symbol interpretation we use. Let us assume the following:

fint2 :: String -> [Entity] -> Entity

fint2 "zero" [] = A

MCWPL> evl entities int3 fint2 (\ (Variable _ _) -> A) formula4

True

6.6 Further Reading 147

Exercise 6.7 Implement an evaluation function for natural language sentences in our frag-
ment in the example model of this chapter. The type should be

checkSentence :: Sent -> Bool.

6.6 Further Reading
In computer science, evaluation of formulas of suitable logical languages (predi-
cate logic, but also temporal logics) in appropriate models is called model check-
ing. This has developed into a discipline in its own right; see [HR04] for an intro-
duction. The use of typed logic for semantics of natural language was pioneered by
Richard Montague, who used typed logic as a stepping stone on the way to seman-
tic specification in [Mon73] and [Mon74b]. Elsewhere, in [Mon74a], the meaning
of a fragment of English is specified without a detour through logical form.

7
The Composition of Meaning in Natural Language

Summary
In the last chapter we gave an indirect interpretation for our natural language frag-
ment. We translated natural language sentences into logical forms and then eval-
uated these logical forms with respect to a model. Logical forms were predicate
logical formulas, which were constructed from type logical expressions. We used
Haskell as a lambda calculus engine for this construction procedure. This worked
very well, but it has the disadvantage that the Haskell interpreter hides the details of
how expressions of typed logic get simplified. In this chapter, we will demonstrate
that the composition of meaning can be carried out without a logical form language
as intermediate representation level. We will give direct instructions for connect-
ing natural language expressions to the “world” outside language (represented by
an appropriate model). We will show how models of predicate logic can be ex-
tended to models of typed logic, and how typed logic yields appropriate meaning
representations for the lexical items of natural language fragments and provides the
means for building up meanings in a compositional way. But before we engage in
this, we must focus on a key ingredient in natural language semantics: quantifiers.

7.1 Rules of the Game
An invitation to translate English sentences from an example fragment of natural
language given by some set of grammar rules into some logic – predicate logic,
or typed logic – presupposes two things: (i) that you grasp the meanings of the
formulas of the representation language, and (ii) that you understand the meanings
of the English sentences. Knowledge of the first kind can be made fully explicit;
stating it in a fully explicit fashion is the job of the semantic truth definitions for
the representation languages. In fact, translation exercises of this kind in logic text-
books are meant to expand the reader’s awareness of the expressive power of the
logical representation language by inviting him or her to express an (intuitively)

149

150 The Composition of Meaning in Natural Language

well-understood message in the new medium. Because of this presupposed under-
standing of the original message, such translations cannot count as explications of
the concept of meaning for natural language.

As we have seen in Section 6.2, it is possible to make knowledge of the meaning
of a fragment of natural language fully explicit. What we gave there is a transla-
tion procedure from natural language into predicate logic that can count as an ex-
plication of the concept of meaning for natural language. The procedure does not
presuppose knowledge of the meaning of complete natural language sentences. In-
stead, it specifies how sentence meanings are derived from the meanings of smaller
building blocks. The meanings of complex expressions are constructed in a system-
atic fashion from the meanings of the smallest building blocks occurring in those
expressions. The meaning of these smallest building blocks is taken as given. We
assume that they are given by instructions for linking individual words to the re-
ality outside language. In our example, these links are made by the interpretation
instructions for relation and function symbols in a predicate logical model. Com-
putational semantics has little or nothing to say about the interpretation of semantic
atoms. It has rather a lot to say, however, about the process of composing complex
meanings in a systematic way out of the meanings of components. The intuition
that this is always possible can be stated somewhat more precisely; it is called the
Principle of Compositionality, which we already encountered in the first chapter:

The meaning of an expression is a function of the meanings of its immediate syntactic
components and their syntactic mode of composition.

The principle of compositionality is implicit in the work of Frege on the philosophy
of language, and it has been made fully explicit in Richard Montague’s approach
to natural language semantics. Another key element in Montague-style semantics
is the treatment of quantifiers.

7.2 Quantification
An important goal in computational semantics for natural language is to provide an
account of the process of drawing inferences in natural language. A key role in this
process is played by quantifiers, and therefore quantification is a topic of central
interest in computational semantics. The first systematic account of quantification
is that of Aristotle; see Section 5.7. Impressive though it is, Aristotle’s theory of
quantification has two logical defects:

(1) Quantifier combinations are not treated; only one quantifier per sentence is
allowed.

(2) ‘Non-standard’ quantifiers such as most, half of, at least five, . . . are not
covered.

7.2 Quantification 151

A minor additional flaw is the assumption of existential presupposition. In math-
ematical reasoning, and sometimes also in everyday reasoning, one wants to be
able to assert universally quantified statements without the bother of first having to
provide existence proofs.

The first of these defects was removed by Frege. Frege’s theory of quantification
is basically what we now call predicate logic. It is based on the introduction of
individual variables bound by the quantifiers ∀ (‘for all’) and ∃ (‘there exists’).
Quantifiers with their associated variables can combine with arbitrarily complex
predicate logical formulae to form new predicate logical formulae, so a formula
may contain an arbitrary number of quantifiers.

The quantifiers ∀ and ∃ are called the standard quantifiers. These two quantifiers
are interdefinable with the help of negation: Something stinks means the same as It
is not the case that it holds for every x that x does not stink, and Everything is fine
means the same as It is not the case that there is a thing x with the property that x
is not fine. More formally: ∃xPx is true if and only if ¬∀x¬Px is true, and ∀xPx
is true if and only if ¬∃x¬Px is true.

If one conveniently forgets about the existential presuppositions, the Aristotelian
quantifiers from the Square of Opposition (cf. Figure 5.1 on page 107) can be ex-
pressed in terms of the Fregean standard quantifiers as follows (with ❀ for ‘trans-
lates as’):

All A are B ❀ ∀x(Ax → Bx)

Some A is/are B ❀ ∃x(Ax ∧Bx)

No A is B ❀ ∀x(Ax → ¬Bx)

Not all A are B ❀ ¬∀x(Ax → Bx)

A thing to note is that different ways of rendering an Aristotelian quantifier in
Frege’s logic may be equivalent. Another possible translation for No A is B is
¬∃x(Ax ∧ Bx). There is nothing to choose between the two translations because
in every situation where the first one is true the second one is true as well, and vice
versa.

Using standard quantifiers and equality it is also possible to express numerical
constraints like At least two A are B:

∃x∃y(x �= y ∧Ax ∧Ay ∧Bx ∧By).

It is not difficult to see that all disjunctions and conjunctions of quantifiers of the
forms at least n and at most m can be expressed in terms of standard quantifiers
and equality.

152 The Composition of Meaning in Natural Language

To illustrate the claim that first-order logic has no difficulty with quantifier com-
binations, consider the translation of example (7.1).

Every prince sang a ballad. (7.1)
∀x(Prince x → ∃y(Ballad y ∧ Sing x y)).

Observe that the translation does not contain phrases corresponding to the noun
phrases every prince or a ballad. Given a natural language sentence and its trans-
lation into first-order logic, it is impossible to pinpoint the sub-expression in the
translation that gives the meaning of a particular noun phrase in the original. In
the translation into first-order logic, the noun phrases have been syntactically elim-
inated, so to speak.

The next example, (7.2), with the two possible translations listed below it, can
serve to illustrate a few further points.

A ballad was sung by every prince. (7.2)
∃y(Ballad y ∧ ∀x(Prince x → Sing x y))

∀x(Prince x → ∃y(Ballad y ∧ Sing x y))

The fact that both translations are appropriate for (7.2) shows that the sentence
is ambiguous. It also shows that translating into first-order logic can be used to
disambiguate natural language sentences. In such cases one says that the different
translations express different readings of the original sentence.

In an early era of natural language semantics, the time when first-order predicate
logic was still considered as the one and only tool for semantic analysis, quantified
noun phrases were commonly regarded as systematically misleading expressions.
Their natural language syntax did not correspond to their logic, for in natural lan-
guage they were separate constituents, but they evaporated during the process of
translation into first-order logic.

The Fregean view on quantifiers is a vast improvement over the Aristotelean
view. Three areas with scope for further improvement remained: (i) finding logical
representation languages permitting the preservation of noun phrases as separate
constituents, (ii) finding procedures for translating from natural language to logi-
cal representations that are not ad hoc, and (iii) finding ways to treat non-standard
quantifiers such as most, preferably in a uniform framework with standard quanti-
fiers.

The relational view of quantifiers

In the relational perspective on quantifiers, first proposed in [Mos57], a quantifier
is viewed as a two-place relation on the power set of a domain of discourse (or

7.2 Quantification 153

universe) E satisfying certain requirements. (You can read E as mnemonic for
the set of entities, for example.) The power set of a set E, notation P(E), is
the set of all subsets of E. A two-place relation on P(E) is a set of pairs of
subsets of E. The relational perspective on quantification is implicit in Montague
grammar. It was first systematically applied to natural language analysis in Barwise
and Cooper [BC81]. Below it will be shown that the relational view can be used
to remedy the defects of both the Aristotelian and the Fregean theory. It covers
non-standard quantifiers, it allows quantifier combinations of arbitrary complexity,
it does not syntactically eliminate quantified noun phrases, and it can be used as
one of the ingredients in a non ad hoc translation procedure from natural language
to a language of logical representations.

We will start by demonstrating that in the modern relational perspective the sug-
gestion of misleading form disappears. Two simple example sentences will illus-
trate that a representation language with generalized quantifier expressions (ex-
pressions denoting two-place relations between sets) and a notation for lambda
abstraction is eminently suited for the compositional analysis of natural language
sentences with quantified noun phrases. First consider example (7.3).

Every princess laughed. (7.3)

This sentence is composed of a noun phrase every princess, composed in turn of a
determiner every and a noun princess, and a verb phrase laughed. The determiner
every translates into an expression every denoting a function from properties to a
function from properties to truth values. More precisely, every denotes the function
mapping a property P to the characteristic function of the set of all properties
having P as a subset. The noun princess translates into λx �→ Princess x, or
simply Princess. The verb phrase laughed translates into λy �→ Laugh y, or simply
Laugh. The noun phrase every princess translates into every Princess, and, finally,
the whole sentence into the expression (every Princess) Laugh. This expression
yields true in case the property of being a princess is included in the property of
laughing, false otherwise. See Figure 7.1.

Fig. 7.1. Every princess laughed
expression translation type
every every (e → t) → ((e → t) → t)
princess Princess (e → t)
every princess every Princess (e → t) → t
laughed Laugh (e → t)
every princess laughed (every Princess) Laugh t

To see how quantifier combinations are dealt with compositionally, consider ex-

154 The Composition of Meaning in Natural Language

ample (7.4).

Every mermaid hummed a song. (7.4)

The trick is finding the right translation for the transitive verb. This turns out to
be the lambda expression λXλy �→ X (λz �→ Hum y z), where X is a variable
over noun phrase type expressions. The verb translation is of the right type to take
the object noun phrase translation as its argument; this gives translation (7.5) for
the verb phrase, which reduces to (7.6). In Section 7.4 we will say more about this
reduction process.

(λXλy �→ X (λz �→ Hum y z))(a Song). (7.5)
λy �→ (a Song)(λz �→ Hum y z). (7.6)

Here a denotes the function which maps every property P to (the characteristic
function of) the set of all properties having a non-empty overlap with P . Feeding
(7.6) as argument to the expression every Mermaid, the translation of the subject,
one gets (7.7) as translation for the whole sentence.

(every Mermaid)(λy �→ ((a Song)(λz �→ Hum y z))). (7.7)

We can summarize these steps as follows:

Every mermaid hummed a song
(every Mermaid) (λy �→ (a Song) (λz �→ Hum y z))

every mermaid
(every Mermaid)

hummed a song
λy �→ (a Song) (λz �→ Hum y z)

hummed
λXλy �→ X (λz �→ Hum y z)

a song
(a Song)

We said in the beginning that we view quantifiers as two-place relations on the
power set of some domain E, satisfying certain requirements. So let us now look
at these requirements.

Conditions on Quantifier Relations

All dwarfs work is true in a given model if and only if the relation of inclusion
holds between the set of dwarfs in the model and the set of workers in the model.

7.2 Quantification 155

Abstracting from the domain of discourse, we can say that determiner interpreta-
tions (henceforth simply called determiners) pick out binary relations on sets of
individuals, on arbitrary domains of discourse E. The notation is DEAB. We call
A the restriction of the quantifier and B its body. If DEAB is the translation of
a simple sentence consisting of a quantified noun phrase with an intransitive verb
phrase, then the noun denotation is the restriction and the verb phrase denotation
the body. So in the example All dwarfs work, the NP all dwarfs is the restriction
of the determiner all, and the VP work is the body. See Figure 7.2 for a general
graphical representation.

Fig. 7.2. Interpretation of DEAB as a relation between sets A and B
E

A

B

Not all two-place relations on sets of individuals are quantifier relations. The
first two requirements that quantifiers must meet are general requirements for de-
notations of determiners: extension and conservativity, which will be abbreviated
as EXT and CONS, respectively. Extension is the following:

EXT For all A,B ⊆ E ⊆ E�: DEAB ⇔ DE�AB.

A relation observing EXT is stable under growth of the universe. So, given sets A
and B, only the objects in the minimal universe A ∪B matter. See Figure 7.3.

Fig. 7.3. The Effect of EXT

A

B

A ∩B

E
E�

A

B

A ∩B

E = A ∪B

An example is all: to determine the truth of All dwarfs work, we only need the

156 The Composition of Meaning in Natural Language

intersection of the set of dwarfs and the set of workers. It does not matter at all
how many or which kind of entities are contained in the rest of the domain.

But not all natural language determiners do satisfy EXT. An example of a de-
terminer that does not is many in the sense of relatively many.

The second requirement for determiners is conservativity:

CONS For all A,B ⊆ E: DEAB ⇔ DEA(A ∩B).

This property expresses that the first argument of a determiner relation (the inter-
pretation of the noun) plays a crucial role: everything outside the extension of the
first argument is irrelevant. Some is an example for a conservative determiner: to
determine the truth of Some dwarfs work, we only need to check whether the set
of dwarfs contains workers – nothing outside the set of dwarfs will have any effect
on the truth or falsity of the sentence.

It is also not difficult to think of noun phrase determiners that do not satisfy
CONS. One example is only in the following sentence.

Only dwarfs sing during work. (7.8)

This example is true in a situation where all singing workers are dwarfs. Starting
out from a situation like this, and adding some non-dwarfs to the singing workers
will make (7.8) false. This shows non-conservativity. All is still well if it can be
argued that noun phrases starting with only, mostly, or mainly (two other sources
of non-conservativity) are exceptional syntactically, in the sense that these noun
phrase prefixes are not really determiners. In the case of only, it could be argued
that only dwarfs has structure [NP[MOD only][NP dwarfs]], with only not a determiner
but a noun phrase modifier, just as in (7.9).

Only Bombur sings during work. (7.9)

However this may be, separating out the determiners satisfying CONS and EXT
is important, for the two conditions taken together ensure that the truth of DAB
depends only on A−B and A∩B. Thus, the combined effect of EXT and CONS
boils down to limiting the domain of discourse relevant for the truth or falsity of
DEAB to two sets: the set of things which are A but not B (formally: the set
A−B), and the set of things which are both A and B (formally: the set A ∩B).

Next, the relational perspective suggests a very natural way of distinguishing
between expressions of quantity and other relations. Quantifier relations satisfy the
following condition of isomorphy, formulated in terms of bijections. A bijection is
a function that is one-to-one and onto. Where a function f : A → B is one-to-one
if x �= y implies that f(x) �= f(y), for all x, y ∈ A, i.e. if no two arguments are
mapped to the same output. And f : A → B is onto if for every y ∈ B there is

7.2 Quantification 157

some x ∈ A with f(x) = y. If A is finite and f : A → A is a bijection, then f is
just a permutation of A.

ISOM If f is a bijection from E to E�, then DEAB ⇒ DE�f [A]f [B].

Here f [A], the image of A under f , is the set of all things which are f -values of
things in A. ISOM expresses that only the cardinalities (numbers of elements)
of the sets A and B matter, for the image of a set under a bijection is a set with
the same number of elements as the original set. If D satisfies EXT, CONS, and
ISOM, it turns out that the truth of DAB depends only on the cardinal numbers
|A−B| and |A∩B| (respectively, the number of things which are A but not B, and
the number of things which are both A and B). See Figure 7.4 for the combined
effect of these three conditions.

A quantifier simply is a relation Q satisfying EXT, CONS, and ISOM.

Fig. 7.4. The Combined Effect of EXT, CONS, ISOM
E

A

A ∩B

B

|A−B|

|A ∩B|

Some examples will make clearer how the semantic effect of a quantifier QAB
can always be described in terms of the properties of the numbers |A − B| and
|A∩B|: All A are B is true if and only if the number of things which are A and not
B is 0. Some A is B is true if and only if the number of things that are both A and
B is at least 1. And Most A are B is true if and only if the number of things that are
both A and B exceeds the number of things that are A and not B.

We now turn to a way to characterize quantifiers QAB according to the two
numbers |A−B| and |A∩B|. We will then use this characterization for the logical
representation of quantifiers.

Numerical Trees

Suppose a quantifier Q has A as a first and B as a second argument. Q can then
be characterized as a subset of the tree of numbers given in Figure 7.5. The first
number in each number pair is |A−B|, the second one |A∩B|. Some examples of
tree patterns for quantifiers are given in Figure 7.6. To interpret these patterns, you
first have to identify a tree position, and then check the value. Say the rightmost

158 The Composition of Meaning in Natural Language

position of the third row has +. This means that the quantifier relation Q(A,B)
holds in case A consists of two objects, and both of these objects have property B.

Fig. 7.5. General Format of a Numerical Tree

|A| = 0 0, 0
|A| = 1 1, 0 0, 1
|A| = 2 2, 0 1, 1 0, 2
|A| = 3 3, 0 2, 1 1, 2 0, 3
|A| = 4 4, 0 3, 1 2, 2 1, 3 0, 4
|A| = 5 5, 0 4, 1 3, 2 2, 3 1, 4 0, 5

...
...

Exercise 7.1 Give a Haskell implementation of the tree of numbers. The call treeOfNumbers
should yield the (infinite) sequences of number pairs (m,n) that you get by walking
through the tree in top-down, left-to-right order. Here is an initial piece of this list:

Main> take 10 treeOfNumbers
[(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3)]

To get used to these representations, one should try and answer some questions
about numerical trees, such as those in the following exercise.

Exercise 7.2

(1) What are the tree patterns for all, some, no, and not all? How are these patterns
related?

(2) What are the tree patterns for at most three and exactly three? How are the patterns
for at most three, at least three, and exactly three related?

(3) Which tree operations correspond to taking the negation of a quantifier, the con-
junction of two quantifiers, and the disjunction of two quantifiers?

Exercise 7.3 Let the following type specifications be given:

type Quant = (Integer -> Bool) -> [Integer] -> Bool
genTree :: Quant -> [(Integer,Integer)]

Write the function genTree that yields, for any quantifier function q of the appropriate
type, those number pairs (m,n) from the tree of numbers for which quantifier q gives
‘true’ on a universe of size m + n if and only if n objects from the universe have the
quantifier property. For example, (0, 4) is in the sequence for all because 4 of the objects
in a 4-object domain A have property B if all A are B is true. Here are some examples of
what you should get:

Main> take 10 (genTree all)
[(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9)]

7.2 Quantification 159

Fig. 7.6. Examples of Numerical Trees
At least three A are B

−
− −

− − −
− − − +

− − − + +
− − − + + +

Less than half of the A are B

−
− −

+ − −
+ − − −

+ + − − −
+ + − − − −

An even number of the A are B

+
+ −

+ − +
+ − + −

+ − + − +
+ − + − + −

Main> take 10 (genTree any)
[(0,1),(1,1),(0,2),(2,1),(1,2),(0,3),(3,1),(2,2),(1,3),(0,4)]
Main> take 10 (genTree (\ p dom -> not (any p dom)))
[(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0)]

Logical Representations for Quantifiers

The pairs of cardinals that characterize a quantifier QAB can be used for represen-
tation purposes. Every quantifier is defined by means of an arithmetical expression
in two variables m and n, where m is the number of elements in A − B, n the
number of elements in A∩B. Logical forms for quantified expressions can exploit
this fact:

• at least two ❀ λmn �→ n ≥ 2.
• all ❀ λmn �→ m = 0.
• no ❀ λmn �→ n = 0.

160 The Composition of Meaning in Natural Language

Here are Haskell versions (after a module declaration for the code of this chap-
ter):

module TCOM where

import Data.List

import FSynF

import Model

allNum, noNum :: Int -> Int -> Bool

allNum = \ m n -> m == 0

noNum = \ m n -> n == 0

atleastNum, atmostNum :: Int -> Int -> Int -> Bool

atleastNum k = \ m n -> n >= k

atmostNum k = \ m n -> n <= k

Logical operations on quantifiers can now be handled compositionally, by per-
forming the corresponding logical operations on the arithmetical expressions:

• If Q ❀ E, then not Q ❀ λmn �→¬ (Emn).
• If Q1 ❀ E1 and Q2 ❀ E2, then Q1 and Q2 ❀ λmn �→ ((E1mn) ∧ (E2mn))

and [Q1 or Q2] ❀ λmn �→ ((E1mn) ∨ (E2mn)).

For instance, according to these instructions, the arithmetical expression that trans-
lates at least two but not all is: λmn �→ n ≥ 2∧¬(m = 0). It can be implemented
as follows:

atleast2butnotall :: Int -> Int -> Bool

atleast2butnotall = \ m n -> m > 0 && n >= 2

Relational Properties

As quantifiers are relations, we can study their relational properties and the way in
which these properties are reflected in the tree patterns. For example, a quantifier Q
is reflexive if and only if ∀X QXX . E.g. the quantifiers all and some are reflexive,
the quantifiers no and not all are not.

One can now study questions about tree patterns such as the following. If Q is

7.2 Quantification 161

reflexive, what will its tree pattern be like? Can it be shown that every quantifier
with this tree pattern is reflexive? If some quantifier Q has a tree pattern with an
outer north east diagonal consisting of minus signs, which relational property of Q
does this reflect?

A relational property with linguistic interest is symmetry. A quantifier Q is sym-
metric if and only if ∀X∀Y QXY ⇔ QYX .

Exercise 7.4 Give the quantifier tree pattern that corresponds to symmetry.

The linguistic interest of this class lies in the fact that the symmetric quantifiers
are precisely the class of quantifiers which can occur at the Q position in there-
existential sentences (sentences of the form There are Q).

Another example of a relational property of quantifiers with linguistic interest (to
be illustrated below) is upward right-monotonicity in the second argument place:

MON↑ If QAB and B ⊆ B�, then QAB�.

This means that the truth or falsity of QAB does not change if the set B is ex-
tended. Examples of quantifiers that upward right-monotone are all, some, and at
least five.

Exercise 7.5 Can you find the quantifier tree pattern that corresponds to MON↑?

A quantifier relation is downward right-monotone in the second argument if the
following holds:

MON↓ If QAB and B� ⊆ B, then QAB�.

I.e. the truth or falsity of QAB is not affected by a reduction of the set B. Exam-
ples are not all and no.

Exercise 7.6 Can you find a quantifier tree pattern that corresponds to the property MON↓?

An example for a quantifier that satisfies neither MON↑ nor MON↓ is an even
number of . (You can see this by inspecting the tree pattern.)

Barwise and Cooper [BC81] observed a certain correlation between the mono-
tonicity properties of conjoined noun phrases on the one hand and the use of and
versus but on the other: noun phrases that are monotone in the same direction are
conjoined with and; monotonicity in opposite directions triggers conjunction by
means of but. Examples are the coordinations all men and some women and many
English but no Dutch. Of course, this is only an approximate rule; other factors are
at work as well.

A second linguistic application is the account of so-called negative and positive

162 The Composition of Meaning in Natural Language

polarity phenomena in natural language. To give an example, to lift a finger and
any are negative polarity items, because they must occur in a ‘negative context’.

Few dwarfs lifted a finger to help the elves. (7.10)
∗ Many dwarfs lifted a finger to help the elves. (7.11)

No dwarf liked any of the elves. (7.12)
∗ Every dwarf liked any of the elves. (7.13)

The noun phrases allowing negative polarity items in their scopes turn out to be,
roughly at least, the MON↓ noun phrases.

Negative polarity items have positive counterparts, namely expressions allowed
within the scope of a MON↑ noun phrase but awkward in the scope of a MON↓
noun phrase:

Some people could hardly believe it. (7.14)
∗ Nobody could hardly believe it. (7.15)

A further linguistic question suggested here is the following. Given some list of
positive polarity items in English, is it possible to arrive at more fine-grained clas-
sifications by subdividing this list into items that are allowed within the scope of a
noun phrase which is neither MON↑ nor MON↓ and items that are not allowed in
such contexts?

Some questions that can be solved by looking at the tree pattern characterisations
of the monotonicity properties are in the next exercises.

Exercise 7.7 What is the effect of negation on monotonicity?

Exercise 7.8 What monotonicity property does the conjunction of two MON↑ noun phrases
have? Same question for the conjunction of two MON↓ noun phrases.

Exercise 7.9 What is the monotonicity behaviour of the disjunction of two MON↑ (MON↓)
noun phrases?

Exercise 7.10 What is the monotonicity property of the conjunction (disjunction) of a
MON↑ and a MON↓ noun phrase?

The answers to these questions can be tested by substituting the resulting noun
phrases in sentences containing negative or positive polarity items.

One can also study monotonicity in the first argument:

↑MON If QAB and A ⊆ A�, then QA�B.
↓MON If QAB and A� ⊆ A, then QA�B.

7.2 Quantification 163

Examples of ↑MON determiners are some and not all. All and no are ↓MON
determiners. It is left to the reader to establish the tree patterns corresponding to
the ↑MON and ↓MON properties.

Examples (7.16) and (7.17) illustrate that monotonicity properties in the left
argument can be used to explain polarity phenomena within the syntactic restriction
of the determiners, i.e. within the noun phrases that have these determiners as their
heads.

All dwarfs who liked any of the elves were mistrusted. (7.16)
∗ Some dwarfs who liked any of the elves were mistrusted. (7.17)

Quantifiers, Automata, and Definability Quantifiers correspond to automata that
accept strings over a binary alphabet {0, 1}: a string s with m zeros and n ones in
it is accepted if and only if position (m,n)� in the numerical tree for the quantifier
has a +. To give an example, the quantifier all corresponds to the regular language
1∗ (the set of all strings consisting of just 1s). Figure 7.7 gives a finite state machine
for this quantifier. The start state of the automaton has an arrow pointing to it; the
grey state is the accepting state.

Fig. 7.7. Finite State Machine for Computing All
1 0,1

0

Exercise 7.11 Construct finite state machines for computing at least two, at most five, and
between three and seven. Would these finite state machines still work if one would wish to
allow strings of infinite length?

The languages accepted by quantifier automata are closed under permutation: it
is the number of zeros and ones in the string that counts, not the order in which
they are presented. Call a finite state machine permutation invariant if it has the
following property: if reading a string s will get the machine from state p to state
q, then reading any permutation of s will also get the machine from state p to state
q. Quantifier automata must be permutation invariant. A finite state machine is
acyclic if the machine does never return to a given state once it has left that state
(in other words: 1-cycles are allowed, but all other cycles are out). An example
of a quantifier that can be computed by a cyclic finite state machine but not by an
acyclic one is an even number of.

164 The Composition of Meaning in Natural Language

A quantifier is called first-order definable if it is definable in terms of the Fregean
quantifiers ∀ and ∃, equality, and the two predicates for the restriction and the body
of the quantifier. The question of first-order definability is relevant for the seman-
tics of natural language, because the suitability of logical representation languages
for given natural language fragments depends on it. Here is a formal characteriza-
tion of the first-order definable quantifiers:

The first-order definable quantifiers are exactly those that can be computed by an acyclic
permutation-invariant finite state machine [Ben86].

It follows from this that an even number of is not first-order definable (a cyclic
automaton is needed for its computation), nor are quantifiers like half and most,
which cannot be computed on a finite state machine at all (a memory stack is
needed to ‘remember’ the numbers of elements in A−B and A ∩B).

Exercise 7.12 The automata perspective can be exploited to give an account of semi-
quantifiers involving ordinals:

Every tenth page of a fairy tale is boring. (7.18)
The first ten pages of a fairy tale are boring. (7.19)

Design finite state machines for computing these semi-quantifiers. Next, note that semi-
quantifiers do not observe ISOM. Formulate a weaker condition that they do satisfy.

7.3 The Language of Typed Logic and Its Semantics
In this section we will give formal definitions of the language of typed logic (or:
typed lambda calculus) and its semantics, using Haskell counterparts and imple-
mentations to illustrate the theory. We will use it in Section 7.5 below for the
composition of meaning in our natural language fragment.

Assume that we have constants and variables available for all types in the type
hierarchy. Then the language of typed logic over these is defined as follows.

type ::= e | t | (type → type)
expression ::= constanttype

| variabletype
| (λ variabletype1

�→ expressiontype2
)(type1→type2)

| (expressiontype1→type2
expressiontype1

)type2

Note that for an expression of the form (E1 E2) to be well-typed the types have
to match, and that the type of the resulting expression is fully determined by the
types of the components. Similarly, the type of a lambda expression (λv �→ E) is
fully determined by the types of v and E.

7.3 The Language of Typed Logic and Its Semantics 165

Exercise 7.13 Assume constant A has type e → t and constant B has type (e → t) → t.
Variable x has type e, variable Y has type e → t. Which of the following expressions are
well-typed?

(1) (λx �→ (A x))
(2) (B (λx �→ (A x)))
(3) (λY �→ (Y (λx �→ (A x))))
(4) (λY �→ (B Y))

Often we leave out the type information. The definition of the language then
looks like this:

expression ::= constant
| variable
| (λ variable �→ expression)
| (expression expression)

A model M for typed logic consists of a domain De together with an interpre-
tation function I which maps every constant of the language to a function of the
appropriate type in the domain hierarchy based on De. A variable assignment g
for typed logic maps every variable of the language to a function of the appropriate
type in the domain hierarchy. The semantics for the language is given by defining
a function [[·]]Mg which maps every expression of the language to a function of the
appropriate type.

• [[constant]]Mg = I(constant)
• [[variable]]Mg = g(variable)
• [[(λvτ1 �→ Eτ2)]]

M
g = h,

where h : Dτ1 → Dτ2 is the function given by λd �→ [[E]]Mg[v:=d]

• [[(E1 E2)]]Mg = [[E1]]Mg ([[E2]]Mg)

Exercise 7.14 Assume that Give(a, b, c) expresses that a gives b to c. What do the follow-
ing expressions say?

(1) λx �→ Give(x, b, c)
(2) λx �→ Give(a, x, c)
(3) λx �→ Give(a, b, x)
(4) λx �→ Give(x, b, x)
(5) λx �→ (λy �→ Give(y, b, x))
(6) λx �→ (λy �→ Give(x, b, y))

In fact, the logical constants of predicate logic can be viewed as constants of typed
logic, as follows: ¬ is a constant of type t → t with the following interpretation.

• [[¬]] = h, where h is the function in t → t which maps 0 to 1 and vice versa

166 The Composition of Meaning in Natural Language

As we have seen already, ∧ and ∨ are constants of type t → t → t with the
following interpretations.

• [[∧]] = h, where h is the function in t → t → t which maps 1 to {(1, 1), (0, 0)}
and 0 to {(1, 0), (0, 0)}

• [[∨]] = h, where h is the function in t → t → t which maps 1 to {(1, 1), (0, 1)}
and 0 to {(1, 1), (0, 0)}

Note that {(1, 1), (0, 0)} is the identity function on {0, 1}.

Exercise 7.15 Give the interpretation of the material implication constant → in typed
logic.

Exercise 7.16 Give the interpretation of the material equivalence constant ↔ in typed
logic.

The quantifiers ∃ and ∀ are constants of type (e → t) → t, with the following
interpretations.

• [[∀]] = h, where h is the function in (e → t) → t which maps the function that
characterizes De to 1 and every other characteristic function to 0

• [[∃]] = h, where h is the function in (e → t) → t which maps the function that
characterizes ∅ to 0 and every other characteristic function to 1

It is possible to add constants for quantification over different types. E.g. to
express second-order quantification (i.e. quantification over properties of things),
one would need quantifier constants of type ((e → t) → t) → t.

Exercise 7.17 What is the type of binary generalized quantifiers such as the following?

(1) Q∀(λx �→ (P x))(λx �→ (Q x)) (all P are Q)
(2) Q∃(λx �→ (P x))(λx �→ (Q x)) (some P are Q)
(3) QM (λx �→ (P x))(λx �→ (Q x)) (most P are Q)

We will assume that for every type τ built from e and t we have a constant
iτ→τ→t available to express the identity of two objects of type τ .

Then ie→e→t denotes identity of individual objects, and it is convenient to ab-
breviate ((i b) a), for a, b of type e, as a = b.

Exercise 7.18 Write out it→t→t. Which two-place connective does this constant express?

With these constants added, the language of typed logic defined above contains
ordinary predicate logic as a proper fragment. Here are some example expressions
of typed logic, with their predicate logical counterparts:

7.3 The Language of Typed Logic and Its Semantics 167

Typed logic Predicate logic
(¬ (P x)) ¬Px
((∧ (P x)) (Q y)) Px ∧Qy
(∀ (λx �→ (P x))) ∀xPx
(∀ (λx �→ (∃ (λy �→ ((R x) y))))) ∀x∃yRxy

It is possible to reduce the difference in syntactic appearance between ordinary
predicate logic and typed logic by means of some abbreviation conventions. Occa-
sionally we will write (λx �→ (λy �→ E)) as λxy �→ E, and similarly for three or
more successive lambda abstractions. Also, an expression of the form (((E a) b) c)
can be written as Eabc to make it resemble predicate logical notation more closely
(similarly for different numbers of arguments). Finally, it is convenient to write
((∧ E1) E2) as E1 ∧ E2 and similarly for ∨, → and ↔. These conventions are
similar to the Haskell operator binding conventions. We will also omit outermost
parentheses.

Note that although (((E a) b) c) may be written as Eabc, this is not the same
as E(a, b, c). The difference is that in Eabc, the arguments of the function E are
consumed one by one, while in E(a, b, c), the function E takes a single argument
which is a triple. Technically, the process of converting (((E a) b) c) to E(a, b, c)
is done by means of a function that puts the arguments in an ordered triple. This is
what the function uncurry3 (compare this with the curry3 function on page 137)
does for us.

uncurry3 :: (a -> b -> c -> d) -> (a, b, c) -> d

uncurry3 f (x,y,z) = f x y z

To demonstrate the use of this, here is a definition of a three-place relation in
Haskell:

rel3 :: Entity -> Entity -> Entity -> Bool

rel3 D x y = love x y

rel3 E x y = not (love x y)

rel3 _ _ _ = False

Here is a check of the definition of rel3:

TCOM> love B S

True

TCOM> rel3 A B S

False

TCOM> rel3 D B S

168 The Composition of Meaning in Natural Language

True

TCOM> uncurry3 rel3 (D,B,S)

True

Assume Give is a typed logical constant of type e → e → e → t which is inter-
preted as the three-place relation of giving something to someone. If Give(a, b, c)
is uncurried notation for ‘a gives b to c’, then λx �→ ∃y∃zGive(x, y, z) expresses
‘giving something to someone’, and λx �→ ∃yGive(x, b, y) expresses ‘giving b to
someone’. Finally, λx �→ ∃yGive(y, b, x) expresses ‘receiving b from someone’.

Exercise 7.19 Assume Give(x, y, z) means that x gives y to z. Use this to find a typed
logic expression for ‘receiving something from someone’.

Suppose we want to translate Siegfried gave Kriemhild the ring, which has syn-
tactic structure

[S [NP Siegfried][VP [TV [DTV gave] [NP Kriemhild]][NP the ring]]],

in a compositional way. This means that we want the translation of gave to first
combine with the translation of the indirect object, then combine with the trans-
lation of the direct object, and after that combine with the translation of the sub-
ject. So we want to use λzyx �→ Give(x, y, z) as translation for gave. We con-
struct this expression by first abstracting over the one who receives (z), then ab-
stracting over the thing that is given (y), and finally abstracting over the one who
gives (x). In curried notation this would correspond to λzyx �→ Givex y z or
λzyx �→ (((Give x) y) z). In the latter, however, the order in which Give takes its
arguments does not reflect the argument order that we read off the syntactic struc-
ture. That’s why in the following chapter we will use constants with a different
argument order, such that we can construct the meaning λzyx �→ (((Give z) y) x),
which reflects that Give is first applied to the indirect object meaning, then to the
direct object meaning, and then to the subject meaning.

Translating all the combinations of phrases as function argument combination in
the sentence above, we arrive at the following translation of the whole sentence:

(((λzyx �→ Give(x, y, z) c) b) a). (7.20)

This does indeed express what we want, but in a rather roundabout way. We would
like to reduce this expression to Give(a, b, c). The subject of reducing expressions
of typed logic is taken up in the next section.

7.4 Reducing Expressions of Typed Logic
To reduce expression (7.20) from the previous section to its simplest form, three
steps of so-called β-conversion are needed. During β-conversion of an expression

7.4 Reducing Expressions of Typed Logic 169

consisting of a function expression λv �→ E followed by an argument expression
A, basically the following happens (we will state a proviso shortly). The prefix
λv �→ is removed from the function expression λv �→ E, leaving E, and next the
argument expression A is substituted in E for all free occurrences of v. The free
occurrences of v in E are precisely the occurrences which were bound by λv in
λv �→ E.

Here is the proviso. In some cases, the substitution process described above
cannot be applied without further ado, because it will result in unintended capturing
of variables within the argument expression A. Consider expression (7.21) (we use
unabbreviated notation again, because the syntactic details do matter now).

((λx �→ (λy �→ ((R y) x))) y). (7.21)

In this expression, y is bound in the functional part (λx �→ (λy �→ ((R y) x)))
but free in the argument part y. Reducing (7.21) by β-conversion according to
the recipe given above would result in (λy �→ ((R y) y)), with capture of the
argument y at the place where it is substituted for x. This problem can be avoided
by performing β-conversion on an alphabetic variant of the original expression, say
on (7.22).

((λx �→ (λz �→ ((R z) x))) y). (7.22)

Another example where switching to an alphabetic variant (also called α-conversion)
is necessary before β-conversion to prevent unintended capture of free variables is
the expression (7.23).

((λp �→ ∀x((P x) ↔ p))(Q x)). (7.23)

In (7.23), p is a variable of type t and x one of type e. Variable x is bound inside
the functional part (λp �→ ∀x((P x) ↔ p)) but free in the argument part (Q x).
Substituting (Q x) for p in the function expression would cause x to be captured,
with failure to preserve the original meaning. Again, the problem is avoided if β-
conversion is performed on an alphabetic variant of the original expression, say on
(7.24).

((λp �→ ∀z((P z) ↔ p))(Q x)). (7.24)

Performing β-reduction on (7.24) yields ∀z((P x) ↔ (Q x)), with the argument
of B still free, as it should be.

To state all this in a formally precise way, we start with a definition of ‘variable
v is free in expression E’. v is free in E if the following holds (we use ≈ for the
relation of being syntactically identical, i.e. for being the same expression):

• v ≈ E

170 The Composition of Meaning in Natural Language

• E ≈ (E1 E2), and v is free in E1 or v is free in E2

• E ≈ (λx �→ E1), and v �≈ x, and v is free in E1

Exercise 7.20 Which occurrences of x are free?

(1) (λx �→ (P x))
(2) ((λx �→ (P x)) x)
(3) (λx �→ ((R x) x))
(4) ((λx �→ ((R x) x))x)
(5) ((λy �→ ((R x) y))x)

Exercise 7.21 Same question for ((λy �→ ∃x((R x) y)) x), where one should bear in
mind that ∃x((R x) y) is shorthand for (∃ (λx �→ ((R x) y))).

Next, we give the definition of substitution of s for free occurrences of v in E,
with notation E[v := s].

• If E ≈ v, then E[v := s] ≈ s,
if E ≈ x �≈ v (i.e. E is a variable different from v), then E[v := s] ≈ x,
if E ≈ c (i.e. E is a constant, and therefore different from v), then E[v := s] ≈
c.

• If E ≈ (E1 E2), then E[v := s] ≈ (E1[v := s] E2[v := s]).
• If E ≈ (λx �→ E1), then

– if v ≈ x, then E[v := s] ≈ E,
– if v �≈ x, then there are two cases:

(1) if x is not free in s or v is not free in E, then
E[v := s] ≈ (λx �→ E1[v := s]),

(2) if x is free in s and v is free in E, then
E[v := s] ≈ (λy �→ E1[x := y][v := s]), for some y which is not
free in s and not free in E1.

This definition is rather involved. Especially the distinction within the final case in
two subcases (1) and (2) may look like an overcomplication. To see that it is not,
consider the following simple example.

(λy �→ (P x))[x := y]. (7.25)

The function (λy �→ (P x)) is the function yielding (P x) for any argument, i.e. a
constant function. If we apply the above definition without taking subcase (2) into
account, we get:

(λy �→ (P x))[x := y] ≈ (λy �→ (P x)[x := y]) ≈ (λy �→ (P y)).

7.4 Reducing Expressions of Typed Logic 171

This is a completely different function, namely the function that assigns to argu-
ment a the result of applying P to a. But by using subcase (2) we do get the correct
result:

(λy �→ (P x))[x := y] ≈ (λz �→ (P x)[y := z][x := y])

≈ (λz �→ (P x)[x := y])

≈ (λz �→ (P y)).

Finally, here is the definition of reduction, which comes in three flavours: β-
reduction, α-reduction, and η-reduction, for which we use arrows β−→, α−→, and
η−→. Here are the definitions:

Beta reduction: ((λv �→ E) s)
β−→ E[v := s]

Condition: v and s are of the same type (otherwise the expression to be
reduced is not well-typed).

Alpha reduction: (λv �→ E)
α−→ (λx �→ E[v := x])

Conditions: v and x are of the same type, and x is not free in E.
Eta reduction: ((λv �→ E) v)

η−→ E

The ‘real work’ takes place during β-reduction. The α-reduction rule serves only
to state in an explicit fashion that lambda calculations are insensitive to switches
to alphabetic variants. Whether one uses λx to bind occurrences of x or λy to bind
occurrences of y is immaterial, just as it is immaterial in the case of predicate logic
whether one writes ∀xPx or ∀yPy. The η-reduction rule makes a principle explicit
that we have used implicitly all the time: if (P j) expresses that John is present,
then both P and (λx �→ (P x)) express the property of being present. This is so
because ((λx �→ (P x)) x)

η−→ (P x), so P and (λx �→ (P x)) give the same
result when applied to argument x, i.e. they express the same function. Applying
β-reduction to

(((λzyx �→ Give(x, y, z) c) b) a),

or in unabbreviated notation

((((λz �→ (λy �→ (λx �→ Give(x, y, z)))) c) b) a)

gives:

((((λz �→ (λy �→ (λx �→ Give(x, y, z)))) c) b) a)

β−→ (((λy �→ (λx �→ Give(x, y, c))) b) a)

β−→ (λx �→ Give(x, b, c) a)

172 The Composition of Meaning in Natural Language

β−→ Give(a, b, c).

This is exactly what we want. To be fully precise we have to state explicitly that
expressions can be reduced ‘in context’. The following principles express this:

E
β−→ E�

(F E)
β−→ (F E�)

E
β−→ E�

(E F)
β−→ (E� F)

E
β−→ E�

(λv �→ E)
β−→ (λv �→ E�)

Here F is assumed to have the appropriate type, of course. These principles
allow β-reductions at arbitrary depth within expressions.

Exercise 7.22 Reduce the following expressions to their simplest forms.

(1) ((λY �→ (λx �→ (Y x))) P)
(2) (((λY �→ (λx �→ (Y x))) P) y)
(3) ((λP �→ (λQ �→ ∃x(Px ∧Qx))) A)
(4) (((λP �→ (λQ �→ ∃x(Px ∧Qx))) A) B)
(5) ((λP �→ (λQ �→ ∀x(Px → Qx)))(λy �→ ((λx �→ R(x, y)) j)))

Our type system with matching lambda language may seem complicated at first
sight, but in fact it is a very elegant system, with some special properties that make
it easy to handle. In the statement of the following property, we write E1→→E2 for
‘E1 reduces in a number of α,β,η steps to E2.’

Confluence property (or: Church-Rosser property):
For all expressions E,E1, E2 of typed logic: if E→→E1 and E→→E2, then
there is an expression F with E1→→F and E2→→F .

An expression of the form ((λv �→ E) s) is called a β-redex (for: β-reducible
expression). E[v := s] is called the contractum of ((λv �→ E) s). An expression
that does not contain any redexes is called a normal form.

Normal form property: Every expression of typed logic can be reduced to a nor-
mal form.

Combining the confluence property and the normal form property we get that the
normal forms of an expression E are identical modulo α-conversion. That is to
say, all normal forms of E are alphabetic variants of one another.

The normal form property holds thanks to the restrictions imposed by the typing
discipline. Untyped lambda calculus lacks this property. In untyped lambda calcu-
lus it is allowed to apply expressions to themselves. In typed lambda calculus this
is forbidden, because (X X) cannot be consistently typed.

7.5 Typed Meanings for Natural Language 173

Exercise 7.23 In untyped lambda calculus, expressions like (λx �→ (x x)) are well-
formed. Show that ((λx �→ (x x))(λx �→ (x x))) does not have a normal form.

7.5 Typed Meanings for Natural Language
Now we are ready for another exercise in composition of meaning for natural lan-
guage. We will illustrate the theory with our fragment from before. Every syntax
rule has a semantic counterpart to specify how the meaning representation of the
whole is built from the meaning representations of the components. �X� is used as
notation for the meaning of X .

Sentences are interpreted as function application of the NP meaning to the VP
meaning:

S −→ NP VP �S� −→ (�NP� �VP�)

NPs are interpreted as generalized quantifiers, or as determiner meanings applied
to common noun meanings:

NP −→ Snow White �NP� −→ λP �→ (P s)
NP −→ Alice �NP� −→ λP �→ (P a)
NP −→ Dorothy �NP� −→ λP �→ (P d)
NP −→ Goldilocks �NP� −→ λP �→ (P g)
NP −→ Little Mook �NP� −→ λP �→ (P m)
NP −→ Atreyu �NP� −→ λP �→ (P y)
NP −→ DET CN �NP� −→ (�DET� �CN�)
NP −→ DET RCN �NP� −→ (�DET� �RCN�)

Determiners get the following interpretations:

DET −→ some
�DET� −→ λPQ �→ ∃x((P x) ∧ (Q x))

DET −→ a
�DET� −→ λPQ �→ ∃x((P x) ∧ (Q x))

DET −→ every
�DET� −→ λPQ �→ ∀x((P x) → (Q x))

DET −→ no
�DET� −→ λPQ �→ ∀x((P x) → ¬(Q x))

DET −→ the
�DET� −→ λPQ �→ ∃x(∀y((P y) ↔ (x = y)) ∧ (Q x))

174 The Composition of Meaning in Natural Language

Common nouns are interpreted as one-place predicates:

CN −→ girl �CN� −→ λx �→ (Girl x)
CN −→ boy �CN� −→ λx �→ (Boy x)
CN −→ princess �CN� −→ λx �→ (Princess x)
CN −→ dwarf �CN� −→ λx �→ (Dwarf x)
CN −→ giant �CN� −→ λx �→ (Giant x)
CN −→ wizard �CN� −→ λx �→ (Wizard x)
CN −→ sword �CN� −→ λx �→ (Sword x)
CN −→ dagger �CN� −→ λx �→ (Dagger x)

The interpretation of a common noun with a relative clause is the intersection of
the interpretation of the common noun with the interpretation of the relative clause:

RCN −→ CN that VP
�RCN� −→ λx �→ ((�CN� x) ∧ (�VP� x))

RCN −→ CN that NP TV
�RCN� −→ λx �→ ((�CN� x) ∧ (�NP� (λy �→ ((�TV� y) x))))

Intransitive verbs are interpreted as one-place predicates:

VP −→ laughed �VP� −→ λx �→ (Laugh x)
VP −→ cheered �VP� −→ λx �→ (Cheer x)
VP −→ shuddered �VP� −→ λx �→ (Shudder x)

Other VPs are interpreted as follows:

VP −→ TV NP
�VP� −→ λx �→ (�NP� (λy �→ ((�TV� y) x)))

VP −→ DV NP1 NP2

�VP� −→ λx �→ (�NP1� (λy �→ (�NP2� (λz �→ (((�TV� z) y) x)))))

Transitive verbs are interpreted as two-place predicates:

TV −→ loved �TV� −→ λxy �→ ((Love x) y)
TV −→ admired �TV� −→ λxy �→ ((Admire x) y)
TV −→ helped �TV� −→ λxy �→ ((Help x) y)
TV −→ defeated �TV� −→ λxy �→ ((Defeat x) y)

As an example, consider the sentence Alice admired Dorothy, which has the
following syntactic structure in our fragment:

[S [NP Alice][VP [TV admired][NP Dorothy]]].

7.6 Implementing Semantic Interpretation 175

According to the rules above, this gets assigned the following meaning:

(�Alice� (λu �→ �Dorothy� (λv �→ (((λx �→ (λy �→ ((Admire x) y))) v) u))))

Where �Alice� = λP �→ (P a) and �Dorothy� = λP �→ (P d). Reducing this
expression gives:

β−→ (�Alice� (λu �→ �Dorothy� (λv �→ ((λy �→ ((Admire v) y)) u))))

β−→ ((λP �→ (P a))(λu �→ (λP �→ (P d))(λv �→ ((Admire v) u))))

β−→ ((λP �→ (P a))(λu �→ ((λv �→ ((Admire v) u)) d)))

β−→ ((λP �→ (P a))(λu �→ ((Admire d) u)))

β−→ ((λu �→ ((Admire d) u)) a)

β−→ ((Admire d) a).

Exercise 7.24 Give the compositional translation for Snow White helped some dwarf, and
reduce it to normal form.

7.6 Implementing Semantic Interpretation
We will proceed by defining for every syntactic category an interpretation function
of the appropriate type, using Entity for e and Bool for t. The interpretation of
sentences has type Bool, so the interpretation function intS gets type Sent ->

Bool.
Since there is only one rewrite rule for S, the interpretation function intS con-

sists of only one equation:

intSent :: Sent -> Bool

intSent (Sent np vp) = (intNP np) (intVP vp)

The interpretation function intNP consists of four equations, one for every
rewrite rule for NP in the grammar fragment. The function has type

NP -> (Entity -> Bool) -> Bool.

Here Entity -> Bool is the Haskell counterpart to e → t, which is the type of
the VP interpretation that the NP combines with to form a sentence.

176 The Composition of Meaning in Natural Language

intNP :: NP -> (Entity -> Bool) -> Bool

intNP SnowWhite = \ p -> p snowWhite

intNP Alice = \ p -> p alice

intNP Dorothy = \ p -> p dorothy

intNP Goldilocks = \ p -> p goldilocks

intNP LittleMook = \ p -> p littleMook

intNP Atreyu = \ p -> p atreyu

intNP (NP1 det cn) = (intDET det) (intCN cn)

intNP (NP2 det rcn) = (intDET det) (intRCN rcn)

Note the close connection between \ p -> p alice and λP �→ (P a) that we
get by employing the Haskell counterpart to λ.

For the interpretation of verb phrases we invoke the information encoded in our
first-order model.

intVP :: VP -> Entity -> Bool

intVP Laughed = \ x -> laugh x

intVP Cheered = \ x -> cheer x

intVP Shuddered = \ x -> shudder x

The interpretation of complex VPs is a bit more involved. We have to find a way
to make reference to the property of ‘standing into the TV relation to the subject of
the sentence’. We do this in the same way as in the type logic specification of the
semantic clause for [VP TV NP].

intVP (VP1 tv np) =

\ subj -> intNP np (\ obj -> intTV tv subj obj)

intVP (VP2 dv np1 np2) =

\ subj -> intNP np1 (\ iobj -> intNP np2 (\ dobj ->

intDV dv subj iobj dobj))

Note that subj refers to the sentence subject and obj to the sentence direct
object.

The interpretation of transitive and ditransitive verbs discloses another bit of
information about the world. Again, we invoke the information about the world
encoded in our first-order model.

7.6 Implementing Semantic Interpretation 177

intTV :: TV -> Entity -> Entity -> Bool

intTV Loved = \ x y -> love x y

intTV Admired = \ x y -> admire x y

intTV Helped = \ x y -> help x y

intTV Defeated = \ x y -> defeat x y

intDV :: DV -> Entity -> Entity -> Entity -> Bool

intDV Gave = \ x y z -> give x y z

The interpretation of CNs is similar to that of VPs.

intCN :: CN -> Entity -> Bool

intCN Girl = \ x -> girl x

intCN Boy = \ x -> boy x

intCN Princess = \ x -> princess x

intCN Dwarf = \ x -> dwarf x

intCN Giant = \ x -> giant x

intCN Wizard = \ x -> wizard x

intCN Sword = \ x -> sword x

intCN Dagger = \ x -> dagger x

Next, we get the most involved part of the implementation: the definition of the
determiner interpretations. Let us first consider the type. The interpretation of a
DET needs two properties (type Entity -> Bool): one for the CN and one for
the VP, to yield the type of an S interpretation, i.e. Bool.

intDET :: DET ->

(Entity -> Bool) -> (Entity -> Bool) -> Bool

The interpretation of some, for example, just checks whether the two properties
corresponding to CN and VP have anything in common. This is what this check
looks like in Haskell. Note that this is not an instruction for a translation to logical
form, but an instruction to use the Haskell any function to check whether two sets
of entities have a non-empty intersection.

intDET Some p q = any q (filter p entities)

Here filter p entities gives the list of all members of entities that sat-
isfy property p, and any is a function taking a property and a list that returns True

178 The Composition of Meaning in Natural Language

if the sublist of elements satisfying the property is non-empty, False otherwise.
Thus, any q list checks whether any element of the list satisfies property q.

The interpretation of every checks whether the CN property is included in the
VP property. Again, this is not a translation to logical form but an instruction for a
check whether the appropriate quantifier relation holds between p and q.

intDET Every p q = all q (filter p entities)

Here filter p entities gives the list of all members of entities that sat-
isfy property p, and all q list checks whether every member of list satisfies
property q.

The interpretation of the consists of two parts (recall Russell’s treatment of def-
inites outlined in Section 6.2):

(1) a check that the CN property is unique, i.e. that it is true of precisely one
entity in the domain,

(2) a check that the CN and the VP property have an element in common, in
other words, the some check on the two properties.

intDET The p q = singleton plist && q (head plist)

where

plist = filter p entities

singleton [x] = True

singleton _ = False

The interpretation of no is just the negation of the interpretation of some:

intDET No p q = not (intDET Some p q)

Now suppose we also want to give an interpretation for the determiner most.
It compares the length of the list of entities satisfying the first argument (the re-
striction) with the length of the list of entities satisfying the second argument (the
body).

intDET Most p q = length pqlist > length (plist \\ qlist)

where

plist = filter p entities

qlist = filter q entities

pqlist = filter q plist

7.6 Implementing Semantic Interpretation 179

Exercise 7.25 Implement interpretation functions for AtLeast and AtMost.

The interpretation of relativized common nouns of the form [That CN VP] checks
whether an entity has both the CN and the VP property:

intRCN :: RCN -> Entity -> Bool

intRCN (RCN1 cn _ vp) =

\ e -> ((intCN cn e) && (intVP vp e))

The interpretation of relativized common nouns of the form [That CN NP TV]
checks whether an entity has both the CN property as the property of being the
object of NP TV.

intRCN (RCN2 cn _ np tv) =

\ e -> ((intCN cn e) &&

(intNP np (\ subj -> (intTV tv subj e))))

Assume you have collected all the code from the book website, and you have
loaded the module TCOM.hs. Here are some examples of queries for this code:

TCOM> intSent (Sent (NP1 The Princess) Laughed)

True

TCOM> intSent (Sent (NP1 The Giant) Shuddered)

False

TCOM> intSent (Sent (NP1 Some Dwarf) Cheered)

False

TCOM> intSent (Sent (NP1 No Wizard) Laughed)

True

TCOM> intSent (Sent (NP1 Some Dwarf)

(VP1 Defeated (NP1 Some Giant)))

True

TCOM> intSent (Sent (NP2 No (RCN1 Boy That

(VP1 Admired Goldilocks))) Shuddered)

True

It is a bit awkward that we have to provide the data structures of syntax ourselves.
The process of constructing syntax data structures from strings of words is called
parsing; this topic will be taken up in Chapter 9.

180 The Composition of Meaning in Natural Language

7.7 Handling Ambiguity
It is illuminating to examine the notion of ambiguity for fragments of natural lan-
guage with a compositional semantics. If a natural language expression E is am-
biguous, i.e. if E has several distinct meanings, then, under the assumption that
these meanings are arrived at in a compositional way, there are three possible
sources for the ambiguity (combinations are possible, of course):

(1) The ambiguity is lexical: E contains a word with several distinct meanings.
An example is a splendid ball.

(2) The ambiguity is structural: E can be assigned several distinct syntac-
tic structures. Examples are old [men and women] versus [old men] and
women, or: the boy saw the [girl with the binoculars] versus the boy saw
[the girl] [with the binoculars].

(3) The ambiguity is derivational: the syntactic structure that E exhibits can
be derived in more than one way. An example is the sentence Every prince
sang some ballad. It is not structurally ambiguous, but in order to account
for the ∃ ∀ reading one might want to assume that one of the ways in which
the structure can be derived is by combining some ballad with the incom-
plete expression every prince sang .

Lexical ambiguities can be handled in a fragment like ours by means of multiplying
lexical entries. The two meanings of ball give rise to different translations:

CN −→ ball �CN� −→ (λx �→ (Ball1 x))
CN −→ ball �CN� −→ (λx �→ (Ball2 x))

If we use these translations, then lexical ambiguity shows up in the fact that The
ball was nice will receive two parses, each with its own translation. An alternative
approach would be to allow ambiguities in the logical representation language, by
allowing ambiguous translations such as the following:

CN −→ ball �CN� −→ (λx �→ (?{Ball1 x,Ball2 x}))

To work this out, such ambiguous translations should of course be given a clear
meaning, for otherwise the translation would fail to count as a specification of the
semantics.

A correct handling of structural ambiguities should fall out of the matching be-
tween syntax and semantics. You already looked at the syntax in Exercise 4.8 on
page 69. There we asked you to extend the fragment such that it can handle the
structurally ambiguous sentence A dwarf defeated a giant with a sword. The next
exercise will get you acquainted with the semantic handling of this ambiguity.

Exercise 7.26 Extend the semantics to match the extended fragment from Chapter 4. Hint:

7.7 Handling Ambiguity 181

the two readings for the sentence A dwarf defeated a giant with a sword that you should
aim at are the following (or equivalent reformulations):

∃x((Dwarf x) ∧ ∃y((Sword y) ∧ ((Have y) x)) ∧ ∃z((Giant z) ∧ ((Defeat x) z)))

∃x((Dwarf x) ∧ ∃z((Giant z) ∧ ∃y((Sword y) ∧ (Have y) z) ∧ ((Defeat z) x))).

Here Have is an e → e → t-type constant for the relation of having. You should use Have
in the translation of with.

Exercise 7.27 Derive the two readings of Atreyu defeated a giant with a dagger in the
extended fragment, and reduce them both to normal form.

Derivational ambiguities, finally, are very much a logician’s ploy. In an essay on
philosophical logic by Peter Thomas Geach they are introduced as follows:

[. . .] when we pass from “Kate / is loved by / Tom” to “Some girl / is loved by / every
boy”, it does make a big difference whether we first replace “Kate” by “some girl” (so as to
get the predicable “Some girl is loved by —” into the proposition) and then replace “Tom”
by “every boy”, or rather first replace “Tom” by “every boy” (so as to get the predicable
“— is loved by every boy” into the proposition) and then replace “Kate” by “some girl”.
Two propositions that are reached from the same starting point by the same set of logical
procedures (e.g. substitutions) may nevertheless differ in import because these procedures
are taken to occur in a different order. [Gea80, Section 64]

This is exactly the mechanism that has been proposed by Richard Montague to
account for operator scope ambiguities in natural language. Montague introduces
a rule for quantifying-in of noun phrases in incomplete syntactic structures. The
wide scope ∃ reading for the example Every prince sang some ballad is derived
by using a rule Qi to quantify in some ballad for syntactic index i in the structure
Every prince sang REFi. In more complex cases, where more than one occurrence
of REFi is present, the appropriate occurrence is replaced by the noun phrase, and
the other occurrences are replaced by pronouns or reflexives with the right syntactic
agreement features. See [Mon73] for details.

A rudimentary version of quantifying-in, for the present fragment, would look
like this. First we extend the syntax with dummy pronouns REFi (i a natural num-
ber which serves as an index), with a matching semantics, where a correspondingly
indexed variable of type e is used. Next we add an indexed rule Qi which combines
an NP with a sentence S containing precisely one occurrence of REFi (notation for
this: S[REFi]), and replaces that occurrence by an occurrence of the NP (notation:
S[REFi/NP]). The translation instruction uses the fact that the sentence transla-
tion contains a free variable xi resulting from the presence of the dummy pronoun

182 The Composition of Meaning in Natural Language

REFi. This variable is bound, and the NP translation is applied to the result.

NPi −→ REFi

�NP � −→ (λP �→ (P xi))

NP + S[REFi] ⇒ Qi ⇒ S[REFi/NP]
�NP + S� −→ (�NP � (λxi �→ �S�))

Exercise 7.28 Use the quantifying-in rule to get a reading of Every boy admired some girl
where some girl gets widest scope. Reduce the translation to normal form.

In Chapter 10 we will develop a more principled account of operator scope am-
biguities.

7.8 Further Reading
Lewis [Lew70] gives a good introduction to the process of building meanings in
a compositional way. Excellent introductions to Montague grammar are Dowty,
Wall, and Peters [DWP81] and Gamut [Gam91b]. A nifty implementation of a
natural language interpreter with a Montague style semantics as a lazy functional
program can be found in [FL89].

The Montagovian approach to scope ambiguities does not account for restric-
tions on possible scope readings (at least not without further ado). Such restrictions
can be imposed by means of constraints regulated by lexical features of determiner
words. Imposing the right constraints is not easy, as the scope behaviour of natural
language expressions tends to be influenced by the wider syntactic context. In Al-
shawi [Als92] details are given on how scoping mechanisms can be incorporated
in large scale natural language systems.

Richard Montague was murdered in 1971; a stunning novel in which his life and
death is a background theme is [Cam08].

8
Extension and Intension

Summary
The semantic treatment we have given up to now consisted of evaluation in a single
(predicate logical) model. In this chapter, we will make the distinction between ex-
tensional and intensional evaluation. Extension is interpretation in a single model,
intension is interpretation across different possible situations. In the preceding
chapters we talked about expressions (signifiers) and their interpretations (refer-
ents). In this chapter we will discuss a way to make technical sense of the sense
or the signified, the concept or idea that an expression invokes in a user of the lan-
guage. The resulting semantics is called possible world semantics or intensional
semantics. It is one of the trademarks of Montague grammar.

8.1 Sense and Reference, Intension and Extension
In his paper On Sense and Reference (1892) the German mathematician and philoso-
pher Gottlob Frege made a famous distinction between the sense (German: Sinn)
of an expression and its reference (German: Bedeutung). The reference of a name,
according to Frege, is the thing that the name refers to. The sense of the name is the
thought that allows us to identify the referent. Frege discusses various examples.
If a, b, c denote the lines that connect the vertices of a triangle to the midpoints of
the opposite sides, then the intersection of a and b coincides with the intersection
of b and c. Thus, ‘the intersection of a and b’ and ‘the intersection of b and c’ have
the same reference, but not the same sense.

It is natural, now, to think of there being connected with a sign (name, combination of
words, letter), besides that to which the sign refers, which may be called the reference
of the sign, also what I should like to call the sense of the sign, wherein the mode of
presentation is contained. In our example, accordingly, the reference of the expressions
‘point of intersection of a and b’ and ‘point of intersection of b and c’ would be the same,

183

184 Extension and Intension

but not their senses. The reference of ‘evening star’ would be the same as that of ‘morning
star’, but not the sense.

Frege, [Fre92].

If all there is to the meaning of an expression like ‘morning star’ or ‘evening star’ is
the reference, then it would be hard to explain why ‘the morning star is the morning
star’ and ‘the morning star is the evening star’ are quite different statements. The
truth of the first can be established a priori (no observations are needed for it),
but the second one describes an astronomical discovery made by the Babylonians
that the bright star in the evening and the bright star at other times visible in the
morning both refer to the same heavenly object. So there must be more to a name
like ‘morning star’ than its reference. Frege called this the sense.

The famous Swiss linguist Ferdinand de Saussure (1857–1913) distinguished
between the signifier (the language sign, realized either as a sound image in spoken
language or as a string of characters in written language), the signified (the concept
or idea that the signifier invokes in the language user), and the referent (the actual
thing or set of things that the sign refers to). With the distinction between signified
and referent he meant roughly the same thing as Frege with the distinction between
sense and reference.

One way to think about the Babylonian discovery that was mentioned by Frege
is as follows. Either morning star and evening star refer to different things, or they
refer to the same thing. The pre-Babylonians did not know which of these two
views was correct. Or maybe they falsely held the latter view. So imagine two
situations w1 and w2 where in w1 a and b both refer to Venus, and in w2 a refers to
Venus and b to some other object, let us say Xenus.

The extension of the name b in w1 is Venus, the extension of the name b in w2

is Xenus. In fact, we could look at the table of extensions in all relevant situations.
Such a table or function we call the intension of a name. In this case, the intension
of b is the function f given by: f(w1) equals Venus and f(w2) equals Xenus.

The question how expressions refer to things is a recurring theme in philosophy.
The Greek philosopher Plato (428–348 BC) expressed the view that elementary
things can only be named, and that there is nothing to their names but their refer-
ents:

But in fact none of the primal elements can be expressed by reason; they can only be
named, for they have only a name; but the things composed of these are themselves com-
plex, and so their names are complex and form a rational explanation; for the combination
of names is the essence of reasoning. Thus the elements are not objects of reason or
of knowledge, but only of perception, whereas the combinations of them are objects of
knowledge and expression and true opinion.

Plato’s Theaetetus, [Pla], 202ab.

8.1 Sense and Reference, Intension and Extension 185

This view was shared by philosophers like John Stuart Mill, and opposed, as we
have seen, by Gottlob Frege. Frege’s view was heralded as the correct solution by
Bertrand Russell, by Ludwig Wittgenstein in his later work, and by Willard Quine,
to mention but a few. Interestingly, the debate about how names refer is far from
over. Frege, Russell, and Quine viewed proper names as a kind of abbreviated
descriptions, with the description serving as a handle to get at the referent.

Around 1970, when this was the predominant view among analytic philosophers,
Saul Kripke (b. 1940) made an influential plea for the view that names just refer.
See his famous paper Naming and Necessity [Kri72]. Kripke’s message in a slogan:
‘Names are rigid designators.’ What makes Kripke’s analysis of naming interesting
is the fact that it has far-reaching consequences for a number of deep issues in
philosophy. Epistemology (the philosophy of knowledge) makes a fundamental
distinction between a priori and a posteriori knowledge. A priori knowledge is
independent from experience. A posteriori knowledge depends on experience, or,
as philosophers often call it, on empirical evidence. A priori knowledge is the kind
of knowledge one gets from dictionaries, a posteriori knowledge is the kind of
knowledge one gets from encyclopedias. If you know English well enough you
know that ‘Morons are stupid people’ has to be true, regardless of the facts of the
world.

Another distinction made by philosophers is that between necessary and contin-
gent truths. Necessary truths are true propositions whose negation is a contradic-
tion; contingent truths are true propositions that one can imagine to be false. It
was a common assumption among philosophers that the two distinctions more or
less coincide. In other words, many philosophers believed that what is a priori is
necessary and vice versa, and the same for a posteriori and contingent.

Kripke argued, however, that the fact that the morning star is the evening star is
a necessary a posteriori truth. He claimed that the distinction between necessary
and contingent is a metaphysical distinction, and that metaphysics is not the same
as epistemology.

‘The morning star is the evening star’ is necessary, for the object called the
morning star names the planet Venus, and that object is also named ‘evening star’.
It is also a posteriori, for it is a fact that had to be discovered by the Babyloneans.
Another example discussed by Kripke is ‘Water is H2O.’ According to Kripke, it
is not possible to imagine a situation where this is false, given that we use the
name ‘water’ for that wonderful cool something that at some splendid moment
was flowing over Helen Keller’s hands (see page 4), for that stuff happens to have
this particular chemical structure. Still, what the chemical structure was had to be
discovered.

One might object that it is possible to imagine a person who is craving for water
but mistakenly believes that ‘H2O’ refers to some particularly poisonous kind of

186 Extension and Intension

herbicide. Wouldn’t such a person decline a sip of H2O? No, as a matter of fact
he wouldn’t. When asked ‘Would you like a sample of H2O?’ he would possibly
shriek and shout ‘Good heavens, no’, but that does not mean he therewith declines
an offer of what we all call ‘H2O’. The confusion is caused by the fact that he uses
the word ‘H2O’ differently from the way we all use it.

Exercise 8.1 (Courtesy of Albert Visser.) Suppose we would all decide to call tails of
cows ‘legs.’ How many legs would a cow then have?

There is more to say about naming and reference, but we have to return to our
main topic now. Richard Montague proposed to use intensions as a systematic way
to get at a working definition for sense. For this, he used intensional type logic,
partly developed by himself, partly derived from earlier work by Alonzo Church in
type theory and by Rudolf Carnap in intensional logic.

Intensional type logic has a new base type for worlds. We will use s for this type.
A function of type s → t maps possible worlds to truth values; such a function is
called a ‘proposition’. A function of type s → e maps possible worlds to entities;
such a function is called an ‘individual concept’.

We will illustrate the main idea of intensional type logic with a tiny implemen-
tation. We will use Snow White as a term with different reference (different exten-
sions) in different situations (different worlds). This is against the view of Kripke,
by the way, for to say that Snow White is a rigid designator is to say that the ref-
erent has to be the same in all possible worlds. Well, Snow White is a fairy tale
princess anyway, so we will let that pass. (Montague himself used the example of
the temperature, which may refer to different values in different situations.)

Assume there are three possible worlds, call them w1, w2, and w3. We are going
to make sure that the name has a different referent in two of these worlds. We first
declare a module with a new example model, to serve as an alternative world.

The module is a variation on module Model, which we import because we need
the declaration of the type Entity.

module Model2 where

import List

import Model

We will allow Snow White in the new model to have a different denotation from
the denotation that the name has in Model (our earlier model introduced in Section
6.3).

8.2 Intensional Interpretation 187

snowWhite’ :: Entity

snowWhite’ = T

Similarly, we define variations for the denotations of the common nouns. Some
of them the same as in the other model, some of them different:

girl’, boy’, princess’, dwarf’, giant’,

child’, person’, man’, woman’, thing’ :: OnePlacePred

girl’ = list2OnePlacePred [S,T,A,D,G]

boy’ = list2OnePlacePred [M,Y]

princess’ = list2OnePlacePred [E,S]

dwarf’ = list2OnePlacePred [B,R]

giant’ = list2OnePlacePred []

wizard’ = list2OnePlacePred [W,V]

child’ = \ x -> (girl’ x || boy’ x)

person’ = \ x -> (child’ x || princess’ x || dwarf’ x

|| giant’ x || wizard’ x)

man’ = \ x -> (dwarf’ x || giant’ x || wizard’ x)

woman’ = \ x -> princess’ x

thing’ = \ x -> not (person’ x || x == Unspec)

Finally, here are variations on the denotations of some verbs:

laugh’, cheer’, shudder’ :: OnePlacePred

laugh’ = list2OnePlacePred [A,G,E,T]

cheer’ = list2OnePlacePred [M,D]

shudder’ = list2OnePlacePred []

8.2 Intensional Interpretation
Our sample intensional interpretation uses two first-order models taken from mod-
ules Model and Model2.

module EAI where

import FSynF

import Model

import Model2

import TCOM

188 Extension and Intension

We will identify these ‘worlds’ as W1 and W2. For purposes of illustration we
will throw in a third world W3 that is like W2 except for the fact that all the girls are
princesses.

data World = W1 | W2 | W3 deriving (Eq,Show)

worlds :: [World]

worlds = [W1,W2,W3]

The interpretation of Snow White is different in the three worlds. We see from
the example that the extensional interpretation of a proper name is of type Entity,
but the intensional interpretation is a function of type World -> Entity. The
extensional interpretation of a sentence is of type Bool, but the intensional inter-
pretation is of type World -> Bool.

Types that we will need a lot in what follows are the type World -> Entity of
individual concepts and the type World -> Bool of propositions. It makes sense
to introduce abbreviations for these types.

type IEntity = World -> Entity

type IBool = World -> Bool

Intensional interpretation replaces the type Entity by World -> Entity (ab-
breviated IEntity) and the type Bool by World -> Bool (abbreviated IBool).

Here is the definition of our first intensional function. The interpretation of Snow
White depends on the world we are in. The intensional meaning of the proper name
has type World -> Entity, or abbreviated IEntity:

iSnowWhite :: IEntity

iSnowWhite W1 = snowWhite

iSnowWhite W2 = snowWhite’

iSnowWhite W3 = snowWhite’

8.2 Intensional Interpretation 189

Here are intensions for some lexical CNs:

iGirl, iPrincess, iPerson :: World -> Entity -> Bool

iGirl W1 = girl

iGirl W2 = girl’

iGirl W3 = girl’

iPrincess W1 = princess

iPrincess W2 = princess’

iPrincess W3 = girl’

iPerson W1 = person

iPerson W2 = person’

iPerson W3 = person’

Here are intensions for some lexical VPs:

iLaugh, iShudder :: World -> Entity -> Bool

iLaugh W1 = laugh

iLaugh W2 = laugh’

iLaugh W3 = laugh’

iShudder W1 = shudder

iShudder W2 = shudder’

iShudder W3 = shudder’

Here is an intension for a TV:

iCatch :: World -> Entity -> Entity -> Bool

iCatch W1 = \ x y -> False

iCatch W2 = \ x y -> False

iCatch W3 = \ x y -> elem x [B,R,T] && girl’ y

The intensional interpretation of a sentence has the type World -> Bool, or
abbreviated IBool. The intensional interpretation of a sentence consisting of a
subject NP followed by a VP consists of the application of the intensional interpre-
tation of the subject to the intensional interpretation of the predicate:

iSent :: Sent -> IBool

iSent (Sent np vp) = iNP np (iVP vp)

190 Extension and Intension

The intension of a noun phrase has the following type:

iNP :: NP -> (IEntity -> IBool) -> IBool

The NP intension for proper names is obtained by lifting the type of iSnowWhite
in exactly the same way as in the case of extensional interpretation (but note that
the types are different now):

iNP SnowWhite = \ p -> p iSnowWhite

Intensions of NPs for quantified NPs and NPs starting with a determiner are
given by the following definitions:

iNP Everyone = \ p i -> all (\x -> p (\j -> x) i)

(filter (\y -> iPerson i y) entities)

iNP Someone = \ p i -> any (\x -> p (\j -> x) i)

(filter (\y -> iPerson i y) entities)

iNP (NP1 det cn) = iDET det (iCN cn)

iNP (NP2 det rcn) = iDET det (iRCN rcn)

Extensions of determiners have type (e → t) → (e → t) → t. Intensions of
determiners have type ((s → e) → (s → t)) → ((s → e) → (s → t)) → (s →
t).

iDET :: DET -> (IEntity -> IBool)

-> (IEntity -> IBool) -> IBool

iDET Some p q = \ i -> any (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities)

iDET Every p q = \ i -> all (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities)

iDET No p q = \ i -> not (any (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities))

Here are intensions for verbs from the lexicon:

iVP :: VP -> IEntity -> IBool

iVP Laughed = \ x i -> iLaugh i (x i)

iVP Shuddered = \ x i -> iShudder i (x i)

8.2 Intensional Interpretation 191

Below we will discuss the intensional semantics for examples like (8.1).

Some giant wanted to catch a princess. (8.1)

It is commonly assumed that this sentence has two readings: a reading saying
that there is some actual princess that is being pursued by some giant, and a read-
ing where some giant is fantasizing about catching princesses. The first of these
readings does not really involve intensions, but the second reading does. In what
follows, we will derive the second reading. (The first reading could be derived by
means of ‘quantifying in’, but we will not pursue that here.)

For that, we need interpretations for VPs consisting of an attitude verb want
followed by an infinitive:

iVP (VP3 attitude to inf) = iAV attitude (iINF inf)

Here are intensions for CNs:

iCN :: CN -> IEntity -> IBool

iCN Girl = \ x i -> iGirl i (x i)

iCN Princess = \ x i -> iPrincess i (x i)

The rule for intensional interpretation of an ADJ CN combination is given in the
following definition:

iRCN (RCN3 adj cn) = iADJ adj (iCN cn)

We will deal with an example of an RCN consisting of an adjective and a CN in
Section 8.3.

For purposes of illustration this is enough. The following evaluation functions
demonstrate the outcomes of intensional interpretation.

eval1 = iSent (Sent SnowWhite Laughed) W1

eval2 = iSent (Sent SnowWhite Laughed) W2

eval3 = iSent (Sent Someone Shuddered) W1

eval4 = iSent (Sent Someone Shuddered) W2

eval5 = iSent (Sent (NP1 Every Girl) Shuddered) W1

eval6 = iSent (Sent (NP1 Every Girl) Shuddered) W2

eval7 = iSent (Sent (NP1 Some Girl) Shuddered) W1

eval8 = iSent (Sent (NP1 Some Girl) Shuddered) W2

192 Extension and Intension

Exercise 8.2 Work out what should be the answers to eval1, eval2, eval3, eval4,
eval5, eval6, eval7, eval8 by inspecting the models, next check your findings in
Haskell.

8.3 Intensional Constructs
A fake princess is someone who in actual fact is not a princess, but pretends to be
one. How does one model such pretense? Let us say that in some other world she
is a princess. Then here is a definition of the intensional property of being a fake
princess (we use i, j to range over possible worlds):

λxλi �→¬ Princess x i ∧ ∃j Princess x j.

Note that now we can also define the meaning of the adjective fake. This adjective
takes an intensional predicate P and maps it into a new predicate stating that P
does not apply in the actual world but does apply in some other world:

λPλxλi �→¬ P x i ∧ ∃j P x j.

To illustrate this definition, here is an implementation for our fragment:

iADJ :: ADJ -> (IEntity -> IBool) -> IEntity -> IBool

iADJ Fake = \ p x i ->

not (p x i) && any (\ j -> p x j) worlds

Evaluation commands for trying this out:

eval9 = iSent

(Sent (NP1 Some Princess) Shuddered) W1

eval10 = iSent

(Sent (NP2 Some (RCN3 Fake Princess)) Shuddered) W1

eval11 = iSent

(Sent (NP2 Some (RCN3 Fake Princess)) Shuddered) W2

Exercise 8.3 Work out what the results of eval9, eval10, and eval11 should be, by
inspecting the models. Next, check your findings in Haskell.

A former president is someone who is not president now, but who was president
at some earlier period in time. This is quite similar to a fake president, only the
status of the alternative possible world that is used for evaluation of the predicate
‘president’ is different.

8.3 Intensional Constructs 193

Richard Montague, in his fragments, dealt with tense by using pairs (w, t) of a
possible world w at some instant in time t. Reference to the past can then be dealt
with by means of ∃t�(t� < t∧ · · ·). Implementing the semantics of tense is beyond
the scope of this book.

Attitude verbs like want and hope also give rise to intensional constructs. Such
verbs combine with infinitives to form complex VPs. We will first implement the
intensional semantics for infinitives.

iINF :: INF -> IEntity -> IBool

iINF Laugh = \ x i -> iLaugh i (x i)

iINF Shudder = \ x i -> iShudder i (x i)

iINF (INF tinf np) = \ s -> iNP np (\ o -> iTINF tinf s o)

We need an interpretation of the appropriate type for catch.

iTINF :: TINF -> IEntity -> IEntity -> IBool

iTINF Catch = \x y w -> iCatch w (x w) (y w)

Next, the intensional meanings of the attitude verbs. An attitude towards an
intensional property should map that property to a property that holds in all worlds
where the attitude is realized. So for each agent in the model that can hold attitudes,
we have to identify the set of worlds for that attitude: desired worlds or hoped-for
worlds. Let us assume that in all worlds everyone wants w2 or w3 and everyone
hopes for w3.

iAttit :: AV -> IEntity -> IBool

iAttit Wanted x = \i -> elem i [W2,W3]

iAttit Hoped x = \i -> i == W3

To check whether a property holds under an attitude we check whether the prop-
erty holds in all of the designated attitude worlds.

iAV :: AV -> (IEntity -> IBool) -> (IEntity -> IBool)

iAV Wanted p = \ x i ->

and [p x j | j <- worlds, iAttit Wanted x j]

iAV Hoped p = \ x i ->

and [p x j | j <- worlds, iAttit Hoped x j]

194 Extension and Intension

Here are some test examples:

eval12 = iSent (Sent SnowWhite

(VP3 Wanted To (INF Catch (NP1 Some Girl)))) W1

eval13 = iSent (Sent SnowWhite

(VP3 Wanted To (INF Catch (NP1 No Girl)))) W2

We have treated infinitival attitudes as propositional attitudes, taking the propo-
sition to be the statement that the subject has the infinitival property. Wanting to
catch a princess is wanting the proposition ‘I catch a princess’ to be true. There is
a vast philosophical literature on the semantics of propositional attitudes, and the
present analysis is by no means meant as a last word. The implemenation should be
viewed as an illustration of one way to construct plausible meanings for sentences
involving attitude verbs.

Exercise 8.4 Work out what the results of eval12 and eval13 should be, by inspecting
the models. Next, check your findings in Haskell.

We have the machinery now to not only make judgements about truth, but also
about necessity and contingency.

data Judgement = IsTrue Sent

| IsNec Sent

| IsCont Sent deriving Show

Whether or not a statement is true in some model depends on what is the actual
world in that model. The actual world is the world where we evaluate. To check
whether a statement is necessarily true in an intensional model, we have to check
whether it is true in all possible worlds. A statement is contingently true if it is
true, but it ain’t necessarily so: there exists a world where that statement is false.

iJudgement :: Judgement -> IBool

iJudgement (IsTrue s) = \ i -> iSent s i

iJudgement (IsNec s) = \ i ->

all (\j -> iSent s j) worlds

iJudgement (IsCont s) = \ i ->

iSent s i && not (all (\j -> iSent s j) worlds)

8.4 Intensionalization 195

Here are some example judgements, evaluated in various worlds:

judgement1,judgement2,judgement3,judgement4 :: Bool

judgement1 = iJudgement

(IsTrue (Sent (NP1 Some Girl) Shuddered)) W1

judgement2 = iJudgement

(IsTrue (Sent (NP1 Some Girl) Shuddered)) W2

judgement3 = iJudgement

(IsNec (Sent (NP1 Some Girl) Shuddered)) W1

judgement4 = iJudgement

(IsCont (Sent (NP1 Some Girl) Shuddered)) W1

Exercise 8.5 Work out what should be the answers to the four judgements, by inspecting
the models. Next, check your findings in Haskell.

8.4 Intensionalization
As was mentioned before, intensionalization is the systematic replacement of type
e by s → e and type t by s → t, combined with a lifting of extensional construc-
tions to the new intensional types. In this section we will demonstrate that there is
method to this.

Extensional types are all types built from e and t. Notice that every extensional
type has the shape

α1 → · · · → αn → e

or

α1 → · · · → αn → t,

where each αi is an extensional type.
As we have seen already in the examples, each extensional type has a corre-

sponding intensional type. Intensional types are built from extensional types by
replacing each e by s → e and each t by s → t. In our implementation, exten-
sional types are built from Entity and Bool, and the ingredients of the intensional
types are built from IEntity, shorthand for the implementation of s → t, and
IBool, shorthand for the implementation of s → t.

If α is an extensional type, we use α for the corresponding intensional type, i.e.
for the result of replacing each occurrence of e in α by s → e and each occurrence
of t in α by s → t. For example, suppose that α is the extensional type of a

196 Extension and Intension

determiner. Then α equals

(e → t) → (e → t) → t.

Now α equals

((s → e) → (s → t)) → ((s → e) → (s → t)) → s → t.

This is the intensional type of a determiner. Compare this with the implemenation
above.

In the original set-up of Montague grammar (Montague’s original papers) treat-
ment of intensional phenomena is dealt with by generalizing to the worst case.
Montague assumes that each construct is intensional, and then uses meaning pos-
tulates for deriving extensional equivalents when appropriate. But we have seen
that the intensional interpretations defined in our fragment above are derived in
a systematic fashion from the corresponding extensional interpretations. In this
section we explain the general mechanism behind this.

Suppose x has type s → α, where α is an extensional type. Then x is a function
from worlds to objects in some extensional domain Dα. If we use a for the basic
extensional types e and t, then there are two cases for the shape of α. Base case: α
equals a. Recursive case: α equals α1 → α2, where both α1 and α2 are extensional
types.

In the base case, x is a function that maps worlds to entities, or to truth values.
In the recursive case we can say that x is a function that takes a world and produces
an object in the following domain:

(Dα2)
Dα1

Suppose y has type α, where α is the extensional type above. Then in the base
case,

α = a = s → a,

while in the recursive case

α = α1 → α2 = s → α1 → α2.

Now we define two operations ∩ and ∪, by mutual recursion. The operation ∩ is
for intensionalization. The operation ∪ is for extensionalization. Intuitively, what
∩ does is take a function that gives for every world an extension, and map that to
an intensional function that, in a sense to be made precise below, ‘does the same
job.’ Intuitively, ∪ cancels the lifting effect of ∩ again. We want these operations
to have the following types:

∩ :: (s → α) → α
∪ :: α → s → α.

8.4 Intensionalization 197

Here α is an arbitrary extensional type. We will define ∩ and ∪ by mutual recursion
on the structure of α. So there are two cases: the base case where α is a (i.e. either
t or e), and the recursive case where α equals α1 → α2, with α1 and α2 simpler
extensional types.

In the base case of α = a we put:

∩(x :: s → a) = x,

∪(y :: s → a) = y.

In the recursive case of α = α1 → α2, we put:

∩(x :: s → α1 → α2) = λy1 :: α1 �→ ∩(λi �→ x i (∪y1 i)), (8.2)

∪(y :: α1 → α2) = λjλx1 :: α1 �→ ∪(y ∩(λk �→ x1)) j, (8.3)

where i, j, k are all of type s. There are a few things to note about these definitions.
In definition (8.2), ∪y1 is of type s → α1. Therefore, (∪y1 i) is of type α1. This
is indeed the right type for the second argument of x. Also, in the same definition,
λi �→ x i (∪y1 i) has type s → α2, and ∩(λi �→ x i (∪y1 i) has type α2.

In the definition of ∪y (Definition 8.3), the type of x1 is α1. Since α1 is an
extensional type, the abstraction in λk �→ x1 is vacuous. Therefore, λk �→ x1
defines the constant x1 function, i.e. the function that maps every world to the
same object x1.

Exercise 8.6 Please check that ∩ is an operator of type (s → α) → α and that ∪ is an
operator of type α → s → α.

We will now prove that for any extensional type α and any function x of type
s → α, we have that

∪∩x = x. (8.4)

We will prove this fact by structural induction (see page 72), more in particular,
induction on the structure of the type α.

Base case: α equals a and x has type s → a. We have already seen that in this
case ∩x = x, and ∪∩x = ∪x = x. This proves the base case.

Induction step: Assume α has the form α1 → α2. Suppose the relation (8.4)
holds for functions of component types α1, α2. This is the induction hypothesis.

We have to show that the relation (8.4) also holds for x itself. Here is the calcu-
lation. We start with ∪∩x, and replace ∩x by its definition. This gives

∪∩x = ∪(λy1 �→ ∩(λi �→ x i (∪y1 i))).

198 Extension and Intension

Next, we replace ∪ by its definition, and apply β reduction:

∪∩x = ∪(λy1 �→ ∩(λi �→ x i (∪y1 i)))

= λjλx1 �→ ∪((λy1 �→ ∩(λi �→ x i (∪y1 i)))
∩(λk �→ x1)) j

= λjλx1 �→ ∪∩(λi �→ x i (∪∩(λk �→ x1))i)j

Now we note that we can apply the induction hypothesis to achieve ∪∩ cancellation.
In particular, λk �→ x1 is of type s → α1, so the induction hypothesis applies to
∪∩(λk �→ x1). And λi �→ x i (∪∩(λk �→ x1)i) is of type s → α2, so the induction
hypothesis applies to ∪∩(λi �→ x i (∪∩(λk �→ x1)i)). So we get:

λjλx1 �→ ∪∩(λi �→ x i (∪∩(λk �→ x1))i)j
ih
= λjλx1 �→ (λi �→ x i ((λk �→ x1))i)j.

As we observed before, the abstraction λk �→ x1 is vacuous, and it follows from
this that (λk �→ x1)i = x1, so that we get:

λjλx1 �→ (λi �→ x i ((λk �→ x1))i)j

= λjλx1 �→ (λi �→ x i x1)j

= λjλx1 �→ x j x1

= x.

The final step is by η-reduction (see page 171). This settles the proof.
Next, does it make sense to try to prove the converse property, i.e. ∩∪y = y for

y of type α? No, it does not, for we can see from a size argument that such an
attempt is doomed to fail. In general there are many more functions of type α than
of type s → α. Consider a simple case, e.g. α = e → t. Suppose there are n
objects of type e. Suppose there are m worlds (objects of type s). Then the domain
De→t has size 2n, and the domain Ds→e→t has size (2n)m. On the other hand,
the domain D(s→e)→s→t has size (2m)(n

m), which, on the assumption that n ≥ 2
and m ≥ 2, is much larger. So it is impossible to get a one-to-one correspondence
between the two domains. In other words, the functions of the form ∩x constitute
a proper subset of the domain of functions Dα. Therefore, not all functions y in
Dα can have a counterpart x in type s → α with the property that y = ∩x. At the
end of the section we will give a concrete example of a function y with y �= ∩∪y.

To illustrate what is going on with intensionalization and extensionalization, we
implement these functions for some specific types. (In this book we stick to stan-
dard Haskell, and in standard Haskell it is impossible to define functions like ∩ and
∪ in one go over classes of types.)

Here is an implementation of ∩ for functions of type s → e → t (in the imple-
menation: World -> Entity -> Bool).

8.4 Intensionalization 199

iProp :: (World -> Entity -> Bool) -> IEntity -> IBool

iProp x = \ y i -> x i (y i)

This function can be used for automating the lift of extensional CN and VP deno-
tations to intensional ones.

vpINT :: VP -> World -> Entity -> Bool

vpINT Laughed = iLaugh

vpINT Shuddered = iShudder

intensVP :: VP -> IEntity -> IBool

intensVP = iProp . vpINT

This defines the same function as iVP.

Exercise 8.7 Use iProp to give an alternative definition for iCN.

Here is the extensionalizing function for properties.

eProp :: (IEntity -> IBool) -> World -> Entity -> Bool

eProp y = \ j x -> y (\k -> x) j

The function eProp is used to implement ∩ for type s → (e → t) → t.

iPropToB :: (World -> ((Entity -> Bool) -> Bool))

-> (IEntity -> IBool) -> IBool

iPropToB x = \ y i -> x i (eProp y i)

The corresponding ∪ function, for the type ((s → e) → s → t) → s → t uses
iProp. It is implemented like this:

ePropToB :: ((IEntity -> IBool) -> IBool) ->

World -> (Entity -> Bool) -> Bool

ePropToB y = \ j x -> y (iProp (\k -> x)) j

Exercise 8.8 Use iPropToB to give an alternative definition of iNP.

200 Extension and Intension

These functions can again be used to implement ∩ and ∪ for still higher types:

iPropToPropToB ::

(World -> (Entity -> Bool) -> (Entity -> Bool) -> Bool)

-> (IEntity -> IBool) -> (IEntity -> IBool) -> IBool

iPropToPropToB x = \ y1 y2 i ->

x i (eProp y1 i) (eProp y2 i)

ePropToPropToB ::

((IEntity -> IBool) -> (IEntity -> IBool) -> IBool) ->

World -> (Entity -> Bool) -> (Entity -> Bool) -> Bool

ePropToPropToB y = \ j x1 x2 ->

y (iProp (\k -> x1)) (iProp (\k -> x2)) j

We will use this for giving an alternative definition for iDET. Extensional inter-
pretation of determiners is the same at each possible world:

detINT :: DET -> World ->

(Entity -> Bool) -> (Entity -> Bool) -> Bool

detINT det = \ i -> intDET det

This can be intensionalized by means of ∩ lifting, as follows:

intensDET :: DET -> (IEntity -> IBool)

-> (IEntity -> IBool) -> IBool

intensDET = iPropToPropToB . detINT

This defines the same function as iDET.

We still owe you an example y for which ∩∪y �= y. For that, let y :: (s →
e) → s → t, and assume y maps some particular individual concept c :: s → e to
the function r :: s → t that characterizes {w1} (assume w1 is the real world), and
every other concept to the function r� :: s → t that characterizes ∅ (i.e. the function
that maps every world to false).

In the implementation, we first need a function for picking out a particular indi-
vidual concept, say that of Snow White:

8.5 Intensional Models from Extensional Models 201

isSnoww :: IEntity -> Bool

isSnoww x = and [x i == iSnowWhite i | i <- worlds]

Next, use this to define the function myY:

myY :: IEntity -> IBool

myY x | isSnoww x = \i -> i == W1

| otherwise = \i -> False

And here is the counterexample:

myY’ :: IEntity -> IBool

myY’ = iProp (eProp myY)

EAI> myY iSnowWhite W1

True

EAI> myY’ iSnowWhite W1

False

8.5 Intensional Models from Extensional Models
An extensional model is built over extensional types e and t. An intensional model
is built over the corresponding intensional types s → e and s → t. Note that an
intensional model has to contain a domain Ds of possible worlds.

An extensional model M assigns to each constant c of type α (where α is built
from e and t) an object [[c]]M in Dα. An intensional model M assigns to each
constant c of type α an object [[c]]M in Dα.

Similarly for the interpretation of variables. A variable assignment g for variable
v of type α in an extensional model is an object in Dα. A variable assignment g
for variable v of (extensional) type α in an intensional model is an object in Dα.

The details of extensional interpretation were explained in Section 7.5 above. In
Section 8.2 above we have seen that one can build an intensional model from a set
of extensional models that are defined over the same domain of entities De. We
will now look at that construction in a more systematic way. In particular, we will
show how one can use the lifting function ∩ to collect a list of extensional models
Mi into a single intensional model.

Let I = {Mi | i ∈ I} be a collection of extensional models with the same
base domain De. I is a set of indices; in our example in Section 8.2, I consisted of
{1, 2, 3}. We create an intensional model MI as follows. The domain Ds of worlds

202 Extension and Intension

equals the set of indices I . If c is an object language constant of (extensional) type
α, we interpret c by means of

MI(c) =
∩(λi �→ Mi(c)).

In other words, we consider the function that gives the extensional interpretation
of c at each index, and lift this function to the type α by means of ∩.

Let g be is an extensional variable assignment, suitable for some extensional
model Mi in I. Then it follows from the fact that all extensional models in I use
the same domain De that g is a suitable variable assignment for all models in I.
We can lift such a g to an assignment for MI by means of

g∗(v :: α) = ∩(λk �→ g(v)).

Note that the abstraction λk �→ g(v) is vacuous, so that it defines a function that
yields the same value g(v) for every index. In other words, g∗(v) is defined as the
∩ lifting of the constant g(v) function.

The following fact is proved in [Kan09]. Consider the language of typed lambda
calculus with constants of extensional types. Let φ be an expression of this lan-
guage that is not a λ-abstract.

[[φ]]MI ,g∗ = ∩(λi �→ [[φ]]Mi,g)

From this and the properties of ∩ it follows directly that for closed expressions φ
of type t or e we have:

[[φ]]MI = λi �→ [[φ]]Mi

This means that the intensional model MI does indeed behave in the appropriate
way, as the intensionalization of the models in I.

The importance of this for natural language semantics is that we can define in-
tensional interpretations of extensional constructs by means of a ∩ lift of the corre-
sponding extensional interpretations. This allows for a modular set-up of a natural
language fragment dealing with intensional phenomena, where extensional con-
structs can be cleanly separated from intensional constructs.

8.6 Further Reading
An excellent introduction to the (intensional) logical formalisms behind Montague
grammar can be found in [Gam91a] and [Gam91b]. The classical introduction to
Montague semantics is [DWP81]. In Montague’s Proper Treatment of Quantifica-
tion [Mon73] a typed logical language is employed with the property that every
expression has both an extension (a value at the current world) and an intension

8.6 Further Reading 203

(a function from worlds to extensions). This ‘PTQ fragment’ employs a combina-
tion of generalization to the worst case and the use of so-called meaning postulates
to reduce intricate intensionalities back to extensional objects. Such a set-up was
criticized in, among others, [PR83], where it was argued on the basis of evidence
concerning scope ambiguities in natural language that a more flexible approach
was called for.

For a very thorough study of lifting in Montague grammar, see [Hen93]. Inten-
sionalization is studied from a logical point of view in [KF85]. A more systematic
approach is in [Ben88], where the lift from t to s → t is analysed. A proposal
for a modular approach to intensionalization of lexical entries, based on Van Ben-
them’s analysis, can be found in [BAW07]. The treatment in the present chapter is
based on an improved proposal that resulted from discussion between De Groote,
Kanazawa, and Muskens after a presentation of [BAW07], and that is documented
in the unpublished note [Kan09].

All these approaches to intensionality are based on possible worlds. This has a
well-known drawback, the so-called logical omniscience problem: if ψ is a logical
consequence of φ, and φ is true in some possible world w, then ψ has to be true in w
as well. This is a serious problem for the analysis of propositional attitudes in terms
of possible worlds. Take the attitude of knowing. If I know that a prime number is
a natural number that has no proper divisors except 1 and itself, does it follow that
I know that 231− 1 is a prime number? In a possible world approach to knowledge
it does, but in reality it does not. That 231−1 is a prime is a mathematical truth, but
also a fact that had to be discovered. It was discovered by the great mathematician
Leonhard Euler in 1750.

Consider Frege’s example of the two descriptions of the centroid of a triangle:
‘the intersection of a and b’ and ‘the intersection of b and c’. In all possible worlds
where the Euclidian axioms hold, these two descriptions will refer to the same
point, for it is a theorem of Euclidian geometry that the three medians of a triangle
intersect in the same point. In possible world semantics, Frege’s two descriptions
would have the same intension. This means that intension does not work for such
cases as an explication of sense, for it is clear that the two descriptions have a
different sense. It turns out to be possible to give a treatment of intensionality that
avoids this problem, within the theory of types. This, however, is beyond the scope
of our book. See [Mus07] for further details.

9
Parsing

Summary
In this chapter we will first look at some structural relations between nodes in a
syntactic tree. Next, we discuss the general problem of recognizing and parsing
context-free languages. Then we introduce the notion of parser combinators, and
show how these can be used to create parsers from sets of grammar rules in a prin-
cipled way. Parser combinators are functions that transform parsers for a language
into parsers for a different language. We apply these insights in the construction
of a recursive descent parser for a natural language fragment. We use the example
of relative clause formation to demonstrate how parser combinators can be used to
capture the effects of movement rules. At the end of the chapter we have all ingre-
dients in place for transforming strings expressing English sentences into logical
forms, or for directly interpreting strings that express sentences of English in an
appropriate database.

module P where

import Data.List

import Data.Char

import FPH

9.1 Talking About Parse Trees
A parse tree is a tree with lexical information at the leaves and syntactic informa-
tion at the internal nodes, which represents the structure of the parsed expression.
It is convenient to leave the nature of the lexical and syntactic information unspec-
ified. So parse trees are either leaves with lexical information of some kind, or

205

206 Parsing

labeled nodes dominating a list of trees. A special case is the empty parse tree,
which we call Ep.

data ParseTree a b = Ep | Leaf a | Branch b [ParseTree a b]

deriving Eq

Given show functions for the types a and b, we define a show function for
ParseTree a b as follows:

instance (Show a, Show b) => Show (ParseTree a b) where

show Ep = "[]"

show (Leaf t) = show t

show (Branch l ts) = "[." ++ show l ++ " "

++ show ts ++ "]"

Here is an example syntax tree:

snowwhite = Branch "S"

[Branch "NP" [Leaf "Snow White"],

Branch "VP" [Branch "TV" [Leaf "loved"],

Branch "NP" [Leaf "the dwarfs"]]]

Here is what the show function produces for this:

P> snowwhite

[."S" [[."NP" ["Snow White"]],

[."VP" [[."TV" ["loved"]],[."NP" ["the dwarfs"]]]]]]

And here is the tree in the more usual tree display format.
S

NP

Snow White

VP

TV

loved

NP

the dwarfs
In this first section, we will develop and implement some machinery for talking

about syntactic trees.
The first thing one has to grasp is the notion of an occurrence of a subtree in a

tree. Take the following tree:

9.1 Talking About Parse Trees 207

S

NP

Snow White

VP

TV

loved

NP

Snow White
This tree has two occurrences of the subtree [NP Snow White]. A natural way to

point to these occurrences is by means of tree positions. A tree position is a list or
string of natural numbers; we use � for the empty string.

�

0

00

1

10

100

11

110
Here is a Haskell function that generates the list of all tree positions in a given

syntax tree:

type Pos = [Int]

pos :: ParseTree a b -> [Pos]

pos Ep = [[]]

pos (Leaf _) = [[]]

pos (Branch _ ts) = [] : [i:p | (i,t) <- zip [0..] ts,

p <- pos t]

For our example tree it gives:

P> pos snowwhite

[[],[0],[0,0],[1],[1,0],[1,0,0],[1,1],[1,1,0]]

The following definition of the subtree at a position in a syntax tree uses index-
ing in a list: list!!i gives the item at position i in the list, counting from 0.
Incidentally, this is why we count subtrees from 0 onward in the pos function.

subtree :: ParseTree a b -> Pos -> ParseTree a b

subtree t [] = t

subtree (Branch _ ts) (i:is) = subtree (ts!!i) is

208 Parsing

Notation for the subtree of t at position p is tp. The list of all subtrees of a syntax
tree corresponds to the set {tp | p ∈ Pos(t)}. Here is an implementation:

subtrees :: ParseTree a b -> [ParseTree a b]

subtrees t = [subtree t p | p <- pos t]

If p, q are tree positions, we say that p ≤ q if p is a prefix of q. If p, q are
positions in a syntax tree t, then p ≤ q holds if and only if tq is a subtree of tp. If
p, q are positions in t with p ≤ q, position p is said to dominate position q. If also
p �= q, position p is said to properly dominate position q. Proper domination is a
relation on the set of tree positions. As in Section 5.7 we call a list of pairs over
the same type a relation on that type:

type Rel a = [(a,a)]

The proper dominance relation on the list of positions in a tree can be imple-
mented as follows:

properdominance :: ParseTree a b -> Rel Pos

properdominance t = [(p,q) | p <- pos t,

q <- pos t,

p /= q,

prefix p q]

The dominance relation on a tree is the result of dropping the inequality con-
straint:

dominance :: ParseTree a b -> Rel Pos

dominance t = [(p,q) | p <- pos t,

q <- pos t,

prefix p q]

Exercise 9.1 The relation of dominance can be defined as the transitive closure of the re-
lation of immediate dominance, where position p in a tree immediately dominates position
q in that tree if p dominates q, p and q are different, and there is no position r different
from both p and q such that p dominates r and r dominates q. Give an implementation of
a function immdominance :: ParseTree a b -> Rel Pos for immediate dominance.

Two positions p, q are sister positions in a tree t, if the subtrees tp and tq are
different daughters of the same mother. Here is a check:

9.1 Talking About Parse Trees 209

sisters :: Pos -> Pos -> Bool

sisters [i] [j] = i /= j

sisters (i:is) (j:js) = i == j && sisters is js

sisters _ _ = False

The sisterhood relation in a tree can be implemented like this:

sisterhood :: ParseTree a b -> Rel Pos

sisterhood t = [(p,q) | p <- pos t,

q <- pos t,

sisters p q]

This gives:

P> sisterhood snowwhite

[([0],[1]),([1],[0]),([1,0],[1,1]),([1,1],[1,0])]

Now the relation of c-command ([Rei76],[Rei83],[Cho81]) is the relational com-
position of sisterhood and dominance. Here is the definition of relational composi-
tion again (familiar from Section 5.7):

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Finally, the definition of the c-command relation is:

cCommand :: ParseTree a b -> Rel Pos

cCommand t = (sisterhood t) @@ (dominance t)

We can illustrate it with our example tree snowwhite:

P> cCommand snowwhite

[([0],[1]),([0],[1,0]),([0],[1,0,0]),([0],[1,1]),

([0],[1,1,0]),([1],[0]),([1],[0,0]),([1,0],[1,1]),

([1,0],[1,1,0]),([1,1],[1,0]),([1,1],[1,0,0])]

A branching position in a tree is a position p that immediately dominates two
distinct positions in the tree. Here is an implementation of a function that collects
all branching positions of a tree in a list:

210 Parsing

branchingPos :: ParseTree a b -> [Pos]

branchingPos t = let ps = pos t in

[p | p <- ps, (p++[0]) ‘elem‘ ps, (p++[1]) ‘elem‘ ps]

This gives:

P> branchingPos snowwhite

[[],[1]]

Exercise 9.2 Show that it follows from the definitions that if p c-commands q in a tree,
then

(1) p does not dominate q,
(2) q does not dominate p,
(3) the lowest branching position that dominates p also dominates q.

Exercise 9.3 Clearly, c-command is not a symmetric relation. But the notion of so-called
mutual c-command, defined as

{(p, q) | p c-commands q and q c-commands p}

is a symmetric relation. Give an implementation. Next show that sisterhood coincides with
mutual c-command.

A position p in a syntax tree precedes a position q in that tree if either the first
index in p is less than the first index in q, or p and q start with the same index and
the tail of p precedes the tail of q. An implementation is the following:

precede :: Pos -> Pos -> Bool

precede (i:is) (j:js) = i < j || (i == j && precede is js)

precede _ _ = False

precedence :: ParseTree a b -> Rel Pos

precedence t = [(p,q) | p <- pos t,

q <- pos t,

precede p q]

For our example tree it gives:

P> precedence snowwhite

[([0],[1]),([0],[1,0]),([0],[1,0,0]),([0],[1,1]),([0],[1,1,0]),

([0,0],[1]),([0,0],[1,0]),([0,0],[1,0,0]),([0,0],[1,1]),

([0,0],[1,1,0]),([1,0],[1,1]),([1,0],[1,1,0]),([1,0,0],[1,1]),

([1,0,0],[1,1,0])]

9.2 Recognizing and Parsing Context-Free Languages 211

Exercise 9.4 Define a relation of immediate precedence in terms of precedence, analogous
to the definition of immediate dominance in terms of dominance. Also give an implemen-
tation.

The notion of c-command is a variation on an earlier notion proposed in [Lan69],
called command. A position p commands a position q in a tree if p and q are parallel
(neither position dominates the other), and the closest S position dominating p also
dominates q.

Exercise 9.5 Give a simplified implementation of command, assuming that the closest S
position is the root of the tree.

9.2 Recognizing and Parsing Context-Free Languages
In Chapter 4 we explored how to define languages using context-free grammars.
Now we want to look at how to recognize these languages automatically. Thus
the focus of this chapter will be on separating the strings that are generated by a
grammar from the strings that are not. For example, is the string Every girl laughed
generated by the grammar of the fragment of English specified in 4.2?

There are two possible answers we could be interested in. On the one hand,
we can settle for a simple ‘yes’ or ‘no’ to tells us that the grammar either can
derive a string or that it cannot. The procedure for arriving at this answer is called
recognition. On the other hand, we might not only be interested in knowing that a
string is derivable but also want to know how it was derived, i.e. which syntactic
structure it has. Generating this kind of answer is called parsing.

Let us start with a simple example grammar to demonstrate how to build a rec-
ognizer, namely the following context-free grammar for the set of palindromes
(strings that are equal to their reversal) over {a, b, c}:

A −→ � | a | b | c | aAa | bAb | cAc. (9.1)

One of the ingredients for building a recognizer that is general enough to be appli-
cable to all context-free grammars is a function for splitting strings in substrings.
The following function gives all possible ways of splitting a string into two sub-
strings:

split2 :: [a] -> [([a],[a])]

split2 [] = [([],[])]

split2 (x:xs) = [([],(x:xs))]

++ (map (\(ys,zs) -> ((x:ys),zs)) (split2 xs))

212 Parsing

This gives:

P> split2 "Jan"

[("","Jan"),("J","an"),("Ja","n"),("Jan","")]

The following function generalizes this to giving all possible ways of splitting a
string into n substrings, for n ≥ 2. The function uses split2 for the case n = 2,
and split2 plus recursion for the case n > 2.

splitN :: Int -> [a] -> [[[a]]]

splitN n xs

| n <= 1 = error "cannot split"

| n == 2 = [[ys,zs] | (ys,zs) <- split2 xs]

| otherwise = [ys:rs | (ys,zs) <- split2 xs,

rs <- splitN (n-1) zs]

This gives:

P> splitN 3 "Jan"

[["","","Jan"],["","J","an"],["","Ja","n"],["","Jan",""],

["J","","an"],["J","a","n"],["J","an",""],["Ja","","n"],

["Ja","n",""],["Jan","",""]]

Now the function for recognizing whether a string is generated by the grammar
above can be given as follows.

recognize :: String -> Bool

recognize = \ xs ->

null xs || xs == "a" || xs == "b" || xs == "c"

|| or [recognize ys | ["a",ys,"a"] <- splitN 3 xs]

|| or [recognize ys | ["b",ys,"b"] <- splitN 3 xs]

|| or [recognize ys | ["c",ys,"c"] <- splitN 3 xs]

This gives:

P> recognize "aabcbbcbaa"

True

P> recognize "aabcbbcba"

False

It should be clear that the above recipe for recognizer construction works for
any set of context-free rules. For a rewrite rule of the form V −→ T1 · · ·Tn, the

9.2 Recognizing and Parsing Context-Free Languages 213

split function splitN should be used with argument n, for splitting the input into
n substrings.

From recognition to generation is a simple step. First, here are tools for gener-
ating all strings over a given alphabet:

gener :: Int -> String -> [String]

gener 0 alphabet = [[]]

gener n alphabet = [x:xs | x <- alphabet,

xs <- gener (n-1) alphabet]

gener’ :: Int -> String -> [String]

gener’ n alphabet = gener n alphabet

++ gener’ (n+1) alphabet

generateAll :: String -> [String]

generateAll alphabet = gener’ 0 alphabet

Combining this with the recognizer, we get a brute force generation function for
the language, which first generates all possible strings over the alphabet and then
filters out those that are recognized.

generate = filter recognize (generateAll alphabet)

where alphabet = [’a’,’b’,’c’]

The function generate generates the infinite list of all palindromes over {a, b, c}.
With the predefined Haskell function take, that takes a specified number of ele-
ments from a list, we can get a finite prefix of this list:

P> take 15 generate

["","a","b","c","aa","bb","cc","aaa","aba","aca","bab","bbb",

"bcb","cac","cbc"]

Parsing with a context-free grammar is the process of constructing syntax trees.
Let the types for the terminal symbols and the rewrite symbols of a grammar simply
be String. Then the data type of syntax trees for our grammar of palindromes can
be taken to be ParseTree String String. A parser for a grammar is a function
that takes strings as input; for each string xs it returns the list of all syntax trees
that the grammar allows for xs.

Here are the appropriate changes to recognize to create a parser for the exam-
ple grammar:

214 Parsing

parse :: String -> [ParseTree String String]

parse = \ xs ->

[Leaf "[]" | null xs]

++ [Leaf "a" | xs == "a"]

++ [Leaf "b" | xs == "b"]

++ [Leaf "c" | xs == "c"]

++ [Branch "A" [Leaf "a", t, Leaf "a"] |

["a",ys,"a"] <- splitN 3 xs,

t <- parse ys]

++ [Branch "A" [Leaf "b", t, Leaf "b"] |

["b",ys,"b"] <- splitN 3 xs,

t <- parse ys]

++ [Branch "A" [Leaf "c", t, Leaf "c"] |

["c",ys,"c"] <- splitN 3 xs,

t <- parse ys]

Again, it should be clear that this procedure works for any context-free grammar.
Here is a demo, again for the example grammar of palindromes in (9.1).

P> parse "aabaa"

[[.A [a,[.A [a,b,a]],a]]]

P> parse "aabbaa"

[[.A [a,[.A [a,[.A [b,[],b]],a]],a]]]

P> parse "aabcbbcbaa"

[[.A [a,[.A [a,[.A [b,[.A [c,[.A [b,[],b]],c]],b]],a]],a]]]

P> parse "aabcbbcba"

[]

Exercise 9.6 For context-free grammars without �-productions, i.e. without rules of the
form V −→ �, the functions for recognition and parsing can be made more efficient by
suitable modifications of the functions split2 and splitN. How?

Exercise 9.7 Explain why the approach to parsing context-free grammars with split2
and splitN has no trouble with so-called left-recursive rules, i.e. rules of the form V −→
VT2 · · ·Tn.

9.3 Parsers and Parser Combinators
In this section we are going to develop a more general perspective on the process
of parsing with context-free grammars. A context-free grammar has rules of the
form A → B1 · · ·Bn, where the Bi can be either terminals or nonterminals. Also,

9.3 Parsers and Parser Combinators 215

context-free grammar rules with the same left-hand side symbol can be combined
using | for choice. So it is enough if we have a treatment for |, a treatment for
B1 · · ·Bn in the right-hand side of a rule, and a treatment for terminal symbols.

For a general treatment, we assume that terminal symbols have type a, and parse
objects have type b. Never mind what a parse object is; a parse object is simply a
thing produced by a parser (e.g. a tree). We will assume that the parser works in a
recursive descent fashion, as follows. The parser scans a list of tokens (objects of
type a), and tries to construct parse objects of type b from a prefix of the input list,
leaving the remainder of the input list for further processing. The outcome of the
parse process is the list of all pairs (b,[a]) that the parser can construct. Parse
failure is indicated by return of []. This gives the following type for a parser of
tokens of type a:

type Parser a b = [a] -> [(b,[a])]

The parser uses the grammar rules in a recursive way, starting from the start
symbol of the grammar, and working towards the terminals. It will turn out that
this can be done by means of a small set of elementary parsing functions and com-
binations of such parsing functions. We will only use standard functional language
constructs, so we will not need anything that was not already introduced earlier.

To make this concrete, assume the terminals of the grammar are strings, and
the nonterminals are characters. Then the parse objects could be objects of type
ParseTree String Char, the type of parse trees with characters at the internal
nodes and strings at the leaf nodes. So a parser for a grammar with strings as
terminals and characters as nonterminals would have the following type:

[String] -> [(ParseTree String Char,[String])]

Such a grammar takes a list of strings as input and produces a list of parse trees
with characters (representing the nonterminals) at the internal nodes and strings
(representing the terminals) at the leaf nodes. Each parse tree is produced from a
prefix of the input; this is why the output consists of pairs of parse trees and lists
of strings. These string lists are for the part of the input string that is left unparsed.

For thinking a bit further about what the parser has to do, assume the example
grammar of Figure 9.1. When processing a list of strings, the parser will not only
yield a parse tree but there will also be a part of the list of strings that is still left
unprocessed. For example, when parsing the list of strings [every,wizard,smiled],
the parser would start by building a syntax tree for S, and for that it would have
to start building a syntax tree for NP, with every wizard smiled as input. This will
succeed, with a tree for every wizard as parse result, and the remainder smiled left
for further processing. The obvious way to handle this is by letting a parser not

216 Parsing

Fig. 9.1. Example Grammar

S −→ NP VP
NP −→ Alice | Dorothy | D N
VP −→ smiled | laughed

D −→ every | some | no
N −→ dwarf | wizard

just give parse trees as a result, but pairs consisting of a parse tree and a list of
remainder strings.

Let us look at some simple parsers that will be the building blocks for more
complex parsers which can handle context-free grammar rules.

Two very elementary parsers are the parsers that always succeed or always fail,
respectively.

succeed :: b -> Parser a b

succeed r xs = [(r,xs)]

failp :: Parser a b

failp xs = []

The parser succeed does not consume any input, and it always returns a given,
fixed result r. The parser failp also does not consume any input, but it always
fails. Since parse failure corresponds to an empty list of parses, the result of failp
is simply the empty list. These parsers may not look very interesting, but the point
of having them is to use them as ingredients for more interesting parsers.

Here is a parser for recognizing individual symbols c.

symbol :: Eq a => a -> Parser a a

symbol c [] = []

symbol c (x:xs) | c == x = [(x,xs)]

| otherwise = []

We can easily generalize this to a parser that recognizes not only single symbols
but lists of symbols. A list of symbols is called a token, so this parser is called
token. It uses the predefined functions take and drop for taking and dropping
prefixes of a given length n from a list.

9.3 Parsers and Parser Combinators 217

token :: Eq a => [a] -> Parser a [a]

token cs xs | cs == take n xs = [(cs,drop n xs)]

| otherwise = []

where n = length cs

A function to check whether the first element of a list of items satisfies a given
property p is satisfy.

satisfy :: (a -> Bool) -> Parser a a

satisfy p [] = []

satisfy p (x:xs) | p x = [(x,xs)]

| otherwise = []

As an example, here is a parser that checks whether the first symbol of a string
is a digit. This uses the predefined function isDigit.

digit :: Parser Char Char

digit = satisfy isDigit

Exercise 9.8 Show how the function symbol can be defined in terms of the function
satisfy.

Now, these elementary parsers can be taken as parsers for terminal symbols of
our grammar. If we take our terminals to be characters, we can recognize the
terminal string Alice with the parser token "Alice", the terminal string laughed
with the parser token "laughed", and so on. Alternatively, we can take our
terminals to be strings. Then we can recognize the terminal symbol Alice with the
parser symbol "Alice". It all depends on the choice of type for the inputs.

But what we cannot handle yet are rules with nonterminal symbols in the right-
hand sides, for example S −→ NP VP. For that, we need a means for combining
parsers into more complex ones by sequential composition. Or consider a rule with
a choice operator in the right-hand side, like VP −→ smiled | laughed. What this
rule says is that a VP is either the token smiled or the token laughed. We already
have parsers for recognizing smiled and for recognizing laughed. What we need
to do is to combine these two parsers into one that makes a choice between the
smiled-parser and the laughed-parser. Functions that combine parsers into a new
parser, or transform parsers into new parsers, are called parser combinators. For
example, here is a parser combinator that takes a parser and returns a parser that

218 Parsing

does the same as the input parser, except for the fact that it also insists that the
remainder list is empty:

just :: Parser a b -> Parser a b

just p = filter (null.snd) . p

For parsing one of our grammars, we first need a parser combinator for choice,
i.e. a function that takes two parsers as arguments and returns a new parser that
recognizes everything that either one of the parsers recognizes. It is called <|>.
Here are its fixity declaration and definition:

infixr 4 <|>

(<|>) :: Parser a b -> Parser a b -> Parser a b

(p1 <|> p2) xs = p1 xs ++ p2 xs

For example, the rule VP −→ smiled | laughed might correspond to the fol-
lowing parser:

vp = token "smiled" <|> token "laughed"

Next, what to do with rules like S −→ NP VP? Intuitively, we want to parse
an NP, then want to parse a VP, and finally combine the results. That is, we want
a parser combinator <*> for sequential composition, such that a parser for the
grammar rule S −→ NP VP could simply be s = np <*> vp, with np a parser for
NPs and vp a parser for VPs. Here is a general definition of this parser combinator:

(p <*> q) xs = [(combine r1 r2,zs) | (r1,ys) <- p xs,

(r2,zs) <- q ys]

That is, the new parser (p <*> q) first applies p to the input. This returns a result
r1 and a remainder ys. Then q is applied to that remainder. This, again, returns
a remainder and a result. Finally, (p <*> q) returns that second remainder, zs,
and a combination of the two results r1 and r2. How combine is defined depends
on how we define our parse objects. For example, if we simply take them to be
strings, we can use (++) for combining r1 and r2. The definition of <*> would
then be:

(<*>) :: Parser a [b] -> Parser a [b] -> Parser a [b]

(p <*> q) xs = [(r1 ++ r2,zs) | (r1,ys) <- p xs,

(r2,zs) <- q ys]

9.3 Parsers and Parser Combinators 219

Now we can construct parser functions for our grammar in (9.1), by starting
from elementary parsers for terminals and by combining them into more complex
parsers for nonterminals.

pS,pNP,pVP,pD,pN :: Parser String String

pS = pNP <*> pVP

pNP = symbol "Alice" <|> symbol "Dorothy" <|> (pD <*> pN)

pVP = symbol "smiled" <|> symbol "laughed"

pD = symbol "every" <|> symbol "some" <|> symbol "no"

pN = symbol "dwarf" <|> symbol "wizard"

Note that these definitions are completely in parallel to our grammar rules. The
parser combinator for choice, <|>, corresponds to |, and the parser combinator for
sequencing, <*>, corresponds to listing symbols on the right-hand side.

However, we are not quite there yet, because these parsers do not return parse
trees as a result, but only return the parsed string. In order to construct parse trees,
we turn to do postprocessing on the results of a parse. For that we introduce a new
parser combinator <$>. It takes a function and a parser as arguments, and applies
the function to the result of the parse. The fixity declaration infixl 7 determines
the binding precedence of the combinator.

infixl 7 <$>

(<$>) :: (a -> b) -> Parser s a -> Parser s b

(f <$> p) xs = [(f x,ys) | (x,ys) <- p xs]

This combinator can be used, e.g., to map the result of a parse to a suitable
value. Here is a simple example: the function digitize is the parser digit de-
fined above, which checks whether the first character is a digit, together with the
postprocessing function f, which turns a digit of type Char into the corresponding
integer of type Int. For example, digitize "42" results in [(4,"2")].

digitize :: Parser Char Int

digitize = f <$> digit

where f c = ord c - ord ’0’

We will use <$> for constructing parse trees. So first, let us think about a general
type for parsers that create parse trees. Such parsers take as input a list of items of

220 Parsing

type a, and produce lists of parse trees for such items. Assuming labels of type b
for the labels of the parse trees, we see that

Parser a (ParseTree a b)

is a reasonable type. It is convenient to define a type synonym for this type:

type PARSER a b = Parser a (ParseTree a b)

The type variable a can be instantiated in various ways. It could be String,
but it could also be Char. Note that the a in PARSER a b is the type of termi-
nal symbols of the grammar, and the b is the type of nonterminal symbols of the
grammar.

The following parser maps the null input string to the parse tree Ep:

epsilonT :: PARSER a b

epsilonT = succeed Ep

When parsing a symbol there are two possibilities: (i) the symbol is a terminal
(of type a), or (ii) the symbol is a nonterminal (of type b). In case (i) the parse
should produce a leaf tree, in case (ii) a non-leaf tree. To handle case (i) we will
use a parser symbolT, which recognizes a token and returns an appropriate leaf
parse tree.

symbolT :: Eq a => a -> PARSER a b

symbolT s = (\ x -> Leaf x) <$> symbol s

For case (ii), we need postprocessing on sequential composition of parsers. For
example, a parser like pNP <*> pVP should output a branch with the results of the
parser pNP and pVP as daughter nodes. In the general case, the right-hand side of a
rule can be any list of terminals and nonterminals, so we need to be able to decom-
pose such lists. In order to account for this general case, we switch to a version
of sequential composition of parsers that combines a parser of type Parser a b

with a parser of type Parser a [b] to a parser of type Parser a [b]:

infixl 6 <:>

(<:>) :: Parser a b -> Parser a [b] -> Parser a [b]

(p <:> q) xs = [(r:rs,zs) | (r,ys) <- p xs,

(rs,zs) <- q ys]

9.3 Parsers and Parser Combinators 221

We use it for defining a function that collects the results of a list of parsers
operating one after the other:

collect :: [Parser a b] -> Parser a [b]

collect [] = succeed []

collect (p:ps) = p <:> collect ps

Instead of defining an S-parser as pNP <*> pVP, like above, we can now de-
fine it as collect [pNP,pVP]. Finally, we also want to construct a parse tree.
For that, we use a parser parseAs, which builds and labels non-leaf nodes. The
parser parseAs takes as its first argument a nonterminal (the label), and as second
argument a list of parsers. To handle a rule rule A −→ B1 · · ·Bn, the function
parseAs takes as its label input A, and assumes that a list of parsers for B1 · · ·Bn

has been constructed.

parseAs :: b -> [PARSER a b] -> PARSER a b

parseAs label ps = (\ xs -> Branch label xs) <$> collect ps

The first argument of parseAs is a nonterminal from the grammar, i.e. an item
of type b.

Now we can implement a parser for the grammar given in (9.1) as follows.

sent, np, vp, det, cn :: PARSER String Char

sent = parseAs ’S’ [np,vp]

np = symbolT "Alice" <|> symbolT "Dorothy"

<|> parseAs ’N’ [det,cn]

det = symbolT "every" <|> symbolT "some" <|> symbolT "no"

cn = symbolT "man" <|> symbolT "woman"

vp = symbolT "smiled" <|> symbolT "laughed"

Parser combinator style parsing with the palindrome grammar (9.1) goes like
this:

palindrome :: PARSER Char Char

palindrome =

epsilonT <|> symbolT ’a’ <|> symbolT ’b’ <|> symbolT ’c’

<|> parseAs ’A’ [symbolT ’a’, palindrome, symbolT ’a’]

<|> parseAs ’A’ [symbolT ’b’, palindrome, symbolT ’b’]

<|> parseAs ’A’ [symbolT ’c’, palindrome, symbolT ’c’]

222 Parsing

In a similar way we can implement a parser for our Mastermind grammar. Recall
that this EBNF grammar in Section 4.1 also used the extra metasymbols { and
}, with the convention that {A} indicates that A may occur zero or more times.
The following parser combinator many handles this ‘parse arbitrary many copies’
operator. It produces the longest match first.

many :: Parser a b -> Parser a [b]

many p = (p <:> many p) <|> (succeed [])

If we want to construct a parse tree for this, we will have to put it under a label:

parseManyAs :: b -> PARSER a b -> PARSER a b

parseManyAs l p = (\ xs -> Branch l xs) <$> many p

As an example of parsing EBNF, here is a parser for the language of Mastermind.

colour, answer, guess, reaction, turn, game

:: PARSER String String

colour = symbolT "red" <|> symbolT "yellow"

<|> symbolT "blue" <|> symbolT "green"

answer = symbolT "black" <|> symbolT "white"

guess = parseAs "GUESS" [colour,colour,colour,colour]

reaction = parseManyAs "REACTION" answer

turn = parseAs "TURN" [guess,reaction]

game = turn <|> parseAs "GAME" [turn,game]

To sum up, each nonterminal symbol N gets a corresponding parser parseAs n,
and each terminal symbol T gets a corresponding parser symbolT t. Choice is
handled by means of <|>, and concatenation in the right-hand side of a rule as list
concatenation of parsers, inside a definition of parseAs n. EBNF repetition sym-
bols {A} are handled by parseManyAs newlabel a, where newlabel is some
suitable label to put in the syntax tree.

Exercise 9.9 Does the approach to parsing context-free grammars with parser combina-
tors, along the lines sketched in this section, work for all context-free grammars? (Hint:
look at left-recursive rules, i.e. rules of the form A −→ AT2 · · ·Tn.)

9.4 Features and Categories 223

9.4 Features and Categories
Syntactic features are important in most syntactic formalisms for natural language
analysis. We will develop a simple feature system for a small fragment of English.

There are two opposing views of feature agreement. According to the first view,
the features of a syntactic component are computed in some way from the features
of a ‘controlling’ component. Call this the derivational view on feature agreement.
On this view there is a strict distinction between source and target of feature agree-
ment. According to the second view, features of syntactic structures are partially
specified by the constituents of the structure by means of a constraint handling
mechanism. On this view, feature agreement has neither source nor target, but is
the result of certain compatibility checks between syntactic constituents. The sec-
ond view is prevalent in so-called unification based approaches to syntax. See, e.g.,
[PS87, PS94]. It is also possible to combine the two mechanisms, and let feature
agreement be a mix of compatibility checking and control.

Implementing the control view is easy in a functional approach: just define the
feature set of a component in terms of a function from the feature set of the source
of the agreement. To implement the constraint view we need a function for check-
ing compatibility between feature lists. In the implementation below, we will mix
the two approaches.

Whatever mechanism we implement, if we add it to a context-free grammar, the
result will again be a context-free grammar. Consider the simple case where there
is just a feature for number. Then the single rule S −→ NP VP is replaced by the
following set:

S∅ −→ NP{Sg} VP∅

S∅ −→ NP{Sg} VP{Sg}

S∅ −→ NP{Pl} VP∅

S∅ −→ NP{Pl} VP{Pl}

Adding a feature mechanism to a context-free grammar boils down to replacing
rules of the form A −→ B C by rules of the form Af −→ Bg Ch, and similarly
for rules with different numbers of right-hand side items. Here, f , g, and h are
sets of features, with the feature handling mechanism determining their shapes.
Since the feature sets are all finite, this boils down to replacing each terminal T
by a finite set of new terminals Tf , and each nonterminal N by a finite set of new
nonterminals Nf . The resulting grammar will still be a finite set of context-free
rules. This shows that a context-free grammar with features can be seen as an
abbreviation of a context-free grammar without features but with a much larger
rule set.

We will start with defining a number of useful features. A principled approach

224 Parsing

would be to distinguish various types of feature values, e.g. to put Masc and Neutr

in type Gender, to put Sg and Pl in type Number, and so on. For present purposes
it is more convenient, however, to put all feature values in the same data type. This
will make the system easier to use and modify, at the cost of making feature coding
errors slightly more difficult to detect (at least they will not be caught by the type
checking).

data Feat = Masc | Fem | Neutr | MascOrFem

| Sg | Pl

| Fst | Snd | Thrd

| Nom | AccOrDat

| Pers | Refl | Wh

| Tense | Infl

| On | With | By | To | From

deriving (Eq,Show,Ord)

Declare the type Agreement as a list of features:

type Agreement = [Feat]

The following functions pick out the gender, number, person, case, pronoun
type, tense, and preposition features, respectively:

gender, number, person, gcase, pronType, tense, prepType

:: Agreement -> Agreement

gender = filter (‘elem‘ [MascOrFem,Masc,Fem,Neutr])

number = filter (‘elem‘ [Sg,Pl])

person = filter (‘elem‘ [Fst,Snd,Thrd])

gcase = filter (‘elem‘ [Nom,AccOrDat])

pronType = filter (‘elem‘ [Pers,Refl,Wh])

tense = filter (‘elem‘ [Tense,Infl])

prepType = filter (‘elem‘ [On,With,By,To,From])

Two different features of the same type clash, except in the case of MascOrFem
versus Masc or Fem. The following function removes the MascOrFem feature if
necessary. This will ensure that MascOrFem expresses the disjunction of Masc and
Fem: it will clash with Neutr but not with Masc or Fem (in the latter case, it is
instead replaced by Masc or Fem, respectively).

9.4 Features and Categories 225

prune :: Agreement -> Agreement

prune fs = if (Masc ‘elem‘ fs || Fem ‘elem‘ fs)

then (delete MascOrFem fs)

else fs

Now that we have features, we can define a data type for syntactic categories.
Syntactic categories have four components. The first component gives the phono-
logical representation, the second the category label, the third the set of agreement
features, and the fourth the so-called subcatorization list. The subcategorization
list of a category C is the list of categories that C combines with.

type CatLabel = String

type Phon = String

data Cat = Cat Phon CatLabel Agreement [Cat]

deriving Eq

Only the categories that directly correspond with lexical items have phonological
content. The other categories have a blank in this position, represented by "_".

instance Show Cat where

show (Cat "_" label agr subcatlist) = label ++ show agr

show (Cat phon label agr subcatlist) = phon ++ " "

++ label ++ show agr

Here are functions for getting the components out of a category:

phon :: Cat -> String

phon (Cat ph _ _ _) = ph

catLabel :: Cat -> CatLabel

catLabel (Cat _ label _ _) = label

fs :: Cat -> Agreement

fs (Cat _ _ agr _) = agr

subcatList :: Cat -> [Cat]

subcatList (Cat _ _ _ cats) = cats

226 Parsing

The following function combine combines the feature lists of two categories.
Failure is indicated by [].

combine :: Cat -> Cat -> [Agreement]

combine cat1 cat2 =

[feats | length (gender feats) <= 1,

length (number feats) <= 1,

length (person feats) <= 1,

length (gcase feats) <= 1,

length (pronType feats) <= 1,

length (tense feats) <= 1,

length (prepType feats) <= 1]

where

feats = (prune . nub . sort) (fs cat1 ++ fs cat2)

Two categories agree if the attempt to combine them does not yield []. The
agree function implements a compatibility check.

agree :: Cat -> Cat -> Bool

agree cat1 cat2 = not (null (combine cat1 cat2))

Certain syntactic rules will assign a new feature to a category, e.g. the rule that
combines a syntactic subject with a predicate will assign the feature Nom to the
subject. The function assign implements a control mechanism for features.

assign :: Feat -> Cat -> [Cat]

assign f c@(Cat phon label fs subcatlist) =

[Cat phon label fs’ subcatlist |

fs’ <- combine c (Cat "" "" [f] [])]

Note that the assignment can fail if the category already has an incompatible
feature. In the implementation below we will use a mix of agree (feature compat-
ibility checking) and assign (feature control).

9.5 Lexical Lookup and Scanning
Our lexicon is a function from words (strings) to lists of syntactic categories. Here
is the type:

9.5 Lexical Lookup and Scanning 227

lexicon :: String -> [Cat]

Personal pronouns are the following:

lexicon "i" = [Cat "i" "NP" [Pers,Fst,Sg,Nom] []]

lexicon "me" = [Cat "me" "NP" [Pers,Fst,Sg,AccOrDat] []]

lexicon "we" = [Cat "we" "NP" [Pers,Fst,Pl,Nom] []]

lexicon "us" = [Cat "us" "NP" [Pers,Fst,Pl,AccOrDat] []]

lexicon "you" = [Cat "you" "NP" [Pers,Snd] []]

lexicon "he" = [Cat "he" "NP" [Pers,Thrd,Sg,Nom,Masc] []]

lexicon "him" = [Cat "him" "NP" [Pers,Thrd,Sg,AccOrDat,Masc]

[]]

lexicon "she" = [Cat "she" "NP" [Pers,Thrd,Sg,Nom,Fem] []]

lexicon "her" = [Cat "her" "NP" [Pers,Thrd,Sg,AccOrDat,Fem]

[]]

lexicon "it" = [Cat "it" "NP" [Pers,Thrd,Sg,Neutr] []]

lexicon "they" = [Cat "they" "NP" [Pers,Thrd,Pl,Nom] []]

lexicon "them" = [Cat "them" "NP" [Pers,Thrd,Pl,AccOrDat]

[]]

Reflexive pronouns are:

lexicon "myself" =

[Cat "myself" "NP" [Refl,Sg,Fst,AccOrDat] []]

lexicon "ourselves" =

[Cat "ourselves" "NP" [Refl,Pl,Fst,AccOrDat] []]

lexicon "yourself" =

[Cat "yourself" "NP" [Refl,Sg,Snd,AccOrDat] []]

lexicon "yourselves" =

[Cat "yourselves" "NP" [Refl,Pl,Snd,AccOrDat] []]

lexicon "himself" =

[Cat "himself" "NP" [Refl,Sg,Thrd,AccOrDat,Masc] []]

lexicon "herself" =

[Cat "herself" "NP" [Refl,Sg,Thrd,AccOrDat,Fem] []]

lexicon "itself" =

[Cat "itself" "NP" [Refl,Sg,Thrd,AccOrDat,Neutr] []]

lexicon "themselves" =

[Cat "themselves" "NP" [Refl,Pl,Thrd,AccOrDat] []]

228 Parsing

Wh-pronouns and relatives are:

lexicon "who" = [Cat "who" "NP" [Wh,Thrd,MascOrFem] [],

Cat "who" "REL" [MascOrFem] []]

lexicon "whom" =

[Cat "whom" "NP" [Sg,Wh,Thrd,AccOrDat,MascOrFem] [],

Cat "whom" "REL" [Sg,MascOrFem,AccOrDat] []]

lexicon "what" =

[Cat "what" "NP" [Wh,Thrd,AccOrDat,Neutr] []]

lexicon "that" = [Cat "that" "REL" [] [],

Cat "that" "DET" [Sg] []]

lexicon "which" = [Cat "which" "REL" [Neutr] [],

Cat "which" "DET" [Wh] []]

Proper names are:

lexicon "snowwhite" =

[Cat "snowwhite" "NP" [Thrd,Fem,Sg] []]

lexicon "alice" =

[Cat "alice" "NP" [Thrd,Fem,Sg] []]

lexicon "dorothy" =

[Cat "dorothy" "NP" [Thrd,Fem,Sg] []]

lexicon "goldilocks" =

[Cat "goldilocks" "NP" [Thrd,Fem,Sg] []]

lexicon "littlemook" =

[Cat "littlemook" "NP" [Thrd,Masc,Sg] []]

lexicon "atreyu" =

[Cat "atreyu" "NP" [Thrd,Masc,Sg] []]

Determiners are:

lexicon "every" = [Cat "every" "DET" [Sg] []]

lexicon "all" = [Cat "all" "DET" [Pl] []]

lexicon "some" = [Cat "some" "DET" [] []]

lexicon "several" = [Cat "several" "DET" [Pl] []]

lexicon "a" = [Cat "a" "DET" [Sg] []]

lexicon "no" = [Cat "no" "DET" [] []]

lexicon "the" = [Cat "the" "DET" [] []]

9.5 Lexical Lookup and Scanning 229

lexicon "most" = [Cat "most" "DET" [Pl] []]

lexicon "many" = [Cat "many" "DET" [Pl] []]

lexicon "few" = [Cat "few" "DET" [Pl] []]

lexicon "this" = [Cat "this" "DET" [Sg] []]

lexicon "these" = [Cat "these" "DET" [Pl] []]

lexicon "those" = [Cat "those" "DET" [Pl] []]

To be able to treat complex determiners we also define a category of determiner
functions:

lexicon "less_than" = [Cat "less_than" "DF" [Pl] []]

lexicon "more_than" = [Cat "more_than" "DF" [Pl] []]

Common nouns are:

lexicon "thing" = [Cat "thing" "CN" [Sg,Neutr,Thrd] []]

lexicon "things" = [Cat "things" "CN" [Pl,Neutr,Thrd] []]

lexicon "person" = [Cat "person" "CN" [Sg,Masc,Thrd] []]

lexicon "persons" = [Cat "persons" "CN" [Pl,Masc,Thrd] []]

lexicon "boy" = [Cat "boy" "CN" [Sg,Masc,Thrd] []]

lexicon "boys" = [Cat "boys" "CN" [Pl,Masc,Thrd] []]

lexicon "man" = [Cat "man" "CN" [Sg,Masc,Thrd] []]

lexicon "men" = [Cat "men" "CN" [Pl,Masc,Thrd] []]

lexicon "girl" = [Cat "girl" "CN" [Sg,Fem,Thrd] []]

lexicon "girls" = [Cat "girls" "CN" [Pl,Fem,Thrd] []]

lexicon "woman" = [Cat "woman" "CN" [Sg,Fem,Thrd] []]

lexicon "women" = [Cat "women" "CN" [Pl,Fem,Thrd] []]

lexicon "princess" = [Cat "princess" "CN" [Sg,Fem,Thrd] []]

lexicon "princesses" = [Cat "princesses" "CN" [Pl,Fem,Thrd] []]

lexicon "dwarf" = [Cat "dwarf" "CN" [Sg,Masc,Thrd] []]

lexicon "dwarfs" = [Cat "dwarfs" "CN" [Pl,Masc,Thrd] []]

lexicon "dwarves" = [Cat "dwarves" "CN" [Pl,Masc,Thrd] []]

lexicon "giant" = [Cat "giant" "CN" [Sg,Masc,Thrd] []]

lexicon "giants" = [Cat "giants" "CN" [Pl,Masc,Thrd] []]

230 Parsing

More common nouns:

lexicon "wizard" = [Cat "wizard" "CN" [Sg,Masc,Thrd] []]

lexicon "wizards" = [Cat "wizards" "CN" [Pl,Masc,Thrd] []]

lexicon "sword" = [Cat "sword" "CN" [Sg,Neutr,Thrd] []]

lexicon "swords" = [Cat "swords" "CN" [Pl,Neutr,Thrd] []]

lexicon "dagger" = [Cat "dagger" "CN" [Sg,Neutr,Thrd] []]

lexicon "daggers" = [Cat "daggers" "CN" [Pl,Neutr,Thrd] []]

Auxiliaries are:

lexicon "did" = [Cat "did" "AUX" [] []]

lexicon "didn’t" = [Cat "didn’t" "AUX" [] []]

Intransitive verb phrases have an empty subcategorization list:

lexicon "smiled" = [Cat "smiled" "VP" [Tense] []]

lexicon "smile" = [Cat "smile" "VP" [Infl] []]

lexicon "laughed" = [Cat "laughed" "VP" [Tense] []]

lexicon "laugh" = [Cat "laugh" "VP" [Infl] []]

lexicon "cheered" = [Cat "cheered" "VP" [Tense] []]

lexicon "cheer" = [Cat "cheer" "VP" [Infl] []]

lexicon "shuddered" = [Cat "shuddered" "VP" [Tense] []]

lexicon "shudder" = [Cat "shudder" "VP" [Infl] []]

Transitive verb phrases have a single noun phrase with the feature AccOrDat on
their subcatorisation list:

lexicon "loved" =

[Cat "loved" "VP" [Tense] [Cat "_" "NP" [AccOrDat] []]]

lexicon "love" =

[Cat "love" "VP" [Infl] [Cat "_" "NP" [AccOrDat] []]]

lexicon "admired" =

[Cat "admired" "VP" [Tense] [Cat "_" "NP" [AccOrDat] []]]

lexicon "admire" =

[Cat "admire" "VP" [Infl] [Cat "_" "NP" [AccOrDat] []]]

9.5 Lexical Lookup and Scanning 231

More transitive verbs:

lexicon "helped" =

[Cat "helped" "VP" [Tense] [Cat "_" "NP" [AccOrDat] []]]

lexicon "help" =

[Cat "help" "VP" [Infl] [Cat "_" "NP" [AccOrDat] []]]

lexicon "defeated" =

[Cat "defeated" "VP" [Tense] [Cat "_" "NP" [AccOrDat] []]]

lexicon "defeat" =

[Cat "defeat" "VP" [Infl] [Cat "_" "NP" [AccOrDat] []]]

Ditransitive verb phrases have an NP and a to-PP on their subcategorization list:

lexicon "gave" =

[Cat "gave" "VP" [Tense] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [To] []],

Cat "gave" "VP" [Tense] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "NP" [AccOrDat] []]]

lexicon "give" =

[Cat "give" "VP" [Infl] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [To] []],

Cat "give" "VP" [Infl] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "NP" [AccOrDat] []]]

lexicon "sold" =

[Cat "sold" "VP" [Tense] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [To] []],

Cat "sold" "VP" [Tense] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "NP" [AccOrDat] []]]

lexicon "sell" =

[Cat "sell" "VP" [Infl] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [To] []],

Cat "sell" "VP" [Infl] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "NP" [AccOrDat] []]]

We can use the subcategorization lists to define other subcategorization patterns.
Here is an example of a verb which takes an NP and an optional instrumental with-
PP:

232 Parsing

lexicon "kicked" =

[Cat "kicked" "VP" [Tense] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [With] []],

Cat "kicked" "VP" [Tense] [Cat "_" "NP" [AccOrDat] []]]

lexicon "kick" =

[Cat "kick" "VP" [Infl] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [With] []],

Cat "kick" "VP" [Infl] [Cat "_" "NP" [AccOrDat] []]]

And here is an example of a verb which takes an NP and an optional from-PP:

lexicon "took" =

[Cat "took" "VP" [Tense] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [From] []],

Cat "took" "VP" [Tense] [Cat "_" "NP" [AccOrDat] []]]

lexicon "take" =

[Cat "take" "VP" [Infl] [Cat "_" "NP" [AccOrDat] [],

Cat "_" "PP" [From] []],

Cat "take" "VP" [Infl] [Cat "_" "NP" [AccOrDat] []]]

Here are some prepositions:

lexicon "on" = [Cat "on" "PREP" [On] []]

lexicon "with" = [Cat "with" "PREP" [With] []]

lexicon "by" = [Cat "by" "PREP" [By] []]

lexicon "to" = [Cat "to" "PREP" [To] []]

lexicon "from" = [Cat "from" "PREP" [From] []]

The following entries implement conjunctions and conditionals. Note that we
treat period (full stop) as sentence conjunction.

lexicon "and" = [Cat "and" "CONJ" [] []]

lexicon "." = [Cat "." "CONJ" [] []]

lexicon "if" = [Cat "if" "COND" [] []]

lexicon "then" = [Cat "then" "THEN" [] []]

9.5 Lexical Lookup and Scanning 233

Finally, we say that there is nothing else in the lexicon:

lexicon _ = []

Now, the scan function scans an input string and puts whitespace in front of
punctuation marks.

scan :: String -> String

scan [] = []

scan (x:xs) | x ‘elem‘ ".,?" = ’ ’:x:scan xs

| otherwise = x:scan xs

The lexer will produce lists of words (strings). Here is the data type for such
lists:

type Words = [String]

The lexer creates lists of words from the input string. For robustness, we convert
everything to lowercase. The lexer function uses the predefined function words

to split the input into separate words. The function preprocess is defined below.

lexer :: String -> Words

lexer = preproc . words . (map toLower) . scan

It is useful to do some preprocessing on the list of input words. We will disregard
commas anywhere in the input, and periods and question marks at the end of the
input.

preproc :: Words -> Words

preproc [] = []

preproc ["."] = []

preproc ["?"] = []

preproc (",":xs) = preproc xs

While we are at it, we can also use preprocessing for adjusting the break-up of
words in the input:

234 Parsing

preproc ("did":"not":xs) = "didn’t" : preproc xs

preproc ("nothing":xs) = "no" : "thing" : preproc xs

preproc ("nobody":xs) = "no" : "person" : preproc xs

preproc ("something":xs) = "some" : "thing" : preproc xs

preproc ("somebody":xs) = "some" : "person" : preproc xs

preproc ("everything":xs) = "every" : "thing" : preproc xs

preproc ("everybody":xs) = "every" : "person" : preproc xs

preproc ("less":"than":xs) = "less_than" : preproc xs

preproc ("more":"than":xs) = "more_than" : preproc xs

preproc ("at":"least":xs) = "at_least" : preproc xs

preproc ("at":"most":xs) = "at_most" : preproc xs

preproc (x:xs) = x : preproc xs

The lexicon is a lexical database of type String -> [Cat]. The lookupWord
function fetches a list of categories for a word.

lookupWord :: (String -> [Cat]) -> String -> [Cat]

lookupWord db w = [c | c <- db w]

Finally, we collect a list of lists of categories for a list of words. An error is
generated on encounter of a word that is not in the lexical database.

collectCats :: (String -> [Cat]) -> Words -> [[Cat]]

collectCats db words =

let

listing = map (\ x -> (x,lookupWord db x)) words

unknown = map fst (filter (null.snd) listing)

in

if unknown /= [] then

error ("unknown words: " ++ show unknown)

else initCats (map snd listing)

initCats :: [[Cat]] -> [[Cat]]

initCats [] = [[]]

initCats (cs:rests) = [c:rest | c <- cs,

rest <- initCats rests]

9.6 Parsing Categories 235

This gives:

P> collectCats lexicon ["i","loved","her"]

[[i NP[Pers,Fst,Sg,Nom],loved VP[Tense],

her NP[Pers,Thrd,Sg,Acc,Fem]]]

P> collectCats lexicon ["she","despised","me"]

Program error: unknown words: ["despised"]

9.6 Parsing Categories

We will now develop the tools for parsing with categories. The input list for the
parsing process will consist of categories, and the parsers will build parse trees
with categories at the leaf nodes and at the internal nodes. To start with, here is a
function for getting the category out of a parse tree (a map from trees to categories):

t2c :: ParseTree Cat Cat -> Cat

t2c (Leaf c) = c

t2c (Branch c _) = c

It is convenient to lift the agree function to parse trees:

agreeC :: ParseTree Cat Cat -> ParseTree Cat Cat -> Bool

agreeC t1 t2 = agree (t2c t1) (t2c t2)

Our parsing functions will take a list of categories and produce a list of pairs
consisting of a parse tree and a remainder list of categories. The simplest possible
parser is the one for constructing a leaf tree of a given category:

leafP :: CatLabel -> PARSER Cat Cat

leafP label [] = []

leafP label (c:cs) = [(Leaf c,cs) | catLabel c == label]

For smooth handling of feature assignment it is useful to also lift the assign

function to the level of parse trees:

236 Parsing

assignT :: Feat -> ParseTree Cat Cat

-> [ParseTree Cat Cat]

assignT f (Leaf c) = [Leaf c’ | c’ <- assign f c]

assignT f (Branch c ts) = [Branch c’ ts | c’ <- assign f c]

Sentences are all constructed by means of the subject–predicate rule. Here is
the corresponding parser. Note that the subject and the predicate have to agree in
their feature lists, that the subject agreement list must allow the assignment of the
feature Nom, and that the predicate must have combined with all its complements,
i.e. its subcategorization list has to be empty.

sRule :: PARSER Cat Cat

sRule = \ xs ->

[(Branch (Cat "_" "S" [] []) [np’,vp],zs) |

(np,ys) <- parseNP xs,

(vp,zs) <- parseVP ys,

np’ <- assignT Nom np,

agreeC np vp,

subcatList (t2c vp) == []]

A sentence can only be parsed in this one way, so here is our parser for sentences:

parseSent :: PARSER Cat Cat

parseSent = sRule

Noun phrases can either be formed according to a rule or found on the input
category list:

npRule :: PARSER Cat Cat

npRule = \ xs ->

[(Branch (Cat "_" "NP" fs []) [det,cn],zs) |

(det,ys) <- parseDET xs,

(cn,zs) <- parseCN ys,

fs <- combine (t2c det) (t2c cn),

agreeC det cn]

parseNP :: PARSER Cat Cat

parseNP = leafP "NP" <|> npRule

9.6 Parsing Categories 237

Preposition phrases are always constructed by a rule. Note that the rule uses
feature control: the preposition assigns AccOrDat case to the NP.

ppRule :: PARSER Cat Cat

ppRule = \ xs ->

[(Branch (Cat "_" "PP" fs []) [prep,np’],zs) |

(prep,ys) <- parsePrep xs,

(np,zs) <- parseNP ys,

np’ <- assignT AccOrDat np,

fs <- combine (t2c prep) (t2c np’)]

parsePP :: PARSER Cat Cat

parsePP = ppRule

The subcategorization lists of verbs consist of NPs and PPs, so it makes sense to
construct a parser for such lists.

parseNPorPP :: PARSER Cat Cat

parseNPorPP = parseNP <|> parsePP

parseNPsorPPs :: [Cat] -> [([ParseTree Cat Cat],[Cat])]

parseNPsorPPs = many parseNPorPP

Determiners are always lexical:

parseDET :: PARSER Cat Cat

parseDET = leafP "DET"

Exercise 9.10 Add a rule for complex determiners consisting of a determiner function and
a numeral. This should cater for less than n, more than n. at least n, at most n, and exactly
n. Preprocessing makes all determiner functions available as single words. You will also
need a parser for numerals, of course.

For now, common nouns are always in the lexicon, so their categories will be
found on the input category list. Below, in Section 9.7, we will extend this to
common nouns with relative clauses.

parseCN :: PARSER Cat Cat

parseCN = leafP "CN"

238 Parsing

All prepositions and all auxiliaries are lexical:

parsePrep :: PARSER Cat Cat

parsePrep = leafP "PREP"

parseAux :: PARSER Cat Cat

parseAux = leafP "AUX"

Verb phrases are either parsed with a rule for finite VPs, or with a rule for auxil-
iaries combining with an infinitive VP.

parseVP :: PARSER Cat Cat

parseVP = finVpRule <|> auxVpRule

Both of these rules use a parser for combining a verb with its subcategorization
list:

vpRule :: PARSER Cat Cat

vpRule = \xs ->

[(Branch (Cat "_" "VP" (fs (t2c vp)) []) (vp:xps),zs) |

(vp,ys) <- leafP "VP" xs,

subcatlist <- [subcatList (t2c vp)],

(xps,zs) <- parseNPsorPPs ys,

match subcatlist (map t2c xps)]

This uses a function for matching a subcategorization list with a list of NPs and
PPs. Not only the feature lists have to agree, but the category labels should be the
same: NPs should match with NPs, PPs with PPs.

match :: [Cat] -> [Cat] -> Bool

match [] [] = True

match _ [] = False

match [] _ = False

match (x:xs) (y:ys) = catLabel x == catLabel y

&& agree x y

&& match xs ys

9.7 Handling Extractions 239

For a finite VP, just check that tense can be assigned to the VP:

finVpRule :: PARSER Cat Cat

finVpRule = \xs -> [(vp’,ys) | (vp,ys) <- vpRule xs,

vp’ <- assignT Tense vp]

For a VP consisting of an auxiliary and an infinitive form, parse the auxiliary,
parse the VP, and check that the VP is in infinitive form. For this, check that Inf
can be assigned to the VP.

auxVpRule :: PARSER Cat Cat

auxVpRule = \xs ->

[(Branch (Cat "_" "VP" (fs (t2c aux)) []) [aux,inf’],zs) |

(aux,ys) <- parseAux xs,

(inf,zs) <- vpRule ys,

inf’ <- assignT Infl inf]

Parsing is the process of constructing a list of parse trees for a string. Each parse
tree will correspond to a possible parse of the string. If a string does not parse, the
list of parse trees is empty.

prs :: String -> [ParseTree Cat Cat]

prs string = let ws = lexer string

in [s | catlist <- collectCats lexicon ws,

(s,[]) <- parseSent catlist]

You can try this out with prs "I loved her.", and so on.

9.7 Handling Extractions

Left extraction in natural language occurs when a subconstituent of some con-
stituent is missing, and some other constituent to the left of the incomplete con-
stituent represents that missing constituent in some way, for example in the sen-
tence Who did some dwarf defeat. In the generative tradition, such dislocations are
accounted for by means of transformations that move a constituent while leaving a
trace. Computational and logic-oriented approaches to natural language processing
replace the transformational account with an in situ analysis, through gap threading
(lexical functional grammar, categorial grammar) and/or through extension of the

240 Parsing

context-free rule format with wrapping operations (extraposition grammars, tuple-
based and tree-based extensions of context-free grammars).

An example of this is relative clause formation. The intuition about relative
clauses is that they are sentences with an NP missing. To write a parser that parses
the internal structure of a relative clause correctly, we will extend our parsers with
an extra component: a stack of gaps or missing constituents. This comes close to
the gap threading mechanism of Generalized Phrase Structure Grammar (GPSG)
[GKPS85] and Head-Driven Phrase Structure Grammar (HPSG) [PS94].

Above we have seen that extension of context-free rules with a feature agreement
mechanism was possible within the context-free rule format. The case of extraction
is different. Formally, adding an extraction mechanism to context-free rules gets
us outside the context-free rule format. The grammar class we get in is that of
sequentially indexed grammars. Sequentially indexed grammars use indices that
get pushed to an arbitrary nonterminal in the right-hand side of a rule. Rules have
the form AX −→ B . . . C to indicate that X gets consumed in the production of
B . . . C, or the form A −→ B . . . CX . . . D to indicate that X gets pushed to C
in the production. A sequentially indexed grammar for a toy fragment of natural
language might look like this:

S → NP VP
VP → TV NP | laughed
NP → DET CN | Alice | Dorothy
TV → admired | helped

DET → the | some
CN → boy | girl | CN that SNP

NPNP → �

This uses index the NP to handle NP gaps in relative clauses. We will not give a pre-
cise formal definition of sequentially indexed grammars and sequentially indexed
languages here, as formal grammar theory is outside the scope of this book. A full
account can be found in [Eij07b].

As we will see now, treatment of extraction phenomena with extraction stacks
remains close to the spirit of a movement analysis. Relative clause formation in
English is a simple example of left extraction. The structure of the relative clause
in (9.2) is represented by the annotation that links the relative pronoun that to its
trace ti.

Dorothy admired the princess thati Goldilocks gave the sword to ti. (9.2)

Our grammar will give the example the parse in Figure 9.2, with # indicating the
NP gap.

9.7 Handling Extractions 241

Fig. 9.2. Parse tree for example (9.2)

S

NP

Dorothy

VP

TV

admired

NP

DET

the

CN

CN

princess

COMP

REL

that

S

NP

Goldilocks

VP

DV

gave

NP

DET

the

CN

sword

PP

PREP

to

NP

#

The stack parser that handles NPs should take the so-called island constraints
on extraction (first proposed in [Ros67]) into account. Islands are domains out of
which extraction is not possible. One example are relative clauses inside an NP.
Ross proposed the Complex NP Constraint, which rules out configurations of the
form

. . . thati . . . [NP. . . [REL thatj [S. . . ti . . . tj . . .]]].

The constraint is imposed to rule out examples like (9.3).

*Dorothy admired the princess thati [Goldilocks helped [NP the boy thatj
[ti gave the sword to tj]]]. (9.3)

Exercise 9.11 Some linguists would claim that the complex NP constraint explains the
ungrammaticality of (9.3). Other linguists might counter that the complex NP constraint is
just a description, and descriptions never explain anything. Which side are you on in this
debate? Discuss.

242 Parsing

As you can check, example (9.3) does not receive a parse in the fragment that
we will present, but (9.4) does.

Dorothy admired the princess thati [ti helped [NP the boy thatj
[Goldilocks gave the sword to tj]]]. (9.4)

Each occurrence of # gets bound by the closest that above it. Note that this
follows directly from the island constraint, for if an occurrence of # is not bound
by the closest that above it the island constraint is violated.

To treat dependencies, we will enrich our parsers with a stack of ‘extracted ma-
terial’. We call this a stack parser.

type StackParser a b = [a] -> [a] -> [(b,[a],[a])]

We will be interested in the special version of this where the yield of the parser
consists of parse trees.

type SPARSER a b = StackParser a (ParseTree a b)

As in the previous sections, we will first build a few special purpose stack
parsers. A new version of the choice operator is the following:

infixr 4 <||>

(<||>) :: StackParser a b -> StackParser a b

-> StackParser a b

(p1 <||> p2) stack xs = p1 stack xs ++ p2 stack xs

A new version of the sequential composition operator (<:>) is:

infixl 6 <::>

(<::>) :: StackParser a b -> StackParser a [b]

-> StackParser a [b]

(p <::> q) us xs = [(r:rs,ws,zs) | (r,vs,ys) <- p us xs,

(rs,ws,zs) <- q vs ys]

9.7 Handling Extractions 243

The function succeedS implements a stack parser for immediate success:

succeedS :: b -> StackParser a b

succeedS r us xs = [(r,us,xs)]

The operation <::> and the function succeedS can be used to construct the
stack parser version of the many parser:

manyS :: StackParser a b -> StackParser a [b]

manyS p = (p <::> manyS p) <||> succeedS []

The two fundamental stack operations are (i) pushing a new item on the stack,
and (ii) popping the top item from a non-empty stack. Push creates a new stack
parser from a category and an existing stack parser:

push :: Cat -> SPARSER Cat Cat -> SPARSER Cat Cat

push c p stack = p (c:stack)

Pop checks the whether the category label of the top element on the stack matches
a given label and, if so, creates a leaf tree for that element. If the extraction stack
is empty, the parse fails.

pop :: CatLabel -> SPARSER Cat Cat

pop c [] xs = []

pop c (u:us) xs | catLabel u == c = [(Leaf u, us, xs)]

| otherwise = []

A stack parser for recognizing a category on the input list can be implemented
as follows.

leafPS :: CatLabel -> SPARSER Cat Cat

leafPS l _ [] = []

leafPS l s (c:cs) = [(Leaf c,s,cs) | catLabel c == l]

244 Parsing

Texts are conjunctions of sentences:

prsTXT :: SPARSER Cat Cat

prsTXT = conjR <||> prsS

conjR :: SPARSER Cat Cat

conjR = \ us xs ->

[(Branch (Cat "_" "TXT" [] []) [s, conj, txt], ws, zs) |

(s,vs,ys) <- prsS us xs,

(conj,vs1,ys1) <- leafPS "CONJ" vs ys,

(txt,ws,zs) <- prsTXT vs1 ys1]

Exercise 9.12 Note that texts are right-branching. That is, we parse a three-sentence con-
junction S and S and S as

TXT

S CONJ TXT

S CONJ TXT

S
rather than

TXT

TXT

TXT

S

CONJ S

CONJ S

Predict what would happen if we modify the rule to make it left-branching. Then make the
modification and check your prediction.

Parsing a sentence is done with the subject–predicate rule or with one of the two
rules for conditional sentences.

prsS :: SPARSER Cat Cat

prsS = spR <||> cond1R <||> cond2R

9.7 Handling Extractions 245

The subject–predicate rule can be implemented as follows:

spR :: SPARSER Cat Cat

spR = \ us xs ->

[(Branch (Cat "_" "S" (fs (t2c np)) []) [np’,vp],ws,zs) |

(np,vs,ys) <- prsNP us xs,

(vp,ws,zs) <- prsVP vs ys,

np’ <- assignT Nom np,

agreeC np vp,

subcatList (t2c vp) == []]

The first rule for conditional sentences treats examples like (9.5).

If a princess admired a dwarf, he loved her. (9.5)

cond1R :: SPARSER Cat Cat

cond1R = \ us xs ->

[(Branch (Cat "_" "S" [] []) [cond,s1,s2], ws, zs) |

(cond,vs,ys) <- leafPS "COND" us xs,

(s1,vs1,ys1) <- prsS vs ys,

(s2,ws,zs) <- prsS vs1 ys1]

The second rule for conditional sentences treats examples like (9.6).

If a princess admired a dwarf, then he loved her. (9.6)

cond2R :: SPARSER Cat Cat

cond2R = \ us xs ->

[(Branch (Cat "_" "S" [] []) [cond,s1,s2], ws, zs) |

(cond,vs,ys) <- leafPS "COND" us xs,

(s1,vs1,ys1) <- prsS vs ys,

(_,vs2,ys2) <- leafPS "THEN" vs1 ys1,

(s2,ws,zs) <- prsS vs2 ys2]

The semantics of conditionals like (9.5) and (9.6) will be handled in Chapter 12.

246 Parsing

Parsing an NP can be done in three ways: by finding the NP on the input list, by
application of the rule NP → DET CN, and by popping an NP from the extraction
stack.

prsNP :: SPARSER Cat Cat

prsNP = leafPS "NP" <||> npR <||> pop "NP"

The rule should be implemented in such manner that gaps from outside are
passed on to the next constituent, never consumed inside the NP. This is in order to
impose the Complex NP Constraint. So we pass on the contents of the incoming
stack us to the output extraction stack.

npR :: SPARSER Cat Cat

npR = \ us xs ->

[(Branch (Cat "_" "NP" fs []) [det,cn], (us++ws), zs) |

(det,vs,ys) <- prsDET [] xs,

(cn,ws,zs) <- prsCN vs ys,

fs <- combine (t2c det) (t2c cn),

agreeC det cn]

Determiner categories are always found on the input list:

prsDET :: SPARSER Cat Cat

prsDET = leafPS "DET"

Exercise 9.13 Implement a rule for determiners consisting of a determiner function and a
numeral, to treat complex determiners like at least 5 (compare Exercise 9.10).

Common nouns are lexical, or are formed with a relative clause rule:

prsCN :: SPARSER Cat Cat

prsCN = leafPS "CN" <||> cnrelR

VPs are either finite forms or auxilaries plus infinitive forms:

prsVP :: SPARSER Cat Cat

prsVP = finVpR <||> auxVpR

9.7 Handling Extractions 247

Both rules use the following stack parser version of the key VP rule:

vpR :: SPARSER Cat Cat

vpR = \us xs ->

[(Branch (Cat "_" "VP" (fs (t2c vp)) []) (vp:xps),ws,zs) |

(vp,vs,ys) <- leafPS "VP" us xs,

subcatlist <- [subcatList (t2c vp)],

(xps,ws,zs) <- prsNPsorPPs vs ys,

match subcatlist (map t2c xps)]

Here is a parser for finite VPs:

finVpR :: SPARSER Cat Cat

finVpR = \us xs -> [(vp’,vs,ys) | (vp,vs,ys) <- vpR us xs,

vp’ <- assignT Tense vp]

The parser for VPs consisting of an auxiliary plus an infinitive form can be
implemented as follows:

auxVpR :: SPARSER Cat Cat

auxVpR = \us xs ->

[(Branch (Cat "_" "VP" (fs (t2c aux)) [])

[aux,inf’], ws, zs) |

(aux,vs,ys) <- prsAUX us xs,

(inf,ws,zs) <- vpR vs ys,

inf’ <- assignT Infl inf]

Auxiliaries are found on the input list, or popped from the extraction stack. The
second case handles the left dislocation of auxiliaries in yes/no questions and wh-
questions (see below).

prsAUX :: SPARSER Cat Cat

prsAUX = leafPS "AUX" <||> pop "AUX"

PPs are constructed with a rule or popped from the extraction stack:

prsPP :: SPARSER Cat Cat

prsPP = ppR <||> pop "PP"

248 Parsing

The PP rule combines a preposition with an NP.

ppR :: SPARSER Cat Cat

ppR = \us xs ->

[(Branch (Cat "_" "PP" fs []) [prep,np’], ws, zs) |

(prep,vs,ys) <- prsPREP us xs,

(np,ws,zs) <- prsNP vs ys,

np’ <- assignT AccOrDat np,

fs <- combine (t2c prep) (t2c np’)]

Prepositions are all found on the input list:

prsPREP :: SPARSER Cat Cat

prsPREP = leafPS "PREP"

The verb subcategorization lists consist of NPs or PPs. Here is how to handle
them:

prsNPorPP :: SPARSER Cat Cat

prsNPorPP = prsNP <||> prsPP

prsNPsorPPs :: [Cat] -> [Cat]

-> [([ParseTree Cat Cat],[Cat],[Cat])]

prsNPsorPPs = manyS prsNPorPP

Complex CNs use a parser prsREL for relative clauses:

cnrelR :: SPARSER Cat Cat

cnrelR = \us xs ->

[(Branch (Cat "_" "CN" (fs (t2c cn)) [])

[cn,rel], ws, zs) |

(cn,vs,ys) <- leafPS "CN" us xs,

(rel,ws,zs) <- prsREL vs ys,

agreeC cn rel]

Exercise 9.14 Suppose we replace the leafPS "CN" in this definition with prsCN. What
would happen, and why?

9.7 Handling Extractions 249

There are two relative clause rules: one for relative clauses starting with a rela-
tive pronoun and one for relative clauses without such a pronoun.

prsREL :: SPARSER Cat Cat

prsREL = relclauseR <||> thatlessR

Regular relative clauses consist of a relative plus a sentence with an NP gap. The
sentence with NP gap is created by pushing the gap on a parser for sentences.

relclauseR :: SPARSER Cat Cat

relclauseR = \us xs ->

[(Branch (Cat "_" "COMP" fs []) [rel,s], ws, zs) |

(rel,vs,ys) <- leafPS "REL" us xs,

fs <- [fs (t2c rel)],

gap <- [Cat "#" "NP" fs []],

(s,ws,zs) <- push gap prsS vs ys]

That-less relatives do not have a relative pronoun, or, equivalently, they start
with a zero relative pronoun. Constraints are that the extracted NP cannot be the
subject, and that the subject of the embedded sentence does not have a feature Wh.
This takes care of relatives like the princess I admired and the prince I gave the
sword to.

thatlessR :: SPARSER Cat Cat

thatlessR = \ us xs ->

[(Branch (Cat "_" "COMP" [] []) [s], vs, ys) |

gap <- [Cat "#" "NP" [AccOrDat] []],

(s,vs,ys) <- push gap prsS us xs,

notElem Wh (fs (t2c s))]

As a bonus, we can use the extraction stack for other purposes than extracting
NPs. To deal with yes/no questions, we extract an auxiliary from a sentence. This
analyses examples like Did she love me? as Didi she #i love me.

250 Parsing

prsYN :: SPARSER Cat Cat

prsYN = \us xs ->

[(Branch (Cat "_" "YN" [] []) [aux,s], ws,zs) |

(aux,vs,ys) <- prsAUX us xs,

gap <- [Cat "#" "AUX" (fs (t2c aux)) []],

(s,ws,zs) <- push gap prsS vs ys]

From yes/no questions it is but a small step to wh-questions. We analyse a
wh-question as a yes/no question with an extracted NP or PP carrying a feature Wh.
This analyses Who did she love? as Whoi didj she #j love #i.

isWH :: ParseTree Cat Cat -> Bool

isWH tr = Wh ‘elem‘ (fs (t2c tr))

prsWH :: SPARSER Cat Cat

prsWH = \us xs ->

[(Branch (Cat "_" "WH" [] []) [wh,yn], ws,zs) |

(wh,vs,ys) <- prsNPorPP us xs,

isWH wh,

gapfs <- [filter (/= Wh) (fs (t2c wh))],

gap <- [Cat "#" (catLabel (t2c wh)) gapfs []],

(yn,ws,zs) <- push gap prsYN vs ys]

The parsing function for parsing a string with a stack parser is just like the pars-
ing function prs from Section 9.6.

parses :: String -> [ParseTree Cat Cat]

parses str = let ws = lexer str

in [s | catlist <- collectCats lexicon ws,

(s,[],[]) <- prsTXT [] catlist

++ prsYN [] catlist

++ prsWH [] catlist]

9.8 Adding Semantics 251

Here is a test suite of sentences that should parse:

testSuite1 :: [String]

testSuite1 =

["Alice admired Dorothy.",

"Did Alice admire Dorothy?",

"Who did Alice admire?",

"Atreyu gave the sword to the princess.",

"Did Atreyu give the sword to the princess?",

"Who did Atreyu give the sword to?",

"To whom did Atreyu give the sword?",

"Goldilocks helped the girl "

++ "that Atreyu gave the sword to.",

"Did Goldilocks help the girl "

++ "that Atreyu gave the sword to.",

"Goldilocks helped the boy that helped the princess "

++ "that Atreyu gave the sword to."]

And here is a test suite of strings that should not parse.

testSuite2 :: [String]

testSuite2 =

["Dorothy admired the boy that Alice helped Atreyu",

"Dorothy admired the boy that helped",

"Dorothy admired the girl that "

++ "Atreyu helped the princess that gave the sword to"]

9.8 Adding Semantics
If we want to put parse trees to use in computational semantics, we need functions
for mapping them to logical forms, or functions for direct interpretation of parse
trees in appropriate models. To illustrate the interpretation process for parse trees,
we will define a function from parse trees to logical forms. We will not provide
full semantic coverage of our grammar. The semantics of conditional sentences,
sentence conjunctions and multiple sentence texts will be taken up in Chapter 12.
Some other extensions will be left to the reader.

Our logical form language will have terms, generalized quantifiers, abstracts,
and formulas. The terms are either constants or variables:

252 Parsing

data Term = Const String | Var Int deriving (Eq,Ord)

The generalized quantifiers are:

data GQ = Sm | All | Th | Most | Many | Few

deriving (Eq,Show,Ord)

An abstract is an LF representation of a lambda term:

data Abstract = MkAbstract Int LF deriving (Eq,Ord)

Abstracts occur in the logical forms for quantifications. A quantification consists
of a generalized quantifier and two abstracts, one for the restriction of the quantifier
and one for its body.

data LF = Rel String [Term]

| Eq Term Term

| Neg LF

| Impl LF LF

| Equi LF LF

| Conj [LF]

| Disj [LF]

| Qt GQ Abstract Abstract

deriving (Eq,Ord)

It is convenient to define show functions for these data types:

instance Show Term where

show (Const name) = name

show (Var i) = ’x’: show i

instance Show Abstract where

show (MkAbstract i lf) =

"(\\ x" ++ show i ++ " " ++ show lf ++ ")"

9.8 Adding Semantics 253

instance Show LF where

show (Rel r args) = r ++ show args

show (Eq t1 t2) = show t1 ++ "==" ++ show t2

show (Neg lf) = ’~’: (show lf)

show (Impl lf1 lf2) = "(" ++ show lf1 ++ "==>"

++ show lf2 ++ ")"

show (Equi lf1 lf2) = "(" ++ show lf1 ++ "<=>"

++ show lf2 ++ ")"

show (Conj []) = "true"

show (Conj lfs) = "conj" ++ concat [show lfs]

show (Disj []) = "false"

show (Disj lfs) = "disj" ++ concat [show lfs]

show (Qt gq a1 a2) = show gq ++ (’ ’ : show a1)

++ (’ ’ : show a2)

Next, we will match the parse rule for each category with a logical form trans-
lation rule. All sentences are of the form [S NP VP], so we only need to check for
one type of parse tree:

transS :: ParseTree Cat Cat -> LF

transS (Branch (Cat _ "S" _ _) [np,vp]) =

(transNP np) (transVP vp)

Translations for yes/no questions are of the same type as those for sentences.
There is no difference in interpretation; the difference is in use: the LF translations
of declarative sentences are for making assertions, those of yes/no questions are
for querying. Therefore we add the following:

transS (Branch (Cat _ "YN" _ _)

[Leaf (Cat "did" "AUX" _ []),s]) = transS s

transS (Branch (Cat _ "YN" _ _)

[Leaf (Cat "didn’t" "AUX" _ []),s]) = Neg (transS s)

NPs can be formed in three ways, so we have to check three patterns:

254 Parsing

transNP :: ParseTree Cat Cat ->

(Term -> LF) -> LF

transNP (Leaf (Cat "#" "NP" _ _)) = \ p -> p (Var 0)

transNP (Leaf (Cat name "NP" _ _)) = \ p -> p (Const name)

transNP (Branch (Cat _ "NP" _ _) [det,cn]) =

(transDET det) (transCN cn)

Determiners are building blocks for generalized quantifications. Here are the
determiners for the Aristotelean quantifiers, and some other determiners:

transDET :: ParseTree Cat Cat -> (Term -> LF)

-> (Term -> LF)

-> LF

transDET (Leaf (Cat "every" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt All (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "all" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt All (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "some" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt Sm (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "a" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt Sm (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "several" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt Sm (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "no" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Neg (Qt Sm (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i))))

9.8 Adding Semantics 255

transDET (Leaf (Cat "the" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt Th (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "most" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt Most (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "many" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Qt Many (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

transDET (Leaf (Cat "few" "DET" _ _)) =

\ p q -> let i = fresh[p,q] in

Neg (Qt Many (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i))))

A special case is the determiner which. It will be used to abstract over a variable
Var 0:

transDET (Leaf (Cat "which" "DET" _ _)) =

\ p q -> Conj [p (Var 0),q (Var 0)]

Common nouns can be either lexical or complex. Here are translations for these
two cases:

transCN :: ParseTree Cat Cat -> Term -> LF

transCN (Leaf (Cat name "CN" _ _)) = \ x ->

Rel name [x]

transCN (Branch (Cat _ "CN" _ _) [cn,rel]) = \ x ->

Conj [transCN cn x, transREL rel x]

Relative clauses can be of two kinds: with an explicit relative pronoun or without
one.

256 Parsing

transREL :: ParseTree Cat Cat -> Term -> LF

transREL (Branch (Cat _ "COMP" _ _) [rel,s]) =

\ x -> sub x (transS s)

transREL (Branch (Cat _ "COMP" _ _) [s]) =

\ x -> sub x (transS s)

There are two kinds of PPs: simple ones with gaps on the extraction stack, and
complex ones.

transPP :: ParseTree Cat Cat -> (Term -> LF) -> LF

transPP (Leaf (Cat "#" "PP" _ _)) = \ p -> p (Var 0)

transPP (Branch (Cat _ "PP" _ _) [prep,np]) = transNP np

Some of the patterns for VPs are the following:

transVP :: ParseTree Cat Cat -> Term -> LF

transVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat name "VP" _ [])]) =

\ t -> Rel name [t]

transVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat name "VP" _ [_]),np]) =

\ subj -> transNP np (\ obj -> Rel name [subj,obj])

transVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat name "VP" _ [_,_]),np,pp]) =

\ subj -> transNP np

(\ obj -> transPP pp

(\ iobj -> Rel name [subj,obj,iobj]))

transVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat "did" "AUX" _ []),vp]) =

transVP vp

transVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat "didn’t" "AUX" _ []),vp]) =

\x -> Neg ((transVP vp) x)

transVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat "#" "AUX" _ []),vp]) =

transVP vp

9.8 Adding Semantics 257

Exercise 9.15 Which cases are not covered by the above? Check the lexicon and write
translations for the remaining cases.

Wh-questions contain an embedded sentence with a Wh-gap. If we assume that
this gap is translated by the variable Var 0, then we can translate the Wh-question
as an abstraction over this variable:

transWH :: ParseTree Cat Cat -> Abstract

transWH (Branch (Cat _ "WH" _ _) [wh,s]) =

MkAbstract 0 (Conj [transW wh, transS s])

This leaves us with the following translation of Wh-NPs:

transW :: ParseTree Cat Cat -> LF

transW (Branch (Cat _ "NP" fs _) [det,cn]) =

transCN cn (Var 0)

transW (Leaf (Cat _ "NP" fs _))

| Masc ‘elem‘ fs = Rel "man" [Var 0]

| Fem ‘elem‘ fs = Rel "woman" [Var 0]

| MascOrFem ‘elem‘ fs = Rel "person" [Var 0]

| otherwise = Rel "thing" [Var 0]

transW (Branch (Cat _ "PP" fs _) [prep,np])

| Masc ‘elem‘ fs = Rel "man" [Var 0]

| Fem ‘elem‘ fs = Rel "woman" [Var 0]

| MascOrFem ‘elem‘ fs = Rel "person" [Var 0]

| otherwise = Rel "thing" [Var 0]

Some unfinished business remains. The rule for translation of relative clauses
uses a substitution function that replaces unbound occurrences of Var 0 by a new
term. The result is that sub x lf has type LF, and \ x -> sub x lf has type
Term -> LF.

subst :: Term -> Term -> Term

subst x (Const name) = Const name

subst x (Var n) | n == 0 = x

| otherwise = Var n

| x == Var n = error "bad substitution"

258 Parsing

sub :: Term -> LF -> LF

sub x (Rel name ts) = Rel name (map (subst x) ts)

sub x (Eq t1 t2) = Eq (subst x t1) (subst x t2)

sub x (Neg lf) = Neg (sub x lf)

sub x (Impl lf1 lf2) = Impl (sub x lf1) (sub x lf2)

sub x (Equi lf1 lf2) = Equi (sub x lf1) (sub x lf2)

sub x (Conj lfs) = Conj (map (sub x) lfs)

sub x (Disj lfs) = Disj (map (sub x) lfs)

sub x (Qt gq abs1 abs2) = Qt gq (sb x abs1) (sb x abs2)

sb :: Term -> Abstract -> Abstract

sb x (MkAbstract 0 lf) = MkAbstract 0 lf

sb x (MkAbstract n lf) = MkAbstract n (sub x lf)

The next functions are for collecting the lists of indices that have bound occur-
rences in an LF.

bInLF :: LF -> [Int]

bInLF (Rel _ _) = []

bInLF (Eq _ _) = []

bInLF (Neg lf) = bInLF lf

bInLF (Impl lf1 lf2) = bInLFs [lf1,lf2]

bInLF (Equi lf1 lf2) = bInLFs [lf1,lf2]

bInLF (Conj lfs) = bInLFs lfs

bInLF (Disj lfs) = bInLFs lfs

bInLF (Qt gq abs1 abs2) = bInAs [abs1,abs2]

bInLFs :: [LF] -> [Int]

bInLFs = nub . concat . map bInLF

List of indices that have bound occurrences in an abstract:

bInA :: Abstract -> [Int]

bInA (MkAbstract i lf) = i: bInLF lf

bInAs :: [Abstract] -> [Int]

bInAs = nub . concat . map bInA

9.8 Adding Semantics 259

The function bInLFs is used for computing a fresh index for a list of predica-
tions. Note that the function fresh is used in the definition of transDET.

freshIndex :: [LF] -> Int

freshIndex lfs = i+1

where i = foldr max 0 (bInLFs lfs)

fresh :: [Term -> LF] -> Int

fresh preds = freshIndex (map ($ dummy) preds)

where dummy = Const ""

The following function parses and translates declarative sentences.

process :: String -> [LF]

process string = map transS (parses string)

Wh-questions get a different treatment, for they translate into abstracts.

processW :: String -> [Abstract]

processW string = map transWH (parses string)

Here are some example calls:

P> process "Alice admired the princess that Atreyu gave

the sword to."

[The (\ x2 conj[princess[x2],The (\ x1 sword[x1])

(\ x1 gave[atreyu,x1,x2])])

(\ x2 admired[alice,x2])]

P> processW "To whom did Atreyu give the dwarf that shuddered?"

[(\ x0 conj[person[x0],The (\ x1 conj[dwarf[x1],shuddered[x1]])

(\ x1 give[atreyu,x1,x0])])]

The final step in the process from parsing to interpretation is left to you.

Exercise 9.16 Write functions for interpreting the logical forms from this section in an
appropriate model.

260 Parsing

9.9 Further Reading
Logics for talking about tree relations were proposed in [BGMV93] (modal logic)
and in [BRVs95] (first-order logic). The binary relations on positions that were
used in Section 9.1 can readily be described in logical terms.

Natural language parsing is assimilated to logical deduction in [PW83]. The
bible of parsing in the context of formal language theory is [AU72]. Parsing natural
language fragments with Prolog is the topic of [PS87]. Parser combinators in the
context of functional programming are introduced in [Wad85] and receive further
discussion in [Hut92]. Examples of parser combinators can also be found in [JS01].
The approach to the treatment of gaps with parser combinators in Section 9.7 is
based on [Eij03].

Formally, extraction grammars are more powerful than context-free grammars,
for they allow the definition of sequentially indexed languages. Sequentially in-
dexed languages are a proper extension of context-free languages, and also of the
linear indexed languages of [Gaz88]. We refer to [Eij07b] for further details.

A special-purpose programming language for developing multilingual natural
language applications, with parsing at the core, is Grammatical Framework, or GF.
GF is similar to Haskell, but specialized to grammar writing. See [Ran09] and
http://www.grammaticalframework.org.

10
Handling Relations and Scoping

Summary
In this chapter we will interpret verb phrases as relations of various arities, using a
type of arbitrary arity relations. The problem of encoding relations in type theory
in such a way that the usual logical operations can be applied to them (relations
should be ‘conjoinable’, as the jargon has it) has been studied extensively in the
semantic literature. We will define conjunction, disjunction, and complementation
on our relational types. Next we turn to the interpretation of determiner phrases as
functions from (n+ 1)-ary relations to n-ary relations, the interpretation of m-ary
sequences of determiner phrases as functions from (n+m)-ary relations to n-ary
relations, and to the handling of scope reversal for such functions.

10.1 Interpreting NP Lists
Instead of analysing the sentence Every unicorn ate a lettuce leaf as a relation be-
tween the CN property of being a unicorn and the VP property of eating lettuce
leaves (namely the relation of inclusion), it is also possible to look at the complex
expression Every unicorn a lettuce leaf, and interpret that as a function that
takes a relation (a denotation of a transitive verb) and produces a truth value. Sim-
ilarly, Every unicorn was fed a lettuce leaf by some fairy can be analysed as stating
that the set of unicorns is included in the set of entities that were fed a lettuce leaf
by some fairy, but it is also possible to look at the complex expression Every uni-
corn a lettuce leaf by some fairy, and even at Every unicorn a lettuce leaf

some fairy. The interpretation of Every unicorn a lettuce leaf by some fairy
is again a function from binary relations to truth values, the interpretation of Every
unicorn a lettuce leaf some fairy is a function from ternary relations to truth
values.

Following Keenan [Kee92] we call a function from properties (unary relations)
to truth values a type �1� function, a function from binary relations to truth values

261

262 Handling Relations and Scoping

a type �2� function, and, in general, a function from n-ary relations to truth values
a type �n� function.

A type �1� function f can be lifted to a function f � from (n+1)-ary relations R
to n-ary relations f �(R) by means of

f �(R) = {�d1, . . . , dn� | f({d|�d1, . . . , dn, d� ∈ R}) = 1}.

These lifted type �1� functions can then be composed by means of

f � ◦ g� = λR �→ f �(g�(R)).

Here it is assumed, of course, that R has arity ≥ 2. The lifted type �2� function
f � ◦ g� maps (n+ 2)-ary relations to n-ary relations.

Similarly, a type �n� function F can be lifted to a function from (m + n)-ary
relations to m-ary relations, by means of

F �(R) = {�d1, . . . , dm� |
F ({�dm+1, . . . , dm+n� |
�d1, . . . , dm, dm+1, . . . , dm+n� ∈ R}) = 1}.

Many type �2� functions can be decomposed in this way into pairs of type �1�
functions. E.g. the type �2� function F that interprets the complex expression Ev-
ery unicorn a lettuce leaf can be decomposed into a type �1� function g that
interprets a lettuce leaf and a type �1� function f that interprets every unicorn, for
f � ◦ g� equals F �. To illustrate this, we start with f and g; both are functions that
map unary relations to truth values.

f = λP �→ ∀x(Unicorn x → Px)

g = λQ �→ ∃y(LettuceLeaf y ∧Qy)

Next we lift these functions to functions f � and g� that map (n+1)-ary relations
to n-ary relations.

f � = λR �→{� d1, . . . , dn� | f({d|�d1, . . . , dn, d� ∈ R}) = 1}
g� = λR �→{� d1, . . . , dn� | f({d|�d1, . . . , dn, d� ∈ R}) = 1}

Now we can combine g� with a binary relation (e.g. to eat) in order to get a
unary relation (expressing to eat a lettuce leaf), which we then can combine with
f � in order to get a nullary relation, i.e. a truth value. Both these combinations

10.1 Interpreting NP Lists 263

decrease the arity of the input relation by one, or in other terms: both quantifiers
bind one argument position. Alternatively, we can compose f � and g� to a function
F � that maps (n + 2)-ary relations to n-ary relations in one step. This interprets
the complex expression Every unicorn a lettuce leaf. As an illustration, let us
look at the concrete case of composing the two type �1� functions f and g, that
map unary relations to truth values, into a type �2� function f ◦ g, that maps binary
relations to truth values. The result is

f ◦ g = λR �→ ∀x(Unicorn x → ∃y(LettuceLeaf y ∧Rxy)).

So Every unicorn a lettuce leaf can be seen as a compound quantifier that is
decomposable into the two quantifiers every unicorn and a lettuce leaf.

In [Kee92] it is demonstrated that there are cases where compound quantifiers
are not decomposable. Keenan shows that the following sentence exhibits an ex-
ample of non-decomposable type �2� quantification:

Different djinnis satisfied different wishes. (10.1)

For sentence (10.1) to make sense, we have to assume that there are at least two
djinnis. The sentence is true if there is a one-to-one correspondence between djin-
nis and sets of wishes they satisfied. Thus, Different djinnish different wishes is
interpreted as the type �2� function expressing that its argument relation R satisfies
the property that all the aR, with a ranging over djinnis, are different (here aR is
used as shorthand for {x | Rax}), i.e. the set of objects that a bears R to. So, in-
tuitively, different djinnis and different wishes cannot be interpreted independently,
so Different djinnis different wishes is not decomposable. Keenan has an inge-
nious method to prove this fact. He states and proves a theorem to the effect that
for any two type �2� functions F,G that are reducible it holds that these functions
are equal iff they act the same on Cartesian products, i.e. if for all subsets P,Q of
the domain of discourse U it holds that F (P ×Q) = G(P ×Q).

How can this be used to show that a type �2� function F is non-reducible? Here
is how, for the example of (10.1). Let F be the type �2� function that interprets
different djinnis different wishes. Pick a universe containing at least three djin-
nis d1, d2, d3 and at least two wishes w1, w2. Let P × Q be a product relation,
i.e. a relation that links every object in P to every object in Q. If there are two
djinnis not in P , then they bear P × Q to the same wishes, namely no wishes. If
there are two djinnis in P , then the wishes they bear P ×Q to are again the same,
namely Q ∩ Wish. Again, F (P × Q) = 0. Let 0 be the type �1� function that is
false for any argument. Then, by the above, F (R) = 0 ◦ 0(R) for any product
relation R. But obviously, F is different from the composition 0 ◦ 0, for F is true
of {�d1, w1�, �d2, w2�}, and 0 ◦ 0 is not. Thus, by Keenan’s theorem, F is not
reducible.

264 Handling Relations and Scoping

Here are some further examples of quantifiers that Keenan shows to be not re-
ducible.

Three knights in the castle dated the same princess. (10.2)
The women at the wedding all wore different hats. (10.3)
The trolls gave different answers to different questions. (10.4)

In this chapter we will interpret determiner phrase clusters as relation reducers,
with a cluster consisting of n NPs interpreted as a type �n� function. In the cases
where such an NP cluster interpretation is reducible to n type �1� functions, the
reduction f1 ◦ · · ·◦fn imposes a scope ordering on the NPs. This means that quan-
tifier scoping can be handled by considering different orderings of the reducing
type �1� functions, while taking care that the scope reorderings respect the relevant
argument binding constraints. E.g. recall the interpretation of Every unicorn a
lettuce leaf above. The composition f ◦ g gave the scope order of the universal
quantifier having scope over the existential quantifier. To reorder the scoping of
f ◦ g, we first define a swap operation S by means of

S := λRλxλy �→ (R y) x.

This reorders the outermost two argument places of a relation. The inverse scope
reading of f and g can now be expressed as g ◦ f ◦ S. This corresponds to

λR �→ ∃y(LettuceLeaf y ∧ ∀x(Unicorn x → Rxy)).

We will look at this way of reversing scope in a bit more detail in Section 10.5
below.

10.2 Generalized Relations
A binary relation on a set A can be viewed as a function of type A → P(A). It
maps elements a of A to subsets aR of A, where aR is again shorthand for

{x ∈ A | Rax}.

Equivalently, a binary relation can be viewed as a function of type A → A → t.
It maps elements a of A to characteristic functions χa on A, where χa is given by
χa(b) = 1 iff Rab.

Similarly, a unary relation on a set A is a function of type A → t, a ternary
relation on a set A is a function of type A → A → A → t, and so on. A special
case is a nullary relation: this is just a truth value. Note that an (n+1)-ary relation
on A can be viewed as a function from A to the type of n-ary relations over A.

10.2 Generalized Relations 265

What we want is a data type for arbitrary arity relations. Each instance of the
data type should have a definite arity, but two instances may well have different
arities.

But first, we declare the chapter module and import some relevant modules that
were defined before. With the keyword hiding we specify functions that we don’t
want to be imported.

module HRAS where

import Data.List

import Model

import FSynF hiding (Form,Term,Var,Eq,Neg,

Impl,Equi,Conj,Disj)

import TCOM

import P

We will use the following auxiliary data type RL a r.

data RL a r = Zero r

| Succ (RL a (a -> r))

This allows us to build relations starting from a given r. The two cases are r and
a → r. If we apply the constructor a second time, for RL a (a -> r), we get
a → r and a → a → r. If we apply the constructor for RL a (a -> a -> r) we
get a → a → r and a → a → a → r, and so on.

The data type we need is a particular case of this where we start out from Bool:

type REL a = RL a Bool

What this says is that a relation either is nullary, in which case it is just a Boolean
preceded by the tag Zero, or it is n-ary, with n ≥ 1. This is indicated by the tag
Succ. If a relation over objects of type a is n-ary, with n ≥ 1, then it can be viewed
as a function of type a → Rn−1, where Rn−1 indicates the type of (n− 1)-ary
relations. The arity of a relation can be determined by counting the occurrences of
Succ:

arity :: RL a b -> Int

arity (Zero _) = 0

arity (Succ r) = succ (arity r)

266 Handling Relations and Scoping

Here is a general function for applying a relation to an argument. Precondition
is that the relation is at least unary.

apply :: REL a -> a -> REL a

apply (Zero _) _ = error "no argument position left"

apply (Succ r) x = apply’ r x

apply’ :: RL a (a -> r) -> a -> RL a r

apply’ (Zero f) x = Zero (f x)

apply’ (Succ r) x = Succ (apply’ r x)

The function illustrates the need for the auxiliary data type RL a r. At the point
where apply’ (Zero f) x gets defined, Zero f is not of type REL a but of type
RL a (a -> r), for f is a function, not a Boolean.

We will also need an operation for abstraction. Note that abstraction increases
the arity by one. If f is a function that yields relations of arity 0, then we know
that f x is of the form Zero b, where the Boolean b indicates whether x is in
the relation or not. Note the extra argument for arity, and the use of an auxiliary
function abstract’, of a more general type than abstract.

abstract :: Int -> (a -> REL a) -> REL a

abstract = abstract’

abstract’ :: Int -> (a -> RL a b) -> RL a b

abstract’ 0 f = Succ (Zero (\ x -> charF (f x)))

where charF :: RL a r -> r

charF (Zero f) = f

charF (Succ _) = error "arity error"

abstract’ n f = Succ (abstract’ (n-1) (\ x -> relF (f x)))

where relF :: RL a r -> RL a (a -> r)

relF (Zero _) = error "nullary rel"

relF (Succ r) = r

Exercise 10.1 Explain why the auxiliary function abstract’ is necessary.

A binary relation over objects of type a can be viewed as a function of type
a → a → t, or, uncurried, of type (a, a) → t, a ternary relation over objects of
type a as a function of type a → a → a → t, or, uncurried, of type (a, a, a) → t,

10.2 Generalized Relations 267

and so on. Here are functions for encoding relations of various fixed arities into
RELs (it is assumed that the relations are curried).

encode0 :: Bool -> REL a

encode0 b = Zero b

encode1 :: (a -> Bool) -> REL a

encode1 f = Succ (Zero f)

encode2 :: (a -> a -> Bool) -> REL a

encode2 f = Succ (Succ (Zero f))

encode3 :: (a -> a -> a -> Bool) -> REL a

encode3 f = Succ (Succ (Succ (Zero f)))

Conversely, we can map 0-ary relations to type Bool, unary relations to type
a -> Bool, and so on. Note that we need a separate decoding function for each
arity, because the decoding fixes the result type. Here are two examples:

decode0 :: REL a -> Bool

decode0 (Zero b) = b

decode0 r = error ("relation of arity " ++ ar)

where ar = show (arity r)

decode1 :: REL a -> a -> Bool

decode1 (Succ (Zero f)) = f

decode1 r = error ("relation of arity " ++ ar)

where ar = show (arity r)

We can think of REL a as curried: relations of this type take their arguments
one by one. Here is a general function for list-uncurrying them. A list-uncurried
function for an arbitrary arity relation is a function that takes it arguments as a list,
where the length of the list is the arity. The general type is [a] -> Bool.

listUncurry :: REL a -> [a] -> Bool

listUncurry (Zero b) [] = b

listUncurry r@(Succ _) (x:xs) = listUncurry (apply r x) xs

If there is a finite domain, it is of course also possible to represent a function

268 Handling Relations and Scoping

of arity n as a list of lists, with the element lists all of length n. The following
function gives a flexible means of representing a relation as a list of lists.

rel2lists :: [a] -> REL a -> [[a]]

rel2lists domain (Zero b) = [[] | b]

rel2lists domain (Succ r) =

[x: tuple | x <- domain,

tuple <-

rel2lists domain (apply (Succ r) x)]

Exercise 10.2 Explain why the last line of the code of rel2lists does apply (Succ r)
instead of just r.

So why didn’t we use the type [[a]] as the type of arbitrary arity relations in
the first place? The trouble is that the type [[a]] does not guarantee a fixed arity
in the way REL a does. Translating from REL a to [[a]] yields lists that are all
of the same length, with the length determined by the arity of the relation. But the
type [[a]] is more general than that. List members can have different lengths,
which is undesirable for the representation of relations.

For good measure, here are conversions from unary, binary and ternary predi-
cates to lists of lists:

upred2lists :: [a] -> (a -> Bool) -> [[a]]

upred2lists domain p = [[x] | x <- filter p domain]

bpred2lists :: [a] -> (a -> a -> Bool) -> [[a]]

bpred2lists domain p = [[x,y] | x <- domain,

y <- domain,

p x y]

tpred2lists :: [a] -> (a -> a -> a -> Bool) -> [[a]]

tpred2lists domain p = [[x,y,z] | x <- domain,

y <- domain,

z <- domain,

p x y z]

This gives:

HRAS> tpred2lists entities give

[[A,E,S],[T,S,X]]

10.3 Boolean Algebras of Relations 269

How do we convert from lists of lists (all of the same length) to RELs? First note
that for this we have to know the arity, for if the arity is unknown, there is no way
of dealing with the empty list of lists. The following function gives the conversion.

lists2rel :: Eq a => Int -> [[a]] -> REL a

lists2rel 0 [[]] = Zero True

lists2rel 0 [] = Zero False

lists2rel n xss = abstract (n-1) r

where r x = let yss = filter (\ xs -> head xs == x) xss

in lists2rel (n-1) (map tail yss)

When this is applied to a list of lists that are not all of the same length, a program
error is generated (because of the attempt to access the head of an empty list).
Finally, here is a converse to list uncurrying:

listCurry :: Int -> ([a] -> Bool) -> REL a

listCurry 0 f = Zero (f [])

listCurry n f = abstract (n-1) g

where g x = listCurry (n-1) (h x)

h x xs = f (x:xs)

10.3 Boolean Algebras of Relations

In this section we define generalizations of the Boolean operations to relations.
Conjoining of relations of the same arity is a generalization of conjunction for
Booleans. The result of conjoining relations r and s is called the Boolean meet of
r and s, and is often denoted with r � s. It is implemented in terms of a general
function for lifting relations (of the same arity) for a given Boolean operation:

liftOp :: (Bool -> Bool -> Bool) -> REL a -> REL a -> REL a

liftOp op (Zero b) (Zero c) = Zero (op b c)

liftOp op r@(Succ _) s@(Succ _) =

abstract n (\ x -> liftOp op (apply r x) (apply s x))

where n = arity r - 1

liftOp op _ _ = error "arity mismatch"

270 Handling Relations and Scoping

In terms of this, relation conjunction is defined by doing a relational lift with
conjunction:

conjR :: REL a -> REL a -> REL a

conjR = liftOp (&&)

Disjoining relations works the same way. The result of disjoining r and s is
called the Boolean join of r and s, and is denoted with r � s.

disjR :: REL a -> REL a -> REL a

disjR = liftOp (||)

Finally, here is an operation for taking the complement of a relation. The com-
plement (negation) of a relation r is often written as r.

negR :: REL a -> REL a

negR (Zero b) = Zero (not b)

negR r@(Succ _) = abstract n (\x -> negR (apply r x))

where n = arity r - 1

These definitions illustrate that relations of the same arity form a Boolean alge-
bra [DP90, Hal63].

These operations are what is needed for performing logical relations on complex
VPs, to get interpretations for to hurt but not kill, to love or admire, to give or sell,
and so on. If Hurt is the binary relation that interprets to hurt, and Kill the binary
relation that interprets to kill, then Hurt � Kill interprets to hurt but not kill, and so
on.

Here is an illustration using the implementation:

HRAS> rel2lists entities (disjR (encode2 love) (encode2 help))

[[B,S],[D,M],[R,S],[S,B],[V,V],[W,W],[Y,E]]

Note that the generalized operations for conjunction, disjunction, and negation
are in fact generalizations of conjunction, disjunction, and negation for Booleans.
Booleans can be viewed as 0-ary relations, and we have generalized the operations
to n-ary relations, for arbitrary n.

Exercise 10.3 Define and implement the relation of entailment between n-ary relations.

10.4 Flexible Types for NP Interpretations 271

10.4 Flexible Types for NP Interpretations
There is extensive semantic literature on the need for flexible type assignment to
syntactic categories (see, e.g., [Hen93]). Many of the arguments for this have to
do with the need to account for various scoping ambiguities resulting from the
interaction of quantified NPs with other quantified NPs or with intensional verb
contexts.

Now note that the type REL a is flexible, for this type can do duty for the whole
family of types t, a → t, a → a → t, and so on. We intend to use the flexible type
REL a for the interpretations of verbs, and we will perform a ‘flexible lift’ on NP
interpretations, so that an NP can be viewed as an operation on verb meanings, i.e.
as a function of type REL a -> REL a. For this perspective on the semantics of
NPs, compare [Kee87, Kee92].

Let’s define a type for generalized quantifier operations. We will call them KQ,
for Keenan quantifier:

type KQ a = REL a -> REL a

An important conversion function that we need is that from a characteristic func-
tion of properties to a function that maps relations to relations. We will use this to
lift the type of NP interpretations.

Consider the problem of applying a function of type (a -> Bool) -> Bool

not to a property (type a -> Bool), but to a relation with arity > 1. Note that
a -> Bool can be viewed as the type of a relation of arity 1, and Bool as the type
of a relation of arity 0. Thus, (a -> Bool) -> Bool is the type of reduction of
1-ary to 0-ary relations.

So how about the general case: the reductions of (n + 1)-ary relations to n-ary
relations? The general shape of a relation of arity (n+ 1) is

λx1 . . .λxnλy �→ r. (10.5)

Here, r is a Boolean expression (i.e. of type Bool).
Converting a property function f into a relation transformer is done by reducing

that relation by recursion. If the argument relation has the form λy �→ r, with r
of type Bool, then property function f can be applied to it, yielding a Boolean
f (λy �→ r). If the argument relation has the form λx1 . . .λxnλy �→ r, the new
relation is given by (10.6).

λx1 . . .λxn �→ f (λy �→ r) (10.6)

So this is what reduction of a relation λx1 . . .λxnλy �→ r should yield. Our
obvious next question is: how is the operation defined that yields this result?

272 Handling Relations and Scoping

The recursion that defines the operation R that reduces f with λx1 . . .λxnλy �→
r can be expressed as follows:

R f (λy �→ r) := f (λy �→ r)

R f (λx1 . . .λxnλy �→ r) := λx �→ R f ((λx1 . . .λxnλy �→ r) x).

This is precisely the conversion that we need for lifting the type of generalized
quantifiers to that of relation transformers. Hence the name lifQ of the implemen-
tation.

liftQ :: ((a -> Bool) -> Bool) -> KQ a

liftQ f r

| arity r == 0 = error "no argument position left"

| arity r == 1 = Zero (f (decode1 r))

| otherwise = abstract (n-1) g

where g x = liftQ f (apply r x)

n = arity r - 1

Note that if rel has arity (n+1), then liftQ f rel has arity n. Thus, liftQ f

is indeed a reducer of (n+ 1)-arity relations to n-ary relations.

10.5 Scope Reversal of Quantifiers
We have defined generalized negation and generalized quantification as maps from
relations to relations, i.e. operators of type REL a -> REL a. A difference be-
tween these two kinds of operators is that generalized negation does not reduce the
arity of its argument relation, whereas generalized quantification does. The rela-
tional operator interpretation of an NP reduces the arity of its argument relation
by 1, for applying the generalized quantifier to the relation consumes one of the
arguments of the relation.

Now suppose we want to swap the scopes of two generalized quantifier oper-
ations, as sketched in Section 10.1 above. We can view the scope swap as an
operation that takes two Keenan quantifiers and produces a new Keenan quantifier
that has the effect of applying the quantifiers with their order reversed. Thus, the
swap takes two operators Q1 and Q2 and creates a new operator that should express
the effect of giving Q2 scope over Q1.

Recall that we could not simply define the scope swapping operation as Q2 ·Q1,
for performing Q2 after Q1 and thereby giving Q2 wide scope. The problem was
that this switches the argument positions that the operators work on. Look at it
like this. In Q1(Q2R), Q2 gets applied to R first, so it applies to the outermost
argument of R. Suppose R has arity n, then Q2 applies to the n-th argument, and

10.6 Interpreting Verbs as Arbitrary Arity Relations 273

produces a new relation Q2R of arity (n − 1). Next, Q1 applies to the outermost
argument of Q2R, and produces a new relation Q1(Q2R) of arity (n− 2).

Now suppose we want to perform the applications in the opposite order. Then
Q1 has to apply to R first, but Q1 still should apply to the (n − 1)-th argument
position of R. Next, we should get a new relation Q1R, and Q2 should apply to
what used to be the n-th argument of R. To bring this about, we have to define the
reverse scoping as follows:

Q2 ·Q1 · S,

where S is the swap operation as defined in Section 10.1:

S := λRλxλy �→ (R y) x.

Since we have implementations of abstraction and application of relations, it is
easy to give an implementation of this argument swap operation:

swap :: REL a -> REL a

swap r = abstract n (\ x ->

abstract (n-1) (\ y ->

(apply (apply r y) x)))

where n = arity r - 1

And here is the implementation of quantifier scope reversal itself:

qscopeReversal :: KQ a -> KQ a -> KQ a

qscopeReversal q1 q2 = q2 . q1 . swap

This says that for scope reversal, we first swap the two outermost argument
places of the relation, and next apply the two quantifiers in reversed order.

For a scope reversal of a quantifier and a negation no argument swapping is
needed, as the negation operation is not an arity reducer.

10.6 Interpreting Verbs as Arbitrary Arity Relations
We will interpret verbs as arbitrary arity relations, type REL a. In a full-fledged
theory of thematic role assignment, the arity of the relation will depend on the
number of realized theta roles of the verb, but we will gloss over the details.

Theta theory is the theory of the way in which thematic roles like Agent, Patient
or Theme, Cause, Instrument, and so on, function in the thematic structure of pred-
icates in the lexicon and, more generally, in syntax. In Government and Binding
theory [Cho81] and in the later Minimalist Program [Cho92], lexical entries for

274 Handling Relations and Scoping

verbs are provided with a theta grid in which the thematic roles are given that the
verb assigns. The verb give, e.g., would assign three thematic roles, one for Agent,
one for Goal, and one for Theme.

Although thematic relations have been with us for a long time – early references
for an analysis in terms of ‘abstract thematic roles’ are [Gru65] and [Jac72] – it
seems fair to say that most linguistic work in theta theory is informal and specula-
tive. Also, the theory of thematic roles has received relatively little attention from
formal semanticists (with [Dow89] as one of the exceptions). There is no general
agreement on the number of theta roles that should be distinguished. [Rei00] came
up with the proposal to link theta roles to feature clusters defined in terms of ±c (c
for ‘cause’) and ±m (m for ‘mental’). There are 9 consistent subsets of the feature
set {+c,−c,+m,−m}, and they can get linked to the following nine theta roles:

Agent [+c+m] Instrument [+c−m]
Experiencer [−c+m] Patient, Theme [−c−m]
Cause [+c] Animate [+m]
Source, Subject Matter [−m] Goal [−c]
None []

The thematic role assignments of a verb are part of the link between language
and reality (the realm of things outside language that language is about). To imple-
ment thematic roles by means of type constraints in semantics would be a mistake,
for in Little Mook kicked the door and Little Mook kicked Alice, the door and Alice
are both in the thematic role of Patient, but this cannot be taken to imply that the
door and Alice have to be things of the same kind (except in the trivial sense of
being the type of things that can receive kicks).

Verb interpretations have a number of roles, identifiable by indices 1, . . . , n.
Here is an example of a predicate:

give 1 2 3
Agent Goal Theme

If Atreyu gives Dorothy a sword, then Atreyu is the agent, Dorothy is the goal,
and the sword is the theme. Of course, this is just for illustration. There may
also be a theta role for location or time, and perhaps there are still other roles. In
general, to interpret a predicate with n thematic roles, the predicate will get as its
denotation an n-ary relation.

For a rudimentary version of Theta Theory it is enough to be able to extract a
new relation from a given relation by specifying a list of argument positions. For
the implementation we need to be able to pick the entity at an index from a list.
For this, we use a predefined Haskell function. The only snag is that !! computes
from index 0, whereas we would like to start at index 1.

10.6 Interpreting Verbs as Arbitrary Arity Relations 275

role :: Int -> [a] -> a

role n es = es !! (n-1)

Extracting a list of roles from a list:

roles :: [Int] -> [a] -> [a]

roles [] _ = []

roles (i:is) es = role i es : roles is es

Using this, we implement the extraction function first for lists of lists:

extr :: Eq a => [Int] -> [[a]] -> [[a]]

extr is ess = nub [roles is es | es <- ess]

The following exercise explains why nub is necessary in this definition.

Exercise 10.4 Find an example of a list of lists relList, without duplicates, and with all
members of relList of the same length, and an example of a list of positive integers is,
such that [roles is es | es <- relList] has duplicates.

Next, we can convert this to the type Rel by means of rel2lists and lists2rel,
as follows:

extract :: Eq a => [a] -> [Int] -> REL a -> REL a

extract domain is r =

lists2rel n (extr is (rel2lists domain r))

where n = length is

Thus, if r is a ternary relation, then extract [2,1,3] r is the relation that is
like r except for the fact that its first two argument positions are swapped. We will
use the extraction function below in the implementation of scope reversals.

extr2lists :: Eq a => [a] -> [Int] -> REL a -> [[a]]

extr2lists domain is =

rel2lists domain . extract domain is

Some examples to check what we have done:

HRAS> extr2lists entities [1,2] (encode2 love)

[[B,S],[R,S],[Y,E]]

276 Handling Relations and Scoping

HRAS> extr2lists entities [2,1] (encode2 love)

[[E,Y],[S,B],[S,R]]

HRAS> extr2lists entities [1,1] (encode2 love)

[[B,B],[R,R],[Y,Y]]

HRAS> extr2lists entities [1,2,3] (encode3 give)

[[A,E,S],[T,S,X]]

HRAS> extr2lists entities [2,3,1] (encode3 give)

[[E,S,A],[S,X,T]]

Next, we turn to the relational interpretation of verb phrases. First we lump all
kinds of verbs together in a single data type.

data VerbPhrase = V1 VP | V2 TV | V3 DV

instance Show VerbPhrase where

show (V1 vp) = show vp

show (V2 vp) = show vp

show (V3 vp) = show vp

And here is how to interpret them all as arbitrary arity relations:

relVP :: VerbPhrase -> REL Entity

relVP (V1 Laughed) = encode1 laugh

relVP (V1 Cheered) = encode1 cheer

relVP (V1 Shuddered) = encode1 shudder

relVP (V2 Loved) = encode2 love

relVP (V2 Admired) = encode2 admire

relVP (V2 Helped) = encode2 help

relVP (V2 Defeated) = encode2 defeat

relVP (V3 Gave) = encode3 give

10.7 Relational Interpretation of NPs

Generalized quantifier interpretations of NPs were given in Chapter 7, by means
of the function intNP. All we have to do now is to lift these to the type of Keenan
quantifiers:

10.7 Relational Interpretation of NPs 277

relNP :: NP -> KQ Entity

relNP = liftQ . intNP

The next step is to interpret a list of NPs as a Keenan quantifier. If the NP list is
empty, the Keenan quantifier is just the identity function on relations (note that this
is a Keenan quantifier). If the NP list is non-empty, we use function composition.
This works because each NP is interpreted as a Keenan quantifier, and these Keenan
quantifiers are relation transforming functions. So it does make sense to apply these
functions one by one.

relNPs :: [NP] -> KQ Entity

relNPs [] = id

relNPs (np:nps) = relNP np . relNPs nps

This definition has the effect of giving the first NP on the list scope over the
other NPs, for the relation transformer that is applied last will have widest scope.
So in fact what we have done is implement a fixed scoping mechanism where the
first element on the list outscopes the next, and so on. If the order of the NP list
reflects surface word order, our scoping mechanism gives surface scope order. For
generating other possible scopings, this will need to be modified. But first we give
an interpretation mechanism for sentences. We will assume, just for simplicity of
exposition, that a sentence consists of a list of NPs and a VP.

relSent :: [NP] -> VerbPhrase -> REL Entity

relSent nps vp = (relNPs nps) (relVP vp)

If all goes well and the arity of the verb phrase relation matches the length of the
NP list, the outcome of relSent is a nullary relation, i.e. a Boolean. This gives
the following evaluation function:

eval :: [NP] -> VerbPhrase -> Bool

eval nps vp

| length nps == arity (relVP vp) = decode0 (relSent nps vp)

| otherwise = error "arity mismatch"

Here are some examples:

HRAS> eval [NP1 Some Dwarf] (V1 Cheered)

False

278 Handling Relations and Scoping

HRAS> eval [NP1 Every Dwarf,SnowWhite] (V2 Loved)

True

HRAS> eval [NP1 Every Dwarf,NP1 Some Giant] (V2 Loved)

False

HRAS> eval [NP1 Some Giant,NP1 Every Dwarf] (V2 Loved)

False

HRAS> eval [NP1 Some Giant,NP1 Every Dwarf] (V2 Helped)

False

HRAS> eval [NP1 Some Giant,NP1 Some Dwarf] (V2 Helped)

False

HRAS> eval [NP1 Every Dwarf,NP1 Some Girl] (V2 Admired)

True

HRAS> eval [NP1 Some Girl,NP1 Every Dwarf] (V2 Admired)

False

HRAS> eval [NP1 Some Girl,NP1 Some Sword,NP1 The Giant]

(V3 Gave)

False

10.8 Quantifier Scoping
We show in this section that the ordered list of realized theta roles on a verb concept
allows us to formalize and implement a particularly simple and elegant quantifier
scoping algorithm. Our approach to scoping can be viewed as a ‘clean’ version
of Richard Montague’s quantifying-in rule (cf. page 181). The cleanup is made
possible by the fact that our relational approach avoids the use of free variables
in syntax or semantics. Our quantifier scoping algorithm can also be viewed as
a ‘clean’ version of the quantifier storage approach proposed in [Coo75, Coo83]
(cleaner, again, because no free variables are involved).

If we want to consider all different scope orders of n quantifiers, then we have
to look at the n! = 1 × · · · × n different permutations of the quantifiers. We start
out from a general function that gives all the permutations of a finite list:

perms :: [a] -> [[a]]

perms [] = [[]]

perms (x:xs) = concat (map (insrt x) (perms xs))

where

insrt :: a -> [a] -> [[a]]

insrt x [] = [[x]]

insrt x (y:ys) = (x:y:ys) : map (y:) (insrt x ys)

10.8 Quantifier Scoping 279

This gives:

HRAS> perms [1,2,3]

[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]

In our case, where we have verb concepts with realized theta roles together with
lists of NPs corresponding to the realized roles, all we have to do is permute the
theta role list and the NP list in parallel.

permsInPar :: [a] -> [b] -> [([a],[b])]

permsInPar xs ys = map unzip (perms (zip xs ys))

This gives:

HRAS> permsInPar [1,2,3] [5,6,7]

[([1,2,3],[5,6,7]),([2,1,3],[6,5,7]),([2,3,1],[6,7,5]),

([1,3,2],[5,7,6]),([3,1,2],[7,5,6]),([3,2,1],[7,6,5])]

Now we can permute NP lists and adjust relations to the permutation, in parallel,
as follows.

permRelNPs :: Eq a =>

[a] ->

REL a ->

[NP] -> [([Int],REL a,[NP])]

permRelNPs domain rel nps =

[(perm,extract domain perm rel,pnps) |

(perm,pnps) <- permsInPar [1..length nps] nps]

The first element of the result triple is a list indicating the way surface scope or-
der got permuted, the second element gives the relation with permuted theta roles,
and the third element gives the permuted NP list.

The scope algorithm will produce a list of pairs consisting of an indication of the
way in which surface order got permuted, and a Boolean for the truth value of the
interpretation of the sentence under this scope ordering. To generate all scopings of
a simple sentence we permute its NP list (the list of NPs consisting of the sentence
subject together with the list of verb complements) in parallel with the roles of the
relation interpreting the verb, and evaluate the results.

280 Handling Relations and Scoping

allScopings :: [NP] -> VerbPhrase -> [([Int],Bool)]

allScopings nps vp =

[(perm, decode0 ((relNPs pnps) newrel))

| (perm, newrel, pnps) <-

permRelNPs entities (relVP vp) nps,

arity (relVP vp) == length nps]

This gives:

HRAS> allScopings [NP1 No Dwarf,NP1 Some Girl] (V2 Admired)

[([1,2],False),([2,1],True)]

This indicates that under the surface scope order reading of the NPs the sentence
is false in the example model, but under the reverse scope order reading of the NPs
(‘For some girl there is no dwarf who admires her’) the sentence is true.

Exercise 10.5 In our treatment of the semantics, we do direct interpretation in the model.
As an alternative to this, implement a translation function from NP lists and Verb Phrases
to lists of logical forms, with different logical forms for different scopings.

10.9 Underspecified Logical Form
Instead of direct interpretation we can also look at scoping at the level of logical
forms. We will reuse the logical forms from Chapter 9. The counterpart of an
arbitrary arity relation is a relational logical form:

data RForm = MkRForm [Int] LF deriving Eq

instance Show RForm where

show (MkRForm [] lf) = show lf

show (MkRForm is lf) = " \\" ++ show (map Var is)

++ " -> " ++ show lf

A relational form is basically a lambda abstract over a list of individual vari-
ables in a logical form, and the show function is designed to make this clear. It is
important to be able to compute fresh variable indices for relational forms.

freshIdx :: RForm -> Int

freshIdx (MkRForm _ lf) = freshIndex [lf]

10.9 Underspecified Logical Form 281

Keenan quantifiers at the logical form level are functions from relational forms
to relational forms:

type KQLF = RForm -> RForm

Such functions cannot be displayed directly. To remedy this, we define a data
type KOp of Keenan operators, and implement a show function for them. We can
display them by means of relational abstraction, where the abstracted relation has
an arbitrary type. The Int argument of the operator sets the Keenan type of the
operation.

data KOp = MkKOp Int KQLF

instance Show KOp where

show (MkKOp n q) =

"\\ R -> " ++ show (q (MkRForm is (Rel "R" is’)))

where k = freshIdx rform

rform = q (MkRForm js (Rel "R" js’))

js = take n (repeat 0)

js’ = map Var js

is = map (+k) [0..n-1]

is’ = map Var is

To see what this does, consider the operation of negation, viewed as a Keenan
quantifier of type �0�.

neg :: KQLF

neg (MkRForm is lf) = MkRForm is (Neg lf)

ng :: KOp

ng = MkKOp 0 neg

The operator can be displayed, as follows:

HRAS> ng

\ R -> ~R[]

Lifting a NP logical form to a Keenan quantifier logical form is done by:

282 Handling Relations and Scoping

liftKQLF :: ((Term -> LF) -> LF) -> KQLF

liftKQLF np (MkRForm [] lf)

= error "No argument position left"

liftKQLF np (MkRForm (i:is) lf)

= MkRForm is (np (\ x -> (subi i x lf)))

This uses substitution for an index, which is a generalization of the substitution
function subst from Chapter 9.

substi :: Int -> Term -> Term -> Term

substi i x (Const name) = Const name

substi i x (Var n) | n == i = x

| otherwise = Var n

| x == Var n = error "bad substitution"

subi :: Int -> Term -> LF -> LF

subi i x (Rel name ts) = Rel name (map (substi i x) ts)

subi i x (Eq t1 t2) = Eq (substi i x t1) (substi i x t2)

subi i x (Neg lf) = Neg (subi i x lf)

subi i x (Impl lf1 lf2) = Impl (subi i x lf1) (subi i x lf2)

subi i x (Equi lf1 lf2) = Equi (subi i x lf1) (subi i x lf2)

subi i x (Conj lfs) = Conj (map (subi i x) lfs)

subi i x (Disj lfs) = Disj (map (subi i x) lfs)

subi i x (Qt gq abs1 abs2) =

Qt gq (sbi i x abs1) (sbi i x abs2)

sbi :: Int -> Term -> Abstract -> Abstract

sbi i x (MkAbstract j lf)

| i == j = MkAbstract 0 lf

| otherwise = MkAbstract j (subi i x lf)

Logical forms for verb phrases are constructed as usual:

lfVerbPhrase :: VerbPhrase -> RForm

lfVerbPhrase (V1 Laughed) =

MkRForm [1] (Rel "laugh" [Var 1])

lfVerbPhrase (V1 Cheered) =

MkRForm [1] (Rel "cheer" [Var 1])

10.9 Underspecified Logical Form 283

lfVerbPhrase (V1 Shuddered) =

MkRForm [1] (Rel "shudder" [Var 1])

lfVerbPhrase (V2 Loved) =

MkRForm [1,2] (Rel "love" [Var 2,Var 1])

lfVerbPhrase (V2 Admired) =

MkRForm [1,2] (Rel "admire" [Var 2,Var 1])

lfVerbPhrase (V2 Helped) =

MkRForm [1,2] (Rel "help" [Var 2,Var 1])

lfVerbPhrase (V2 Defeated) =

MkRForm [1,2] (Rel "defeat" [Var 2,Var 1])

lfVerbPhrase (V3 Gave) =

MkRForm [1,2,3] (Rel "give" [Var 3,Var 2,Var 1])

These can be displayed nicely:

HRAS> lfVerbPhrase (V3 Gave)

\[x1,x2,x3] -> give[x3,x2,x1]

Translation of Noun Phrases proceeds by lifting their Montague-style logical
forms to the level of Keenan quantifiers.

trNP :: NP -> KQLF

trNP = liftKQLF . lfNP

Montague style logical forms are given by:

lfNP :: NP -> (Term -> LF) -> LF

lfNP SnowWhite = \ p -> p (Const "SnowWhite")

lfNP Alice = \ p -> p (Const "Alice")

lfNP Dorothy = \ p -> p (Const "Dorothy")

lfNP Goldilocks = \ p -> p (Const "Goldilocks")

lfNP LittleMook = \ p -> p (Const "LittleMook")

lfNP Atreyu = \ p -> p (Const "Atreyu")

lfNP (NP1 det cn) = (lfDET det) (lfCN cn)

Again, if we make these Keenan quantifiers into operators of the right type, we
can display them:

284 Handling Relations and Scoping

opNP :: NP -> KOp

opNP = MkKOp 1 . trNP

This gives:

HRAS> opNP Alice

\ R -> R[Alice]

HRAS> opNP (NP1 Some Dwarf)

\ R -> Some (\ x1 dwarf[x1]) (\ x1 R[x1])

Logical forms for CNs are as usual:

lfCN :: CN -> Term -> LF

lfCN Girl = \ t -> Rel "girl" [t]

lfCN Boy = \ t -> Rel "boy" [t]

lfCN Princess = \ t -> Rel "princess" [t]

lfCN Dwarf = \ t -> Rel "dwarf" [t]

lfCN Giant = \ t -> Rel "giant" [t]

lfCN Wizard = \ t -> Rel "wizard" [t]

lfCN Sword = \ t -> Rel "sword" [t]

lfCN Dagger = \ t -> Rel "dagger" [t]

Logical forms for determiners are the following:

lfDET :: DET -> (Term -> LF) -> (Term -> LF) -> LF

lfDET Some = \ p q -> let i = fresh[p,q] in

Qt Sm (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

lfDET Every = \ p q -> let i = fresh[p,q] in

Qt All (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

lfDET No = \ p q -> let i = fresh[p,q] in

Neg (Qt Sm (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i))))

lfDET The = \ p q -> let i = fresh[p,q] in

Qt Th (MkAbstract i (p (Var i)))

(MkAbstract i (q (Var i)))

Again, we consider a list of NPs followed by a verb phrase as a sentence. Here
are logical forms for sentences.

10.10 Further Reading 285

lfSent :: [NP] -> VerbPhrase -> RForm

lfSent [] vp = lfVerbPhrase vp

lfSent (np:nps) vp = trNP np (lfSent nps vp)

This gives:

HRAS> lfSent [Alice] (V1 Shuddered)

shudder[Alice]

HRAS> lfSent [Alice,Dorothy] (V2 Loved)

love[Alice,Dorothy]

HRAS> lfSent [NP1 Some Dwarf,SnowWhite] (V2 Loved)

Some (\ x1 dwarf[x1]) (\ x1 love[x1,SnowWhite])

The advantage of the present approach is that we can also represent underspeci-
fied logical forms, like this:

uForm :: [NP] -> VerbPhrase -> ([KOp],RForm)

uForm nps vp = (f nps, lfVerbPhrase vp)

where f = map (MkKOp 1 . trNP)

An underspecified form consists of a list of Keenan operators followed by a
relational form that the operators have to apply to. By permuting the order in
tandem with adjustment of the relational form, all the possible readings are created.

HRAS> uForm [NP1 Some Dwarf,NP1 Every Princess] (V2 Loved)

([\ R -> Some (\ x1 dwarf[x1]) (\ x1 R[x1]),

\ R -> All (\ x1 princess[x1]) (\ x1 R[x1])],

\[x1,x2] -> love[x2,x1])

10.10 Further Reading
In [Mus89a, Mus89b] it is shown that relations instead of functions can be taken
as the basic ingredients of type theory. Our approach is slightly different, for our
implementation of relations is based on recursive data types. Recursive data types
are treated in any textbook on functional programming. See, e.g., [RL99] for an
account of recursive data types in Haskell.

The linguist Ed Keenan pointed out the importance of type �n� functions for
natural language semantics. See [Kee92] for many examples of irreducible type
�n� functions, i.e. functions of type �n� that cannot be represented as compositions
of unary functions. See [BS94] for graphical representations of irreducibility ar-
guments. The notion of (ir)reducibility is generalized in [Eij05], extending work

286 Handling Relations and Scoping

of [Dek03]. A quantifier is reducible if it can be represented as a composition
of quantifiers of lesser, but not necessarily unary, types. [Eij05] proposes a di-
rect criterion for reducibility, and establishes a normal form theorem for reduction.
With these formal tools it can be established that natural language has examples
of type �n� quantificational expressions that cannot be reduced to any composi-
tion of quantifiers of lesser degree. A comprehensive overview of the semantics of
quantification, in natural language and in logic, is given in [PW06].

There is a vast literature on ambiguity, underspecification, and logical form, with
fancy names like Underspecified Discourse Representation Theory and Minimal
Recursion Semantics; see [DP96] for an overview. We believe that the sketch
in Section 10.9 captures the essence of the issues involved. It certainly makes
clear that claims to the effect that lambda calculus is unsuitable for representing
underspecification are unfounded.

11
Continuation Passing Style Semantics

Summary

In this chapter we are going to show an alternative way of treating quantifiers and
their scoping, based on the concept of continuations. Continuations in computer
science abstract over the state of the computation, and add the future computation
from the present state as an extra parameter. The chapter starts with a section on
continuation style programming. Next, we move to applications in computational
semantics. Continuations in computational linguistics abstract over the linguistic
context of an expression and introduce it as an explicit parameter in the meaning
computation. We will see how computing with continuations will allow quantifiers
in object position to take scope over the whole sentence, and how quantifier scope
ambiguities can be derived by imposing different regimes on the order in which the
quantifier meanings are computed.

module CPSS where

import FSynF

import Model

import MCWPL

11.1 Continuation Passing Style Programming

To see how continuations work in Haskell, let us start with the simplest possible
example: a function of type a -> b.

To lift a function f of this type to a continuation passing style (CPS) function
means that instead of just letting f compute its value for some argument x, we pass

287

288 Continuation Passing Style Semantics

that value to some arbitrary other function that encodes ‘what to do next’. Here is
a general way of doing that:

mkc :: (a -> b) -> a -> (b -> r) -> r

mkc f x next = next (f x)

Let us use this for applying the powers of two function (2^) to an argument,
and next show the result:

CPSS> mkc (2^) 4 show

"16"

Similarly, we can apply the function to an argument, and next apply it again:

CPSS> mkc (2^) 4 (2^)

65536

If we look more closely at mkc, we see that this function can be viewed as a com-
bination of application and argument raising, as follows:

raise :: a -> (a -> r) -> r

raise x = \ f -> f x

mkc’ :: (a -> b) -> a -> (b -> r) -> r

mkc’ f x = raise (f x)

We see that raise lifts types to CPS value types, the type of a CPS value being
(a -> r) -> r. In other words: a CPS value is a thing that you have to apply a
function of type a -> r to in order to get a result of type r.

Where have we seen this argument raising before? Exactly, this is how Mon-
tague grammar deals with proper names to assimilate them to the type of gener-
alized quantifiers. So if it is the case, as Reynolds [Rey93] claims, that continua-
tions were invented over and over again in computer science, then the person who
reinvented them first for natural language semantics was, without doubt, Richard
Montague.

A typical use of continuation passing style programming is for implementing
computations which can be interrupted. Error handling is a prime example. To see
how this is done in Haskell we advise you to have a look at the Haskell Continua-
tion monad.

11.2 Continuations as Abstractions over Context 289

11.2 Continuations as Abstractions over Context
In the semantics we gave in 7.5, a quantificational NP like every dwarf denotes a
function of type (e → t) → t. Also the denotation of non-quantificational NPs is
lifted to that type. As an example, recall the denotation of Alice:

λP �→ (P a)

This term denotes a function that takes the linguistic context of the NP Alice and
plugs the individual constant corresponding to Alice into that context.

The treatment of NP denotations as abstractions over NP contexts was devised
by Montague in order to give a unified treatment of quantificational and non-
quantificational NPs. But we do not need to restrict this strategy to NPs; we can
extend it to expressions of other categories as well.

Suppose we are computing the meaning of

[S Alice [VP helped Dorothy]].

Let us start with the NP Alice again. Its linguist context is helped Dorothy.
It denotes a predicate with one free argument slot. During the meaning compu-
tation this slot will be filled with the individual constant corresponding to Alice.
Abstracting over this predicate we reach at the denotation we mentioned above:
λP �→ (P a), with P being of type e → t. We already know that we can do this
for every NP. So the NP Dorothy has a very similar denotation: λP �→ (P d). It is
an abstraction over the linguistic context of Dorothy, which, in this case, is Alice
helped , i.e. again a predicate which only needs to be applied to an NP denotation
in order to yield a full sentence.

Now we can apply exactly the same treatment to the verb helped: we can say
that the meaning of helped is an abstraction over the linguistic context it appears
in, thus a function that takes something that requires a verb meaning in order to
yield a full sentence. So analogous to NPs, we can specify the meaning of helped
as λP�→ (P Help), where Help is the two-place predicate that helped denotes, and
P is the linguistic context of helped. In the above sentence this is Alice Dorothy.
Now this context is of course of another type than the context of an NP, because it
is applied to a verb of type e → e → t. A meaning we could assign to Alice
Dorothy, that instantiates this type, is λP �→ ((P d) a), i.e. a function that takes
a predicate of type e → e → t (a transitive verb denotation) and applies it to the
individual constants corresponding to Dorothy and Alice. The type of this function
is (e → e → t) → t. So this is the type of the linguistic context of a transitive
verb, thus the type of the P in the denotation of helped above. The denotation of
helped then is a function from this context type to t, i.e. ((e → e → t) → t) → t.

Exercise 11.1 In a similar manner, we can look at the meaning of helped Dorothy. Its

290 Continuation Passing Style Semantics

linguistic context is Alice . Specify the denotation of helped Dorothy and its type along
the above lines, and do the same also for Alice helped.

We will call the meaning of the linguistic context of an expression its con-
tinuation. The notion stems from computer science. There continuations are
used for giving a compositional semantics of programs that exhibit apparent non-
compositional side effects like jumps and exceptions. It serves the same purpose
we used it for: it captures the context of an expression and provides it to the com-
putation as a function.

The general type of the continuation of an expression of type τ is a function of
type τ → r, with r being the type of result values.

At this point two remarks are in order. First, note that the continuation of an
expression is not fixed. For example the linguistic context of Alice in the sentence
Alice helped Dorothy differs from the linguistic context of Alice in The princess
that admired Alice laughed.

Second, we need to ask what exactly the linguistic context is. Up to now we
implicitly assumed that it is the sentence the expression occurs in. However, this is
not precise enough. Consider the following sentence:

If Alice helped Dorothy, then she cheered. (11.1)

What is the sentence that the expression Alice appears in? Is it the whole sentence
(11.1), or is it only the embedded sentence Alice helped Dorothy? If we decide
for the former, we will not have solved our problem but encounter it again in the
following sentence:

If Alice helped Dorothy, then she cheered, (11.2)
and if Alice kicked Dorothy, then she did not cheer.

Do we now decide for the if-then-clause we had before, or do we again decide for
the whole sentence (11.2)? Then, is (11.3) the same like (11.2)? And if so, aren’t
we actually talking about texts and not about single sentences?

If Alice helped Dorothy, then she cheered. (11.3)
If Alice kicked Dorothy, then she did not cheer.

In order to avoid those ramblings and instead have a precise delimitation of the
linguistic context of an expression, we specify the linguistic context as being the
linguistic context up to the nearest enclosing sentence node. So in all three exam-
ples above, the linguistic context of the first occurrence of Alice is the embedded
sentence Alice helped Dorothy.

Specifying the linguistic context as the next enclosing sentence now also speci-
fies the result values as sentence denotations. This, in turn, specifies the result type

11.2 Continuations as Abstractions over Context 291

r as being type t. For example, starting from a not lifted NP of type e, an NP-
continuation is of type e → t. The continuation of an intransitive verb is of type
(e → t) → t, and the continuation of a transitive verb is of type (e → e → t) → t.
This might seem a natural choice, but it is neither necessary nor the only one that
makes sense for the analysis of natural language. We will see other useful examples
of result types later in this chapter and also in the course of the next chapter.

We specified the denotation of an expression as a function from the continu-
ation of that expression to the result type t. We will call such functions from
continuations to result values computations. For example, the meaning of Alice,
λP �→ (P a), is the computation of Alice. This computation tells us what role
the sub-expression Alice plays in the whole expression, i.e. what is going to be
done with it when computing the meaning of the whole expression (in this case it
is plugged into a VP-meaning). Under this view, a continuation is an instruction of
what to do next.

Here are general type synonyms in Haskell, for continuations (functions from
values a to a result type r), and for computations (functions from continuations to
the result type r):

type Cont a r = a -> r

type Comp a r = Cont a r -> r

As already mentioned, we will assume that r is our sentence type t, so in the
implementation we will only work with continuation types Cont a Bool.

Here is a list of examples:

category value type continuation type computation type
NP e e → t (e → t) → t
IV, CN e → t (e → t) → t ((e → t) → t) → t
TV e → e → t (e → e → t) → t ((e → e → t) → t) → t

This schema applies to every type.

Exercise 11.2 What are the continuation and computation types for adjectives of type
(e → t) → (e → t)?

Now we will turn to systematically lifting the denotation of expressions from the
type they had in Chapter 7 to the type of a computation. The resulting semantics
is called continuation passing style semantics, because during the whole meaning
computation we will keep passing continuations around. The lifting is called con-
tinuation passing style transformation, or CPS transformation for short. There are
several different possibilities to perform this lift. We will pick a particularly simple
one (e.g. used in [Bar02],[Bar04]).

292 Continuation Passing Style Semantics

11.3 Continuizing a Grammar

Our CPS transformation will lift expression denotations to functions that take their
continuation as an extra argument. This, however, will not change the meaning
of the expressions. For a big part of our fragment the semantics will turn out to
work exactly like before. But as a consequence of this lifting, each expression will
have access to its linguistic context (in other words: to a later stage in the meaning
computation). We will exploit this for the semantics of quantifiers.

In order to continuize our gammar, we have to proceed in two steps. First we
need to lift the denotation of every basic expression in our grammar, i.e. the mean-
ing of the terminal symbols. Second we will also have to lift our rule for functional
application, because once we have lifted all denotations to computations, they are
not of the right type to simply apply to each other.

Let us start with the first step. In the previous section we already lifted the
denotations of Alice, Dorothy, and helped. What we got were λP �→ (P a),
λP �→ (P d), and λP�→ (P Help), respectively. The pattern is very easy: the
lifted denotation of a basic expression is a function from the continuation of that
expression to the result of applying that continuation to the original denotation.
Stating this as a general rule for all terminals of our grammar, we get the first part
of our CPS transformation:

c = λk �→ (k c) for all constants c (11.4)

We denote the CPS transformation of a lambda expression by overlining it.
Implementing this rule in Haskell gives us the following function for continuiz-

ing terminals:

cpsConst :: a -> Comp a r

cpsConst c = \ k -> k c

In fact, these lifted denotations do not make use of the continuation but just
pass it around. This can be seen from the fact that the continuation is always the
outermost function. It is applied to the original denotation without being modi-
fied. So for this part of the fragment, the transformed one and the original one are
equivalent. In order to get the original denotation from the continuized one, we
simply apply the latter to the trivial continuation, the identity function. For exam-
ple, applying the lifted denotation of helped to the identity function results in the
two-place predicate Help:

11.3 Continuizing a Grammar 293

(λk �→ (k Help)) (λx �→ x)

= (λx �→ x) Help
=Help

On the contrary, quantificational NPs will make use of having access to their
context. In particular we allow them to take scope over that context. These are the
meanings of the two quantifiers everyone and someone:

�everyone� = λk �→ ∀x((Person x) → (k x))

�someone� = λk �→ ∃x((Person x) ∧ (k x))

Just like other NPs, their denotation is a function that takes an NP continuation
and plugs in a value of type e. Unlike NPs like Alice, this is not an individual
constant but a variable bound by a universal or existential quantifier. The most
important detail is that the quantifiers ∀ and ∃ take scope over the continuation k.
So if this linguistic context k is the rest of the sentence, the quantifier will end
up having wide scope over the whole sentence – even when it appears in object
position.

Extending this strategy to quantificational determiners, we get the following
meaning assignments:

�every� = λkλP �→ k (λQ �→ ∀x(Qx → Px))

�some� = λkλP �→ k (λQ �→ ∃x(Qx ∧ Px))

�the� = λkλP �→ k (λQ �→ ιx(Qx ∧ Px))

�no� = λkλP �→ k (λQ �→ ¬∃x(Qx ∧ Px))

Now quantificational NPs are expressions whose continuized interpretation can-
not be reduced to the original one because it crucially relies on the presence of
continuations.

After continuizing the denotations of the terminals of our grammar, we also
need a rule for a continuized functional application. To see why this necessary,
consider a transitive verb and an NP: we cannot apply the lifted denotation of the
transitive verb to the lifted denotation of the NP, because the type of the former is
((e → e → t) → t) → t, and the type of the latter is (e → t) → t. What we
need is a lifted functional application that combines a function computation and an
argument computation into a computation of the application of the function to the
argument. The following CPS transformation rule does that:

294 Continuation Passing Style Semantics

(M N) = λk �→ N (λn �→ M (λm �→ k (m n))) (11.5)

Here m is an M continuation and n is an N continuation. You can understand
the rule as follows: in order to evaluate the application of M to N , first evaluate
N and bind the result to the variable n, then evaluate M and bind the result to the
variable m, finally apply m to n and pass the result to the continuation k.

This illustrates the three general ingredients of a CPS transformation: name all
intermediate results, sequence the evaluations, and introduce continuations as an
extra parameter.

This CPS transformation results in the fixed evaluation order of first evaluating
N and then evaluating M . To illustrate how this comes about, let us consider the
following pseudo program consisting of only two instructions:

(4+2); square 6

In principle, a compiler could decide in which order to evaluate these two instruc-
tions. Whichever order it choses, the result will be the same. However, this is
different if we introduce a dependency:

x=4+2; square x

Here the evaluation of the square function depends on the successful evaluation
of the variable assignment. Because of this dependency the compiler is forced
to evaluate the two instructions in order. A similar thing happens with a CPS
transformation: when we name the intermediate results and sequence them, we
introduce a dependency that forces a certain order of evaluation.

You can also think of the continuation as the function that has to be called next
with the result of the actual evaluation. In our functional application rule above,
the continuation of N is the term λn �→ M (λm �→ k (m n)). This function
constitutes what to do next after evaluating N . Since it contains the evaluation of
M , we fixed the order of first evaluating N and then evaluating M .

However, be aware that the evaluation order should not be confused with the
order of reductions when reducing a lambda term. When we apply the above rule
to terms M and N , it does not matter at all, which parts of the whole expression
we reduce first. But although all possibilities will reduce to the same result, this
result will mimic the order of having evaluated N before having evaluated M .

Order of evaluation is something we did not care about yet, and that we could
not express before. But now that we have continuized our grammar, we were able
to fix it in in a certain way. Actually we could also have fixed it in the other way,
such that M is evaluated before N . We will use that fact for scope reversal later in
Section 11.5.

11.3 Continuizing a Grammar 295

The Haskell function corresponding to lifted functional application is:

cpsApply :: Comp (a -> b) r -> Comp a r -> Comp b r

cpsApply m n = \ k -> n (\ b -> m (\ a -> k (a b)))

What does that mean with respect to our grammar? Recall two basic rules using
application, that we had in our fragment in Chapter 7, Section 7.5:

S −→ NP VP �S�= (�VP� �NP�)
VP −→ TV NP �VP�= (�TV� �NP�)

Instead of using non-continuized denotations �·� and functional application, we
now use continuized denotations and lifted function application:

S −→ NP VP S= (VP NP)
VP −→ TV NP VP= (TV NP)

Let us see how semantic composition along these lines proceeds. To keep it
simple, we stick to our example from the beginning:

[S Alice [VP helped Dorothy]]

We start with computing the meaning of the VP, according to the interpretation
rules just stated:

(�helped� �Dorothy�)
= λk �→ �Dorothy� (λn �→ �helped� (λm �→ (k (m n))))

= λk �→ �Dorothy� (λn �→ (λk� �→ k� Help) (λm �→ (k (m n))))

= λk �→ �Dorothy� (λn �→ (λm �→ (k (m n))) Help)

= λk �→ �Dorothy� (λn �→ (k (Help n)))

= λk �→ (λP �→ (P d) (λn �→ (k (Help n))))

= λk �→ (λn �→ (k (Help n)) d)

= λk �→ (k (Help d))

Next, we apply this VP denotation to the denotation of Alice. The reduction
proceeds analogously:

296 Continuation Passing Style Semantics

((�helped �Dorothy�) �Alice�)
= λk �→ �Alice� (λn �→ (�helped� �Dorothy�) (λm �→ (k (m n))))

= λk �→ �Alice� (λn �→ λk� �→ (k� (Help d)) (λm �→ (k (m n))))

= λk �→ �Alice� (λn �→ (λm �→ (k (m n))) (Help d))

= λk �→ �Alice� (λn �→ (k ((Help d) n)))

= λk �→ (λP �→ (P a)) (λn �→ (k ((Help d) n)))

= λk �→ (λn �→ (k ((Help d) n))) a

= λk �→ (k ((Help d) a))

Applying the result λk �→ (k ((Help d) a)) to the trivial continuation, the iden-
tity function, would give us ((Help d) a). So in fact we did exactly what we would
have done in our original, non-continuized semantics, with the only difference that
we have this extra layer of continuation parameters, which are passed around the
whole time. Now you rightly may ask: Why we are doing all this if nothing else
comes out in the end but the usual meaning? After all, we could have arrived at
that much easier. The answer is that as soon as we involve quantifiers, this extra
parameter will play an indispensable role. The semantics of quantifiers that was
given above makes crucial use of it. Since we allowed quantifiers to take scope
over their linguistic context, they can take scope over the whole sentence from
whatever position they occur in. You already have all the means you need to check
that.

Exercise 11.3 Compute the meanings of the following sentences.

Everyone admired Goldilocks. (11.6)
Goldilocks admired someone. (11.7)

11.4 Implementing a Continuized Grammar
We now implement interpretation functions based on our continuized grammar.

In Chapter 7 sentences were interpreted by applying the VP denotation to the NP
denotation. Now we take the continuized denotation of the VP and apply it with
our lifted functional application to the continuized denotation of the NP.

intSent_CPS :: Sent -> Comp Bool Bool

intSent_CPS (Sent np vp) =

cpsApply (intVP_CPS vp) (intNP_CPS np)

11.4 Implementing a Continuized Grammar 297

For interpreting non-quantificational NPs, we take the original interpretations
from Chapter 7 and lift them according to the rule (11.4) for constants.

intNP_CPS :: NP -> Comp Entity Bool

intNP_CPS SnowWhite = cpsConst snowWhite

intNP_CPS Alice = cpsConst alice

intNP_CPS Dorothy = cpsConst dorothy

intNP_CPS Goldilocks = cpsConst goldilocks

intNP_CPS LittleMook = cpsConst littleMook

intNP_CPS Atreyu = cpsConst atreyu

Quantificational NPs get interpretations as we specified them in the previous
section, with the only difference that we do not build a predicate logic formula but
rather base them on our direct interpretation from Chapter 7.

intNP_CPS Everyone = \ k -> all k (filter person entities)

intNP_CPS Someone = \ k -> any k (filter person entities)

The continuized interpretation of determiners is of a form such that it can be
applied directly to a common noun (the interpretation function for determiners is
given below):

intNP_CPS (NP1 det cn) = (intDET_CPS det) (intCN_CPS cn)

VPs are either constants, which are interpreted again according to the rule (11.4),
or they consist of a transitive verb followed by an NP, whose continuized interpre-
tations are applied with lifted functional application.

intVP_CPS :: VP -> Comp (Entity -> Bool) Bool

intVP_CPS Laughed = cpsConst laugh

intVP_CPS Cheered = cpsConst cheer

intVP_CPS Shuddered = cpsConst shudder

intVP_CPS (VP1 tv np) = cpsApply (intTV_CPS tv) (intNP_CPS np)

Transitive verbs and common nouns only comprise constants.

298 Continuation Passing Style Semantics

intTV_CPS :: TV -> Comp (Entity -> Entity -> Bool) Bool

intTV_CPS Loved = cpsConst love

intTV_CPS Admired = cpsConst admire

intTV_CPS Helped = cpsConst help

intTV_CPS Defeated = cpsConst defeat

intCN_CPS :: CN -> Comp (Entity -> Bool) Bool

intCN_CPS Girl = cpsConst girl

intCN_CPS Boy = cpsConst boy

intCN_CPS Princess = cpsConst princess

intCN_CPS Dwarf = cpsConst dwarf

intCN_CPS Giant = cpsConst giant

intCN_CPS Sword = cpsConst sword

intCN_CPS Dagger = cpsConst dagger

Determiners are interpreted as specified in the previous section. As with every-
one and someone, we base their continuation semantics on our direct interpretation
from Chapter 7.

intDET_CPS :: DET -> (Comp (Entity -> Bool) Bool)

-> (Comp Entity Bool)

intDET_CPS Some = \ k p -> k (\ q ->

any p (filter q entities))

intDET_CPS Every = \ k p -> k (\ q ->

all p (filter q entities))

intDET_CPS No = \ k p -> k (\ q ->

not (any p (filter q entities)))

intDET_CPS The = \ k p -> k (\ q ->

singleton (filter q entities)

&& p (head (filter q entities)))

where

singleton [x] = True

singleton _ = False

Exercise 11.4 In Exercise 7.25 you implemented interpretation functions for AtLeast and
AtMost. Continuize these interpretation functions.

Here are a few example computations based on this implementation.

11.5 Scope Reversal by Means of Continuations 299

compSent s = intSent_CPS s id

ex1 = compSent (Sent Everyone Laughed)

ex2 = compSent (Sent Someone Laughed)

ex3 = compSent (Sent Everyone (VP1 Admired Goldilocks))

ex4 = compSent (Sent Goldilocks (VP1 Admired Everyone))

ex5 = compSent (Sent Goldilocks (VP1 Admired Someone))

ex6 = compSent (Sent (NP1 Some Boy) Laughed)

ex7 = compSent (Sent (NP1 The Princess) Laughed)

We interpret sentences using the function intSent_CPS. The result of that func-
tion is a sentence computation, i.e. a function of type (Bool -> Bool) -> Bool,
that takes a sentence continuation (representing the linguistic context of the sen-
tence) and returns a result value of type Bool. An example of a possible sentence
continuation is negation: if we had a negated sentence, we could apply the com-
putation of the unnegated sentence to the negation function neg. But here we do
not want to bother about the linguistic context of sentences and instead want the
sentence computation to return a result value of type Bool. Therefore we apply the
sentence computation to the trivial continuation, the identity function id.

Exercise 11.5 In Exercise 4.6 we asked you to extend the fragment of Chapter 4 to also
include adjectives, for which you were supposed to give a semantics in Exercise 7.26.
Continuize this semantics of adjective phrases, such that the CPS fragment of this chapter
can interpret sentences like:

Sent Goldilocks (VP1 Admired (NP1 Some (AP Evil Princess)))

11.5 Scope Reversal by Means of Continuations
Above we gave the following rule for continuized functional application, which
fixes the evaluation order in a way such that N is evaluated before M is.

(M N) = λk �→ N (λn �→ M (λm �→ k (m n)))

Now we will see how this evaluation order results in linear scope of quantifiers.
Consider the sentence:

Everyone helped someone.

According to our interpretation rules, we have to compute

((�helped� �someone�) �everyone�)

300 Continuation Passing Style Semantics

Here �someone� is λk �→ ∃x(k x), and �everyone� is λk �→ ∀x(k x), as specified
before. The end result will be:

λk �→ ∀x((Person x) → ∃y((Person y) ∧ (k ((Help y) x)))).

Because of the evaluation order determined by the rule for functional application,
everyone turns out to take scope over someone. To see this, let us spell out the
derivation in some detail. First we apply the verb denotation to the quantified NP
someone:

(�helped� �someone�)
→ λk �→ �someone� (λn �→ �helped� (λm �→ k (m n)))

→ λk �→ (λk� �→ ∃x((Person x) ∧ (k� x))) (λn �→ �helped� (λm �→ k (m n)))

→ λk �→ ∃x((Person x) ∧ (�help� (λm �→ k (m x))))

→ λk �→ ∃x((Person x) ∧ ((λk� �→ (k� Help)) (λm �→ k (m x))))

→ λk �→ ∃x((Person x) ∧ (k (Help x)))

Note that the order of beta reductions does not play a role. (You can check this
by first reducing �helped� and only after that reducing �someone�.)

Next we apply the result to �everyone�, using (P x) as an abbreviation for
(Person x):

(�helped someone� �everyone�)
β−→ λk �→ �everyone� (λn �→ �helped someone� (λm �→ k (m n)))

β−→ λk �→ (λk� �→ ∀x((P x) → (k� x))) (λn �→ �helped someone� (λm �→ k (m n)))

β−→ λk �→ ∀x((P x) → (�helped someone� (λm �→ k (m x))))

= λk �→ ∀x((P x) → ((λk� �→ ∃y((P y) ∧ (k� (Help y)))) (λm �→ k (m x))))

→λk �→ ∀x((P x) → (∃y((P y) ∧ (k (Help y) x))))

Crucial is the step from the third to the fourth line. There the denotation of
everyone is applied to the term (λn �→ �helped someone� (λm �→ k (m n))),
and hence this term is substituted for k�. This means that the denotation of helped
someone is plugged into the denotation of everyone. Everyone therefore turns out
to have wider scope.

11.6 Further Reading 301

This was determined by our rule for functional application. But instead of en-
forcing the order of first evaluating the argument and then evaluating the function,
we also could have chosen to let application work the other way around: first eval-
uate the function, then evaluate the argument. The rule would then read like this:

(M N) = λk �→ M (λm �→ N (λn �→ k (m n)))

If M and N are terminals, then M and N are the same like M and N .
The corresponding Haskell function is:

cpsApply’ :: Comp (a -> b) r -> Comp a r -> Comp b r

cpsApply’ m n = \ k -> m (\ a -> n (\ b -> k (a b)))

A consequence of this rule is that deriving the meaning of everybody helped
someone will result in scope reversal. This is because now the order between the
denotation of everyone and the denotation of helped someone is switched, so the
denotation of everyone will be plugged into the denotation helped someone. This
will eventually lead to the existential quantifier having scope over the universal
quantifier. The result of the derivation is:

λk �→ ∃y((Person y) ∧ ∀x((Person x) → k ((Help y) x)))

Exercise 11.6 Verify this result by writing down the derivation in detail.

Here are two examples from our fragment, using this other functional application
rule:

example_linearScope = (cpsApply (cpsApply

(intTV_CPS Helped) (intNP_CPS Someone))

(intNP_CPS (NP1 Every Wizard))) id

example_inverseScope = (cpsApply’ (cpsApply’

(intTV_CPS Helped) (intNP_CPS Someone))

(intNP_CPS Everyone)) id

11.6 Further Reading
The concept of continuations arose in theoretical computer science during the
1960s and 1970s. An overview of the discovery of continuations and pointers
to the classic literature is given in [Rey93]. As it turns out, continuations were

302 Continuation Passing Style Semantics

introduced by Aad van Wijngaarden, in a talk given in 1964, and next rediscovered
again and again in computer science. Van Wijngaarden proposed the new concept
in a sketch of a translation of Algol 60 to a restricted sub-language without labels
or goto statements:

[. . .] if you do this trick I devised, then you will find that the actual execution of the
program is equivalent to a set of statements; no procedure ever returns because it always
calls for another one before it ends, and all of the ends of all of the procedures will be at
the end of the program: one million or two million ends. If one procedure gets to the end,
that is the end of all; therefore, you can stop. That means you can make the procedure
implementation so that it does not bother to enable the procedure to return. That is the
whole difficulty with procedure implementation. That’s why this is so simple; it’s exactly
the same as a goto, only called in other words. [Wij66] (quoted in [Rey93])

The trick van Wijngaarden described was in fact a CPS transformation of Algol 60
programs, which is somewhat different from an actual example of a CPS program.
Many such examples were given around 1970.

As we have seen, Richard Montague was the one who introduced continuation
style evaluation in natural language semantics, by his stratagems for lifting of deno-
tations. This was also around 1970. The lift from names (type ‘entity’) to functions
from predicates to truth values is a prime example. Among the other rediscoverers
in natural language semantics we must certainly mention Hans Kamp and Irene
Heim, who invented continuation style text processing, in order to treat donkey
anaphora and anaphoric linking across sentence boundaries. See Chapter 12 be-
low, and the references given there.

New linguistic applications of continuations were proposed by Chung-chieh
Shan and Chris Barker. They use continuation semantics for quantifier scope,
for treatment of focus, for licensing of negative polarity items, and for deriving
interactions between scope and binding. References are [Bar02],[Bar04],[BS06],
[Sha07], and Shan’s thesis [Sha05].

Continuation semantics also seems promising for intensional semantics, in order
to explain the difference between the two readings of (11.8): the reading where
Dorothy has a particular prince in mind and the reading where any prince will do.
This kind of ambiguity is already treated in Montague’s papers.

Dorothy believes a prince will marry her. (11.8)

We end with a word of warning. In programming, continuation style processing
is very powerful, but used without proper care it can easily lead to programs that
are hard to understand. Something similar holds for linguistics. Descriptions of
syntactic and semantic phenomena in terms of continuations run the danger of just
providing complex reformulations.

12
Discourse Representation and Context

Summary
This chapter sketches a dynamic incremental semantics for natural language that
starts out from Discourse Representation Theory (DRT), and extends this into type
theory. This type-theoretic version of DRT can be viewed as a reconstruction that
does justice to the incrementality and the finite domain semantics of the original.

12.1 The Dynamics of Pronoun Linking
Basic ingredients for a dynamic account of pronoun linking are contexts and con-
straints on contexts. An example of such a dynamic account is Discourse Repre-
sentation Theory (DRT) [Kam81]. A DRT-style representation for a piece of text
consists of a context, plus a list of constraints on that context. In the characteristic
box notation of DRT this looks like:

context
constraints
on context

In DRT, the context consists of a list of reference markers or discourse referents.
The constraints are assertions about these markers. Together they represent the
information that a text provides, plus information about the anaphoric possibilities
of the text. As the information conveyed by a piece of text grows, the corresponding
representation structures get ‘updated’. This happens roughly as follows:

context
constraints
on context

— update −→
new context
new constraints
on context

To make this picture precise, one has to say more about how contexts and con-
straints are represented. Let us look at how this is done in DRT. You can hardly get

303

304 Discourse Representation and Context

simpler than the following example:

A man entered. (12.1)

Still, the example serves to illustrate one of the purposes of context: to enable
anaphoric reference. Once (12.1) has been uttered, it should be possible to pick up
a reference to a man (or better: to that man) by means of a pronoun.

One of the key points of DRT is that a standard first-order logic representation
does not allow us to do this. A standard first-order logic representation of the
meaning of (12.1) would be (12.2).

∃x(Man x ∧ Enter x). (12.2)

The scope of the quantifier ∃x is closed, and there is no way to ‘break into it’ again.
This is why the DRT representation for (12.1) is different; it has a discourse

marker x, and two constraints on that marker. The marker x constitutes the context
that is created by the mention of a man. This marker remains available for future
reference.

x
Man x
Enter x

Now suppose the discourse gets on with (12.3) and (12.4).

A woman entered. (12.3)
He smiled at her. (12.4)

This leads to the following successive updates of the representation. First, a new
marker is introduced for the NP a woman in (12.3). Next, the two pronouns in
(12.4) are resolved to the two reference markers.

x
Man x
Enter x

— (12.3) →

x y
Man x
Enter x
Woman y
Enter y

— (12.4) →

x y
Man x
Enter x
Woman y
Enter y
SmileAt x y

Note that reference resolution for the two pronouns has taken place in the con-
struction of this representation structure, but we have not explained how this goes
about. We now have to see how the account can be made more formal. It is rea-
sonable to assume that a sentence to be added to an existing representation has a
representation of its own. So we get a picture with a representation structure for

12.1 The Dynamics of Pronoun Linking 305

the first sentence and a representation structure for the second sentence, with • for
the as yet unspecified operation of combining two representation structures.

x
Man x
Enter x

•
y
Woman y
Enter y

=

x y
Man x
Enter x
Woman y
Enter y

A man entered A woman entered

How are reference markers selected? In [Kam81] and in the DRT textbook
[KR93], the representation construction algorithm simply states ‘take a fresh ref-
erence marker’, and leaves it at that. The Classic DRT construction algorithms
always parses new sentences in the context of an existing representation struc-
ture. What this means is that Classic DRT never merges representation structures.
Another way of saying this is that the semantics of Classic DRT is a kind of con-
tinuation semantics: processing new discourse is the ‘what to do next’ of the con-
tinuation.

We will set our aim a bit higher than Classic DRT, by developing a compositional
reconstruction. Using • for representation merge, a lexical entry for the indefinite
determiner a in DRT style might look like this:

λPQ �→ x •Px •Qx.

What this says is that an indefinite article a gives rise to the introduction of a
new reference marker x to the context, and that this marker x is predicated both of
the restriction P and the body Q of the determiner. Restriction and body are ab-
stracted over in the lexical entry. The introduction of the marker is merged with the
representation for the restriction, and this is in turn merged with the representation
for the body.

The lexical entry for determiner every has a different structure. It uses the sym-
bol ⇒ for discourse implication. A precise definition of its meaning will be given
below.

λPQ �→
�

x • Px

�
⇒ Qx

Again, how to pick a reference marker x? And how to define •? A proposal for
a straightforward solution is given in the compositional version of DRT in [Zee89],

306 Discourse Representation and Context

where compositional discourse representation structures (DRSs) are defined like
this. It is assumed that U is the set of reference markers, so MU is the set of all
functions from markers to members of the discourse domain. The set of DRSs is
given by:

δ ::= B | δ • δ | δ → δ,

where B is a basic DRS, and where basic DRSs, merger of DRSs, and implication
of DRSs are defined by:

• Basic DRSs are (∅, ∅), (∅, {Pr0 · · · rn−1}), (∅, {⊥}), and ({r}, ∅).
• Merger of DRSs, δ • δ�, is defined as (Vδ ∪ Vδ� , Cδ ∪ Cδ�).
• Implication of DRSs, δ → δ�, is defined as (∅, {δ ⇒ δ�}).

Here the DRSs are represented as pairs; Vδ picks the left component of the pair (the
set of discourse markers), and Cδ picks its right component (the set of constraints).

These definitions can also be given in more suggestive (but slightly less precise)
box notation, as follows.

• Basic DRSs:

Pr0 · · · rn−1 ⊥

r

• Merger of DRSs:

V

C
•

V �

C � =

V ∪ V �

C ∪ C �

• Implication of DRSs:

V

C
→

V �

C � =

V

C
⇒

V �

C �

12.1 The Dynamics of Pronoun Linking 307

Assume we have a first-order model M = (M, I), where M is the domain and
I the interpretation for the predicates. Then the semantics for these structures is
given by:

[[(∅, ∅)]] = (∅,MU)

[[(∅, {Pr0 · · · rn−1})]] = (∅, {f ∈ MU | M |=f Pr0 · · · rn−1})
[[(∅, {⊥})]] = (∅, ∅)
[[({r}, ∅)]] = ({r},MU)

[[δ • δ�]] := [[δ]]⊕ [[δ�]]

[[δ ⇒ δ�]] := [[δ]] → [[δ�]]

where

(X,F)⊕ (Y,G) := (X ∪ Y, F ∩G)

(X,F) → (Y,G) := (∅, {h ∈ MU | ∀f ∈ F (if h[X]f then ∃g ∈ G with f [Y]g)})

One piece of notation is still in need of explanation: if f and g are functions in
MU , and if Y ⊆ U , then f [Y]g holds iff f(u) = g(u) is the case for all u ∈ Y .
Thus, f [Y]g expresses that f and g agree on the values of the markers in Y .

This setup suggests that merging representation structures works as follows:

x
Man x
Enter x

•
x
Woman x
Enter x

=

x
Man x
Woman x
Enter x

But this is not quite the outcome one would like. As a further illustration of the
problem, the following sentence exhibits an unsolved puzzle with coordination:

A man entered and a man left. (12.5)

Representations for the lexical entries:

a man: λQ �→ x
Man x

• Qx

entered: λy �→
Enter y

left: λy �→
Leave y

and: λpq �→ p • q

308 Discourse Representation and Context

Applying these definitions gives:

x
Man x

•
Enter x

• x
Man x

•
Leave x

Combining these representations using the definition of • that was given above
yields an unintuitive result, for it merges the two men:

x
Man x
Enter x
Leave x

12.2 Abstraction over Context
The essence of the solution to the merge problem is abstraction over context. If we
take contexts to be simply finite lists of reference markers, then context abstraction
can take the following form:

λ context �→

 context +

context extension

constraints

Contexts are lists of reference markers; these reference markers serve to encode
discourse information, and allow the discourse participants to keep track of the
topics of discourse.

Order of discourse topics is relevant: topics mentioned most recently are (other
things being equal) more readily accessible for reference resolution. Order of ref-
erence markers can be used as a measure for salience. A topic (or its marker) is
more salient than another if it is more prominent on the list of candidates for refer-
ence resolution. For reference resolution, additional information of the following
kinds is also needed:

• gender and number information,
• actor focus (agent of the sentence),
• discourse focus (‘what is talked about’ in the sentence).

Instead of giving a full account, we will sketch the basics, but in such a way that
the reader can easily work out further details.

So how does abstraction over context work? Starting out from Incremental Dy-
namics [Eij01], which is in fact the one-variable version of Vermeulen’s sequence
semantics [Ver93], we represent a context as a stack of items. Here is an example:

12.2 Abstraction over Context 309

c0 c1 c2 c3 c4 · · ·

Existential quantification is context extension, i.e. it pushes a new item on the
stack:

c0 c1 c2 c3 + d = c0 c1 c2 c3 d

We will use indices to refer to the items:

0 1 2 3 4 · · · n− 1 n
c0 c1 c2 c3 c4 · · · cn−1 d

If c is a context, c[0] is its first element, and |c| is its length. So the context elements
are c[0] up to c[k] where k = |c|− 1.

Discourse merge can now be implemented as context composition, as follows.
As types of contexts, we can take [e], the type of lists of entities. Context transitions
get the type [e] → [e] → t; they are characteristic functions of binary relations on
contexts.

Assume c, c� :: [e] and x :: e. Then we use ĉ x to denote the result of extending
context c with item x. Note that the type of (̂) is [e] → e → [e], and that ĉ x
is a new context with |ĉ x| = |c| + 1. Now we can define dynamic existential
quantification as follows:

∃∃ := λcc� �→ ∃x(ĉ x = c�)

What this says is that the quantifier ∃∃ has the effect of extending an input context
c with an element x from the domain, and creating an output context ĉ x.

Exercise 12.1 What is the type of ∃∃?

Next, assume φ,ψ :: [e] → [e] → t (φ and ψ are context transitions) and
c, c� :: [e] (c and c� are contexts), and define context composition:

φ ; ψ := λcc� �→ ∃c��(φcc�� ∧ ψc��c�)

This defines context composition of context transitions φ and ψ as a relation be-
tween an input context c and an output context c�, where c is fed as input to φ,
yielding an output c��, which is fed as input to ψ, yielding output c� in turn.

Exercise 12.2 What is the type of (;)?

Let us consider what the lexical entries for determiners might look like in this
setup. Assume P,Q :: N → [e] → [e] → t. Abbreviate this type as K. Then the
lexical entry for determiner a has type K → K → [e] → [e] → t.

λPQc �→ (∃∃ ; Pi ; Qi)c where i = |c|. (12.6)

310 Discourse Representation and Context

This is very compact notation indeed, and it is worthwhile to have a closer look at
what happens in (12.6). P and Q are variables for the restriction and the body of
the indefinite determiner. These variables are of the type of pointers into context
transitions, abbreviated as K. The input context is represented by c, and ∃∃ extends
this input context with a new element. The index i points to this new element, for
the input context c runs from c[0] to c[|c| − 1], and i is set equal to |c|, the length
of c. So what the entry for the indefinite determiner says is that the input context c
can be extended with a new element, and this new element will satisfy both P and
Q, and it will remain accessible for future reference.

Here is an operation that blocks future reference: context negation or dynamic
negation. One way to express this in DRT is this:

V

C
⇒ ⊥

The typed logical version is the following, where φ represents the embedded rep-
resentation structure.

¬¬φ := λcc� �→ (c = c� ∧ ¬ ∃c��φcc��)

This defines a relation between input context c and output context c� where the input
context equals the output context, and where there is no extension c�� of context c
for which φ holds.

Similarly, we can define dynamic implication:

φ ⇒ ψ := λcc� �→ (c = c� ∧ ∀c2(φcc2 → ∃c3ψc2c3).

Now the lexical entry for the determiner every can be phrased in terms of dynamic
implication, as follows:

λPQc �→ (∃∃ ; Pi ⇒ Qi)c where i = |c|. (12.7)

Exercise 12.3 Here is another way to phrase the lexical entry for the determiner every:

λPQc �→ (¬¬(∃∃ ; Pi ; ¬¬Qi))c where i = |c|.

Show that this is equivalent to the definition in (12.7).

We will now check that this approach handles the coordination puzzle all right.
Here are the representations for a man, entered, and left:

12.2 Abstraction over Context 311

a man: λQcc� �→ ∃x(Man x ∧Qi(ĉ x)c�)c where i = |c|
entered: λjcc� �→ (c = c� ∧ Enter c[j]) where j ∈ |c|

left: λjcc� �→ (c = c� ∧ Leave c[j]) where j ∈ |c|

The notation j ∈ |c| is shorthand for j ∈ {0, . . . , |c|− 1}.
Remark. The notation j ∈ |c| is based on John von Neumann’s definition of
natural numbers. Von Neumann (1903–1957) proposed the following set-theoretic
definition:

• For 0, take the empty set, ∅.
• For the successor operation n �→ s(n), take take x �→ x ∪ {x}.

This gives:

• 0 = ∅,
• 1 = s(0) = ∅ ∪{∅} = {∅} = {0},
• 2 = s(1) = 1 ∪ {1} = {0} ∪ {1} = {0, 1},
• 3 = s(2) = 2 ∪ {2} = {0, 1} ∪ {2} = {0, 1, 2},
• and so on.

So every natural number n equals the set of all its predecessor numbers. Therefore,
if n is a natural number, then j ∈ n means the same as j ∈ {0, . . . , n− 1}. But if
you don’t care about Von Neumann numbers, that is perfectly fine with us. In that
case, just remember that j ∈ n is shorthand for j ∈ {0, . . . , n− 1}.

Back to the example now. The above entries for a, man, and entered yield the
following representation for A man entered:

λcc� �→ ∃x(Man x ∧ Enter (ĉ x)[i] ∧ ĉ x = c�) (12.8)

This reduces to (12.9).

λcc� �→ ∃x(Man x ∧ Enter x ∧ ĉ x = c�) (12.9)

Similarly, we get the following as representation for A man left:

λcc� �→ ∃x(Man x ∧ Leave x ∧ ĉ x = c�) (12.10)

Combining (12.9) and (12.10) by means of and (translated as λpq �→ p ; q) gives
the following representation for A man entered and a man left:

λcc� �→ ∃x(Man x∧Enter x∧ ĉ x = c�) ; λcc� �→ ∃x(Man x∧Leave x∧ ĉ x = c�)

This reduces to the following (note the renaming of variables):

λcc1 �→ ∃x(Man x∧Enter x∧ĉ x = c1) ; λc2c
� �→ ∃y(Man y∧Leave y∧c2̂ y = c�)

312 Discourse Representation and Context

Applying the ; combinator and using β reduction gives:

λcc� �→ ∃c��∃x(Man x ∧ Enter x ∧ ĉ x = c��

∧∃y(Man y ∧ Leave y ∧ c��̂ y = c�)).

By simple equality reasoning, this reduces to:

λcc� �→ ∃x(Man x ∧ Enter x ∧ ∃y(Man y ∧ Leave y ∧ ĉ x̂ y = c�)).

This is indeed a correct rendering, for it sets up an appropriate context with refer-
ences to two men, with the right constraints.

12.3 Continuizing the Account
The following combinator G lifts the type of context transitions [e] → [e] → t to
the type of a map from contexts to context continuations [e] → ([e] → t) → t.

G = λφcP �→ ∃c�(φcc� ∧ Pc�)

Call this a continuized context transition. A continuized context transition can be
viewed as a relation between contexts and context properties (type [e] → t). Its
first argument is an input context, and its second argument is a property of output
contexts, for encoding ‘what to do next with the output context’.

The recipe for composing continuized context transitions is as follows:

λΦΨcP �→ (Φc(λc �→ ΨcP)) (12.11)

So let us lift the context transition (12.9) to its continuized counterpart:

G(λcc� �→ ∃x(Man x ∧ Enter x ∧ ĉ x = c�))

This reduces to:

λcP �→ ∃c�∃x(Man x ∧ Enter x ∧ ĉ x = c� ∧ Pc�)

By equality reasoning, we can simplify this further, to:

λcP �→ ∃x(Man x ∧ Enter x ∧ P (ĉ x))

In a similar fashion, continuizing (12.10) will give us:

λcP �→ ∃x(Man x ∧ Leave x ∧ P (ĉ x))

Next, combine these two continuized context transitions with recipe (12.11) for
composing them:

λcP �→ (λcP �→ ∃x(Man x ∧ Enter x ∧ P (ĉ x))c

(λc �→ (λcP �→ ∃x(Man x ∧ Leave x ∧ P (ĉ x)))cP)

12.4 Implementing Discourse Representation 313

η-conversion yields:

λcP �→ (λP �→ ∃x(Man x ∧ Enter x ∧ P (ĉ x)))

(λc �→ ∃x(Man x ∧ Leave x ∧ P (ĉ x)))

Before we can do further η-conversion we need an α-conversion step, as follows:

λcP �→ (λP �→ ∃x(Man x ∧ Enter x ∧ P (ĉ x)))

(λc �→ ∃y(Man y ∧ Leave y ∧ P (ĉ y)))

Further η-conversion now yields:

λcP �→ ∃x(Man x ∧ Enter x ∧ ∃y(Man y ∧ Leave y ∧ P (ĉ x̂ y)))

We have created a new context transition that tells us ‘what to do next’ with a
context containing two men, one of them entering and the other one leaving.

Exercise 12.4 invites you to further explore the relation between context transi-
tions and continuized context transitions.

Exercise 12.4 Consider the following combinator E for mapping continuized context tran-
sitions into context transitions.

E = λΦcc� �→ ∃P (ΦcP ∧ Pc�)

Assuming Φ :: [e] → ([e] → t) → t, check that the type of E equals

([e] → ([e] → t) → t) → [e] → [e] → t.

Next, assume φ is a context transition, and compute E(Gφ).

12.4 Implementing Discourse Representation
In this section we will start implementing our version of compositional DRT. Here
is the module declaration, together with some imports.

module DRAC where

import Data.List

import Model

import P hiding (person)

We will give implementations of ∃∃, ; , ⇒, and .̂ Also, it is useful to define an
operation ⇓ of type ([e] → t) → t to indicate that the context set [e] → t is not

314 Discourse Representation and Context

empty. Thus, ⇓ serves as an indication of success. Assuming p to be an expression
of type [e] → t, the definition of ⇓ p is:

⇓ p := ∃c �→ pc

We have imported a first-order model Model where the lexical meanings of CNs
and VPs are given as one-place predicates (type e → t), those of TVs as two-place
predicates (type e → e → t), and so on. We therefore define blow-up operations
for lifting one-place and two-place predicates to the dynamic level. Assume A to
be an expression of type e → t, and B an expression of type e → e → t; we use
c, c� as variables of type [e], and j, j� as variables of type N, and we employ postfix
notation for the lifting operations:

A◦ := λjcc� �→ (c = c� ∧Ac[j])

B• := λjj�cc� �→ (c = c� ∧Bc[j]c[j�])

The encodings of the ID operations in typed logic and the blow-up operations
for one- and two-place predicates are employed in the semantic specification of the
fragment. The semantic specifications employ variables j, j� of type N, variables
c, c� of type [e], and variables P,Q of type N → [e] → [e] → t.

Let us start with the basic types we need for our Haskell implementation. Con-
texts get represented as lists of entities, and propositions are lists of contexts. Tran-
sitions are maps from contexts to propositions. Indices are simply integers.

type Context = [Entity]

type Prop = [Context]

type Trans = Context -> Prop

type Idx = Int

The index lookup c[i] is implemented by lookupIdx.

lookupIdx :: Context -> Idx -> Entity

lookupIdx [] i = error "undefined context element"

lookupIdx (x:xs) 0 = x

lookupIdx (x:xs) i = lookupIdx xs (i-1)

The context extension ĉ x is implemented by extend.

12.4 Implementing Discourse Representation 315

extend :: Context -> Entity -> Context

extend = \ c e -> c ++ [e]

The dynamic context operations for negation, conjunction, and implication are
the following:

neg :: Trans -> Trans

neg = \ phi c -> if phi c == [] then [c] else []

conj :: Trans -> Trans -> Trans

conj = \ phi psi c -> concat [psi c’ | c’ <- (phi c)]

impl :: Trans -> Trans -> Trans

impl = \ phi psi -> neg (phi ‘conj‘ (neg psi))

Dynamic quantifiers can be implemented like this:

exists :: Trans

exists = \ c -> [(extend c x) | x <- [minBound..maxBound]]

forAll :: Trans -> Trans

forAll = \ phi -> neg (exists ‘conj‘ (neg phi))

Anchors for proper names are extracted from an initial context, that we simply
call context:

context :: Context

context = [A,D,G,M,Y]

anchor :: Entity -> Context -> Idx

anchor = \ e c -> anchor’ e c 0 where

anchor’ e [] i = error (show e ++ " is not anchored")

anchor’ e (x:xs) i | e == x = i

| otherwise = anchor’ e xs (i+1)

Next we give a sketch of direct discourse interpretation on the basis of the parse
trees from Chapter 9. First we associate strings with the predicates they denote (you
can look up the predicates in Chapter 6). Then we will define blow-up functions
that lift these predicates to the dynamic level.

316 Discourse Representation and Context

In the lexicon, proper names are strings. The following function maps them to
entities:

name2entity :: String -> Entity

name2entity "snowwhite" = snowWhite

name2entity "alice" = alice

name2entity "dorothy" = dorothy

name2entity "goldilocks" = goldilocks

name2entity "littlemook" = littleMook

name2entity "atreyu" = atreyu

Also intransive VPs are strings in the lexicon. The following function maps them
to unary predicates:

name2pred :: String -> OnePlacePred

name2pred "laugh" = laugh

name2pred "laughed" = laugh

name2pred "cheer" = cheer

name2pred "cheered" = cheer

name2pred "shudder" = shudder

name2pred "shuddered" = shudder

Common noun denotations are of the same type as intransitive VPs. Here are
mappings to unary predicates for common nouns in the lexicon:

name2pred "thing" = thing

name2pred "things" = thing

name2pred "person" = person

name2pred "persons" = person

name2pred "boy" = boy

name2pred "boys" = boy

name2pred "man" = man

name2pred "men" = man

name2pred "girl" = girl

name2pred "girls" = girl

name2pred "woman" = woman

name2pred "women" = woman

name2pred "princess" = princess

name2pred "princesses" = princess

12.4 Implementing Discourse Representation 317

name2pred "dwarf" = dwarf

name2pred "dwarfs" = dwarf

name2pred "dwarves" = dwarf

name2pred "giant" = giant

name2pred "giants" = giant

name2pred "wizard" = wizard

name2pred "wizards" = wizard

name2pred "sword" = sword

name2pred "swords" = sword

name2pred "dagger" = dagger

name2pred "daggers" = dagger

In the lexicon, transitive verbs are strings. The following function maps them to
characteristic functions of binary relations:

name2binpred :: String -> TwoPlacePred

name2binpred "love" = love

name2binpred "loved" = love

name2binpred "admire" = admire

name2binpred "admired" = admire

name2binpred "help" = help

name2binpred "helped" = help

name2binpred "defeat" = defeat

name2binpred "defeated" = defeat

Similarly for ditransitive verbs. These are mapped to characteristic functions of
ternary relations:

name2terpred :: String -> ThreePlacePred

name2terpred "give" = give

name2terpred "gave" = give

The function name2pred, name2binpred, and name2terpred constitute the
interface between the lexicon and the database model.

The lexical meanings of VPs and CNs are one-place predicates, those of TVs
two-place predicates. Now let us define functions for blowing up these lexical
meanings to the appropriate discourse types. Mapping one-place predicates to
functions from indices to context transitions (or: context predicates) is done by:

318 Discourse Representation and Context

blowupPred :: OnePlacePred -> Idx -> Trans

blowupPred = \ pred i c -> if pred (lookupIdx c i)

then [c]

else []

Discourse blow-up for two-place and three-place predicates is done by the fol-
lowing two functions:

blowupPred2 :: TwoPlacePred -> Idx -> Idx -> Trans

blowupPred2 = \ pred i1 i2 c ->

let l1 = lookupIdx c i1

l2 = lookupIdx c i2

in if pred l1 l2

then [c]

else []

blowupPred3 :: ThreePlacePred -> Idx -> Idx -> Idx -> Trans

blowupPred3 = \ pred i1 i2 i3 c ->

let l1 = lookupIdx c i1

l2 = lookupIdx c i2

l3 = lookupIdx c i3

in if pred l1 l2 l3

then [c]

else []

Now let us turn to the dynamic interpretation of texts (including single sen-
tences). It can be given by:

dintTXT :: ParseTree Cat Cat -> Trans

dintTXT (Branch (Cat "_" "TXT" _ _) [s,cnj,txt]) =

(dintTXT s) ‘conj‘ (dintTXT txt)

dintTXT (Branch (Cat "_" "S" _ _) [cond,s1,s2]) =

(dintTXT s1) ‘impl‘ (dintTXT s2)

dintTXT (Branch (Cat "_" "S" _ _) [np,vp]) =

(dintNP np) (dintVP vp)

Here is the interpretation of simple relative clauses:

12.4 Implementing Discourse Representation 319

dintREL :: ParseTree Cat Cat -> Idx -> Trans

dintREL (Branch (Cat _ "COMP" _ _) [rel,s]) = dintREL s

dintREL (Branch (Cat _ "COMP" _ _) [s]) = dintREL s

dintREL (Branch (Cat "_" "S" _ _)

[Leaf (Cat "#" "NP" _ _),vp]) = dintVP vp

dintREL (Branch (Cat "_" "S" _ _) [np,vp]) =

\ i -> (dintNP np) (dintVPgap vp i)

For the interpretation of VPs with gaps, we just give the case of TVs with an
object NP gap. The interpretation of VPs with a ditransitive verb and a direct
object gap or an indirect object gap works similarly:

dintVPgap :: ParseTree Cat Cat -> Idx -> Idx -> Trans

dintVPgap (Branch (Cat _ "VP" _ _)

[Leaf (Cat name "VP" _ [_]),

Leaf (Cat "#" "NP" _ _)]) =

blowupPred2 (name2binpred name)

Interpretation functions for NPs and CNs are the following:

dintNP :: ParseTree Cat Cat -> (Idx -> Trans) -> Trans

dintNP (Leaf (Cat name "NP" _ _)) =

\ p c -> p (anchor (name2entity name) c) c

dintNP (Branch (Cat _ "NP" _ _) [det,cn]) =

(dintDET det) (dintCN cn)

dintCN :: ParseTree Cat Cat -> Idx -> Trans

dintCN (Leaf (Cat name "CN" _ _)) =

blowupPred (name2pred name)

dintCN (Branch (Cat _ "CN" _ _) [cn,rel]) = \ i ->

(dintCN cn i) ‘conj‘ (dintREL rel i)

Now, the interpretation of determiners is where all the dynamics happens:

320 Discourse Representation and Context

dintDET :: ParseTree Cat Cat ->

(Idx -> Trans) -> (Idx -> Trans) -> Trans

dintDET (Leaf (Cat "every" "DET" _ _)) =

\ phi psi c -> let i = length c in

neg (exists ‘conj‘ (phi i) ‘conj‘ (neg (psi i))) c

dintDET (Leaf (Cat "some" "DET" _ _)) =

\ phi psi c -> let i = length c in

(exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

dintDET (Leaf (Cat "a" "DET" _ _)) =

\ phi psi c -> let i = length c in

(exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

dintDET (Leaf (Cat "no" "DET" _ _)) =

\ phi psi c -> let i = length c in

neg (exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

dintDET (Leaf (Cat "the" "DET" _ _)) =

\ phi psi c -> let i = length c in

((unique (phi i)) ‘conj‘

exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

The interpretation of the determiner the uses a function unique, that checks that
a discourse predicate is unique. Here is its definition:

singleton :: [a] -> Bool

singleton [x] = True

singleton _ = False

unique :: Trans -> Trans

unique phi c | singleton xs = [c]

| otherwise = []

where xs = [x | x <- entities,

phi (extend c x) /= []]

Regarding the interpretation of VPs, we first give the cases of intransitive, tran-
sitive, and ditransitive verbs:

12.4 Implementing Discourse Representation 321

dintVP :: ParseTree Cat Cat -> Idx -> Trans

dintVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat name "VP" _ [])]) =

blowupPred (name2pred name)

dintVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat name "VP" _ [_]),np]) =

\ subj -> dintNP np (\ obj ->

(blowupPred2 (name2binpred name)) subj obj)

dintVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat name "VP" _ [_,_]),np,pp]) =

\ subj -> dintNP np (\ iobj -> dintPP pp (\ dobj ->

(blowupPred3 (name2terpred name)) subj iobj dobj))

Next we turn to the interpretation of VPs with auxiliaries:

dintVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat "did" "AUX" _ []),vp]) = dintVP vp

dintVP (Branch (Cat _ "VP" _ _)

[Leaf (Cat "didn’t" "AUX" _ []),vp]) =

\ i -> neg (dintVP vp i)

Here is the interpretation of PPs:

dintPP :: ParseTree Cat Cat -> (Idx -> Trans) -> Trans

dintPP (Branch (Cat _ "PP" _ _) [prep,np]) = dintNP np

Now we can specify a function for evaluation in a context:

evl :: ParseTree Cat Cat -> Prop

evl = \ txt -> dintTXT txt context

This evaluation function can be combined with the parsing function from Chap-
ter 9.

prc :: String -> [Prop]

prc string = map evl (parses string)

You can try this out with a few examples.

322 Discourse Representation and Context

DRAC> prc "every dwarf that shuddered laughed"

[[[A,D,G,M,Y]]]

DRAC> prc "some dwarf that shuddered did not laugh"

[[]]

DRAC> prc "some dwarf that did not shudder did not laugh"

[[[A,D,G,M,Y,B],[A,D,G,M,Y,R]]]

Carrying out this program further is left to the reader.

Exercise 12.5 Interpretation of pronouns in context is not yet part of the fragment. Extend
this fragment with singular pronouns he, him, she, her, it, and interpret each pronoun as
a random element from the available context. (A more sophisticated reference resolution
method will be given in the fragment in Section 12.7.)

lift :: Trans -> Context -> (Context -> Bool) -> Bool

lift phi c p = any p (phi c)

In the next section we switch to the use of special purpose syntactic data struc-
tures, which will be convenient for pronoun interpretation and reference resolution.

12.5 From Structure Trees to Dynamic Interpretation
We will now make a fresh start with special purpose data structures for syntax. We
will assume that pronouns are the only NPs that carry indices. The topic of pronoun
reference resolution in context will be taken up below, in our second fragment.

First, we give an interpretation for the categories we will use.
Sentences are, as usual, interpreted as function application of the NP meaning

to the VP meaning. If-then-sentences are interpreted with the help of dynamic im-
plication, and the sequence of two sentences with the help of context composition.
NPs are interpreted in a familiar way as generalized quantifiers or as determiner
meanings applied to common noun meanings.

S −→ NP VP �S� −→ (�NP� �VP�)
S −→ if S then S �S� −→ �S1� ⇒ �S2�
S −→ S . S �S� −→ �S1� ; �S2�

NP −→ Alice �NP� −→ λPcc� �→ ∃j((c[j] = a) ∧ Pjcc�)
NP −→ PROj �NP� −→ λPcc� �→ Pjcc�

NP −→ DET CN �NP� −→ (�DET� �CN�)
NP −→ DET RCN �NP� −→ (�DET� �RCN�)

12.5 From Structure Trees to Dynamic Interpretation 323

Here are interpretations for determiners:

DET −→ every
�DET� −→ λPQc �→ (¬¬(∃∃ ; P |c| ; ¬¬Q|c|))c

DET −→ some
�DET� −→ λPQc �→ (∃∃ ; P |c| ; Q|c|)c

DET −→ no
�DET� −→ λPQc �→ (¬¬(∃∃ ; P |c| ; Q|c|))c

DET −→ the
�DET� −→ λPQc �→ ((λc� �→ c = c� ∧ ∃x∀y(⇓ (P |c| ĉ y) ↔ x = y))

; ∃∃ ; P |c| ; Q|c|)c

Common nouns are interpreted as lifted one-place predicates:

CN −→ boy �CN� −→ Boy◦

CN −→ girl �CN� −→ Girl◦

CN −→ princess �CN� −→ Princess◦

And common nouns with relative clauses are interpreted as follows:

RCN −→ CN that VP
�RCN� −→ λj �→ ((�CN� j) ; (�VP� j))

RCN −→ CN that NP TV
�RCN� −→ λj �→ ((�CN� j) ; (�NP�(λj� �→ ((�TV� j�)j))))

Intransitive and transitive verbs are interpreted as lifted one-place and two-place
predicates, respectively. VPs made up of a transitive verb and an NP are interpreted
as composition of the NP meaning with the verb meaning.

VP −→ laughed �VP� −→ Laugh◦

VP −→ shuddered �VP� −→ Shudder◦

VP −→ TV NP �VP� −→ λj �→ (�NP� ; λj� �→ ((�TV� j�)j))

TV −→ admired �TV� −→ Admire•

TV −→ defeated �TV� −→ Defeat•

Note that it is assumed that proper names are linked to anchored elements in
context. The setup of the context extension mechanism ensures that no anchored
elements can ever be overwritten.

In the implementation below we also throw in reflexive pronouns; the formula-
tion of the abstract interpretation rule for those is left as an exercise for the reader.

324 Discourse Representation and Context

Exercise 12.6 Give a rule for the interpretation of reflexive pronouns.

Note that the syntax of the fragment is only a slight variation of the syntax of
the fragment in Section 4.2. There is no index information on NPs, except for
pronouns. And now we will use NPs He, She, and It.

data Sent = Sent NP VP | If Sent Sent | Txt Sent Sent

deriving (Eq,Show)

data NP = SnowWhite | Alice | Dorothy | Goldilocks

| LittleMook | Atreyu

| PRO Idx | He | She | It

| NP1 DET CN | NP2 DET RCN

deriving (Eq,Show)

data DET = Every | Some | No | The

deriving (Eq,Show)

data CN = Girl | Boy | Princess | Dwarf | Giant

| Wizard | Sword | Poison

deriving (Eq,Show)

data RCN = RCN1 CN That VP | RCN2 CN That NP TV

deriving (Eq,Show)

data That = That deriving (Eq,Show)

data REFL = Self deriving (Eq,Show)

Verb phrases are like follows:

data VP = Laughed | Cheered | Shuddered

| VP1 TV NP | VP2 TV REFL

| VP3 DV NP NP | VP4 DV REFL NP

| VP5 AUX INF

deriving (Eq,Show)

data TV = Loved | Admired | Helped | Defeated

deriving (Eq,Show)

data DV = Gave deriving (Eq,Show)

We also define an auxiliary for VP negation, and infinitives:

data AUX = DidNot deriving (Eq,Show)

12.5 From Structure Trees to Dynamic Interpretation 325

data INF = Laugh | Cheer | Shudder

| INF1 TINF NP | INF2 DINF NP NP

deriving (Eq,Show)

data TINF = Love | Admire | Help | Defeat

deriving (Eq,Show)

data DINF = Give deriving (Eq,Show)

For the interpretation of VPs containing a reflexive pronoun we use the relation
reducer self from Section 6.3. However, we will use the relation reducer on rela-
tions in type Idx -> Idx -> Trans rather than Entity -> Entity -> Bool.
This works without further ado because self was defined with a polymorphic type.

The interpretation of sentences is of type Sent -> Trans:

intS :: Sent -> Trans

intS (Sent np vp) = (intNP np) (intVP vp)

intS (If s1 s2) = (intS s1) ‘impl‘ (intS s2)

intS (Txt s1 s2) = (intS s1) ‘conj‘ (intS s2)

Interpretations of proper names and pronouns are the following:

intNP :: NP -> (Idx -> Trans) -> Trans

intNP SnowWhite = \ p c -> p (anchor snowWhite c) c

intNP Alice = \ p c -> p (anchor alice c) c

intNP Dorothy = \ p c -> p (anchor dorothy c) c

intNP Goldilocks = \ p c -> p (anchor goldilocks c) c

intNP LittleMook = \ p c -> p (anchor littleMook c) c

intNP (PRO i) = \ p -> p i

Interpretation of complex NPs are given as expected:

intNP (NP1 det cn) = (intDET det) (intCN cn)

intNP (NP2 det rcn) = (intDET det) (intRCN rcn)

Also the interpretation of (VP1 TV NP) is as expected, while the interpretation
of (VP2 TV REFL) uses the relation reducer self. Finally, the interpretation of
lexical VPs uses discourse blow-up from the lexical meanings:

326 Discourse Representation and Context

intVP :: VP -> Idx -> Trans

intVP Laughed = blowupPred laugh

intVP Cheered = blowupPred cheer

intVP Shuddered = blowupPred shudder

intVP (VP1 tv np) = \s -> intNP np (\o -> intTV tv s o)

intVP (VP2 tv _) = self (intTV tv)

intVP (VP3 dv np1 np2) = \s -> intNP np1 (\io -> intNP np2

(\o -> intDV dv s io o))

intVP (VP4 dv _ np) = self (\s io -> intNP np (\o ->

intDV dv s io o))

intVP (VP5 _not inf) = \s -> neg (intINF inf s)

The interpretation of TVs uses discourse blow-up of two-place predicates:

intTV :: TV -> Idx -> Idx -> Trans

intTV Loved = blowupPred2 love

intTV Admired = blowupPred2 admire

intTV Helped = blowupPred2 help

intTV Defeated = blowupPred2 defeat

intDV :: DV -> Idx -> Idx -> Idx -> Trans

intDV Gave = blowupPred3 give

The interpretation of infinitives is the same as that of the corresponding VPs:

intINF :: INF -> Idx -> Trans

intINF Laugh = intVP Laughed

intINF Cheer = intVP Cheered

intINF Shudder = intVP Shuddered

intINF (INF1 tinf np) = \s -> intNP np (\o ->

intTINF tinf s o)

intINF (INF2 dinf np1 np2) = \s -> intNP np1 (\io ->

intNP np2 (\o ->

intDINF dinf s io o))

Interpretations for TINFs and DINFs are the same as their tensed counterparts:

12.5 From Structure Trees to Dynamic Interpretation 327

intTINF :: TINF -> Idx -> Idx -> Trans

intTINF Love = intTV Loved

intTINF Admire = intTV Admired

intTINF Help = intTV Helped

intTINF Defeat = intTV Defeated

intDINF :: DINF -> Idx -> Idx -> Idx -> Trans

intDINF Give = intDV Gave

Like the interpretation of intransitive verbs, the interpretation of CNs uses dis-
course blow-up of one-place predicates:

intCN :: CN -> Idx -> Trans

intCN Girl = blowupPred girl

intCN Boy = blowupPred boy

intCN Princess = blowupPred princess

intCN Dwarf = blowupPred dwarf

intCN Giant = blowupPred giant

intCN Wizard = blowupPred wizard

intCN Sword = blowupPred sword

The discourse type of determiners is the combination of two context predicates
into a transition:

intDET :: DET -> (Idx -> Trans) -> (Idx -> Trans) -> Trans

Determiners are interpreted in terms of dynamic quantification exists, dynamic
negation neg, dynamic conjunction conj, and dynamic uniqueness check unique.
Note that the values of the indices are derived from the input context.

intDET Some = \ phi psi c -> let i = length c in

(exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

intDET Every = \ phi psi c -> let i = length c in

neg (exists ‘conj‘ (phi i) ‘conj‘ (neg (psi i))) c

328 Discourse Representation and Context

intDET No = \ phi psi c -> let i = length c in

neg (exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

intDET The = \ phi psi c -> let i = length c in

((unique (phi i)) ‘conj‘

exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

Exercise 12.7 Give an alternative definition of intDET Every in terms of impl.

The interpretation of relativized common nouns is as expected:

intRCN :: RCN -> Idx -> Trans

intRCN (RCN1 cn _ vp) = \i -> conj (intCN cn i)

(intVP vp i)

intRCN (RCN2 cn _ np v) = \i -> conj (intCN cn i)

(intNP np (intTV v i))

Testing It Out

The initial context from which evaluation can start is given by context, defined
on page 315.

eval :: Sent -> Prop

eval = \ s -> intS s context

Here is set of example sentences, for use as a test suite:

ex1 = Sent Dorothy Cheered

ex2 = Sent Dorothy Laughed

ex3 = Sent Dorothy (VP5 DidNot Laugh)

ex4 = Txt (Sent Dorothy Cheered)

(Sent LittleMook Cheered)

ex5 = Txt (Sent Dorothy Cheered)

(Sent (PRO 1) (VP1 Admired (NP1 Some Girl)))

ex6 = Sent (NP1 Some Boy) (VP1 Loved (NP1 Some Princess))

ex7 = Sent (NP1 Some Boy) (VP1 Loved (NP1 The Princess))

12.6 Salience 329

ex8 = Sent (NP1 Some Boy) (VP1 Defeated (NP1 No Giant))

ex9 = Sent (NP1 The Boy) (VP1 Defeated (NP1 No Giant))

ex10 = Sent (NP1 Some Boy) (VP1 Loved (NP1 The Princess))

If these examples evaluate to false, an empty context set is returned. This is an
example:

DRAC> eval ex2

[]

If they evaluate to true, a list of context sets is returned. Here is an example
where the original context gets extended with a new referent:

DRAC> eval ex5

[[A,D,G,M,Y,G]]

Here are some more example sentences:

ex11 = Sent (NP1 No Boy) (VP1 Loved Goldilocks)

ex12 = Sent (NP1 Some Boy) (VP1 Loved SnowWhite)

ex13 = Sent LittleMook (VP1 Loved (NP1 Some Princess))

ex14 = Sent LittleMook (VP1 Defeated (NP2 Some (RCN1 Giant

That (VP1 Loved Alice))))

ex15 = Sent (NP1 No Wizard) (VP1 Loved Dorothy)

ex16 = Sent (NP2 No (RCN1 Giant That

(VP1 Defeated LittleMook)))

(VP1 Loved Dorothy)

ex17 = Sent (NP2 Some(RCN1 Princess That

(VP1 Admired LittleMook)))

(VP1 Loved Dorothy)

ex19 = Sent (PRO 2) (VP1 Loved (PRO 1))

ex20 = Sent (PRO 2) (VP1 Admired (PRO 1))

ex18 = Sent (NP1 The Boy) (VP1 Loved SnowWhite)

ex21 = Sent (NP1 Some Girl) (VP2 Admired Self)

ex22 = Sent (NP1 No Boy) (VP2 Admired Self)

12.6 Salience
Anaphoric reference resolution is incremental. Information needed to determine
the reference of a pronoun in a text is determined ‘on the go’, on the basis of:

330 Discourse Representation and Context

• syntactic properties of the sentence that contains the pronoun,
• information conveyed in the previous discourse, and
• background information shared by speaker and hearer (the common ground).

Surface syntactic form is an important determinant for salience. It is usually as-
sumed that a subject is more salient than an object. For example, the first choice
for resolving he in (12.12) is Little Mook. And the first choice for resolving he in
(12.13) is the dwarf.

Little Mook hit the dwarf. He was upset. (12.12)
The dwarf got kicked by Little Mook. He was upset. (12.13)

In these two examples, Little Mook and the dwarf are the two obvious candidates
for resolving the reference of the pronoun he, because both Little Mook and the
dwarf have been made salient by the preceding text.

To illustrate how this process of salience update can be made explicit, consider
the following context:

Alice Snow White Goldilocks

Salience update in context is a reshuffle of the order of importance of the items
in a context list. This may make Goldilocks the most salient item:

Goldilocks Snow White Alice

To allow reshuffling of a context with Goldilocks in it, in such a way that we
do not lose track of her, we represent contexts as lists of indexed objects, with the
indices running from 0 to the length of the context minus 1:

0

Goldilocks

1

Snow White

2

Alice

Reshuffling this to make Alice most salient gives:

2

Alice

0

Goldilocks

1

Snow White

Note that the indices 0, . . . , n − 1 determine a permutation of the context list.
We call these lists of indexed objects contexts under permutation.

Context Manipulation

In a context c, the entity with index i is given by c[∗i].

12.6 Salience 331

2

Alice

0

Goldilocks

1

Snow White

 [∗0] = Goldilocks

If c is a context under permutation, let (i)c be the result of placing the item
(i, c[∗i]) upfront. Here is an example:

(1)

2

Alice

0

Goldilocks

1

Snow White

 =

1

Snow White

2

Alice

0

Goldilocks

(i)c is the result of moving the item with index i to the head position of the
context list. Successive applications of this operation can generate all permutations
of a context. If d is an object and c a context, then d : c is the result of putting item
(|c|, d) at the head position of the context list.

Dorothy :

2

Alice

0

Goldilocks

1

Snow White

 =

3

Dorothy

1

Snow White

2

Alice

0

Goldilocks

The operation (:) is used for adding a new element to the context, in most salient
position.

Further Refinement of Entries for Determiners

Let p[e] be the type of contexts under permutation. Assume c, c� are variables of
type p[e], and P,Q are variables of type N → p[e] → p[e] → t. Our new definition
of context extension runs as follows:

∃∃ := λcc� �→ ∃x((x : c) = c�).

Lexical entries for determiners now use this new definition instead of the old one.
The new translation of a man effects a salience reshuffle:

λQcc� �→ ∃x(Man x ∧Qi(x : c)c�) where i = |c|.

The referent for the indefinite that gets introduced appears in most salient position
in the new context. Note that (x : c)[∗i] points to the newly introduced referent x.
In any c� that is an extension or permutation of (x : c), the expression c�[∗i] will
continue to point to x.

332 Discourse Representation and Context

Discussion

It may seem that the integration of salience reshuffling in dynamic semantics pre-
cludes an account of the role of surface syntax in establishing salience. This im-
pression is mistaken, however. The context semantics is flexible enough to take
syntactic effects on salience ordering into account.

Lambda abstraction allows us to make flexible use of the salience updating
mechanism. In systems of typed logic, predicate argument structure is a feature
of the ‘surface syntax’ of the logic. Consider the difference between the following
formulas:

(λxy �→ Kxy) l d

(λxy �→ Kyx) d l

(λx �→ Klx) d

All of these reduce to Kld, but the predicate argument structure is different.
Surface predicate argument structure of lambda expressions can be used to en-

code the relevant salience features of surface syntax. We can get the right salience
effects from the surface word order of examples like the following:

Little Mook kicked the dwarf. (12.14)
The dwarf got kicked by Little Mook. (12.15)
The dwarf, Little Mook kicked. (12.16)

To get the desired salience effect, we first make sure that the sentence gets trans-
lated into a lambda expression with the appropriate predicate argument structure.
Next, we use this expression for the salience update of the appropriate contexts.

Reference Resolution

Reference resolution picks the indices of the entities satifying the appropriate gen-
der constraint from the current state, in order of salience. The result of reference
resolution is a list of indices, in an order of preference determined by the salience
ordering of the state. The meaning of a pronoun, given a state, is an invitation to
pick indices from the state, and use those indices to link pronouns to entities. This
can be further refined, of course, in a setup that also stores syntactic information
(about gender, case, and so on) as part of the contexts.

Names are resolved by picking the most salient index to the named entity from
the current state, by looking for an index in a state where all the entities at the index
are referents for the name. Naming ambiguity is treated as a kind of special case
of pronoun reference resolution. If a name has no index in context, the contexts in
the state are extended with an index for the named object.

12.7 Implementing Reference Resolution 333

To conclude, the proposed reference resolution mechanism provides an ordering
of resolution options determined by syntactic structure, semantic structure, and dis-
course structure. This illustrates that pronoun reference resolution can be brought
within the compass of dynamic semantics in a relatively straightforward way. The
proposed mechanism can be viewed as an extension of pronoun reference resolu-
tion mechanisms proposed for discourse representation theory [WA86, BB05].

With minimal modification, the proposal also takes the so-called ‘actor focus’
from the centering theory of local coherence in discourse [GS86, GJW95] into
account. Contexts ordered by salience are a suitable data structure for further re-
finement of the reference resolution mechanism by means of modules for discourse
focus and world knowledge [WJP98].

12.7 Implementing Reference Resolution
We turn to the implementation. As we are going to do pronoun resolution, we
need more informative contexts, for the context should reveal which pronoun got
resolved to which context element. For this, we define a language of constraints,
as follows:

data Constraint = C1 VP Idx

| C2 TV Idx Idx

| C3 DV Idx Idx Idx

| C4 VP Idx

| C5 TV Idx Idx

| C6 DV Idx Idx Idx

deriving Eq

Constraints C1, C2, and C3 are for unnegated verbs, and constraints C4, C5,
and C6 are for negated verbs. Examples of constraints are C1 Laughed 3 and
C2 Helped 4 5. These are displayed on the screen as Laughed 3 and Helped 4 5,
respectively. The following function takes care of the display:

instance Show Constraint where

show (C1 vp i) = show vp ++ (’ ’:show i)

show (C2 tv i j) = show tv ++ (’ ’:show i)

++ (’ ’:show j)

show (C3 dv i j k) = show dv ++ (’ ’:show i)

++ (’ ’:show j)

++ (’ ’:show k)

334 Discourse Representation and Context

show (C4 vp i) = ’-’:show vp ++ (’ ’:show i)

show (C5 tv i j) = ’-’:show tv ++ (’ ’:show i)

++ (’ ’:show j)

show (C6 dv i j k) = ’-’:show dv ++ (’ ’:show i)

++ (’ ’:show j)

++ (’ ’:show k)

To keep track of the indices in a constraint we define a function that retrieves its
largest index.

maxIndex :: Constraint -> Idx

maxIndex (C1 vp i) = i

maxIndex (C2 tv i j) = max i j

maxIndex (C3 dv i j k) = maximum [i,j,k]

maxIndex (C4 vp i) = i

maxIndex (C5 tv i j) = max i j

maxIndex (C6 dv i j k) = maximum [i,j,k]

To keep track of the modifications, we use Context’ for the type of contexts in
the new style, and similarly for Prop’ and Trans’. Contexts in the new style have
constraint lists built into them.

type Context’ = ([(Idx,Entity)],[Constraint])

type Prop’ = [Context’]

type Trans’ = Context’ -> Bool -> Prop’

The new data type for transitions allows for the specification of positive and
negative transitions: if phi :: Trans’ and c :: Context’, then phi c True

specifies the positive transition for c, and phi c False specifies the negative tran-
sition for c.

For the new kind of context we need a new function to retrieve its size:

size :: Context’ -> Int

size (c,co) = length c

12.7 Implementing Reference Resolution 335

New Utility Functions

We define two utility functions. The first one is lookupIdx’, that looks up at an
index to retrieve an entity, where lookupIdx’ c i is the implementation of c[∗i].

lookupIdx’ :: Context’ -> Idx -> Entity

lookupIdx’ ([],co) j = error "undefined context item"

lookupIdx’ ((i,x):xs,co) j | i == j = x

| otherwise = lookupIdx’ (xs,co) j

The second one is adjust, that adjusts the context by putting a discourse item
up front, thus permutes the salience ordering.

adjust :: (Idx,Entity) -> Context’ -> Context’

adjust (i,x) (c,co)

| elem (i,x) c = (((i,x):(filter (/=(i,x)) c)),co)

| otherwise = error "item not found in context"

Here is a new version of extend:

extend’ :: Context’ -> Entity -> Context’

extend’ = \ (c,co) e -> let i = length c in (((i,e):c),co)

The following function success checks if a given transition is possible from
some given context.

success :: Context’ -> Trans’ -> Bool

success = \ c phi -> phi c True /= []

Now we define a function cutoff cs i, that cuts off all context elements in
the list of contexts cs with index ≥ i. This is the implementation of �i� C, the
operation used to cut all contexts in C down to size i. The constraints that employ
indices ≥ i are removed.

336 Discourse Representation and Context

cutoff :: [Context’] -> Idx -> [Context’]

cutoff [] i = []

cutoff ((c,co):cs) i = (cutoffc c i,cutoffco co i)

:(cutoff cs i)

where

cutoffc [] i = []

cutoffc ((j,x):xs) i | j >= i = cutoffc xs i

| otherwise = (j,x):(cutoffc xs i)

cutoffco [] i = []

cutoffco (co:cos) i

| maxIndex co >= i = cutoffco cos i

| otherwise = co:(cutoffco cos i)

The result of a cutoff may be that we end up with multiple copies of the same
context. To remedy this, we need the function nub for removing superfluous
copies.

New Versions of the Dynamic Operations

The neg’ of a transition in the new style is got by swapping the truth value, and
doing a cutoff for the negative transition relation.

neg’ :: Trans’ -> Trans’

neg’ = \ phi c b -> if b then phi c False

else cutoff (phi c True) (size c)

If conj’ succeeds, then the result is as before, and if conj’ fails, the salience
order of the input gets adjusted by cutting a counterexample context back to its
original size.

conj’ :: Trans’ -> Trans’ -> Trans’

conj’ = \ phi psi c b -> if b

then concat [psi c’ True | c’ <- phi c True]

else if any (\c’ -> psi c’ True /= []) (phi c True)

then []

else if (phi c True) == [] then (phi c False)

else nub (cutoff (concat [psi c’ False |

c’ <- phi c True])

(size c))

12.7 Implementing Reference Resolution 337

The implication function impl’ can now simply be defined in terms of neg’
and conj’.

impl’ :: Trans’ -> Trans’ -> Trans’

impl’ = \ phi psi -> neg’ (phi ‘conj’‘ (neg’ psi))

The function exists’ takes into account that the quantifier action always suc-
ceeds.

exists’ :: Trans’

exists’ = \ c b -> if b

then [(extend’ c e) | e <- entities]

else []

Syntax and Lexical Semantics

The only new thing that happens now is that pronouns do not carry indices any-
more. Besides, the procedure for predicate blow-up is modified, for this is the
spot where salience gets reset. Note that the salience relations of the context are
adjusted even if the predicate does not hold.

blowupPred’ :: (Entity -> Bool) -> Idx -> Trans’

blowupPred’ = \ pred i c b ->

let

e = lookupIdx’ c i

c’ = adjust (i,e) c

in

if b

then if pred e

then [c’]

else []

else if pred e

then []

else [c’]

For blow-up of VPs we add an extra touch to this, by including the relevant
constraint in the context if the predicate holds. If the negated predicate holds, the
constraint is modified accordingly.

338 Discourse Representation and Context

blowupVP :: VP -> OnePlacePred -> Idx -> Trans’

blowupVP = \ vp pred i c b ->

let

e = lookupIdx’ c i

(c’,cos) = adjust (i,e) c

co = C1 vp i

co’ = C4 vp i

in

if b

then if pred e

then [(c’,co:cos)]

else []

else if pred e

then []

else [(c’,co’:cos)]

The new definition of TV blow-up for two-place predicates ensures that subject
is more salient than object. We also need to add the relevant constraint to the
context if the predicate holds.

blowupTV :: TV -> TwoPlacePred -> Idx -> Idx -> Trans’

blowupTV = \ tv pred subj obj c b ->

let

e1 = lookupIdx’ c subj

e2 = lookupIdx’ c obj

(c’,cos) = adjust (subj,e1) (adjust (obj,e2) c)

co = C2 tv subj obj

co’ = C5 tv subj obj

in

if b

then if pred e1 e2

then [(c’,co:cos)]

else []

else if pred e1 e2

then []

else [(c’,co’:cos)]

Similarly for ditransitive verbs:

12.7 Implementing Reference Resolution 339

blowupDV :: DV -> ThreePlacePred ->

Idx -> Idx -> Idx -> Trans’

blowupDV = \ dv pred subj iobj dobj c b ->

let

e1 = lookupIdx’ c subj

e2 = lookupIdx’ c iobj

e3 = lookupIdx’ c dobj

(c’,cos) = adjust (subj,e1)

(adjust (iobj,e2)

(adjust (dobj,e3) c))

co = C3 dv subj iobj dobj

co’ = C6 dv subj iobj dobj

in

if b

then if pred e1 e2 e3

then [(c’,co:cos)]

else []

else if pred e1 e2 e3

then []

else [(c’,co’:cos)]

Reference Resolution

The following code implements a simple but powerful reference resolution mech-
anism. It just picks the indices of the entities satisfying the gender constraint from
the current context, in order of salience.

resolveMASC :: Context’ -> [Idx]

resolveMASC (c,co) = resolveMASC’ c where

resolveMASC’ [] = []

resolveMASC’ ((i,x):xs) | male x = i : resolveMASC’ xs

| otherwise = resolveMASC’ xs

resolveFEM :: Context’ -> [Idx]

resolveFEM (c,co) = resolveFEM’ c where

resolveFEM’ [] = []

resolveFEM’ ((i,x):xs) | female x = i : resolveFEM’ xs

| otherwise = resolveFEM’ xs

340 Discourse Representation and Context

resolveNEU :: Context’ -> [Idx]

resolveNEU (c,co) = resolveNEU’ c where

resolveNEU’ [] = []

resolveNEU’ ((i,x):xs) | thing x = i : resolveNEU’ xs

| otherwise = resolveNEU’ xs

Names are resolved by picking the most salient index to the named entity from
the current context. If the name has no index in context, the context is extended
with an index for the named object.

resolveNAME :: Entity -> Context’ -> (Idx,Context’)

resolveNAME x c | i /= -1 = (i,c)

| otherwise = (j,extend’ c x)

where i = index x c

j = size c

index x ([],co) = -1

index x ((i,y):xs,co) | x == y = i

| otherwise = index x (xs,co)

As matters stand now, we will still get wrong results for examples like he re-
spected him, where a constraint should be imposed that he and him do not corefer
(see, e.g., Reinhart [Rei83]). This constraint on coreference can be imposed with
the following ‘irreflexivizer’:

nonCoref :: (Idx -> Idx -> Trans’) -> Idx -> Idx -> Trans’

nonCoref = \ p i j c b -> if i /= j

then (p i j c b)

else []

When imposed on [VPTV NP] where NP is not a reflexive pronoun, this has the
desired effect of blocking coreference. In [Rei83], it is argued that the constraint
on coreference is a pragmatic constraint, and that there are exceptions to this rule.
Our implementation takes this into account, for the non-coreference constraint is
implemented as a constraint on context, not on the underlying reality, where the
relation that interprets the TV need not be irreflexive.

Here is a version of the irreflexivizer for ditransitive verbs:

12.7 Implementing Reference Resolution 341

nonCoref2 :: (Idx -> Idx -> Idx -> Trans’) ->

Idx -> Idx -> Idx -> Trans’

nonCoref2 = \ p i j k c b -> if i /= j && j /= k && i /= k

then (p i j k c b)

else []

A New Version of Dynamic Interpretation

Again nothing really new happens, except for the fact that now we can do pronoun
resolution in context. To ensure that the old test suite still runs, we also provide a
rule for PROi.

The interpretation function for sentences is the following:

intS’ :: Sent -> Trans’

intS’ (Sent np vp) = (intNP’ np) (intVP’ vp)

intS’ (If s1 s2) = (intS’ s1) ‘impl’‘ (intS’ s2)

intS’ (Txt s1 s2) = (intS’ s1) ‘conj’‘ (intS’ s2)

And now we give an interpretation function for NPs, that uses the resolution
functions:

intNP’ :: NP -> (Idx -> Trans’) -> Trans’

intNP’ SnowWhite = \p c ->

let (i,c’) = resolveNAME snowWhite c

in p i c’

intNP’ Alice = \p c ->

let (i,c’) = resolveNAME alice c

in p i c’

intNP’ Dorothy = \p c ->

let (i,c’) = resolveNAME dorothy c

in p i c’

intNP’ Goldilocks = \p c ->

let (i,c’) = resolveNAME goldilocks c

in p i c’

intNP’ LittleMook = \p c ->

let (i,c’) = resolveNAME littleMook c

in p i c’

342 Discourse Representation and Context

intNP’ He = \p c b -> concat [p i c b | i <- resolveMASC c]

intNP’ She = \p c b -> concat [p i c b | i <- resolveFEM c]

intNP’ It = \p c b -> concat [p i c b | i <- resolveNEU c]

intNP’ (PRO i) = \ p c -> p i c

intNP’ (NP1 det cn) = (intDET’ det) (intCN’ cn)

intNP’ (NP2 det rcn) = (intDET’ det) (intRCN’ rcn)

In the VP interpretation rule for (VP1 tv np)we now impose the non-coreference
constraint. For the interpretation of (VP1 tv refl), we use the polymorphic
self, this time as an operation that takes in input of type Idx -> Idx -> Trans’.

intVP’ :: VP -> Idx -> Trans’

intVP’ (VP1 tv np) = \ s -> intNP’ np (\ o ->

nonCoref (intTV’ tv) s o)

intVP’ (VP2 tv refl) = self (intTV’ tv)

intVP’ (VP3 dv np1 np2) = \ s -> intNP’ np1 (\ io ->

intNP’ np2 (\ o ->

nonCoref2 (intDV’ dv) s io o))

intVP’ (VP4 dv refl np) = self (\ s io -> intNP’ np (\ o ->

intDV’ dv s io o))

intVP’ (VP5 _not inf) = \ s -> neg’ (intINF’ inf s)

intVP’ Laughed = blowupVP Laughed laugh

intVP’ Cheered = blowupVP Cheered cheer

intVP’ Shuddered = blowupVP Shuddered shudder

Here are interpretation functions for transitive and ditransitive verbs:

intTV’ :: TV -> Idx -> Idx -> Trans’

intTV’ Loved = blowupTV Loved love

intTV’ Admired = blowupTV Admired admire

intTV’ Helped = blowupTV Helped help

intTV’ Defeated = blowupTV Defeated defeat

intDV’ :: DV -> Idx -> Idx -> Idx -> Trans’

intDV’ Gave = blowupDV Gave give

12.7 Implementing Reference Resolution 343

The interpretation of infinitives is same as that of the corresponding VPs:

intINF’ :: INF -> Idx -> Trans’

intINF’ Laugh = intVP’ Laughed

intINF’ Cheer = intVP’ Cheered

intINF’ Shudder = intVP’ Shuddered

intINF’ (INF1 tinf np) = \ s -> intNP’ np (\ o ->

intTINF’ tinf s o)

intINF’ (INF2 dinf np1 np2) = \ s -> intNP’ np1 (\ io ->

intNP’ np2 (\ o ->

intDINF’ dinf s io o))

Interpretations for TINFs and DINFs are the same as their tensed counterparts:

intTINF’ :: TINF -> Idx -> Idx -> Trans’

intTINF’ Love = intTV’ Loved

intTINF’ Admire = intTV’ Admired

intTINF’ Help = intTV’ Helped

intTINF’ Defeat = intTV’ Defeated

intDINF’ :: DINF -> Idx -> Idx -> Idx -> Trans’

intDINF’ Give = intDV’ Gave

The interpretation function for common nouns is given as follows:

intCN’ :: CN -> Idx -> Trans’

intCN’ Girl = blowupPred’ girl

intCN’ Boy = blowupPred’ boy

intCN’ Princess = blowupPred’ princess

intCN’ Dwarf = blowupPred’ dwarf

intCN’ Giant = blowupPred’ giant

intCN’ Wizard = blowupPred’ wizard

intCN’ Sword = blowupPred’ sword

Now we also adjust the uniqueness check to the new data structures:

344 Discourse Representation and Context

unique’ :: Idx -> Trans’ -> Trans’

unique’ i phi c b =

if b == singleton xs then [c] else []

where xs = [x | x <- entities, success (extend’ c x) phi]

Interpretation functions for determiners are given as follows:

intDET’ :: DET -> (Idx -> Trans’)

-> (Idx -> Trans’) -> Trans’

intDET’ Some = \ phi psi c -> let i = size c in

(exists’ ‘conj’‘ (phi i) ‘conj’‘ (psi i)) c

intDET’ Every = \ phi psi c -> let i = size c in

(impl’ (exists’ ‘conj’‘ (phi i))

(psi i)) c

intDET’ No = \ phi psi c -> let i = size c in

(impl’ (exists’ ‘conj’‘ (phi i))

(neg’ (psi i))) c

intDET’ The = \ phi psi c -> let i = size c in

(conj’ (unique’ i (phi i))

exists’ ‘conj’‘ (phi i)

‘conj’‘ (psi i)) c

Here are interpretation functions for common nouns with relative clauses:

intRCN’ :: RCN -> Idx -> Trans’

intRCN’ (RCN1 cn _ vp) = \i -> conj’ (intCN’ cn i)

(intVP’ vp i)

intRCN’ (RCN2 cn _ np tv) = \i -> conj’ (intCN’ cn i)

(intNP’ np (intTV’ tv i))

Initiatization and Evaluation in the New Style

For evaluation, we use propositions (lists of contexts) in the new style. First we
give a function for the conversion from contexts in the old style to contexts in the
new style. This function adds indices and keeps the order of the elements in the
old context. This has the effect of making the first element of the old context the
most salient item of the new context.

12.7 Implementing Reference Resolution 345

convert :: Context -> Context’

convert c = (convert’ c (length c - 1),[])

where convert’ [] i = []

convert’ (x:xs) i = (i,x):(convert’ xs (i-1))

Then we define an evaluation function for sentences in the initial context, check-
ing for truth:

eval’ :: Sent -> Prop’

eval’ s = intS’ s (convert context) True

We also give an evaluation function for sentences in an empty context, checking
for truth:

evalFresh :: Sent -> Prop’

evalFresh s = intS’ s ([],[]) True

Examples

Recall that the position at the front of the context list is the most salient one. We
give some variations on the earlier test examples that can be used to check pronoun
resolution. Let us first have a look at the initial context.

DRAC> convert context

([(4,A),(3,D),(2,G),(1,M),(0,Y)],[])

This context contains the females A, D, G, and the males M and Y. A is the most
salient individual. Now suppose we use this context to process sentence (12.17).

He admired some girl. (12.17)

Glossing over the parsing step, here is the syntax tree for this example:

nex1 = Sent He (VP1 Admired (NP1 Some Girl))

In a context where referents for the pronoun are available, he can be resolved to
any referent that satisfies the property. And this is what we get:

DRAC> eval’ nex1

[([(1,M),(5,G),(4,A),(3,D),(2,G),(0,Y)],[Admired 1 5]),

([(0,Y),(5,G),(4,A),(3,D),(2,G),(1,M)],[Admired 0 5])]

346 Discourse Representation and Context

As it turns out, the two males in the current context both admire some girl. In fact,
they both admire G. Note that in the new context the admiring boy (either M or Y)
and the admired girl G have become the most salient context items.

Next, consider sentence (12.18), where two new discourse elements get intro-
duced.

Some dwarf defeated the giant. (12.18)

The syntax tree of (12.18):

nex2 = Sent (NP1 Some Dwarf) (VP1 Defeated (NP1 The Giant))

The result of evaluation in the empty context:

DRAC> evalFresh nex2

[([(0,B),(1,T)],[Defeated 0 1]),([(0,R),(1,T)],[Defeated 0 1])]

As it turns out, both B and R are dwarfs who defeated the giant, T. The result of
evaluation is two new contexts, one for each choice of victorious dwarf, where the
dwarf and the giant have become the most salient context items.

Now suppose we continue the text with a sentence where a masculine pronoun
is used, as in (12.19).

Some dwarf defeated the giant. He cheered. (12.19)

Here is the syntax tree:

nex2a = Sent (NP1 Some Dwarf) (VP1 Defeated (NP1 The Giant))

‘Txt‘ (Sent He Cheered)

Result of evaluation:

DRAC> evalFresh nex2a

[]

Hmm, this is strange. One would expect the pronoun to pick up a reference to the
most salient male in context, i.e. to the victorious dwarf. Why doesn’t that happen?
The answer is that in the model of evaluation none of the victorious dwarfs happen
to cheer. So let us modify the example:

nex2b = Sent (NP1 Some Dwarf) (VP1 Defeated (NP1 The Giant))

‘Txt‘ (Sent He (VP5 DidNot Cheer))

This gives:

12.7 Implementing Reference Resolution 347

DRAC> evalFresh nex2b

[([(0,B),(1,T)],[-Cheered 0,Defeated 0 1]),

([(1,T),(0,B)],[-Cheered 1,Defeated 0 1]),

([(0,R),(1,T)],[-Cheered 0,Defeated 0 1]),

([(1,T),(0,R)],[-Cheered 1,Defeated 0 1])]

Here the pronoun gets resolved either to the dwarf, or to the giant, and there are
two possible choices for the dwarf. In any case, the referent of the pronoun ends
up as the most salient item in context.

Let us look at some more examples.

nex3 = (Sent LittleMook Cheered) ‘Txt‘

(Sent He (VP1 Admired (NP1 Some Girl)))

Interpretation in our standard context yields:

DRAC> eval’ nex3

[([(1,M),(5,G),(4,A),(3,D),(2,G),(0,Y)],

[Admired 1 5,Cheered 1]),

([(0,Y),(5,G),(1,M),(4,A),(3,D),(2,G)],

[Admired 0 5,Cheered 1])]

Interpretation in an empty context gets rid of the interpretation of he as Y:

DRAC> evalFresh nex3

[([(0,M),(1,G)],[Admired 0 1,Cheered 0])]

nex4 = Txt (Sent (NP1 Some Dwarf) (VP5 DidNot Shudder))

(Sent He (VP1 Defeated (NP1 Some Giant)))

This time there are no spurious referents for the pronoun in context. We get:

DRAC> eval’ nex4

[([(5,B),(6,T),(4,A),(3,D),(2,G),(1,M),(0,Y)],

[Defeated 5 6,-Shuddered 5]),

([(5,R),(6,T),(4,A),(3,D),(2,G),(1,M),(0,Y)],

[Defeated 5 6,-Shuddered 5])]

Evaluation in the empty context gives:

DRAC> evalFresh nex4

[([(0,B),(1,T)],[Defeated 0 1,-Shuddered 0]),

([(0,R),(1,T)],[Defeated 0 1,-Shuddered 0])]

348 Discourse Representation and Context

nex5 = (Sent LittleMook (VP5 DidNot (INF1 Admire Dorothy)))

‘Txt‘ (Sent He Cheered)

The pronoun gets resolved as expected:

DRAC> evalFresh nex5

[([(0,M),(1,D)],[Cheered 0,-Admired 0 1])]

Here is an example where the context gets extended in different ways:

nex6 = Txt (Sent (NP1 Some Dwarf)

(VP5 DidNot (INF1 Admire Dorothy)))

(Sent He (VP5 DidNot Cheer))

The evaluation result is:

DRAC> evalFresh nex6

[([(0,B),(1,D)],[-Cheered 0,-Admired 0 1]),

([(0,R),(1,D)],[-Cheered 0,-Admired 0 1])]

An example involving existential quantification and negation is the following:

nex7 = Sent (NP1 Some Giant)

(VP5 DidNot (INF1 Admire (NP1 Some Princess)))

The evaluation result is:

DRAC> evalFresh nex7

[([(0,T)],[])]

The evaluation creates a context with a giant T in it, but there are no further
context elements. The reason for this becomes clear if we reflect on the example.
The sentence is true. It is evaluated with surface scope order, which means that
there is some giant such that there is no princess he admires. So listing princesses
admired by T makes no sense, and listing princesses that T does not admire does
not make sense either.

Exercise 12.8 Check the evaluation results for the following example list, and comment
on your findings.

12.8 Further Reading 349

nex8 = (Sent (NP1 The Princess) (VP1 Defeated (NP1 The Giant)))
‘Txt‘ (Sent She (VP1 Admired He))

nex9 = Sent He (VP1 Loved He)
nex10 = Sent He (VP2 Admired Self)
nex11 = Sent He (VP1 Admired He)
nex12 = Sent (NP1 The Giant) (VP2 Admired Self)
nex13 = Txt (Sent (NP1 The Princess) (VP2 Admired Self))

(Sent She (VP1 Loved (NP1 The Giant)))
nex14 = Txt (Sent (NP1 Some Boy) (VP2 Admired Self))

(Sent (NP1 Some Princess) (VP1 Loved He))
nex15 = If (Sent (NP1 Some Boy) (VP2 Admired Self))

(Sent (NP1 Some Giant) (VP1 Loved He))
nex16 = Txt (Sent (NP1 No Girl) (VP1 Helped LittleMook))

(Sent (NP1 Some Princess) (VP1 Loved He))

12.8 Further Reading
Dynamic semantics for natural language started with Hans Kamp’s paper on Dis-
course Representation Theory [Kam81] and with the closely related PhD thesis of
Irene Heim [Hei82]. Semanticists working in the Montague tradition had qualms
about the compositionality of this approach. This led to a rational reconstruc-
tion by Groenendijk and Stokhof called dynamic predicate logic (or short: DPL)
[GS91]. The dynamic predicate logic version od DRT became the choice tool for
incorporating discourse representation theory into Montague semantics; see, e.g.,
[Mus94, Mus96]. A synthesis proposal along slightly different lines can be found
in [EK97]. The mathematics of context and context extension has developed into a
topic in its own right; see, e.g., [VV96].

Incremental dynamics, as presented in [Eij01], remains closer to Kamp’s original
proposal. This framework can be viewed as the one-variable version of sequence
semantics for dynamic predicate logic proposed in [Ver93]. Incremental dynamics
is described in terms of polymorphic type theory in [Eij00]. This system makes
clear how the instruction to take fresh discourse referents when needed can be
made fully precise by using the standard toolset of (polymorphic) type theory. Such
a reconstruction of DRT in type theory does justice to the incrementality and the
finite state semantics of the original.

The proposal for the treatment of salience in the second fragment is an extension
of the basic context logic. It should be compared with the treatment of pronoun
resolution in DRT proposed in the second volume of [BB05], as well as with the
earlier proposal for pronoun resolution in DRT in [WA86].

Central claim of the centering theory of local coherence in discourse [GS86,
GJW95] is that pronouns are used to signal to the hearer that the speaker contin-

350 Discourse Representation and Context

ues to talk about the same thing. See [WJP98] for extensions and variations that
take world knowledge into account, and [BLSW04] for a reformulation in terms of
optimality theory. The reference resolution mechanism proposed above is meant
as a demonstration that reference resolution can be brought within the compass of
dynamic semantics in a relatively straightforward way, and that very simple means
are enough to implement something quite useful.

In the second fragment in this Chapter we have demonstrated pronoun reference
resolution related to a fixed background model. More realistic is a setup where the
‘compatible’ models grow incrementally with the discourse. This can be achieved,
e.g., by using a tableau unfolding mechanism for model generation (cf. [BE82,
Koh00]).

As was mentioned already, discourse semantics in the style of Kamp and Heim
can be viewed as a form of continuation passing style semantics for texts. This
connection is worked out further in [dG04] and [BS08].

13
Communication as Informative Action

Summary

A theory of communication should provide accounts of changes in the state of
information of a group of discourse participants, on the basis of message exchange
within the group. This chapter gives an introduction to the way this is done in
dynamic epistemic logic, focussing on the relevance of this work for semantics
and pragmatics of natural language.

13.1 Knowledge and Communication

Suppose I try saying something.

What way do I have of knowing
that if I say I know something
I don’t really not know it?

Or what way do I have of knowing
that if I say I don’t know something
I don’t really in fact know it?

Chuang Tzu (around 350 BC)

Imagine a typical discourse situation where we are talking to you. Outside is the
realm of things and people that are not included in the discourse situation, the they,
he, she, it. Here is a rough picture of what this looks like from our point of view:

351

352 Communication as Informative Action

We

You

It, He, She, They

Aim of a communicative discourse is to create common knowledge between us
and you. What does it mean to create common knowledge? If we inform you that
something is the case, say that there is a party on tonight, then not only do you
know that there is a party on, but also we know that you know, and you know that
we know that you know. And so on, ad infinitum. This is common knowledge.

To see that common knowledge is different from mere knowledge, consider the
example of cash withdrawal from a bank. You withdraw a large amount of money
from your bank account and have it paid out to you in cash by the cashier. What
happens? The cashier looks at you earnestly to make sure she has your full atten-
tion, and then she slowly counts out the banknotes for you: five hundred (counting
ten notes), one thousand (counting another ten notes), fifteen hundred (ten notes
again), and two thousand (another ten notes). This ritual creates common knowl-
edge that forty banknotes of fifty euros were paid out to you. To see that this is
different from mere knowledge, consider the alternative where the cashier counts
out the money out of sight, puts it in an envelope, and hands it over to you. At
home you open the envelope and count the money. Then the cashier and you have
knowledge about the amount of money that is in the envelope. But the amount of
money is not common knowledge among you. In order to create common knowl-
edge you will have to insist on counting the money while the cashier is looking
on, making sure that you have her full intention. For suppose you fail to do that.
On recounting the money at home you discover there has been a mistake. One
banknote is missing. Then the situation is as follows: the cashier believed that she
knew there were forty banknotes. You now know there are only thirty-nine. How
are you going to convince your bank that a mistake has been made, and that it is
their mistake?

13.1 Knowledge and Communication 353

Exercise 13.1 When money is paid out to you by an ATM, does this create common
knowledge between you and the machine? Why (not)?

The branch of logic that studies knowledge is called epistemic logic. The basic
ingredient is the notion of a possible world or a possible state of affairs. The basic
concept is the relation of indistinguishability between worlds. Here is an example.
Consider the case where there are two agents, Alice (a) and Bob (b), and a coin
has been tossed. In fact, the coin has landed heads, but neither of the agents has
observed this. This situation can be modelled like this:

0: h

ab

1: h

ab

ab

On the left we have the actual world, shaded gray. In the actual world h is
true because the coin has landed heads up. The agents a and b cannot distinguish
this situation from the situation on the right, where the coin has landed tails up; h
indicates that the valuation in this situation makes h false. The epistemic indistin-
guishability relation is an equivalence relation, i.e. it is reflexive, symmetric, and
transitive. In the following we will omit the reflexive loops and write ←→ as —.
The picture above then looks like this:

0: h 1: h

ab

In this example knowledge and common knowledge coincide, for the epistemic
relations are the same for both agents.

So let us add a second proposition letter p and a new agent c. Suppose a, b are
still ignorant about h and c is ignorant also about p:

354 Communication as Informative Action

0: hp 1: hp

2: hp 3: hp

ab

ab

c c

Now in the actual world it is common knowledge between a and b that p. But it
is not common knowledge between a, b, c that p. Similarly, in the actual world it is
known to c that h, but it is not common knowledge between a, b, c that h.

Next, consider the effect of communicative updates. There is a whole range of
them, such as public announcements, group announcements, private communica-
tions, public and private lies, and so on. For simplicity we will confine attention
in this chapter to public announcements. A public announcement is a true mes-
sage conveyed to all agents in a communicative situation. In many cases, public
announcement of φ will make φ common knowledge. If, for example, someone
announces ‘the coin has landed heads’, then all the agents come to know it, and
since the announcement was public, they also know that all the others know and so
on.

However, it is not generally the case that φ will be true and common knowledge
after the announcement. For consider the coin situation again. Suppose an outside
observer would publicly announce ‘the coin has landed heads, but you guys do not
know it yet’. This would have been a true announcement. But its effect is that after
the announcement the agents know that the coin has landed heads. The snag is that
the announcement states something that is true before the announcement.

The crucial logical operation for modelling the effect of public announcement is
elimination of possibilities. Imagine an information state involving several agents,
with several worlds connected by agent accessibilities. Then the effect of a public
announcement A is that all non-A worlds get eliminated from the picture. Here is
the effect of public announcement of h in the above epistemic situation:

13.2 Reasoning About Knowledge and Ignorance 355

0 : hp

2 : hp

c

In the next section we will have a close look at two interesting examples of
reasoning about (common) knowledge and ignorance.

13.2 Reasoning About Knowledge and Ignorance
As a first example of reasoning about knowledge and ignorance, we consider the
so-called riddle of the wise men (or: riddle of the caps). Four men are standing
in line. Counting from left to right, the first three are facing left and the last one
is facing right. No man can see his own cap. The second man can see the first
man’s cap, the third man can see the first and the second man’s cap, the first and
the fourth man can see nothing. Here is a picture of the situation:

Now suppose it is common knowledge that there are two white caps and two
black caps. Then, clearly, the third man knows the colour of his cap, and no other
man knows the colour of his cap. For the third man reasons as follows: I see two
white caps in front of me. I know that there are only two white caps. So my cap
must be black. Now assume the third man announces this, without revealing the
colour: ‘I know the colour of my cap.’ Then this will allow the second man to
figure out the colour of his cap. For the second man reasons as follows: I know the
guy behind me knows that there are only two white caps. I know that because it

356 Communication as Informative Action

is common knowledge. I see a white cap in front of me. Suppose my own cap is
black. Then the guy behind would see two different caps, and he would not have
known his colour. But he knows. So my own cap must be white.

Exercise 13.2 State as precisely as you can what the fourth man learns from this exchange.

Now assume the situation is slightly different: the third man sees a white and a
black cap in front of him.

Then, obviously, the third man cannot figure out the colour of his cap. As soon
as he announces this, by saying ‘I do not know the colour of my cap’, the second
man knows the colour of his cap. For he reasons as follows: The guy behind me
does not know his colour. This must mean he sees two different colours in front of
him. I can see that the guy before me is wearing a white cap, so the colour of my
own cap must be black.

A similar example is the puzzle of the muddy children. Four children have been
playing outside. When they get indoors, the father announces: ‘At least one of you
is muddy.’ The children can see the mud on each other’s forehead, but not on their
own. The following shows an example scenario, with a and b clean and c and d
muddy.

a b c d
◦ ◦ • •
? ? ? ?
? ? ! !
! ! ! !

The first line of question marks shows the initial situation, where nobody knows
whether they are muddy. The reason nobody knows is that each child sees at least
one other child with mud. Suppose this ignorance is made public. They all say: ‘I
do not know whether I am muddy.’ This provides new information, for now child

13.3 A Language for Talking About (Common) Knowledge 357

c (or d) reasons as follows: Suppose I am clean. Then d (or c, respectively) would
have known in the first round that she was dirty. But she didn’t. So I am muddy.
This is the second round. If c and d now say ‘I know that I am muddy’, then this
provides new information for a and b. For a (or b) can now reason as follows:
Suppose I am dirty. Then c and d would not have known in the second round that
they were dirty. But they knew. So I am clean.

13.3 A Language for Talking About (Common) Knowledge
A suitable logic for talking about knowledge and common knowledge is epistemic
PDL, or E-PDL. PDL is short for propositional dynamic logic. It was invented
as a language for computer program specification, but the nice thing about logical
tools is that they can be reinterpreted and put to use in different domains. For
example, PDL has an operation of program composition: first execute program P ,
next execute program Q. We can reinterpret this to express the epistemic relation
of what Alice knows about Bob’s knowledge. Similarly, PDL has a construction
for non-deterministic choice between two programs P and Q. We can reinterpret
this as the relation of what Alice and Bob both know. Finally, PDL can express
reflexive transitive closure, for executing a program P an arbitrary finite number of
times. We reinterpret that as the reflexive transitive closure of a knowledge relation.
So if a denotes Alice’s accessibility relation and b Bob’s, and we use ∪ for union of
relations, and ∗ for reflexive transitive closure, then (a∪ b)∗ expresses the common
knowledge of Alice and Bob.

Here is a language for knowledge and public announcement. Assume that a
ranges over the accessibility relations for individual agents and that p ranges over
a set of basic propositions P .

φ ::= � | p | ¬φ | φ1 ∧ φ2 | [α]φ | [!φ1]φ2

α ::= a |?φ | α1;α2 | α1 ∪ α2 | α∗

To interpret this language we need a formal definition of epistemic models. Here
it is. Let a set P of basic propositions and a set A of agents be given. Then an
epistemic model M for P and A is a triple (W,V,R), where

• W is a non-empty set of worlds (the universe of the model),
• V is a function from W to P(P) (the valuation function of the model),
• R is a function from A to P(W ×W) that assigns to each a ∈ A an equivalence

relation a→ on W (the accessibility relation for agent a).

We use this to define interpretations for formulas φ and epistemic expressions α.
Let a model M = (W,V,R) be given. The formulas of E-PDL are interpreted as

358 Communication as Informative Action

subsets of W , and the epistemic expressions of E-PDL as binary relations on W ,
as follows.

[[�]]M = W

[[p]]M = {w ∈ W | p ∈ V (w)}
[[¬φ]]M = W − [[φ]]M

[[φ1 ∧ φ2]]
M = [[φ1]]

M ∩ [[φ2]]
M

[[[α]φ]]M = {w ∈ W | ∀v(if (w, v) ∈ [[α]]M then v ∈ [[φ]]M)}

[[[!φ1]φ2]]
M = (W − [[φ1]]

M) ∪ [[φ2]]
M |φ1

where M | φ1 = (W �, V �, R�),with
W � = [[φ1]]

M ,

V � = V restricted to W �,

R�(a) = R(a) restricted to W � for each a,

[[a]]M = R(a)

[[?φ]]M = {(w,w) ∈ W ×W | w ∈ [[φ]]M}
[[α1;α2]]

M = [[α1]]
M ◦ [[α2]]

M

[[α1 ∪ α2]]
M = [[α1]]

M ∪ [[α2]]
M

[[α∗]]M = ([[α]]M)∗

Note that in this definition ◦ is used for relational composition, and ∗ for reflexive
transitive closure of a binary relation.

If w ∈ W , then we use M |=w φ for w ∈ [[φ]]M . Intuitively, M |=w φ expresses
that φ is true at world w of model M .

Here are some example formulas, with their meanings:

• [a]p expresses that agent a knows p. This is true in a world w of model M if all
v ∈ W with (w, v) ∈ R(a) satisfy M |=w� p.

• ¬[a]¬p expresses that agent a does not know p, i.e. that p is compatible with
what a knows.

• [(a∪ b)∗]p expresses that it is common knowledge between a and b that p. Tech-
nically, [(a ∪ b)∗]p holds in w if for all v ∈ W with (w, v) ∈ (R(a) ∪ R(b))∗ it
is the case that p is true.

• [!φ1]φ2 expresses that after the public announcement of φ1, φ2 holds. The effect
of the announcement of φ1 is that the model is restricted with respect to φ1.

An important fact is that everything that can be expressed in this logical lan-

13.3 A Language for Talking About (Common) Knowledge 359

guage can already be expressed in E-PDL. In other words: the addition of public
announcements [!φ1]φ2 to the language does not increase expressive power. To
show this, we will establish that for every φ and every α there is a T φ(α) with the
following property (see Exercise 13.3):

M |=w [!φ][α]ψ iff M |=w [T φ(α)][!φ]ψ.

Use EE for the type of epistemic expression. Then the function T φ is of type
EE → EE. Here is the definition of this function.

T φ(a) = ?φ ; a

T φ(?ψ) = ?(φ ∧ [!φ]ψ)

T φ(α1;α2) = T φ(α1) ;T
φ(α2)

T φ(α1 ∪ α2) = T φ(α1) ∪ T φ(α2)

T φ(α∗) = (?φ ;T φ(α))∗

Exercise 13.3 Show by induction on the structure of α that

M |=w [!φ][α]ψ iff M |=w [Tφ(α)][!φ]ψ.

Exercise 13.3 provides the crucial information for the following axiomatization
of the behaviour of public announcements !φ:

[!φ]� ↔ φ

[!φ]p ↔ φ → p

[!φ]¬ψ ↔ φ → ¬[!φ]ψ
[!φ](ψ1 ∧ ψ2) ↔ [!φ]ψ1 ∧ [!φ]ψ2

[!φ][α]ψ ↔ [T φ(α)][!φ]ψ

Exercise 13.4 Checking that these axioms are sound boils down to checking that their
left-hand sides and right-hand sides always evaluate to the same value, using the semantics
of the logic. The most important check was already carried out in Exercise 13.3. Carry out
the other checks.

Note that the axioms have the form of equivalences, and that there is a crucial
difference between the left-hand sides and the right-hand sides of these equiva-
lences. In the left-hand sides, the operator [!φ] has wide scope, but if the operator
occurs in the right-hand side, then it occurs with lower complexity: its scope is a
proper subformula of the scope in the left-hand side. This shows that the equiva-
lences have the form of reduction axioms: they can be used to reduce the language
of E-PDL with public announcements to that of E-PDL simpliciter. This is an
example of a much broader phenomenon. In [BvEK06] it is proved that E-PDL

360 Communication as Informative Action

with an operator for general communicative action (public announcement, private
announcement, group messages, deceptive announcements, but also actions that
change the world, and much more besides) can be reduced to E-PDL. This shows
that E-PDL is a stable basis for a very general logic of communication and action.
In the next section we will use this logic to analyse presuppositions in terms of
common knowledge.

13.4 Presuppositions and Common Knowledge
A presupposition of an utterance is an implicit assumption about the world or a
background belief shared by speaker and hearer in a discourse. For example, an
utterance of (13.1) presupposes that the dragon was not spitting fire before. (13.2)
presupposes that you already asked the wizard. And the question in (13.3) presup-
poses that the name Jan refers to a male adult.

The dragon began to spit fire. (13.1)
You should ask the wizard again. (13.2)
Is Jan a bachelor? (13.3)

When these examples occur as parts of more complex sentences, their presuppo-
sitions behave in a very systematic way. If a sentence is embedded under a modal
like in (13.4), its presupposition remains unchanged. Also negating a sentence, like
in (13.5), does not affect the presupposition. However, once we explicitly state the
presupposition as the condition of an implication, the presupposition disappears:
(13.6) no longer presupposes that you have asked the wizard before.

Maybe the dragon began to spit fire. (13.4)
You should not ask the wizard again. (13.5)
If you already asked the wizard, you should not ask him again. (13.6)

If a complex sentence inherits a presupposition from one of its parts, we say that
the presupposition projects. We will now give a formal analysis of presuppositions
and presupposition projection, but restricted to the propositional case. The only
reason for this restriction is to keep things simple in our exposition.

Recall that [!φ]ψ expresses that after public announcement of φ, ψ holds. For-
mally, M |=w [!φ]ψ iff M |=w φ implies M | φ |=w ψ.

Now consider the special case of an update of the form ‘it is common knowledge
between i and j that φ’. This is expressed as ![(i ∪ j)∗]φ. It is not difficult to see
that the following hold:

13.4 Presuppositions and Common Knowledge 361

• In case φ is already common knowledge, this update does not change the model.
• In case φ is not yet common knowledge, the update leads to a model without

actual worlds.

Take the following picture as an example. Solid lines express i-links, dashed
lines i, j-links. In the actual world Jan is male, adult, and unmarried, i.e. the propo-
sitions m, a, u hold.

m, a, u m, a, u

m, a, u m, a, u

On one hand, the agents i and j know that Jan is male. This is even common
knowledge, because [(i ∪ j)∗]m holds in the actual world. In fact, it holds in all
four worlds – therefore an update with [(i ∪ j)∗]m would not eliminate any world
or connection. On the other hand, i and j are not aware of the u distinction, i.e.
do not know whether Jan is unmarried. Furthermore j is aware of the a distinction
but i is not. Therefore [(i ∪ j)∗]a and [(i ∪ j)∗]u do not hold in the actual world.
Updating with either of them would therefor eliminate the actual world.

Now let us look at the following epistemic situation, where both m and a are
common knowledge.

m, a, u m, a, u

We can specify a presupposition as a piece of common knowledge between
speaker and hearer in a discourse. For example, Jan is a bachelor presupposes
that he is a male adult, i.e. an update with Jan is bachelor presupposes that m ∧ a
is common knowledge. The update would be the following:

362 Communication as Informative Action

[(i ∪ j)∗](m ∧ a) ∧ u

That is, an utterance has two parts: the presuppositional part, which announces
that something is common knowledge (here: m∧a), and the assertional part (here:
u).

In the situation depicted above, m ∧ a is indeed common knowledge. Thus the
update is possible and would result in the following situation:

m, a, u

Here is a useful fact about public announcement of common knowledge:

M |=w [![(i ∪ j)∗]φ]ψ iff M |=w [(i ∪ j)∗]φ → ψ.

What the fact says is that public announcement of common knowledge has the
force of an implication.

Exercise 13.5 Use induction on the structure of φ to show that this fact is true.

Another useful fact about public announcements with a common knowledge com-
ponent is that it makes no difference if the common knowledge component is an-
nounced first:

M |=w [!([(i ∪ j)∗]φ ∧ φ�)]ψ iff M |=w [![(i ∪ j)∗]φ][!φ�]ψ.

In other words: uttering a presupposition before an assertion has the same effect as
lumping them together. With respect to our example it says that uttering Jan is a
bachelor has the same effect as first uttering Jan is a male adult and then uttering
Jan is unmarried.

Studying how this works in more detail turns out to give us a grip on the problem
of presupposition projection (see, e.g., [Hei92]), i.e. the problem of working out the
presuppositions and assertions of complex phrases from those of their components.
Consider, e.g., the difference between the following two sentences:

Jan is a bacholor. (13.7)
If Jan is male, then Jan is a bachelor. (13.8)

It is commonly held that the first example has as a presupposition that Jan is male,
but the second example does not. We can now rely on epistemic logic to work out

13.4 Presuppositions and Common Knowledge 363

the difference in presupposition between the two examples. The first one has as
associated update

[!([(i ∪ j)∗](m ∧ a) ∧ u)],

and the second has as associated update

[!m][!([(i ∪ j)∗](m ∧ a) ∧ u)].

To appreciate the difference, we simplify the first one as follows:

[!([(i ∪ j)∗](m ∧ a) ∧ u)]�
↔ [(i ∪ j)∗](m ∧ a) ∧ u

↔ [(i ∪ j)∗]m ∧ [(i ∪ j)∗]a ∧ u.

Thus an update with Jan is bachelor presupposes m and a (because this is re-
quired to be common knowledge), and asserts u.

On the other hand, first stating that Jan is male, and then updating with Jan is a
bachelor, gives the following:

[!m][!([(i ∪ j)∗](m ∧ a) ∧ u)]�
↔ [!m]([(i ∪ j)∗]m ∧ [(i ∪ j)∗]a ∧ u)

↔ [!m][(i ∪ j)∗]m ∧ [!m][(i ∪ j)∗]a ∧ [!m]u

↔ [!m][(i ∪ j)∗]a ∧ [!m]u

↔ [(?m; i ∪ j)∗]a ∧ (m → u).

The presuppositional part is expressed in terms of so-called restricted common
knowledge: ‘restricted to m it is common knowledge between i and j that a’. The
assertional part is an implication m → u, which is indeed what we would expect
for (13.8).

This must suffice to demonstrate how dynamic epistemic logic can be used as a
calculus of presupposition projection (never mind the exact details of the calcula-
tion).

To close off this section on presupposition, we briefly consider the phenomenon
of presupposition accommodation. Suppose p is common knowledge, say between
i and j. Then updating with statement !([(i ∪ j)∗]p ∧ q) has the same effect as
updating with !q. Suppose on the other hand that p is true in the actual world of
a model, but not yet common knowledge. Then updating with !([(i ∪ j)∗]p ∧ q)
will lead to an inconsistent state. Updating with !p followed by an update with
!([(i ∪ j)∗]p ∧ q) will remain consistent.

Accommodation of the presupposition would consist of replacement of

[!([(i ∪ j)∗]p ∧ q)] (13.9)

364 Communication as Informative Action

by

[!p][!([(i ∪ j)∗]p ∧ q)]. (13.10)

By invoking the Gricean maxim ‘be informative’ one can explain why (13.10) is
not appropriate in contexts where p is common knowledge.

13.5 Adding Public Change
In this section we will look at another tool that proves useful for a formal study of
pragmatics: public change.

A propositional substitution σ is list of propositional bindings p := φ satisfying
the following properties:

• if p := φ is in the list, then φ is different from p,
• if p := φ is in the list, then no other item in the list has p as its left-hand side.

Examples of substitutions are [p := ¬p] and [p := q, q := p]. Non-examples are
[p := p] (violates the first property) and [p := q, p := ¬p] (violates the second
property).

We will use σ to range over substitutions. Each substitution σ determines a
function from the set of basic propositions P to the set of formulas of the language.
Let σ be a substitution and let p ∈ P . Then if there is a binding p := φ in σ, we let
σ(p) equal φ, and otherwise we let σ(p) equal p.

These substitutions can be used to model actions that change the world. Let
M = (W,V,R) be an epistemic model, and let σ be a substitution. Then Mσ is
the result of changing M , as follows. We define Mσ = (W,V �, R), where

V �(w) = {p ∈ P | M |=w σ(p)}.

So the valuation function in the new model assigns to each world those basic propo-
sitions for which the σ substitution is true in the old model. This takes the change
expressed by the substitution into account. E.g. in M [p:=¬p], p is true in precisely
those worlds where p was false in M .

Next we can extend the epistemic language with operations for public change.
If σ is a substitution, then [σ]φ is an expression of the language. The intended
interpretation is this:

M |=w [σ]φ iff Mσ |=w φ.

Thus [σ]φ expresses the effect of changing the world according to the recipe given
in σ.

13.5 Adding Public Change 365

Again, we can show that this extension of the language does not increase expres-
sive power. This time, we define substitutions on formulas and epistemic expres-
sions, as follows:

�σ = � aσ = a

pσ = σ(p) (?φ)σ =?φσ

(¬φ)σ = ¬φσ (α1;α2)
σ = ασ

1 ;α
σ
2

(φ1 ∧ φ2)
σ = φσ

1 ∧ φσ
2 (α1 ∪ α2)

σ = ασ
1 ∪ ασ

2

([α]φ)σ = [ασ]φσ (α∗)σ = (ασ)∗

Exercise 13.6 Show by simultaneous induction on φ and α that

(1) M |=w φσ iff Mσ |=w φ
(2) (w,w�) ∈ [[ασ]]M iff (w,w�) ∈ [[α]]M

σ

Exercise 13.6 shows that the following reduction axiom is sound:

[σ]φ ↔ φσ.

Since we can use this to remove occurrences of [σ] from the language, the addition
of the public change operator has not increased expressive power.

Public change is interesting for natural language analysis, for it can be used
to analyse important examples of so-called performative speech acts. Here are
examples.

I call you Adam. (13.11)
I herewith pronounce you husband and wife. (13.12)

(13.11) is different from a mere invitation to use a certain name (such as ‘Call
me Ishmael’); rather, it changes the world by adding a new name to it, together
with a link to the person who gets the name. Similarly, (13.12) creates a new fact
of marriage. The following gives a picture of the effect of (13.12), or rather, part
of the effect. First consider the following situation (with solid lines for i-links, and
dashed lines for i, j-links).

366 Communication as Informative Action

m, a, u m, a, u

m, a, u m, a, u

The utterance of (13.12) has the effect of flipping the status of unmarried u to ⊥
for our male adult. Note that it is a precondition of the marriage act that the people
about to be engaged in marriage are not currently married. So the operation for
public change has as a precondition that u currently holds:

u, [u := ⊥]

The update result is:

m, a, u m, a, u

13.6 Yes/No Questions and Their Answers
We will now proceed to use public changes for the epistemic analysis of yes/no
questions. Yes/no questions indicate that the context is undecided with respect to
a particular proposition. An answer settles the issue by announcing the truth or
falsity of the proposition.

For our analysis we want to adopt the well-known idea of Groenendijk and
Stokhof [GS84] that a question partitions the logical space into all the possibilities
that constitute a possible answer. In particular, yes/no questions divide the logical

13.6 Yes/No Questions and Their Answers 367

space into two possibilities. It therefore suffices to add a designated propositional
variable f to our model, that represents the question focus. This focus will be reset
by a question. More precisely, we analyse a yes/no question φ? as an update that
changes the denotation of f to φ:

[f := φ]

The answer yes can now be analysed as announcing the truth of f :

f

Accordingly, the answer no can be analysed as announcing the negation of f :

¬f

Interestingly, this perspective leads to a natural notion of appropriate answer-
hood. Consider the following exchange:

Question: Will Atreyu come on his horse? (13.13)
Answer 1: No. (13.14)
Answer 2: It died in the swamps. (13.15)

The question will set f to the proposition ‘Atreyu will come on his horse.’ Now
both answers are appropriate. The first one obviously is: updating with it corre-
sponds to announcing the negation of f . This update makes ‘Atreyu will not come
on his horse’ common knowledge. The second answer has the same effect. Since
the death of the horse entails that Atreyu cannot and thus will not come on it (i.e.
the negation of f), answer 2 entails the answer no.

In general, an answer ψ to a question φ? is appropriate if either updating with
ψ has the effect that f becomes common knowledge, or updating with ψ has the
effect that ¬f becomes common knowledge.

Exercise 13.7 Which effect do the following answers have? Are they appropriate?

368 Communication as Informative Action

Question: Did you see a racing snail or a luck dragon? (13.16)
Answer: I saw a racing snail.

Question: Is Goldilocks married? (13.17)
Answer: She is not adult.

Question: Is Little Mook a bachelor? (13.18)
Answer: He is not adult.

13.7 Epistemic Model Checking

We will close off the book by implementing a so-called epistemic model checker,
a program that can keep track of the epistemic effects caused by public announce-
ments and public changes.

module CAIA where

import Data.List

Let’s keep our set of agents limited to five, and give them some easy-to-use
names:

data Agent = A | B | C | D | E deriving (Eq,Ord,Enum)

a,alice, b,bob, c,carol, d,dave, e,ernie :: Agent

a = A; alice = A

b = B; bob = B

c = C; carol = C

d = D; dave = D

e = E; ernie = E

instance Show Agent where

show A = "a"; show B = "b";

show C = "c"; show D = "d";

show E = "e"

Basic propositions are pi, qi, ri, where i is an appropriate index:

13.7 Epistemic Model Checking 369

data Prop = P Int | Q Int | R Int deriving (Eq,Ord)

instance Show Prop where

show (P 0) = "p"; show (P i) = "p" ++ show i

show (Q 0) = "q"; show (Q i) = "q" ++ show i

show (R 0) = "r"; show (R i) = "r" ++ show i

The implementation of epistemic models closely follows their definition. We
add two extra parameters: a list of agents that occur in the model, and a list of
actual worlds. Obviously, from inside a model it is impossible to say which world
is the real world. Still, we impose the constraint that the real world must be among
the actual worlds.

data EpistM state = Mo {

dom :: [state],

agents :: [Agent],

valuation :: [(state,[Prop])],

rels :: [(Agent,state,state)],

actual :: [state]

} deriving (Eq,Show)

This uses Haskell record syntax. The data type for an epistemic model has five
fields, and each of these fields can be accessed with an appropriate function. The
record syntax makes for a more compact definition, because the access functions
for the fields are part of the definition of the data type. To see how this works,
consider the following example model.

exampleModel :: EpistM Integer

exampleModel =

Mo [0..3]

[a..c]

[(0,[]),(1,[P 0]),(2,[Q 0]),(3,[P 0, Q 0])]

([(a,x,x) | x <- [0..3]] ++

[(b,x,x) | x <- [0..3]] ++

[(c,x,y) | x <- [0..3], y <- [0..3]])

[1]

We can access the valuation of this model by means of

CAIA> valuation exampleModel

370 Communication as Informative Action

[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]

and similarly for the domain, the list of agents, the relations, and the actual worlds.
As was explained above, public announcements can be viewed as actions that

change a model by removing the worlds that do not satisfy the contents of the
announcement. Each announcement φ comes with a function M �→ M | φ. In
case we add a set of actual worlds U to the model, the effect of M | φ on U is
given by:

U �→{ w ∈ U | M |=w φ}.

The advantage of adding a set of actual worlds is that the effect of a public an-
nouncement with falsehood can now simply be encoded, as follows: φ is a false-
hood in pointed model M = (W,V,R,U) if

(W,V,R) �|=u φ

for all u ∈ U . The result of updating with a falsehood is an inconsistent pointed
model, i.e. a pointed model of the form (W �, V �, R�, ∅).

As we did earlier (on page 109), we define relations as lists of pairs:

type Rel a = [(a,a)]

We also define list inclusion and the converse of a relation:

containedIn :: Eq a => [a] -> [a] -> Bool

containedIn xs ys = all (\ x -> elem x ys) xs

cnv :: Rel a -> Rel a

cnv r = [(y,x) | (x,y) <- r]

Next, we repeat the definition of an infix operator for relational composition (cf.
page 110):

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Here are the three checks on accessibility relations that we need:

13.7 Epistemic Model Checking 371

reflR :: Eq a => [a] -> Rel a -> Bool

reflR xs r = [(x,x) | x <- xs] ‘containedIn‘ r

symmR :: Eq a => Rel a -> Bool

symmR r = cnv r ‘containedIn‘ r

transR :: Eq a => Rel a -> Bool

transR r = (r @@ r) ‘containedIn‘ r

Together these allow us to express that a certain relation is an equivalence rela-
tion. In modal logic, such a relation is called an S5 relation:

isS5 :: Eq a => [a] -> Rel a -> Bool

isS5 xs r = reflR xs r && transR r && symmR r

The epistemic model instance exampleModel that was given above is in fact an
example of a multi S5 model: each of its three accessibility relations is S5, i.e.
an equivalence relation. Here is an auxiliary function for extracting each of the
relations from an epistemic model:

rel :: Agent -> EpistM a -> Rel a

rel a model = [(x,y) | (b,x,y) <- rels model, a == b]

This gives:

CAIA> rel a exampleModel

[(0,0),(1,1),(2,2),(3,3)]

CAIA> rel b exampleModel

[(0,0),(1,1),(2,2),(3,3)]

CAIA> rel c exampleModel

[(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),

(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)]

CAIA> isS5 (dom exampleModel) (rel a exampleModel)

True

Every equivalence relation R on A corresponds to a partition on A, namely
the set {[a]R | a ∈ A}, where [a]R = {b ∈ A | (a, b) ∈ R}. Here is an
implementation:

372 Communication as Informative Action

rel2partition :: Ord a => [a] -> Rel a -> [[a]]

rel2partition [] r = []

rel2partition (x:xs) r = xclass : rel2partition (xs\\xclass) r

where xclass = x : [y | y <- xs, (x,y) ‘elem‘ r]

The function rel2partition can be used to write a display function for S5
models that shows each accessibility relation as a partition:

showS5 :: (Ord a,Show a) => EpistM a -> [String]

showS5 m = show (dom m)

: show (valuation m)

: map show [(a,(rel2partition (dom m)) (rel a m))

| a <- (agents m)]

++ [show (actual m)]

Here @ is used to introduce a shorthand or name for a data structure. The follow-
ing is a function for example display:

displayS5 :: (Ord a,Show a) => EpistM a -> IO()

displayS5 = putStrLn . unlines . showS5

It works as follows:

CAIA> displayS5 exampleModel

[0,1,2,3]

[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]

(a,[[0],[1],[2],[3]])

(b,[[0],[1],[2],[3]])

(c,[[0,1,2,3]])

[1]

Blissful ignorance is the state where you don’t know anything, but you know
also that there is no reason to worry, for you know that nobody knows anything.

A Kripke model where every agent from agent set A is in blissful ignorance
about a (finite) set of propositions P , with |P | = k, is a triple (W,V,R) with
components that look as follows:

W = {0, . . . , 2k − 1},
V = any surjection in W → P(P),

R = {x a→ y | (x, y) ∈ W,a ∈ A}.

13.7 Epistemic Model Checking 373

A surjection is a function which in onto (cf. page 156). Note that V is in fact
a bijection, for |P(P)| = 2k = |W |. Generating models for blissful ignorance is
done with:

initM :: [Agent] -> [Prop] -> EpistM Integer

initM ags props = (Mo worlds ags val accs points)

where worlds = [0..(2^k-1)]

k = length props

val = zip worlds (sortL (powerList props))

accs = [(ag,st1,st2) | ag <- ags,

st1 <- worlds,

st2 <- worlds]

points = worlds

Here powerList is the list counterpart of power set:

powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

The following function sorts lists by their length:

sortL :: Ord a => [[a]] -> [[a]]

sortL = sortBy (\ xs ys -> if length xs < length ys

then LT

else if length xs > length ys

then GT

else compare xs ys)

This gives:

CAIA> zip [0..2^3-1] (sortL (powerList [P 1,P 2,P 3]))

[(0,[]),(1,[p1]),(2,[p2]),(3,[p3]),(4,[p1,p2]),

(5,[p1,p3]),(6,[p2,p3]),(7,[p1,p2,p3])]

The general knowledge accessibility relation of a set of agents C is given by
�

c∈C
Rc.

Exercise 13.8 Assume that Ra, the knowledge relation for agent a, and Rb, the knowledge

374 Communication as Informative Action

relation for agent b, are equivalence relations. Does it follow that the general knowledge
relation for a and b is also an equivalence? Give a proof or a counterexample.

Computing the reflexive transitive closure works as follows. If A is finite, any
binary relation R on A is finite as well. In particular, there will be k with Rk+1 ⊆
R0 ∪ · · ·∪Rk. Thus, in the finite case reflexive transitive closure can be computed
by successively computing

�
n∈{0,..,k}R

n until Rk+1 ⊆
�

n∈{0,..,k}R
n. In other

words: the reflexive transitive closure of a relation R can be computed from I by
repeated application of the operation

λS �→ (S ∪ (R ◦ S)),

until the operation reaches a fixpoint. Recall from Chapter 5 that a fixpoint of an
operation f is an x for which f(x) = x. Least fixpoint calculation was done by
means of the following function (cf. page 110):

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

We used this to compute the reflexive transitive closure as follows:

rtc :: Ord a => [a] -> Rel a -> Rel a

rtc xs r = lfp (\ s -> (sort.nub) (s ++ (r@@s))) i

where i = [(x,x) | x <- xs]

Here is an example:

CAIA> rtc [1,2,3] [(1,2),(2,3)]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Now it is easy to also compute common knowledge, for the common knowledge
relation for a group of agents C is the relation

(
�

c∈C
Rc)

∗.

We represent formulas in the following way:

13.7 Epistemic Model Checking 375

data Form = Top

| Prop Prop

| Neg Form

| Conj [Form]

| Disj [Form]

| K EE Form

| PA Form Form

| PC [(Prop,Form)] Form

deriving (Eq,Ord)

Formulas of the form K e f express that knowledge e ensures truth of f, for-
mulas of the form PA f1 f2 express that public announcement f1 makes f2 true,
and formulas of the form PC s f express that public change s makes f true.

Here is the data type of epistemic expressions:

data EE = Agent Agent

| Test Form

| Cmp EE EE

| Sum [EE]

| Star EE

deriving (Eq,Ord)

Example formulas are p and q:

p = Prop (P 0)

q = Prop (Q 0)

Note the following type difference:

CAIA> :t (P 0)

P 0 :: Prop

CAIA> :t p

p :: Form

For better readability we define show functions for Form and EE:

376 Communication as Informative Action

instance Show Form where

show Top = "T"

show (Prop p) = show p

show (Neg f) = ’-’:(show f)

show (Conj fs) = ’&’: show fs

show (Disj fs) = ’v’: show fs

show (K e f) = ’[’:show e ++"]"++show f

show (PA f1 f2) = ’[’:’!’: show f1 ++"]"++show f2

show (PC s f) = show s ++ show f

instance Show EE where

show (Agent a) = show a

show (Test f) = ’?’: show f

show (Cmp e1 e2) = show e1 ++ ";" ++ show e2

show (Sum es) = ’U’: show es

show (Star e) = ’(’: show e ++ ")*"

It is also useful to have an abbreviation for common knowledge formulas:

ck :: [Agent] -> Form -> Form

ck ags f = K (Star (Sum [Agent a | a <- ags])) f

Valuation lookup can be used to look up the valuation for a world in a model:

apply :: Eq a => [(a,b)] -> a -> b

apply [] _ = error "argument not in list"

apply ((x,z):xs) y | x == y = z

| otherwise = apply xs y

In Chapter 5 we defined aR as being the set

{b ∈ A | Rab}

for R a binary relation on A, and a ∈ A. This was called the right section of a
relation. We implement it again:

rightS :: Ord a => a -> Rel a -> [a]

rightS x r = (sort.nub) [z | (y,z) <- r, x == y]

Now we turn to the evaluation of formulas. We start with the Boolean cases:

13.7 Epistemic Model Checking 377

isTrueAt :: Ord state => EpistM state -> state -> Form -> Bool

isTrueAt m w Top = True

isTrueAt m w (Prop p) = p ‘elem‘ (concat

[ps | (w’,ps) <- valuation m, w’==w])

isTrueAt m w (Neg f) = not (isTrueAt m w f)

isTrueAt m w (Conj fs) = and (map (isTrueAt m w) fs)

isTrueAt m w (Disj fs) = or (map (isTrueAt m w) fs)

This is the epistemic case:

isTrueAt m w (K e f) = and (map (flip (isTrueAt m) f)

(rightS w (evalEE m e)))

Next we consider the public announcement case:

isTrueAt m w (PA f1 f2) = not (isTrueAt m w f1)

|| isTrueAt m’ w f2

where m’ = upd_pa m f1

Finally, this is the public change case:

isTrueAt m w (PC s f) = isTrueAt (upd_pc m s) w f

The evaluation of epistemic expressions is defined as follows:

evalEE :: Ord state => EpistM state -> EE -> Rel state

evalEE m (Agent a) = rel a m

evalEE m (Test f) = [(w,w) | w <- dom m, isTrueAt m w f]

evalEE m (Cmp e1 e2) = (evalEE m e1) @@ (evalEE m e2)

evalEE m (Sum (es)) = (sort.nub) (concat (map (evalEE m) es))

evalEE m (Star e) = rtc (dom m) (evalEE m e)

The state of bliss is evaluated like this:

test1 = isTrueAt (initM [a..c] [P 0]) 0

(ck [a..c] (Neg (K (Agent a) p)))

378 Communication as Informative Action

Now we can use the function isTrueAt to implement a function that checks for
truth at all the designated states of an epistemic model:

isTrue :: Ord state => EpistM state -> Form -> Bool

isTrue m f = and [isTrueAt m s f | s <- actual m]

Here is another test of initM:

test2 = isTrue (initM [a..c] [P 0])

(ck [a..c] (Neg (K (Agent a) p)))

Next we implement public announcement updates:

upd_pa :: Ord state => EpistM state -> Form -> EpistM state

upd_pa m@(Mo states agents val rels actual) f =

(Mo states’ agents val’ rels’ actual’)

where

states’ = [s | s <- states,

isTrueAt m s f]

val’ = [(s,p) | (s,p) <- val,

s ‘elem‘ states’]

rels’ = [(a,x,y) | (a,x,y) <- rels,

x ‘elem‘ states’,

y ‘elem‘ states’]

actual’ = [s | s <- actual,

s ‘elem‘ states’]

For substitutions we define a type synonym:

type Subst = [(Prop,Form)]

Public change updates can then be implemented as follows:

13.7 Epistemic Model Checking 379

upd_pc :: Ord state => EpistM state -> Subst -> EpistM state

upd_pc m@(Mo worlds agents val acc points) subst =

(Mo worlds agents val’ acc points)

where

val’ = [(w,[p | p <- ps, isTrueAt m w (liftS subst p)])

| w <- worlds]

ps = (sort.nub) (concat (map snd val))

liftS :: Subst -> Prop -> Form

liftS [] p = Prop p

liftS ((x,z):xs) y | x == y = z

| otherwise = liftS xs y

Let us consider an example model with three agents and two proposition letters.

m0 = initM [a..c] [P 0,Q 0]

This model has four worlds, and none of the agents is able to tell any of these
apart. After an update with a public announcement of p ∨ q the world where p and
q are both false has disappeared.

CAIA> displayS5 m0

[0,1,2,3]

[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

(c,[[0,1,2,3]])

[0,1,2,3]

CAIA> displayS5 (upd_pa m0 (Disj [p,q]))

[1,2,3]

[(1,[p]),(2,[q]),(3,[p,q])]

(a,[[1,2,3]])

(b,[[1,2,3]])

(c,[[1,2,3]])

[1,2,3]

Note that in the original model the worlds are numbered starting from 0, and in
the update result the worlds are numbered starting from 1. It is useful to be able to
convert any type of state list to [0..]:

380 Communication as Informative Action

convert :: Eq state => EpistM state -> EpistM Integer

convert (Mo states agents val rels actual) =

Mo states’ agents val’ rels’ actual’

where

states’ = map f states

val’ = map (\ (x,y) -> (f x,y)) val

rels’ = map (\ (x,y,z) -> (x,f y,f z)) rels

actual’ = map f actual

f = apply (zip states [0..])

This effects a renumbering, as follows:

CAIA> (displayS5.convert) (upd_pa m0 (Disj [p,q]))

[0,1,2]

[(0,[p]),(1,[q]),(2,[p,q])]

(a,[[0,1,2]])

(b,[[0,1,2]])

(c,[[0,1,2]])

[0,1,2]

In an epistemic model with a set of designated points, we are only interested in
the set of those worlds that are accessible via some path from any of the designated
worlds. This is called the generated submodel. Here is an implementation:

gsm :: Ord state => EpistM state -> EpistM state

gsm (Mo states ags val rel points) =

Mo states’ ags val’ rel’ points

where

states’ = closure rel ags points

val’ = [(s,ps) | (s,ps) <- val,

s ‘elem‘ states’]

rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

s ‘elem‘ states’,

s’ ‘elem‘ states’]

This uses the closure of a state list, given a relation and a list of agents:

13.7 Epistemic Model Checking 381

closure :: Ord state => [(Agent,state,state)] ->

[Agent] -> [state] -> [state]

closure rel agents xs = lfp f xs where

f = \ ys -> (nub.sort) (ys ++ (expand rel agents ys))

The expansion of a relation R given a state set S and a set of agents B is given
by {t | s b→ t ∈ R, s ∈ S, b ∈ B}. Here is an implementation:

expand :: Ord state => [(Agent,state,state)] ->

[Agent] -> [state] -> [state]

expand rel agents ys = (nub.sort.concat)

[alternatives rel ag state | ag <- agents,

state <- ys]

The epistemic alternatives for agent a in state s are the states in sRa (i.e. the
states reachable through Ra from s):

alternatives :: Eq state => [(Agent,state,state)] ->

Agent -> state -> [state]

alternatives rel ag current = [s’ | (a,s,s’) <- rel,

a == ag, s == current]

This ends the implementation of the epistemic model checker. To show how this
can be used, we demonstrate a check of a muddy children scenario. We model the
case where there are four children, Alice, Bob, Carol, and Dave, where Bob, Carol,
and Dave are the muddy ones.

We use propositions p1, p2, p3, p4 to express that the first, second, third, or fourth
child is muddy:

p1, p2, p3, p4 :: Form

p1 = Prop (P 1); p2 = Prop (P 2)

p3 = Prop (P 3); p4 = Prop (P 4)

The initial muddy model has 16 worlds; one for each muddiness possibility.
Agent a cannot distinguish worlds that differ only in the value of p1, for Alice
cannot see whether she herself is muddy. Agent b cannot distinguish worlds that
differ only in the value of p2, for Bob cannot see whether he himself is muddy.
Agent c cannot distinguish worlds that differ only in the value of p3, for Carol

382 Communication as Informative Action

cannot see whether she herself is muddy. Agent d cannot distinguish worlds that
differ only in the value of p4, for Dave cannot see whether he himself is muddy.
This information completely determines the accessibility relation.

computeAcc :: Agent -> [Integer] -> [Prop] -> [(Integer,[Prop])]

-> [(Agent,Integer,Integer)]

computeAcc ag states props val =

[(ag,x,y) | x <- states, y <- states,

apply val x \\ props == apply val y \\ props]

The actual world is the world where p1 is false and p2, p3, p4 are true. This yields
the following definition for the initial epistemic model.

initMuddy :: EpistM Integer

initMuddy = Mo states

[a..d]

valuation

(computeAcc a states [P 1] valuation ++

computeAcc b states [P 2] valuation ++

computeAcc c states [P 3] valuation ++

computeAcc d states [P 4] valuation)

[7]

where states = [0..15]

valuation = zip states (powerList [P 1,P 2,P 3,P 4])

Here is a check that this is correct:

CAIA> displayS5 initMuddy

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

[(0,[]),(1,[p4]),(2,[p3]),(3,[p3,p4]),(4,[p2]),(5,[p2,p4]),

(6,[p2,p3]),(7,[p2,p3,p4]),(8,[p1]),(9,[p1,p4]),(10,[p1,p3]),

(11,[p1,p3,p4]),(12,[p1,p2]),(13,[p1,p2,p4]),(14,[p1,p2,p3]),

(15,[p1,p2,p3,p4])]

(a,[[0,8],[1,9],[2,10],[3,11],[4,12],[5,13],[6,14],[7,15]])

(b,[[0,4],[1,5],[2,6],[3,7],[8,12],[9,13],[10,14],[11,15]])

(c,[[0,2],[1,3],[4,6],[5,7],[8,10],[9,11],[12,14],[13,15]])

(d,[[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15]])

[7]

13.7 Epistemic Model Checking 383

The statement of the father that at least one child is muddy should rule out one
of these worlds:

m1 = convert (upd_pa initMuddy (Disj [p1,p2,p3,p4]))

This yields:

CAIA> displayS5 m1

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]

[(0,[p4]),(1,[p3]),(2,[p3,p4]),(3,[p2]),(4,[p2,p4]),

(5,[p2,p3]),(6,[p2,p3,p4]),(7,[p1]),(8,[p1,p4]),

(9,[p1,p3]),(10,[p1,p3,p4]),(11,[p1,p2]),(12,[p1,p2,p4]),

(13,[p1,p2,p3]),(14,[p1,p2,p3,p4])]

(a,[[0,8],[1,9],[2,10],[3,11],[4,12],[5,13],[6,14],[7]])

(b,[[0,4],[1,5],[2,6],[3],[7,11],[8,12],[9,13],[10,14]])

(c,[[0,2],[1],[3,5],[4,6],[7,9],[8,10],[11,13],[12,14]])

(d,[[0],[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]])

[6]

The following formulas express that the children know their states:

aK = Disj [K (Agent a) p1, K (Agent a) (Neg p1)]

bK = Disj [K (Agent b) p2, K (Agent b) (Neg p2)]

cK = Disj [K (Agent c) p3, K (Agent c) (Neg p3)]

dK = Disj [K (Agent d) p4, K (Agent d) (Neg p4)]

In the first round, they all say that they do not know their state:

m2 = convert (upd_pa m1 (Conj [Neg aK,Neg bK,Neg cK,Neg dK]))

Here is the result:

CAIA> displayS5 m2

[0,1,2,3,4,5,6,7,8,9,10]

[(0,[p3,p4]),(1,[p2,p4]),(2,[p2,p3]),(3,[p2,p3,p4]),

(4,[p1,p4]),(5,[p1,p3]),(6,[p1,p3,p4]),(7,[p1,p2]),

(8,[p1,p2,p4]),(9,[p1,p2,p3]),(10,[p1,p2,p3,p4])]

(a,[[0,6],[1,8],[2,9],[3,10],[4],[5],[7]])

(b,[[0,3],[1],[2],[4,8],[5,9],[6,10],[7]])

(c,[[0],[1,3],[2],[4,6],[5],[7,9],[8,10]])

(d,[[0],[1],[2,3],[4],[5,6],[7,8],[9,10]])

384 Communication as Informative Action

[3]

In the second round, again they all say that they do not know their state:

m3 = convert (upd_pa m2 (Conj [Neg aK,Neg bK,Neg cK,Neg dK]))

The result is:

GAIA> displayS5 m3

[0,1,2,3,4]

[(0,[p2,p3,p4]),(1,[p1,p3,p4]),(2,[p1,p2,p4]),

(3,[p1,p2,p3]),(4,[p1,p2,p3,p4])]

(a,[[0,4],[1],[2],[3]])

(b,[[0],[1,4],[2],[3]])

(c,[[0],[1],[2,4],[3]])

(d,[[0],[1],[2],[3,4]])

[0]

In the third round, a still does not know, but b, c, d know their state.

m4 = convert (upd_pa m3 (Conj [Neg aK, bK, cK, dK]))

After this round, everything is known:

CAIA> displayS5 m4

[0]

[(0,[p2,p3,p4])]

(a,[[0]])

(b,[[0]])

(c,[[0]])

(d,[[0]])

[0]

Exercise 13.9 Carry out the model checking process for the wise men puzzle.

Exercise 13.10 Carry out the model checking process for the presuppositions of the up-
date with Jan is a bachelor update. Check out what happens if this is preceded with a
public announcement of Jan is male.

Exercise 13.11 Carry out the model checking process for yes/no questions. Try to find as
many different appropriate answers to a question as you can. Implement a check for what
constitutes an appropriate answer to a particular question.

13.8 Further Reading 385

Exercise 13.12 Implement translations that remove public announcement operators from
the language. The types are tr1 :: Form -> Form and tr2 :: EE -> EE. Next, per-
form a number of checks to test whether the translations respect the semantics.

Exercise 13.13 Implement translations that remove public change operators from the lan-
guage. The types are tr3 :: Form -> Form and tr4 :: EE -> EE. Next, perform a
number of checks to test whether the translations respect the semantics.

13.8 Further Reading
Textbooks on epistemic logic are [FHMV95] and the more recent [DvdHK07]. Dy-
namic epistemic logic not only analyses knowledge but also the epistemic effects
of communication. A key paper is [BMS98]. An elegant version of a very rich dy-
namic epistemic logic can be found in [BvEK06]. Dynamic epistemic modelling is
the art of computing the effects of epistemic updates. A tool for this, implemented
in Haskell, is DEMO; see [Eij07a] for documentation.

An illuminating analysis of the role of social rituals in the creation of common
knowledge is Chwe’s Rational Ritual [Chw01]. Discourses on Social Software
[EV09] gives many examples of the role of (common) knowledge in social inter-
action.

The analysis of presupposition in terms of common knowledge is based on
[EU07], and the analysis of questions and appropriateness of answers was inspired
by [UG08].

Afterword

And now, Dear Reader who got this far, let us take a minute to address you, before
we take our leave. You have come a long way indeed. You started out wanting
to know a thing or two about natural language semantics, and look where you are
now. At the end of this book you find yourself well on your way towards mastery
of functional programming. Also, you have gained quite a bit of experience in the
application of formal tools in semantic and pragmatic analysis of natural language.
For sure, there is a lot more to be learned, but now it is time to relax and be proud
of what you have achieved. At least treat yourself to a beer. We think you have
earned it.

387

Bibliography

[Als92] H. Alshawi, editor. The Core Language Engine. MIT Press, Cambridge, Mass.,
and London, England, 1992.

[AS96] H. Abelson and G.J. Sussman. Structure and Interpretation of Computer Programs
(Second edition). MIT Press, 1996.

[AU72] A.V. Aho and J.D. Ullman. Theory of Parsing, Translation and Compiling, volume
Volume I: Parsing. Englewood Cliffs, NJ, 1972.

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics (Second edition).
North-Holland, Amsterdam, 1984.

[Bar02] Chris Barker. Continuations and the nature of quantification. Natural Language
Semantics, 10:211–242, 2002.

[Bar04] Chris Barker. Continuations in natural language. In H. Thielecke, editor, CW’04:
Proceedings of the 4th ACM SIGPLAN continuations workshop, Tech. Rep. CSR-04-
1, pages 1–11. School of Computer Science, University of Birmingham, 2004.

[BAW07] Gilad Ben-Avi and Yoad Winter. The semantics of intensionalization. In Rein-
hard Muskens, editor, Workshop on New Directions in Type-Theoretic Grammars,
pages 98–112, 2007.

[BB00] H. Barendregt and E. Barendsen. Introduction to the lambda calculus, revised
edition. Technical report, University of Nijmegen, March 2000. Available from
ftp://ftp.cs.kun.nl/pub/CompMath.Found/lambda.pdf.

[BB05] P. Blackburn and J. Bos. Representation and Inference for Natural Language: A
First Course in Computational Semantics. CSLI Lecture Notes, 2005.

[BC81] J. Barwise and R. Cooper. Generalized quantifiers and natural language. Linguistics
and Philosophy, 4:159–219, 1981.

[BCM+02] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2002.

[BE82] J. van Benthem and J. van Eijck. The dynamics of interpretation. Journal of Se-
mantics, 1(1):3–20, 1982.

[Ben86] J. van Benthem. Essays in Logical Semantics. Reidel, 1986.
[Ben88] Johan van Benthem. Strategies of intensionalization. In I. Bodnaár, A. Máté,

and L. Pólos, editors, Intensional Logic, History of Philosophy, and Methodology:
To Imre Ruzsa on the occasion of his 65th birthday, pages 41–59. Department of
Symbolic Logic, Eötvös University, 1988.

[BGMV93] Patrick Blackburn, Claire Gardent, and Wilfried Meyer-Viol. Talking about
trees. In Proceedings of the 6th Confeence of the European Chapter of the Association
for Computational Linguistics, pages 21–29, 1993.

389

390 Bibliography

[Bir98] R. Bird. Introduction to Functional Programming Using Haskell. Prentice Hall,
1998.

[BJ07] Chris Barker and Pauline I. Jacobson, editors. Direct Compositionality. Oxford
University Press, 2007.

[BLSW04] David I. Beaver, Beth Levin, Peter Sells, and Maria Wolters. The optimization
of discourse anaphora. Linguistics and Philosophy, 27:3–56, 2004.

[BMS98] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements, com-
mon knowledge, and private suspicions. In I. Bilboa, editor, Proceedings of TARK’98,
pages 43–56, 1998.

[BN02] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Description Logic
Handbook, pages 47–100. Cambridge University Press, 2002.

[BRVs95] Rolf Backofen, James Rogers, and K. Vijay-shanker. A first-order axiomatiza-
tion of the theory of finite trees. Journal of Logic, Language and Information, 4:5–39,
1995.

[BS94] Dorit Ben-Shalom. A tree characterization of generalized quantifier reducibility. In
M. Kanazawa and C.J. Pinón, editors, Dynamics, Polarity and Quantification, num-
ber 48 in CSLI Lecture Notes, pages 147–171. CSLI, 1994.

[BS06] Chris Barker and Chung-chieh Shan. Explaining crossover and superiority as left-
to-right evaluation. Linguistics and Philosophy, 29(1):91–134, 2006.

[BS08] Chris Barker and Chung-chieh Shan. Donkey anaphora is in-scope binding. Se-
mantics and Pragmatics, 1(1):1–46, 2008.

[BtM97] J. van Benthem and A. ter Meulen, editors. Handbook of Logic and Language.
Elsevier, Amsterdam, 1997.

[Bur98] Stanley N. Burris. Logic for Mathematics and Computer Science. Prentice Hall,
1998.

[Bür05] D. Büring. Binding Theory. Cambridge Textbooks in Linguistics. Cambridge Uni-
versity Press, 2005.

[BvEK06] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Information and Computation, 204(11):1620–1662, 2006.

[Cam08] Aifric Campbell. The Semantics of Murder. Serpent’s Tail, 2008.
[Cho57] N. Chomsky. Syntactic Structures. Mouton, The Hague/Paris, 1957.
[Cho59] N. Chomsky. On certain formal properties of grammars. Information and Control,

2(2):137–167, 1959.
[Cho81] N. Chomsky. Lectures on Government and Binding. Foris, Dordrecht, 1981.
[Cho92] N. Chomsky. A Minimalist Program for Linguistic Theory. MIT Press, 1992.
[Chu36] A. Church. An unsolvable problem of elementary number theory. American Jour-

nal of Mathematics, 58:345–363, 1936.
[Chw01] Michael Suk-Young Chwe. Rational Ritual. Princeton University Press, Princeton

and Oxford, 2001.
[CK97] J. Cole and C. Kisseberth. Restricting multi-level constraint evaluation: Opaque

rule interaction in Yawelmani vowel harmony. In K. Suzuki and D. Elzinga, editors,
Proceedings of the Arizona Phonology Conference, pages 18–38, 1997.

[Coo75] R. Cooper. Montague’s Semantic Theory and Transformational Syntax. PhD the-
sis, University of Massachusetts at Amherst, 1975.

[Coo83] R. Cooper. Quantification and Syntactic Theory. Reidel, Dordrecht, 1983.
[CR02] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Press, 2002.
[Dal83] D. van Dalen. Logic and Structure (Second edition). Springer, Berlin, 1983.
[DE04] Kees Doets and Jan van Eijck. The Haskell Road to Logic, Maths and Program-

ming, volume 4 of Texts in Computing. College Publications, London, 2004.

Bibliography 391

[Dek03] P. Dekker. Meanwhile, within the Frege boundary. Linguistics and Philosophy,
26:547–556, 2003.

[dG04] Philippe de Groote. Towards a Montegovian account of dynamics. In Proceedings
of Semantics and Linguistic Theory XVI, CLC Publications, 2004.

[DI07] Hal Daume III. Yet another Haskell tutorial, wikibooks.org edition, 2007.
[Dow89] D. R. Dowty. On the semantic content of the notion of ‘thematic role’. In B. Par-

tee, G. Chierchia, and R. Turner, editors, Properties, Type, and Meanings, volume 2,
pages 69–130. Kluwer, Dordrecht, 1989.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order (Second edi-
tion). Cambridge University Press, 2002 (First edition, 1990).

[DP96] Kees van Deemter and Stanley Peters, editors. Semantic Ambiguity and Underspec-
ification. CSLI Press, 1996.

[DvdHK07] H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library. Springer, 2007.

[DWP81] D.R. Dowty, R.E. Wall, and S. Peters. Introduction to Montague Semantics.
Reidel, Dordrecht, 1981.

[Eij00] Jan van Eijck. The proper treatment of context in NL. In Paola Monachesi, editor,
Computational Linguistics in the Netherlands 1999: Selected Papers from the Tenth
CLIN Meeting, pages 41–51. Utrecht Institute of Linguistics OTS, 2000.

[Eij01] Jan van Eijck. Incremental dynamics. Journal of Logic, Language and Information,
10:319–351, 2001.

[Eij03] Jan van Eijck. Parser combinators for extraction. In Paul Dekker and Robert van
Rooy, editors, Proceedings of the Fourteenth Amsterdam Colloquium, pages 99–104.
ILLC, University of Amsterdam, 2003.

[Eij05] Jan van Eijck. Normal forms for characteristic functions on n-ary relations. Journal
of Logic and Computation, 15:85–98, 2005.

[Eij07a] Jan van Eijck. DEMO – a demo of epistemic modelling. In Johan van Benthem,
Dov Gabbay, and Benedikt Löwe, editors, Interactive Logic – Proceedings of the 7th
Augustus de Morgan Workshop, number 1 in Texts in Logic and Games, pages 305–
363. Amsterdam University Press, 2007.

[Eij07b] Jan van Eijck. Sequentially indexed grammars. Journal of Logic and Computation,
2007. Advance Access published on 30 May 2007.

[EK97] Jan van Eijck and Hans Kamp. Representing discourse in context. In J. van Ben-
them and A. ter Meulen, editors, Handbook of Logic and Language, pages 179–237.
Elsevier, Amsterdam, 1997.

[End72] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

[EU07] Jan van Eijck and Christina Unger. The epistemics of presupposition projection.
In Maria Aloni, Paul Dekker, and Floris Roelofsen, editors, Proceedings of the Six-
teenth Amsterdam Colloquium, December 17–19, 2007, pages 235–240, Amsterdam,
December 2007. ILLC.

[EV09] Jan van Eijck and Rineke Verbrugge, editors. Discourses on Social Software, vol-
ume 5 of Texts in Logic and Games. Amsterdam University Press, Amsterdam, 2009.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

[FL89] R. Frost and J. Launchbury. Constructing natural language interpreters in a lazy
functional language. The Computer Journal, 32(2):108–121, 1989.

[FL05] Chris Fox and Shalom Lappin. Foundations of Intensional Semantics. Wiley-
Blackwell, 2005.

[For07] M. Forsberg. Three Tools for Language Processing: BNF Converter, Functional

392 Bibliography

Morphology, and Extract. PhD thesis, Chalmers University of Technology and
Göteborg University, 2007.

[Fre92] Gottlob Frege. Über Sinn und Bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, pages 25–50, 1892. Translated as: On Sense and Reference.

[Fro06] Richard A. Frost. Realization of natural language interfaces using lazy functional
programming. ACM Comput. Surv., 38(4), 2006.

[Gam91a] L.T.F. Gamut. Language, Logic and Meaning, Part 1. Chicago University Press,
1991.

[Gam91b] L.T.F. Gamut. Language, Logic and Meaning, Part 2. Chicago University Press,
1991.

[Gaz88] G. Gazdar. Applicability of indexed grammars to natural languages. In U. Reyle
and C. Rohrer, editors, Natural Language Parsing and Linguistic Theories, pages 69–
94. Reidel, Dordrecht, 1988.

[Gea80] P.T. Geach. Reference and Generality: An Examination of Some Medieval and
Modern Theories. Cornell University Press, Ithaca, 1962 (Third revised edition,
1980).

[GJW95] B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for modeling the
local coherence of discourse. Computational Linguistics, 21:203–226, 1995.

[GKPS85] G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized Phrase Structure Gram-
mar. Basil Blackwell, Oxford, 1985.

[Gra93] P. Graham. On Lisp. Prentice Hall, 1993.
[Gri75] H.P. Grice. Logic and conversation. In P. Cole, editor, Speech Acts, Syntax and

Semantics, Vol. III: Speech Acts. Academic Press, New York, NY, 1975.
[Gru65] J.S. Gruber. Studies in Lexical Relations. PhD thesis, MIT, 1965. Published in

revised form in 1976.
[GS84] J. Groenendijk and M. Stokhof. Studies on the Semantics of Questions and the

Pragmatics of Answers. PhD thesis, University of Amsterdam, 1984.
[GS86] B.J. Grosz and C.L. Sidner. Attention, intentions, and the structure of discourse.

Computational Linguistics, 12:175–204, 1986.
[GS91] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philos-

ophy, 14:39–100, 1991.
[Hal63] P. Halmos. Lectures on Boolean Algebras. Van Nostrand, 1963.
[Han04] Chris Hankin. An Introduction to Lambda Calculi for Computer Scientists. Col-

lege Publications, London, 2004.
[Hei82] I. Heim. The Semantics of Definite and Indefinite Noun Phrases. PhD thesis,

University of Massachusetts, Amherst, 1982.
[Hei92] I. Heim. Presupposition projection and the semantics of the attitude verbs. Journal

of Semantics, 9(3):183–221, 1992. Special Issue: Presupposition, Part 1.
[Hel78] S. Hellberg. The Morphology of Present-Day Swedish. Almqvist & Wiskell Inter-

national, Stockholm, Sweden, 1978.
[Hen93] H. Hendriks. Studied Flexibility: Categories and Types in Syntax and Semantics.

PhD thesis, ILLC, Amsterdam, 1993.
[HFP96] P. Hudak, J. Fasel, and J. Peterson. A gentle introduction to Haskell. Tech-

nical report, Yale University, 1996. Online version: http://www.haskell.org/
tutorial/.

[HR04] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems (Second edition). Cambridge University Press, 2004.

[Hut92] G. Hutton. Higher-order functions for parsing. Journal of Functional Program-
ming, 2(3):323–343, 1992.

[Hut07] G. Hutton. Programming in Haskell. Cambridge University Press, 2007.

Bibliography 393

[Jac72] R. Jackendoff. Semantic Interpretation in Generative Grammar. MIT Press, 1972.
[Jan97] Theo M.V. Janssen. Compositionality. In Johan van Benthem and Alice ter Meulen,

editors, Handbook of Logic and Language, pages 417–473. Elsevier, Amsterdam,
1997.

[JS01] J. Jeuring and D. Swierstra. Grammars and parsing. Lecture Notes, Utrecht Univer-
sity, 2001.

[Kam81] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk,
T. Janssen, and M. Stokhof, editors, Formal Methods in the Study of Language, pages
277–322. Mathematisch Centrum, Amsterdam, 1981.

[Kan09] Makoto Kanazawa. A note on intensionalization. Unpublished note, National
Institute of Informatics, Tokio, available from http://research.nii.ac.jp/

~kanazawa/publications/, December 2009.
[Kee87] E. Keenan. Unreducible n-ary quantification in natural language. In P. Gärdenfors,

editor, Generalized Quantifiers, Linguistic and Logical Approaches, pages 109–150.
Reidel, Dordrecht, 1987.

[Kee92] E. Keenan. Beyond the Frege boundary. Linguistics and Philosophy, 15(2):199–
221, 1992.

[Kel02] H. Keller. The Story of my Life. Dell Publishers, 1978 (1902).
[KF85] Edward L. Keenan and Leonard M. Faltz. Boolean Semantics for Natural Lan-

guage. Reidel, 1985.
[Koh00] M. Kohlhase. Model generation for Discoure Representation Theory. In Werner

Horn, editor, Proceedings of the 14th European Conference on Artifical Intelligence.
Wiley, Chichester, UK, 2000.

[KR93] H. Kamp and U. Reyle. From Discourse to Logic. Kluwer, Dordrecht, 1993.
[Kri72] S.A. Kripke. Naming and necessity. In D. Davidson and G. Harman, editors,

Semantics of Natural Language, pages 253–355. Reidel, Dordrecht, 1972.
[Lan69] Ronald Langacker. Pronominalization and the chain of command. In David Reibel

and Sanford Schane, editors, Modern Studies in English: Readings in Transforma-
tional Grammar, pages 160–200. Prentice Hall, 1969.

[Lap97] Shalom Lappin, editor. The Handbook of Contemporary Semantic Theory. Wiley-
Blackwell, 1997.

[Lev83] S.C. Levinson. Pragmatics. Cambridge University Press, 1983.
[Lew60] C.S. Lewis. Studies in Words. Cambridge University Press, 1960.
[Lew70] D. Lewis. General semantics. Synthese, 22:18–67, 1970.
[Łuk51] JanŁ ukasiewicz. Aristotle’s Syllogistic from the Standpoint of Modern Formal

Logic. Clarendon Press, Oxford, 1951.
[Mon73] R. Montague. The proper treatment of quantification in ordinary English. In

J. Hintikka, editor, Approaches to Natural Language, pages 221–242. Reidel, 1973.
[Mon74a] R. Montague. English as a formal language. In R.H. Thomason, editor, Formal

Philosophy: Selected Papers of Richard Montague, pages 188–221. Yale University
Press, New Haven and London, 1974.

[Mon74b] R. Montague. Universal grammar. In R.H. Thomason, editor, Formal Philos-
ophy: Selected Papers of Richard Montague, pages 222–246. Yale University Press,
New Haven and London, 1974.

[Mos57] A. Mostowski. On a generalization of quantifiers. Fundamenta Mathematica,
44:12–36, 1957.

[Mos08] Lawrence S. Moss. Completeness theorems for syllogistic fragments. In Fritz
Hamm and Stephan Kepser, editors, Logics for Linguistic Structures, pages 143–174.
Mouton de Gruyter, Berlin, New York, 2008.

[Mus89a] Reinhard Muskens. Meaning and Partiality. PhD thesis, University of Amster-

394 Bibliography

dam, 1989.
[Mus89b] Reinhard Muskens. A relational formulation of the theory of types. Linguistics

and Philosophy, 12:325–346, 1989.
[Mus94] Reinhard Muskens. A compositional discourse representation theory. In P. Dekker

and M. Stokhof, editors, Proceedings 9th Amsterdam Colloquium, pages 467–486.
ILLC, Amsterdam, 1994.

[Mus96] Reinhard Muskens. Combining Montague Semantics and Discourse Representa-
tion. Linguistics and Philosophy, 19:143–186, 1996.

[Mus07] Reinhard Muskens. Intensional models for the theory of types. The Journal of
Symbolic Logic, 72(1):98–118, 2007.

[NB02] D. Nardi and R. J. Brachman. An introduction to description logics. In F. Baader,
D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The
Description Logic Handbook, pages 5–44. Cambridge University Press, 2002.

[OSG08] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O’Reilly,
2008.

[Per83] W. Percy. Lost in the Cosmos: The Last Self-Help Book. Simon and Schuster, 1983.
[PH04] I. Pratt-Hartmann. Fragments of language. Journal of Logic, Language and Infor-

mation, 13(2):207–223, 2004.
[PJ03] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, 2003.
[Pla] Plato. Theaetetus. Many editions.
[PP02] Paul Portner and Barbara H. Partee, editors. Formal Semantics: The Essential Read-

ings. Wiley-Blackwell, 2002.
[PR83] B. H. Partee and M. Rooth. Generalized conjunction and type ambiguity. In

R. Bauerle, C. Schwarze, and A. von Stechow, editors, Meaning, Use and Interpreta-
tion of Language. Walter de Gruyter, Berlin, 1983.

[PS87] F.C.N. Pereira and S.M. Shieber. Prolog and Natural Language Analysis, volume 10
of CSLI Lecture Notes. CSLI, Stanford, 1987. Distributed by University of Chicago
Press.

[PS94] C. Pollard and I. Sag. Head-Driven Phrase Structure Grammar. CSLI Lecture
Notes. CSLI, Stanford, 1994. Distributed by University of Chicago Press.

[PW83] F.C.N. Pereira and H.D. Warren. Parsing as deduction. In Proceedings of the 21st
Annual Meeting of the ACL, pages 137–111. MIT, Cambridge, Mass., 1983.

[PW06] Stanley Peters and Dag Westerståhl. Quantifiers in Language and Logic. Oxford
University Press, 2006.

[Ran09] Aarne Ranta. Grammars as software libraries. In Gerard Huet, Jean-Jacques Lévi,
and Gordon Plotkin, editors, From Semantics to Computer Science: Essays in Honour
of Gilles Kahn. Cambridge University Press, 2009.

[Rei47] H. Reichenbach. Elements of Symbolic Logic. Macmillan, London, 1947.
[Rei76] T. Reinhart. The Syntactic Domain of Anaphora. PhD thesis, MIT, 1976.
[Rei83] T. Reinhart. Anaphora and Semantic Interpretation. Croom Helm, London, 1983.
[Rei00] T. Reinhart. The theta system: Syntactic realization of verbal concepts. Technical

report, OTS Working Papers, 2000.
[Révon] G.E. Révész. Introduction to Formal Languages. Dover Publications, 1991 (re-

vised version of the 1983 McGraw-Hill edition).
[Rey93] J.C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation,

6(3–4):233–247, 1993.
[RH99] C.O. Ringen and O. Heinämäki. Variation in finnish vowel harmony: An OT ac-

count. Natural Language and Linguistic Theory, 17:303–337, 1999.
[RL99] F. Rabhi and G. Lapalme. Algorithms: A Functional Programming Approach.

Bibliography 395

Addison-Wesley, 1999.
[Rog98] J. Rogers. A Descriptive Approach to Language-Theoretic Complexity. Studies in

Logic, Language and Information. CSLI & FoLLI, 1998.
[Ros67] J.R. Ross. Constraints on Variables in Syntax. PhD thesis, MIT, 1967.
[Rus05] B. Russell. On denoting. Mind, 14:479–493, 1905.
[Sha05] Chung-chieh Shan. Linguistic Side Effects. PhD thesis, Harvard University, 2005.
[Sha07] Chung-chieh Shan. Linguistic side effects. In Chris Barker and Pauline Jacobson,

editors, Direct Compositionality, pages 132–163. Oxford University Press, 2007.
[SS99] J. M. Spivey and S. Seres. Embedding Prolog in Haskell. In E. Meijer, editor, Pro-

ceedings of Haskell ’99, Technical Report UU-CS-1999-28, Department of Computer
Science, University of Utrecht, 1999.

[Tho99] S. Thompson. Haskell: The Craft of Functional Programming (Second edition).
Addison Wesley, 1999.

[Tur36] A.M. Turing. On computable real numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,
1936.

[UG08] Christina Unger and Gianluca Giorgolo. Interrogation in dynamic epistemic logic.
In Kata Balogh, editor, Proceedings of the 13th ESSLLI Student Session, pages 195–
202, 2008. Available from http://staff.science.uva.nl/~kbalogh/StuS13/
StuS13_Proceedings.pdf.

[Ver93] C.F.M. Vermeulen. Sequence semantics for dynamic predicate logic. Journal of
Logic, Language, and Information, 2:217–254, 1993.

[VV96] A. Visser and C. Vermeulen. Dynamic bracketing and discourse representation.
Notre Dame Journal of Formal Logic, 37:321–365, 1996.

[WA86] H. Wada and N. Asher. BUILDRS: An implementation of DR theory and LFG. In
11th International Conference on Computational Linguistics. Proceedings of Coling
’86, pages 540–545, University of Bonn, 1986.

[Wad85] P. Wadler. How to replace failure by a list of successes. In Jean-Pierre Jouannaud,
editor, FPCA, volume 201, pages 113–128, 1985.

[Wij66] Adriaan van Wijngaarden. Recursive definition of syntax and semantics. In T.B.
Steel Jr, editor, Formal Language Description Languages for Computer Program-
ming, pages 13–24. North-Holland, 1966.

[WJP98] M. Walker, A. Joshi, and E. Prince, editors. Centering Theory in Discourse.
Clarendon Press, 1998.

[Zee89] H. Zeevat. A compositional approach to Discourse Representation Theory. Lin-
guistics and Philosophy, 12:95–131, 1989.

Index

⊆, 16
∈, 15
/∈, 15
∩, 196
∪, 196
∀, 76
∃, 76
∃∃, 309
; , 309
¬¬, 310
⇒, 310
a→, 357
A, 17
A2, 18
An, 18
A◦, 314
A•, 314
A×B, 17
�·�, 173
ĉ x, 309, 314
δ • δ�, 306, 307
f · g, 21, 44
⇓ p, 314
R ◦ S, 18
Ř , 18

/, 50
@, 60
|, 43
==, 46
/=, 46
<, 42
<=, 42
>, 42
>=, 42
_, 41, 56
\n, 41, 47
!!, 207
&&, 38
||, 38
(.), 44
(:), 41
(++), 39
<:>, 220

<::>, 242
<$>, 219
<|>, 218
<||>, 242
[n..], 42
[n..m], 42
(op), 38
(op x), 38
(x op), 38
‘op‘, 39
(@@), 110, 209, 370

a priori vs. a posteriori, 185
Abstract, 252
abstract, 266
accessibility relations, 357, 373

computing them, 382
accommodation, 363
ADJ, 70
adjust, 335
Agent, 368
agree, 226
agreeC, 235
Agreement, 224
Ajdukiewicz, Kazimierz, 29
all, 45
allNum, 160
allScopings, 280
allVals, 94
α-conversion, 169
α-reduction, 171, 172
alphabetic variant of a formula, 84
alternatives, 381
anchor, 315
and, 45
Answer, 67
answer, 222
answerhood, 367
any, 45
appendSuffixF, 53
apply, 266, 376
appropriate answers, 367
Aristotelian quantifiers, 107, 150

397

398 Index

Aristotle, 107, 150
arity, 265
assign, 226
assignT, 235
atleast2butnotall, 160
atleastNum, 160
atmostNum, 160
attitude verbs, 193
aUml, 53
automata, 163–164
AUX, 324
auxVpR, 247
auxVpRule, 239
AV, 70
average, 50

Backus-Naur Form (BNF), 24, 64, 67
Barker, Chris, 302
Battleship, 63–66
β-conversion, 168
β-redex, 172
β-reduction, 171, 172
bijection, 156
bInA(s), 258
bInLF(s), 131, 258
blissful ignorance, 372–373
blow-up of predicates, 314
blowupDV, 338
blowupPred, 317
blowupPred’, 337
blowupPred2, 318
blowupPred3, 318
blowupTV, 338
blowupVP, 337

BNF (Backus-Naur Form), 24, 64, 67
body of a quantifier, 155
book website, 35
Bool, 38
Boole, George, 6, 38
Boolean join, 270
Boolean meet, 269
bound variables, 23, 77–78
bpred2lists, 268
branchingPos, 209

c-command, 77, 209
cannibals, 41
Carnap, Rudolf, 186
Cartesian product, 17
case, 55
Cat, 225
categorial grammar, 29
CatLabel, 225
catLabel, 226
cCommand, 209
change, 140
Char, 37
characteristic function, 21
chat, 120
Chomsky hierarchy, 84
Chomsky, Noam, 1
chr, 53

Church, Alonzo, 22, 186
Church-Rosser property, 172
Class, 111
closed formulas, 78, 102
closure, 380
CN, 70, 324
cn, 221
cnrelR, 248
cnt, 52
cnv, 370
collect, 221
collectCats, 234
Colour, 59, 67
colour, 222
combine, 226
common ground, 330
common knowledge, 352, 358, 374
competence, 2
compilers, 34, 35
complement of a set, 17
completeness, 109
Complex NP Constraint, 241, 246
compositionality, 8–9, 150
compound quantifiers, 263–264
computeAcc, 382
concatenation function, 39
cond1R, 245
cond2R, 245
confluence, 172
conj, 315
conj’, 336
conjR, 244, 270
conjunction, 38, 45, 73

dynamic conjunction, 309, 315
relational conjunction, 270

conservativity (CONS), 156
Constraint, 333
constructor identifiers, 56
constructors, 56
containedIn, 370
Context, 314
context, 308

composition, 309
extension, 309, 314
property, 312
transition, 309, 312

context, 315
Context’, 334
context-free grammars, 24
contextuality, 8
contingent formulas, 93
continuation, 312
continuized context transition, 312–313
contractum, 172
contradiction, 95
contradictions, 93, 95
contraposition, 93
converse of a relation, 18
convert, 344, 379
convertP, 99
count, 50

Index 399

curry, 136
Curry, Haskell B., 33
Curry, Haskell B., 136
curry3, function, 137
currying, 136
cutoff, 335

decode0,1, 267
defeated, 90
delete, function, 46
denotational meaning, 4–5
derive, 114
deriving, 66
DET, 70, 324
det, 221
digit, 217
digitize, 219
DINF, 324
discourse referents, 303
disjR, 270
disjunction, 38, 45, 73

relational disjunction, 270
displayS5, 372
do, 120
domain, 19, 141
domain, 113
dominance, 78, 208
dominance, 208
double articulation, 8
duality of patterning, 8
dummy pronoun, 181
DV, 70, 324
dynamic conjunction, 309, 315
dynamic existential quantification, 309, 315
dynamic implication, 310, 315
dynamic interpretation function
dintCN, 319
dintDET, 319
dintNP, 319
dintPP, 321
dintREL, 318
dintTXT, 318
dintVP, 320–321
dintVPgap, 319

dynamic negation, 310, 315

E-PDL (epistemic propositional dynamic logic), 357
EBNF (Extended Backus-Naur Form), 67
EE, 375
elem, 46
encode0–3, 267
entities, 133
Entity, 133
epistemic alternatives, 381
epistemic logic, 353
epistemic model, 357
epistemic propositional dynamic logic (E-PDL), 357
EpistM state, 369
epsilonT, 220
Eq, 46, 50
equivalence, 73
equivalent formulas, 93

error, 51
η-reduction, 171, 172
evaluation function, 94, 141, 144
eval, 95, 141–142, 277, 328
eval’, 345
evalEE, 377
evalFresh, 345
evl, 144–145, 321

evening star and morning star, 184
exampleModel, 369
existential import, 107, 109, 151
existential quantification, 76, 77, 79

dynamic, 309, 315
exists, 315
exists’, 337
expand, 381
expansion of a relation, 381
extend, 314
extend’, 335
Extended Backus-Naur Form (EBNF), 67
extension (EXT), 155
extensional view of functions, 20
extensional type, 195
extensionality, 15
extr, 275
extr2lists, 275
extract, 275

f2s, 115
failp, 216
fake, 192
Feat, 224
Feature, 60
features, 60, 223–225
Feedback, 67
filter, 43
finite state machines, 163

acyclic, 163
permutation invariant, 163

FInterp a, 143
finVpR, 247
finVpRule, 239
first-order logic, 76
fixity declaration, 219
fixpoint, 110, 374
forAll, 315
Form, 74, 374
former, 192
Formula, 80
free for a variable, 83–84
free variables, 78
Frege, Gottlob, 9, 126, 150, 151, 183
Fregean quantifiers, 151, 152
fresh, 131, 259
freshIdx, 280
freshIndex, 131, 259
fs, 226
fst, 136
function

abstraction, 22, 24
application, 23–25

400 Index

composition, 21, 44

game, 222
gcase, 224
Geach, Peter Thomas, 181
gen, 40
gender, 224
generalized quantifiers, 153
generate, 213
generateAll, 213
generated submodel, 380
genS, 40
genVals, 94
getKB, 120
GHCi, 34, 35

basic commands, 35
Goldbach’s conjecture, 140
GQ, 252
Grammatical Framework, 260
Grice, Paul, 91
Gricean Maxims, 91
Grid, 88
Groenendijk, Jeroen, 349
gsm, 380
guarded equations, 43
guess, 222

head, 41
Heim, Irene, 302, 349
Helium, 34
hiding, 265
hit, 90
hope, 193
Hugs, 34, 35

basic commands, 35
hword, 37

id, 39
identity function, 39
Idx, 314
iff, 92
iJudgement, 194
impl, 315
impl’, 337
implication, 73

dynamic implication, 310, 315
implies, 96
import, 34
importing modules, 34
in, 36
Incremental Dynamics, 308
indistinguishability between worlds, 353
individual concept, 186
induction, 72
INF, 71, 324
infix notation, 39
infixl, 219
init, 55
initCats, 234
initM, 373
initMuddy, 382
Int, 29, 144

intCN, 177
intDET, 177–179
intDV, 177
intDV’, 342
intensional interpretation function, 188
iADJ, 192
iAttit, 193
iAV, 193
iCN, 191
iDET, 190
iINF, 193
iNP, 190
iRCN, 191
iSent, 189
iTINF, 193
iVP, 190

intensional type, 195
intensional view of functions, 20
intensionalization, 195
Interp a, 139
interpretation function, 100, 103, 104, 139, 165

dynamic, see dynamic interpretation function
intensional, see intensional interpretation function
intCN, 327
intCN’, 343
intDET, 327–328
intDET’, 344
intDINF, 327
intDINF’, 343
intINF, 326
intINF’, 343
intNP, 325
intNP’, 341
intRCN, 328
intRCN’, 344
intS, 325
intS’, 341
intTINF, 326
intTINF’, 343
intTV, 326
intTV’, 342
intVP, 325
intVP’, 342

interpreters, 34, 35
intNP, 175
intRCN, 179
intSent, 175
intTV, 176
intVP, 176
IO, 120
islands, 241
isomorphy (ISOM), 156
isQuery, 112
isS5, 371
isTrue, 378
isTrueAt, 377
isVar, 84
isWH, 250

Judgement, 194
just, 218

Index 401

Kamp, Hans, 302, 349
KB, 111
Keenan quantifiers, 271, 281
knowledge base, 108, 111

constructing it from a file, 119
constructing it from a text, 118
example, 119
writing it to a file, 120

KOp, 281
KQ, 271
KQLF, 281

last, 58
Latin 1 character encoding, 53
lazy evaluation, 42
lazy evaluation, 33, 143
leafP, 235
leafPS, 243
length, 50
let, 36, 54
lexer, 233
lexicon, 226–233
LF, 127, 252
LF function
lfCN, 129, 284
lfDET, 130–132, 284
lfDV, 129
lfNP, 128, 283
lfRCN, 132
lfSent, 128, 285
lfTV, 129
lfVerbPhrase, 283
lfVP, 128–129

lfp, 111, 374
liftKQLF, 282
liftLookup, 144
liftOp, 269
liftQ, 272
linefeed, 41, 47
list comprehension, 42
list patterns, 41
list2OnePlacePred, 134
listCurry, 269
lists, 42

head and tail, 41
infinite lists, 42
prefix, 51
prepending an element, 41

lists2rel, 269
listUncurry, 267
logical validity, 102
logically equivalent formulas, 93
logically implies, 93, 104
Lookup a, 140
lookupIdx, 314
lookupIdx’, 335
lookupWord, 234

m0, 379
main, 48, 121
makeKB, 117
many, 222

manyS, 243
map, 43
Mastermind, 66–67

game function, 99
match, 238
maxIndex, 334
Maybe, 116
maybe, 119
meaning

denotational, 4–5
operational, 4–5

meaning of life, 10
merger of DRSs, 306, 307
method of fragments, 7
Mill, John Stuart, 185
min, 46
missed, 90
mkc, 288
model, 101

epistemic model, 357
module, 34
monotonic quantifiers, 161–163
monotonicity

downward left-monotonicity (↓MON), 162
downward right-monotonicity (MON↓), 161
upward left-monotonicity (↑MON), 162
upward right-monotonicity (MON↑), 161

Montague, Richard, 7, 27, 150, 181, 186, 302
morning star and evening star, 184
muddy children, 356

implementation, 381–384
myLast, 58
mytxt, 119

name2binpred, 317
name2entity, 316
name2pred, 316–317
name2terpred, 317
necessary vs. contingent truths, 185
neg, 113, 281, 315
neg’, 336
negation, 38, 73

dynamic negation, 310, 315
relational negation, 270

negative polarity items, 162
negR, 270
Neumann, John von, 311
ng, 281
noClashes, 89
nonCoref(2), 340
noNum, 160
normal form, 172
normal form property, 172
not, 38, 58
notElem, 46
NP, 69, 324
np, 221
npR, 246
npRule, 236
nsubsetRel, 114
nsupersets, 114

402 Index

nub, 52
null, 58
number, 224
numerical trees, 157–159

occurscount, 97
OnePlacePred, 134
open formulas, 78
operational meaning, 4–5
opNP, 284
opp, 111
or, 45
Ord, 42
ordered pairs, 17
oUml, 53

p, 375
palindrome, 221
parse, 118, 213
parse functions
parseAux, 238
parseCN, 237
parseDET, 237
parseNP, 236
parseNPorPP, 237
parseNPsorPPs, 237
parsePP, 237
parsePrep, 238
parseSent, 236
parseVP, 238
pD, 219
pN, 219
pNP, 219
pS, 219
pVP, 219

parse functions for stack parser
prsAUX, 247
prsCN, 246
prsDET, 246
prsNP, 246
prsNPorPP, 248
prsNPsorPPs, 248
prsPP, 247
prsPREP, 248
prsREL, 249
prsS, 244
prsTXT, 244
prsVP, 246
prsWH, 250
prsYN, 249

parse problem, 71
parseAs, 221
parseManyAs, 222
PARSER a b, 220
Parser a b, 215
parser combinators, 217
parses, 250
ParseTree a b, 206
Partee, Barbara, 10, 22
passivization, 137
passivize, 137
Pattern, 67

pattern matching, 41, 58
PDL (propositional dynamic logic), 357
performance, 2
performative speech acts, 365
permRelNPs, 279
perms, 278
permsInPar, 279
person, 224
Phon, 225
phon, 225
Phoneme, 60
phrase-structure rules, 29
playMM, 99
polarity items, 162
Polish notation, 74

reverse, 74
polymorphic types, 39
pop, 243
Pos, 207
pos, 207
positive polarity items, 162
postfix notation, 74
power set, 153
powerList, 373
ppR, 248
ppRule, 237
prc, 321
precede, 210
precedence, 210
precedence, 210
prefix, 51
prefix notation, 38, 74
prefix of a list, 51
Prelude, 35
prepending an element to a list, 41
preproc, 233
preprocess, 52, 117
prepType, 224
presupposition accommodation, 363
presupposition projection, 360, 362
principle of compositionality, 8, 150
process, 52, 119, 259
processW, 259
Prolog, 12, 31
pronType, 224
Prop, 314, 368
Prop’, 334
properdominance, 208
properties, 18, 37
propNames, 94
proposition, 186
propositional dynamic logic (PDL), 357
propositional substitution, 364
prs, 239
prs∗, see parse function for stack parser
prune, 224
public announcements, 354–355, 358–360, 370

of common knowledge, 360, 362
push, 243
putStr, 47
putStrLn, 41

Index 403

puzzle of the muddy children, 356
implementation, 381–384

q, 375
qscopeReversal, 273
quantification

existential, 76, 77, 79
universal, 76, 77, 79

quantifiers
Aristotelian, 107, 150
body, 155
compound quantifiers, 263–264
first-order definability, 164
Fregean, 151, 152
Keenan quantifiers, 271, 281
logical representations, 159–160
monotonicity, 161–163
reflexivity, 160
relational view, 152–157
restriction, 155
symmetry, 161

quantifying-in, 181–182, 278
Quine, Willard, 126, 185

range, 19
Rational, 50
RCN, 70, 324
rconvert, 142
reaction, 98, 222
realize, 61
recognize, 212
record syntax, 369
recursion, 8, 40–41
recursive definition, 38
recursive descent parsing, 215
redAlert, 59
reduction axioms, 359, 365
reference, 183
reference markers, 303
reference resolution, 332–333, 339–341
referent, 184
REFL, 324
reflexive pronouns, 138–139
reflexive quantifiers, 160
reflexive relations, 18
reflexive transitive closure, 110, 374
reflR, 370
rel, 371
Rel a, 265
Rel a, 109, 208, 370
rel2lists, 268
rel2partition, 371
relation composition, 18, 110
relations

arbitrary arity, 264–269
complement, 270
converse, 18
reflexive, 18
symmetric, 18
transitive, 19

relclauseR, 249
relNP, 277

relNPs, 277
relSent, 277
relVP, 276
reserved keywords, 56
resolveFEM, 339
resolveMASC, 339
resolveNAME, 340
resolveNEU, 340
reversal, 48
rewriting, 65
RForm, 280
riddle of the caps, 355
riddle of the wise men, 355
right section of a relation, 109, 376
rightS, 376
rigid designation, 185
RL a r, 265
role, 275
roles, 275
rSection, 109
rtc, 111, 374
Ruby, 30
Russell, Bertrand, 126, 131, 185

S5 relation, 371
salience, 308
samepos, 97
satisfiable, 95
satisfiable formulas, 93, 95
satisfy, 217
Saussure, Ferdinand de, 184
sb, 258
scan, 233
scope, 78
Sea Battle, 63–66
sections, 38
self, 138
sense, 183
Sent, 69, 324
sent, 221
sequentially indexed grammars, 240
set

complement, 17
comprehension, 16
identity, 15
subset, 16

set-theoretic view on natural numbers, 311
Shan, Chung-chieh, 302
Show, 47
show, 47
showColour, 59
showS5, 372
side effects, 30
signified, 184
signifier, 184
singleton, 320
sisterhood, 209
sisterhood, 209
sisters, 208
size, 334
snd, 136

404 Index

sonnet18, 48
sonnet73, 49
sort, 52
sortL, 373
soundness, 109
SPARSER a b, 242
speech acts, 365
split2, 211
splitN, 212
spR, 245
square, 36
Square of Opposition, 107, 151
srt, 47
sRule, 236
StackParser a b, 242
State, 89
Statement, 112
Stokhof, Martin, 349
story, 40
String, 37
string2pattern, 98
structural induction, 72
sub, 258
subcatList, 226
subi, 282
subset, 16
subsetRel, 113
Subst, 378
subst, 257
substi, 282
substitution, 170, 257, 282, 364
subtree, 207
subtrees, 208
succeed, 216
succeedS, 243
success, 335
sum, 50
supersets, 113
swap, 273
Swedish noun classes, 54
syllogisms, 107–108
symbol, 216
symbolT, 220
symmetric quantifiers, 161
symmetric relations, 18
symmR, 370

t2c, 235
tail, 41
take, 213
Tarski, Alfred, 126
tautologies, 93, 95
tautology, 95
tellAbout, 115–116
tense, 224
Term, 83, 252
That, 70, 324
thatlessR, 249
theta roles, 273–275, 279
Theta theory, 273
ThreePlacePred, 134

TINF, 71, 324
To, 71
token, 217
toLower, 50
toRational, 50
tpred2lists, 268
Trans, 314
Trans’, 334
transCN, 255
transDET, 254–255
transitive closure, 110
transitive relations, 19
transNP, 253
transPP, 256
transR, 370
transREL, 255
transS, 253
transVP, 256
transW, 257
transWH, 257
trNP, 283
truth tables, 92
Turing, Alan, 22
turn, 222
TV, 70, 324
TVal a, 144
TwoPlacePred, 134
tx, 83
ty, 83
type declaration, 36–37
type synonyms, 57
types, 164

in lambda calculus, 28–29
in programming, 29
polymorphic types, 39

tz, 83

uForm, 285
umlauts in Haskell, 53
uncurry, 136
uncurry3, 167
uncurrying, 136
unique, 320
unique’, 343
universal quantification, 76, 77, 79
Unspec, 133, 137
upd_pa, 378
upd_pc, 378
update, 96, 116–117
updateBattle, 91
updateMM, 98
upred2lists, 268

valuation, 92, 101, 104
Variable, 79
variable assignment, 101, 139, 140, 165
variable identifiers, 55
variable lookup, 140
varsInTerm(s), 84
VerbPhrase, 276
Visser, Albert, 186

Index 405

vowel harmony, 52, 60
Finnish, 52
Yawelmani, 61

VP, 70, 324
vp, 221
vpR, 247
vpRule, 238

want, 193
where, 54
Wijngaarden, Aad van, 302
wild card, 41, 56
wise men, 355

Wittgenstein, Ludwig, 185
Words, 233
words, 50
writeKB, 120

x, 80

y, 80
Yawelmani, 60
yawelmaniVowels, 60

z, 80
zero, 143

	Foreword
	Preface
	1 Formal Study of Natural Language
	1.1 The Study of Natural Language
	1.2 Syntax, Semantics, and Pragmatics
	1.3 The Purposes of Communication
	1.4 Natural Languages and Formal Languages
	1.5 What Formal Semantics is Not
	1.6 Computational Semantics and Functional Programming
	1.7 Overview of the Book
	1.8 Further Reading

	2 Lambda Calculus, Types, and Functional Programming
	2.1 Sets and Set Notation
	2.2 Relations
	2.3 Functions
	2.4 Lambda calculus
	2.5 Types in Grammar and Computation
	2.6 Functional Programming
	2.7 Further reading

	3 Functional Programming with Haskell
	3.1 The Programming Language Haskell
	3.2 Using the Book Code
	3.3 First Experiments
	3.4 Type Polymorphism
	3.5 Recursion
	3.6 List Types and List Comprehension
	3.7 List processing with map and filter
	3.8 Function Composition, Conjunction, Disjunction, Quantification
	3.9 Type Classes
	3.10 Strings and Texts
	3.11 Finnish Vowel Harmony
	3.12 Identifiers in Haskell
	3.13 User-defined Data Types and Pattern Matching
	3.14 Application: Representing Phonemes
	3.15 Further Reading

	4 Formal Syntax for Fragments
	4.1 Grammars for Games
	4.2 A Fragment of English
	4.3 A Language for Talking about Classes
	4.4 Propositional Logic
	4.5 Predicate Logic
	4.6 Predicate Logical Formulas in Haskell
	4.7 Adding Function Symbols
	4.8 Further Reading

	5 Formal Semantics for Fragments
	5.1 Semantics of Sea Battle
	5.2 Semantics of Propositional Logic
	5.3 Propositional Reasoning in Haskell
	5.4 Semantics of Mastermind
	5.5 Semantics of Predicate Logic
	5.6 Semantics of Natural Language Fragments
	5.7 An Inference Engine with a Natural Language Interface
	5.8 Further Reading

	6 Model Checking with Predicate Logic
	6.1 Linguistic Form and Translation Into Logic
	6.2 Predicate Logic as Representation Language
	6.3 Representing a Model for Predicate Logic
	6.4 Evaluating Formulas in Models
	6.5 Evaluating Formulas with Structured Terms
	6.6 Further Reading

	7 The Composition of Meaning in Natural Language
	7.1 Rules of the Game
	7.2 Quantification
	7.3 The Language of Typed Logic and Its Semantics
	7.4 Reducing Expressions of Typed Logic
	7.5 Typed Meanings for Natural Language
	7.6 Implementing Semantic Interpretation
	7.7 Handling Ambiguity
	7.8 Further Reading

	8 Extension and Intension
	8.1 Sense and Reference, Intension and Extension
	8.2 Intensional Interpretation
	8.3 Intensional Constructs
	8.4 Intensionalization
	8.5 Intensional Models from Extensional Models
	8.6 Further Reading

	9 Parsing
	9.1 Talking About Parse Trees
	9.2 Recognizing and Parsing Context-Free Languages
	9.3 Parsers and Parser Combinators
	9.4 Features and Categories
	9.5 Lexical Lookup and Scanning
	9.6 Parsing Categories
	9.7 Handling Extractions
	9.8 Adding Semantics
	9.9 Further Reading

	10 Handling Relations and Scoping
	10.1 Interpreting NP Lists
	10.2 Generalized Relations
	10.3 Boolean Algebras of Relations
	10.4 Flexible Types for NP Interpretations
	10.5 Scope Reversal of Quantifiers
	10.6 Interpreting Verbs as Arbitrary Arity Relations
	10.7 Relational Interpretation of NPs
	10.8 Quantifier Scoping
	10.9 Underspecified Logical Form
	10.10 Further Reading

	11 Continuation Passing Style Semantics
	11.1 Continuation Passing Style Programming
	11.2 Continuations as Abstractions over Context
	11.3 Continuizing a Grammar
	11.4 Implementing a Continuized Grammar
	11.5 Scope Reversal by Means of Continuations
	11.6 Further Reading

	12 Discourse Representation and Context
	12.1 The Dynamics of Pronoun Linking
	12.2 Abstraction over Context
	12.3 Continuizing the Account
	12.4 Implementing Discourse Representation
	12.5 From Structure Trees to Dynamic Interpretation
	12.6 Salience
	12.7 Implementing Reference Resolution
	12.8 Further Reading

	13 Communication as Informative Action
	13.1 Knowledge and Communication
	13.2 Reasoning About Knowledge and Ignorance
	13.3 A Language for Talking About (Common) Knowledge
	13.4 Presuppositions and Common Knowledge
	13.5 Adding Public Change
	13.6 Yes/No Questions and Their Answers
	13.7 Epistemic Model Checking
	13.8 Further Reading

	Afterword
	Bibliography
	Index

