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1.1 Basic characteristics of constraint programming

T HIS BOOK IS about constraint programming , an alternative ap-
proach to programming which relies on a combination of techniques
that deal with reasoning and computing . It has been successfully

applied in a number of fields including molecular biology, electrical engineer-
ing, operations research and numerical analysis. The central notion is that
of a constraint. Informally, a constraint on a sequence of variables is a re-
lation on their domains. It can be viewed as a requirement that states which
combinations of values from the variable domains are admitted. In turn, a
constraint satisfaction problem consists of a finite set of constraints,
each on a subsequence of a given sequence of variables.

To solve a given problem by means of constraint programming we first
formulate it as a constraint satisfaction problem. To this end we

• introduce some variables ranging over specific domains and constraints
over these variables;

• choose some language in which the constraints are expressed (usually a
small subset of first-order logic).

This part of the problem solving is called modeling . In general, more than

1



2 Introduction

one representation of a problem as a constraint satisfaction problem exists.
Then to solve the chosen representation we use either

• domain specific methods,

or

• general methods,

or a combination of both.
The domain specific methods are usually provided in the form of im-

plementations special purpose algorithms. Typical examples are:

• a program that solves systems of linear equations,
• a package for linear programming,
• an implementation of the unification algorithm, a cornerstone of auto-

mated theorem proving.

In turn, the general methods are concerned with the ways of reducing
the search space and with specific search methods. The algorithms that
deal with the search space reduction are usually called constraint propaga-

tion algorithms, though several other names have been often used. These
algorithms maintain equivalence while simplifying the considered problem.
They achieve various forms of local consistency that attempt to approx-
imate the notion of (global) consistency. The (top down) search methods
combine various forms of constraint propagation with the customary back-
track and branch and bound search.

The definition of constraint programming is so general that it embodies
such diverse areas as Linear Algebra, Global Optimization, Linear and In-
teger Programming, etc. Therefore we should stress one essential point. If
domain specific methods are available they should be applied instead of the
general methods. For example, when dealing with systems of linear equa-
tions, the well-known linear algebra algorithms are readily available and it
does not make sense to apply to these equations the general methods.

In fact, one of the aims of constraint programming is to look for efficient
domain specific methods that can be used instead of the general methods
and to incorporate them in a seamless way into a general framework. Such
a framework usually supports

• domain specific methods by means of specialised packages, often called
constraint solvers,

• general methods by means of various built-ins that in particular ensure
or facilitate the use of the appropriate constraint propagation algorithms
and support various search methods.
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Once we represent a problem as a constraint satisfaction problem we need
to solve it. In practice we are interested in:

• determining whether the chosen representation has a solution (is consis-
tent),

• finding a solution, respectively, all solutions,
• finding an optimal solution, respectively, all optimal solutions w.r.t. some

quality measure.

After this short preview we can formulate the following basic characteris-
tics of constraint programming:

Two Phases Approach: The programming process consists of two phases:
a generation of a problem representation by means of constraints and
a solution of it. In practice, both phases consist of several smaller
steps that can be interleaved.

Flexibility: The representation of a problem by means of constraints is very
flexible because the constraints can be added, removed or modified.
This flexibility is inherited by constraint programming.

Presence of Built-ins: To support this approach to programming several
built-in methods are available. They deal with specific constraint
solvers, constraint propagation algorithms and search methods.

An additional aspect brought in by constraint programming is that model-
ing by means of constraints leads to a representation of a problem by means
of relations. This bears some resemblance to database systems, for instance
relational databases. In fact, constraints are also studied in the context of
database systems. They are useful in situations where some information, for
instance the definition of a region of a map, needs to be provided implicitly,
by means of constraints on reals.

The difference is that in the context of database systems the task consists
of efficiently querying the considered relations, independently on whether
they are defined explicitly (for instance by means of tables) or implicitly (for
example by means of recursion or inequalities). In contrast, in constraint
programming the considered relations are usually defined implicitly and the
task consists of solving them or determining that no solution exists. This
leads to different methods and different techniques.

1.2 Applications of constraint programming

Problems that can be best solved by means of constraint programming are
usually those that can be naturally formulated in terms of requirements,
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general properties, or laws, and for which domain specific methods lead to
overly complex formalisations. Constraint programming has already been
successfully applied in numerous domains including:

• interactive graphic systems (to express geometric coherence in the case of
scene analysis),

• operations research problems (various optimization problems, in particu-
lar scheduling problems),

• molecular biology (DNA sequencing, construction of 3D models of pro-
teins),

• business applications (option trading),

• electrical engineering (location of faults in the circuits, computing the
circuit layouts, testing and verification of the design),

• numerical computation (solving polynomial constraints with guaranteed
precision),

• natural language processing (construction of efficient parsers),

• computer algebra (solving and/or simplifying equations over various al-
gebraic structures).

More recent applications of constraints involve generation of coherent mu-
sic radio programs, software engineering applications (design recovery and
code optimization) and selection and scheduling of observations performed
by satellites. Also, constraint programming proved itself a viable approach
to tackle certain computationally intractable problems.

While an account of most of these applications cannot be fit into an in-
troductory book, like this one, an interested reader can easily study the
research papers on the above topics, after having acquainted himself/herself
with the methods explained in this book.

The growing importance of this area can be witnessed by the fact that
there are now annual conferences and workshops on constraint programming
and its applications that consistently attract more than one hundred (oc-
casionally two hundred) participants. Further, in 1996 an (unfortunately
expensive) journal called ‘Constraints’ was launched. Also, several special
issues of computer science journals devoted to the subject of constraints
have appeared. But the field is still young and only a couple of books on
this subject have appeared so far. This led us to writing this book.
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1.3 A very short history of the subject

Before we engage in our presentation of constraint programming, let us
briefly summarise the history of this subject. It will allow us to better
understand the direction the field is heading.

The concept of a constraint was used already in 1963 in an early work
of I. Sutherland on an interactive drawing system SKETCHPAD. In the
seventies various experimental languages were proposed that used the notion
of constraints and relied on the concept of constraint solving.

The concept of a constraint satisfaction problem was also formulated in the
seventies by researchers in the artificial intelligence (AI). They also identified
the main notions of local consistency and the algorithms that allow us to
achieve them. Independently, various search methods were defined. Some of
them, like backtracking can be traced back to the nineteenth century, while
others, like branch and bound, were defined in the context of combinatorial
optimization. The contribution of constraint programming was to identify
various new forms of search that combine the known techniques with various
constraint propagation algorithms. Some specific combinations were already
studied in the area of combinatorial optimization.

In the eighties the first constraint programming languages of importance
were proposed and implemented. The most significant were the languages
based on the logic programming paradigm. This led to a development of
constraint logic programming , an extension of logic programming by
the notion of constraints. The programming view that emerged led to an
identification of constraint store as a central concept. Constraint propa-
gation and various forms of search are usually available in these languages
in the form of built-ins.

In the late eighties and the nineties a form of synthesis between these
two developments took place. The researchers found various new applica-
tions of constraint programming, most notably in the fields of operations
research and numerical analysis. The progress was often achieved by iden-
tifying important new types of constraints and new constraint propagation
algorithms. One also realised that further progress may depend on a com-
bination of techniques from AI, operations research, computer algebra and
mathematical logic. This turned constraint programming into an interesting
hybrid area, in which theoretical work is often driven by applications and
in turn applications lead to new challenges concerning implementations of
constraint programming.



6 Introduction

1.4 Our approach

In our presentation of the basic concepts and techniques of constraint pro-
gramming we strive at a streamlined presentation in which we clarify the
nature of these techniques and their interrelationship. To this end we or-
ganised the presentation around a number of simple principles.

Principle 1: Constraint programming is about a formulation of the prob-
lem as a constraint satisfaction problem and about solving it by
means of domain specific or general methods.

This explains our focus on the constraint satisfaction problems
and constraint solvers.

Principle 2: Many constraint solvers can be naturally explained using a
rule-based framework. The constraint solver consists then of a set
of rules that specify its behaviour and a scheduler. This viewpoint
stresses the connections between rule-based programming and con-
straint programming.

This explain our decision to specify the constraint solvers by means
of proof rules that transform constraint satisfaction problems.

Principle 3: The constraint propagation algorithms can be naturally ex-
plained as instances of simple generic iteration algorithms.

This view allows us to clarify the nature of the constraint prop-
agation algorithms. Also, it provides us with a natural method for
implementing the discussed constraint solvers, since a rule scheduler
is just another instance of a generic iteration algorithm.

Principle 4: (Top down) search techniques can be conceptually viewed as
traversal algorithms of the search trees.

This explains why we organised the chapter on search around the
slogan:
Search Algorithm = Search Tree + Traversal Algorithm,

and why we explained the resulting algorithms in the form of suc-
cessive reformulations.

1.5 Organisation of the book

The above explained principles lead to a natural organisation of the material.
Here is a short preview of the remaining chapters. In Chapter 2 we discuss
several examples of constraint satisfaction problems. We stress there that in
many situations several natural representations are possible. In Chapter
3 we introduce a general framework that allows us to explain the basics
of constraints programming. We identify there natural ingredients of this
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framework. This makes it easier to understand the subject of the subsequent
chapters.

Then, in Chapter 4, we provide three well-known examples of com-
plete constraint solvers. They deal, respectively, with solving equations
over terms, linear equations over reals and linear inequalities over reals. In
turn, in Chapter 5 we introduce several notions of local consistency and
characterise them in the form of proof rules. These notions allow us to study
in Chapter 6 in more detail a number of incomplete constraint solvers that
involve Boolean constraints and linear and arithmetic constraints on integers
and reals.

In Chapter 7 we study the constraint propagation algorithms that allow
us achieve the forms of local consistency discussed in Chapter 5. The char-
acterisation of these notions in the form of proof rules allows us to provide a
uniform presentation of these algorithms as instances of simple generic itera-
tion algorithms. Next, in Chapter 8, we discuss various (top down) search
algorithms. We present them in such a way that one can see how these
algorithms are related to each other. Finally, in Chapter 9, we provide a
short overview of the research directions in constraint programming.

Those interested in using this book for teaching may find it helpful to
use the transparencies that can be downloaded from the following website:
http://www.cwi.nl/~apt/pcp.
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T HE AIM OF this chapter is to discuss various examples of constraint
satisfaction problems (CSPs 2 in short). The notion of a CSP is very
general, so it is not surprising that these examples cover a wide

range of topics. We limit ourselves here to the examples of CSPs that are
simple to explain and that illustrate the use of general methods of constraint
programming. In particular, we included here some perennial puzzles, since,
as it has been recognised for some time, they form an excellent vehicle to
explain certain principles of constraint programming.

As already mentioned in Chapter 1 the representation of a problem as a
CSP is usually called modeling . The selected examples clarify a number
of aspects of modeling. First, as we shall see, some of the problems can
be formalised as a CSP in a straightforward way. For other problems the
appropriate representation as a CSP is by no means straightforward and
relies on a non-trivial ‘background’ theory that ensures correctness of the

2 For those knowledgeable in other areas of computer science: constraint satisfaction problems
have nothing do to with Communicating Sequential Processes, a programming notation for
distributed processes introduced by C.A.R. Hoare and also abbreviated to CSP.

8



2.1 Basic concepts 9

adopted representation. Also for several problems, more than one natural
representation exists.

When presenting the CSPs it is useful to classify them according to some
criterion. In general, the techniques used to solve CSPs depend both on
the domains over which they are defined and on the syntax of the used
constraints. In most examples we use some simple language to define the
constraints. Later, in Chapters 4 and 6, we shall be more precise and shall
discuss in detail specific languages in which the constraints will be defined.
But now it is too early to appreciate the role played by the syntax. So
we rather classify the CSPs according to the domains over which they are
defined. This explains the structure of this chapter.

First, we formalise in Section 2.1 the notion of a constraint and of a
CSP. Then, in Section 2.2 we introduce some well-known problems and
puzzles that can be naturally formalised as CSPs with integer domains. In
Section 2.3 we consider examples of problems the formalisation of which
leads to CSPs with variables ranging over reals. In turn, in Section 2.4 we
consider Boolean CSPs. These are CSPs in which the variables range over
the integer domain [0..1] or, equivalently, {false, true} and in which the
constraints are expressed by means of Boolean expressions.

An important class of CSPs are the ones in which the variables range over
non-numeric domains. We call them symbolic CSPs. They are considered
in Section 2.5. In case we are interested in finding an optimal solution to a
CSP we associate with each solution an objective function that we want to
minimise or maximise. This leads to a modification of a CSP that we call a
constrained optimization problem . They are considered in Section 2.6.

2.1 Basic concepts

As explained in the previous chapter constraint satisfaction problems, or
CSPs, are a fundamental concept in constraint programming. To proceed we
need to define them formally. The precise definition is completely straight-
forward. First we introduce the notion of a constraint.

Consider a finite sequence of variables Y := y1, . . ., yk where k > 0, with
respective domains D1, . . ., Dk associated with them. So each variable yi

ranges over the domain Di. By a constraint C on Y we mean a subset of
D1×· · ·×Dk. When k = 1 we say that the constraint is unary and when k =
2 that the constraint is binary . By a constraint satisfaction problem ,
or a CSP , we mean a finite sequence of variables X := x1, . . ., xn with
respective domains D1, . . ., Dn, together with a finite set C of constraints,
each on a subsequence of X. We write such a CSP as 〈C ; DE〉, where
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DE := x1 ∈ D1, . . ., xn ∈ Dn and call each construct of the form x ∈ D a
domain expression . To simplify the notation we omit the ‘{ }’ brackets
when presenting specific sets of constraints C.

We now define the crucial notion of a solution to a CSP. Intuitively, a
solution to a CSP is a sequence of legal values for all of its variables such
that all its constraints are satisfied. More precisely, consider a CSP 〈C ; DE〉
with DE := x1 ∈ D1, . . ., xn ∈ Dn. We say that an n-tuple (d1, . . ., dn) ∈
D1 × · · · ×Dn satisfies a constraint C ∈ C on the variables xi1 , . . ., xim if

(di1 , . . ., dim) ∈ C.

Then we say that an n-tuple (d1, . . ., dn) ∈ D1 × · · · ×Dn is a solution to
〈C ; DE〉 if it satisfies every constraint C ∈ C. If a CSP has a solution, we
say that it is consistent and otherwise we say that it is inconsistent .

Note that in the definition of a constraint and of a CSP no syntax was
assumed. In practice, of course, one needs to define the constraints and
the domain expressions. In what follows we assume that they are defined
in some specific, further unspecified, language. In this representation it is
implicit that each constraint is a subset of the Cartesian product of the
associated variable domains. For example, if we consider the CSP 〈x <

y ; x ∈ [0..10], y ∈ [5..10]〉, then we view the constraint x < y as the set of
all pairs (a, b) with a ∈ [0..10] and b ∈ [5..10] such that a < b.

Let us illustrate these concepts by a simple example. Consider the se-
quence of four variables x, y, z, u ranging over natural numbers and the fol-
lowing three constraints on them: x3 +y3 +z3 +u3 = 100, x < u, x+y = z.
According to the above notation we write this CSP as

〈x3 + y3 + z3 + u3 = 100, x < u, x + y = z ; x ∈ N , y ∈ N , z ∈ N , u ∈ N〉,

where N denotes the set of natural numbers.
Then the sequence (1, 2, 3, 4) is a solution to this CSP since this sequence

satisfies all constraints. Indeed, we have 13 + 23 + 33 + 43 = 100, 1 < 4 and
1 + 2 = 3.

Finally, let us clarify one simple matter. When defining constraints and
CSPs we refer to the sequences (respectively subsequences) of variables and
not to the sets (respectively subsets) of variables. Namely, given a CSP
each of its constraints is defined on a subsequence and not on a subset of
its variables. In particular, the above constraint x < y is defined on the
subsequence x, y of the sequence x, y, z, u.

Also, the sequence z, y is not a subsequence x, y, z, u, so if we add to the
above CSP the constraint z = y + 2 we cannot consider it as a constraint
on z, y. But we can view it of course as a constraint on y, z and, if we wish,
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we can rewrite it as y + 2 = z. The reliance on sequences and subsequences
of variables instead of on sets and subsets will allow us to analyse in a
simple way variable orderings when searching for solutions to a given CSP.
So this presentation does not introduce any restrictions and simplifies some
considerations.

2.2 Constraint satisfaction problems on integers

The remainder of this chapter is devoted to a presentation of various exam-
ples of constraint satisfaction problems. We begin with examples of CSPs
with integer domains.

Example 2.1 SEND + MORE = MONEY.
This is a classic example of a so-called cryptarithmetic problem . These

are mathematical puzzles in which the digits are replaced by letters of the
alphabet or other symbols. The problems dealing with valid sums are called
alphametic problems. alphametic problem In the problem under con-
sideration we are asked to replace each letter by a different digit so that the
above sum, that is

SEND
+ MORE
MONEY

is correct. Here the variables are S, E, N, D, M, O, R, Y . Because S and M

are the leading digits, the domain for each of them consists of the integer
interval [1..9]. The domain of each of the remaining variables consists of
the integer interval [0..9]. This problem can be formulated as the equality
constraint

1000 · S + 100 · E + 10 ·N + D

+ 1000 ·M + 100 ·O + 10 ·R + E

= 10000 ·M + 1000 ·O + 100 ·N + 10 · E + Y

combined with 28 disequality constraints x �= y for x, y ranging over the set
{S, E, N, D, M, O, R, Y } with x preceding y in, say, the presented order.

A minor variation on the above representation of this problem as a CSP is
obtained by assuming that the domains of all variables are the same, namely
the interval [0..9], and by adding to the above constraints two disequality
constraints:

S �= 0, M �= 0.
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Yet another possibility consists of additionally introducing per column
a ‘carry’ variable ranging over [0..1] and using instead of the above single
equality constraint the following five, one for each column:

D + E = 10 · C1 + Y,

C1 + N + R = 10 · C2 + E,

C2 + E + O = 10 · C3 + N,

C3 + S + M = 10 · C4 + O,

C4 = M.

Here, C1, . . ., C4 are the carry variables.
In turn, the disequality constraints can be replaced by a single constraint

that stipulates that the variables are pairwise different. Given a sequence of
variables x1, . . ., xn with respective domains D1, . . ., Dn we define

all different(x1, . . ., xn) := {(d1, . . ., dn) | di �= dj for i �= j}.

Then we can replace the above 28 disequality constraints by a single con-
straint all different(S, E, N, D, M, O, R, Y ).

Yet another way to deal with these disequality constraints is to follow a
standard method used in the area of Integer Linear Programming, the ob-
jective of which is to find optimal integer solutions to linear constraints. For
each pair x, y of different variables from {S, E, N, D, MO, R, Y } we intro-
duce a variable zx,y ranging over [0..1] and transform the disequality x �= y

to the following two constraints:

• x− y ≤ 10− 11zx,y,
• y − x ≤ 11zx,y − 1.

Note that x �= y is equivalent to the disjunction x < y or y < x which is
equivalent to x− y ≤ −1 or y − x ≤ −1, which in turn is equivalent to the
disjunction

(x− y ≤ 10− 11zx,y and zx,y = 1) or (y − x ≤ 11zx,y − 1 and zx,y = 0).

So to satisfy the constraint x �= y it is equivalent to satisfy one of the above
two constraints on x, y and zx,y. The disadvantage of this approach is that
we need to introduce 28 new variables.
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The above problem has a unique solution depicted by the following sum:

9567
+ 1085

10652

As a consequence, each of the above representations of it as a CSP has a
unique solution, as well. �

Example 2.2 The n Queens Problem.
This is probably the most known CSP. One is asked to place n queens on

the n× n chess board, where n ≥ 3, so that they do not attack each other.
Figure 2.1 shows a solution to the problem for n = 8.

One possible representation of this problem as a CSP uses n variables,
x1, . . ., xn, each with the domain [1..n]. The idea is that xi denotes the
position of the queen placed in the ith column of the chess board. For
example, the solution presented in Figure 2.1 corresponds to the sequence
of values (6,4,7,1,8,2,5,3), since the first queen from the left is placed in the
6th row counting from the bottom, and similarly with the other queens.

The appropriate constraints can be formulated as the following disequal-
ities for i ∈ [1..n− 1] and j ∈ [i + 1..n]:

• xi �= xj (no two queens in the same row),
• xi − xj �= i − j (no two queens in each South-West – North-East

diagonal),
• xi − xj �= j − i (no two queens in each North-West – South-East

diagonal).

Using the all different constraint introduced in the previous example
we can replace the first set of n·(n−1)

2 disequalities by a single constraint
all different(x1, . . ., xn). In Section 2.4 we shall discuss another natural
representation of this problem. �

Example 2.3 The Zebra Puzzle.
As another example consider the following famous puzzle of Lewis Carroll.

A small street has five differently coloured houses on it. Five men of different
nationalities live in these five houses. Each man has a different profession,
each man likes a different drink, and each has a different pet animal. We
have the following information:

The Englishman lives in the red house.
The Spaniard has a dog.
The Japanese is a painter.
The Italian drinks tea.
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Fig. 2.1. One of 92 solutions to the 8 queens problem

The Norwegian lives in the first house on the left.
The owner of the green house drinks coffee.
The green house is on the right of the white house.
The sculptor breeds snails.
The diplomat lives in the yellow house.
They drink milk in the middle house.
The Norwegian lives next door to the blue house.
The violinist drinks fruit juice.
The fox is in the house next to the doctor’s.
The horse is in the house next to the diplomat’s.

The question is who has the zebra and who drinks water?

An interesting aspect of this puzzle is that in its data neither zebra nor
water is mentioned and yet it has a unique solution. To formulate it as a
CSP we first try to determine the variables and their domains. Note that
this puzzle involves:

• five houses, which we number from left to right: 1, 2, 3, 4, 5,
• five colours, namely red, green, white, yellow, blue,
• five nationalities, namely English, Spanish, Japanese, Italian, Nor-

wegian,
• five pets, namely dog, snails, fox, horse, and (implicitly) zebra,
• five professions, namely painter, sculptor, diplomat, violinist, doctor,
• five drinks, namely tea, coffee, milk, juice, and (implicitly) water.

To solve this puzzle it suffices to determine for each house its five charac-
teristics:
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• colour,
• nationality of the owner,
• pet of the owner,
• profession of the owner,
• favourite drink of the owner.

So we introduce 25 variables, five for each of the above five characteristics.
For these variables we use the following mnemonic names:

• ‘colour’ variables: red, green, white, yellow, blue,
• ‘nationality’ variables: english, spaniard, japanese, italian,
norwegian,

• ‘pet’ variables: dog, snails, fox, horse, zebra,
• ‘profession’ variables: painter, sculptor, diplomat,
violinist, doctor,

• ‘drink’ variables: tea, coffee, milk, juice, water.

We assume that each of these variables ranges over [1...5]. If, for example,
violinist = 3 then we interpret this as the statement that the violinist
lives in house no. 3. After these preparations we can now formalise the
given information as the following constraints:

• The Englishman lives in the red house: english = red,
• The Spaniard has a dog: spaniard = dog,
• The Japanese is a painter: japanese = painter,
• The Italian drinks tea: italian = tea,
• The Norwegian lives in the first house on the left: norwegian = 1,
• The owner of the green house drinks coffee: green = coffee,
• The green house is on the right of the white house:
green = white + 1,

• The sculptor breeds snails: sculptor = snails,
• The diplomat lives in the yellow house: diplomat = yellow,
• They drink milk in the middle house: milk = 3,
• The Norwegian lives next door to the blue house:
|norwegian− blue| = 1,

• The violinist drinks fruit juice: violinist = juice,
• The fox is in the house next to the doctor’s: |fox− doctor| = 1,
• The horse is in the house next to the diplomat’s:
|horse− diplomat| = 1.

Additionally, we need to postulate that for each of the characteristics
the corresponding variables are different. This means that we introduce
fifty disequality constraints, ten for each characteristics. For example red �=
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white is one of such disequalities. Alternatively, instead of postulating these
fifty disequality constraints we can employ the all different constraint
introduced in Example 2.1 and postulate instead

all different(red, green, white, yellow, blue),

all different(english, spaniard, japanese, italian, norwegian),

all different(dog, snails, fox, horse, zebra),

all different(painter, sculptor, diplomat, violinist, doctor),

all different(tea, coffee, milk, juice, water).

Now, it turns out that there is exactly one assignment of values to all 25
variables for which all constraints are satisfied. Because of this the puzzle
has a unique solution Indeed, the puzzle is solved once we find in this unique
assignment for which ‘profession’ variables

x, y ∈ {painter, sculptor, diplomat, violinist, doctor}

we have

x = zebra and y = water.

The answer is x = japanese and y = norwegian, which means that the
Japanese has the zebra and the Norwegian drinks water. �

2.3 Constraint satisfaction problems on reals

Let us move now to the case of CSPs the variables of which range over reals.

Example 2.4 Spreadsheets.
Spreadsheet systems, such as Excel, are very popular for various office-

like applications. These systems have in general a number of very advanced
features but their essence relies on constraints.

To be more specific consider Table 2.1. It represents a spreadsheet, in
which the values for the cells D4, D5, E7 and E8 are computed by means of
the formulas present in these cells.

Equivalently, we can represent the spreadsheet of Table 2.1 by means of
a CSP that consists of nine variables: B1, B4, B5, C4, C5, D4, D5, E7 and
E8, each ranging over real numbers, and the following nine constraints:

B1 = 0.17,
B4 = 3.5,
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A B C D E
1 Tax 0.17
2
3 Product Price Quantity Total
4 tomatoes 3.5 1.5 = B4 ∗ C4
5 potatoes 1.7 4.5 = B5 ∗ C5
6
7 Grand Total = D4 + D5
8 Final Amount = E7 ∗ (1 + B1)

Table 2.1. A spreadsheet

A B C D E
1 Tax 0.17
2
3 Product Price Quantity Total
4 tomatoes 3.5 1.5 5.25
5 potatoes 1.7 4.5 7.65
6
7 Grand Total 12.9
8 Final Amount 15.093

Table 2.2. Solution to the spreadsheet of Table 2.1

B5 = 1.7,
C4 = 1.5,
C5 = 4.5,
D4 = B4 ∗ C4,
D5 = B5 ∗ C5,
E7 = D4 + D5,
E8 = E7 ∗ (1 + B1).
A spreadsheet system solves these constraints and updates the solution

each time a parameter is modified. The latter corresponds to modifying a
numeric value v in a constraint of the form x = v, where x is a variable. For
example, a modification of the C5 field corresponds to a modification of the
right-hand side of the constraint C5 = 4.5.
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In the case of the spreadsheet of Table 2.1 the solution is represented by
the spreadsheet of Table 2.2. �

Example 2.5 Finding zeros of polynomials of higher degree.

-10

-5

0

5

10

-10 -5 0 5 10

Fig. 2.2. The diagram of the polynomial 2 ∗ x5 − 5 ∗ x4 + 5

Consider the polynomial 2∗x5−5∗x4+5 represented in Figure 2.2. Suppose
we wish to find its zeros. The difficulty lies in the fact that in general, by
the celebrated Galois’ theorem, the zeros of polynomials of degree higher
than four cannot be expressed as radicals, that is by means of the four
arithmetic operations and the root extraction. In fact, 2 ∗ x5 − 5 ∗ x4 + 5 is
one of such polynomials, found in the nineteenth century by the Norwegian
mathematician Niels Henrik Abel. Another complication is that the real
numbers cannot be faithfully represented in the computer.

The latter problem is dealt with by using the computer representable real
numbers, i.e., the floating point numbers, and by producing solutions in the
form of sequences of intervals with floating point bounds.

The techniques of constraint programming turn out to be useful to tackle
such problems. In general, given a polynomial f(x), we consider a CSP with
a single constraint f(x) = 0 where the variable x ranges over reals. Further,
we assume a fixed finite set of floating point numbers augmented with −∞
and ∞, and denoted by F . By an interval CSP we mean here a CSP with
the single constraint f(x) = 0 and a domain expression of the form x ∈ [l, r],
where l, r ∈ F , that is a CSP of the form 〈f(x) = 0 ; x ∈ [l, r]〉.
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The original CSP is then transformed into a disjunction of the interval
CSPs the intervals of which are of sizes smaller than some fixed in advance
ε. This disjunction is equivalent to the original CSP, in the sense that the
set of solutions to the original CSP equals the union of the sets of solutions
to the disjunct interval CSPs.

In the case of the above polynomial, choosing the accuracy of 16 digits
after the decimal point, we get the disjunction of three interval CSPs based
on the following intervals:

x ∈ [−.9243580149260359080,
−.9243580149260359031],

x ∈ [1.171162068483181786,
1.171162068483181791],

x ∈ [2.428072792707314923,
2.428072792707314924].

An additional argument is needed to prove that each interval contains a
zero. These considerations generalise to polynomials in an arbitrary number
of variables and to the constrained optimization problems on reals according
to which we are asked to optimize some real-valued function subject to
polynomial constraints over the reals. �

2.4 Boolean constraint satisfaction problems

Once we identify false with 0 and true with 1, Boolean CSPs form a special
case of numeric CSPs in which the variables range over the binary domain
[0..1] and the constraints are expressed by means of Boolean expressions built
using some basic set of connectives. From this perspective the first identi-
fied NP-complete problem, the satisfiability problem, according to which
we ask whether a given Boolean expression is satisfiable, is equivalent to
the question whether the corresponding Boolean CSP is consistent. In gen-
eral, as we shall see in Chapter 6, the use of the constraint programming
techniques does not bring any new insights into this area. However, these
techniques allow us to model certain forms of reasoning in a natural way,
also as programs.

Example 2.6 The full adder circuit.
This example deals with digital circuits built out of the AND, OR and

XOR gates. These gates generate an output value given two input values.
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The possible values are drawn from [0..1], so we deal here with bits or,
alternatively, Boolean variables. The behaviour of these gates is defined by
the following tables:

AND 0 1
0 0 0
1 0 1

OR 0 1
0 0 1
1 1 1

XOR 0 1
0 0 1
1 1 0

Alternatively, we can view these gates as connectives: the AND gate
corresponds to the conjunction, the OR gate to the disjunction and the
XOR gate to the exclusive disjunction. Therefore the circuits built out
of these gates can be naturally represented by equations between Boolean
expressions involving conjunction, written as ∧, disjunction, written as ∨,

and exclusive disjunction, written as ⊕. In particular, the circuit depicted
in Figure 2.3 can be represented by the following two equations:

(i1 ⊕ i2)⊕ i3 = o1, (2.1)

(i1 ∧ i2) ∨ (i3 ∧ (i1 ⊕ i2)) = o2. (2.2)

i1
i2

i3

o2

o1

xor

xor

or

and

and

Fig. 2.3. Full adder circuit

This circuit is called full adder as it computes the binary sum i1 + i2 + i3
in the binary word o2o1. For example 1+1+0 yields 10. To verify the correct-
ness of this circuit it suffices to use the three tables above and to calculate
using the equations (2.1) and (2.2) the outputs o1, o2 for all combinations
of the inputs i1, i2, i3.

The fact that we represent this circuit as a Boolean CSP, using relations
between the Boolean variables i1, i2, i3, o1 and o2 determined by the above
equations, instead of as a function from (i1, i2, i3) to (o1, o2), will allow us
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in Section 6.3 to draw in a systematic way more complex conclusions such
as that i3 = 0 and o2 = 1 implies that i1 = 1, i2 = 1 and o1 = 0. �

Example 2.7 The n Queens Problem, again.
When discussing in Example 2.2 the n Queens Problem we chose a rep-

resentation involving n variables, each associated with one row. A different
natural representation involves n2 Boolean variables xi,j , where i ∈ [1..n] and
j ∈ [1..n], each of them representing one field of the chess board. The ap-
propriate constraints can then be written as Boolean constraints represented
by Boolean expressions built using the conjunction and negation (written as
¬) connectives.

To this end we introduce the following abbreviation. Given k Boolean ex-
pressions s1, . . ., sk we denote by one(s1, . . ., sk) the Boolean expression that
states that exactly one of the expressions s1, . . ., sk is true. So one(s1, . . ., sk)
is a disjunction of k expressions, each of them being a k-ary conjunction of
the form ¬s1 ∧ . . .¬si−1 ∧ si ∧ ¬si+1. . . ∧ ¬sk, where i ∈ [1..k].

The following constraints then formalise the problem:

• one(xi,1, . . ., xi,n) for i ∈ [1..n] (exactly one queen per row),
• one(x1,i, . . ., xn,i) for i ∈ [1..n] (exactly one queen per column),
• ¬(xi,j ∧ xk,�) for i, j, k, � ∈ [1..n] such that i �= k and |i− k| = |j − �|

(at most one queen per diagonal).

The condition i �= k in the last item ensures that the fields represented by
xi,j and xk,� are different. �

2.5 Symbolic constraint satisfaction problems

By a symbolic constraint satisfaction problem we mean a CSP the variables
of which range over non-numeric domains.

Example 2.8 The Crossword Puzzle.
Consider the crossword grid of Figure 2.4 and suppose that we are to fill

it with the words from the following list:

• HOSES, LASER, SAILS, SHEET, STEER,
• HEEL, HIKE, KEEL, KNOT, LINE,
• AFT, ALE, EEL, LEE, TIE.

This problem can be formulated as a CSP as follows. First, associate
with each position i ∈ [1..8] in this grid a variable. Then associate with
each variable the domain that consists of the set of words of that can be
used to fill this position. For example, position 6 needs to be filled with a



22 Constraint satisfaction problems: examples

1 2 3

4 5

6 7

8

Fig. 2.4. A crossword grid

three letter word, so the domain of the variable associated with position 6
consists of the above set of five 3 letter words.

Finally, we define the constraints. They deal with the restrictions arising
from the fact that the words that cross share a letter at appropriate posi-
tions. For example, the crossing of the positions 1 and 2 contributes the
following constraint:

C1,2 := {(HOSES, SAILS), (HOSES, SHEET), (HOSES, STEER),
(LASER, SAILS), (LASER, SHEET), (LASER, STEER)} .

This constraint formalises the fact that the third letter of position 1 needs
to be the same as the first letter of position 2. In total there are twelve
constraints. The unique solution to this CSP is depicted in Figure 2.5.

H O SS
1 2 3

4 5

6 7

8

E

TA

H EI K

EL E

L A RS E

A

E L

Fig. 2.5. The solution to the crossword puzzle

�

The next two examples deal with qualitative reasoning . In this form of
reasoning one abstracts from the numeric quantities, such as the precise time
of an event, or the location of an object in the space, and reasons instead on
the level of their abstractions. Usually, these abstractions form a finite set
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of alternatives, as opposed to the infinite set of possibilities available at the
numeric level. This allows one to carry out conclusions on an abstract level
that on the numeric level would be difficult to achieve. We now discuss two
examples of qualitative reasoning.

Example 2.9 Qualitative Temporal Reasoning.
Consider the following problem.

The meeting ran non-stop the whole day. Each person stayed at the meeting for
a continuous period of time. The meeting began while Mr Jones was present and
finished while Ms White was present. Ms White arrived after the meeting has
began. In turn, Director Smith was also present but he arrived after Jones had
left. Mr Brown talked to Ms White in presence of Smith. Could possibly Jones
and White have talked during this meeting?

To properly analyse such problems we are naturally led to an abstract
analysis of activities that take time, such as being present during the meet-
ing, talking to somebody, driving to work, taking a lunch break, filling in
a form, receiving a phone call, etc. In what follows we call such activities
temporal events, or simply events. If we only take into account the fact
that such events take a continuous but limited period of time, then we can
identify them with closed non-empty intervals of the real line.

In the case of the above problem a possible scenario that matches its
description is provided in Figure 2.6, where each event (like the duration of
the meeting or the period during which Jones was present) is represented
by a closed non-empty real interval.

meeting

Jones

White

Smith

Brown

Fig. 2.6. A possible scenario for the ‘meeting problem’

In general, when identifying events with closed non-empty real intervals
we end up with thirteen possible temporal relations between a pair of
events. They are presented in Figure 2.7. Intuitively, these relations arise
when we consider two intervals, A and B, and keep moving the interval A from
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left to right and record all its possible relative positions w.r.t. B, taking into
account their possibly different relative sizes.

A equals B
A

B

A finishes B
B finished-by A

A

B

A during B
B contains A

A

B

A overlaps B
B overlapped-by A

A

B

A meets B
B met-by A

A

B

A before B
B after A

A

B

A starts B
B started-by A

A

B

Fig. 2.7. Thirteen temporal relations

Let TEMP denote the set formed by the thirteen possibilities of Fig-
ure 2.7. In what follows we provide two representations of CSPs dealing
with temporal reasoning in this setting. The first one is conceptually sim-
pler but it involves infinite domains. The second one is at first appearance
more involved but has the advantage that the domains are finite and directly
correspond to the set TEMP.
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First representation.
In this representation the variables represent events. Their domains reflect

the view that events are identified with closed non-empty intervals of real
line. So each domain consists of the set of such intervals, that is the set

D := {(a, b) | a, b ∈ R, a < b},

where R is the set of all reals and each pair (a, b) represents the closed
interval [a, b] of reals.

Next, each of the introduced thirteen temporal relations is represented
as a binary constraint in the way that reflects the intended meaning. For
example, the overlaps relation is represented as the following subset of
D ×D:

[[overlaps]] := {((abegin, aend), (bbegin, bend)) | abegin < bbegin, bbegin < aend,
aend < bend}.

Finally, arbitrary constraints are set-theoretic unions of the elementary bi-
nary constraints that represent the thirteen temporal relations.

Let us illustrate now this representation by formalising as a CSP the
problem we began with. First, we identify the relevant events and associate
with each of them a variable. In total, we consider the following five events
and variables:

event variable
the duration of the meeting M
the period Jones was present J
the period Brown was present B
the period Smith was present S
the period White was present W

Next, we define the appropriate constraints. The first three formalise
information concerning the presence of each person during the meeting. For
brevity we denote here the union of all elementary constraints excluding
[[before]], [[after]], [[meets]] and [[met-by]] as [[REAL-OVERLAP]]. Note that

[[REAL-OVERLAP]] = {((abegin, aend), (bbegin, bend)) | abegin < bend,
bbegin < aend}.

These three constraints are:

([[overlaps]] ∪ [[contains]] ∪ [[finished-by]])(J, M),
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[[overlaps]](M, W ),

[[REAL-OVERLAP]](M, S).

Note that the first constraint formalises the fact that

• J started strictly earlier than M started,
• M started strictly before J finished.

In turn, the second constraint formalises the fact that

• W started strictly before M finished,
• M finished strictly earlier than W finished,
• M started strictly before W started.

Finally, the constraint [[REAL-OVERLAP]](M, S) formalises the fact that M

and S ‘truly’ overlap in time, that is, share some time interval of positive
length. Note that we do not postulate any constraint on M and B, in par-
ticular not [[REAL-OVERLAP]](M, B), because from the problem formulation
it is not clear whether Brown was actually present during the meeting.

Additionally, the following constraints formalise information concerning
the relative presence of the persons in question:

[[before]](J, S),

[[REAL-OVERLAP]](B, S),

[[REAL-OVERLAP]](B, W ),

[[REAL-OVERLAP]](S, W ).

The question ‘Could possibly Jones and White have talked during this
meeting?’ can now be formalised as a problem whether for some solution to
this CSP [[REAL− OVERLAP]](J, W ) holds. In other words, is it true that the
above CSP augmented by the constraint [[REAL− OVERLAP]](J, W ) is consis-
tent.

Second representation.
In the first representation the domains, and thus the domain expressions,

were uniquely fixed and we only had to determine the constraints all of which
were binary. In the second representation we first determine the domain
expressions which uniquely determine the constraints. In this representation
a variable is associated with each ordered pair of events. Each domain of
such a variable is a subset of the set TEMP. All constraints are ternary.

More specifically, consider three events, A,B and C and suppose that we
know the temporal relations between the pairs A and B, and B and C. The
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question is what is the temporal relation between A and C. For example if A
overlaps B and B is before C, then A is before C. To answer this question
we have to examine 169 possibilities. They are represented in a table called
composition table , given in Figures 2.8 and 2.9. The entry R-OVERLAP
(an abbreviation for REAL-OVERLAP) which appears there three times,
is a shorthand for the set of the temporal relations that express the fact
that two events ‘truly’ overlap in time, so the set obtained from TEMP by
excluding the relations before, after, meets and met-by:

REAL-OVERLAP := TEMP− {before, after, meets, met-by}.

Consider now all legally possible triples (t1, t2, t3) of temporal relations
such that t1 is the temporal relation between A and B, t2 the temporal
relation between B and C and t3 the temporal relation between A and C. The
set of these triples forms a subset of TEMP3. Denote it by T3. The just
mentioned table allows us to compute T3. For example, we already noticed
that (overlaps, before, before) ∈ T3, since A overlaps B and B is before
C implies that A is before C. The set T3 has 409 elements.

By a disjunctive temporal relation we mean now a disjunction of
temporal relations. For example before ∨ meets is a disjunctive temporal
relation. The disjunctive temporal relations allow us to model the situations
in which the temporal dependencies between the events are only partially
known.

Note that each disjunctive temporal relation between the events A and
B uniquely determines the disjunctive temporal relation between the event
B and A. For example if the former is before ∨ meets, then the latter is
after ∨ met− by. So without loss of information we can confine our atten-
tion to disjunctive temporal relations associated with each ordered pair of
events.

We can now define the CSPs. Assume n events e1, . . ., en with n > 2.
We consider (n−1)n

2 domain expressions, each of the form xi,j ∈ Di,j where
i, j ∈ [1..n] with i < j and Di,j ⊆ TEMP. The intention is that the variable
xi,j describes the disjunctive temporal relation associated with the events ei

and ej .
Finally, we define the constraints. Each constraint links an ordered triple

of events. So in total we have (n−2)(n−1)n
6 constraints. For i, j, k ∈ [1..n]

such that i < j < k we define the constraint Ci,j,k by setting

Ci,j,k := T3 ∩ (Di,j ×Dj,k ×Di,k).

So Ci,j,k describes the possible entries in T3 determined by the domains of
the variables xi,j , xj,k and xi,k.
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before after meets met-by overlaps overl.-by

before before TEMP before before before before
meets meets
overlaps overlaps
starts starts
during during

after TEMP after during after during after
finishes finishes
after after
met-by met-by
overl.-by overl.-by

meets before after before finishes before overlaps
met-by finished-by starts
overl.-by equals during
started-by
contains

met-by before after starts after during after
overlaps started-by finishes
meets equals overl.-by
contains
finished-by

overlaps before after before overl.-by before R-OVERLAP
met-by started-by meets
overl.-by contains overlaps
started-by
contains

overl.-by before after overlaps after R-OVERLAP after
meets contains met-by
overlaps finished-by overl.-by
contains
finished-by

starts before after before met-by before during
meets finishes
overlaps overl.-by

started-by before after overlaps met-by overlaps overl.-by
meets contains contains
overlaps finished-by finished-by
contains
finished-by

during before after before after before during
meets finishes
overlaps after
starts met-by
during overl.-by

contains before after overlaps overl.-by overlaps overl.-by
meets met-by contains started-by contains started-by
overlaps overl.-by finished-by contains finished-by contains
contains contains
finished-by started-by

finishes before after meets after overlaps after
starts met-by
during overl.-by

finished-by before after meets overl.-by overlaps overl.-by
met-by started-by started-by
overl.-by contains contains
started-by
contains

equals before after meets met-by overlaps overl.-by

Fig. 2.8. The composition table for the thirteen temporal relations, part 1

This completes the description of the CSPs. Because each constraint is
determined by the corresponding triple of variable domains, each such CSP
is uniquely determined by its domain expressions. Therefore when defining
such CSPs it is sufficient to define the appropriate domain expressions.

Let us return now to the problem we started with. It can be formulated
as a CSP as follows. We have five events, M, J, B, S, W. Here M stands for
‘the duration of the meeting’ , J stands for ‘the period Jones was present’,
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starts started-by during contains finishes finished-by equals

before before before before before before before before
meets meets
overlaps overlaps
starts starts
during during

after during after during after after after after
finishes finishes
after after
met-by met-by
overl.-by overl.-by

meets meets meets overlaps before overlaps before meets
starts starts
during during

met-by during after during after met-by met-by met-by
finishes finishes
overl.-by overl.-by

overlaps overlaps overlaps overlaps before overlaps before overlaps
contains starts meets starts meets
finished-by during overlaps during overlaps

contains
finished-by

overl.-by during after during after overl.-by overl.-by overl.-by
finishes met-by finishes meets started-by
overl.-by overl.-by overl.-by overl.-by contains

started-by
contains

starts starts starts during before during before starts
started-by meets meets
equals overlaps overlaps

contains
finished-by

started-by starts started-by during contains overl.-by contains started-by
started-by finishes
equals overl.-by

during during during during TEMP during before during
finishes meets
after overlaps
met-by starts
overl.-by during

contains overlaps contains R-OVERLAP contains overl.-by contains contains
contains contains
finished-by started-by

finishes during after during after finishes finishes finishes
met-by met-by finished-by
overl.-by overl.-by equals

started-by
contains

finished-by overlaps contains overlaps contains finishes finished-by finished-by
starts finished-by
during equals

equals starts started-by during contains finishes finished-by equals

Fig. 2.9. The composition table for the thirteen temporal relations, part 2

and similarly with the events S (for Smith), B (for Brown) and W (for White).
Next, we order the events in some arbitrary way, say

J, M, B, S, W.

We have in total ten variables, each associated with an ordered pair of events.
Analogously as in the first representation we use the relation that two

events ‘truly’ overlap in time. It is now represented by the already intro-
duced set REAL-OVERLAP of nine temporal relations.
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Then the following domain expressions deal with the presence of each
person during the meeting:

xJ,M ∈ {overlaps, contains, finished-by},

xM,W ∈ {overlaps},

xM,S ∈ REAL-OVERLAP ,

and the following domain expressions formalise information concerning the
relative presence of the persons in question:

xJ,S ∈ {before},

xB,S ∈ REAL-OVERLAP ,

xB,W ∈ REAL-OVERLAP ,

xS,W ∈ REAL-OVERLAP .

The domains of the remaining three variables, xJ,B, xJ,W and xM,B, equal to
TEMP. The final question can then be phrased as a problem whether for
some solution to this CSP we have xJ,W ∈ REAL-OVERLAP . In other
words, is it true that the above CSP with the domain expression xJ,W ∈
TEMP replaced by

xJ,W ∈ REAL-OVERLAP

is consistent.

Note that in both representations we assumed that events ‘being present
during the meeting’ and ‘talking’ are of positive duration. �

Example 2.10 Qualitative Spatial Reasoning.
Consider now the following problem illustrated in Figure 2.10.

Two free standing houses are connected by a road. The first house is surrounded
by its garden or is adjacent to its boundary while the second house is surrounded
by its garden. The question is what can we conclude about the relation between
the second garden and the road.

To analyse such problems we need to consider relative positions between
contiguous objects. (We assume here for simplicity that each garden also
comprises the area underneath a house.) This brings us to the eight possi-
bilities that are summarised in Figure 2.11.

These eight relations are usually called spatial relations and their set,
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garden 1

house 1

garden 2
house 2

road

Fig. 2.10. Two houses with a garden and a road

A
B

A

B

A

B

A

B

A

B

A
B

disjoint(A,B) meet(A,B) equal(A,B)

covers(A,B)
coveredby(B,A)

contains(A,B)
inside(B,A) overlap(A,B)

Fig. 2.11. Eight spatial relations

{disjoint,meet,equal,covers,coveredby,contains,inside,overlap},

is denoted by RCC8 (for Region Connection Calculus with 8 relations).
Consider now three contiguous objects, A,B and C and suppose that we

know the spatial relations between the pairs A and B, and B and C. The
question is what is the spatial relation between A and C. For example if A is
inside B and B meets C, then A is disjoint from C. To answer this question
we have to examine 64 possibilities. To some of them multiple answers
exist. For example, if A is coveredby B and B is coveredby C, then A is
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either inside C or is coveredby C. The whole dependency table, called the
composition table , is presented in Figure 2.12. The entry RCC8, which
appears three times, is a shorthand for the set of all eight relations.

disjoint meet equal inside coveredby contains covers overlap

disjoint RCC8 disjoint disjoint disjoint disjoint disjoint disjoint disjoint
meet meet meet meet
inside inside inside inside
coveredby coveredby coveredby coveredby
overlap overlap overlap overlap

meet disjoint disjoint meet inside meet disjoint disjoint disjoint
meet meet coveredby inside meet meet
contains equal overlap inside
covers coveredby coveredby
overlap covers overlap

overlap
equal disjoint meet equal inside coveredby contains covers overlap
inside disjoint disjoint inside inside inside RCC8 disjoint disjoint

meet meet
inside inside
coveredby coveredby
overlap overlap

coveredby disjoint disjoint coveredby inside inside disjoint disjoint disjoint
meet coveredby meet meet meet

contains equal overlap
covers coveredby coveredby
overlap covers overlap

overlap
contains disjoint contains contains equal contains contains contains contains

meet covers inside covers covers
contains overlap coveredby overlap overlap
covers contains
overlap covers

overlap
covers disjoint meet covers inside equal contains contains contains

meet contains coveredby coveredby covers covers
contains covers overlap covers overlap
covers overlap overlap
overlap

overlap disjoint disjoint overlap inside inside disjoint disjoint RCC8
meet meet coveredby coveredby meet meet
contains contains overlap overlap contains contains
covers covers covers covers
overlap overlap overlap overlap

Fig. 2.12. The composition table for the eight spatial relations

The composition table of Figure 2.12 determines a ternary relation that
is a subset of (RCC8)3 and that we denote by S3. It consists of all possible
triples (r1, r2, r3) of spatial relations such that r1 is the spatial relation
between A and B, r2 the spatial relation between B and C, and r3 the spatial
relation between A and C. In total S3 contains 193 triples.

Using the set S3 we can now formalise our problem by choosing a repre-
sentation analogous to the second representation of the temporal reasoning
of Example 2.9. So in this representation a variable is associated with each
ordered pair of objects. The domains of these variables are subsets of the set
RCC8. All constraints are ternary and are uniquely determined by the do-
mains. More specifically, each constraint is associated with an ordered triple
of objects and equals the set-theoretic intersection of S3 with the Cartesian
product of the corresponding variable domains.

In our example we have five spatial objects, H1 (for house 1), G1 (for gar-
den 1), H2 (for house 2), G2 (for garden 2), and R (for road). We order these
objects arbitrarily, for example in the way just mentioned. This leads us
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to an introduction of ten variables, each associated with an ordered pair of
spatial objects. Given two such objects, say A and B, we denote the corre-
sponding variable by xA,B. Then the following domain expressions formalise
the description of the problem:

• xH1,G1 ∈ {inside,coveredby},
• xH2,G2 ∈ {inside},
• xH1,H2 ∈ {disjoint},
• xH1,R ∈ {meet},
• xH2,R ∈ {meet},
• xG1,G2 ∈ {disjoint,meet},
• xH1,G2 ∈ {disjoint,meet},
• xG1,H2 ∈ {disjoint,meet},
• xG1,R ∈ RCC8,
• xG2,R ∈ RCC8.

Additionally, we have for each ordered triple A,B,C of the considered
objects a constraint CA,B,C on the variables xA,B, xB,C, xA,C with respective
domains DA,B, DB,C, DA,C defined by

CA,B,C := S3 ∩ (DA,B ×DB,C ×DA,C).

Since we have five objects, we have in total ten constraints.
This completes our description of the initial problem as a CSP. Note that

in this formalisation we also captured some common sense assumptions that
are implicit. For example, we assumed that both houses are disjoint even
though this information is not explicitly given. Similarly, we assumed that
both gardens are either disjoint or meet. In contrast, we did not assume
anything about the relation between the gardens and the road. To solve the
problem it suffices to determine the set of values the variable xG2,R can take
in all solutions to this CSP. �

Example 2.11 Analysis of Polyhedral Scenes.
Consider now two scenes (that is, two dimensional drawings) that repre-

sent objects formed by straight edges, given in Figures 2.13 and 2.14.
It is clear that the scene given in Figure 2.13 indeed represents a cube

whereas the one given in Figure 2.14 does not correspond to any possible
three dimensional object. We are interested here in analysing scenes formed
by straight edges and would like to know which scenes admit a three di-
mensional interpretation, that is correspond to a collection of possible three
dimensional objects. Each such object is then a three dimensional polyhe-

dron .
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A B

C D

E F

G

Fig. 2.13. A cube

A E

F

B D

H

I
J

G

C

Fig. 2.14. An impossible object

Research on the computer vision carried out in the sixties and the seven-
ties concentrated on finding the rules that could allow us to determine which
scenes admit a three dimensional interpretation. This work led to an identi-
fication of four types of junctions that can arise in scenes corresponding to
possible objects, in which all junctions have either two or three edges:

• the L junction, depicted by:

• the fork junction, depicted by:
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• the T junction, depicted by:

• and the arrow junction, depicted by:

In what follows we limit our attention to the scenes that consist of such
junctions. To clarify the status of the edges forming a scene, we assign to
each of them a label. Each edge results from the intersection of two planes
and its label provides information about the relative position of these two
planes. We employ the following four labels:

• +, to mark the convex edges,
• −, to mark the concave edges,
• the arrows, → and ← , to mark the boundary edges.

We call here an edge

• convex if it takes 270 degrees to rotate one plane onto the other
through the part of the space that contains the viewer,

• concave if it takes 90 degrees to rotate one plane onto the other
through the part of the space that contains the viewer,

• boundary if it is formed by two planes one of which is hidden.

To clarify this terminology consider the figure depicted in Figure 2.15.
From the point of view of the depicted person the edge at the intersection
of the areas A and L is marked by +, since it is a convex edge. Indeed,
it takes 270 degrees to rotate one area onto the other through the part of
the space that contains the depicted person. For the same reason the edges
at the intersection of the areas R and B, of L and U, and of R and U are
marked by +. In contrast, the edge at the intersection of the areas L and
R is marked by −, since it is a concave edge. Indeed, it takes 90 degrees to
rotate one area onto the other through the part of the space that contains
the depicted person.

Finally, the outer edges are marked by the arrows, since they are boundary
edges. Here and elsewhere the direction of the arrows is chosen in such a
way that when following them the scene is on the right-hand side.

In general, the edges do not have to have a unique marking assigned to



36 Constraint satisfaction problems: examples

+

+
+

+

+
+−L RA B

U

Fig. 2.15. Three types of edges

it. For example, in the scene given in Figure 2.13 the edges AC and AE

can be either boundary or concave. The first possibility corresponds to the
situation when the cube is ‘floating’ in the air.

The second possibility corresponds to the situation in which the cube is
‘stuck’ to a wall on the left-hand side. In this case the edge AC is at the
intersection of the plane determined by the square ABDC and the wall and
the edge AE is at the intersection of the plane determined by the square
AEFB and the wall. So according to the above terminology these two edges
are then concave.

Further, the edge AB can be in principle either convex or concave. Namely,
if we interpret this scene as a cube then the edge AB is necessarily convex.
On the other hand, if we interpret this scene as a part of a box with the
bottom ABDC and the sides attached to the edges AE and DG missing, at
which we are looking from above, then the edge AB is concave. (Note that
the second interpretation does not correspond to any possible object. For
instance in this case one fork junction connecting C, E and G is missing.)

Clowes [1971] and Huffman [1971] independently found that a scene formed
by the already mentioned four types of junctions represents a possible ob-
ject exactly when its edges can be labeled in such a way that only labeled
junctions listed in Figure 2.16 are used. For example, the scene given in
Figure 2.13 represents a possible object, namely a cube, and four correct
labelings of its edges are presented in Figure 2.17.

In turn, it is possible to check that no such labeling of the edges exists for
the scene given in Figure 2.14. In what follows we provide two formalisations
of the discussed problem in terms of CSPs.

First representation.
In this representation the variables represent the junctions. So we have

four types of variables, depending on the type of a junction: the L variable,
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−
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Fig. 2.16. Legal junctions

the fork variable, the T variable and the arrow variable. The domain of the
L variable consists of the six labelings of the L junction given in Figure 2.16,
and analogously for the other three variables. To represent these labelings
in a textual form we introduce four elements, +,−, → , ← , and use the the
translation tables from the labeled junctions to a textual form presented in
Figures 2.18, 2.19, 2.20, and 2.21.

So the domain of the L variable equals

{(→ , ← ), (← , → ), (+, → ), (← , +), (−, ← ), (→ ,−)}.

Analogously, the domain of the fork variable equals

{(+, +, +), (−,−,−), (→ , ← ,−), (−, → , ← ), (← ,−, → )},

the domain of the T variable equals

{(→ , ← , ← ), (→ , ← , → ), (→ , ← , +), (→ , ← ,−)},
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A B

C D

E F
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C D
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Fig. 2.17. Four correct labelings of a cube
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B C

A

≡ (−,←)

−

−

+

+

B C

A

≡ (AB, AC)

B C

A

≡ (→,←)

B C

A

≡ (+,→)

B C

A

≡ (←, +)

B C

A

≡ (→,−)

B C

A

≡ (←,→)

Fig. 2.18. Translation for the L junction

and the domain of the arrow variable equals

{(← , → , +), (+, +,−), (−,−, +)}.

The constraints capture the information that the junctions share the
edges. For example, in the scene given in Figure 2.13 the junctions A and B

share the edge AB. This limits the possible values used for the junctions A

and B in a similar way as the intersection of two words limited the possible
values in the crossword puzzle of Example 2.8. The difference is that an
intersection, here represented by an edge, is oriented.

For example, for the junction A the edge AE is used (as the second ar-
gument), while for the junction E the edge EA is used (also as the second
argument). So if the edge AE of the junction A is labeled by +, then so
is the edge EA of the junction E, and analogously for −. However, if the
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≡ (AB, AC, AD)
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≡ (+, +, +)
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D
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C

D

A

B

≡ (→,←,−)
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B−

−

+
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Fig. 2.19. Translation for the fork junction

edge AE is labeled by → , then the edge EA is labeled by ← , and analo-
gously for ← . After taking this fact into account one can easily check that
the corresponding constraint CAE on the junctions A and E consists of the
following set of four pairs:

CAE := {((← , → , +), (→ , ← )), ((← , → , +), (−, ← )),
((+, +,−), (← , +)), ((−,−, +), (→ ,−))}.

Each pair, for example ((← , → , +), (−, ← )), represents a legal labeling
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≡ (→,←,→)
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≡ (→,←,←)
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D
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A
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D

A
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−

Fig. 2.20. Translation for the T junction

of the edges of the junctions A and E. In general, each edge contributes
one, binary, constraint. So the scene given in Figure 2.13 is formalised by a
CSP that consists of nine constraints, while the scene given in Figure 2.14
is formalised by a CSP that consists of thirteen constraints.

Each solution to such a CSP determines the labels assigned to each edge.
The choice of the variable domains and of the constraints ensures that all
junctions are labeled in a legal way, that is, they are all drawn from Fig-
ure 2.16.

Second representation.
In this representation the variables represent the edges. The domain of

each variable equals {+,−, → , ←}, the set of the used labels. In turn, the
constraints represent the junctions. So we have four type of constraints: L,
fork, T , and arrow, each defined by the corresponding listing in Figure 2.16.
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− −
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Fig. 2.21. Translation for the arrow junction

For instance we have

L := {(→ , ← ), (← , → ), (+, → ), (← , +), (−, ← ), (→ ,−)}.

Each scene is formalised by means of the constraints representing its junc-
tions. For example, the scene given in Figure 2.13 is formalised by the
following seven constraints, where for each constraint we write explicitly
which edges and in what order are used:

arrow(AC, AE, AB),
fork(BA, BF, BD),
L(CA, CD),
arrow(DG, DC, DB),
L(EF, EA),
arrow(FE, FG, FB),
L(GD, GF ).

So arrow(AC, AE, AB) denotes the fact that we view the junction A as
the arrow constraint over the variables AC, AE and AB, and analogously
with the other six junctions. To complete the formalisation, as in the case
of the first representation, we need to relate each edge with its reverse, for
example in the case of Figure 2.13 the edge AE with the edge EA.
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This is needed because if an edge, say AE of Figure 2.13, is labeled by → ,
then it enters the constraint arrow(AC, AE, AB) as → and the constraint
L(EF, EA) as ← (in EA), and similarly for the labeling with ← . To this
end we use one binary constraint, edge, that captures the complementary
character of the values → and ← . It is defined by

edge := {(+, +), (−,−), (→ , ← ), (← , → )}.

We now augment the representation of each scene by the edge constraints
for all pairs of edges that are reverse of each other. In the case of the scene of
Figure 2.13 we augment the already listed seven constraints by the following
nine constraints:

edge(AB, BA),
edge(AC, CA),
edge(CD, DC),
edge(BD, DB),
edge(AE, EA),
edge(EF, FE),
edge(BF, FB),
edge(FG, GF ),
edge(DG, GD).

So in this representation both binary and ternary constraints are used.
The binary constraints are the edge and the L constraints, while the ternary
constraints are the fork and the arrow constraints. As in the first represen-
tation, each solution to the CSP that formalises a considered scene provides
a consistent labeling of the scene edges, in the sense that all labeled junctions
are drawn from Figure 2.16. �

2.6 Constrained optimization problems

The general task of constrained optimization is to find optimal solutions to
a set of constraints subject to some objective function obj. More precisely,
consider a CSP P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 together with a function

obj : Sol→R

from the set Sol of all solutions to P to the set R of real numbers. (Usually
the obj function is defined on all sequences d ∈ D1 × · · · × Dn but this
assumption is not needed here.) We are interested in finding a solution d

to P for which the value obj(d) is optimal. Without loss of generality we
assume that ‘optimal’ means ‘maximal’. We call then the pair (P, obj) a
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constrained optimization problem . The area of constrained optimiza-
tion is huge and a number books were written on this subject. Here we
limit ourselves to a presentation of three examples, the first two of which
are classic examples of NP-complete problems.

Example 2.12 The Knapsack Problem.
We are given n objects, each with a volume and a value, and a knapsack

of a fixed volume. The problem is to find a collection of the objects with
maximal total value that fits in the knapsack. More formally, we have n

objects with volumes a1, ..., an and values b1, ..., bn and the knapsack volume
v. Further, we have n variables, x1, ..., xn, each with the domain {0, 1}. The
inclusion of the object i in a collection is modelled by setting the value of
xi to 1. The requirement that the collection fits in the knapsack translates
to the constraint

n∑
i=1

ai · xi ≤ v

on the variables x1, ..., xn. We seek a solution to this constraint for which
the sum

n∑
i=1

bi · xi

is maximal. That is, the sum
∑n

i=1 bi · xi is the objective function. �

Example 2.13 A Coins Problem.
Consider the following problem.

What is the minimum number of coins that allows one to pay exactly any amount
smaller than one euro? Recall that there are six different euro cent coins, of de-
nomination 1, 2, 5, 10, 20, 50.

We formulate it as a constrained optimization problem. To this end we
first determine the variables and their domains. Since the question refers
to the number of coins, it is natural to adopt the variables that represent
the selected amounts of each coin. This brings us to six variables that we
denote by x1, x2, x5, x10, x20, x50. The idea is that each variable xi denotes
the selected amount of coins of denomination i. Since we need to be able to
pay exactly any amount up to and including 99 euro cents, we end up with
the following domain expressions:

x1 ∈ [0..99], x2 ∈ [0..49], x5 ∈ [0..19], x10 ∈ [0..9], x20 ∈ [0..4], x50 ∈ [0..1].

Next, we state the appropriate constraints. Given i ∈ [1..99] we formulate
a constraint stating that the amount of i euro cents can be paid exactly using
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the selected coins. To this end we use existentially quantified variables that
range over integer intervals:

∃i1 ∈ [0..x1] ∃i2 ∈ [0..x2] ∃i5 ∈ [0..x5] ∃i10 ∈ [0..x10]

∃i20 ∈ [0..x20] ∃i50 ∈ [0..x50] i1 + 2i2 + 5i5 + 10i10 + 20i20 + 50i50 = i.

So we use in total 99 constraints. Clearly, for each solution to the just
formulated CSP the sum

x1 + x2 + x5 + x10 + x20 + x50

represents the total amount of coins that we would like to minimise. Since in
our setup we seek solutions with a maximal value of the objective function,
we use

−(x1 + x2 + x5 + x10 + x20 + x50)

as the objective function.

A drawback of the proposed representation of the problem is that the
constraints involve existentially quantified variables. Such constraints are
difficult to manipulate and to reason about. So we now provide a different
representation that involves simpler constraints.

In addition to the already considered variables x1, x2, x5, x10, x20, x50 we
introduce for each i ∈ [1..99] six variables xi

1, x
i
2, x

i
5, x

i
10, x

i
20, x

i
50 with respec-

tively the same domains as x1, x2, x5, x10, x20 and x50. So we now have
600 variables instead of six. However, the constraints become considerably
simpler. Namely, for each i ∈ [1..99] we use the following constraint:

xi
1 + 2xi

2 + 5xi
5 + 10xi

10 + 20xi
20 + 50xi

50 = i

that states that the amount of i euro cents can be paid using xi
1 coins of 1

euro cent, xi
2 coins of 2 euro cents, xi

5 coins of 5 euro cents, xi
10 coins of 10

euro cents, xi
20 coins of 20 euro cents and xi

50 coins of 50 euro cents.
Additionally, we add the constraints stating that for each i ∈ [1..99] the

amounts xi
j are respectively smaller than xj . More precisely, for each i ∈

[1..99] and j ∈ {1, 2, 5, 10, 20, 50} we use the following constraint:

xi
j ≤ xj .

These 594 inequality constraints ensure that each amount of i euro cents can
also be paid using the collection represented by the xj variables. Finally, we
use the same objective function as in the previous representation.

For the interested reader: the answer is eight coins and the respective
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amounts of coins of denomination 1, 2, 5, 10, 20, 50 in such a combination
are 1, 2, 1, 1, 2, 1. �

Example 2.14 Golomb Ruler.
A Golomb ruler with m marks is an ordered sequence of m natural

numbers such that the distance between any two elements in this sequence
is unique. The largest element of a Golomb ruler is called its length . An
optimum Golomb ruler with m marks is a Golomb ruler with m marks
with a minimal length. For example

0, 1, 4, 9, 11

is a Golomb ruler with 5 marks. Indeed, the distances between the elements
in this sequences are:

• for the elements one apart: 1, 3, 5, 2,
• for the elements two apart: 4, 8, 7,
• for the elements three apart: 9, 10,
• for the elements four apart: 11,

and all these values are different. One can show that 0,1,4,9,11 is in fact an
optimum Golomb ruler with 5 marks with another one being 0,3,4,9,11.

To represent the problem of finding an optimum Golomb ruler with m

marks as a constrained optimization problem we use the following terminol-
ogy. We call two numbers i, j such that 1 ≤ i < j ≤ m a pair. We say that
the pairs i, j and k, l are different if i �= k or j �= l and disjoint if i �= k and
j �= l.

We then use m variables, x1, . . ., xm, each with the domain N , and adopt
the following constraints:

• xi < xi+1 for i ∈ [1..m− 1],
• xj − xi �= xl − xk for all different pairs i, j and k, l.

As the objective function we choose simply −xm. Then the task of max-
imising −xm is equivalent to the task of of minimising xm.

A better representation is obtained by noting that for i, k < j if xi �= xk,
then xj−xi �= xj−xk, and for i < j, l if xj �= xl, then xj−xi �= xl−xi. This
observation allows us to replace the second set of constraints by a smaller
one:

• xj − xi �= xl − xk for all disjoint pairs i, j and k, l.

Yet another representation is obtained by introducing auxiliary variables
that represent the differences between the elements in the sequence x1, . . ., xm

and by using disequality constraints between these auxiliary variables. So
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for each pair i, j we introduce a variable zi,j ranging over positive natural
numbers and adopt the following constraints:

• zi,j = xj − xi for each pair i, j,
• zi,j �= zk,l for all different pairs i, j and k, l.

As above we can safely replace here ‘different’ by ‘disjoint’. Also we can
replace the disequality constraints by a single all different constraint on
the variables zi,j .

Golomb rulers play an important role in radio communication, x-ray crys-
tallography, coding theory, radio astronomy and optical communication.
The largest known optimum Golomb ruler has 21 marks and is of length
333. �

2.7 Summary

The aim of this chapter was to discuss various examples of constraint sat-
isfaction problems (CSPs). First we defined precisely the notions of a con-
straint and of a CSP. Then we presented examples of CSPs classified ac-
cording to the domains used. We discussed in turn problems that can be
formalised as CSPs with variables ranging over

• integers,
• reals,
• the interval [0..1] representing the Boolean values false, true,
• symbolic domains, i.e., non-numeric domains.

We also considered constrained optimization problems in which we are in-
terested in finding an optimal solution to a CSP according to some criterion.

Several examples discussed here are most useful in explaining the tech-
niques of constraint programming. More specifically, using the SEND +
MORE = MONEY puzzle of Example 2.1 we can clarify in a natural way
the effect of constraint propagation. We shall return to it in Chapter 6.
In turn, the n Queens Problem of Example 2.2 is an excellent vehicle to
explain various forms of search. We shall return to it in Chapter 8. Finally,
the Zebra puzzle of Example 2.3 will allow us to discuss in Chapter 9 the
impact of various ways of modeling a problem.

Next, the problem of finding zeros of polynomials discussed in Example
2.5 is a typical problem dealt with by techniques considered at the end of
Chapter 6. The crossword puzzle of Example 2.8 will allow us in Chapter 5
to illustrate the notion of arc consistency. Finally, Golomb rulers discussed
in Example 2.14 show how a simple problem can admit several natural for-
mulations as a CSP.
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When presenting these examples we stressed the fact that each problem
can be formalised as a CSP in a number of different ways. In general, it
is difficult to find which representation is better and good insights into the
principles of constraint programming are of help. We shall return to this
matter in Chapter 9. When discussing various alternative representations
of a problem as a CSP we focused here on simple examples. Less contrived
examples will be mentioned at the end of the book, in Chapter 9.

2.8 Exercises

Exercise 2.1 Consider the following multiplication problem:

P P P
P P

---------
P P P P

P P P P
---------
P P P P P

where each P stands for a (possibly different) prime digit (so 2, 3, 5 or 7).
Formulate this problem as a CSP.

For your information: this problem has a unique solution, namely:

7 7 5
3 3

---------
2 3 2 5

2 3 2 5
---------
2 5 5 7 5

Exercise 2.2 Consider the following puzzle.

Ten cells numbered 0,..,9 inscribe a 10-digit number such that each cell, say i,
indicates the total number of occurrences of the digit i in this number. Find this
number.

For your information: the answer is 6210001000. Indeed, cell 0 is filled with
6 and there are 6 zeros in this number, etc.

Formulate this problem as a CSP problem.
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Exercise 2.3 Magic Squares.
A magic square of order n is defined to be an n× n matrix made out

of the integers from [1..n2] arranged in such a way that the sum of every
row, column, and the two main diagonals is the same. For example

1 15 24 8 17
23 7 16 5 14
20 4 13 22 6
12 21 10 19 3
9 18 2 11 25

is a magic square of order 5, because each row, column and main diagonal
sums up to 65. Formulate the problem of finding a magic square of order n

as a task of finding a solution to a CSP.

Exercise 2.4 Latin Squares.
A Latin square of order n is defined to be an n× n matrix made out

of the integers in [1..n] with the property that each of the these n integers
occurs exactly once in each row and exactly once in each column of the
array. For example

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

is a Latin square of order 5. Formulate the problem of finding a Latin square
of order n as a CSP.

Exercise 2.5 The Graph Colouring Problem.
Consider the task of assigning to each node of a finite graph a colour

in such a way that no two adjacent nodes have the same colour. Such an
assignment is called a colouring of the graph. A colouring of the graph
involving the minimal number of colours is called the chromatic number

of the graph. The problem of finding the chromatic number of a graph has
several applications, in particular in the fields of scheduling and compiler
optimization.

Formulate this problem as a constrained optimization problem.

Exercise 2.6 The Frequency Assignment Problem.
Given is a set of n cells, C := {c1, c2, . . . , cn} and a set of m frequencies
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(or channels) F := {f1, f2, . . . , fm}. An assignment is a function which
associates with each cell ci a frequency xi ∈ F . The problem consists in
finding an assignment that satisfies the following constraints:

Separations: Given h and k we call the value d(fh, fk) = | h − k | the
distance between two channels fh and fk. (The assumption is that
consecutive frequencies lie one unit apart.) Given is an n × n non-
negative integer symmetric matrix S, called a separation matrix ,
such that each sij represents the minimum distance between the
frequencies assigned to the cells ci and cj . That is, for all i ∈ [1..n]
and j ∈ [1..n] it holds that d(xi, xj) ≥ sij .

Illegal channels: Given is an n ×m boolean matrix F such that if Fij =
true, then the frequency fj cannot be assigned to the cell i, i.e.,
xi �= fj .

Separation constraints prevent interference between cells that are located
geographically close and that broadcast in each other’s area of service. Illegal
channels account for channels reserved for external uses (e.g., for military
bases). Formalise this problem as a CSP.

Exercise 2.7 Consider the following variant of the Eight Queens Problem.
One is asked for a given integer k to place on the (8 × 8) chess board a
maximum number of queens so that each of them attacks exactly k other
queens. Formulate this problem as a constrained optimization problem.
Hint. See the alternative formalisation of the n Queens Problem given in
Example 2.7.

Exercise 2.8 Peaceable Coexisting Armies of Queens.

Two armies of queens (black and white) peacefully coexist on a chessboard
when they are placed upon the board in such a way that no two queens
from opposing armies can attack each other. The problem is to find the
maximum two equal-sized armies. Formulate this problem as a constrained
optimization problem.

Exercise 2.9 Formulate the following problem as a constrained optimiza-
tion problem:

Place a minimum number of queens on the chess board so that each unoccupied
field comes under attack.
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2.9 Bibliographic remarks

Most of the CSPs discussed in this chapter are classics in the field. In
particular, the representation of the SEND + MORE = MONEY and the
Zebra puzzles and of the eight queens problem as a CSP is discussed in
Van Hentenryck [1989]. The SEND + MORE = MONEY puzzle is due to
H.E. Dudeney and appeared in England, in the July 1924 issue of Strand
Magazine. Other well-known examples of alphametic problems with unique
solutions include GERALD + DONALD = ROBERT, in French LIONNE +
TIGRE = TIGRON, and in German WEIN + WEIB = LIEBE. The web-
site http://users.aol.com/s6sj7gt/mikealp.htm created by Mike Keith
includes several jewels of alphametic problems with unique solutions, of his
creation, such as ATTRACTIONS + INTENTIONS = REGENERATION.
Several other alphametic problems with unique solutions, created by Jorge
A.C.B. Soares, can be found at his website http://www.geocities.com/
Athens/Agora/2160/puzzles.html#ALPHAMET.

According to Russell and Norvig [2003] the eight queens problem was orig-
inally published anonymously in the German chess magazine Schach in 1848
and its generalisation to the n queens problem in Netto [1901]. Falkowski
and Schmitz [1986] show how to construct a solution to this problem for
arbitrary n > 3. The website http://www.wi.leidenuniv.nl/~kosters/
nqueens.html created by Walter Kosters contains a bibliography related to
the n Queens Problem.

The representation of spreadsheets as CSPs is taken from Winston [1992]
and the crossword puzzle discussed in Example 2.8 is from Mackworth [1992].
The thirteen temporal relations presented in Figure 2.7 and the ensuing
temporal CSPs were introduced in Allen [1983]. In this paper the first
representation discussed in Example 2.9 is used, while the second one is
used in van Beek [1992]. Allen [1983] is one of the most often cited papers
in computer science. It stimulated a huge amount of research on qualitative
temporal reasoning. For a survey of this subject from the point of view of
constraint satisfaction see Schwalb and Vila [1998].

The eight spatial relations presented in Figure 2.11 and the composition
table given in Figure 2.12 were introduced in Egenhofer [1991] and, inde-
pendently, in Randell, Cohn and Cui [1992]. In Egenhofer [1994a] these
relations were systematically derived and in Egenhofer [1994b] a connection
with the CSPs was made explicit. For a recent survey of qualitative spatial
reasoning see Cohn and Hazarika [2001].

Waltz [1975] was the first to realize that an analysis of the polyhedral
scenes can be formalised as the task of solving CSPs. Winston [1992] pro-



52 Constraint satisfaction problems: examples

vides a readable account and outlines a proof that the eighteen labelings of
the junctions listed in Figure 2.16 are the only possible ones. Figures 2.14,
2.15 and 2.16 are taken from this book.

The second representation used in Example 2.11 is based on By [1997] who
noted the need for the edge constraints. Golomb rulers discussed in Exam-
ple 2.14 are named after Solomon W. Golomb. An interested reader can
consult Dollas, Rankin and McCracken [1998] for more detailed information
about their history, applications and for a presentation of algorithms used
to generate Golomb rulers and verify their optimum. An account of vari-
ous representations of Golomb rulers as CSPs is from Smith, Stergiou and
Walsh [2000] where also encodings of the problem using binary constraints
are studied. Bacchus and van Beek [1998] discuss the tradeoffs involved in
the conversion of arbitrary CSPs to CSPs with unary and binary constraints
only and provide pointers to the earlier literature on this subject.

The puzzle from Exercise 2.2 is taken from Gardner [1979]. The Frequency
Assignment problem from Exercise 2.6 is from Hale [1980]. The variant of the
Eight Queens Problem from Exercise 2.7 is due to Scott Kim and is discussed
in Gardner [1997,pages 275-282]. The problem of the peaceable coexisting
armies of queens discussed in Exercise 2.8 is from Bosch [1999]. We learned
of it from Smith, Petrie and Gent [2002]. The Coins Problem from Example
2.13 is discussed and solved in Wallace, Novello and Schimpf [1997].
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A T THIS STAGE it is useful to get a better feeling of what constraint
programming is about. Recall that we stated in Chapter 1 that in
constraint programming the programming process is limited to a

generation of constraints and a solution of these constraints by means of
domain specific or general methods. The aim of this chapter is to provide
an intuitive introduction to these methods. In the subsequent chapters we
shall discuss them in a more detailed and precise way.

To discuss these techniques it is useful to formalise appropriate notions
of equivalence between CSPs. We do this in Section 3.1. Then we describe
in Section 3.2 a general framework which allows us to explain the basics
of constraints programming. It involves various procedures that capture
specific aspects of constraint programming. Subsequently we illustrate these
procedures by means of two extended examples. In Section 3.3 we consider
the Boolean CSPs and in Section 3.4 constrained optimization problems
involving the polynomial constraints on integer intervals.
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3.1 Equivalence of CSPs

We mentioned already in Chapter 1 that we view constraint programming
as a process of transforming the CSPs. To describe this process closer it is
useful to formalise a number of notions concerning CSPs.

First, recall that a constraint C on a sequence of variables y1, . . ., yk with
respective domains D1, . . ., Dk associated with them is a subset of D1 ×
· · · ×Dk. If C equals D1 × · · · ×Dk and is non-empty, then we say that C

is solved . We assumed in these definitions that k > 0. In the boundary
case when k = 0 we admit two constraints, denoted by � and ⊥, that
respectively stand for the true constraint (for example 0 = 0) and the
false constraint (for example 0 = 1).

We call a CSP solved if all its constraints are solved and no domain of it
is empty, and failed if it either contains the false constraint ⊥ or some of
its domains or constraints is empty. Clearly, each solved CSP is consistent
and each failed CSP is inconsistent. It is useful to note that given a CSP

〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉

each solution (d1, . . ., dn) to it corresponds to a unique solved CSP. This
solved CSP is of the form

〈C′ ; x1 ∈ {d1}, . . ., xn ∈ {dn}〉,

where C′ = {C ′ | C ∈ C} and where for each constraint C in C on a sub-
sequence xi1 , . . ., xim of x1, . . ., xn the constraint C ′ is defined by C ′ :=
{(di1 , . . ., dim)}. So each constraint in C′ is a singleton set.

To solve CSPs one often transforms them in a specific way until a solution,
respectively all solutions, have been found or it is clear that no solution
exists. The ‘final’ CSPs generated in this process are then either solved or
failed. If a final CSP is solved, it yields one solution in case all domains are
singleton sets, or more solutions in case some domain has more than one
element. If a final CSP is failed, it yields no solution. The transformations
of CSPs need to be such that their equivalence in an appropriate sense is
preserved. This brings us to the notion of an equivalence of CSPs. We define
it first for a special case.

Consider two CSPs P1 and P2 with the same sequence of variables. We
say that P1 and P2 are equivalent if they have the same set of solutions.
For example, the CSPs

〈3x− 5y = 4 ; x ∈ [0..9], y ∈ [1..8]〉
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and

〈3x− 5y = 4 ; x ∈ [3..8], y ∈ [1..4]〉

are equivalent, since both of them have x = 3, y = 1 and x = 8, y = 4 as the
only solutions.

In general, since we use some language to describe the constraints, it may
be difficult to establish that two CSPs are equivalent. For example, it is not
easy to see that the CSP

〈x4 − 10x3 + 35x2 − 50x + 24 = 0 ; x ∈ R〉

is equivalent to the CSP

〈 ; x ∈ {1, 2, 3, 4}〉

in which no constraints are present and the domain of x consists of just four
values. Fortunately, we shall use the above notion in much more elementary
situations in which it will be straightforward to check that the considered
CSPs are equivalent.

The above definition is rather limited as it cannot be used to compare
CSPs with different sequences of variables. Such situations often arise, for
example when new variables are introduced or some variables are eliminated.
Consider for instance the problem of solving the equation

2x5 − 5x4 + 5 = 0 (3.1)

over the reals. One way to proceed is by introducing a new variable y and
transforming (3.1) to the following two equations:

2x5 − y + 5 = 0, (3.2)

y = 5x4, (3.3)

so that in each equation every variable occurs at most once.
Now, the CSP formed by the equations (3.2) and (3.3) has one variable

more than the one formed by (3.1), so we cannot claim that these two CSPs
are equivalent in the sense of the definition just introduced. To deal with
such situations we introduce a more general notion of equivalence.

Definition 3.1 Consider two CSPs P1 and P2 and a sequence X of their
common variables (that is, X is a subsequence of both X1 and X2, where
X1 and X2 are respectively the sequences of the variables of P1 and P2).
We say that P1 and P2 are equivalent w.r.t. X if
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• for every solution d to P1 a solution to P2 exists that coincides with
d on the variables in X,

• for every solution e to P2 a solution to P1 exists that coincides with
e on the variables in X. �

For a further discussion it is useful to introduce the following simple no-
tion.

Definition 3.2 Consider a sequence of variables X := x1, . . ., xn with
the corresponding sequence of domains D1, . . ., Dn. Take an element d :=
(d1, . . ., dn) of D1×· · ·×Dn and a subsequence Y := xi1 , . . ., xi� of X. Then
we denote the sequence (di1 , . . ., di�) by d[Y ] and call it the projection of
d on Y . In particular for d ∈ D1 × · · · ×Dn d[xi] denotes the ith element
of d. �

Using the notion of a projection we can define the notion of a solution to
a CSP in a succinct way. Namely, given a CSP P := 〈C ; x1 ∈ D1, . . ., xn ∈
Dn〉 an n-tuple (d1, . . ., dn) ∈ D1 × · · · ×Dn is a solution to P iff for every
constraint C of P on a sequence of variables Y we have d[Y ] ∈ C.

Using the notion of projection we can also define the notion of equivalence
in a more succinct way. Namely, the CSPs P1 and P2 are equivalent w.r.t. X

iff

{d[X] | d is a solution to P1} = {d[X] | d is a solution to P2}.

Clearly, two CSPs with the same sequence of variables X are equivalent iff
they are equivalent w.r.t. X, so the newly introduced notion of equivalence
is a generalisation of the former one. When transforming CSPs one often
tries to maintain equivalence w.r.t. the initial sequence of variables. Note
for example that the CSP formed by the equation (3.1) and the one formed
by the equations (3.2) and (3.3) are equivalent w.r.t. x.

In general, a reduction of a CSP to another one that is equivalent does
not suffice to solve it. Therefore we also allow a split of a given CSP into two
or more CSPs. To reason about such a split we need to formalise another
concept of an equivalence.

Definition 3.3 Consider CSPs P0, . . .,Pm, where m ≥ 1, and a sequence
X of their common variables (that is, X is a subsequence of each of the se-
quences of the variables of P0, . . .,Pm). We say that the union of P1, . . .,Pm

is equivalent w.r.t. X to P0 if

• for every solution d to some Pi, where i ≥ 1, a solution to P0 exists
that coincides with d on the variables in X,
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• for every solution e to P0 a solution to some Pi, where i ≥ 1, exists
that coincides with e on the variables in X. �

Again, using the notion of a projection we can define this notion more
succinctly as follows. The union of P1, . . .,Pm is equivalent w.r.t. X to P0

if

{d[X] | d is a solution to P0} =
m⋃

i=1

{d[X] | d is a solution to Pi}.

If m = 1, this definition coincides with the earlier introduced notion of
equivalence of two CSPs , here P1 and P0, w.r.t. a sequence of variables X.

Below we represent the transformations of the CSPs in an informal way,
by means of proof rules. This approach will be made more precise in Section
4.1. Here it suffices to remember that a rule of the form

φ

ψ

represents a transformation of the CSP φ to the CSP ψ and a rule of the
form

φ

ψ1 | . . . | ψn

represents a transformation of the CSP φ to the CSPs ψ1, . . ., ψn.
Suppose that X is the sequence of the variables present in φ. The dis-

cussed rules preserve equivalence in the sense that, in the first rule φ and
ψ are equivalent w.r.t. X, and in the second rule the union of ψ1, . . ., ψn is
equivalent to φ w.r.t. X. When the context CSP is irrelevant, we omit it
and mention in the rule only the part that is changed.

3.2 Basic framework for constraint programming

We can now formulate a basic framework for constraint programming that
we shall use in this book to explain its specific aspects. First, we formu-
late our initial problem as a CSP. As we saw in Chapter 2 this in itself
can be a non-trivial problem. In particular, at this stage we have to take
decisions concerning the choice of variables, domains and constraints. As al-
ready mentioned in Chapter 1 this phase of constraint programming is called
modeling and in contrast to programming in other programming styles is
more time consuming and more involved. Modeling is more an art than
science and a number of rules of thumb and various heuristics are useful at
this stage.

Subsequently, we apply to the formulated CSP the generic procedure
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Solve defined in Figure 3.1. It is parametrised by the subsidiary proce-
dures Preprocess, Constraint Propagation, Happy, Atomic, Split,
and Proceed by Cases. The Proceed by Cases procedure leads to
a recursive invocation of Solve for each newly formed CSP. The Boolean
variable continue is local to Solve so it is declared anew each time Solve

is invoked recursively.

Solve:

VAR continue: BOOLEAN;
continue:= TRUE;
WHILE continue AND NOT Happy DO

Preprocess;
Constraint Propagation;
IF NOT Happy

THEN
IF Atomic

THEN
continue:= FALSE

ELSE
Split;
Proceed by Cases

END
END

END

Fig. 3.1. Generic procedure Solve

The Solve procedure represents the basic loop of constraint program-
ming. In what follows we explain, in an informal way, the meaning of all
the procedures used in Solve. As the notion of constraint propagation is
central to constraint programming we defer its discussion to the end of the
section. At this stage it suffices to know that constraint propagation trans-
forms a given CSP into another one that is equivalent to it, possibly w.r.t. a
sequence of the initial variables.

3.2.1 Preprocess

The aim of this procedure is to bring the considered CSP into a desired
syntactic form. The resulting CSP should be equivalent to the original one
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w.r.t. the initial sequence of variables. To illustrate it we consider two simple
examples.

First, consider Boolean constraints as discussed in Section 2.4. Most of
the procedures that deal with them assume that these constraints are in a
specific syntactic form. A well-known example is the conjunctive normal

form according to which the Boolean constraint is a conjunction of clauses.
A clause is a disjunction of literals, where in turn a literal is a Boolean
variable or its negation. For example, the Boolean constraint

(x ∨ y) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬z)

is in conjunctive normal form, since each conjunct of it is a clause. In
this case the preprocessing consists of the rules that transform an arbitrary
Boolean expression to an equivalent one that is in conjunctive normal form.

As a second example consider constraints on reals as discussed in Sec-
tion 2.3. Often, specific procedures that deal with such constraints assume
that in each constraint each variable appears at most once. In this case the
preprocessing consists of transforming each constraint into such a form by
introducing auxiliary variables. For instance, given an equation

ax7 + bx5y + cy10 = 0

we employ an auxiliary variable z and replace it by two equations,

ax7 + z + cy10 = 0

and

bx5y = z.

Usually, the Preprocess procedure is applied only once, at the top level
of the Solve procedure. To deal with arbitrary situations we put it inside
the Solve procedure, so that it is also called each time after the Split proce-
dure is invoked. It can for example happen that Split generates constraints
that have to be preprocessed before being passed to the Constraint Prop-

agation procedure.

3.2.2 Happy

Informally, Happy means that the goal set for the initial CSP has been
achieved. What goal it is depends of course on the applications. The fol-
lowing contingencies are most common:

• a solution has been found,
• all solutions have been found,
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• a ‘solved form’ has been reached from which it is straightforward to gen-
erate all solutions;
This contingency is useful to deal with situations when several, possibly
infinitely many, solutions exist,

• an inconsistency was detected,
• an optimal solution w.r.t. some objective function was found,
• all optimal solutions w.r.t. some objective function were found,
• (in the case of constraints on reals) all interval domains are reduced to

sizes smaller than some fixed in advance ε.

In general, Happy can be viewed as a test applied to the current CSP
in which some additional parameters can be taken into account in case we
look for an optimal, respectively all optimal, solutions w.r.t. some objective
function.

3.2.3 Atomic

Before we split a CSP we need to check whether it is amenable for splitting.
This is done using as a test the Atomic procedure. Usually, we stipulate
that a CSP satisfies this test if its domains are singleton sets or empty. But a
CSP P can be also viewed atomic if further search ‘under’ it is not anymore
needed. This can be for example the case, when P is solved or, in case we
look for an optimal solution, an optimal solution for P can be computed
directly.

3.2.4 Split

If after termination of the constraint propagation we did not reach the orig-
inal goal, that is the test Happy fails, and the current CSP P is not atomic,
that is NOT Atomic holds, P is split into two or more CSPs, the union of
which is equivalent to P. Such a split is obtained either by splitting a domain
or by splitting a constraint. It leads to a replacement of the current CSP by
two or more CSPs that differ from the current one in that the split domain,
respectively the split constraint, is replaced by one of the constituents. Ad-
ditionally, in case a domain is split, each constraint is restricted to the new
domains.

In the following three examples a split of a domain is represented by a rule
that transforms a domain expression into two or more domain expressions
separated by means of the ‘|’ symbol.
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• Enumeration .
Assume that the domain D is finite and contains at least two elements.

The following rule can then be used:

x ∈ D

x ∈ {a} | x ∈ D − {a}
where a ∈ D.

This rule corresponds to a reasoning by cases. In the first case we
assume that x is instantiated to (or substituted by) the value a. In the
second case we consider a modified domain from which the element a is
removed. So this rule leads to the replacement of a CSP

〈C ; DE , x ∈ D〉

by two CSPs,

〈C1 ; DE , x ∈ {a}〉

and

〈C2 ; DE , x ∈ D − {a}〉,

where C1 consists of the restrictions of the constraints in C to the new
domains (with the domain of x being now the singleton set {a}), and
similarly with C2. So a repeated use of this rule leads to a consideration
of binary trees.

• Labeling .
Alternatively, we can use the following rule which corresponds to a

reasoning with k cases:

x ∈ {a1, . . ., ak}
x ∈ {a1} | . . . | x ∈ {ak}

Each application of this rule leads to a replacement of a CSP by k CSPs,
where k equals the current size of the domain of the selected variable. So
this rule is parametrised by k and its repeated use leads to a consideration
of arbitrary finitely branching trees.

• Bisection .
Assume that the domain is a non-empty real interval, written as [a, b].

We can then employ the following rule:

x ∈ [a, b]
x ∈ [a, a+b

2 ] | x ∈ [a+b
2 , b]

that maintains the property that the domains are non-empty at the cost
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of making the split domains overlapping. Clearly, the same rule can be
applied to non-empty integer intervals.

In turn, the following two examples, also written as rules, illustrate a split
of a constraint.

• Disjunctive constraints.
Suppose that the constraint is a Boolean disjunction. The constituents

of this disjunction can be arbitrary constraints. Such constraints are called
disjunctive constraints. An example is the following constraint

Start[task1] + Duration[task1] ≤ Start[task2] ∨
Start[task2] + Duration[task2] ≤ Start[task1]

that typically occurs in scheduling problems. It states that either task1

is scheduled before task2 or vice versa. To process it we can apply the
following rule:

C1 ∨ C2

C1 | C2

This corresponds to reasoning in which we deal with each disjunct sep-
arately, in the presence of other, unchanged constraints.

• Constraints in ‘compound’ form.
The idea is that such constraints are split into syntactically simpler

constraints that can be dealt with directly. Consider for example the
constraint |p(x̄)| = a, where p(x̄) a polynomial over reals and a is a non-
negative real.

It can be dealt with using the following rule:

|p(x̄)| = a

p(x̄) = a | p(x̄) = −a

Applying it amounts to rewriting the original constraint as a disjunctive
constraint

p(x̄) = a ∨ p(x̄) = −a

and using the above rule for disjunctive constraints.
It is useful to mention that constraints that can be rewritten as disjunc-

tions do not need to be processed as disjunctive constraints. For example,
a constraint of the form |x− y| = a could be also processed by transform-
ing it to the linear constraint x−y = z, where z is a new variable with the
domain {−a, a}. In general, the use of the disjunctive constraints with
the corresponding rule leads to a combinatorial explosion that, if possible,
should be avoided.
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In general, the Split procedure also determines which split operation is to
be applied next. In general, several alternatives arise. For example, even if
we limit our attention to the enumeration procedure, we still face the choice
which variable x is to be selected and which value a from its domain is to be
used. In other words, the rule dealing with the enumeration is parametrised
by the variable x and the value a and the Split procedure determines which
instance of this rule is to be used next.

This leads us to the issue of heuristics that are used when solving CSPs.
Informally, a heuristic is a rule that tells us how to choose out of many
alternatives. Here we need to determine

• which variable to select,
• which value to select, or
• which constraint to split.

A number of heuristics exist. Let us just mention two examples to illustrate
their flavour:

• select a variable that appears in the largest number of constraints; such a
variable is called the most constrained variable ,

• for a domain being an integer interval: select the middle value.

3.2.5 Proceed by Cases

The Split procedure yields two or more new CSPs. They are then dealt
with by means of the Proceed by Cases procedure.

The order in which these new CSPs are considered depends on the adopted
search technique . In general, due to the repeated use of the Split proce-
dure a tree of CSPs is generated. The purpose of the Proceed by Cases

procedure is to traverse this search tree in a specific order and, if needed, to
update the relevant variables with some newly gathered information (in the
case of search for the optimal solution). Two most known of these techniques
are backtracking and, when searching for the optimal solution, branch and
bound.

Informally, given a finite tree, the backtracking search starts at the root
of the tree and proceeds by descending to its first descendant. This process
continues as long as a node is not a leaf. If a leaf is encountered the search
proceeds by moving back to the parent node of the leaf. Then the next
descendant, if any, of this parent node is selected. This process continues
until the control is back at the root node and all of its descendants have been
visited. In Figure 3.2 we depict the backtracking search on a simple binary
tree, where the arrows indicate the order in which the nodes are visited.
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Fig. 3.2. Backtracking search

An important aspect of the search here considered is that the search tree
to be traversed is not given in advance: it is generated ‘on the fly’. Further,
in our case the nodes of the search tree are CSPs and the leaves are CSPs
that are either solved or failed. Usually, all domains of a leaf that is a
solved CSP will be singleton sets which means that such a solved CSP yields
one solution. Leaves that are solved CSPs with non-singleton set domain
typically arise when we reduce a given CSP to a ‘solved form’, a contingency
mentioned when discussing the Happy procedure in Subsection 3.2.2.

If we are interested in finding just one solution, the backtracking search
stops as soon as a leaf is generated that is a solved CSP. If we wish to find
all solutions, the search continues until all leaves have been generated. If we
are interested in detecting inconsistency, the search stops as soon as a leaf
being a solved CSP is generated and otherwise it continues until all leaves
have been generated.

The branch and bound search is a modification of the backtracking
search that takes into account the value of the objective function. Informally,
it can be explained as follows. Suppose that we are interested in finding
a solution with the maximal value of the objective function. During the
search one maintains the currently best value of the objective function in
a variable bound. This variable is initialised to −∞ and is updated each time
a solution with a larger value is generated. This solution is then recorded.

The objective function is usually used in combination with a heuristic

function that assigns a real value to each considered CSP. To deal with the
situations when no useful information is provided by the heuristic function
one can extend the set of values it can take by ∞. We already noted in
Section 3.1 that each solution to a given CSP corresponds to a unique solved
CSP with singleton set domains. So we may assume that to each such solved
CSP P the objective function obj assigns a real value. More generally, we
may assume that the objective function obj assigns a real value obj(P) to
each atomic CSP P, that is, to each CSP that satisfies the Atomic test. The
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correct use of the heuristic function h requires that it satisfies the following
two properties:

• If the CSP ψ is a direct descendant of the CSP φ in the search tree, then
h(ψ) ≤ h(φ).

• If ψ is an atomic CSP, then obj(ψ) ≤ h(ψ).

The first condition states that the heuristic function gets ‘more precise’ once
one descends down the search tree. The second condition states that the
heuristic function overestimates the objective function.

The heuristic function is then used together with the currently best value
bound to identify nodes under which no solution with a maximum value of
the objective function can lie. These are nodes φ for which during the search
process we have h(φ) < bound. Indeed, by the above two assumptions for all
solved ψ lying under φ we have obj(ψ) < bound. So the heuristic function
allows us to ignore some parts of the tree during the search process.

In Figure 3.3 we depict a possible branch and bound search on the binary
tree already considered in Figure 3.2. The parts of the tree that are ignored
during the search are represented using the dotted lines.

Fig. 3.3. Branch and bound search

Backtracking and branch and bound, when combined with appropriate
instances of the Constraint Propagation procedure lead to more com-
plex forms of search methods that are specific for constraint programming.
Let us just mention here that one also studies ways of faster backtracking,
which allow us in case a failed CSP is generated to jump further back in
the tree than just to the parent node. These techniques are usually called
intelligent backtracking .

3.2.6 Constraint Propagation

At this stage let us return to the Constraint Propagation procedure. In
general, this procedure replaces a given CSP by a ‘simpler’ one, yet equiva-
lent. The idea is that such a replacement, if efficient, is profitable, since the
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subsequent search resulting from the repeated calls of the Split and Pro-

ceed by Cases procedures is then performed on a (usually substantially)
smaller search space. What ‘simpler’ means depends on the applications.
Typically, it refers to the fact that the domains and/or constraints become
smaller. The constraint propagation is performed by repeatedly reducing
domains and/or reducing constraints while maintaining equivalence.

Let us consider some examples. In each of them we stress the benefit
accrued by repeated reduction. We again use here proof rules but now they
represent a replacement of a (fragment of a) CSP by another one. The first
two examples deal with the domain reduction.

• Arbitrary CSPs.
Consider a constraint C. Choose a variable x of it and perform the

following operation on its domain D:
remove from D all values for x that do not participate in a solution to C.

The idea is that the removed values cannot be present in any solution
to the considered CSP. We call this operation projection of C on x.

As an example, consider the crossword puzzle discussed in Example 2.8.
If we apply the above rule to the constraint C1,2 on the variables x1 and
x2 and to the variable x1, then we reduce the domain of x1 to the set
{HOSES, LASER}. Indeed, only these two five letter words can be used
for position 1 in combination with a five letter word for position 2; both
of them can be combined with the word SAILS for position 2.

This reduction process can be continued. For example, we can now
apply the above rule to the constraint C1,3 on the variables x1 and x3, and
the variable x3. This way we reduce the domain of x3 to the set{SAILS,
SHEET, STEER}.

• Linear inequalities on integers.
Assume that the domains are non-empty intervals of integers, written

as [a..b], and the constraints are linear inequalities of the form x < y.
Then we can apply the following rule:

〈x < y ; x ∈ [lx..hx], y ∈ [ly..hy]〉
〈x < y ; x ∈ [lx..min(hx, hy − 1)], y ∈ [max(ly, lx + 1)..hy]〉

that allows us to transform both considered intervals to smaller ones.
To see that this rule preserves equivalence, it suffices to show that any

solution to the CSP in the premise is also a solution to the CSP in the
conclusion. So take a pair (a, b) that is a solution to the CSP in the
premise, i.e., such that a ∈ [lx..hx], b ∈ [ly..hy] and a < b. Then since
b ≤ hy we get a ≤ hy − 1 and since lx ≤ a we get lx + 1 ≤ b. So
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a ≤ min(hx, hy − 1) and max(ly, lx + 1) ≤ b, which means that the pair
(a, b) is also a solution to the CSP in the conclusion.

This rule can be applied several times in succession. Consider for ex-
ample the CSP

〈x < y, y < z ; x ∈ [50..200], y ∈ [0..100], z ∈ [0..100]〉.

Applying this rule to the constraint x < y we transform this CSP into

〈x < y, y < z ; x ∈ [50..99], y ∈ [51..100], z ∈ [0..100]〉.

Another application of this rule, this time to the constraint y < z, yields

〈x < y, y < z ; x ∈ [50..99], y ∈ [51..99], z ∈ [52..100]〉.

Applying this rule third time, again to the constraint x < y, yields

〈x < y, y < z ; x ∈ [50..98], y ∈ [51..99], z ∈ [52..100]〉.

So we could reduce all three variable domains. It is easy to see that further
applications of this rule yield no change.

Next, consider the reduction of constraints. We illustrate it by means of
two examples. In each of them a new constraint is introduced. Such a new
constraint is called in this context an implied constraint or a derived

constraint . (Sometimes a rather misleading terminology of redundant con-
straints is used.)

Such an addition of a new constraint can be viewed as a reduction of a
constraint. Namely, an introduction of a new constraint, say on the variables
X, augments the set of used constraints on X. As each constraint is a
set, we can identify this set of constraints on X with their intersection,
without affecting the set of solutions. Under this identification the new set
of constraints on X, viewed as a single constraint, is a subset of the old one.

• Linear inequalities.
Consider the following rules that invoke the transitivity and the anti-

symmetry of the < relation on some numeric domain:

〈x < y, y < z ; DE〉
〈x < y, y < z, x < z ; DE〉

〈x < y, y < x ; DE〉
〈x < y, y < x,⊥ ; DE〉

The first rule introduces a new constraint x < z and the second rule
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introduces the false constraint ⊥. As an example of their use consider the
obviously inconsistent CSP

〈x < y, y < z, z < x ; DE〉.

Using the first rule we get then

〈x < y, y < z, x < z, z < x ; DE〉.

Applying now the second rule to the constraints x < z, z < x we get the
failed CSP

〈x < y, y < z, x < z, z < x,⊥ ; DE〉.

• Resolution method.
This rule deals with clauses, that is, disjunctions of literals. (Recall

from Subsection 3.2.1 that a literal is a Boolean variable or its negation.)
Let C1 and C2 be clauses, L a literal and L̄ the literal opposite to L, that
is ¬x = x and x̄ = ¬x. To abstract from the order of the disjuncts in
a clause and to automatically dispense of repeated literals we write each
clause as a set of literals. Then the following rule, called the resolution

rule :

〈C1 ∪ {L}, C2 ∪ {L̄} ; DE〉
〈C1 ∪ {L}, C2 ∪ {L̄}, C1 ∪ C2 ; DE〉

introduces a new constraint, the clause C1∪C2. This rule is a cornerstone
of the automated theorem proving.

To illustrate its use consider the Boolean CSP

〈x ∨ y,¬x ∨ y ∨ z,¬x ∨ ¬z ; DE〉

that involves the Boolean constraint mentioned earlier in Subsection 3.2.1.
Applying the resolution rule to the first two clauses we get, with L ≡ x,

〈x ∨ y,¬x ∨ y ∨ z,¬x ∨ ¬z, y ∨ z ; DE〉.

Now applying this rule to the clauses ¬x ∨ ¬z and y ∨ z we get, with
L ≡ z,

〈x ∨ y,¬x ∨ y ∨ z,¬x ∨ ¬z, y ∨ z,¬x ∨ y ; DE〉.

Another application of the resolution rule, this time to the clauses x ∨ y

and ¬x ∨ y, again with L ≡ x, leads to the addition of the constraint y

to the last CSP.
So using the resolution rule we could deduce from the original Boolean

CSP that y is true.
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It should be stressed here that not all implied constraints are useful. For
example, returning to the above example of linear inequalities, the rule

〈x < y ; DE〉
〈x < y, x < y + 1 ; DE〉

introduces an implied constraint that is certainly worthless. Usually, the
challenge is to find useful implied constraints the use of which leads to an
effective progress in solving the considered CSP.

In general, various general techniques drawn from the fields of linear al-
gebra, linear programming, integer programming, and automated theorem
proving can be explained as a reduction of constraints: the resolution rule
is just one example. More examples will be given in Chapter 4.

3.2.7 Constraint propagation algorithms

The above examples dealt with the atomic reduction steps in which either
a domain or a constraint was reduced. The constraint propagation al-

gorithms deal with the scheduling of such atomic reduction steps. They
attempt to avoid useless applications of the atomic reduction steps. Upon
termination these algorithms achieve a property called a local consistency

notion .
The concept of local consistency is crucial for the theory of constraint pro-

gramming. In the literature a plethora of such notions have been introduced.
To illustrate them let us clarify what local consistency notion corresponds
to the first domain reduction rule presented above. It is defined as follows:

for every constraint C and every variable x of it each value in the domain of x
participates in an element of C.

This property is called hyper-arc consistency . In the case of binary
constraints it is called arc consistency and is perhaps the most popular
local consistency notion.

As an example of an arc consistent CSP take

〈x < y, y < z, x < z ; x ∈ [0..5], y ∈ [1..7], z ∈ [3..8]〉.

It is straightforward to check that it is arc consistent: for each constraint
and each variable of it every value in the domain of this variable belongs to
a pair that satisfies the selected constraint. For example, if we choose the
constraint x < y, the variable y and the value 1 in the domain of y, then it
belongs to the pair (0, 1) that satisfies this constraint x < y on the assumed
domains.
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In contrast, the CSP

〈x < y, y < z, x < z ; x ∈ [0..5], y ∈ [0..7], z ∈ [3..8]〉

is not arc consistent, since for the value 0 for y no value for x in [0..5] exists
such that x < y.

It is important to realise that in general a locally consistent CSP does not
need to be consistent. For example, the CSP

〈x �= y, y �= z, z �= x ; x ∈ [1..2], y ∈ [1..2], z ∈ [1..2]〉,

depicted in Figure 3.4, is easily seen to be arc consistent but it is not con-
sistent.

�=�=

x2 [1..2]x1 [1..2]

x3 [1..2]

�=

Fig. 3.4. An arc consistent but inconsistent CSP

To summarise, each constraint propagation algorithm reduces a given CSP
to an equivalent one that satisfies some local consistency notion. Which local
consistency notion is reached depends on the type of the CSPs considered
and on the form of rules used.

3.3 Example: Boolean constraints

Let us illustrate now the above discussion by means of two examples. They
will clarify what choices one needs to make when solving specific CSPs.
These choices will be reflected in specific decisions concerning the subsidiary
procedures of the generic Solve procedure of Figure 3.1. As the first exam-
ple we choose Boolean constraints. A more detailed account of constraint
propagation for these constraints will be given in Section 6.3.

Suppose that we wish to find all solutions to a given Boolean constraint
satisfaction problem. Then we could consider the following selection of the
procedures discussed above.

Preprocess

We wish to bring each Boolean constraint to one of the following forms:
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• x = y,
• ¬x = y,
• x ∧ y = z,
• x ∨ y = z,

where x, y, z are different variables.
Consequently, for Preprocess we choose transformation rules that trans-

form each Boolean constraint into a set of constraints in the above form. An
example of such a transformation rule is

x ∧ s = z

x ∧ y = z, s = y

where x, y, z are Boolean variables and where s is a non-variable Boolean
expression that does not contain y.

Happy

We choose the test:

all solutions have been found.

Atomic

We postulate that a CSP is atomic if no domain of it contains more than
one element.

Split

We use the labeling rule discussed in Subsection 3.2.4. In our case it boils
down to the following rule:

x ∈ {0, 1}
x ∈ {0} | x ∈ {1}

As already noted there this rule is parametrised by a variable, the choice
of which is of relevance here, and by a value, the choice of which is of no
relevance here. We use this rule in combination with the heuristic according
to which the most constrained variable, i.e., the variable that occurs in the
largest number of constraints, is chosen first.

Constraint Propagation

Next, we determine the actions of the constraint propagation algorithm.
We do this by choosing specific domain reduction steps. They are based on
the simple observation that for the Boolean constraints in one of the forms
considered in the definition of the Preprocess procedure, if the values of
some variables are determined, then values of some other variables can be
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determined. For example, for the constraint x ∧ y = z, if we know that z is
1 (which is identified with true), then we can conclude that both x and y

are 1. This is expressed by means of the following rule:

〈x ∧ y = z ; x ∈ Dx, y ∈ Dy, z ∈ {1}〉
〈 ; x ∈ Dx ∩ {1}, y ∈ Dy ∩ {1}, z ∈ {1}〉

where the absence of the constraint x ∧ y = z in the conclusion indicates
that this constraint is solved. We can abbreviate it to a more suggestive
form, namely

x ∧ y = z, z = 1→ x = 1, y = 1.

It is useful to understand why we do not adopt the following rule instead:

〈x ∧ y = z ; x ∈ Dx, y ∈ Dy, z ∈ {1}〉
〈 ; x ∈ {1}, y ∈ {1}, z ∈ {1}〉

If we did, then with Dx = {0} we would get different outcomes. Indeed,
using the adopted rule we would generate the empty domain for x. This
is conforming to the observation that x ∧ y = z combined with z and ¬x

yields inconsistency. The analogous observation holds for the domain Dy.
In contrast, with the rule that we did not adopt we would not discover
inconsistency and instead wrongly deduce that (1, 1, 1) is a solution to the
CSP in the rule premise.

In total we have the following six rules for the constraint x ∧ y = z:

CONJUNCTION

x ∧ y = z, x = 1, y = 1→ z = 1,

x ∧ y = z, x = 1, z = 0→ y = 0,

x ∧ y = z, y = 1, z = 0→ x = 0,

x ∧ y = z, x = 0→ z = 0,

x ∧ y = z, y = 0→ z = 0,

x ∧ y = z, z = 1→ x = 1, y = 1.

We adopt similar rules for the other three constraints considered in the
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definition of the Preprocess procedure. They are discussed in detail in
Section 6.3.

Proceed by Cases

As we want to find all solutions we choose here the backtracking search.

This completes the description of a sample procedure using which we
can find all solutions to a Boolean constraint satisfaction problem. It can
be easily implemented and it yields a reasonable approach to solving such
constraints.

3.4 Example: polynomial constraints on integer intervals

As the second example of an instantiation of the framework of Section 3.2
consider the problem of finding optimal solutions to polynomial constraints
on integer intervals subject to a polynomial objective function. So we deal
here with constrained optimization problems. A more detailed account of
constraint propagation for such constraints is given in Section 6.5. As an
example of a problem we are interested in consider the task of finding a
solution to the constraint

x3 + y2 − z3 = 0

in the integer interval [1..1000] for which the value of

2x · y − z

is maximal. (For the interested reader: the answer is x = 112, y = 832 and
z = 128, for which the value of 2x · y − z is 186240.)

Let us be more precise about the constraints and the objective functions
we are interested in. By a polynomial constraint we mean here an ex-
pression of the form

s = 0,

where s is a polynomial (in possibly several variables) with integer coeffi-
cients. For example

2x5 · y2 · z4 + 3x · y3 · z5 − 4x4 · y6 · z2 + 10 = 0

is a polynomial constraint.
We also assume that the objective function is a polynomial with integer

coefficients.
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Preprocess

We deal with these constraints by reducing them first to one of the fol-
lowing syntactic forms:

• Σn
i=1aixi = b, where n > 0, a1, . . ., an are non-zero integers, x1, . . ., xn are

different variables, and b is an integer,
• x · y = z, where x, y, z are different variables.

So for the Preprocess procedure we adopt appropriate transformation
rules that transform each polynomial constraint into a set of constraints in
one of the above two forms. An example of such a transformation rule is

〈Σn
i=1mi = 0 ; DE〉

〈Σn
i=1vi = 0, m1 = v1, . . ., mn = vn ; DE , v1 ∈ Z, . . ., vn ∈ Z〉

where some mi is not of the form axi and where v1, . . ., vn are variables that
do not appear in DE . It simplifies a complex sum by introducing a constraint
in the first syntactic form listed above and a sequence of constraints of lower
syntactic complexity.

Another transformation rule is the following one:

〈s · t = v ; DE〉
〈x · y = z, s = x, t = y, v = z ; DE , x ∈ Z, y ∈ Z, z ∈ Z〉

where x, y, z do not appear in DE .
Since we do not want to apply this rule to the constraints of the form

x · y = z, a · y = z or x · a = z, where x, y, z are different variables and a

an integer, which are already in a desired syntactic form, we stipulate that
none of the following contingency holds:

• s, t, v are different variables,
• s is an integer and t and v variables,
• t is an integer and s and v variables.

Both rules introduce variables that range over the set of all integers Z.
But, as we shall see at the end of this section, if the domains of the original
variables are intervals of integers, then we can ensure that the domains of
the auxiliary variables are intervals of integers, as well.

Happy

We are interested in finding an optimal solution, so we choose the test:

an optimal solution w.r.t. the objective function was found.
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Atomic

As in the previous example we postulate that a CSP is atomic if no domain
of it contains more than one element.

Constraint Propagation

Next, we consider the crucial issue of constraint propagation. We take
care of it by proposing rules for the

∑n
i=1 aixi = b and x · y = z constraints.

This is done by introducing first an interval arithmetic on integers.
It involves a generalisation of the arithmetic operations to the sets of

integers. For X, Y sets of integers we define the following operations:

• addition:

X + Y := {x + y | x ∈ X, y ∈ Y },

• subtraction:

X − Y := {x− y | x ∈ X, y ∈ Y },

• multiplication:

X · Y := {x · y | x ∈ X, y ∈ Y },

• division:

X/Y := {u ∈ Z | ∃x ∈ X∃y ∈ Y u · y = x}.

For an integer a and op ∈ {+,−, ·, /} we identify a op X with {a} op X and
X op a with X op {a}.

Without entering into details let us mention that there are some subtleties
concerned the above definition of the division. An interested reader will find
more details in Section 6.5. Note that this operation is defined for all sets
of integers, including Y = ∅ and Y = {0}.

When limiting our attention to intervals of integers the following obser-
vation is then of importance.

Note For X, Y integer intervals and a an integer the following holds:

• X ∩ Y , X + Y, X − Y are integer intervals.
• X/{a} is an integer interval.
• X ·Y does not have to be an integer interval, even if X = {a} or Y = {a}.
• X/Y does not have to be an integer interval. �

For example we have

[2..4] + [3..8] = [5..12],
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[3..7]− [1..8] = [−5..6],

[3..3] · [1..2] = {3, 6},

[3..5]/[−1..2] = {−5,−4,−3, 2, 3, 4, 5},

and

[−3..5]/[−1..2] = Z.

To deal with the problem that non-interval domains can be produced by
the interval multiplication and division we introduce the following operation
on the subsets of the set of the integers Z:

int(X) :=

{
smallest integer interval containing X if X is finite,
Z otherwise.

For example int([3..3] · [1..2]) = [3..6], int([3..5]/[−1..2]) = [−5..5] and
int([−3..5]/[−1..2]) = Z.

We are now ready to introduce the appropriate rules that deal with the∑n
i=1 aixi = b and x · y = z constraints. For the first constraint note that

n∑
i=1

aixi = b

implies that for j ∈ [1..n] we have

xj =
b−∑

i∈[1..n]−{j} aixi

aj

This suggests the following rule:

LINEAR EQUALITY

〈∑n
i=1 aixi = b ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈∑n
i=1 aixi = b ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where

• for i �= j

D′
i := Di,

•

D′
j := Dj ∩

b−∑
i∈[1..n]−{j} int(ai ·Di)

aj
.
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So this rule is parametrised by j and it allows us to reduce the domain
of the xj variable. Note the use of the int function to convert ai ·Di to an
integer interval. Thanks to the above Note the new domain of xj remains
an interval. Note that after this rule is applied the inclusion

Dj ⊆
b−∑

i∈[1..n]−{j} int(ai ·Di)
aj

holds.
To deal with the x · y = z constraint we introduce three rules that aim at

similar inclusions between the variable domains. To maintain the property
that the domains remain intervals we use in each of them the int function:

MULTIPLICATION 1
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ∩ int(Dx ·Dy)〉

MULTIPLICATION 2
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx ∩ int(Dz/Dy), y ∈ Dy, z ∈ Dz〉

MULTIPLICATION 3
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ int(Dz/Dx), z ∈ Dz〉

Each of the MULTIPLICATION rules allows us to reduce one variable do-
main. Note that after the first rule is applied the inclusion Dz ⊆ int(Dx ·Dy)
holds, after the second rule is applied, the inclusion Dx ⊆ int(Dz/Dy) holds,
and after the third rule is applied, the inclusion Dy ⊆ int(Dz/Dx) holds.

These three rules, when combined together, allow us to carry out impor-
tant domain reductions. Consider for example the CSP

〈x · y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉.

One can check that using all three MULTIPLICATION rules we can trans-
form it to

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉.

So using these rules we can find here a unique solution, x = 16, y = 10 and
z = 160, to the original CSP.



3.4 Example: polynomial constraints on integer intervals 79

Split

We apply the following bisection rule:

x ∈ [a..b]
x ∈ [a..�a+b

2 �] | x ∈ [�a+b
2 �+ 1..b]

where a, b are integers such that a < b. We combine it with the following
heuristic:

choose the variable with the smallest interval domain.

Proceed by cases

We are interested in finding a solution with a maximal value of the objec-
tive function, so we choose here the branch and bound method. To be able
to prune the search tree we need an appropriate heuristic function. To this
end we employ the interval arithmetic on integers. Using it we can extend
the objective function to a function from the integer intervals to finite sets
of integers. The heuristic function will then be the maximum this extension
can achieve on the current intervals.

More precisely, given an objective function obj that is a polynomial with
the variables x1, . . ., xn, we denote by obj(a1, . . ., an) the result of evaluating
obj when each variable xi is replaced by ai. For example, for

obj(x, y) := x2 · y − 3x · y2 + 5

we have obj(2, 3) = 22 · 3− 3 · 2 · 32 + 5, i.e., obj(2, 3) = −37.
Further, we define the extension obj+ of obj to a function from the sets of

integers to the sets of integers by interpreting exponentiation as a repeated
multiplication and using the provided above definition of the interval arith-
metic. For example, for obj(x, y) defined as above, we have for X, Y sets of
integers

obj+(X, Y ) = X ·X · Y − 3 ·X · Y · Y + 5,

where we interpreted x2 as x · x and y2 as y · y.
In general, since the multiplication operation does not map integer inter-

vals to integer intervals, the extension obj+ of obj, when applied to integer
intervals, does not need to produce an integer interval. Still the following
holds.

Lemma Consider a function obj that is a polynomial with the variables
x1, . . ., xn. Let X1, . . ., Xn be intervals of integers. Then

(i) obj+(X1, . . ., Xn) is a finite set of integers.
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(ii) For any sequence of integers a1, . . ., an such that ai ∈ Xi for i ∈ [1..n]

obj(a1, . . ., an) ∈ obj+(X1, . . ., Xn).

(iii) For any sequence of intervals of integers Y1, . . ., Yn such that Yi ⊆Xi

for i ∈ [1..n]

obj+(Y1, . . ., Yn)⊆ obj+(X1, . . ., Xn).

�

The first statement holds since the addition, subtraction and multiplica-
tion operations map finite sets of integers to finite sets of integers. The
second and third statements can be proved by induction on the structure
of obj. The third statement states that the obj+ function is monotonic
w.r.t. the set inclusion.

This brings us to the definition of the heuristic function h. Take a CSP
P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 with D1, . . ., Dn integer intervals and a
function obj that is a polynomial with the variables x1, . . ., xn. We define

h(P) := max(obj+(D1, . . ., Dn)).

Then by the above Lemma and the fact that we use the bisection rule as
the Split procedure, the function h satisfies the two properties we stipulated
in Subsection 3.2.5 for the heuristic function.

Let us return now to the problem that in the Preprocess procedure we
introduced the variables with the domains that are not intervals. Note that
each time we introduce such a variable x, it is equated with a polynomial,
say s. On the account of the first item of the above Lemma the function
s+, when applied to the domains of the variables present in s, yields a finite
set of integers D. We can then use int(D) as the domain of the variable x

instead of Z.

This completes the presentation of a specific approach for dealing with
constrained optimization problems concerning polynomial constraints on the
integer intervals.

3.5 Summary

The aim of this chapter was to introduce informally the main concepts of
constraint programming. To this end we provided a simple general frame-
work and discussed its main components. In particular, we clarified the
following aspects of constraint programming:



3.6 Bibliographic remarks 81

• preprocessing,
• search, and
• constraint propagation.

We also introduced two standard search methods:

• backtracking, and
• branch and bound,

and mentioned the role of

• heuristics

in the search process. Finally, we illustrated these concepts on two examples:

• Boolean constraints, and
• polynomial constraints on integer intervals.

Many elements of constraint programming have been by necessity omit-
ted in this informal presentation. For example, we devoted to the constraint
propagation algorithms just one paragraph, mentioned just one local consis-
tency notion, and did not discuss any algorithms for backtracking and the
branch and bound method.

Still, this brief introduction to the specifics of constraint programming
sheds some light on the subject and provides some insights into the choices
that need to be made when trying to solve a problem by means of constraint
programming techniques.

3.6 Bibliographic remarks

All bibliographic references to the methods and approaches mentioned here
will be found in the later chapters. In particular, in Chapter 5 we provide a
detailed account of several notions of local consistency and in Chapter 7 we
study the constraint propagation algorithms. Finally, the search methods
are explained in Chapter 8.
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B Y A constraint solver we mean any procedure that transforms a
CSP into an equivalent one. In practice we are interested in efficient
constraint solvers. In this book we distinguish between complete

and incomplete constraint solvers. 3

Intuitively, a complete constraint solver transforms the initial CSP P
to one from which it is straightforward to generate all solutions to P or to
determine that no solution exists. Admittedly, this statement is imprecise.
In the case of the solvers discussed in this chapter we shall make it precise
by employing the notion of a solved form. Its definition depends on the type
of constraints used.

We call a constraint solver that is not complete an incomplete con-

straint solver . Intuitively, such a constraint solver transforms the initial
CSP into a simpler one, all solutions to which can be eventually found by
a, possibly repeated, case analysis modeled by splitting. As such a repeated
case analysis results in general in an exponential running time, we do not
allow it to be a part of the constraint solvers.

For the incomplete solvers a natural question arises what they actually
3 The reader familiar with the basics of mathematical logic should be warned that this terminol-

ogy has no relation to the concepts of complete and incomplete theories.

82
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achieve. To clarify this issue we introduce various notions of local consis-
tency. This explains the order of the chapters that follow. In this one we
focus on some complete constraint solvers, in the next one on various no-
tions of local consistency and in Chapter 6 we study a number of incomplete
constraint solvers.

For a number of domains and constraints complete constraint solvers were
developed. The aim of this chapter is to illustrate such solvers by means
of three well-known examples. They are described in a uniform way us-
ing a simple proof theoretic framework involving rules that transform CSPs
while maintaining equivalence. The executions of a constraint solver corre-
spond then to specific derivations in the considered proof system. The so
presented complete constraint solvers resemble the original formulations of
the considered algorithms. This framework will also be used in the next
two chapters, to characterise the notions of local consistency and to define
various incomplete constraint solvers.

This chapter is organised as follows. First, in Section 4.1, we introduce
the already mentioned proof theoretic framework. Then, in Section 4.2
we consider finite sets of term equations. The problem of solving them is
known as the unification problem. To solve it we introduce the Martelli–

Montanari algorithm.
Next, in Section 4.3 we study the problem of solving finite sets of linear

equations over reals. We present two classic algorithms that allow us to
solve them: the Gauss–Jordan Elimination algorithm and the Gaussian

Elimination algorithm. Finally, in Section 4.4 we study a related problem
of solving finite sets of linear inequalities over reals. To this end we discuss
the Fourier–Motzkin Elimination algorithm.

4.1 A proof theoretical framework

We begin by introducing a simple formal framework that we shall use for a
number of purposes, namely

• to define in this chapter three complete constraint solvers,

• to characterise in Chapter 5 various notions of local consistency, and

• to define in Chapter 6 a number of incomplete constraint solvers.

In this framework we introduce proof rules and derivations.
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4.1.1 Proof rules

The proof rules are used to express transformations of CSPs. So they are of
the form

φ

ψ

where φ and ψ are CSPs. In these rules, just as in the definition of CSPs, the
order of the constraints in the premise and in the conclusion is irrelevant.

Our intention is to use the proof rules to reduce one CSP to another CSP
in such a way that the equivalence (usually w.r.t. to the initial sequence of
the variables) is maintained. This motivates the following definition.

Definition 4.1 A proof rule

φ

ψ

is called equivalence preserving (respectively, equivalence preserving

w.r.t. a sequence of the variables X) if φ and ψ are equivalent (respectively,
equivalent w.r.t. X).

If X is the empty sequence, we say that the proof rule is consistency

preserving . �

As in the case of the equivalence notion introduced in Section 3.1, it is
in general not easy to determine whether a rule is equivalence preserving.
Fortunately, the rules that we shall consider will be very simple and from the
way we introduce them it will be clear that they are all equivalence preserv-
ing. If the sets of variables of the premise CSP and conclusion CSP differ,
then the rule under consideration will be equivalence preserving w.r.t. the
sequence of the common variables.

The consistency preserving rules will be of interest only in Section 4.4.
Note that a proof rule

φ

ψ

is consistency preserving if the following equivalence holds:

φ is consistent iff ψ is consistent.

So consistency preserving is a weaker property than equivalence preserving.
In general, constraint solvers aim at either reducing the domains of the

considered variables or at reducing the considered constraints, while main-
taining equivalence. This translates into two types of equivalence preserving
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rules. Assume that

φ := 〈C ; DE〉

and

ψ := 〈C′ ; DE ′〉.

Domain reduction rules These are rules in which the new domains are
respective subsets of the old domains and the new constraints are respective
restrictions of the old constraints to the new domains. So here

• DE := x1 ∈ D1, . . ., xn ∈ Dn,
• DE ′ := x1 ∈ D′

1, . . ., xn ∈ D′
n,

• for i ∈ [1..n] we have D′
i ⊆Di,

• C′ is the result of restricting each constraint in C to the corresponding
subsequence of the domains D′

1, . . ., D
′
n.

Here a failure is reached only when a domain of one or more variables gets
reduced to the empty set.

A typical example of a domain reduction rule is the following rule from
Subsection 3.2.6 that deals with linear inequalities over integer intervals:

〈x < y ; x ∈ [lx..hx], y ∈ [ly..hy]〉
〈x < y ; x ∈ [lx..min(hx, hy − 1)], y ∈ [max(ly, lx + 1)..hy]〉

Two other examples are the following rules that deal with, respectively,
equality and disequality constraints. Here and elsewhere we delete from the
conclusion all solved constraints (but keep all the domain expressions). Also,
we abbreviate the domain expression x ∈ {a} to x = a.

EQUALITY

〈x = y ; x ∈ Dx, y ∈ Dy〉
〈x = y ; x ∈ Dx ∩Dy, y ∈ Dx ∩Dy〉

Note that this rule yields a failure when Dx ∩Dy = ∅. In case Dx ∩Dy is
a singleton set the constraint x = y becomes solved and is then deleted.

DISEQUALITY

〈x �= y ; x ∈ D, y = a〉
〈 ; x ∈ D − {a}, y = a〉

where a ∈ D, and similarly with x �= y replaced by y �= x.
Following the just introduced convention we dropped the constraint from

the conclusion of this rule. This explains its format. Note that this rule
yields a failure when D − {a} = ∅.
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Transformation rules These rules are not domain reduction rules and are
such that C′ �= ∅ and DE ′ extends DE by domain expressions referring to
non-empty domains.

The fact that DE ′ extends DE means that the domains of common vari-
ables are identical and that possibly new domain expressions have been
added to DE . Such new domain expressions deal with new variables on
which some constraints have been introduced. These variables range over
non-empty domains. Here a failure is reached only when the false constraint
⊥ is generated.

An example of a transformation rule is the following rule that simplifies
the disequality constraint for integer variables:

DISEQUALITY TRANSFORMATION

〈s �= t ; DE〉
〈x �= t, x = s ; DE , x ∈ Z〉

where

• s is not a variable,
• DE is a sequence of the domain expressions involving the variables present

in s and t,
• x is a variable that does not appear in DE .

Another example is following rule that substitutes a variable by a value,
in case the domain of this variable is a singleton set:

VARIABLE ELIMINATION

〈C ; DE , x = a〉
〈C{x/a} ; DE , x = a〉

where x occurs in C.
We assume here that the constraints in C are written in some further

unspecified language. Here a stands for the constant that denotes in this
language the value a and C{x/a} denotes the set of constraints obtained
from C by substituting in each of them every occurrence of x by a. So x

does not occur in C{x/a}.
To further clarify this rule consider the following instance of it:

〈3xy2 + 5xy − 5yz ≤ 6 ; x ∈ [0..100], y = 2, z ∈ [0..100]〉
〈22x− 10z ≤ 6 ; x ∈ [0..100], y = 2, z ∈ [0..100]〉

It transforms a non-linear constraint to a linear one.
Typical examples of transformation rules are
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Introduction rules. These rules are of the form

〈C ; DE〉
〈C, C ; DE〉

in which a new constraint, C, was introduced in the conclusion.
If such a rule does not depend on DE , then we abbreviate it to

C
C, C

and similarly with other transformation rules.
As an example of an introduction rule recall the already mentioned in

Subsection 3.2.6 resolution rule:

RESOLUTION

C1 ∨ L, C2 ∨ L̄

C1 ∨ L, C2 ∨ L̄, C1 ∨ C2

We assume here that C1 and C2 are clauses, L is a literal, L̄ the literal
opposite to L and that all variables range over the {0, 1} domain.

4.1.2 Derivations

Now that we have defined the proof rules, we define the result of applying a
proof rule to a CSP. Intuitively, a rule application leads to a replacement in
the given CSP of the part that coincides with the premise by the conclusion
and the restriction of the ‘old’ constraints to the new domains in case this
is a domain reduction rule. Because of possible variable clashes we need to
be more precise. So assume a CSP of the form 〈C ∪ C1 ; DE ,DE1〉, where C
and C1 are disjoint, and consider a rule of the form

〈C1 ; DE1〉
〈C2 ; DE2〉

(4.1)

Call a variable that appears in the conclusion but not in the premise an
introduced variable of the rule. The application of the rule (4.1) to the
CSP 〈C ∪ C1 ; DE ,DE1〉 is performed by carrying out the following steps:

• rename the introduced variables of (4.1) so that they do not appear in
〈C ; DE〉,

• replace the 〈C1 ; DE1〉 part by 〈C2 ; DE2〉,
• restrict the constraints of C to the domains of DE ,DE2. Denote the

resulting set of constraints by C′
.
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We say then that rule (4.1) can be applied to 〈C ∪ C1 ; DE ,DE1〉 and call

〈C′ ∪ C2 ; DE ,DE2〉

the result of applying rule (4.1) to 〈C ∪ C1 ; DE ,DE1〉.
The following lemma explains why the equivalence preserving rules are

important.

Lemma 4.2 (Equivalence) Suppose that the CSP ψ is the result of ap-
plying an equivalence preserving rule to the CSP φ. Then φ and ψ are
equivalent.

Proof The proof is left as Exercise 4.1. �

To discuss the effect of an application of a proof rule to a CSP we introduce
the following notions.

Definition 4.3 Consider two CSPs φ and ψ and a rule R.

• Suppose that ψ is the result of applying the rule R to the CSP φ. If
ψ differs from φ, then we call this a relevant application of R to
φ.

• Suppose that the rule R cannot be applied to φ or no application
of it to φ is relevant. Then we say that φ is closed under the

applications of R. �

When the constraints are represented in some language, it is in general
not easy to determine whether a rule application is relevant, or whether a
CSP is closed under the applications of the considered rules. Fortunately,
we shall use both concepts only in concrete situations in which it will be
easy to check them.

When introducing proof rules our intention is to obtain CSPs that are
closed under the applications of these rules. So the last notion is crucial for
our considerations. To understand it better consider the following examples.

Example 4.4

(i) Consider the following domain reduction rule already discussed in Sub-
section 3.2.6:

〈x < y ; x ∈ [lx..hx], y ∈ [ly..hy]〉
〈x < y ; x ∈ [lx..min(hx, hy − 1)], y ∈ [max(ly, lx + 1)..hy]〉

It is easy to check that the CSP considered there

〈x < y, y < z ; x ∈ [50..98], y ∈ [51..99], z ∈ [52..100]〉
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is closed under the applications of this rule.

(ii) Assume for a moment the expected interpretation of propositional for-
mulas. As a more subtle example consider now the CSP

φ := 〈x ∧ y = z ; x ∈ {0, 1}, y = 0, z = 0〉.

Here y = 0 is an abbreviation for the domain expression y ∈ {0} and simi-
larly for z = 0.

This CSP is closed under the applications of the transformation rule

〈x ∧ y = z ; x = 1, y ∈ Dy, z ∈ Dz〉
〈y = z ; x = 1, y ∈ Dy, z ∈ Dz〉

since this rule cannot be applied to φ.

(iii) In contrast, the CSP φ := 〈x ∧ y = z ; x = 1, y ∈ {0, 1}, z ∈ {0, 1}〉 is
not closed under the applications of the above rule because this rule can be
applied to φ and the outcome, 〈y = z ; x = 1, y ∈ {0, 1}, z ∈ {0, 1}〉, differs
from φ. �

By iterating rule applications we obtain derivations. Intuitively, the deri-
vations correspond to the computation process started with the initial CSP.
In practice, all the used proof rules will be equivalence preserving. So,
ideally, we would like to reach using derivations either a solved or a failed
CSP, because this way we could either generate all solutions to the initial
CSP or show that no solution exists. Unfortunately, in general this is not
possible. Therefore we strive at a less ambitious goal, namely reducing the
original CSP to one that is closed under the applications of the considered
rules. This brings us to the following notions that are of interest to us.

Definition 4.5 Assume a finite set of proof rules.

• By a derivation we mean a sequence of CSPs such that each of
them is obtained from the previous one by an application of a proof
rule.

• A finite derivation is called

– successful if its last element is a first solved CSP in this deriva-
tion,

– failed if its last element is a first failed CSP in this derivation,
– stabilising if its last element is a first CSP in this derivation that

is closed under the applications of the considered proof rules. �

The following examples illustrate these notions.
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Example 4.6 Take the EQUALITY and DISEQUALITY rules introduced
earlier in this section.

(i) First consider the CSP

〈x = y, y �= z, u �= z ; x ∈ {a, b, c}, y ∈ {a, b, d}, z ∈ {a, b}, u = b〉

depicted in Figure 4.1.

x {a, b, c}

=

y {a, b, d}

�=

�=

u {b} z {a, b}

Fig. 4.1. A CSP consisting of equality and disequality constraints

Applying the EQUALITY rule to the x = y constraint we obtain the CSP

〈x = y, y �= z, u �= z ; x ∈ {a, b}, y ∈ {a, b}, z ∈ {a, b}, u = b〉.

Then applying the DISEQUALITY rule to the u �= z constraint we obtain

〈x = y, y �= z ; x ∈ {a, b}, y ∈ {a, b}, z = a, u = b〉.

Another application of the DISEQUALITY rule, this time to the y �= z

constraint, yields

〈x = y ; x ∈ {a, b}, y = b, z = a, u = b〉.

Finally, by the second application of the EQUALITY rule to the x = y

constraint we obtain the solved CSP

〈 ; x = b, y = b, z = a, u = b〉.

So we exhibited a successful derivation. This shows that using the EQUA-
LITY and DISEQUALITY rules we could find a unique solution to the
original CSP, namely (b, b, a, b).

(ii) Next, consider the CSP

〈x = y, y �= z, x �= z ; x ∈ {a, c}, y ∈ {b, c, d}, z = c〉

depicted in Figure 4.2.
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�=�=

y {b, c, d}x {a, c}

z {c}

=

Fig. 4.2. An inconsistent CSP consisting of equality and disequality constraints

Applying the EQUALITY rule we obtain here

〈y �= z, x �= z ; x = c, y = c, z = c〉.

Now applying the DISEQUALITY rule to the y �= z constraint we get the
failed CSP

〈x �= z ; x = c, y ∈ ∅, z = c〉.

So we exhibited a failed derivation. Note that the last CSP is not closed
under the applications of the DISEQUALITY rule so this derivation is not
stabilising.

(iii) Finally, consider the CSP

〈x = y, y �= z, x �= z ; x ∈ {a, b, c}, y ∈ {a, b, d}, z = c〉

depicted in Figure 4.3.

�=�=

y {a, b, d}x {a, b, c}

z {c}

=

Fig. 4.3. A consistent CSP consisting of equality and disequality constraints

Applying the EQUALITY rule we obtain now

〈x = y, y �= z, x �= z ; x ∈ {a, b}, y ∈ {a, b}, z = c〉.

The EQUALITY can be again applied to this CSP but its application is not
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relevant. Further, the DISEQUALITY rule cannot be applied here. So this
CSP is closed under the applications of these two rules. Consequently, this
one step derivation is stabilising. Note also that this CSP is neither solved
nor failed. So this derivation is neither successful nor failed. �

It is easy to see that every successful derivation is stabilising. Further, as
we have just seen, it is not the case that every failed derivation is stabilising.

Usually, the stabilising derivations are neither successful nor failed. In
fact, many constraint solvers yield CSPs that are neither solved nor failed:
their aim is to bring the initial CSP to some specific, simpler form that
usually satisfies some specific local consistency notion.

By definition the derivations can be either finite or infinite. Of course,
in practice we would like to avoid infinite derivations. One possibility is to
ensure that each infinite derivation has a prefix that is a stabilising (which
subsumes successful) or a failed derivation. Then we can prevent a genera-
tion of the infinite derivations once we can test that a CSP is failed or closed
under the applications of the considered proof rules.

A natural question then arises how to generate failed or stabilising deriva-
tions. Of course, in general, such derivations may not exist. However, when
all rules are domain reduction rules and the initial CSP has finite domains,
then it is easy to generate such derivations. Indeed, it suffices then to limit
one’s attention to relevant rule applications, i.e., only consider derivations
in which each rule application is relevant. Alternatively, one can schedule
the rules in an appropriate way. This way we can reach a CSP that is closed
under the applications of the considered rules. These issues are further
elaborated in Exercise 4.2.

Another natural question is under what conditions the final CSP is unique.
Also, to avoid rule applications that are not relevant, in any implementation
the rules should be selected and scheduled in an appropriate way. These
matters will be discussed in Chapter 7.

4.2 Term equations

The first complete solver we shall discuss deals with solving finite sets of
term equations. It is known as the unification problem and is of paramount
importance for automated theorem proving and for logic programming.

To properly define it we introduce in the subsequent subsections a lan-
guage of terms, the notion of a substitution and of a most general unifier.
Then we show how the unification problem can be formulated as the task of
solving certain type of CSPs. To solve the unification problem we introduce
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a set of rules in the sense of the proof theoretic framework of the previous
section and formulate the appropriate algorithm using these rules.

4.2.1 Terms

We begin by introducing the notion of an alphabet. An alphabet consists
of the following disjoint classes of symbols:

• variables,
• function symbols,
• parentheses, which are: ‘(’ and ‘)’,
• comma , that is: ‘,’ .

We assume that the set of variables is infinite and fixed. We denote the
variables by x, y, z, u. In contrast, the set of function symbols may vary and
in particular may be empty. Each function symbol has a fixed arity , that
is the number of arguments associated with it. 0-ary function symbols are
called

• constants, and are denoted by a, b, c, d.

We denote function symbols of positive arity by f, g, h, k.
Terms are defined inductively as follows:

• a variable is a term,
• if f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn)

is a term.

In particular every constant is a term. Terms are denoted by s, t, v.

Example 4.7 Consider an alphabet with two constants, a and b, one unary
function symbol, f , and one binary function symbol, g. Then the following
are examples of terms in this alphabet (separated by ‘;’):

f(a); g(x, a); g(f(a), f(b)); f(g(a, y)).

In contrast, none of these strings of symbols is a term:

f(x, a); g(b); f(g(x)); g(a, f(a, b)).

�

The set of terms is thus determined by the set of the function symbols
of the considered alphabet. In what follows we denote by Var(s) the set of
variables occurring in s. Given two terms s and t we write s ≡ t to denote
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that s and t are identical. The often used for this purpose equality symbol
‘=’ is reserved for writing term equations. Also we write s �≡ t to denote
that s and t differ.

4.2.2 Substitutions

Consider now a fixed alphabet and consequently a fixed set of terms. A
substitution is a finite mapping from variables to terms which assigns to
each variable x in its domain a term t different from x. We write it as

{x1/t1, . . . , xn/tn}

where

• x1, . . . , xn are different variables,
• t1, . . . , tn are terms,
• for i ∈ [1, n], xi �≡ ti.

Informally, it is to be read: the variables x1, . . . , xn are simultaneously re-
placed by t1, . . . , tn, respectively. A pair xi/ti is called a binding . When
n = 0, the mapping becomes the empty mapping. The resulting substitution
is then called the empty substitution and is denoted by ε.

Further, given a substitution θ := {x1/t1, . . . , xn/tn} we denote

• by Dom(θ), the set of variables {x1, . . . , xn}, and
• by Range(θ), the set of terms {t1, . . . , tn}.

We now define the result of applying a substitution θ to a term s,
written as sθ, as the result of the simultaneous replacement of each occur-
rence in s of a variable from Dom(θ) by the corresponding term in Range(θ).
We call then sθ an instance of s. Further, for two substitutions θ and η

we write θ = η if for all variables x we have xθ ≡ xη.

Example 4.8 Consider a language allowing us to build arithmetic expres-
sions in prefix form. It contains two binary function symbols, ‘+’ and ‘·’ and
infinitely many constants: 0, 1, . . .. Then s := +(·(x, 7), ·(4, y)) is a term
and for the substitution θ := {x/0, y/ + (z, 2)} we have

sθ ≡ +(·(0, 7), ·(4, +(z, 2))).

�

Next, we define the composition of two substitutions.
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Definition 4.9 Let θ and γ be substitutions. Their composition is defined
as follows. We define first a mapping η from the variables to terms by
putting for a variable x

η(x) := (xθ)γ.

In other words, η assigns to a variable x the term obtained by applying
the substitution γ to the term xθ. Clearly, for x �∈ Dom(θ) ∪ Dom(γ)
we have η(x) ≡ x, so η is not an identity only on finitely many variables.
Hence η uniquely identifies a substitution that we denote by θγ and call the
composition of θ and γ. �

For example, for θ = {u/z, x/a, y/f(x, b)} and γ = {x/c, z/u} we can
check that θγ = {x/a, y/f(c, b), z/u}.

Next, we introduce the following notion.

Definition 4.10 Let θ and η be substitutions. We say that θ is more

general than η if for some substitution γ we have η = θγ. �

For example, {x/y} is more general than {x/a, y/a} since {x/y}{y/a} =
{x/a, y/a}. The notion of ‘more general than’ is pretty subtle. Note for
example that the substitution {x/y} is not more general than {x/a}. Indeed,
if we had {x/y}γ = {x/a} for some substitution γ, then the binding y/a

would belong to γ and thus also to {x/y}γ. An analogous argument shows
that {x/y} is not more general than the empty substitution ε either.

Thus θ is more general than η if η can be obtained from θ by applying to
it some substitution γ. Since γ can be chosen to be the empty substitution
ε, we conclude that every substitution is more general than itself.

4.2.3 Unifiers and mgus

As stated at the beginning of this section we are interested in solving finite
sets of term equations. To define precisely the considered problem we need
to introduce a couple of notions.

Definition 4.11 Consider a finite set of term equations (or, simply, equa-
tions) {s1 = t1, . . ., sn = tn}.

• We define the result of applying a substitution θ to such a set of
equations by

{s1 = t1, . . ., sn = tn}θ := {s1θ = t1θ, . . ., snθ = tnθ}.
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• θ is called a unifier of {s1 = t1, . . ., sn = tn} if

s1θ ≡ t1θ, . . ., snθ ≡ tnθ.

If a unifier θ of a singleton set {s = t} exists, then we say that θ is
a unifier of s = t. We also say that s and t are unifiable and call
such a θ a unifier of s and t.

• A unifier θ of a finite set of equations E is called a most general

unifier (in short mgu) of E if it is more general than all unifiers of
E. �

Intuitively, an mgu is a substitution which makes in each equation both
terms identical but which does it in a ‘most general way’, without unneces-
sary bindings. Note that if a finite set of term equations has a unifier, then
it has an infinite number of unifiers. Indeed, if θ is a unifier of such a set
E, then so is θγ for any substitution γ. However, this infinite set admits a
finite representation. This is the essence of the definition of a most general
unifier and of the final theorem of this section.

Let us consider an example.

Example 4.12
(i) Consider E := {f(g(x, a), z) = f(y, b)}. Then {x/c, y/g(c, a), z/b} is one
of the unifiers of E and so is {y/g(x, a), z/b} which is more general than
{x/c, y/g(c, a), z/b} since

{x/c, y/g(c, a), z/b} = {y/g(x, a), z/b}{x/c}.

Actually, one can show that {y/g(x, a), z/b} is an mgu of E.

(ii) Next, consider {f(g(a, y), z) = f(h(x, b), b)}. It has no unifier as for no
substitution θ we have g(a, y)θ ≡ h(x, b)θ.

(iii) Finally, consider {g(x, a) = g(f(x), a)}. It has no unifier either because
f(x)θ ≡ f(xθ) and hence for any substitution θ the term xθ is a proper
substring of f(x)θ and thus differs from f(x)θ. �

The problem of deciding whether a finite set of term equations has a unifier
is called the unification problem . It is solved by providing an algorithm
that terminates with failure if the set has no unifier and otherwise produces
a most general unifier of it.

In general, a unifier may not exist for two reasons. The first one is ex-
emplified in item (ii) above which shows that two terms starting with a
different function symbol cannot unify. The second one is exemplified in
item (iii) above which shows that x and f(x) (or more generally, x and a
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term different from x but in which x occurs) cannot unify. As we saw, each
possibility can occur at an ‘inner level’ of the considered two terms. These
two possibilities can be found back in the discussed unification algorithm. In
the correctness proof of this algorithm we shall rely on the following notion.

Definition 4.13 Given a set of equations E we say that an equation from
E is in solved form if it is of the form x = t, where x �∈ Var(t) and x does
not occur elsewhere in E. If each equation in E is in solved form, we say
that E is in solved form . �

So a finite set of equations is in solved form if it is of the form

{x1 = t1, . . ., xn = tn},

where the xis are distinct variables and none of them occurs in a term tj .

Example 4.14
(i) The set of equations {z = h(g(a)), x = g(a), y = b} is in solved form, be-
cause the variables z, x and y occur in it only once.

(ii) In contrast, the set of equations {z = h(g(z)), x = g(a), y = b} is not in
solved form, because z appears in h(g(z)). �

The interest in finite sets of equations in solved form is revealed by the
following lemma. The reference to a strong mgu will be helpful in the
correctness proof of the unification algorithm.

Lemma 4.15 (Solved Form) Call an mgu θ of a set of equations E strong
if for every unifier η of E we have η = θη. If E := {x1 = t1, . . ., xn = tn} is
in solved form, then the substitution θ := {x1/t1, . . ., xn/tn} is a strong mgu
of E.

Proof First note that θ is a unifier of E. Indeed, for i ∈ [1, n] we have
xiθ ≡ ti and moreover tiθ ≡ ti, since by assumption no xj occurs in ti.

Next, suppose η is a unifier of E. Then for i ∈ [1, n] we have xiη ≡ tiη ≡
xiθη because ti ≡ xiθ and for x �∈ {x1, . . ., xn} we have xη ≡ xθη because
x ≡ xθ. So we showed that for all variables x we have xη ≡ xθη. Thus by
definition η = θη, that is, θ is a strong mgu. �

We say then that E determines θ. For example, the already mentioned
set of equations

{z = h(g(a)), x = g(a), y = b}
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determines the substitution

{z/h(g(a)), x/g(a), y/b}.

4.2.4 Unification problem and solving of CSPs

True to the spirit of this book we deal with the unification problem by
formulating it as a task of solving a CSP. So we first represent it as a CSP
and then solve it by repeatedly transforming it until we reach a failed CSP
or a CSP from which it is straightforward to generate all solutions.

We now explain how we view finite sets of term equations as a CSP. Fix
an alphabet. We assume that the variables range over the same domain, the
set of all terms, denoted by T .

Next, we interpret term equations as constraints. Consider an equation
s = t with the variables x1, . . ., xn occurring in it. We interpret s = t as the
following subset of the Cartesian product T n:

{(x1η, . . ., xnη) | η is a unifier of s and t}.

Example 4.16

(i) Consider the equation x = f(y). We interpret it as the following subset
of T 2:

{(xη, yη) | η is a unifier of x and f(y)}.

One can show that η is a unifier of x and f(y) iff it is of the form {x/f(y)}γ,
where γ is an arbitrary substitution. So the above set equals

{(f(y)γ, yγ) | γ is a substitution}.

Alternatively, we can write this set as

{(f(t), t) | t is a term}.

�

This leads to a unique interpretation of a finite set of term equations E as
a CSP. The following simple observation then links the notions of a solution
to a CSP and of a unifier. For a CSP P we write here Sol(P) to denote the
set of all solutions to P.

Note 4.17 (Unification) Consider a finite set of term equations E with
the variables x1, . . ., xn. Then

Sol(〈E ; x1 ∈ T , . . ., xn ∈ T 〉) = {(x1η, . . ., xnη) | η is a unifier of E}.
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Proof It is a direct consequence of the way we interpret the equations as
constraints. �

This observation allows us to reduce the problem of finding a unifier to
the problem of solving a CSP.

4.2.5 The UNIF proof system

To solve the unification problem we now introduce six transformation rules.
These rules do not depend on the domain expressions, so they refer only to
the constraints, i.e., to the equations. These rules amount to some syntactic
manipulations of the constraints, so they are actually applied to the syntactic
representations of the considered constraints.

DECOMPOSITION

f(s1, . . ., sn) = f(t1, . . ., tn)
s1 = t1, . . ., sn = tn

FAILURE 1

f(s1, . . ., sn) = g(t1, . . ., tm)
⊥

where f �≡ g,

DELETION

x = x

TRANSPOSITION

t = x

x = t

where t is not a variable,
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SUBSTITUTION

x = t, E

x = t, E{x/t}
where x �∈ Var(t) and x ∈ var(E),

FAILURE 2

x = t

⊥
where x ∈ Var(t) and x �≡ t.

Recall that the ordering of the constraints in the rules is irrelevant so in the
SUBSTITUTION rule the order of the considered equations is immaterial.
Denote the set of the above six rules by UNIF. To illustrate the use of these
rules consider an example. As the variable domains are always equal to the
set of all terms, T , we drop the references to the domain expressions and
just consider sets of equations. The selected equations are underlined.

Example 4.18
(i) Consider the set of equations

{k(z, f(x, b, z)) = k(h(x), f(g(a), y, z))}.

Using the DECOMPOSITION rule we get

{z = h(x), f(x, b, z) = f(g(a), y, z)}.

Using the DECOMPOSITION rule again we get

{z = h(x), x = g(a), b = y, z = z}.

Using the DELETION rule we can get rid of the last equation. This yields

{z = h(x), x = g(a), b = y}.

By the TRANSPOSITION rule we get

{z = h(x), x = g(a), y = b}.

Using the SUBSTITUTION rule with x = g(a) as the isolated equation we
get

{z = h(g(a)), x = g(a), y = b}.

At this stage no rule applies so we reached a CSP closed under the applica-
tions of the rules of UNIF.
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(ii) Consider now the set of equations

{k(z, f(x, b, z)) = k(h(x), f(g(z), y, z))}.

The only difference between this set and the one considered in (i) is that
instead of the subterm g(a) here the subterm g(z) occurs. Let us try to
repeat the choices made in (i). By the DECOMPOSITION rule we get

{z = h(x), f(x, b, z) = f(g(z), y, z)}.

By another application of the DECOMPOSITION rule we get

{z = h(x), x = g(z), b = y, z = z}.

Using the DELETION rule we can get rid of the last equation. This yields

{z = h(x), x = g(z), b = y}.

By the TRANSPOSITION rule we now get

{z = h(x), x = g(z), y = b}.

Next, by the SUBSTITUTION rule with x = g(z) as the isolated equation
we get

{z = h(g(z)), x = g(z), y = b}.

Now, however, the FAILURE 2 rule applies and we get the set

{⊥, x = g(z), y = b}

that contains the false constraint ⊥. By definition, no rule can be applied
to a failed CSP, so the last set closed under the applications of the rules of
UNIF. �

Unfortunately, if we use as the algorithm the rules of UNIF applied in
an arbitrary fashion, this algorithm can diverge, as the following example
shows. As before the selected equations are underlined.

Example 4.19 Consider the set of equations

{x = f(y), y = g(x), x = a}.

Using the SUBSTITUTION rule with x = f(y) as the isolated equation we
get

{x = f(y), y = g(x), f(y) = a}.
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Again using the SUBSTITUTION rule, this time with y = g(x) as the
isolated equation, we get

{x = f(y), y = g(x), f(g(x)) = a}.

Iterating this process we get an infinite derivation. Note also that the third
equation repeatedly changes so each rule application is relevant and conse-
quently no prefix of this infinite derivation is a stabilising derivation. �

So the SUBSTITUTION rule as it stands causes problems. Before we
consider a possible remedy let us prove that in absence of divergence the
UNIF system allows us to solve the original set of term equations. We need
first the following lemma.

Lemma 4.20 (UNIF) Each rule of UNIF is equivalence preserving w.r.t.
the sequence of the variables present in the rule premise.

Proof On the account of the Unification Note 4.17 it suffices to prove
that for each rule the sets of equations considered in the premise and in the
conclusion have the same set of unifiers.

This claim holds for the DECOMPOSITION rule because for all θ we
have f(s1, . . ., sn)θ ≡ f(t1, . . ., tn)θ iff for i ∈ [1, n] it holds that siθ ≡ tiθ.
For the DELETION and TRANSPOSITION rules the claim is obvious.

For the SUBSTITUTION rule consider two sets of equations {x = t}∪E

and {x = t} ∪ E{x/t} and assume that x �∈ Var(t).
Then

θ is a unifier of {x = t} ∪ E

iff θ is a unifier of x = t and θ is a unifier of E

iff {Solved Form Lemma 4.15}
θ is a unifier of x = t and {x/t}θ is a unifier of E

iff θ is a unifier of x = t and θ is a unifier of E{x/t}
iff θ is a unifier of {x = t} ∪ E{x/t}.

Finally, for the FAILURE 1 and FAILURE 2 rules the claim holds since
in each case no unifier exists for the equation in the rule premise. �

We can now establish the relevant result.

Theorem 4.21 (UNIF) Consider a failed or a stabilising derivation in the
proof system UNIF starting with a finite set of equations E and terminating
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with a set of constraints F . If E has a unifier, then F is in solved form that
determines an mgu of E and otherwise F contains the false constraint ⊥.

Proof If F does not contain ⊥, the final set of constraints F is closed
under the applications of all the rules of UNIF. Then on the account of the
DECOMPOSITION, FAILURE 1 and TRANSPOSITION rules the left-
hand side of every equation in F is a variable. Further, on the account of
the DELETION, SUBSTITUTION and FAILURE 2 rules these variables
are distinct and none of them occurs in the right-hand side of an equation
in F . This implies that F is in solved form. By the Unification Note 4.17
and the UNIF Lemma 4.20 F has the same set of unifiers as the original set
E. So, on the account of the Solved Form Lemma 4.15, F determines an
mgu of E.

If the final set of constraints F contains ⊥, then the last selected equation
is either f(s1, . . ., sn) = g(t1, . . ., tm) with f �≡ g, or x = t with x ∈ Var(t)
and x �≡ t. In both cases the selected equation has no unifier. By the the
Unification Note 4.17 and the UNIF Lemma 4.20 E has no unifier.

This implies the claim. �

4.2.6 The Martelli–Montanari algorithm

To ensure termination we introduce the following concept, where we refer
to the arbitrary rules as considered in Section 4.1.

Definition 4.22 Consider a CSP P := 〈C ; DE〉 and a rule

〈C ; DE〉
〈C′ ; DE ′〉

Then 〈C′ ; DE ′〉 is the result of applying this rule to P. We call this rule
application global . �

So in the global rule application all constraints and domain expressions
present in the considered CSP are used in the rule premise.

Example 4.23 Reconsider the set of equations

{x = f(y), y = g(x), x = a}

of Example 4.19. We begin with

{x = f(y), y = g(x), x = a},
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where x = f(y) is the isolated equation. Using the SUBSTITUTION rule
we get

{x = f(y), y = g(f(y)), f(y) = a}.

Now, using the FAILURE 2 rule we get

{x = f(y),⊥, f(y) = a}

and the derivation terminates with a failed CSP. �

Note that the considered application of the SUBSTITUTION rule was
global. In contrast, the applications of the SUBSTITUTION rule considered
in Example 4.19 were not global: each time one equation was ‘left out’. Note
also the applications of the SUBSTITUTION rule considered in Example
4.18 were not global either. However, they amounted to global applications
since each time the substituted variable occurred only in one other equation.
In contrast, the applications of the SUBSTITUTION rule considered in
Example 4.19 do not correspond to the global applications since each time
the substituted variables occurred in two other equations.

So the use of global applications of the SUBSTITUTION rule can make
a difference. In fact, if we limit ourselves to such applications of this rule,
all derivations are finite. More specifically, the following lemma holds.

Lemma 4.24 (Termination) Every derivation in UNIF in which all the
applications of the SUBSTITUTION rule are global is finite.

Proof The proof is rather subtle because the DECOMPOSITION and
SUBSTITUTION rules seem to be ‘in conflict’ with each other. The first
one makes the equations structurally simpler while the second rule can make
the individual equations more complex.

A solution is to order in an appropriate way the relevant quantities that
are supposed to decrease. To this end we use the following relation ≺3

defined on triples of natural numbers:

(a1, a2, a3) ≺3 (b1, b2, b3)

iff
a1 < b1

or a1 = b1 and a2 < b2

or a1 = b1 and a2 = b2 and a3 < b3.

For example, we have (1, 15, 10000) ≺3 (2, 1, 1), (1, 15, 10000) ≺3 (1, 16, 1)
and (1, 16, 1) ≺3 (1, 16, 10000).
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This relation, called a lexicographic ordering (here on the triples of nat-
ural numbers), is well-founded which means that no infinite ≺3-descending
sequence of triples of natural numbers exists.

Given a set of equations E, we call a variable x solved in E if for some
term t we have x = t ∈ E and this is the only occurrence of x in E, that is,
if the equation x = t is in solved form. We call a variable unsolved in E if
it is not solved.

For example for E := {x = f(y), y = g(b), a = z} the variable x is solved
in E while the variables y and z are unsolved.

With each set of equations E we now associate the following three func-
tions:

uns(E) – the number of variables in E that are unsolved,
lfun(E) – the total number of occurrences of function symbols

on the left-hand side of an equation in E,
card(E) – the number of equations in E.

We claim that each rule application to a set of equations E reduces the
triple of natural numbers

(uns(E), lfun(E), card(E))

in the lexicographic ordering ≺3. In the case of the SUBSTITUTION rule
we assume that we are dealing with a global application.

Indeed, no rule application turns a solved variable into an unsolved one,
so uns(E) never increases. Further, each application of the DECOMPO-
SITION and TRANSPOSITION rule decreases lfun(E) by at least 1. In
turn, each application of the FAILURE 1, DELETION and FAILURE 2
rules does not change or reduces lfun(E) and decreases card(E) by 1.

Finally, each global application of the SUBSTITUTION rule reduces
uns(E) by 1. Indeed, ‘global’ means that at the moment of the rule appli-
cation {x = t} ∪ E is the set of all equations. So such an application of
the SUBSTITUTION rule turns x from an unsolved variable to a solved
one. (Note that an arbitrary application of the SUBSTITUTION rule does
not need to reduce uns(E); see for instance the applications of this rule in
Example 4.19.)

The termination is now the consequence of the well-foundedness of ≺3. �

We can now present the desired algorithm. Consider the six rules of the
UNIF system but limit the use of the SUBSTITUTION rule to the global
applications. As explained in Section 4.1 these rules determine a constraint
solver, in this case a unification algorithm. So the unification algorithm
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consists of the above six rules together with a scheduler that repeatedly
applies them until a failed CSP or a CSP closed under the applications of
these rules is reached. In the case of the SUBSTITUTION rule only the
global applications are performed.

This algorithm is called the Martelli–Montanari algorithm. Once we
view the applications of the SUBSTITUTION rule as global applications,
the derivations presented in Example 4.18 are example executions of this
algorithm. The following result establishes its correctness.

Theorem 4.25 (Martelli–Montanari Algorithm) The Martelli–

Montanari algorithm always terminates. If the original finite set of equa-
tions E has a unifier, then each execution of the algorithm terminates with
a set of equations in solved form that determines an mgu of E and otherwise
each execution terminates with a set containing the false constraint ⊥.

Proof It is a direct consequence of the TERMINATION Lemma 4.24 and
the UNIF Theorem 4.21. �

Let us clarify now why the Martelli–Montanari algorithm can be
viewed as a complete constraint solver. In Subsection 4.2.4 we explained
how each set of term equations E with the variables x1, . . ., xn corresponds
to a unique CSP 〈E ; x1 ∈ T , . . ., xn ∈ T 〉 and summarised this relationship
by the Unification Note 4.17.

In particular, for each finite set of equations E := {x1 = t1, . . ., xn = tn}
in solved form we have

Sol(〈E ; x1 ∈ T , . . ., xn ∈ T 〉) = {(t1η, . . ., tnη) | η is a substitution},

since by the Solved Form Lemma 4.15 any unifier of E is of the form
{x1/t1, . . ., xn/tn}η for an arbitrary substitution η. So it is straightforward
to generate all solutions to 〈E ; x1 ∈ T , . . ., xn ∈ T 〉 if E is in solved form.

Now, in view of the above theorem, the Martelli–Montanari algo-
rithm transforms a given finite set of term equations into an equivalent set
of equations that is either in solved form or contains the false constraint ⊥.
In the terminology adopted at the beginning of this chapter it means that
this algorithm is a complete constraint solver.

It is useful to point out that the Martelli–Montanari algorithm is
inefficient, as for some inputs it can take an exponential time to compute an
mgu. A standard example is the following pair of two terms, where n > 0:

f(x1, . . ., xn) and f(g(x0, x0), . . ., g(xn−1, xn−1)).
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Define now inductively a sequence of terms t1, . . ., tn as follows:

t1 := g(x0, x0),

ti+1 := g(ti, ti).

It is easy to check that {x1/t1, . . ., xn/tn} is then a mgu of the terms
f(x1, . . ., xn) and f(g(x0, x0), . . ., g(xn−1, xn−1)).

For example, for n = 2 the discussed pair of terms is

f(x1, x2) and f(g(x0, x0), g(x1, x1))

and the mentioned mgu is

{x1/g(x0, x0), x2/g(g(x0, x0), g(x0, x0))}.

Now, a simple proof by induction shows that each ti has more than 2i

symbols. This shows that the total number of symbols in any mgu of the
above two terms is exponential in their size. So as long as in the Martelli–

Montanari algorithm terms are represented as strings this algorithm runs
in exponential time.

Finally, note that the mgu of the above two terms can be computed using
n rule applications of the Martelli–Montanari algorithm. This shows
that the number of rule applications used in an execution of the Martelli–

Montanari algorithm is not the right measure of the time complexity of this
algorithm. More efficient unification algorithms avoid explicit presentations
of the most general unifiers and rely on different internal representation of
terms than strings.

4.3 Linear equations over reals

In this section we present two complete constraint solvers that deal with
linear equations over reals. To discuss them we define in the next subsec-
tion the syntax and relate the linear equations over reals to CSPs. Then
we introduce a set of rules in the sense of Section 4.1 and discuss two algo-
rithms for solving finite sets of linear equations in terms of these rules: the
Gauss–Jordan Elimination algorithm and the Gaussian Elimination

algorithm.

4.3.1 Linear expressions and linear equations

Consider an alphabet such that

• each real number is a constant,
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• for each real number r a single unary function symbol ‘r·’ (standing for
the multiplication by r) exists,

• a single binary function symbol ‘+’, written in the infix notation, is
present.

By a linear expression over reals we mean a term formed in this
alphabet and by a linear equation over reals an equation of the form

s = t,

where s and t are linear expressions. From now on we omit the qualification
‘over reals’.

To facilitate the reading of linear expressions and equations we introduce
a number of syntactic conventions. We abbreviate −1 · (s) to −(s), drop the
references to 1·, and abbreviate r · (x) to rx, where r is different than 1 and
−1 and x is a variable. We also write s + (t + v) and (s + t) + v as s + t + v

and abbreviate s + (−t) to s− t. In the presence of these conventions both
4x + 3.5y and 3x− 1.2 · (2 + 2.5y)− 2x + 5 are linear expressions and

4x + 3.5y = 3x− 1.2 · (2 + 2.5y)− 2x + 5

is a linear equation. Note that terms of the form s · (t), now abbreviated to
s t, are allowed only if s is a constant. Consequently, terms of the form x y

are not allowed.
We are interested in linear expressions and equations in specific forms.

Definition 4.26 Assume a predetermined ordering ≺ on the variables.

• We say that a linear expression is in normal form if it is of the
form

Σn
i=1aixi + r, (4.2)

where n ≥ 0, each ai is a non-zero real number, r is a real number,
and the variables x1, . . ., xn are ordered w.r.t. ≺.

• We say that a linear equation is in normal form if it is of the form

Σn
i=1aixi = r, (4.3)

where n ≥ 0, each ai is a non-zero real number, r is a real number,
and the variables x1, . . ., xn are ordered w.r.t. ≺.

• We say that a linear equation

x = t

is in pivot form if x �∈ Var(t) and t is in normal form. �
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Using appropriate transformation rules each linear expression s can be
rewritten to a unique linear expression (4.2) in normal form. We then call
(4.2) the normal form of s and denote it by norm(s). Similarly, using
appropriate transformation rules each linear equation s = t can be rewritten
to a unique equivalent linear equation (4.3) in normal form. (We shall
explain the meaning of the qualification ‘equivalent’ in Subsection 4.3.3.) We
then call (4.3) the normal form of s = t and say that s = t normalises

to (4.3).
In all subsequent examples we assume that x precedes y. So for example,

the already mentioned linear expression 3x− 1.2 · (2 + 2.5y)− 2x + 5 can be
rewritten to the linear expression x− 3y + 2.6 in normal form. Further, the
already considered linear equation 4x + 3.5y = 3x− 1.2 · (2 + 2.5y)− 2x + 5
normalises to the linear equation 3x + 6.5y = 2.6.

Depending on the value of n and r in (4.3) we distinguish three types of
normal forms:

• 0 = 0, when both n = 0 and r = 0,
• 0 = r, when n = 0 and r is a non-zero real,
• Σn

i=1aixi = r, when n > 0.

The linear expressions s and norm(s) are equivalent in the sense that the
normal form of the linear equation s = norm(s) is 0 = 0.

With the last type of a normal form we associate n linear equations in
pivot form:

xj = Σi∈[1..j−1]∪[j+1..n] −
ai

aj
xi +

r

aj
, (4.4)

where j ∈ [1..n].
Given a linear equation e in pivot form, we stipulate that e is its only

pivot form. Further, given a linear equation e not in pivot form, with the
normal form (4.3), where n > 0, we call each equation of the form (4.4) a
pivot form of e. Finally, we stipulate that an equation with the normal
form 0 = r, where r is a real has no pivot form.

For example, the linear equation

z = 2x + 3y + 4

is its only pivot form. Further, the already considered linear equation

4x + 3.5y = 3x− 1.2 · (2 + 2.5y)− 2x + 5

is not in pivot form and it normalises to 3x + 6.5y = 2.6, so it has two
pivot forms: x = −6.5

3 y + 2.6
3 and y = − 3

6.5x + 2.6
3 . Finally, the equation
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x + 1 + y = x + y + 1 is not in pivot form and it normalises to 0 = 0, so it
has no pivot form.

4.3.2 Substitutions, unifiers and mgus

In the remainder of the exposition we need to slightly adjust the notions
introduced in Section 4.2. The following definition summarises the differ-
ences.

Definition 4.27
• By a substitution we mean a finite mapping from variables to linear

expressions in normal form which assigns to each variable x in its
domain a linear expression t different from x.
We write the substitutions in the same way as in the previous section
and define the result of applying a substitution to a term (now a linear
expression) or to a set of linear equations as before.

• Let θ and γ be substitutions. Their composition , written as θγ, is
the substitution uniquely identified by the following mapping η from
the variables to linear expressions in normal form

η(x) := norm((xθ)γ).

• θ is called a unifier of a set of linear equations E if each equation
in Eθ normalises to the equation 0 = 0. If E = {e}, we say that θ is
a unifier of e. �

For example, if θ := {x/2y + 1} and η := {y/2z + 1}, then their composi-
tion θη equals {x/4z + 3, y/2z + 1}. Also, the substitution θ := {x1/x + 1,

x2/y, x3/x+y+1} is a unifier of x1 +x2 = x3 because (x1 +x2)θ ≡ x+1+y,
x3θ ≡ x+ y + 1, and the equation x+ 1 + y = x+ y + 1 normalises to 0 = 0.

Also, the following concept is a counterpart of the notion of a set of
equations in solved form introduced in Definition 4.13.

Definition 4.28 Given a set of linear equations E we say that an equation
from E is in solved form if it is in the pivot form x = t and x does not
occur elsewhere in E. If each equation in E is in solved form, we say that
E is in solved form . �

So a finite set of linear equations is in solved form if it is of the form
{x1 = t1, . . ., xn = tn}, where the xis are distinct variables, none of them
occurs in a term tj , and the tis are linear expressions in normal form. We
have then the following counterpart of the Solved Form Lemma 4.15.
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Lemma 4.29 (Solved Form) Call an mgu θ of a set of linear equations
E strong if for every unifier η of E we have η = θη. If the set of linear
equations E := {x1 = t1, . . ., xn = tn} is in solved form, then the substitution
θ := {x1/t1, . . ., xn/tn} is a strong mgu of E.

Proof First note that θ is a unifier of E. Indeed, for i ∈ [1, n] we have
xiθ ≡ ti and moreover tiθ ≡ ti, since by assumption no xj occurs in ti. So
for i ∈ [1..n] we have xiθ ≡ tiθ. So the equation xiθ = tiθ is identical to
ti = ti and consequently it normalises to 0 = 0.

Next, suppose η is a unifier of E. This means that for i ∈ [1, n] the
equation xiη = tiη normalises to 0 = 0. But ti ≡ xiθ, so this means that
xiη = xiθη normalises to 0 = 0, as well. Further, for x �∈ {x1, . . ., xn} we
have xη ≡ xθη because x ≡ xθ. A fortiori, xη = xθη normalises to 0 = 0.

So we showed that for all variables x the equation xη = xθη normalises
to 0 = 0. But xη and xθη are both linear expressions in normal form, so
xη ≡ xθη. In other words, η = θη, that is, θ is a strong mgu. �

As in the previous section we say then that E determines θ.

4.3.3 Linear equations and CSPs

Let us now relate linear equations to constraints. One natural choice for
the variable domains is the set of all reals. We pursue here a more general
possibility according to which each variable domain consists of the set of
linear expressions in normal form, that we denote by NF .

Then we interpret each linear equation as a constraint as follows. With
a linear equation e with the variables x1, . . ., xn we associate the following
subset of the Cartesian product NFn:

{(t1, . . ., tn) | the equation e{x1/t1, . . ., xn/tn} normalises to 0 = 0}.

For example, the interpretation of the equation x1+x2 = x3 as a constraint
contains as typical elements the triples (1, 1, 2), (x, y, x+y), (x, y+1, x+y+1)
and (x + 1, y, x + y + 1). Another way to write the above set is

{(t1, . . ., tn) | {x1/t1, . . ., xn/tn} is a unifier of e}.

The resulting interpretation of a set of linear equations as a CSP allows
us to talk about solutions to such sets and about equivalence between lin-
ear equations. We say that two linear equations e1 and e2 with the same
sequence of variables x1, . . ., xn are equivalent if the corresponding CSPs
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〈e1 ; x1 ∈ NF , . . ., xn ∈ NF〉 and 〈e2 ; x1 ∈ NF , . . ., xn ∈ NF〉 are
equivalent, that is, if they have the same set of solutions.

Further, we say that two linear equations e1 and e2 with a sequence X

of common variables are equivalent w.r.t. X if the corresponding CSPs
determined by these two equations are equivalent w.r.t. X. Then according
to this definition each linear equation e and its normal form are equivalent
w.r.t. the sequence of the variables of e.

The following counterpart of the Unification Note 4.17 holds. As in the
previous section we denote here by Sol(P) the set of all solutions to a CSP
P.

Note 4.30 (Solution) Consider a finite set of linear equations E with the
variables x1, . . ., xn. Then

Sol(〈E ; x1 ∈ NF , . . ., xn ∈ NF〉) = {(x1η, . . ., xnη) | η is a unifier of E}.

�

This observation allows us to relate solutions to finite sets of linear equa-
tions and unifiers.

4.3.4 The LIN proof system

As a final preparation step to present the proof rules we introduce the fol-
lowing notation. Given a linear equation s = t we denote by stand(s = t)
the equation norm(s) = norm(t). We call then stand(s = t) the standard

form of s = t and say that s = t standardises to norm(s) = norm(t).
We extend the stand operation elementwise to sets of linear equations.

For example, the standard form of the equation x−2y+y = 4 is x−y = 4,
while the standard form of the equation x = 2y − y + 4 is x = y + 4. So a
standard form does not need to be in normal form.

In the algorithms discussed below we repeatedly transform linear equa-
tions to a pivot form, perform an appropriate substitution in some other
equations and apply to these equations the stand operation.

The three possible forms of the normal form naturally induce the following
three proof rules.

DELETION

s = v

if s = v normalises to 0 = 0,
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FAILURE

s = v

⊥
if s = v normalises to 0 = r, where r is a non-zero real,

SUBSTITUTION

s = v, E

x = t, stand(E{x/t})
where x = t is a pivot form of s = v.

Denote the set of these three rules by LIN. The SUBSTITUTION rule
can be applied if the selected linear equation s = v has a pivot form. If
s = v has no pivot form, then it normalises to 0 = r, where r is a real. Then
either the DELETION or the FAILURE rule can be applied. Consequently,
to each linear equation exactly one rule can be applied.

If in the SUBSTITUTION rule the selected equation s = v is in pivot
form, then it is not modified, since x = t is then identical to s = v. Otherwise
s = v is transformed into one of its pivot forms x = t. Note that we do not
specify which pivot form we choose and do not insist that x ∈ Var(E). The
substitution {x/t} is performed on the equations in E and is followed by the
application of the stand operation. The set E can be empty.

Using the rules of LIN we can solve finite sets of linear equations. These
rules can be seen as transformation rules in the sense of Section 4.1, where
the sequences of the domain expressions are omitted. Let us consider an
example. The selected equations are underlined.

Example 4.31 Consider the following set of linear equations in normal
form:

{x− y = 1,−x + y = 1, x = 0}.

We apply to it the SUBSTITUTION rule with x = 0 as the isolated equa-
tion. The pivot form of x = 0 is x = 0, so after performing the substitution
and standardisation we get

{−y = 1,−x + y = 1, x = 0}.

Using the SUBSTITUTION rule again, this time with −x + y = 1 as the
isolated equation and with its pivot form y = x + 1, we get

{x = −2, y = x + 1, x = 0}.
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Using the SUBSTITUTION rule again with x = 0 as the isolated equation
we get after performing the substitution and standardisation

{0 = −2, y = x + 1, x = 0}.

Applying now the FAILURE rule we reach the set

{⊥, y = x + 1, x = 0}.

So this derivation ends in a failure. Note that after two applications of
the SUBSTITUTION rule we transformed all equations into a pivot form.

�

Unfortunately, an arbitrary use of the SUBSTITUTION rule causes com-
plications, even if we insist that x occurs in the set of equations E. Namely,
similarly to the case of the UNIF system we can generate infinite deriva-
tions. An example is provided in Exercise 4.7. Before we discuss possible
remedies let us prove that in absence of divergence the LIN system allows
us to solve the original set of linear equations. We need first the following
lemma.

Lemma 4.32 (LIN ) Each rule of LIN is equivalence preserving w.r.t. the
sequence of the variables present in the rule premise.

Proof On the account of the Solution Note 4.30 it suffices to prove that
for each rule the sets of equations considered in the premise and in the
conclusion have the same set of unifiers.

For the DELETION rule and the FAILURE rule the claim is an imme-
diate consequence of the fact that each linear equation is equivalent to its
normal form.

For the SUBSTITUTION we proceed as in the UNIF Lemma 4.20. Con-
sider two sets of equations {s = v} ∪E and {x = t} ∪ stand(E{x/t}) where
x = t is a pivot form of s = v. Then

θ is a unifier of {s = v} ∪ E

iff {each equation and its pivot form have the same unifiers}
θ is a unifier of {x = t} ∪ E

iff θ is a unifier of x = t and θ is a unifier of E

iff {Solved Form Lemma 4.29}
θ is a unifier of x = t and {x/t}θ is a unifier of E

iff θ is a unifier of x = t and θ is a unifier of E{x/t}
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iff θ is a unifier of {x = t} ∪ E{x/t}
iff {E{x/t} and stand(E{x/t}) have the same unifiers}

θ is a unifier of {x = t} ∪ stand(E{x/t}).

�

We can now establish the desired theorem. Its formulation and proof are
similar to that of the UNIF Theorem 4.21.

Theorem 4.33 (LIN ) Consider a failed or a stabilising derivation in the
proof system LIN starting with a finite set of linear equations E and ter-
minating with a set of constraints F . If E has a solution, then F is in
solved form that determines an mgu of E and otherwise F contains the false
constraint ⊥.

Proof If F does not contain ⊥, the final set of constraints F is closed
under the applications of all the rules of LIN. Then on the account of the
considered rules each equation in F is in pivot form x = t where x does not
occur elsewhere. In other words, F is in solved form. By the Solution Note
4.30 and the LIN Lemma 4.32 F has the same set of unifiers as the original
set E. So, on the account of the Solved Form Lemma 4.29, F determines
an mgu of E.

If the final set of constraints F contains ⊥, then the last selected equation
has the normal form 0 = r, where r is a non-zero real and hence it has no
solution. By the Solution Note 4.30 and the LIN Lemma 4.32 E has no
solution. This implies the claim. �

To ensure termination a number of possibilities exist. The most obvious
one is to limit attention, as in the previous section, to the global applications
of the SUBSTITUTION rule and to add the condition x ∈ Var(E). There
also exists a less drastic alternative. Let us discuss these options in turn.
In both algorithms we assume for simplicity that the initial linear equations
are all in normal form.

4.3.5 The Gauss–Jordan Elimination algorithm

The first algorithm consists of the LIN system together with a scheduler
that repeatedly applies them until a failed CSP or a CSP closed under the
applications of these rules is reached. In the case of the SUBSTITUTION
rule only the global applications are performed and it is assumed that the
condition x ∈ Var(E) holds. This algorithm is called the Gauss–Jordan
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Elimination algorithm, though we present it in a slightly different form.
The following example illustrates its operation.

Example 4.34 Take the following set of linear equations:

−x1 + x2 + x3 + 2 x4 − x5 = 4
x1 + x2 − x3 − 4 x4 + 3 x5 = 0
x1 − x2 + x3 − 3 x5 = 2

We select the first equation and rewrite it into the following pivot form:

x1 = x2 + x3 + 2x4 − x5 − 4.

Using the SUBSTITUTION rule with the other two equations as E we
transform the above set, after performing the substitution and standardisa-
tion, into the following set:

x1 = x2 + x3 + 2 x4 − x5 − 4
2x2 − 2 x4 + 2 x5 = 4

2 x3 + 2 x4 − 4 x5 = 6

The second equation can be rewritten into the following pivot form:

x2 = x4 − x5 + 2.

Using the SUBSTITUTION rule with the other two equations as E we
transform the last set, after performing the substitution and standardisation,
into

x1 = x3 + 3 x4 − 2 x5 − 2
x2 = x4 − x5 + 2

2 x3 + 2 x4 − 4 x5 = 6

Selecting now the last equation we can rewrite it into the following pivot
form:

x3 = −x4 + 2x5 + 3.

Using the SUBSTITUTION rule third time, with the first two equations
as E, we transform the last set into

x1 = 2 x4 + 1
x2 = x4 − x5 + 2

x3 = − x4 + 2 x5 + 3

At this moment no rule of LIN applies so the the exhibited derivation is
stabilising. �
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The following result establishes correctness of the Gauss–Jordan Elim-

ination algorithm. Both its formulation and the proof are similar to that
of the Martelli–Montanari Algorithm Theorem 4.25.

Theorem 4.35 (Gauss–Jordan Elimination) The Gauss–Jordan Eli-

mination algorithm always terminates. If the original finite set of linear
equations E has a solution, then each execution of the algorithm terminates
with a set of linear equations in a solved form that determines an mgu of
E and otherwise each execution terminates with a set containing the false
constraint ⊥.

Proof Given a set of equations E, we call a variable x solved in E if for
some term t in normal form x = t ∈ E and this is the only occurrence of
x in E, that is, if the equation x = t is in solved form. We call a variable
unsolved in E if it is not solved.

To prove termination we associate with each set of linear equations E the
following two functions:

uns(E) – the number of variables in E that are unsolved,
card(E) – the number of equations in E.

We now show that each rule application to a set of equations E reduces
natural number

uns(E) + card(E).

In the case of the SUBSTITUTION rule we assume that we are dealing with
a global application and that x ∈ Var(E).

For the DELETION rule and the FAILURE rule note that each rule ap-
plication does not increase uns(E) and decreases card(E) by 1. In turn,
each global application of the SUBSTITUTION rule with x ∈ Var(E) re-
duces uns(E) by 1 and does not change card(E). Indeed, on the account of
globality each such application of the SUBSTITUTION rule turns x from
an unsolved variable to a solved one.

This implies termination. The other claim follows from the LIN Theorem
4.33, since each execution of the Gauss–Jordan Elimination algorithm
corresponds to a failed or stabilising derivation. �

Just like in the case of the Martelli–Montanari algorithm we can
argue that the Gauss–Jordan Elimination algorithm can be viewed as
a complete constraint solver. To see this let us return to the Solution Note
4.30 that summarised the relationship between sets of linear equations and
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CSPs. In conjunction with the Solved Form Lemma 4.29 it implies that for
a set of linear equations E := {x1 = t1, . . ., xn = tn} in solved form we have

Sol(〈E ; x1 ∈ NF , . . ., xn ∈ NF〉) =
{(norm(t1η), . . ., norm(tnη)) | η is a substitution}.

So for a finite set of linear equations in solved form it is straightforward
to generate all solutions to the corresponding CSP 〈E ; x1 ∈ NF , . . ., xn ∈
NF〉. Now, in view of the above theorem, the Gauss–Jordan Elimi-

nation algorithm transforms a given finite set of linear equations into an
equivalent set of equations that is either in solved form or contains the false
constraint ⊥. So in the terminology of this chapter this algorithm can indeed
be viewed as a complete constraint solver.

4.3.6 The Gaussian Elimination algorithm

In the second algorithm we use specific applications of the SUBSTITUTION
rule that are not necessarily global. The algorithm has two phases. Assume
that the equations are ordered in an arbitrary way.

In the first phase, called the forward substitution phase, we repeatedly
take the first not yet considered equation from the left. If the DELETION
rule is applicable, the equation is deleted and the next equation is considered.
If the FAILURE rule is applicable, a failure is reached and the execution
terminates. If the SUBSTITUTION rule is applicable, we apply it taking
as E the set of equations lying to the right of the selected equation.

In the second phase, called the backward substitution phase , we re-
peatedly take the first not yet considered equation from the right and apply
the SUBSTITUTION rule by taking as E the set of equations lying to the
left of the selected equation.

This algorithm is called the Gaussian Elimination algorithm. In con-
trast to the other algorithms here considered it is deterministic. The follow-
ing example illustrates its operation.

Example 4.36 Take again the set of linear equations considered in Example
4.34, i.e.,

−x1 + x2 + x3 + 2 x4 − x5 = 4
x1 + x2 − x3 − 4 x4 + 3 x5 = 0
x1 − x2 + x3 − 3 x5 = 2

We start with the forward substitution phase. As before we select the
first equation, rewrite it into the following pivot form:
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x1 = x2 + x3 + 2x4 − x5 − 4

and use the SUBSTITUTION rule with the other two equations as E. This
yields the following set:

x1 = x2 + x3 + 2 x4 − x5 − 4
2x2 − 2 x4 + 2 x5 = 4

2 x3 + 2 x4 − 4 x5 = 6

Selecting now the second equation we can rewrite it into the following
pivot form:

x2 = x4 − x5 + 2.

Now, however, in contrast to Example 4.34, we use the SUBSTITUTION
rule with the third equation only as E. The variable x3 does not occur in
this equation, so we get the following set of equations:

x1 = x2 + x3 + 2 x4 − x5 − 4
x2 = x4 − x5 + 2

2 x3 + 2 x4 − 4 x5 = 6

Selecting now the last equation we can rewrite it into the following pivot
form:

x3 = −x4 + 2x5 + 3.

and apply SUBSTITUTION rule with the empty set of equations as E.
This yields the following set:

x1 = x2 + x3 + 2 x4 − x5 − 4
x2 = x4 − x5 + 2

x3 = − x4 + 2 x5 + 3

We are now ready with the forward substitution phase of the algorithm
and proceed with the backward substitution phase.

Using the SUBSTITUTION rule with the last equation as the selected
one and the other two equations as E we transform the above set into

x1 = x2 + x4 + x5 − 1
x2 = x4 − x5 + 2

x3 = − x4 + 2 x5 + 3

Using now the SUBSTITUTION rule with the second equation as the
selected one and the first one as E we transform the above set into
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x1 = 2 x4 + 1
x2 = x4 − x5 + 2

x3 = − x4 + 2 x5 + 3

At this moment no application of a rule of LIN is relevant and the deriva-
tion terminates with the last set of equations. So we reached the same
outcome as in Example 4.34. �

In general, the Gaussian Elimination algorithm is more efficient than
the Gauss–Jordan Elimination algorithm since it leads to a smaller
number of substitutions. The following result establishes correctness of the
Gaussian Elimination algorithm.

Theorem 4.37 (Gaussian Elimination) The Gaussian Elimination

algorithm always terminates. If the original finite sequence of linear equa-
tions E has a solution, then the algorithm terminates with a set of linear
equations in a solved form that determines an mgu of E and otherwise it
terminates with a set containing the false constraint ⊥.

Proof The termination is a direct consequence of the way the algorithm is
defined. In fact, the algorithm terminates after at most 2n− 1 rule applica-
tions, where n is the number of equations.

However, in contrast to the Gauss–Jordan Elimination algorithm, it is
not clear now that each execution of the algorithm is a failed or stabilising
derivation. To prove it we need to distinguish two cases. If the final set
of constraints contains ⊥, the corresponding execution is clearly a failed
derivation.

Otherwise the final set of constraints does not contain⊥, which means that
the algorithm terminates after a successful execution of both the forward
substitution and the backward substitution phase. Upon termination of the
forward substitution phase we reach the set of equations

{x1 = t1, . . ., xn = tn},

where each equation xi = ti is in pivot form and where for i ∈ [1..n] we have

Var(ti) ∩ {x1, . . ., xi} = ∅. (4.5)

So upon termination of the backward substitution phase we reach the set
of equations

{x1 = s1, . . ., xn = sn}, (4.6)
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where

sn := tn

and, by proceeding backwards,

si := (ti[xn/sn]). . .[xi+1/si+1],

where i ∈ [1..n] and s[x/t] ≡ norm(s{x/t}). That is, s[x/t] is the outcome
of normalising the linear expression s{x/t}. So si is the outcome of an
appropriate alternation of normalisation and substitution starting with the
linear expression ti.

On the account of (4.5) we have

Var(sn) ∩ {x1, . . ., xn} = ∅.

Proceeding backwards from n down to 1 assume by induction that for
j ∈ [i + 1..n]

Var(sj) ∩ {x1, . . ., xn} = ∅.

Then, again on the account of (4.5), we have

Var(ti{xn/sn}. . .{xi+1/si+1}) ∩ {x1, . . ., xn} = ∅,

which implies that Var(si) ∩ {x1, . . ., xn} = ∅.
By definition each si is in normal form. So the set of equations (4.6) is in

solved form and consequently it is closed under the applications of all the
rules of LIN. So the considered execution of the algorithm is a stabilising
derivation.

The second claim now follows from the LIN Theorem 4.33. �

This concludes our discussion of complete solvers for linear equations over
reals. In Section 6.7 we shall return to the rules of the proof system LIN
when discussing an incomplete constraint solver for non-linear equations
over reals.

4.4 Linear inequalities over reals

4.4.1 Syntax

After having dealt with the linear equations over reals we now discuss the
problem of solving finite sets of linear inequalities over reals. As in the
previous section we consider linear expressions over reals and assume the
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same syntactic conventions. By a linear inequality over reals we mean
a constraint of the form

s ≤ t,

where s and t are linear expressions. As before we omit the qualification
‘over reals’. For example,

4x− 3.5y − 1.2z ≤ 3x− 1.2 · (2 + 2.5y + z)− 2x + 5

is a linear inequality.
When solving finite sets of linear inequalities we shall repeatedly eliminate

variables present in them. This will be done by transforming first each linear
inequality to a normal form in which a selected variable will be isolated. This
brings us to the normal forms we shall be interested in.

Definition 4.38 Assume a predetermined ordering ≺ on the variables. Fix
a variable x.

We say that a linear inequality is in an x-normal form if it is in one of
the following forms, where x �∈ Var(t) and t is a linear expression in normal
form:

• the ≤x-normal form : t ≤ x,
• the x≤-normal form : x ≤ t,
• the x̄-normal form : t ≤ 0. �

So the variable x does not appear in the x̄-normal form. Using appropriate
transformation rules, given a variable x, each linear inequality s ≤ t can be
rewritten to a unique equivalent linear inequality in an x-normal form. We
say that s ≤ t normalises to its normal form. Here is an example. We
assume here and elsewhere an ordering ≺ such that x ≺ y ≺ z.

Example 4.39 Reconsider the linear inequality

4x− 3.5y − 1.2z ≤ 3x− 1.2 · (2 + 2.5y + z)− 2x + 5.

It normalises to the x≤-normal form x ≤ 0.5
3 y + 2.6

3 and to the ≤y-normal
form 6x− 5.2 ≤ y. In contrast, its z-normal form is 6x− y− 5.2 ≤ 0, which
is a z̄-normal form, without an occurrence of z. �

4.4.2 Linear inequalities and CSPs

We interpret linear inequalities as constraints analogously as the linear equa-
tions. So, as in the previous section, we assume that each variable domain
consists of the set of linear expressions in normal form, that we denoted
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by NF . Then with a linear inequality li with the variables x1, . . ., xn we
associate the following subset of the Cartesian product NFn:

{(t1, . . ., tn) | the inequality li{x1/t1, . . ., xn/tn} normalises to r ≤ 0,
where r is a strictly negative real or 0}.

For example, the interpretation of the inequality x1 + x2 ≤ x3 as a con-
straint contains as typical elements the triples (1, 1, 3), (x + 1, 1, x + 3),
(x, y, x + y), (x, y, x + y + 2), (x, y + 1, x + y + 2) and (x + 1, y, x + y + 1).
For instance, x + y ≤ x + y + 2 normalises to −2 ≤ 0 and similarly for the
other triples.

The resulting interpretation of a set of linear inequalities as a CSP allows
us to talk about solutions to such sets and about equivalence between linear
inequalities. We say that two linear inequalities li1 and li2 with the same
sequence of variables x1, . . ., xn are equivalent if the CSPs 〈li1 ; x1 ∈
NF , . . ., xn ∈ NF〉 and 〈li2 ; x1 ∈ NF , . . ., xn ∈ NF〉 are equivalent.

Further, we say that two linear inequalities li1 and li2 with a sequence X

of common variables are equivalent w.r.t. X if the corresponding CSPs
determined by these two inequalities are equivalent w.r.t. X. Then according
to this definition each linear inequality li and its normal form are equivalent
w.r.t. the sequence of the variables of li. In particular, the already discussed
inequality

4x− 3.5y − 1.2z ≤ 3x− 1.2 · (2 + 2.5y + z)− 2x + 5

and each of its normal forms, so x ≤ 0.5
3 y+ 2.6

3 , 6x−5.2 ≤ y, and 6x−y−5.2 ≤
0 are equivalent w.r.t. x, y.

4.4.3 The INEQ proof system

To reason about finite sets of linear inequalities we introduce now three
proof rules. To present them we need the following notation.

Definition 4.40 Given a variable x and a set of linear inequalities LI we
introduce the following three sets of linear inequalities derived from it:

• ≤x(LI) := {li | li is the ≤x-normal form of an inequality from LI},
• x≤(LI) := {li | li is the x≤-normal form of an inequality from LI},
• x̄(LI) := {li | li is the x̄-normal form of an inequality from LI}.

We also introduce the following operation on sets of linear inequalities:

E · F := {s ≤ v | s ≤ t ∈ E, t ≤ v ∈ F}.

So if either E or F is empty, then so is E · F . �
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The idea behind the algorithm that we are going to discuss is very simple.
We repeatedly select a variable, say x, and perform the following two steps:

• we normalise all inequalities in the current set LI to the x-normal form,
• we eliminate all occurrences of x by replacing the sets ≤x(LI) and x≤(LI)

by their ‘composition’ ≤x(LI) · x≤(LI).
Note that in the case one of these sets is empty, it amounts to deleting

all inequalities in the other set.

This procedure can be described using the following proof rule:

x-ELIMINATION

LI
≤x(LI) · x≤(LI), x̄(LI)

Additionally, we introduce the following two rules that deal with specific
x̄-normal forms:

DELETION

s ≤ t

if s ≤ t normalises to r ≤ 0, where r is a strictly negative real or 0,

FAILURE

s ≤ t

⊥
if s ≤ t normalises to r ≤ 0, where r is a strictly positive real.

Denote the set of these three rules by INEQ.

4.4.4 The Fourier–Motzkin Elimination algorithm

We can now introduce the desired algorithm. It consists of the above three
rules together with a scheduler that repeatedly applies them until a failed
CSP or a CSP closed under the applications of these rules is reached. In
the case of the x-ELIMINATION rule each of its applications is global
and refers to a different variable. This algorithm is called the Fourier–

Motzkin Elimination algorithm. The following example illustrates its
operation.
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Example 4.41
(i) Consider the following set of linear inequalities:

0 ≤ x

−x− y ≤ 2
−x + y ≤ 3
x + 2y ≤ 6

0 ≤ y

−x− y + 2 ≤ z

(4.7)

Transforming each of them to the x-normal form yields the following set:

0 ≤ x

−y − 2 ≤ x

y − 3 ≤ x

x ≤ −2y + 6
−y ≤ 0

−y − z + 2 ≤ x

Hence using the x-ELIMINATION rule we obtain the following set of
inequalities in which x does not appear:

0 ≤ 0
0 ≤ −2y + 6

−y − 2 ≤ −2y + 6
y − 3 ≤ −2y + 6
−y ≤ 0

−y − z + 2 ≤ −2y + 6

The first inequality can be deleted using the DELETION rule. Trans-
forming each of the remaining five inequalities to the y-normal form we now
obtain the following set:

y ≤ 3
y ≤ 8
y ≤ 3
0 ≤ y

y ≤ z + 4

(4.8)

Eliminating now y using the y-ELIMINATION rule we obtain the follow-
ing set of four inequalities:
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0 ≤ 3
0 ≤ 8
0 ≤ 9
0 ≤ z + 4

We can now delete the first three inequalities using the DELETION rule
and we end up with a single inequality the z-normal form of which is:

−4 ≤ z.

At this moment we apply the z-ELIMINATION rule. No inequality is in
the z≤-normal form or the z̄-normal form, so this rule application amounts
to a deletion of the above inequality and we end up with the empty set.
This, as we shall see, implies that the original set of inequalities (4.7) is
consistent.

(ii) Consider now the following set of linear inequalities:

x + z ≤ x + z + 1
y + 3z + 6 ≤ x + y

−y + 2z + 6 ≤ x− y

x + y ≤ −2y + 2
x + z ≤ 2y + z + 3

x + 2y ≤ x + z + 1
x + y ≤ x + z + 1

The first inequality normalises to −1 ≤ 0, so using the DELETION rule
we can delete it. Transforming each of the remaining six inequalities to the
x-normal form yields the following set:

3z + 6 ≤ x

2z + 6 ≤ x

x ≤ −3y + 2
x ≤ 2y + 3

2y − z − 1 ≤ 0
y − z − 1 ≤ 0

So the first two inequalities are in the ≤x-normal form, the next two in
the x≤-normal form and the last two in the x̄-normal form. Hence using the
x-ELIMINATION rule we obtain the following set of inequalities in which
x does not appear:
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3z + 6 ≤ −3y + 2
3z + 6 ≤ 2y + 3
2z + 6 ≤ −3y + 2
2z + 6 ≤ 2y + 3

2y − z − 1 ≤ 0
y − z − 1 ≤ 0

Transforming each of these six inequalities to the y-normal form we obtain
the following set:

y ≤ −z − 4
3

3
2z + 3

2 ≤ y

y ≤ −2
3z − 4

3

z + 3
2 ≤ y

y ≤ 1
2z + 1

2

y ≤ z + 1

So using the y-ELIMINATION rule we obtain a set of eight inequalities.
One of them, resulting from the inequalities z + 3

2 ≤ y and y ≤ z + 1 is
z + 3

2 ≤ z + 1 that normalises to 1
2 ≤ 0. So applying the FAILURE rule

we introduce the false constraint ⊥ which yields a failed derivation. This
means, as we shall see at the end of this section, that the original set of
inequalities is inconsistent. �

In the remainder of this section we clarify the status of the Fourier–

Motzkin Elimination algorithm. To this end let us return to the x-
ELIMINATION rule. Because the conclusion of this rule does not refer to
x, this rule is not equivalence preserving. The reason is that the conclusion
does not put any conditions on the variable x, while the premise does. Take
for example the equations y ≤ x and x ≤ z. Then after an application of
the x-ELIMINATION rule we obtain the inequality y ≤ z that is satisfied
by any triple x, y, z such that y ≤ z holds, so with an arbitrary x. However,
this rule does enjoy a weaker property.

Lemma 4.42 (INEQ)
(i) The rules DELETION and FAILURE are equivalence preserving.
(ii) Each global application of the x-ELIMINATION rule is equivalence

preserving w.r.t. the sequence of the variables present in the rule con-
clusion. Consequently, this rule is consistency preserving.

Proof (i) The claim is immediate.
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(ii) First, we note that the rule

LI
≤x(LI), x≤(LI), x̄(LI)

is equivalence preserving since every linear inequality li is equivalent to its
normal form w.r.t. to the sequence of the variables of li. So it suffices to
prove that the rule

≤x(LI), x≤(LI), x̄(LI)
≤x(LI) · x≤(LI), x̄(LI)

is equivalence preserving w.r.t. the sequence of the variables present in the
rule conclusion, that is w.r.t. to the sequence of the variables in

Var(≤x(LI), x≤(LI), x̄(LI))− {x}.

So consider a solution d to the premise of this rule. It satisfies each
inequality s ≤ x in ≤x(LI) and each inequality x ≤ t in x≤(LI), so by the
transitivity of ≤ it satisfies each inequality s ≤ t in ≤x(LI) · x≤(LI). Hence
d is a solution to the conclusion of this rule.

Conversely, consider a solution d to the conclusion of this rule. We need to
extend it, by assigning a value to x, to a solution to the premise of the rule.
We can assume that either ≤x(LI) or x≤(LI) is non-empty, since otherwise
the premise and conclusion of the above rule coincide. Three cases arise.

Case 1. ≤x(LI) is non-empty and x≤(LI) is empty.
Then the above rule reduces to

≤x(LI), x̄(LI)
x̄(LI)

Extend d in an arbitrary way to the variables in Var(≤x(LI))− {x}. Let

s0 := max(t | t ≤ x ∈ ≤x(LI)).

Now assign to x the value of s0 determined by the above extension of the
solution d. This final extension of d satisfies all the inequalities in ≤x(LI).

Case 2. ≤x(LI) is empty and x≤(LI) is non-empty.
Then the above rule reduces to

x≤(LI), x̄(LI)
x̄(LI)

Extend d in an arbitrary way to the variables in Var(x≤(LI))− {x}. Let

t0 := min(s | x ≤ s ∈ x≤(LI)).
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Now assign to x the value of t0 determined by the above extension of the
solution d. This final extension of d satisfies all the inequalities in x≤(LI).

Case 3. Both ≤x(LI) and x≤(LI) are non-empty.
d assigns a value to all the variables in ≤x(LI) · x≤(LI), so it assigns

unique values to the terms s0 from Case 2 and t0 from Case 3. These
values correspond to linear expressions s1 and t1 in normal form such that
s1 ≤ x ∈ ≤x(LI) and x ≤ t1 ∈ x≤(LI). So s1 ≤ t1 ∈ ≤x(LI) · x≤(LI).
Hence d is a solution to s1 ≤ t1.

As in Case 2 extend d by setting to x the value of s0, i.e., the value of
s1. As in Case 2 the resulting extension e of d satisfies all the inequalities in
≤x(LI). Since e satisfies then the inequality x ≤ t1, it also satisfies all the
inequalities in x≤(LI). (Alternatively, we can extend d by setting to x the
value of t0.)

This proof also shows that the x-ELIMINATION rule is consistency pre-
serving. Indeed, we showed that if the rule premise has a solution, then it is
also a solution of the rule conclusion, and conversely, if the rule conclusion
has a solution, then it can be extended to a solution of the rule premise. �

This brings us to the following conclusion.

Theorem 4.43 (INEQ) The Fourier–Motzkin Elimination algorithm
always terminates. If the original finite set of linear inequalities is consis-
tent, then each execution of the algorithm terminates with the empty set of
constraints and otherwise each execution terminates with a set containing
the false constraint ⊥.

Proof The termination is an immediate consequence of the fact that there
are finitely many variables in the original finite set LI of inequalities.

By the form of the rules of the INEQ system the final set of constraints F

is either empty or it contains the false constraint ⊥. By the INEQ Lemma
4.42 the CSPs forming the considered derivation are either all inconsistent
or all consistent. So if the original set of linear inequalities is consistent,
then the final set of constraints is also consistent, so it is empty. And if
the original set of linear inequalities is inconsistent, then the final set of
constraints is also inconsistent, so it contains ⊥. �

Thus the Fourier–Motzkin Elimination algorithm allows us to deter-
mine consistency of a finite set of linear inequalities. So, according to our
terminology, this algorithm is not a complete constraint solver. However,
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one can modify this algorithm to one that allows us to reduce the original
set of inequalities to an equivalent set in an appropriately defined solved
form. To this end, we employ the terms s0 and t0 defined in the proof of
the INEQ Lemma 4.42 and add to the conclusion of x-ELIMINATION rule
none, one or both inequalities s0 ≤ x, x ≤ t0 depending on the case analysis
provided in the proof of the INEQ Lemma 4.42. Note that the terms s0

and t0 are defined in an extension of the considered language obtained by
adding the functions min and max in each arity. Then the resulting algo-
rithm terminates either with the set of such added inequalities, that we view
as a solved form, or with a set containing the false constraint ⊥. From this
solved form we can generate all solutions to the original set of inequalities.

The Fourier–Motzkin Elimination algorithm also allows us to find
optimal solutions to a finite set of linear inequalities subject to a linear
objective function. To see how consider as an example the problem of finding
a solution to the following set of inequalities:

0 ≤ x

−x− y ≤ 2
−x + y ≤ 3
x + 2y ≤ 6

0 ≤ y

for which the value of the objective function −2x− y + 2 is minimal.
To solve it we introduce a new variable, z, and add the following inequality

to the above ones:

−2x− y + 2 ≤ z.

This becomes then the set of inequalities considered in Example 4.41(i).
We reduced there this set of inequalities to the single inequality −4 ≤ z. So
the minimal possible value for z is −4. By proceeding backwards we can
now find the values for x and y for which z = −4. Namely, we substitute
z by −4 in the equations of (4.8), so in y ≤ z + 4. This, together with the
inequality 0 ≤ y of (4.8), yields y = 0. Now substituting y by 0 and z by
−4 in the original set of inequalities (4.7) yields in particular −x ≤ −6 and
x ≤ 6 from which we conclude that x = 6.

Unfortunately, the Fourier–Motzkin Elimination algorithm is not
efficient. To see this let us have a closer look at the x-ELIMINATION
rule. Each global application of this rule eliminates from the current set of
inequalities all the inequalities containing x. However, this happens at the
cost of introducing a possibly large set of inequalities that do not contain
x. Indeed, the cardinality of the set ≤x(LI) · x≤(LI) is the product of the
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cardinalities of the sets ≤x(LI) and x≤(LI). The accumulated increase of
the number of inequalities can lead in the worst case to a doubly exponential
number of inequalities.

A more practical approach is provided by the Simplex algorithm. This
algorithm allows us to compute optimal solutions to a finite set of linear in-
equalities subject to a linear objective function by repeatedly transforming
a solution to the considered set of linear inequalities to one with a better
value of the objective function. On certain problem sets this algorithm runs
in exponential time. However, in practice it is remarkably efficient. Con-
sequently, it is used in several linear programming packages and constraint
programming systems. A discussion of the Simplex algorithm would take
us too far afield. An interested reader can consult any book on linear pro-
gramming, e.g., Papadimitriou and Steiglitz [1982].

4.5 Summary

In this chapter we discussed three complete constraint solvers. They dealt
with:

• term equations,
• linear equations over reals, and
• linear inequalities over reals.

In our presentation we aimed at a uniform presentation of these solvers.
Consequently, we discussed them using a simple proof theoretic framework.
This presentation allowed us to clarify the similarities between these solvers.

4.6 Exercises

Exercise 4.1 Prove the Equivalence Lemma 4.2.

Exercise 4.2 Call a derivation maximal if it is finite and cannot be
extended to a longer derivation or it is infinite. Call a derivation fair if it
is infinite and every rule is applied in it infinitely often or it is finite.

Consider a CSP P with finite domains and a finite set of domain reduction
rules.

• Prove that every derivation starting in P, in which each rule appli-
cation is relevant, is finite. Conclude that every maximal derivation
of this type is stabilising.
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• Prove that every maximal and fair derivation has a prefix that is a
stabilising derivation.

Exercise 4.3 Give an example of a CSP P with finite domains and of
equivalence preserving proof rules such that infinite and fair derivations
exist starting from P in which each rule application is relevant.
Hint. Note that by Exercise 4.2 some of these rules have to be transformation
rules.

Exercise 4.4 Call a substitution θ idempotent if θ = θθ. Denote by
Ran(θ) the set of variables that occur in a term from Range(θ). Prove that
θ is idempotent iff Dom(θ)∩Ran(θ) = ∅. Conclude that the mgus produced
by the Martelli–Montanari algorithm are idempotent.

Exercise 4.5 Prove that the composition of the substitutions is associative,
also in the case of the substitutions for linear expressions, as defined in
Definition 4.27.

Exercise 4.6 Propose appropriate transformation rules using which each
linear equation over reals can be rewritten to an equivalent one in normal
form.

Exercise 4.7 Exhibit an infinite derivation in the proof system LIN in
which each rule application is relevant.
Hint. Consider the set of linear equations introduced in Example 4.31.

Exercise 4.8 Propose appropriate transformation rules using which, given
a variable x, each linear inequality over reals can be rewritten to an equiv-
alent one in x-normal form.

4.7 Bibliographic remarks

The proof theoretic framework of Section 4.1 is adopted from Apt [1998].
The unification problem was introduced and solved by Robinson [1965] who
recognised its importance for automated theorem proving. The unification
problem also appeared implicitly in the PhD thesis of Herbrand in 1930
Herbrand [1971,page 148]) in the context of solving term equations, but in
an informal way and without proofs. The Martelli–Montanari Unification
algorithm was published in Martelli and Montanari [1982]. It is similar to
Herbrand’s original algorithm. Efficient unification algorithms are presented
in Paterson and Wegman [1978] and Martelli and Montanari [1982]. For a
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survey on various variants of the unification problem see Baader and Siek-
mann [1994]. In Robinson [1992] an interesting account of the history of the
unification algorithms is provided.

The Gauss–Jordan and the Gaussian Elimination algorithms are
usually presented in terms of operations on matrices. Our presentation is
inspired by the presentation of the Gauss–Jordan algorithm in Marriott
and Stuckey [1998]. The more traditional presentation of these algorithms
and a discussion of their complexity and of various improvements can be
found for example in Press et al. [1992].

The Fourier–Motzkin Elimination algorithm goes back to Fourier
[1827]. It was later reintroduced in Motzkin [1936]. Various historical
comments and related references can be found in Schrijver [1986]. Some
improvements of this algorithm are discussed in Jaffar et al. [1993] and Im-
bert [1995].
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I DEALLY, WE WOULD like to solve CSPs directly, by means of some
efficient algorithm. But the definition of a CSP is extremely general, so,
as already mentioned in Chapter 1, no universal efficient methods for

solving them exist. Various general techniques were developed to solve CSPs
and in the absence of efficient algorithms a combination of these techniques
is a natural way to proceed.

In Chapter 3 we explained that the main idea is to reduce a given CSP
to another one that is equivalent but easier to solve. This process is called
constraint propagation and the algorithms that achieve this reduction are
called constraint propagation algorithms. They are discussed in Chapter 7.
These algorithms usually aim at reaching some form of ‘local consistency’.
Several forms of local consistency have been defined but it is not clear how
to provide a satisfactory formalisation of this notion. So we rather confine
ourselves to a review of the most common types of local consistency. Infor-

135
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mally, local consistency means that some subparts of the considered CSP
are in a ‘desired form’, for example consistent.

To achieve a smooth transition between this chapter and Chapter 7, each
time we introduce a notion of local consistency we also provide its charac-
terisation. These characterisations are then used in Chapter 7 to generate
the appropriate constraint propagation algorithms. They are based on the
proof theoretic framework introduced in Section 4.1.

This chapter is organised as follows. We begin by presenting in Section 5.1
node consistency that deals with unary constraints. In Section 5.2 we study
the most popular notion of local consistency, the arc consistency, that deals
with the binary constraints. Then, in Section 5.3, we discuss its natural
generalisation to arbitrary constraints, called the hyper-arc consistency (oc-
casionally called generalised arc consistency (GAC)). Next, in Section 5.4,
we study another modification of the arc consistency, called the directional
arc consistency, that takes into account a linear ordering on the considered
variables. All three notions deal with each constraint separately.

Another class of local consistency notions deals with more than one con-
straint at a time. The first two examples are discussed in Sections 5.5 and
Section 5.6. These are the notions of the path consistency and the directional
path consistency. Next, we discuss two other forms of local consistency that
generalise both the arc and the path consistency, by focusing on the notion of
a consistent instantiation. The first notion, discussed in Section 5.7, is called
k-consistency. Its ‘accumulated’ form, called strong k-consistency, is consid-
ered in Section 5.8. We conclude this presentation of the local consistency
notions by discussing in Section 5.9 a powerful notion of local consistency,
called relational (i, m)-consistency.

In general, local consistency neither implies nor is implied by consistency
(sometimes called global consistency). However, in the presence of some ad-
ditional information about the considered CSP, local consistency can imply
global consistency. In Section 5.10 we provide an example of such a result.
It involves the notion of a graph associated with a CSP and is concerned
with the notion of strong k-consistency. By specialising this result for k = 2
and k = 3 we obtain results that clarify for which CSPs directional arc
consistency, respectively directional path consistency, entails consistency.

5.1 Node consistency

We begin our review of the most common notions of local consistency by
considering the node consistency. It deals with the unary constraints.
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Definition 5.1 We call a CSP node consistent if for every variable x

every unary constraint on x coincides with the domain of x. �

In particular, a CSP with no unary constraints is vacuously node consis-
tent. Let us consider two simple examples.

Example 5.2
(i) Consider a CSP of the form

〈C, x1 ≥ 0, . . ., xn ≥ 0 ; x1 ∈ N , . . ., xn ∈ N〉,

where C does not contain unary constraints. Recall that N denotes the set
of natural numbers. Then this CSP is node consistent, since for each vari-
able its unique unary constraint is satisfied by all the values in the variable
domain.

(ii) Consider now a CSP of the form

〈C, x1 ≥ 0, . . ., xn ≥ 0 ; x1 ∈ N , . . ., xn−1 ∈ N , xn ∈ Z〉,

where C does not contain unary constraints and Z denotes the set of all
integers. Then this CSP is not node consistent, since for the variable xn the
constraint xn ≥ 0 is not satisfied by the negative integers from its domain.
�

Clearly, node consistency neither implies nor is implied by consistency.
Indeed, node consistency imposes no condition on non-unary constraints,
which can be the source of inconsistency. Also, the CSP 〈x = 0, y = 0 ; x ∈
N , y ∈ N〉 is clearly consistent but not node consistent.

To derive an algorithm that transforms an arbitrary CSP into one that
satisfies node consistency we characterise this notion in terms of proof rules.
To this end we introduce the following domain reduction rule, where C is a
unary constraint on a variable x:

NODE CONSISTENCY

〈C ; x ∈ D〉
〈C ; x ∈ C ∩D〉

So this rule is parametrised by a variable x and a unary constraint C on
it. It is clear that this rule is equivalence preserving. Indeed, any solution to
the CSP in the rule premise consists of an element d such that both d ∈ C

and d ∈ D holds. So d is a solution of the CSP in the conclusion of the rule.
The following simple result characterises node consistency in terms of the

above rule.
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Note 5.3 (Node Consistency) A CSP is node consistent iff it is closed
under the applications of the NODE CONSISTENCY rule.

Proof It suffices to note that a CSP P is node consistent iff for each variable
x with the domain D and each unary constraint C on x we have C = D.
But each unary constraint is a subset of the variable domain, so the latter
holds iff for each such C we have D ⊆ C, i.e., C ∩D = D, which holds iff P
is closed under the applications of the NODE CONSISTENCY rule. �

So to transform a CSP P to one that is node consistent it suffices to re-
peatedly apply the NODE CONSISTENCY rule for all unary constraints,
starting with P. In fact, as we shall explain in Section 7.3, it is enough
to apply this rule for each unary constraint once. This yields a straightfor-
ward algorithm that imposes node consistency, that is, an algorithm that
transforms a CSP to an equivalent one that is node consistent.

5.2 Arc consistency

We begin now our review of the most common notions of local consistency.
The first notion we introduce is arc consistency. Informally, a binary con-
straint is arc consistent if every value in each domain participates in a so-
lution. And a CSP is arc consistent if all its binary constraints are. Here is
the precise definition.

Definition 5.4
• Consider a binary constraint C on the variables x, y with the domains

Dx and Dy, that is C ⊆Dx ×Dy. We call C arc consistent if

– ∀a ∈ Dx∃b ∈ Dy (a, b) ∈ C,
– ∀b ∈ Dy∃a ∈ Dx (a, b) ∈ C.

• We call a CSP arc consistent if all its binary constraints are arc
consistent. �

So a binary constraint is arc consistent if every value in each domain has
a support in the other domain, where we call b a support for a if the pair
(a, b) (or, depending on the ordering of the variables, (b, a)) belongs to the
constraint.

Note that a CSP with no binary constraints is vacuously arc consistent.
That is, the property of arc consistency automatically holds in absence of
binary constraints. Among the notions of local consistency arc consistency
is the most popular. The following three examples illustrate this notion.
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Example 5.5
(i) Consider the CSP which consists of only one constraint, x < y interpreted
over the domains Dx = [5..10] of x and Dy = [3..7] of y. It is visualised in
Figure 5.1.

x [5..10]

<

y [3..7]

Fig. 5.1. A CSP that is not arc consistent

This CSP is not arc consistent. Indeed, take for instance the value 8 in
the domain [5..10] of x. Then there is no b in [3..7] such that 8 < b.

(ii) Next, consider the CSP of Example 2.2 that formalises the n Queens
Problem where n ≥ 3. It is easy to see that this CSP is arc consistent. For-
mally, we need to analyse each constraint separately. Consider for instance
the constraint xi − xj �= i− j with 1 ≤ i < j ≤ n and take a ∈ [1..n]. Then
there exists b ∈ [1..n] such that a − b �= i − j: just take b ∈ [1..n] that is
different from a− i + j.

(iii) Finally, consider the CSP of Example 2.8 that deals with the crossword
puzzle. This CSP is not arc consistent. Indeed, take for instance the already
discussed constraint

C1,2 = {(HOSES, SAILS), (HOSES, SHEET), (HOSES, STEER),
(LASER, SAILS), (LASER, SHEET), (LASER, STEER)} .

on the variables associated with the positions 1 and 2. Both positions need
to be filled by five letter words, so both domains equal {HOSES, LASER,
SAILS, SHEET, STEER}.

Now, no word in this set begins with the letter I, so for the value SAILS
for the first variable no value for the second variable exists such that the
resulting pair satisfies the considered constraint. �

Let us discuss now closer the status of the arc consistency. First, note
that arc consistency does not imply consistency. For example, returning
to item (ii) in the above example we noted that the 3 Queens Problem
is arc consistent, even though obviously it has no solution. Actually, the
simplest illustration of this phenomenon is the CSP 〈x = y, x �= y ; x ∈
{a, b}, y ∈ {a, b}〉 visualised in Figure 5.2. It is obviously arc consistent and
also inconsistent.
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x {a, b} =
y {a, b}

�=

Fig. 5.2. An arc consistent but inconsistent CSP

Next, note that consistency does not imply arc consistency either. Indeed,
take the CSP 〈x = y ; x ∈ {a, b}, y ∈ {a}〉 visualised in Figure 5.3. It is ob-

x {a, b}

=

y {a}

Fig. 5.3. A consistent but not arc consistent CSP

viously consistent yet not arc consistent. So both notions are incompatible.
However, as we shall see at the end of this section and also in Section 5.10

for certain CSPs arc consistency does imply consistency. So it is of interest
to transform a CSP into an equivalent one that is arc consistent. As we
shall see in Chapter 7, this can be done in an efficient way.

As a preparation to obtain such an algorithm we characterise the notion
of arc consistency in terms of proof rules. To this end we introduce the
following two rules, where C is a constraint on the variables x and y:

ARC CONSISTENCY 1
〈C ; x ∈ Dx, y ∈ Dy〉
〈C ; x ∈ D′

x, y ∈ Dy〉
where D′

x := {a ∈ Dx | ∃ b ∈ Dy (a, b) ∈ C},

ARC CONSISTENCY 2
〈C ; x ∈ Dx, y ∈ Dy〉
〈C ; x ∈ Dx, y ∈ D′

y〉

where D′
y := {b ∈ Dy | ∃ a ∈ Dx (a, b) ∈ C}.

In other words, the ARC CONSISTENCY rules 1 and 2 deal with pro-
jections, respectively on the first or the second domain. Note that in the
case of the ARC CONSISTENCY rule 1 we have C ⊆D′

x ×Dy and in the
case of the ARC CONSISTENCY rule 2 we have C ⊆Dx×D′

y. So in both
rules we use CSPs in the conclusions as required by the definition of a proof
rule.
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It is straightforward to see that these two rules are equivalence preserving.
Take for instance the ARC CONSISTENCY 1 rule. Consider a pair (d1, d2)
that is a solution of the CSP in the premise of the rule. So (d1, d2) ∈ C and
(d1, d2) ∈ Dx×Dy. Hence d1 ∈ {a ∈ Dx | ∃ b ∈ Dy (a, b) ∈ C}, i.e., d1 ∈ D′

x

and consequently (d1, d2) is a solution of the CSP in the conclusion of the
rule.

Intuitively, the ARC CONSISTENCY rules remove from the domain of x,
respectively the domain of y, the values that do not participate in a solution
to the constraint C. The domains used in these rules can be visualised by
means of Figure 5.4.

D′
y

D′
x

Dy

Dx

C

Fig. 5.4. Old and new domains in the ARC CONSISTENCY rules

The following simple result provides a characterisation of arc consistency
in terms of the above two rules.

Note 5.6 (Arc Consistency) A CSP is arc consistent iff it is closed under
the applications of the ARC CONSISTENCY rules 1 and 2.

Proof It suffices to note that a constraint C on the variables x and y

with the respective domains Dx and Dy is arc consistent iff D′
x = Dx and

D′
y = Dy, where D′

x and D′
y are defined as in the ARC CONSISTENCY

rules 1 and 2. �

To understand better the use of the ARC CONSISTENCY rules let us
return now to the CSP of Example 2.8 that represents a crossword puzzle. In
Example 5.5(iii) above we noted that this CSP is not arc consistent. Assume
now the ARC CONSISTENCY rules 1 and 2 and consider a derivation that
starts with this CSP to see its outcome.

Let, as in Example 2.8, Ci,j with i, j ∈ [1..8] denote the constraint that
represents the crossing of the positions i and j. Suppose now that we apply
in an alternating fashion the ARC CONSISTENCY rules 1 and 2 to the
following sequence of ten constraints labeled by the letters a–j:
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a : C1,2, b : C1,3, c : C4,2, d : C4,5, e : C4,2,

f : C7,2, g : C7,5, h : C8,2, i : C8,6, j : C8,3.

The constraints are labeled in the order they are used in the derivation.
For example, C1,3 is the second constraint used and is labeled by the letter b.
The C4,2 constraint is used more than once in the derivation and is labeled
by the letters c and e.

HOSES
LASER
SAILS
SHEET
STEER

1

HEEL
HIKE
KEEL
KNOT
LINE

4

HOSES
LASER
SAILS
SHEET
STEER

8

AFT
ALE
EEL
LEE
TIE

7

HOSES
LASER
SAILS
SHEET
STEER

HOSES
LASER
SAILS
SHEET
STEER

AFT
ALE
EEL
LEE
TIE

HEEL
HIKE
KEEL
KNOT
LINE

2

3

6

5

a

b

c, e

d

f

g

h

i

b : 1
a : 1
a : 1
a : 1

c : 1

c : 1
c : 1
d : 1

i : 1

h : 1
h : 1
h : 1

f : 1
f : 1
f : 1

f : 1

a : 2
a : 2

e : 2
e : 2

b : 2
b : 2
j : 2
j : 2

i : 2

i : 2
i : 2
i : 2

d : 2
d : 2
g : 2
d : 2j

Fig. 5.5. A representation of a derivation

The resulting derivation is depicted by Figure 5.5. It consists of twenty
steps. In this figure the circles correspond to the variable domains and the
lines to the constraints. In turn, the letters (a–j) and the numbers (1 or 2)
attached to the domain elements. that is, to the elements inside the circles,
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explain by means of which constraint in this derivation and by means of
which rule applied to it (1 or 2) the element is removed.

For example, the entry SHEET j:2 within the circle numbered by 3
means that the element SHEET is removed from the domain of the variable
associated with the position 3 at the moment the ARC CONSISTENCY
rule 2 is applied to the constraint j, that is, to the constraint C8,3.

Note that in Figure 5.5 the numberings c:2, e:1, f :2, g:1, h:2 and j:1 are
not used. This reflects the fact that the corresponding rule applications do
not cause any change, that is, are not relevant. For example, at the moment
the ARC CONSISTENCY rule 2 is applied to constraint h, so to C8,2, this
application is not relevant.

In the final CSP each variable domain is reduced to a singleton set and
consequently this CSP is solved and the exhibited derivation is successful.
This final CSP is depicted in Figure 2.5 of Chapter 2. Because the ARC
CONSISTENCY rules 1 and 2 are equivalence preserving, by virtue of the
Equivalence Lemma 4.2 the resulting CSP is equivalent to the original one
and consequently the original CSP has a unique solution. So in this example
we could solve the original CSP by transforming it to an arc consistent one
by repeatedly using the ARC CONSISTENCY rules 1 and 2. In general,
such a transformation is not sufficient, as the example of the n Queens
Problem discussed in Example 5.5(ii) shows.

5.3 Hyper-arc consistency

The notion of arc consistency generalises in a natural way to arbitrary con-
straints.

Definition 5.7
• Consider a constraint C on the variables x1, . . ., xk with the respective

domains D1, . . ., Dk, that is C ⊆D1×· · ·×Dk. We call C hyper-arc

consistent if for every i ∈ [1..k] and a ∈ Di there exists d ∈ C such
that a = d[xi]. (Recall from Definition 3.2 that d[xi] denotes the ith
element of d.)

• We call a CSP hyper-arc consistent if all its constraints are hyper-
arc consistent. �

Intuitively, a constraint C is hyper-arc consistent if for every involved
domain each element of it participates in a solution to C. Note that for
a binary constraint hyper-arc consistency coincides with arc consistency.
The following two examples of Boolean constraints illustrate this notion for
ternary constraints.
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Example 5.8
(i) Consider the following CSP already mentioned in Subsection 4.1.1:

〈x ∧ y = z ; x = 1, y ∈ {0, 1}, z ∈ {0, 1}〉.

It is easily seen to be hyper-arc consistent. Indeed, each element of every
domain participates in a solution. For example, the value 0 of the domain
of z participates in the solution (1, 0, 0).

(ii) In contrast, the CSP

〈x ∧ y = z ; x ∈ {0, 1}, y ∈ {0, 1}, z = 1〉

is not hyper-arc consistent. Indeed, the value 0 of the domain of x does not
participate in any solution. �

In the previous section we characterised arc consistency by means of the
domain reduction rules. We can easily modify this characterisation to the
case of hyper-arc consistency. To this end we introduce the following proof
rule parametrised by a constraint C on the variables x1, . . ., xk and i ∈ [1..k]:

HYPER-ARC CONSISTENCY

〈C ; x1 ∈ D1, . . ., xk ∈ Dk〉
〈C ; x1 ∈ D1, . . ., xi−1 ∈ Di−1, xi ∈ D′

i, xi+1 ∈ Di+1, . . ., xk ∈ Dk〉

where

D′
i := {a ∈ Di | ∃d ∈ C a = d[xi]}.

The following analogue of the Arc Consistency Note 5.6 then holds.

Note 5.9 (Hyper-arc Consistency) A CSP is hyper-arc consistent iff it
is closed under the applications of the HYPER-ARC CONSISTENCY rule.

Proof Again, it suffices to note that a constraint C on the variables
x1, . . ., xk with respective domains D1, . . ., Dk is hyper-arc consistent iff for
every i ∈ [1..k] we have D′

i = Di, where D′
i is defined as in the HYPER-ARC

CONSISTENCY rule. �

5.4 Directional arc consistency

The notion of arc consistency can be modified taking into account some
linear ordering ≺ on the considered variables. The idea is that we require
the existence of supports only ‘in one direction’. This yields directional arc
consistency defined as follows.
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Definition 5.10 Assume a linear ordering ≺ on the considered variables.

• Consider a binary constraint C on the variables x, y with the domains
Dx and Dy. We call C directionally arc consistent w.r.t. ≺ if

– ∀a ∈ Dx∃b ∈ Dy (a, b) ∈ C provided x ≺ y,
– ∀b ∈ Dy∃a ∈ Dx (a, b) ∈ C provided y ≺ x.

So out of these two conditions on C exactly one needs to be checked.
• We call a CSP directionally arc consistent w.r.t. ≺ if all its

binary constraints are directionally arc consistent w.r.t. ≺. �

To see the difference between the notions of arc consistency and directional
arc consistency consider the following examples.

Example 5.11
(i) The CSP

〈x < y ; x ∈ [5..10], y ∈ [3..7]〉

already considered in Example 5.5(i) and visualised in Figure 5.1 is not
directionally arc consistent w.r.t. any linear ordering ≺. Indeed, if x ≺ y,
then, as already noted, for x = 8 no y ∈ [3..7] exists such that 8 < y. And
if y ≺ x, then for y = 4 no x ∈ [5..10] exists such that x < 4.

(ii) In contrast, the CSP

〈x < y ; x ∈ [2..10], y ∈ [3..7]〉

visualised in Figure 5.6 is not arc consistent but it is directionally arc con-
sistent w.r.t. the ordering ≺ such that y ≺ x. Namely, for each b ∈ [3..7] a
value a ∈ [2..10] exists such that a < b, namely a = 2.

x [2..10]

<

y [3..7]

Fig. 5.6. A directionally arc consistent CSP w.r.t. y ≺ x

(iii) Finally, reconsider the CSP of Example 2.8 that deals with the crossword
puzzle. In Example 5.5(iii) we noted that it is not arc consistent. In fact,
this CSP is not directionally arc consistent w.r.t. any linear ordering ≺ on its
variables. For example, the constraint C1,2 is not directionally arc consistent
no matter what ordering we choose on its variables. Indeed, as already noted,
no word in the set {HOSES, LASER, SAILS, SHEET, STEER} begins with
the letter I, so the value SAILS for the first variable has no support in the
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second domain. Moreover, no word in this set has L as the third letter, so
the value LASER for the second variable has no support in the first domain.
�

As in the case of arc and hyper-arc consistency a simple characterisation
of directional arc consistency can be given in terms of rules. To this end it
is useful to think in terms of graphs.

Recall that a graph is a pair (N, A) where N is a finite non-empty set
and A is a binary relation on N , that is a subset of the Cartesian product
N ×N . We call the elements of N nodes and the elements of A arcs.

Definition 5.12 Take a CSP P. Consider a graph defined as follows. Its
nodes are all the variables of P and two variables are connected by an arc if
there is a binary constraint that involves them. We say then that this graph
is associated with the binary constraints of P. �

In the above-defined graph each arc is associated with one or more binary
constraints. In the case of arc consistency for each binary constraint we
postulate the existence of the supports for both directions of each arc. In
contrast, in the case of directional arc consistency we postulate the existence
of the supports only in one direction, the one induced by the variable order-
ing. This amounts to considering directed graphs. In a directed graph , in
contrast to a usual (undirected) graph, each arc has a direction.

Consider now a CSP P and a linear ordering ≺ on its variables. This
linear ordering ≺ turns each arc of the graph associated with the binary
constraints of P into a directed arc and consequently turns this graph into
a directed graph.

In what follows it is more convenient to deal with the CSP P≺ obtained
from P by reordering its variables along ≺ so that each constraint in P≺ is
on a sequence of variables x1, . . ., xk such that x1 ≺ x2 ≺ · · · ≺ xk. So, given
a CSP P, for each binary constraint C on the variables x, y, if x ≺ y, then we
put C in P≺ and otherwise we put in P≺ the constraint {(b, a) | (a, b) ∈ C}
on y, x. The precise definition of P≺ is left as Exercise 5.1.

As an illustration, consider the CSP

P := 〈x < y, y �= z ; x ∈ [2..10], y ∈ [3..7], z ∈ [3..6]〉

with y ≺ x ≺ z. Then

P≺ := 〈y > x, y �= z ; y ∈ [3..7], x ∈ [2..10], z ∈ [3..6]〉.

We have then the following simple result the proof of which we leave as
Exercise 5.2.
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Note 5.13 (Directional Arc Consistency) A CSP P is directionally arc
consistent w.r.t. ≺ iff the CSP P≺ is closed under the applications of the
ARC CONSISTENCY rule 1. �

Proof The proof is left as Exercise 5.2.

5.5 Path consistency

The notions of local consistency introduced so far dealt with each constraint
separately. This can lead to a very inefficient form of reasoning. Consider
for example the CSP

〈x < y, y < z, z < x ; x ∈ {1..100000}, y ∈ {1..100000}, z ∈ {1..100000}〉.

We would like to prove that it is inconsistent. We can use for this purpose
the ARC CONSISTENCY rules 1 and 2. For example, applying the first
rule to the constraint x < y we obtain the CSP

〈x < y, y < z, z < x ; x ∈ {1..99999}, y ∈ {1..100000}, z ∈ {1..100000}〉.

Next, applying the ARC CONSISTENCY 1 rule to the constraint z < x we
obtain the CSP

〈x < y, y < z, z < x ; x ∈ {1..99999}, y ∈ {1..100000}, z ∈ {1..99998}〉.

Iterating this process we obtain a derivation that ends in a failed CSP. So,
by the fact that these two rules are equivalence preserving, we conclude that
the original CSP is inconsistent. But this reasoning results in a huge number
of steps. Moreover, the length of the derivation depends on the size of the
domains.

On the other hand, another, trivial, reasoning yields the same conclusion.
Namely, by the transitivity of < from x < y and y < z we conclude x < z,
which together with z < x yields a contradiction. Path consistency is a
local consistency notion that generalises this form of reasoning to arbitrary
binary constrains. So path consistency involves two constraints considered
together.

In the remaining part of this chapter, to keep things notationally simple,
we shall limit our attention to successively more specific types of CSPs. We
shall introduce all three types now.

Definition 5.14
• We call a CSP P normalised if for each subsequence x, y of its

variables at most one constraint on x, y exists in P.
Given a normalised CSP and a subsequence x, y of its variables we
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denote by Cx,y the unique constraint on x, y if it exists and otherwise
the ‘universal’ relation on x, y that equals the Cartesian product of
the domains of the variables x and y. Note that these universal
relations Cx,y are not constraints of the normalised CSP.

• We call a CSP P standardised if for each pair x, y of variables a
unique constraint on x, y exists.

• We call a CSP P regular if for each sequence X of its variables a
unique constraint on X exists. Given a regular CSP and a subse-
quence X of its variables we denote by CX the unique constraint on
X. �

Example 5.15 Consider the following CSP

〈x + y < 5, x + y �= 2, x < z, y = z, x + y = z ;
x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]〉.

It is not normalised since two constraints on the subsequence x, y exist in
it. Also it is not standardised and not regular. If we replace the constraints
x + y < 5, x + y > 2 by one, written as x + y < 5 ∧ x + y �= 2 and consider
the resulting CSP, so

〈x + y < 5 ∧ x + y �= 2, x < z, y = z, x + y = z ;
x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]〉,

then this CSP is normalised. Even more, this CSP is standardised, since for
each subsequence of two variables, so for x, y, for x, z and for y, z, precisely
one constraint on the subsequence exists. However, this CSP is not regular,
since no unary constraint is present in it. �

The following simple observation holds.

Note 5.16 (Equivalence)
(i) Every CSP is equivalent to a normalised CSP.
(ii) Every CSP is equivalent to a standardised CSP.
(iii) Every CSP is equivalent to a regular CSP. �

Proof (i) For each subsequence x, y of the variables such that a constraint
on x, y exists, replace the set of all constraints on x, y by their intersection.
The resulting CSP is equivalent to the original one and is normalised.

(ii) First add for each subsequence x, y for which no constraint on x, y exists
a constraint on x, y that equals the Cartesian product of the domains of the
variables x and y. Then transform the resulting CSP to a normalised one,
as above.
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(iii) Perform the procedure described in (ii) and (i) above for each subse-
quence X of the variables instead of for each subsequence x, y of the vari-
ables. �

Even though the proof of the above result is straightforward, it has subtle
consequences. Namely, the transformation of a CSP into the one that is nor-
malised, respectively standardised or regular, can affect the local consistency
notion such a CSP satisfies.

As an example consider the 3 Queens Problem formalised as a CSP in
Example 2.2. We noted already in Example 5.5(ii) that this CSP is arc
consistent. However, if we transform it into one that is normalised, the
resulting CSP is not anymore arc consistent. Indeed, the resulting single
constraint on the variables x1 and x2 is then not arc consistent: the value 2
in the domain of x2 has no support in the domain of x1. More intuitively,
if we place the second queen in the center of the 3 × 3 chess board, we
cannot place anymore the first queen in such a way that these two queens
do not attack each other. So the above transformations of CSPs maintain
equivalence but not necessarily specific local consistency notions.

Next, we introduce two simple operations on binary relations.

Definition 5.17 Given two binary relations R and S we define

• the transposition of R by

RT := {(b, a) | (a, b) ∈ R},

• the composition of R and S by

R · S := {(a, b) | ∃c ((a, c) ∈ R, (c, b) ∈ S)}.

�

Note that if R1 is a constraint on the variables x, y and R2 a constraint
on the variables y, z, then R1 ·R2 is a constraint on the variables x, z.

Given a subsequence x, y of the variables of a normalised CSP we now
introduce a ‘supplementary’ relation Cy,x defined by

Cy,x := CT
x,y.

The supplementary relations are not parts of the considered CSP as none
of them is defined on a subsequence of its variables, but they allow us a
more compact presentation. Finally, we introduce the central notion of this
section. We define it for normalised CSPs.
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Definition 5.18 We call a normalised CSP path consistent if for each
subset {x, y, z} of its variables we have

Cx,z ⊆ Cx,y · Cy,z.

�

In other words, a normalised CSP is path consistent if for each subset
{x, y, z} of its variables the following holds:

if (a, c) ∈ Cx,z, then there exists b such that (a, b) ∈ Cx,y and (b, c) ∈ Cy,z.

So a CSP with non-empty domains and with no binary constraints is triv-
ially path consistent. That is, for such CSPs the property of path consistency
holds automatically.

Since the subset {x, y, z} is arbitrary and the order of the elements in a set
is irrelevant, the condition Cx,z ⊆ Cx,y ·Cy,z is a shorthand for the following
six conditions, in which we now refer to an arbitrary subsequence x, y, z of
the considered variables:

Cx,y ⊆ Cx,z · Cz,y, Cx,z ⊆ Cx,y · Cy,z, Cy,z ⊆ Cy,x · Cx,z,

Cy,x ⊆ Cy,z · Cz,x, Cz,x ⊆ Cz,y · Cy,x, Cz,y ⊆ Cz,x · Cx,y.

The latter three inclusions are easily seen to be equivalent to the first three,
since for binary relations R, S we have R⊆ S iff RT ⊆ ST and (R·S)T = ST ·
RT . Further, using the transposition operation ‘.T ’ the first three inclusions
can be rewritten so that only the constraints of the considered CSP and the
universal relations are involved.

This is the contents of the following observation that will be useful later
in this section. Recall that for a subsequence x, y, z of the variables the
relations Cx,y, Cx,z and Cy,z denote either the constraints of the considered
normalised CSP or the universal binary relations on the domains of the
corresponding variables.

Note 5.19 (Alternative Path Consistency) A normalised CSP is path
consistent iff for each subsequence x, y, z of its variables we have

Cx,y ⊆ Cx,z · CT
y,z,

Cx,z ⊆ Cx,y · Cy,z,

Cy,z ⊆ CT
x,y · Cx,z.

�
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Figure 5.7 illustrates this observation. For instance, an indirect path from
x to y via z goes through the arc (x, z) followed by the reversal of the arc
(y, z). This translates to the first formula.

zx

y

Cx,y Cy,z

Cx,z

Fig. 5.7. Three relations on three variables

To further clarify this notion consider the following two examples.

Example 5.20
(i) Consider the following normalised CSP

〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]〉,

visualised in Figure 5.8. This CSP is path consistent. Indeed, we have

Cx,y = {(a, b) | a < b, a ∈ [0..4], b ∈ [1..5]},

Cx,z = {(a, c) | a < c, a ∈ [0..4], c ∈ [6..10]},

Cy,z = {(b, c) | b < c, b ∈ [1..5], c ∈ [6..10]}.

It is straightforward to check that these three constraints satisfy the condi-
tions of the Alternative Path Consistency Note 5.19. For example, for every
pair (a, c) ∈ Cx,z there exists b ∈ [1..5] such that a < b and b < c. Namely,
we can always take b = 5.

(ii) Take now the following normalised CSP

〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

depicted in Figure 5.9. It differs from the previous one, depicted in Fig-
ure 5.8, only in the domain for z. Then this CSP is not path consistent.
Indeed, in this CSP we have

Cx,z = {(a, c) | a < c, a ∈ [0..4], c ∈ [5..10]}
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><

y [1..5]x [0..4]

z [6..10]

<

Fig. 5.8. A path consistent CSP

and for the pair of values 4 ∈ [0..4] and 5 ∈ [5..10] no value b ∈ [1..5] exists
such that 4 < b and b < 5. �

><

y [1..5]x [0..4]

z [5..10]

<

Fig. 5.9. A CSP that is not path consistent

To characterise the notion of path consistency we introduce three transfor-
mation rules that correspond to the Alternative Path Consistency Note 5.19.
In these rules, following the convention introduced in Subsection 4.1.1, we
omit the domain expressions. We assume here that x, y, z is a subsequence
of the variables of the considered CSP.

PATH CONSISTENCY 1
Cx,y, Cx,z, Cy,z

C ′
x,y, Cx,z, Cy,z

where the constraint C ′
x,y on the variables x, y is defined by C ′

x,y := Cx,y ∩
Cx,z · CT

y,z,

PATH CONSISTENCY 2
Cx,y, Cx,z, Cy,z

Cx,y, C ′
x,z, Cy,z

where the constraint C ′
x,z on the variables x, z is defined by C ′

x,z := Cx,z ∩
Cx,y · Cy,z,
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PATH CONSISTENCY 3

Cx,y, Cx,z, Cy,z

Cx,y, Cx,z, C ′
y,z

where the constraint C ′
y,z on the variables y, z is defined by C ′

y,z := Cy,z ∩
CT

x,y · Cx,z.
As already stated such rules are actually abbreviations in the sense that

the corresponding domain expressions are omitted in them. So for example
the PATH CONSISTENCY 1 rule actually stands for

〈Cx,y, Cx,z, Cy,z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈C ′

x,y, Cx,z, Cy,z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

where C ′
x,y := Cx,y ∩ Cx,z · CT

y,z.
To see that it is equivalence preserving consider a triple (a, b, c) that is a

solution to the CSP in the premise of the rule. Then (a, b) ∈ Cx,y, (a, c) ∈
Cx,z and (b, c) ∈ Cy,z. So by definition (a, b) ∈ Cx,z · CT

y,z and consequently
(a, b) ∈ C ′

x,y. The proof that the other two rules are equivalence preserving
is equally straightforward.

The following observation provides the corresponding characterisation re-
sult.

Note 5.21 (Path Consistency) A normalised CSP is path consistent iff
it is closed under the applications of the PATH CONSISTENCY rules 1, 2
and 3.

Proof Using the Alternative Path Consistency Note 5.19 it is straightfor-
ward to see that a normalised CSP is closed under the applications of the
PATH CONSISTENCY rules 1, 2 and 3 iff for each subsequence x, y, z of
its variables we have

• C ′
x,y = Cx,y, where C ′

x,y is defined as in the PATH CONSISTENCY 1
rule,

• C ′
x,z = Cx,z, where C ′

x,z is defined as in the PATH CONSISTENCY 2
rule,

• C ′
y,z = Cy,z, where C ′

y,z is defined as in the PATH CONSISTENCY 3
rule.

Now C ′
x,y = Cx,y iff Cx,y ⊆ Cx,z · CT

y,z and similarly for the other two
equalities. �

The notion of path consistency involves two relations in the sense that
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each relation Cx,z is defined in terms of two other relations, Cx,y and Cy,z.
It can be easily generalised to involve m relations.

Definition 5.22 We call a normalised CSP m-path consistent , where
m ≥ 2, if for each subset {x1, . . ., xm+1} of its variables we have

Cx1,xm+1 ⊆ Cx1,x2 · Cx2,x3 · ... · Cxm,xm+1 .

�

In other words, a normalised CSP is m-path consistent if for each subset
{x1, . . ., xm+1} of its variables the following holds:

if (a1, am+1) ∈ Cx1,xm+1 , then there exists a sequence of values a2, . . ., am such that
for all i ∈ [1..m] we have (ai, ai+1) ∈ Cxi,xi+1 .

This sequence a2, . . ., am can be viewed as a path connecting a1 and am+1.
This explains the name ‘path consistency’ that was originally defined as m-
path consistency. The existence of such a ‘path’ is depicted in Figure 5.10,
where we illustrate the fact that (a1, am+1) ∈ Cx1,xm+1 implies that for some
a2, . . ., am we have (ai, ai+1) ∈ Cxi,xi+1 for i ∈ [1..m].

x1
a1

xm+1
am+1

Cx1,xm+1

x1
a1

xm+1
am+1

Cx1,xm+1

x2
a2

x3
a3

Cx1,x2

Cx2,x3

...
xm−1
am−1

xm
am

Cxm−1,xm

Cxm,xm+1

implies

Fig. 5.10. m-path consistency: existence of a ‘path’ connecting a1 and am+1

Clearly 2-path consistency is identical to path consistency. The following
theorem shows that for other values of m the equivalence holds, as well.

Theorem 5.23 (Path Consistency) Consider a normalised CSP that is
path consistent. Then it is m-path consistent for each m ≥ 2.

Proof We proceed by induction. As already noticed, the claim holds for
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m = 2. Assume the claim holds for some m ≥ 2. Consider now a subset
{x1, . . ., xm+2} of the variables of this CSP. By virtue of path consistency
applied to the set {x1, xm+1, xm+2} we have

Cx1,xm+2 ⊆ Cx1,xm+1 · Cxm+1,xm+2 .

By induction the considered CSP is m-path consistent. By m-path consis-
tency applied to the set {x1, . . ., xm+1} we have

Cx1,xm+1 ⊆ Cx1,x2 · Cx2,x3 · ... · Cxm,xm+1 .

Consequently,

Cx1,xm+2 ⊆ Cx1,x2 · Cx2,x3 · ... · Cxm+1,xm+2 .

This concludes the proof of the inductive step and hence the proof of the
claim. �

So this generalisation of the path consistency does not bring anything
new.

5.6 Directional path consistency

This is not the case for another modification of the path consistency that
takes into account a linear ordering ≺ on the considered variables. Then,
just as in the case of the arc consistency, we obtain a new notion of local
consistency. It is defined as follows.

Definition 5.24 Assume a linear ordering ≺ on the considered variables.
We call a normalised CSP directionally path consistent w.r.t. ≺ if for
each subset {x, y, z} of its variables we have

Cx,z ⊆ Cx,y · Cy,z provided x, z ≺ y.

�

This definition relies on the supplementary relations because the ordering
≺ may differ from the original ordering of the variables. For example, in
the original ordering z can precede x. In this case Cz,x and not Cx,z is a
constraint of the CSP under consideration. But just as in the case of path
consistency we can rewrite this definition using the original constraints only.
In fact, we have the following analogue of the Alternative Path Consistency
Note 5.19.
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Note 5.25 (Alternative Directional Path Consistency) A normalised
CSP is directionally path consistent w.r.t. ≺ iff for each subsequence x, y, z

of its variables we have

Cx,y ⊆ Cx,z · CT
y,z provided x, y ≺ z,

Cx,z ⊆ Cx,y · Cy,z provided x, z ≺ y,

Cy,z ⊆ CT
x,y · Cx,z provided y, z ≺ x.

Proof The proof is left as Exercise 5.3. �

Thus out of the above three inclusions precisely one needs to be checked.
To see the difference between the notions of path consistency and directional
path consistency consider the following example.

Example 5.26 Reconsider the CSP

〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

of Example 5.20(ii). We already noted that it is not path consistent. The
argument given there also shows that it is not directionally path consistent
w.r.t. the ordering ≺ in which x, z ≺ y.

In contrast, it is easy to see that this CSP is directionally path consistent
w.r.t. the ordering ≺ in which x, y ≺ z. Indeed, for every pair (a, b) ∈ Cx,y

there exists c ∈ [5..10] such that a < c and b < c. Namely, we can always
take c = 6.

Similarly, this CSP is also directionally path consistent w.r.t. the ordering
≺ in which y, z ≺ x, as for every pair (b, c) ∈ Cy,z there exists a ∈ [0..4] such
that a < b and a < c, namely a = 0. �

To characterise the notion of directional path consistency we proceed as
in Section 5.4 and reason in terms of the CSP P≺. We have the following
characterisation result.

Note 5.27 (Directional Path Consistency) A normalised CSP P is
directionally path consistent w.r.t. ≺ iff P≺ is closed under the applications
of the PATH CONSISTENCY rule 1.

Proof The proof is left as Exercise 5.4. �
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5.7 k-consistency

The notion of path consistency can be also generalised in a different way.
For further discussion we need to be more precise about the way values are
assigned to variables. To this end we introduce the following notions.

Definition 5.28 Consider a CSP P.

• By an instantiation we mean a function defined on a subset of the
variables of P which assigns to each variable a value from its domain.
We represent instantiations as sets of the form

{(x1, d1), . . ., (xk, dk)}.

This notation assumes that x1, . . ., xk are distinct variables and that
for i ∈ [1..k] di is an element from the domain of xi.

• Consider a subsequence xi1 , . . ., xim of the sequence x1, . . ., xk. We
say that an instantiation {(x1, d1), . . ., (xk, dk)} satisfies a constraint
C on xi1 , . . ., xim if (di1 , . . ., dim) ∈ C, that is, if (d1, . . ., dk) satisfies
C in the sense of Section 2.1.

• We call an instantiation I with the domain X consistent if it sat-
isfies all constraints of P on the subsequences of the variables from
X.

• We call a consistent instantiation k-consistent if its domain consists
of k variables.

• We call an instantiation a solution to P if it is consistent and
defined on all variables of P.

• Consider an instantiation I with a domain X and a subset Y of X.
We denote by I | Y the instantiation obtained by restricting I to the
elements of Y and call it the restriction of I to Y . �

So an instantiation is a solution to a CSP if it is k-consistent, where k is
the number of its variables. Let us illustrate the introduced notions by an
example.

Example 5.29 Take the following CSP already considered in Example
5.20(ii) and depicted in Figure 5.9:

〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉.

Consider the instantiation I := {(x, 0), (y, 5), (z, 6)}. It clearly satisfies the
first constraint x < y, since 0 < 5. It also satisfies the second constraint
x < z, since 0 < 6 and the third constraint y < z since 5 < 6. So I is a
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consistent (or, equivalently, 3-consistent) instantiation which is a solution
to this CSP.

Further, note that the restrictions of I to two element subsets of its domain
are:

I | {x, y} := {(x, 0), (y, 5)},

I | {x, z} := {(x, 0), (z, 6)},

and

I | {y, z} := {(y, 5), (z, 6)}.

�

Next, we introduce some properties of CSP the study of which is the topic
of this section.

Definition 5.30
• We call a CSP 1-consistent if it is node consistent.
• We call a CSP k-consistent , where k > 1, if for every (k − 1)-

consistent instantiation and for every variable x not in its domain
there exists a value in the domain of x such that the resulting instan-
tiation is k-consistent. �

So, a CSP is k-consistent where k > 1, if every (k − 1)-consistent instan-
tiation can be extended to a k-consistent instantiation no matter what new
variable is selected. In the case no (k − 1)-consistent instantiation exists,
the CSP is vacuously k-consistent.

The following example clarifies this definition.

Example 5.31 Consider the CSP

〈x �= y, x + y = z ; x ∈ [1..2], y ∈ [1..2], z ∈ [2..4]〉.

Since no unary constraints are present, this CSP is vacuously 1-consistent,
i.e., node consistent.

Further, any instantiation with the singleton domain can be extended to a
2-consistent instantiation no matter what new variable we choose. For exam-
ple, the instantiation {(x, 1)} can be extended to the consistent instantiation
{(x, 1), (y, 2)} with the domain {x, y}. So this CSP is 2-consistent.

The 2-consistent instantiation {(x, 1), (y, 2)} can be extended to a 3-
consistent instantiation, namely {(x, 1), (y, 2), (z, 3)}. However, this is not
sufficient to show 3-consistency, since we need to consider all 2-consistent
instantiations and all ‘new’ variables. In fact, the 2-consistent instantiation
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{(x, 1), (z, 4)} cannot be extended to a 3-consistent instantiation, so this
CSP is not 3-consistent. �

The following observation shows that the notion of k-consistency gener-
alises both arc consistency and path consistency. By a binary constraint

satisfaction problem , in short binary CSP , we mean here a CSP all
constraints of which are unary or binary.

Note 5.32 (Characterisation)

(i) A node consistent normalised CSP is arc consistent iff it is 2-consis-
tent.

(ii) A node consistent normalised binary CSP is path consistent iff it is
3-consistent.

Proof The proof is left as Exercise 5.5. �

It is useful to notice that in general there is no relation between the notions
of consistency, k-consistency and l-consistency for k �= l.

Example 5.33
(i) First notice that for every k > 1 there exists an inconsistent CSP on k

variables that is (k − 1)-consistent but not k-consistent.
Indeed, consider a domain D := [1..k − 1], a sequence of k variables

x1, . . ., xk, each with the domain D, and assume the constraints xi �= xj for
i ∈ [1..k−1] and j ∈ [i+1..k]. These constraints just state that all variables
are different. For k = 3 this CSP is depicted in Figure 5.11. It is easy to see
that the resulting CSP is (k− 1)-consistent because every (k− 2)-consistent
instantiation ‘uses’ k − 2 values out of [1..k − 1] so it can be extended to
a (k − 1)-consistent instantiation by assigning the ‘remaining’ value to the
newly selected variable. However, this CSP is not k-consistent as there is
no solution to it.

�=�=

x2 [1..2]x1 [1..2]

x3 [1..2]

�=

Fig. 5.11. A 2-consistent but 3-inconsistent CSP
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(ii) Next, note that for every k > 2 there exists a consistent CSP on k

variables that is not (k − 1)-consistent but is k-consistent.
Indeed, take a sequence of k variables x1, . . ., xk, with the domain {a, b} for

the variable x1 and with the singleton domain {a} for each of the variables
x2, . . ., xk. Now assume the constraints x1 �= x2 and x1 �= x3. The resulting
CSP is depicted in Figure 5.12.

...

�=
�=

x1 {a, b}

x2 {a}

x3 {a}

x4 {a}

xk {a}

Fig. 5.12. A k-consistent but not (k − 1)-consistent CSP

Consider now the instantiation the domain of which consists of the vari-
ables xl for l �= 2, 3 and which assigns to each of these variables, in particular
to x1, the value a. This instantiation is vacuously (k− 2)-consistent. It can
be extended to an instantiation of k − 1 variables in two ways: by either
adding the pair (x2, a) or the pair (x3, a). In each case the resulting instan-
tiation is not (k − 1)-consistent. So this CSP is not (k − 1)-consistent.

However, this CSP is k-consistent. Indeed, if an instantiation I with k−1
variables in its domain cannot be extended to a k-consistent instantiation,
then the pair (x1, a) occurs in I. But I has k− 1 variables in its domain, so
also either the pair (x2, a) occurs in I or the pair (x3, a) occurs in I. So I is
then not consistent.

In other words, every (k − 1)-consistent instantiation is a restriction of
the consistent instantiation

{(x1, b), (x2, a), (x3, a), . . ., (xk, a)}.

(iii) Next, note that for every k > 2 there exists an inconsistent CSP on k

variables that is k-consistent.
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Indeed, consider a domain D := [1..k − 2], a sequence of k variables
x1, . . ., xk, each with the domain D, and assume the constraints xi �= xj for
i ∈ [1..k − 1] and j ∈ [i + 1..k]. The only difference between this CSP and
the one considered in (i) is that the domains now equal [1..k− 2] instead of
[1..k−1]. For k = 3 this CSP is depicted in Figure 5.13. As a consequence no
(k−1)-consistent instantiation exists. So this CSP is vacuously k-consistent.

�=�=

x2 {1}x1 {1}

x3 {1}

�=

Fig. 5.13. A 3-consistent but inconsistent CSP

(iv) Finally, note that for every k > 2 there exists a consistent CSP on k

variables that is not k-consistent.

Indeed, consider a sequence of k variables x1, . . ., xk. Take for x1 the
domain {1} and for the variables x2, . . ., xk the domain D := [1..k]. As in (i)
and (iii) assume the constraints xi �= xj for i ∈ [1..k − 1] and j ∈ [i + 1..k].
For k = 3 this CSP is depicted in Figure 5.14.

�=�=

x2 [1..3]x1 {1}

x3 [1..3]

�=

Fig. 5.14. A consistent but 3-inconsistent CSP

As the instantiation {(x1, 1), (x2, 2), . . ., (xk, k)} shows, this CSP is clearly
consistent. However, this CSP is not k-consistent, since the (k−1)-consistent
instantiation {(x2, 1), (x3, 2), . . ., (xk, k − 1)} cannot be extended to a k-
consistent instantiation. �
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As in the case of the previously considered notions of local consistency, we
now characterise the notion of k-consistency by means of rules. To this end
we confine our attention to regular CSPs that were introduced in Definition
5.14, i.e., the ones in which for each sequence X of its variables a unique
constraint on X exists, denoted by CX .

We now need to introduce some notation.

Definition 5.34
• Given a constraint C on a sequence of variables X and a subsequence

Y of X we define the projection of C on Y by

ΠY (C) := {d[Y ] | d ∈ C}.

• Given a sequence of constraints C1, . . ., Cm on, respectively, sequences
of variables X1, . . ., Xm we define their join , written as C1 � · · · �

Cm, as the constraint defined by

C1 � · · · � Cm := {d | d[Xi] ∈ Ci for i ∈ [1..m]}.

• Given a sequence X of variables we define

CX := � {CY | Y is a subsequence of X}.

�

We should still clarify on what sequence of variables is the above-defined
constraint C1 � · · · � Cm. In general, it depends on the assumed sequence of
variables. For example, given the sequence x1, x2, x3, x4 and two constraints,
C1 on x1, x2 and C2 on x1, x3, the constraint C1 � C2 is on the sequence
x1, x2, x3 of the variables. However, given the sequence x1, x3, x2 of the
variables the constraint C1 � C2 is then on the sequence x1, x3, x2 of the
variables.

Consider now an arbitrary sequence X of variables such that for i ∈ [1..m]
Xi is a subsequence of X, and the constraints C1, . . ., Cm on, respectively,
X1, . . ., Xm. Then by definition the join C1 � · · · � Cm is a constraint on
the shortest subsequence of X that contains each Xi as a subsequence.

Note that the definition of the join does not depend on the ordering of
the constraints. This justifies the definition of CX . Also note that by the
definition of the join d is a solution to 〈C1, . . ., Cm ; DE〉 iff d ∈ C1 � · · · �
Cm. So the join operation � provides us with a compact way of representing
all solutions to a CSP.

We can now introduce the desired proof rule. It is parameterised by a
sequence of variables X of length k− 1 and a variable y that does not occur
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in X. For simplicity, we write X, y to denote the subsequence of the variables
of the given CSP that consists of the variables present in X and y.

k-CONSISTENCY
CX

CX ∩ΠX(CX,y)

To understand better this rule note that for each subsequence Y of the
variables d ∈ CY iff the corresponding instantiation with the domain Y is
consistent. Consequently, d ∈ ΠX(CX,y) iff the corresponding instantia-
tion with the domain (formed by the elements of) X can be extended to a
consistent instantiation with the domain X, y.

To illustrate how this rule is applied consider an example.

Example 5.35 Consider now the regular CSP corresponding to the CSP

〈x �= y, x + y = z ; x ∈ [1..2], y ∈ [1..2], z ∈ [2..4]〉.

from Example 5.31.
Let us apply to it the k-CONSISTENCY rule with X equal to {x, y}

and y equal to z. Then CX is the constraint x �= y which denotes the set
{(1, 2), (2, 1)}. In turn, CX,y denotes the constraint x + y = z, i.e, the set
{(1, 1, 2), (1, 2, 3), (2, 1, 3), (2, 2, 4)}. There are two ‘non-trivial’ constraints
in this CSP, so CX,y equals (x �= y) � (x + y = z) which denotes the
set {(1, 2, 3), (2, 1, 3)}. Consequently, ΠX(CX,y) = {(1, 2), (2, 1)} and this
application of the k-CONSISTENCY rule is not relevant.

Let us apply now to this CSP the k-CONSISTENCY rule with X equal
to {x, z}. The constraint CX on X is the Cartesian product [1..2] × [1..2],
and, as before, CX,y denotes the constraint x + y = z, i.e, the set

{(1, 1, 2), (1, 2, 3), (2, 1, 3), (2, 2, 4)}.

Also, as before CX,y equals (x �= y) � (x + y = z) and denotes the set
{(1, 2, 3), (2, 1, 3)}. So now ΠX(CX,y) = {(1, 3), (2, 3)}. So this application
of the k-CONSISTENCY rule transforms the universal constraint CX on
x, z to the constraint {(1, 3), (2, 3)}, which amounts syntactically to adding
the constraint (x = 1 ∧ z = 3) ∨ (x = 2 ∧ z = 3) on x, z. This constraint
has an indirect effect of removing the value 4 from the domain of z. �

The following result clarifies the status of the k-CONSISTENCY rule.

Note 5.36 (k-Consistency) Fix k ≥ 1. If a regular CSP is closed under
the applications of the k-CONSISTENCY rule for all subsequences X of
k − 1 variables and all variables y not in X, then it is k-consistent.
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Proof Call the considered CSP P. Take a subsequence X of k−1 variables
and a variable y of P not in X. Suppose P is closed under the applications of
the k-CONSISTENCY rule for each such X and y. Then CX ⊆ΠX(CX,y).
But by definition CX ⊆ CX , so CX ⊆ΠX(CX,y). This means that every
(k− 1)-consistent instantiation with the domain X is a restriction of a con-
sistent instantiation with the domain X, y. In other words, every (k − 1)-
consistent instantiation with the domain X can be extended to a k-consistent
instantiation with the domain X, y. �

Note that in contrast to the previous characterisations of the local consis-
tency notions by means of the proof rules we only have here an implication.
This implication cannot be reversed. Indeed, take the CSP of Example
5.33(ii) depicted in Figure 5.12, that is,

〈x1 �= x2, x1 �= x3 ; x1 ∈ {a, b}, x2 ∈ {a}, . . ., xk ∈ {a}〉,

where k > 2, which, as we showed, is k-consistent. Transform it to a regular
CSP by adding to it the universal constraints for all sequences of variables
different from x1, x2 and x1, x3. It is easy to see that the resulting CSP is still
k-consistent. Consider now the instantiation I := {(x1, a), . . ., (xk−1, a)}.
Then I does not satisfy the constraint x1 �= x2. So for

d := ( a, . . ., a︸ ︷︷ ︸
k − 1 times

)

and X := x1, . . ., xk−1 we have d ∈ CX , since CX is a universal constraint,
and d �∈ ΠX(CX,xk

), since

CX,xk
= {(b, a, . . ., a︸ ︷︷ ︸

k − 1 times

)}.

So this regular CSP is not closed under the applications of the k-CONSIS-
TENCY rule for X and y := xk.

However, the fact that in the above Note we only have an implication is
of no consequence for us. Indeed, this result provides us with a method of
transforming a regular CSP into a k-consistent one: by means of a repeated
application of the k-CONSISTENCY rule for all subsequences of variables
X of length k − 1 and all variables y not in X.

5.8 Strong k-consistency

A natural question arises what is the use of k-consistency. After all, Exam-
ple 5.33 shows that k-consistency, even for a large, relative to the number of
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variables, k does not guarantee yet that the CSP is consistent. This seems
to indicate that in general there is no relation between k-consistency and
consistency. This, however, is not completely true. The discussed examples
only show that the notion of k-consistency is of limited value when consid-
ered in isolation. What we need is an accumulated effect of the k-consistency
notions. This brings us to the following definition.

Definition 5.37 We call a CSP strongly k-consistent , where k ≥ 1, if
it is i-consistent for every i ∈ [1..k]. �

Now, the following simple result relates strong consistency and consis-
tency.

Theorem 5.38 (Consistency 1) Consider a CSP with k variables, where
k ≥ 1, such that

• at least one domain is non-empty,
• it is strongly k-consistent.

Then this CSP is consistent.

Proof We construct a solution to the considered CSP by induction. More
precisely, we prove that

(i) there exists a 1-consistent instantiation,
(ii) for every i ∈ [2..k] each (i − 1)-consistent instantiation can be ex-

tended to an i-consistent instantiation.

Rearrange the variables in question in a sequence x1, . . ., xk such that the
domain D1 of x1 is non-empty. Since the considered CSP is 1-consistent
and the domain D1 is non-empty, there exists d1 such that {(x1, d1)} is
1-consistent. This proves (i).

Now (ii) is simply a consequence of the fact that the CSP is i-consistent
for every i ∈ [2..k]. �

Note that the assumption that at least one domain is non-empty is essen-
tial. Indeed, every CSP with all domains empty is trivially i-consistent for
every i ∈ [1..k], where k is the number of variables. Yet it has no solution.
Note also that the implication in the Consistency 1 Theorem 5.38 cannot
be reversed. Indeed, consider the CSP discussed in Example 5.33(ii). It is
consistent but not (k− 1)-consistent, so a fortiori not strongly k-consistent.

In general, a CSP can involve a large number of variables, so to use the
above theorem one either needs to check strong k-consistency or to reduce
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the given CSP to a strong k-consistent one, in both cases for a large k. We
shall see in Section 5.10 that in many cases we can use a much smaller k.

We conclude this section by noting the following immediate consequence
of the k-Consistency Note 5.36.

Note 5.39 (Strong k-Consistency) Fix l ≥ 1. If a regular CSP is closed
under the applications of the k-CONSISTENCY rule for all subsequences
of variables X of length k ∈ [1..l − 1] and all variables y not in X, then it
is strongly l-consistent. �

5.9 Relational consistency

We considered by now several notions of local consistency. Some of them, like
the hyper-arc consistency, dealt with each constraint separately and focused
on the variable domains. Other notions, like the path consistency dealt with
two binary constraints at a time. We saw also that m-path consistency, the
extension of the path consistency that dealt with m binary constraints at a
time, was equivalent to path consistency.

One can, however, modify the notion of m-path consistency and consider
arbitrary sequences of m not necessarily binary constraints. At the same
time one can consider an arbitrary number of variables present in these
constraints. This yields perhaps the ultimate notion of local consistency,
called relational consistency. To illustrate the use of such a notion consider
the following CSP:

〈all different(x, y, z), x + y + z = u ;
x ∈ [1..3], y ∈ [1..3], z ∈ [1..3], u ∈ [3..5]〉,

where the all different constraint was defined in Section 2.2. This CSP
is clearly inconsistent since when x, y and z are all different, their sum is at
least 6. However, this CSP is easily seen to be hyper-arc consistent. Also,
it is vacuously node consistent, arc consistent and path consistent, since no
unary or binary constraints are present. A fortiori, it is directionally arc
consistent and directionally path consistent, w.r.t. all variable orderings.
So none of these local consistency notions can be directly used to detect
inconsistency.

Thanks to the Consistency 1 Theorem 5.38 we know that for some k this
CSP is not k-consistent. In fact, this CSP is not 4-consistent, since the
3-consistent instantiation {(x, 1), (y, 2), (z, 3)} cannot be extended to a 4-
consistent instantiation. However, this reasoning does not capture the orig-
inal intuition for inconsistency, namely that the two considered constraints
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cannot be considered jointly. The relational consistency notion, that we are
about to define, does allow us to capture this intuition.

Given a sequence of constraints C1, . . ., Cm we denote by Var(C1, . . ., Cm)
the set of variables that are used in them.

Definition 5.40
• Consider a CSP P with a subsequence C of its constraints. Denote

by P | C the CSP obtained from P by removing all constraints not
in C and by deleting all domain expressions involving variables not
present in any constraint in C.

• We call a CSP P relationally (i, m)-consistent if for every se-
quence C of its constraints of length m and a subset X of Var(C) of
size i the following holds:
every consistent (relative to P) instantiation with the domain X can
be extended to a solution to P | C. �

In other words, to verify that a CSP is relationally (i, m)-consistent, we
need to check that for every sequence of m constraints and for every set
X of i variables, each present in one of these m constraints, any consistent
instantiation with the domain X can be extended to a solution to all these
m constraints.

Returning now to the CSP considered above we note that it is not (1,2)-
relationally consistent. Indeed, no instantiation with the domain {u} can be
extended to an instantiation that satisfies both considered constraints. Also,
this CSP is not (3,2)-relationally consistent since no consistent instantiation
with the domain {x, y, z} can be extended to an instantiation that satisfies
both constraints. So, in contrast to the notion of 4-consistency, we could
focus our reasoning either on the ‘offensive’ variable {u} or on the other
three variables.

The following observation clarifies the relationship between the relational
(i, m)-consistency and other notions of local consistency considered in this
chapter. It shows that relational consistency generalises various local consis-
tency notions and can be also used to characterise the consistency property.
By a strictly binary CSP we mean here a CSPs with exclusively binary
constraints.

Note 5.41 (Relational Consistency 1)
• A node consistent binary CSP is arc consistent iff it is relationally

(1, 1)-consistent.
• A node consistent CSP is hyper-arc consistent iff it is relationally

(1, 1)-consistent.
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• Every node consistent normalised relationally (2, 3)-consistent CSP
is path consistent.

• Every strictly binary relationally (k−1, k)-consistent CSP is k-consis-
tent.

• A CSP with m constraints is consistent iff it is relationally (0, m)-
consistent.

Proof The proof is left as Exercise 5.6. �

As usual, we conclude the section by characterising the discussed notion
of local consistency by means of the proof rules. The rule we are going to
introduce uses the join operation � introduced in Definition 5.34 in Sec-
tion 5.7. This operation allows us to combine several constraints present in
the original CSP into a ‘compound’ constraint. The compound constraint
can be viewed as an outcome of a deduction step applied to the original
constraints, much like in the case of path consistency x < z could be seen as
an outcome of a deduction step applied to the constraints x < y and y < z.
The difference is that now several constraints, of arbitrary arities, can be
combined.

We confine our attention to regular CSPs introduced in Definition 5.14.
Given a regular CSP we introduce the following rule parameterised by a
sequence of constraints C1, . . ., Cm and a subsequence X of Var(C1, . . ., Cm)
of length i:

RELATIONAL (i, m)-CONSISTENCY

CX

CX ∩ΠX(C1 � · · · � Cm)

To see the use of this rule consider an example.

Example 5.42

(i) Consider the CSP

〈all different(x, y, z), x + y + z = u ;
x ∈ [1..3], y ∈ [1..3], z ∈ [1..3], u ∈ [3..10]〉,

(or more precisely, the regular CSP that corresponds to it). Then the
all different(x, y, z) constraint denotes the set of triples

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

and the x+y +z = u constraint denotes the set of 27 tuples (i, k, l, i+k + l)



5.9 Relational consistency 169

such that i, j, k ∈ [1..3]. So all different(x, y, z) � (x+y+z = u) denotes
the following set of 4-tuples:

(1, 2, 3, 6), (1, 3, 2, 6), (2, 1, 3, 6), (2, 3, 1, 6), (3, 1, 2, 6), (3, 2, 1, 6).

Consequently, Π{u}(all different(x, y, z) � x + y + z = u) represents the
unary constraint {6} on u. So using the RELATIONAL (1, 2)-CONSISTEN-
CY rule we can reduce the domain of u to {6}.

(ii) Let us return now to the CSP

〈all different(x, y, z), x + y + z = u ;
x ∈ [1..3], y ∈ [1..3], z ∈ [1..3], u ∈ [3..5]〉,

already considered earlier in this section and in which the domain of u is
now [3..5]. In contrast to (i) x + y + z = u corresponds now to the following
set of 10 tuples:

(1, 1, 1, 3), (1, 1, 2, 4), (1, 2, 1, 4), (2, 1, 1, 4), (1, 2, 2, 5),

(2, 1, 2, 5), (2, 2, 1, 5), (1, 1, 3, 5), (1, 3, 1, 5), (3, 1, 1, 5).

So now all different(x, y, z) � (x + y + z = u) is the empty set and
consequently so is the set Π{u}(all different(x, y, z) � x+y+z = u). So
applying the RELATIONAL (1, 2)-CONSISTENCY rule we get the empty
constraint on u and consequently reduce the considered CSP to a failed
CSP. Thus the above rule allowed us to discover that the original CSP is
inconsistent. �

We now get the following characterisation of the notion of relational (i, m)-
consistency in terms of the proof rules.

Note 5.43 (Relational Consistency 2) Fix i, m ≥ 0. If a regular CSP is
closed under the applications of the RELATIONAL (i, m)-CONSISTENCY
rule for each subsequence of constraints C1, . . ., Cm and each subsequence X

of Var(C1, . . ., Cm) of length i, then this CSP is relationally (i, m)-consistent.

Proof Call the considered CSP P. Take a subsequence of constraints
C1, . . ., Cm and a subsequence X of Var(C1, . . ., Cm) of length i. Suppose P
is closed under the applications of the RELATIONAL (i, m)-CONSISTEN -
CY rule for each such subsequence of the constraints C1, . . ., Cm and a
subsequence of the variables X. Then CX ⊆ΠX(C1 � · · · � Cm). But by
definition CX ⊆ CX , so

CX ⊆ΠX(C1 � · · · � Cm).
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This means that every i-consistent instantiation with the domain X can be
extended to a solution to P | (C1, . . ., Cm). �

So similarly as in the k-Consistency Note 5.36 we have here only an im-
plication. To see that the reverse implication does not hold take the CSP
that we used for an analogous purpose after the proof of the k-Consistency
Note 5.36, so the transformation of the CSP

〈x1 �= x2, x1 �= x3 ; x1 ∈ {a, b}, x2 ∈ {a}, . . ., xk ∈ {a}〉,

into a regular CSP obtained by adding to it the universal constraints for
all sequences of variables different from x1, x2 and x1, x3. As already noted
in Example 5.33(ii) every (k − 1)-consistent instantiation is a restriction of
the consistent instantiation {(x1, b), (x2, a), (x3, a), . . ., (xk, a)}. This implies
that for any m this regular CSP is (k− 1, m) consistent. Yet it is not closed
under the applications of the RELATIONAL (k − 1, m)-CONSISTENCY
rule. Indeed, take X := x1, . . ., xk−1 and the constraints x1 �= x2 and CX,xk

.
Then for

d := ( a, . . ., a︸ ︷︷ ︸
k − 1 times

)

we have d ∈ CX and d �∈ ΠX((x1 �= x2) � CX,xk
), since

(x1 �= x2) � CX,xk
= {(b, a, . . ., a︸ ︷︷ ︸

k − 1 times

)}.

5.10 Graphs and CSPs

In this section we show how a graph-theoretic analysis leads to an improve-
ment of the Consistency 1 Theorem 5.38 of Section 5.8. First, we associate
with each CSP graphs that are more general than those considered in Sec-
tion 5.4. The reason is that we now wish to take into account arbitrary
constraints, not only binary ones.

Definition 5.44 Take a CSP P. Consider a graph defined as follows. Its
nodes are all the variables of P and two variables are connected by an arc
if there is a constraint that involves them. We say then that this graph is
associated with P. �

Let us consider some examples.
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Example 5.45
(i) Consider the SEND + MORE = MONEY puzzle discussed in Example
2.1. The graph associated with the first CSP presented there has eight nodes,
namely the variables S, E, N, D, M, O, R, Y and is complete, that is every
two nodes are connected by an arc. This holds already even if we disregard
all disequality constraints: the only equality constraint already involves all
eight variables.

(ii) The graph associated with a CSP with two constraints, x + y = z and
x + u = v is depicted in Figure 5.15.

x
y

z
u

v

Fig. 5.15. The graph associated with the CSP 〈x + y = z, x + u = v ; DE〉

(iii) Finally, the graph associated with a CSP with four constraints, x < z,
x < y, y < u, y < v is depicted in Figure 5.16. �

x y

u

z

v

Fig. 5.16. The graph associated with the CSP 〈x < z, x < y, y < u, y < v ; DE〉

Next, we associate with each graph a numeric value.

Definition 5.46 Consider a finite graph G. Assume a linear ordering ≺
on its nodes.

• The ≺-width of a node of G is the number of arcs in G that connect
it to ≺-smaller nodes.

• The ≺-width of G is the maximum of the ≺-widths of its nodes.
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• The width of G is the minimum of its≺-widths for all linear orderings
≺ on its nodes. �

To illustrate the notion of the ≺-width of a node consider the graph dis-
cussed in Example 5.45(ii) and depicted in Figure 5.15 and two linear order-
ings on its nodes, x ≺ y ≺ z ≺ v ≺ u and u ≺ v ≺ z ≺ y ≺ x. In Figure 5.17
for each of them we list under each node its ≺-width. For example, the
width of x in the second ordering is 4, since there are 4 arcs that connect x

with an ≺-smaller node. So for the first ordering the ≺-width of this graph
is 2 while for the second it is 4.

≺-width:
y z v ux

0 1 2 1 2

≺-width:
u v z y x

0 1 0 1 4
Fig. 5.17. Two examples of the ≺-widths of the nodes of the graph from Figure 5.15

Note that the width of a complete graph with n nodes is n− 1. Also, the
width of a graph that is a tree is 1. Indeed, it suffices to take the linear
ordering ≺ such that a ≺ b if a is the parent of b. Conversely, if the width of
a graph is 1, then the graph is a disjoint union of trees. The roots of these
trees are the elements with no ≺-predecessor, where ≺ is the linear ordering
for which the ≺-width of the graph is 1.

To further clarify this notion let us now consider the graphs discussed in
Example 5.45.

Example 5.47
(i) The graph from Example 5.45(i) is a complete graph with 8 nodes, so its
width is 7.

(ii) Next, the width of the graph discussed in Example 5.45(ii) and depicted
in Figure 5.15 is 2. Indeed, consider any ordering ≺ of the variables in which
x is the first variable, for example the first one used in Figure 5.17. Then
the ≺-width of this graph is 2. Further, the width of this graph is at least
2 since it contains a complete subgraph with 3 nodes.
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(iii) Finally, the width of the graph discussed in Example 5.45(iii) and de-
picted in Figure 5.16 is 1, since it is a tree. �

We now prove the following result that greatly improves upon the Con-
sistency 1 Theorem 5.38.

Theorem 5.48 (Consistency 2) Consider a CSP such that

• all its domains are non-empty,
• it is strongly k-consistent,
• the graph associated with it has width k − 1.

Then this CSP is consistent.

Proof Let ≺ be a linear ordering on the variables of this CSP such that the
≺-width of the graph associated with this CSP is k−1. Let x1, . . ., xn be the
sequence of the variables of this CSP linearly ordered by ≺ and D1, . . ., Dn

the corresponding domains.
We now prove that

(i) there exists a consistent instantiation with the domain {x1},
(ii) for every j ∈ [1..n− 1] each consistent instantiation with the domain

{x1, . . ., xj} can be extended to a consistent instantiation with the
domain {x1, . . ., xj+1}.

Since the considered CSP is 1-consistent and the domain D1 is non-empty,
there exists d1 such that {(x1, d1)} is consistent. This proves (i).

To prove (ii) let Y be the set of variables in {x1, . . ., xj} that are connected
by an arc with xj+1. By the definition of the width of a graph the set Y has
at most k − 1 elements. Let now I be a consistent instantiation with the
domain {x1, . . ., xj}. Consider its restriction I | Y to Y . By the definition
of strong k-consistency for some dj+1 the instantiation I | Y ∪{(xj+1, dj+1)}
is consistent.

Now, by the definition of Y , each constraint on a sequence of variables
from {x1, . . ., xj+1} is either on a sequence of variables from {x1, . . ., xj}
or from Y ∪ {xj+1}. In both cases the corresponding restriction of I ∪
{(xj+1, dj+1)} is consistent. So the instantiation I ∪ {(xj+1, dj+1)} itself is
consistent.

We can now construct a solution to P proceeding by induction using (i)
and (ii). �

The above theorem is indeed an improvement over the Consistency 1
Theorem 5.38 because it rarely happens that for a CSP the width of its
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graph equals the number of its variables minus one which is the case is
when the graph associated with a CSP is complete.

To understand better the use of this theorem consider under its assump-
tions the situation when k = 2. In this case the graph associated with the
considered CSP has width 1, so it is a disjoint union of trees. By virtue of the
Characterisation Note 5.32(i) we can conclude that under the assumption
that all the domains of this CSP are non-empty, node and arc consistency
imply consistency. In fact, we can slightly improve this observation as fol-
lows.

Theorem 5.49 (Directional Arc Consistency) Consider a CSP and a
linear ordering ≺ on its variables such that

• all its domains are non-empty,
• it is node consistent and directionally arc consistent w.r.t. ≺,
• the ≺-width of the graph associated with it is 1, (i.e., this graph is a

disjoint union of trees).

Then this CSP is consistent.

Proof It is a straightforward specialisation of the proof of the Consistency
2 Theorem 5.48 for k = 2. In this case the set Y considered in its proof is
either empty or a singleton set. �

An analogous result holds when k = 3.

Theorem 5.50 (Directional Path Consistency) Consider a normalised
binary CSP and a linear ordering ≺ on its variables such that

• all its domains are non-empty,
• it is node consistent,
• it is directionally arc consistent and directionally path consistent, both

w.r.t. ≺,
• the ≺-width of the graph associated with it is 2.

Then this CSP is consistent.

Proof The result follows by a specialisation of the proof of the Consistency
2 Theorem 5.48 for k = 3. In this case the set Y considered in this proof
has 0, 1 or 2 elements. We then rely on, respectively, node, directional
arc, or directional path consistency, to show that the instantiation I | Y ∪
{(xj+1, dj+1)} is consistent. �
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5.11 Summary

The aim of this chapter was to introduce various local consistency notions.
Informally, local consistency means that some subparts of the considered
CSP are in a ‘desired form’, for example consistent. We discussed in turn:

• node consistency,
• arc consistency,
• hyper-arc consistency,
• directional arc consistency,
• path consistency,
• directional path consistency,
• k-consistency,
• strong k-consistency,
• relational (i, m)-consistency.

In preparation of the presentation of the constraint propagation algorithms
that enforce these notions of local consistency we characterised each of them
by means of the proof rules.

As already mentioned earlier, local consistency neither implies nor is im-
plied by consistency. This means that to solve a CSP it is in general not
sufficient to reduce it to an equivalent one that is locally consistent. On the
other hand, in the presence of some additional information, it is possible to
prove that local consistency implies consistency. In that case search is not
needed. An example of such a result was given in Section 5.10. It relied on
the notion of a graph associated with a CSP. In general, however, a reduc-
tion of a CSP to a locally consistent one has to be combined with search, a
topic to which Chapter 8 is devoted.

5.12 Exercises

Exercise 5.1 Consider a P and a linear ordering ≺ on its variables. Define
precisely P≺ and extend the notion of the equivalence of CSPs in such a way
that P and P≺ are equivalent.

Exercise 5.2 Prove the Directional Arc Consistency Note 5.13.

Exercise 5.3 Prove the Alternative Directional Path Consistency 5.25.

Exercise 5.4 Prove the Directional Path Consistency Note 5.27.
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Exercise 5.5 Prove the Characterisation Note 5.32.

Exercise 5.6 Prove the Relational Consistency 1 Note 5.41.
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F OR SOME SPECIFIC domains and constraints for which no efficient
solving methods exist or are known to exist specialised techniques
have been developed. The aim of this chapter is to illustrate such

techniques on a number of examples. In each case they amount to reducing a
given CSP to a simpler one that is equivalent to the original one. Because in
general from the resulting CSP one cannot immediately generate solutions
to it, these methods amount in the terminology of Chapter 4 to incomplete
constraint solvers. We define these incomplete constraint solvers using the
proof theoretic framework introduced in Section 4.1, so by means of the
proof rules that work on CSPs.

Ideally, we would like to use the general rules defined in Chapter 5. Un-
fortunately, this is easier said than done. Consider for example the HYPER-
ARC CONSISTENCY rule of Section 5.3 that is clearly of interest, since
given a constraint C on the variables x1, . . ., xk, it allows us to remove all
‘unneeded’ elements from the domains of the variables x1, . . ., xk. When
the constraints are defined using a specific language, it is not clear how to

178
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compute the new variable domains that appear in the rule conclusion. So
for each specific language we rather provide rules that are defined syntac-
tically and consequently can be readily implemented. In other words, we
‘customise’ the general framework to a specific language in which constraints
are defined and to specific domains that are used.

In what follows we present six examples of such a customisation, for

• the equality and disequality constraints,
• the Boolean constraints,
• the linear constraints over integer intervals and over finite integer domains,
• the arithmetic constraints over integer intervals and over finite integer

domains,
• the arithmetic constraints over specific subsets of reals that we call ex-

tended intervals; they include all real intervals and the set of all reals,
• the arithmetic equations over reals.

The following table summarises the syntax of the constraints and the
domains involved:

Syntax Domain Discussed in

equalities and disequalities arbitrary Section 6.2

Boolean constraints subsets of {0, 1} Section 6.3

linear constraints integer intervals and Section 6.4
finite integer domains

arithmetic constraints integer intervals and Section 6.5
finite integer domains

arithmetic constraints extended intervals of reals Section 6.6

arithmetic equations the set of reals Section 6.7

In each case we illustrate the use of the introduced techniques by means
of examples. Then we relate the introduced proof rules to a notion of local
consistency. This clarifies what form of local consistency is actually achieved
and allows us to view these specialised techniques as methods of enforcing
specific forms of local consistency. In a number of these characterisation
results the mentioned above notion of hyper-arc consistency will play an
important role.

In any implementation, to avoid possible redundancies, the rules intro-
duced in this chapter should be selected and scheduled in an appropriate
way. This matter will be discussed in detail in Chapter 7.
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6.1 A useful lemma

Many constraint solvers considered in this chapter consist exclusively of
domain reduction rules. These rules are either applied to the original con-
straints or to certain ‘atomic’ constraints to which each discussed constraint
is reduced. When considering such sets of rules it is useful to know what
is the optimal domain reduction they could achieve. This question is an-
swered in the following lemma that clarifies the importance of the notion of
hyper-arc consistency. This lemma will allow us to establish optimality of a
couple of constraint solvers here considered.

Lemma 6.1 (Hyper-arc Consistency) Consider a hyper-arc consistent
CSP P. Then P is closed under the applications of every domain reduction
rule which is

• equivalence preserving, and
• has only one constraint in its premise.

Proof Such a domain reduction rule R is of the form

P1

P2

where P1 and P2 are equivalent,

P1 := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉,

P2 := 〈C ′ ; x1 ∈ D′
1, . . ., xn ∈ D′

n〉,

and

• for i ∈ [1..n] we have D′
i ⊆Di,

• C ′ is the result of restricting C to the domains D′
1, . . ., D

′
n.

Suppose that R can be applied to P. Choose now a variable xi. If xi is
not present in the constraint C involved in this application of R, then, since
that P1 and P2 are equivalent, we have D′

i = Di.
If xi is present in the constraint C, take an element a ∈ Di. The constraint

C is hyper-arc consistent so the element a participates in a sequence that
satisfies C. Extend it to a solution d to P1 by choosing arbitrary values for
the variables not present in C. Due to the equivalence of P1 and P2 the
sequence d is also a solution to P2. Thus a ∈ D′

i. So D′
i = Di. This proves

the claim. �
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This lemma states that hyper-arc consistency is the best one can hope to
achieve when using a constraint solver that consists exclusively of equiva-
lence preserving domain reduction rules, each involving a single constraint.
That is, if such a constraint solver imposes hyper-arc consistency, then it
achieves the optimal domain reduction.

Recall that by the Hyper-arc Consistency Note 5.9 of Section 5.3 the
hyper-arc consistency is achieved by the HYPER-ARC CONSISTENCY
rule. So the above lemma states that among the equivalence preserving do-
main reduction rules with one constraint in the premise the HYPER-ARC
CONSISTENCY rule is the strongest.

Note that the above lemma does not hold if the rule in question deals
with more than one constraint. To see it take the arc consistent CSP

P := 〈x = y, x �= y ; x ∈ {a, b}, y ∈ {a, b}〉

and consider the domain reduction rule

R :=
〈x = y, x �= y ; x ∈ {a, b}, y ∈ {a, b}〉
〈x = y, x �= y ; x ∈ ∅, y ∈ {a, b}〉

that is clearly equivalence preserving. Since the conclusion of this rule differs
P, we conclude that P is not closed under the applications R.

6.2 Equality and disequality constraints

As a first example of an incomplete constraint solver consider the equality
and disequality constraints. Of course, these constraints alone are insuf-
ficient to formalise any interesting problems. But they are often used in
combination with other constraints so it is of interest to have at one’s dis-
posal some means to deal with them. We do this by adopting the following
domain reduction rules.

EQUALITY 1

〈x = x ; x ∈ D〉
〈 ; x ∈ D〉

EQUALITY 2

〈x = y ; x ∈ Dx, y ∈ Dy〉
〈x = y ; x ∈ Dx ∩Dy, y ∈ Dx ∩Dy〉
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DISEQUALITY 1

〈x �= x ; x ∈ D〉
〈 ; x ∈ ∅〉

DISEQUALITY 2

〈x �= y ; x ∈ Dx, y ∈ Dy〉
〈 ; x ∈ Dx, y ∈ Dy〉

where Dx ∩Dy = ∅,

DISEQUALITY 3

〈x �= y ; x ∈ D, y = a〉
〈 ; x ∈ D − {a}, y = a〉

where a ∈ D,

DISEQUALITY 4

〈x �= y ; x = a, y ∈ D〉
〈 ; x = a, y ∈ D − {a}〉

where a ∈ D.

Recall that in this context y = a, respectively x = a, is here a shorthand
for the domain expression y ∈ {a}, respectively x ∈ {a}. Denote the set of
these rules by EQU. Note that the inconsistent CSP

〈x = y, x �= y ; x ∈ {0, 1}, y ∈ {0, 1}〉

is closed under the applications of the rules of EQU. Also, recall that in Ex-
ample 4.6 we presented three examples of a derivation in this proof system.
The EQUALITY 2 rule was referred there as the EQUALITY rule and the
DISEQUALITY rule represented the DISEQUALITY 3 and 4 rules.

In particular, one of these derivations started with the CSP

〈x = y, y �= z, z �= u ; x ∈ {a, b, c}, y ∈ {a, b, d}, z ∈ {a, b}, u = b〉

and led to a solved CSP. In view of these examples it would help to clarify
the status of the rules of EQU. The following simple characterisation result
does it.

Theorem 6.2 (EQU ) A CSP that consists exclusively of equality and dis-
equality constraints is hyper-arc consistent iff it is closed under the applica-
tions of the rules of the proof system EQU.
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That is, a CSP with only equality and disequality constraints is hyper-arc
consistent iff it is a final CSP in a stabilising derivation for the proof system
EQU.

Proof (⇒ ) This is a direct consequence of the Hyper-arc Consistency
Lemma 6.1 and the fact that the proof rules of the proof system EQU are
equivalence preserving domain reduction rules.

(⇐ ) Let φ be the CSP under consideration. Since each constraint of φ is
either unary or binary, the hyper-arc consistency is equivalent to node and
arc consistency.

Since φ is closed under the applications of the EQUALITY 1 and DISE-
QUALITY 1 rules, the constraints x = x and x �= x do not belong to φ. So
φ is vacuously node consistent.

Consider now an equality constraint x = y of φ on the variables x, y with
respective domains Dx and Dy. Since φ is closed under the applications of
the EQUALITY 2 rule, Dx = Dy. So x = y is arc consistent.

Next, consider a disequality constraint x �= y of φ on the variables x, y

with respective domains Dx and Dy. Suppose by contradiction that x �= y

is not arc consistent. Then either Dx or Dy is non-empty. Suppose it is Dx.
Take a ∈ Dx. So for no b ∈ Dy the pair (a, b) belongs to the disequality
constraint. This means that either Dy = ∅ or Dy = {a}. If Dy = ∅, then
φ is not closed under the applications of the DISEQUALITY 2 rule and if
Dy = {a}, then φ is not closed under the applications of the DISEQUALITY
3 rule. This contradicts the assumption. A symmetric argument holds for
the domain Dy of the variable y. This shows that x �= y is arc consistent.
Consequently φ is arc consistent.

This means that φ is hyper-arc consistent. �

The above result shows that in the case of the equality and disequality
constraints we succeeded to represent node and arc consistency by means
of specific elementary rules. We already noticed that the inconsistent CSP
〈x = y, x �= y ; x ∈ {0, 1}, y ∈ {0, 1}〉 is closed under the applications of
the rules of EQU. This means that using only these rules we cannot reduce
this CSP to a failed one. In other words, these rules alone are insufficient
to detect the inconsistency of this CSP. So the constraint solver determined
by EQU is incomplete.

On the other hand the rules of EQU boil down to very simple operations
on the variable domains —setting it to the empty set, intersecting two do-
mains, and removing an element from a domain— and consequently they
are easy to implement.



184 Some incomplete constraint solvers

6.3 Boolean constraints

Boolean constraint satisfaction problems deal with Boolean variables and
constraints on them defined by means of Boolean connectives and equality.
We already referred to these CSPs at various places. Let us define them
now formally for the purpose of the analysis that follows.

By a Boolean variable we mean a variable which ranges over the domain
that consists of two values: 0 denoting false and 1 denoting true. By a
Boolean domain expression we mean an expression of the form x ∈ D

where D ⊆ {0, 1}. In what follows we write the Boolean domain expression
x ∈ {1} as x = 1 and x ∈ {0} as x = 0. By a Boolean expression we mean
an expression built out of the Boolean variables using three connectives: ¬
(negation), ∧ (conjunction) and ∨ (disjunction). The connectives
are just function symbols written in the case of ∧ and ∨ in the infix form,
i.e., between the arguments. Also, ¬, when applied to a variable is written
without the brackets.

The only relation symbol in the language is the equality symbol =. Next,
by a Boolean constraint we mean a formula of the form s = t, where
s, t are Boolean expressions. In the presence of Boolean domain expressions
each such formula uniquely determines a subset of the Cartesian product of
the variable domains (so a constraint in the sense used so far). For example,
in the presence of the domain expressions x ∈ {0}, y ∈ {0, 1}, z ∈ {0, 1}, the
formula ¬x ∧ y = z determines the subset {(0, 0, 0), (0, 1, 1)}. So from now
on we identify each Boolean constraint with the constraint determined by
it. Finally, by a Boolean constraint satisfaction problem , in short a
Boolean CSP , we mean a CSP with Boolean domain expressions and all
constraints of which are Boolean constraints.

Note that in our framework the Boolean constants, true and false, are
absent. They can be easily modeled by using two predefined variables, say
xT and xF , with fixed Boolean domain expressions xT = 1 and xF = 0.
Boolean expressions are more often known under the name of propositional

formulas. By studying Boolean CSPs instead of propositional formulas
we do not lose any expressiveness since each Boolean expression s can be
modelled by a CSP

ψs := 〈s = xT ; x1 ∈ {0, 1}, . . ., xn ∈ {0, 1}, xT = 1〉

where x1, . . ., xn are the variables of s. Then s is satisfiable (i.e., becomes
true for some assignment of truth values to its variables) iff ψs has a solution.

There are many ways to deal with Boolean constraints. The one we discuss
here separates them into two classes: those that are in a ‘simple’ form and
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those that are in a ‘compound’ form. Those in a simple form will be dealt
with directly; the latter ones will be reduced to the former ones.

In the sequel x, y, z denote different Boolean variables. We call a Boolean
constraint simple if it is in one of the following form:

• x = y; we call it the equality constraint ,
• ¬x = y; we call it the NOT constraint ,
• x ∧ y = z; we call it the AND constraint ,
• x ∨ y = z; we call it the OR constraint .

6.3.1 Transformation rules

By introducing auxiliary variables it is straightforward to transform each
Boolean CSP into an equivalent one all constraints of which are simple. This
process, as already discussed in Chapter 3, can be viewed as a preprocessing
stage, or the Preprocess procedure of the Solve procedure of Figure 3.1
from Section 3.2.

More precisely, we adopt the following two transformation rules for nega-
tion:

〈¬s = t ; DE〉
〈¬x = t, s = x ; DE , x ∈ {0, 1}〉

where s is not a variable and where x does not appear in DE (in short, x is
a fresh variable),

〈¬s = t ; DE〉
〈¬s = y, t = y ; DE , y ∈ {0, 1}〉

where t is not a variable and where y is a fresh variable.
The following transformation rules for the binary connectives are equally

straightforward. Here op stands for ∧ or for ∨ .

〈s op t = u ; DE〉
〈s op t = z, u = z ; DE , z ∈ {0, 1}〉

where u is not a variable or is a variable identical to s or t, and where z is
a fresh variable,

〈s op t = u ; DE〉
〈x op t = u, s = x ; DE , x ∈ {0, 1}〉

where s is not a variable or is a variable identical to t or u, and where x is
a fresh variable,

〈s op t = u ; DE〉
〈s op y = u, t = y ; DE , y ∈ {0, 1}〉
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where t is not a variable or is a variable identical to s or u, and where y is
a fresh variable.

It is straightforward to prove that each of these rules is equivalence pre-
serving w.r.t. to the sequence of the variables of the premise (see Exercise
6.1) and that every derivation obtained by means of these transformation
rules is finite (see Exercise 6.2).

6.3.2 Domain reduction rules

We now introduce domain reduction rules that deal with the simple Boolean
constraints. We write these rules in a simplified form already suggested in
Subsection 3.2.6 that we illustrate by means of three representative exam-
ples.

We write the rule
〈¬x = y ; x ∈ Dx, y = 0〉
〈 ; x ∈ Dx ∩ {1}, y = 0〉

as

¬x = y, y = 0→ x = 1,

the already mentioned in Section 3.2.6 transformation rule

〈x ∧ y = z ; x = 1, y ∈ Dy, z ∈ Dz〉
〈y = z ; x = 1, y ∈ Dy, z ∈ Dz〉

as

x ∧ y = z, x = 1→ y = z,

and the rule
〈x ∨ y = z ; x = 0, y ∈ Dy, z = 1〉
〈 ; x = 0, y ∈ Dy ∩ {1}, z = 1〉

as

x ∨ y = z, x = 0, z = 1→ y = 1.

Using this convention we now introduce twenty rules presented in Table
6.1. We call the resulting proof system BOOL. To read properly such for-
mulas it helps to remember that 0 and 1 are domain elements, so atomic
formulas of the form x = 0 and x = 1 are domain expressions while all
other atomic formulas are constraints. Intuitively, the AND 1 rule should
be interpreted as: x ∧ y = z, x = 1 and y = 1 imply that z becomes 1.
Additionally, as a side effect of applying such a rule, the constraint —here
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EQU 1 x = y, x = 1→ y = 1
EQU 2 x = y, y = 1→ x = 1
EQU 3 x = y, x = 0→ y = 0
EQU 4 x = y, y = 0→ x = 0

NOT 1 ¬x = y, x = 1→ y = 0
NOT 2 ¬x = y, x = 0→ y = 1
NOT 3 ¬x = y, y = 1→ x = 0
NOT 4 ¬x = y, y = 0→ x = 1

AND 1 x ∧ y = z, x = 1, y = 1→ z = 1
AND 2 x ∧ y = z, x = 1, z = 0→ y = 0
AND 3 x ∧ y = z, y = 1, z = 0→ x = 0
AND 4 x ∧ y = z, x = 0→ z = 0
AND 5 x ∧ y = z, y = 0→ z = 0
AND 6 x ∧ y = z, z = 1→ x = 1, y = 1

OR 1 x ∨ y = z, x = 1→ z = 1
OR 2 x ∨ y = z, x = 0, y = 0→ z = 0
OR 3 x ∨ y = z, x = 0, z = 1→ y = 1
OR 4 x ∨ y = z, y = 0, z = 1→ x = 1
OR 5 x ∨ y = z, y = 1→ z = 1
OR 6 x ∨ y = z, z = 0→ x = 0, y = 0

Table 6.1. Proof system BOOL

x ∧ y = z— is deleted since it becomes solved. And analogously with the
other rules.

Note also that each of these rules can yield a failed CSP —take for instance
the NOT 2 rule. When applied to the CSP 〈¬x = y ; x = 0, y = 0〉 it yields
〈 ; x = 0, y ∈ ∅〉. The point is that the CSP to which the rule is applied,
here 〈¬x = y ; x = 0, y = 0〉, can be inconsistent though not failed and the
outcome of this application, here 〈 ; x = 0, y ∈ ∅〉, can be a failed CSP.

Further, observe that no rule is introduced for x ∧ y = z when z = 0. In
this case either x = 0 or y = 0, but x = 0 ∨ y = 0 is not a legal Boolean
domain expression. Alternatively, either x = z or y = z holds, but rewriting
x ∧ y = z into x = z ∨ y = z is not a legal step, since the latter is not
a simple Boolean constraint. The same considerations apply to x ∨ y = z

when z = 1.
Finally, note that some Boolean CSPs that are closed under these rules are

neither failed nor solved even if some of the domains are singleton sets. Take
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for instance the CSP 〈x ∧ y = z ; x ∈ {0, 1}, y ∈ {0, 1}, z = 0〉 to which no
rule applies. In Subsection 6.3.4 we shall provide a characterisation of the
Boolean CSPs that are closed under the rules of the system BOOL.

6.3.3 Example: full adder circuit

i1
i2

i3

o2

o1

xor

xor

or

and

and

Fig. 6.1. Full adder circuit

We now show how we can reason using the proof rules for Boolean CSPs
about the full adder circuit originally introduced in Example 2.6 and de-
picted, again, in Figure 6.1. Recall that this circuit computes the binary
sum i1 + i2 + i3 in the binary word o2o1. For example 1 + 1 + 0 yields 10.

First, we need to enrich the language by the exclusive disjunction symbol
⊕ and adopt some rules that deal with ⊕. For the purpose of the example
here discussed we just need two rules that are presented in Table 6.2 and
that we add to the system BOOL.

XOR 1 x⊕ y = z, x = 1, y = 1→ z = 0
XOR 2 x⊕ y = z, x = 0, y = 0→ z = 0

Table 6.2. Two proof rules for XOR

We now show how in the case of the Boolean constraints

(i1 ⊕ i2)⊕ i3 = o1,

(i1 ∧ i2) ∨ (i3 ∧ (i1 ⊕ i2)) = o2

representing this circuit we can conclude that i1 = 1, i2 = 1 and o1 = 0
follows from the assumption that i3 = 0 and o2 = 1.

As a first step, we transform the above two constraints using the trans-
formation rules into the following five simple Boolean constraints:

i1 ⊕ i2 = x1,
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i1 ∧ i2 = y1,

x1 ⊕ i3 = o1,

i3 ∧ x1 = y2,

y1 ∨ y2 = o2,

where we used an informal optimization and used only one variable, x1, to
represent the Boolean expression i1 ⊕ i2.

We can now derive the desired conclusion by means of the following suc-
cessful derivation consisting of five steps. The selected constraints are un-
derlined. The original CSP, so

〈i1 ⊕ i2 = x1, i1 ∧ i2 = y1, x1 ⊕ i3 = o1, i3 ∧ x1 = y2, y1 ∨ y2 = o2 ;
i3 = 0, o2 = 1〉

gets transformed by the AND 4 rule into

〈i1 ⊕ i2 = x1, i1 ∧ i2 = y1, x1 ⊕ i3 = o1, y1 ∨ y2 = o2 ;
i3 = 0, o2 = 1, y2 = 0〉.

By the OR 4 rule we now get

〈i1 ⊕ i2 = x1, i1 ∧ i2 = y1, x1 ⊕ i3 = o1 ; i3 = 0, o2 = 1, y2 = 0, y1 = 1〉.

Next, applying the AND 6 rule we get

〈i1 ⊕ i2 = x1, x1 ⊕ i3 = o1 ; i3 = 0, o2 = 1, y2 = 0, y1 = 1, i1 = 1, i2 = 1〉.

Using the XOR 1 rule we now obtain

〈x1 ⊕ i3 = o1 ; i3 = 0, o2 = 1, y2 = 0, y1 = 1, i1 = 1, i2 = 1, x1 = 0〉.

Finally, by the XOR 2 rule we conclude

〈 ; i3 = 0, o2 = 1, y2 = 0, y1 = 1, i1 = 1, i2 = 1, x1 = 0, o1 = 0〉.

Because at each step the equivalence is maintained, we conclude that for
every solution to the original CSP we have i1 = 1, i2 = 1 and o1 = 0.

In Figure 6.2 this derivation is represented by means of a sequence of
five copies of the circuit in which the successive instantiations of the vari-
ables are recorded. In each copy of the circuit the gate ‘responsible’ for the
propagation of a value is shaded.
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Fig. 6.2. Constraint propagation in the full adder circuit
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6.3.4 A characterisation of the system BOOL

It is natural to ask in what sense the proof rules of the system BOOL are
complete. After all, perhaps some obvious rule is missing and its absence
does not allow us to draw some specific conclusion. To provide an answer
to this question we establish the following result that uses the notion of
hyper-arc consistency.

Theorem 6.3 (BOOL) A non-failed Boolean CSP is hyper-arc consistent
iff it is closed under the applications of the rules of the proof system BOOL.

That is, a non-failed Boolean CSP is hyper-arc consistent iff it is a final CSP
in a stabilising derivation for the proof system BOOL.

Proof (⇒ ) This implication follows directly on the account of the Hyper-
arc Consistency Lemma 6.1 as the proof rules of the proof system BOOL
are equivalence preserving domain reduction rules.

(⇐ ) In the proof we limit our attention to the AND constraint. The reason-
ing for the other three simple Boolean constraints is analogous and omitted.
Suppose that C := x ∧ y = z is some AND constraint belonging to the
considered CSP. So C is the constraint on the variables x, y, z with the
respective domains Dx, Dy and Dz defined by

C := {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0)} ∩Dx ×Dy ×Dz.

We have to show that each element in each domain participates in a solution
to the constraint C. We do this by considering each possible value in each
variable domain. By assumption all three domains are non-empty, so we
need to consider the following six cases.

Case 1. Suppose 1 ∈ Dx.
Assume that neither (1, 1) ∈ Dy ×Dz nor (0, 0) ∈ Dy ×Dz. Then either

Dy = {1} and Dz = {0} or Dy = {0} and Dz = {1}. Suppose the former
holds. The considered CSP is closed under the applications of the AND 3
rule (in short, by the AND 3 rule) so we get Dx = {0} which is a contra-
diction. If the latter holds, then by the AND 5 rule we get Dz = {0} which
is a contradiction.

We conclude that for some d we have (1, d, d) ∈ C.

Case 2. Suppose 0 ∈ Dx.
Assume that 0 �∈ Dz. Then Dz = {1}, so by the AND 6 rule we get

Dx = {1} which is a contradiction. Hence 0 ∈ Dz. Let now d be some
element of Dy. We then have (0, d, 0) ∈ C.
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Case 3. Suppose 1 ∈ Dy.
This case is symmetric to Case 1.

Case 4. Suppose 0 ∈ Dy.
This case is symmetric to Case 2.

Case 5. Suppose 1 ∈ Dz.
Assume that (1, 1) �∈ Dx × Dy. Then either Dx = {0} or Dy = {0}. If

the former holds, then by the AND 4 rule we conclude that Dz = {0}. If
the latter holds, then by the AND 5 rule we conclude that Dz = {0}. For
both possibilities we reached a contradiction. So both 1 ∈ Dx and 1 ∈ Dy

and consequently (1, 1, 1) ∈ C.

Case 6. Suppose 0 ∈ Dz.
Assume that both Dx = {1} and Dy = {1}. By the AND 1 rule we

conclude that Dz = {1} which is a contradiction. So either 0 ∈ Dx or
0 ∈ Dy and consequently for some d either (0, d, 0) ∈ C or (d, 0, 0) ∈ C.

So we proved that the constraint C is hyper-arc consistent. �

Note that the restriction to non-failed CSPs is necessary here. For exam-
ple, the failed CSP

〈x ∧ y = z ; x ∈ ∅, y ∈ {0, 1}, z ∈ {0, 1}〉

is not hyper-arc consistent but it is closed under the applications of the proof
rules of BOOL.

It is also easy to check that all the proof rules of the BOOL system
are needed, that is, the above result does not hold when any of these 20
rules is omitted. For example, if the rule AND 4 is left out, then the CSP
〈x ∧ y = z ; x = 0, y ∈ {0, 1}, z ∈ {0, 1}〉 is closed under the applications of
all remaining rules but is not hyper-arc consistent.

The above theorem shows that in order to reduce a Boolean CSP to an
equivalent one that is either failed or hyper-arc consistent it suffices to close
it under the applications of the rules of the BOOL system.

6.4 Linear constraints on integer intervals

As an example of another incomplete constraint solver we now consider
linear constraints over domains that consist of integer intervals. Using this
constraint solver we shall analyse the SEND + MORE = MONEY puzzle
discussed in Example 2.1 of Chapter 2. First, let us introduce the relevant
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notions. We are interested in linear expressions over integers. We define
them in such a way that the underlying alphabet is finite.

By a linear expression we mean a term formed in the alphabet that
contains

• two constants, 0 and 1,
• the unary minus function symbol ‘−’,
• and two binary function symbols, ‘+’ and ‘−’, both written in the infix

notation.

For n ≥ 0 we abbreviate terms of the form

1 + · · ·+ 1︸ ︷︷ ︸
n times

to n, terms of the form

x + · · ·+ x︸ ︷︷ ︸
n times

to nx and analogously with −1 and −x used instead of 1 and x. For example,
4x+3y−x+7 is a linear expression. Below we use the customary terminology
and for n ≥ 0 call a term of the form n or −n an integer , for n > 0 a term
of the form n a positive integer , and for n �= 0 a term of the form n a
non-zero integer .

In what follows we assume implicitly appropriate transformation rules
that allow us to rewrite each linear expression to an expression in the form

Σn
i=1aixi + b,

where n ≥ 0, a1, . . ., an are non-zero integers, x1, . . ., xn are different vari-
ables, and b is an integer.

By a linear constraint we mean a formula of the form

s op t,

where s and t are linear expressions and op ∈ {<,≤, =, �=,≥, >}. For exam-
ple

4x + 3y − x ≤ 5z + 7− y (6.1)

is a linear constraint.
In what follows we drop the qualification ‘linear’ when discussing linear

expressions and linear constraints.
Further, we call

• s < t and s > t strict inequality constraints,
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• s ≤ t and s ≥ t inequality constraints,
• s = t an equality constraint , or an equation ,
• s �= t a disequality constraint ,
• x �= y, for variables x, y, a simple disequality constraint .

By an integer interval , or an interval in short, we mean an expression
of the form

[a..b]

where a and b are integers; [a..b] denotes the set of all integers between a

and b, including a and b. If a > b, we call [a..b] the empty interval .
Finally, by a range we mean a domain expression of the form

x ∈ I

where x is a variable and I is an interval. We abbreviate x ∈ [a..b] to x = a

if a = b and write x ∈ ∅ if a > b.
In what follows we discuss various rules that allow us to manipulate linear

constraints over interval domains. These rules then determine a constraint
solver. To avoid consideration of some uninteresting cases we assume that
all considered linear constraints have at least one variable.

6.4.1 Domain reduction rules for inequality constraints

We divide the rules according to the type of the constraint they involve. We
begin with the inequality constraints. As the heavy notation can blur a sim-
ple idea behind it consider first an illustrative special case. The appropriate
rule uses the � � and � � functions on reals that for a real r yield, respectively,
the smallest integer larger or equal than r and the largest integer smaller or
equal than r.

Take the constraint

3x + 4y − 5z ≤ 7

with the domain expressions x ∈ [lx..hx], y ∈ [ly..hy], z ∈ [lz..hz]. We can
rewrite it as

x ≤ 7− 4y + 5z

3

Any value of x that satisfies this constraint also satisfies the inequality

x ≤ 7− 4ly + 5hz

3
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where we maximised the value of the right-hand side by minimising y and
maximising z w.r.t. their domains.

Because we seek integer solutions, we can in fact write

x ≤
⌊
7− 4ly + 5hz

3

⌋

So we can reduce the interval [lx..hx] to [lx..min(
⌊

7−4ly+5hz

3

⌋
, hx)] without

losing any solution. A similar procedure can be applied to the variables y

and z, though in the case of z we should remember that a division by a
negative number leads to the change of ≤ to ≥.

After this example consider now a general case. Using appropriate trans-
formation rules each inequality constraint can be rewritten in the form∑

i∈POS
aixi −

∑
i∈NEG

aixi ≤ b (6.2)

where

• ai is a positive integer for i ∈ POS ∪NEG,
• xi and xj are different variables for i, j ∈ POS ∪NEG, where i �= j,
• b is an integer.

Below we refer to these rules as normalisation rules.
For example, (6.1) can be equivalently written as 3x+4y−5z ≤ 7. Further,

assume the ranges

xi ∈ [li..hi]

for i ∈ POS ∪NEG.
Choose now some j ∈ POS and let us rewrite (6.2) as

xj ≤
b−∑

i∈POS−{j} aixi +
∑

i∈NEG aixi

aj

Computing the maximum of the expression on the right-hand side w.r.t. the
ranges of the involved variables we get

xj ≤ αj

where

αj :=
b−∑

i∈POS−{j} aili +
∑

i∈NEG aihi

aj

so, since the variables assume integer values,

xj ≤ �αj� .
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We conclude that

xj ∈ [lj ..min(hj , �αj�)].

By analogous calculations we conclude for j ∈ NEG

xj ≥ �βj�

where

βj :=
−b +

∑
i∈POS aili −

∑
i∈NEG−{j} aihi

aj

In this case we conclude that

xj ∈ [max(lj , �βj�)..hj ].

This brings us to the following domain reduction rule for inequality con-
straints:

LINEAR INEQUALITY 1

〈∑i∈POS aixi −
∑

i∈NEG aixi ≤ b ; x1 ∈ [l1..h1], . . ., xn ∈ [ln..hn]〉
〈∑i∈POS aixi −

∑
i∈NEG aixi ≤ b ; x1 ∈ [l′1..h′

1], . . ., xn ∈ [l′n..h′
n]〉

where for j ∈ POS

l′j := lj , h′
j := min(hj , �αj�)

and for j ∈ NEG

l′j := max(lj , �βj�), h′
j := hj .

The domain reduction rule dealing with the linear inequalities of the form
x < y discussed in Subsection 3.2.6 is an instance of this rule.

6.4.2 Domain reduction rules for equality constraints

Each equality constraint can be equivalently written as two inequality con-
straints. By combining the corresponding domain reduction rules for these
two inequality constraints we obtain a domain reduction rule for an equality
constraint. More specifically, using the normalisation rules each equality
constraint can be rewritten in the form

∑
i∈POS

aixi −
∑

i∈NEG
aixi = b (6.3)

where we adopt the conditions that follow (6.2) in the previous subsection.
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Assume now the ranges

x1 ∈ [l1..h1], . . ., xn ∈ [ln..hn].

We infer then both the ranges in the conclusion of the LINEAR INEQUA-
LITY 1 domain reduction rule and the ranges for the linear inequality∑

i∈NEG
aixi −

∑
i∈POS

aixi ≤ −b,

which are

x1 ∈ [l′′1 ..h′′
1], . . ., xn ∈ [l′′n..h′′

n]

where for j ∈ POS

l′′j := max(lj , �γj�), h′′
j := hj

with

γj :=
b−∑

i∈POS−{j} aihi +
∑

i∈NEG aili

aj

and for j ∈ NEG

l′′j := lj , h′′
j := min(hj , �δj�)

with

δj :=
−b +

∑
i∈POS aihi −

∑
i∈NEG−{j} aili

aj

This yields the following domain reduction rule:

LINEAR EQUALITY

〈∑i∈POS aixi −
∑

i∈NEG aixi = b ; x1 ∈ [l1..h1], . . ., xn ∈ [ln..hn]〉
〈∑i∈POS aixi −

∑
i∈NEG aixi = b ; x1 ∈ [l′1..h′

1], . . ., xn ∈ [l′n..h′
n]〉

where for j ∈ POS

l′j := max(lj , �γj�), h′
j := min(hj , �αj�)

and for j ∈ NEG

l′j := max(lj , �βj�), h′
j := min(hj , �δj�).

As an example of the use of the above domain reduction rule consider the
CSP

〈3x− 5y = 4 ; x ∈ [0..9], y ∈ [1..8]〉,

depicted in Figure 6.3.
A straightforward calculation shows that x ∈ [3..9], y ∈ [1..4] are the
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3x− 5y = 4
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Fig. 6.3. Initial CSP

ranges in the conclusion of LINEAR EQUALITY rule. Another application
of the rule yields the ranges x ∈ [3..8] and y ∈ [1..4] upon which the process
stabilises. That is, the CSP 〈3x − 5y = 4 ; x ∈ [3..8], y ∈ [1..4]〉, depicted
in Figure 6.4, is closed under the applications of the LINEAR EQUALITY
rule.

3x− 5y = 4

0 1 2 3 4 5 6 7 8 x

1
2
3
4
x

Fig. 6.4. Final CSP, after the applications of the LINEAR EQUALITY rule

Note that if in (6.3) there is only one variable, the LINEAR EQUALITY
rule reduces to the following rule in which the constraint in the conclusion
becomes solved and hence is deleted:

〈ax = b ; x ∈ [l..h]〉
〈 ; x ∈ { b

a} ∩ [l..h]〉

So, if a divides b and l ≤ b
a ≤ h, the domain expression x = b

a is inferred,
and otherwise a failure is reached. For instance, we have

〈4x = 19 ; x ∈ [0..100]〉
〈 ; x ∈ ∅〉
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6.4.3 Rules for disequality constraints

The domain reduction rules for simple disequalities are very natural. First,
note that the following rule

SIMPLE DISEQUALITY 1

〈x �= y ; x ∈ [a..b], y ∈ [c..d]〉
〈 ; x ∈ [a..b], y ∈ [c..d]〉

where b < c or d < a, is an instance of the DISEQUALITY 2 rule already
discussed in Section 6.2. Following the convention introduced in Subsection
4.1.1 we dropped here the constraint from the conclusion of the proof rule.

Next, we adopt the following two rules that are instances of the DISE-
QUALITY 3 and 4 rules:

SIMPLE DISEQUALITY 2

〈x �= y ; x ∈ [a..b], y = a〉
〈 ; x ∈ [a + 1..b], y = a〉

SIMPLE DISEQUALITY 3

〈x �= y ; x ∈ [a..b], y = b〉
〈 ; x ∈ [a..b− 1], y = b〉

and similarly with x �= y replaced by y �= x. Recall that the domain expres-
sion y = a is a shorthand for y ∈ [a..a].

To deal with disequality constraints that are not simple ones we use the
following notation. Given a linear expression s and a sequence of ranges
involving all the variables of s we denote by s− the minimum s can take
w.r.t. these ranges and by s+ the maximum s can take w.r.t. these ranges.
The considerations of Subsection 6.4.1 show how s− and s+ can be com-
puted.

We now introduce the following transformation rule for non-simple dise-
quality constraints:

DISEQUALITY TRANSFORMATION

〈s �= t ; DE〉
〈x �= t, x = s ; x ∈ [s−..s+],DE〉

where

• s is not a variable,
• x is a fresh variable,
• DE is a sequence of the ranges involving the variables present in s and t,
• s− and s+ are computed w.r.t. the ranges in DE .
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This rule was already mentioned in Section 4.1. The only difference is that
here we use a different domain for the fresh variable x. We also introduce
an analogous rule for the inequality s �= t, where t is not a variable.

6.4.4 Rules for strict inequality constraints

Finally, to deal with the strict inequality constraints it suffices to use the
transformation rules that rewrite s < t into s ≤ t, s �= t, and similarly with
s > t.

6.4.5 Shifting from intervals to finite domains

In our presentation we took care that all the rules preserved the property
that the domains are intervals. In some constraint programming systems,
such as ECLiPSe, this property is relaxed and, instead of finite intervals,
finite sets of integers are used. To model the use of such finite domains it
suffices to modify some of the rules introduced above.

In the case of inequality constraints we can use the following minor mo-
dification of the LINEAR INEQUALITY 1 domain reduction rule:

LINEAR INEQUALITY 2

〈∑i∈POS aixi −
∑

i∈NEG aixi ≤ b ; x1 ∈ D1, . . ., xn ∈ Dn〉
〈∑i∈POS aixi −

∑
i∈NEG aixi ≤ b ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where D1, . . ., Dn are finite sets of integers and for i ∈ [1..n] we have D′
i :=

[l′i..h′
i] ∩Di, where l′j and h′

j are defined as in the LINEAR INEQUALITY
1 domain reduction rule with lj := min(Dj) and hj := max(Dj).

An analogous modification of the LINEAR EQUALITY rule for the equal-
ity constraints is left to the reader. For the simple disequality constraint we
rather use the DISEQUALITY 3 and 4 rules of Section 6.2. So now, in con-
trast to the case of interval domains, an arbitrary element can be removed
from a domain, not only the ‘boundary’ one.

This concludes our presentation of the proof rules that can be used to build
a constraint solver for linear constraints over interval and finite domains.
Such proof rules are present in one form or another within each constraint
programming system that supports linear constraints over interval and finite
integer domains.
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6.4.6 Example: the SEND + MORE = MONEY puzzle

To illustrate use of the above rules for linear constraints over interval and
finite domains, we analyse in detail the first formulation as a CSP of the
SEND + MORE = MONEY puzzle introduced in Example 2.1 of Chapter
2. Recall that in this formulation we used a single equality constraint

1000 · S + 100 · E + 10 ·N + D

+ 1000 ·M + 100 ·O + 10 ·R + E

= 10000 ·M + 1000 ·O + 100 ·N + 10 · E + Y

together with 28 simple disequality constraints x �= y for x, y ranging over
the set {S, E, N, D, M, O, R, Y }, where x precedes y in the presented order,
and with the range [1..9] for S and M and the range [0..9] for the other
variables.

In typical constraint programming systems the above CSP is internally
reduced to the one with the following domain expressions:

S = 9, E ∈ [4..7], N ∈ [5..8], D ∈ [2..8],

M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8].
(6.4)

We now show how this outcome can be formally derived using the rules we
introduced.

First, using the normalisation rules we can rewrite the above equality to

9000 ·M + 900 ·O + 90 ·N + Y − (91 · E + D + 1000 · S + 10 ·R) = 0.

Applying the LINEAR EQUALITY domain reduction rule with the initial
ranges we obtain the following sequence of new ranges:

S = 9, E ∈ [0..9], N ∈ [0..9], D ∈ [0..9],

M = 1, O ∈ [0..1], R ∈ [0..9], Y ∈ [0..9].

At this stage a subsequent use of the same rule yields no new outcome.
However, by virtue of the fact that M = 1 we can now apply the SIMPLE
DISEQUALITY 3 rule to the disequality constraint M �= O to conclude that
O = 0. Using now the facts that M = 1, O = 0, S = 9, the rules SIMPLE
DISEQUALITY 2 and 3 can be repeatedly applied to reduce the domains
of the other variables. This yields the following new sequence of ranges:

S = 9, E ∈ [2..8], N ∈ [2..8], D ∈ [2..8], M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8].

Now five successive iterations of the LINEAR EQUALITY rule yield the
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following sequences of shrinking ranges of E and N with other ranges un-
changed:

E ∈ [2..7], N ∈ [3..8],

E ∈ [3..7], N ∈ [3..8],

E ∈ [3..7], N ∈ [4..8],

E ∈ [4..7], N ∈ [4..8],

E ∈ [4..7], N ∈ [5..8],

upon which the reduction process stabilises. At this stage the rules for
disequalities are not applicable either. In other words, the CSP with the
original constraints and the ranges (6.4) is closed under the applications of
the normalisation rules, the LINEAR EQUALITY rule, and the SIMPLE
DISEQUALITY rules 1, 2 and 3. So using these rules we reduced the orig-
inal ranges to (6.4). The presented stabilising derivation, without counting
the initial applications of the normalisation rules, consists of 24 steps.

Using the VARIABLE ELIMINATION rule of Section 4.1 and the nor-
malisation rules the original equality constraint gets reduced to

90 ·N + Y − (91 · E + D + 10 ·R) = 0.

Moreover, ten simple disequality constraints between the variables E, N, D,
R and Y are still present. The other eighteen simple disequality constraints
are solved.

6.4.7 Bounds consistency

It is useful to realise that the rules introduced in this section are quite limited
in their strength. For example, using them we cannot even solve the CSP

〈x + y = 10, x− y = 0 ; x ∈ [0..10], y ∈ [0..10]〉

as it is closed under applications of the LINEAR EQUALITY rule of Sub-
section 6.4.2.

The point is that the domain reduction rules such as the LINEAR EQUA-
LITY rule are in some sense ‘orthogonal’ to the rules that deal with algebraic
manipulations and that can be expressed as transformation rules. The aim
of the domain reduction rules is to reduce the domains and not to transform
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constraints. So it makes sense to clarify what these rules actually achieve.
By means of example, we concentrate here on the LINEAR EQUALITY
rule.

First note that the notion of hyper-arc consistency is not adequate to
characterise this rule. Indeed, a CSP closed under the applications of the
LINEAR EQUALITY rule does not need to be hyper-arc consistent. Take
for example the CSP

〈3x− 5y = 4 ; x ∈ [3..8], y ∈ [1..4]〉,

already discussed at the end of Subsection 6.4.2 and depicted in Figure 6.4.
We already noted there that it is closed under the applications of the LIN-
EAR EQUALITY rule. On the other hand, this CSP is not hyper-arc
consistent since it has precisely two solutions: x = 3, y = 1 and x = 8, y = 4
and thus none with x = 4.

An even more revealing example is the following one. Consider the CSP

〈2x + 2y − 2z = 1 ; x ∈ [0..1], y ∈ [0..1], z ∈ [0..1]〉.

One can show that it is closed under the applications of the LINEAR
EQUALITY rule. Now, the equation 2x + 2y − 2z = 1 has precisely six
solutions in the unit cube formed by the real unit intervals for x, y and z,
namely (0,0.5,0), (0.5,0,0), (1,0,0.5), (0,1,0.5), (0.5,1,1) and (1,0.5,1), see
Figure 6.5. None of them is an integer solution. So this CSP is inconsistent.

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 1, 1) (1, 1, 1)

(1, 0, 1)

y

x

2x + 2y − 2z = 1

Fig. 6.5. A CSP with no integer solutions

On the other hand each variable bound, 0 and 1, participates in a solution
to this equation over reals. This suggests an alternative notion of local
consistency that uses a ‘detour’ through the intervals of reals. To define
this notion we first introduce the following notation. Two reals a and b
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determine the following real interval:

[a, b] := {r ∈ R | a ≤ r ≤ b}.

In contrast, as already used throughout this section, two integers a and b,
determine the following integer interval:

[a..b] = {c ∈ Z | a ≤ c ≤ b}.

So for example, π ∈ [3, 4] but π �∈ [3..4], since [3..4] = {3, 4}. The definition
below applies to both types of intervals.

Definition 6.4
• Consider a constraint C on the variables x1, . . ., xn with the respective

real interval domains [l1, h1], . . ., [ln, hn]. We call C interval con-

sistent if for every i ∈ [1..n] there exist d, e ∈ C such that li = d[xi]
and hi = e[xi].
Similarly, we call a constraint C on the variables x1, . . ., xn with the
respective integer interval domains [l1..h1], . . ., [ln..hn] interval con-

sistent if for every i ∈ [1..n] there exist d, e ∈ C such that li = d[xi]
and hi = e[xi].

• A CSP the domains of which are real intervals or integer intervals is
called interval consistent if every constraint of it is.

• Consider a linear constraint C on the variables x1, . . ., xn with the
respective domains [l1..h1], . . ., [ln..hn]. Denote by Cr the constraint
obtained from C by replacing each integer domain [li..hi] by the cor-
responding real interval [li, hi] and by interpreting C over the reals.
We call C bounds consistent if Cr is interval consistent.

• A CSP with linear constraints on integer intervals is called bounds

consistent if every constraint of it is. �

So a constraint C on a sequence of variables the domains of which are all
real intervals or integer intervals is interval consistent if for every variable
of it each of its two domain bounds participates in a solution to C. In turn,
a linear constraint C on a sequence of variables, the domains of which are
integer intervals, is bounds consistent if for every variable of it each of its
two domain bounds participates in a solution to the interpretation Cr of C

on the real intervals.
The following example clarifies these notions.
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Example 6.5
(i) Consider the CSP

〈3x− 5y = 4 ; x ∈ [3, 8], y ∈ [1, 4]〉.

Both x = 3, y = 1 and x = 8, y = 4 are solutions to it, so by the shape of
these solutions this CSP is interval consistent. By definition the CSP

〈3x− 5y = 4 ; x ∈ [3..8], y ∈ [1..4]〉,

depicted in Figure 6.4 at the end of Subsection 6.4.2, is bounds consistent.

(ii) In contrast, the CSP

〈3x− 5y = 4 ; x ∈ [3, 10], y ∈ [1, 4]〉

is not interval consistent, since no solution to it exists with x = 10. Conse-
quently, the CSP

〈3x− 5y = 4 ; x ∈ [3..10], y ∈ [1..4]〉,

depicted in Figure 6.6, is not bounds consistent and also not interval con-
sistent.

3x− 5y = 4

0 1 2 3 4 5 6 7 8 x

1
2
3
4
y

9 10

Fig. 6.6. A CSP that is not bounds consistent

(iii) Consider now the CSP

〈2x + 2y − 2z = 1 ; x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1]〉.

already depicted in Figure 6.5. Previously we considered the same equation
with the integer intervals [0..1] instead of the real intervals [0, 1]. We already
noted that the equation 2x + 2y − 2z = 1 has precisely six solutions in the
unit cube formed by the real unit intervals for x, y and z, namely (0,0.5,0),
(0.5,0,0), (1,0,0.5), (0,1,0.5), (0.5,1,1) and (1,0.5,1). They show that each
domain bound participates in a solution. So this CSP is interval consistent
and by definition the originally considered CSP

〈2x + 2y − 2z = 1 ; x ∈ [0..1], y ∈ [0..1], z ∈ [0..1]〉
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is bounds consistent. In contrast, this CSP is not interval consistent. �

So the notion of bounds consistency is defined in an indirect way, by
means of the notion of interval consistency. Note that interval consistency
for linear constraints over integer intervals cannot be used to characterise
the LINEAR EQUALITY rule. Indeed, we already mentioned that the CSP

〈2x + 2y − 2z = 1 ; x ∈ [0..1], y ∈ [0..1], z ∈ [0..1]〉

is closed under the applications of the LINEAR EQUALITY rule. Yet, as
we just noticed, this CSP is not interval consistent. In the next subsection
we show that bounds consistency is the right notion for characterising the
LINEAR EQUALITY rule.

6.4.8 A characterisation of the LINEAR EQUALITY rule

To establish the appropriate result we proceed as follows. First we introduce
a counterpart of the LINEAR EQUALITY rule that deals with the closed
intervals of reals and provide its characterisation. Then we use this charac-
terisation result to characterise the original LINEAR EQUALITY rule.

The mentioned counterpart of the LINEAR EQUALITY rule is obtained
by deleting from the definitions of l′j and h′

j the occurrences of the functions
� � and � �. So this rule deals with an equality constraint in the form∑

i∈POS
aixi −

∑
i∈NEG

aixi = b (6.5)

where

• ai is a positive integer for i ∈ POS ∪NEG,
• xi and xj are different variables for i �= j and i, j ∈ POS ∪NEG,
• b is an integer,

and intervals of reals.
The rule in question has then the following form:

R-LINEAR EQUALITY

〈∑i∈POS aixi −
∑

i∈NEG aixi = b ; x1 ∈ [l1, h1], . . ., xn ∈ [ln, hn]〉
〈∑i∈POS aixi −

∑
i∈NEG aixi = b ; x1 ∈ [lr1, h

r
1], . . ., xn ∈ [lrn, hr

n]〉

where for j ∈ POS

lrj := max(lj , γj), hr
j := min(hj , αj)



6.4 Linear constraints on integer intervals 207

and for j ∈ NEG

lrj := max(lj , βj), hr
j := min(hj , δj).

Recall that αj , βj , γj and δj are defined in Subsection 6.4.2. For the purpose
of the subsequent calculations recall that

αj =
b−∑

i∈POS−{j} aili +
∑

i∈NEG aihi

aj

and

γj =
b−∑

i∈POS−{j} aihi +
∑

i∈NEG aili

aj

It is straightforward to see that the R-LINEAR EQUALITY rule, just as
the LINEAR EQUALITY rule, is equivalence preserving. By considering
now intervals of reals and not intervals of integers we obtain a weaker domain
reduction, that is we obtain larger intervals in the rule conclusion. The
reason is that we now also admit solutions with non-integer values, that is
we now admit more solutions.

We need now the following lemma. We use here some self-explanatory
notation concerning algebraic operations on sequences of the same length.

Note 6.6 (Convexity) Consider an equality constraint of the form
n∑

i=1

aixi = b

where a1, . . ., an, b are integers. If d = (d1, . . ., dn) and e = (e1, . . ., en) are
two of its solutions over reals, then for any α ∈ [0, 1]

• f := d + α(e− d) is also a solution,
• for i ∈ [1..n] we have

fi ∈ [di, ei] if di ≤ ei,

fi ∈ [ei, di] if ei ≤ di,

where f = (f1, . . ., fn).

Proof Straightforward and left as Exercise 6.8. �

Intuitively, the above note states that given two points in the n dimen-
sional space Rn that represent solutions to an equality constraint, any point
lying on the interval connecting these two points also represents a solution.
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Moreover, each such point lies inside the parallelogram determined by these
two points.

To characterise the R-LINEAR EQUALITY rule we rely on the notion
of hyper-arc consistency and use the Hyper-arc Consistency Lemma 6.1.
Below, by aR-LINEQ CSP we mean here a CSP the domains of which are
intervals of reals and the constraints of which are linear equality constraints.

Theorem 6.7 (R-LINEAR EQUALITY ) A non-failed R-LINEQ CSP
is hyper-arc consistent iff it is closed under the applications of the R-LINEAR
EQUALITY rule.

That is, a non-failed R-LINEQ CSP is hyper-arc consistent iff it is a final
CSP in a stabilising derivation in which only the R-LINEAR EQUALITY
rule is applied.
Proof (⇒ ) It suffices to use the fact that theR-LINEAR EQUALITY rule
is an equivalence preserving domain reduction rule and apply the Hyper-arc
Consistency Lemma 6.1.

(⇐ ) Choose a constraint of the considered CSP. It is of the form (6.5) with
the corresponding domain expressions

x1 ∈ [l1, h1], . . ., xn ∈ [ln, hn].

Then for j ∈ [1..n] we have

lrj = lj and hr
j = hj . (6.6)

Fix now some j ∈ [1..n]. Assume that j ∈ POS. The case when j ∈ NEG
is analogous and is omitted. Choose some d ∈ [lj , hj ]. We now show that d

participates in a solution to the constraint (6.5). By (6.6) we have lrj ≤ d ≤
hr

j , so by the definition of lrj and hr
j we have γj ≤ d ≤ αj . Thus for some

α ∈ [0, 1], namely for

α :=
d− γj

αj − γj
,

we have d = γj + α(αj − γj).
Next, note that by the definition of αj and γj we have both∑

i∈POS−{j}
aili + ajαj −

∑
i∈NEG

aihi = b

and ∑
i∈POS−{j}

aihi + ajγj −
∑

i∈NEG
aili = b.
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So we have two solutions to the constraint (6.5). By assumption the consid-
ered CSP is not failed, so each of its domains is non-empty, that is li ≤ hi

for i ∈ [1..n]. Thus by the Convexity Note 6.6 a solution (d1, . . ., dn) to the
constraint (6.5) exists such that d = dj and di ∈ [li, hi] for i ∈ [1..n]. �

We can return now to the original problem of characterising the LINEAR
EQUALITY rule. It is the subject of the following theorem. By a LINEQ

CSP we mean here a CSP the domains of which are intervals of integers
and the constraints of which are linear equality constraints.

Theorem 6.8 (LINEAR EQUALITY ) A non-failed LINEQ CSP is
bounds consistent iff it is closed under the applications of the LINEAR
EQUALITY rule.

That is, a non-failed LINEQ CSP is bounds consistent iff it is a final CSP
in a stabilising derivation in which only the LINEAR EQUALITY rule is
applied.
Proof Given a LINEQ CSP φ we denote by φr theR-LINEQ CSP obtained
from φ by replacing each integer domain [l..h] by the corresponding interval
[l, h] of reals and by interpreting all constraints over the reals. Let φ be a non-
failed LINEQ CSP and φr the corresponding R-LINEQ CSP. Clearly φr is
non-failed either. To prove the claim, in view of theR-LINEAR EQUALITY
Theorem 6.7, it suffices to establish the following two equivalences:

(1) φ is bounds consistent iff φr is hyper-arc consistent,
(2) φ is closed under the applications of the LINEAR EQUALITY rule

iff φr is closed under the applications of the R-LINEAR EQUALITY
rule.

Proof of (1). By definition φ is bounds consistent iff φr is interval consistent.
(⇒ ) By a simple application of the Convexity Note 6.6 to φr.
(⇐ ) Immediate by the definition of φr.

Proof of (2). We first clarify the relationship between the applications of the
LINEAR EQUALITY rule to P1 and the applications of the R-LINEAR
EQUALITY rule to Pr

1 .
Let P2 be the result of applying the LINEAR EQUALITY rule to P1 and

Q2 the result of applying the R-LINEAR EQUALITY rule to Q1 := Pr
1 .

To better follow the reasoning we represent these four CSPs in the following
form:

P1

P2

versus
Q1

Q2

.
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To prove (2) it suffices to prove that

P1 = P2 iff Q1 = Q2. (6.7)

To start with, for two CSPs P ′ and P ′′ with the same variables, let us write
P ′ ⊆ P ′′ to denote the fact that the domains of P ′ are respective subsets of
the domains of P ′′. Then the following holds.

(i) Pr
2 ⊆Q2.
This is due to the roundings resulting from the use of the �� and

�� functions in the definition of the LINEAR EQUALITY rule;
(ii) Q2 ⊆Q1.

This is because the R-LINEAR EQUALITY rule is a domain re-
duction rule.

(iii) If the intervals of Q2 have integer bounds, then Pr
2 = Q2.

This is due to the fact that the roundings resulting from the use of
the �� and �� functions in the definition of the LINEAR EQUALITY
rule have no effect when applied to integer values.

We can now prove (6.7).

(⇒ ) P1 = P2 implies Pr
1 = Pr

2 , which in turn implies by (i) Pr
1 ⊆Q2, i.e.,

Q1 ⊆Q2. So by (ii) Q1 = Q2.

(⇐ ) Q1 = Q2 implies by the form of Q1 and (iii) Q1 = Pr
2 , i.e., Pr

1 = Pr
2 ,

which implies P1 = P2. �

For the R-LINEQ CSPs we have to our disposal two natural notions of
local consistency: the hyper-arc consistency and the interval consistency.
The proof of item (1) above shows that for R-LINEQ CSPs the notions of
interval consistency and hyper-arc consistency in fact coincide.

In contrast, for the LINEQ CSPs we have to our disposal three natural
notions of local consistency: the hyper-arc consistency, the interval con-
sistency and the bounds consistency. It is clear from the definitions that
hyper-arc consistency implies the interval consistency which in turn implies
bounds consistency. However, all three notions differ. Indeed, we already
noted that the CSP

〈3x− 5y = 4 ; x ∈ [3..8], y ∈ [1..4]〉

is not hyper-arc consistent and, as Example 6.5(i) shows, it is interval con-
sistent. In turn, as Example 6.5(iii) shows, the CSP

〈2x + 2y − 2z = 1 ; x ∈ [0..1], y ∈ [0..1], z ∈ [0..1]〉
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is not interval consistent but is bounds consistent.

6.5 Arithmetic constraints on integer intervals

Armed with the knowledge of how to deal with the linear constraints let
us tackle now a more general class of constraints, that of the arithmetic
constraints. To define them we add to the alphabet considered in the last
section the binary function symbol ‘·’ written in an infix form.

That is, we use the alphabet that comprises

• two constants, 0 and 1,
• the unary minus function symbol ‘−’,
• three binary function symbols, ‘+’,‘−’and ‘·’, all written in the infix no-

tation.

By an arithmetic expression we mean a term formed in this alphabet
and by an arithmetic constraint a formula of the form

s op t,

where s and t are arithmetic expressions and op ∈ {<,≤, =, �=,≥, >}. For
example

x5 · y2 · z4 + 3x · y3 · z5 ≤ 10 + 4x4 · y6 · z2 − y2 · x5 · z4 (6.8)

is an arithmetic constraint. Here x5 is an abbreviation for x · x · x · x · x and
similarly with the other expressions.

In what follows we consider the arithmetic constraints over domains that
are integer intervals. We are interested in deriving appropriate domain re-
duction rules.

6.5.1 Domain reduction rules: first approach

We would like to follow the idea of Subsection 6.4.1 and compute the es-
timates based on the ranges’ bounds. Now, however, we cannot in general
rewrite a given inequality in such a way that the only occurrence of the
selected variable is on the left-hand side of the inequality. We could ignore
this difficulty and proceed as in the following example.

Consider the constraint

x3y − x ≤ 40
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and the ranges x ∈ [1..100] and y ∈ [1..100]. We can rewrite it as

x ≤
⌊

3

√
40 + x

y

⌋
(6.9)

since x assumes integer values. The maximum value the expression on the
right-hand side can take is

⌊
3
√

140
⌋
, so we conclude x ≤ 5. By reusing (6.9),

now with the information that x ∈ [1..5], we conclude that the maximum
value the expression on the right-hand side of (6.9) can take is actually⌊

3
√

45
⌋
, from which it follows that x ≤ 3.

In the case of y we can isolate it by rewriting the original constraint as
y ≤ 40

x3 + 1
x2 from which it follows that y ≤ 41, since by assumption x ≥ 1.

So we could reduce the domain of x to [1..3] and the domain of y to [1..41].
This interval reduction is optimal, since x = 1, y = 41 and x = 3, y = 1 are
both solutions to the original constraint x3y − x ≤ 40.

However, for arbitrary inequality constraints this approach will often fail
to achieve any domain reduction. To see this consider for instance the
constraint

2x5 · y2 · z4 − 4x4 · y6 · z2 + 3x · y3 · z5 ≤ 10 (6.10)

and the ranges x ∈ [−100..100], y ∈ [−100..100], z ∈ [−100..100].
If y = 0 or z = 0, then the above inequality is satisfied for any x and

we do not achieve any reduction. So assume now that y �= 0 and z �= 0.
Focusing on the first occurrence of x, we rewrite (6.10) as

2x5 · y2 · z4 ≤ 10 + 4x4 · y6 · z2 − 3x · y3 · z5,

from which we conclude

x5 ≤ 5
y2 · z4

+
2x4 · y4

z2
− 3

2
x · y · z.

By replacing each of the three summands on the right-hand side by the
maximum value it can take we get

x5 ≤ 5 + 2 · 1008 +
3
2
1003,

and consequently

x ≤
⌊

5

√
5 + 2 · 1008 +

3
2
1003

⌋
.

But
⌊

5

√
5 + 2 · 1008 + 3

21003
⌋

> 100 so we do not achieve any domain reduc-
tion for x, even assuming that y �= 0 and z �= 0. The problem is that when
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evaluating each of the summands on the right-hand side we also had to in-
clude in our analysis the variable x itself. This contributed to a substantial
increase of the possible values these summands can take. A similar problem
arises with the other variables and their occurrences in (6.10).

What is worse, this problem remains when we reduce the variable domains
by means of the bisection mentioned in Section 3.2. In summary, if a variable
has more than one occurrence in an arithmetic constraint, it will be quite
common that no domain reduction will be achieved using the above approach
(unless, of course, we reduce the domains to the singleton sets by means
of the labeling, also mentioned in Section 3.2, and get rid of the variable
occurrences by means of the VARIABLE ELIMINATION rule of Section 4.1
altogether).

In what follows we discuss two ways of overcoming this difficulty. In each
of them we transform an arbitrary arithmetic constraint into a sequence
of simpler ones for which we can derive the appropriate domain reduction
rules.

6.5.2 Domain reduction rules: second approach

In this approach we limit our attention to a special type of polynomial
constraints. To this end we fix some arbitrary linear ordering ≺ on the
variables of the language. By a monomial we mean an integer or a term
of the form

a · xn1
1 · . . . · xnk

k

where k > 0, x1, . . ., xk are different variables ordered w.r.t. ≺, and a is a
non-zero integer and n1, . . ., nk are positive integers. We call then xn1

1 ·. . .·x
nk
k

the power product of this monomial.
Next, by a polynomial we mean a term of the form

Σn
i=1mi,

where n > 0, at most one monomial mi is an integer, and the power products
of the monomials m1, . . ., mn are pairwise different. Finally, by a polyno-

mial constraint we mean an arithmetic constraint of the form sopb, where
s is a polynomial, op ∈ {<,≤, =, �=,≥, >}, and b is an integer. It is clear
that by means of appropriate transformation rules we can transform each
arithmetic constraint to a polynomial constraint. For example, assuming
the ordering x ≺ y ≺ z on the variables, the arithmetic constraint (6.8) can
be transformed to the polynomial constraint (6.10).

To avoid the problems mentioned in the above discussion of the constraint
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(6.10) we introduce an even more restricted class of constraints, the ones
which are of the form s op b, where s is a polynomial in which each variable
occurs at most once and where b is an integer. We call such a constraint a
simple polynomial constraint. Using appropriate transformation rules we
can rewrite each polynomial constraint into a sequence of simple polynomial
constraints.

For example, we can rewrite the polynomial constraint (6.10) into the
sequence

x1 − x2 + x3 ≤ 10, 2x5 · y2 · z4 − x1 = 0,

4x4 · y6 · z2 − x2 = 0, 3x · y3 · z5 − x3 = 0.
(6.11)

We call then x1, x2, x3 the auxiliary variables.
The restriction to the polynomials in which each variable occurs at most

once allows us to compute the minimum s− and the maximum s+ such a
polynomial s can take with respect to a sequence of ranges involving all
its variables. Indeed, s− and s+ can be then computed by computing the
minimum and the maximum for each of the monomials of s separately. The
task of a systematic computing of the values of s− and s+ for a monomial s

is left as Exercise 6.9.
Now, given a CSP with a single arithmetic constraint φ and a sequence

of ranges involving all the variables used, we can transform it into the fol-
lowing CSP. The constraints are obtained by the above rewriting of φ into a
sequence of simple polynomial constraints. The domain expressions are the
original ranges augmented by the ranges of the form z ∈ [t−..t+], where z

is an auxiliary variable that occurs in a constraint t− z = 0. Note that t is
then a monomial. It is clear then that both CSPs are equivalent w.r.t. the
sequence of the original variables.

We now reconsider the approach sketched in the previous subsection. To
see that the restriction to simple polynomial constraints can make a dif-
ference let us return to the constraint (6.10) in the presence of the ranges
x ∈ [−100..100], y ∈ [−100..100] and z ∈ [−100..100]. After it gets trans-
formed to the sequence of the constraints (6.11) no domain reduction is
achieved for the resulting four simple polynomial constraints. But if through
the bisection the domains of the variables get sufficiently small, the do-
mains do get reduced. Indeed, consider for example the second constraint
from (6.11), so 2x5 · y2 · z4 − x1 = 0. Suppose that through the bisec-
tion we eventually reduce the original domain [−2 · 10011..2 · 10011] of x1 to
[−2 ·10011..2 ·h5], where h < 100, and the domains of y and z to [ly..hy] and
[lz..hz] such that 0 �∈ [ly..hy] and 0 �∈ [lz..hz]. Then on the account of
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x ≤
⌊

5

√
x1

2y2 · z4

⌋
we can reduce the domain of x to [−100..h].

Unfortunately, for arbitrary simple polynomial constraints we end up with
an elaborate case analysis. Let us illustrate this point by means of an ex-
ample. Consider the constraint

2x4 + 3y3 − 4z2 ≤ 1000 (6.12)

with the non-empty ranges x ∈ [lx..hx], y ∈ [ly..hy], z ∈ [lz..hz]. We can
rewrite it as

x4 ≤ 500− 3
2
y3 + 2z2.

Now note that y ∈ [ly..hy] implies y3 ∈ [l3y..h
3
y]. The situation is more

complex for z2, since the conclusion depends on the position of 0 w.r.t. the
interval [lz..hz]. We get the following case distinction:

• If lz ≥ 0, then z ∈ [lz..hz] implies z2 ∈ [l2z ..h
2
z],

• If hz ≤ 0, then z ∈ [lz..hz] implies z2 ∈ [h2
z..l

2
z ],

• If lz < 0 and hz > 0, then z ∈ [lz..hz] implies z2 ∈ [0..max(l2z , h
2
z)].

By assumption lz < hz, so this case analysis covers all possibilities.
This implies that any value of x that satisfies (6.12) also satisfies the

inequality

x4 ≤ 500− 3
2
l3y + 2h2

z,

if lz ≥ 0, the inequality

x4 ≤ 500− 3
2
l3y + 2l2z ,

if hz ≤ 0, and the inequality

x4 ≤ 500− 3
2
l3y + 2max(l2z , h

2
z),

if lz < 0 and hz > 0.
This allows us to conclude that no x satisfies (6.12) if one of the following

three contingencies holds:

• lz ≥ 0 and 500− 3
2 l3y + 2h2

z < 0,

• hz ≤ 0 and 500− 3
2 l3y + 2l2z < 0,

• lz < 0 and hz > 0 and 500− 3
2 l3y + 2max(l2z , h

2
z) < 0.
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In each case we can then reduce the interval [lx..hx] to the empty one.
Otherwise, if lz ≥ 0 and 500− 3

2 l3y + 2h2
z ≥ 0, we can conclude that

−
⌊

4

√
500− 3

2
l3y + 2h2

z

⌋
≤ x ≤

⌊
4

√
500− 3

2
l3y + 2h2

z

⌋

since x is to assume integer values, and thus reduce the interval [lx..hx] to

[max(lx,−
⌊

4

√
500− 3

2
l3y + 2h2

z

⌋
)..min(hx,

⌊
4

√
500− 3

2
l3y + 2h2

z

⌋
)],

and analogously for the other two cases.
Similarly, we can rewrite (6.12) as

y3 ≤ 1000
3

− 2
3
x4 +

4
3
z2

To estimate the right-hand side we now need a double case analysis on x

and z. This leads to nine cases, that we illustrate by a representative one.
If lx ≥ 0 and hz ≤ 0, we can conclude from the above inequality that

y3 ≤ 1000
3

− 2
3
l4x +

4
3
l2z

and consequently

y ≤
⌊

3

√
1000

3
− 2

3
l4x +

4
3
l2z

⌋

since y is to assume integer values. So in this case we can reduce the interval
[ly..hy] to [ly..min(

⌊
3

√
1000

3 − 2
3 l4x + 4

3 l2z

⌋
, hy)].

The handling of the general case leads to an even more involved case
analysis. In fact, the simple polynomial constraint (6.12) is actually not
representative since each monomial on its left-hand side has only one vari-
able. In the presence of monomials with more than one variable we get even
more case distinctions. So the derivation of the domain reduction rules for
simple polynomial constraints, while in principle straightforward, is by no
means easy to present.

This extensive case analysis can be avoided if we use the integer interval
arithmetic mentioned in Section 3.4. Instead of explaining its use for the
simple polynomial constraints we rather further elaborate on the approach
of Section 3.4 in which one focuses on a small set of ‘atomic’ arithmetic
constraints.
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6.5.3 Domain reduction rules: third approach

We call an arithmetic constraint atomic if it is in one of the following two
forms:

• a linear constraint,
• x · y = z.

It is easy to see that using appropriate transformation rules that involve
auxiliary variables we can transform each arithmetic constraint to a sequence
of atomic arithmetic constraints. The crucial rule is the following one:

Σn
i=1mi op b

Σn
i=1vi op b, m1 = v1, . . ., mn = vn

where some mi is not of the form axi and where v1, . . ., vn are auxiliary
variables.

To compute the ranges of the auxiliary variables it is sufficient to know
how to compute the values s− and s+ for a monomial s and a sequence of
ranges involving all its variables. This task is left as Exercise 6.9.

Next, we focus on the reasoning for the multiplication constraint

x · y = z

in the presence of the non-empty ranges x ∈ Dx, y ∈ Dy and z ∈ Dz. To
this end it is useful to extend the multiplication and division operations to
the integer intervals, or more generally, to the sets of integers. Given two
sets of integers X, Y we define their multiplication as follows:

X · Y := {x · y | x ∈ X, y ∈ Y }.

Note that for two integer intervals X, Y their multiplication X · Y does not
need to be an interval. For example

[0..2] · [1..2] = {x · y | x ∈ [0..2], y ∈ [1..2]} = {0, 1, 2, 4}.

Consequently, to maintain the property that the domains of the variables
are integer intervals, we introduce the following operation on the subsets of
the set of the integers Z:

int(X) :=

{
smallest integer interval containing X if X is finite,
Z otherwise.

So by definition int([0..2] · [1..2]) = [0..4].
This brings us to the following domain reduction rule, in which to maintain

the property that the domains are intervals we use the int(.) operation.
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MULTIPLICATION 1
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ∩ int(Dx ·Dy)〉
As an example of its use consider the CSP

〈x · y = z ; x ∈ [0..2], y ∈ [1..2], z ∈ [4..6]〉.

An application of this rule reduces the domain of z to a singleton set since,
as we already noticed, int([0..2] · [1..2]) = [0..4] and [4..6] ∩ [0..4] = [4..4].

To deal with the reduction of the domains of x and y of the constraint
x · y = z, we introduce the division of the integer intervals. A complication
is that we have to deal with the division by zero. Therefore, given two sets
of integers Z, Y we define their division as follows:

Z/Y = {x ∈ Z | ∃y ∈ Y ∃z ∈ Z x · y = z}.

Just as in the case of the interval multiplication, the result of the division
of two integer intervals does not need to be an interval. Take for example
Z = [3..5] and Y = [−1..2]. Then

[3..5]/[−1..2] = {−5,−4,−3, 2, 3, 4, 5}.

Hence int([3..5]/[−1..2]) = [−5..5]. Note also that if 0 ∈ Y ∩Z, then Z/Y =
Z. For example, [−3..5]/[−1..2] = Z. Also, if 0 �∈ Z, then Z/[0..0] = ∅.

We now introduce the following two domain reduction rules:

MULTIPLICATION 2
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx ∩ int(Dz/Dy), y ∈ Dy, z ∈ Dz〉

MULTIPLICATION 3
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ int(Dz/Dx), z ∈ Dz〉
The way we defined the multiplication and the division of the integer

intervals ensures that the MULTIPLICATION rules 1, 2 and 3 are equiv-
alence preserving. Consider for example the MULTIPLICATION 2 rule.
Take some a ∈ Dx, b ∈ Dy and c ∈ Dz such that a · b = c. Then
a ∈ {x ∈ Z | ∃y ∈ Dy∃z ∈ Dz x · y = z}, so a ∈ Dz/Dy. Consequently
a ∈ Dx ∩ (Dz/Dy) and a fortiori a ∈ Dx ∩ int(Dz/Dy). This shows that the
MULTIPLICATION 2 rule is equivalence preserving.

The following example shows an interaction between all three MULTI-
PLICATION rules.
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Example 6.9
(i) Consider the CSP

〈x · y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉. (6.13)

To facilitate the reading we underline the modified domains. An applica-
tion of the MULTIPLICATION 2 rule yields

〈x · y = z ; x ∈ [16..16], y ∈ [9..11], z ∈ [155..161]〉

since [155..161]/[9..11]) = [16..16] (we shall return to this statement in Sub-
section 6.5.4) and [1..20] ∩ int([16..16]) = [16..16]. Applying now the MUL-
TIPLICATION 3 rule we obtain

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [155..161]〉

since [155..161]/[16..16] = [10..10] and [9..11]∩int([10..10]) = [10..10]. Next,
by the application of the MULTIPLICATION 1 rule we obtain

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉

since [16..16]·[10..10] = [160..160] and [155..161]∩int([160..160]) = [160..160].
So using all three multiplication rules we could solve the CSP (6.13).

(ii) Next, let us illustrate the reasoning in the presence of the integer intervals
containing zero. Consider the CSP

〈x · y = z ; x ∈ [3..10], y ∈ [−2..2], z ∈ [−155..161]〉.

Using the MULTIPLICATION 1 rule we obtain

〈x · y = z ; x ∈ [3..10], y ∈ [−2..2], z ∈ [−20..20]〉

since int([3..10]·[−2..2]) = [−20..20] and [−155..161]∩[−20..20] = [−20..20].
Now, however, the applications of the MULTIPLICATION 1, 2 and 3 rules
yield no change, since

• [−20..20] = int([3..10] · [−2..2]),
• [3..10]⊆ int([−20..20]/[−2..2]), as int([−20..20]/[−2..2]) = Z,
• [−2..2]⊆ int([−20..20]/[3..10]), as int([−20..20]/[3..10]) = [−6..6].

So the last CSP is closed under the applications of all three MULTIPLICA-
TION rules. �

As in the case of other classes of constraints studied in this chapter we
would like to clarify what type of local consistency is achieved by means
of the employed rules, in this case by the MULTIPLICATION 1, 2 and
3 rules. To start with, note that the notions of interval and of bounds
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consistency introduced in Definition 6.4 for linear constraints trivially apply
to the arithmetic constraints, as well.

However, we cannot characterise the MULTIPLICATION rules in terms
of the interval consistency. Indeed, consider the CSP

〈x · y = z ; x ∈ [2..3], y ∈ [2..3], z ∈ [5..6]〉.

It is not interval consistent, as no solution exists with z = 5. A fortiori, it
is not hyper-arc consistent. Yet, it is easy to see that it is closed under the
applications of the MULTIPLICATION 1, 2 and 3 rules since

• [5..6]⊆ int([2..3] · [2..3]) as int([2..3] · [2..3]) = [4..9], and
• [2..3]⊆ int([5..6]/[2..3]) as int([5..6]/[2..3]) = [2..3].

On the other hand this CSP is bounds consistent. For example for z = 5
we can take x = 2 and y = 2.5. Unfortunately, the MULTIPLICATION
rules cannot be characterised in terms of the bounds consistency notion
either. Indeed, consider the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [−3..10], z ∈ [8..10]〉.

It is not bounds consistent, since for y = −3 no real values a ∈ [−2, 1] and
c ∈ [8, 10] exist such that a · (−3) = c. Indeed, it is easy to check that
{y ∈ R | ∃x ∈ [−2, 1] ∃z ∈ [8, 10] x · y = z} = (−∞,−4] ∪ [8,∞). However,
this CSP is closed under the applications of the MULTIPLICATION 1, 2
and 3 rules since

• [8..10]⊆ int([−2..1] · [−3..10]), as int([−2..1] · [−3..10]) = [−20..10],
• [−2..1]⊆ int([8..10]/[−3..10]) as int([8..10]/[−3..10]) = [−10..10], and
• [−3..10]⊆ int([8..10]/[−2..1]) as int([8..10]/[−2..1]) = [−10..10].

The problem of an appropriate characterisation of the MULTIPLICATION
rules remains then open.

Finally, let us clarify why we did not define the division of the sets of
integers Z and Y by

Z/Y := {z/y ∈ Z | y ∈ Y, z ∈ Z, y �= 0}.

The reason is that in that case for any set of integers Z we would have
Z/{0} = ∅. Consequently, if we adopted this definition of the division of
the integer intervals, the resulting MULTIPLICATION 2 and 3 rules would
not be anymore equivalence preserving. Indeed, consider the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [0..0], z ∈ [−8..10]〉.
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Then we would have [−8..10]/[0..0] = ∅ and consequently by the MULTI-
PLICATION 2 rule we could conclude

〈x · y = z ; x ∈ ∅, y ∈ [0..0], z ∈ [−8..10]〉.

So we reached a failed CSP while the original CSP is consistent.

6.5.4 Implementation of the third approach

Let us discuss now how the MULTIPLICATION rules of the third approach
can be implemented. To this end we need to clarify how to implement
the intersection operation on the integer intervals and the int(.) closure of
multiplication and the division operations on the integer intervals. The case
when one of the intervals is empty is easy to deal with. So we assume that
we deal with non-empty intervals, that is a ≤ b and c ≤ d. First, it is easy
to see that

[a..b] ∩ [c..d] = [max(a, c)..min(b, d)].

So the interval intersection is straightforward to implement.
For the multiplication and the division operations first note that for the

non-empty integer intervals [a..b] and [c..d]

int([a..b] · [c..d]) = [min(A)..max(A)],

where A = {a · c, a · d, b · c, b · d}. So the int(.) closure of the interval mul-
tiplication can be efficiently implemented, as well. In fact, using an appro-
priate case analysis we can actually compute the bounds of int([a..b] · [c..d])
directly in terms of the bounds of the constituent intervals.

In contrast, the int(.) closure of the interval division is not so straight-
forward to compute. The reason is that, as we shall see in a moment, we
cannot express the result in terms of some simple operations on the interval
bounds.

Consider non-empty integer intervals [a..b] and [c..d]. In analysing the
outcome of int([a..b]/[c..d]) we distinguish the following cases.

Case 1. Suppose 0 ∈ [a..b] and 0 ∈ [c..d].
Then by definition int([a..b]/[c..d]) = Z. For example,

int([−1..100]/[−2..8]) = Z.

Case 2. Suppose 0 �∈ [a..b] and c = d = 0.
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Then by definition int([a..b]/[c..d]) = ∅. For example,

int([10..100]/[0..0]) = ∅.

Case 3. Suppose 0 �∈ [a..b] and c < 0 and 0 < d.
It is easy to see that then

int([a..b]/[c..d]) = [−e..e],

where e = max(|a|, |b|). For example,

int([−100..− 10]/[−2..5]) = [−100..100].

Case 4. Suppose 0 �∈ [a..b] and either c = 0 and d �= 0 or c �= 0 and d = 0.
Then int([a..b]/[c..d]) = int([a..b]/([c..d]− {0})). For example

int([1..100]/[−7..0]) = int([1..100]/[−7..− 1]).

This allows us to reduce this case to Case 5 below.

Case 5. Suppose 0 �∈ [c..d].
This is the only case when we need to compute int([a..b]/[c..d]) indirectly.

First, observe that we have

int([a..b]/[c..d])⊆ [�min(A)� .. �max(A)�], (6.14)

where A = {a/c, a/d, b/c, b/d}.
However, the equality does not need to hold here. Indeed, note for example

that int([155..161]/[9..11]) = [16..16], whereas for A = {155/9, 155/11, 161/9,
161/11} we have �min(A)� = 15 and �max(A)� = 17. The problem is that
the value 16 is obtained by dividing 160 by 10 and none of these two values
is an interval bound. Still, we can use the above inclusion (6.14) to ap-
proximate int([a..b]/[c..d]) using the integer interval [�min(A)� .. �max(A)�].
Then we search for the least l ∈ [�min(A)� .. �max(A)�] such that

∃y ∈ [c..d]∃z ∈ [a..b] l · y = z

starting at the low end of the interval, and for the greatest h ∈ [�min(A)� ..

�max(A)�] such that

∃y ∈ [c..d]∃z ∈ [a..b] h · y = z

starting at the high end of the interval. This yields the integer interval [l..h]
which equals int([a..b]/[c..d]).
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This completes the presentation of the third approach. This method is
then pretty straightforward to explain. Also, it can be implemented in a
simple and efficient way. However, there is a price to be paid for its sim-
plicity. As Exercise 6.10 shows, it yields a weaker reduction of the domains
than the first approach. This phenomenon is explained by the use of more
auxiliary variables.

6.5.5 Shifting from intervals to finite domains

As in the case of the linear constraints on integer intervals we can easily
modify the presented rules to the domains that are finite sets of integers.
To this end it suffices to drop the use of the int(.) operation. This leads to
the following simple modifications of the MULTIPLICATION rules, where
we assume now that Dx, Dy, Dz are finite sets of integers:

FD-MULTIPLICATION 1
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ∩ (Dx ·Dy)〉
FD-MULTIPLICATION 2

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx ∩ (Dz/Dy), y ∈ Dy, z ∈ Dz〉

FD-MULTIPLICATION 3
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ (Dz/Dx), z ∈ Dz〉
The FD-MULTIPLICATION rules achieve a better domain reduction

than the MULTIPLICATION rules even if no non-interval domains are gen-
erated. To see this consider the CSP

〈x · y = z ; x ∈ [0..2], y ∈ [−1..2], z ∈ [3..4]〉.

Applying to it the MULTIPLICATION 1 rule we do not get any reduction
since int([0..2] · [−1..2]) = [−2..4] and [3..4] ∩ [−2..4] = [3..4]. On the other
hand, using the FD-MULTIPLICATION 1 rule we can deduce that z = 4,
since [0..2]·[−1..2] = {−2,−1, 0, 1, 2, 4} and [3..4]∩{−2,−1, 0, 1, 2, 4} = {4}.

Also, for the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [−1..2], z ∈ [3..5]〉.

no reduction is achieved using the MULTIPLICATION 2 rule, since, as
already noted int([3..5]/[−1..2]) = [−5..5] and [−2..1] ∩ [−5..5] = [0..2].
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On the other hand, as [3..5]/[−1..2] = {−5,−4,−3, 2, 3, 4, 5}, using the
FD-MULTIPLICATION 2 rule we can detect inconsistency, since [−2..1] ∩
{−5,−4,−3, 2, 3, 4, 5} = ∅.

In fact, for the FD-MULTIPLICATION rules the following characterisa-
tion result holds.

Theorem 6.10 (FD-MULTIPLICATION ) A CSP 〈x · y = z ; x ∈
Dx, y ∈ Dy, z ∈ Dz〉 with the domains being finite sets of integers is hyper-
arc consistent iff it is closed under the applications of the FD-MULTIPLICA-
TION 1, 2 and 3 rules.

Proof We have the following string of easy to check equivalences:

the CSP P := 〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉 is hyper-arc consistent
iff

Dz ⊆Dx ·Dy, Dx ⊆Dz/Dy and Dy ⊆Dz/Dx

iff
P is closed under the applications of the FD-MULTIPLICATION 1, 2

and 3 rules. �

On the other hand, the construction of the sets Dx · Dy and Dz/Dy is
certainly more costly than the construction of the corresponding integer
intervals int(Dx · Dy) and int(Dz/Dy). So the FD-MULTIPLICATION
rules are less efficient to implement.

6.6 Arithmetic constraints on reals

In the previous section we studied arithmetic constraints on integer intervals.
In the considered arithmetic expressions we allowed only integer constants.
Here we consider arithmetic constraints that involve reals as constants and
that are interpreted over, possibly open ended, intervals of reals.

We shall deal with them, as in Subsection 6.5.3, by transforming these
constraints into a small set of ‘atomic’ arithmetic constraints and by dealing
with these atomic constraints using appropriate domain reduction rules.
As these rules achieve only a limited reduction of the considered intervals,
this approach has to be augmented by splitting and search. In view of
the possibly large size of the domains the appropriate form of splitting is
bisection, using a middle value between the bounds, as already discussed in
Subsection 3.2.4.

More formally, we define first the constraints and the domains over which
they are interpreted. We use the alphabet that comprises
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• each real number as a constant,
• three binary function symbols, ‘+’,‘−’and ‘·’, all written in the infix no-

tation.

So the difference between this alphabet and the one used in Section 6.5 is
that we allow now as constants all real numbers. As a result the unary minus
function symbol ‘−’ is not needed anymore. By an arithmetic expression

we mean now a term formed in this alphabet and by an arithmetic con-

straint a formula of the form

s op t,

where s and t are arithmetic expressions and op ∈ {<,≤, =, �=,≥, >}. For
example

2.4 · x5 · y2 · z4 + 3.6 · x · y3 · z5 ≤ 10.1 + 4.2 · x4 · y6 · z2

is an arithmetic constraint.
To define the considered domains we first extend the set of reals R by two

new elements, −∞ and ∞. This yields the set

R+ := R∪ {−∞,∞}.

We then extend the < ordering from R to R+ by stipulating that for all
a ∈ R we have −∞ < a and a <∞. Next, by an extended real interval ,
in short an extended interval , we mean an expression of the form

〈a, b〉

where a and b are elements of R+. The extended interval 〈a, b〉 represents
the set of all real numbers between a and b, including a if a �∈ {−∞,∞},
and including b if b �∈ {−∞,∞}. In other words, for a, b ∈ R+

〈a, b〉 = {r ∈ R | a ≤ r ≤ b}.

In the boundary cases we have then for a, b ∈ R

〈a, a〉 = {a},

〈a, b〉 = {r ∈ R | a ≤ r ≤ b},

〈−∞, b〉 = {r ∈ R | r ≤ b},

〈a,∞〉 = {r ∈ R | a ≤ r},

〈−∞,∞〉 = R.

So extended intervals include as special cases each real, represented as a
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singleton set, the set of reals R, and the customary real intervals. If a > b,
then 〈a, b〉 = ∅ and we call such an extended interval empty. Also for a, b ∈ R
the extended interval 〈a, b〉 coincides with the real interval [a, b] considered
in Subsection 6.4.7.

It is important to point out that we use here −∞ and ∞ only for the
purpose of a succinct representation. Note that for every extended interval
I we have I ⊆R and consequently I ∩ {−∞,∞} = ∅. In what follows we
use the extended intervals as the variable domains.

6.6.1 Interval arithmetic

To formulate the appropriate domain reduction rules we follow the third
approach concerning the arithmetic constraints on the integer intervals dis-
cussed in Subsection 6.5.3. To deal with the matters in a systematic way
we introduce first the arithmetic operations on extended intervals, or more
generally on the sets of reals. Take the sets of reals X, Y . We define:

• addition:

X + Y := {x + y | x ∈ X, y ∈ Y },

• subtraction:

X − Y := {x− y | x ∈ X, y ∈ Y },

• multiplication:

X · Y := {x · y | x ∈ X, y ∈ Y },

• division:

X/Y := {u ∈ R | ∃x ∈ X∃y ∈ Y u · y = x}.

Further, given a real r and op ∈ {+,−, ·, /} we identify r opX with {r}opX

and X op r with X op {r}.
We shall return to this choice of the division operation at the end of this

section. At this moment it is important to note that if 0 ∈ X ∩ Y , then
X/Y = R.

In the sequel we shall use the above operations, together with the inter-
section operation, on the extended intervals. The following observation is
then of importance.

Note 6.11 (Intervals) Suppose that X, Y are extended intervals and r a
real. Then

(i) X ∩ Y , X + Y, X − Y and X · Y are extended intervals.
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(ii) X/{r} is an extended interval.
(iii) X/Y does not have to be an extended interval.

Proof (i) and (ii) The proof is left as Exercise 6.11.

(iii) We have for example

〈8, 10〉/〈−2, 1〉 = 〈−∞,−4〉 ∪ 〈8,∞〉.

The fact that the outcome is a disjoint union of extended intervals is caused
here by the presence of 0 in the extended interval 〈−2, 1〉. Actually, the divi-
sion of the extended intervals does not even need to be a union of extended
intervals. For example, we have

〈2, 16〉/〈−∞,−2〉 = {r ∈ R | −8 ≤ r < 0}.

The fact that the outcome is the interval [−8, 0] with 0 excluded is caused
here by the presence of −∞ as a bound. Note that 0 �∈ 〈−∞,−2〉. �

Consequently, to maintain the property that the domains of the variables
are extended intervals, we introduce the following operation on the subsets
of R:

int(X) := ∩{Y ∈ I | X ⊆ Y },

where I is the set of the extended intervals. So int(X) is the smallest
extended interval that contains the set of reals X. It is easy to see that
int(X) exists for every such X.

Note that the int(.) operation differs from the one used in Subsection
6.5.3. Indeed, we have for example

int(〈8, 10〉/〈−2, 1〉) = 〈−∞,∞〉,

while

int([8..10]/[−2..1]) = [−10..10].

6.6.2 Domain reduction rules

To deal with the arithmetic constraints on the extended intervals we follow
the third approach to the arithmetic constraints on the integer intervals
discussed in Subsection 6.5.3 and confine our attention to a small set of
atomic constraints. Here we consider the following atomic constraints:

• an equality of the form
n∑

i=1

aixi = b,
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where n > 0, a1, . . ., an are non-zero reals, x1, . . ., xn are different vari-
ables, and b is a real,

• x �= y,
• x · y = z.

It is straightforward to see that using appropriate transformation rules
each arithmetic constraint on the extended intervals can be transformed
into a set of such atomic constraints. In particular, the arithmetic constraint
constraint s ≥ t can be transformed first to s− t + x = 0, where x is a fresh
variable with the domain 〈−∞, 0〉.

Then we introduce the domain reduction rules for the atomic constraints
on the extended intervals. To better understand the first rule, note that
from the equality

n∑
i=1

aixi = b

it follows that for j ∈ [1..n] we have

xj =
b−∑

i∈[1..n]−{j} aixi

aj
.

This explains the format of the following rule parametrised by j ∈ [1..n]:

R-LINEAR EQUALITY 1

〈∑n
i=1 aixi = b ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈∑n
i=1 aixi = b ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where
•

D′
i := Di for i �= j,

•

D′
j := Dj ∩

b−∑
i∈[1..n]−{j} ai ·Di

aj

This rule is essentially a generalisation of the R-LINEAR EQUALITY
rule of Subsection 6.4.8 to the extended intervals (though we chose here to
reduce the variable domains one at a time). It is easy to see that the R-
LINEAR EQUALITY 1 is equivalence preserving. Indeed, suppose that for
a sequence of reals b1, . . ., bn we have bi ∈ Di for i ∈ [1..n] and

∑n
i=1 aibi = b.

Then

bj =
b−∑

i∈[1..n]−{j} aibi

aj
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so

bj ∈
b−∑

i∈[1..n]−{j} ai ·Di

aj

hence bj ∈ D′
j .

For the case of the disequality x �= y we adopt the DISEQUALITY 2 rule,
that is,

〈x �= y ; x ∈ Dx, y ∈ Dy〉
〈 ; x ∈ Dx, y ∈ Dy〉

where Dx ∩Dy = ∅.
Finally, for the multiplication constraint we adopt the following domain

reduction rules:

R-MULTIPLICATION 1
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ∩Dx ·Dy〉

R-MULTIPLICATION 2
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx ∩ int(Dz/Dy), y ∈ Dy, z ∈ Dz〉

R-MULTIPLICATION 3
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ int(Dz/Dx), z ∈ Dz〉
So textually the R-MULTIPLICATION 1 rule differs from the MUL-

TIPLICATION 1 rule of Subsection 6.5.3 only by the fact that the int

operation is omitted, while the R-MULTIPLICATION 2 and 3 rules are
respectively identical to the MULTIPLICATION 2 and 3 rules of Subsec-
tion 6.5.3. Of course, theR-MULTIPLICATION rules use different domains
and a different interpretation of the int operation.

The way we defined the multiplication and the division of the extended
intervals ensures that the above three rules are equivalence preserving. Con-
sider for example the MULTIPLICATION 3 rule. Take some a ∈ Dx, b ∈ Dy

and c ∈ Dz such that a · b = c. Then b ∈ {y | ∃x ∈ Dx∃z ∈ Dz x · y = z}
so b ∈ Dz/Dx and a fortiori b ∈ int(Dz/Dx). Consequently b ∈ Dy ∩
int(Dz/Dx).

TheR-MULTIPLICATION rules behave differently than the MULTIPLI-
CATION rules. To see it let us return to the CSPs considered in Example
6.9.
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Example 6.12
(i) First, recall that using the MULTIPLICATION rules we could reduce
the CSP

〈x · y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉

to

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉.

Take now the corresponding CSP on the extended intervals, i.e.,

〈x · y = z ; x ∈ 〈1, 20〉, y ∈ 〈9, 11〉, z ∈ 〈155, 161〉〉.

Applying to it the R-MULTIPLICATION 2 rule we obtain

〈x · y = z ; x ∈ 〈155/11, 161/9〉, y ∈ 〈9, 11〉, z ∈ 〈155, 161〉〉, (6.15)

since 〈155, 161〉/〈9, 11〉 = 〈155/11, 161/9〉 (which is approximately 〈14.0909,
17.8888〉) and 〈1, 20〉 ∩ int(〈155/11, 161/9〉) = 〈155/11, 161/9〉.

Now, the CSP (6.15) is closed under the applications of theR-MULTIPLI-
CATION 1, 2 and 3 rules since

• 〈155, 161〉 ⊆ 〈155/11, 161/9〉 · 〈9, 11〉, as

〈155/11, 161/9〉 · 〈9, 11〉 = 〈(155/11) · 9, (161/9) · 11〉,

which is approximately 〈126.8181, 196.7777〉,
• 〈155/11, 161/9〉 = 〈155, 161〉/〈9, 11〉,
• 〈9, 11〉 ⊆ int(〈155, 161〉/〈155/11, 161/9〉), as

〈155, 161〉/〈155/11, 161/9〉 = 〈(155/161) · 9, (161/155) · 11〉,

which is approximately 〈8.6645, 11.4258〉.
So, in contrast to the case of the integer intervals, we cannot reduce

now the domain of x to the single point interval 〈16, 16〉. This also shows
that starting with a CSP with the intervals with the integer bounds the R-
MULTIPLICATION rules can yield the intervals with non-integer bounds.

(ii) Next, recall that using the MULTIPLICATION rules we could reduce
the CSP

〈x · y = z ; x ∈ [3..10], y ∈ [−2..2], z ∈ [−155..161]〉

to the CSP

〈x · y = z ; x ∈ [3..10], y ∈ [−2..2], z ∈ [−20..20]〉.
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For the corresponding CSP on the extended intervals, i.e.,

〈x · y = z ; x ∈ 〈3, 10〉, y ∈ 〈−2, 2〉, z ∈ 〈−155, 161〉〉

we get an analogous outcome as in Example 6.9. Indeed, using the R-
MULTIPLICATION 1 rule we get

〈x · y = z ; x ∈ 〈3, 10〉, y ∈ 〈−2, 2〉, z ∈ 〈−20, 20〉〉, (6.16)

since 〈3, 10〉 · 〈−2, 2〉 = 〈−20, 20〉 and 〈−155..161〉 ∩ 〈−20, 20〉 = 〈−20, 20〉.
Now, the applications of the R-MULTIPLICATION 1, 2 and 3 rules yield
no change, since

• 〈−20, 20〉 = 〈3, 10〉 · 〈−2, 2〉,
• 〈3, 10〉 ⊆ int(〈−20, 20〉/〈−2, 2〉), as 〈−20, 20〉/〈−2, 2〉 = 〈−∞,∞〉,
• 〈−2, 2〉 ⊆ int(〈−20, 20〉/〈3, 10〉), as 〈−20, 20〉/〈3, 10〉 = 〈−20/3, 20/3〉.

So the CSP (6.16) is closed under the applications of all threeR-MULTIPLI-
CATION rules.

(iii) As a final example let us illustrate the reasoning in the presence of the
−∞ bounds. Consider the CSP

〈x · y = z ; x ∈ 〈−∞,−1〉, y ∈ 〈−∞,−2〉, z ∈ 〈−∞, 161〉〉.

To facilitate the reading, as in Example 6.9, we underline the modified
domains. Since 〈−∞,−1〉 · 〈−∞,−2〉 = 〈2,∞〉 and 〈−∞, 161〉 ∩ 〈2,∞〉 =
〈2, 161〉, we get using the R-MULTIPLICATION 1 rule

〈x · y = z ; x ∈ 〈−∞,−1〉, y ∈ 〈−∞,−2〉, z ∈ 〈2, 161〉〉.

Now, note that 〈2, 161〉/〈−∞,−1〉 = {r ∈ R | −161 ≤ r < 0}, so

int(〈2, 161〉/〈−∞,−1〉) = 〈−161, 0〉

and consequently 〈−∞,−2〉 ∩ int(〈2, 161〉/〈−∞,−1〉) = 〈−161,−2〉. There-
fore applying to the last CSP the R-MULTIPLICATION 3 rule we get

〈x · y = z ; x ∈ 〈−∞,−1〉, y ∈ 〈−161,−2〉, z ∈ 〈2, 161〉〉.

Next, note that 〈2, 161〉/〈−161,−2〉 = 〈−80.5,−2/161〉 and

〈−∞,−1〉 ∩ int(〈−80.5,−2/161〉) = 〈−80.5,−1〉.

So applying to the last CSP the R-MULTIPLICATION 2 rule we get

〈x · y = z ; x ∈ 〈−80.5,−1〉, y ∈ 〈−161,−2〉, z ∈ 〈2, 161〉〉. (6.17)

Now, the CSP (6.17) is closed under the applications of all three R-
MULTIPLICATION rules. Indeed, we have



232 Some incomplete constraint solvers

• 〈2, 161〉 ⊆ 〈−80.5,−1〉 · 〈−161,−2〉, since

〈−80.5,−1〉 · 〈−161,−2〉 = 〈2, 12960.5〉,

• 〈−80.5,−1〉 ⊆ int(〈2, 161〉/〈−161,−2〉), since

〈2, 161〉/〈−161,−2〉 = 〈−80.5,−1〉,

• 〈−161,−2〉 ⊆ int(〈2, 161〉/〈−80.5,−1〉), since

〈2, 161〉/〈−80.5,−1〉 = 〈−161,−2/80.5〉.

So we succeeded to reduce the original CSP to the one with the real
intervals. �

Just like in the case of the arithmetic constraints on integer intervals it
is not clear how to characterise the R-MULTIPLICATION rules using a
local consistency notion. In Subsection 6.5.3 we showed that the MULTI-
PLICATION rules cannot be characterised in terms of bounds consistency
and used for this purpose the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [−3..10], z ∈ [8..10]〉.

The corresponding CSP on the extended intervals, so

〈x · y = z ; x ∈ 〈−2, 1〉, y ∈ 〈−3, 10〉, z ∈ 〈8, 10〉〉,

provides an example that the R-MULTIPLICATION rules cannot be char-
acterised using the interval consistency notion. (Recall that the notion of
bounds consistency is appropriate only for CSPs on integer intervals.)

Indeed, this CSP is not interval consistent, since as already noted, for
y = −3 no real values a ∈ 〈−2, 1〉 and c ∈ 〈8, 10〉 exist such that a ·(−3) = c,
because

{y | ∃x ∈ 〈−2, 1〉 ∃z ∈ 〈8, 10〉 x · y = z} = 〈−∞,−4〉 ∪ 〈8,∞〉.

On the other hand this CSP is closed under the applications of the R-
MULTIPLICATION 1, 2 and 3 rules since

• 〈8, 10〉 ⊆ 〈−2, 1〉 · 〈−3, 10〉 as 〈−2, 1〉 · 〈−3, 10〉 = 〈−20, 10〉,
• 〈−2, 1〉⊆int(〈8, 10〉/〈−3, 10〉) as 〈8, 10〉/〈−3, 10〉 = 〈−∞,−8/3〉∪〈0.8,∞〉,

which implies int(〈8, 10〉/〈−3, 10〉) = 〈−∞,∞〉,
• 〈−3, 10〉 ⊆ int(〈8, 10〉/〈−2, 1〉) as 〈8, 10〉/〈−2, 1〉 = 〈−∞,−4, 〉 ∪ 〈8,∞〉,

which implies int(〈8, 10〉/〈−2, 1〉) = 〈−∞,∞〉.
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x

x + y −∞ NR 0 PR ∞
−∞ −∞ −∞ −∞ −∞ ⊥
NR NR NR R ∞

y 0 0 PR ∞
PR PR ∞
∞ ∞

x

x − y −∞ NR 0 PR ∞
−∞ ⊥ ∞ ∞ ∞ ∞
NR −∞ R PR PR ∞

y 0 −∞ NR 0 PR ∞
PR −∞ NR NR R ∞
∞ −∞ −∞ −∞ −∞ ⊥

x

x · y −∞ NR 0 PR ∞
−∞ ∞ ∞ ⊥ −∞ −∞
NR PR 0 NR −∞

y 0 0 0 ⊥
PR PR ∞
∞ ∞

x

x/y −∞ NR 0 PR ∞
−∞ ⊥ 0 0 0 ⊥
NR ∞ PR 0 NR −∞

y 0 ⊥ ⊥ ⊥ ⊥ ⊥
PR −∞ NR 0 PR ∞
∞ ⊥ 0 0 0 ⊥

Table 6.3. Extension of the arithmetic operations to R+

6.6.3 Implementation issues

To implement the approach just discussed we need to clarify how to im-
plement the intersection and the arithmetic operations on the non-empty
extended intervals. First we extend the arithmetic operations from R to
R+. To this end we use Table 6.3. In this table the ⊥ symbol indicates an
undefined operation, PR denotes a positive real and NR a negative real,
and the R indicates that the outcome can be an arbitrary real. Omitted
entries are defined by symmetry. So for example ∞ + (−∞) is undefined,
∞/PR =∞, while PR−NR can be an arbitrary real.

To deal with the intersection, addition and subtraction we can use the
following simple observation.

Note 6.13 Suppose that 〈a, b〉 and 〈c, d〉 are non-empty extended intervals.
Then

(i) 〈a, b〉 ∩ 〈c, d〉 = 〈max(a, c), min(b, d)〉.
(ii) 〈a, b〉+ 〈c, d〉 = 〈a + c, b + d〉.
(iii) 〈a, b〉 − 〈c, d〉 = 〈a− d, b− c〉. �

Note that since 〈a, b〉 and 〈c, d〉 are non-empty, we have a �= ∞, b �=
−∞, c �= ∞, d �= −∞. So none of the used expressions a+c, b+d, a−d, b−c

can instantiate to one of the undefined expressions ∞ + (−∞), (−∞) +
∞,∞−∞ or (−∞) − (−∞). The proof follows by a simple case analysis
depending on whether the bounds are an element of R or equals ∞ or −∞
and is omitted.
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This result provides us with a readily, simple and efficient implementation
method of the intersection, addition and subtraction of the extended inter-
vals. To deal with the multiplication and division operation we first need to
classify the extended intervals depending on the position of 0 with respect
to such an interval. The needed categories are listed in Table 6.4.

class at least one at least one signs of
of 〈a, b〉 negative positive endpoints

M yes yes a < 0 ∧ b > 0
Z no no a = 0 ∧ b = 0
P no yes a ≥ 0 ∧ b > 0
P0 no yes a = 0 ∧ b > 0
P1 no yes a > 0 ∧ b > 0
N yes no a < 0 ∧ b ≤ 0
N0 yes no a < 0 ∧ b = 0
N1 yes no a < 0 ∧ b < 0

Table 6.4. Classification of non-empty extended intervals

The appropriate result for the multiplication operation requires only the
categories P, M, N and Z of Table 6.4.

Theorem 6.14 (Multiplication) Suppose that 〈a, b〉 and 〈c, d〉 are non-
empty extended intervals. Then the result of 〈a, b〉 ·〈c, d〉 is provided in Table
6.5. �

Note that since 〈a, b〉 and 〈c, d〉 are non-empty, we have a �= ∞, b �=
−∞, c �= ∞, d �= −∞. Consequently, none of the undefined expressions
0 · ∞, 0 · −∞,−∞ · 0 or ∞ · 0 appears in Table 6.5. The proof follows by a
tedious case analysis and is omitted. The number of cases can be reduced
using symmetry laws, such as x ·y = y ·x, which allows us to derive the MP

case from the PM case by interchanging a and c and interchanging b and d.
The corresponding result for the division operation requires in turn the

categories P0, P1, M, N0, N1 and Z of Table 6.4.

Theorem 6.15 (Division) Suppose that 〈a, b〉 and 〈c, d〉 are non-empty
extended intervals. Then the result of 〈a, b〉/〈c, d〉 is provided in Table 6.6.

�

Again, since 〈a, b〉 and 〈c, d〉 are non-empty, none of the undefined expres-
sions −∞/∞,∞/∞,∞/−∞,−∞/−∞ or r/0, where r ∈ R+, appears in
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class class 〈a, b〉 · 〈c, d〉
of 〈a, b〉 of 〈c, d〉

P P 〈a · c, b · d〉
P M 〈b · c, b · d〉
P N 〈b · c, a · d〉
M P 〈a · d, b · d〉
M M 〈min(a · d, b · c), max(a · c, b · d)〉
M N 〈b · c, a · c〉
N P 〈a · d, b · c〉
N M 〈a · d, a · c〉
N N 〈b · d, a · c〉
Z P, M, N, Z 〈0, 0〉

P, M, N Z 〈0, 0〉

Table 6.5. Case analysis for multiplication of non-empty extended intervals

class class 〈a, b〉/〈c, d〉
of 〈a, b〉 of 〈c, d〉

P1 P1 〈a/d, b/c〉 − {0}
P1 P0 〈a/d,∞〉 − {0}
P0 P1 〈0, b/c〉
M P1 〈a/c, b/c〉
N0 P1 〈a/c, 0〉
N1 P1 〈a/c, b/d〉 − {0}
N1 P0 〈−∞, b/d〉 − {0}
P1 M (〈−∞, a/c〉 ∪ 〈a/d,∞〉)− {0}

M, Z, P0, N0 M, Z, P0, N0 〈−∞, +∞〉
N1 M (〈−∞, b/d〉 ∪ 〈b/c,∞〉)− {0}
P1 N1 〈b/d, a/c〉 − {0}
P1 N0 〈−∞, a/c〉 − {0}
P0 N1 〈b/d, 0〉
M N1 〈b/d, a/d〉
N0 N1 〈0, a/d〉
N1 N1 〈b/c, a/d〉 − {0}
N1 N0 〈b/c,∞〉 − {0}
Z P1, N1 〈0, 0〉

P1, N1 Z ∅

Table 6.6. Case analysis for division of non-empty extended intervals
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Table 6.6. The proof follows by a tedious case analysis and is omitted. Also
here the number of cases can be reduced using appropriate symmetry laws.
For example, the fact that x/y = −(x/ − y) allows us to derive the MN1

case from the MP1 case.
So, as already noted, the outcome of the division of two extended in-

tervals does not have to be an extended interval. However, in the R-
MULTIPLICATION 2 and 3 rules we actually use the extended intervals
int(Dz/Dy) and int(Dz/Dx) and these can be directly computed using Table
6.6.

Take for example the extended intervals 〈2, 16〉 and 〈−∞,−2〉. In the
proof of the Intervals Note 6.11(iii) we noted that

〈2, 16〉/〈−∞,−2〉 = {r ∈ R | −8 ≤ r < 0}.

This can be derived using Table 6.6 by noting that 〈2, 16〉 is of type P1 and
〈−∞,−2〉 is of type N1. In that case the entry

class class 〈a, b〉/〈c, d〉
of 〈a, b〉 of 〈c, d〉

P1 N1 〈b/d, a/c〉 − {0}

applies and we conclude that

〈2, 16〉/〈−∞,−2〉 = 〈16/(−2), 2/(−∞)〉 − {0} = 〈−8, 0〉 − {0}.

Consequently, int(〈2, 16〉/〈−∞,−2〉) = 〈−8, 0〉.
In conclusion, the above analysis of the intersection and the arithmetic

operations on the extended intervals yields the necessary information for an
efficient implementation of the rules introduced in the previous section.

6.6.4 Using floating-point intervals

In the presence of arithmetic operations on reals the rounding errors are un-
avoidable since in the computer hardware only a finite set of numbers, called
the floating-point numbers, is supported. If we are interested in generating
answers that are provably correct, we need to take care properly of these er-
rors. This is done by generating answers in the form of domain expressions
with small intervals with floating-point number bounds instead of in the
form of reals. For example, assuming the existence of the floating-points for
real numbers with five digits after the decimal point, if we wish to guarantee
such an accuracy from the final results, we want to generate for the equation
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9 · x2 = 1 over the interval 〈−1, 1〉 two solutions, represented by the domain
expressions x ∈ 〈−0.33334,−0.33333〉 and x ∈ 〈0.33333, 0.33334〉.

Formally, we assume a fixed finite subset F of R+ containing −∞ and ∞.
We call the elements of F the floating-point numbers. By a floating-

point interval we mean an extended interval

〈a, b〉,

where a and b are floating-point numbers. To convert arbitrary sets of
reals to floating-point intervals we introduce the following operation on the
subsets of R:

Γ(A) := the least floating-point interval that contains A.

Since {−∞,∞}⊆F , Γ(A) always exists. To ensure that theR-MULTIPLI-
CATION rules do not cause rounding errors we modify them in such a way
that instead of the extended intervals the floating-point intervals are used.
This leads us to the following amended rules:

F-MULTIPLICATION 1

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ∩ Γ(Dx ·Dy)〉

F-MULTIPLICATION 2

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx ∩ Γ(Dz/Dy), y ∈ Dy, z ∈ Dz〉

F-MULTIPLICATION 3

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ Γ(Dz/Dx), z ∈ Dz〉

Since F is a subset of R+, we have int(A)⊆ Γ(A). This implies that
the F-MULTIPLICATION rules are equivalence preserving, since the R-
MULTIPLICATION rules are. A similar modification of the R-LINEAR
EQUALITY 1 rule is left to the reader.

We should still explain how to implement the new rules. This is done by
providing an implementation of the operations Γ(X+Y ), Γ(X−Y ), Γ(X ·Y )
and Γ(X/Y ) for the floating-point intervals X, Y . To this end the formulas
presented in the previous subsection for the implementation of the arith-
metic operations on the extended intervals are appropriately modified so
that the desired outward rounding effect takes place. More specifically,
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the outward rounding of an extended interval 〈a, b〉 is achieved by round-
ing a to the largest element of F which is smaller than or equal to a, and
rounding b to the smallest element of F which is greater than or equal to
b. This in turn is achieved by directed rounding , a facility available in
the floating-point arithmetic. The details would take us too far afield. The
interested reader may consult the bibliographic remarks at the end of this
chapter.

6.6.5 Correctness and efficiency issues

There are a number of subtle points that underly the approach to the arith-
metic constraints on reals here presented. Most of them are absent in the
case of the arithmetic constraints on integer intervals. Let us discuss these
matters in turn.

Interval Division Let us begin with the adopted definition of the division
operation on the extended intervals. It deviates from the format of the
other arithmetic operations on the extended intervals. In fact, originally
the division operation for the extended intervals (or more precisely, for the
real intervals) X and Y was defined by

X/Y := {x/y | x ∈ X, y ∈ Y },

where it is assumed that 0 �∈ Y . When 0 ∈ Y the expression X/Y is
then undefined. Let us call it the restricted division . If we adopted in
the formulation of the R-MULTIPLICATION 2 and 3 rules the restricted
division of the extended intervals, we would not be able to reduce the domain
of x in the CSP

〈x · y = z ; x ∈ 〈−10, 20〉, y ∈ 〈0, 2〉, z ∈ 〈1, 5〉〉.

In contrast, using the current formulation of the R-MULTIPLICATION 2
rule we can reduce the domain of x to 〈0.5, 20〉 since 〈1, 5〉/〈0, 2〉 = 〈0.5,∞〉
and 〈−10, 20〉 ∩ int(〈0.5,∞〉) = 〈0.5, 20〉.

An occasionally used improvement in the definition of the restricted di-
vision consists of including the condition y �= 0, that is, defining X/Y as
follows:

X/Y := {x/y | x ∈ X, y ∈ Y, y �= 0}.

Then X/Y is always defined. Let us call it the functional division .
However, analogously as in Section 6.5, the functional division cannot be
adopted to reason about arithmetic constraints. Indeed, if it were used in
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the R-MULTIPLICATION 2 and 3 rules, these rules would not be any-
more equivalence preserving. To see this take the example from the end of
Subsection 6.5.3, now reformulated as a CSP on the extended intervals, so
the CSP

〈x · y = z ; x ∈ 〈−2, 1〉, y ∈ 〈0, 0〉, z ∈ 〈−8, 10〉〉.

Then we would have 〈−8, 10〉/〈0, 0〉 = ∅ and consequently by the R-MULTI-
PLICATION 2 rule we could conclude

〈x · y = z ; x ∈ ∅, y ∈ 〈0, 0〉, z ∈ 〈−8, 10〉〉.

Now, the second CSP is failed while the original one is consistent.

Additional Interval Operations When introducing the interval arith-
metic we limited ourselves to four arithmetic operations. However, the laws
of the interval arithmetic differ from the ones of the arithmetic and con-
sequently the choice of the interval operations can be of consequence for
the solving of the arithmetic constraints on reals. Consider for example the
square operation defined for a set of reals X by:

X2 = {x2 | x ∈ X}.

Note that then X2 ⊆X · X. However, the inclusion can be strict. For
example 〈−1, 2〉2 = 〈0, 4〉, while 〈−1, 2〉·〈−1, 2〉 = 〈−2, 4〉. So if we interpret
X2 as X ·X we obtain larger extended intervals which leads to a less efficient
reasoning. In other words, it pays off to have an extended set of interval
operations. We shall return to this matter in a moment.

Convergence In contrast to the arithmetic constraints on integer intervals,
if we restrict our attention to the relevant rule applications, the termination
of the considered derivations is not guaranteed. Indeed, take the obviously
inconsistent CSP

〈x− y = 1, y − x = 1 ; x ∈ 〈0,∞〉, y ∈ 〈0,∞〉〉

and consider a derivation in which the constraints are selected in an alternat-
ing fashion. Each time we can apply theR-LINEAR EQUALITY 1 rule and
the domain expressions are successively modified to x ∈ 〈1,∞〉, y ∈ 〈2,∞〉,
x ∈ 〈3,∞〉, y ∈ 〈4,∞〉 etc. and the derivation does not terminate.

In fact, termination is not guaranteed even if the considered intervals are
bounded. To see this take the CSP

〈x− y = 0, x− 2y = 0 ; x ∈ 〈0, 100〉, y ∈ 〈0, 100〉〉
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and consider a derivation in which the constraints are selected in an alter-
nating fashion. Again, each time we can apply the R-LINEAR EQUALITY
1 rule and the considered intervals asymptotically converge to 〈0, 0〉.

Once we move to the floating-point intervals this complication cannot
arise. But due to the size of the floating-point intervals the number of
possible deduction steps can still be large so the problem remains how to
speed up the convergence to the final result.

Choice of atomic constraints It is also important to realise that the
choice of the atomic constraints is crucial for the efficiency of the resulting
approach to solving the arithmetic constraints. In general, when transform-
ing a given arithmetic constraint into a sequence of atomic constraints, it is
beneficial to introduce as few auxiliary variables as possible. For example,
we could easily conclude from the CSP

〈x2 = z ; x ∈ 〈−∞,∞〉, z ∈ 〈−10, 9〉〉

that x ∈ 〈−3, 3〉 if we had to our disposal a natural domain reduction rule
dealing with the constraint x2 = z. In our case we need to introduce an
auxiliary variable y and have to reason instead about the CSP

〈x · y = z, x = y ; x ∈ 〈−∞,∞〉, y ∈ 〈−∞,∞〉, z ∈ 〈−10, 9〉〉,

which is closed under the applications of the adopted rules.
So it pays off to have an extended set of atomic constraints. Intuitively,

a ‘good’ atomic constraint is the one which for each of its variables can
be rewritten as a function of this variable. Such a rewriting leads to an
appropriate domain reduction rule —see for instance the way we obtained
the R-LINEAR EQUALITY 1 rule. For example, x = y3 is a ‘good’ atomic
constraint since it can be rewritten as y = 3

√
x. In contrast, x = 2y − 5y7

is not a ‘good’ atomic constraint since it is not clear how to rewrite it as a
function of y.

Choice of transformations into atomic constraints The efficiency of
the discussed approach also depends on the way the constraints are trans-
formed into a sequence of atomic constraints. Consider for instance the
clearly inconsistent CSP 〈x − x = 1 ; x ∈ 〈0, 100〉〉. The inconsistency can
be detected directly by transforming the expression x − x to 0. If instead
we evaluate the expression x−x using the interval arithmetic we obtain the
interval 〈−100, 100〉 and no inconsistency is detected (yet).

The problem is that in the interval arithmetic each occurrence of x is
treated as a different variable. This phenomenon is called the dependency
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problem . It becomes more explicit when we introduce auxiliary variables.
For example, if we transform the above CSP to 〈x − y = 1, x = y ; x ∈
〈0, 100〉, y ∈ 〈−∞,∞〉〉, we can first reduce the domain of y to 〈0, 100〉 using
the EQUALITY 2 rule and then the evaluation of the expression x−y using
the interval arithmetic yields 〈−100, 100〉.

Choice of the function representation Finally, the efficiency of the
underlying reasoning involving the interval arithmetic depends on the way
we represent the functions. Consider the following three equivalent functions
on reals:

f1(x) := x2 − x,

f2(x) := (x− 0.5)2 − 0.25,

f3(x) := x · (x− 1).

Then the corresponding interval extensions F1, F2 and F3 of these functions
are not equivalent. Indeed, we have

F1(〈0, 2〉) = 〈0, 2〉2 − 〈0, 2〉 = 〈−2, 4〉,

F2(〈0, 2〉) = (〈0, 2〉 − 0.5)2 − 0.25 = 〈−1, 2〉,

F3(〈0, 2〉) = 〈0, 2〉 · (〈0, 2〉 − 1) = 〈−2, 2〉,

where for an extended interval X we interpreted X2 as X ·X. So the second
function, F2, yields the smallest interval. This is another instance of the
dependence problem: note that the variable x occurs twice in the definition
of f1 and f3, while only once in f2.

The choice of the interval operations is also of direct relevance here. In-
deed, {f2(x) | x ∈ 〈0, 2〉} = 〈−0.25, 2〉, so the interval produced by F2 is not
optimal. However, if we extend the interval arithmetic by the square oper-
ation X2 and use it in the evaluation of F2(〈0, 2〉), we do get the optimal
interval 〈−0.25, 2〉, since then 〈−0.5, 1.5〉2 = 〈0, 2.25〉.

One of the challenges of the interval arithmetic is to find the ‘best’ function
representations in the sense that they yields the smallest intervals for the
interval extensions. This task is of clear importance for solving arithmetic
constraints on reals.
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6.7 Arithmetic equations over reals

In this section we discuss an alternative approach to the one adopted in
the previous section. It deals with the same constraints as in the previous
section with the restriction that we allow only the equality ‘=’ relation. We
call these constraints arithmetic equations. Moreover, we assume that
all variables range over the set of reals. So we do not consider other forms
of extended intervals.

In contrast to the other incomplete constraint solvers discussed in this
chapter, the one discussed here is not based on the domain reduction rules
but rather on the transformation rules. We simply adopt the rules of the
LIN proof system of Section 4.3 by means of which we defined two complete
constraint solvers for linear equations on reals. To be able to apply these
rules in this wider context we extend the normalisation and standardisation
procedures to the arithmetic expressions and the arithmetic equations.

Assume a predermined ordering ≺ on the considered variables. Recall
that in Subsection 6.5.2 we defined a monomial as an integer or a term of
the form

n · xn1
1 · . . . · xnk

k

where k > 0, x1, . . ., xk are different variables ordered w.r.t. ≺, and n is a
non-zero integer and n1, . . ., nk are positive integers. We called xn1

1 · . . . ·xnk
k

the power product of the monomial and defined a polynomial as a term of
the form

Σn
i=1mi,

where n > 0, at most one monomial mi is an integer, and the power products
of the monomials m1, . . ., mn are pairwise different.

Using appropriate transformation rules each arithmetic expression s can
be rewritten to a uniquely defined polynomial that we denote by norm(s).
Also, each arithmetic equation e can be reduced to a unique polynomial

equation , which is a constraint of the form s = b, where s is a polynomial
and b is an integer. We call then s = b the normal form of e and say
that e normalises to s = b.

Finally, we reuse in this wider context the standardisation procedure de-
fined by

stand(s = t) := norm(s) = norm(t).

After these preparations we can reinterpret the rules of the LIN as rules
for arithmetic equations by interpreting the notions of normalisation and
standardisation in this wider context. Clearly, these generalisations of the
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rules of the LIN system do not suffice to solve the considered constraints.
Still, they can be useful, as the following example shows.

Example 6.16 Consider the following set of arithmetic equations:

x0 = 1
y0 = 2

x0x1 + y1y0 = 0
x1 + y1 = (x0 − y0)(2x0 + y0 + 1)

x1x2 + y1y2 = 0
x2 + y2 = (x1 − y1)(2x1 + y1 + 1)

In the derivation below we repeatedly use the SUBSTITUTION rule, each
time selecting a successive equation, starting with the first one, and each
time using the remaining equations as E. For convenience let us restate this
rule here:

SUBSTITUTION

s = v, E

x = t, stand(E{x/t})

where x = t is a pivot form of s = v.

The first two applications result in substituting x0 by 1 and y0 by 2 in
the last four equations. This yields following set of equations:

x0 = 1
y0 = 2

x1 + 2y1 = 0
x1 + y1 = −5

x1x2 + y1y2 = 0
x2 + y2 = 2x2

1 − x1y1 + x1 − y2
1 − y1

The third equation is now linear and x1 = −2y1 is one of its pivot forms.
So again by the SUBSTITUTION rule we get

x0 = 1
y0 = 2
x1 = −2y1

−y1 = −5
−2x2y1 + y1y2 = 0

x2 + y2 = 9y2
1 − 3y1
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Choosing now the fourth equation we use its pivot form y1 = 5 and
transform the above set to the following one:

x0 = 1
y0 = 2
x1 = −10
y1 = 5

−10x2 + 5y2 = 0
x2 + y2 = 210

The fifth equation is now linear and y2 = 2x2 is one of its pivot forms. Its
use yields the following set of equations:

x0 = 1
y0 = 2
x1 = −10
y1 = 5
y2 = 2x2

3x2 = 210

Finally, using the last equation we transform the above set into

x0 = 1
y0 = 2
x1 = −10
y1 = 5
y2 = 140
x2 = 70

So by repeated applications of the SUBSTITUTION rule we succeeded
to solve the initial set of equations in spite of the fact that four out of six
equations were not linear. �

We could strengthen the SUBSTITUTION rule by applying it to any
arithmetic equation that can be rewritten to a form x = t, where x does
not occur in t. Such a stronger form of the rule would allow us to solve for
example the following set of two equations:

x− y2 = 1, xy − y3 + 1 = z.

Even with such a modification the above three proof rules clearly form
an incomplete constraint solver, since using them we cannot even solve
quadratic equations, for example x2− 2x+1. Even worse, we cannot detect
that equations such as x2 = −1 have no solution. Of course, one could aug-
ment this constraint solver by rules allowing us to solve quadratic equations
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in one variable. But this would not help us to solve more complex equations
such as 2∗x5−5∗x4+5 = 0 already discussed in Example 2.5 of Section 2.3.
So there is no natural way to extend this solver to a complete one.

6.8 Summary

In this chapter we discussed in detail six incomplete constraint solvers. They
dealt with:

• the equality and disequality constraints,
• Boolean constraints,
• the linear constraints over integer intervals and over finite integer domains,
• the arithmetic constraints over integer intervals,
• the arithmetic constraints over extended real intervals, and
• the arithmetic equations over reals.

In each case we introduced the corresponding constraint solver by means
of the proof rules and in the first three ones we clarified what type of local
consistency is achieved by each of them. In the first two cases this was
done by means of a characterisation in terms of the notions of local consis-
tency already discussed in Chapter 5. So the first two constraint solvers can
be viewed as implementations of these notions of local consistency for con-
straints defined respectively in the language with exclusively equality and
disequality symbols, and in the language of Boolean constraints.

To obtain such a characterisation for linear constraints over integer inter-
vals we had to introduce a new notion of local consistency, called bounds
consistency. In the case of the arithmetic constraints over integer intervals
and over reals no characterisation result is available. Finally, for the case
of the arithmetic equations over reals the reader is referred to the biblio-
graphic remarks at the end of this chapter for a reference to the appropriate
characterisation result.

6.9 Exercises

Exercise 6.1 Prove that each of the transformation rules of Subsection
6.3.1 is equivalence preserving w.r.t. to the sequence of the variables of the
premise.

Exercise 6.2 Prove that every derivation in the proof system that consists
of the transformation rules of Subsection 6.3.1 is finite.
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Exercise 6.3 Prove that every derivation in the proof system BOOL is
finite.

Exercise 6.4 Consider the proof system BOOL’ given in Table 6.7.

EQU 1-4 as in the system BOOL

NOT 1-4 as in the system BOOL

AND 1’ x ∧ y = z, x = 1→ z = y

AND 2’ x ∧ y = z, y = 1→ z = x

AND 3’ x ∧ y = z, z = 1→ x = 1
AND 4 as in the system BOOL
AND 5 as in the system BOOL
AND 6’ x ∧ y = z, z = 1→ y = 1

OR 1 as in the system BOOL
OR 2’ x ∨ y = z, x = 0→ z = y

OR 3’ x ∨ y = z, y = 0→ z = x

OR 4’ x ∨ y = z, z = 0→ x = 0
OR 5 as in the system BOOL
OR 6’ x ∨ y = z, z = 0→ y = 0

Table 6.7. Proof system BOOL’

Note that the rules AND 1–3 of BOOL are replaced by the rules AND
1’ and AND 2’ of BOOL’ and the rules OR 2–4 of BOOL are replaced by
the rules OR 2’ and OR 3’ of BOOL’. Also, the rule AND 6 of BOOL is
split in BOOL’ into two rules, AND 3’ and AND 6’ and analogously for the
rules OR 6 of BOOL and OR 3’ and OR 6’ of BOOL’.

(i) Prove that if a non-failed Boolean CSP is closed under the applica-
tions of the rules of the proof system BOOL’, then it is hyper-arc
consistent.

(ii) Show that the converse result does not hold.
Hint. Take the CSP 〈x ∧ y = z ; x = 1, y ∈ {0, 1}, z ∈ {0, 1}〉.

(iii) Call a Boolean CSP limited if none of the following four CSPs forms
a subpart of it:

• 〈x ∧ y = z ; x = 1, y ∈ {0, 1}, z ∈ {0, 1}〉,
• 〈x ∧ y = z ; x ∈ {0, 1}, y = 1, z ∈ {0, 1}〉,
• 〈x ∨ y = z ; x = 0, y ∈ {0, 1}, z ∈ {0, 1}〉,
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• 〈x ∨ y = z ; x ∈ {0, 1}, y = 0, z ∈ {0, 1}〉.
Prove that if a non-failed Boolean CSP is limited and hyper-arc con-
sistent, then it is closed under the applications of the rules of the
proof system BOOL’.

Exercise 6.5 We introduced in Table 6.2 two rules for the exclusive dis-
junction XOR. Find the remaining four rules and prove the counterpart of
the BOOL Theorem 6.3 for the proof system XOR consisting of these six
proof rules.

Exercise 6.6 Consider the transformation rules given in Table 6.8 that
deal with the exclusive disjunction XOR.

XOR 1 x⊕ y = z, x = 1→¬y = z

XOR 2 x⊕ y = z, x = 0→ y = z

XOR 3 x⊕ y = z, y = 1→¬x = z

XOR 4 x⊕ y = z, y = 0→ x = z

XOR 5 x⊕ y = z, z = 1→¬x = y

XOR 6 x⊕ y = z, z = 0→ x = y

Table 6.8. Different proof rules for XOR

Consider the proof system XOR’ resulting from adding to these rules the
EQU 1-4 and NOT 1-4 proof rules of the BOOL system.

(i) Prove that if a non-failed Boolean CSP is closed under the appli-
cations of the rules of the proof system XOR’, then it is hyper-arc
consistent.

(ii) Show that the converse result does not hold.
Hint. Take the CSP 〈x⊕ y = z ; x = 1, y ∈ {0, 1}, z ∈ {0, 1}〉.

(iii) Suggest a restriction on the considered CSPs for which the counter-
part of the BOOL Theorem 6.3 can be proved for the proof system
XOR’.
Hint. See Exercise 6.4.

Exercise 6.7 Provide transformation rules that transform each linear ex-
pression of Section 6.4 to the form

Σn
i=1aixi + b,
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where n ≥ 0, a1, . . ., an are non-zero integers, x1, . . ., xn are different vari-
ables, and b is an integer. Prove that every derivation in the resulting proof
system is finite.

Exercise 6.8 Prove the Convexity Note 6.6.

Exercise 6.9 Compute the minimum s− and the maximum s+ a monomial
s can take with respect to a sequence of ranges involving all its variables.
Hint. Introduce the interval power operation Xn, where n ≥ 2. Look at the
characterisation of the integer interval int([a..b] · [c..d]) given in Subsection
6.5.4.

Exercise 6.10 Find an arithmetic inequality constraint for which the third
approach of Section 6.5 yields a strictly weaker domain reduction than the
first one.
Hint. Consider the constraint x3 ≤ 1000 and the range x ∈ [1..1000].

Exercise 6.11 Prove the Intervals Note 6.11(i) and (ii).

Exercise 6.12 Formulate appropriate domain reduction rules for the con-
straint x2 = y on integer intervals and on reals and suggest their implemen-
tations.
Hint. Introduce the operations of a square and of a square root of an integer
interval and of an extended real interval.

Exercise 6.13 Consider Table 6.6 that defines the result of the division for
non-empty extended intervals. Provide examples of the extended intervals
for each case in which the outcome is not an extended interval.

6.10 Bibliographic remarks

The proof rules in the style of those constituting the proof system BOOL
have been used for a long time. In McAllester [1980] they are explained
informally; in McAllester [1990] they are called Boolean constraint propa-
gation. In Simonis [1989] such rules are formulated explicitly and used to
generate tests for combinatorial circuits. More recently, these rules were
used in Codognet and Diaz [1996] as a basis for an efficient implementation
of a Boolean constraint solver.

The proof system BOOL’ from Exercise 6.4 is taken from the last paper
though its AND rules already appear in Simonis [1989]. The proof system
BOOL is a modification of BOOL’ obtained in order to get the BOOL
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Theorem 6.3 that characterises the notion of hyper-arc consistency in terms
of these rules. Exercise 6.4 that shows that such a characterisation of hyper-
arc consistency does not hold for the BOOL’ system is from Apt [2000b].
The last paper also clarifies the relation between the proof system BOOL
and the unit propagation, a form of propositional resolution (see, e.g. Zhang
and Stickel [1996]) that is a component of the Davis–Putnam algorithm for
the satisfiability problem (see Davis and Putnam [1960]). The inference
problem discussed in Subsection 6.3.3 is from Frühwirth [1995].

The domain reduction rules LINEAR INEQUALITY 1 and LINEAR
EQUALITY are simple modifications of the domain reduction rule intro-
duced in Davis [1987,page 306] that dealt with closed intervals of reals.
These rules are well known in the area of integer programming under the
name of ‘preprocessing’, see, e.g., Wolsey [1998,Section 7.6]. They were
implemented in various constraint programming systems. The use of the
SEND + MORE = MONEY puzzle to discuss the effect of these rules is
from Van Hentenryck [1989,page 143].

The presentation in Section 6.4 is based on Apt [1998]. The R-LINEAR
EQUALITY Theorem 6.7 generalises a corresponding result stated in Davis
[1987,page 326] for the more limited case of so-called unit coefficient con-
straints. The notion of bounds consistency was introduced in a number
of papers, for example Van Hentenryck, Saraswat and Deville [1998]. The
terminology here adopted follows Marriott and Stuckey [1998]. A similar
notion was introduced in Lhomme [1993] for the case of constraints on re-
als. Harvey and Stuckey [2003] study how to improve the efficiency of the
constraint solver discussed in Section 6.4 by means of different constraint
representations.

The presentation in Section 6.5 is based on Apt and Zoeteweij [2003],
where all three approaches to arithmetic constraints on integer intervals
are explained in detail and compared by means of benchmarks. The third
approach is inspired by a similar treatment of the polynomial constraints on
reals based on the interval arithmetic, an intensely pursued research subject
originated by Cleary [1987]. In particular, the MULTIPLICATION rules are
analogues of the corresponding F-MULTIPLICATION rules of Subsection
6.6.4 which are formulated explicitly, e.g., in van Emden [1999].

The research on the interval arithmetic and, more generally, interval anal-
ysis goes back to Moore [1966], where only real intervals were considered. In
Hansen [1992] the analogues of the Multiplication Theorem 6.14 and the Di-
vision Theorem 6.15 for the multiplication and the restricted division of real
intervals are presented. The dependency problem discussed in Subsection
6.6.5 and the corresponding examples are taken from these two references.
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The contribution of Cleary [1987] was to combine the interval arithmetic
with constraint propagation and splitting. Also extended intervals were
used there. This approach was realised in the BNR-Prolog language, see,
e.g., Older and Vellino [1993]. It was further elaborated in the works of
E. Hyvőnen, see, e.g. Hyvőnen [1992]. This approach was also generalised
to other domains in Benhamou and Older [1997] (originally published in
1993) where a unified treatment of Boolean constraints and arithmetic con-
straints on integers and reals was provided. This research was followed by
Benhamou, McAllester and Van Hentenryck [1994], where a constraint pro-
gramming language Newton was proposed based on a new local consistency
notion, called box consistency, indexbox consistency appropriate for poly-
nomial constraints on reals. In turn, the research on Newton eventually led
to Numerica, a modeling language of Van Hentenryck [1997] for solving non-
linear constraints on reals and constrained optimization problems on reals.
In the Declic language of Benhamou, Goualard and Granvilliers [1997] a
cooperation is achieved between the approach described in Section 6.6 and
the one based on box consistency.

This line was research was pursued independently by Russian researchers.
This led to the system UniCalc, the first prototype of which was realised
already in 1987. For an early description of it see Babichev et al. [1993].
In most of these works the presentation also includes a discussion of an
appropriate constraint propagation algorithm that achieves a specific notion
of local consistency. In our set up such algorithms are discussed separately,
in Chapter 7.

The systematic account of the arithmetic operations on the extended in-
tervals and their implementation is from Hickey, Ju and van Emden [2001].
The exception is that, for the reasons explained in Subsection 6.6.5, we use
here a different division operation, due to Ratz [1996], where the Division
Theorem 6.15 limited to the real intervals is established. The relevance of
the so defined division operation for solving constraints on reals was clarified
in Hickey, van Emden and Wu [1998]. The Tables 6.3, 6.4, 6.5 and (here
appropriately modified) Table 6.6 are taken from Hickey, Ju and van Em-
den [2001]. The proofs of the Multiplication Theorem 6.14 and the Division
Theorem 6.15 and the formulas for computing the floating-point intervals
Γ(X + Y ), Γ(X − Y ), Γ(X · Y ) and Γ(X/Y ) (for the functional division op-
eration) are provided there. In Colmerauer [2001] a direct account of the
domain reduction for the multiplication constraint x · y = z on real inter-
vals can be found. It corresponds to the F-MULTIPLICATION rules of
Subsection 6.6.4.

The CSP 〈x − y = 0, x − 2y = 0 ; x ∈ 〈0, 100〉, y ∈ 〈0, 100〉〉 used in
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Subsection 6.6.5 to illustrate possible divergence in case of constraints on
reals is taken from Davis [1987,page 304].

The SUBSTITUTION rule, considered in Section 6.7 in the wider con-
text of arithmetic equations, is discussed in Colmerauer [1993]. Example
6.16 is taken from this paper. In this paper a characterisation result is pro-
vided for a constraint solver for arithmetic equations over reals obtained
by augmenting the three rules of the LIN system by a transformation rule
that systematically rewrites the arithmetic equations into the ones that are
either linear or of the form x · y = z, where x, y, z are different variables.
The strengthened form of the SUBSTITUTION rule mentioned at the end
of Section 6.7 is discussed in Jaffar et al. [1993].

Many other approaches were proposed to deal with the incomplete con-
straint solvers here discussed. In Benhamou and Colmerauer [1993] one can
find a number of alternative approaches dealing with the Boolean constraints
and with the arithmetic constraints on reals. Jaffar and Maher [1994] discuss
other examples of complete and incomplete constraint solvers. The subject
of solving constraints on reals has been attracting a continuing, large, at-
tention in the literature. Various approaches are discussed in Benhamou,
Goualard and Granvilliers [2000], where one can find further references to
this area.
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T HE ALGORITHMS THAT achieve local consistency are called con-
straint propagation algorithms. In the literature, perhaps to con-
fuse newcomers entering the field, several other names have also

been used. In fact, we found the following alternative names for these al-
gorithms: consistency, local consistency, local propagation, consistency en-
forcing, Waltz, filtering and narrowing algorithms. The aim of this chapter
is to discuss various constraint propagation algorithms. These algorithms
form a crucial ingredient of the generic procedure Solve of Figure 3.1 from
Section 3.2 that can be used to solve a given CSP.

Sometimes a CSP can already be solved solely by means of a constraint
propagation algorithm. Examples are furnished by some of the results
proved in Chapter 5, namely the Consistency 2 Theorem 5.48, the Direc-
tional Arc Consistency Theorem 5.49, and the Directional Path Consistency
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Theorem 5.50. Another example is provided by the crossword puzzle of Ex-
ample 2.8. We saw at the end of Section 5.2 that the CSP that represents
this puzzle can be solved by transforming it to an equivalent arc consistent
CSP. So arc consistency turned out to be sufficient to find a solution to this
CSP.

When introducing in Chapter 5 several local consistency notions we char-
acterised them by means of proof rules of the proof theoretic framework
of Section 4.1. Also in Chapter 6 we defined some incomplete constraint
solvers using rules. This makes it possible to enforce the discussed local
consistency notions and to implement these incomplete constraint solvers in
a simple way, by generating stabilising derivations in the sense of Definition
4.5.

However, in specific situations several possibilities arise. Take for example
the CSP of Example 2.8 that deals with the crossword puzzle. To transform
it into an arc consistent CSP we should repeatedly use the ARC CONSIS-
TENCY rules 1 and 2. Denote now by (i, j) the fact that we apply the
ARC CONSISTENCY 1 rule to the constraint Ci,j representing the inter-
section of the positions i and j and by (i, j) the fact that we apply the ARC
CONSISTENCY 2 rule to the constraint Ci,j . Then at the beginning we
can remove

• on the account of (1, 2): SAILS, SHEET, STEER from domain of x1,
• on the account of (1, 3): LASER, SHEET from domain of x1,
• on the account of (1, 2): HOSES, LASER from domain of x2,
• on the account of (1, 3): HOSES, LASER from domain of x3,

and so on. In fact, since there are twelve constraints, there are twenty four
ways to start the derivation. So it is clear that even in this simple example
there are many intrinsically different derivations and it is not straightforward
to characterise their outcome.

In general, when considering such rules and resulting derivations we are
interested in answering the following questions:

• How to schedule the applications of the rules so that the resulting deriva-
tions are stabilising?

• How to avoid (at a low cost) irrelevant, i.e., redundant, applications of
the rules?

• Is the outcome of the stabilising derivations unique, and if yes, how can
it be characterised?

When studying these questions it is preferable to deal with them at an
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appropriate level of generality so that we can draw conclusions concern-
ing arbitrary rules here considered and not only the ARC CONSISTENCY
rules. To this end we consider generic iteration algorithms on partial or-
derings. The aim of these algorithms is to compute a common fixpoint of
a given set of functions. These functions correspond to the proof rules and
their common fixpoint corresponds to a CSP closed under the applications
of these rules. The partial ordering is determined by the considered local
consistency notion or by the analysed incomplete constraint solver.

We explain these matters systematically as follows. First, in Section 7.1,
we introduce generic iteration algorithms for arbitrary partial orderings and
for Cartesian products of partial orderings. Then in Section 7.2 we explain
how these algorithms relate to CSPs. Intuitively, each component of the
considered Cartesian product ordering corresponds to a specific variable
domain or to a specific constraint.

In the remaining part of the chapter we instantiate the algorithms of Sec-
tion 7.1 to obtain specific constraint propagation algorithms. In Section 7.3
we obtain in this way a straightforward algorithm for node consistency.
Then, in Sections 7.4, 7.5 and 7.6 we apply this framework to derive, respec-
tively, algorithms for arc consistency, hyper-arc consistency, and directional
arc consistency. These four algorithms modify the domains of the variables.

In the subsequent four sections, 7.7, 7.8, 7.9 and 7.10, we derive in a
similar way algorithms for, respectively, path consistency, directional path
consistency, k-consistency and relational consistency. These four algorithms
modify the constraints.

Finally, in Section 7.11 we discuss how the algorithms of Section 7.1 can
be used to implement incomplete constraint solvers, in particular those dis-
cussed in Chapter 6.

7.1 Generic iteration algorithms

7.1.1 Iterations

We begin by recalling some elementary notions concerning relations and
orderings.

Definition 7.1 We call a binary relation R on a set D

• reflexive if (a, a) ∈ R for all a ∈ D,
• irreflexive if (a, a) �∈ R for all a ∈ D,
• antisymmetric if for all a, b ∈ D whenever (a, b) ∈ R and (b, a) ∈ R

then a = b,
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• transitive if for all a, b, c ∈ D whenever (a, b) ∈ R and (b, c) ∈ R

then also (a, c) ∈ R.

By a partial ordering we mean a pair (D, � ) consisting of a set D and
a reflexive, antisymmetric and transitive relation � on D. Given a partial
ordering (D, � ) an element d of D is called the least element if d � e for
all e ∈ D.

By a strict partial ordering we mean a pair (D, � ) consisting of a
set D and a irreflexive and transitive relation � on D. We call a strict
partial ordering (D, � ) well-founded if no infinite sequence of elements
d0, d1, . . . of D exists such that di+1 � di for i ≥ 0. �

A typical example of a partial ordering is the set N of natural numbers
with the ≤ relation. Two other examples of partial orderings will be repeat-
edly used in this chapter.

Example 7.2
(i) Given a set D denote by P(D) the set of all subsets of D. It is easy to
check that (P(D),⊇) is a partial ordering, where ⊇ is the reversed subset
relation.

(ii) Consider the Cartesian product P(D1)× · · · ×P(Dn) with the elements
ordered by the componentwise reversed subset ordering ⊇. So

(X1, . . ., Xn) ⊇ (Y1, . . ., Y1) iff Xi ⊇ Yi for i ∈ [1..n].

This yields the partial ordering (P(D1)× · · · × P(Dn),⊇). �

If we use the set N of natural numbers with the < relation instead, we
obtain a strict partial ordering. Strict partial orderings will be needed only
for the proofs of termination. In what follows we shall study iterations of
functions on a partial ordering.

Definition 7.3 Consider a partial ordering (D, � ) with the least element
⊥ and a finite set of functions F := {f1, . . ., fk} on D.

• We say that a sequence d0, d1, d2 . . . of elements from D eventually

stabilises at d if for some j ≥ 0 we have di = d for i ≥ j.
• By an iteration of F we mean a sequence d0, d1, d2 . . . of elements

from D defined inductively by

d0 := ⊥,

dj := fnj (dj−1),
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where j > 0 and nj is an element of [1..k]. We say then that the
function fnj is activated at step j. �

Throughout this chapter we omit brackets when writing repeated appli-
cations of functions to an argument. For example, given set of functions
F := {f1, f2, f3}, the following is an iteration of F in which each function
fi is activated at step i + 3j, for j ≥ 0:

⊥, f1(⊥), f2f1(⊥), f3f2f1(⊥), f1f3f2f1(⊥), f2f1f3f2f1(⊥), . . .

The considered derivations and the constraint propagation algorithms will
generate iterations of specific sets of functions. Such iterations correspond
to derivations. In turn, iterations that eventually stabilise at a common
fixpoint of the considered functions correspond to the stabilising derivations.
So, as explained at the beginning of this chapter, we are interested in finding
conditions under which these iterations eventually stabilise at a common
fixpoint and under which they compute the same outcome. We identify
such conditions by focusing on functions that satisfy some properties out of
the following list.

Definition 7.4 Consider a partial ordering (D, � ) and functions f and g

on D.

• f is called inflationary if x � f(x) for all x.
• f is called monotonic if x � y implies f(x) � f(y) for all x, y.
• f is called idempotent if ff(x) = f(x) for all x.
• We say that f and g commute if fg(x) = gf(x) for all x.
• We say that f semi-commutes with g (w.r.t. � ) if fg(x) � gf(x)

for all x. �

Let us start with the following simple observation that clarifies the role
of monotonicity.

Lemma 7.5 (Stabilisation) Consider a partial ordering (D, � ) with the
least element ⊥ and a finite set F of monotonic functions on D.

Suppose that an iteration of F eventually stabilises at a common fixpoint
d of the functions from F . Then d is the least common fixed point of the
functions from F .

Proof Let d0, d1, . . . be the iteration in question. For some j ≥ 0 we have
di = d for i ≥ j.

Take now a common fixpoint e of the functions from F . We prove that
d � e. It suffices to prove by induction on i that di � e. The claim obviously
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holds for i = 0 since d0 = ⊥. Suppose it holds for some i ≥ 0. We have
di+1 = fj(di) for some j ∈ [1..k].

By the monotonicity of fj and the induction hypothesis fj(di) � fj(e), so
di+1 � e since by assumption fj(e) = e. �

We now establish a result that provides a way to compute the least com-
mon fixpoints in case the considered functions commute with each other.

Lemma 7.6 (Commutativity) Consider a partial ordering (D, � ) with
the least element ⊥. Let F := {f1, . . ., fk} be a finite set of functions on D

such that

• each f ∈ F is monotonic and idempotent,
• all f ∈ F and g ∈ F commute.

Then for each permutation π : [1..k]→ [1..k] fπ(1)fπ(2) · · · fπ(k)(⊥) is the
least common fixpoint of the functions from F .

Proof First note that by commutativity

fπ(1)fπ(2) · · · fπ(k)(⊥) = f1f2 · · · fk(⊥),

so it suffices to establish the result for f1f2 · · · fk(⊥). Fix i ∈ [1..k]. On the
account of commutativity and of idempotence of fi we have the following
string of equalities:

fif1f2 · · · fk(⊥) = f1fif2 · · · fk(⊥) = . . .

= f1f2 · · · fifi · · · fk(⊥) = f1f2 · · · fk(⊥).

So f1f2 · · · fk(⊥) is a common fixpoint of the functions from F . This
means that any iteration of F that starts with ⊥, fk(⊥), fk−1fk(⊥), . . .,
f1f2 · · · fk(⊥) eventually stabilises at f1f2 · · · fk(⊥). By the Stabilisation
Lemma 7.5 we get the desired conclusion. �

In case we weaken the assumption of commutativity to semi-commutati-
vity a weaker result holds.

Lemma 7.7 (Semi-commutativity) Consider a partial ordering (D, � )
with the least element ⊥. Let F := f1, . . ., fk be a finite sequence of functions
on D such that

• each fi is monotonic, inflationary and idempotent,
• each fi semi-commutes with fj for i > j, that is,

fifj(x) � fjfi(x) for all x. (7.1)
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Then f1f2 · · · fk(⊥) is the least common fixpoint of the functions from F .

Intuitively, the assumption (7.1) states that given a nested application of two
considered functions, if we ‘push inside’ the function with a larger index, the
value increases. For example f3f1(x) � f1f3(x).

Proof Fix i ∈ [1..k]. By the assumption (7.1) and the idempotence of fi

we have the following string of inclusions:

fif1f2 · · · fk(⊥) � f1fif2 · · · fk(⊥) � . . .

� f1f2 · · · fifi · · · fk(⊥) � f1f2 · · · fk(⊥).

By the inflationarity of fi we also have

f1f2 · · · fk(⊥) � fif1f2 · · · fk(⊥).

So f1f2 · · · fk(⊥) is a common fixpoint of the functions from F . As in
the proof of the Commutativity Lemma 7.6 this implies by the Stabilisation
Lemma 7.5 that f1f2 · · · fk(⊥) is the least common fixpoint of the functions
from F . �

Finally, in case no information about commutativity or semi-commutati-
vity is available, we can use the following result. Note that the assumption
of idempotence is not used here. On the other hand, we restricted our
attention to finite partial orderings.

Lemma 7.8 (Least Fixed Point) Consider a finite partial ordering
(D, � ) with the least element ⊥. Let F be a finite set of functions on D

such that

• each f ∈ F is monotonic and inflationary.

Call an iteration d0, d1, d2 . . . of F regular if it satisfies the following prop-
erty:

for all f ∈ F and m ≥ 0 if f(dm) �= dm,
then f is activated at some step > m.

Then any regular iteration of F eventually stabilises at the least common
fixpoint of the functions from F .

Proof Consider a regular iteration χ := d0, d1, d2 . . . of F . By assumption
each function in F is inflationary, so dj � dj+1 for j ≥ 0. So, since D is
finite, χ eventually stabilises at some dm.
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Suppose that dm is not a common fixpoint of the functions from F . Then
for some f ∈ F we have f(dm) �= dm. By the regularity of χ the function
f is activated at some step n > m, i.e. dn = f(dn−1). But χ eventually
stabilises at dm, so dm = dn−1 = dn and hence f(dm) = dm, which is a
contradiction. So dm is a common fixpoint of the functions from F . By the
Stabilisation Lemma 7.5 dm is in fact the least common fixpoint. �

7.1.2 Algorithms for arbitrary partial orderings

We fix now a partial ordering (D, � ) with the least element ⊥ and a set of
functions F := {f1, . . ., fk} on D. We are interested in computing the least
common fixpoint of the functions from F using the results established in the
previous section. We begin with the following completely straightforward
algorithm in which each function in F is applied exactly once, in an arbitrary
order.

Direct Iteration algorithm

d := ⊥;
G := F ;
WHILE G �= ∅ DO

choose g ∈ G;
d := g(d);
G := G− {g}

END

The following immediate consequence of the Commutativity Lemma 7.6
holds.

Corollary 7.9 (Direct Iteration) Suppose that (D, � ) is a partial
ordering with the least element ⊥. Let F be a finite set of monotonic
and idempotent functions on D that commute with each other. Then the
Direct Iteration algorithm terminates and computes in d the least com-
mon fixpoint of the functions from F . �

Next, we consider the following algorithm in which, again, each function
in F := {f1, . . ., fk} is applied exactly once, though this time in a specific
order.
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Simple Iteration algorithm

d := ⊥;
FOR i := k TO 1 BY −1 DO

d := fi(d)
END

Then the following result is an immediate consequence of the Semi-Commu-
tativity Lemma 7.7.

Corollary 7.10 (Simple Iteration) Suppose that (D, � ) is a partial
ordering with the least element ⊥. Let F := f1, . . ., fk be a finite sequence
of monotonic, inflationary and idempotent functions on D such that (7.1)
holds. Then the Simple Iteration algorithm terminates and computes in
d the least common fixpoint of the functions from F . �

Finally, we consider the situation in absence of the commutativity and
semi-commutativity assumptions. The algorithm we now present will be a
basis for developing most of the constraint propagation algorithms.

Generic Iteration algorithm

d := ⊥;
G := F ;
WHILE G �= ∅ DO

choose g ∈ G;
IF d �= g(d) THEN

G := G ∪ update(G, g, d);
d := g(d)

ELSE
G := G− {g}

END
END

where for all G, g, d

A {f ∈ F −G | f(d) = d ∧ fg(d) �= g(d)} ⊆ update(G, g, d).

Assumption A states that update(G, g, d) contains at least all the func-
tions from F −G for which d is a fixpoint but g(d) is not. So at each loop
iteration if d �= g(d), such functions are added to the set G. Otherwise the
function g is removed from G.
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An obvious example of an update function that satisfies assumption A is

update(G, g, d) := {f ∈ F −G | f(d) = d ∧ fg(d) �= g(d)}.

However, this choice of update is expensive to compute because for each
function f in F −G we would have to compute the values fg(d) and f(d).
In practice, we are interested in some approximations from above of this
update function that are easy to compute. We shall discuss this matter in
the next section.

The following result clarifies the status of this algorithm.

Theorem 7.11 (Generic Iteration) Suppose that (D, � ) is a finite
partial ordering with the least element ⊥. Let F be a finite set of monotonic
and inflationary functions on D. Then every execution of the Generic It-

eration algorithm terminates and computes in d the least common fixpoint
of the functions from F .

Proof To prove termination we consider the lexicographic ordering of the
strict partial orderings (D, �) and (N , <), defined on the elements of D×N
by

(d1, n1) <lex (d2, n2) iff d1 � d2 or (d1 = d2 and n1 < n2).

We use here the inverse ordering � defined by: d1 � d2 iff d2 � d1 and
d2 �= d1. By assumption (D, � ) is finite, so the (D ×N , <lex) ordering is
well-founded, i.e., no infinite <lex-descending sequence of pairs from D×N
exists.

Given a finite set G we denote by card G the number of its elements.
By assumption all functions in F are inflationary, so with each WHILE loop
iteration of the algorithm the pair

(d, card G)

strictly decreases in this ordering <lex. Indeed, we have either g(d) � d or
g(d) = d and in the latter case the cardinality of the set G decreases, since
g is then removed from it. The termination is now the consequence of the
well-foundedness of <lex.

To prove the second claim consider the predicate I defined by:

I := ∀f ∈ F −G f(d) = d.

Note that I is established by the assignment G := F . Moreover, it is easy
to check that by virtue of the assumption A I is preserved by each WHILE
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loop iteration. Thus I is an invariant of the WHILE loop of the algorithm.
Hence upon its termination

(G = ∅) ∧ I

holds, that is

∀f ∈ F f(d) = d.

By the Stabilisation Lemma 7.5 d is the least common fixpoint of the func-
tions from F . �

In Exercise 7.1 we clarify the relation between the Generic Iteration

algorithm and the Least Fixpoint Lemma 7.8. In some sense, this algorithm
can be viewed as a realisation of this lemma.

7.1.3 Algorithms for Cartesian products of partial orderings

In the applications we study the iterations are carried out on a partial or-
dering that is a Cartesian product of the partial orderings. The precise
definition is as follows.

Definition 7.12 Consider partial orderings (Di, � i), for i ∈ [1..n]. Put
D := D1× · · · ×Dn and define for two elements (d1, . . ., dn) and (e1, . . ., en)

(d1, . . ., dn) � (e1, . . ., en) iff di � i ei for i ∈ [1..n].

Then we call (D, � ) the Cartesian product of the partial orderings

(D1, � 1), . . ., (Dn, � n). �

We fix now till the end of this section a partial ordering (D, � ) that
is the Cartesian product of some partial orderings (Di, � i), for i ∈ [1..n],
each with the least element ⊥i. So D = D1 × · · · ×Dn and (⊥1, . . .,⊥n) is
the least element of D.

Further, we assume that each function from F depends from and affects
only certain components of D. To be more precise we introduce a simple
notation and terminology.

Definition 7.13 Consider a sequence of partial orderings (D1, � 1), . . .,
(Dn, � n).

• By a scheme (on n) we mean a growing sequence of different ele-
ments from [1..n].
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• Given a scheme s := i1, . . ., il on n we denote by (Ds, � s) the Carte-
sian product of the partial orderings (Di1 , � i1), . . ., (Dil , � il).

• Given a function f on Ds we say that f is with scheme s and say
that f depends on i if i is an element of s.

• Given an n-tuple d := d1, . . ., dn from D and a scheme s := i1, . . ., il
on n we denote by d[s] the tuple di1 , . . ., dil . In particular, for j ∈
[1..n] d[j] is the j-th element of d. �

Consider now a function f with scheme s. We extend it canonically to a
function f+ from D to D by putting for d ∈ D

f+(d) := e,

where e[s] = f(d[s]) and e[n−s] = d[n−s], and where n−s is the scheme ob-
tained by removing from 1, . . ., n the elements of s. We call f+ the canonic

extension of f to the domain D.
So f+(d1, . . ., dn) = (e1, . . ., en) implies di = ei for any i not in the scheme

s of f . Informally, we can summarise it by saying that f+ does not change
the components on which it does not depend. This is what we meant above
by stating that each considered function affects only certain components of
D.

Let us reformulate now the algorithms of the previous section for the case
of the functions with schemes. First, we need the following modification of
our definitions.

Definition 7.14 Consider a sequence of partial orderings (D1, � 1), . . .,
(Dn, � n) and their Cartesian product (D, � ). Take two functions with
schemes, f and g.

• We say that f and g commute if f+ and g+ commute, that is if

f+g+(d) = g+f+(d)

for all d ∈ D.
• We say that f semi-commutes with g (w.r.t. � ) if f+ semi-

commutes with g+ w.r.t. � , that is if

f+g+(d) � g+f+(d)

for all d ∈ D. �

Consider now the Cartesian product (D, � ) of the partial orderings and
a finite set F0 of functions with schemes. So F0 uniquely determines the set
of functions F := {f+ | f ∈ F0} on D.
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To start with we have the following counterpart of the Direct Iteration

algorithm.

Direct Iteration for Compound Domains algorithm (DICD)

d := (⊥1, . . .,⊥n);
G := F0;
WHILE G �= ∅ DO

choose g ∈ G;
d[s] := g(d[s]), where s is the scheme of g

END

The following counterpart of the Direct Iteration Corollary 7.9 then
holds.

Corollary 7.15 (DICD) Suppose that (D, � ) is a partial ordering that
is a Cartesian product of n partial orderings, each with the least element ⊥i

with i ∈ [1..n]. Let F0 be a finite set of functions with schemes.
Suppose that all functions in F0 are monotonic, idempotent and commute

with each other. Then the DICD algorithm terminates and computes in d

the least common fixpoint of the functions from F := {f+ | f ∈ F0}. �

Next, we have the following counterpart of the Simple Iteration algo-
rithm.

Simple Iteration for Compound Domains algorithm (SICD)

d := (⊥1, . . .,⊥n);
FOR i := k TO 1 BY −1 DO

d[si] := fi(d[si]), where si is the scheme of fi

END

The following counterpart of the Simple Iteration Corollary 7.10 clar-
ifies its status.

Corollary 7.16 (SICD) Suppose that (D, � ) is a partial ordering that is
a Cartesian product of n partial orderings, each with the least element ⊥i

with i ∈ [1..n]. Let F0 := f1, . . ., fk be a finite set of functions with schemes.
Suppose that all functions in F0 are monotonic, inflationary and idempo-

tent such that each fi semi-commutes with fj for i > j, that is,

f+
i f+

j (d) � f+
j f+

i (d) for all d.
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Then the SICD algorithm terminates and computes in d the least common
fixpoint of the functions from F := {f+ | f ∈ F0}. �

Finally, let us consider the Generic Iteration algorithm. When all
considered functions are of the form f+ we can use a simple definition of
the update function justified by the following observation.

Note 7.17 (Update) Suppose that each function in F is of the form f+.
Then the following function update satisfies the assumption A:

update(G, g+, d) := {f+ ∈ F | f depends on an i such that d[i] �= g+(d)[i]}.

Proof Suppose that f+(d) = d and f+(e) �= e. Then f(d[s]) = d[s] and
f(e[s]) �= e[s], where s is the scheme of f . So d[s] �= e[s], that is, d differs
from e on a component i that is in the scheme s of f . In other words, f

depends on i such that d[i] �= e[i].
Take now f+ ∈ F − G such that f+(d) = d and f+(g+(d)) �= g+(d).

By the above f depends on some i such that d[i] �= g+(d)[i], i.e., f+ ∈
update(G, g+, d). So we proved the assumption A. �

This, together with the Generic Iteration algorithm, yields the fol-
lowing algorithm in which we introduced a variable d′ to hold the value of
g+(d), and used the above definition of update.

Generic Iteration for Compound Domains algorithm (CD)

d := (⊥1, . . .,⊥n);
d′ := d;
G := F0;
WHILE G �= ∅ DO

choose g ∈ G;
d′[s] := g(d[s]), where s is the scheme of g;
IF d′[s] �= d[s] THEN

G := G ∪ {f ∈ F0 | f depends on an i in s such that d[i] �= d′[i]};
d[s] := d′[s]

ELSE
G := G− {g}

END
END

The following corollary to the Generic Iteration Theorem 7.11 and
the Update Note 7.17 summarises the correctness of this algorithm.
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Corollary 7.18 (CD) Suppose that (D, � ) is a finite partial ordering that
is a Cartesian product of n partial orderings, each with the least element ⊥i

with i ∈ [1..n]. Let F0 be a finite set of functions with schemes.
Suppose that all functions in F0 are monotonic and inflationary. Then

every execution of the CD algorithm terminates and computes in d the least
common fixpoint of the functions from F := {f+ | f ∈ F0}. �

7.2 From partial orderings to CSPs

Recall that our aim is to derive various constraint propagation algorithms.
To be able to apply the results of the previous section we need to relate var-
ious abstract notions that we used there to constraint satisfaction problems.
The framework of the previous section involved:

• Partial orderings with the least elements;
These will be determined by the original CSP and the studied local

consistency notion. Given a CSP 〈C1, . . ., Ck ; x1 ∈ D1, . . ., xn ∈ Dn〉
shall use here two partial orderings.

The first one will be the already mentioned in Example 7.2 Cartesian
product of the partial orderings (P(Di),⊇), where i ∈ [1..n]. Recall that
for a set D, P(D) denotes the set of all subsets of D. The second one
will be the Cartesian product of the partial orderings (P(Ci),⊇), where
i ∈ [1..k]. So in both cases we use the componentwise ordering ⊇.

To deal with the node consistency, arc consistency, hyper-arc consis-
tency and directional arc consistency notions we shall use the first or-
dering, and to deal with path consistency, directional path consistency,
k-consistency and relational consistency notions we shall use the second
ordering.

• Monotonic and inflationary functions with schemes;
These will correspond to the domain reduction rules and specific trans-

formation rules that we used in Chapter 5 to characterise the considered
local consistency notions. Each scheme will correspond to the variables
used in the first partial ordering or to the constraints used in second par-
tial ordering.

• Common fixpoints;
These will correspond to the CSPs that satisfy the considered notion of

local consistency.

So the considered functions with schemes will be now used in the presence
of the componentwise ordering ⊇. The following straightforward observation
will then be useful.
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Note 7.19 Consider a function f on a Cartesian product P(E1) × · · · ×
P(Em). Given two sequences X := (X1, . . ., Xm) and Y := (Y1, . . ., Ym)
from P(E1)× · · · × P(Em) we write X⊆Y to denote the fact that Xi ⊆ Yi

for all i ∈ [1..m].
• f is inflationary w.r.t. the componentwise ordering ⊇ if for all X ∈
P(E1)× · · · × P(Em) we have f(X)⊆X.

• f is monotonic w.r.t. the componentwise ordering ⊇ if X⊆Y implies
f(X)⊆ f(Y) for all X,Y ∈ P(E1)× · · · × P(Em). �

In other words, f is monotonic w.r.t. ⊇ iff it is monotonic w.r.t. ⊆. This
reversal of the set inclusion of course does not hold for the inflationarity
notion.

7.3 A node consistency algorithm

We now begin the presentation of the specific constraint propagation algo-
rithms. In this section we consider the node consistency notion. Fix a CSP
P with the sequence D1, . . ., Dn of the domains. We consider the Cartesian
product of the partial orderings (P(Di),⊇), where i ∈ [1..n]. The elements of
this compound ordering are thus sequences X1, . . ., Xn of respective subsets
of the domains D1, . . ., Dn ordered componentwise by the reversed subset
ordering ⊇. The sequence D1, . . ., Dn is the least element in this ordering.

Next, recall the following domain reduction rule that we used in Sec-
tion 5.1 to characterise the node consistency notion:

NODE CONSISTENCY
〈C ; x ∈ D〉

〈C ; x ∈ C ∩D〉
where C is a unary constraint on x.

We explain how it can be interpreted as a function on the Cartesian
product P(D1)× · · · × P(Dn). This is quite straightforward since this rule
can be viewed as a function that maps the old domain to the new domain.
Indeed, given a unary constraint C on the variable x with the domain D the
NODE CONSISTENCY rule can be viewed as the following function π0 on
P(D):

π0(X) := X ∩ C.

So π+
0 is a function on P(D1)× · · · × P(Dn).

This brings us to the following characterisation of the notion of node
consistency in terms of fixpoints. The second part of this lemma will allow
us to employ the DICD algorithm discussed in Section 7.1.
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Lemma 7.20 (Node Consistency)
(i) A CSP 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 is node consistent iff (D1, . . ., Dn)

is a common fixpoint of all functions π+
0 associated with the unary

constraints from C.
(ii) All functions π0 associated with a unary constraint C are

• monotonic w.r.t. the componentwise ordering ⊇,
• idempotent,
• commute with each other.

Proof (i) is a direct consequence of the Node Consistency Note 5.3. The
proof of (ii) is left as Exercise 7.4. �

Let us instantiate now the DICD algorithm with the set of functions

F0 := {f | f is the π0 function associated with a unary constraint of P}

and each ⊥i equal to Di.
Call the resulting algorithm the Node algorithm. The following result

summarises its properties.

Theorem 7.21 (Node Algorithm) Consider a CSP P := 〈C ; x1 ∈
D1, . . ., xn ∈ Dn〉.

The Node algorithm always terminates. Let P ′ be the CSP determined
by P and the sequence of the domains computed in d. Then

(i) P ′ is node consistent,
(ii) P ′ is equivalent to P.

Proof The termination and (i) are immediate consequences of the DICD

Corollary 7.15 and of the Node Consistency Lemma 7.20.
To prove (ii) note that the final CSP P ′ can be equally obtained by means

of repeated applications of the NODE CONSISTENCY rule. This rule is
equivalence preserving so the claim follows by the Equivalence Lemma 4.2.

�

Item (i) corresponds to the statement in DICD Corollary 7.15 that the
final value computed by the algorithm is a fixpoint of the considered func-
tions. The fact that this value is actually the least fixpoint of the considered
functions yields the following stronger conclusion. Consider all node consis-
tent CSPs that are of the form 〈C′ ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉 where D′

i ⊆Di

for i ∈ [1..n] and the constraints in C′ are the restrictions of the constraints
in C to the domains D′

1, . . ., D
′
n. Then among these CSPs P ′ has the largest
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domains. Analogous statements hold for the other constraint propagation
algorithms discussed in this chapter.

As a final step we reformulate the Node algorithm so that it deals with
the considered CSP directly. We do this by representing the effect of the ap-
plications of the functions π0 on the corresponding domains as assignments.
This yields the following representation of this algorithm.

Node algorithm

S0 := {C | C is a unary constraint from C};
S := S0;
WHILE S �= ∅ DO

choose C ∈ S; suppose C is on xi;
Di := C ∩Di; % apply the function π0 associated with C

S := S − {C}
END

7.4 An arc consistency algorithm

In this section we provide an analogous account for the arc consistency
notion, though the resulting algorithm will be an instance of a different
generic algorithm. Again, fix a CSP P with the sequence D1, . . ., Dn of
the domains and consider the Cartesian product of the partial orderings
(P(Di),⊇), where i ∈ [1..n]. As before, the sequence D1, . . ., Dn is the least
element in this ordering.

Next, recall the following two domain reduction rules that we used in
Section 5.2 to characterise the arc consistency notion, where C is a binary
constraint on x, y:

ARC CONSISTENCY 1
〈C ; x ∈ Dx, y ∈ Dy〉
〈C ; x ∈ D′

x, y ∈ Dy〉

where D′
x := {a ∈ Dx | ∃ b ∈ Dy (a, b) ∈ C},

ARC CONSISTENCY 2
〈C ; x ∈ Dx, y ∈ Dy〉
〈C ; x ∈ Dx, y ∈ D′

y〉

where D′
y := {b ∈ Dy | ∃ a ∈ Dx (a, b) ∈ C}.

We explain how they can be interpreted as functions on the Cartesian
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product P(D1)×· · ·×P(Dn). Given a binary constraint C on the variables
x and y with the respective domains Dx and Dy, the ARC CONSISTENCY
rule 1 can be viewed as the following function π1 on P(Dx)× P(Dy):

π1(X, Y ) := (X ′, Y ),

where X ′ := {a ∈ X | ∃ b ∈ Y (a, b) ∈ C}, and the ARC CONSISTENCY
rule 2 as the following function π2 on P(Dx)× P(Dy):

π2(X, Y ) := (X, Y ′),

where Y ′ := {b ∈ Y | ∃a ∈ X (a, b) ∈ C}.
Both π+

1 and π+
2 are functions on P(D1) × · · · × P(Dn). This brings us

to the following characterisation of the notion of arc consistency in terms of
fixpoints.

Lemma 7.22 (Arc Consistency)
(i) A CSP 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 is arc consistent iff (D1, . . ., Dn)

is a common fixpoint of all functions π+
1 and π+

2 associated with the
binary constraints from C.

(ii) Each projection function πi associated with a binary constraint C is

• inflationary w.r.t. the componentwise ordering ⊇,
• monotonic w.r.t. the componentwise ordering ⊇.

Proof (i) is a direct consequence of the Arc Consistency Note 5.6. (ii)
follows from Exercise 7.3. �

In general, the πi functions associated with different binary constraints do
not commute or semi-commute, see Exercise 7.9. So we cannot employ here
the DICD or the SICD algorithms of Section 7.1. However, we can still use
the CD algorithm. The second part of the above lemma will then be of use.
Let us instantiate now the CD algorithm with the set of functions

F0 := {f | f is π1 or π2 function associated with a binary constraint of P}

and each ⊥i equal to Di.
Call the resulting algorithm the Arc algorithm. The following result

summarises its properties. Here and elsewhere we call a CSP finite if all
its domains (and therefore all its constraints) are finite.

Theorem 7.23 (Arc Algorithm) Consider a finite CSP P := 〈C ; x1 ∈
D1, . . ., xn ∈ Dn〉.

The Arc algorithm always terminates. Let P ′ be the CSP determined by
P and the sequence of the domains computed in d. Then
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(i) P ′ is arc consistent,
(ii) P ′ is equivalent to P.

Proof The termination and (i) are immediate consequences of the CD

Corollary 7.18 and of the Arc Consistency Lemma 7.22.
To prove (ii) note that the final CSP P ′ can be equally obtained by means

of repeated applications of the ARC CONSISTENCY rules 1 and 2. Each of
these rules is equivalence preserving so the claim follows by the Equivalence
Lemma 4.2. �

Let us reformulate now the Arc algorithm so that it deals with the con-
sidered CSP directly. Recall from Section 5.5 that for a binary relation R,
RT = {(b, a) | (a, b) ∈ R}. First, we represent the set of functions F0 equiv-
alently as the set of the π1 functions of the constraints or relations from the
set

S0 := {C | C is a binary constraint from C}
∪ {CT | C is a binary constraint from C}.

Consider now the corresponding instance of the CD algorithm. We rep-
resent the effect of the applications of the functions π1 on the corresponding
domains as assignments. This yields the following representation of the Arc

algorithm.

Arc algorithm

S0 := {C | C is a binary constraint from C}
∪ {CT | C is a binary constraint from C};

S := S0;
WHILE S �= ∅ DO

choose C ∈ S; suppose C is on xi, xj ;
Di := {a ∈ Di | ∃ b ∈ Dj (a, b) ∈ C}; % apply π1 associated with C

IF Di changed THEN
S := S ∪ {C ′ ∈ S0 | C ′ is on y, z where y is xi or z is xi}

ELSE
S := S − {C}

END
END

7.5 A hyper-arc consistency algorithm

A similar analysis allows us to derive a hyper-arc consistency algorithm. Re-
call that this notion was characterised in Section 5.3 using the the following
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proof rule parametrised by a constraint C on the variables x1, . . ., xk and
i ∈ [1..k]:

HYPER-ARC CONSISTENCY
〈C ; x1 ∈ D1, . . ., xk ∈ Dk〉

〈C ; x1 ∈ D1, . . ., xi−1 ∈ Di−1, xi ∈ D′
i, xi+1 ∈ Di+1, . . ., xk ∈ Dk〉

where

D′
i := {a ∈ Di | ∃d ∈ C a = d[xi]}.

Also this rule can also be viewed as a function. Indeed, given a con-
straint C on the variables x1, . . ., xk with respective domains D1, . . ., Dk, we
can view for each i ∈ [1..k] the HYPER-ARC CONSISTENCY rule as the
function πi on P(D1)× · · · × P(Dk) defined by

πi(X1, . . ., Xk) := (X1, . . ., Xi−1, X
′
i, Xi+1, . . ., Xk)

where

X ′
i = {a ∈ Xi | ∃d ∈ C ∩ (X1 × · · · ×Xk) (a = d[xi])}.

In other words,

X ′
i = {d[xi] | d ∈ X1 × · · · ×Xk and d ∈ C}.

Each such function πi is associated with a specific constraint C.
Note that when C is a binary constraint, the π1 and π2 functions coincide

with the π1 and π2 functions introduced in the previous section. Just as
in the case of arc consistency we can characterise the notion of hyper-arc
consistency in terms of fixpoints of the πi functions.

Lemma 7.24 (Hyper-arc Consistency)
(i) A CSP 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 is hyper-arc consistent iff

(D1, . . ., Dn) is a common fixpoint of all functions π+
i associated with

the constraints from C.
(ii) Each projection function πi associated with a constraint C is

• inflationary w.r.t. the componentwise ordering ⊇,
• monotonic w.r.t. the componentwise ordering ⊇.

Proof (i) is a direct consequence of the Hyper-arc Consistency Note 5.9.
(ii) follows directly from Exercise 7.3. �

Fix now a CSP P. By instantiating the CD algorithm with

F0 := {f | f is a πi function associated with a constraint of P}
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and with each ⊥i equal to Di we get the Hyper-arc algorithm that enjoys
the same properties as the Arc algorithm and that we list in the following
theorem. The proof is analogous to that of the Arc Algorithm Theorem
7.23 and is omitted.

Theorem 7.25 (Hyper-arc Algorithm) Consider a finite CSP P :=
〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.

The Hyper-arc algorithm always terminates. Let P ′ be the CSP deter-
mined by P and the sequence of the domains computed in d. Then

(i) P ′ is hyper-arc consistent,
(ii) P ′ is equivalent to P. �

7.6 A directional arc consistency algorithm

Let us return now to the notion of directional arc consistency defined in Sec-
tion 5.4. To derive an algorithm that achieves this local consistency notion
we characterise it first in terms of fixpoints of appropriate functions. To this
end, given a P and a linear ordering ≺ on its variables, as in Section 5.4, we
rather reason in terms of the related CSP P≺. The following is a counterpart
of the Arc Consistency Lemma 7.22(i).

Lemma 7.26 (Directional Arc Consistency) Consider a CSP P with
a linear ordering ≺ on its variables. Let P≺ := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.
Then

(i) P is directionally arc consistent w.r.t. ≺ iff (D1, . . ., Dn) is a common
fixpoint of the functions π+

1 associated with the binary constraints
from P≺.

(ii) Each projection function πi associated with a binary constraint is
idempotent.

(iii) Consider two binary constraints of P≺, C1 on x, z and C2 on v, y,
where y ! z. Then the π1 function of C1 semi-commutes with the π1

function of C2 w.r.t. the componentwise ordering ⊇, that is, for all
(X1, . . ., Xn) ∈ P(D1)× · · · × P(Dn)

f+
x,zf

+
v,y(X1, . . ., Xn) ⊇ f+

v,yf
+
x,z(X1, . . ., Xn),

where we denoted the π1 function of C1 by fx,z and the π1 function
of C2 by fv,y.

Proof The proof is left as Exercise 7.5. �
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Consider now a CSP P with a linear ordering ≺ on its variables and the
corresponding CSP P≺. To be able to apply the above lemma we order the
π1 functions of the binary constraints of P≺ in an appropriate way. Assume
for simplicity that the original CSP P is standardised, that is, that there
exists precisely one constraint on each subsequence x, y of its variables. The
same holds then for P≺. Suppose that P≺ := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.
So x1 ≺ x2 ≺ · · · ≺ xn. Denote the unique constraint of P≺ on xi, xj by
Ci,j .

Consider now the sequence of the π1 functions corresponding to the fol-
lowing ordering of the binary constraints of P≺:

C1,n, C2,n, . . ., Cn−2,n, Cn−1,n,
C1,n−1, C2,n−1, . . ., Cn−2,n−1,

. . .

C1,2.

So in this ordering the constraints on some y and xn are listed first, followed
by the constraints on some y and xn−1, etc, and ending with the constraint
C1,2.

Then, given two such π1 functions, f and g, if f precedes g in this or-
dering, then f is associated with a constraint Ci,j and g is associated with
a constraint Ck,l where l ≤ j, i.e. xl ! xj . So by virtue of the Direc-
tional Arc Consistency Lemma 7.26(iii) f semi-commutes with g w.r.t. the
componentwise ordering ⊇.

We now instantiate the SICD algorithm by the above-defined sequence of
the π1 functions and each ⊥i equal to the domain Di of the variable xi. We
obtain then the following algorithm, where we reformulated the applications
of the functions π1 as assignments on the corresponding variable domains.

Directional Arc Consistency algorithm (DArc)

FOR j := n TO 2 BY −1 DO
FOR i := 1 TO j − 1 DO

Di := {a ∈ Di | ∃ b ∈ Dj (a, b) ∈ Ci,j} % apply π1 associated with Ci,j

END
END

This algorithm enjoys the following properties.

Theorem 7.27 (DArc Algorithm) Consider a standardised CSP P with
a linear ordering ≺ on its variables. Let P≺ := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.

The DArc algorithm always terminates. Let P ′ be the CSP determined
by P≺ and the sequence of the computed domains. Then
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(i) P ′ is directionally arc consistent w.r.t. ≺,
(ii) P ′ is equivalent to P≺.

Proof The termination and (i) are immediate consequences of the SICD

Corollary 7.16 for the SICD algorithm and of the Directional Arc Consis-
tency Lemma 7.26.

The proof of (ii) is analogous to that of the Arc Algorithm Theorem
7.23(ii) and is omitted. �

Note that in contrast to the Arc Algorithm Theorem 7.23 we do not need
to assume here that the CSP is finite.

7.7 A path consistency algorithm

In this and the next three sections we deal with algorithms that modify the
constraints. Here we derive an algorithm that achieves path consistency.
In Section 5.5 this notion was defined for normalised CSPs, i.e., CSPs in
which on each pair of variables at most one constraint exists. To keep the
notational complications to minimum we limit ourselves to even more limited
CSPs, the ones that are standardised. (We shall return to this matter at the
end of this section.) Recall from Definition 5.14 that a CSP is standardised
if for each pair x, y of variables a unique constraint on x, y exists. Below we
denote this unique constraint on x, y by Cx,y.

So consider a standardised CSP P with the binary constraints C1, . . ., Ck.
For the partial ordering we choose now the Cartesian product of the partial
orderings (P(Ci),⊇), where i ∈ [1..k]. Recall from Section 5.5 that the
notion of path consistency was characterised by means of the following three
rules:

PATH CONSISTENCY 1

Cx,y, Cx,z, Cy,z

C ′
x,y, Cx,z, Cy,z

where the constraint C ′
x,y on the variables x, y is defined by

C ′
x,y := Cx,y ∩ Cx,z · CT

y,z,

PATH CONSISTENCY 2

Cx,y, Cx,z, Cy,z

Cx,y, C ′
x,z, Cy,z
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where the constraint C ′
x,z on the variables x, z is defined by

C ′
x,z := Cx,z ∩ Cx,y · Cy,z,

PATH CONSISTENCY 3
Cx,y, Cx,z, Cy,z

Cx,y, Cx,z, C ′
y,z

where the constraint C ′
y,z on the variables y, z is defined by

C ′
y,z := Cy,z ∩ CT

x,y · Cx,z.

Each of these rules can be identified with a function. Indeed, given a
subsequence x, y, z of the variables of P each of these rules can be viewed
as a function on P(Cx,y)×P(Cx,z)×P(Cy,z). The PATH CONSISTENCY
rule 1 corresponds to the function

fz
x,y(P, Q, R) := (P ′, Q, R),

where

P ′ := P ∩Q ·RT ,

the PATH CONSISTENCY rule 2 corresponds to the function

fy
x,z(P, Q, R) := (P, Q′, R),

where

Q′ := Q ∩ P ·R,

while the PATH CONSISTENCY rule 3 corresponds to the function

fx
y,z(P, Q, R) := (P, Q, R′),

where

R′ := R ∩ P T ·Q.

Now, (fz
x,y)

+, (fy
x,z)

+ and (fx
y,z)

+ are functions on P(C1) × · · · × P(Ck).
Since we wish to use the CD algorithm of Section 7.1, we need the following
counterpart of the Arc Consistency Lemma 7.22.

Lemma 7.28 (Path Consistency)
(i) A standardised CSP P with the binary constraints C1, . . ., Ck is path

consistent iff (C1, . . ., Ck) is a common fixpoint of all functions (fz
x,y)

+,
(fy

x,z)
+ and (fx

y,z)
+ associated with the subsequences x, y, z of the vari-

ables of P.
(ii) The functions fz

x,y, fy
x,z and fx

y,z are
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• inflationary w.r.t. the componentwise ordering ⊇,
• monotonic w.r.t. the componentwise ordering ⊇.

Proof (i) is a direct consequence of the Path Consistency Note 5.21. (ii)
follows directly from Exercise 7.3. �

In general, the fz
x,y functions do not commute or semi-commute, so we

cannot use the DICD or the SICD algorithm to characterise path consis-
tency. Still we can use the CD algorithm. To this end we instantiate this
algorithm with the set of functions

F0 := {f | x, y, z is a subsequence of the variables of P and
f ∈ {fz

x,y, f
y
x,z, f

x
y,z}},

n := k and each ⊥i equal to Ci.
Call the resulting algorithm the Path algorithm. It enjoys the following

properties.

Theorem 7.29 (Path Algorithm) Consider a standardised CSP P with
the binary constraints C1, . . ., Ck. Assume that C1, . . ., Ck are finite.

The Path algorithm always terminates. Let P ′ be the CSP obtained from
P by replacing the sequence of its binary constraints by the sequence of the
binary constraints computed in d. Then

(i) P ′ is path consistent,
(ii) P ′ is equivalent to P.

Proof The proof is analogous to that of the Arc Algorithm Theorem 7.23
and is left to the reader. �

Note that in contrast to the Arc Algorithm Theorem we do not need to
assume that the CSP is finite, but only that its binary constraints are finite.

As in the case of the Arc algorithm we now rewrite the Path algorithm
so that it deals with the considered standardised CSP P directly. Because of
the use of the fz

x,y functions the outcome is somewhat more complex. First,
given two variables x and y we write x ≺ y if x appears before y in the
sequence of the variables of P. Each function of the form fu

x,y where x ≺ y

and u �∈ {x, y} can be identified with the sequence x, u, y of the variables.
(Note that the ‘relative’ position of u w.r.t. x and y is not fixed, so x, u, y

does not have to be a subsequence of the variables of P.)
This allows us to identify the set of functions F0 with the set

V0 := {(x, u, y) | x, y, u are different variables of P and x ≺ y}.
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Next, given two variables x, y of P such that x ≺ y, we introduce the
following set of triples of different variables of P:

Vx,y := {(x, y, u) | x ≺ u}
∪ {(y, x, u) | y ≺ u}
∪ {(u, x, y) | u ≺ y}
∪ {(u, y, x) | u ≺ x}
∪ {(x, u, y)}.

So Vx,y is the subset of V0 that consists of the triples that contain x and
y. This corresponds to the set of functions in one of the following forms:
fy

x,u, fx
y,u, fx

u,y, fy
u,x and fu

x,y. (The sixth form, fu
y,x, is excluded since we

assumed that x ≺ y.)
After these preparations we reformulate the Path algorithm as follows,

where initially Ex,y = Cx,y.

Path algorithm

V0 := {(x, u, y) | x, y, u are different variables of P and x ≺ y;
V := V0;
WHILE V �= ∅ DO

choose p ∈ V ; suppose p = (x, u, y);
apply fu

x,y to its current domains;
IF Ex,y changed THEN

V := V ∪ Vx,y

ELSE
V := V − {p}

END
END

Here the phrase ‘apply fu
x,y to its current domains’ can be made more

precise if the ‘relative’ position of u w.r.t. x and y is known. By way of
example suppose that u ≺ x, y. Then fu

x,y is defined on P(Cu,x)×P(Cu,y)×
P(Cx,y) by

fu
x,y(Eu,x, Eu,y, Ex,y) := (Eu,x, Eu,y, Ex,y ∩ ET

u,x · Eu,y)

and the above phrase ‘apply fu
x,y to its current domains’ represents the

assignment

Ex,y := Ex,y ∩ ET
u,x · Eu,y.

In our presentation we only considered standardised CSPs. This restric-
tion can be lifted as follows. Every normalised CSP P can be trivially
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transformed to an equivalent standardised CSP by adding for each subse-
quence x, y for which no constraint on x, y exists a constraint on x, y that
equals the Cartesian product of the domains of the variables x and y. Then
we can transform this standardised CSP to a path consistent CSP P ′ using
the Path algorithm. The CSP P ′ can be viewed as the outcome of the Path

algorithm applied to the original CSP P. By virtue of the Path Algorithm
Theorem 7.29 P ′ is equivalent to P.

7.8 A directional path consistency algorithm

In this section we deal with the notion of directional path consistency defined
in Section 5.6. As in the previous section we limit our attention to the
standardised CSPs. Given such a standardised CSP P we characterise it in
terms of fixpoints using the CSP P≺. In the latter CSP the variables are
ordered according to ≺ and on every pair of variables a unique constraint
exists.

The following is a counterpart of the Directional Arc Consistency Lemma
7.26. We use here the functions fz

x,y defined in Section 7.7.

Lemma 7.30 (Directional Path Consistency) Consider a standardised
CSP P with a linear ordering ≺ on its variables. Let C1, . . ., Ck be the binary
constraints of P≺. Then

(i) P is directionally path consistent w.r.t. ≺ iff (C1, . . ., Ck) is a common
fixpoint of all functions (fz

x,y)
+ such that x ≺ y ≺ z.

(ii) The functions fz
x,y, fy

x,z and fx
y,z are idempotent.

(iii) Suppose that x1 ≺ y1 ≺ z, x2 ≺ y2 ≺ u, and u ! z. Then the function
fz

x1,y1
semi-commutes with the function fu

x2,y2
w.r.t. the component-

wise ordering ⊇, that is, for all (X1, . . ., Xk) ∈ P(C1)× · · · × P(Ck)

(fz
x1,y1

)+(fu
x2,y2

)+(X1, . . ., Xk) ⊇ (fu
x2,y2

)+(fz
x1,y1

)+(X1, . . ., Xk).

Proof The proof is left as Exercise 7.6. �

To obtain an algorithm that achieves directional path consistency we now
instantiate appropriately the SICD algorithm. Consider a standardised CSP
P with a linear ordering ≺ on its variables and the corresponding CSP
P≺. To be able to apply the above lemma we order appropriately the f t

r,s

functions, where the variables r, s, t are such that r ≺ s ≺ t. Namely, we
put fz

x1,y1
before fu

x2,y2
if u ≺ z.

More precisely, let x1, . . ., xn be the sequence of the variables of P≺. So
x1 ≺ x2 ≺ · · · ≺ xn. We can then order the functions fxm

xk,xl
as follows:
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fxn
x1,x2

,
fxn

x1,x3
, fxn

x2,x3
,

. . .,
fxn

x1,xn−1
, fxn

x2,xn−1
, . . ., fxn

xn−3,xn−1
fxn

xn−2,xn−1
,

f
xn−1
x1,x2 ,

f
xn−1
x1,x3 , f

xn−1
x2,x3 ,

. . .

f
xn−1
x1,xn−2 , f

xn−1
x2,xn−2 , . . ., f

xn−1
xn−3,xn−2 ,

. . .,
fx3

x1,x2
.

Then by virtue of the Directional Path Consistency 7.30(iii) if the function
f precedes the function g in this sequence, then f semi-commutes with g

w.r.t. the componentwise ordering ⊇.
We now instantiate the SICD algorithm by the above-defined sequence of

functions and each ⊥i equal to the constraint Ci. By rewriting the applica-
tions of the functions fxm

xi,xj
as assignments this algorithm can be rewritten

as the following triple FOR loop. As before we denote the unique constraint
of P≺ on xi, xj by Ci,j .

Directional Path Consistency algorithm (DPath)

FOR m := n TO 3 BY −1 DO
FOR j := 2 TO m− 1 DO
FOR i := 1 TO j − 1 DO

Ci,j := Ci,j ∩ Ci,m · CT
j,m % apply the function fxm

xi,xj

END
END

END

Apart from of the different choice of the constituent partial orderings
and the functions with schemes, this algorithm is identical to the DArc of
the previous section. Consequently, the DPath algorithm enjoys analogous
properties as the DArc algorithm. They are summarised in the following
theorem.

Theorem 7.31 (DPath Algorithm) Consider a standardised CSP P with
a linear ordering ≺ on its variables.

The DPath algorithm always terminates. Let P ′ be the CSP obtained
from P≺ by replacing the sequence of its binary constraints by the sequence
of the binary constraints computed in it. Then
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(i) P ′ is directionally path consistent w.r.t. ≺,
(ii) P ′ is equivalent to P≺. �

As in the case of the DArc Algorithm Theorem 7.27 we do not need to
assume here that the CSP is finite. Also, as in the previous section we can
lift the restriction to the standardised CSPs in a straightforward way.

7.9 A k-consistency algorithm

Let us turn our attention to the notion of k-consistency. In our presentation
we rely on the notation introduced in Section 5.7, where this notion was
defined. To obtain an algorithm that enforces this local consistency notion
we proceed in the familiar by now four steps:

• we identify the relevant partial ordering,
• we reformulate the proof rule(s) characterising the notion as functions on

a specific partial ordering,
• we establish the necessary properties of these functions,
• we instantiate the CD algorithm by the adopted partial ordering and by

these functions.

In our presentation we limit ourselves to regular CSPs. Recall that a CSP
is regular if for each sequence of its variables X a unique constraint on X

exists, denoted by CX , and that, as the Equivalence Note 5.16 shows, every
CSP is equivalent to a regular CSP.

So consider a regular CSP P with the constraints C1, . . ., Cn. For the
partial ordering we choose the Cartesian product of the partial orderings
(P(Ci),⊇), where i ∈ [1..n]. In Section 5.7 we characterised the notion of
k-consistency by means of the following rule:

k-CONSISTENCY
CX

CX ∩ΠX(CX,y)

parametrised by all subsequences X of k− 1 variables and a variable y that
does not occur in X.

Next, we explain how this rule can be interpreted as a function on P(C1)×
· · ·×P(Cn). This is a bit more complicated than in the case of other rules so
far considered. Fix a subsequence X of k− 1 variables and a variable y that
does not occur in X and consider the sequence CX , C ′

1, . . ., C
′
m of the con-

straints of P, each on a different subsequence of X, y. Recall that CX is the
unique constraint on the sequence X of variables. The k-CONSISTENCY
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rule corresponds then to the function fX,y on P(CX)×P(C ′
1)×· · ·×P(C ′

m)
defined by

fX,y(Q, Q1, . . ., Qm) := (Q′, Q1, . . ., Qm),

where

Q′ := Q ∩ΠX(Q1 � · · · � Qm).

Intuitively, fX,y removes from its first argument the tuples that cannot
be extended to an instantiation with the domain X, y that satisfies all the
constraints Q1, . . ., Qm. The canonic extension f+

X,y of fX,y is then a function
on P(C1) × · · · × P(Cn). We have then the following counterpart of the
characterisation results provided in the previous sections.

Lemma 7.32 (k-Consistency) Fix k ≥ 1. Consider a regular CSP P with
the constraints C1, . . ., Cn.

(i) If (C1, . . ., Cn) is a common fixpoint of all functions f+
X,y for all sub-

sequences X of k − 1 variables of P and all variables y not in X,
then P is k-consistent.

(ii) The functions fX,y are

• inflationary w.r.t. the componentwise ordering ⊇,
• monotonic w.r.t. the componentwise ordering ⊇.

Proof (i) is a direct consequence of the k-Consistency Note 5.36. (ii)
follows directly from Exercise 7.3. �

Note that in contrast to the previous characterisation results of this chap-
ter we only have here an implication. This is a consequence of an observation
made in Section 5.7 after the k-Consistency Note 5.36. Still this result is
sufficient for our purposes because we have to our disposal an algorithm that
computes common fixpoints. Indeed, we can instantiate the CD algorithm
with the set of functions

F0 := {fX,y | X is a subsequence of variables of P of length k − 1
and y is not in X}

and each ⊥i equal to Ci.
The resulting algorithm, that we call the k-Consistency algorithm, en-

joys the following properties.

Theorem 7.33 (k-Consistency Algorithm) Fix k ≥ 1. Consider a
regular CSP P with the constraints C1, . . ., Cn. Assume that C1, . . ., Cn are
finite.
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The k-Consistency algorithm always terminates. Let P ′ be the CSP
obtained from P by replacing the sequence of its constraints by the sequence
of the constraints computed in d. Then

(i) P ′ is k-consistent,
(ii) P ′ is equivalent to P.

Proof The proof is analogous to that of the Arc Algorithm Theorem 7.23
and is left to the reader. �

In the k-Consistency algorithm from each constraint on k− 1 variables
repeatedly tuples are removed that cannot be extended to a k-consistent
instantiation. We can modify this algorithm by also removing tuples that
extend inconsistent instantiations. This process can be described by means
of the following proof rule:

k-CONSISTENCY 1

CX

CX ∩ CX

It is straightforward to see that this rule is equivalence preserving. Indeed,
it is an abbreviation of the following rule, where C1, . . ., Cn are all constraints
on a subsequence of the variables X:

〈CX , C1, . . ., Cn ; DE〉
〈C ′

X , C1, . . ., Cn ; DE〉

where C ′
X := CX ∩ (C1 � · · · � Cn).

Consider now a solution d of the CSP in the premise of the rule. Then
both d ∈ CX and d ∈ C1 � · · · � Cn. So d is a solution of the CSP in the
conclusion of the rule.

Since the notion of k-consistency was characterised in the k-Consistency
Note 5.36 solely in terms of the k-CONSISTENCY rule, this rule is redun-
dant. However, once we translate it into a function (or actually a set of
functions since this rule is parametrised by a sequence X of the variables)
we are brought to a useful revision of the k-Consistency algorithm.

This translation is obtained in the expected way. Given a sequence X of
the variables of P let CX , C ′

1, . . ., C
′
m be the sequence of the constraints of P,

each on a different subsequence of X. Then the k-CONSISTENCY 1 rule
corresponds to the following function gX on P(CX)×P(C ′

1)× · · · ×P(C ′
m):

gX(Q, Q1, . . ., Qm) := (Q′, Q1, . . ., Qm),
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where

Q′ := Q ∩ (Q1 � · · · � Qm).

As before it is straightforward to prove that the functions gX are infla-
tionary and monotonic w.r.t. the componentwise ordering ⊇.

We can then in the familiar by now way instantiate the CD algorithm
with the set of functions F0 that consists of all functions of the type fX,y

and gX , where X is a subsequence of k− 1 variables of P and y is not in X.
The resulting algorithm enjoys the same properties as the k-Consistency

algorithm.

7.10 A relational consistency algorithm

Finally, let us return to the notion of relational consistency introduced
in Section 5.9. Recall from there that given a sequence of constraints
C1, . . ., Cm we denote by Var(C1, . . ., Cm) the set of variables that are used
in them. Recall also that the (i, m)-relational consistency for regular CSPs
was there characterised by means of the following RELATIONAL (i, m)-
CONSISTENCY rule parametrised by a sequence of constraints C1, . . ., Cm

and a subsequence X of Var(C1, . . ., Cm) of length i:

RELATIONAL (i, m)-CONSISTENCY

CX

CX ∩ΠX(C1 � · · · � Cm)

where CX is the unique constraint on the sequence X of variables.

The details of the presentation are analogous to the one of the previ-
ous section. First, we reformulate this rule as a function. To this end
fix a regular CSP P with the constraints E1, . . ., En. Then for each se-
quence of constraints C1, . . ., Cm and a subsequence X of Var(C1, . . ., Cm)
the RELATIONAL (i, m)-CONSISTENCY rule corresponds to the function
fC1,. . .,Cm,X on P(CX)× P(C1)× · · · × P(Cm) defined by

fC1,. . .,Cm,X(Q, Q1, . . ., Qm) := (Q′, Q1, . . ., Qm),

where

Q′ := Q ∩ΠX(Q1 � · · · � Qm).

So fC1,. . .,Cm,X removes from its first argument the tuples that cannot be
extended to an instantiation that satisfies all the constraints Q1, . . ., Qm.
The canonic extension f+

C1,. . .,Cm,X of fC1,. . .,Cm,X is then a function on
P(E1) × · · · × P(En). We have then the following characterisation result
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which is a counterpart of the k-Consistency Lemma 7.32 of the previous
section.

Lemma 7.34 (Relational Consistency) Fix i, m ≥ 0. Consider a regular
CSP P with the constraints E1, . . ., En.

(i) If (E1, . . ., En) is a common fixpoint of all functions f+
C1,. . .,Cm,X for

all subsequences C1, . . ., Cm of the constraints and all subsequences X

of Var(C1, . . ., Cm) of length i, then P is relationally (i, m)-consistent.
(ii) The functions fC1,. . .,Cm,X are

• inflationary w.r.t. the componentwise ordering ⊇,
• monotonic w.r.t. the componentwise ordering ⊇.

Proof (i) is a direct consequence of the k-Consistency Note 5.36. (ii)
follows directly from Exercise 7.3. �

As the final step we instantiate the CD algorithm with the set of functions

F0 := {fC1,. . .,Cm,X | C1, . . ., Cm is a subsequence of constraints and X

is a subsequence of Var(C1, . . ., Cm) of length i}

and each ⊥i equal to Ei.
Call the resulting algorithm the Relational (i, m)-Consistency algo-

rithm. Its properties are summarised in the following theorem.

Theorem 7.35 (Relational (i, m)-Consistency Algorithm) Fix i, m ≥
0. Consider a regular CSP P with the constraints E1, . . ., En. Assume that
E1, . . ., En are finite.

The Relational (i, m)-Consistency algorithm always terminates. Let
P ′ be the CSP obtained from P by replacing the sequence of its constraints
by the sequence of the constraints computed in d. Then

(i) P ′ is relationally (i, m)-consistent,
(ii) P ′ is equivalent to P.

Proof The proof is analogous to that of the Arc Algorithm Theorem 7.23
and is left to the reader. �

7.11 Implementations of incomplete constraint solvers

So far we dealt with the constraint propagation algorithms that enforce
specific local consistency notions separately. Thanks to the adopted pre-
sentation these algorithms can be combined in a straightforward way. For
example, suppose that we wish to enforce both arc and path consistency.



288 Constraint propagation algorithms

Then we simply instantiate the CD algorithm with the Cartesian product
of the partial orderings used in Sections 7.4 and 7.7 and the set of functions
that consists of the projection functions π1 and the fz

x,y functions.
As already mentioned at the beginning of this chapter, the constraint

propagation algorithms can also be used to implement specific incomplete
constraint solvers that are defined by means of proof rules of Section 4.1. All
that is needed is to check that the functions that represent the used rules are
monotonic and inflationary w.r.t. some ordering. Then we can instantiate
the CD algorithm by these functions.

In case an incomplete constraint solver is defined by means of the do-
main reduction rules it suffices to take the familiar by now componentwise
reversed subset ordering ⊇. Then each domain reduction rule when viewed
as a function on the domains of the used variables is inflationary. Also,
as Exercise 7.3 shows, monotonicity is ensured if the domains (respectively,
the constraints) in the conclusion of a rule are obtained from the domains
(respectively, the constraints) in the premise of the rule using a combination
of the following operations on relations:

• union and intersection,
• transposition operation ‘.T ’,
• composition operation ‘. · ..’,
• join operation �,
• projection functions πi and ΠX , and
• removal of an element.

This vast repertoire of operations is sufficient to describe the domain reduc-
tion rules that we considered so far. In particular, it allows us to deal with
the domain reduction rules used in Chapter 6 to describe the incomplete
constraint solvers for:

• equality and disequality constraints,
• Boolean constraints, and
• linear constraints over integer intervals and finite integer domains,
• arithmetic constraints over integer intervals and over finite integer do-

mains, and
• arithmetic constraints over reals.

By instantiating the generic CD algorithm by the domain reduction rules
that define an incomplete constraint solver we provide then an implementa-
tion of this solver to which the conclusions of the CD Corollary 7.18 apply.
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For an example of such an implementation see Exercise 7.12. If the consid-
ered functions satisfy some other properties listed in Definition 7.4, we can
use the simpler DICD and SICD algorithms.

In general, however, we also need to deal with transformation rules that
are part of an incomplete solver. For some specific transformation rules we
can still use the generic framework of Section 7.1 to reason about them.
An example are the PATH CONSISTENCY rules 1, 2 and 3 that were
studied in Section 7.7. More generally, this framework can be used for the
transformation rules to which Exercise 7.3 is applicable.

Also, for the transformation rules for Boolean constraints presented in
Subsection 6.3.1 an ad hoc reasoning suffices to prove the desired results
—see Exercise 6.2 of Chapter 6. The same holds for the normalisation rules
for the linear constraints that we omitted in our presentation in Section 6.4
—see Exercise 6.7 of Chapter 6.

In principle the transformation rules can be arbitrarily complex and to
reason in a systematic way about termination and uniqueness of the out-
come of the resulting derivations one needs to rely on the term rewriting
techniques, see, e.g., Baader and Nipkow [1998]. These techniques fall out-
side the scope of this book.

Further, note that the algorithms that are instantiations of the DICD and
CD algorithms of Section 7.1 are non-deterministic. In spite of it, the result
of their computations is always the same. By presenting such algorithms
as non-deterministic ones we abstract from irrelevant details and provide
a possibility for implementing the underlying scheduler of the considered
functions separately. All that is needed is a data structure that supports
three operations: selection, addition and deletion of an element. For exam-
ple, we can use here a queue. This turns these algorithms into deterministic
ones without affecting the stated properties (though see in this respect Ex-
ercise 7.2). In specific situations one can exploit additional properties of the
scheduled functions to derive more efficient algorithms. Examples of such
improvements are provided in Exercises 7.9 and 7.10.

Finally, let us note that it does not make sense to enforce the considered
notion of local consistency if during the computation of the corresponding
constraint propagation algorithm a failed CSP (that is, a CSP with an empty
domain or an empty constraint) is reached. Indeed, all the considered algo-
rithms maintain equivalence during the computation. So if a failed CSP is
reached, we can readily conclude that the original CSP is inconsistent and
might as well terminate the computation. Consider an example. Take the
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CSP

〈x = y, y < z ; x ∈ [50..100], y ∈ [0..20], z ∈ [0..10]〉.

Applying the ARC CONSISTENCY rule 1 to the first constraint we reduce
the domain of x to the empty set. The resulting CSP is not yet arc consistent
though it is failed. We might at this moment terminate the computation
instead of carrying it on till an arc consistent CSP is reached (which in
this case will have all variable domains empty). Such a modification can be
easily incorporated into the Arc algorithm. Indeed, it suffices to change
the condition of the WHILE loop to S �= ∅ AND ∀i ∈ [1..n] Di �= ∅. Similar
modifications can me made to the other considered constraint propagation
algorithms. The resulting algorithms achieve a weaker property than their
original versions. Namely, they transform the original CSP to the one that
is either locally consistent or failed. As just explained, it is sufficient to our
purposes.

7.12 Summary

In this chapter we studied various constraint propagation algorithms. These
are algorithms that achieve local consistency. In fact, for each local consis-
tency notion there exists an algorithm that enforces it in the sense that it
transforms a given CSP to an equivalent one that is locally consistent.

The adopted presentation allowed us to introduce the constraint propa-
gation algorithms as instances of simple generic iteration algorithms. This
simplified the reasoning about correctness of these algorithms and clarified
their nature. More specifically, this presentation allowed us to reason about
these algorithms in two stages. First, we considered generic iteration al-
gorithms on partial orderings and proved their correctness in an abstract
setting. Then we instantiated these algorithms with concrete partial order-
ings and functions and obtained in this way specific constraint propagation
algorithms. Because of its generality, the adopted approach can be used to
model several other constraint propagation algorithms. Here we presented
the constraint propagation algorithms that achieve

• node consistency,
• arc consistency,
• hyper-arc consistency,
• directional arc consistency,
• path consistency,
• directional path consistency.
• k-consistency,
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• relational consistency.

We also showed how the discussed generic iteration algorithms can be
used to implement incomplete constraint solvers.

7.13 Exercises

Exercise 7.1 Adopt the assumptions of the Generic Iteration Theorem
7.11. Consider a terminating computation of the Generic Iteration al-
gorithm. Extend the sequence of values for d computed by it to an arbitrary
iteration χ of F . Prove that χ is regular in the sense of the Least Fixpoint
Lemma 7.8.

Exercise 7.2 Call an iteration chaotic if each function is activated in it
infinitely often. We say that a function f is eventually irrelevant for an

iteration d0, d1, . . . if for some m ≥ 0 we have f(dj) = dj for all j ≥ m.
Call an iteration semi-chaotic if each function that is activated in it finitely
often is eventually irrelevant.

(i) Consider a finite partial ordering (D, � ) with the least element ⊥.
Let F be a finite set of functions on D such that

• each f ∈ F is monotonic and inflationary.

Prove that every semi-chaotic (and hence every chaotic) iteration of
F eventually stabilises at the least common fixpoint of the functions
from F .

(ii) Show that not all iterations generated by the infinite executions of
the Generic Iteration algorithm are semi-chaotic.

(iii) Consider the following modification of the Generic Iteration al-
gorithm that involves the queues. We denote here the empty queue
by empty, and the head and the tail of a non-empty queue Q re-
spectively by head(Q) and tail(Q). Finally, for a set S and a queue
Q, the operation enqueue(S, Q) enqueues in an arbitrary order all
the elements of S in Q.

Generic Iteration with a Queue algorithm

d := ⊥;
Q := empty;
enqueue(F, Q);
WHILE Q �= empty DO

g := head(Q);
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IF d �= g(d) THEN
enqueue(update(Q, g, d), Q);
d := g(d)

ELSE
Q := tail(Q)

END
END

where for all Q, g, d

A {f ∈ F −Q | f(d) = d ∧ fg(d) �= g(d)} ⊆ update(Q, g, d).

(We identify here Q with the set of its elements.)

Prove that all iterations generated by the infinite executions of the
Generic Iteration with a Queue algorithm are semi-chaotic.

Exercise 7.3 Suppose that the domains in the conclusion of a rule are
obtained from the domains in the premise of the rule using a combination
of the following operations on relations:

• union and intersection,
• transposition operation ‘.T ’,
• composition operation ‘. · ..’,
• join operation �,
• projection functions πi and ΠX , and
• removal of an element.

Prove that each such rule viewed as a function on the domains of the used
variables is monotonic w.r.t. the componentwise ordering ⊇.
Hint. Prove that each of these operations is monotonic w.r.t. the compo-
nentwise ordering ⊇ (or equivalently, as Note 7.19 shows, w.r.t. the compo-
nentwise ordering ⊆).

Exercise 7.4 Prove the Node Consistency Lemma 7.20(ii).

Exercise 7.5 Prove the Directional Arc Consistency Lemma 7.26.

Exercise 7.6 Prove the Directional Path Consistency Lemma 7.30.

Exercise 7.7 Consider the following modification of the Generic Itera-

tion algorithm:
Generic Iteration with Idempotent Functions algorithm (GII)



7.13 Exercises 293

d := ⊥;
G := F ;
WHILE G �= ∅ DO

choose g ∈ G;
IF d �= g(d) THEN

G := G ∪ update(G, g, d);
d := g(d)

END;
G := G− {g}

END

where update(G, g, d) satisfies the assumption A of Section 7.1. So here, in
contrast to the Generic Iteration algorithm, the selected function g is
removed unconditionally. Prove the following counterpart of the Generic

Iteration Theorem 7.11:

Suppose that (D, � ) is a finite partial ordering with the least element ⊥.
Let F be a finite set of monotonic, inflationary and idempotent functions
on D. Then every execution of the GII algorithm terminates and computes
in d the least common fixpoint of the functions from F .

Hint. Prove that I := ∀f ∈ F − G f(d) = d is an invariant of the WHILE
loop.

Exercise 7.8 Suppose that for each g the set of functions Comm(g)
from F is such that each element of Comm(g) commutes with g. Prove
that if update(G, g, d) satisfies the assumption A, then so does the function
update(G, g, d)− Comm(g).

Exercise 7.9 Consider two binary constraints C and E.

(i) Show that the π1 function of C and the π2 function of E do not need
to commute.
Hint. Consider the variables x and y with the corresponding domains
Dx := {a, b}, Dy := {c, d} and the constraints C := {(a, c), (b, d)} and
E := {(a, d)}, both on x, y.

(ii) Show that the functions π1 of C and of E do not need to commute.
Hint. Consider the variables x, y, z with the corresponding domains
Dx := {c, d}, Dy := {a, b}, Dz := {b}, and the constraint C :=
{(a, b)} on y, z and E := {(c, a), (d, b)} on x, y.

(iii) Prove that the functions π1 and π2 of the constraint C commute.
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(iv) Suppose that C is on the variables x, y and E on the variables x, z.
Prove that the functions π1 of C and of E commute.

(v) Combine this information with Exercise 7.8 to obtain the following
modified version of the Arc algorithm that is an instance of the GII

algorithm of Exercise 7.7:

AC-3 algorithm

S0 := {C | C is a binary constraint from C}
∪ {CT | C is a binary constraint from C};

S := S0;
WHILE S �= ∅ DO

choose C ∈ S; suppose C is on xi, xj ;
Di := {a ∈ Di | ∃ b ∈ Dj (a, b) ∈ C};
IF Di changed THEN

S := S ∪ {C ′ ∈ S0 | C ′ is on the variables y, xi where y �≡ xj}
END;
S := S − {C}

END

Note the difference with respect to the Arc algorithm in the second
assignment to S, which is there

S := S ∪ {C ′ ∈ S0 | C ′ is on the variables y, z

where y is xi or z is xi}.

Exercise 7.10
(i) Consider a standardised CSP involving among others the variables

x, y, z, u. Prove that the functions fz
x,y and fu

x,y commute.
(ii) Combine this information with Exercise 7.8 to obtain the following

modified version of the Path algorithm that is an instance of the GII

algorithm of Exercise 7.7, where Ux,y is the following set of triples of
different variables of P:

Ux,y := {(x, y, u) | x ≺ u} ∪ {(y, x, u) | y ≺ u}
∪ {(u, x, y) | u ≺ y} ∪ {(u, y, x) | u ≺ x}.

PC-2 algorithm

V0 := {(x, u, y) | x, y, u are different variables of P and x ≺ y};
V := V0;
WHILE V �= ∅ DO

choose p ∈ V ; suppose p = (x, u, y);
apply fu

x,y to its current domains;
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IF Ex,y changed THEN
V := V ∪ Ux,y

END;
V := V − {p}

END

Note the difference with respect to the Path algorithm in the second
assignment to V which amounts there to:

V := V ∪ Ux,y ∪ {(x, u, y) | u �∈ {x, y}}.

Exercise 7.11 Give an example of a domain reduction rule which when
viewed as a function is not idempotent.
Hint. Consider the LINEAR EQUALITY rule of Section 6.4 and the CSP

〈3x− 5y = 4 ; x ∈ [0..9], y ∈ [1..8]〉

considered in Subsection 6.4.2.

Exercise 7.12 Provide an algorithm that transforms a LINEQ CSP (that
is, a CSP the domains of which are integer intervals and the constraints of
which are linear equality constraints) into one that is bounds consistent or
failed.
Hint. Given an integer interval [l..h] let F([l..h]) be the set of all integer
subintervals of [l..h]. Associate with the original LINEQ CSP 〈C ; x1 ∈
[l1..h1], . . ., xn ∈ [ln..hn]〉 the Cartesian product of the partial orderings
(F([l1..h1]),⊇), . . ., (F([ln..hn]),⊇). Then use the LINEAR EQUALITY
Theorem 6.8 to characterise non-failed LINEQ CSPs that are bounds con-
sistent in terms of fixpoints and proceed as in the case of the arc consistency.

7.14 Bibliographic remarks

The first explicit constraint propagation algorithm, a path consistency al-
gorithm, appeared in Montanari [1974], an article in which the notion of
path consistency was defined. Then, in the context of analysis of polyhedral
scenes discussed in Example 2.11, another constraint propagation algorithm
was proposed in Waltz [1975]. In Mackworth [1977], an article in which the
notion of arc consistency was introduced, Waltz’ algorithm was explained
in more general terms of CSPs with binary constrains. Also, the arc con-
sistency algorithm AC-3 and the path consistency algorithm PC-2 were
introduced, where the latter was modeled upon the former.

The Hyper-arc algorithm is from Davis [1987]. In turn, the directional
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arc consistency algorithm DArc and the directional path consistency algo-
rithm DPath are from Dechter and Pearl [1988], the paper in which the
notions of directional arc and directional path consistency were introduced.
In Cooper [1989] an algorithm that achieves k-consistency was discussed.
The modification of the k-Consistency algorithm described in Section 7.9
that involves the k-CONSISTENCY 1 rule captures the main features of
this algorithm.

The quest for a uniform framework for constraint propagation algorithms
has a long history going back to Mackworth [1977]. The following addi-
tional references should be mentioned here. In Montanari and Rossi [1991]
a general relaxation algorithm was proposed and it was showed that arc
consistency and path consistency algorithms can be obtained by instantiat-
ing this algorithm. The idea that the meaning of a constraint is a function
(on a constraint store) with some algebraic properties was put forward in
Saraswat, Rinard and Panangaden [1991], where the properties of being in-
flationary (called there extensive), monotonic and idempotent were singled
out.

A presentation of constraint propagation algorithms in terms of scheduling
of specific functions can be traced back to Benhamou, McAllester and Van
Hentenryck [1994], where the monotonicity, inflationarity and idempotence
were identified as important properties in the context of constraints for reals.
In Benhamou and Older [1997] this approach was considered for constraints
on reals, integers and Boolean constraints.

In Benhamou [1996] and Telerman and Ushakov [1996] relevance of generic
iteration algorithms for constraint programming was pointed out and it was
noted that for specific functions these algorithms compute the same value
independently of the order of the applications of the functions used. In turn,
the relevance of the chaotic iterations for constraint propagation algorithms
was independently noticed in van Emden [1997] and Fages, Fowler and Sola
[1998]. In the latter paper a generic iteration algorithm was formulated and
proved correct for the functions defined in Benhamou and Older [1997] and
it was shown that the limit of the constraint propagation process for these
functions is their greatest common fixpoint in the componentwise subset
ordering ⊆.

This work was further generalised in Apt [1999] to a study of specific
constraint propagation algorithms obtained as instances of generic iteration
algorithms on Cartesian products of partial orderings. In this paper a more
complete overview of the history of constraint propagation algorithms can
be found. The presentation of this chapter is based on Apt [2000a] where the
presentation starts with an arbitrary partial ordering and where the use of
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chaotic iterations is dropped because of the focus on constraint propagation
algorithms that always terminate.

The proofs of the claims stated in Exercises 7.5–7.10 can be found there,
while Exercise 7.2 and its proof can be found in Apt [1999]. The Generic

Iteration algorithm was inspired by a similar algorithm of Monfroy and
Réty [1999] that in turn builds on Apt [1999]. Monfroy and Réty studied a
distributed version of this algorithm. It can be used as a basis for deriving
in a uniform way distributed local consistency algorithms.

More recently, this work was continued in Gennari [2000] and Gennari
[2001], where more advanced algorithms for achieving arc consistency, hyper-
arc consistency, path consistency and k-consistency were modeled as in-
stances of generic iteration algorithms.
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A S EXPLAINED IN the previous chapter, the purpose of the con-
straint propagation algorithms is to achieve some form of local con-
sistency. In general these algorithms are not sufficient for finding

a solution to a CSP. For instance, as already noted in Example 5.5, in the
case of the n Queens Problem, where n ≥ 4, nothing is gained by employing
an arc consistency algorithm because this CSP is already arc consistent. In
such situations a progress can be achieved only by splitting the current CSP
P into two or more CSPs the union of which is equivalent to P in the sense
of Definition 3.3. Such a split in general is obtained either by splitting a
domain or by splitting a constraint.

So the general pattern consists of an alternating use of constraint propa-
gation and splitting. This leads to what we call search trees. The purpose of
this chapter is to discuss the search trees and the most common algorithms
used to explore them. We call these algorithms search algorithms. Concep-
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tually, while reading this chapter, it is helpful to have in mind the following
slogan:

Search Algorithm = Search Tree + Exploration Algorithm.

The above equation is supposed to suggest that each search algorithm
can be viewed as an exploration algorithm of a search tree and not that each
such algorithm first constructs a search tree and then explores it. In fact,
the considered search trees are constructed ‘on the fly’, during the execution
of the exploration algorithm.

In our presentation we do not exploit this equation to the full extent, in
that we confine our presentation to the top-down search algorithms, also
called depth-first search algorithms. In these algorithms one repeatedly
expands a node at the lowest level in the tree until a failure arises, upon
which one returns (backtracks) to a higher level at which one resumes the
node expansion. In the next chapter, we offer a short account of alternative
forms of search algorithms.

We begin our presentation by introducing in the next section a very gen-
eral notion of a search tree that is sufficient to describe the alternation
between arbitrary forms of constraint propagation and splitting. Then in
Section 8.2 we discuss the most common type of search trees, that we call
labeling trees. They are obtained using the labeling method of Section 3.2
as splitting and a domain reduction method as constraint propagation. To
illustrate these trees we discuss in Section 8.3 in detail three types of labeling
trees for the CSP that represents the SEND + MORE = MONEY puzzle
of Example 2.1.

Next, in Section 8.4, we discuss the labeling trees that result from choosing
three specific forms of constraint propagation. This way we obtain

• forward checking,
• partial look ahead, and
• maintaining arc consistency (MAC), sometimes called full look ahead,

search trees.
After this exposition of the search trees we move on to a presentation of

the search algorithms, more specifically the top-down search algorithms. In
Section 8.5 we present in turn

• the Backtrack-free search algorithm,
• the Backtrack-free with Constraint Propagation search algo-

rithm,
• the Backtrack search algorithm, and



8.1 Search trees 301

• the Backtrack with Constraint Propagation search algorithm.

Then, in Section 8.6 we discuss three specialisations of the last search algo-
rithm, for the

• forward checking,
• partial look ahead, and
• MAC

search trees. In Section 8.7 we turn our attention to the search algorithms
for constrained optimization problems introduced in Section 2.6. We discuss
in turn

• the Branch and Bound search algorithm,
• the Branch and Bound with Constraint Propagation search al-

gorithm, and
• the Branch and Bound with Constraint Propagation and Cost

Constraint search algorithm.

Next, in Section 8.8, we discuss various heuristics that are useful in the
context of search algorithms for the labeling trees.

The search algorithms discussed in Sections 8.5–8.8 all deal with the la-
beling trees. Most of these algorithms can also be formulated for arbitrary
search trees. We conclude the exposition by discussing in Section 8.9 an
example of such an algorithm: an abstract branch and bound algorithm for
arbitrary search trees.

8.1 Search trees

First, we provide a formal definition of a search tree. Here and elsewhere in
this chapter we assign to each node in a tree a level as follows. The root is
at the level 0 and the direct descendants of a node at the level i are all at
the level i + 1.

Definition 8.1 Consider a CSP P with a sequence of variables X. By a
search tree for P we mean a finite tree such that

• its nodes are CSPs,
• its root is P,
• the nodes at an even level have exactly one direct descendant,
• if P1, . . .,Pm, where m ≥ 1, are direct descendants of P0, then the

union of P1, . . .,Pm is equivalent w.r.t. X to P0. �

So a search tree is admittedly a very general notion. The idea is that:
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• at the even levels the constraint propagation is applied to the current
CSP,

• at the odd levels splitting is applied to the current CSP,

and that we continue to apply this procedure until we reach a leaf that
is a ‘manifestly solved’ CSP or we reach leaves all of which are ‘manifestly
failed’. An example of a search tree in which we refer explicitly to constraint
propagation and splitting is depicted in Figure 8.1.

constraint propagation

constraint propagation

splitting

constraint propagation

splitting

Fig. 8.1. A search tree for a CSP

The reference to ‘manifestly’ means that it is straightforward to generate
all solutions to the CSP, in case it is ‘manifestly solved’, or to determine that
no solution to it exists, in case it is ‘manifestly failed’. This is an admittedly
imprecise description analogous to the notion of a complete solver introduced
at the beginning of Chapter 4. As we shall see in the next section different
realisations of the notion of a ‘manifestly failed’ CSP lead to various types
of search trees.

In the above definition constraint propagation and splitting are applied in
an alternating fashion. Such a general definition allows us to model arbitrary
forms of constraint propagation and of splitting. In fact, it even allows for a
possibility that at each node a different form of constraint propagation or of
splitting is applied. The splitting, as noted in Section 3.2, can consist either
of splitting a constraint or of splitting a domain of a variable.

Since the root of the tree is at an even level, the constraint propagation
is applied first to the original CSP P. It is tempting to stipulate that the
nodes at an odd level have at least two direct descendants, all obtained by
means of splitting. However, for reasons that will become clear in the next
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section, we also want to admit here the border case when splitting reduces
to a ‘non-action’, represented by a replication of the node.

The following simple result summarises the fundamental property of the
search trees.

Note 8.2 (Search Tree) Consider a P with a sequence of variables X.
Suppose that P1, . . .,Pm are the leaves of a search tree for P. Then the
union of P1, . . .,Pm is equivalent w.r.t. X to P.

Proof The proof is left as Exercise 8.1. �

This note shows that given a CSP P and a search tree for it, when looking
for a solution to P it is sufficient to look for a solution to one of the leaf
CSPs.

Finally, note that we postulated nothing about the internal, i.e., non-leaf,
nodes. These CSPs can be inconsistent or even failed. Such situations arise
when, for example, the original CSP is inconsistent but this fact is detected
only by means of deduction modeled by constraint propagation and case
analysis modeled by splitting.

From now on we assume that all considered CSPs are finite, i.e., that their
domains are finite.

8.2 Labeling trees

The most common form of splitting consists of the labeling of a domain
of a variable. It corresponds to the labeling rule mentioned in Section 3.2.
Informally, it consists of taking a variable, say x, and splitting its domain
into singleton sets. Each such singleton set, say {a}, corresponds to a CSP
in which the domain of the variable x is replaced by {a}. Equivalently, each
such singleton set {a} corresponds to an assignment of the value a to the
variable x.

In this section we define several types of search trees for finite CSPs. For
each of them:

• splitting consists of the labeling,
• constraint propagation consists of a domain reduction method.

We call such search trees labeling trees. An alternative exposition would
lead to the enumeration trees that result from using the enumeration rule
of Section 3.2 instead of labeling. So the enumeration trees, in contrast to
the labeling trees, are binary. Our focus on the labeling trees instead of on
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the enumeration trees is motivated by the fact that in the next chapter we
shall more often refer to the labeling than to the enumeration.

As we shall see, in a number of situations it will be possible to define the
labeling trees in a simpler way, without using nodes that are CSPs.

8.2.1 Complete labeling trees

We begin by discussing the labeling trees in case no constraint propagation is
present. Then the nodes at the odd levels, that correspond to the outcome
of the constraint propagation, can be ignored and the resulting tree can
be simplified by removing them. Further, the search tree can be defined
directly in terms of instantiations, without introducing any CSPs. The
formal definition is as follows.

Definition 8.3 Consider a CSP P. Let x1, . . ., xn be the sequence of its
variables linearly ordered by ≺. By a complete labeling tree associated

with P and ≺ we mean a tree such that

• the direct descendants of the root are of the form (x1, d),
• the direct descendants of a node (xj , d), where j ∈ [1..n − 1], are of

the form (xj+1, e),
• its branches determine all the instantiations with the domain
{x1, . . ., xn}. �

To clarify the relation between this definition and Definition 8.1 let us as-
sociate with each complete labeling tree a unique search tree as follows. To
start with, we associate with the root of the complete labeling tree the origi-
nal CSP P. Then with each node (xk, dk) with the path {(x1, d1), . . ., (xk, dk)}
leading to it we associate a unique CSP obtained from P by modifying the
domains of the variables x1, . . ., xk to, respectively, {a1}, . . ., {ak}, and by
restricting the constraints P to these new domains. Finally, to accommodate
for the constraint propagation, which is here the ‘identity action’, we expand
each node r to an arc with the node r at each end. So a complete labeling
tree can be viewed as a simplified representation of the search tree with the
trivial constraint propagation and the labeling as the splitting method. A
complete labeling tree is also a ‘compact’ way of representing all possible
instantiations.

In the case of complete labeling trees both ‘manifestly solved’ and ‘man-
ifestly failed’ CSPs are with all domains being singleton sets. So we detect
the status of a CSP only after we have applied labeling to all of its variables.
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Note that the complete labeling tree associated with a CSP depends on
the way we order its variables.

Example 8.4 Consider the following CSP:

〈x < y, y < z ; x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}〉.

If we order its variables as x ≺ y ≺ z, then we get the complete labeling tree
depicted in Figure 8.2, while for the ordering x ≺ z ≺ y we get the complete
labeling tree depicted in Figure 8.3. �

Note that the first complete labeling tree has 28 nodes, while the second
one 31 nodes. In contrast, both of them have the same number of leaves,
namely 18. So the size of the complete labeling tree depends on the variable
ordering. In fact, we can be more precise.

Note 8.5 (Labeling) Fix a CSP with non-empty domains. Let x1, . . .,
xn be the sequence of its variables linearly ordered by ≺ and D1, . . ., Dn the
corresponding domains.

(i) The number of nodes in the complete labeling tree associated with ≺
equals

1 + Σn
i=1(Π

i
j=1|Dj |),

where |A| denotes the cardinality of the set A.
(ii) The number of leaves in the complete labeling tree associated with ≺

equals

Πn
j=1|Dj |,

so it does not depend on the variable ordering.
(iii) The labeling tree has the least number of nodes if the variables are

ordered by their domain sizes in the increasing order.

Proof
(i) Recall that we assumed that the root of a tree is at the level 0 and the
direct descendants of a node at the level i are all at the level i + 1. A direct
proof by induction shows that the number of nodes at the level i is Πi

j=1|Dj |.
This proves the claim.

(ii) All the leaves are at the level n, so the proof of (i) provides their number.

(iii) If we transpose in the ordering ≺ the variables xj+1 and xj+2, then the
number of nodes in the labeling tree changes by

(Πi
j=1|Dj |) · (|Dj+2| − |Dj+1|).
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Fig. 8.2. The complete labeling tree for the ordering x ≺ y ≺ z
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Fig. 8.3. The complete labeling tree for the ordering x ≺ z ≺ y
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Thus if |Dj+2| < |Dj+1|, then after this transposition the size of the search
tree decreases. In other words, if for some j ∈ [0..n − 2] we have |Dj+1| >
|Dj+2|, then the size of the search tree is not minimal. This proves the claim.

�

This observation suggests that in absence of other information it is useful
to select in the search algorithms the variables with the smallest domains
first.

8.2.2 Reduced labeling trees

By assigning a value to a variable we would like to do it in such a way
that the instantiation constructed so far is consistent. This leads to labeling
trees that we call reduced labeling trees. Also these trees can be defined in
terms of instantiations. The precise definition requires an introduction of
an auxiliary notion.

Definition 8.6 We say that an instantiation I is along the ordering

x1, . . ., xn if its domain is of the form {x1, . . ., xj} for some j ∈ [1..n]. �

Recall now from Definition 5.28 that, given a CSP, an instantiation with
the domain X is consistent if it satisfies all constraints on the subsequences
of the variables from X.

Definition 8.7 Consider a CSP P with non-empty domains. Let x1, . . ., xn

be the sequence of its variables linearly ordered by≺. By a reduced labeling

tree associated with P and ≺ we mean a tree such that

• the direct descendants of the root are of the form (x1, d),
• the direct descendants of a node (xj , d), where j ∈ [1..n − 1], are of

the form (xj+1, e),
• its branches determine all consistent instantiations along the ordering

x1, . . ., xn. �

To relate the reduced labeling trees to the search trees we proceed anal-
ogously as in the case of the complete labeling trees. That is, with each
node (xk, dk) with the path {(x1, d1), . . ., (xk, dk)} leading to it we associate
a unique CSP determined by P and the domains {a1}, . . ., {ak} of the vari-
ables x1, . . ., xk, and subsequently expand each node to an arc. It is easy to
see that the resulting tree is a search tree.

So a reduced labeling tree can be viewed as a simplified representation of
the search tree in which the splitting consists of the labeling limited to those
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values for which the instantiation constructed so far remains consistent. The
fact that we consider only consistent instantiations reflects the view that
we consider now a CSP as ‘manifestly failed’ earlier than in the complete
labeling trees, namely at the moment a consistent instantiation is generated
that cannot be consistently extended to the next variable.

Just as the complete labeling tree, the reduced labeling tree associated
with a CSP depends on the way we order its variables. For different variable
orderings we can obtain radically different trees.

Example 8.8 Consider again the CSP of Example 8.4, so

〈x < y, y < z ; x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}〉

and the already considered two variable orderings: x ≺ y ≺ z and x ≺ z ≺ y.
For the first one we get the reduced labeling tree depicted in Figure 8.4, while
for the second one we get the reduced labeling tree depicted in Figure 8.5.

�

(y, 3)(y, 2)

(z, 3)

(x, 1) (x, 2)

(y, 3)

(x, 3)

Fig. 8.4. The reduced labeling tree for the ordering x ≺ y ≺ z

The size of the reduced labeling tree depends not only on the size of
the variable domains but also on the considered constraints. Therefore, in
general it is quite complicated to compute its size.

Note that in the definitions of a complete labeling tree and of a reduced
labeling tree we ignored the ordering between the direct descendants. Of
course, in figures such as the above ones it is not possible to abstract from
such an ordering. We ordered in them the direct descendants according to
the value of the chosen elements.

In general, the ordering between the direct descendants matters for the
search algorithms employed because they visit the nodes in a specific order.
However, except for the backtrack-free search algorithms, the outcome of
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(x, 3)

(z, 3)(z, 1)(z, 2)

(x, 1) (x, 2)

(z, 3)(z, 1)(z, 2)(z, 3)(z, 1)(z, 2)

(y, 2)

Fig. 8.5. The reduced labeling tree for the ordering x ≺ z ≺ y

the considered algorithms does not depend on this ordering. Therefore, in
each of them the elements will be selected in a non-deterministic way.

8.2.3 prop labeling trees

We now move on to the discussion of the labeling trees in the presence of
a constraint propagation. It affects the domains of the variables not yet
considered. The idea is that the constraint propagation allows us to detect
earlier that a ‘manifestly failed’ CSP is generated and consequently the
resulting search trees are in general smaller than the ones discussed in the
previous subsections.

To discuss such trees we cannot anymore use just instantiations. Still, we
can represent each node by a sequence of the domain expressions of the con-
sidered variables, without resorting to the CSPs. The CSP that corresponds
to such a node is uniquely determined by these domain expressions and the
original CSP P: its constraints are obtained by restricting the constraints
of P to the listed domains.

Further, since we now wish to include an arbitrary constraint propagation
in the form of a domain reduction, we do not anymore delete the nodes
at the odd level. In fact, we now wish to model the fact that successive
variable instantiations are intertwined with the applications of the constraint
propagation. From now on we assume for simplicity that the linear ordering
≺ on the variables coincides with the ordering used in the definition of the
considered CSP.

Consider a CSP P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉. We assume a fixed
form of constraint propagation prop(i) in the form of a domain reduction,
parametrised by a value i ∈ [0..n− 1]. The value i determines the sequence
xi+1, . . ., xn of the variables to the domains of which prop(i) is applied.
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That is, given a sequence of the current variable domains E1, . . ., En, the
constraint propagation prop(i) transforms only the domains Ei+1, . . ., En.
The outcome of prop(i) depends on the original constraints C of P and on the
domains E1, . . ., Ei. Because we discuss here labeling trees, at the moment
the constraint propagation prop(i) is carried out, the domains E1, . . ., Ei are
all singleton sets.

Let us provide now the formal definition of the search trees we are inter-
ested in.

Definition 8.9 Assume a fixed form of constraint propagation prop(i)
in the form of a domain reduction as explained above. Consider a CSP
P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉. By a prop labeling tree associated

with P we mean a tree such that

• its nodes are sequences of the domain expressions x1 ∈ E1, . . ., xn ∈
En,

• its root is the sequence x1 ∈ D1, x2 ∈ D2, . . ., xn ∈ Dn,
• each node at a level 2i with i ∈ [0..n] is of the form

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ Ei+1, . . ., xn ∈ En.

If i = n, this node is a leaf. Otherwise, it has exactly one direct
descendant,

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ E′
i+1, . . ., xn ∈ E′

n,

where E′
j ⊆ Ej for j ∈ [i + 1..n], obtained by means of the constraint

propagation prop(i),
• each node at a level 2i + 1 with i ∈ [0..n− 1] is of the form

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ Ei+1, . . ., xn ∈ En.

If Ej = ∅ for some j ∈ [i + 1..n], this node is a leaf. Otherwise it has
direct descendants of the form

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ {d}, xi+2 ∈ Ei+2, . . ., xn ∈ En,

for all d ∈ Ei+1 such that the instantiation {(x1, d1), . . ., (xi, di),
(xi+1, d)} is consistent. This set of direct descendants can be a sin-
gleton set or empty.

We call a leaf a success node if it is at the level 2n and a failed node (or
a failure) if it is at a level < 2n. �

Let us now clarify some elements of this definition. Given the node at
level 0, i.e., the tree root, we call x1, . . .xn its future variables. Given a
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node at level 1 or 2 we call x1 its current variable and x2, . . .xn its future
variables. Next, given a node at level 3 or 4 we call x1 its past variable, x2

its current variable and x3, . . .xn its future variables. And so on.
More formally, given a node x1 ∈ E1, . . ., xn ∈ En at level 2i − 1 ≥ 0 or

2i ≥ 0,

• if i ∈ [2..n− 1], we call x1, . . .xi−1 its past variables,
• if i ∈ [1..n], we call xi its current variable , and
• if i ∈ [0..n− 1], we call xi+1, . . .xn its future variables.

As an example assume a CSP P with three variables, x1, x2 and x3. Con-
sider a prop labeling tree associated with P depicted in Figure 8.6 together
with the listing of its levels and the corresponding past, current, and fu-
ture variables. We disregard here the structure of the nodes. According to
the above terminology A, B, C and D are failed nodes, while E and F are
success nodes.

x1

x1

x1, x2

past
variables

x1, x2

cons. prop.

cons. prop.

cons. prop.

labeling

labeling

labeling

A B

C D

FE

1

0

4

3

2

5

levels

6

x2, x3

x3

x3

x2, x3

future
variables

x1

x2

x2

x1

x3

current
variable

x3

Fig. 8.6. A prop labeling tree

Note that the domains of the past variables are all singleton sets. Further,
if a node is at a level 2i with i ∈ [0..n− 1], the constraint propagation prop
is applied to it. More precisely, prop(i) is applied to the CSP uniquely
determined by the original CSP and the domain expressions of the node.
Its outcome is represented by a new sequence of the domain expressions.
The constraint propagation prop(i) affects only the domains of the future
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variables. A node at an even level 2i with i ∈ [0..n] is a leaf if and only if
i = n. Such a node corresponds to a success in the sense that it determines
a solution to the considered CSP.

By incrementing the level from 2i to 2i + 1 the current variable changes
from xi to xi+1. So at each odd level a node with a new current variable is
considered. A node at a level 2i + 1 is a leaf in one of two cases:

• the domain of the current variable xi+1 or of a future variable is empty,
• the instantiation {(x1, d1), . . ., (xi, di)} cannot be consistently extended to

the variable xi+1.

In both cases the node corresponds to a ‘manifestly failed’ CSP. The first
contingency is due to the use of the constraint propagation and is new with
respect to the previous subsection in which we considered the reduced la-
beling trees.

If the node at the level 2i + 1 is not a leaf, the labeling is applied to the
current variable, xi+1, but only those elements in its domain are selected
for which the instantiation constructed so far remains consistent. This is
analogous to the case of the reduced labeling trees.

It is straightforward to see that each prop labeling tree corresponds to a
unique search tree. In this correspondence prop(i) is the constraint propaga-
tion used at the even levels. prop(i) maintains equivalence w.r.t. the original
set of variables and reduces the variable domains. This correspondence al-
lows us to draw the following important conclusion on the account of the
Search Tree Note 8.2.

Note 8.10 (prop Labeling Tree) Consider a finite CSP P and a prop
labeling tree T associated with P. A node of the form x1 ∈ {d1}, . . ., xn ∈
{dn} is a leaf of T iff (d1, . . ., dn) is a solution to P. �

This means that given a finite CSP P, all solutions to it can be found by
exploring an arbitrary prop labeling tree associated with P. The appropriate
algorithms will be presented in Section 8.5. As mentioned at the beginning
of this chapter, these algorithms do not actually explore the prop labeling
trees, but rather construct them during their execution. The execution then
corresponds to an exploration of the constructed prop labeling tree.

8.3 An example: SEND + MORE = MONEY

The reduced labeling trees and the prop labeling trees can be substantially
smaller than the complete labeling trees. To illustrate the amount of savings
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that can be achieved when using them we return now to the SEND + MORE
= MONEY puzzle introduced in Example 2.1 of Chapter 2.

Let us discuss now the corresponding labeling trees. So we take as the
CSP the one in which we have one equality constraint

1000 · S + 100 · E + 10 ·N + D

+ 1000 ·M + 100 ·O + 10 ·R + E

= 10000 ·M + 1000 ·O + 100 ·N + 10 · E + Y

and 28 simple disequality constraints x �= y for x, y ranging over the set
{S, E, N, D, M, O, R, Y } where x precedes y in the alphabetic order, and
with the domain [1..9] for S and M and the domain [0..9] for the other six
variables.

The complete labeling tree associated with this CSP and the displayed
ordering on the variables is huge: its total number of leaves is 92 · 106 =
81000 000. Its initial fragment is depicted in Figure 8.7. Here and below we
use some self-explanatory simplifications in the representation of the nodes.

S

E 0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

. . .

. . .

Fig. 8.7. The complete labeling tree for the SEND + MORE = MONEY CSP

The reduced labeling tree is substantially smaller. Using the inside infor-
mation that this CSP has exactly one solution we can conclude that the total
number of leaves in this tree is 10 ·9 ·8 ·7 ·6 ·5 ·4−2 ·(9 ·8 ·7 ·6 ·5 ·4) = 483840.
This represents a gain of 99.4% with respect to the complete labeling tree.
Its initial fragment is depicted in Figure 8.8. Note that the number of direct
descendants for the node marked by E is now 9.

The effect of constraint propagation is seen in a dramatic way by consider-
ing the prop labeling tree where for prop we take the constraint propagation
for linear constraints over the integer intervals, discussed in Section 6.4. We
showed there that this constraint propagation reduces the initial domains of
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S

E

1 2 3 4 5 6 7 8 9

0 2 3 4 5 6 7 8 9

. . .

. . .

Fig. 8.8. The reduced labeling tree for the SEND + MORE = MONEY CSP

the considered variables to

S = 9, E ∈ [4..7], N ∈ [5..8], D ∈ [2..8], M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8],

where X = a is the shorthand for X ∈ {a}.
This means that this sequence of domain expressions is the direct de-

scendant of the original sequence of domain expressions. It is now easy to
construct the actual tree. It is depicted in Figure 8.9. This prop labeling
tree has just four leaves. The labeling of each variable except E is applied
to a singleton set. Consequently, each node at an odd level different from 3
has none or exactly one direct descendant.

8.4 Instances of prop labeling trees

In this section we instantiate the definition of a prop labeling tree by succes-
sively stronger forms of a constraint propagation prop(i) commonly used in
the context of search. For each specific form of the constraint propagation
prop(i) we just need to clarify how for each non-leaf node

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ Ei+1, xn ∈ En

at a level 2i the new domains E′
i+1, . . ., E

′
n are defined.

8.4.1 Forward checking

To illustrate this constraint propagation method consider the n Queens
Problem discussed in Example 2.2 of Chapter 2 for n = 5. Assume its
formalisation in the form of a standardised CSP, that is a CSP in which for
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Fig. 8.9. The prop labeling tree for the SEND + MORE = MONEY CSP

each pair x, y of variables a unique constraint on x, y exists. So this CSP is
of the form

〈C ; x1 ∈ [1..5]. . ., x5 ∈ [1..5]〉,

where for every pair xi, xj of variables with i �= j the unique constraint on
xi, xj is the conjunction of the following three constraints:

• xi �= xj ,
• xi − xj �= i− j,
• xi − xj �= j − i,

discussed in Example 2.2.
We represent such a CSP as the empty 5 × 5 chess board depicted in

Figure 8.10. Recall that in the adopted representation of this problem the
queens are supposed to be placed in different columns, so here a-e. That
is, each column corresponds to a variable domain. For example the d col-
umn corresponds to the domain [1..5] of the variable x4. Figure 8.10 then
corresponds with the root

x1 ∈ [1..5], x2 ∈ [1..5], x3 ∈ [1..5], x4 ∈ [1..5], x5 ∈ [1..5]
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of a prop labeling tree associated with this CSP.

Fig. 8.10. The empty 5× 5 chess board

Suppose now that we place the first queen at the field a1. We depict it by
Figure 8.11. This figure corresponds with the following direct descendant of
the root in the discussed prop labeling tree:

x1 ∈ {1}, x2 ∈ [1..5], x3 ∈ [1..5], x4 ∈ [1..5], x5 ∈ [1..5].

Fig. 8.11. First queen placed at a1

Then we mark in the other columns the fields that come under attack.
This leads to a situation depicted in Figure 8.12. This situation corresponds
to a removal of the marked elements from the domains of the variables
representing the other queens. Note that in this way no solution is lost.
Figure 8.12 corresponds with the following unique direct descendant of the
previous node in the discussed prop labeling tree:

x1 ∈ {1}, x2 ∈ {3, 4, 5}, x3 ∈ {2, 4, 5}, x4 ∈ {2, 3, 5}, x5 ∈ {2, 3, 4}.

More generally, we consider the columns in the alphabetic order and after
placing a queen at a field we mark in the still to be considered columns the
fields that come under attack. This process can be formalised as a form of
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Fig. 8.12. The effect of forward checking

constraint propagation called forward checking . It was not discussed so
far as it is closely intertwined with the search process.

The corresponding trees are called FORWARD CHECKING search
trees. They are defined as follows.

Definition 8.11 Consider a CSP P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉. By
a FORWARD CHECKING search tree we mean a prop labeling tree
associated with P, where for each non-leaf node

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ Ei+1, xn ∈ En

at a level 2i the domains E′
i+1, . . ., E

′
n of its unique direct descendant are

defined by putting for j ∈ [i + 1..n]

E′
j := {e ∈ Ej | {(x1, d1), . . ., (xi, di), (xj , e)} is consistent}. (8.1)

�

So in the FORWARD CHECKING search tree, given a current variable
xi, each domain of a future variable xj is revised by taking into account the
constraints on the subsequences of x1, . . ., xi, xj . As an example, we depict
in Figure 8.13 the FORWARD CHECKING search tree for the CSP

〈x < y, y < z ; x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}〉

introduced in Example 8.4.
In the FORWARD CHECKING search tree for each future variable xj

only the constraints relating xj with the past or current variables are con-
sidered. By taking subsequently into account also the constraints on the
subsequences of the sequence xi+1, . . ., xn of the future variables we obtain
stronger forms of constraint propagation. In the next two subsections we
define two such types of constraint propagation.
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x ∈ {1}, y ∈ {2, 3}, z ∈ {1, 2, 3} x ∈ {3}, y ∈ {2, 3}, z ∈ {1, 2, 3}x ∈ {2}, y ∈ {2, 3}, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2, 3}, z ∈ {1, 2, 3} x ∈ {2}, y ∈ {3}, z ∈ {1, 2, 3} x ∈ {3}, y ∈ ∅, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2}, z ∈ {1, 2, 3} x ∈ {1}, y ∈ {3}, z ∈ {1, 2, 3} x ∈ {2}, y ∈ {3}, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2}, z ∈ {3} x ∈ {2}, y ∈ {3}, z ∈ ∅

x ∈ {1}, y ∈ {2}, z ∈ {3}

x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}

x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}

Fig. 8.13. The FORWARD CHECKING search tree for the CSP of Example 8.4

8.4.2 Partial look ahead

As in Subsection 8.4.1 we illustrate the approach first by means of the 5
Queens Problem. Let us reconsider the situation depicted in Figure 8.12, so
after
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• in the column a the queen is placed at the field a1,
• in the columns b-d the fields under attack are marked.

We now repeatedly mark any field in the columns b-d with the following
property:

if a queen is placed at this field, then in some later column all unmarked fields
come under attack.

Marking each such field corresponds to the removal of the corresponding
element from the domain of the variable associated with this column. Note
that no solution is lost this way. Indeed, no queen can be placed at a marked
field, since otherwise no queen could be placed the later, ‘offensive’, column.
This leads to the situation depicted in Figure 8.14.

Fig. 8.14. The effect of partial look ahead

The difference between this figure and Figure 8.12 is that the field d3 is
now marked. The reason is that if a queen is placed at d3, then all unmarked
fields in the column e come under attack. After d3 is marked, no other field
needs to be marked. Indeed, at this moment the following property holds
for the columns b-d:

if a queen is placed at an unmarked field, then in any later column some unmarked
field does not come under attack.

For example, if a queen is placed at the unmarked field c4, then in the
column d the field d2 does not come under attack and in the column e the
field e3 does not come under attack. In other words, if a queen is placed at
c4, then in the column d a queen can be placed at d2 and in the column e
a queen can be placed at e3.

This procedure can be formalised by imposing directional arc consistency
on the CSP resulting from applying the forward checking. The whole process
can be defined as another form of constraint propagation, called partial
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look ahead . The corresponding trees, called PARTIAL LOOK AHEAD

search trees, are defined as follows.

Definition 8.12 Consider a CSP P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉. By
a PARTIAL LOOK AHEAD search tree we mean a prop labeling tree
associated with P, where for each non-leaf node

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ Ei+1, xn ∈ En

at a level 2i the domains E′
i+1, . . ., E

′
n of its unique direct descendant are first

defined by means of the forward checking, i.e., using (8.1) for j ∈ [i + 1..n].
If all of them are non-empty, we consider the CSP

Pi := 〈C′ ; xi+1 ∈ E′
i+1, . . ., xn ∈ E′

n〉, (8.2)

where the constraints C′ are uniquely determined by the constraints of P on
the subsequences of xi+1, . . ., xn and the domains E′

i+1, . . ., E
′
n, and redefine

these domains by imposing on Pi the directional arc consistency w.r.t. the
ordering xi+1 ≺ . . . ≺ xn by means of any directional arc consistency algo-
rithm. �

As an example, we depict in Figure 8.15 the PARTIAL LOOK AHEAD
search tree for the CSP

〈x < y, y < z ; x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}〉

from Example 8.4. So this tree is smaller than the corresponding FORWARD
CHECKING search tree depicted in Figure 8.13. This is due to the fact that
the constraint propagation is now stronger.

8.4.3 Maintaining arc consistency (MAC)

An even stronger form of constraint propagation than the one used in the
PARTIAL LOOK AHEAD search trees, albeit defined only for binary con-
straints, is obtained by imposing arc consistency on the future variables.
This leads to the notion called MAC , an abbreviation for Maintaining

Arc Consistency . In the literature MAC is alternatively called ARC

CONSISTENCY LOOK AHEAD or FULL LOOK AHEAD .
To explain the intuition behind this method let us return to our running

example, the 5 Queens Problem. Suppose that we strengthen the procedure
discussed in Subsection 8.4.2 to the following one. After placing the first
queen at the field a1 and removing the fields under attack in the other
columns we perform the following action. We repeatedly mark any field in
the columns b-d with the following property:
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x ∈ {1}, y ∈ {2}, z ∈ {1, 2, 3} x ∈ {3}, y ∈ {2}, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2}, z ∈ {3}

x ∈ {1}, y ∈ {2}, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2}, z ∈ {3}

x ∈ {2}, y ∈ {2}, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2}, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2}, z ∈ {1, 2, 3} x ∈ {2}, y ∈ ∅, z ∈ {1, 2, 3} x ∈ {3}, y ∈ ∅, z ∈ {1, 2, 3}

x ∈ {1}, y ∈ {2}, z ∈ {1, 2, 3}

x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}

Fig. 8.15. The PARTIAL LOOK AHEAD search tree for the CSP of Example 8.4
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if a queen is placed at this field, then in some other column from b-d all unmarked
fields come under attack.

The difference between this procedure and the one described in the previous
subsection is that we drop now the qualification ‘later ’ when referring to the
other columns. This leads to the situation depicted in Figure depicted in
Figure 8.16.

Fig. 8.16. The effect of maintaining arc consistency (MAC)

The difference between this figure and Figure 8.14 is that the field c4

is now also marked. The reason is that if a queen is put at c4, then all
unmarked fields in the column b come under attack. In Subsection 8.4.2
only the impact of placing a queen on the later columns was considered, so
the consequences of placing a queen in the c column on the b column were
not analysed.

After c4 and d3 are marked, no other field needs to be marked. Indeed,
at this moment the following holds for the columns b-d:

if a queen is placed at an unmarked field, then in any other column from b-d some
unmarked field does not come under attack.

This procedure can be formalised by imposing arc consistency on the
CSP resulting from applying the forward checking. The corresponding trees,
called MAC search trees, are defined analogously as the PARTIAL LOOK
AHEAD search trees.

Definition 8.13 Consider a CSP P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉. By a
MAC search tree we mean a prop labeling tree associated with P, where
for each non-leaf node

x1 ∈ {d1}, . . ., xi ∈ {di}, xi+1 ∈ Ei+1, xn ∈ En

at a level 2i the domains E′
i+1, . . ., E

′
n of its unique direct descendant are first
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defined by means of the forward checking, i.e., using (8.1) for j ∈ [i + 1..n].
If all of them are non-empty, we consider the CSP

Pi = 〈C′ ; xi+1 ∈ E′
i+1, . . ., xn ∈ E′

n〉

defined in (8.2) and uniquely determined by P and the domains E′
i+1, . . ., E

′
n,

and redefine the domains E′
i+1, . . ., E

′
n by imposing on Pi the arc consistency,

by means of any arc consistency algorithm. �

As an example, let us return to the CSP

〈x < y, y < z ; x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}〉

from Example 8.4. The MAC search tree for this CSP is reduced to a single
path consisting of seven nodes. It is depicted in Figure 8.17. So in this case
the initial application of the constraint propagation led to a reduction of all
the domains to the singleton sets.

x ∈ {1}, y ∈ {2}, z ∈ {3}

x ∈ {1}, y ∈ {2}, z ∈ {3}

. . .

x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}

Fig. 8.17. The MAC search tree for the CSP of Example 8.4

8.5 Search algorithms for the labeling trees

Now that we have defined search trees and their most common types for the
case of the labeling let us turn to the search algorithms. The aim of these
algorithms is to find a solution or all solutions to a CSP, or to report that no
such solution exists. In case of the constrained optimisation problems these
algorithms look for an optimal or all optimal solutions. In what follows
we discuss several search algorithms for the labeling trees. The strategy
employed by the first two algorithms is correct only for specific finite CSPs,
while the other ones are correct for all finite CSPs. Conceptually, each of
these algorithms looks for a solution by performing a depth-first search in
an appropriate type of labeling tree defined in the previous two sections.

In all the algorithms we assume for simplicity that the linear ordering ≺



8.5 Search algorithms for the labeling trees 325

on the variables coincides with the ordering used in the definition of the
considered CSP P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉. We also assume two
further unanalysed types elements and domain and use the array D of the
type ARRAY [1..n] OF domain to represent the sequence of the domains
D1, . . ., Dn. A solution, if it exists, is produced in the global array inst of
the type ARRAY [1..n] OF elements. Finally, we abbreviate the statement

‘the instantiation {(x1, inst[1]), . . ., (xj−1, inst[j− 1]), (xj , d)}
is consistent’

to cons(inst,j,d).
When discussing the algorithms we assume that the elements in each

numeric domain are chosen in the increasing order. This will allow us to
relate these algorithms to the discussed labeling trees. These algorithms are
written using the MODULA-2 syntax that should be self-explanatory. Let us
recall that in MODULA-2 there are two types of parameters: the customary
call-by-value parameter, and the call-by-variable parameter, distinguished
by the VAR prefix. The actual call-by-value parameters can be arbitrary
expressions of the given type, while the actual call-by-variable parameter
can be only variables of the given type. The former cannot be changed,
while the latter can. The call-by-value is modelled in C by using as an
actual parameter a pointer to the considered variable.

8.5.1 Backtrack-free search

We begin with the simplest algorithm, called the Backtrack-free search
algorithm. It attempts to construct a solution by starting with the empty
instantiation and by successively trying to extend it to a consistent instan-
tiation defined on the next variable in the assumed linear ordering. If by
proceeding this way the final variable gets instantiated, a solution is found.
Otherwise a failure is reported. The algorithm is presented in Figure 8.18.
It is formulated in such a way that it will be easy to modify it to obtain
other search algorithms.

The Backtrack-free search algorithm performs search in the reduced
labeling trees. More precisely, the following result holds.

Theorem 8.14 (Backtrack-free Search) The Backtrack-free search
algorithm constructs in an initial segment of the array inst the leftmost
branch of the corresponding reduced labeling tree and sets the variable success
to TRUE if this branch represents a solution. �



326 Search

MODULE backtrack_free;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;
PROCEDURE backtrack_free(j: INTEGER; D: domains;

VAR success: BOOLEAN);
BEGIN

WHILE D[j] <> {} AND NOT success DO
choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
success := (j = n);
IF NOT success THEN
j := j+1

END
END

END
END backtrack_free;
BEGIN

success := FALSE;
backtrack_free(1,D,success)

END backtrack_free;

Fig. 8.18. Backtrack-free search algorithm

The proofs of this and the analogous subsequent results proceed by induc-
tion on the number of variables. Most of these proofs are straightforward.
They are left as Exercises.

In the case of the labeling tree of Figure 8.4 the Backtrack-free search
algorithm proceeds along the leftmost branch of the tree and constructs in
inst a solution that corresponds to the consistent instantiation {(x, 1), (y, 2),
(z, 3)}. Note that this branch is not the leftmost branch in the correspond-
ing complete labeling tree Figure 8.2. In turn, in the case of the labeling tree
of Figure 8.5 the Backtrack-free algorithm produces an initial segment
of inst that corresponds to the instantiation {(x, 1), (z, 1)} and thus fails
to find a solution.

So in general the Backtrack-free search algorithm does not find a
solution if one exists. On the other hand this algorithm is efficient — it runs
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in time O(Πn
i=1|Di|), where |Di| denotes the cardinality of the domain Di.

So it is of interest to find conditions which guarantee that the Backtrack-

free search algorithm finds a solution if it exists. The following theorem
is an example of such a result. It provides such conditions in terms of the
concepts introduced in Sections 5.8 and 5.10.

Theorem 8.15 (Backtrack-free Search II) Consider a CSP which is
strongly (k + 1)-consistent and the graph of which has width k. Then for
some variable ordering the Backtrack-free search algorithm constructs
a solution if it exists and otherwise it reports a failure by setting the variable
success to FALSE.

Proof If some domain is empty, then no solution exists and the Backtrack-

free search algorithm terminates with success set to FALSE. Otherwise the
construction employed in the proof of the Consistency 2 Theorem 5.48 coin-
cides with a successful execution of the Backtrack-free search algorithm.

�

8.5.2 Backtrack-free search with constraint propagation

It is easy to modify the Backtrack-free search algorithm so that a con-
straint propagation in the form of domain reduction is incorporated into
it. We represent the constraint propagation symbolically by means of the
procedure prop with the signature

PROCEDURE prop(j: INTEGER; VAR D: domains;
VAR failure: BOOLEAN);

Given an array D of the type ARRAY [1..n] OF domain representing the
sequence of the variable domains and j ∈ [1..n], the procedure call prop(j,D,
failure) modifies the domains D[j+1], . . ., D[n] and sets the variable
failure to TRUE (independently of its initial value) if one of these domains
becomes empty. We modify then the procedure backtrack free to the pro-
cedure backtrack free prop. The resulting search algorithm is presented
in Figure 8.19.

The difference is in the presence of the calls prop(0,D,failure) and
prop(j,D,failure) and the use of the test NOT failure before the call
backtrack_free_prop(1,D,success) and the assignment j := j+1. The
Backtrack-free with Constraint Propagation search algorithm per-
forms search in the prop labeling trees.

In contrast to the Backtrack-free search algorithm the Backtrack-

free with Constraint Propagation search algorithm performs search
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MODULE backtrack_free_prop;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;

failure: BOOLEAN;
PROCEDURE backtrack_free_prop(j: INTEGER; D: domains;

VAR success: BOOLEAN);
BEGIN

WHILE D[j] <> {} AND NOT success DO
choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
success := (j = n);
IF NOT success THEN
prop(j,D,failure);
IF NOT failure THEN

j := j+1
END

END
END

END
END backtrack_free_prop;
BEGIN

success := FALSE;
prop(0,D,failure);
IF NOT failure THEN

backtrack_free_prop(1,D,success)
END

END backtrack_free_prop;

Fig. 8.19. Backtrack-free with Constraint Propagation search algorithm

in a more complicated tree. Consequently, the outcome of this algorithm
is more difficult to describe. The reason is that, in contrast to the reduced
trees, in the prop labeling trees the failed nodes are explicitly present: they
are generated as a result of the constraint propagation. So to define the out-
come of the Backtrack-free with Constraint Propagation search
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algorithm we perform the following sequence of operations on the corre-
sponding prop labeling tree:

• remove all failed nodes;
these removed nodes will not be visited by the algorithm,

• remove from the resulting tree all the leaves L with the following property:
there exists a sibling of L lying to its right which is not a leaf;
in the original tree these removed nodes will be visited by the algorithm,
but will not be selected since their unique descendant in the original tree
is a failed node,

• locate the leftmost leaf in the resulting tree. Call it the final node.

We can now state the desired result.

Theorem 8.16 (Backtrack-free with Constraint Propagation
Search) The Backtrack-free with Constraint Propagation search
algorithm constructs in an initial segment of the array inst an instantiation
that corresponds to the final node of the corresponding prop labeling tree and
sets the variable success to TRUE if this node is at level 2n. �

8.5.3 Backtracking

The Backtrack-free and the Backtrack-free with Constraint

Propagation search algorithms are correct only for a limited class of finite
CSPs. From now on we discuss the search algorithms that are correct for
all finite CSPs.

Note that in the Backtrack-free search algorithm the choices of the
elements d for which cons(inst,j,d) holds cannot be revoked: each time
such a d is found it is permanently recorded in the array inst. The Back-

track search algorithm is a modification of this strategy. Informally, if the
search ‘under’ the node (j,d) does not succeed, another choice of d for the
level j is attempted. This is realised by replacing the assignment j := j+1
by a recursive call of the algorithm which represents this search ‘under’ the
node (j,d). The resulting algorithm is presented in Figure 8.20.

Note that in the Backtrack search algorithm the array D is passed as
a call by value parameter. This is crucial for the proper functioning of the
algorithm: then at each level of recursion only a local version of D is modified.
The Backtrack search algorithm performs search in the reduced labeling
trees. The following result summarises its behaviour.
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MODULE backtrack;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;
PROCEDURE backtrack(j: INTEGER; D: domains;

VAR success: BOOLEAN);
BEGIN

WHILE D[j] <> {} AND NOT success DO
choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
success := (j = n);
IF NOT success THEN
backtrack(j+1,D,success)

END
END

END
END backtrack;
BEGIN

success := FALSE;
backtrack(1,D,success)

END backtrack;

Fig. 8.20. Backtrack search algorithm

Theorem 8.17 (Backtrack Search) If a solution exists, the Backtrack

search algorithm constructs in the array inst the leftmost branch of the
corresponding reduced labeling tree that represents a solution. Otherwise it
reports a failure by setting the variable success to FALSE. �

8.5.4 Backtracking with constraint propagation

We now modify the Backtrack search algorithm so that a constraint prop-
agation in the form of a domain reduction is incorporated into it. To this
end we proceed analogously as in Subsection 8.5.2 and use the procedure
prop with the signature

PROCEDURE prop(j: INTEGER; VAR D: domains;
VAR failure: BOOLEAN);
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The appropriate modification of the Backtrack search algorithm yields
the algorithm presented in Figure 8.21.

MODULE backtrack_prop;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;

failure: BOOLEAN;
PROCEDURE backtrack_prop(j: INTEGER; D: domains;

VAR success: BOOLEAN);
BEGIN

WHILE D[j] <> {} AND NOT success DO
choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
success := (j = n);
IF NOT success THEN
prop(j,D,failure);
IF NOT failure THEN

backtrack_prop(j+1,D,success)
END

END
END

END
END backtrack_prop;
BEGIN

success := FALSE;
prop(0,D,failure);
IF NOT failure THEN

backtrack_prop(1,D,success)
END

END backtrack_prop;

Fig. 8.21. Backtrack with Constraint Propagation search algorithm

So in the Backtrack with Constraint Propagation search algo-
rithm we employ the constraint propagation embodied in the procedure
call prop(j,D,failure) that precedes both the initial and the recursive
call to the main procedure backtrack prop. These calls are entered only
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if failure is not set to TRUE. The behaviour of this search algorithm is
summarised by the following result analogous to the Backtrack Search
Theorem 8.17.

Theorem 8.18 (Backtrack with Constraint Propagation Search) If a
solution exists, the Backtrack with Constraint Propagation search
algorithm constructs in the array inst the leftmost leaf of the corresponding
prop labeling tree that represents a solution. Otherwise it reports a failure
by setting the variable success to FALSE. �

8.6 Instances of backtracking with constraint propagation

We shall now use the last search algorithm as a template to derive three
specialised search algorithms that are related to the FORWARD CHECK-
ING, PARTIAL LOOK AHEAD, and MAC search trees defined in Sec-
tion 8.4. Analogous specialisations of the Backtrack-free with Con-

straint Propagation search algorithm are left to the reader.

8.6.1 Forward checking

The first one, called the Forward Checking search algorithm, is a special-
isation of the Backtrack with Constraint Propagation search algo-
rithm in which the constraint propagation consists of the forward checking
as explained in Subsection 8.4.1. To define it more precisely we use the
following auxiliary procedure revise that uses the global array inst:

PROCEDURE revise(j,k: INTEGER; VAR D: domains);
BEGIN

D[k] := {d ∈ D[k] | {(x1,inst[1]),. . .,(xj,inst[j]),(xk,d)} is
a consistent instantiation}

END revise;

The prop procedure is now defined as follows.

PROCEDURE prop(j: INTEGER; VAR D: domains;
VAR failure: BOOLEAN);

VAR k: INTEGER;
BEGIN

failure := FALSE;
k := j+1;
WHILE k <> n+1 AND NOT failure DO

revise(j,k,D);
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failure := (D[k] = {});
k := k+1

END
END prop;

So in case the domain of a future variable xk becomes empty as a result
of the call revise(j,k,D), the variable failure is set to TRUE and, as an
optimisation, the revisions of the subsequent future variables are abandoned.
In that case the call prop(j,D,failure) actually does not compute the
new domains of all future variables as defined in the case of the FORWARD
CHECKING search tree, but it does not matter since in that case in the
search algorithm a backtracking takes place anyway.

The resulting Forward Checking search algorithm performs search in
the FORWARD CHECKING search tree. The following result summarises
its behaviour.

Theorem 8.19 (Forward Checking Search) If a solution exists, the
Forward Checking search algorithm constructs in the array inst the left-
most leaf of the corresponding FORWARD CHECKING tree that represents
a solution. Otherwise it reports a failure by setting the variable success to
FALSE. �

8.6.2 Partial look ahead

The next algorithm, called the Partial Look Ahead search algorithm, is
another specialisation of the Backtrack with Constraint Propaga-

tion search algorithm in which the constraint propagation consists of the
partial look ahead as explained in Subsection 8.4.2.

We limit ourselves to its presentation for CSPs with only binary con-
straints. The extension to arbitrary CSPs is straightforward though one
needs to revise in an appropriate way the DARC algorithm of Section 7.6 that
imposes directional arc consistency. Below we use another, minor, modifica-
tion of the DARC algorithm in which the algorithm also terminates, as soon
as a variable domain becomes empty. In that case the variable failure is
set to TRUE. In the algorithm below this modification of the DARC algorithm
has the following signature:

PROCEDURE darc(i: INTEGER; VAR D: domains;
VAR failure: BOOLEAN);

The call darc(i,D,failure) invokes the abovementioned modification of
the DARC algorithm for the CSP limited to the variables xi, . . ., xn. In the
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prop procedure this procedure is invoked with the actual parameter j+1.
The appropriate prop procedure is now defined as follows.

PROCEDURE prop(j: INTEGER; VAR D: domains;
VAR failure: BOOLEAN);

VAR k: INTEGER;
BEGIN

failure := FALSE;
k := j+1;
WHILE k <> n+1 AND NOT failure DO

revise(j,k,D);
failure := (D[k] = {});
k := k+1

END;
IF NOT failure THEN

darc(j+1,D,failure)
END

END prop;

The resulting Partial Look Ahead search algorithm is related to the
PARTIAL LOOK AHEAD search tree in the analogous way as the one
formulated for the Forward Checking Search Theorem 8.19.

8.6.3 Maintaining arc consistency (MAC)

The final algorithm, called the MAC search algorithm, or the full look

ahead search algorithm, is a specialisation of the Backtrack with con-

straint propagation search algorithm in which the constraint propaga-
tion consists of the MAC, i.e., the FULL LOOK AHEAD procedure, as
explained in Subsection 8.4.3.

To be more specific we use here a modification of the ARC algorithm of
Section 7.4 in which the algorithm also terminates as soon as a variable
domain becomes empty. In that case the variable failure is set to TRUE.
In the algorithm this modification of the ARC algorithm has the following
signature:

PROCEDURE arc(i: INTEGER; VAR D: domains;
VAR failure: BOOLEAN);

The call arc(i,D,failure) invokes the just described modification of the
ARC algorithm for the CSP limited to the variables xi, . . ., xn. In the prop
procedure this procedure is invoked with the actual parameter j+1. The



8.7 Search algorithms for finite constrained optimization problems 335

appropriate prop procedure is defined in the same way as in the previ-
ous subsection: it suffices to replace the call darc(j+1,D,failure) by
arc(j+1,D,failure).

The resulting MAC search algorithm is related to the MAC search tree
in the analogous way as the one formulated for the Forward Checking

Search Theorem 8.19.

8.6.4 Searching for all solutions

It is straightforward to modify all the algorithms of the last two sections to
the ones in which one searches for all solutions instead of for one. To this
end it suffices in each algorithm to drop the condition NOT success from
the WHILE loop and add after the assignment success := (j = n) the line

IF success THEN PRINT(inst) END

where PRINT is a procedure with the expected meaning. Further, the success
variable is not needed anymore so one can replace it by a direct reference
to the test j = n. In the case of the Backtrack search algorithm of Sub-
section 8.5.3 these modifications result in the algorithm presented in Fig-
ure 8.22.

The Backtrack-all search algorithm performs search in the reduced
labeling tree. Its behaviour is summarised by the following theorem.

Theorem 8.20 (Backtrack-all Search) The Backtrack-all search al-
gorithm prints all instances of the array inst that represent a solution. �

In the next section we use this search algorithm as a basis for developing
algorithms for the constrained optimization problems.

8.7 Search algorithms for finite constrained optimization
problems

We now turn our attention to the constrained optimization problems orig-
inally introduced in Section 2.6. So we consider a CSP P := 〈C ; x1 ∈
D1, . . ., xn ∈ Dn〉 and assume a function obj : Sol→R from the set Sol of
all solutions to P to the set R of real numbers. We seek a solution d to P
for which the value obj(d) is maximal.

Recall from Section 3.2 that in typical instances of the constrained opti-
mization problem we also have to our disposal a heuristic function h that
allows us to efficiently approximate the value of obj from above. The idea is
that the function h can be computed before all the variables are completely
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MODULE backtrack_all;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;
PROCEDURE backtrack_all(j: INTEGER; D: domains);
BEGIN

WHILE D[j] <> {} DO
choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
IF j = n THEN
PRINT(inst)

ELSE
backtrack_all(j+1,D)

END
END

END
END backtrack_all;
BEGIN

backtrack_all(1,D)
END backtrack_all;

Fig. 8.22. Backtrack-all search algorithm

instantiated and that the resulting value provides an upper bound on the
values of obj on all solutions that extend the current instantiation. This
upper bound can then be used to abandon instantiations that cannot be ex-
tended to solutions with a larger value of the objective function obj than the
one known so far. In general, the choice of the heuristic function h requires
good insights into the considered constrained optimization problem.

In what follows we assume the existence of a function

h : P(D1)× · · · × P(Dn)→R∪ {∞}

from the set of all set sequences E1, . . ., En such that E1 ⊆D1, . . ., En ⊆Dn

to the set of real numbers augmented with ∞ which satisfies the follow-
ing two properties, where we assume that the subset relation is extended
componentwise to the sequences of sets:

Monotonicity If Ē1 ⊆ Ē2, then h(Ē1) ≤ h(Ē2),
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Bound obj(d1, . . ., dn) ≤ h({d1}, . . ., {dn}).

These properties are obvious specialisations of the corresponding two prop-
erties postulated in Section 3.2 to the situation in which splitting consists
of the labeling.

In what follows we present three search algorithms that allow us to look for
a solution to thus formulated constrained optimization problem. We limit
our attention to finite CSPs and assume that the splitting consists of the
labeling. These algorithms employ the same principle, called branch and

bound , which explains their names. We represent in them the functions obj
and h by means of the procedures obj and h with the signatures

PROCEDURE obj(inst: instantiation): REAL;

PROCEDURE h(inst: instantiation; j: INTEGER; D: domains): REAL;

The intention is that the call h(inst,j,D) returns the value of the function
h on the sequence ({inst[1]}, . . ., {inst[j]}, D[j+1], . . ., D[n]).

8.7.1 Branch and bound

The first algorithm, called Branch and Bound search algorithm, is a
modification of the Backtrack-all search algorithm of Subsection 8.6.4
and is presented in Figure 8.23.

Let us summarise the differences between the Branch and Bound search
algorithm and the Backtrack-all search algorithm. First, we employ
in the procedure two additional parameters, solution, to record the best
solution, and bound, to maintain the best known value of the maximum we
are looking for.

Second, when a solution is encountered, that is when j = n holds, it is not
printed. Instead, if it is a solution with a higher value of the obj function,
that is if obj(inst) > bound holds, the variable bound is updated and this
solution is recorded in the variable solution.

Further, the recursive call is entered only if the test h(inst,j,D) > bound
succeeds. Its purpose is to check whether this call can yield a solution with
a higher value of the obj function than the one recorded in the variable
bound. To put it negatively, if h(inst,j,D) <= bound, then by virtue of
the Monotonicity and the Bound assumptions no solution extending the
current instantiation can yield a value of the obj function higher than the
one recorded in the variable bound.

The execution of the algorithm starts by initialising the solution variable
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MODULE branch_and_bound;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;
PROCEDURE branch_and_bound(j: INTEGER; D: domains;

VAR solution: instantiation;
VAR bound: REAL);

BEGIN
WHILE D[j] <> {} DO

choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
IF j = n THEN
IF obj(inst) > bound THEN

bound := obj(inst);
solution := inst

END
ELSE
IF h(inst,j,D) > bound THEN

branch_and_bound(j+1,D,solution,bound)
END

END
END

END
END branch_and_bound;
BEGIN

solution := NIL;
bound := -infinity;
branch_and_bound(1,D,solution,bound)
END

END branch_and_bound;

Fig. 8.23. Branch and Bound search algorithm

to some value NIL assumed to be different from all solutions, and the bound
variable to the smallest possible value, represented by -infinity. The
following theorem summarises the behaviour of this algorithm.
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Theorem 8.21 (Branch and Bound Search) If a solution exists, the
Branch and Bound search algorithm constructs in the array solution a
solution with the largest obj value. Otherwise it reports a failure by setting
the variable solution to NIL. �

8.7.2 Branch and bound with constraint propagation

Next, we modify the Branch and Bound search algorithm by incorporat-
ing into it a constraint propagation. As in the case of the search algorithms
presented in the previous section, we represent it by means of the procedure
prop with the signature

PROCEDURE prop(j: INTEGER; VAR D: domains;
VAR failure: BOOLEAN);

The appropriate modification results in the algorithm presented in Fig-
ure 8.24.

So we incorporated into the Branch and Bound with Constraint

Propagation search algorithm the same modifications as the ones that we
used when transforming the Backtrack search algorithm into the Back-

track with Constraint Propagation search algorithm. Namely, the
recursive call is now entered only if the constraint propagation, represented
by the call prop(j,D,failure), does not set the variable failure to TRUE
and when the previously discussed test h(inst,j,D) > bound succeeds.
This algorithm satisfies the same property as the one stated in the Branch

and Bound Search Theorem 8.21.

8.7.3 Branch and bound with constraint propagation and cost con-
straint

In the final modification of the Branch and Bound search algorithm
we incorporate into it, in addition to the constraint propagation, a dy-

namic modification of the considered CSP. More specifically, when the
test obj(inst) > bound succeeds, apart from updating the variables bound
and solution we also add the constraint obj(x1, . . ., xn) > bound to the set
of considered constraints. We assume here that the function obj is definable
in the language used to represent the constraints and that obj(x1, . . ., xn) >

bound is a syntactically allowed constraint. This is for example the case
when we consider linear constraints and when the function obj is linear.

The idea is that when the test obj(inst) > bound succeeds, we only need
to look from now on for the solutions with a the obj value larger than the
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MODULE branch_and_bound_prop;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;

failure: BOOLEAN;
PROCEDURE branch_and_bound_prop(j: INTEGER; D: domains;

VAR solution: instantiation;
VAR bound: REAL);

BEGIN
WHILE D[j] <> {} DO

choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
IF j = n THEN
IF obj(inst) > bound THEN

bound := obj(inst);
solution := inst

END
ELSE
prop(j,D,failure);
IF NOT failure THEN

IF h(inst,j,D) > bound THEN
branch_and_bound_prop(j+1,D,solution,bound)

END
END

END
END

END
END branch_and_bound_prop;
BEGIN

solution := NIL;
bound := -infinity;
prop(0,D,failure);
IF NOT failure THEN

branch_and_bound_prop(1,D,solution,bound)
END

END branch_and_bound_prop;

Fig. 8.24. Branch and Bound with Constraint Propagation search algo-
rithm
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one just found and recorded in the variable bound. That is, we can impose
the obj(x1, . . ., xn) > bound constraint on the set of the still to be generated
solutions. This results in the algorithm presented in Figure 8.25.

To formulate the dynamic modification of the set of constraints we use in
the procedure branch_and_bound_prop_obj of the Branch and Bound

with Constraint Propagation and Cost Constraint search algo-
rithm a new parameter C of a further not analysed type constraints that
represents the set of considered constraints. Note that C is passed as a call
by variable parameter. This way the changes to the set of constraints are
permanent. As with the previously considered algorithm, the Branch and

Bound with Constraint Propagation and Cost Constraint search
algorithm satisfies the same property as the one stated in the Branch and

Bound Search Theorem 8.21.
The last two search algorithms can be instantiated in a straightforward

way by an arbitrary constraint propagation in the form of a domain reduc-
tion. In particular, they can be instantiated by the constraint propagation
employed in the Forward Checking, Partial Look Ahead and MAC

search algorithms. This leads to search algorithms that combine the features
introduced in the last two sections.

8.8 Heuristics for search algorithms

When discussing in the last two sections the search algorithms we assumed
that the constraint propagation and the split method is fixed. But even
then some choices still remain. They are concerned with the selection of
the variables and the selection of the values in the variables domains. In
general it is very difficult, if not impossible, to predict their effect on the
efficiency of search for a solution to a given CSP. Hence, in absence of further
information, these choices are determined by means of various heuristics the
effectiveness of which is assessed empirically.

Let us discuss now these choices for the case of the labeling trees. They
can be naturally incorporated into any search algorithm discussed in the
previous two sections.

8.8.1 Variable selection

This decision concerns the choice of the next variable for labeling. Two
natural heuristics were proposed:

• Select a variable with the smallest domain.
This choice is motivated by the Labeling Note 8.5 according to which
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MODULE branch_and_bound_prop_obj;
TYPE domains = ARRAY [1..n] OF domain;

instantiation = ARRAY [1..n] OF elements;
VAR inst: instantiation;

failure: BOOLEAN;
PROCEDURE branch_and_bound_prop_obj(j: INTEGER;

VAR C: constraints; D: domains;
VAR solution: instantiation; VAR bound: REAL);

BEGIN
WHILE D[j] <> {} DO

choose d from D[j];
D[j] := D[j] - {d};
IF cons(inst,j,d) THEN

inst[j] := d;
IF j = n THEN
IF obj(inst) > bound THEN

bound := obj(inst);
solution := inst;

C := C ∪ {obj(x1, . . ., xn) > bound}
END

ELSE
prop(j,D,failure);
IF NOT failure THEN

IF h(inst,j,D) > bound THEN
branch_and_bound_prop_obj(j+1,C,D,solution,bound)

END
END

END
END

END
END branch_and_bound_prop_obj;
BEGIN

solution := NIL;
bound := -infinity;
prop(0,D,failure);
IF NOT failure THEN

branch_and_bound_prop_obj(1,C,D,solution,bound)
END

END branch_and_bound_prop_obj;

Fig. 8.25. Branch and Bound with Constraint Propagation and Cost

Constraint search algorithm
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the size of the complete labeling tree is smallest when the variables are
ordered by their domain sizes in the increasing order.

• Select a most constrained variable, i.e., a variable that appears in the
largest number of constraints.

A justification for this choice is provided by an observation that an
instantiation of such a variable should yield a more effective domain re-
duction by means of the constraint propagation. For example, it can turn
a non-linear equation to a linear one.

Additionally, if all the variable domains are numeric, we can use the fol-
lowing heuristics:

• Select a variable with the smallest difference between its domain bounds.
Note that this does not have to be a variable with the smallest domain:

take for instance the variable x with the domain {0, 1, 2} and the variable
y with the domain {0, 100}.

All three heuristics are instances of the so-called first-fail principle ac-
cording to which when faced with a choice one tries first an alternative that
most likely leads to a failure.

It is important to note that the above selection principles are dynamic

in the sense that at each level the selection is made anew. Now, to keep the
definition simple, we assumed that the labeling trees and the prop labeling
trees are defined with respect to a fixed in advance variable ordering. To
properly account for the dynamic selection principle this definition should
be modified so that at each odd level the new current variable is determined
dynamically.

8.8.2 Value selection

When presenting the search algorithms we assumed that the elements in
each variable domain are selected in a non-deterministic way. In practice a
number of natural choices arise. In case of search algorithms for constrained
optimization problems the following heuristics is helpful:

• select a value for which the heuristic function yields the highest outcome.

If the heuristic function is well chosen (that is, approximates reasonably
well the obj function), such a value is then ‘most promising’. To be more
specific, in the Branch and Bound search algorithm and its two modifi-
cations, assuming j < n, we choose an element d from the domain D[j] for
which cons(inst,j,d) holds and for which, after the assignment inst[j]
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:= d, the value of h(inst,j,D) is the highest. So this heuristic calls for a
simple subsidiary computation.

Further, when discussing numeric domains, the following natural choices
arise when selecting the next value in a domain:

• select the smallest value,
• select the largest value,
• select the middle value.

The first two heuristics are obvious. The third one is motivated by the
observation that in some circumstances the choice of the middle value can
lead to a more effective constraint propagation. For example, it has been
noted that this heuristics is beneficial for the CSP formalising the n Queens
Problem presented in Example 2.2.

8.9 An abstract branch and bound algorithm

We started this chapter by defining in Section 8.1 arbitrary search trees.
Then, after discussing the labeling trees we presented the search algorithms
for them. Let us close now the loop by discussing briefly the search algo-
rithms for the arbitrary search trees. In these trees the constraint prop-
agation is modeled by means of a transition from even to odd levels. So
we should confine our attention to three search algorithms Backtrack-

free with Constraint Propagation, Backtrack with Constraint

Propagation, and Branch and Bound with Constraint Propaga-

tion. We now present the last algorithm in an abstract form, leaving the
presentation of the other two, simpler ones, as Exercise 8.11.

We fix a finite search tree T and represent it by means of an array
children of some further unanalysed type searchtree that given a CSP
P yields in children[P] the set of its direct descendants in T . Also, we
assume a further unanalysed type CSP. Further, we assume a function next
that will be applied to a CSP at an even level to access its only direct
descendant, using the instruction R := next(P).

We also assume that a CSP is a leaf of T if and only if it is ‘manifestly
solved’ or ‘manifestly failed’. To test the status of a CSP we assume the
existence of two procedures, solved which returns the truth value of the
statement ‘the CSP is ‘manifestly solved’ ’, and failed which returns the
truth value of the statement ‘the CSP is ‘manifestly failed’ ’.

Finally, we model the optimization by assuming the existence of an obj
function that given a ‘manifestly solved’ CSP returns its objective value
being a real value. We look in the search tree T for a ‘manifestly solved’



8.9 An abstract branch and bound algorithm 345

CSP with a maximal obj value. To this end we employ a heuristic function
h that assigns to each CSP P in T a real value and assume two properties
of the functions obj and h:

• if R is a direct descendant of P, then h(R) ≤ h(P),
• if P is a ‘manifestly solved’ CSP, then obj(P) ≤ h(P).

The algorithm is presented in Figure 8.26. For its proper functioning it
is essential that the children parameter is passed by value, so that the
modifications performed during the recursive call are carried out only on its
local version.

The following theorem summarises the behaviour of this algorithm.

Theorem 8.22 (Abstract Branch and Bound Search) Call a CSP P
‘manifestly solved’ if solved(P) holds. If in the considered search tree with
the root Pinit a ‘manifestly solved’ CSP exists, the Abstract Branch

and Bound search algorithm returns in P such a CSP with the largest obj
value. Otherwise it reports a failure by setting the variable solution to NIL.

�

This theorem holds for arbitrary CSPs, in particular for the ones with
infinite domains. The Abstract Branch and Bound search algorithm
can be specialised in many ways by choosing the definitions of a ‘manifestly
solved’ and of a ‘manifestly failed’ CSP, and by selecting the split method,
the form of constraint propagation, the obj function, and the heuristic func-
tion.

As an illustration of its use let us return to the approach of computing
optimal solutions to polynomial constraints on integer intervals subject to
a polynomial objective function that we discussed in Section 3.4. We used
there a specific obj function, defined a specific split method in the form
of a bisection, and defined constraint propagation and the heuristic func-
tion h using interval arithmetic on integers. To complete the details of the
Abstract Branch and Bound search algorithm we define a CSP to be
‘manifestly solved’ if it is solved and all its domains are singletons, and
‘manifestly failed’ if it is failed.

Note also that by considering the finite CSPs with the splitting defined as
the labeling and by defining ‘manifestly solved’ as ‘a solved CSP with the
domains being singleton sets’ we obtain the already discussed constrained
optimization problem for finite CSPs and the Branch and Bound with

Constraint Propagation search algorithm.
It is difficult to define heuristics for arbitrary search trees. This can be
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MODULE abstract_branch_and_bound;
PROCEDURE abstract_branch_and_bound(children: searchtree;

VAR solution: CSP; VAR bound: REAL);
BEGIN

WHILE children[P] <> {} DO
choose R from children[P];
children[P] := children[P] - {R};
IF NOT failed(R) THEN

P := R;
IF solved(P) THEN
IF obj(P) > bound THEN

bound := obj(P);
solution := P

END
ELSE
P := next(P);
IF NOT failed(P) THEN

IF h(P) > bound THEN
abstract_branch_and_bound(children,solution,bound)

END
END

END
END

END
END abstract_branch_and_bound;
BEGIN

solution := NIL;
bound := -infinity;
P := next(Pinit);
IF NOT failed(P) THEN

abstract_branch_and_bound(children,solution,bound)
END

END abstract_branch_and_bound;

Fig. 8.26. Abstract Branch and Bound search algorithm

done for some specific cases of splitting and constraint propagation. For
example, the variable selection heuristics defined in Section 8.8 can be also
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used when splitting consists of bisecting the domain of the current variable
with a numeric domain using a middle value between the bounds.

8.10 Summary

In this chapter we studied search algorithms. To this end we first introduced
search trees that result from an alternating use of constraint propagation
and splitting. Then we presented the search algorithms as algorithms that
explore the search trees.

The bulk of the presentation dealt with the search trees obtained when the
labeling is used as the splitting method. We called them the labeling trees.
We presented three types of the labeling trees that result from choosing a
specific form of constraint propagation:

• forward checking,
• partial look ahead, and
• maintaining arc consistency (MAC),

and presented several search algorithms for these trees, namely

• the backtrack-free search algorithm,
• the backtrack search algorithm,

and their modifications that involve constraint propagation.
Also, we discussed various search algorithms for constrained optimization

problems, the aim of which is to find an optimal solution. These algorithms
rely on

• the branch and bound principle.

We presented the search algorithms for the labeling trees in a uniform
way, by successive minor modifications. This allowed us to clarify how these
algorithms are related to each other. We also explained how the search
algorithms for the labeling trees can be combined with a number of heuristics
that are concerned with the variable and value selection. Finally, we argued
that the basic search algorithms can also be presented for arbitrary search
trees.

8.11 Exercises

Exercise 8.1 Prove the Search Tree Note 8.2.



348 Search

Exercise 8.2 Suppose that all constraints of the considered CSP are unary
or binary. Show that the FORWARD CHECKING search tree can then be
defined using the following, simpler, definition of the domains E′

i+1, . . ., E
′
n:

E′
j := Ej − {e ∈ Ej | for some constraint C on xi and xj (di, e) �∈ C},

where j ∈ [i + 1..n].

Exercise 8.3 Prove the Backtrack-free Search Theorem 8.14.
Hint Use here and in Exercises 8.4–8.9 induction on the number of variables.

Exercise 8.4 Prove the Backtrack-free with Constraint Propa-

gation Search Theorem 8.16.

Exercise 8.5 Prove the Backtrack Search Theorem 8.17.

Exercise 8.6 Prove the Backtrack with Constraint Propagation

Search Theorem 8.18.

Exercise 8.7 Prove the Forward Checking Search Theorem 8.19.

Exercise 8.8 Prove the Backtrack-all Search Theorem 8.20.

Exercise 8.9 Prove the Branch and Bound Search Theorem 8.21.

Exercise 8.10 Prove the Abstract Branch and Bound Search Theo-
rem 8.22.
Hint Use induction on the number of nodes.

Exercise 8.11 Present the Backtrack-free with Constraint Prop-

agation and the Backtrack with Constraint Propagation search
algorithms for the arbitrary search trees.

8.12 Bibliographic remarks

Many of the algorithms discussed in this chapter embody standard tech-
niques that were used in artificial intelligence and combinatorial optimiza-
tion before the advent of constraint programming.

More specifically, the Backtrack and the Branch and Bound search
algorithms are informally described Golomb and Baumert [1965]. In Bitner
and Reingold [1975], a non-recursive algorithmic description of the Back-

track search algorithm is provided. According to this paper the backtrack
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technique dates back at least to the end of the nineteenth century, when it
was used by Lucas [1891] to thread mazes, and the recursive formulation of
the algorithm, that we adopted here, appeared first in Tarjan [1972].

The Branch and Bound search algorithm was also introduced in Dakin
[1965] in the context of integer programming. Its modification to the Branch

and Bound with Constraint Propagation search algorithm has its
roots in the incorporation of so-called cuts into the branch and bound al-
gorithm for integer programming. (Cuts are valid linear inequalities with
integer coefficients that can be deduced from a given set of such inequalities.
Their use corresponds to an application of constraint propagation.)

The Backtrack-free Search II Theorem 8.15 is from Freuder [1982]. Much
research went on into identifying other structural properties of constraints
guaranteeing that backtrack-free search is sufficient to determine consis-
tency, see in particular van Beek and Dechter [1995] and Sam-Haroud and
Faltings [1996].

The Forward Checking search algorithm was originally introduced in
McGregor [1979], for binary constraints. Bessière et al. [2002] show that
this algorithm admits several generalisations to non-binary constraints. The
Partial Look Ahead search algorithm is due to Haralick and Elliot [1980].
The MAC search algorithm was proposed in Gaschnig [1974] under the name
of full look ahead. The name MAC comes from Sabin and Freuder
[1994], a paper in which the original conclusions of Haralick and Elliot [1980]
favouring partial look ahead over full look ahead were critically assessed.
The most constrained variable heuristic is mentioned in Bitner and Reingold
[1975]. The first-fail principle was formulated in Haralick and Elliot [1980].

A detailed survey of the backtracking algorithms for constraint satisfaction
problems is given in Dechter and Frost [2002]. This survey focuses on the so-
called look back methods (sometimes called intelligent backtracking)
that we did not consider here.
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I N THE PREVIOUS chapters we discussed various aspects of constraint
programming. We did it by concentrating on the relevant ingredients
of this programming style separately. In principle we could put them

together using the general framework of Section 3.2. There are, however,
other issues that naturally arise when one tries to incorporate these tech-
niques in a programming language or system. In this chapter we shall discuss
these matters and also shed light on the resulting programming style. At
the same time we shall provide a short summary of various research topics
currently pursued in constraint programming.

We discuss in turn the issues concerned with modeling (in Section 9.1),
constraint programming languages (in Section 9.2), constraint propagation
(in Section 9.3), constraint solvers (in Section 9.4), search (in Section 9.5)
and over-constrained problems (in Section 9.6). Finally, at the end of the
chapter, in the bibliographic remarks, we provide pointers to a number of
useful surveys that should allow the reader to embark on research in con-
straint programming. As the final bibliography is just ‘next door’ we do not
list the, rather extensive, list of references at the end of this chapter.

351
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9.1 Modeling

Recall that in Chapter 1 we formulated the following principle:

Constraint programming is about a formulation of the problem as a constraint
satisfaction problem and about solving it by means of domain specific or general
methods.

As already stated, the first task, that is, the problem formulation, is called
modeling. We noted in Chapter 2 that it is quite common that a given prob-
lem admits several natural representations. To choose among them requires
proper understanding of the underlying alternatives and occasionally some
good insights. Even then it is difficult to draw hard conclusions.

9.1.1 Choosing the right variables

This matter can be illustrated even by such a simple example as the SEND +
MORE = MONEY puzzle of Example 2.1. We provided there a number of
different representations of this problem. Let us concentrate now on the issue
of representing the relevant equality constraints. In the first representation
we used the variables S, E, N, D, M, O, R, Y . The variables S and M had
as the domain the integer interval [1..9] and the remaining six variables the
integer interval [0..9]. We used the equality constraint

1000 · S + 100 · E + 10 ·N + D

+ 1000 ·M + 100 ·O + 10 ·R + E

= 10000 ·M + 1000 ·O + 100 ·N + 10 · E + Y

combined with 28 disequality constraints x �= y for x, y ranging over the set
{S, E, N, D, M, O, R, Y } with x preceding y in the presented order.

We noted in Section 6.4 that using the domain reduction rules for the
linear constraints on integer intervals we can reduce the original domains to

S = 9, E ∈ [4..7], N ∈ [5..8], D ∈ [2..8], M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8].

The alternative representation of this problem used the auxiliary ‘carry’
variables C1, C2, C3, C4 ranging over [0..1] and the following five equality
constraints:

D + E = 10 · C1 + Y,

C1 + N + R = 10 · C2 + E,

C2 + E + O = 10 · C3 + N,

C3 + S + M = 10 · C4 + O,
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C4 = M.

It turns out that the same domain reduction rules for the linear constraints
on integer intervals yield now a weaker domain reduction. Indeed, one can
check that the original domains of the S, E, N, D, M, O, R, Y variables re-
duce now to

S = 9, E ∈ [2..8], N ∈ [2..8], D ∈ [2..8], M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8].

So the second representation yields initially a weaker constraint propaga-
tion. In fact, the prop labeling tree corresponding with the first representa-
tion and depicted in Figure 8.9 of Section 8.3 has 23 nodes and the unique
solution is found by the Backtrack with Constraint Propagation

search algorithm of Subsection 8.5.4 after visiting 19 nodes. In contrast, for
the second representation the corresponding prop labeling tree has 29 nodes
and the unique solution is found by the Backtrack with Constraint

Propagation search algorithm of Subsection 8.5.4 after visiting 23 nodes.
So the first representation turns out to be more efficient.

However, for the GERALD + DONALD = ROBERT alphametic prob-
lem, mentioned in the bibliographic remarks of Chapter 2, the situation is
reverse. The representation of the corresponding equality constraint without
the carries leads to a prop labeling tree with 16651 nodes and the unique
solution is found by the Backtrack with Constraint Propagation

search algorithm of Subsection 8.5.4 after visiting 13795 nodes. In contrast,
the representation with the carries results in a substantially smaller prop
labeling tree, with 869 nodes, and the unique solution is found by the Back-

track with Constraint Propagation search algorithm of Subsection
8.5.4 after visiting 791 nodes.

This shows that it is not easy to determine in advance whether it is bet-
ter to use the original constraints or to introduce auxiliary variables and
transform the constraints to simpler ones.

9.1.2 Choosing the right constraints

Recall from Chapter 2 that given a sequence of variables x1, . . ., xn with
respective domains D1, . . ., Dn the all different constraint was defined
by

all different(x1, . . ., xn) := {(d1, . . ., dn) | di �= dj for i �= j}.
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Semantically all different(x1, . . ., xn) is equivalent to the conjunction

n−1∧
i=1

n∧
j=i+1

xi �= xj ,

that is to say, the corresponding CSPs are equivalent. So it may seem
that the use of all different(x1, . . ., xn) instead of the above disequality
constraints is just a matter of syntactic convenience. Indeed, it is easy
to check that in the above example of the SEND + MORE = MONEY
puzzle the same domain reduction is achieved when using the disequality
constraints or the all different constraint.

However, in general, this does not need to be the case. Consider for
instance the obviously inconsistent CSP

〈all different(x1, x2, x3) ; x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {1, 2}〉.

Note that this CSP is not hyper-arc consistent. In fact, the constraint
all different(x1, x2, x3) is here empty. We can detect the inconsistency
by transforming this CSP to an equivalent one that is hyper-arc consistent
and the domains of which are all empty.

Let us take now an alternative representation of this CSP by means of
the disequality constraints:

〈x1 �= x2, x1 �= x3, x2 �= x3 ; x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {1, 2}〉.

Then this CSP is obviously hyper-arc consistent (or, equivalently, arc con-
sistent, since all constraints are binary). So hyper-arc consistency is insuf-
ficient to detect that this CSP is inconsistent. To determine inconsistency
we have to resort to other forms of local consistency discussed in Chapter 5,
like path consistency or relational consistency. However, in general, the
corresponding constraint propagation algorithms are too inefficient, so they
are not provided in specific implementations of the constraint programming
languages.

In contrast, the appropriate domain reduction rule for the all different
constraint can be efficiently implemented. Namely, as shown by Régin
[1994], the hyper-arc consistency for this constraint can be achieved in
O(k n3/2) time, where k is the size of the maximum domain and n is the
number of variables. The algorithm employs an efficient algorithm for com-
puting a maximal matching in bipartite graphs.

We now continue a discussion of this constraint in the context of other
constraints. To illustrate the point let us return to the Zebra puzzle in-
troduced in Example 2.3. We mentioned there two ways of representing
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the disequalities. The first one consisted of an explicit listing of all fifty of
them. The second one involved five uses of the all different constraint,
each time applied to five variables.

We shall now study the impact of these two choices in conjunction with
another, less obvious, choice concerning the formalisation of the following
three constraints that rely on the absolute difference function:

• The Norwegian lives next door to the blue house:
|norwegian− blue| = 1,

• The fox is in the house next to the doctor’s: |fox− doctor| = 1,
• The horse is in the house next to the diplomat’s:

|horse− diplomat| = 1.

One way to represent these constraints is by means of the disjunctive
constraints mentioned in Section 3.2 and take care of them by means of the
splitting rule there mentioned. So for example the constraint |norwegian−
blue| = 1 would be rewritten as a disjunctive constraint

norwegian− blue = 1 ∨ norwegian− blue = −1.

In the alternative representation we use the binary constraint difference1
on the variables x and y with the respective integer domains Dx and Dy,
defined by

difference1(x, y) = {(a, b) | |a− b| = 1},

together with two rules that define constraint propagation for this constraint.
In these rules for a set of integers D, as in Section 3.4,

D + {−1, 1} := {a + 1 | a ∈ D} ∪ {a− 1 | a ∈ D}.

difference1–1

〈difference1(x, y) ; x ∈ Dx, y ∈ Dy〉
〈difference1(x, y) ; x ∈ D′

x, y ∈ Dy〉

where D′
x = Dx ∩ (Dy + {−1, 1}),

difference1–2

〈difference1(x, y) ; x ∈ Dx, y ∈ Dy〉
〈difference1(x, y) ; x ∈ Dx, y ∈ D′

y〉

where D′
y = Dy ∩ (Dx + {−1, 1}).

It is easy to see that both rules are equivalence preserving and that a CSP
〈difference1(x, y) ; x ∈ Dx, y ∈ Dy〉 is closed under their applications iff
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it is arc consistent. So in view of the Hyper-arc Consistency Lemma 6.1 of
Section 6.1 these rules are optimal.

To see their use note for example that once we reduce the domain of the
norwegian variable to 1 on the account of the norwegian =1 constraint, we
can apply the second rule to

〈difference1(norwegian, blue) ; norwegian = 1, blue ∈ [1..5]〉

and reduce it to

〈difference1(norwegian, blue) ; norwegian = 1, blue = 2〉.

This reduction does not take place in the first representation for which the
constraint propagation rests only on the LINEAR EQUALITY rule of Sec-
tion 6.4 adapted for finite integer domains.

An equivalent approach consists of replacing each constraint |x − y| = 1
by the linear constraint x − y = z, where for each constraint z is a new
variable with the initial domain {−1, 1}.

The accumulated impact of different representations of the puzzle is il-
lustrated in Table 9.1 in which the size of the corresponding binary search
tree for the enumeration splitting method of Section 3.2 and the first-fail
heuristic of Section 8.8 is listed.

using all different disequality constraints
disjunctive constraints 43 55
difference1 constraints 25 33

Table 9.1. Sizes of search trees for the Zebra puzzle

So choosing the all different and the difference1 constraints yields
the smallest search tree. While this does not prove that this combination
yields the most efficient solution, it does illustrate the consequences of var-
ious choices.

9.1.3 Choosing the right representation

Of course, the above presented examples are very simplistic. Still, they
illustrate an obvious yet important point that, because of constraint prop-
agation, different problem representations lead to search trees of different
sizes. In general, this size is a good measure of the complexity of the prob-
lem representation. So we are interested in a problem representation that,
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together with the selected form of constraint propagation, yields the small-
est search tree. While the right choice is in general difficult to predict, a
number of common sense observations can be made.

Before we make them let us list some more realistic examples that show
how modeling affects the efficiency. They can be found in the following
three publications, where a CSP representation of a non-trivial problem was
compared with a customary IP (integer programming) representation:

• A Microcode Label Assignment Problem (Van Hentenryck [1989])

– CSP representation: 187 finite integer domain variables,
– IP representation: 2024 Boolean variables,

• A Packing Problem (Bockmayr and Kasper [1998])

– CSP representation: 7 finite integer domain variables, 2 constraints,
– IP representation: 42 Boolean variables, 18 constraints,

• A Golf Scheduling Problem (Darby-Dowman and Little [1998])

– CSP representation: 176 variables,
– IP representation 1: 2574 variables,
– IP representation 2: 592 variables.

This illustrates dramatic differences between alternative ways of model-
ing a problem. In each case the use of the CSP representation and of the
constraint programming techniques turned out to be more efficient.

In general, it is preferable to use representations that involve less vari-
ables and simpler constraints for which constraint propagation is readily
available. Another rule of thumb is that constraint propagation techniques
that require less preprocessing (that often relies on the introduction of aux-
iliary variables) are often more powerful and thus preferable, since they
reduce the search space better. Further, one should be aware that the use of
disjunctive constraints can lead to an inefficient representation, since their
processing can generate a large search space.

As already stated in Chapter 3 modeling is more an art than science.
Consequently, the above guidelines have to be taken with a grain of salt.
Probably, for each rule of thumb one can find an exception. The choice
of heuristics for problem modeling is a subject of an ongoing research in
constraint programming.

In general, it also pays off to use constraints for which we have to our
disposal efficient domain reduction algorithms. This leads us to the subject
of global constraints.
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9.1.4 Global constraints

A global constraint is a name customarily used to describe a complex (that
is, ‘complicated’, in an informal sense) constraint, with the number of vari-
ables often being a parameter. An appropriate constraint propagation for a
global constraint is then taken care of by means of a special purpose algo-
rithm. Modeling by means of global constraints is therefore more efficient
than relying on the general purpose constraint propagation algorithms.

A typical example of a global constraint is the already discussed all diff-
erent constraint. In the literature several other global constraints were
proposed together with customised constraint propagation algorithms. The
most known of them is the cumulative constraint of Aggoun and Beldiceanu
[1993] used to formalise various optimization problems that can be expressed
as scheduling problems involving tasks with starting times, durations, and
resource consumption. This constraint involves the following variables rang-
ing over the natural numbers:

• S1, . . ., Sn that denote the starting times of the tasks,
• D1, . . ., Dn that denote the durations of these tasks,
• R1, . . ., Rn that denote the resource consumption of these tasks,
• L that denotes the limit that is not exceeded at any point of time by the

sum of the resource consumption of all active tasks.

Formally, this constraint is defined as follows, where the variables S1, . . ., Sn,
D1, . . ., Dn, R1, . . ., Rn, L range over the natural numbers:

cumulative([S1, . . ., Sn], [D1, . . ., Dn], [R1, . . ., Rn], L) :=
{([s1, . . ., sn], [d1, . . ., dn], [r1, . . ., rn], l) | ∀t ∑

{i|si≤t≤si+di−1} ri ≤ l}.

Here a task i is active at time point t if si ≤ t ≤ si+di−1. So the expression∑
{i|si≤t≤si+di−1} ri represents the sum of the resource consumption of all

active tasks at time point t.
The appropriate constraint propagation algorithm employs the so-called

edge-finding technique that attempts to check whether some task has to
be placed before or after a set of other tasks. If yes, then the domain of
the starting time variable of this task is appropriately reduced. This con-
straint, together with the corresponding constraint propagation algorithm,
is available in several constraint programming systems.

Another example is the following sortedness constraint defined on inte-
ger intervals (or more generally, on finite intervals of linear orderings):



9.2 Constraint programming languages 359

sortedness([X1, . . ., Xn], [Y1, . . ., Yn]) := {([d1, . . ., dn], [e1, . . ., en]) |
[e1, . . ., en] is the sorted permutation of [d1, . . ., dn]}.

It was introduced in Older, Swinkels and van Emden [1995] and was suc-
cessfully used to formulate and solve job-shop scheduling type problems. In
Bleuzen-Guernalec and Colmerauer [2000] an O(n log n) constraint propa-
gation algorithm was proposed that reduces the initial intervals to minimal
ones without affecting the constraint.

9.2 Constraint programming languages

Constraint programming has been realised in a number of programming
languages and systems. Some of these systems are restricted to handling
of specific constraints by fixed domain specific methods. To this category
belong the modeling languages for mathematical programming, such as
AMPL (A Modeling Language for Mathematical Programming) or GAMS
(the General Algebraic Modeling System), designed for modeling and solving
various optimization problems arising in the operations research. They gen-
erate matrices that can be passed to various packages (often called solvers),
like CPLEX or MINOS, that support linear programming and certain non-
linear programming problems.

Then the interactive computer algebra systems, such as MATLAB or Re-
duce, usually provide support for various numerical calculations, including
operations on vectors and matrices, simplifications of algebraic expressions
in the presence of trigonometric and other standard functions, symbolic inte-
gration and differentiation, and factorisations of polynomials. In particular,
they provide support for solving various forms of polynomial equations, in-
cluding linear equations, and some nonlinear constraints on reals. Some of
them, like Maple or Mathematica, are full fledged programming languages
which support interaction with sophisticated numeric symbolic algebra pack-
ages.

In what follows we rather focus on the programming languages built
around the general framework of Section 3.2. They are characterised by a
built-in constraint propagation for various constraints, notably the Boolean
constraints, the linear constraints on integer domains, and selected global
constraints, by some form of ‘general purpose’ constraint propagation (for
example arc consistency on finite domains), and by the presence of several
built-ins for constructing various forms of search. In these languages the
constraints are handled by adding them to the constraint store to which
various constraint solvers are attached.
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Intuitively, a constraint store can be viewed as an internal CSP main-
tained by the program. If the added constraint is in a specific form (for
example, it is a linear constraint on finite integer domains), the appropriate
constraint solver (in this case, the incomplete constraint solver for linear
constraints on finite integer domains, discussed in Section 6.4) is triggered
on the corresponding part of the constraint store (in this case, the set of lin-
ear constraints on finite integer domains) augmented by the new constraint.
Upon termination the ‘obviously solved’ constraints are removed from the
constraint store. If the constraint store becomes a failed CSP, a backtrack-
ing takes place. The addition of a constraint store to the customary memory
store results in a two-level architecture that is a distinguishing feature of
constraint programming.

To deal with the constraints one also needs to represent and manipu-
late variables present in them. We call them below constraint variables.
These variables are unknowns in the mathematical sense, so the customary
C-like or Pascal-like variables that are used to capture the changing, but
known quantities, cannot be used to model them. Basically, two approaches
were proposed to deal with this problem.

9.2.1 Constraint logic programming

The most popular solution involves an extension of the logic programming
paradigm by means of the constraints. This can be done in a natural way
since the logic programming paradigm, in contrast to the other programming
paradigms, supports the notion of a logical variable , a variable to which
one can assign terms, so expressions possibly containing variables. So in this
approach the constraint variables are modeled as logical variables.

From the constraint programming perspective a unification algorithm, for
example the Martelli–Montanari algorithm described in Section 4.2, is
a complete constraint solver built into Prolog. It allows us to solve equations
on terms. To deal with other constraints one needs to add other constraint
solvers to the language.

Additionally, Prolog and other logic programming languages support au-
tomatic backtracking, through the use of multiple clauses with the same
relation (i.e., the same procedure) in the clause head. This provides a good
starting base for implementing backtracking in the presence of constraints.

This approach to constraint programming through logic programming
has been pioneered by Alain Colmerauer in a series of successors to Pro-
log, Prolog II till Prolog IV, see, e.g., Colmerauer [1990] for a description
of Prolog III and http://prologianet.univ-mrs.fr/societe/PrologIV/
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New_index.html for information on Prolog IV. In parallel, a number of other
languages extending Prolog were proposed, starting with the CHIP program-
ming language, see Dincbas et al. [1988] and for a more extensive coverage
Van Hentenryck [1989], that introduced constraint programming on finite
domains, and CLP(R), see Jaffar et al. [1992], that provided support for
solving constraints on reals. CHIP in turn led to a (n ongoing) development
of the ECLiPSe system, see, e.g., Wallace, Novello and Schimpf [1997] and
http://www-icparc.doc.ic.ac.uk/eclipse/. Another system with sim-
ilar functionalities is SICStus Prolog, see http://www.sics.se/sicstus/.
The last two systems include now some constraint programming languages
developed separately. All mentioned systems were successfully used in sev-
eral application domains.

These developments led to creation of an area called constraint logic

programming (CLP). On the theoretical side they were captured in an
elegant way in the influential CLP(X) scheme of Jaffar and Lassez [1987] of
which CLP(R) is an implemented instance. In this scheme the unification
mechanism of logic programming is replaced by the more general mecha-
nism of constraint solving and the substitution (that can be viewed as the
logic programming counterpart of the state) is replaced by the constraint
store. To illustrate the resulting programming style consider the following
ECLiPSe program (that coincides with the original CHIP version) solving
the SEND + MORE = MONEY problem of Example 2.1:

send(List):- % 1
List = [S,E,N,D,M,O,R,Y], % 2
[E,N,D,O,R,Y] :: [0..9], % 3
[S,M]:: [1..9], % 4
alldifferent(List), % 5

1000*S + 100*E + 10*N + D % 6
+ 1000*M + 100*O + 10*R + E % 7

#= 10000*M + 1000*O + 100*N + 10*E + Y, % 8
labeling(List). % 9

It consists of a declaration of the procedure send. In line 2 the argument
variable LIST is assigned to the list of eight variables, S,E,N,D,M,O,R,Y.
In lines 3 and 4 the domains of these variables are declared. Lines 5–8
introduce two constraints. alldifferent is a built-in that corresponds to
the all different constraint, while #= denotes the equality constraint on
finite domains. Finally, in line 9, the labeling combined with the backtrack
search with the built-in constraint propagation is triggered by the labeling
built-in.
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The reader can appreciate the utmost simplicity of this program. More-
over, this program is efficient since its execution automatically triggers the
constraint propagation for linear constraints on finite domains, discussed in
detail in Subsection 6.4.6. The corresponding search tree is depicted in Fig-
ure 8.9 of Section 8.3. The Backtrack with Constraint Propagation

search initiated by the labeling built-in finds the unique solution after only
one backtracking.

Research on constraint logic programming led to a further research on
concurrent constraint programming (CCP) languages, in which the
processes interact with the constraint store by means of the primitive ask

and tell constraints, see Saraswat [1993]. This provided a powerful, ab-
stract, view of constraint programming.

The CCP paradigm was incorporated into the multi-paradigm constraint
programming language Oz, see, e.g., Smolka [1995], that was used in several
applications including planning, scheduling, and natural language process-
ing. Research on Oz led to a creation of the Mozart Programming System,
an advanced development platform for various distributed applications, see
http://www.mozart-oz.org.

Another multi-paradigm programming language supporting constraint pro-
gramming is Claire, see, e.g., Caseau, Josset and Laburthe [2002]. It was
successfully used for solving various combinatorial optimization problems
including scheduling, routing, and time-tabling.

9.2.2 ILOG solver

Another solution to the problem of representing the constraint variables was
realised in the ILOG solver, a constraint-based optimization engine, see, e.g.,
ILOG [2003]. It is based on modeling the constraint satisfaction problems in
C++ using classes. This led to a development of an extensive class library
that supports constraint programming. The constraint variables are mod-
eled as objects and are manipulated by means of special methods provided by
the given class. As an illustration of this approach, here is the ILOG solver
version 5.1 program that solves the SEND + MORE = MONEY puzzle:

#include <ilsolver/ilosolverint.h> % 1
ILOSTLBEGIN % 2

int main(){ % 3
IloEnv env; % 4
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IloModel model(env); % 5
IloIntVar S(env, 1, 9), E(env, 0, 9), N(env, 0, 9), % 6

D(env, 0, 9), M(env, 1, 9), O(env, 0, 9), % 7
R(env, 0, 9), Y(env, 0, 9); % 8

IloIntVarArray AllVars(env, 8, S, E, N, D, M, O, R, Y); % 9

model.add( IloAllDiff(env, AllVars) ); % 10
model.add( 1000*S + 100*E + 10*N + D % 11

+ 1000*M + 100*O + 10*R + E % 12
== 10000*M + 1000*O + 100*N + 10*E + Y); % 13

IloSolver solver(model); % 14
solver.solve(IloGenerate(env, AllVars)); % 15

for (IloInt i=0; i<8; i++) % 16
solver.out() << solver.getValue(AllVars[i]) << " "; % 17
solver.out() << endl; % 18

env.end(); % 19
return 0; % 20

} % 21

In lines 1 and 2 the appropriate solver is loaded and initialised. In line
4, inside the body of the main procedure, an environment env is created in
which the memory management takes place and in line 5 the corresponding
‘model’ in which the constraints are variables are managed is declared. In
lines 6–8 the finite domain variables are declared together with their domains
and in line 9 these variables are packed into an array. The constraints are
introduced in lines 10–13. In lines 14 and 15 a call to the solver is made and
in lines 16–18 the solution is printed.

Currently, the ILOG solver is one of the engines of the ILOG Optimization
Suite that incorporates various modeling languages and packages supporting
mathematical programming and allows one to deal with a variety of opti-
mization problems, see http://www.ilog.com/products/optimization/.

9.2.3 Generation of constraints

In the case of the SEND + MORE = MONEY problem the constraints
could be simply written out explicitly. For less trivial problems we need to
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generate the appropriate constraints. In other words, we need to construct
the appropriate CSP. An ’execution’ of a constraint amounts to adding it to
the constraint store, so the generation of the appropriate constraints can be
realised using the customary control statements. Depending on the language
this can be done in a more or less straightforward way.

For example, in OPL (Optimization Programming Language), a model-
ing language for mathematical programming and combinatorial optimiza-
tion that provides support for constraint programming, see Van Henten-
ryck [1999], the Eight Queens Problem of Example 2.2 can be be solved
using the following program:

int n = 8;
range Domain 1..n;
var Domain queen[Domain];
solve{

forall(ordered i,j in Domain) {
queen[i] <> queen[j];
queen[i] <> queen[j]+j-i;
queen[i] <> queen[j]+i-j

};
};

Here, thanks to the forall statement and arrays of constraint variables
present in the language, the appropriate 28 constraints are generated in a
way closely resembling their original formulation. So the forall statement
corresponds to the bounded universal quantifier. Another example showing
how the constraints can be elegantly generated using recursion is given in
Subsection 9.4.3.

9.3 Constraint propagation

When choosing between general purpose and domain specific constraint
propagation, it is in general better to rely on the latter. The reason is that
when limiting one’s attention to a specific domain one can rely on additional
properties which can lead to more efficient algorithms. This explains why
global constraints and constraint solvers are useful.

Moreover, most of the constraint propagation algorithms are too costly
to be used in practice. Consequently, in most constraint programming sys-
tems only the arc consistency and occasionally hyper-arc consistency are
supported by means of the built-in algorithms. This explains the consider-
able amount of research that went into the study of the arc and hyper-arc
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consistency algorithms, see, e.g., Bessière and Régin [2001] and Zhang and
Yap [2001].

The local consistency notions are useful if we wish to characterise con-
straint solvers or certain domain reduction rules. Examples are provided in
Chapter 6. As another example consider the knapsack problem discussed
in Example 2.12. In Trick [2001] a variant of this problem, called the two

sided knapsack constraint is studied, in which the considered constraint
is of the form

l ≤
n∑

i=1

ai · xi ≤ v,

where the variables x1, ..., xn range over the domain {0, 1}. So the difference
is that here also a lower bound for the total value of the selection is given.
This constraint is a part of various integer programming problems. The
author proposes an O(nv2) algorithm based on the dynamic programming
techniques that enforces hyper-arc consistency on this constraint. It leads to
a significantly more efficient way of dealing with this constraint than other
approaches. On the account of the Hyper-arc Consistency Lemma 6.1 of
Section 6.1 we know that the resulting domain reduction is optimal.

Further, some local consistency notions can be used to clarify the role
and nature of certain methods used in computer science and applied math-
ematics. For example, as explained in Dechter and van Beek [1997], the
notion of relational consistency and the resulting RELATIONAL (i, m)-
CONSISTENCY rule of Section 5.9 generalise a number of approaches
including the resolution rule mentioned in Chapter 3 and the Gaussian

Elimination and Fourier–Motzkin Elimination algorithms discussed
in Chapter 4.

Constraint propagation also allows us to better understand various tech-
niques used in the area of combinatorial optimization, where it is common
in the process of solving the original problem to derive and add specific
constraints. In the terminology of Chapter 3 such constraints are implied
constraints and their addition is an instance of constraint propagation. Var-
ious examples of such implied inequalities used to solve integer programming
problems and the knapsack problem are discussed in Wolsey [1998].

In fact, constraint propagation lies at the heart of various efforts aiming
at the integration of constraint programming and operations research. It
is often implicitly present in the form of efficient constraint propagation
algorithms developed for specific global constraints.
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9.4 Constraint solvers

In a typical constraint programming system several constraint solvers are
incorporated. They act as ‘black boxes’ that are automatically activated
once a constraint that can be handled by them is encountered in the program
text.

9.4.1 Building constraint solvers

If a constraint solver is not built into a programming system it can be added
as a program written in a special purpose programming language. A suc-
cessful example of such a language is the CHR language of Frühwirth [1995]
that is integrated into the ECLiPSe programming system and SICStus Pro-
log. CHR stands for Constraint Handling Rules. It is a rule-based language
built on top of Prolog that realises the CCP paradigm. Each CHR rule allows
us to rewrite a given query into another one which is logically equivalent.
Consequently, the CHR rules allow us to program in an elegant way the proof
rules discussed in Section 4.1. The resulting program executions correspond
to the failed or stabilising derivations there introduced. So in CHR vari-
ous constraint solvers and some local consistency notions, for example path
consistency, can be programmed by simply formalising the proof rules that
define them.

For example, the AND 1–6 domain reduction rules for the Boolean AND
constraint presented in Section 6.3 can be written in CHR as follows:

and(1,1,Z) <=> Z=1.
and(1,Y,0) <=> Y=0.
and(X,1,0) <=> X=0.
and(0,Y,Z) <=> Z=0.
and(X,0,Z) <=> Z=0.
and(X,Y,1) <=> X=1, Y=1.

Such rules are automatically triggered when a constraint is encountered to
which a rule can be applied. More complicated rules have guards that state
conditions under which the rule can be applied. These rules can be defined
using a subsidiary Prolog program. Originally, in the CHIP language, similar
rules were present and called demon rules.

ECLiPSe and SICStus Prolog provide a number of low level mechanisms
that allow us to write various forms of constraint propagation without the
use of CHR rules. This makes it possible to implement CHR through a transla-
tion into ECLiPSe or SICStus Prolog. In turn, Mozart provides an interface
to C++, called Constraint Propagator Interface (CPI), through which one
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can add new constraint solvers to the system. In the Claire language con-
straint solvers can be naturally programmed using event-based rules that are
available together with a rule-based inference engine. They are compiled into
procedural demons by translating them first to algebraic expressions over a
relational algebra.

9.4.2 Incrementality

In Chapters 4 and 6 we defined constraint solvers as transformations of
CSPs that maintain equivalence. But in reality the individual constraints
are encountered in the program text on a ‘one-by-one’ basis and the actual
constraint solvers deal with each newly encountered constraint separately,
in the context of a constraint store that usually satisfies some property. For
example, in the case of a complete constraint solver the corresponding con-
straints present in the constraint store are in some solved form. In turn,
the incomplete constraint solvers usually achieve some form of local consis-
tency. So the CSP formed by the corresponding constraints present in the
constraint store satisfies this notion of local consistency at the moment a
new constraint is added.

Taking such additional information into account makes it often possible
to improve the efficiency of the constraint solver. The resulting solvers are
called incremental. The complete constraint solvers discussed in Chapter
4 were all defined by means of proof rules and a scheduler that repeatedly
applies them. As a result, the appropriate modification of these constraint
solvers to incremental ones can be achieved by a simple modification of the
scheduler.

For example, in the case of the term equations studied in Section 4.2,
it suffices to modify the Martelli–Montanari algorithm by taking into
account that the set of equations present in the constraint store is in solved
form. More precisely, suppose that the constraint store equals F := {x1 = t1,

. . ., xn = tn} and that e is the new equation.
The incremental algorithm consists of three phases. In the first phase n

applications of the SUBSTITUTION rule with the selected equation xi = ti
and E equal to the singleton set {e{x1/t1}. . .{xi−1/ti−1}} are performed.
This amounts to ‘interpreting’ e in the ‘context’ of F . Note that these rule
applications are not global in the terminology of Chapter 4. The second
phase consists of applying the Martelli–Montanari algorithm to the
singleton set consisting of the equation e{x1/t1}. . .{xn/tn}. If this yields a
set of equations G := {y1 = s1, . . ., ym = sm} in solved form, the third phase
consists of m applications of the SUBSTITUTION rule with the selected
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equation yi = si and E equal to F{y1/s1}. . .{yi−1/si−1}. This amounts to
interpreting F in the context of G. Otherwise, the algorithm terminates
with failure.

Of course, such simple modifications are in general insufficient to turn
more complex complete constraint solvers into incremental ones. The situa-
tion is different in the case of the incomplete constraint solvers. As explained
in Section 7.11, these solvers usually can be, and often are, implemented
using some generic iteration algorithm. These algorithms can be easily ad-
justed to an incremental form by starting the iteration with the functions
associated with the newly added constraint.

9.4.3 Simplification of constraints

When manipulating constraints it is important to be able to output them
in a form readable to the system user. To see the relevance of this issue
consider the following problem that became a trademark of the CLP(R)
system. We are interested in expressing the mortgage relationship between
the following five variables:
P (the principal),
T (the length of loan in months),
I (fixed, but compounded, monthly interest rate),
B (outstanding balance at the end), and
M (the monthly payment).

Mathematically, this relationship can be summarised by the following two
equations, where we indicate the value of the principal P at time t by Pt:

P0 = B,

Pt−1 = Pt*(1 + I) - M, where t ≥ 1.

This translates into the following, remarkable in its simplicity, CLP(R) pro-
gram:

mg(P, 0, I, P, M).

mg(P, T, I, B, M) :-
T >= 1,
mg(P*(1 + I) - M, T - 1, I, B, M).

This program can be used in a number of ways, including the request for
expressing the relationship between the monthly payments (the variable M),
the principal (the variable P), and the outstanding balance at the end (the
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variable B). For example, the query mg(P, 360, 0.01, B, M), expressing
the information that the loan is for 360 months at 1% monthly interest rate
yields the following answer:

P = 0.0278167*B + 97.2183*M.

Internally, the execution of this query successively adds the above equations
to the constraint store, starting with the one for t = 360, where P360 =
P. Without constraint simplification the output would consist of all the
constraints referring to the local variables generated during the execution,
in particular to all 360 copies Pt, where t ∈ [0..359], of the initial variable P.

In general, a simplification may involve elimination of certain variables
(which amounts to a projection of the constraint), a transformation of the
constraints to an accepted form (for example, to linear equations in normal
form), or an elimination of some function or relation symbols (for example,
of ≥ in the case of linear constraints) from the output constraints.

9.5 Search

9.5.1 Search in modeling languages

Mathematical modeling languages traditionally did not allow one to specify
search methods. Instead, special cases of constrained optimization prob-
lems were directly supported by means of specific algorithms that could be
activated by a language command. For example in the AMPL language
the linear programming problems can be solved directly, as in the following
self-explanatory program taken from Fourer, Gay and Kernigham [1993]:

var XB;
var XC;
maximize profit: 25 * XB + 30* XC;
subject to Time: (1/200) * XM + (1/140) * XC <= 40;
subject to B_limit: 0 <= XB <= 6000;
subject to C_limit: 0 <= XC <= 4000;

solve;

which is solved by calling the MINOS solver.
Such a direct access to an underlying linear programming package is nowa-

days present in many constraint programming languages. In a new gener-
ation of modelling languages search is programmable and various forms of
constraint propagation are present.
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An example is the 2LP language (that stands for ‘linear programming and
logic programming’) of McAloon and Tretkoff [1996] that integrates both
fields using the technology of constraint logic programming. The language
uses C syntax and has been designed for constraint programming in the
area of combinatorial optimization. In 2LP there are two types of variables:
the ‘customary’, programming, variables and the continuous variables (the
name derives from their use in mathematics). The continuous variables vary
over the real interval [0, +∞) and can be modified only by imposing linear
constraints on them, the addition of which triggers an internal Simplex-
based algorithm. So they are examples of constraint variables.

In contrast to the customary modeling languages 2LP, through its bidi-
rectional link with C, also provides support for generating and solving more
complex systems of linear constraints, including disjunctive constraints, and
for programming complex forms of search.

Another language that extends the traditional modeling languages is the
already mentioned OPL to which we shall return after discussing various
search algorithms.

9.5.2 Depth-first search: backtracking and branch and bound

As clarified in Chapter 8, backtracking and branch and bound search, com-
bined with various forms of constraint propagation, form two basic forms of
the depth-first search. In many constraint programming languages these two
forms of search are built-in. In fact, the constraint logic programming lan-
guages inherited from Prolog the reliance on the depth-first left-first search
strategy. In CHIP the resulting built-in backtrack search is automatically
combined with the built-in constraint propagation. It is triggered by the al-
ready mentioned labeling built-in that originated from CHIP. In addition,
the user can specify forward checking and partial look ahead as a search
strategy.

In turn, the branch and bound search is supported by means of another
built-in. In ECLiPSe it is called min max and is used as in the following
program skeleton:

solveOpt(List):-
declareFinDom(List),
generateConsAndObj(List, Obj),
min_max(labeling(List), Obj).

The call of solveOpt relation leads to a declaration of the finite domains
for the variables listed in the List argument, followed by a generation
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of the constraints and of a (linear) objective function, and a branch and
bound search with the built-in constraint propagation triggered by the call
min max(labeling(List), Obj).

These and other constraint logic programming language also allow one to
program in a simple way various heuristics, such as first-fail, that are used
during the search. In some languages first-fail is a default heuristic. Such
facilities are included in one way or another in most contemporary constraint
programming languages.

In Claire so-called versioning allows one to program in a simple way
various search strategies based on backtracking. A version is a virtual copy
of the state of the objects. Versions are organised into a stack. The language
provides an efficient support for creation and rollback of the versions.

9.5.3 Breadth-first search and limited discrepancy search

We considered here only one form of search: the top-down (or depth-first)
search. Let us discuss now briefly alternative forms of search that are often
used to solve constraint satisfaction problems and constrained optimization
problems.

In the breadth-first search one explores the search tree layer by layer.
A modification of this search includes the best-first search according to
which one maintains a frontier of the tree and selects from it for expansion
a node with the best value according to some heuristic function. The ob-
vious complication is that the breadth-first search requires to maintain the
increasingly growing list of generated nodes in the memory. Some variations
avoid this problem by using a bounded amount of memory and combining
the search with a limited form of backtracking.

Another alternative to the top-down search is the limited discrepancy

search of Harvey and Ginsberg [1995]. This search is organised in a se-
quence of waves. Wave 0 follows the heuristic and for i > 0 wave i explores
the solutions that can be reached if i deviations are made from the heuris-
tic. Suppose for example that the search tree is binary and the heuristic is
‘top-down, left-first’. Then in wave 0 the leftmost branch of the search tree
is explored. In wave 1 the nodes are explored that lie on the branches in
which precisely one ‘turn’ to the right is made. In general, in wave i the
nodes are explored that lie on the branches in which precisely i ‘turns’ to
the right are made.
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9.5.4 Local search

Another important alternative to the top-down search is so-called local

search , which is a generic name for a whole class of search algorithms.
The local search algorithms operate on the leaves of a complete labeling
tree. Their purpose is to find a solution to a CSP or to a constrained
optimization problem by starting with an instantiation defined on all the
variables (called in this context a state) and trying to improve its quality

iteratively, by small (so local) changes, called moves. The quality of a state
is defined by means of a cost function . Below we say that a state is better

(respectively worse) if its quality is better (respectively worse) and assume
that a solution (respectively, an optimal solution) is one of the best states.
A simple example of a cost function is the number of constraints violated
by the state. Then the quality of a solution is 0.

The basic ingredient of the local search is the notion of a neighbourhood ,
which is a function that assigns to each state I (i.e., an instantiation) a set
of states, that are called the neighbours of I. An execution of a local
search algorithm starts in an initial state, obtained by another technique
or randomly, and enters a loop in which repeatedly a move is performed
from a state to one of its neighbours. The final state is either a solution
to the considered CSP (respectively, an optimal solution to a constrained
optimization problem) or a ‘stop’ state that corresponds to an information
that the CSP is inconsistent. Specific forms of local search are obtained by
specifying the way the moves are chosen and the way the search is stopped.

An example of a local search is the hill-climbing search , which is ac-
tually a family of local search techniques, according to which in each move
one selects the best neighbour among the better or equally good neighbours.
The complication is that one can end in a local minimum , i.e., a state all
neighbours of which are worse. Various modifications were proposed to solve
this problem. They include randomised decisions to restart the search, to
redefine the neighbourhood, or to select a move. One of them, called the
heuristic repair method , or the min-conflicts heuristic, of Minton et
al. [1992] proved to be highly successful. In this method one chooses ran-
domly any variable that violates a constraint and selects for it a new value
that minimises the number of violated constraints.

To illustrate this approach to search reconsider the n Queens Problem of
Example 2.2 of Chapter 2 for n = 5. To solve it by means of the hill-climbing
search we use the first representation of this problem as a CSP. So the states
(or equivalently, the instantiations) are the sequences of 5 elements from the
set [1..5]. Each state can be viewed as a placement of five queens on the 5×5
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chess board so that no two queens are in the same column. For example,
the state 3,4,5,2,1 is represented by Figure 9.1.

Fig. 9.1. Local search: the initial state

Given a state we associate with it the neighbourhood defined as the set of
states that can be obtained from it by a single transposition. Graphically,
this corresponds to an exchange of the row positions of two queens. For
example, the state 4,3,5,2,1 represented by Figure 9.2 belongs to the neigh-
bourhood of the state 3,4,5,2,1 represented by Figure 9.1. So each neighbour
of a state can indeed be reached from it by a small change.

Fig. 9.2. A neighbour state

As a cost function, that yields a quality of a state, we choose the function
counting the number of constraints violated by the state. For example, the
quality of the state 3,4,5,2,1 represented by Figure 9.1 is 6 because six con-
straints are violated by it and the quality of the state 4,3,5,2,1 represented
by Figure 9.2 is 2.

We consider now moves that improve the quality of a state, that is the
ones that lead to a state with a lower value of the cost function. Then a
solution to the 5 Queens Problem can be obtained by two moves from the
initial state 3,4,5,2,1 represented by Figure 9.1: first to the state 4,3,5,2,1
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represented by Figure 9.2 and then to the state 1,3,5,2,4 represented by
Figure 9.3.

Fig. 9.3. A solution

Further, note that the state 4,1,5,2,3 represented by Figure 9.4 is a local
minimum. Indeed, its quality is 2 and the quality of each of its neighbours
is at least 2.

Fig. 9.4. A local minimum

If we now select the last queen and choose for it a value that minimises the
number of violated constraints, then we end up with the sequence 4,1,5,2,5
depicted in Figure 9.5 for which the number of violated constraints is 1. So
this way we could escape here from the local minimum.

An important variant of the hill-climbing search is the tabu search . In
this search method in each move one selects the best neighbour, indepen-
dently of the fact that it can be worse than that of the current state. This
approach allows one to escape from local maxima, but can cause cycling
among a set of states. To prevent cycling the so-called tabu list is main-
tained, which is the list of disallowed moves. This list stores the reverses
of the last k accepted moves, where k is a, possibly dynamically, changing
parameter of the method. Under some conditions, called aspiration cri-
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Fig. 9.5. An escape from the local minimum

teria , the tabu list restrictions can be overridden. An example of such a
criterion is that the move leads to a significantly better state.

Another variant of the hill-climbing search in which the moves to worse
neighbours are allowed is the simulated annealing . These moves are ran-
domly selected. If a state is better, it is accepted. Otherwise it is accepted
only with a probability less than 1. The probability exponentially decreases
with the ‘badness’ of the move that is measured by comparing the quality of
the old and new state. The probability also decreases with the ‘temperature’
that goes down according to a schedule defined in terms of the number of
moves.

Breadth-first and local search techniques are discussed in many books
on artificial intelligence or operations research, for example in Russell and
Norvig [2003], where also the appropriate references can be found.

9.5.5 Search in constraint programming languages

Recall the following slogan that we stated at the beginning of Chapter 8:

Search Algorithm = Search Tree + Exploration Algorithm

and used to divide the chapter into two natural parts. Modern constraint
programming languages increasingly move towards realising this slogan by
separating the specification of the search tree from the specification of the
exploration algorithm. So the same search tree can be explored by different
exploration algorithms that can be programmed. The resulting framework
goes beyond the basic framework for constrained programming introduced in
Section 3.2 even though most of the techniques, like constraint propagation
can be reused in it (for some forms of search) without any change.

This approach was pioneered in Oz. The language provides a library of
predefined search methods (called search engines) and also allows one to
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program new search engines in a generic way. Schulte [1997], and more ex-
tensively Schulte [2002], shows how several search engines, including limited
discrepancy search, can be programmed in Oz using the abstraction of the
computation spaces (a computation space is essentially a constraint store
with a set of concurrently operating constraint solvers, called propagators,
attached to it) to which a direct access on the language level is provided.

This way the exploration of the generated search tree by a different explo-
ration algorithm can be achieved simply by applying a different search engine
to the program describing the problem. To illustrate this separation of the
program statements that specify the search tree from the ones that specify
the exploration algorithm consider the nondeterministic choice statement
of Oz. It allows one to model and implement in a straightforward way the
disjunctive constraints mentioned in Section 3.2. Consider for example the
disjunctive constraint

Start[task1] + Duration[task1] ≤ Start[task2] ∨
Start[task2] + Duration[task2] ≤ Start[task1]

already mentioned in Section 3.2. It can be modeled in Oz as follows:

choice Start.task1 + Duration.task1 =<: Start.task2
[] Start.task2 + Duration.task2 =<: Start.task1
end

where Start and Duration are declared as records of constraint variables. In
this context the choice statement can be viewed as the logical disjunction.

Assume now that the underlying search engine is the depth-first search.
Then the execution of the program attempts to find a solution with the
first alternative added as a constraint and, upon failure, with the second
alternative added. (The corresponding CHIP or ECLiPSe solution relies on
Prolog’s use of multiple clauses with the same relation in the clause head
or the disjunction statement ‘;’ also present in Prolog.) If, however, the
selected search engine is the generic best-first search, the execution of the
program will explore the generated search tree using the best-first search.

This approach to search was adopted in a somewhat different way in
OPL. The language provides a large number of useful high-level abstractions
that allow one to specify the search tree and, separately, to explore it by
means of various built-in and programmable exploration strategies. They
are described in detail in Van Hentenryck, Perron and Puget [2000]. To
illustrate these facilities let us return to the OPL solution to the Eight Queens
Problem presented in Section 9.2. The default search procedure triggered
by the solve built-in is the depth-first left-first combined with the first-fail
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heuristic. If we combine this program with the following specification of the
search:

search {
forall(i in 1..n)

tryall(v in 1..n)
queen[i] = v;

};

then we change the default search procedure to the one in which to each
queen queen[i] in turn a value from [1..n] is nondeterministically assigned.
So the tryall statement corresponds to the bounded existential quantifier.
If one adds now as the first line of the code the instruction LDSearch(2),
then the declared search procedure uses the limited discrepancy search with
discrepancy increments of 2.

Let us mention in passing that Michel and Van Hentenryck [2002b] dis-
cuss a novel implementation of the limited discrepancy search for solving
constraint satisfaction problems.

Another constraint programming language in which search can be pro-
grammed is ELAN, see e.g. Borovansky et al. [1998] or Kirchner and Ringeis-
sen [1998] for its use for constraint programming and constraint solving. The
program is a rewriting system that consists of conditional rewrite rules that
are controlled by strategies. The strategies can be programmed by means
of a small set of powerful primitives that include nondeterminism, iteration,
and some selection strategies. ELAN is used to support the design of var-
ious rule-based algorithms such as constraints solvers, decision procedures,
theorem provers, and algorithms expressed in logic programming languages,
and to provide a modular framework for studying their combinations.

Further, as shown in Wallace and Schimpf [2002], the repair library of
ECLiPSe allows one to develop effective hybrid algorithms. Finally, the
already mentioned ILOG Solver also provides a number of built-in search
strategies and high-level abstractions for programming new search strategies.

Among the frameworks and languages for supporting the development of
local search algorithms we mention three elegant recent proposals. Salsa

of Laburthe and Caseau [2002] is a language for specifying various search
algorithms, including local and hybrid ones. It works in cooperation with
a host programming language and can be implemented on top of constraint
programming systems.

Local++ of Schaerf, Cadoli and Lenzerini [2000] is an object-oriented
framework for developing and implementing local search algorithms in C++.
Its core consists of a hierarchy of solvers that comprise three forms of ‘simple’
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local search: hill climbing, simulated annealing and tabu search, and two
forms of composite local search. One can combine Local++ with various
widely available C++ libraries.

Finally, Michel and Van Hentenryck [2002a] propose an object-oriented ar-
chitecture that supports local search. It consists of a declarative and search
component. The first component specifies the properties of the solutions and
the data structures that are maintained during the search, while the second
component specifies the implementation of heuristics and meta-heuristics.
This architecture was realised in the Comet language.

9.5.6 Biology-inspired approaches

Under this name we list two approaches in which search is performed using
computation models inspired by biology.

An approach to solving CSPs based on the neural networks architecture
was proposed in Davenport et al. [1994] in the form of an algorithm called
GENET. This approach uses networks the nodes of which are very simple
processors and the arcs of which have weights associated with them. At
any moment, each node is in a state that is determined by means of simple
operations that take into account the previous states of the nodes connected
to it and by the weights associated with these arcs.

Assume for simplicity that the considered CSP is binary. The CSP is
represented by a network the nodes of which correspond to the values of
all variables and the arcs between nodes correspond to the constraints. The
nodes representing a domain of one variable are grouped into a cluster and it
is assumed that at each moment exactly one value in each cluster is ‘turned
on’. To each arc that violates a constraint an inhibitory link is attached.
The network is initialised by assigning a fixed value to all weights that
are associated with the arcs. The algorithm starts in a random state and
repeatedly recomputes the new state by using the information on the weights
of the neighbouring nodes. A stable state that is not a solution is exited by
means of a change of the weights based on a learning strategy.

Finally, the genetic algorithms draw on an analogy with the evolution
theory from which they borrow the terminology of fitness (the name used
for the cost function), recombination, mating, cross-over, population

and mutation . In these algorithms one derives new states by recombining
two parent states using a mating function that produces a new state (or a
pair of new states) corresponding to a cross-over (an exchange of the ‘bits’)
of the parent states. The parent states are selected from a pool of states
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called population, taking into account their fitness. The new states are
subjected to small random changes that model the mutation.

Eiben and Ruttkay [1997] discuss how the genetic algorithms can be spe-
cialised to solve CSPs and constrained optimization problems by defining
the relevant functions in terms of CSPs concepts. For example, the fitness
function can be defined in terms of the number of satisfied constraints or the
number of variables that do not occur in the violated constraints. In turn,
the cross-over and mutation operators can be defined using various heuris-
tics for selecting a variable to be modified and a new value in its domain.
Such specialisations of the relevant functions led to a considerable speed up
of the convergence process.

Genetic algorithms have been successfully used in many areas includ-
ing operations research, numerical analysis and electrical engineering. An
example of a system that supports genetic algorithms is GENOCOP (Ge-
netic Algorithm for Numerical Optimization for COnstrained Problems), see
Michalewicz [1996]. It is a genetic algorithm-based program for constrained
and unconstrained optimization problems involving linear constraints on re-
als.

In both approaches it is not guaranteed that a solution is found. In partic-
ular the algorithms may diverge. In specific applications this complication
could often be overcome by an appropriate choice of the parameters that in
particular ensured termination.

9.6 Over-constrained problems

We stated in Chapter 1 that the representation of a problem by means of
constraints is very flexible because the constraints can be added, removed
or modified. This comes particularly handy when a formalisation of a prob-
lem we would like to solve yields an inconsistent CSP. In many situations
it simply means that the original problem needs to be reformulated. Such
problems are usually called over-constrained problems, which indicates
that some constraints may be dropped or that we should relax the require-
ment that all the constraints are to be satisfied.

This brings us to the subject of soft constraints which is a generic name
for a variety of approaches that augment the CSP framework by allowing
constraints to be partially satisfied. The problem consists then of finding
the ‘best’ instantiation according to some criterion. These problems differ
from the usual constrained optimization problems, because the optimization
can be multi-objective and because constraint propagation in this context
has to be reconsidered.



380 Issues in constraint programming

We shall now illustrate these approaches to over-constrained problems
drawing on Rudová [2001], where they were applied to a study of a University
timetabling problem. The problem deals with a given set of course offerings,
each consisting of several courses. Each student is to enroll in one or more
offerings having some small amount of choice among the proposed offerings.

The most natural formalisation of this problem should take into account
the usual constraints stating that at most n courses can be scheduled at
the same time, where n is the number of available rooms, and that for each
offering its courses do not overlap in time.

If one also adopts the constraints that the courses selected by each of the
students do not overlap in time, one can easily end up with a formalisation
of the problem that has no solution. For the purpose of the subsequent
discussion we denote the constraint that the courses c1, . . ., cm selected by a
student do not overlap in time by disjunctive(c1, . . ., cm). It is a conjunction
of the constraints disj(ci, cj), where 1 ≤ i < j ≤ m and where each disj(ci, cj)
constraint states that the courses ci and cj do not overlap in time.

9.6.1 Partial, weighted and fuzzy CSPs

Instead of taking the rigid viewpoint that no solution exists to the discussed
problem, one can either relax the problem by dropping some constraints (for
example the ones referring to the students) or revise the formalisation by
indicating which constraints are obligatory (sometimes called in this context
crisp constraints or hard constraints) and which are optional.

In a general setting this is the subject of the work of Freuder and Wallace
[1992] on partial constraint satisfaction . Instead of searching for a
solution, when dealing with a partial CSP, one is willing to accept a solution
that violates some of the constraints. If one searches for an instantiation
that satisfies all the crisp constraints and as many optional constraints as
possible, this problem is called max-CSP .

The Branch and Bound search algorithm discussed in Subsection 8.7.1
can be modified in a natural way to solve max-CSPs with finite domains.
However, an addition of constraint propagation to this algorithm is not
anymore so straightforward. The reason is that constraint propagation,
when applied to optional constraints, may lead to a removal of values that
could be retained in the final instantiation. Freuder and Wallace [1992]
propose for max-CSPs a limited form of constraint propagation based on
so-called arc consistency counts.

In the above timetabling problem, one could either try to maximise the
number of satisfied original optional constraints (which amounts to max-
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imising the number of students for which no course conflicts would arise), or
to transform each disjunctive constraint to the corresponding set of disj con-
straints and maximise the number of satisfied resulting optional constraints.
This would amount to minimising the total number of overlaps between the
courses selected by the students.

Another approach consists of assigning to each constraint a ‘weight’ that
represents the penalty incurred if the constraint is not satisfied. This ap-
proach leads to so-called weighted CSPs, for which the task is to find an
instantiation for which the sum of the penalties is minimised. The max-CSP
is a special case of the weighted CSPs, in which all the optional constraints
have the same weight.

For example, in the above timetabling problem, for each pair of courses
c1 and c2 selected by a student (so a pair of courses that are supposed
not to overlap) we can assign to the corresponding constraint disj(c1, c2) a
weight that equals the number of optional disjunctive constraints in which
such a pair appears and then replace each such disjunctive constraint by
the corresponding set of the disj constraints. Then the task is to find an
instantiation that satisfies all the obligatory constraints and for which the
total sum of the weights of the violated disj constraints is minimal.

Yet another approach consists of assigning to each constraint C and in-
stantiation I a ‘degree of satisfaction’ sat(C, I), which is a value in the [0, 1]
real interval indicating the ‘degree’ that C is satisfied by I. If this value
is 1, C is satisfied and if this value is 0, C is violated. This interpretation
leads to fuzzy CSPs introduced in Dubois, Fargier and Prade [1993] and
Ruttkay [1994]. In the most common interpretation of them the task is to
find an instantiation I for which the minimum of sat(C, I) with C ranging
over all the constraints (which is the smallest degree of satisfaction for the
instantiation I) is maximal.

To apply this approach to the above example we could assign to each
optional constraint disjunctive(c1, . . ., cm) and instantiation I the percentage
of the constituent disj(ci, cj) constraints that are satisfied.

A combination of the last two approaches leads to a study of a combination
of weighted and fuzzy CSPs, also considered in Rudová [2001].

9.6.2 Constraint hierarchies

Another way of dealing with over-constrained problem was proposed in
Borning et al. [1987] and more extensively Borning, Freeman-Benson and
Wilson [1992]. In this approach each constraint is labeled with a strength

value drawn from a finite, linearly ordered set. A constraint hierarchy is
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a finite multiset of such labeled constraints. The constraint hierarchy can be
naturally divided into a sequence H0, . . ., Hn of levels by putting constraints
with the same label into the same level. The constraints in the lowest level
H0 are considered to be the required (i.e., crisp) constraints.

We assume that for each constraint we have an error function that
given an instantiation I indicates how nearly the constraint is satisfied.
For example, the error function for the x ≤ y constraint on reals could be
max(0, x − y). Intuitively, a solution to a constraint hierarchy is then an
instantiation that satisfies the required constraints and ‘respects the hierar-
chy’. More formally, we define the notion of a solution parameterising it by
the concept of a ‘better’ instantiation. We say that an instantiation I is a
solution to the constraint hierarchy corresponding to H0, . . ., Hn if

• I is a solution to H0,
• no solution J of H0 is ‘better’ than I.

The partial ordering ‘better’ on the instantiations can be defined in a
number of ways. Each of them is called a comparator . They refer to the
error functions. An example is the locally better comparator defined as
follows:

locally better(I, J) holds iff for some k > 0

• ∀i ∈ [1..k − 1] ∀c ∈ Hi error(c, I) = error(c, J),
• ∀c ∈ Hk error(c, I) ≤ error(c, J),
• ∃c ∈ Hk error(c, I) < error(c, J).

It is easy to see that if the CSP formed by the constraints in H0 is consis-
tent and has finitely many solutions (which is for example the case when all
domains are finite), then the considered constraint hierarchy has a solution.
Indeed, it suffices to choose from the solutions to H0 any instantiation that
is minimal in the ‘better’ ordering. To solve constraint hierarchies various
algorithms were proposed, see, e.g., Borning and Freeman-Benson [1998].
They usually deal with simple constraints, like linear inequalities on reals,
and employ a form of constraint propagation combined with planning tech-
niques.

Constraint hierarchies are typically used in constraint-based interactive
graphic systems, in particular in the user interface toolkits. But in principle
they can also be employed to specify any over-constrained problem involving
arithmetic constraints on finite domains or linear constraints on reals. For
example, in Henz et al. [2003] the constraint hierarchies involving linear
constraints on finite domains are used to model large airport gate allocation
problems.
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9.6.3 Generalisations

Such and other natural generalisations of the CSPs are studied in a uniform
way in Schiex, Fargier and Verfaillie [1995], using the notion of a valued

CSP , and in Bistarelli, Montanari and Rossi [1997], using the notion of
semiring-based constraint satisfaction .

In the first approach a CSP is augmented with a valuation structure

which is a linear ordering with the largest element � and the smallest ele-
ment ⊥, and an associative and commutative binary ‘aggregation’ operator.
The � element expresses complete inconsistency, while ⊥ expresses com-
plete consistency. To each constraint its ‘valuation’ is associated, which is
an element of the valuation structure denoting its importance. Then to each
instantiation I a valuation is assigned, which is the aggregation of the val-
uations of the constraints that are violated by I. The task is then to find
an instantiation with a minimum valuation. By choosing different valuation
structures different generalisations of a CSP are obtained.

In the second approach a semiring contains two operations, + and ×.
The first operation is used to select the best solution among different in-
stantiations, while the second operation corresponds to the join operation
of Definition 5.34. We noted there that using join we can define the set of
all solutions to a CSP. For each specific generalisation of a CSP an appro-
priate semiring is chosen. Its set specifies the values to be associated with
each tuple of elements from the variable domains (for example {0, 1} for the
customary CSPs and [0, 1] for the fuzzy CSPs) and its two operations are
used to define the set of all solutions. Both approaches are compared in
Bistarelli et al. [1996].

9.6.4 Reified constraints

Reified constraints are not soft constraints. But they are often used to deal
with the max-CSPs, so it is natural to discuss them in this section.

Given a constraint c we introduce a fresh Boolean variable B and call
c↔B a reified constraint . Given a max-CSP with the optional con-
straints c1, . . ., cn we choose new Boolean variables B1, . . ., Bn and consider
instead the crisp reified constraints c1 ↔B1, . . ., cn ↔Bn. The task of solv-
ing the original max-CSP becomes now simply a constrained optimization
problem with

∑n
i=1 Bi as the objective function.

A complication is that the constraint propagation needs to be appropri-
ately extended to the reified constraints. To see this note that a reified
constraint c↔B is equivalent to the disjunction (c ∧ B) ∨ (¬c ∧ ¬B). So
conceptually we can view a reified constraint as a disjunctive constraint.
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(In practice they are dealt with more efficiently.) Then for each disjunct
different proof rules have to be used. For example, if c is a linear equal-
ity constraint over integer intervals, then for the first disjunct the LINEAR
EQUALITY rule of Section 6.4 is applicable, while for the second disjunct
we need to use appropriate transformation rules and the DISEQUALITY
rules of Section 6.4. Some constraint programming systems provide support
for reified constraints.

9.7 Summary

The aim of this chapter was to put various aspects of constraint program-
ming discussed in the previous chapters in a proper perspective. To this end
we discussed in turn the issues concerned with

• modeling,
by clarifying the impact of various problem representations on the effi-

ciency,
• constraint programming languages,

by explaining how the constraints and the variables present in them are
represented in constraint programming languages, and by discussing the
common features of these languages,

• constraint propagation,
by explaining the implicit role played by it in some areas of computer

science and applied mathematics,
• constraint solvers,

by reflecting on their desired features from the point of view of efficiency
and usability,

• search,
by explaining what forms of search are commonly used to solve CSPs

and constrained optimization problems and how they are realised in con-
straint programming languages, and

• over-constrained problems,
by clarifying what approaches have been proposed to deal with the

problems the formalisation of which yields an inconsistent CSP.

9.8 Bibliographic remarks

One of the aspects of modeling that increasingly attracts attention of the
researchers is handling of symmetries in an efficient way. Various approaches
that were proposed to deal with this subject are summarised in Flener et
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al. [2002], while recent contributions can be found in Flener and Pearson
[2002].

van Hoeve [2001] surveys efficient constraint propagation algorithms for
the all different constraint with respect to various local consistency no-
tions. Beldiceanu [2000] provides a classification scheme and a large in-
ventory of global constraints. Wester [1999] is a collection of articles that
describe the capabilities and limitations of various computer algebra sys-
tems.

Cohen [1990] is an early survey on constraint logic programming lan-
guages. Jaffar and Maher [1994] is a more recent and more extensive sur-
vey with emphasis on theory, implementation, and applications. It also
includes an analysis of various desired aspects of constraint solvers and an
account of constraint logic programming languages. Van Hentenryck and
Saraswat [1996] is a useful summary of various research directions in con-
straint programming. Marriott and Stuckey [1998] is a solid introduction to
constraint logic programming, both from the theoretical and practical point
of view. It also contains a good account of incremental constraint solvers
and an overview of various constraint programming languages. Information
on and pointers to several constraint systems and languages can be found
through the constraints/systems/ link of the Constraints Archive website
http://www.cs.unh.edu/ccc/archive/ maintained by Peg Eaton.

In Simonis [1996] a classification of problems solved with constraint logic
programming on finite domains is provided. The proposed scheme tries to
clarify which types of problems can be effectively solved using this approach
and which ones are best solved using the integer programming and local
search techniques. Wallace [2002] discusses current directions in constraint
logic programming, with pointers to works on hybrid algorithms. Schulte
and Smolka [2002] is a web-based tutorial on constraint programming on fi-
nite domains in Oz that shows the benefits gained from using such techniques
as the global constraints, exclusion of symmetries, implied constraints (called
there redundant constraints) and reified constraints. Frühwirth [1998] pro-
vides a comprehensive survey of the use of the CHR language.

Useful bibliographic information and other web resources on local search
techniques can be found through the website http://people.freenet.
de/Emden--Weinert/localsearch.html maintained by Thomas Emden-
Weinert.

Granvilliers, Monfroy and Benhamou [2001] survey the issues concerned
with cooperation of constraint solvers with an emphasis on combinations
of symbolic and interval methods. Jampel, Freuder and Maher [1996] is a
collection of articles on a number of approaches to over-constrained CSPs.
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Meseguer et al. [2003] is a more recent survey discussing fuzzy, lexicographic,
probabilistic, weighted, and hierarchical CSPs. Finally, Barták [2002] is an
informative on-line guide to constraint programming maintained by Roman
Barták. It also contains many useful pointers to constraint resources avail-
able on the web.
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constraint logic programming, 5, 361
constraint satisfaction problem, see CSP
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failed, 55
finite, 272
fuzzy, 381
hyper-arc consistent, see local consistency
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inconsistent, 10
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interval consistent, see local consistency

notions
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node consistent, see local consistency

notions
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on reals, 16
path consistent, see local consistency
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solution to, 10, 157
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equation, see linear constraint
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floating-point interval, 237
floating-point number, 237
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FORWARD CHECKING search tree, 318
forward substitution phase, 118
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FULL LOOK AHEAD search tree, see MAC

search tree
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full look ahead, see search algorithm MAC

function
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with a scheme, 265
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interval, see integer interval
interval arithmetic

on integers, 76, 217
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interval consistency, 204
interval CSP, 18
iteration, 257
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regular, 260
semi-chaotic, 291

join (of constraints), 162

k-consistent instantiation, see instantiation
knapsack problem, 44
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labeling tree, 303
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least element, see partial ordering
lexicographic ordering, 105
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linear constraint, 193

disequality, 194
equality, 194
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strict inequality, 193

linear equation
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standard form of, 112

linear equation over reals, 108
linear expression, 193
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linear expression over reals, 108
linear inequality over reals, 122
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literal, 60
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m-path consistency, 154
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relational (i, m)-consistency, 167

local minimum, 372
local search, 372
logical variables, 360

MAC search tree, 323
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Martelli–Montanari algorithm, 106
max-CSP, 380
mgu, 96

strong, 97, 111
min-conflicts, see heuristic repair method
modeling, 1, 8, 58
modeling languages, 359
monomial, 213
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most constrained variable, 64
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m-path consistency, 154
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negation, 184
neural networks, 378
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level of (in a tree), 301
≺-width of, 171
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over-constrained problems, 379

partial constraint satisfaction, 380
partial look ahead, 321
PARTIAL LOOK AHEAD search tree, 321
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Cartesian product, 264
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strict, 257
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polynomial, 213
polynomial constraint, see constraint
polynomial equation, see equation
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proof rule, 84

application of, 88
consistency preserving, 84
domain reduction, 85
equivalence preserving, 84
global application of, 103
introduction, 87
relevant application of, 88
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prop labeling tree, 311
propositional formula, 184

qualitative reasoning, 22
qualitative spatial reasoning, 30
qualitative temporal reasoning, 23

range, 194
reduced labeling tree, 308
regular CSP, see CSP
relation

antisymmetric, 256
irreflexive, 256
reflexive, 256
transitive, 257
transposition of, 149
well-founded, 105

relational (i, m)-consistency, 167
resolution rule, 69
restricted division, 238
R-LINEQ CSP, see CSP
rule, see proof rule

scheme, 264
search algorithm

Abstract Branch and Bound, 345
Backtrack, 329
Backtrack-all, 335
Backtrack-free, 325
Backtrack-free with Constraint

Propagation, 327
Backtrack with Constraint

Propagation, 331
Branch and Bound, 337
Branch and Bound with Constraint

Propagation, 339
Branch and Bound with Constraint

Propagation and Cost Constraint,
341

Forward Checking, 333
MAC, 335
Partial Look Ahead, 334

search tree (for a CSP), 301
semiring-based constraint satisfaction, 383
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set of linear equations in solved form, 110
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set of term equations in solved form, 97
simple polynomial constraint, see constraint
simulated annealing, 375
solution

to a CSP, 10, 157
to the constraint hierarchy, 382

solved form
of a set of linear equations, 110
of a set of term equations, 97

spatial relations, 30
standardised CSP, see CSP
strongly k-consistent CSP, see CSP
substitution, 94, 110

composition of, 95, 110
empty, 94
idempotent, 132
more general than relation, 95

success node, 311
support, 138
symbolic CSP, see CSP
symmetries, 384

tabu search, 374
temporal relations, 23
term, 93
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tree

complete labeling, 304
enumeration, 303
prop labeling, 311
reduced labeling, 308

two sided knapsack constraint, 365
two-level architecture, 360

unary constraint, see constraint
unifiable terms, 96
unification problem, 96
unifier, 96, 110

most general, see mgu
union of CSPs, 57

valuation structure, 383
variable

solved in a set of equations, 105, 117
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current, 312
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past, 312
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